Borland
Delphi” b Developer's Guide

Steve Teixeira and Xavier Pacheco

SAMS

201 West 103rd St., Indianapolis, Indiana, 46290 USA

Borland®
Delphi™ 6 Developer’s Guide

Copyright © 2002 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without written permission from the pub-
lisher. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

International Standard Book Number: 0-672-32115-7
Library of Congress Catalog Card Number: 2001086071
Printed in the United States of America

First Printing: October 2001

04 03 02 01 4 3 2 1

Trademarks

All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to
the accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The authors and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book or from the use of the CD or
programs accompanying it.

Executive EDITOR
Michael Stephens

AcQuISITIONS EDITOR
Carol Ackerman

DEVELOPMENT EDITOR
Tiffany Taylor
MANAGING EDITOR
Matt Purcell

PRrOJECT EDITOR
Christina Smith

ProDuUCTION EDITOR
Rhonda Tinch-Mize

INDEXER
Sharon Shock

PROOFREADER
Harvey Stanbrough

TECHNICAL EDITOR
John Ray Thomas
Tom Theobold

Team COORDINATOR
Pamalee Nelson

MEebpIA DEVELOPER
Dan Scherf

INTERIOR DESIGNER
Anne Jones

CoVER DESIGNER
Aren Howell

PAGE LAyouT
Octal Publishing, Inc.

Contents at a Glance

Part I:

Part Il:
4
5
6

Part IlI:
7
8
9

Part IV:
10
11
12
13
14
15
16
17

Part V:
18
19
20
21

Introduction

Development Essentials
Programming in Delphi
The Object Pascal Language

Adventures in Messaging

Advanced Techniques
Writing Portable Code
Multithreaded Techniques

Dynamic Link Libraries

Database Development

Delphi Database Architecture

Database Development with dbExpress
Database Development with dbGo for ADO

Component-Based Development
Component Architecture: VCL and CLX
VCL Component Building

Advanced VCL Component Building
CLX Component Development
Packages to the Max

COM Development

Windows Shell Programming

Using the Open Tools API

Enterprise Development

Transactional Development with COM+/MTS

CORBA Development

BizSnap Development: Writing SOAP-Based Web Services

DataSnap Development

Part VI:
22
23
24

Internet Development

ASP Development

Building WebSnap Applications
Wireless Development

Index

Table of Contents

Introduction 1
Who Should Read This BOOKcccovieiiieiiieiieiicieeieeeeeeeeee e 2
Conventions Used in This BOOKcccccoveiieiiieiiieiieiecieeieceeeeeeeins
Delphi 6 Developer’s Guide Web Site
Getting Startedcccoveevierieerieieieieereeee e

PArRT I Development Essentials 5

1 Programming in Delphi 7

The Delphi Product Familyc.cccoeoiiiniiininiiniiicecceceeeee 8
Delphi: What and Whyccoooiiiiiiiicceeeeeee 10
The Quality of the Visual Development Environment 11

The Speediness of the Compiler Versus the Efficiency
of the Compiled Codeccoeiriniiineiniiiinececrceeeeeee 12
The Power of the Programming Language Versus

Its COMPIEXILY .voeviieiiiiieiereee et 13
The Flexibility and Scalability of the Database Architecture 14
The Design and Usage Patterns Enforced by the Framework 15
A Little History
Delphi 1 oo
DEIPhi 2 oo
Delphi 3 .o
DEIPhi 4 oo
DEIPhi 5 oo
Delphi 6
The Delphi IDE
The Main WIndOWccooivieiiieiiiiencincecsee e 20
The FOrm DESIZNETcc.eeuiiieiieieiiieniesiesieeieei e 22
The Object INSPECOrooviieiiieiiiiieieneeree e 22
The Code EditOrc.ooeoiiiiiiiiiieiiiieecerececsee e 22
The Code EXPIOTETc.ccovuiieiirieiiiiiieienicenicietesce et 23
The Object TreeView23
A Tour of Your Project’s SOUICEcccceveveriririiieieiieienienesesienean 24
Tour of a Small Applicationc.ccevevireneireieeneereee e 26
What’s So Great About Events, Anyway?cccccceevevueeneneeneenennns 28
Contract-Free Programmingccccceeeevineeneineneeneiecneees 28
Turbo Prototypingccccoeeeereoirinieiricieenee et 29

Extensible Components and Environmentc.ccccoevveencincnecnnee 29

DELPHI 6 DEVELOPER'S GUIDE

The Top 10 IDE Features You Must Know and Love
1. Class COMPIELIONcceevuerieriereriniiieteieesenieeeereeie et
2. AppBrowser Navigationcccceceeeeerieieiienienenenenenceeeeeeens
3. Interface/Implementation Navigationcccceceeververereneenenenn
4.DOCK Tt! s
5. The Object BIOWSETcccceueririiiieieieienienienieeieeieeeeteeeeeie e
6
7
8
9

. GUID, ANYONE? ..oouiiiiiinieienieeiteiteitetetete ettt ae e 31
. C++ Syntax Highlightingcccceoeevieiinininininnneieeeneene 32
CTO D0 o e 32
. Use the Project Manager

10. Use Code Insight to Complete Declarations
and Parametersccoceveiriiiiiiincinceece e 33
SUMIMATY .ottt sbe b e e eens 33

2 The Object Pascal Language 35
COMIMENES .uvivieeiieieiestiesteesteereeteeteeseesssesseesseesseesseesseessesssesssesssesseessens 36
Extended Procedure and Function Featuresccccccoevvveciveienneennen. 37
Parentheses in Calls

OVErloadingcooeevieriiinireeeeee e
Default Value Parameters
Variablescc.oerveiriiieiericieeeeec e
CONSLANLS ..ttt sttt ettt e et ese e
OPCIALOTS ..evevitiiieiieiteitete st st st ettt e e et e besbesbe s b sbeebeebeest et esenae e
ASSIZNMENE OPETALOTS ..cuviveviriieiieiienieieierteriesteeseeiee et eseeeneesee e
CompariSOn OPETALOTSceveeverueeuieieierierieniertesteeseeseeeeeesesesseneenee
Logical OPEratorscccceceeeeueeeeieieienienienieniesieeseeieeeeeesese e ae
Arithmetic Operators
Bitwise Operators

Increment and Decrement Proceduresc..coceeeeeeieienienieniennens 46
Do-and-Assign OPETatorsccceceeverierieriererienienieeeeeeteeesesieneenee 47
Object Pascal TYPES ...cccvevverererienienieeceitetete ettt 48
A Comparison Of TYPES ...ccceeeririiieierieieienestesieeeetet e 48
CRATACTETS ...eveuieiieieieteet ettt ettt ettt ettt ettt esae e 50
A Multitude of Stringsccceceeverieiierienienieneeseeeeeeeee e 51
Variant TYPES .o.eevverveririiieieieteest ettt

Currencyo.....
User-Defined Types
ATTAYS ottt ettt ettt ettt b bt e bt et e et
Dynamic Arrays
RECOTAS ...

Objects
Pointers

TYPE ALASES ..ttt
Typecasting and Type Conversion
String RESOUICES ..eveoviiiriieiieiieieieeert ettt
Testing CoNditionSc.cceeeeeeeierierienienrieeneee ettt

The if Statementcccccooiiiiiiiiiiiiceee e

USIng case StateMENtScccceveeveerueruerienrenenenieeereneneneseeseneene
LLOODS e

The 01 LOOPD ...eoveeieeiiiiieiieieieieiester ettt

The While LOOD ceeoeriiieieieieneeeeeeeecesene e

repeat..untilc.ceceeeenenne

The Break() Procedureccccocoeeeiiieeiiecieeceeceeeeciee e

The Continue() Procedurec.ccccooeeviieiiiieciiecieeciee e,
Procedures and FUnctionsccccoeoiiiiiiiniiiiniiiicccccee

Passing Parametersccoceeeveeierieniininineneeeeeecenesene e
SCOPE ettt sttt et st

The uses Clause
Circular Unit References ..o
PaCKaZES ...ttt
Using Delphi Packagesccccoveeereririiicnicncnenenenencececeenee
Package SYNtaxcccccoevevinenenininineeece e
Object-Oriented Programmingc..cocceeeeveeveenienenineneneneneeeenenne
Object-Based Versus Object-Oriented Programming 105
Using Delphi ODBJECctSsccuevvevenirineniniricicieiceeceeseee e 105
Declaration and Instantiationcccccceeeiiiieiininiiinciineenns 105
Destruction ...
MethOdSooouiiiiiiiiiiic e
MethOd TYPES ...eovereeeiiiiiiiieieneneeieeeeter et 108
PrOPEItIEs ...ooveriiriiiiieieieicee e 110
Visibility SPeCifiersccccocevveeirerieniieieicreneneneneeeseeeeeee 111
INSide ODBJECLS ...eoverueeuieiiiiiinieniieeeeeee ettt 112
TObject: The Mother of All ObJECES ...ceeveverveninrininirerierene 113
Interfacescccccoeviiiiiiiiiiiiie
Structured Exception Handling
EXCeption Classescccovererenineninirieieieneneneseesesieeeeeeeenees
Flow of EXECUtioncccccoiiiiiiiiiiiiiiiciicciccccceesce
Reraising an EXCEPLioncccceveeereririeiinicncninenenesceeeceeee
Runtime Type Informationc.cccocevvveeviineninininineneeeeeeeene
SUMMATY ottt sr bbb ne

Adventures in Messaging 129

What IS @ MESSAZE?evueriiiiiiieiiiiriinieeieeieeetete e 130
TYPES Of MESSAZES ...cnveveveieinieniiientieteetteteeiee ettt 131

CONTENTS

vii

viii

DELPHI 6 DEVELOPER'S GUIDE

How the Windows Message System Works

Delphi’s Message SYSIEIM ...c..cververieienienienienieeieeieeieeiteteteeesiesiesienee
Message-Specific Recordscoceveveninienenininceiccecnceeen
Handling MESSAZEScceevererierererieieieienieniesreeteete ettt ste e seesienee
Message Handling: Not Contract Freec..coceveeveevieninencncnnenne.
Assigning Message Result Valuescoccoceveveeeeniinincncncnnenne.
The TApplication Type’s OnMessage Eventc.cccceeevenennenne. 139
Sending Your OWn MESSageSccccecveveriererieneneneneeeeeeeeneenresvennes 140
The Perform() Methodcccoeeiiiiiiieeecceeeeeeeeeee e, 140
The SendMessage() and PostMessage() API Functions141
Nonstandard MESSAZEScceververerieierierienienieeeereeieeieetetesresiesiesienee 142
Notification MESSAZESceeeeeuieierierienierienierieeeeeeee e 142
Internal VCL MESSAZES ..eeveeueruieuieieierienienienieeieeiceee e 143
User-Defined MeSSaZEsc.ceeeuveieienierereneneneeeeeeteeeniesresneenes 144
Anatomy of a Message System: VCLcccoocevinininieieiienienenenene 146
The Relationship Between Messages and Eventscccccceeevenene 154

Summary

ParT Il Advanced Techniques 155

4 Writing Portable Code 157
General Compatibility ...

Which VErsion?coceererireiiiieieneneneseeeeeeeeeeteseese e
Units, Components, and Packagesc..cccocevverrvenininincncnene. 160
IDE ISSUES ...evtinieniiieiiieeieettetee ettt sttt 160
Delphi-Kylix Compatibilityccccceouerierenininieenieieieieienenienienne 161
NOE I LINUX ottt 162
Compiler/Language Featuresccocvverenenieeneenienienenenenennes 162
Platform-ismsc.cccceeceeeeneeneee
New Delphi 6 Features
VATIANES .ooveviiiiiiiiietetet ettt sttt
Enum Valuesccooivirinininieieeccneseseeeee et
SIF DITECHIVE ..vvirieveteriieieiesieieteeetsieeeiesees et see st eseseseees
Potential Binary DFM Incompatibilityc..cccceoeveninencncnnenne. 164
Migrating from Delphi 5c.ccoceviiiiiiiniiiiieeeceee 164
Writable Typed CONnStantscccceeevereereneeeeeeieieienienenenienee 164
Cardinal Unary Negationccccceeverereneneneneeeeieeeneeneennenes 164
Migrating from Delphi 4 "
RTL ISSUES oottt
VCL ISSUES .eveniinienieiiiieteeteeieeit ettt sttt ettt
Internet Development ISSUEScoeverererenenieneeieieeenceiee 165

Database ISSUEScccueeeiuiieiiiieieecee et 166

CONTENTS

Migrating from Delphi 3ccccooiiiiniiiiiieeeeeeee
Unsigned 32-bit Integers
64-Bit INTEZETS ..ouveviiirieiieiieieieteestere ettt
The Real TYPE .ooviiviiiiieiieieeceeeee e
Migrating from Delphi 2ccccooiiiiiiiiiniiieeesenenee
Changes to Boolean TYPescccccceverererereneniieieieiceneseenene 168
RESOUICESIIING ..cuveniiiiiieiieiieieeee e 169
RTL Changesccccceeeeeieieieieieienieniesesieeeete et 169
TCuStomMEOIM ..ot 169
GetChildren()oooeeeeveeeeieeeiee e et 170
AUtOMALION SEIVETScuiriiiiiiiieiiricieieieeneceeieee et 170
Migrating from Delphi 1c.ccocooviiiiiiiiiiinieeceenenenee 171
SUMMATY c.eeiiiiiiiiieteeeeee ettt sbe e 171

5 Multithreaded Techniques 173
Threads EXplainedococeveriiiiniiniinieieeeeeeee e 174
Types of Multitaskingcccceevvevierenerieneneneeieeeeseseseeeeeieenes 174
Using Multiple Threads in Delphi Applicationscccceceeueene. 175
Misuse of Threadsccccccveveiereiineneineineeereeeeeee e 175
The TThread Object
TThread BasiCsccceoveirieinenieenieieiceeeneeecee e
Thread Instances
Thread Terminationcccoceeeeereinienieeneineeeesteeeeeeeseeeenene 180
Synchronizing with VCLccccoiiiiiininininieeeeeieeeseen 182
A Demo APPLCAtION ...c.eevieuieeieieieieniesierie ettt 185
Priorities and Schedulingccccooveveriiiniennneieeeeeeee 187

Suspending and Resuming Threadsc.ccccoeeeeeneincninenccnnns 190
Timing a Threadcocooieieiiiiiii e
Managing Multiple Threads

Thread-Local StOrageececvevienerenenenenieieereiesese e

Thread Synchronization
A Sample Multithreaded Applicationcccceceeeeceecienienenenienenenne 210
The User INterfacec.ccccoeveereiineniincinceeseeeeeeeeeeenne
The Search Thread ..o
Adjusting the Priorityccccccevevenenenenenneeeeeeeeeeiee
Multithreading BDE Access
Multithreaded GraphiCsccceeveerierieriineninieiieeeeeieee e
FIDRIS .ottt

6 Dynamic Link Libraries 247
What Exactly Is @ DLL? ..o 248
Static Linking Versus Dynamic Linkingcccocccceveneiincinicncncnnene 250

DELPHI 6 DEVELOPER'S GUIDE

WHhY USE DLLS? ..ottt 252
Sharing Code, Resources, and Data with Multiple Applications ..252
Hiding Implementationcccceevererereneneeneenienenenenesenienes 252

Creating and Using DLLScccoouiiiinininininieieieieicieeneneneeeene 253
Counting Your Pennies (A Simple DLL)cccccocevvevininincnenene. 253
Displaying Modal Forms from DLLS ...c..cccceceeiieiinininincncnene. 256

Displaying Modeless Forms from DLLSccccececiecieeienenenicncncnene 259

Using DLLs in Your Delphi Applicationsccccecceeveevererericrenenne 261

Loading DLLS EXPLCItLY ..co.eveeiiierieiiniiniininieeeieeeieresieneneneeneeae 263

The Dynamically Linked Library Entry/Exit Functionc.cc.cc..c... 266
Process/Thread Initialization and Termination Routines 266
DLL Entry/Exit EXampleccccocvvenininineninicicenineneeeeee 267

Exceptions in DLLSccccoeviriiiiiiieiiiiienieeeeeeeeeereesee e 271
Capturing Exceptions in 16-Bit Delphiccccooevenininincncnene. 271
Exceptions and the Safecall Directiveccccccceveevvevenencncnnenne. 272

Callback FUNCHONS c.ocviiiiiiiiiiiicicececceeeece 273
Using the Callback Functionc..coccocevevevcincnicncnincncncnene, 276
Drawing an Owner-Draw List BOX .c..coccoceveeiiiicniininiincncee, 276

Calling Callback Functions from Your DLLSc.ccccccceveniinicnicncnenne 277

Sharing DLL Data Across Different Processesc.ccccevevinincnncnne. 279
Creating a DLL with Shared Memoryc..cccccocevvevininencncnenne. 280
Using a DLL with Shared Memoryccccoceeveeveeneeneninencncnennes 284

Exporting Objects from DLLSccccocevininineniniiicieiencncneneeene 287

SUMMATY .ottt re bbb 293

PArT Il Database Development 295

7 Delphi Database Architecture 297

Types of Databasesccccoceverieienieniiniinineeeeeeeeeeereese e 298
Database ArchiteCturecccocooeviiiiiiiiiiiiiieceiceeeeee 299
Connecting to Database SEIVETSc.ccoceeereereeeeirieienienenenenenienne 299
Overview of Database CONNECVILY ...c..ceceveeeeevevenienenenenieneenee. 299
Establishing a Database CONNectionc..cccceeeeveevvenvenenenennenne. 300
Working with Datasetscccceeeeeerierienininininieieieierenese e 300
Opening and Closing Datasetsc..coceverereeieieneneneneneneenens 301
Navigating Datasetsccccceceverenenereneneneeeeeeenteneenresreeneenes 305
Manipulating Datasetsccccccevvererererenenrenieieneneneseeeeiees 310
Working with Fields
Field Values ...

Field Data Types
Field Names and NUMDETScccceevvieiciiieiiieciee e, 317

CONTENTS

Manipulating Field Data

The Fields Editor ..o
Working with BLOB Fieldscoccocviiiininininininencneeeeeee 324
Filtering Datacoccevvevieniinininieeneeeeeectceenese e 330
Searching Datasetsccccoceeeeererererieieieneneneseseeeeee e 332
Using Data Modulesccceveeirerininieieieneneneneseseeeeeeeeees 336
The Search, Range, Filter Democccccccevevininincniinienicienne 337
BOoOKMAIKScoooiiiiiiiiiiiiice e 347

SUMMATY vttt ne 348

8 Database Development with dbExpress 349

USING ADEXPIESS ..euververieriieiieiieieietiereetteteeie ettt see e 350
Unidirectional, Read-Only Datasetscccccoevveneneneneneeeennenn 350
dbExpress Versus the Borland Database Engine (BDE) 350
dbExpress for Cross-Platform Developmentc..ccccocevereeneenee. 351

dbEXPress COMPONENLSc..ecvevuiriererieriereeeeietententensesressessesseessensene
TSQLCONNECION ..ooceviieiiieeiiieeieeetee ettt et
TSQLDALASEE ...eecvvieiiieeiie ettt ettt
Backward Compatibility Componentsc.ccoceeeverereeeeeenennes
TSQLMONItOr ...oeevviieiiieeiieeeiieeeiee e,

Designing Editable dbExpress Applications
TSQLCHENtDAtASEtooevieeiieeeiieeiee et

Deploying dbExpress Applicationscccceoeeveereneneneneneneeeenenne

SUMMATY ottt ettt

9 Database Development with dbGo for ADO 363

Introduction to dbGOc.cceeuerieiriiiiiiciceeeceeeeee e 364

Overview of Microsoft’s Universal Data Access Strategy 364

Overview of OLE DB, ADO, and ODBCcccooevviiiviiieeeeieneee 364

Using dbGO fOr ADOcoooiiiiiiiiiiiiiieeeeeee et 365
Establishing an OLE DB Provider for ODBCcccceceeeruenne. 365
The Access Databaseccceeeeeinieinerinincireceeeee s 367

dbGo for ADO COMPONENLSovveeereerieriieiieieieienieniesreeieeieeieeneeneene 367
TADOCONNECHON ...ttt 368
Bypassing/Replacing the Login Promptcccceceveveneneninienne. 370
TADOCOMMANAc.ooviiiiieiiieieiiceece et 372
TADODALASELoveuiiiniiiieiieieeetteeeee et 373
BDE-Like Dataset COMPONENLScccceeeeereeruerienrenrenrineneeeeeense 373
TADOQuery
TADOStoredProc

Transaction ProCesSingcccccoeverererieinieieienienese e 375

SUMMATY ottt ettt b et 371

DELPHI 6 DEVELOPER'S GUIDE

PART IV Component-Based Development 379

10 Component Architecture: VCL and CLX 381

More on the New CLX cccooiiriiiiiiniiincineeeieeneseeieseee e 383
What Is @ COMPONENL? ovvireiiiriieiieieieieiesie ettt 383
Component HIerarchyocceceeeeieieniinienineneseeeeeeeeeenee e 384
Nonvisual COMPONENLS c.eeueeuieieieierierienieneeeeteee e 385
Visual COMPONECNLSoveevieuieuieiieieieiesie e sie ettt see e sbeenes 385
The Component Structure387
PrOPEITIES ..ooviiiieieieieteet ettt 388
Types Of PrOPEItiescccoevivuerirerieinieieerieteiceeeeeeeee e 389
MEthOAS ..ottt 390
EVENLS oo 390
Streamabilitycc.coeeerieirieiiicee e 392
OWNETSNIP ..ottt 393
Parenthoodccoooiiiiiniiiccce e 394
The Visual Component Hierarchyc..cccocooevineiinineinccneiiennne 394

The TPersistent Class
TPersistent Methods

The TComponent Classcccocevueirierinenieinieeneneeeseeseseeennene 395
The TCoNtrol CIassccccveieerieinieinenieieceeereeeee e 397
The TWinControl and TWidgetControlcccoccevevenevenecinennne 398
The TGraphicControl Classccceeeeeereinierinenieinreeneneennene 399
The TCustomControl Classc.cceeveeerieinieinenieeneenesnenennens 400
Other Classescccceveereeenene

Runtime Type Information
The Typlnfo.pas Unit: Definer of Runtime Type Information 405
Obtaining Type Informationccccevveverenenieenienieneneneneeene 407
Obtaining Type Information on Method Pointerscccc....... 416
Obtaining Type Information for Ordinal Typesc.ccccevevuenuenne. 420

SUMIMATY .ottt sttt ettt et besb e 428

11 VCL Component Building 429

Component Building BasiCsc.ccccceviniinienieiincincnicincincecee 430
Deciding Whether to Write a Component430
Component Writing StePsc.cecevveirverirenieinreenenieeneenresnenennens 431
Deciding on an Ancestor Classccceceveinerenenieineenennenennens 432
Creating a Component UNitccoeeveeeneinieinenieeneeneneeennens 433
Creating Propertiesc..cocveeeereincnineneinceneneeceeeseseencnees 435
Creating EVeNtsccoiviiiineniiincincecc et 445
Creating Methodscccoevireirenieiinicincncieceeeeece e 451

Constructors and DeStruCtOrSccoveeeeeeivveeeeeirieeeeeireeeeeevreeeeeans 452

xiii
CONTENTS

Registering Your Component

Testing the COMPONENLcccoerereriririiiiieerenceeeeee e
Providing a Component Icon

Sample COMPONENLS eovveurerirririerierierierieeeeteeeseenresreere st erene
Extending Win32 Component Wrapper Capabilities 459
TddgRunButton—Creating Propertiesccccoceeveeeeeneneeeenenne 470

TddgButtonEdit—Container COmMponentscoceevererereeeereeneens 4717
Design DeCISIONS ...ccceeveieriininiininieeieeteeetetenee e 4717
Surfacing Propertiesocoveeeeerirerieicnienenenenesesceeeeeeees 478
Surfacing EVENLSccccovviiiniinininininieiccccecs s 478
TddgDigitalClock—Creating Component Eventsc..cc.ccc...... 481
Adding Forms to the Component Paletteccccocevenenencncnnns 485

SUMMATY ottt ettt ettt sr bbb ne 488

12 Advanced VCL Component Building 489

Pseudo-Visual COMPONENLSccevereereerierieieienienienienenreereeieeeerene
Extending Hintsccoceoierenininininnceceeececeeeeeeeeeee
Creating a THintWindow Descendantc..coccvcevevenceceeenenes
An Elliptical Windowcccoceverinininiinienienencneeeeeeeeeeeeenee
Enabling the THintWindow Descendant
Deploying TDDGHIintWindowccceceveveneneneneneneeeeiennes

Animated COMPONENLS eeveueeieriinriniierierieieeitetetesesiesiesiesseeseeseeneens
The Marquee COMPONENLcc.covereerererierienieienienreneereeeeeeeenene
Writing the COMPONENEcc.coeviiriereririiieieereeeeereee e
Drawing on an Offscreen Bitmapc.ccceveveneneneniencneneeniennes
Painting the COMPONENLccceeereririiieiiieienenesesieeeeeeeeeaes
Animating the Marqueec..coccocevereeeieenienieneneneneeeeeeeeeenee
Testing TAdgMarqueec..cocevererererienienieneneneeeeeeeeeeeeeene

Writing Property Editorscocveveveenenenicniennenne.

Creating a Descendant Property Editor Objectc..cccceceeeeneeee. 511
Editing the Property AS TEXt ..c.ccoccvvererviinenienineneeeeeeeeeeeeenee 513
Registering the New Property Editorccocvvevenincncnncnnennenee 517

Component EditOrSccccevierineninenenineeteescseeeeeeie e 522
TComponentEditorccccoeverererinieiieeeseeeeeeee e 523
TDefaultEditorccccooiiiiiiiiiiiiceceec e 524
A Simple COMPONENLooveveriirierieriiniertetete et 524
A Simple Component Eitorccccoceeveevienienenininininenieiene 525
Registering a Component Editorcccccoeveveneninennnenenene. 526

Streaming Nonpublished Component Datacccceeveeeveninincnnnne. 527
Defining Propertiescoccoeeerererenieieicienenenereeseseeeeeeeenees 528
An Example of DefineProperty()c..ccoceeeveveneneneneneneeienenn 529

TddgWaveFile: An Example of DefineBinaryProperty() 530

Xiv
DELPHI 6 DEVELOPER'S GUIDE

Property Categories
Category Classes

CUSLOM CALEZOTIES ...uveuvenvirieiieiieiiereieriereenie s ettt seesbesbennes 540
Lists of Components: TCollection and TCollectionltem 543
Defining the TCollectionltem Class: TRunBtnltem 546
Defining the TCollection Class: TRunButtonscccccceeveuenne. 546

Implementing the TddgLaunchPad, TRunBtnltem,
land TRUNButtons ObJECtsccceevuevuerieninininieieieieenienienee 547

Editing the List of TCollectionltem Components with a

Dialog Property Editor555
SUMIMATY ettt sttt ettt sbe e 561
13 CLX Component Development 563
What Is CLX7? oottt 564
The CLX ATChIiteCTUI®c..cevveuirieiieieieiiereieeeeeeieeeeseeeeeee e 565
POTting ISSUESeoueeuieiieieienieriericeiee ettt 568
NO MOre MESSAZESocvvvviiiiiiiiiiiiiiiieieniene s 569
Sample COMPONENLS ccuevveruieririieiieieierienierie sttt sbeeaes 570
The TddgSpinner COMPONENtccecerererererereeieieneeneenienienes 570
Design-Time Enhancementscccceenunee584
Component References and Image Listscccocevueenccinenecnnee 591
Data-Aware CLX COMPONENLSc.ooveeererueuinieeniiierenieeriesnenennens 598
CLX Design EditOrsccceverereriiieieieieseneseeieeieeceteteee e 608
PaCKAZES .ottt 613
Naming CONVENtIONScoeeuieueeieieienierienenienieeeese et sse e 613
Runtime Packagescccoeoeeieieiiiiienienieneneeeteee e 615
Design-Time Packages618
Registration UNILScc.eeeeieieieieieieieriesienieneeeeeete e 621
Component Bitmapsccceeveeieiienieneneneneneneeeeeeee e 622
SUMIMATY .ttt sttt ettt besbe e 623
14 Packages to the Max 625

Why Use Packages? ..o 626
Code RedUCHONco.cciiiiiiiieieenicieceeeee et 626

A Smaller Distribution of Applications—
Application Partitioningcccccceeeevenieineneeneneneneeneeeenes 626
Component CONtaiNmMentccccoeeerueeeerieuinreenenieeneenenneennens 627
Why Not Use Packages?cccovieiiiiiiiiiininininiiinicicicicieies 627
Types of Packages028
Package FIles ..ot 628

Using Runtime Packagescocoeerieinieninenieincincnccseeseeeenne 629
Installing Packages into the Delphi IDEcccccccoveniininininennnne 629

Creating Packagesccceoevierenenineninieeeeeecresrceeeeee e
The Package Editor
Package Design SCeNnariosc..ceceeceeveeveerieneneneneneneeeeeeeenne 631
Package Versioningcccccceverenenenenenceienieneniesreeeeieeie e 635
Package Compiler DireCtivesc.ccocerereeeeienienieninineneeieeeereeenne 635
More on {SWEAKPACKAGEUNIT)}cococooveviiieeieeeeeecee. 636
Package Naming Conventionsc..cecceveeeeeeneeneenieneneneneneeeennenne 637
Extensible Applications Using Runtime
(Add-In) Packagesc.cceceeeeienieneniniinirceeetecccee e 637
Generating Add-In FOrmsccccoceeveviriiiniinininininnencececeeee 637
Exporting Functions from Packagesc.coceeevenininnineninienenns 644
Launching a Form from a Package Functionc..cccceccecveeennee. 644
Obtaining Information About a Packageccceceveeenencneniencnnns 648
SUMMATY ottt ettt saesr e bbb ne 651
COM Development 653
COM BaSICS ...ouviiiiiciiicieieect et 654
COM: The Component Object Modelcccoocevererenenenneenennee 654
COM Versus ActiveX Versus OLEccccccooiiiiniiiiniininene 655
Terminologyccccecevevvenenenenennenne.
What’s So Great About ActiveX?
OLE 1 Versus OLE 2 ..o
Structured STOTAZE ..c.cevvevverieniinineeieeieeteteeese e
Uniform Data Transfer ...
Threading MoOdelScccoevenenenininiiieeeeeeeeeeeeee e
COMHA e
COM Meets Object Pascalcoccoeverereiiiienienineneneeeeceeeeenne
INEEIfacesooiiiiiiice e
Using Interfacesc.cccce.e..
The HResult Return TYPe ..c..coccveverereriieiieienereeeeeeeeeeeeenee
COM Objects and Class FACLOTIEScoevveeeeiereenieniiniinineeieeieeeeenee
TComObject and TComODbjectFactoryccceveeeeeneneneeeenenne 667
In-Process COM SEIVETScccoocoiiireeirceriieenieeeeseeeseeeenens 669
Out-0f-Process COM SEIVETSccoevueirieiriinieirieeeeseeneseenens 672
Aggregation
Distributed COM
AUIOMALION ..ttt
IDASPALCH ..ot
Type Informationccceeevereninininiieeecceceeeeee e 675
Late Versus Early Bindingc..ccccocvveriiniinienininininineeeeeene 676
REZISIIALION ..ottt 676
Creating AUtOmMation SEIVETScccceveeveverieriereneneneneeeeeeeenees 676

Creating Automation Controllerscccceceverenenerenceneeneeneennes 692

CONTENTS

XV

XVi
DELPHI 6 DEVELOPER'S GUIDE

Advanced Automation Techniques

Automation EVentsccccoeiiiiiiiiniiiicccce e
Automation CollECtIONSccceerieuirieieiriciricieeeeeeee e
New Interface Types in the Type Libraryccccoceeveeviieencncnncnne. 723
Exchanging Binary Dataccccooeveninininniiiccecnceen 724
Behind the Scenes: Language Support for COMccccceuennenne. 727
TOIECONLAINETooveuiiiiiiiieiciericeeeeeee e 733
A Small Sample Applicationc..cocevververererieeeenieneneneneeiene 733
A Bigger Sample Applicationccccecererereneeeenienienienenenienen 735

Summary

16 Windows Shell Programming 747

A Tray-Notification Icon COMPONENLccevverviereririeieierienienieniene 748
TRE APT ..ottt ettt
Handling MESSAZEScc.eeveeueeuirieieienienienienieniesieeeeee e see e sie s
Icons and HIntsc.occoveirieinieninenieiceececee e
MOUSE CIICKS vttt
Hiding the Applicationccecvevieriererenenenieeeeeee e
Sample Tray Application

Application Desktop Toolbars ...

The AP ..ottt
TAppBar: The AppBar FOrmcccoocevenineneniniiiiiieccee, 766
USING TAPPBAL ..ottt 775

Shell LINKS ..oveuiiiiiiicieeieiceeeeteeeee et 779
Obtaining an [ShellLink INStancecoccocevvevveeienienienencncnene. 781
Using IShellLIinKccovieiiiiieieieieeeeeeee e
A Sample Application

Shell EXTENSIONS ...c.coevveuiiiiieiiieieieicieieeeeeeeeee et
The COM Object Wizardcccceevvevenenenenenieeeieeeseseeiene 801
Copy Hook HandIersc.ccceeceeieieiieneneneneneecceeeeeiee 801
Context Menu Handlersc.cccoeoiveviiincinicineneinceneeeee 808
Icon HandlIersccoeerieinieninenieieicieeceeiceeeeeee e 818
InfoTip Handlerscccoceieiiiiiiiiiiiieneneeeeeeeeeeee e 827

SUMIMATY ettt sttt ettt sbesbeeaes 833

17 Using the Open Tools APl 835

Open Tools INErfacescoeceveirenieinerinenecicercsecceeeeeeeenae 836

Using the Open Tools APIccccoeriiiniinineincneeccncereeeneee 839
A Dumb Wizard

The Wizard Wizard
DDG Search ..ot
Form Wizardscccoucoieiniiinicininiciecieeecnrce et

SUMMATY oot

PART V Enterprise Development 877

18 Transactional Development with COM+/MTS 879

What IS COMA7 ...t 880
WHhY COMT? et 880
SEIVICES ..ouviuiiiiciieieieii ettt s
TranSACIONScoouiiiiieiiieiiicieee et
SECUTILY wnveterierieritetetete ettt ettt
Just-In-Time Activation ...
Queued COMPONENLS ...coveverierrinienieniieiieitetereeste et s eeeeenees
ODbject POOIINGcoviiuieiiiiiiinieeeeeeeeteteeeee e
EVENLS oo
RUNME ..o
Registration Database (RegDB)cccceoeevievienininininineeieiee 907
Configured COMPONENLSccerrerreruerierieieienierieneeneeseeeeeeeeeeenees
CONLEXLS ..ottt
Neutral Threadingccccoceverererenenenieeeeseseeeeeeeee e
Creating COM+ Applications ...
The Goal: Scale ..o
Execution CONEXTc.cceeuirieieiiiiiiiciieieeeieeeiee et
Stateful Versus Statelesscccoveoiireinccinincereceseeeeeeaene
Lifetime Managementcoccoceverereenienienieneneneeeeeeeeeeeeeene
COM+ Application Organizationc.cceceveverererenenseeeeneennen 910
Thinking About Transactionsc..cecceceeveeveerveneneneneneneeeennenne 911
Resourcescccooviniiiiiennne,
COM-+ in Delphi
COMA+ WiZATAS ..o 912
COM+ Frameworkcccooioiiiiiiiiiiicncccreeeneeseeine 913
Tic-Tac-Toe: A Sample Applicationc..cccevevevvenenenenenennnne. 916
Debugging COM+ APpPLiCAtiONSc..ceveeueeeeeerienieniinrenieeeeeeeeeenee 934
SUMMATY ottt ettt 935
19 CORBA Development 937
CORBA FEALUIESccueeuiuiiiiiieiisierienienienitetete ettt 938
CORBA ATICHItECLUIEcuveuienieiiierienienieeitetetete ettt 939
OSAZENL .ottt 941
TNEEITACES i 942
Interface Definition Language (IDL)ccccoeeieineiininniencineenne 942
Basic TYPES ..ooveieiiieieieieeeeee ettt 943
User-Defined TYPESccceevueuieieeeiinieiineieiieieeteeeieeee e 944
ALLASES ettt 944
ENUMETAtionScc.eeuieiieieieieniesierieneneetete e 944

SEITUCLUIES .vveeiiieeetie et eetee ettt ettt et e et e e et e e ereeeereeeeareeereeeneas 944

CONTENTS

Xvii

xviii
DELPHI 6 DEVELOPER'S GUIDE

ATTAYS oottt ettt ettt et ettt
Sequences
Method ATZUMENESooveerierieiieiieieieieneniesie ettt 945
MOQUIES ...t 945
The Bank EXampleccocooiirerininiiiiicieeeeeeeeeceteeese e 946
Complex Data TYPES ..cceevvererereririeteietenentesteeteeie ettt 958
Delphi, CORBA, and Enterprise Java Beans (EJBs)cccccocevennene 965
A Crash Course in EJBs for Delphi Programmers 965
An EJB Is a Specialized Componentc..cocceceeeeeeneeneenuenennenne. 966
EJBs Live Within a Container .
EJBs Have Predefined APIs ..o
The Home and Remote Interfacesccccoccoovivciincinincnnnee 966
Types Of EIBS ..ot 967
Configuring JBuilder 5 for EJB Developmentcc.cccevuevennenne. 967
Building a Simple “Hello, world” EJBc.cccccooeviiiiiiiiicenne. 968
CORBA and Web ServiCescccooevevirierieeniciniciieseciseeseeeenne 975
Creating the Web Servicecccceeevenene 975
Creating the SOAP Client Applicationccccecceveevvereeneenenennenne. 977
Adding the CORBA Client Code to the Web Service 978
SUMIMATY c.eeiiiiiiiiiteeeeeet ettt sbe b 981
20 BizSnap Development: Writing SOAP-Based Web Services 983
What Are Web ServiCes?ccceeiririeiieiienienenieneseeeet et 984
What Is SOAP? ..o 984
Writing @ Web SErViCecccccvvivieirieiiiiirieineieeseeenceee e 985
A Look at the TWebModuleccceoevenenenenieniieeeeneeen 985
Defining an Invokable Interface986
Implementing an Invokable Interfacecccccvvevveinevencnnennne 987
Testing the Web Servicecccocveviveiieineincinccesceseeeene 989
Invoking a Web Service from a Clientccceccevveveincccncnicennene 991
Generating an Import Unit for the Remote Invokable Object 993
Using the THTTPRIO Componentccceeeevevueenieeneneennens 994
SUMMATY oottt 995
21 DataSnap Development 997
Mechanics of Creating a Multitier Applicationcccccececerevnennee 998
Benefits of the Multitier ArchiteCturecc.eceeveeveecievierienenenenenne 999
Centralized Business LOZIC ...c.ccccoeivieririnicinicininccncencecnee 999
Thin-Client Architecture1000
Automatic Error Reconciliationc.cceceeveeeienienienenenenenenne. 1000
Briefcase Modelcooeeieieieiieieieeseeeeeeeeee e 1000
Fault TOIErancecccceevieeierienienieeniieieeieeeeee ettt 1000

Load Balancingcocceeerieinieieenieinienieenieceeneeeereeeeseneenens 1000

PART VI

Typical DataSnap Architecture 1001

SETVET et 1001
CHENE ittt ee 1004
Using DataSnap to Create an Applicationc..cccceceveeeeevenienncnnenne. 1007
Setting Up the Servercccoeveeieiiininenenninececeeecneneneene 1007
Creating the CHENtc.ccccevivieeririeieiceneseneeeeeceeeeee e 1009
More Options to Make Your Application Robustcccceceeueeneee. 1015
Client Optimization Techniquesccccoceevererererieeniencnenennens 1015
Application Server TeChniquescccccceverererenenecnenenenennens 1018
Real-World Examples1027
JOINS oo 1027
More Client Dataset Featuresccccoooveviiiniineincnninccnes 1039
Two-Tier APPliCAtIONS ...cc.coverierierieieieienieneneececeeeeeeeerenes 1039
Classic MIStAKEScccoviuiiiiiiiiiiiiieiccc s 1041
Deploying DataSnap Applicationsc.ccoccveverererceeeneeniennennennes 1041
Licensing ISSUESccccoevirimiririeiiicicieneneneseee e 1042
DCOM Configuration1042
Files to DEPloycccvevueriririnieieieieccteseseneee ettt 1043
Internet Deployment Considerations (Firewalls)cc.ccceeveneee 1044
SUMMATY conviiitiitieieeieeteee ettt ettt ne s 1046

Internet Development 1047

22 ASP Development 1049

Understanding Active Server ObJectsccccoceverererereeneenienvennennes
AcCtive Server Pagesccccocveeieieieiiicenenneeeceee e
The Active Server Object Wizardcc.ccccceeveeenenienenneienenenenne
Type Library EdItOrc.cccccoveveririiiiiiiinieneneccccceeeeceeen
ASP Response ODJECtcoevereririeieiienienenieneneeeeeeeeneeneeneens
FIrst RUN ..o
ASP Request Objectccceeeeeeeeeeennneee .
Recompiling Active Server Objectsccccocevvererereeeenenenennens
Running Active Server Pages Againc..cccoceeveveveeecncncnennene
ASP Session, Server, and Application Objectscccecevveeeeeeunnnee
Active Server Objects and Databasesc..ccccoceveveveeeenecniencnnenne.
Active Server Objects and NetCLX Supportc.ccccevevereeeeeennennee
Debugging Active Server ObJectsccccoeverenerenereeeenieniennenennes
Debugging Active Server Objects with MTS ...
Debugging Using Windows NT 4ccccooevinininniicicncnenene
Debugging Using Windows 2000cc.ccceeerererereeeenenenennens
SUMMATY oottt ettt

CONTENTS

Xix

DELPHI 6 DEVELOPER'S GUIDE

23 Building WebSnap Applications 1077
WebSnap FEaturescccooevereririeieieieieseeiceicet e
Multiple Webmodulesccceevevierenenineninieieienieneneseeeen
Server-side SCrPLNG ...coceeveerierienierierineeeeeeitet e
TAdapter COMPONENLSeeueeuieuieieienienienienieeiteteteeeseeseeseesieenea
Multiple Dispatching Methods
Page Producer COMPONENLSccuevverieriererenieieienieneeneseeseenean
Session Managementccccoevvereerierieeenieieeeieniesieseesieseseene
LOGIN SEIVICES ..cuviuviiiiieiieiieiieieieestesie ettt
USer Trackingcc.evevenieieieieieeeeseneeeet e
HTML Managementccccceeerueereeneenieenienneeereneeseeneesneenneenne
File Uploading SErviCescccceverererenenerieienienienieneseseeneen
Building a WebSnap Applicationc.ccccevevereeeeienieniencnenennenes

Designing the AppliCationcccoeevererenenienienienieneneseeeaen
Adding Functionality to the Application
Navigation Menu Bar ..o
Logging IN .ooeoiiiiiiie e
Managing User Preference Datac.ccocevviiieicnenincncncncnnen.
Persisting Preference Data Between Sessions
Image Handlingcccoceeveeieieiieniiencncneeeeeteteee e
Displaying Dataccccoceeeeieieieiieneneneeeeteee e
Converting the Application to an ISAPI DLL "
Advanced TOPICScevverrerereriiriieieieietere ettt
LocateFileServiCescocovrimirininieinienieereeieeseeeeeeee e
File Uploadingccoceeeeerieieieieicnenieneneeeetet e
Including Custom Templatesccccoceevererieriierienienenenenenenees
Custom Components in TAdapterPageProducerc.ccccuu.ee. 1112
SUMMATY c.eeiiiiiiiieieeeeee ettt 1114

24 Wireless Development 1115

Evolution of Development—How Did We Get Here? 1116
Pre-1980s: Here There Be Dragonsc..c........
Late 1980s: Desktop Database Applications
Early 1990s: CHent/SEIVercccccveeireneeenieieenieinreeeeneeenens
Late 1990s: Multitier and Internet-Based Transactions 1117
Early 2000s: Application Infrastructure Extends to

Wireless Mobile DevViCescccooveviririririeieieieneseneseeenen 1117

Mobile Wireless DEVICescocueierierierierienienieniieieieniesiesie e 1118
Mobile Phones
PalmOS Devices
Pocket PC
RIM BlackBerry

Radio TechnolOZiescccceverieriririiieieicnerereeree e
GSM, CDMA, and TDMA

Wireless User EXPEriencecccocvevceeenienienienininenenreieienenienne
Circuit-Switched Versus Packet-Switched Networks 1137
Wireless IS Not the Webc..coceeeriiiiiininininincecccceen
The Importance of Form Factorccccocvveninniinincnincnenne.
Data Entry and Navigation Techniques ...
M-COMIMEITE ...eoveveinieiiientieteereeiteitetetestes ettt eeeaeneenee e

SUMMATY vttt ettt

CONTENTS

XXi

Foreword

“Delphi 6—two years in the making; a lifetime of productivity.”

I have been happily employed at Borland for more than 16 years now. I came to work here, in
the summer of 1985, to 1) be a part of the new generation of programming tools (the UCSD
Pascal System and command line tools just weren’t enough), 2) help improve the process of
programming (maybe even leaving a little more time for our families and friends), and 3) help
enrich the lives of programmers (myself included). We been innovating and advancing devel-
oper technology for the past 18 years. I enjoy being a part of this great worldwide Borland
community.

Turbo Pascal 1.0 changed the face of programming tools forever. It set the standard in 1983.
Delphi also changed the face of programming once again. Delphi 1.0 focused on making
object-oriented programming, Windows programming, and database programming easier. Later
versions of Delphi focused on easing the pain of writing Internet and distributed applications.
Even though we’ve added a host of features to our products over the years and written pages of
documentation and megabytes of online help, there’s still more information, knowledge, and
advice that is required for developers to complete successful projects.

How do you top the award winning and universally praised Delphi 5? Didn’t Delphi 5 already
simplify the process of building Internet and distributed applications while also improving the
productivity of Delphi programmers? Could the Delphi team push themselves again to meet
the demands of today’s and tomorrow’s developers?

The Delphi team spent more than two years listening to customers, seeing how developers
were using the product, looking at the pain points of programming in the new millennium.
They focused their efforts on radically simplifying the process of developing next generation
e-business Web applications, XML/SOAP based Web Services, B2b/B2C/P2P application
integration, cross-platform applications, distributed applications including integration with
AppServer/EJBs, and Microsoft Windows ME/2000 and Office 2000 applications.

Steve Teixeira and Xavier Pacheco have done it again. They have crafted their developer’s
guide so that you can take advantage of the depth and breadth of Delphi 6 programming.

I’ve known Steve Teixeira (some call him T-Rex) and Xavier Pacheco (some call him just X)
for years as friends, fellow employees, speakers at our annual conference, and as members of
the Borland community.

Previous versions of their developer’s guides have been received enthusiastically by Delphi
developers around the world. Here now is the latest version ready for everyone to enjoy.

Have fun, learn a lot. Here’s hoping that all of your Delphi projects are enjoyable, successful,
and rewarding.

David Intersimone (David I)

Vice President, Developer Relations

Borland Software Corporation

davidi@borland.com

About the Lead Authors

Steve Teixeira is the Director of Core Technology at Zone Labs, a leading creator of Internet
security solutions. Steve has previously served as Chief Technology Officer of ThinSpace, a
mobile/wireless software company, and Full Moon Interactive, a full-service e-business builder.
As a research and development software engineer at Borland, Steve was instrumental in the
development of Delphi and C++Builder. Steve is the best-selling author of four award-winning
books and numerous magazine articles on software development, and his writings are distrib-
uted worldwide in a dozen languages. Steve is a frequent speaker at industry conferences and
events worldwide.

Xavier Pacheco is the President and CEO of Xapware Technologies Inc, a software develop-
ment and consulting company with a purpose of accelerating visions. Xavier is a frequent
speaker at industry conferences and is a contributing author for Delphi periodicals. Xavier is
an internationally known Delphi expert and member of Borland’s select group volunteers—
TeamB. He is the best-selling author of four award-winning books that are distributed world-
wide in a dozen languages. Xavier lives in Colorado Springs with his wife Anne and children
Amanda and Zachary.

About the Contributing Authors

Bob Swart (also known as Dr.Bob—www. drbob42.com) is a UK Borland Connections member
and an independent technical author, trainer, and consultant using Delphi, Kylix, and C++Builder
based in Helmond, The Netherlands. Bob writes regular columns for The Delphi Magazine,
Delphi Developer, UK-BUG Developer’s Magazine, as well as the DevX, TechRepublic, and the
Borland Community Web sites. Bob has written chapters for The Revolutionary Guide to Delphi
2, Delphi 4 Unleashed, C++Builder 4 Unleashed, C++Builder 5 Developer’s Guide, Kylix
Developer’s Guide, and now Delphi 6 Developer’s Guide (for Sams Publishing).

Bob is a frequent speaker at Borland and Delphi/Kylix related seminars all over the world, and
writes his own training material for Dr.Bob’s Delphi Clinics (in The Netherlands and the UK).

In his spare time, Bob likes to watch video tapes of Star Trek Voyager and Deep Space Nine
with his 7-year old son Erik Mark Pascal and 5-year old daughter Natasha Louise Delphine.

Dan Miser is an R&D Project Manager for the DSP group at Borland, where he spends most of
his time researching emerging technologies. Dan also worked on the Delphi R&D team where
his responsibilities included DataSnap development. Dan’s major focus is finding ways to allow
information to be shared across boundaries, and this has allowed him to work with a variety of
distributed computing technologies, including MIDAS, SOAP, DCOM, RMI, J2EE, EJB, Struts,
and RDS. He has also been involved with promoting Delphi by being a contributing author to
the Delphi Developer’s Guide series, acting as a technical editor, writing magazine articles,
participating on the Borland newsgroups as a member of TeamB, and being a speaker at
BorCon on topics such as COM and MIDAS.

David Sampson is an R&D engineer in the Borland RAD Tools Group and is responsible
for the CORBA integration into the RAD products. He is long time Pascal, Delphi, and C++
developer, and is a frequent speaker at the Borland Developer’s Conference. He lives in
Roswell, GA with his wife and enjoys hockey, Aikido, and helping his wife with her pack of
Basenjis.

Nick Hodges is a Senior Development Engineer with Lemanix Corporation in St. Paul, MN.
He is a member of Borland’s TeamB and a long time Pascal and Delphi developer. He serves
on the Borland Conference Advisory Board, is a frequent speaker at the conference, and is a
frequent writer for the Borland Community Site. He lives in St. Paul with his wife and two
children and enjoys reading, running, and helping his wife homeschool their two children.

Ray Konopka is the founder of Raize Software, Inc. and the chief architect for CodeSite and
Raize Components. Ray is also the author of the highly acclaimed Developing Custom Delphi
Components books and the popular “Delphi by Design” column, which appeared in Visual
Developer Magazine. Ray specializes in user interface design and Delphi component develop-
ment, and is a frequent speaker at developer conferences around the world.

Dedication

This book is dedicated to the victims and heroes of September 11, 2001.

Thanks to my family, Helen, Cooper, and Ryan. Without their love, support, and welcome distractions, I'd
likely never be able to finish a book, and I'd almost certainly go crazy trying.

—Steve
Thanks to my family, Anne, Amanda, and Zachary. Your love, patience, and encouragement, I cherish.

—Xavier

Acknowledgments

We need to thank those who, without whose help, this book would never have been written. In
addition to our thanks, we also want to point out that any errors or omissions you find in the
book are our own, in spite of everyone’s efforts.

We’d first like to offer our enormous gratitude to our contributing authors, who lent their superior
software development and writing skills to making Delphi 6 Developer’s Guide better than

it could have been otherwise. Mr. Component himself, Ray Konopka, wrote the excellent Chapter
13, “CLX Component Development.” DataSnap guru Dan Miser pitched in by writing the
brilliant Chapter 21, “DataSnap Development.” Well-known CORBA expert, David Sampson, con-
tributed Chapter 19, “CORBA Development.” Thank you also to Robert “Dr. Bob”” Swart, for
bringing his considerable talents to bear on Chapter 22, “ASP Development.” Last (but certainly
not least!), Web wizard Nick Hodges is back in this edition of the book in Chapter 23, “Building
WebSnap Applications.”

Another large round of thank-yous to our technical reviewers (and all around great guys),
Thomas Theobald and John Thomas. These guys managed to squeeze in their duties as uber-
technical reviewers among their day jobs of helping Borland create great software.

While writing the Delphi Developer’s Guide series, we received advice or tips from a number
of our friends and coworkers. These people include (in alphabetical order) Alain “Lino”
Tadros, Anders Hejlsberg, Anders Ohlsson, Charlie Calvert, Victor Hornback, Chuck Jazdzewski,
Daniel Polistchuck, Danny Thorpe, David Streever, Ellie Peters, Jeff Peters, Lance Bullock,
Mark Duncan, Mike Dugan, Nick Hodges, Paul Qualls, Rich Jones, Roland Bouchereau,

Scott Frolich, Steve Beebe, and Tom Butt. We’re certain there are others whose names we can’t
recall, and we owe you all a beer.

Finally, thanks to the gang at Pearson Technology Group: Carol Ackerman, Christina Smith,
Dan Scherf, and the zillions of behind-the-scenes people whom we never met, but without
whose help this book would not be a reality.

Tell Us What You Think!

As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d
like to see us publish in, and any other words of wisdom you’re willing to pass our way.

As an executive editor for Sams Publishing, I welcome your comments. You can fax, e-mail, or
write me directly to let me know what you did or didn’t like about this book—as well as what
we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book,
and that due to the high volume of mail I receive, I might not be able to reply to every
message.

When you write, please be sure to include this book’s title and authors’ names as well as your
name and phone or fax number. I will carefully review your comments and share them with the
authors and editors who worked on the book.

Fax: 317-581-4770
E-mail: feedback@samspublishing.com

Mail: Michael Stephens
Executive Editor
Sams Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

Introduction

You hold in your hands the fifth edition in the Delphi Developer’s Guide series, and the prod-
uct of literally thousands of man-hours over more than seven years of programming, writing,
and refinement. Xavier and Steve were members of the original Delphi team at Borland, and
this work is the outlet through which they can share their fifteen-plus years of combined expe-
rience developing software in Delphi. In Delphi 6 Developer’s Guide, we have striven to hold
true to the spirit that has made the Delphi Developer’s Guide series perhaps the world’s most
read Delphi books and two-time winner of the Delphi Informant Reader’s Choice award. This
is a book by developers, for developers.

The intent of Delphi 6 Developer’s Guide is to supplement and build on the Delphi Developer’s
Guide series. Ideally, we would have loved to include all the updated content form Delphi 5
Developer’s Guide and all the new content in one book, but Delphi 5 Developer’s Guide was
already thick enough to stretch the technical limitations of modern book binding. In order to
provide enough space to give proper coverage of the entire Delphi 6 feature set, we opted

to publish a new book with new information.

Delphi 6 Developer’s Guide contains a number of all-new chapters, many chapters that have
been significantly enhanced from previous editions, and some of the favorite topics from
Delphi 5 Developers Guide. The information in Delphi 5 Developer’s Guide will not be lost,
however. On the CD accompanying this book, you will find the entire contents of Delphi 5
Developer’s Guide, with each chapter in a separate PDF file. On the inside front cover, we
have also included the table of contents for Delphi 5 Developer’s Guide so you can know at a
glance where to find that programming tidbit. The end result for you, the reader, is essentially
two books in one.

Delphi 6 Developer’s Guide is divided into six sections. Part I, “Development Essentials,” pro-
vides you with the foundation knowledge necessary to be an effective Delphi developers. Part
I, “Advanced Techniques,” highlights some common advanced development issues, such as
threading and dynamic link libraries. Part III, “Database Development,” discusses the many
faces of Delphi’s data access layers. Part IV, “Component-Based Development,” takes you
through the many manifestations of component-based development, from VCL to CLX to
packages to COM and the Open Tools API. Part V, “Enterprise Development,” is intended to
give you the practical knowledge necessary to develop enterprise-grade applications with tech-
nologies such as COM+, CORBA, SOAP/BizSnap, and DataSnap. Finally, Part VI, “Internet
Development,” demonstrates the development of Internet and wireless applications in Delphi.

DELPHI 6 DEVELOPER'S GUIDE

Who Should Read This Book

As the title of this book says, this book is for developers. So, if you’re a developer, and you
use Delphi, you need to have this book. In particular, however, this book is aimed at three
groups of people:

Delphi developers who are looking to take their craft to the next level.

Experienced Pascal, C/C++, Java, or Basic programmers who are looking to hit the
ground running with Delphi.

Programmers who are looking to get the most out of Delphi by leveraging some of its
more advanced and sometimes least obvious features.

Conventions Used in This Book

The following typographic conventions are used in this book:

Code lines, commands, statements, variables, program output, and any text you see on
the screen appear in a computer typeface.

Anything that you type appears in a bold computer typeface.

Placeholders in syntax descriptions appear in an italic computer typeface. Replace the
placeholder with the actual filename, parameter, or whatever element it represents.

Ttalics highlight technical terms when they first appear in the text and sometimes are
used to emphasize important points.

Procedures and functions are indicated by open and close parentheses after the procedure
or function name. Although this isn’t standard Pascal syntax, it helps to differentiate
them from properties, variables, and types.

Within each chapter, you will encounter several Notes, Tips, and Cautions that help to high-
light the important points and aid you in steering clear of the pitfalls.

You will find all the source code and project files on the CD-ROM accompanying this book, as
well as source samples that we could not fit in the book itself.The CD also contains some pow-
erful trial versions of third-party components and tools.

Delphi 6 Developer’s Guide Web Site

Visit our Web site at http://www.xapware.com/ddg to join the Delphi Developer’s Guide
community and obtain updates, extras, and errata information for this book. You can also join
the mailing list for our newsletter and visit our discussion group.

INTRODUCTION

Getting Started

People sometimes ask what drives us to continue to write Delphi books. It’s hard to explain,
but whenever we meet with other developers and see their obviously well used, book marked,
ratty looking copy of Delphi Developer’s Guide, it somehow makes it worthwhile.

Now it’s time to relax and have some fun programming with Delphi. We’ll start slow but
progress into the more advanced topics at a quick but comfortable pace. Before you know it,
you’ll have the knowledge and technique required to truly be called a Delphi guru.

Development Essentials

IN THIS PART

1 Programming in Delphi 7
2 The Object Pascal Language 35
3 Adventures in Messaging 129

PART

Programming in Delphi CHAPTER

IN THIS CHAPTER

¢ The Delphi Product Family 8

¢ Delphi: What and Why 10

e A Little History 15

e The Delphi IDE 19

¢ A Tour of Your Project’s Source 24

¢ Tour of a Small Application 26

e What's So Great About Events, Anyway? 28
¢ Turbo Prototyping 29

e Extensible Components and Environment 25

e The Top 10 IDE Features You Must Know and
Love 30

Development Essentials
PART |

This chapter is intended to provide you with a high-level overview of Delphi, including history,
feature sets, how Delphi fits into the world of Windows development, and general tidbits of
information you need to know to be a Delphi developer. And just to get your technical juices
flowing, this chapter also discusses the need-to-know features of the Delphi IDE, pointing out
some of those hard-to-find features that even seasoned Delphi developers might not know
about.

This chapter isn’t about providing an education on the very basics of how one develops soft-
ware in Delphi. We figure you spent good money on this book to learn new and interesting
things—not to read a rehash of content you can already find in Borland’s documentation. True
to that, our mission is to deliver the goods: to show you the power features of this product and
ultimately how to employ those features to build commercial-quality software. Hopefully, our
backgrounds and experience with the tool will enable us to provide you with some interesting
and useful insights along the way. We feel that experienced and new Delphi developers alike
will benefit from this chapter (and this book!), as long as new developers understand that this
isn’t ground zero for a Delphi developer. Start with the Borland documentation and simple
examples. Once you’ve got the hang of how the IDE works and the general flow of application
development, welcome aboard and enjoy the ride!

The Delphi Product Family

Delphi 6 comes in three flavors designed to fit a variety of needs: Delphi 6 Personal, Delphi 6
Professional, and Delphi 6 Enterprise. Each of these versions is targeted at a different type of
developer.

Delphi 6 Personal is the entry-level version. It provides everything you need to start writing
applications with Delphi, and it’s ideal for hobbyists and students who want to break into
Delphi programming on a budget. This version includes the following features:

* Optimizing 32-bit Object Pascal compiler, including a variety of new and enhanced lan-
guage features.

* Visual Component Library (VCL), which includes over 85 components standard on the
Component Palette.

» Package support, which enables you to create small executables and component libraries.

e An IDE that includes an editor, debugger, form designer, and a host of productivity
features.

* IDE enhancements such as visual form inheritance and linking, object tree view, class
completion, and Code Insight.

Programming in Delphi

CHAPTER 1

e Full support for Win32 API, including COM, GDI, DirectX, multithreading, and various
Microsoft and third-party software development kits (SDKs).

 Licensing permits building applications for personal use only: No commercial distribu-
tion of applications built with Delphi 6 Personal is permitted.

Delphi 6 Professional is intended for use by professional developers who don’t require enter-
prise development capabilities. If you’re a professional developer building and deploying appli-
cations or Delphi components, this product is designed for you. The Professional edition
includes everything in the Personal edition, plus the following:

e More than 225 VCL components on the Component Palette

* More than 160 CLX components for cross-platform development between Windows and
Linux

e Database support, including DataCLX database architecture, data-aware VCL controls,
dbExpress cross-platform components and drivers, ActiveX Data Objects (ADO), the
Borland Database Engine (BDE) for legacy connectivity, a virtual dataset architecture
that enables you to incorporate other database types into VCL, the Database Explorer
tool, a data repository, and InterBase Express native InterBase components

 InterBase and MySQL drivers for dbExpress

e DataCLX database architecture (formerly known as MIDAS) with MyBase XML-based
local data engine

* Wizards for creating COM/COM+ components, such as ActiveX controls, ActiveForms,
Automation servers, property pages, and transactional components

e A variety of third-party tools and components, include the INDY internet tools, the
QuickReports reporting tool, the TeeChart graphing and charting components, and
NetMasters FastNet controls

* InterBase 6 database server and five-user license
e The Web Deployment feature for easy distribution of ActiveX content via the Web
e The InstallSHIELD MSI Light application-deployment tool

e The OpenTools API for developing components that integrate tightly within the Delphi
environment as well as an interface for PVCS version control

e NetCLX WebBroker tools and components for developing cross-platform applications
for the Internet

* Source code for the Visual Component Library (VCL), Component Library for Cross-
platform (CLX), runtime library (RTL), and property editors

* License for commercial distribution of applications developed with Delphi 6 Professional

-—

IHdT3@ NI
DNININVYIDOUd

10

Development Essentials
PART |

Delphi 6 Enterprise is targeted toward developers who create enterprise-scale applications. The
Enterprise version includes everything included in the other two Delphi editions, plus the
following:

e Over 300 VCL components on the Component Palette

* BizSnap technology for creating XML-based applications and Web services

* WebSnap Web application design platform for integrating XML and scripting technolo-
gies with Web-based applications

* CORBA support for client and sever applications, including version 4.0x of the
VisiBroker ORB and Borland AppServer version 4.5

» TeamSource source control software, which enables team development and supports vari-
ous versioning engines (ZIP and PVCS included)

» Tools for easily translating and localizing applications

* SQLLinks BDE drivers for Oracle, MS SQL Server, InterBase, Informix, Sybase, and
DB2

* Oracle and DB2 drivers for dbExpress

* Advanced tools for building SQL-based applications, including SQL Explorer, SQL
Monitor, SQL Builder, and ADT column support in grid

Delphi: What and Why

We’re often asked questions such as “What makes Delphi so good?”” and “Why should I
choose Delphi over Tool X?”” Over the years, we’ve developed two answers to these types of
questions: a long answer and a short answer. The short answer is productivity. Using Delphi is
simply the most productive way we’ve found to build applications for Windows. Of course,
there are those (bosses and perspective clients) for whom the short answer will not suffice, so
then we must break out the long answer. The long answer describes the combined qualities that
make Delphi so productive. We boil down the productivity of software development tools into
a pentagon of five important attributes:

* The quality of the visual development environment

* The speediness of the compiler versus the efficiency of the compiled code
* The power of the programming language versus its complexity

» The flexibility and scalability of the database architecture

* The design and usage patterns enforced by the framework

Although admittedly many other factors are involved, such as deployment issues, documenta-
tion, third-party support, and so on, we’ve found this simple model to be quite accurate in

Programming in Delphi
CHAPTER 1

explaining to folks why we choose Delphi. Some of these categories also involve some amount
of subjectivity, but that’s the point; how productive are you with a particular tool? By rating a
tool on a scale of 1 to 5 for each attribute and plotting each on an axis of the graph shown in
Figure 1.1, the end result will be a pentagon. The greater the surface area of this pentagon, the
more productive the tool.

Visual IDE
N

@)

5 %
S 2
& 5

N N

& O

FiGure 1.1
The development tool productivity graph.

We won’t tell you what we came up with when we used this formula—that’s for you to decide!
Let’s take an in-depth look at each of these attributes and how they apply to Delphi as well as
how they compare with other Windows development tools.

The Quality of the Visual Development Environment

The visual development environment can generally be divided into three constituent compo-
nents: the editor, the debugger, and the form designer. Like most modern rapid application
development (RAD) tools, these three components work in harmony as you design an applica-
tion. While you’re working in the form designer, Delphi is generating code behind the scenes
for the components you drop and manipulate on forms. You can add additional code in the edi-
tor to define application behavior, and you can debug your application from the same editor by
setting breakpoints, watches, and so on.

Delphi’s editor is generally on par with those of other tools. The Codelnsight technologies,
which save you a lot of typing, are probably the best around. They’re based on compiler infor-
mation, rather than type library info like Visual Basic, and are therefore able to help in a wider
variety of situations. Although the Delphi editor sports some good configuration options, I
would rate Visual Studio’s editor as more configurable.

11

-—

IHdT3@ NI
DNININVYIDOUd

12

Development Essentials
PART |

Recent versions of Delphi’s debugger have finally caught up with the debugger support in
Visual Studio, with advanced features such as remote debugging, process attachment, DLL and
package debugging, automatic local watches, and a CPU window. Delphi also has some nice
IDE support for debugging by allowing windows to be placed and docked where you like dur-
ing debugging and enabling that state to be saved as a named desktop setting. One very nice
debugger feature that’s commonplace in interpreted environments such as Visual Basic and
some Java tools is the ability to change code to modify application behavior while the applica-
tion is being debugged. Unfortunately, this type of feature is much more difficult to accomplish
when compiling to native code and is therefore unsupported by Delphi.

A form designer is usually a feature unique to RAD tools, such as Delphi, Visual Basic,
C++Builder, and PowerBuilder. More classical development environments, such as Visual C++
and Borland C++, typically provide dialog editors, but those tend not to be as integrated into the
development workflow as a form designer. Based on the productivity graph from Figure 1.1,
you can see that the lack of a form designer really has a negative effect on the overall productiv-
ity of the tool for application development.

Over the years, Delphi and Visual Basic have engaged in a sort of tug-of-war of form designer
features, with each new version surpassing the other in functionality. One trait of Delphi’s form
designer that sets it apart from others is the fact that Delphi is built on top of a true object-
oriented framework. Given that, changes you make to base classes will propagate up to any
ancestor classes. A key feature that leverages this trait is visual form inheritance (VFI). VFI
enables you to dynamically descend from any of the other forms in your project or in the
Gallery. What’s more, changes made to the base form from which you descend will cascade
and reflect in its descendants. You’ll find more information on this feature in the electronic ver-
sion of Delphi 5 Developer’s Guide on the CD accompanying this book in Chapter 3,
“Application Frameworks and Design Concepts.”

The Speediness of the Compiler Versus the Efficiency
of the Compiled Code

A speedy compile enables you to develop software incrementally, thus making frequent
changes to your source code, recompiling, testing, changing, recompiling, testing again, and so
forth: a very efficient development cycle. When compilation speed is slower, developers are
forced to make source changes in batch, making multiple modifications prior to compiling and
adapting to a less efficient development cycle. The advantage of runtime efficiency is self-evi-
dent; faster runtime execution and smaller binaries are always good.

Perhaps the best-known feature of the Pascal compiler upon which Delphi is based is that it’s
fast. In fact, it’s probably the fastest high-level language native code compiler for Windows.

Programming in Delphi 13

CHAPTER 1

C++, which has traditionally been dog-slow in terms of compile speed, has made great strides 1
in recent years with incremental linking and various caching strategies found in Visual C++
and C++Builder in particular. Still, even these C++ compilers are typically several times
slower than Delphi’s compiler.

Does all this compile-time speed mean a tradeoff in runtime efficiency? The answer is, of
course, no. Delphi shares the compiler back end with the C++Builder compiler, so the effi-
ciency of the generated code is on par with that of a very good C++ compiler. In the latest reli-
able benchmarks, Visual C++ actually rated tops in speed and size efficiency in many cases,
thanks to some very nice optimizations. Although these small advantages are unnoticeable for
general application development, they might make a difference if you’re writing computation-
intensive code.

IHdT3@ NI
DNININVYIDOUd

Visual Basic is a little unique with regard to compiler technology. During development, VB

operates in an interpreted mode and is quite responsive. When you want to deploy, you can

invoke the VB compiler to generate the EXE. This compiler is fairly slow and its speed effi-
ciency rates well behind Delphi and C++ tools. At the time of this writing, Microsoft’s next
iteration, Visual Basic.NET, is in beta and promises to make improvements in this area.

Java is another interesting case. Top Java-based tools such as JBuilder and Visual J++ boast
compile times approaching that of Delphi. Runtime speed efficiency, however, often leaves
something to be desired because Java is an interpreted language. Although Java continues to
make steady improvements, runtime speed in most real-world scenarios lags behind that of
Delphi and C++.

The Power of the Programming Language Versus
Its Complexity

Power and complexity are very much in the eye of the beholder, and this particular category
has served as the guidon for many an online flame war. What’s easy to one person might be
difficult to another, and what’s limiting to one might be considered elegant by yet another.
Therefore, the following is based on the authors’ experience and personal preferences.

Assembly is the ultimate power language. There’s very little you can’t do. However, writing
even the simplest Windows application in assembly is an arduous and error-prone venture. Not
only that, but it’s sometimes nearly impossible to maintain an assembly code base in a team
environment for any length of time. As code passes from one owner to the next to the next,
design ideas and intents become more and more cloudy, until the code starts to look more like
Sanskrit than a computer language. Therefore, we would score assembly very low in this cate-
gory because, although powerful, assembly language is too complex for nearly all application
development chores.

14

Development Essentials
PART |

C++ is another extremely powerful language. With the aid of really potent features such as pre-
processor macros, templates, operator overloading, and more, you can very nearly design your
own language within C++. If the vast array of features at your disposal are used judiciously,
you can develop very clear and maintainable code. The problem, however, is that many devel-
opers can’t resist overusing these features, and it’s quite easy to create truly horrible code. In
fact, it’s easier to write bad C++ code than good because the language doesn’t lend itself
toward good design—it’s up to the developer.

Two languages that we feel are very similar in that they strike a very good balance between
complexity and power are Object Pascal and Java. Both take the approach of limiting available
features in an effort to enforce logical design on the developer. For example, both avoid the
very object-oriented but easy-to-abuse notion of multiple inheritance in favor of enabling a
class to implement multiple interfaces. Both lack the nifty but dangerous feature of operator
overloading. Also, both make source files first-class citizens in the language rather than a detail
to be dealt with by the linker. What’s more, both languages take advantage of power features
that add the most bang for the buck, such as exception handling, Runtime Type Information
(RTTI), and native memory-managed strings. Not coincidentally, both languages weren’t writ-
ten by committee but rather nurtured by an individual or small group within a single organiza-
tion with a common understanding of what the language should be.

Visual Basic started life as a language designed to be easy enough for programming beginners
to pick up quickly (hence the name). However, as language features were added to address
shortcomings over the years, Visual Basic has become more and more complex. In an effort to
hide the details from developers, Visual Basic still maintains some walls that must be navigated
around in order to build complex projects. Again, Microsoft’s next-generation Visual
Basic.NET is making significant changes in this area, albeit at the expense of backward
compatibility.

The Flexibility and Scalability of the Database
Architecture

Because of Borland’s lack of a database agenda, Delphi maintains what we feel to be one of
the most flexible database architectures of any tool. Out of the box, dbExpress is very efficient
(although at the expense of advanced functionality), but the selection of drivers is rather lim-
ited. BDE still works and performs relatively well for most applications against a wide range
of data sources, although it is being phased out by Borland. Additionally, the native ADO com-
ponents provide an efficient means for communicating through ADO or ODBC. If InterBase is
your bag, the IBExpress native InterBase components provide the most effective means to
communicate with that database server. If none of this provides the data access you’re looking

Programming in Delphi

CHAPTER 1

for, you can write your own data-access class by leveraging the abstract dataset architecture or
purchase a third-party dataset solution. Furthermore, DataCLX makes it easy to logically or
physically divide, into multiple tiers, access to any of these data sources.

Microsoft tools logically tend to focus on Microsoft’s own databases and data-access solutions,
be they ODBC, OLE DB, or others.

The Design and Usage Patterns Enforced by the
Framework

This is the magic bullet or the holy grail of software design that other tools seem to be miss-
ing. All other things being equal, VCL is the most important part of Delphi. The ability to
manipulate components at design time, design components, and inherit behavior from other
components using object-oriented (OO) techniques it a critical ingredient to Delphi’s level of
productivity. When writing VCL components, you can’t help but employ solid OO design
methodologies in many cases. By contrast, other component-based frameworks are often too
rigid or too complicated.

ActiveX controls, for example, provide many of the same design-time benefits of VCL con-
trols, but there’s no way to inherit from an ActiveX control to create a new class with some
different behaviors. Traditional class frameworks, such as OWL and MFC, typically require
you to have a great deal of internal framework knowledge in order to be productive, and
they’re hampered by a lack of RAD tool-like design-time support. Microsoft’s .NET common
library finally puts Microsoft on the right track in terms of component-based development, and
it even works with a variety of their tools, including C#, Visual C++, and Visual Basic.

A Little History

Delphi is, at heart, a Pascal compiler. Delphi 6 is the next step in the evolution of the same
Pascal compiler that Borland has been developing since Anders Hejlsberg wrote the first Turbo
Pascal compiler more than 17 years ago. Pascal programmers throughout the years have
enjoyed the stability, grace, and, of course, the compile speed that Turbo Pascal offers. Delphi
6 is no exception—its compiler is the synthesis of more than a decade of compiler experience
and a state-of-the-art 32-bit optimizing compiler. Although the capabilities of the compiler
have grown considerably over the years, the speed of the compiler has remarkably diminished
only slightly. What’s more, the stability of the Delphi compiler continues to be a yardstick by
which others are measured.

Now it’s time for a little walk down memory lane, as we look at each of the versions of Delphi
and a little of the historical context surrounding each product’s release.

15

-—

IHdT3@ NI
DNININVYIDOUd

16

Development Essentials
PART |

Delphi 1

In the early days of DOS, programmers had a choice between productive-but-slow BASIC and
efficient-but-complex assembly language. Turbo Pascal, which offered the simplicity of a struc-
tured language and the performance of a real compiler, bridged that gap. Windows 3.1 pro-
grammers faced a similar choice—a choice between a powerful-yet-unwieldy language such as
C++ and an easy-to-use-but-limiting language such as Visual Basic. Delphi 1 answered that
call by offering a radically different approach to Windows development: visual development,
compiled executables, DLLs, databases, you name it—a visual environment without limits.
Delphi 1 was the first Windows development tool to combine a visual development environ-
ment, an optimizing native-code compiler, and a scalable database access engine. It defined the
phrase rapid application development (RAD).

The combination of compiler, RAD tool, and fast database access was too compelling for scads
of VB developers, and Delphi won many converts. Also, many Turbo Pascal developers rein-
vented their careers by transitioning to this slick, new tool. Word got out that Object Pascal
wasn’t the same as that language we had to use in college that made us feel like we were pro-
gramming with one hand behind our backs, and many more developers came to Delphi to take
advantage of the robust design patterns encouraged by the language and the tool. The Visual
Basic team at Microsoft, lacking serious competition before Delphi, was caught totally unpre-
pared. Slow, fat, and dumb, Visual Basic 3 was arguably no match for Delphi 1.

The year was 1995. Borland was appealing a huge lawsuit loss to Lotus for infringing on the 1-
2-3 “look and feel” with Quattro. Borland was also taking lumps from Microsoft for trying to
play in the application space with Microsoft. Borland got out of the application business by
selling the Quattro business to Novell and targeting dBASE and Paradox to database develop-
ers, as opposed to casual users. While Borland was playing in the applications market,
Microsoft had quietly leveraged its platform business to take away from Borland a vast share
of the Windows developer tools market. Newly refocused on its core competency of developer
tools, Borland was looking to do some damage with Delphi and a new release of Borland C++.

Delphi 2

A year later, Delphi 2 provided all these same benefits under the modern 32-bit operating sys-
tems of Windows 95 and Windows NT. Additionally, Delphi 2 extended productivity with addi-
tional features and functionality not found in version 1, such as a 32-bit compiler that produces
faster applications, an enhanced and extended object library, revamped database support,
improved string handling, OLE support, Visual Form Inheritance, and compatibility with 16-bit
Delphi projects. Delphi 2 became the yardstick by which all other RAD tools are measured.

Programming in Delphi

CHAPTER 1

The year was 1996, and the most important Windows platform release since 3.0—32-bit
Windows 95—had just happened in the latter part of the previous year. Borland was eager to
make Delphi the preeminent development tool for that platform. An interesting historical note
is that Delphi 2 was originally going to be called Delphi32, to underscore the fact that it was
designed for 32-bit Windows. However, the product name was changed before release to
Delphi 2 to illustrate that Delphi was a mature product and avoid what is known in the soft-
ware business as the “1.0 blues.”

Microsoft attempted to counter with Visual Basic 4, but it was plagued by poor performance,
lack of 16-to-32-bit portability, and key design flaws. Still, there’s an impressive number of
developers who continued to use Visual Basic for whatever the reason. Borland also longed to
see Delphi penetrate the high-end client/server market occupied by tools such as PowerBuilder,
but this version didn’t yet have the muscle necessary to unseat such products from their corpo-
rate perches.

The corporate strategy at this time was undeniably to focus on corporate customers. The deci-
sion to change direction in this way was no doubt fueled by the diminishing market relevance
of dBASE and Paradox, and the dwindling revenues realized in the C++ market also aided this
decision. In order to help jumpstart that effort to take on the enterprises, Borland made the
mistake of acquiring Open Environment Corporation, a middleware company with basically
two products: an outmoded DCE-based middleware that you might call an ancestor of CORBA
and a proprietary technology for distributed OLE about to be ushered into obsolescence by
DCOM.

Delphi 3

During the development of Delphi 1, the Delphi development team was preoccupied with sim-
ply creating and releasing a groundbreaking development tool. For Delphi 2, the development
team had its hands full primarily with the tasks of moving to 32 bit (while maintaining almost
complete backward compatibility) and adding new database and client/server features needed
by corporate IT. While Delphi 3 was being created, the development team had the opportunity
to expand the tool set to provide an extraordinary level of breadth and depth for solutions to
some of the sticky problems faced by Windows developers. In particular, Delphi 3 made it easy
to use the notoriously complicated technologies of COM and ActiveX, World Wide Web appli-
cation development, “thin client” applications, and multitier databases architectures. Delphi 3’s
Code Insight helped to make the actual code-writing process a bit easier, although for the most
part, the basic methodology for writing Delphi applications was the same as in Delphi 1.

This was 1997, and the competition was doing some interesting things. On the low end,
Microsoft finally started to get something right with Visual Basic 5, which included a compiler
to address long-standing performance problems, good COM/ActiveX support, and some key

17

-—

IHd73@ NI
DNININVYIDOUd

18

Development Essentials
PART |

new platform features. On the high-end, Delphi was now successfully unseating products such
as PowerBuilder and Forte in corporations.

Delphi lost a key member of the team during the Delphi 3 development cycle when Anders
Hejlsberg, the Chief Architect, decided to move on and took a position with Microsoft
Corporation. The team didn’t lose a beat, however, because Chuck Jazdzewski, long time co-
architect was able to step into the head role.

Delphi 4

Delphi 4 focused on making Delphi development easier. The Module Explorer was introduced
in Delphi, and it enabled you to browse and edit units from a convenient graphical interface.
New code navigation and class completion features enabled you to focus on the meat of your
applications with a minimum of busy work. The IDE was redesigned with dockable toolbars
and windows to make your development more convenient, and the debugger was greatly

improved. Delphi 4 extended the product’s reach into the enterprise with outstanding multitier
support using technologies such as MIDAS, DCOM, MTS, and CORBA.

This was 1998, and Delphi had effectively secured its position relative to the competition. The
front lines had stabilized somewhat, although Delphi continued to slowly gain market share.
CORBA was the industry buzz, and Delphi had it and the competition did not. There was a bit
of a down-side to Delphi 4 as well: After enjoying several years of being the most stable devel-
opment tool on the market, Delphi 4 had earned a reputation among long-time Delphi users for
not living up to the very high standard for solid engineering and stability.

The release of Delphi 4 followed the acquisition of Visigenic, one of the CORBA industry
leaders. Borland changed its name to Inprise in an effort to better penetrate the enterprise, and
the company was in a position to lead the industry to new ground by integrating its tools with
the CORBA technology. To really win, CORBA needed to be made as easy as COM or Internet
development had been made in past versions of Borland tools. However, for various reasons,
the integration wasn’t as full as it should have been, and the CORBA-development tool integra-
tion was destined to play a bit part in the overall software-development picture.

Delphi 5

Delphi 5 moved ahead on a few fronts: First, Delphi 5 continued what Delphi 4 started by
adding many more features to make easy those tasks that traditionally take time, hopefully
enabling you to concentrate more on what you want to write and less on how to write it. These
new productivity features include further IDE and debugger enhancements, TeamSource team
development software, and translation tools. Second, Delphi 5 contained a host of new features
aimed squarely at making Internet development easier. These new Internet features include the

Programming in Delphi

CHAPTER 1

Active Server Object Wizard for ASP creation, the InternetExpress components for XML sup-
port, and new MIDAS features, making it a very versatile data platform for the Internet.
Finally, Borland built time into the schedule to deliver the most important feature of all for
Delphi 5: stability. Like fine wine, you cannot rush great software, and Borland waited until
Delphi 5 was ready before letting it out the door.

Delphi 5 was released in the latter half of 1999. Delphi continues to penetrate the enterprise,
whereas Visual Basic continues to serve as competition on the low end. However, the battle
lines still appear stable. Inprise brought back the Borland name but only as a brand. The execu-
tive offices went through some turbulent times, with the company divisionalized between tools
and middleware, the abrupt departure of CEO Del Yocam, and the hiring of Internet-savvy
CEO Dale Fuller, who refocused the company back on software developers.

Delphi 6

Clearly the primary theme of Delphi 6 is compatibility with Borland’s Kylix development tool
for Linux. To this end, Borland developed the new Component Library for Cross-Platform
(CLX), which includes Visual CLX for visual development, DataCLX client data-access compo-
nents, and NetCLX Internet components. Applications written using only the CLX library and
portable RTL elements will easily port between the Windows and Linux operating systems.

The new dbExpress set of components and drivers is one of the biggest breakthroughs to come
out of the effort for Linux compatibility because it finally provides a real alternative for the
BDE, which has really begun to show its age in recent years.

A secondary theme of Delphi 6 is essentially to embrace all things XML. This includes XML
for database applications, Web-based applications, and SOAP-based Web services. Delphi
developers have the tools they need to fully embrace the industry-wide trend toward XML,
which provides great benefits in terms of applications that function across the traditional
boundaries of different development tools, platforms, databases, and across the Internet.

Of course, in addition to all these improvements and additions, Delphi 6 brings the normal host
of improvement you’ve come to expect between product versions in core areas like VCL, the
IDE, the debugger, the Object Pascal language, and the RTL.

The Delphi IDE

Just to make sure that we’re all on the same page with regard to terminology, Figure 1.2 shows
the Delphi IDE and calls attention to its major constituents: the main window, the Component
Palette, the toolbars, the Form Designer, the Code Editor, the Object Inspector, Object
TreeView, and the Code Explorer.

19

-—

IHd73@ NI
DNININVYIDOUd

Development Essentials

20
PART |
Toolbars
Object TreeView | Main Window Form Designer Component Palette
& D =Iphi 6 - Project1] 3]
Fid Edt Search View Frofct Run Component Datsbase Tools window el H <None> - & ﬁ;‘
O|f- B @5 |23 @ Storded | Addtona | wini2| Svsfm| Datadcosss | Data Cariole | dbsaness | Chtasnaa | BDE 1>
dsmaly sk OB AFEwr ¢ BZ=CE[|
R r— =I0i]
R IR
T Form1
10 x]
F
B Unitt | -
(23 Variables/Constants icl;
123 Uses
= tils, Variants, C
Fomil TFam1 -
Properties |Evems|
ActiveCantrol |
Align allone
AlphaBlend |False J
AlphaBlendvall 255
Hanchors |[akLeftakTop]
Augderl | Tue
Auodize |Fake
BiDiMode | bdLefiToRight
odercons | [biEystemieny, .
deriyl Sizeab
E:dif“ﬁfjh uS s 102 Modfied [insent [\Code {Diagram / P
Caption Form! |
Eshown
: P = r — = = Saturday, August 04, 2001
e IEEEEE EECEEET Tl 0
Object Inspector Code Explorer Code Editor
FIGURE 1.2

The Delphi 6 IDE.

The Main Window

Think of the main window as the control center for the Delphi IDE. The main window has all
the standard functionality of the main window of any other Windows program. It consists of
three parts: the main menu, the toolbars, and the Component Palette.

The Main Menu

As in any Windows program, you go to the main menu when you need to open and save files,
invoke wizards, view other windows, modify options, and so on. Most items on the main menu
can also be invoked via a button on a toolbar.

The Delphi Toolbars

The toolbars enable single-click access to some operation found on the main menu of the IDE,
such as opening a file or building a project. Notice that each of the buttons on the toolbars
offer a rooltip that contain a description of the function of a particular button. Not including the
Component Palette, there are five separate toolbars in the IDE: Debug, Desktops, Standard,

Programming in Delphi
CHAPTER 1

View, and Custom. Figure 1.2 shows the default button configuration for these toolbars, but
you can add or remove buttons by selecting Customize from the local menu on a toolbar.
Figure 1.3 shows the Customize toolbar dialog box. You add buttons by dragging them from
this dialog box and drop them on any toolbar. To remove a button, drag it off the toolbar.

customize I
Tookbars | Commands | Dptions |

Categories: Commangs:

| Separatar
[E8]New Component

(3 Install Component...

™ Import ActiveX Control

Database

Create Component Template..
[@Install Packages
Configure Palette..

To add command buttons, drag and diop commands onto a toolbar.
Toremove command buttons, diag them off of a Toolbar.

Close Help

FIGURE 1.3
The Customize toolbar dialog box.

IDE toolbar customization doesn’t stop at configuring which buttons are shown. You can also
relocate each of the toolbars, the Component Palette, or the menu within the main window. To
do this, click the raised gray bars on the left side of the toolbars and drag them around the
main window. If you drag the mouse outside the confines of the main window while doing this,
you’ll see yet another level of customization: The toolbars can be undocked from the main
window and reside in their own floating tool windows. Undocked views of the toolbars are
shown in Figure 1.4.

FIGURE 1.4
Undocked toolbars.

The Component Palette

The Component Palette is a double-height toolbar that contains a page control filled with all
the VCL components and ActiveX controls installed in the IDE. The order and appearance of
pages and components on the Component Palette can be configured via a right-click or by
selecting Component, Configure Palette from the main menu.

21

-—

IHd73@ NI
DNININVYIDOUd

22

Development Essentials
PART |

The Form Designer

The Form Designer begins as an empty window, ready for you to turn it into a Windows appli-
cation. Consider the Form Designer your artist’s canvas for creating Windows applications;
here is where you determine how your applications will be represented visually to your users.
You interact with the Form Designer by selecting components from the Component Palette and
dropping them onto your form. After you have a particular component on the form, you can
use the mouse to adjust the position or size of the component. You can control the appearance
and behavior of these components by using the Object Inspector and Code Editor.

The Object Inspector

With the Object Inspector, you can modify a form’s or component’s properties or enable your
form or component to respond to different events. Properties are data such as height, color, and
font that determine how an object appears onscreen. Events are portions of code executed in
response to occurrences within your application. A mouse-click message and a message for a
window to redraw itself are two examples of events. The Object Inspector window uses the
standard Windows notebook tab metaphor in switching between component properties or
events; just select the desired page from the tabs at the top of the window. The properties and
events displayed in the Object Inspector reflect whichever form or component currently has
focus in the Form Designer.

Delphi also has the capability to arrange the contents of the Object Inspector by category or
alphabetically by name. You can do this by right-clicking anywhere in the Object Inspector and
selecting Arrange from the local menu. Figure 1.5 shows two Object Inspectors side by side.
The one on the left is arranged by category, and the one on the right is arranged by name. You
can also specify which categories you would like to view by selecting View from the local
menu.

One of the most useful tidbits of knowledge that you as a Delphi programmer should know is
that the help system is tightly integrated with the Object Inspector. If you ever get stuck on a
particular property or event, just press the F1 key, and WinHelp comes to the rescue.

The Code Editor

The Code Editor is where you type the code that dictates how your program behaves and
where Delphi inserts the code that it generates based on the components in your application.
The top of the Code Editor window contains notebook tabs, where each tab corresponds to a
different source code module or file. Each time you add a new form to your application, a new
unit is created and added to the set of tabs at the top of the Code Editor. The local menu in the
Code Editor gives you a wide range of options while you’re editing, such as closing files, set-
ting bookmarks, and navigating to symbols.

Programming in Delphi
CHAPTER 1

[Object Insp £ [object insp E
Form1 TFoml =} [Form TFoml |
Propeties | Evenlsl Propeties | Evenlsl
FlAction ActiveControl |
Action Align alNone
Caption | Forml AlphaBlend |False
Ensbled | True AlphaBlendvall 255
HelpContext | 0 ElAnchors [akLeft kT op]
Hint AutoScroll | True
Visible False AutoSize False
E1Drag, Drop and Dacking BDiMode |baleftToRight
ElHelp and Hints ElBorderlcons | [biSystemMenu,
Elinput BorderStyle | bsSizeable
ELayout Bordeiwidth |0
ElLegacy Caption Forml
ElLinkage ClientHeight 348
ElLocale Clentwidth |536
ELocalizable Color [cBinFace
ElMiscellaneous ElConstraints | (TSizeConstrainl
EVisual CH3D True
Cursor cDefault
DefaultMonitor| dmctiveFom
DockSite |False
Dragkind | dkDrag
DragMode | dmManual
Enabled True d|
Al shown 7 | |81 shown A

FiGURe 1.5
Viewing the Object Inspector by category and by name.

Tip

You can view multiple Code Editor windows simultaneous by selecting View, New Edit
Window from the main menu.

The Code Explorer

The Code Explorer provides a tree-style view of the unit shown in the Code Editor. The Code
Explorer allows easy navigation of units in addition to the ability to easily add new elements or
rename existing elements in a unit. It’s important to remember that there’s a one-to-one rela-
tionship between Code Explorer windows and Code Editor windows. Right-click a node in the
Code Explorer to view the options available for that node. You can also control behaviors such
as sorting and filtering in the Code Explorer by modifying the options found on the Explorer
tab of the Environment Options dialog box.

The Object TreeView

The Object TreeView provides a visual, hierarchical representation of the components placed
on a form, data module, or frame. The tree displays the relationship between individual compo-
nents, such as parent-child, property-to-component, or property-to-property relationships. In
addition to being a means to view relationships, the Object TreeView also serves as a conve-
nient means to establish relationships between components. This can be done most easily by

23

-—

IHdT3@ NI
DNININVYIDOUd

24

Development Essentials
PART |

dropping one component from the palette or the tree on another in the tree. This will establish
the relationship between two components that have a possibility of forming a relationship.

A Tour of Your Project’s Source

The Delphi IDE generates Object Pascal source code for you as you work with the visual com-
ponents of the Form Designer. The simplest example of this capability is starting a new project.
Select File, New Application in the main window to see a new form in the Form Designer and
that form’s source code skeleton in the Code Editor. The source code for the new form’s unit is
shown in Listing 1.1.

ListiING 1.1 Source Code for an Empty Form

unit Unit1;
interface
uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs;

type
TForm1 = class(TForm)
private
{ Private declarations }
public
{ Public declarations }
end;
var

Form1: TFormi;
implementation;
{$R *.dfm}

end.

It’s important to note that the source code module associated with any form is stored in a unit.
Although every form has a unit, not every unit has a form. If you’re not familiar with how the
Pascal language works and what exactly a unit is, see Chapter 2, “The Object Pascal
Language,” which discusses the Object Pascal language for those who are new to Pascal from
C++, Visual Basic, Java, or another language.

Programming in Delphi
CHAPTER 1

Let’s take a unit skeleton one piece at a time. Here’s the top portion:

type
TForm1 = class(TForm) ;
private
{ Private declarations }
public
{ Public declarations }
end;

It indicates that the form object, itself, is an object derived from TForm, and the space in which
you can insert your own public and private variables is labeled clearly. Don’t worry about what
class, public, or private means right now. Chapter 2 discusses Object Pascal in more detail.

The following line is very important:
{$R *.dfm};

The $R directive in Pascal is used to load an external resource file. This line links the .DFM
(which stands for Delphi form) file into the executable. The .DFM file contains a binary repre-
sentation of the form you created in the Form Designer. The * symbol in this case isn’t
intended to represent a wildcard; it represents the file having the same name as the current
unit. So, for example, if the preceding line was in a file called Unit1.pas, the *.DFM would
represent a file by the name of Unit1.dfm.

NoTEe

A nice feature of the IDE is the ability for you to save new DFM files as text rather
than as binary. This option in enabled by default, but you can modify it using the
New Forms As Text check box on the Preferences page of the Environment Options
dialog box. Although saving forms as text format is just slightly less efficient in terms
of size, it's a good practice for a few of reasons: First, it is very easy to make minor
changes to text DFMs in any text editor. Second, if the file should become corrupted,
it is far easier to repair a corrupted text file than a corrupted binary file. Finally, it
becomes much easier for version control systems to manage the form files. Keep in
mind also that previous versions of Delphi expect binary DFM files, so you will need
to disable this option if you want to create projects that will be used by other ver-
sions of Delphi.

The application’s project file; is worth a glance, too. A project filename ends in .DPR (which
stands for Delphi project) and is really nothing more than a Pascal source file with a different
file extension. The project file is where the main portion of your program (in the Pascal sense)
lives. Unlike other versions of Pascal with which you might be familiar, most of the “work” of

25

-—

IHdT3@ NI
DNININVYIDOUd

26

Development Essentials
PART |

your program is done in units rather than in the main module. You can load your project’s
source file into the Code Editor by selecting Project, View Source from the main menu. Here’s
the project file from the sample application:

program Projectl;

uses
Forms,
Unit1 in 'Unitt.pas' {Formi};

{$R *.RES}

begin
Application.Initialize;
Application.CreateForm(TFormi, Formi);
Application.Run;

end.

As you add more forms and units to the application, they appear in the uses clause of the pro-
ject file. Notice, too, that after the name of a unit in the uses clause, the name of the related
form appears in comments. If you ever get confused about which units go with which forms,
you can regain your bearings by selecting View, Project Manager to bring up the Project
Manager window.

NoTE

Each form has exactly one unit associated with it, and you can also have other “code-
only” units that aren’t associated with any form. In Delphi, you work mostly within
your program’s; units, and you’ll rarely edit your project’s .DPR file.

Tour of a Small Application

The simple act of plopping a component such as a button onto a form causes code for that ele-
ment to be generated and added to the form object:

type
TForm1 = class(TForm)
Buttoni: TButton;
private
{ Private declarations }
public
{ Public declarations }
end;

Programming in Delphi
CHAPTER 1

Now, as you can see, the button is an instance variable of the TForm1 class. When you refer to
the button in contexts outside TForm1 later in your source code, you must remember to address
it as part of the scope of TForm1 by saying Form1.Buttoni. Scoping is explained in more detail
in Chapter 2.

When this button is selected in the Form Designer, you can change its behavior through the
Object Inspector. Suppose that, at design time, you want to change the width of the button to
100 pixels, and at runtime, you want to make the button respond to a press by doubling its own
height. To change the button width, move over to the Object Browser window, find the width
property, and change the value associated with Width to 100. Note that the change doesn’t take
effect in the Form Designer until you press Enter or move off the Width property. To make the
button respond to a mouse click, select the Events page on the Object Inspector window to
reveal the list of events to which the button can respond. Double-click in the column next to
the OnClick event, and Delphi generates a procedure skeleton for a mouse-click response and
whisks you away to that spot in the source code—in this case, a procedure called
TFormi1.ButtoniClick(). All that’s left to do is to insert the code to double the button’s width
between the begin. .end of the event’s response method:

Buttoni.Height := Buttoni.Height * 2;

To verify that the “application” compiles and runs, press the F9 key on your keyboard and
watch it go!

NoTE

Delphi maintains a reference between generated procedures and the controls to
which they correspond. When you compile or save a source code module, Delphi
scans your source code and removes all procedure skeletons for which you haven’t
entered any code between the begin and end. This means that if you didn't write any
code between the begin and end of the TForm1.Button1Click() procedure, for exam-
ple, Delphi would have removed the procedure from your source code. The bottom
line here is this: Don’t delete event handler procedures that Delphi has created; just
delete your code and let Delphi remove the procedures for you.

After you have fun making the button really big on the form, terminate your program and go
back to the Delphi IDE. Now is a good time to mention that you could have generated a
response to a mouse click for your button just by double-clicking a control after dropping it
onto the form. Double-clicking a component automatically invokes its associated component
editor. For most components, this response generates a handler for the first of that component’s
events listed in the Object Inspector.

27

-—

IHdT3@ NI
DNININVYIDOUd

28

Development Essentials
PART |

What's So Great About Events, Anyway?

If you’ve ever developed Windows applications the traditional way, without a doubt you’ll find
the ease of use of Delphi events a welcome alternative to manually catching Windows messages,
cracking those messages, and testing for window handles, control IDs, WParam parameters,
LParam parameters, and so on. If you don’t know what all that means, that’s okay; Chapter 3,
“Adventures in Messaging,” covers messaging internals.

A Delphi event is often triggered by a Windows message. The OnMouseDown event of a
TButton, for example, is really just an encapsulation of the Windows WM_xBUTTONDOWN mes-
sages. Notice that the OnMouseDown event gives you information such as which button was
pressed and the location of the mouse when it happened. A form’s OnKeyDown event provides
similar useful information for key presses. For example, here’s the code that Delphi generates
for an OnKeyDown handler:

procedure TFormi.FormKeyDown(Sender: TObject; var Key: Word;

Shift: TShiftState);

begin

end;

All the information you need about the key is right at your fingertips. If you’re an experienced
Windows programmer, you’ll appreciate that there aren’t any LParam or WParam parameters,
inherited handlers, translates, or dispatches to worry about. This goes way beyond “message
cracking” as you might know it because one Delphi event can represent several different
Windows messages, as it does with OnMouseDown (which handles a variety of mouse messages).
What’s more, each of the message parameters is passed in as easy-to-understand parameters.
Chapter 3 gets into the gory details of how Delphi’s internal messaging system works.

Contract-Free Programming

Arguably the biggest benefit that Delphi’s event system has over the standard Windows mes-
saging system is that all events are contract free. What contract free means to the programmer
is that you never are required to do anything inside your event handlers. Unlike standard
Windows message handling, you don’t have to call an inherited handler or pass information
back to Windows after handling an event.

Of course, the downside to the contract-free programming model that Delphi’s event system
provides is that it doesn’t always give you the power or flexibility that directly handling
Windows messages gives you. You're at the mercy of those who designed the event as far as
what level of control you’ll have over your application’s response to the event. For example,
you can modify and kill keystrokes in an OnKeyPress handler, but an OnResize handler pro-
vides you only with a notification that the event occurred—you have no power to prevent or
modify the resizing.

Programming in Delphi

CHAPTER 1

Never fear, though. Delphi doesn’t prevent you from working directly with Windows mes-
sages. It’s not as straightforward as the event system because message handling assumes that
the programmer has a greater level of knowledge of what Windows expects of every handled
message. You have complete power to handle all Windows messages directly by using the mes -
sage keyword. You’ll find out much more about writing Windows message handlers in Chapter
3.

The great thing about developing applications with Delphi is that you can use the high-level
easy stuff (such as events) when it suits you and still have access to the low-level stuff when-
ever you need it.

Turbo Prototyping

After hacking Delphi for a little while, you’ll probably notice that the learning curve is espe-
cially mild. In fact, even if you’re new to Delphi, you’ll find that writing your first project in
Delphi pays immediate dividends in the form of a short development cycle and a robust appli-
cation. Delphi excels in the one facet of application development that has been the bane of
many a Windows programmer: user interface (UI) design.

Sometimes the design of the UI and the general layout of a program is referred to as prototyp-
ing. In a nonvisual environment, prototyping an application often takes longer than writing the
application’s implementation, or what is called the back end. Of course, the back end of an
application is the whole objective of the program in the first place, right? Sure, an intuitive and
visually pleasing Ul is a big part of the application, but what good would it be, for example, to
have a communications program with pretty windows and dialog boxes but no capacity to send
data through a modem? As it is with people, so it is with applications; a pretty face is nice to
look at, but it has to have substance to be a regular part of our lives. Please, no comments
about back ends.

Delphi enables you to use its custom controls to whip out nice-looking Uls in no time flat. In
fact, you’ll find that after you become comfortable with Delphi’s forms, controls, and event-
response methods, you’ll cut huge chunks off the time you usually take to develop application
prototypes. You’ll also find that the Uls you develop in Delphi look just as nice as—if not bet-
ter than—those designed with traditional tools. Often, what you “mock up” in Delphi turns out
to be the final product.

Extensible Components and Environment

Because of the object-oriented nature of Delphi, in addition to creating your own components
from scratch, you can also create your own customized components based on stock Delphi
components. For more details on this and other types of components, you should take a look at
Part IV, “Component-Based Development.”

29

-—

IHdT3@ NI
DNININVYIDOUd

30

Development Essentials
PART |

In addition to allowing you to integrate custom components into the IDE, Delphi provides the
capability to integrate entire subprograms, called experts, into the environment. Delphi’s
Expert Interface enables you to add special menu items and dialog boxes to the IDE to inte-
grate some feature that you feel is worthwhile. An example of an expert is the Database Form
Expert located on the Delphi Database menu. Chapter 17, “Using The Open Tools APL,” out-
lines the process for creating experts and integrating them into the Delphi IDE.

The Top 10 IDE Features You Must Know and Love

Before we can let you any further into the book, we’ve got to make sure that you’re equipped
with the tools you need to survive and the knowledge to use them. In that spirit, what follows
is a list of what we feel are the top 10 IDE features you must learn to know and love.

1. Class Completion

Nothing wastes a developer’s time more than have to type in all that blasted code! How often is
it that you know exactly what you want to write but are limited by how fast your fingers can
fly over the keys? Until the spec for the PCI-to-medulla oblongata bus is completed to rid you
of all that typing, Delphi has a feature called class completion that goes a long way toward
alleviating the busy work.

Arguably, the most important feature of class completion is that it is designed to work without
being in your face. Simply type in part of a class declaration, press the magic Ctrl+Shift+C
keystroke combination, and class completion will attempt to figure our what you’re trying to
do and generate the right code. For example, if you put the declaration for a procedure called
Foo in your class and invoke class completion, it will automatically create the definition for
this method in the implementation part of the unit. Declare a new property that reads from a
field and writes to a method and invoke class completion, and it will automatically generate the
code for the field and declare and implement the method.

If you haven’t already gotten hooked on class completion, give it a whirl. Soon you’ll be lost
without it.

2. AppBrowser Navigation

Do you ever look at a line of code in your Code Editor and think, “Gee, I wish I knew where
that method is declared”? Well, finding out is as easy as holding down the Ctrl key and click-
ing the name of the token you want to find. The IDE will use debug information assembled in
the background by the compiler to jump to the declaration of the token. Very handy. And like a

Programming in Delphi
CHAPTER 1

Web browser, there’s a history stack that you can navigate forward and back through using the
little arrows to the right of the tabs in the Code Editor.

3. Interface/Implementation Navigation

Want to navigate between the interface and implementation of a method? Just put the cursor on
the method and use Ctrl+Shift+up arrow or down arrow to toggle between the two positions.

4. Dock It!

The IDE allows you to organize the windows on your screen by docking together multiple
windows as panes in a single window. If you have full window drag set in your windows desk-
top, you can easily tell which windows are dockable because they draw a dithered box when
they’re dragged around the screen. The Code Editor offers three docking bays on its left, bot-
tom, and right sides to which you can affix windows. Windows can be docked side-by-side by
dragging one window to an edge of another or tab-docked by dragging one window to the mid-
dle of another. Once you come up with an arrangement you like, be sure to save it using the
Desktops toolbar. Want to prevent a window from docking? Hold down the Ctrl key while
dragging it or right-click in the window and uncheck Dockable in the local menu.

Tip

Here's a cute hidden feature: Right-click the tabs of tab-docked windows, and you'll
be able to move the tabs to the top, bottom, left, or right of the window.

5. The Object Browser

Delphi 1 through 4 shipped with essentially the same icky object browser. If you didn’t know it
was there, don’t feel alone; many folks never used it because it didn’t have a lot to offer.
Delphi now comes equipped with an object browser that enables visual browsing of object
hierarchies. Shown in Figure 1.6, the browser is accessible by selecting View, Browser in the
main menu. This tool presents a tree view that lets you navigate globals, classes, and units and
drill down into scope, inheritance, and references of the symbols.

6. GUID, Anyone?

In the small-but-useful category, you’ll find the Ctrl+Shift+G keystroke combination. Pressing
this keystroke combination will place a fresh new GUID in the Code Editor, which is a real
timesaver when you’re declaring new interfaces.

31

-—

IHdT3@ NI
DNININVYIDOUd

32

Development Essentials
PART |

Exploring Classes £
Globals | [Classes | Units |

= o3 TObject 3 TComponent
B3 TPersistent
(=% TComponent —
E-83 TControl (1 Privats =
= » TwinContol [Pratected
5 TScrolingtwinCo |1 (R
=%} TCustomForr | Publiched
B TFom |2 (1 Inherited
»} TFor (3 Private
(1 Protected
£ Public
@ AfterConstruction
Assign
BeforeDestruction
Classinfo
ClassNames
ClassNamels
ClassParent
ClassType
Cleanuplnstance
& Creals
& DefaultHandler
#% Destioy
#% Destioy
& Dispatch
& Fielddddress
s

1 Fiem =l

Seope | Inhertance | References |

&
&
&
&
&
&
&
&

5
5
1
1
1
1
1
5
N
3

FIGURE 1.6
The new browser.

7. C++ Syntax Highlighting

If you’re like us, you often like to view C++ files, such as SDK headers, while you work in
Delphi. Because Delphi and C++Builder share the same editor source code, one of the advan-
tages to users is syntax highlighting of C++ files. Just load up a C++ file such as a .CPP or .H
module in the Code Editor, and it handles the rest automatically.

8. To Do. ..

Use the To Do List to manage work in progress in your source files. You can view the To Do
List by selecting View, To Do List from the main menu. This list is automatically populated
from any comments in your source code that begin with the token T0DO. You can use the To Do
Items window to set the owner, priority, and category for any To Do item. This window is
shown in Figure 1.7, docked to the bottom of the Code Editor.

9. Use the Project Manager

The Project Manager can be a big timesaver when navigating around large projects—especially
those projects that are composed of multiple EXE or DLL modules, but it’s amazing how many
people forget that it’s there. You can access the Project Manager by selecting View, Project
Manager from the main menu. There are a number of time saving features in the Project
Manager, such as drag-and-drop copying and copy and paste between projects.

Programming in Delphi

CHAPTER 1

i
Action ltem V| Module 2 Owner Category

[mf=] Fin leak Before ship

O [E Fix nasty memory corruption bug 1 G:A.\Unitl.pas Xavier Before ship

[[£] Bup copies of DD for family gifts 2 G:A.AUnitl.pas Reader Fun

[3items (0 hidden) [3 items pending 4

FIGURE 1.7
To Do Items window.

10. Use Code Insight to Complete Declarations
and Parameters

When you type Identifier., a window will automatically pop up after the dot to provide you
with a list of properties, methods, events, and fields available for that identifier. You can right-
click this window to sort the list by name or by scope. If the window goes away before you’re
ready, just press Ctrl+space to bring it back up.

Remembering all the parameters to a function can be a pain, so it’s nice that Code Insight
automatically helps by providing a tooltip with the parameter list when you type
FunctionName(in the Code Editor. Remember to press Ctrl+Shift+space to bring the
tooltip back up if it goes away before you’re ready.

Summary

By now you should have an understanding of the Delphi 6 product line and the Delphi IDE as
well as how Delphi fits into the Windows development picture in general. This chapter was
intended to acclimate you to Delphi and to the concepts used throughout the book. Now the
stage has been set for the really technical stuff to come. Before you move much deeper into the
book, make sure that you’re comfortable using and navigating around the IDE and know how
to work with small projects.

33

-—

IHdT3@ NI
DNININVYIDOUd

The Object Pascal Language CHAPTER

IN THIS CHAPTER

¢ Comments 36 e Loops 90

¢ Extended Procedure and ¢ Procedures and
Function Features 37 Functions 93

e Variables 39 e Scope 97

e Constants 41 e Units 99

e Operators 43 e Packages 101

¢ Object Pascal Types 47 ¢ Object-Oriented

* User-Defined Types 75 Programming 103

o Typecasting and Type e Using Delphi Objects 105

Conversion 87 e Structured Exception

e String Resources 88 LEneling - %

e Runtime Type

e Testing Conditions 88 .
Information 126

36

Development Essentials
PART |

This chapter sets aside the visual elements of Delphi in order to provide you with an overview
of Delphi’s underlying language—Object Pascal. To begin with, you’ll receive an introduction
to the basics of the Object Pascal language, such as language rules and constructs. Later on,
you’ll learn about some of the more advanced aspects of Object Pascal, such as classes and
exception handling. Because this isn’t a beginner’s book, it assumes that you have some expe-
rience with other high-level computer languages such as Java, C/C++, or Visual Basic, and it
compares Object Pascal language structure to that of those other languages. By the time you’re
finished with this chapter, you’ll understand how programming concepts such as variables,
types, operators, loops, cases, exceptions, and objects work in Pascal as compared to Java,
C/C++, and Visual Basic.

NoOTE

When we mention the C language in this chapter, we are generally referring to a lan-
guage element that exists in both C and C++. Features specific to the C++ language
are referred to as C++.

Even if you have some recent experience with Pascal, you’ll find this chapter useful because
this is really the only point in the book where you learn the nitty-gritty of Pascal syntax and
semantics.

Comments

As a starting point, you should know how to make comments in your Pascal code. Object
Pascal supports three types of comments: curly brace comments, parenthesis/asterisk com-
ments, and double backslash comments. Examples of each type of comment follow:

{ Comment using curly braces }
(* Comment using paren and asterisk *)
// double backslash comment

The first two types of comments are virtually identical in behavior. The compiler considers the
comment to be everything between the open-comment and close-comment delimiters. For dou-
ble backslash comments, everything following the double backslash until the end of the line is
considered a comment.

NoOTE

You cannot nest comments of the same type. Although it is legal syntax to nest Pascal
comments of different types inside one another, we don’t recommend the practice.
Here are some examples:

continues

The Object Pascal Language
CHAPTER 2

{ (* This is legal *) }

(* { This is legal } *)

(* (* This is illegal *) *)
{ { This is illegal }: }

Extended Procedure and Function Features

Because procedures and functions are fairly universal topics as far as programming languages
are concerned, we won’t go into too much detail here. We just want to fill you in on a few
unique or little-known features in this area. Where appropriate, we’ll also point out the Delphi
version in which various language features appeared to aid in porting or maintaining code
compatible between various compiler versions.

Parentheses in Calls

Although it has been in the language since Delphi 2, one of the lesser-known features of
Object Pascal is that parentheses are optional when calling a procedure or function that takes
no parameters. Therefore, the following syntax examples are both valid:

Form1.Show;
Form1.Show();

Granted, this feature isn’t one of those things that sends chills up and down your spine, but it’s
particularly nice for those who split their time between Delphi and languages such as C or
Java, where parentheses are required. If you’re not able to spend 100% of your time in Delphi,
this feature means that you don’t have to remember to use different function-calling syntax for
different languages.

Overloading

Delphi 4 introduced the concept of function overloading (that is, the ability to have multiple
procedures or functions of the same name with different parameter lists). All overloaded meth-
ods are required to be declared with the overload directive, as shown here:

procedure Hello(I: Integer); overload;
procedure Hello(S: string); overload;
procedure Hello(D: Double); overload;

Note that the rules for overloading methods of a class are slightly different and are explained
in the section “Method Overloading.” Although this is one of the features most requested by
developers since Delphi 1, the phrase that comes to mind is “Be careful what you wish for.”
Having multiple functions and procedures with the same name (on top of the traditional ability

37

N

IOVNONV
1vosvd
153raQ IHL

38

Development Essentials
PART |

to have functions and procedures of the same name in different units) can make it more difficult
to predict the flow of control and debug your application. Because of this, overloading is a fea-
ture you should employ judiciously. Not to say that you should avoid it; just don’t overuse it.

Default Value Parameters

Also introduced in Delphi 4 were default value parameters (that is, the ability to provide a
default value for a function or procedure parameter and not have to pass that parameter when
calling the routine). In order to declare a procedure or function that contains default value para-
meters, follow the parameter type with an equal sign and the default value, as shown in the fol-
lowing example:

procedure HasDefVal(S: string; I: Integer = 0);

The HasDefVal() procedure can be called in one of two ways. First, you can specify both para-
meters:

HasDefVal('hello', 26);

Second, you can specify only parameter S and use the default value for I:
HasDefVal('hello'); // default value used for I

You must follow several rules when using default value parameters:

* Parameters having default values must appear at the end of the parameter list. Parameters
without default values cannot follow parameters with default values in a procedure or
function’s parameter list.

» Default value parameters must be of an ordinal, pointer, or set type.

 Default value parameters must be passed by value or as const. They cannot be reference
(out) or untyped parameters.

One of the biggest benefits of default value parameters is in adding functionality to existing
functions and procedures without sacrificing backward compatibility. For example, suppose that
you sell a unit containing a revolutionary function called AddInts ()that adds two numbers:

function AddInts(I1, I2: Integer): Integer;
begin

Result := I1 + I2;
end;

In order to keep up with the competition, you feel you must update this function so that it has
the capability for adding three numbers. However, you’re loathe to do so because adding a
parameter will cause existing code that calls this function to not compile. Thanks to default
parameters, you can enhance the functionality of AddInts() without compromising compatibil-
ity. Here’s an example:

The Object Pascal Language
CHAPTER 2

function AddInts(I1, I2: Integer; I3: Integer = 0);

begin

Result := I1 + I2 + I3;
end;
Variables

You might be used to declaring variables off the cuff: “I need another integer, so I'll just
declare one right here in the middle of this block of code.” This is a perfectly reasonable
notion if you’re coming from another language such as Java, C, or Visual Basic. If that has
been your practice, you’re going to have to retrain yourself a little in order to use variables in
Object Pascal. Object Pascal requires you to declare all variables up front in their own section
before you begin a procedure, function, or program. Perhaps you used to write free-wheeling
code like this:

void foo(void)
{
int x
X++;
int y = 2;
float f;
//... etc ...

1
-

}
In Object Pascal, any such code must be tidied up and structured a bit more to look like this:

Procedure Foo0;
var
X, y: Integer;
f: Double;
begin

NoTE

Object Pascal—like Visual Basic, but unlike Java and C—is not a case-sensitive lan-
guage. Upper- and lowercase is used for clarity’s sake, so use your best judgment, as
the style used in this book indicates. If the identifier name is several words mashed

continues

39

N

IOVNONV
1vosvd
153raQ IHL

40

Development Essentials
PART |

together, remember to capitalize for clarity. For example, the following name is
unclear and difficult to read:

procedure thisprocedurenamemakesnosense;
This code is quite readable, however:
procedure ThisProcedureNameIsMoreClear;

For a complete reference on the coding style guidelines used for this book, see the
electronic version of Delphi 5 Developer’s Guide on the CD accompanying this book.

You might be wondering what all this structure business is and why it’s beneficial. You’ll find,
however, that Object Pascal’s structured style of variable declaration lends itself to code that’s
more readable, maintainable, and less buggy than other languages that rely on convention
rather than rule to enforce sanity.

Notice how Object Pascal enables you to group more than one variable of the same type
together on the same line with the following syntax:

VarNamei1, VarName2: SomeType;

Remember that when you’re declaring a variable in Object Pascal, the variable name precedes
the type, and there’s a colon between the variables and types. Note that the variable initializa-
tion is always separate from the variable declaration.

A language feature introduced in Delphi 2 enables you to initialize global variables inside a
var block. Here are some examples demonstrating the syntax for doing so:

var
i: Integer = 10;
S: string = 'Hello world';
D: Double = 3.141579;
NoTE

Preinitialization of variables is only allowed for global variables, not variables that
are local to a procedure or function.

The Object Pascal Language
CHAPTER 2

Tip

The Delphi compiler sees to it that all global data is automatically zero-initialized.
When your application starts, all integer types will hold 0, floating-point types will
hold @.0, pointers will be nil, strings will be empty, and so forth. Therefore, it isn't
necessary to zero-initialize global data in your source code.

Constants

Constants in Pascal are defined in a const clause, which behaves similarly to the C/C++’s
const keyword. Here’s an example of three constant declarations in C:

const float ADecimalNumber = 3.14;
const int i = 10;
const char * ErrorString = "Danger, Danger, Danger!";

The major difference between C constants and Object Pascal constants is that Object Pascal,
like Visual Basic, doesn’t require you to declare the constant’s type along with the value in the
declaration. The Delphi compiler automatically allocates proper space for the constant based
on its value, or, in the case of scalar constants such as Integer, the compiler keeps track of the
values as it works, and space never is allocated. Here’s an example:

const
ADecimalNumber = 3.14;
i=10;
ErrorString = 'Danger, Danger, Danger!';
NoTe

Space is allocated for constants as follows: Integer values are “fit” into the smallest
type allowable (10 into a ShortInt, 32,000 into a SmallInt, and so on). Alphanumeric
values fit into Char or the currently defined (by $H) string type. Floating-point values
are mapped to the extended data type, unless the value contains four or fewer deci-
mal places explicitly, in which case it's mapped to a Comp type. Sets of Integer and
Char are of course stored as themselves.

41

N

IOVNONV
1vosvd
153raQ IHL

42

Development Essentials
PART |

Optionally, you can also specify a constant’s type in the declaration. This provides you with
full control over how the compiler treats your constants:

const
ADecimalNumber: Double = 3.14;
I: Integer = 10;
ErrorString: string = 'Danger, Danger, Danger!';

Object Pascal permits the usage of compile-time functions in const and var declarations.
These routines include Ord(), Chr(), Trunc(), Round(), High(), Low(), and SizeOf (). For
example, all of the following code is, valid:

type
A = array[1..2] of Integer;

const
w: Word = SizeOf (Byte);

var
i: Integer = 8;
j: SmallInt = Ord('a');
L: Longint = Trunc(3.14159);
x: ShortInt = Round(2.71828);
B1: Byte = High(A);
B2: Byte = Low(A);
C: char = Chr(46);

CAUTION

The behavior of 32-bit Delphi type-specified constants is different from that in 16-bit
Delphi 1. In Delphi 1, the identifier declared wasn’t treated as a constant but as a
preinitialized variable called a typed constant. However, in Delphi 2 and later, type-
specified constants have the capability of being truly constant. Delphi provides a
backward-compatibility switch on the Compiler page of the Project, Options dialog
box, or you can use the $J compiler directive. By default, this switch is enabled for
compatibility with Delphi 1 code, but you're best served not to rely on this capability
because the implementers of the Object Pascal language are trying to move away
from the notion of assignable constants.

If you try to change the value of any of these constants, the Delphi compiler emits an error

explaining that it’s against the rules to change the value of a constant. Because constants are
read-only, Object Pascal optimizes your data space by storing those constants that merit stor-
age in the application’s code pages. If you’re unclear about the notions of code and data pages,

The Object Pascal Language
CHAPTER 2

see Chapter 3, “The Win32 APL,” in the electronic version of Delphi 5 Developer’s Guide on
the CD accompanying this, book.

NoTE

Object Pascal doesn’t have a preprocessor as does C. There's no concept of a macro

in Object Pascal and, therefore, no Object Pascal equivalent for C's #define for con-
stant declaration. Although you can use Object Pascal’s $define compiler directive for
conditional compiles similar to C's #define, you cannot use it to define constants. Use
const in Object Pascal where you would use #define to declare a constant in C.

Operators

Operators are the symbols in your code that enable you to manipulate all types of data. For
example, there are operators for adding, subtracting, multiplying, and dividing numeric data.
There are also operators for addressing a particular element of an array. This section explains
some of the Pascal operators and describes some of the differences between their Java, C, and
Visual Basic counterparts.

Assignment Operators

If you’re new to Pascal, Delphi’s assignment operator is going to be one of the toughest things
to get used to. To assign a value to a variable, use the := operator as you would use the = oper-
ator in Java, C, or Visual Basic. Pascal programmers often call this the gets or assignment
operator, and, the expression

Numberi := 5;

is read either “Numberi gets the value 5” or “Numberi is assigned the value 5.”

Comparison Operators

If you’ve already programmed in Visual Basic, you should be very comfortable with Delphi’s
comparison operators, because they’re virtually identical. These operators are fairly standard
throughout programming languages, so they’re covered only briefly in this section.

Object Pascal uses the = operator to perform logical comparisons between two expressions or
values. Object Pascal’s = operator is analogous to the Java/C == operator, so a Java/C expres-
sion that would be written as

if (x == y)

43

N

IOVNONV
1vosvd
153raQ IHL

44

Development Essentials
PART |

would be written as this in Object Pascal:

if x =y

NoOTE

Remember that in Object Pascal, the := operator is used to assign a value to a vari-
able, and the = operator compares the values of two, operands.

Object Pascal’s “not equal to” operator is <>, and its purpose is identical to C’s != operator. To
determine whether two expressions are not equal, use this code:

if x <>y then DoSomething

Logical Operators

Pascal uses the words and and or as logical “and” and “or”” operators, whereas Java and C use
the && and | | symbols, respectively, for these operators. The most common use of the and
and or operators is as part of an if statement or loop, as demonstrated in the following two
examples:

if (Condition 1) and (Condition 2) then
DoSomething;

while (Condition 1) or (Condition 2) do
DoSomething;

Pascal’s logical “not” operator is not, which is used to invert a Boolean expression. It’s analo-
gous to the Java/C’s | operator. It’s also often used as a part of if statements, as shown here:

if not (condition) then (do something); // if condition is false then...

Table 2.1 provides an easy reference of how Pascal operators map to corresponding Java, C,
and Visual Basic operators.

TaBLE 2.1 Assignment, Comparison, and Logical Operators

Operator Pascal Java/C Visual Basic
Assignment 1= = =
Comparison = == =or Is*
Not equal to <> 1= <>

Less than < < <

Greater than > > >

The Object Pascal Language
CHAPTER 2

TaBLE 2.1 Continued

Operator Pascal Java/C Visual Basic
Less than or equal to <= <= <=

Greater than or equal to >= >= >=

Logical and and && And

Logical or or | or

Logical not not ! Not

*The 1s comparison operator is used for objects, whereas the = comparison operator is used for other
types.

Arithmetic Operators

You should already be familiar with most Object Pascal arithmetic operators because they’re
generally similar to those used in Java, C, and Visual Basic. Table 2.2 illustrates all the Pascal
arithmetic operators and their Java, C, and Visual Basic counterparts.

TABLE 2.2 Arithmetic Operators

Operator Pascal Java/C Visual Basic
Addition + + +
Subtraction

Multiplication * * *
Floating-point division / / /

Integer division div / \

Modulus mod % Mod
Exponent None None "

You might notice that Pascal and Visual Basic provide different division operators for floating-
point and integer math, although this isn’t the case for Java and C. The div operator automati-
cally truncates any remainder when you’re dividing two integer expressions.

NoTE

Remember to use the correct division operator for the types of expressions with
which you’re working. The Object Pascal compiler gives you an error if you try to
divide two floating-point numbers with the integer div operator or two integers with
the floating-point / operator, as the following code illustrates:

continues

45

N

IOVNONV
1vosvd
153raQ IHL

Development Essentials
PART |

46

var
i: Integer;
r: Real;
begin
i:=4/ 8; // This line will cause a compiler error
f 1= 3.4 div 2.3; // This line also will cause an error
end;

Many other programming languages do not distinguish between integer and float-
ing-point division. Instead, they always perform floating-point division and then con-
vert the result back to an integer when necessary. This can be rather expensive in
terms of performance. The Pascal div operator is faster and more specific.

Bitwise Operators

Bitwise operators enable you to modify individual bits of a given variable. Common bitwise
operators enable you to shift the bits to the left or right or to perform bitwise “and,” “not,” “or,
and “exclusive or” (xor) operations with two numbers. The Shift+left and Shift+right operators
are shl and shr, respectively, and they’re much like the Java/C << and >> operators. The
remainder of Pascal’s bitwise operators is easy enough to remember: and, not, or, and xor.
Table 2.3 lists the bitwise operators.

Lt}

TaBLE 2.3 Bitwise Operators

Operator Pascal Java/C Visual Basic
And and & And

Not not ~ Not

Or or | or

Xor xor " Xor
Shift+left shl << None
Shift+right shr >> None

Increment and Decrement Procedures

Increment and decrement procedures generate optimized code for adding or subtracting 1 from
a given integral variable. Pascal doesn’t really provide honest-to-gosh increment and decrement
operators similar to the Java/C ++ and - - operators, but Pascal’s Inc() and Dec() procedures
compile optimally to one machine instruction.

The Object Pascal Language
CHAPTER 2

You can call Inc() or Dec() with one or two parameters. For example, the following two lines
of code increment and decrement variable, respectively, by 1, using the inc and dec assembly
instructions:

Inc(variable);
Dec(variable);

Compare the following two lines, which increment or decrement variable by 3 using the add
and sub assembly instructions:

Inc(variable, 3);

Dec(variable, 3);

Table 2.4 compares the increment and decrement operators of different languages.

NoTE

With compiler optimization enabled, the Inc() and Dec() procedures often produce
the same machine code as variable_:= variable + 1 syntax, so use whichever you
feel more comfortable with for incrementing and decrementing variables.

TAaBLE 2.4 Increment and Decrement Operators

Operator Pascal Java/C Visual Basic
Increment Inc() ++ None
Decrement Dec() -- None

Do-and-Assign Operators

Not present in Object Pascal are handy do-and-assign operators like those found in Java and C.
These operators, such as += and *=, perform an arithmetic operation (in this case, an add and
an multiply) before making the assignment. In Object Pascal, this type of operation must be
performed using two separate operators. Therefore, this code in Java or C

X += 5;
becomes this in Object Pascal:

X = X + 5;

47

N

IOVNONV
1vosvd
153raQ IHL

48

Development Essentials
PART |

Object Pascal Types

One of Object Pascal’s greatest features is that it’s strongly typed, or typesafe. This means that
actual variables passed to procedures and functions must be of the same type as the formal
parameters identified in the procedure or function definition. You won’t see any of the famous
compiler warnings about suspicious pointer conversions that C programmers have grown to
know and love. This is because the Object Pascal compiler won’t permit you to call a function
with one type of pointer when another type is specified in the function’s formal parameters
(although functions that take untyped Pointer types accept any type of pointer). Basically,
Pascal’s strongly typed nature enables it to perform a sanity check of your code—to ensure that
you’ aren’t trying to put a square peg in a round hole.

A Comparison of Types

Delphi’s base types are similar to those of Java, C, and Visual Basic. Table 2.5 compares and
contrasts the base types of Object Pascal with those of these other languages. You might want
to earmark this page because this table provides an excellent reference for matching types
when calling functions in non-Delphi dynamic link libraries (DLLs) or object files (OBJs)
from Delphi (and vice versa).

TABLE 2.5 A Pascal-to-Java-to-C-to-Visual Basic 32-bit Type Comparison

Type of Visual
Variable Pascal Java C/C++ Basic
8-bit signed ShortInt byte char None
integer

8-bit unsigned Byte None BYTE, Byte
integer unsigned short

16-bit signed SmallInt short short Short
integer

16-bit unsigned Word None unsigned short None
integer

32-bit signed Integer, int int, long Integer, Long
integer Longint

32-bit unsigned Cardinal, None unsigned long None
integer LongWord

64-bit signed Int64 long __int64 None

integer

The Object Pascal Language

CHAPTER 2
TABLE 2.5 Continued
Type of Visual
Variable Pascal Java C/C++ Basic
4-byte floating Single float float Single
point
6-byte floating Real4s None None None
point
8-byte floating Double double double Double
point
10-byte floating Extended None long. double None
point
64-bit currency currency None None Currency
8-byte date/time TDateTime None None Date
16-byte variant Variant, None VARIANT*?* variant(Default)
OleVariant, Variantt,
TvarData Olevariantf
1-byte character Char None char None
2-byte character WideChar char WCHAR
Fixed-length ShortString None None None
byte string
Dynamic string AnsiString AnsiStringf String
Null-terminated PChar None char * None
string
Null-terminated PwideChar None LPCWSTR None
wide string
Dynamic 2-byte WideString String** WwideStringf None
string
1-byte Boolean Boolean, boolean (Any l-byte) None
ByteBool
2-byte Boolean WordBool None (Any 2-byte) Boolean
4-byte Boolean BOOL, None BOOL None
LongBool

TA proprietary Borland C++Builder class that emulates the corresponding Object Pascal type
**Not a language element proper, but a commonly used structure or class

49

N

IOVNONV
1vosvd
153raQ IHL

50

Development Essentials
PART |

NoTE

If you're porting 16-bit code from Delphi 1, be sure to bear in mind that the size of
both the Integer and Cardinal types has increased from 16 to 32 bits. Actually, that’s
not quite accurate: Under Delphi 2 and 3, the Cardinal type was treated as an
unsigned 31-bit integer in order to preserve arithmetic precision (because Delphi 2
and 3 lacked a true unsigned 32-bit integer to which results of integer operations
could be promoted). Under Delphi 4 and higher, Cardinal is a true unsigned 32-bit
integer.

CAUTION

In Delphi 1, 2, and 3, the Real type identifier specified a 6-byte floating-point num-
ber, which is a type unique to Pascal and generally incompatible with other lan-
guages. In Delphi 4, Real is an alias for the Double type. The old 6-byte floating-
point number is still there, but it's now identified by Real48. You can also

force the Real identifier to refer to the 6-byte floating-point number using the
{$REALCOMPATIBILITY ON} directive.

Characters
Delphi provides three character types:

* AnsiChar—This is the standard one-byte ANSI character that programmers have grown
to know and love.
* wideChar—This character is two bytes in size and represents a Unicode character.

* Char—This is currently identical to AnsiChar, but Borland warns that the definition
might change to WideChar in a later version of Delphi.

Keep in mind that because a character is no longer guaranteed to be one byte in size, you
shouldn’t hard-code the size into your applications. Instead, you should use the SizeOf () func-
tion where appropriate.

NoTE

The SizeOf () standard procedure returns the size, in bytes, of a type or instance.

The Object Pascal Language

CHAPTER 2

A Multitude of Strings

Strings are variable types used to represent groups of characters. Every language has its own
spin on how string types are stored and used. Pascal has several different string types to suit
your programming needs:

* AnsiString, the default string type for Object Pascal, is comprised of AnsiChar charac-
ters and allows for virtually unlimited lengths. It’s also compatible with null-terminated
strings.

* ShortString remains in the language primarily for backward compatibility with Delphi 1.
Its capacity is limited to 255 characters.

* WideString is similar in functionality to AnsiString except that it’s comprised of
WideChar characters.

* PChar is a pointer to a null-terminated Char string—Ilike C’s char * and lpstr types.
* PAnsiChar is a pointer to a null-terminated AnsiChar string.

* PWideChar is a pointer to a null-terminated WideChar string.

By default, when you declare a string variable in your code, as shown in the following exam-
ple, the compiler assumes that you’re creating an AnsiString:

var
S: string; // S is an AnsiString

Alternatively, you can cause variables declared as string types to be of type ShortString
instead using the $H compiler directive. When the value of the $H compiler directive is nega-
tive, string variables are ShortString types; and when the value of the directive is positive
(the default), string variables are AnsiString types. The following code demonstrates this
behavior:

var
{$H-}
S1: string; // S1 is a ShortString
{$H+}
S2: string; // S2 is an AnsiString

The exception to the $H rule is that a string declared with an explicit size (limited to a maxi-
mum of 255 characters) is always a ShortString:

var
S: string[63]; // A ShortString of up to 63 characters

51

N

IOVNONV
1vosvd
153raQ IHL

52

Development Essentials
PART |

The AnsiString Type

The AnsiString (or long string) type was introduced to the language in Delphi 2. It exists pri-
marily as a result of widespread Delphi 1 customer demand for an easy-to-use string type with-
out the intrusive 255-character limitation. AnsiString is that and more.

Although AnsiString types maintain an almost identical interface as their predecessors, they’re
dynamically allocated and garbage-collected. Because of this, AnsiString is sometimes referred
to as a lifetime-managed type. Object Pascal also automatically manages allocation of string
temporaries as needed, so you needn’t worry about allocating buffers for intermediate results
as you would in C/C++. Additionally, AnsiString types are always guaranteed to be null ter-
minated, which makes them compatible with the null-terminated strings used by the Win32
API. The AnsiString type is actually implemented as a pointer to a string structure in heap
memory. Figure 2.1 shows how an AnsiString is laid out in memory.

Allocation éize' Ref count | ‘Ler‘1gth‘ |D| D|G|#0|

AnsiString

FIGURE 2.1
An AnsiString in memory.

CAUTION

The complete internal format of the long string type is left undocumented by Borland,
and Borland reserves the right to change the internal format of long strings with
future releases of Delphi. The information here is intended mainly to help you under-
stand how AnsiString types work, and you should avoid being dependent on the
structure of an AnsiString in your code.

Developers who avoided the implementation of details of string moving from Delphi
1 to Delphi 2 were able to migrate their code with no problems. Those who wrote
code that depended on the internal format (such as the 0th element in the string
being the length) had to modify their code for Delphi 2.

As Figure 2.1 illustrates, AnsiString types are reference counted, which means that several
strings might point to the same physical memory. String copies, therefore, are very fast because
it’s merely a matter of copying a pointer rather than copying the actual string contents. When
two or more AnsiString types share a reference to the same physical string, the Delphi mem-
ory manager uses a copy-on-write technique, which enables it to wait until a string is modified
to release a reference and allocate a new physical string. The following example illustrates
these concepts:

The Object Pascal Language
CHAPTER 2

var

begin

S1, S2: string;

// store string in S1, ref count of S1 is 1

S1 := 'And now for something... ';

S2 := S1; // S2 now references S1. Ref count of S1 is 2.

// 82 is changed, so it is copied to its own
// memory space, and ref count of S1 is decremented

S2 := S2 + 'completely different!';

Lifetime-Managed Types

In addition to AnsiString, Delphi provides several other types that are lifetime-
managed. These types include WideString, Variant, 0OleVariant, interface,
dispinterface, and dynamic arrays. You’'ll learn more about each of these

types later in this chapter. For now, we’ll focus on what exactly lifetime-managed
types are and how they work.

Lifetime-managed types, sometimes called garbage-collected types, are types that
potentially consume some particular resource while in use and release the resource
automatically when they fall out of scope. Of course, the variety of resources used
depends on the type involved. For example, an AnsiString consumes memory for the
character string while in use, and the memory occupied by the character string is
released when it leaves scope.

For global variables, this process is fairly straightforward: As a part of the finalization
code generated for your application, the compiler inserts code to ensure that each
lifetime-managed global variable is cleaned up. Because all global data is zero-initial-
ized when your application loads, each lifetime-managed global variable will always
initially contain a zero, empty, or some other value indicating the variable is “unused.”
This way, the finalization code won't attempt to free resources unless they’re actually
used in your application.

Whenever you declare a local lifetime-managed variable, the process is slightly more
complex: First, the compiler inserts code to ensure that the variable is initialized to
zero when the function or procedure is entered. Next, the compiler generates a
try..finally exception-handling block, which it wraps around the entire function
body. Finally, the compiler inserts code in the finally block to clean up the lifetime-
managed variable (exception handling is explained in more detail in the section
“Structured Exception Handling”). With this in mind, consider the following-
procedure:

53

IDVNONV]

N

1vosvd
153raQ IHL

54

Development Essentials
PART |

procedure Foo;
var
S: string;
begin
// procedure body
// use S here
end;

Although this procedure looks simple, if you take into account the code generation
by the compiler behind the scenes, it would actually look like this:

procedure Foo;
var
S: string;
begin
S = '";
try
// procedure body
// use S here
finally
// clean up S here
end;
end;

String Operations

You can concatenate two strings by using the + operator or the Concat () function. The pre-
ferred method of string concatenation is the + operator because the Concat () function exists
primarily for backward compatibility. The following example demonstrates the use of + and
Concat():

{ using + }

var
S, S2: string
begin
S:= 'Cookie ':
S2 := 'Monster';
S := 8 + 82; { Cookie Monster }
end.

{ using Concat() }

var
S, S2: string;
begin
S:= 'Cookie ';
S2 := 'Monster';

S := Concat(S, S2); { Cookie Monster }
end.

The Object Pascal Language
CHAPTER 2

NoTE

Always use single quotation marks (‘A String') when working with string literals in
Object Pascal.

Tip

Concat ()is one of many “compiler magic” functions and procedures (like ReadLn ()
and WriteLn(), for example) that don’t have an Object Pascal definition. Such func-

tions and procedures are intended to accept an indeterminate number of parameters

or optional parameters, so they cannot be defined in terms of the Object Pascal lan-
guage. Because of this, the compiler provides a special case for each of these func-

tions and generates a call to one of the “compiler magic” helper functions defined in

the System unit. These helper functions are generally implemented in assembly lan-
guage in order to circumvent Pascal language rules.

In addition to the “compiler magic” string support functions and procedures, there
are a variety of functions and procedures in the SysUtils unit designed to make

working with strings easier. Search for “String-handling routines (Pascal-style)” in the

Delphi online help system.

Furthermore, you'll find some very useful homebrewed string utility functions and
procedures in the StrUtils unit in the \Source\Utils directory on the CD-ROM
accompanying this book.

Length and Allocation
When first declared, an AnsiString has no length and therefore no space allocated for the

characters in the string. To cause space to be allocated for the string, you can assign the string

to a literal or another string, or you can use the SetLength () procedure, as shown here:

var
S: string; // string initially has no length

begin
S := 'Doh!'; // allocates at least enough space for string literal
{or}
S := OtherString // increases ref count of OtherString

/! (assume OtherString already points to a valid string)

{or}

SetLength(S, 4); // allocates enough space for at least 4 chars
end;

55

N

IOVNONV
1vosvd
153raQ IHL

56

Development Essentials
PART |

You can index the characters of an AnsiString like an array, but be careful not to index
beyond the length of the string. For example, the following code snippet will cause an error:

var

S: string;
begin

S[1] := 'a'; // Won't work because S hasn't been allocated!
end;

This code, however, works properly:

var

S: string;
begin

SetLength(S, 1);

S[1] := 'a'; // Now S has enough space to hold the character
end;

Win32 Compatibility

As mentioned earlier, AnsiString types are always null-terminated, so they’re compatible with
null-terminated strings. This makes it easy to call Win32 API functions or other functions
requiring PChar-type strings. All that’s required is that you typecast the string as a PChar.
(Typecasting is explained in more detail in the section “Typecasting and Type Conversion.”)
The following code demonstrates how to call the Win32 GetWindowsDirectory () function,
which accepts a PChar and buffer length as parameters:

var
S: string;

begin
SetLength(S, 256); // important! get space for string first
// call function, S now holds directory string
GetWindowsDirectory(PChar(S), 256);

end;

After using an AnsiString in which a function or procedure expects a PChar, you must manu-
ally set the length of the string variable to its null-terminated length. The RealizeLength()
function, which also comes from the StrUtils unit, accomplishes that task:
procedure RealizelLength(var S: string);
begin

SetLength(S, StrLen(PChar(S)));
end;

Calling RealizeLength() completes the substitution of a long string for a PChar:

var
S: string;

The Object Pascal Language
CHAPTER 2

begin
SetLength(S, 256); // important! get space for string first
// call function, S now holds directory string
GetWindowsDirectory (PChar(S), 256);
Realizelength(S); // set S length to null length
end;

CAUTION

Exercise care when typecasting a string to a PChar variable. Because strings are
garbage-collected when they go out of scope, you must pay attention when making
assignments such as P := PChar(Str), where the scope (or lifetime) of P is greater
than Str.

Porting Issues
When you’re porting 16-bit Delphi 1 applications, you need to keep in mind a number of
issues when migrating to AnsiString types:

* In places where you used the PString (pointer to a ShortString) type, you should
instead use the string type. Remember, an AnsiString is already a pointer to a string.

* You can no longer access the Oth element of a string to get or set the length. Instead, use
the Length () function to get the string length and the SetLength() procedure to set the
length.

* There’s no longer any need to use StrPas() and StrPCopy () to convert back and forth
between strings and PChar types. As shown earlier, you can typecast an AnsiString to a
PChar. When you want to copy the contents of a PChar to an AnsiString, you can use a
direct assignment:

StringVar := PCharVar;

CAUTION

Remember that you must use the SetLength() procedure to set the length of a long
string, whereas the past practice was to directly access the Oth element of a short
string to set the length. This issue will arise when you attempt to port 16-bit
Delphi 1.0 code to 32, bits.

57

N

IOVNONV
1vosvd
153raQ IHL

58

Development Essentials
PART |

The ShortString Type

If you’re a Delphi veteran, you’ll recognize the ShortString type as the Delphi 1.0 string
type. ShortString types are sometimes referred to as Pascal strings or length-byte strings. To
reiterate, remember that the value of the $H directive determines whether variables declared as
string are treated by the compiler as AnsiString or ShortString.

In memory, the string resembles an array of characters in which the Oth character in the string
contains the length of the string, and the string itself is contained in the following characters.
The storage size of a ShortString defaults to the maximum of 256 bytes. This means that you
can never have more than 255 characters in a ShortString (255 characters + 1 length byte =
256). As with AnsiString, working with ShortString is fairly painless because the compiler
allocates string temporaries as needed, so you don’t have to worry about allocating buffers for
intermediate results or disposing of them as you do with C.

Figure 2.2 illustrates how a Pascal string is laid out in memory.

#|p|p|g|

FIGURE 2.2

A shortString in memory.

A ShortString variable is declared and initialized with the following syntax:

var
S: ShortString;
begin
S := 'Bob the cat.';
end.

Optionally, you can allocate fewer than 256 bytes for a ShortString using just the string
type identifier and a length specifier, as in the following example:

var

S: string[45]; { a 45-character ShortString }
begin

S := 'This string must be 45 or fewer characters.';
end.

The preceding code causes a ShortString to be created regardless of the current setting of the
$H directive. The maximum length you can specify is 255 characters.

Never store more characters to a ShortString than you have allocated memory for. If you
declare a variable as a string[8], for example, and try to assign 'a_pretty_darn_
long_string' to that variable, the string would be truncated to only eight characters, and
you would lose data.

The Object Pascal Language
CHAPTER 2

When using an array subscript to address a particular character in a ShortString, you could
get bogus results or corrupt memory if you attempt to use a subscript index that’s greater than
the declared size of the ShortString. For example, suppose that you declare a variable as
follows:

var
Str: string[8];

If you then attempt to write to the 10th element of the string as follows, you’re likely to cor-
rupt memory used by other variables:

var
Str: string[8];
i: Integer;
begin
i:=10;
Str[i] := 's'; // will corrupt memory

You can have the compiler link in special logic to catch these types of errors at runtime by
selecting Range Checking in the Options, Project dialog box.

Tip

Although including range-checking logic in your program helps you find string errors,
range checking slightly hampers the performance of your application. It's common
practice to use range checking during the development and debugging phases of
your program, but you should remove range checking after you become confident in
the stability of your program.

Unlike AnsiString types, ShortString types aren’t inherently compatible with null-termi-
nated strings. Because of this, a bit of work is required to be able to pass a ShortString to
a Win32 API function. The following function, ShortStringAsPChar(), is taken from the
STRUTILS.PAS unit mentioned earlier:

func function ShortStringAsPChar(var S: ShortString): PChar;

{ Function null-terminates a string so it can be passed to functions }

{ that require PChar types. If string is longer than 254 chars, then it will }
{ be truncated to 254. }

begin
if Length(S) = High(S) then Dec(S[@]); { Truncate S if it's too long }
S[Ord(Length(S)) + 1] := #0; { Place null at end of string }
Result := @S[1]; { Return "PChar'd" string }

end;

59

N

IOVNONV
1vosvd
153raQ IHL

60

Development Essentials
PART |

CAUTION

The functions and procedures in the Win32 API require null-terminated strings. Do
not try to pass a ShortString type to an API function because your program will not
compile. Your life will be easier if you use long strings when working with the API.

The wideString Type

The wideString type is a lifetime-managed type similar to AnsiString; they’re both dynami-
cally allocated, garbage collected, and even assignment compatible with one another. However,
WwideString differs from AnsiString in three key respects:

* WideString types are comprised of WideChar characters rather than AnsiChar characters,
making them compatible with Unicode strings.

* WideString types are allocated using the SysAllocStrLen() API function, making them
compatible with OLE BSTR strings.

* WideString types aren’t reference counted, so assigning one WideString to another
requires the entire string to be copied from one location in memory to another. This
makes WideString types less efficient than AnsiString types in terms of speed and
memory use.

As mentioned earlier, the compiler automatically knows how to convert between variables of
AnsiString and WideString types, as shown here:

var
W: WideString;
S: string;
begin
W := 'Margaritaville';
S :=W; // Wide converted to Ansi
S := 'Come Monday';
W :=8; // Ansi converted to Wide
end;

In order to make working with WideString types feel natural, Object Pascal overloads the
Concat (), Copy(), Insert(), Length(), Pos(), and SetLength() routines and the +, =, and <>
operators for use with WideString types. Therefore, the following code is syntactically correct:

var
W1, W2: WideString;
P: Integer;

begin

W1 := 'Enfield';

The Object Pascal Language
CHAPTER 2

w2 := 'field';
if W1 <> W2 then
P := Pos(W1, W2);
end;

As with the AnsiString and ShortString types, you can use array brackets to reference indi-
vidual characters of a WideString:

var

W: WideString;

C: WideChar;
begin

W := 'Ebony and Ivory living in perfect harmony';

C := W[Length(W)]; // C holds the last character in W
end;

Null-Terminated Strings

Earlier, this chapter mentioned that Delphi has three different null-terminated string types:
PChar, PAnsiChar, and PWideChar. As their names imply, each of these represents a null-termi-
nated string of each of Delphi’s three character types. In this chapter, we refer to each of these
string types generically as PChar. The PChar type in Delphi exists mainly for compatibility
with Delphi 1.0 and the Win32 API, which makes extensive use of null-terminated strings. A
PChar is defined as a pointer to a string followed by a null (zero) value (if you’re unsure of
exactly what a pointer is, read on; pointers are discussed in more detail later in this section).
Unlike memory for AnsiString and WideString types, memory for PChar types isn’t automat-
ically allocated and managed by Object Pascal. Therefore, you’ll usually need to allocate
memory for the string to which it points, using one of Object Pascal’s memory-allocation func-
tions. The theoretical maximum length of a PChar string is just under 4GB. The layout of a
PChar variable in memory is shown in Figure 2.3.

Tip

Object Pascal’s AnsiString type can be used as a PChar in most situations, so you
should use this type rather than the PChar type wherever possible. Because memory
management for strings occurs automatically, you greatly reduce the chance of intro-
ducing memory-corruption bugs into your applications if, where possible, you avoid
PChar types and the manual memory allocation associated with them.

61

N

IOVNONV
1vosvd
153raQ IHL

62

Development Essentials
PART |

p|p|cls0]
PChar

FIGURE 2.3

A PChar in memory.

As mentioned earlier, PChar variables require you to manually allocate and free the memory
buffers that contain their strings. Normally, you allocate memory for a PChar buffer using the
StrAlloc () function, but several other functions can be used to allocate memory for PChar
types, including AllocMem(), GetMem(), StrNew(), and even the VirtualAlloc() API function.
Corresponding functions also exist for many of these functions, which must be used to deallo-
cate memory. Table 2.6 lists several allocation functions and their corresponding deallocation
functions.

TABLE 2.6 Memory Allocation and Deallocation Functions

Memory Allocated with. . . Must Be Freed with. . .
AllocMem() FreeMem()
GlobalAlloc() GlobalFree()
GetMem() FreeMem()

New () Dispose()
StrAlloc() StrDispose()
StriNew() StrDispose()
VirtualAlloc() VirtualFree()

The following example demonstrates memory allocation techniques when working with PChar
and string types:
var

P1, P2: PChar;
S1, S2: string;

begin
P1 := StrAlloc(64 * SizeOf(Char)); // P1 points to an allocation of 63 Chars
StrPCopy(P1, 'Delphi 6 '); // Copy literal string into P1
S1 := 'Developer''s Guide'; // Put some text in string S1
P2 := StrNew(PChar(S1)); // P1 points to a copy of Si
StrCat(P1, P2); // concatenate P1 and P2
S2 := P1; // 82 now holds 'Delphi 6 Developer's Guide'
StrDispose(P1); // clean up P1 and P2 buffers
StrDispose(P2);

end.

The Object Pascal Language
CHAPTER 2

Notice, first of all, the use of Size0Of (Char) with StrAlloc() when allocating memory for P1.
Remember that the size of a Char might change from one byte to two in future versions of
Delphi; therefore, you cannot assume the value of Char to always be one byte. SizeOf ()
ensures that the allocation will work properly no matter how many bytes a character occupies.

Strcat() is used to concatenate two PChar strings. Note here that you cannot use the + opera-
tor for concatenation as you can with long string and ShortString types.

The StrNew() function is used to copy the value contained by string S1 into P2 (a PChar). Be
careful when using this function. It’s common to have memory-overwrite errors when using
StrNew() because it allocates only enough memory to hold the string. Consider the following
example:

var

P1, P2: Pchar;

begin
P1 := StrNew('Hello '); // Allocate just enough memory for P1 and P2
P2 := StrNew('World');
StrCat(P1, P2); // BEWARE: Corrupts memory!

end;

Tip

As with other types of strings, Object Pascal provides a decent library of utility func-
tions and procedures for operating on PChar types. Search for “String-handling rou-
tines (null-terminated)” in the Delphi online help system.

You'll also find some useful null-terminated functions and procedures in the Strutils
unit in the \Source\Utils directory on the CD-ROM accompanying this book.

Variant Types

Delphi 2 introduced a powerful data type called the Variant. Variants were brought about
primarily in order to support OLE Automation, which uses the vVariant type heavily. In fact,
Delphi’s variant data type is an encapsulation of the variant used with OLE. Delphi’s imple-
mentation of variants has also proven to be useful in other areas of Delphi programming, as
you’ll soon learn. Object Pascal is the only compiled language that completely integrates vari-
ants as a dynamic data type at runtime and as a static type at compile time in that the compiler
always knows that it’s a variant.

63

N

IOVNONV
1vosvd
153raQ IHL

64

Development Essentials
PART |

Delphi 3 introduced a new type called 0levariant, which is identical to Variant except that it
can only hold Automation-compatible types. In this section, we initially focus on the Variant
type and then we discuss 0leVariant and contrast it with Variant.

Variants Change Types Dynamically

One of the main purposes of variants is to have a variable whose underlying data type cannot
be determined at compile time. This means that a variant can change the type to which it refers
at runtime. For example, the following code will compile and run properly:

var
V: Variant;
begin
V := 'Delphi is Great!'; // Variant holds a string
V = 1; // Variant now holds an Integer
V := 123.34; // Variant now holds a floating point
V := True; // Variant now holds a boolean
V := CreateOleObject('Word.Basic'); // Variant now holds an OLE object
end;

Variants can support all simple data types, such as integers, floating-point values, strings,
Booleans, date and time, currency, and also OLE Automation objects. Note that variants cannot
refer to Object Pascal objects. Also, variants can refer to a non-homogeneous array, which can
vary in size and whose data elements can refer to any of the preceding data types (including
another variant array).

The Variant Structure
The data structure defining the Variant type is defined in the System unit and is also shown in
the following code:

TVarType = Word;
PvarData = ~“TVarData;
{$EXTERNALSYM PVarbData}
TvarData = packed record
VType: TVarType;
case Integer of
0: (Reservedi: Word;
case Integer of
0: (Reserved2, Reserved3: Word;
case Integer of
varSmallInt: (VSmalllInt: Smalllnt);
varInteger: (VInteger: Integer);
varSingle: (vSingle: Single);
varDouble: (VDouble: Double);
varcCurrency: (VCurrency: Currency);
varDate: (VDate: TDateTime);

The Object Pascal Language

1:

);

);

var0leStr:
varDispatch:
varError:
varBoolean:
varunknown:
varShortInt:
varByte:
varWord:
varLongWord:
varIint6é4:
varString:
varAny:
varArray:
varByRef:

CHAPTER 2

(VOleStr: PWideChar);
(VDispatch: Pointer);
(VError: LongWord);
(VBoolean: WordBool);
(VUnknown: Pointer);
(VShortInt: ShortInt);
(VByte: Byte);

(VWord: Word);
(VLongWord: LongWord);
(VInt64: Int64);
(VString: Pointer);
(VAny: Pointer);
(VArray: PVarArray);

P

(VPointer: Pointer);

(VLongs: array[0..2] of LongInt);

2: (VWords: array [0..6] of Word);
3: (VBytes: array [0..13] of Byte);

end;

varempty
varNull
varSmallint
varInteger
varSingle
varDouble
varcurrency
varDate
varOleStr
varDispatch
varkError
varBoolean

The TvarData structure consumes 16 bytes of memory. The first two bytes of the TvarData
structure contain a word value that represents the data type to which the variant refers. The fol-
lowing code shows the various values that might appear in the VType field of the TvarData
record. The next six bytes are unused. The remaining eight bytes contain the actual data or a
pointer to the data represented by the variant. Again, this structure maps directly to ‘COM’s
implementation of the variant type. Here’s the code:

{ Variant type codes (wtypes.h) }

65

varVariant
varuUnknown
//varDecimal

$0000; { vt_empty }

$0001; { vt_null }

$0002; { vt _i2 }

$0003; { vt_i4 }

$0004; { vt_r4 }

$0005; { vt_r8 }

$0006; { vt_cy }

$0007; { vt_date }

$0008; { vt_bstr }

$0009; { vt _dispatch }

$000A; { vt_error }

$000B; { vt_bool }

$000C; { vt variant }

$000D; { vt_unknown }

$000E; { vt _decimal } {UNSUPPORTED}
{ undefined $0f } {UNSUPPORTED}

N

IOVNONV
1vosvd
153raQ IHL

66

Development Essentials

ParT |
varShortInt = $0010; { vt_ it }
varByte = $0011; { vt_uid }
varWord = $0012; { vt_ui2 }
varLongWord = $0013; { vt_ui4 }
varInt64 = $0014; { vt_i8 }
//varWord6é4 = $0015; { vt ui8 } {UNSUPPORTED}

{ if adding new items, update Variants' varLast, BaseTypeMap and OpTypeMap }
varStrArg = $0048; { vt_clsid }

varString = $0100; { Pascal string; not OLE compatible }
varAny = $0101; { Corba any }
varTypeMask = $0OFFF;
varArray = $2000;
varByRef = $4000;
NorTE

As you might notice from the type codes in the preceding listing, a Variant cannot
contain a reference to a Pointer or class type.

You’ll notice from the TvarData listing that the TvarData record is actually a variant record.
Don’t confuse this with the variant type. Although the variant record and variant type have
similar names, they represent two totally different constructs. Variant records allow for multiple
data fields to overlap in the same area of memory (like a C/C++ union). This is discussed in
more detail in the “Records” section later in this chapter. The case statement in the TVarData
variant record indicates the type of data to which the variant refers. For example, if the VType
field contains the value varInteger, only four bytes of the eight data bytes in the variant por-
tion of the record are used to hold an integer value. Likewise, if VType has the value varByte,
only one byte of the eight is used to hold a byte value.

You’ll notice that if VType contains the value varString, the eight data bytes don’t actually
hold the string; instead, they hold a pointer to this string. This is an important point because
you can access fields of a variant directly, as shown here:

var
V: Variant;

begin
TVarData(V).VType := varlnteger;
TvarData(V).VInteger := 2;

end;

You must understand that in some cases this is a dangerous practice because it’s possible
to lose the reference to a string or other lifetime-managed entity, which will result in your

The Object Pascal Language

CHAPTER 2

application leaking memory or other resources. You’ll see what we mean by the term garbage
collected in the following section.

Variants Are Lifetime Managed
Delphi automatically handles the allocation and deallocation of memory required of a Variant
type. For example, examine the following code, which assigns a string to a Variant variable:

procedure ShowVariant(S: string);

var
V: Variant
begin
V = S;
ShowMessage (V) ;
end;

As discussed earlier in this chapter in the sidebar “Lifetime-Managed Types,” several things
are going on here that might not be apparent. Delphi first initializes the variant to an unas-
signed value. During the assignment, it sets its VType field to varString and copies the string
pointer into its VString field. It then increases the reference count of string S. When the vari-
ant leaves scope (that is, the procedure ends and returns to the code that called it), it’s cleared
and the reference count of string S is decremented. Delphi does this by implicitly inserting a
try..finally block in the procedure, as shown. here:

procedure ShowVariant(S: string);
var
V: Variant
begin
V := Unassigned; // initialize variant to "empty"
try
V :=S;
ShowMessage (V) ;
finally
// Now clean up the resources associated with the variant
end;
end;

This same implicit release of resources occurs when you assign a different data type to the
variant. For example, examine the following code:

procedure ChangeVariant(S: string);

var
V: Variant
begin
V :=S;
V = 34;

end;

67

N

IOVNONV
1vosvd
153raQ IHL

Development Essentials
PART |

This code boils down to the following pseudo-code:

procedure ChangeVariant(S: string);

var
V: Variant
begin
Clear Variant V, ensuring it is initialized to "empty"
try
V.VType := varString; V.VString := S; Inc(S.RefCount);
Clear Variant V, thereby releasing reference to string;
V.VType := varlnteger,; V.VInteger := 34;
finally
Clean up the resources associated with the variant
end;
end;

If you understand what happens in the preceding examples, you’ll see why it’s not recom-
mended that you manipulate fields of the TvarData record directly, as shown here:

procedure ChangeVariant(S: string);

var
V: Variant
begin
V :=S;

TVarData(V).VType := varlnteger;

TvarData(V).VInteger := 32;

V := 34;
end;
Although this might appear to be safe, it’s not because it results in the failure to decrement the
reference count of string S, probably resulting in a memory leak. As a general rule, don’t access
the TvarData fields directly, or if you do, be absolutely sure that you know exactly what you’re
doing.

Typecasting Variants
You can explicitly typecast expressions to type Variant. For example, the expression
Variant (X)

results in a Variant type whose type code corresponds to the result of the expression X, which
must be an integer, real, currency, string, character, or Boolean type.

You can also typecast a variant to that of a simple data type. For example, given the assignment

V :=1.6;

The Object Pascal Language

CHAPTER 2

where V is a variable of type Variant, the following expressions will have the results shown:

S := string(V); // S will contain the string '1.6';

// I is rounded to the nearest Integer value, in this case: 2.

I := Integer(V);

B := Boolean(V); // B contains False if V contains @, otherwise B is True
D := Double(V); // D contains the value 1.6

These results are dictated by certain type-conversion rules applicable to Variant types. These
rules are defined in detail in Delphi’s Object Pascal Language Guide.

By the way, in the preceding example, it’s not necessary to typecast the variant to another data
type to make the assignment. The following code would work just as well:

V 1= 1.6;
3
H

J

I
< < < < =

S
I:
B :=
D ;

What happens here is that the conversions to the target data types are made through an implicit
typecast. However, because these conversions are made at runtime, there’s much more code
logic attached to this method. If you’re sure of the type a variant contains, you’re better off
explicitly typecasting it to that type in order to speed up the operation. This is especially true if
the variant is being used in an expression, which we’ll discuss. next.

Variants in Expressions
You can use variants in expressions with the following operators: +, =, *, /, div, mod, shl, shr,
and, or, xor, not, :=, <>, <, >, <= and >=.

When using variants in expressions, Delphi knows how to perform the operations based on the
contents of the variant. For example, if two variants, V1 and V2, contain integers, the expression
V1 + V2 results in the addition of the two integers. However, if V1 and V2 contain strings, the
result is a concatenation of the two strings. What happens if V1 and v2 contain two different
data types? Delphi uses certain promotion rules in order to perform the operation. For exam-
ple, if V1 contains the string '4.5" and V2 contains a floating-point number, V1 will be con-
verted to a floating point and then added to v2. The following code illustrates this:

var
V1, V2, V3: Variant;

begin
Vi := '"100'; // A string type
V2 := '50'; /] A string type
V3 := 200; // An Integer type

V1 := V1 + V2 + V3;
end;

69

N

IOVNONV
1vosvd
153raQ IHL

70

Development Essentials
PART |

Based on what we just mentioned about promotion rules, it would seem at first glance that the
preceding code would result in the value 350 as an integer. However, if you take a closer look,
you’ll see that this is not the case. Because the order of precedence is from left to right, the
first equation executed. is V1 + V2. Because these two variants refer to strings, a string con-
catenation is performed, resulting in the string ' 10050 '. That result is then added to the integer
value held by the variant V3. Because V3 is an integer, the result ' 10050 is converted to an
integer and added to V3, thus providing an end result of 10250.

Delphi promotes the variants to the highest type in the equation in order to successfully carry
out the calculation. However, when an operation is attempted on two variants of which Delphi
cannot make any sense, an invalid variant type conversion exception is raised. The following
code illustrates this:

var

V1, V2: Variant;
begin

V1 1= 77,

V2 := 'hello';

Al V1 / V2; // Raises an exception.
end;

As stated earlier, it’s sometimes a good idea to explicitly typecast a variant to a specific data
type if you know what that type is and if it’s used in an expression. Consider the following line
of code:

V4 = V1 * V2 / V3;

Before a result can be generated for this equation, each operation is handled by a runtime func-
tion that goes through several gyrations to determine the compatibility of the types the variants
represent. Then the conversions are made to the appropriate data types. This results in a large
amount of overhead and code size. A better solution is obviously not to use variants. However,
when necessary, you can also explicitly typecast the variants so the data types are resolved at
compile time:

V4 := Integer(V1) * Double(V2) / Integer(V3);

Keep in mind that this assumes you know the data types the variants represent.

Empty and Null

Two special VType values for variants merit a brief discussion. The first is varEmpty, which
means that the variant has not yet been assigned a value. This is the initial value of the variant
set by the compiler as it comes into scope. The other is varNull, which is different from
varEmpty in that it actually represents the value Null as opposed to a lack of value. This dis-
tinction between no value and a Null value is especially important when applied to the field

The Object Pascal Language
CHAPTER 2

values of a database table. In Part IIT of this book, “Database Development,” you’ll learn how
variants are used in the context of database applications.

Another difference is that attempting to perform any equation with a variant containing a
varEmpty VType value will result in an invalid variant operation exception. The same isn’t true
of variants containing a varNull value, however. When a variant involved in an equation con-
tains a Null value, that value will propagate to the result. Therefore, the result of any equation
containing a Null is always Null.

If you want to assign or compare a variant to one of these two special values, the System unit
defines two variants, Unassigned and Null, which have the VType values of varEmpty and
varNull, respectively.

CAUTION

It might be tempting to use variants instead of the conventional data types because
they seem to offer so much flexibility. However, this will increase the size of your
code and cause your applications to run more slowly. Additionally, it will make your
code more difficult to maintain. Variants are useful in many situations. In fact, the
VCL, itself, uses variants in several places, most notably in the ActiveX and database
areas, because of the data type flexibility they offer. Generally speaking, however,
you should use the conventional data types instead of variants. Only in situations
where the flexibility of the variant outweighs the performance of the conventional
method should you resort to using variants. Ambiguous data types beget ambiguous
bugs.

Variant Arrays
Earlier we mentioned that a variant can refer to a nonhomogeneous array. Therefore, the fol-
lowing syntax is valid:

var

V: Variant;

I, J: Integer;
begin

I :=V[J];
end;

Bear in mind that, although the preceding code will compile, you’ll get an exception at runtime
because V does not yet contain a variant array. Object Pascal provides several variant array sup-
port functions that allow you to create a variant array. Two of these functions are
VarArrayCreate () and VarArrayOf().

71

N

IOVNONV
1vosvd
153raQ IHL

72

Development Essentials
PART |

VarArrayCreate()
VarArrayCreate () is defined in the Variants unit as

function VarArrayCreate(const Bounds: array of Integer;
VarType: Integer): Variant;

To use VarArrayCreate(), you pass in the array bounds for the array you want to create and a
variant type code for the type of the array elements (the first parameter is an open array, which
is discussed in the “Passing Parameters” section later in this chapter). For example, the follow-
ing code returns a variant array of integers and assigns values to the array items:

var
V: Variant;

begin
V := VarArrayCreate([1, 4], varInteger); // Create a 4-element array
V[1] = 1;
V[2] := 2;
V[3] := 3;
V(4] := 4

end;

)

If variant arrays of a single type aren’t confusing enough, you can pass varvariant as the type
code in order to create a variant array of variants! This way, each element in the array has the
ability to contain a different type of data. You can also create a multidimensional array by pass-
ing in the additional bounds required. For example, the following code creates an array with
the bounds [1..4, 1..5]:

V := VarArrayCreate([1, 4, 1, 5], varInteger);

NoOTE

The Variants unit was added to the RTL in Delphi 6 because the support for variants
was migrated out of the System unit. Among other things, this physical separation of
the variant support code helped to smooth compatibility with Borland Kylix and pro-
vided the ability to extend variants to support developer-specified data types.

VarArrayO0f ()
The varArrayof () function is defined in the Variants unit as

function VarArrayOf (const Values: array of Variant): Variant;

This function returns a one-dimensional array whose elements are given in the Values parame-
ter. The following example creates a variant array of three elements with an integer, a string,
and a floating-point value:

V := VarArrayOf([1, 'Delphi', 2.2]);

The Object Pascal Language

CHAPTER 2

Variant Array Support Functions and Procedures

In addition to VarArrayCreate () and VarArrayOf (), there are several other variant array sup-
port functions and procedures. These functions are defined in the Variants System unit and
are also shown here:

procedure VarArrayRedim(var A: Variant; HighBound: Integer);

function VarArrayDimCount(const A: Variant): Integer;

function VarArrayLowBound(const A: Variant; Dim: Integer): Integer;

function VarArrayHighBound(const A: Variant; Dim: Integer): Integer;

function VarArrayLock(const A: Variant): Pointer;

procedure VarArrayUnlock(const A: Variant);

function VarArrayRef(const A: Variant): Variant;

function VarIsArray(const A: Variant): Boolean;

The varArrayRedim() function allows you to resize the upper bound of the rightmost dimen-
sion of a variant array. The vVarArrayDimCount () function returns the number of dimensions in
a variant array. VarArrayLowBound () and VarArrayHighBound () return the lower and upper
bounds of an array, respectively. VarArrayLock () and VarArrayUnlock () are two special func-
tions, which are described in further detail in the next section.

VarArrayRef () is intended to work around a problem that exists in passing variant arrays to
OLE Automation servers. The problem occurs when you pass a variant containing a variant
array to an automation method, like this:

Server.PassVariantArray(VA);

The array is passed not as a variant array but rather as a variant containing a variant array—an
important distinction. If the server expected a variant array rather than a reference to one, the
server will likely encounter an error condition when you call the method with the preceding
syntax. VarArrayRef () takes care of this situation by massaging the variant into the type and
value expected by the server. Here’s the syntax for using VarArrayRef ():

Server.PassVariantArray(VarArrayRef (VA));

VarIsArray () is a simple Boolean check, which returns True if the variant parameter passed
to it is a variant array or False otherwise.

Initializing a Large Array: varArrayLock() and varArrayUnlock()

Variant arrays are important in OLE Automation because they provide the only means for pass-
ing raw binary data to an OLE Automation server (note that pointers aren’t a legal type in OLE
Automation, as you’ll learn in Chapter 15, “COM Development”). However, if used incor-
rectly, variant arrays can be a rather inefficient means of exchanging data. Consider the follow-
ing line of code:

V := VarArrayCreate([1, 10000], VarByte);

73

N

IOVNONV
1vosvd
153raQ IHL

74

Development Essentials
PART |

This line creates a variant array of 10,000 bytes. Suppose that you have another array (nonvari-
ant) declared of the same size and you want to copy the contents of this nonvariant array to the
variant array. Normally, you can only do this by looping through the elements and assigning
them to the elements of the variant array, as shown here:
begin

V := VarArrayCreate([1, 10000], VarByte);

for i := 1 to 10000 do

VIi] := A[i];

end;

The problem with this code is that it’s bogged down by the significant overhead required just
to initialize the variant array elements. This is because the assignments to the array elements
must go through the runtime logic to determine type compatibility, the location of each ele-
ment, and so forth. To avoid these runtime checks, you can use the vVarArrayLock () function
and the vVarArrayUnlock () procedure.

varArrayLock () locks the array in memory so that it cannot be moved or resized while it’s
locked, and it returns a pointer to the array data. VarArrayUnlock() unlocks an array locked
with varArrayLock () and once again allows the variant array to be resized and moved in
memory. After the array is locked, you can employ a more efficient means to initialize the data
by using, for example, the Move () procedure with the pointer to the array’s data. The following
code performs the initialization of the variant array shown earlier, but in a much more efficient
manner:
begin

V := VarArrayCreate([1, 10000], VarByte);

P := VarArrayLock(V);

try
Move (A, P*, 10000);
finally
VarArrayUnlock (V) ;
end;
end;

Supporting Functions
There are several other common support functions for variants that you can use. These func-
tions are declared in the vVariants System unit and are also listed here:

procedure VarClear(var V: Variant);

procedure VarCopy(var Dest: Variant; const Source: Variant);

procedure VarCast(var Dest: Variant; const Source: Variant; VarType: Integer);
function VarType(const V: Variant): Integer;

function VarAsType(const V: Variant; VarType: Integer): Variant;

function VarIsEmpty(const V: Variant): Boolean;

The Object Pascal Language

CHAPTER 2

function VarIsNull(const V: Variant): Boolean;

function VarToStr(const V: Variant): string;

function VarFromDateTime (DateTime: TDateTime): Variant;
function VarToDateTime(const V: Variant): TDateTime;

The varClear () procedure clears a variant and sets the VType field to varEmpty. VarCopy ()
copies the Source variant to the Dest variant. The VarCast () procedure converts a variant to a
specified type and stores that result into another variant. VarType () returns one of the varxxx
type codes for a specified variant. VarAsType () has the same functionality as VarCast().
VarIsEmpty () returns True if the type code on a specified variant is varEmpty. VarIsNull()
indicates whether a variant contains a Null value. VarToStr () converts a variant to its string
representation (an empty string in the case of a Null or empty variant). VarFromDateTime ()
returns a variant that contains a given TDateTime value. Finally, varToDateTime () returns the
TDateTime value contained in a variant.

Olevariant

The 0levariant type is nearly identical to the variant type described throughout this section
of this chapter. The only difference between 0levariant and Variant is that Olevariant

only supports Automation-compatible types. Currently, the only VType supported that’s not
Automation-compatible is varString, the code for AnsiString. When an attempt is made to
assign an AnsiString to an OleVariant, the AnsiString will be automatically converted to an
OLE BSTR and stored in the variant as a var0leStr.

Currency

Delphi 2.0 introduced a new type called Currency, which is ideal for financial calculations.
Unlike floating-point numbers, which allow the decimal point to “float” within a number,
Currency is a fixed-point decimal type that’s hard-coded to a precision of 15 digits before the
decimal and four digits after the decimal. As such, it’s not susceptible to round-off errors as are
floating-point types. When porting your Delphi 1.0 projects, it’s a good idea to use this type in
place of Single, Real, Double, and Extended where money is involved.

User-Defined Types

Integers, strings, and floating-point numbers often are not enough to adequately represent vari-
ables in the real-world problems that programmers must try to solve. In cases like these, you
must create your own types to better represent variables in the current problem. In Pascal,
these user-defined types usually come in the form of records or objects; you declare these
types using the Type keyword.

75

N

IOVNONV
1vosvd
153raQ IHL

76

Development Essentials
PART |

Arrays

Object Pascal enables you to create arrays of any type of variable (except files). For example, a
variable declared as an array of eight integers reads like this:

var
A: Array[0..7] of Integer;

This statement is equivalent to the following C declaration:

int A[8];

It’s also equivalent to this Visual Basic statement:

Dim A(8) as Integer

Object Pascal arrays have a special property that differentiates them from other languages:

They don’t have to begin at a certain number. You can therefore declare a three-element array
that starts at 28, as in the following example:

var
A: Array[28..30] of Integer;

Because Object Pascal arrays aren’t guaranteed to begin at O or 1, you must use some care
when iterating over array elements in a for loop. The compiler provides built-in functions
called High() and Low(), which return the lower and upper bounds of an array variable or
type, respectively. Your code will be less error prone and easier to maintain if you use these
functions to control your for loop, as shown here:

var
A: array[28..30] of Integer;
i: Integer;
begin
for i := Low(A) to High(A) do // don't hard-code for loop!
Ali] := 1i;
end;
Tip

Always begin character arrays at 0. Zero-based character arrays can be passed to func-
tions that require PChar-type variables. This is a special-case allowance that the com-
piler provides.

To specify multiple dimensions, use a comma-delimited list of bounds:

var
// Two-dimensional array of Integer:
A: array[1..2, 1..2] of Integer;

The Object Pascal Language
CHAPTER 2

To access a multidimensional array, use commas to separate each dimension within one set of
brackets:

I := A[1, 2];

Dynamic Arrays

Dynamic arrays are dynamically allocated arrays in which the dimensions aren’t known at
compile time. To declare a dynamic array, just declare an array without including the dimen-
sions, like this:

var

// dynamic array of string:
SA: array of string;

Before you can use a dynamic array, you must use the SetLength () procedure to allocate
memory for the array:
begin

// allocate room for 33 elements:

SetLength(SA, 33);

Once memory has been allocated, you can access the elements of the dynamic array just like a
normal array:

SA[Q] := 'Pooh likes hunny';
OtherString := SA[Q];

NoTE

Dynamic arrays are always zero-based.

Dynamic arrays are lifetime managed, so there’s no need to free them when you’re through
using them because they’ll be released when they leave scope. However, there might come a
time when you want remove the dynamic array from memory before it leaves scope (if it uses
a lot of memory, for example) To do this, you need only assign the dynamic array to nil:

SA := nil; // releases SA

Dynamic arrays are manipulated using reference semantics similar to AnsiString types rather
than value semantics like a normal array. A quick test: What is the value of A1[@] at the end of
the following code fragment?

var
A1, A2: array of Integer;

77

N

IOVNONV
1vosvd
153raQ IHL

78

Development Essentials

PART |
begin
SetLength (A1, 4);
A2 = Al;
A1[0] := 1;
A2[0] := 26;
The correct answer is 26. The reason is because the assignment A2 := A1 doesn’t create a new

array but instead provides A2 with a reference to the same array as A1. Therefore, any modifica-
tions to A2 will also affect A1. If you want instead to make a complete copy of A1 in A2, use the
Copy () standard procedure:

A2 := Copy(Al);

After this line of code is executed, A2 and A1 will be two separate arrays initially containing
the same data. Changes to one will not affect the other. You can optionally specify the starting
element and number of elements to be copied as parameters to Copy (), as shown here:

// copy 2 elements, starting at element one:
A2 := Copy(Al1, 1, 2);

Dynamic arrays can also be multidimensional. To specify multiple dimensions, add an addi-
tional array of to the declaration for each dimension:

var
// two-dimensional dynamic array of Integer:
IA: array of array of Integer;

To allocate memory for a multidimensional dynamic array, pass the sizes of the other dimen-
sions as additional parameters to SetLength():
begin

// IA will be a 5 x 5 array of Integer

SetLength(IA, 5, 5);

You access multidimensional dynamic arrays the same way you do normal multidimensional
arrays; each element is separated by a comma with a single set of brackets:

IA[0,3] := 28;

Records

A user-defined structure is referred to as a record in Object Pascal, and it’s the equivalent of
C’s struct or Visual Basic’s Type. As an example, here’s a record definition in Pascal as well
as equivalent definitions in C and Visual Basic:

{ Pascal }
Type
MyRec = record
i: Integer;

The Object Pascal Language
CHAPTER 2

d: Double;
end;

/* C */

typedef struct {
int i;
double d;

} MyRec;

'Visual Basic
Type MyRec
i As Integer
d As Double
End Type

When working with a record, you use the dot symbol to access its fields. Here’s an example:

var
N: MyRec;
begin
N.i := 23;
N.d := 3.4;
end;

Object Pascal also supports variant records, which allow different pieces of data to overlay the
same portion of memory in the record. Not to be confused with the variant data type, variant
records allow each overlapping data field to be accessed independently. If your background is
C, you’ll recognize variant records as being the same concept as a union within C struct. The
following code shows a variant record in which a Double, Integer, and char all occupy the
same memory space:

type
TVariantRecord = record
NullStrField: PChar;
IntField: Integer;
case Integer of
0: (D: Double);
1: (I: Integer);
2: (C: char);
end;

NoTEe

The rules of Object Pascal state that the variant portion of a record cannot be of any
lifetime-managed type.

79

N

IOVNONV
1vosvd
153raQ IHL

80

Development Essentials
PART |

Here’s the C equivalent of the preceding type declaration:

struct TUnionStruct

{
char * StrField;
int IntField;
union u

{
double D;
int 1i;
char c;
}s
}s

Sets

Sets are a uniquely Pascal type that have no equivalent in Visual Basic, C, or C++ (although
Borland C++Builder does implement a template class called Set, which emulates the behavior
of a Pascal set). Sets provide a very efficient means of representing a collection of ordinal,
character, or enumerated values. You can declare a new set type using the keywords set of
followed by an ordinal type or subrange of possible set values. Here’s an example:

type
TCharSet = set of char; // possible members: #0 - #255

TEnum = (Monday, Tuesday, Wednesday, Thursday, Friday);
TEnumSet = set of TEnum; // can contain any combination of TEnum members

TSubrangeSet = set of 1..10; // possible members: 1 - 10
TAlphaSet = set of 'A'..'z'; // possible members: 'A' - 'z’

Note that a set can only contain up to 256 elements. Additionally, only ordinal types can follow
the set of keywords. Therefore, the following declarations are illegal:
type

TIntSet = set of Integer; // Invalid: too many elements
TStrSet = set of string; // Invalid: not an ordinal type

Sets store their elements internally as individual bits, which makes them very efficient in terms
of speed and memory usage. Sets with fewer than 32 elements in the base type can be stored
and operated upon in CPU registers, for even greater efficiency. Sets with 32 or more elements
(such as a set of char—255 elements) are stored in memory. To get the maximum performance
benefit from sets, keep the number of elements in the set’s base type under 32.

Using Sets
Use square brackets when referencing set elements. The following code demonstrates how to
declare set type variables and assign them values:

The Object Pascal Language

CHAPTER 2

type
TCharSet = set of char; /] possible members: #0 - #255

TEnum = (Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday);
TEnumSet = set of TEnum; // can contain any combination of TEnum members

var
CharSet: TCharSet;
EnumSet: TEnumSet;
SubrangeSet: set of 1..10; // possible members: 1 - 10

AlphaSet: set of 'A'..'z'; // possible members: 'A' - 'z’
begin

CharSet := ['A'.."'d', 'a'y, 'm'];

EnumSet := [Saturday, Sunday];

SubrangeSet := [1, 2, 4..6];

AlphaSet := []; // Empty; no elements
end;

Set Operators
Object Pascal provides several operators for use in manipulating sets. You can use these opera-
tors to determine set membership, union, difference, and intersection.

Membership

Use the in operator to determine whether a given element is contained in a particular set. For
example, the following code would be used to determine whether the CharSet set mentioned
earlier contains the letter 'S":

if 'S' in CharSet then
// do something;

The following code determines whether EnumSet lacks the member Monday:

if not (Monday in EnumSet) then
// do something;

Union and Difference
Use the + and - operators or the Include() and Exclude() procedures to add and remove ele-
ments to and from a set variable:

Include(CharSet, 'a'); // add 'a' to set
CharSet := CharSet + ['b']; // add 'b' to set
Exclude(CharSet, 'x'); // remove 'z' from set

CharSet := CharSet - ['y', 'z']l; // remove 'y' and 'z' from set

81

N

IOVNONV
1vosvd
153raQ IHL

82

Development Essentials
PART |

Tip

When possible, use Include() and Exclude() to add and remove a single element to
and from a set rather than the + and - operators. Both Include() and Exclude() con-
stitute only one machine instruction each, whereas the + and - operators require 13 +
6n (where n is the size in bits of the set) instructions.

Intersection
Use the * operator to calculate the intersection of two sets. The result of the expression Set1 *
Set2 is a set containing all the members that Set1 and Set2 have in common. For example, the
following code could be used as an efficient means for determining whether a given set con-
tains multiple elements:
if ['a', 'b', 'c'] * CharSet = ['a', 'b', 'c'] then

// do something

Objects

Think of objects as records that also contain functions and procedures. Delphi’s object model
is discussed in much greater detail later in the “Using Delphi Objects” section of this chapter,
so this section covers just the basic syntax of Object Pascal objects. An object is defined as
follows:
Type
TChildObject = class(TParentObject);
SomeVar: Integer;

procedure SomeProc;
end;

Although Delphi objects aren’t identical to C++ objects, this declaration is roughly equivalent
to the following C++ declaration:

class TChildObject : public TParentObject
{

int SomeVar;
void SomeProc();

};

Methods are defined in the same way as normal procedures and functions (which are discussed
in the section “Procedures and Functions™), with the addition of the object name and the dot
symbol operator:

procedure TChildObject.SomeProc;
begin

{ procedure code goes here }
end;

The Object Pascal Language
CHAPTER 2

Object Pascal’s . symbol is similar in functionality to Visual Basic’s . operator and C++’s ::
operator. You should note that, although all three languages allow usage of classes, only Object
Pascal and C++ allow the creation of new classes that behave in a fully object-oriented man-
ner, which we’ll describe in the section “Object-Oriented Programming.”

NoTE

Object Pascal objects aren’t laid out in memory the same as C++ objects, so it's not
possible to use C++ objects directly from Delphi (and vice versa). If you are interested
in learning more about how this is done, you might want to browse Chapter 13,
"Hard-core Techniques,” in the electronic version of Delphi 5 Developer’s Guide on
the CD accompanying this book. That chapter shows a technique for sharing objects
between C++ and Delphi.

An exception to this is Borland C++Builder’s capability of creating classes that map
directly to Object Pascal classes using the proprietary _ declspec(delphiclass) direc-
tive. Such objects are likewise incompatible with regular C++ objects.

Pointers

A pointer is a variable that contains a memory location. You already saw an example of a
pointer in the PChar type earlier in this chapter. Pascal’s generic pointer type is called, aptly,
Pointer. A Pointer is sometimes called an untyped pointer because it contains only a memory
address, and the compiler doesn’t maintain any information on the data to which it points. That
notion, however, goes against the grain of Pascal’s typesafe nature, so pointers in your code
will usually be typed pointers.

NoOTE

Pointers are a somewhat advanced topic, and you definitely don’t need to master
them to write a Delphi application. As you become more experienced, pointers will
become another valuable tool for your programmer’s toolbox.

Typed pointers are declared by using the ~ (or pointer) operator in the Type section of your
program. Typed pointers help the compiler keep track of exactly what kind of type a particular
pointer points to, thus enabling the compiler to keep track of what you’re doing (and can do)
with a pointer variable. Here are some typical declarations for pointers:

Type
PInt = ~Integer; // PInt is now a pointer to an Integer

83

N

IOVNONV
1vosvd
153raQ IHL

Development Essentials

84
PART I
Foo = record /] A record type
GobbledyGook: string;
Snarf: Real;
end;
PFoo = "“Foo; // PFoo is a pointer to a foo type
var
P: Pointer; // Untyped pointer
P2: PFoo0; // Instance of PFoo
NoTe

C programmers will notice the similarity between Object Pascal’s ~ operator and C's *
operator. Pascal’s Pointer type corresponds to C's void * type.

Remember that a pointer variable only stores a memory address. Allocating space for whatever
the pointer points to is your job as a programmer. You can allocate space for a pointer by using
one of the memory-allocation routines discussed earlier and shown in Table 2.6.

NoOTE

When a pointer doesn’t point to anything (its value is zero), its value is said to be nil,
and it is often called a nil or null pointer.

If you want to access the data that a particular pointer points to, follow the pointer variable
name with the ~ operator. This method is known as dereferencing the pointer. The following
code illustrates working with pointers:

Program PtrTest;

Type
MyRec = record
I: Integer;
S: string;
R: Real;
end;

PMyRec = “MyRec;

var
Rec : PMyRec;
begin
New(Rec) ; // allocate memory for Rec
Rec~.I := 10; // Put stuff in Rec. Note the dereference
Rec”.S := 'And now for something completely different.';

The Object Pascal Language
CHAPTER 2

Rec”.R := 6.384;

{ Rec is now full }

Dispose(Rec); // Don't forget to free memory!
end.

When to Use New()

Use the New() function to allocate memory for a pointer to a structure of a known
size. Because the compiler knows how big a particular structure is, a call to New() will
cause the correct number of bytes to be allocated, thus making it safer and more con-
venient to use than GetMem() or AllocMem(). Never allocate Pointer or PChar vari-
ables by using the New() function because the compiler cannot guess how many bytes
you need for this allocation. Remember to use Dispose () to free any memory you
allocate using the New() function.

You'll typically use GetMem() or AllocMem() to allocate memory for structures for
which the compiler cannot know the size. The compiler cannot tell ahead of time
how much memory you want to allocate for PChar or Pointer types, for example,
because of their variable-length nature. Be careful not to try to manipulate more
data than you have allocated with these functions, however, because this is one of
the classic causes of an Access Violation error. You should use FreeMem() to clean up
any memory you allocate with GetMem() or AllocMem(). AllocMem(), by the way, is a
bit safer than GetMem() because AllocMem() always initializes the memory it allocates
to zero.

One aspect of Object Pascal that might give C programmers some headaches is the strict type
checking performed on pointer types. For example, the variables a and b in the following
example aren’t type compatible:

var
a: “Integer;
b: “Integer;

By contrast, the variables a and b in the equivalent declaration in C are type compatible:

int *a;

int *b

Object Pascal creates a unique type for each pointer-to-type declaration, so you must create a

named type if you want to assign values from a to b, as shown here:

type
PtrInteger = “Integer; // create named type

var
a, b: PtrInteger; // now a and b are compatible

85

N

IOVNONV
1vosvd
153raQ IHL

86

Development Essentials
PART |

Type Aliases

Object Pascal has the capability to create new names, or aliases, for types that are already
defined. For example, if you want to create a new name for an Integer called
MyReallyNiftyInteger, you could do so using the following code:
type

MyReallyNiftyInteger = Integer;
The newly defined type alias is compatible in all ways with the type for which it’s an alias,
meaning, in this case, that you could use MyReallyNiftyInteger anywhere in which you could
use Integer.

It’s possible, however, to define strongly typed aliases that are considered new, unique types by
the compiler. To do this, use the type reserved word in the following manner:
type
MyOtherNeatInteger = type Integer;
Using this syntax, the MyOtherNeatInteger type will be converted to an Integer when neces-

sary for purposes of assignment, but MyOtherNeatInteger will not be compatible with Integer
when used in var and out parameters. Therefore, the following code is syntactically correct:

var
MONI: MyOtherNeatInteger;
I: Integer;

begin
I := 1;
MONI := I;

On the other hand, the following code will not compile:

procedure Goon(var Value: Integer);
begin

// some code
end;

var
M: MyOtherNeatInteger;

begin
M = 29;
Goon(M); // Error: M is not var compatible with Integer

In addition to these compiler-enforced type compatibility issues, the compiler also generates
runtime type information for strongly typed aliases. This enables you to create unique property
editors for simple types, as you’ll learn in Chapter 12, “Advanced VCL Component Building.”

The Object Pascal Language
CHAPTER 2

Typecasting and Type Conversion

Typecasting is a technique by which you can force the compiler to view a variable of one type
as another type. Because of Pascal’s strongly typed nature, you’ll find that the compiler is very
picky about types matching up in the formal and actual parameters of a function call. Hence,
you occasionally will be required to cast a variable of one type to a variable of another type to
make the compiler happy. Suppose, for example, that you need to assign the value of a charac-
ter to a byte variable:

var
c: char;
b: byte;
begin
c = 's';
b := c; // compiler complains on this line
end.

In the following syntax, a typecast is required to convert c into a byte. In effect, a typecast
tells the compiler that you really know what you’re doing and want to convert one type to

another:
var

c: char;

b: byte;
begin

c = 's';

b := byte(c); // compiler happy as a clam on this line
end.

NoTE

You can typecast a variable of one type to another type only if the data size of the
two variables is the same. For example, you cannot typecast a Double as an Integer.
To convert a floating-point type to an integer, use the Trunc() or Round() functions.
To convert an integer into a floating-point value, use the assignment operator:
FloatVar := IntVar.

Object Pascal also supports a special variety of typecasting between objects using the as opera-
tor, which is described later in the “Runtime Type Information” section of this chapter.

87

N

IOVNONV
1vosvd
153raQ IHL

88

Development Essentials
PART |

String Resources

Delphi 3 introduced the capability to place string resources directly into Object Pascal source
code using the resourcestring clause. String resources are literal strings (usually those dis-
played to the user) that are physically located in a resource attached to the application or
library rather than embedded in the source code. Your source code references the string
resources in place of string literals. By separating strings from source code, your application
can be translated more easily by added string resources in a different language. String
resources are declared in the form of identifier = string literal inthe resourcestring
clause, as shown here:

resourcestring
ResString1 = 'Resource string 1';
ResString2 = 'Resource string 2°';
ResString3 = 'Resource string 3';

Syntactically, resource strings can be used in your source code in a manner identical to string
constants:

resourcestring
ResString1 = 'hello’;
ResString2 = 'world';

var
Stringi: string;

begin
String1l := ResStringl +

' + ResString2;

end;

Testing Conditions

This section compares if and case constructs in Pascal to similar constructs in C and Visual
Basic. We assume that you’ve used these types of programmatic constructs before, so we don’t
spend time explaining them to you.

The if Statement

An if statement enables you to determine whether certain conditions are met before executing
a particular block of code. As an example, here’s an if statement in Pascal, followed by equiv-
alent definitions in C and Visual Basic:

The Object Pascal Language

89
CHAPTER 2
{ Pascal }
if x = 4 then y := x;
/* C */
if (x == 4) y = x;
'Visual Basic
If x =4 Then y = x
NorTe
If you have an if statement that makes multiple comparisons, make sure that you
enclose each set of comparisons in parentheses for code clarity. Do this:
if (x = 7) and (y = 8) then g
However, don't do this (it causes the compiler displeasure): g
if x =7 and y = 8 then =

Use the begin and end keywords in Pascal almost as you would use { and } in C and C++. For
example, use the following construct if you want to execute multiple lines of text when a given
condition is true:
if x = 6 then begin

DoSomething;

DoSomethingElse;

DoAnotherThing;
end;

You can combine multiple conditions using the if..else construct:

if x =100 then

SomeFunction

else if x = 200 then
SomeOtherFunction

else begin
SomethingElse;
Entirely;

end;

Using case Statements

The case statement in Pascal works in much the same way as a switch statement in C and C++.
A case statement provides a means for choosing one condition among many possibilities with-
out a huge if..else if..else if construct. Here’s an example of Pascal’s case statement:

case SomelntegerVariable of
101 : DoSomething;

N

1vosvd
153raQ IHL

90 Development Essentials

PART |

202 : begin
DoSomething;
DoSomethingElse;

end;

303 : DoAnotherThing;

else DoTheDefault;

end;

NoTE

The selector type of a case statement must be an ordinal type. It's illegal to use
nonordinal types, such as strings, as case selectors.

Here’s the C switch statement equivalent to the preceding example:

switch (SomeIntegerVariable)

{
case 101: DoSomeThing(); break;
case 202: DoSomething();

DoSomethingElse(); break

case 303: DoAnotherThing(); break;
default: DoTheDefault();

}

Loops

A loop is a construct that enables you to repeatedly perform some type of action. Pascal’s loop
constructs are very similar to what you should be familiar with from your experience with
other languages, so we don’t spend any time teaching you about loops. This section describes
the various loop constructs you can use in Pascal.

The for Loop

A for loop is ideal when you need to repeat an action a predetermined number of times.
Here’s an example, albeit not a very useful one, of a for loop that adds the loop index to a
variable 10 times:

var
I, X: Integer;
begin
X 1= 0;
for I :=1 to 10 do

inc(X, I);
end.

The Object Pascal Language
CHAPTER 2

The C equivalent of the preceding example is as follows:

void main(void) {

int x, 1i;
X = 0;
for(i=1; i<=10; i++)
X += 1i;
}
Here’s the Visual Basic equivalent of the same concept:
X=0
For I =1 to 10
X=X+1
Next I
CAauTiON

A caveat to those familiar with Delphi 1: Assignments to the loop control variable are
no longer allowed due to the way the loop is optimized and managed by the 32-bit
compiler.

The while Loop

Use a while loop construct when you want some part of your code to repeat itself while some
condition is true. A while loop’s conditions are tested before the loop is executed, and a classic
example for the use of a while loop is to repeatedly perform some action on a file as long as
the end of the file isn’t encountered. Here’s an example demonstrating a loop that reads one
line at a time from a file and writes it to the screen:

Program Filelt;
{$APPTYPE CONSOLE}

var
f: TextFile; // a text file
s: string;
begin
AssignFile(f, 'foo.txt');
Reset (f);
while not EOF(f) do begin
readln(f, S);
writeln(S);
end;
CloseFile(Tf);
end.

91

N

IOVNONV
1vosvd
153raQ IHL

92

Development Essentials
PART |

Pascal’s while loop works basically the same as C’s while loop or Visual Basic’s Do While
loop.

repeat..until

The repeat..until loop addresses the same type of problem as a while loop but from a dif-
ferent angle. It repeats a given block of code until a certain condition becomes True. Unlike a
while loop, the loop code is always executed at least once because the condition is tested at the
end of the loop. Pascal’s repeat..until is roughly equivalent to C’s do..while loop.

For example, the following code snippet repeats a statement that increments a counter until the
value of the counter becomes greater than 100:

var

x: Integer;
begin

X :=1;

repeat

inc(x);

until x > 100;

end.

The Break() Procedure

Calling Break () from inside a while, for, or repeat loop causes the flow of your program to
skip immediately to the end of the currently executing loop. This method is useful when you
need to leave the loop immediately because of some circumstance that might arise within the
loop. Pascal’s Break () procedure is analogous to C’s break and Visual Basic’s Exit statement.
The following loop uses Break () to terminate the loop after five iterations:

var
i: Integer;
begin
for i := 1 to 1000000 do
begin
MessageBeep(0Q) ; // make the computer beep
if i = 5 then Break;
end;
end;

The continue() Procedure

Call continue() inside a loop when you want to skip over a portion of code and the flow of
control to continue with the next iteration of the loop. Note in the following example that the
code after Continue() isn’t executed in the first iteration of the loop:

The Object Pascal Language

CHAPTER 2

var
i: Integer;
begin
for i := 1 to 3 do
begin
writeln(i, '. Before continue');
if i = 1 then Continue;
writeln(i, '. After continue');
end;
end;

Procedures and Functions

As a programmer, you should already be familiar with the basics of procedures and functions.
A procedure is a discrete program part that performs some particular task when it’s called and
then returns to the calling part of your code. A function works the same except that a function
returns a value after its exit to the calling part of the program.

If you’re familiar with C or C++, consider that a Pascal procedure is equivalent to a C or C++
function that returns void, whereas a function corresponds to a C or C++ function that has a
return value.

Listing 2.1 demonstrates a short Pascal program with a procedure and a function.

LisTING 2.1 An Example of Functions and Procedures

Program FuncProc;
{$APPTYPE CONSOLE}

procedure BiggerThanTen(i: Integer);
{ writes something to the screen if I is greater than 10 }
begin
if I > 10 then
writeln('Funky."');
end;

function IsPositive(I: Integer): Boolean;
{ Returns True if I is @ or positive, False if I is negative }
begin
if I < 0 then
Result := False
else
Result := True;
end;

93

N

IOVNONV
1vosvd
153raQ IHL

94

Development Essentials
PART |

LisTING 2.1 Continued

var
Num: Integer;

begin
Num := 23;
BiggerThanTen (Num);

if IsPositive(Num) then
writeln(Num, 'Is positive.')
else
writeln(Num, 'Is negative.');
end.

NoTE

The local variable Result in the IsPositive () function deserves special attention.
Every Object Pascal function has an implicit local variable called Result that contains
the return value of the function. Note that unlike C and C++, the function doesn’t
terminate as soon as a value is assigned to Result.

You also can return a value from a function by assigning the name of a function to a
value inside the function’s code. This is standard Pascal syntax and a holdover from
previous versions of Borland Pascal. If you choose to use the function name within
the body, be careful to note that there is a huge difference between using the func-
tion name on the left side of an assignment operator and using it somewhere else in
your code. If on the left, you are assigning the function return value. If somewhere
else in your code, you are calling the function recursively!

Note that the implicit Result variable isn‘t allowed when the compiler’s Extended
Syntax option is disabled in the Project, Options, Compiler dialog box or when you're
using the {$X-} directive.

Passing Parameters

Pascal enables you to pass parameters by value or by reference to functions and procedures.
The parameters you pass can be of any base or user-defined type or an open array (open arrays
are discussed later in this chapter). Parameters also can be constant if their values will not
change in the procedure or function.

Value Parameters

Value parameters are the default mode of parameter passing. When a parameter is passed by
value, it means that a local copy of that variable is created, and the function or procedure oper-
ates on the copy. Consider the following example:

procedure Foo(s: string);

The Object Pascal Language

CHAPTER 2

When you call a procedure in this way, a copy of string s will be made, and Foo () will operate
on the local copy of s. This means that you can choose the value of s without having any
effect on the variable passed into Foo ().

Reference Parameters

Pascal enables you to pass variables to functions and procedures by reference; parameters
passed by reference are also called variable parameters. Passing by reference means that the
function or procedure receiving the variable can modify the value of that variable. To pass a
variable by reference, use the keyword var in the procedure’s or function’s parameter list:

procedure ChangeMe(var x: longint);
begin

x :=2; { x is now changed in the calling procedure }
end;

Instead of making a copy of x, the var keyword causes the address of the parameter to be
copied so that its value can be directly modified.

Using var parameters is equivalent to passing variables by reference in C++ using the & opera-
tor. Like C++’s & operator, the var keyword causes the address of the variable to be passed to
the function or procedure rather than the value of the variable.

Constant Parameters

If you don’t want the value of a parameter passed into a function to change, you can declare it
with the const keyword. The const keyword not only prevents you from modifying the value
of the parameters, but it also generates more optimal code for strings and records passed into
the procedure or function. Here’s an example of a procedure declaration that receives a con-
stant string parameter:

procedure Goon(const s: string);

Open Array Parameters

Open array parameters provide you with the capability for passing a variable number of argu-
ments to functions and procedures. You can either pass open arrays of some homogenous type
or constant arrays of differing types. The following code declares a function that accepts an
open array of integers:

function AddEmUp(A: array of Integer): Integer;

You can pass variables, constants, or constant expressions to open array functions and proce-
dures. The following code demonstrates this by calling AddEmUp () and passing a variety of dif-
ferent elements:

var

i, Rez: Integer;
const

95

N

IOVNONV
1vosvd
153raQ IHL

96

Development Essentials

PART |
j = 23;
begin
i:= 8;
Rez := AddEmUp([i, 50, j, 89]);

In order to work with an open array inside the function or procedure, you can use the High (),
Low(), and SizeOf () functions in order to obtain information about the array. To illustrate this,
the following code shows an implementation of the AddEmUp () function that returns the sum of
all the numbers passed in A:

function AddEmUp(A: array of Integer): Integer;
var

i: Integer;
begin

Result := 0;

for i := Low(A) to High(A) do

inc(Result, A[i]);

end;

Object Pascal also supports an array of const, which allows you to pass heterogeneous data
types in an array to a function or procedure. The syntax for defining a function or procedure
that accepts an array of const is as follows:

procedure WhatHaveIGot(A: array of const);
You could call the preceding function with the following syntax:
WhatHavelIGot (['Tabasco', 90, 5.6, @WhatHaveIGot, 3.14159, True, 's']);

The compiler implicitly converts all parameters to type TvVarRec when they are passed to the
function or procedure accepting the array of const. TvarRec is defined in the System unit as
follows:

type

PvarRec = ~TVarRec;

TVarRec = record
case Byte of

vtInteger: (VInteger: Integer; VType: Byte);
vtBoolean: (VBoolean: Boolean);

vtChar: (VChar: Char);

vtExtended: (VExtended: PExtended);

vtString: (VString: PShortString);
vtPointer: (VPointer: Pointer);

vtPChar: (VPChar: PChar);

vtObject: (VObject: TObject);

vtClass: (VClass: TClass);

vtWideChar: (VWideChar: WideChar);

The Object Pascal Language

vtPWideChar:
vtAnsiString:
vtCurrency:
vtVariant:
vtInterface:
vtWideString:
vtInt64:

end;

CHAPTER 2

(VPWideChar: PWideChar);
(VAnsiString: Pointer);
(VCurrency: PCurrency);
(VVariant: PVariant);
(VInterface: Pointer);
(VWideString: Pointer);
(VInt64: PInt64);

The VType field indicates what type of data the TvarRec contains. This field can have any one

of the following values:

const

{ TvarRec.VType values }

3

vtInteger =
vtBoolean =
vtChar =
vtExtended
vtString

vtPointer
vtPChar =
vtObject
vtClass =
vtWideChar =
vtPWideChar =
vtAnsiString =
vtCurrency =
vtVariant =
vtInterface =
vtWideString =
vtInt64 =

1l
0N WON-=S

a4 a4 a4 ©
OO ON =S

As you might guess, because array of const in the code allows you to pass parameters

regardless of their type,

they can be difficult to work with on the receiving end. As an example

of how to work with array of const, the following implementation for WhatHaveIGot () iter-
ates through the array and shows a message to the user indicating what type of data was passed

in which index:

procedure WhatHaveIGot(A: array of const);

var
i: Integer;
TypeStr: string;
begin

for i := Low(A) to High(A) do

begin

case A[i].VType of

97

N

IOVNONV
1vosvd
153raQ IHL

Development Essentials

98

PART I
vtInteger : TypeStr := 'Integer';
vtBoolean : TypeStr := 'Boolean’;
vtChar : TypeStr := 'Char';
vtExtended : TypeStr := 'Extended';
vtString : TypeStr := 'String’;
vtPointer : TypeStr := 'Pointer';
vtPChar : TypeStr := 'PChar';
vtObject : TypeStr := 'Object’;
vtClass : TypeStr := 'Class’;
vtWideChar : TypeStr := 'WideChar';
vtPWideChar : TypeStr := 'PWideChar';
vtAnsiString : TypeStr := 'AnsiString';
vtCurrency : TypeStr := 'Currency';
vtVariant : TypeStr := 'Variant';
vtInterface : TypeStr := 'Interface';
vtWideString : TypeStr := 'WideString';
vtInt64 i TypeStr := 'Int64';

end;
ShowMessage (Format ('Array item %d is a %s', [i, TypeStr]));
end;
end;
Scope

Scope refers to some part of your program in which a given function or variable is known to
the compiler. A global constant is in scope at all points in your program, for example, whereas
a variable local to some procedure only has scope within that procedure. Consider Listing 2.2.

LisTING 2.2 An Illustration of Scope

program Foo;
{$APPTYPE CONSOLE}

const
SomeConstant = 100;

var
SomeGlobal: Integer;
R: Real;

procedure SomeProc(var R: Real);
var

LocalReal: Real;
begin

The Object Pascal Language

CHAPTER 2

LisTING 2.2 Continued

LocalReal := 10.0;
R := R - LocalReal;

end;

begin
SomeGlobal := SomeConstant;
R := 4.593;
SomeProc(R);

end.

SomeConstant, SomeGlobal, and R have global scope—their values are known to the compiler
at all points within the program. Procedure SomeProc () has two variables in which the scope is
local to that procedure: R and LocalReal. If you try to access LocalReal outside of SomeProc(),
the compiler displays an unknown identifier error. If you access R within SomeProc (), you’ll
be referring to the local version, but if you access R outside that procedure, you’ll be referring
to the global version.

Units

Units are the individual source code modules that make up a Pascal program. A unit is a place
for you to group functions and procedures that can be called from your main program. To be a
unit, a source module must consist of at least three parts:

* A unit statement—Every unit must have as its first line a statement saying that it’s a
unit and identifying the unit name. The name of the unit must always match the file-
name. For example, if you have a file named FooBar, the statement would be

unit FooBar;

e The interface part—After the unit statement, a unit’s next functional line of code
should be the interface statement. Everything following this statement, up to the
implementation statement, is information that can be shared with your program and
with other units. The interface part of a unit is where you declare the types, constants,
variables, procedures, and functions that you want to make available to your main pro-
gram and to other units. Only declarations—never procedure bodies—can appear in the
interface. The interface statement should be one word on one line:

interface

e The implementation part—This follows the interface part of the unit. Although the
implementation part of the unit contains primarily procedures and functions, it’s also
where you declare any types, constants, and variables that you don’t want to make avail-
able outside of this unit. The implementation part is where you define any functions or

99

N

IOVNONV
1vosvd
153raQ IHL

100 Development Essentials

PART |

procedures that you declared in the interface part. The implementation statement
should be one word on one line:

implementation

Optionally, a unit can also include two other parts:

* An initialization part—This portion of the unit, which is located near the end of the
file, contains any initialization code for the unit. This code will be executed before
the main program begins execution, and it executes only once.

* A finalization part—This portion of the unit, which is located in between the
initialization and end. of the unit, contains any cleanup code that executes
when the program terminates. The finalization section was introduced to the language
in Delphi 2.0. In Delphi 1.0, unit finalization was accomplished by adding a new exit
procedure using the AddExitProc () function. If you’re porting an application from
Delphi 1.0, you should move your exit procedures into the finalization part of your units.

NoOTE

When several units have initialization/finalization code, execution of each sec-
tion proceeds in the order in which the units are encountered by the compiler (the
first unit in the program’s uses clause, then the first unit in that unit’s uses clause,
and so on). Also, it's a bad idea to write initialization and finalization code that relies
on such ordering because one small change to the uses clause can cause some
difficult-to-find bugs!

The uses Clause

The uses clause is where you list the units that you want to include in a particular program or
unit. For example, if you have a program called FooProg that uses functions and types in two
units, UnitA and UnitB, the proper uses declaration is as follows:

Program FooProg;
uses UnitA, UnitB;

Units can have two uses clauses: one in the interface section and one in the implementation
section.

Here’s code for a sample unit:

Unit FooBar;

interface

The Object Pascal Language

CHAPTER 2

uses BarFoo;

{ public declarations here }
implementation
uses BarFly;

{ private declarations here }

initialization

{ unit initialization here }
finalization

{ unit clean-up here }
end.

Circular Unit References

Occasionally, you’ll have a situation where UnitA uses UnitB and UnitB uses UnitA. This is
called a circular unit reference. The occurrence of a circular unit reference is often an indica-
tion of a design flaw in your application; you should avoid structuring your program with a cir-
cular reference. The optimal solution is often to move a piece of data that both UnitA and
UnitB need to use out to a third unit. However, as with most things, sometimes you just can’t
avoid the circular unit reference. In such a case, move one of the uses clauses to the imple-
mentation part of your unit and leave the other one in the interface part. This usually solves
the problem.

Packages

Delphi packages enable you to place portions of your application into separate modules, which
can be shared across multiple applications. If you already have an existing investment in
Delphi 1 or 2 code, you’ll appreciate that you can take advantage of packages without any
changes to your existing source code.

Think of a package as a collection of units stored in a separate DLL-like module (a Borland
Package Library, or BPL file). Your application can then link with these “packaged” units at
runtime rather than compile/link time. Because the code for these units resides in the BPL file
rather than in your EXE or DLL, the size of your EXE or DLL can become very small. Four
types of packages are available for you to create and use:

* Runtime package—This type of package contains units required at runtime by your
application. When compiled to depend on a particular runtime package, your application
will not run in the absence of that package. Delphi’s VCL60.BPL is an example of this
type of package.

101

N

IOVNONV
1vosvd
153raQ IHL

102

Development Essentials
PART |

» Design package—This type of package contains elements necessary for application
design such as components, property and component editors, and experts. It can be
installed into Delphi’s component library using the Component, Install Package menu
item. Delphi’s DCL*.BPL packages are examples of this type of package. This type of
package is described in more detail in Chapter 11, “VCL Component Building.”

* Runtime and Design package—This package serves both of the purposes listed in the
first two items. Creating this type of package makes application development and distrib-
ution a bit simpler, but this type of package is less efficient because it must carry the
baggage of design support even in your distributed applications.

* Neither runtime nor design package—This rare breed of package is intended to be used
only by other packages and is not intended to be referenced directly by an application or
used in the design environment.

Using Delphi Packages

Package-enabling your Delphi applications is easy. Simply check the Build with Runtime
Packages check box in the Project, Options, Packages dialog box. The next time you build
your application after selecting this option, your application will be linked dynamically to run-
time packages rather than having units linked statically into your EXE or DLL. The result will
be a much more svelte application (although bear in mind that you’ll have to deploy the neces-
sary packages with your application).

Package Syntax

Packages are most commonly created using the Package Editor, which you invoke by choosing
the File, New, Package menu item. This editor generates a Delphi Package Source (DPK) file,
which will be compiled into a package. The syntax for this DPK file is quite simple, and it
uses the following format:

package PackageName
requires Packagel, Package2, ...;

contains
Uniti in 'Uniti.pas’,
Unit2, in 'Unit2.pas’,

“ay

end.

The Object Pascal Language

CHAPTER 2

Packages listed in the requires clause are required in order for this package to load. Typically,
packages containing units used by units listed in the contains clause are listed here. Units
listed in the contains clause will be compiled into this package. Note that units listed here
must not also be listed in the contains clause of any of the packages listed in the requires
clause. Note also that any units used by units in the contains clause will be implicitly pulled
into this package (unless they’re contained in a required package).

Object-Oriented Programming

Volumes have been written on the subject of object-oriented programming (OOP). Often, OOP
seems more like a religion than a programming methodology, spawning arguments about its
merits (or lack thereof) that are passionate and spirited enough to make the Crusades look like
a slight disagreement. We’re not orthodox OOPists, and we’re not going to get involved in the
relative merits of OOP; we just want to give you the lowdown on a fundamental principle on
which Delphi’s Object Pascal Language is based.

OOP is a programming paradigm that uses discrete objects—containing both data and code—
as application building blocks. Although the OOP paradigm doesn’t necessarily lend itself to
easier-to-write code, the result of using OOP traditionally has been easy-to-maintain code.
Having objects’ data and code together simplifies the process of hunting down bugs, fixing
them with minimal effect on other objects, and improving your program one part at a time.
Traditionally, an OOP language contains implementations of at least three OOP concepts:

e Encapsulation—Deals with combining related data fields and hiding the implementation
details. The advantages of encapsulation include modularity and isolation of code from
other code.

* Inheritance—The capability to create new objects that maintain the properties and behav-
ior of ancestor objects. This concept enables you to create object hierarchies such as
VCL—irst creating generic objects and then creating more specific descendants of those
objects that have more narrow functionality.

The advantage of inheritance is the sharing of common code. Figure 2.4 presents an
example of inheritance—how one root object, fruit, is the ancestor object of all fruits,
including the melon. The melon is ancestor of all melons, including the watermelon. You
get the picture.

* Polymorphism—Literally, polymorphism means “many shapes.” Calls to methods of an
object variable will call code appropriate to whatever instance is actually in the variable.

103

N

IOVNONV
1vosvd
153raQ IHL

104 Development Essentials

PART |

Red
Delicious
FIGURE 2.4

An illustration of inheritance.

A Note on Multiple Inheritance

Object Pascal doesn’t support multiple inheritance of objects as C++ does. Multiple
inheritance is the concept of a given object being derived from two separate objects,
creating an object that contains all the code and data of the two parent objects.

To expand on the analogy presented in Figure 2.4, multiple inheritance enables you
to create a candy apple object by creating a new object that inherits from the apple
class and some other class called “candy.” Although this functionality seems useful, it
often introduces more problems and inefficiencies into your code than it solves.

Object Pascal provides two approaches to solving this problem. The first solution is to
make one class contain the other class. You'll see this solution throughout Delphi’s
VCL. To build upon the candy apple analogy, you would make the candy object a
member of the apple object. The second solution is to use interfaces (you’ll learn
more about interfaces in the section “Interfaces”). Using interfaces, you could essen-
tially have one object that supports both a candy and an apple interface.

You should understand the following three terms before you continue to explore the concept of
objects:

* Field—Also called field definitions or instance variables, fields are data variables con-
tained within objects. A field in an object is just like a field in a Pascal record. In C++,
fields sometimes are referred to as data members.

* Method—The name for procedures and functions belonging to an object. Methods are
called member functions in C++.

* Property—An entity that acts as an accessor to the data and code contained within an
object. Properties insulate the end user from the implementation details of an object.

The Object Pascal Language
CHAPTER 2

NoTEe

It's generally considered bad OOP style to access an object’s fields directly. This is
because the implementation details of the object may change. Instead, use accessor
properties, which allow a standard object interface without becoming embroiled in
the details of how the objects are implemented. Properties are explained in the
“Properties” section later in this chapter.

Object-Based Versus Object-Oriented Programming

In some tools, you manipulate entities (objects), but you cannot create your own objects. VBX
and ActiveX controls in older versions of Visual Basic are a good example of this. Although
you could use these controls in your applications, you couldn’t create one, and you couldn’t
inherit one ActiveX control from another. Environments such as these often are called object-
based environments.

Delphi is a fully object-oriented environment. This means that you can create new objects in
Delphi either from scratch or based on existing components. This includes all Delphi objects,
be they visual, nonvisual, or even design-time forms.

Using Delphi Objects

As mentioned earlier, objects (also called classes) are entities that can contain both data and
code. Delphi objects also provide you with all the power of object-oriented programming in
offering full support of inheritance, encapsulation, and polymorphism.

Declaration and Instantiation

Of course, before using an object, you must have declared an object using the class keyword.
As described earlier in this chapter, objects are declared in the type section of a unit or
program:

type
TFooObject = class;

In addition to an object type, you usually also will have a variable of that class type, or
instance, declared in the var section:

var
FooObject: TFooObject;

You create an instance of an object in Object Pascal by calling one of its constructors. A con-
structor is responsible for creating an instance of your object and allocating any memory or

105

N

IOVNONV
1vosvd
153raQ IHL

106

Development Essentials
PART |

initializing any fields necessary so that the object is in a usable state upon exiting the construc-
tor. Object Pascal objects always have at least one constructor called Create ()—although it’s
possible for an object to have more than one constructor. Depending on the type of object,
Create() can take different numbers of parameters. This chapter focuses on the simple case in
which Create() takes no parameters.

Unlike C++, object constructors in Object Pascal aren’t called automatically, and it’s incum-
bent on the programmer to call the object constructor. The syntax for calling a constructor is as
follows:

FooObject := TFooObject.Create;

Notice that the syntax for a constructor call is a bit unique. You're referencing the Create ()
method of the object by the type rather than the instance, as you would with other methods.
This might seem odd at first, but it does make sense. FooObject, a variable, is undefined at the
time of the call, but the code for TFooObject, a type, is static in memory. A static call to its
Create () method is therefore totally valid.

The act of calling a constructor to create an instance of an object is often called instantiation.

NoTE

When an object instance is created using the constructor, the compiler will ensure
that every field in your object is initialized. You can safely assume that all numbers
will be initialized to @, all pointers to nil, and all strings will be empty.

Destruction

When you’re finished using an object, you should deallocate the instance by calling its Free ()
method. The Free () method first checks to ensure that the object instance is not nil; then it
calls the object’s destructor method, Destroy (). The destructor, of course, does the opposite of
the constructor; it deallocates any allocated memory and performs any other housekeeping
required in order for the object to be properly removed from memory. The syntax is simple:

FooObject.Free;

Unlike the call to Create (), the object instance is used in the call to the Free () method.
Remember never to call Destroy () directly but instead to call the safer Free () method.

The Object Pascal Language
CHAPTER 2

CAUTION

In C++, the destructor of an object declared statically is called automatically when
your object leaves scope, but you must manually cause the destructor to be called for
any dynamically allocated objects using the delete keyword. The rule is the same in
Object Pascal, except that all objects are implicitly dynamic in Object Pascal, so you
must follow the rule of thumb that anything you create, you must free. There are,
however, a couple of important exceptions to this rule: The first is when your object is
owned by other objects, it will be freed for you. The second is reference counted
objects (such as those descending from TInterfacedObject or TComObiject), which are
destroyed when the last reference is released.

You might be asking yourself how all these methods got into your little object. You certainly
didn’t declare them yourself, right? Right. The methods just discussed actually come from the
Object Pascal’s base TObject object. In Object Pascal, all objects are always descendants of
Tobject regardless of whether they’re declared as such. Therefore, the declaration

Type TFoo = Class;
is equivalent to the declaration

Type TFoo = Class(TObject);

Methods

Methods are procedures and functions belonging to a given object: They give an object behav-
ior rather than just data. Two important methods of the objects you create are the constructor
and the destructor methods, which we just covered. You can also create custom methods in
your objects to perform a variety of tasks.

Creating a method is a two-step process. You first must declare the method in the object type
declaration, and then you must define the method in the code. The following code demon-
strates the process of declaring and defining a method:

type
TBoogieNights = class
Dance: Boolean;
procedure DoTheHustle;
end;

procedure TBoogieNights.DoTheHustle;
begin

Dance := True;
end;

107

N

IOVNONV
1vosvd
153raQ IHL

108

Development Essentials
PART |

Note that when defining the method body, you have to use the fully qualified name, as you did
when defining the DoTheHustle method. It’s important also to note that the object’s Dance field
can be accessed directly from within the method.

Method Types

Object methods can be declared, as static, virtual, dynamic, or message. Consider the fol-
lowing example object:

TFoo = class

procedure IAmAStatic;

procedure IAmAVirtual; virtual;

procedure IAmADynamic; dynamic;

procedure IAmAMessage(var M: TMessage); message wm_SomeMessage;
end;

Static Methods

IAmAStatic is a static method. The static method is the default method type, and it works sim-
ilarly to a regular procedure or function call. The compiler knows the address of these meth-
ods, so when you call a static method, it’s able to link that information into the executable
statically. Static methods execute the fastest; however, they don’t have the capability to be
overridden to provide polymorphism.

NoTE

Although Object Pascal supports static methods, it doesn’t support static data mem-
bers in the manner of C++ or Java. To achieve the same behavior in Object Pascal, you
should use a global variable. You can place the global in the implementation part of
the unit if you want it to behave as private data.

Virtual Methods

IAmAVirtual is a virtual method. Virfual methods are called in the same way as static methods,
but because virtual methods can be overridden, the compiler doesn’t know the address of a par-
ticular virtual function when you call it in your code. The compiler, therefore, builds a Virtual
Method Table (VMT) that provides a means to look up function addresses at runtime. All vir-
tual method calls are dispatched at runtime through the VMT. An object’s VMT contains all its
ancestor’s virtual methods as well as the ones it declares; therefore, virtual methods use more
memory than dynamic methods, although they execute faster.

Dynamic Methods
IAmADynamic is a dynamic method. Dynamic methods are basically virtual methods with a dif-
ferent dispatching system. The compiler assigns a unique number to each dynamic method and

The Object Pascal Language 109

CHAPTER 2

uses those numbers, along with method addresses, to build a Dynamic Method Table (DMT).
Unlike the VMT, an object’s DMT contains only the dynamic methods that it declares, and that
method relies on its ancestor’s DMTs for the rest of its dynamic methods. Because of this,
dynamic methods are less memory intensive than virtual methods, but they take longer to call
because you might have to propagate through several ancestor DMTs before finding the
address of a particular dynamic method.

Message Methods

IAmAMessage is a message-handling method. The value after the message keyword dictates
what message the method will respond to. Message methods are used to create an automatic
response to Windows messages, and you generally don’t call them directly. Message handling

N

is discussed in detail in Chapter 3, “Adventures in Messaging.” g
=

. g o)
Overriding Methods =
Overriding a method is Object Pascal’s implementation of the OOP concept of polymorphism. a

It enables you to change the behavior of a method from descendant to descendant. Object
Pascal methods can be overridden only if they’re first declared as virtual or dynamic. To
override a method, just use the override directive instead of virtual or dynamic in your
descendant object type. For example, you could override the IAmAVirtual and IAmADynamic
methods as shown here:

TFooChild = class(TFoo)

procedure IAmAVirtual; override;

procedure IAmADynamic; override;

procedure IAmAMessage(var M: TMessage); message wm_SomeMessage;
end;

The override directive replaces the original method’s entry in the VMT with the new method.
If you had redeclared IAmAVirtual and IAmADynamic with the virtual or dynamic keyword
instead of override, you would have created new methods rather than overriding the ancestor
methods. Also, if you attempt to override a static method in a descendant type, the static
method in the new object completely replaces the method in the ancestor type.

Method Overloading
Like regular procedures and functions, methods can be overloaded so that a class can contain
multiple methods of the same name with differing parameter lists. Overloaded methods must
be marked with the overload directive, although the use of the directive on the first instance of
a method name in a class hierarchy is optional. The following code example shows a class con-
taining three overloaded methods:
type

TSomeClass = class

procedure AMethod(I: Integer); overload;

1vosvd
153raQ IHL

110

Development Essentials
PART |

procedure AMethod(S: string); overload;
procedure AMethod(D: Double); overload;
end;

Reintroducing Method Names
Occasionally, you might want to add a method to one of your classes to replace a method of
the same name in an ancestor of your class. In this case, you don’t want to override the ances-
tor method but instead obscure and completely supplant the base class method. If you simply
add the method and compile, you’ll see that the compiler will produce a warning explaining
that the new method hides a method of the same name in a base class. To suppress this error,
use the reintroduce directive on the method in the ancestor class. The following code exam-
ple demonstrates proper use of the reintroduce directive:
type

TSomeBase = class

procedure Cooper;
end;

TSomeClass = class
procedure Cooper; reintroduce;
end;

Self

An implicit variable called Self is available within all object methods. Self is a pointer to the
class instance that was used to call the method. Self is passed by the compiler as a hidden
parameter to all methods.

Properties

It might help to think of properties as special accessor fields that enable you to modify data
and execute code contained within your class. For components, properties are those things that
show up in the Object Inspector window when published. The following example illustrates a
simplified Object with a property:

TMyObject = class
private
SomeValue: Integer;
procedure SetSomeValue(AValue: Integer);
public
property Value: Integer read SomeValue write SetSomeValue;
end;

procedure TMyObject.SetSomeValue(AValue: Integer);
begin

The Object Pascal Language

CHAPTER 2

if SomeValue <> AValue then
SomeValue := AValue;
end;

TMyObject is an object that contains the following: one field (an integer called SomeVvalue),
one method (a procedure called SetSomevalue), and one property called Value. The sole pur-
pose of the SetSomeValue procedure is to set the value of the Somevalue field. The value
property doesn’t actually contain any data. Value is an accessor for the Somevalue field; when
you ask Value what number it contains, it reads the value from Somevalue. When you attempt
to set the value of the Value property, Value calls SetSomevalue to modify the value of
SomeValue. This is useful for two reasons: First, it allows you to present the users of the class
with a simple variable without making them worry about the class’s implementation details.
Second, you can allow the users to override accessor methods in descendant classes for poly-
morphic behavior.

Visibility Specifiers

Object Pascal offers you further control over the behavior of your objects by enabling you to
declare fields and methods with directives such as protected, private, public, published,
and automated. The syntax for using these keywords is as follows:

TSomeObject = class
private
APrivateVariable: Integer;
AnotherPrivateVariable: Boolean;
protected
procedure AProtectedProcedure;
function ProtectMe: Byte;
public
constructor APublicContructor;
destructor APublicKiller;
published
property AProperty read APrivateVariable write APrivateVariable;
end;

You can place as many fields or methods as you want under each directive. Style dictates that
you should indent the specifier the same as you indent the class name. The meanings of these
directives follow:

e private—These parts of your object are accessible only to code in the same unit as your
object’s implementation. Use this directive to hide implementation details of your objects
from users and to prevent users from directly modifying sensitive members of your
object.

111

N

IOVNONV
1vosvd
153raQ IHL

112

Development Essentials
PART |

* protected—Your object’s protected members can be accessed by descendants of your
object. This capability enables you to hide the implementation details of your object
from users while still providing maximum flexibility to descendants of your object.

* public—These fields and methods are accessible anywhere in your program. Object
constructors and destructors always should be public.

* published—Runtime Type Information (RTTI) to be generated for the published portion
of your objects enables other parts of your application to get information on your object’s
published parts. The Object Inspector uses RTTI to build its list of properties.

* automated—The automated specifier is obsolete but remains for compatibility with
Delphi 2. Chapter 15 has more details onthis.

Here, then, is code for the TMyObject class that was introduced earlier, with directives added to
improve the integrity of the object:

TMyObject = class
private
SomeValue: Integer;
procedure SetSomeValue(AValue: Integer);
published
property Value: Integer read SomeValue write SetSomeValue;
end;

procedure TMyObject.SetSomeValue(AValue: Integer);
begin
if SomeValue <> AValue then
SomeValue := AValue;
end;

Now, users of your object will not be able to modify the value of Somevalue directly, and they
will have to go through the interface provided by the property vValue to modify the object’s
data.

"Friend” Classes

The C++ language has a concept of friend classes (that is, classes that are allowed access to
the private data and functions in other classes). This is accomplished in C++ using the friend
keyword. Although, strictly speaking, Object Pascal doesn’t have a similar keyword, it does
allow for similar functionality. All objects declared within the same unit are considered “friends”
and are allowed access to the private information located in other objects in that unit.

Inside Objects

All class instances in Object Pascal are actually stored as 32-bit pointers to class instance data
located in heap memory. When you access fields, methods, or properties within a class, the
compiler automatically performs a little bit of hocus-pocus that generates the code to

The Object Pascal Language

CHAPTER 2

dereference that pointer for you. Therefore, to the untrained eye, a class appears as a static
variable. What this means, however, is that unlike C++, Object Pascal offers no reasonable way
to allocate a class from an application’s data segment other than from the heap.

Tobject: The Mother of All Objects

Because everything descends from TObject, every class has some methods that it inherits from
TObject, and you can make some special assumptions about the capabilities of an object. Every
class has the capability, for example, to tell you its name, its type, or even whether it’s inher-
ited from a particular class. The beauty of this is that you, as an applications programmer,
don’t have to care what kind of magic the compiler does to make this happen. You can just
take advantage of the functionality it provides!

TObject is a special object because its definition comes from the System unit, and the Object
Pascal compiler is “aware” of TObject. The following code illustrates the definition of the
TObject class:

type
TObject = class
constructor Create;
procedure Free;
class function InitInstance(Instance: Pointer): TObject;
procedure CleanupInstance;
function ClassType: TClass;
class function ClassName: ShortString;
class function ClassNameIs(const Name: string): Boolean;
class function ClassParent: TClass;
class function ClassInfo: Pointer;
class function InstanceSize: Longint;
class function InheritsFrom(AClass: TClass): Boolean;
class function MethodAddress(const Name: ShortString): Pointer;
class function MethodName (Address: Pointer): ShortString;
function FieldAddress(const Name: ShortString): Pointer;
function GetInterface(const IID: TGUID; out Obj): Boolean;
class function GetInterfaceEntry(const IID: TGUID): PInterfaceEntry;
class function GetInterfaceTable: PInterfaceTable;
function SafeCallException(ExceptObject: TObject;
ExceptAddr: Pointer): HResult; virtual;
procedure AfterConstruction; virtual;
procedure BeforeDestruction; virtual;
procedure Dispatch(var Message); virtual;
procedure DefaultHandler(var Message); virtual;
class function NewInstance: TObject; virtual;
procedure FreeInstance; virtual;
destructor Destroy; virtual;
end;

113

N

IOVNONV
1vosvd
153raQ IHL

114

Development Essentials
PART |

You’ll find each of these methods documented in Delphi’s online help system.

In particular, note the methods that are preceded by the keyword class. Prepending the class
keyword to a method enables it to be called like a normal procedure or function without actu-
ally having an instance of the class of which the method is a member. This is a juicy bit of
functionality that was borrowed from C++’s static functions. Be careful, though, not to make
a class method depend on any instance information; otherwise, you’ll get a compiler error.

Interfaces

Perhaps the most significant addition to the Object Pascal language in the recent past is the
native support for interfaces, which was introduced in Delphi 3. Simply put, an interface defines
a set of functions and procedures that can be used to interact with an object. The definition of a
given interface is known to both the implementer and the client of the interface—acting as a
contract of sorts for how an interface will be defined and used. A class can implement multiple
interfaces, providing multiple known “faces” by which a client can control an object.

As its name implies, an interface defines only, well, an interface by which object and clients
communicate. This is similar in concept to a C++ PURE VIRTUAL class. It’s the job of a class
that supports an interface to implement each of the interface’s functions and procedures.

In this chapter you’ll learn about the language elements of interfaces. For information on using
interfaces within your applications, see Chapter 15.

Defining Interfaces
Just as all Delphi classes implicitly descend from TObject, all interfaces are implicitly derived
from an interface called IUnknown. IUnknown. is defined in the System unit as follows:
type
IUnknown = interface
['{00000000-0000-0000-C000-000000000046} ']
function QueryInterface(const IID: TGUID; out Obj): Integer; stdcall;
function _AddRef: Integer; stdcall;
function _Release: Integer; stdcall;
end;

As you can see, the syntax for defining an interface is very similar to that of a class. The pri-
mary difference is that an interface can optionally be associated with a globally unique identi-
fier (GUID), which is unique to the interface. The definition of IUnknown comes from the
Component Object Model (COM) specification provided by Microsoft. This is also described
in more detail in Chapter 15.

Defining a custom interface is straightforward if you understand how to create Delphi classes.
The following code defines a new interface called IFoo, which implements one method called
F1():

The Object Pascal Language
CHAPTER 2

type
IFoo = interface
['{2137BF60-AA33-11D0-A9BF - 9A4537A42701} ']
function F1: Integer;
end;

Tip

The Delphi IDE will manufacture new GUIDs for your interfaces when you use the
Ctrl+Shift+G key combination.

The following code defines a new interface, IBar, which descends from IFoo:

type
IBar = interface(IFo0)
['{2137BF61-AA33-11D0-A9BF -9A4537A42701} ']
function F2: Integer;
end;

Implementing Interfaces
The following bit of code demonstrates how to implement IFoo and IBar in a class called
TFooBar:
type
TFooBar = class(TInterfacedObject, IFoo, IBar)
function F1: Integer;
function F2: Integer;
end;

function TFooBar.F1: Integer;
begin

Result := 0;
end;

function TFooBar.F2: Integer;
begin

Result := 0;
end;

Note that multiple interfaces can be listed after the ancestor class in the first line of the class
declaration in order to implement multiple interfaces. The binding of an interface function to a
particular function in the class happens when the compiler matches a method signature in the
interface with a matching signature in the class. A compiler error will occur if a class declares
that it implements an interface but the class fails to implement one or more of the interface’s
methods.

115

N

IOVNONV
1vosvd
153raQ IHL

Development Essentials
PART |

If a class implements multiple interfaces that have methods of the same signature, you must
alias the same-named methods as shown in the following short example:

type
IFoo = interface
['{2137BF60-AA33-11D0-A9BF -9A4537A42701} ']
function F1: Integer;
end;

IBar = interface
['{2137BF61-AA33-11D0-A9BF -9A4537A42701} ']
function F1: Integer;

end;

TFooBar = class(TInterfacedObject, IFoo, IBar)
// aliased methods
function IFo00.F1 = FooF1;
function IBar.F1 BarF1;
// interface methods
function FooF1: Integer;
function BarF1: Integer;
end;

function TFooBar.FooF1: Integer;
begin

Result := 0;
end;

function TFooBar.BarF1: Integer;
begin

Result := 0;
end;

The implements Directive

Delphi 4 introduced the implements directive, which enables you to delegate the implementa-
tion of interface methods to another class or interface. This technique is sometimes called
implementation by delegation. Implements is used as the last directive on a property of class or
interface type like this:

type
TSomeClass = class(TInterfacedObject, IFo0)
/] stuff
function GetFoo: TFoo;
property Foo: TFoo read GetFoo implements IFoo0;
/] stuff
end;

The Object Pascal Language

CHAPTER 2

The use of implements in the preceding code example instructs the compiler to look to the Foo
property for the methods that implement the IFoo interface. The type of the property must be a
class that contains IFoo methods or an interface of type IFoo or a descendant of IFoo. You can
also provide a comma-delimited list of interfaces following the implements directive, in which
case the type of the property must contain the methods to implement the multiple interfaces.

The implements directive buys you two key advantages in your development: First, it allows
you to perform aggregation in a no-hassle manner. Aggregation is a COM concept pertaining
to the combination of multiple classes for a single purpose (see Chapter 15 for more informa-
tion on aggregation). Second, it allows you to defer the consumption of resources necessary to
implement an interface until it’s absolutely necessary. For example, say that there was an inter-
face whose implementation requires allocation of a IMB bitmap, but that interface is seldom
required by clients. You probably wouldn’t want to implement that interface all the time “just
in case” because that would be a waste of resources. Using implements, you could create the
class to implement the interface on demand in the property accessor method.

Using Interfaces

A few important language rules apply when you’re using variables of interface types in your
applications. The foremost rule to remember is that an interface is a lifetime-managed type.
This means it’s always initialized to nil, it’s reference counted, a reference is automatically
added when you obtain an interface, and it’s automatically released when it leaves scope or is
assigned the value nil. The following code example illustrates the lifetime management of an
interface variable:

var
I: ISomelInterface;

begin
// I is initialized to nil
I := FunctionReturningAnInterface; [/ ref count of I is incremented
I.SomeFunc;

// ref count of I is decremented. If @, I is automatically released
end;

Another unique rule of interface variables is that an interface is assignment compatible with
classes that implement the interface. For example, the following code is legal using the
TFooBar class defined earlier:

procedure Test(FB: TFooBar)

var

F: IFoo0;
begin

117

N

IOVNONV
1vosvd
153raQ IHL

118

Development Essentials
PART |

F := FB; // legal because FB supports IFoo

Finally, the as typecast operator can be used to QueryInterface a given interface variable for
another interface (this is explained in greater detail in Chapter 15). This is illustrated here:

var
FB: TFooBar;
F: IFoo;
B: IBar;
begin
FB := TFooBar.Create
F := FB; // legal because FB supports IFoo
B := F as IBar; // QueryInterface F for IBar

If the requested interface isn’t supported, an exception will be raised.

Structured Exception Handling

Structured exception handling (SEH) is a method of error handling that enables your applica-
tion to recover gracefully from otherwise fatal error conditions. In Delphi 1, exceptions were
implemented in the Object Pascal language, but starting in Delphi 2, exceptions are a part of
the Win32 API. What makes Object Pascal exceptions easy to use is that they’re just classes
that happen to contain information about the location and nature of a particular error. This
makes exceptions as easy to implement and use in your applications as any other class.

Delphi contains predefined exceptions for common program-error conditions, such as out of
memory, divide by zero, numerical overflow and underflow, and file I/O errors. Delphi also
enables you to define your own exception classes as you may see fit in your applications.

Listing 2.3 demonstrates how to use exception handling during file I/O.

LisTING 2.3 File I/O Using Exception Handling

Program FileIO;
uses Classes, Dialogs;
{$SAPPTYPE CONSOLE}

var

The Object Pascal Language
CHAPTER 2

LisTING 2.3 Continued

F: TextFile;
S: string;
begin
AssignFile(F, 'FOO.TXT');
try
Reset(F);
try
ReadLn(F, S);
finally
CloseFile(F);
end;
except
on EInOutError do
ShowMessage('Error Accessing File!');
end;
end.

In Listing 2.3, the inner try..finally block is used to ensure that the file is closed regardless
of whether any exceptions come down the pike. What this block means in English is “Hey,
program, try to execute the statements between the try and the finally. If you finish them or
run into an exception, execute the statements between the finally and the end. If an exception
does occur, move on to the next exception-handling block.” This means that the file will be
closed and the error can be properly handled no matter what error occurs.

NoTE

The statements after finally in a try..finally block execute regardless of whether
an exception occurs. Make sure that the code in your finally block doesn’t assume
that an exception has occurred. Also, because the finally statement doesn’t stop the
migration of an exception, the flow of your program’s execution will continue on to
the next exception handler.

The outer try..except block is used to handle the exceptions as they occur in the program.
After the file is closed in the finally block, the except block puts up a message informing the
user that an I/O error occurred.

One of the key advantages that exception handling provides over the traditional method of
error handling is the ability to distinctly separate the error-detection code from the error-
correction code. This is a good thing primarily because it makes your code easier to read and
maintain by enabling you to concentrate on one distinct aspect of the code at a time.

119

N

IOVNONV
1vosvd
153raQ IHL

120

Development Essentials
PART |

The fact that you cannot trap any specific exception by using the try..finally block is signif-
icant. When you use a try..finally block in your code, it means that you don’t care what
exceptions might occur. You just want to perform some tasks when they do occur to gracefully
get out of a tight spot. The finally block is an ideal place to free any resources you’ve allo-
cated (such as files or Windows resources) because it will always execute in the case of an
error. In many cases, however, you need some type of error handling that’s able to respond dif-
ferently depending on the type of error that occurs. You can trap specific exceptions by using a
try..except block, which is again illustrated in Listing 2.4.

LisTING 2.4 A try..except Exception-Handling Block

Program Handlelt;
{$APPTYPE CONSOLE}

var
R1, R2: Double;
begin
while True do begin
try
Write('Enter a real number: ');
ReadLn(R1);
Write('Enter another real number: ');
ReadLn(R2);
Writeln('I will now divide the first number by the second...');
Writeln('The answer is: ', (R1 / R2):5:2);
except
On EZeroDivide do
Writeln('You cannot divide by zero!');
On EInOutError do
Writeln('That is not a valid number!');
end;
end;
end.

Although you can trap specific exceptions with the try..except block, you also can catch
other exceptions by adding the catchall else clause to this construct. The syntax of the
try..except..else construct follows:

try
Statements
except
On ESomeException do Something;
else
{ do some default exception handling }
end;

The Object Pascal Language
CHAPTER 2

CAUTION

When using the try. .except..else construct, you should be aware that the else
part will catch all exceptions—even exceptions you might not expect, such as out-of-
memory or other runtime-library exceptions. Be careful when using the else clause,
and use the clause sparingly. You should always reraise the exception when you trap
with unqualified exception handlers. This is explained in the section “Reraising an
Exception.”

You can achieve the same effect as a try. .except. .else construct by not specifying the
exception class in a try..except block, as shown in this example:

try

Statements
except

HandleException // almost the same as else statement
end;

Exception Classes

Exceptions are merely special instances of objects. These objects are instantiated when an
exception occurs and are destroyed when an exception is handled. The base exception object is
called Exception, and that object is defined as follows:

type
Exception = class(TObject)
private
FMessage: string;
FHelpContext: Integer;
public
constructor Create(const Msg: string);
constructor CreateFmt(const Msg: string; const Args: array of const);
constructor CreateRes(Ident: Integer); overload;
constructor CreateRes(ResStringRec: PResStringRec); overload;
constructor CreateResFmt(Ident: Integer; const Args: array of const);
overload;
constructor CreateResFmt(ResStringRec: PResStringRec;
const Args: array of const); overload;
constructor CreateHelp(const Msg: string; AHelpContext: Integer);
constructor CreateFmtHelp(const Msg: string; const Args: array of const;
AHelpContext: Integer);
constructor CreateResHelp(Ident: Integer; AHelpContext: Integer); overload;
constructor CreateResHelp(ResStringRec: PResStringRec;
AHelpContext: Integer); overload;

121

N

IOVNONV
1vosvd
153raQ IHL

Development Essentials
PART |

122

constructor CreateResFmtHelp(ResStringRec: PResStringRec;
const Args: array of const;
AHelpContext: Integer); overload;

constructor CreateResFmtHelp(Ident: Integer; const Args: array of const;
AHelpContext: Integer); overload;

property HelpContext: Integer read FHelpContext write FHelpContext;

property Message: string read FMessage write FMessage;

end;

The important element of the Exception object is the Message property, which is a string.
Message provides more information or explanation on the exception. The information provided
by Message depends on the type of exception that’s raised.

CAUTION

If you define your own exception object, make sure that you derive it from a known
exception object such as Exception or one of its descendants. The reason for this is so
that generic exception handlers will be able to trap your exception.

When you handle a specific type of exception in an except block, that handler also will catch
any exceptions that are descendants of the specified exception. For example, EMathError is the
ancestor object for a variety of math-related exceptions, such as EZeroDivide and EOverflow.
You can catch any of these exceptions by setting up a handler for EMathError, as shown here:
try

Statements
except

on EMathError do // will catch EMathError or any descendant

HandleException
end;

Any exceptions that you don’t explicitly handle in your program eventually will flow to, and
be handled by, the default handler located within the Delphi runtime library. The default handler
will put up a message dialog box informing the user that an exception occurred. Incidentally,
Chapter 4, “Application Frameworks and Design Concepts,” on the electronic version of
Delphi 5 Developer’s Guide found on the CD accompanying this book will show an example
of how to override the default exception handling.

When handling an exception, you sometimes need to access the instance of the exception
object in order to retrieve more information on the exception, such as that provided by its
Message property. There are two ways to do this: Use an optional identifier with the on
ESomeException construct or use the ExceptObject () function.

The Object Pascal Language

CHAPTER 2

You can insert an optional identifier in the on ESomeException portion of an except block and
have the identifier map to an instance of the currently raised exception. The syntax for this is
to preface the exception type with an identifier and a colon, as follows:
try

Something
except

on E:ESomeException do

ShowMessage (E.Message) ;

end;

The identifier (E in this case) becomes the instance of the currently raised exception. This iden-
tifier is always of the same type as the exception it prefaces.

You can also use the ExceptObject () function, which returns an instance of the currently
raised exception. The drawback to ExceptObject (), however, is that it returns a TObject that
you must then typecast to the exception object of your choice. The following example shows
the usage of this function:
try

Something
except

on ESomeException do

ShowMessage (ESomeException(ExceptObject) .Message);

end;

The ExceptObject() function will return nil if there is no active exception.

The syntax for raising an exception is similar to the syntax for creating an object instance. To
raise a user-defined exception called EBadStuff, for example, you would use this syntax:

Raise EBadStuff.Create('Some bad stuff happened.');

Flow of Execution

After an exception is raised, the flow of execution of your program propagates up to the next
exception handler until the exception instance is finally handled and destroyed. This process is
determined by the call stack and therefore works program-wide (not just within one procedure
or unit). Listing 2.5 illustrates the flow of execution of a program when an exception is raised.
This listing is the main unit of a Delphi application that consists of one form with one button
on the form. When the button is clicked, the Button1Click () method calls Proc1(), which
calls Proc2(), which in turn calls Proc3(). An exception is raised in Proc3(), and you can
witness the flow of execution propagating through each try..finally block until the excep-
tion is finally handled inside Button1Click().

123

N

IOVNONV
1vosvd
153raQ IHL

124 Development Essentials

PART |

Tip

When you run this program from the Delphi IDE, you'll be able to see the flow of exe-
cution better if you disable the integrated debugger’s handling of exceptions by
unchecking Tools, Debugger Options, Language Exceptions, Stop on Delphi Exceptions.

LisTING 2.5 Main Unit for the Exception Propagation Project

unit Main;
interface

uses
SysUtils, Windows, Messages, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls;

type
TForm1 = class(TForm)
Buttoni: TButton;
procedure ButtoniClick(Sender: TObject);

private
{ Private declarations }
public
{ Public declarations }
end;
var

Form1: TFormi;
implementation
{$R *.DFM}

type
EBadStuff = class(Exception);

procedure Proc3;
begin
try
raise EBadStuff.Create('Up the stack we go!');
finally
ShowMessage ('Exception raised. Proc3 sees the exception');
end;
end;

The Object Pascal Language

CHAPTER 2

LisTING 2.5 Continued

procedure Proc2;
begin
try
Procg3;
finally
ShowMessage ('Proc2 sees the exception');
end;
end;

procedure Proci;
begin
try
Proc2;
finally
ShowMessage('Proc1 sees the exception');
end;
end;

procedure TFormi.ButtoniClick(Sender: TObject);
const
ExceptMsg = 'Exception handled in calling procedure. The message is "%s"';
begin
ShowMessage('This method calls Proci1 which calls Proc2 which calls Proc3');
try
Proci;
except
on E:EBadStuff do
ShowMessage (Format (ExceptMsg, [E.Messagel]));
end;
end;

end.

125

Reraising an Exception

When you need to perform special handling for a statement inside an existing try. .except
block and still need to allow the exception to flow to the block’s outer default handler, you can
use a technique called reraising the exception. Listing 2.6 demonstrates an example of rerais-
ing an exception.

N

IOVNONV
1vosvd
153raQ IHL

126 Development Essentials

PART |

LISTING 2.6 Reraising an Exception

try // this is outer block
{ statements }
{ statements }
(statements }

try // this is the special inner block
{ some statement that may require special handling }
except
on ESomeException do
begin
{ special handling for the inner block statement }
raise; // reraise the exception to the outer block
end;
end;
except

// outer block will always perform default handling
on ESomeException do Something;
end;

Runtime Type Information

Runtime Type Information (RTTI) is a language feature that gives a Delphi application the
capability to retrieve information about its objects at runtime. RTTI is also the key to links
between Delphi components and their incorporation into the Delphi IDE, but it isn’t just an
academic process that occurs in the shadows of the IDE.

Objects, by virtue of being TObject descendants, contain a pointer to their RTTI and have sev-
eral built-in methods that enable you to get some useful information out of the RTTI. Table 2.7
lists some of the TObject methods that use RTTI to retrieve information about a particular
object instance.

TABLE 2.7 TObject Methods that Use RTTI

Function Return Type Returns

ClassName() string The name of the object’s class

ClassType() TClass The object’s type

InheritsFrom() Boolean Boolean to indicate whether the class
descends from a given class

ClassParent() TClass The object ancestor’s type

InstanceSize() word The size, in bytes, of an instance

ClassInfo() Pointer A pointer to the object’s

in-memory RTTI

The Object Pascal Language

CHAPTER 2

Object Pascal provides two operators, is and as, that allow comparisons and typecasts of
objects via RTTIL.

The as keyword is a new form of typesafe typecast. It enables you to cast a low-level object to
a descendant and raises an exception if the typecast is invalid. Suppose that you have a proce-

dure to which you want to be able to pass any type of object. This function definition could be
defined as

Procedure Foo(AnObject: TObject);

If you want to do something useful with AnObject later in this procedure, you’ll probably have
to cast it to a descendant object. Suppose you want to assume that AnObject is a TEdit descen-
dant, and you want to change the text it contains (a TEdit is a Delphi VCL edit control). You
can use the following code:

(Foo as TEdit).Text := 'Hello World.';

You can use the Boolean comparison operator is to check whether two objects are of compati-
ble types. Use the is operator to compare an unknown object to a known type or instance to
determine what properties and behavior you can assume about the unknown object. For exam-
ple, you might want to check to see whether AnObject is pointer-compatible with TEdit before
attempting to typecast it:

If (Foo is TEdit) then
TEdit(Foo).Text := 'Hello World.';

Notice that you didn’t use the as operator to perform the typecast in this example. That’s
because a certain amount of overhead is involved in using RTTI. The first line has already
determined that Foo is a TEdit, so you can optimize the code by performing a traditional type-
cast in the second line. A traditional typecast generally carries with it no runtime overhead.

Summary

Quite a bit of material was covered in this chapter. You learned the basic syntax and semantics
of the Object Pascal language, including variables, operators, functions, procedures, types,
constructs, and style. You should also have a clear understanding of OOP, objects, fields, prop-
erties, methods, TObject, interfaces, exception handling, and RTTI.

Now that you have the big picture of how Delphi’s object-oriented Object Pascal language
works, you’re ready to move on to more advanced discussions of application frameworks and
design concepts.

127

N

IOVNONV
1vosvd
153raQ IHL

Adventures in Messaging CHAPTER

IN THIS CHAPTER

e What Is a Message? 130

¢ Types of Messages 131

e How the Windows Message System Works 132
¢ Delphi's Message System 133

¢ Handling Messages 134

e Sending Your Own Messages 140

¢ Nonstandard Messages 142

¢ Anatomy of a Message System: VCL 146

¢ The Relationship Between Messages and
Events 154

130

Development Essentials
PART |

Although Visual Component Library (VCL) components expose many Win32 messages via
Object Pascal events, it’s still essential that you, the Win32 programmer, understand how the
Windows message system works.

As a Delphi applications programmer, you’ll find that the events surfaced by VCL will suit
most of your needs; only occasionally will you have to delve into the world of Win32 message
handling. As a Delphi component developer, however, you and messages will become very
good friends because you have to directly handle many Windows messages and then invoke
events corresponding to those messages.

NoTE

The messaging capabilities covered in this chapter are specific to the VCL and aren't
supported under the CLX environment. For more on the CLX architectures, see
Chapters 10, “Component Architecture: VCL and CLX,” and 13, “CLX Component
Development.”

What Is a Message?

A message is a notification of some occurrence sent by Windows to an application. Clicking a
mouse button, resizing a window, or pressing a key on the keyboard, for example, causes
Windows to send a message to an application notifying it of what occurred.

A message manifests itself as a record passed to an application by Windows. That record con-
tains information such as what type of event occurred and additional information specific to the
message. The message record for a mouse button click message, for example, contains the
mouse coordinates at the time the button was pressed. The record type passed from Windows
to the application is called a TMsg, which is defined in the Windows unit as shown in the follow-
ing code:

type
TMsg = packed record
hwnd: HWND; // the handle of the Window for which the message
// is intended
message: UINT; // the message constant identifier
wParam: WPARAM; // 32 bits of additional message-specific information
1Param: LPARAM; // 32 bits of additional message-specific information
time: DWORD; // the time that the message was created
pt: TPoint; // Mouse cursor position when the message was created
end;

Adventures in Messaging
CHAPTER 3

What's in a Message?

Does the information in a message record look like Greek to you? If so, here’s a little

insight into what’s what:

hwnd

message

wParam

1Param

The 32-bit window handle of the window for
which the message is intended. The window can
be almost any type of screen object because
Win32 maintains window handles for most visual
objects (windows, dialog boxes, buttons, edits,
and so on).

A constant value that represents some message.
These constants can be defined by Windows in
the Windows unit or by you through user-defined
messages.

This field often contains a constant value associ-
ated with the message; it can also contain a win-
dow handle or the identification number of
some window or control associated with the
message.

This field often holds an index or pointer to
some data in memory. Because wParam, 1Param,
and Pointer are all 32 bits in size, you can type-
cast interchangeably between them.

Now that you have an idea what makes up a message, it’s time to take a look at some different

types of Windows messages.

Types of Messages

The Win32 API predefines a constant for each Windows message. These constants are the val-
ues kept in the message field of the TMsg record. All these constants are defined in Delphi’s
Messages unit; most are also described in the online help. Notice that each of these constants
begins with the letters WM, which stand for Windows Message. Table 3.1 lists some of the
common Windows messages, along with their meanings and values.

131

W

ONIDVSSIAI
NI SIMNLNIAQY

132

Development Essentials
PART |

TaBLE 3.1 Common Windows Messages

Message

Identifier Value Tells a Window That. . .

wm_Activate $0016 It’s being activated or deactivated.

wm_Char $0102 wm_KeyDown and wm_KeyUp messages have been sent
for one key.

wm_Close $0010 It should terminate.

wm_KeyDown $0100 A keyboard key is being pressed.

wm_KeyUp $0101 A keyboard key has been released.

wm_LButtonDown $0201 The user is pressing the left mouse button.

wm_MouseMove $0200 The mouse is being moved.

WM_PAINT $000F It must repaint its client area.

wm_Timer $0113 A timer event has occurred.

wm_Quit $0012 A request has been made to shut down the program.

How the Windows Message System Works
A Windows application’s message system has three key components:

* Message queue—Windows maintains a message queue for each application. A Windows
application must get messages from this queue and dispatch them to the proper windows.

* Message loop—This is the loop mechanism in a Windows program that fetches a mes-
sage from the application queue and dispatches it to the appropriate window, fetches the
next message, dispatches it to the appropriate window, and so on.

* Window procedure—Each window in your application has a window procedure that
receives each of the messages passed to it by the message loop. The window procedure’s
job is to take each window message and respond to it accordingly. A window procedure
is a callback function; a window procedure usually returns a value to Windows after pro-
cessing a message.

NoTE

A callback function is a function in your program that’s called by Windows or some
other external module.

Adventures in Messaging

CHAPTER 3

Getting a message from point A (some event occurs, creating a message) to point B (a window

in your application responds to the message) is a five-step process:

1. Some event occurs in the system.

2. Windows translates this event into a message and places it into the message queue for

your application.

3. Your application retrieves the message from the queue and places it in a TMsg record.

4. Your application passes on the message to the window procedure of the appropriate win-

dow in your application.

5. The window procedure performs some action in response to the message.

Steps 3 and 4 make up the application’s message loop. The message loop is often considered
the heart of a Windows program because it’s the facility that enables your program to respond
to external events. The message loop spends its whole life fetching messages from the applica-
tion queue and passing them to the appropriate windows in your application. If there are no
messages in your application’s queue, Windows allows other applications to process their mes-

sages. Figure 3.1 shows these steps.

Event
Occurs

Windows
creates a
message

FiGURE 3.1
The Windows Message system.

Window

procedure

M ge
(Loop
Message Loop

takes next
message from
the queue
Message
Queue

Message is placed

at the end of the
applications message
queue

Delphi’s Message System

VCL handles many of the details of the Windows message system for you. The message
loop is built into VCL’s Forms unit, for example, so you don’t have to worry about fetching

And passes the
message on to the
window procedure
for the appropriate
window

133

W

ONIDVSSIAI
NI SIUNLNIAQY

134

Development Essentials
PART |

messages from the queue or dispatching them to a window procedure. Delphi also places the
information located in the Windows TMsg record into a generic TMessage record:

type
TMessage = record
Msg: Cardinal;
case Integer of
0: (
WParam: Longint;
LParam: Longint;
Result: Longint);
1: (
WParamLo: Word;
WParamHi: Word;
LParamLo: Word;
LParamHi: Word;
ResultLo: Word;
ResultHi: Word);
end;

Notice that TMessage record has a little less information than does TMsg. That’s because Delphi
internalizes the other TMsg fields; TMessage contains just the essential information you need to
handle a message.

It’s important to note that the TMessage record also contains a Result field. As mentioned ear-
lier, some messages require the window procedure to return some value after processing a mes-
sage. With Delphi, you accomplish this process in a straightforward fashion by placing the
return value in the Result field of TMessage. This process is explained in detail later in the
section “Assigning Message Result Values.”

Message-Specific Records

In addition to the generic TMessage record, Delphi defines a message-specific record for every
Windows message. The purpose of these message-specific records is to give you all the infor-
mation the message offers without having to decipher the wParam and 1Param fields of a
record. All the message-specific records can be found in the Messages unit. As an example,
here’s the message record used to hold most mouse messages:

type
TWMMouse = packed record
Msg: Cardinal;
Keys: Longint;
case Integer of
0: (
XPos: Smallint;

Adventures in Messaging
CHAPTER 3

YPos: Smallint);
1: (
Pos: TSmallPoint;
Result: Longint);
end;

All the record types for specific mouse messages (WM_LBUTTONDOWN and WM_RBUTTONUP, for
example) are simply defined as equal to TWMMouse, as in the following example:

TWMRButtonUp = TWMMouse;
TWMLButtonDown = TWMMouse;

NoTE

A message record is defined for nearly every standard Windows message. The naming
convention dictates that the name of the record must be the same as the name of
the message with a T prepended, using camel capitalization and without the under-
score. For example, the name of the message record type for a WM_SETFONT message is
TWMSetFont.

By the way, TMessage works with all messages in all situations but isn't as convenient
as message-specific records.

Handling Messages

Handling or processing a message means that your application responds in some manner to a
Windows message. In a standard Windows application, message handling is performed in each
window procedure. By internalizing the window procedure, however, Delphi makes it much
easier to handle individual messages; instead of having one procedure that handles all mes-
sages, each message has its own procedure. Three requirements must be met for a procedure to
be a message-handling procedure:

¢ The procedure must be a method of an object.

* The procedure must take one var parameter of a TMessage or other message-specific
record type.

* The procedure must use the message directive followed by the constant value of the mes-
sage you want to process.

Here’s an example of a procedure that handles WM_PAINT messages:

procedure WMPaint(var Msg: TWMPaint); message WM_PAINT;

135

W

ONIDVSSIAI
NI SIMNLNIAQY

136

Development Essentials
PART |

NoTE

When naming message-handling procedures, the convention is to give them the same
name as the message itself, using camel capitalization and without the underscore.

As another example, let’s write a simple message-handling procedure for WM_PAINT that
processes the message simply by beeping.

Start by creating a new, blank project. Then access the Code Editor window for this project and
add the header for the WMPaint function to the private section of the TForm1 object:

procedure WMPaint(var Msg: TWMPaint); message WM_PAINT;

Now add the function definition to the implementation part of this unit. Remember to use the
dot operator to scope this procedure as a method of TFormi. Don’t use the message directive as
part of the function implementation:

procedure TForm1.WMPaint(var Msg: TWMPaint);
begin

Beep;

inherited;
end;

Notice the use of the inherited keyword here. Call inherited when you want to pass the
message to the ancestor object’s handler. By calling inherited in this example, you pass on
the message to TForm’s WM_PAINT handler.

NoTE

Unlike normal calls to inherited methods, here you don’t give the name of the inher-
ited method because the name of the method is unimportant when it’s dispatched.
Delphi knows what method to call based on the message value used with the
message directive in the class interface.

The main unit in Listing 3.1 provides a simple example of a form that processes the WM_PAINT
message. Creating this project is easy: Just create a new project and add the code for the
WMPaint procedure to the TForm object.

Adventures in Messaging
CHAPTER 3

LisTING 3.1 GetMess—A Message-Handling Example

unit GMMain;
interface
uses

SysUtils, Windows, Messages, Classes, Graphics, Controls,
Forms, Dialogs;

type
TForm1 = class(TForm)
private
procedure WMPaint(var Msg: TWMPaint); message WM_PAINT;
end;
var

Formi: TFormi;
implementation
{$R *.DFM}
procedure TFormi.WMPaint(var Msg: TWMPaint);
begin
MessageBeep (0) ;
inherited;

end;

end.

Whenever a WM_PAINT message comes down the pike, it’s passed to the WMPaint procedure.
The WMPaint procedure simply informs you of the WM_PAINT message by making some noise
with the MessageBeep () procedure and then passes the message to the inherited handler.

MessageBeep(): The Poor Man’s Debugger

While we're on the topic of beeping, now is a good time for a slight digression. The
MessageBeep () procedure is one of the most straightforward and useful elements in
the Win32 API. Its use is simple: Call MessageBeep (), pass a predefined constant, and
Windows beeps the PC's speaker. (If you have a sound card, it plays a WAV file.) Big

continues

137

W

ONIDVSSIAI
NI SIUNLNIAQY

138

Development Essentials
PART |

deal, you say? On the surface it might not seem like much, but MessageBeep () really
shines as an aid in debugging your programs.

If you're looking for a quick-and-dirty way to tell whether your program is reaching a
certain place in your code—without having to bother with the debugger and break-
points—MessageBeep () is for you. Because it doesn’t require a handle or some other
Windows resource, you can use it practically anywhere in your code, and as a wise
man once said, “MessageBeep () is for the itch you can’t scratch with the debugger.” If
you have a sound card, you can pass MessageBeep () one of several predefined con-
stants to have it play a wider variety of sounds—these constants are defined under
MessageBeep () in the Win32 API help file.

If you're like the authors and are too lazy to type out that whole big, long function
name and parameter, you can use the Beep() procedure found in the SysUtils unit.
The implementation of Beep () is simply a call to MessageBeep () with the parameter 0.

Message Handling: Not Contract Free

Unlike responding to Delphi events, handling Windows messages is not “contract free.” Often,
when you decide to handle a message yourself, Windows expects you to perform some action
when processing the message. Most of the time, VCL has much of this basic message process-
ing built in—all you have to do is call inherited to get to it. Think of it this way: You write a
message handler so that your application will do the things you expect, and you call inherited
so that your application will do the additional things Windows expects.

NoTE

The contractual nature of message handling can be more than just calling the inher-
ited handler. In message handlers, you’re sometimes restricted in what you can do.
For example, in a WM_KILLFOCUS message, you cannot set focus to another control
without causing a crash.

To demonstrate the inherited elements, consider the program in Listing 3.1 without calling
inherited in the WMPaint () method. the procedure would look like this:

procedure TFormi.WMPaint(var Msg: TWMPaint);
begin

MessageBeep(0) ;
end;

This procedure never gives Windows a chance to perform basic handling of the WM_PAINT mes-
sage, and the form will never paint itself. In fact, you might end up with several WM_PAINT

Adventures in Messaging

CHAPTER 3

messages stacking up in the message queue, causing the beep to continue until the queue is
cleared.

Sometimes there are circumstances in which you don’t want to call the inherited message han-
dler. An example is handling the WM_SYSCOMMAND messages to prevent a window from being
minimized or maximized.

Assigning Message Result Values

When you handle some Windows messages, Windows expects you to return a result value. The
classic example is the WM_CTLCOLOR message. When you handle this message, Windows expects
you to return a handle to a brush with which you want Windows to paint a dialog box or
control. (Delphi provides a Color property for components that does this for you, so the exam-
ple is just for illustration purposes.) You can return this brush handle easily with a message-
handling procedure by assigning a value to the Result field of TMessage (or another message
record) after calling inherited. For example, if you were handling WM_CTLCOLOR, you could
return a brush handle value to Windows with the following code:

procedure TForm1.WMCtlColor(var Msg: TWMCtlColor);
var
BrushHand: hBrush;
begin
inherited;
{ Create a brush handle and place into BrushHand variable }
Msg.Result := BrushHand;
end;

The TApplication Type’s OnMessage Event

Another technique for handling messages is to use TApplication’s OnMessage event. When
you assign a procedure to OnMessage, that procedure is called whenever a message is pulled
from the queue and about to be processed. This event handler is called before Windows itself
has a chance to process the message. The Application.OnMessage event handler is of
TMessageEvent type and must be defined with a parameter list, as shown here:

procedure SomeObject.AppMessageHandler(var Msg: TMsg;
var Handled: Boolean);

All the message parameters are passed to the OnMessage event handler in the Msg parameter.
(Note that this parameter is of the Windows TMsg record type described earlier in this chapter.)
The Handled field requires you to assign a Boolean value indicating whether you have handled
the message.

139

W

ONIDVSSIAI
NI SIUNLNIAQY

140

Development Essentials
PART |

You can create an OnMessage event handler by using a TApplicationEvents component from
the Additional page of the Component Palette. Here is an example of such an event handler:
var

NumMessages: Integer;

procedure TFormi.ApplicationEventsiMessage(var Msg: tagMSG;
var Handled: Boolean);

begin
Inc(NumMessages) ;
Handled := False;
end;

One limitation of OnMessage is that it’s executed only for messages pulled out of the queue and
not for messages sent directly to the window procedures of windows in your application.
Chapter 13, “Hard-Core Techniques,” of Delphi 5 Developers Guide, which is on this book’s
CD-ROM, shows techniques for working around this limitation by hooking into the application
window procedure.

Tip

OnMessage sees all messages posted to all window handles in your application. This is
the busiest event in your application (thousands of messages per second), so don’t do
anything in an OnMessage handler that takes a lot of time because you'll slow your
whole application to a crawl. Clearly, this is one place where a breakpoint would be a
very bad idea.

Sending Your Own Messages

Just as Windows sends messages to your application’s windows, you will occasionally need to
send messages between windows and controls within your application. Delphi provides several
ways to send messages within your application, such as the Perform() method (which works
independently of the Windows API) and the SendMessage () and PostMessage () API functions.

The Perform() Method

VCL provides the Perform() method for all TControl descendants; Perform() enables you to
send a message to any form or control object given an instance of that object. The Perform()
method takes three parameters—a message and its corresponding 1Param and wParam—and is
defined as follows:

function TControl.Perform(Msg: Cardinal; WParam, LParam: Longint):
Longint;

Adventures in Messaging
CHAPTER 3

To send a message to a form or control, use the following syntax:
Retval := ControlName.Perform(MessageID, wParam, lParam);

() is synchronous in that it doesn’t return until the message has been handled. The
Perform() method packages its parameters into a TMessage record and then calls the object’s
Dispatch() method to send the message—bypassing the Windows API messaging system. The
h() method is described later in this chapter.

Perform

Dispatc

The SendMessage () and PostMessage() APl Functions

Sometimes you need to send a message to a window for which you don’t have a Delphi object
instance. For example, you might want to send a message to a non-Delphi window, but you
have only a handle to that window. Fortunately, the Windows API offers two functions that fit
this bill: SendMessage () and PostMessage (). These two functions are essentially identical,
except for one key difference: SendMessage (), similar to Perform(), sends a message directly
to the window procedure of the intended window and waits until the message is processed
before returning; PostMessage () posts a message to the Windows message queue and returns
immediately.

SendMessage () and PostMessage () are declared as follows:

function SendMessage(hWnd: HWND; Msg: UINT; wParam: WPARAM;
1Param: LPARAM): LRESULT; stdcall;

function PostMessage (hWnd: HWND; Msg: UINT; wParam: WPARAM;
1Param: LPARAM): BOOL; stdcall;

e hWnd is the window handle for which the message is intended.
* Msg is the message identifier.
* wParam is 32 bits of additional message-specific information.

e 1Param is 32 bits of additional message-specific information.

NoTE

Although SendMessage () and PostMessage() are used similarly, their respective return
values are different. SendMessage () returns the result value of the message being
processed, but PostMessage () returns only a BOOL that indicates whether the message
was placed in the target window’s queue. Another way to think of this is that
SendMessage () is a synchronous operation, whereas PostMessage () is asynchronous.

continues

141

W

ONIDVSSIAI
NI SIUNLNIAQY

142

Development Essentials
PART |

Nonstandard Messages

Until now, the discussion has centered on regular Windows messages (those that begin with
wM_xxX). However, two other major categories of messages merit some discussion: notification
messages and user-defined messages.

Notification Messages

Notification messages are messages sent to a parent window when something happens in one
of its child controls that might require the parent’s attention. Notification messages occur only
with the standard Windows controls (button, list box, combo box, and edit control) and with
the Windows Common Controls (tree view, list view, and so on). For example, clicking or dou-
ble-clicking a control, selecting some text in a control, and moving the scrollbar in a control all
generate notification messages.

You can handle notification messages by writing message-handling procedures in the form that
contains a particular control. Table 3.2 lists the Win32 notification messages for standard
Windows controls.

TaBLE 3.2 Standard Control Notification Messages

Notification Meaning

Button Notification

BN_CLICKED
BN_DISABLE
BN_DOUBLECLICKED
BN_HILITE
BN_PAINT
BN_UNHILITE

Combo Box Notification

CBN_CLOSEUP
CBN_DBLCLK
CBN_DROPDOWN
CBN_EDITCHANGE
CBN_EDITUPDATE
CBN_ERRSPACE
CBN_KILLFOCUS
CBN_SELCHANGE

The user clicked a button.

A button is disabled.

The user double-clicked a button.
The user highlighted a button.
The button should be painted.
The highlight should be removed.

The list box of a combo box has closed.

The user double-clicked a string.

The list box of a combo box is dropping down.
The user has changed text in the edit control.
Altered text is about to be displayed.

The combo box is out of memory.

The combo box is losing the input focus.

A new combo box list item is selected.

Adventures in Messaging

TaBLE 3.2 Continued

CHAPTER 3

Notification

Meaning

CBN_SELENDCANCEL
CBN_SELENDOK
CBN_SETFOCUS

List Box Notification

LBN_DBLCLK
LBN_ERRSPACE
LBN_KILLFOCUS
LBN_SELCANCEL
LBN_SELCHANGE
LBN_SETFOCUS

The user’s selection should be canceled.
The user’s selection is valid.

The combo box is receiving the input focus.

Edit Notification
EN_CHANGE The display is updated after text changes.
EN_ERRSPACE The edit control is out of memory.
EN_HSCROLL The user clicked the horizontal scrollbar.
EN_KILLFOCUS The edit control is losing the input focus.
EN_MAXTEXT The insertion is truncated.
EN_SETFOCUS The edit control is receiving the input focus.
EN_UPDATE The edit control is about to display altered text.
EN_VSCROLL The user clicked the vertical scrollbar.

The user double-clicked a string.
The list box is out of memory.

The list box is losing the input focus.
The selection is canceled.

The selection is about to change.

The list box is receiving the input focus.

143

W

ONIDVSSIAI
NI ST¥NINIAQY

Internal VCL Messages

VCL has an extensive collection of its own internal and notification messages. Although you
don’t commonly use these messages in your Delphi applications, Delphi component writers
will find them useful. These messages begin with CM_ (for component message) or CN_ (for
component notification), and they are used to manage VCL internals such as focus, color, visi-
bility, window re-creation, dragging, and so on. You can find a complete list of these messages
in the “Creating Custom Components” portion of the Delphi online help.

A common inquiry is how to detect that the mouse is entered or left a controls space. This can
be handled by processing the custom messages CM_MOUSEENTER and CM_MOUSELEAVE. Consider
the following component:

TSpecialPanel = class(TPanel)
protected

144

Development Essentials
PART |

procedure CMMouseEnter(var Msg: TMessage); message CM_MOUSEENTER;
procedure CMMouselLeave(var Msg: TMessage); message CM_MOUSELEAVE;
end;

procedure TSpecialPanel.CMMouseEnter(var Msg: TMessage);
begin

inherited;

Color := clWhite;
end;

procedure TSpecialPanel.CMMouselLeave(var Msg: TMessage);
begin

inherited;

Color := clBtnFace;
end;

This component handles the custom messages by turning the panel white when the mouse has
entered the component’s surface area and then turns the color back to c1BtnFace when the
mouse leaves. You’ll find an example of this code on the CD under the directory CustMessage.

User-Defined Messages

At some point, you’ll come across a situation in which one of your own applications must send
a message to itself, or you have to send messages between two of your own applications. At
this point, one question that might come to mind is, “Why would I send myself a message
instead of simply calling a procedure?” It’s a good question, and there are actually several
answers. First, messages give you polymorphism without requiring knowledge of the recipi-
ent’s type. Messages are therefore as powerful as virtual methods but more flexible. Also, mes-
sages allow for optional handling: If the recipient doesn’t do anything with the message, no
harm is done. Finally, messages allow for broadcast notifications to multiple recipients and
“parasitic” eavesdropping, which isn’t easily done with procedures alone.

Messages Within Your Application

Having an application send a message to itself is easy. Just use the Perform(), SendMessage (),
or PostMessage () function and use a message value in the range of Wi_USER + 100 through
$7FFF (the value Windows reserves for user-defined messages):

const
SX_MYMESSAGE = WM_USER + 100;

begin
SomeForm.Perform(SX_MYMESSAGE, 0, 0);
{or}
SendMessage (SomeForm.Handle, SX_MYMESSAGE, @, 0);

Adventures in Messaging
CHAPTER 3

{or}
PostMessage (SomeForm.Handle, SX_MYMESSAGE, @, 0);

end;
Then create a normal message-handling procedure for this message in the form in which you
want to handle the message:

TForm1 = class(TForm)

private
procedure SXMyMessage(var Msg: TMessage); message SX_MYMESSAGE;
end;

procedure TForml.SXMyMessage(var Msg: TMessage);
begin

MessageD1lg('She turned me into a newt!', mtInformation, [mbOk], 0);
end;

As you can see, there’s little difference between using a user-defined message in your applica-
tion and handling any standard Windows message. The real key here is to start at WM_USER +
100 for interapplication messages and to give each message a name that has something to do
with its purpose.

CAUTION

Never send messages with values of WM_USER through $7FFF unless you're sure that
the intended recipient is equipped to handle the message. Because each window can
define these values independently, the potential for bad things to happen is great
unless you keep careful tabs on which recipients you send WM_USER through $7FFF
messages to.

Messaging Between Applications

When you want to send messages between two or more applications, it’s usually best to use the
RegisterWindowMessage () API function in each application. This method ensures that every
application uses the same message number for a given message.

RegisterWindowMessage () accepts a null-terminated string as a parameter and returns a new
message constant in the range of $¢000 through $FFFF. This means that all you have to do is

145

W

ONIDVSSIAI
NI SIUNLNIAQY

146

Development Essentials
PART |

call RegisterWindowMessage () with the same string in each application between which you
want to send messages; Windows returns the same message value for each application. The
true benefit of RegisterWindowMessage () is that because a message value for any given string
is guaranteed to be unique throughout the system, you can safely broadcast such messages to
all windows with fewer harmful side effects. It can be a bit more work to handle this kind of
message, though; because the message identifier isn’t known until runtime, you can’t use

a standard message handler procedure, and you must override a control’s WndProc () or
DefaultHandler () method or subclass an existing window procedure. A technique for han-
dling registered messages is demonstrated in Chapter 13, “Hard-Core Techniques,” of Delphi 5
Developer’s Guide, found on this book’s CD-ROM. This useful demo shows how to prevent
multiple copies of your application from being launched.

NoTE

The number returned by RegisterWindowMessage () varies between Windows sessions
and can’t be determined until runtime.

Broadcasting Messages

TwinControl descendants can broadcast a message record to each of their owned controls—
thanks to the Broadcast () method. This technique is useful when you need to send the same
message to a group of components. For example, to send a user-defined message called um_Foo
to all of Panel1’s owned controls, use the following code:

var
M: TMessage;
begin
with M do
begin
Message := UM_F0O0;
wParam := 0;
1Param := 0;
Result 0;
end;
Paneli.Broadcast(M);
end;

Anatomy of a Message System: VCL

There’s much more to VCL’s message system than handling messages with the message direc-
tive. After a message is issued by Windows, it makes a couple of stops before reaching your
message-handling procedure (and it might make a few more stops afterward). All along the
way, you have the power to act on the message.

Adventures in Messaging
CHAPTER 3

For posted messages, the first stop for a Windows message in VCL is the Application.Process
Message () method, which houses the VCL main message loop. The next stop for a message
is the handler for the Application.OnMessage event. OnMessage is called as messages are
fetched from the application queue in the ProcessMessage () method. Because sent messages
aren’t queued, OnMessage won’t be called for sent messages.

For posted messages, the DispatchMessage () API is then called internally to dispatch the mes-
sage to the StdWndProc () function. For sent messages, StdWndProc () will be called directly by
Win32. stdwndProc () is an assembler function that accepts the message from Windows and
routes it to the object for which the message is intended.

The object method that receives the message is called MainwWndProc (). Beginning with
MainWndProc (), you can perform any special handling of the message your program might
require. Generally, you handle a message at this point only if you don’t want a message to
go through VCL’s normal dispatching.

After leaving the MainWndProc () method, the message is routed to the object’s WndProc ()
method and then on to the dispatch mechanism. The dispatch mechanism, found in the object’s
Dispatch () method, routes the message to any specific message-handling procedure that
you’ve defined or that already exists within VCL.

Then the message finally reaches your message-specific handling procedure. After flowing
through your handler and the inherited handlers you might have invoked using the inherited
keyword, the message goes to the object’s DefaultHandler () method. DefaultHandler()
performs any final message processing and then passes the message to the Windows
DefWindowProc () function or other default window procedure (such as DefMDIProc) for

any Windows default processing. Figure 3.2 shows VCL’s message-processing mechanism.

NoTEe

You should always call inherited when handling messages unless you're absolutely
certain you want to prevent normal message processing.

Tip

Because all unhandled messages flow to DefaultHandler(), that's usually the best
place to handle interapplication messages in which the values were obtained by way
of the RegisterWindowMessage () procedure.

147

W

ONIDVSSIAI
NI SIUNLNIAQY

148

Development Essentials
PART |

SomeClass WndProc

Y

SomeClass
Dispatch

Y

SomeClass Ancestor AncestorN
Message Handler Message Handler Message Handler

Y

SomeClass
Default Handler

FIGURE 3.2

VCL’s message system.

To better understand VCL’s message system, create a small program that can handle a message
at the Application.OnMessage, WndProc (), message procedure, or DefaultHandler () stage.
This project is called CatchIt; its main form is shown in Figure 3.3.

o]
Caplture Message In [~ EatMessage
[¥ OnMessage Eat Message In:
" OnMessage
¥ WndProc :
 WndProc
[¥ Message Procedure Message Proc
IV Default Handler ' ErENilRETCy
Post Message Send Message

FIGURE 3.3

The main form of the Catchlt message example.

The onClick event handlers for PostMessButton and SendMessButton are shown in the fol-
lowing code. The former uses PostMessage () to post a user-defined message to the form; the
latter uses SendMessage () to send a user-defined message to the form. To differentiate between
post and send, note that the value 1 is passed in the wParam of PostMessage () and that the
value 0 (zero) is passed for SendMessage (). Here’s the code:

procedure TMainForm.PostMessButtonClick(Sender: TObject);
{ posts message to form }
begin
PostMessage (Handle, SX MYMESSAGE, 1, 0);
end;

Adventures in Messaging

CHAPTER 3

procedure TMainForm.SendMessButtonClick(Sender: TObject);
{ sends message to form }
begin
SendMessage (Handle, SX_MYMESSAGE, @, @); // send message to form
end;

This application provides the user with the opportunity to “eat” the message in the OnMessage
handler, WndProc () method, message-handling method, or DefaultHandler () method (that is,
to not trigger the inherited behavior and to therefore stop the message from fully circulating
through VCL’s message-handling system). Listing 3.2 shows the completed source code for the
main unit of this project, thus demonstrating the flow of messages in a Delphi application.

LisTING 3.2 The Source Code for CIMain.PAS

unit CIMain;
interface
uses

SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ExtCtrls, Menus;

const
SX_MYMESSAGE = WM_USER; /| User-defined message value
MessString = '%s message now in %s.'; // String to alert user

type

TMainForm = class(TForm)
GroupBox1: TGroupBox;
PostMessButton: TButton;
WndProcCB: TCheckBox;
MessProcCB: TCheckBox;
DefHandCB: TCheckBox;
SendMessButton: TButton;
AppMsgCB: TCheckBox;
EatMsgCB: TCheckBox;
EatMsgGB: TGroupBox;
OnMsgRB: TRadioButton;
WndProcRB: TRadioButton;
MsgProcRB: TRadioButton;
DefHandlerRB: TRadioButton;
procedure PostMessButtonClick(Sender: TObject);
procedure SendMessButtonClick(Sender: TObject);
procedure EatMsgCBClick(Sender: TObject);
procedure FormCreate(Sender: TObject);

149

W

ONIDVSSIAI
NI ST¥NINIAQY

150

Development Essentials
PART |

LisTING 3.2 Continued

procedure AppMsgCBClick(Sender: TObject);
private
{ Handles messages at Application level }
procedure OnAppMessage(var Msg: TMsg; var Handled: Boolean);
{ Handles messages at WndProc level }
procedure WndProc(var Msg: TMessage); override;
{ Handles message after dispatch }
procedure SXMyMessage(var Msg: TMessage); message SX_MYMESSAGE;
{ Default message handler }
procedure DefaultHandler(var Msg); override;
end;

var
MainForm: TMainForm;

implementation
{$R *.DFM}

const
// strings which will indicate whether a message is sent or posted
SendPostStrings: array[0..1] of String = ('Sent', 'Posted');

procedure TMainForm.FormCreate(Sender: TObject);
{ OnCreate handler for main form }
begin
// set OnMessage to my OnAppMessage method
Application.OnMessage := OnAppMessage;
// use the Tag property of checkboxes to store a reference to their
// associated radio buttons
AppMsgCB.Tag := Longint(OnMsgRB);
WndProcCB.Tag := Longint(WndProcRB);
MessProcCB.Tag := Longint(MsgProcRB);
DefHandCB.Tag := Longint(DefHandlerRB);
// use the Tag property of radio buttons to store a reference to their
// associated checkbox
OnMsgRB.Tag := Longint (AppMsgCB);
WndProcRB.Tag := Longint(WndProcCB);
MsgProcRB.Tag := Longint(MessProcCB);
DefHandlerRB.Tag := Longint(DefHandCB);
end;

procedure TMainForm.OnAppMessage(var Msg: TMsg; var Handled: Boolean);
{ OnMessage handler for Application }

Adventures in Messaging

CHAPTER 3

LisTING 3.2 Continued

151

begin
/] check to see if message is my user-defined message
if Msg.Message = SX_MYMESSAGE then
begin
if AppMsgCB.Checked then
begin
// Let user know about the message. Set Handled flag appropriately
ShowMessage (Format (MessString, [SendPostStrings[Msg.WParam],
"Application.OnMessage']));
Handled := OnMsgRB.Checked;
end;
end;
end;

procedure TMainForm.WndProc(var Msg: TMessage);
{ WndProc procedure of form }

var
CallInherited: Boolean;
begin
Calllnherited := True; // assume we will call the inherited
if Msg.Msg = SX_MYMESSAGE then /] check for our user-defined message
begin
if WndProcCB.Checked then // if WndProcCB checkbox is checked...
begin
// Let user know about the message.
ShowMessage (Format (MessString, [SendPostStrings[Msg.WParam],
'"WndProc']));
// Call inherited only if we are not supposed to eat the message.
CallInherited := not WndProcRB.Checked;
end;
end;
if CallInherited then inherited WndProc(Msg);
end;

procedure TMainForm.SXMyMessage(var Msg: TMessage);
{ Message procedure for user-defined message }

var
CalllInherited: Boolean;

begin
CallInherited := True; // assume we will call the inherited
if MessProcCB.Checked then /] if MessProcCB checkbox is checked
begin

// Let user know about the message.
ShowMessage (Format (MessString, [SendPostStrings[Msg.WParam],

W

ONIDVSSIAI
NI ST¥NINIAQY

152

Development Essentials
PART |

LisTING 3.2 Continued

‘Message Procedure']));
// Call inherited only if we are not supposed to eat the message.
Calllnherited := not MsgProcRB.Checked;
end;
if CallInherited then Inherited;
end;

procedure TMainForm.DefaultHandler(var Msg);
{ Default message handler for form }

var
CallInherited: Boolean;
begin
CallInherited := True; // assume we will call the inherited

/! check for our user-defined message
if TMessage(Msg) .Msg = SX_MYMESSAGE then begin
if DefHandCB.Checked then // if DefHandCB checkbox is checked
begin
// Let user know about the message.
ShowMessage (Format (MessString,
[SendPostStrings[TMessage (Msg) .WParam], 'DefaultHandler']));
// Call inherited only if we are not supposed to eat the message.
CallInherited := not DefHandlerRB.Checked;
end;
end;
if CallInherited then inherited DefaultHandler (Msg);
end;

procedure TMainForm.PostMessButtonClick(Sender: TObject);
{ posts message to form }
begin
PostMessage(Handle, SX_MYMESSAGE, 1, 0);
end;

procedure TMainForm.SendMessButtonClick(Sender: TObject);
{ sends message to form }
begin
SendMessage (Handle, SX_MYMESSAGE, @, @); // send message to form
end;

procedure TMainForm.AppMsgCBClick (Sender: TObject);
{ enables/disables proper radio button for checkbox click }
begin
if EatMsgCB.Checked then
begin
with TRadioButton((Sender as TCheckBox).Tag) do

LisTING 3.2 Continued

Adventures in Messaging
CHAPTER 3

begin
Enabled := TCheckbox(Sender).Checked;
if not Enabled then Checked := False;
end;
end;
end;

procedure TMainForm.EatMsgCBClick(Sender: TObject);
{ enables/disables radio buttons as appropriate }
var
i: Integer;
DoEnable, EatEnabled: Boolean;
begin
// get enable/disable flag
EatEnabled := EatMsgCB.Checked;
// iterate over child controls of GroupBox in order to
// enable/disable and check/uncheck radio buttons
for i := 0 to EatMsgGB.ControlCount - 1 do
with EatMsgGB.Controls[i] as TRadioButton do
begin
DoEnable := EatEnabled;
if DoEnable then DoEnable := TCheckbox(Tag).Checked;
if not DoEnable then Checked := False;
Enabled := DoEnable;
end;
end;

end.

CAUTION

Although it’s fine to use just the inherited keyword to send the message to an
inherited handler in message-handler procedures, this technique doesn‘t work with
WndProc () or DefaultHandler (). With these procedures, you must also provide the

name of the inherited procedure or function, as in this example:

inherited WndProc (Msg);

You might have noticed that the DefaultHandler () procedure is somewhat unusual in that it
takes one untyped var parameter. That’s because DefaultHandler () assumes that the first word
in the parameter is the message number; it isn’t concerned with the rest of the information being
passed. Because of this, you typecast the parameter as a TMessage so that you can access the

message parameters.

153

W

ONIDVSSIAI
NI SIUNLNIAQY

154

Development Essentials
PART |

The Relationship Between Messages and Events

Now that you know all the ins and outs of messages, recall that this chapter began by stating
that VCL encapsulates many Windows messages in its event system. Delphi’s event system is
designed to be an easy interface into Windows messages. Many VCL events have a direct cor-
relation with WM_xxX Windows messages. Table 3.3 shows some common VCL events and the
Windows message responsible for each event.

TaBLE 3.3 VCL Events and Corresponding Windows Messages

VCL Event Windows Message
OnActivate wm_Activate
OnClick wm_XButtonDown
OnCreate wm_Create
OnDb1Click wm_XButtonDblClick
OnKeyDown wm_KeyDown
OnKeyPress wm_Char

OnKeyUp wm_KeyUp
OnPaint WM_PAINT
OnResize wm_Size

OnTimer wm_Timer

Table 3.3 is a good rule-of-thumb reference when you’re looking for events that correspond
directly to messages.

Tip

Never write a message handler when you can use a predefined event to do the same
thing. Because of the contract-free nature of events, you'll have fewer problems han-
dling events than you will handling messages.

Summary

By now, you should have a pretty clear understanding of how the Win32 messaging system
works and how VCL encapsulates that messaging system. Although Delphi’s event system is
great, knowing how messages work is essential for any serious Win32 programmer.

Advanced Techniques

IN THIS PART

4 Writing Portable Code 157
5 Multithreaded Techniques 173
6 Dynamic Link Libraries 247

Writing Portable Code

IN THIS CHAPTER

¢ General Compatibility

¢ Delphi-Kylix Compatibility 161

e New Delphi 6 Features

¢ Migrating from Delphi 5
¢ Migrating from Delphi 4
¢ Migrating from Delphi 3
¢ Migrating from Delphi 2
¢ Migrating from Delphi 1

158

163

164
165
166
168
171

CHAPTER

158

Advanced Techniques
PART Il

If you’re upgrading to Delphi 6 from a previous version or want to maintain compatibility
among Delphi versions, this chapter is written for you. The first section of this chapter dis-
cusses general compatibility issues you will face in moving between any versions of Delphi. In
the second section, you’ll find hints and tips for maintaining compatibility between Delphi on
the Win32 platform and Kylix on the Linux platform. The remainder of the chapter highlights
the often subtle differences between the various versions and how to take these differences into
account in writing portable code or migrating between versions. Although Borland makes a
concerted effort to ensure that your code is compatible between versions, it’s understandable
that some changes have to be made in the name of progress, and certain situations require code
changes if applications are to compile and run properly under the latest version of Delphi.

General Compatibility

A number of issues affect general compatibility between the various versions of Delphi,
C++Builder, and Kylix. By making yourself aware of the support built into the compiler for
writing compatible code, as well as some of the common gotchas, you’ll be well on your way
to targeting multiple versions from a single code base.

Which Version?

Although most Delphi code will compile for all versions of the compiler, in some instances
language or VCL differences require that you write slightly differently to accomplish a given
task for each product version. Occasionally, you might need to be able to compile for multiple
versions of Delphi from one code base. For this purpose, each version of the Delphi compiler
contains a VERxxx conditional define for which you can test in your source code. Because
Borland C++Builder and Kylix also ships with new versions of the compiler, these edition also
contain this conditional define. Table 4.1 shows the conditional defines for the various versions
of the Delphi compiler.

TaBLE 4.1 Conditional Defines for Compiler Versions

Product Conditional Define
Delphi 1 VER80

Delphi 2 VER90

C++Builder 1 VER95

Delphi 3 VER100
C++Builder 3 VER110

Delphi 4 VER120

C++Builder 4 VER120

TaBLE 4.1 Continued

Writing Portable Code
CHAPTER 4

Product Conditional Define
Delphi 5 VER130
C++Builder 5 VER130
Kylix 1 VER140
Delphi 6 VER140

Using these defines, the source code you must write in order to compile for different compiler

versions would look something similar to this:

{$IFDEF VER80}

Delphi 1 code goes here
{$ENDIF}
{$IFDEF VER90}

Delphi 2 code goes here
{$ENDIF}
{$IFDEF VER95}

C++Builder 1 code goes here
{$ENDIF}
{$IFDEF VER100}

Delphi 3 code goes here
{$ENDIF}
{$IFDEF VER110}

C++Builder 3 code goes here
{$ENDIF}
{$IFDEF VER120}

Delphi 4 and C++Builder 4 code goes here
{$ENDIF}
{$IFDEF VER130}

Delphi and C++Builder 5 code goes here
{$ENDIF}
{$IFDEF VER140}

Delphi 6 and Kylix code goes here
{$ENDIF}

NoTEe

If you're wondering why the Delphi 1.0 compiler is considered version 8, Delphi 2 ver-
sion 9, and so on, it's because Delphi 1.0 is considered version 8 of Borland'’s Pascal
compiler. The last Turbo Pascal version was 7.0, and Delphi is the evolution of that

product line.

159

300D 31aviNoq |+

ONILIMAN

160

Advanced Techniques
PART Il

Units, Components, and Packages

The binary format of Delphi compiled units (.dcu files) tends to differ from compiler version
to compiler version. This means that if you want to use the same unit in multiple versions of
Delphi, you must have either binary units built for that specific compiler version or the source
code to those units so that they can be recompiled. Bear in mind that if you use any custom
components in your application—your own components or those developed by third parties—
you must have the source to these components. If you don’t have the version-specific binary or
the source code to a particular third-party component, contact your vendor for a version of the
component specific to your version of Delphi.

NoTE

This issue of compiler version versus unit file version isn't a new situation and is the
same as C++ compiler object file versioning. If you distribute (or buy) components
without source code, you must understand that what you're distributing or buying is
a compiler-version—specific binary file that will probably need to be revised to keep
up with subsequent compiler releases.

What's more, the issue of DCU versioning isn’t necessarily a compiler-only issue. Even
if the compiler weren’t changed between versions, changes and enhancements to
core VCL would probably still make it necessary that units be recompiled from source.

Delphi 3 introduced packages, the idea of multiple units stored in a single binary file. Starting
with Delphi 3, the component library became a collection of packages rather than one massive
component library DLL. Like units, packages aren’t compatible across product versions, so
you’ll need to rebuild your packages for each version of Delphi, and you’ll need to contact the
vendors of your third-party components for version-specific packages.

IDE Issues

Problems with the IDE are likely the first you’ll encounter as you migrate your applications.
Here are a few of the issues you might encounter on the way:

* Delphi debugger symbol files (RSM) are not always compatible across versions. You’ll
know you’re having this problem when you see the message "Error reading symbol
file.". If this happens, the fix is simple: Rebuild the application.

« Starting with version 5, Delphi defaults to storing form files in text mode. If you need to
maintain DFM compatibility with earlier versions of Delphi, you’ll need to save the
forms files in binary instead. You can do this by unchecking New Forms As Text on the
Preferences page of the Environment Options dialog box.

Writing Portable Code
CHAPTER 4

e Code generation when importing and generating type libraries often changes from ver-
sion to version. As of Delphi 5, you can customize type-library—to—Pascal symbol name
mapping by editing the tlibimp.sym file. For directions, see the “Mapping Symbol
Names in the Type Library” topic in the online help.

Delphi-Kylix Compatibility

If you endeavor to build applications with any degree of portability between Delphi and Kylix,
the most important thing to realize is that VCL is a Windows-specific technology. If you want
to build cross platform applications and components, you should use the Component Library
for X-platform (CLX), which is currently supported until Delphi 6 and Kylix. CLX is described
in greater detail in Chapters 10, “Component Architecture: VCL and CLX,” and 13, “CLX
Component Development.” CLX can be broken down into four major components:

e BaseCLX, which contains the core portions of the component framework.

» DataCLX, which employs the dbExpress technology to provide efficient, lightweight
data access and management. dbExpress is described in detail in Chapter 8, “Database
Development with dbExpress.”

* NetCLX, which provides components and wizards for creating network clients and
servers. Perhaps most notably, NetCLX provides a very robust Web development appli-
cation framework that encompasses and includes the WebBroker technology from previ-
ous versions. NetCLX allows targeting of Linux or Windows clients and servers.

e VisualCLX, which provides the cross-platform GUI capability. VisualCLX is externally
very similar to VCL, but internally uses Troll Tech’s (http://www.trolltech.com) Qt
library (as opposed to the Win32 API like in VCL). Qt is a cross-platform GUI frame-
work that enables developers to target a variety of platforms, including Windows and
Linux.

When you create a new CLX application using File, New, CLX Application and view the uses

clause of the resulting main form unit, you will see a number of unit names beginning with the
letter Q, such as QGraphics, QControls, QForms, and so on. These units are similar in content

and function to the similarly named VCL units, although they are cross platform.

NoTEe

Although the current versions of CLX support only Windows and Kylix, it is designed
such that it can be extended relatively easily to other platforms. Qt, for example, sup-
ports about a dozen different platforms.

161

300D 31aviNoq |+

ONILIMAN

162

Advanced Techniques
PART Il

Not in Linux

Of course, you won’t find the Windows-specific technologies you might have grown to know
and love on the Linux platform. This means that technologies such as ADO, COM/COM+,
BDE, and MAPI (among others) have no place in a cross-platform application. You should
therefore avoid using units such as Windows, ComObj, ComServ, ActiveX, and AdoDb and plat-
form-specific functions such as any WIn32 API call, RaiseLastWin32Error (), Win32Check(),
and so on. Additionally, there are a number of technologies found in Delphi 6 that aren’t avail-
able in Kylix 1 but will likely be found in future versions of Kylix. These include DataSnap,
BizSnap (SOAP), and WebSnap technologies.

Compiler/Language Features

Although the Delphi and Kylix compilers both target the x86 processor architecture, there are a
number of key differences in the compiler that you should be aware of in building portable
applications.

LINUX Define

The Kylix compiler defines the LINUX conditional, whereas Delphi defines MSWINDOWS and
WIN32, so that you can IFDEF your code in order to maintain platform-specific code in a single
unit. Such code would like something like this:

{$IFDEF LINUX}

// Linux-specific code goes here
{$ENDIF}
{$IFDEF MSWINDOWS}

// Windows-specific code goes here
{$ENDIF}

PIC Format

The Linux compiler produces executables in Position Independent Code (PIC) format, which is
a slight variation on the type of code produced by the Windows compiler. Although this change
has little or no effect if you’re just writing Pascal code, it can have a dramatic impact on exter-
nally linked assembler modules or built-in assembler. Most notably, PIC requires access to all
global data to be relative to the EBX register, so the following line in Delphi

mov eax, SomevVar
would be written for PIC as
mov eax [ebx].Somevar

Because of the heavy reliance on the EBX register, PIC also requires that the value of EBX be
preserved across function calls and restored prior to external calls. If you want to IFDEF your

Writing Portable Code

CHAPTER 4

built-in assembly code for PIC and non-PIC, the compiler also defines a PIC conditional for
which you can check:

{$IFDEF PIC}
// PIC specific code goes here
{$ENDIF}

Calling Conventions

It’s worth noting that stdcall and safecall calling conventions don’t exist in Kylix. These
directives simply map to the cdecl calling convention in Kylix. This is generally only an issue
if you have assembly code that depends on parameter order and stack cleanup.

Platform-isms
In general, you should be wary of hard-coding platform-isms, or platform-specifics idioms into
your applications. Some items in the vein to keep in mind include

¢ The notion of drive letters does not exist on Linux.

» The directory separator is a backslash (\) on Windows and a forward slash (/) on Linux.
Delphi’s PathSeparator constant will show you which to use.

* The directory list delimiter is a semicolon (;) on Windows and a colon (:) on Linux.
e UNC pathnames exist only on Windows.

* Avoid depending on platform-specific directories, such as c:\winnt\system32 or
/fusr/bin.

New Delphi 6 Features

A number of nice additions to Delphi 6, particularly in the language and compiler area, can make
application development go more smoothly. However, it’s important to bear in mind that employ-
ing these features might mean that your code will not compile in earlier product versions.

Variants

Rather than being implemented within the compiler, support for the Variant data type has
been opened up to support user-installable types. This support is found in the vVariants unit.

Enum Values

In an effort to achieve greater compatibility with C++, the compiler now supports the assign-
ment of values to elements of an enumerated type, as shown here:

type
TFoo = (fTwo=2, fFour=4, fSix=6, fEight=8);

163

300D 31aviNoq |+

ONILIMAN

164

Advanced Techniques
PART Il

$IF Directive

One particular feature that is a long time coming is the addition of the $IF and $ELSEIF direc-
tives that allow you to check for defined symbols and to perform Boolean comparisons against
constants, as shown here:

{$IF Defined (MSWINDOWS) and SomeConstant >= 6}
// do something

{$ELSEIF SomeConstant < 2}
// do something else

{$ELSE}
// if all else fails

{$ENDIF}

Potential Binary DFM Incompatibility

The mechanism that saves and loads Delphi forms from stream has been modified, particularly
as it relates to high ASCII characters (those higher than 127). Binary DFMs containing high
ASCII characters might not be readable in earlier Delphi versions. A workaround would be to
use the text version of the form.

Migrating from Delphi 5

Although compatibility between Delphi 5 and 6 is quite good, there are a few minor issues you
should be aware of as you make the move.

Writable Typed Constants

The default state of the $J compiler switch (also known as $WRITEABLECONST) is now off,
where it was on in previous versions. This means that attempts to assign to typed constants will
raise a compiler error unless you explicitly enable this behavior using $J+.

Cardinal Unary Negation

Prior to Delphi 6, Delphi used 32-bit arithmetic to handle unary negation of Cardinal type
numbers. This could lead to unexpected results. Consider the following bit of code:

var
c: Cardinal;
i: Int64;

begin
C := 4294967294;
i:= -c;
WritelLn(1i);

end;

Writing Portable Code 165

CHAPTER 4

In Delphi 5, the value of i displayed would be 2. Although this behavior is incorrect, you might
have code that relies on this behavior. If so, you should know that Delphi 6 has corrected this
issue by promoting the Cardinal to an Int64 prior to performing the negation. The final value of
i displayed in Delphi 6 is 4294967294.

Migrating from Delphi 4

This section highlights some of the issues you can expect if you’re moving up from Delphi 4.

RTL Issues

The only issue you're likely to come across here deals with the setting of the floating-point unit
(FPU) control word in DLLs. Prior to version 5, DLLs would set the FPU control word, thereby
changing the setting established by the host application. Now, DLL startup code no longer sets
the FPU control word. If you need to set the control word to ensure some specific behavior by
the FPU, you can do it manually using the Set8087CW() function in the System unit.

VCL Issues

There are a number of VCL issues that you may come across, but most involve some simple
edits as a means to get your project on track. Here’s a list of these issues:

» The type of properties that represent an index into an image list has changed from
Integer to TImageIndex type between Delphi 4 and 5. TImageIndex is a strongly typed
Integer defined in the ImgList unit as
TImageIndex = type Integer;

This should only cause problems in cases where exact type matching matters, such as
when you’re passing var parameters.

* TCustomTreeview.CustomDrawItem() added a var parameter called PaintImages of
type Boolean. If your application overrides this method, you’ll need to add this parame-
ter in order for it to compile in Delphi 5 or higher.

* If you’re invoking pop-up menus in response to WM_RBUTTONUP messages or OnMouseUp
events, you might exhibit “double” pop-up menus or no pop-up menus at all when com-
piling with Delphi 5 or later. Delphi now uses the WM_CONTEXT menu message to invoke
pop-up menus.

300D 31aviNoq |+

Internet Development Issues

If you’re developing applications with Internet support, we have some bad news and some
good news:

ONILIMAN

166

Advanced Techniques
PART Il

* The TWebBrowser component, which encapsulates the Microsoft Internet Explorer
ActiveX control, has replaced the THTML component from Netmasters. Although the
TWebBrowser control is much more feature rich, you’re faced with a good deal of rewrite
if you used THTML because the interface is totally different. If you don’t want to rewrite
your code, you can go back to the old control by importing the HTML .0CX file from the
\Info\Extras\NetManage directory on the Delphi CD-ROM.

» Packages are now supported when building ISAPI and NSAPI DLLs. You can take
advantage of this new support by replacing HTTPApp in your uses clause with
WebBroker.

Database Issues

A few database issues might trip you up as you migrate from Delphi 4. These involve some
renaming of existing symbols and the new DataSnap architecture (formerly called MIDAS):

* The type of the TDatabase.OnLogin event has been renamed TDatabaseLoginEvent
from TLoginEvent. This is unlikely to cause problems, but you might run into troubles if
you’re creating and assigning to OnLogin in code.

* The global FMTBCDToCurr() and CurrToFMTBCD() routines have been replaced by the
new BCDToCurr and CurrToBCD routines (and the corresponding protected methods on
TDataSet have been replaced by the protected and undocumented DataConvert method).

» DataSnap (formerly MIDAS) has undergone some significant changes since Delphi 4. See
Chapter 21, “DataSnap Development,” for information on the changes and new features.

Migrating from Delphi 3

Although there aren’t a great deal of compatibility issues between Delphi 3 and later versions,
the few issues that do exist can be potentially more problematic than porting from any other
previous version of Delphi to the next. Most of these issues revolve around new types and the
changing behavior of certain existing types.

Unsigned 32-bit Integers

Delphi 4 introduced the LongWord type, which is an unsigned 32-bit integer. In previous ver-
sions of Delphi, the largest integer type was a signed 32-bit integer. Because of this, many

of the types that you would expect to be unsigned, such as DWORD, UINT, HResult, HWND,
HINSTANCE, and other handle types, were defined simply as Integers. In Delphi 4 and later,
these types are redefined as LongWords. Additionally, the Cardinal type, which was previously
a subrange type of 0. .MaxInt, is now also a LongWord. Although all this LongWord business
won’t cause problems in most circumstances, there are several problematic cases you should
know about:

Writing Portable Code
CHAPTER 4

e Integer and LongWord are not var-parameter compatible. Therefore, you cannot pass a
LongWord in a var Integer parameter, and vice versa. The compiler will give you an
error in this case, so you’ll need to change the parameter or variable type or typecast to
get around this problem.

 Literal constants having the value of $80000000 through $FFFFFFFF are considered
LongWords. You must typecast such a literal to an Integer if you want to assign it to
an Integer type. Here’s an example:
var
I: Integer;
begin
I := Integer($FFFFFFFF);
¢ Similarly, any literal having a negative value is out of range for a LongWord, and you’ll
need to typecast to assign a negative literal to a LongWord. Here’s an example:
var
L: LongWord;
begin
L := LongWord(-1);
 If you mix signed and unsigned integers in arithmetic or comparison operations, the
compiler will automatically promote each operand to Int64 in order to perform the arith-
metic or comparison. This can cause some very difficult-to-find bugs. Consider the fol-
lowing code:

var
I: Integer;
D: DWORD;
begin
I := -1

D := $FFFFFFFF;

if I = D then DoSomething;
Under Delphi 3, DoSomething would execute because -1 and $FFFFFFFF are the same
value when contained in an Integer. However, because Delphi 4 and later will promote
each operand to Int64 in order to perform the most accurate comparison, the generated
code ends up comparing $FFFFFFFFFFFFFFFF against $00000000FFFFFFFF, which is defi-
nitely not what’s intended. In this case, DoSomething will not execute.

Tip

The compiler in Delphi 4 and later generates a number of new hints, warnings, and
errors that deal with these types of compatibility problems and implicit type promo-
tions. Make sure that you turn on hints and warnings when compiling in order to let
the compiler help you write clean code.

167

300D 31aviNoq |+

ONILIMAN

168

Advanced Techniques
PART Il

64-Bit Integers

Delphi 4 also introduced a new type called Int64, which is a signed 64-bit integer. This new
type is now used in the RTL and VCL where appropriate. For example, the Trunc() and
Round () standard functions now return Int64, and there are new versions of IntToStr (),
IntToHex (), and related functions that deal with Inté4.

The Real Type

Starting with Delphi 4, the Real type became an alias for the Double type. In previous versions of
Delphi and Turbo Pascal, Real was a six-byte, floating-point type. This shouldn’t pose any prob-
lems for your code unless you have Reals written to some external storage (such as a file of
record) with an earlier version or you have code that depends on the organization of the Real in
memory. You can force Real to be the old 6-byte type by including the {$REALCOMPATIBILITY
ON} directive in the units you want to use the old behavior. If all you need to do is force a limited
number of instances of the Real type to use the old behavior, you can use the Real48 type
instead.

Migrating from Delphi 2

You’ll find that a high degree of compatibility between Delphi 2 and the later versions means a
smooth transition into a more up-to-date Delphi version. However, some changes have been
made since Delphi 2, both in the language and in VCL, that you’ll need to be aware of to
migrate to the latest version and take full advantage of its power.

Changes to Boolean Types

The implementation of the Delphi 2 Boolean types (Boolean, ByteBool, WordBool, LongBool)
dictated that True was ordinal value 1 and False ordinal value @. To provide better compatibility
with the Win32 API, the implementations of ByteBool, WordBool, and LongBool have changed
slightly; the ordinal value of True is now -1 ($FF, $FFFF, and $FFFFFFFF, respectively). Note
that no change was made to the Boolean type. These changes have the potential to cause prob-
lems in your code—but only if you depend on the ordinal values of these types. For example,
consider the following declaration:

var
A: array[LongBool] of Integer;

This code is quite harmless under Delphi 2; it declares an array[False..True] (or [0..1]) of
Integer, for a total of three elements. Under Delphi 3 and later, however, this declaration can
cause some very unexpected results. Because True is defined as $FFFFFFFF for a LongBool, the
declaration boils down to array[0..$FFFFFFFF] of Integer, or an array of 4 billion
Integers! To avoid this problem, use the Boolean type as the array index.

Writing Portable Code
CHAPTER 4

Ironically, this change was necessary because a disturbing number of ActiveX controls and
control containers (such Visual Basic) test BOOLs by checking for -1 rather than testing for a
zero or nonzero value.

Tip

To help ensure portability and to avoid bugs, never write code like this:
if BoolVar = True then ...

Instead, always test Boolean types like this:
if BoolVar then ...

ResourceString

If your application uses string resources, consider taking advantage of ResourceStrings as
described in Chapter 2, “The Object Pascal Language.” Although this won’t improve the effi-
ciency of your application in terms of size or speed, it will make language translation easier.
ResourceStrings and the related topic of resource DLLs are required to be able to write appli-
cations displaying different language strings but have them all running on the same core VCL
package.

RTL Changes

Several changes made to the runtime library (RTL) after Delphi 2 might cause problems as you
migrate your applications. First, the meaning of the HInstance global variable has changed
slightly: HInstance contains the instance handle of the current DLL, EXE, or package. Use the
new MainInstance global variable when you want to obtain the instance handle of the main
application.

The second significant change pertains to the IsLibrary global. In Delphi 2, you could check
the value of IsLibrary to determine whether your code was executing within the context of
a DLL or EXE. IsLibrary isn’t package aware, however, so you can no longer depend on
IsLibrary to be accurate, depending on whether it’s called from an EXE, DLL, or a module
within a package. Instead, you should use the ModuleIsLib global, which returns True when
called within the context of a DLL or package. You can use this in combination with the
ModuleIsPackage global to distinguish between a DLL and a package.

TCustomForm

The Delphi 3 VCL introduced a new class between TScrollingWinControl and TForm called
TCustomForm. In itself, that shouldn’t pose a problem for you in migrating your applications

169

300D F1aviNog |P

ONILIMAN

170

Advanced Techniques
PART Il

from Delphi 2; however, if you have any code that manipulates instances of TForm, you might
need to update it so that it manipulates TCustomForms instead of TForms. Some examples of
these are calls to GetParentForm(), ValidParentForm(), and any usage of the TDesigner class.

CAUTION

The semantics for GetParentForm(), ValidParentForm(), and other VCL methods that
return Parent pointers have changed slightly from Delphi 2. These routines can now
return nil, even though your component has a parent window context in which to
draw. For example, when your component is encapsulated as an ActiveX control, it
might have a ParentWindow, but not a Parent control. This means that you must
watch out for Delphi 2 code that does this:

with GetParentForm(xx) do ...

GetParentForm() can now return nil depending on how your component is being
contained.

GetChildren()

Component writers, be aware that the declaration of TComponent.GetChildren() has changed
to read as follows:

procedure GetChildren(Proc: TGetChildProc; Root: TComponent); dynamic;

The new Root parameter holds the component’s root owner—that is, the component obtained
by walking up the chain of the component’s owners until Owner is nil.

Automation Servers

The code required for automation has changed significantly from Delphi 2. Chapter 15, “COM
Development,” describes the latest process of creating Automation servers in Delphi. Rather than
describe the details of the differences here, suffice it to say that you should never mix the Delphi
2 style of creating Automation servers with the more recent style found in Delphi 3 and later.

In Delphi 2, automation is facilitated through the infrastructure provided in the 0leAuto and
0le2 units. These units are present in later releases of Delphi only for backward compatibility,
and you shouldn’t use them for new projects. Now the same functionality is provided in the
ComObj, ComServ, and ActiveX units. You should never mix the former units with the latter in
the same project.

Writing Portable Code 171

CHAPTER 4

Migrating from Delphi 1

If you’re lucky enough to still be maintaining code that must be compiled and run under both
16 and 32-bit Windows, you have our condolences. There are numerous points of incompatibil-
ity between Delphi 1 and later versions, ranging from most of the basic data types to VCL to
the Windows API. Because of the relatively small number of developers who continue to main-
tain and develop 16-bit applications, that information isn’t in the text of this book, but you’ll
find it in Chapter 15 of the electronic copy of Delphi 5 Developer’s Guide on the CD accom-
panying this book.

Summary

Armed with the information provided by this chapter, you should be able to migrate your pro-
jects smoothly from any previous version of Delphi to Delphi 6. Also, with a bit of work,
you’ll be able to maintain projects that work with multiple versions of Delphi.

300D 31aviNoq |+

ONILIMAN

Multithreaded Techniques CHAPTER

IN THIS CHAPTER

¢ Threads Explained 174

e The TThread Object 176

e Managing Multiple Threads 192

¢ A Sample Multithreaded Application 210
e Multithreading BDE Access 227

e Multithreaded Graphics 233

e Fibers 237

174

Advanced Techniques
PART Il

The Win32 operating system provides you with the capability to have multiple threads of exe-
cution in your applications. Arguably the single most important benefit Win32 has over 16-bit
Windows, this feature provides the means for performing different types of processing simulta-
neously in your application. This is one of the primary reasons for upgrading to a 32-bit ver-
sion of Delphi, and this chapter gives you all the details on how to get the most out of threads
in your applications.

Threads Explained

A thread is an operating system object that represents a path of code execution within a partic-
ular process. Every Win32 application has at least one thread—often called the primary thread
or default thread—but applications are free to create other threads to perform other tasks.

Threads provide a means for running many distinct code routines simultaneously. Of course,
unless you have more than one CPU in your computer, two threads can’t truly run simultane-
ously. However, each thread is scheduled fractions of seconds of time by the operating system
in such a way as to give the feeling that many threads are running simultaneously.

Tip

Threads aren’t and never will be supported under 16-bit Windows. This means that
any 32-bit Delphi code you write using threads will never be backward compatible to
Delphi 1. Keep this in mind if you still need to develop 16-bit compatible applications.

Types of Multitasking

The notion of threads is much different from the style of multitasking supported under 16-bit
Windows platforms. You might hear people talk about Win32 as a preemptive multitasking
operating system, whereas Windows 3.1 is a cooperative multitasking environment.

The key difference here is that under a preemptive multitasking environment, the operating
system is responsible for managing which thread executes when. When execution of thread one
is stopped in order for thread two to receive some CPU cycles, thread one is said to have been
preempted. If the code that one thread is executing happens to put itself into an infinite loop,
it’s usually not a tragic situation because the operating system will continue to schedule time
for all the other threads.

Under Windows 3.1, the application developer is responsible for giving control back to
Windows at points during application execution. Failure of an application to do so causes the
operating environment to appear locked up, and we all know what a painful experience that can
be. If you take a moment to think about it, it’s slightly amusing that the very foundation of 16-

Multithreaded Techniques

CHAPTER 5

bit Windows depends on all applications behaving themselves and not putting themselves into
infinite loops, recursion, or any other unneighborly situation. Because all applications must
cooperate for Windows to work correctly, this type of multitasking is referred to as
cooperative.

Using Multiple Threads in Delphi Applications

It’s no secret that threads represent a serious boon for Windows programmers. You can create
secondary threads in your applications anywhere that it’s appropriate to do some sort of back-
ground processing. Calculating cells in a spreadsheet or spooling a word processing document
to the printer are examples of situations in which a thread would commonly be used. The goal
of the developer will most often be to perform necessary background processing while still
providing the best possible response time for the user interface.

Most of VCL has a built-in assumption that it’s being accessed by only one thread at any given
time. Although this limitation is especially apparent in the user interface portions of VCL, it’s
important to note that even many non-UI portions of VCL are not thread-safe.

Non-Ul VCL

Actually, very few areas of VCL are guaranteed to be thread-safe. Perhaps the most notable
among these thread-safe areas is VCL’s property streaming mechanism, which ensures that
component streams can be effectively read and written by multiple threads. Remember that
even very basic classes in VCL, such as TList, are not designed to be manipulated from multi-
ple simultaneous threads. In some cases, VCL provides thread-safe alternatives that you can
use in cases where you need them. For example, use a TThreadList in place of a TList when
the list will be subject to manipulation by multiple threads.

Ul VCL

VCL requires that all user interface control happens within the context of an application’s pri-
mary thread (the exception is the thread-safe TCanvas, which is explained later in this chapter).
Of course, techniques are available to update the user interface from a secondary thread (which
we discuss later), but this limitation essentially forces you to use threads a bit more judiciously
than you might do otherwise. The examples given in this chapter show some ideal uses for
multiple threads in Delphi applications.

Misuse of Threads

Too much of a good thing can be bad, and that’s definitely true in the case of threads. Even
though threads can help to solve some of the problems you might have from an application
design standpoint, they do introduce a whole new set of problems. For example, suppose that
you’re writing an integrated development environment, and you want the compiler to execute

175

(%)

SINDINHIIL
a3avadHLILINA

176

Advanced Techniques
PART Il

in its own thread so the programmer will be free to continue work on the application while the
program compiles. The problem here is this: What if the programmer changes a file that the
compiler is in the middle of compiling? There are a number of solutions to this problem, such
as making a temporary copy of the file while the compile continues or preventing the user from
editing not-yet-compiled files. The point is simply that threads aren’t a panacea; although they
solve some development problems, they invariably introduce others. What’s more, bugs
because of threading problems are also much, much harder to debug because threading prob-
lems are often time sensitive. Designing and implementing thread-safe code is also more diffi-
cult because you have a lot more factors to consider.

The TThread Object

Delphi encapsulates the API thread object into an Object Pascal object called TThread.
Although TThread encapsulates almost all the commonly used thread API functions into one
discrete object, there are some points—particularly those dealing with thread synchroniza-
tion—in which you have to use the API. In this section, you learn how the TThread object
works and how to use it in your applications.

TThread Basics
The TThread object is found in the Classes unit and is defined as follows:

TThread = class
private

FHandle: THandle;

{$IFDEF MSWINDOWS}
FThreadID: THandle;

{$ENDIF}

{$IFDEF LINUX}
// ** FThreadID is not THandle in Linux **
FThreadID: Cardinal;
FCreateSuspendedSem: TSemaphore;
FInitialSuspendDone: Boolean;

{$ENDIF}
FCreateSuspended: Boolean;
FTerminated: Boolean;
FSuspended: Boolean;
FFreeOnTerminate: Boolean;
FFinished: Boolean;
FReturnValue: Integer;
FOnTerminate: TNotifyEvent;
FMethod: TThreadMethod;
FSynchronizeException: TObject;
FFatalException: TObject;

Multithreaded Techniques

procedure CheckThreadError(ErrCode: Integer); overload;
procedure CheckThreadError(Success: Boolean); overload;
procedure CallOnTerminate;

{$IFDEF MSWINDOWS}
function GetPriority: TThreadPriority;
procedure SetPriority(Value: TThreadPriority);
procedure SetSuspended(Value: Boolean);

{$ENDIF}

{$IFDEF LINUX}
// ** Priority is an Integer value in Linux
function GetPriority: Integer;
procedure SetPriority(Value: Integer);
function GetPolicy: Integer;
procedure SetPolicy(Value: Integer);
procedure SetSuspended(Value: Boolean);

{$ENDIF}

protected
procedure DoTerminate; virtual;
procedure Execute; virtual; abstract;
procedure Synchronize(Method: TThreadMethod);
property ReturnValue: Integer read FReturnValue write FReturnValue;
property Terminated: Boolean read FTerminated;
public
constructor Create(CreateSuspended: Boolean);
destructor Destroy; override;
procedure AfterConstruction; override;
procedure Resume;
procedure Suspend;
procedure Terminate;
function WaitFor: LongWord;
property FatalException: TObject read FFatalException;
property FreeOnTerminate: Boolean read FFreeOnTerminate
write FFreeOnTerminate;

property Handle: THandle read FHandle;

{$IFDEF MSWINDOWS}

CHAPTER 5

property Priority: TThreadPriority read GetPriority write SetPriority;

{$ENDIF}
{$IFDEF LINUX}
// ** Priority is an Integer **
property Priority: Integer read GetPriority write SetPriority;
property Policy: Integer read GetPolicy write SetPolicy;
{$ENDIF}
property Suspended: Boolean read FSuspended write SetSuspended;
{$IFDEF MSWINDOWS}
property ThreadID: THandle read FThreadID;
{$ENDIF}

177

(%)

SINDINHIIL
a3avadHLILINA

178 Advanced Techniques

PART Il

{$IFDEF LINUX}
// ** ThreadId is Cardinal **
property ThreadID: Cardinal read FThreadID;
{$ENDIF}
property OnTerminate: TNotifyEvent read FOnTerminate write FOnTerminate;
end;

As you can tell from the declaration, TThread is a direct descendant of TObject and therefore
isn’t a component. Looking at all the IFDEFs in the code, you can also tell that TThread is
designed to be fairly compatible between Delphi and Kylix, albeit with a few differences. You
might further notice that the TThread.Execute() method is abstract. This means that the
TThread class itself is abstract, so you will never create an instance of TThread itself. You will
only create instances of TThread descendants. Speaking of which, the most straightforward
way to create a TThread descendant is to select Thread Object from the New Items dialog box
provided by the File, New Menu option. The New Items dialog box is shown in Figure 5.1.

o vew mems E
DataModules | Business | WebSnap | WebSewvices | Coba |
New | Activex | Mulier | Project! | Forms | Dislogs | Projects

[=] 1 BAL =
= B |

Control Panel Control Panel DataModule DLL ‘Wizard Fom

Application Module

Frame Package ProjectGroup Repot Resource DLL

zard
P = 5, H
Service Senvice Tewt

Unit
Application =l

€ Copy € Inbeit € Use

futl 1]

[i3 I Cancel | Help |

FIGURE 5.1
The Thread Object item in the New Items dialog box.

After choosing Thread Object from the New Items dialog box, you’ll be presented with a dia-
log box that prompts you to enter a name for the new object. You could enter TTestThread, for
example. Delphi will then create a new unit that contains your object. Your object will initially
be defined as follows:

type
TTestThread = class(TThread)
private
{ Private declarations }
protected

procedure Execute; override;
end;

Multithreaded Techniques
CHAPTER 5

As you can see, the only method that you must override in order to create a functional descen-
dant of TThread is the Execute () method. Suppose, for example, that you want to perform a
complex calculation within TTestThread. In that case, you could define its Execute () method
as follows:

procedure TTestThread.Execute;
var

i, Answer: integer;
begin

Answer := 0;

for i := 1 to 2000000 do

inc (Answer, Round(Abs(Sin(Sqrt(i)))));

end;

Admittedly, the equation is contrived, but it still illustrates the point in this case because the
sole purpose of this equation is to take a relatively long time to execute.

You can now execute this sample thread by calling its Create () constructor. For now, you can
do this from a button click in the main form, as shown in the following code (remember to
include the unit containing TTestThread in the uses clause of the unit containing TForm1 to
avoid a compiler error):

procedure TFormi.ButtoniClick(Sender: TObject);

var

NewThread: TTestThread;
begin

NewThread := TTestThread.Create(False);
end;

If you run the application and click the button, you’ll notice that you can still manipulate the
form by moving it or resizing it while the calculation goes on in the background.

NoTEe

The single Boolean parameter passed to TThread’s Create() constructor is called
CreateSuspended, and it indicates whether to start the thread in a suspended state. If
this parameter is False, the object’s Execute () method will automatically be called fol-
lowing Create (). If this parameter is True, you must call TThread’s Resume () method at
some point to actually start the thread running. This will cause the Execute () method
to be invoked at that time. You would set CreateSuspended to True if you needed to
set additional properties on your thread object before allowing it to run. Setting the
properties after the thread is running would be asking for trouble.

To go a little deeper, the constructor of Create() calls the BeginThread() Delphi
Runtime Library (RTL) function, which calls the CreateThread() API function in order
to create the new thread. The value of the CreateSuspended parameter indicates
whether to pass the CREATE_SUSPENDED flag to CreateThread().

179

(%)

SINDINHIIL
a3avadHLILINA

180

Advanced Techniques
PART Il

Thread Instances

Going back to the Execute () method for the TTestThread object, notice that it contains a local
variable called i. Consider what might happen to i if you create two instances of TTestThread.
Does the value for one thread overwrite the value for the other? Does the first thread take
precedence? Does it blow up? The answers are no, no, and no. Win32 maintains a separate
stack for each thread executing in the system. This means that as you create multiple instances
of the TTestThread object, each one keeps its own copy of i on its own stack. Therefore, all
the threads will operate independently of one another in that respect.

An important distinction to make, however, is that this notion of the same variable operating
independently in each thread doesn’t carry over to global variables. This topic is explored in
detail in the “Thread-Local Storage” and “Thread Synchronization” sections, later in this
chapter.

Thread Termination

A TThread is considered terminated when the Execute () method has finished executing. At
that point, the EndThread () Delphi standard procedure is called, which in turn calls the
ExitThread() API procedure. ExitThread () properly disposes of the thread’s stack and deal-
locates the API thread object. This cleans up the thread as far as the API is concerned.

You also need to ensure that the Object Pascal object is destroyed when you’re finished using a
TThread object. This will ensure that all memory occupied by that object has been properly
disposed of. Although this will automatically happen when your process terminates, you might
want to dispose of the object earlier so that your application doesn’t leak memory as it runs.
The easiest way to ensure that the TThread object is disposed of is to set its FreeOnTerminate
property to True. This can be done any time before the Execute () method finishes executing.
For example, you could do this for the TTestThread object by setting the property in the
Execute () method as follows:

procedure TTestThread.Execute;
var

i: integer;
begin

FreeOnTerminate := True;

for i := 1 to 2000000 do

inc(Answer, Round(Abs(Sin(Sqrt(i)))));

end;

The TThread object also has an OnTerminate event that’s called when the thread terminates.
It’s also acceptable to free the TThread object from within a handler for this event.

Multithreaded Techniques
CHAPTER 5

NoTE

The OnTerminate event of TThread is called from the context of your application’s
main thread. This means that you can feel free to access VCL properties and methods
from within a handler for this event without using the Synchronize () method, as
described in the following section.

It’s also important to note that your thread’s Execute () method is responsible for checking the
status of the Terminated property to determine the need to make an earlier exit. Although this
means one more thing you must worry about when working with threads, the flip side is that
this type of architecture ensures that the rug isn’t pulled out from under you, and that you’ll be
able to perform any necessary cleanup on thread termination. To add this code to the Execute()
method of TTestThread is rather simple, and the addition is shown here:

procedure TTestThread.Execute;
var
i: integer;
begin
FreeOnTerminate := True;
for 1 := 1 to 2000000 do begin
if Terminated then Break;
inc(Answer, Round(Abs(Sin(Sqrt(i)))));
end;
end;

CAUTION

In case of emergency, you can also use the Win32 API TerminateThread() function to
terminate an executing thread. You should do this only when no other options exist,
such as when a thread gets caught in an endless loop and stops responding. This
function is defined as follows:

function TerminateThread(hThread: THandle; dwExitCode: DWORD) ;

The Handle property of TThread provides the API thread handle, so you could call this
function with syntax similar to that shown here:

TerminateThread (MyHosedThread.Handle, 0);

If you choose to use this function, you should be wary of the negative side effects it
will cause. First, this function behaves differently under Windows NT/2000 and
Windows 95/98. Under Windows 95/98, TerminateThread() disposes of the stack

continues

181

(%)

SINDINHIIL
a3avadHLILINA

182

Advanced Techniques
PART Il

associated with the thread; under Windows NT/2000, the stack sticks around until the
process is terminated. Second, on all Win32 operating systems, TerminateThread()
simply halts execution, wherever it might be, and doesn’t allow try..finally blocks
to clean up resources. This means that files opened by the thread wouldn’t be closed,
memory allocated by the thread wouldn’t be freed, and so forth. Also, DLLs loaded
by your process won't be notified when a thread destroyed with TerminateThread()
goes away, and this might cause problems when the DLL closes. See Chapter 6,
“Dynamic Link Libraries,” for more information on thread notifications in DLLs.

Synchronizing with VCL

As mentioned several times earlier in this chapter, you should only access VCL properties or
methods from the application’s primary thread. This means that any code that accesses or
updates your application’s user interface should be executed from the context of the primary
thread. The disadvantages of this architecture are obvious, and this requirement might seem
rather limiting on the surface, but it actually has some redeeming advantages that you should
know about.

Advantages of a Single-Threaded User Interface

First, it greatly reduces the complexity of your application to have only one thread accessing
the user interface. Win32 requires that each thread that creates a window have its own message
loop using the GetMessage () function. As you might imagine, having messages coming into
your application from a variety of sources can make it extremely difficult to debug. Because an
application’s message queue provides a means for serializing input—fully processing one con-
dition before moving on to the next—you can depend in most cases on certain messages com-
ing before or after others. Adding another message loop throws this serialization of input out
the door, thereby opening you up to potential synchronization problems and possibly introduc-
ing a need for complex synchronization code.

Additionally, because VCL can depend on the fact that it will be accessed by only one thread
at any given time, the need for code to synchronize multiple threads inside VCL is obviated.

The net result of this is better overall performance of your application due to a more stream-

lined architecture.

The Synchronize() Method
TThread provides a method called Synchronize () that allows for some of its own methods to
be executed from the application’s primary thread. Synchronize() is defined as follows:

procedure Synchronize(Method: TThreadMethod);

Multithreaded Techniques

CHAPTER 5

Its Method parameter is of type TThreadMethod (which means a procedural method that takes
no parameter), which is defined as follows:
type

TThreadMethod = procedure of object;
The method you pass as the Method parameter is the one that’s then executed from the applica-
tion’s primary thread. Going back to the TTestThread example, suppose you want to display
the result in an edit control on the main form. You could do this by introducing to TTestThread
a method that makes the necessary change to the edit control’s Text property and calling that
method by using Synchronize().

In this case, suppose this method is called GiveAnswer (). Listing 5.1 shows the complete
source code for this unit, called Thrdu, which includes the code to update the edit control on
the main form.

LisTING 5.1 The ThrdU.PAS Unit

unit ThrduU;
interface

uses
Classes;

type
TTestThread = class(TThread)
private
Answer: integer;
protected
procedure GiveAnswer;
procedure Execute; override;
end;

implementation
uses SysUtils, Main;
{ TTestThread }
procedure TTestThread.GiveAnswer;
begin
MainForm.Edit1.Text := InttoStr(Answer);

end;

procedure TTestThread.Execute;

183

(%)

SINDINHIIL
a3avadHLILINA

184

Advanced Techniques
PART Il

LisTING 5.1 Continued

var
I: Integer;

begin
FreeOnTerminate := True;
for I :=1 to 2000000 do
begin

if Terminated then Break;
Inc (Answer, Round(Abs(Sin(Sqrt(I)))));
Synchronize (GiveAnswer) ;
end;
end;

end.

You already know that the Synchronize () method enables you to execute methods from the
context of the primary thread, but up to this point you’ve treated Synchronize() as sort of a
mysterious black box. You don’t know how it works—you only know that it does. If you’d like
to take a peek at the man behind the curtain, read on.

The first time you create a secondary thread in your application, VCL creates and maintains a
hidden thread window from the context of its primary thread. The sole purpose of this window
is to serialize procedure calls made through the Synchronize () method.

The Synchronize () method stores the method specified in its Method parameter in a private
field called FMethod and sends a VCL-defined CM_EXECPROC message to the thread window,
passing Self (Self being the TThread object in this case) as the 1Param of the message. When
the thread window’s window procedure receives this CM_EXECPROC message, it calls the method
specified in FMethod through the TThread object instance passed in the 1Param. Remember,
because the thread window was created from the context of the primary thread, the window
procedure for the thread window is also executed by the primary thread. Therefore, the method
specified in the FMethod field is also executed by the primary thread.

To see a more visual illustration of what goes on inside Synchronize (), look at Figure 5.2.

Using Messages for Synchronization

As an alternative to the TThread.Synchronize () method, another technique for thread syn-
chronization is to use messages to communicate between threads. You can use the
SendMessage () or PostMessage () API function to send or post messages to windows operat-
ing in the context of another thread. For example, the following code could be used to set the
text in an edit control residing in another thread:

Multithreaded Techniques
CHAPTER 5

Integer(PChar(S)));

Primary Thread

Hidden thread window

CM_EXECPROC

»

>

var
S: string;
begin
S := 'hello from threadland';
SendMessage (SomeEdit.Handle, WM_SETTEXT, 0,
end;
Secondary Thread
Synchronize(Foo);
Sets FMethod to Foo.
Sends CM_EXECPROC
message to thread
window, passing Self as
IParam.
FIGURE 5.2

A road map of the Synchronize () method.

A Demo Application

Message is processed by
window procedure of
thread window. IParam is
typecasted to TThread,
and call is made to
FMethod.

To fully illustrate how multithreading in Delphi works, you can save the current project as
EZThrd. Then you can also put a memo control on the main form so that it resembles what’s

shown in Figure 5.3.

i DDG EZThrd Dema

Press Start button then type in here:

Thizads are funl]]

=1 B3

Start

Answer

20834

FIGURE 5.3
The main form of the EzZThrd demo.

The source code for the main unit is shown in Listing 5.2.

185

(%)

SINDINHIIL
a3avadHLILINA

186 Advanced Techniques

PART Il

LISTING 5.2 The MAIN.PAS Unit for the EZThrd Demo

unit Main;
interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Thrdu;

type
TMainForm = class(TForm)

Edit1: TEdit;
Buttoni: TButton;
Memo1: TMemo;
Label1: TLabel;
Label2: TLabel;
procedure ButtoniClick(Sender: TObject);

private
{ Private declarations }
public
{ Public declarations }
end;
var

MainForm: TMainForm;
implementation
{$R *.DFM}

procedure TMainForm.Buttoni1Click(Sender: TObject);
var
NewThread: TTestThread;
begin
NewThread := TTestThread.Create(False);
end;

end.

Notice that after you click the button to invoke the secondary thread, you can still type in the
memo control as if the secondary thread doesn’t exist. When the calculation is completed, the
result will be displayed in the edit control.

Multithreaded Techniques
CHAPTER 5

187

Priorities and Scheduling

As mentioned earlier, the operating system is in charge of scheduling each thread some CPU
cycles in which it might execute. The amount of time scheduled for a particular thread depends
on the priority assigned to the thread. An individual thread’s overall priority is determined by a
combination of the priority of the process that created the thread—called the priority class—
and the priority of the thread itself—called the relative priority.

Process Priority Class

The process priority class describes the priority of a particular process running on the system.
Win32 supports four distinct priority classes: Idle, Normal, High, and Realtime. The default
priority class for any process, of course, is Normal. Each of these priority classes has a
corresponding flag defined in the Windows unit. You can or any of these flags with the
dwCreationFlags parameter of CreateProcess() in order to spawn a process with a specific
priority. Additionally, you can use these flags to dynamically adjust the priority class of a given
process, as shown in a moment. Furthermore, each priority class can also be represented by a
numeric priority level, which is a value between 4 and 24 (inclusive).

NoOTE

Modifying a process’s priority class requires special process privileges under Windows
NT/2000. The default settings allow processes to set their priority classes, but these
can be turned off by system administrators, particularly on high-load Windows
NT/2000 servers.

Table 5.1 shows each priority class and its corresponding flag and numeric value.

TABLE 5.1 Process Priority Classes
Class Flag Value

Idle IDLE_PRIORITY_CLASS $40
Below Normal* BELOW_NORMAL_PRIORITY_CLASS $4000
Normal NORMAL_PRIORITY_CLASS $20
Above Normal* ABOVE_NORMAL_PRIORITY_CLASS $8000

(%)

High HIGH_PRIORITY_CLASS $80

Realtime REALTIME_PRIORITY_CLASS $100

*Available only on Windows 2000 and higher, and flag constant is not present in Delphi 6 version of
Windows.pas.

SINDINHIIL
a3avadHLILINA

188

Advanced Techniques
PART Il

To get and set the priority class of a given process dynamically, Win32 provides the
GetPriorityClass() and SetPriorityClass() functions, respectively. These functions are
defined as follows:

function GetPriorityClass(hProcess: THandle): DWORD; stdcallj

function SetPriorityClass(hProcess: THandle; dwPriorityClass: DWORD): BOOL;
stdcall;

The hProcess parameter in both cases represents a handle to a process. In most cases, you’ll
be calling these functions in order to access the priority class of your own process. In that
case, you can use the GetCurrentProcess () API function. This function is defined as follows:

function GetCurrentProcess: THandle; stdcall;

The return value of these functions is a pseudo-handle for the current process. We say pseudo
because the function doesn’t create a new handle, and the return value doesn’t have to be
closed with CloseHandle (). It merely provides a handle that can be used to reference an exist-
ing handle.

To set the priority class of your application to High, use code similar to the following:

if not SetPriorityClass(GetCurrentProcess, HIGH_PRIORITY_CLASS) then
ShowMessage('Error setting priority class.');

CAUTION

In almost all cases, you should avoid setting the priority class of any process to
Realtime. Because most of the operating system threads run in a priority class lower
than Realtime, your thread will receive more CPU time than the OS itself, and that
could cause some unexpected problems.

Even bumping the priority class of the process to High can cause problems if the
threads of the process don‘t spend most of their time idle or waiting for external
events (such as file I/0). One high-priority thread is likely to drain all CPU time away
from lower-priority threads and processes until it blocks on an event, goes idle, or
processes messages. Preemptive multitasking can easily be defeated by abusing sched-
uler priorities.

Relative Priority

The other thing that goes into determining the overall priority of a thread is the relative priority
of a particular thread. The important distinction to make is that the priority class is associated
with a process and the relative priority is associated with individual threads within a process. A
thread can have any one of seven possible relative priorities: Idle, Lowest, Below Normal,
Normal, Above Normal, Highest, or Time Critical.

Multithreaded Techniques

CHAPTER 5

TThread exposes a Priority property of an enumerated type TThreadPriority. There’s an
enumeration in this type for each relative priority:
type

TThreadPriority = (tpIdle, tpLowest, tpLower, tpNormal, tpHigher,
tpHighest, tpTimeCritical);

You can get and set the priority of any TThread object simply by reading from or writing to its
Priority property. The following code sets the priority of a TThread descendant instance
called MyThread to Highest:

MyThread.Priority := tpHighest.

Like priority classes, each relative priority is associated with a numeric value. The difference is
that relative priority is a signed value that, when added to a process’s class priority, is used to
determine the overall priority of a thread within the system. For this reason, relative priority is
sometimes called delta priority. The overall priority of a thread can be any value from 1 to 31
(1 being the lowest). Constants are defined in the Windows unit that represent the signed value
for each priority. Table 5.2 shows how each enumeration in TThreadPriority maps to an API
constant.

TaBLE 5.2 Relative Priorities for Threads

TThreadPriority Constant Value
tpldle THREAD_PRIORITY_IDLE -15%*
tpLowest THREAD_PRIORITY_LOWEST -2
tpBelow Normal THREAD_PRIORITY_BELOW_NORMAL -1
tpNormal THREAD_PRIORITY_NORMAL 0
tpAbove Normal THREAD_PRIORITY_ABOVE_NORMAL 1
tpHighest THREAD_PRIORITY_HIGHEST 2
tpTimeCritical THREAD_PRIORITY_TIME_CRITICAL 15%

The reason the values for the tpIdle and tpTimeCritical priorities are marked with asterisks
is that, unlike the others, these relative priority values are not truly added to the class priority
to determine overall thread priority. Any thread that has the tpIdle relative priority, regardless
of its priority class, has an overall priority of 1. The exception to this rule is the Realtime pri-
ority class, which, when combined with the tpIdle relative priority, has an overall value of 16.
Any thread that has a priority of tpTimeCritical, regardless of its priority class, has an over-
all priority of 15. The exception to this rule is the Realtime priority class, which, when com-
bined with the tpTimeCritical relative priority, has an overall value of 31.

189

(%)

SINDINHIIL
a3avadHLILINA

190

Advanced Techniques
PART Il

Suspending and Resuming Threads

Recall when you learned about TThread’s Create() constructor earlier in this chapter. At the
time, you discovered that a thread could be created in a suspended state, and that you must call
its Resume () method in order for the thread to begin execution. As you might guess, a thread
can also be suspended and resumed dynamically. You accomplish this using the Suspend ()
method in conjunction with the Resume () method.

Timing a Thread

Back in the 16-bit days when we programmed under Windows 3.x, it was pretty common to
wrap some portion of code with calls to GetTickCount () or timeGetTime () to determine how
much time a particular calculation would take (something like the following, for example):

var
StartTime, Total: Longint;
begin
StartTime := GetTickCount;
{ Do some calculation here }
Total := GetTickCount - StartTime;

In a multithreaded environment, this is much more difficult to do because your application
might be preempted by the operating system in the middle of the calculation in order to pro-
vide CPU cycles to other processes. Therefore, any timing you do that relies on the system
time can’t provide a true measure of how long it spends crunching the calculation in your
thread.

To avoid such problems, Win32 under Windows N'T/2000 provides a function called
GetThreadTimes (), which provides quite detailed information on thread timing. This function
is declared as follows:

function GetThreadTimes(hThread: THandle; var 1lpCreationTime, 1pExitTime,
1pKernelTime, lpUserTime: TFileTime): BOOL; stdcall;

The hThread parameter is the handle to the thread for which you want to obtain timing infor-
mation. The other parameters for this function are passed by reference and are filled in by the
function. Here’s an explanation of each:

e 1pCreationTime—The time when the thread was created.

e 1pExitTime—The time when the thread was exited. If the thread is still running, this
value is undefined.

* 1pKernelTime—The amount of time the thread has spent executing operating system
code.

* 1pUserTime—The amount of time the thread has spent executing application code.

Multithreaded Techniques
CHAPTER 5

Each of the last four parameters is of type TFileTime, which is defined in the Windows unit as
follows:
type
TFileTime = record
dwLowDateTime: DWORD;

dwHighDateTime: DWORD;
end;

The definition of this type is a bit unusual, but it’s a part of the Win32 API, so here goes:
dwLowDateTime and dwHighDateTime are combined into a quad word (64-bit) value that repre-
sents the number of 100-nanosecond intervals that have passed since January 1, 1601. This
means, of course, that if you wanted to write a simulation of English fleet movements as they
defeated the Spanish Armada in 1588, the TFileTime type would be a wholly inappropriate
way to keep track of time. . . but we digress.

Tip

Because the TFileTime type is 64 bits in size, you can typecast a TFileTime to an
Int64 type in order to perform arithmetic on TFileTime values. The following code
demonstrates how to quickly tell whether one TFileTime is greater than another:

if Int64(UserTime) > Int64(KernelTime) then Beep;

In order to help you work with TFileTime values in a manner more native to Delphi, the fol-
lowing functions allow you to convert back and forth between TFileTime and TDateTime

types:

function FileTimeToDateTime(FileTime: TFileTime): TDateTime;

var
SysTime: TSystemTime;
begin
if not FileTimeToSystemTime(FileTime, SysTime) then

raise EConvertError.CreateFmt('FileTimeToSystemTime failed. ' +
'"Error code %d', [GetLastError]);
with SysTime do
Result := EncodeDate(wYear, wMonth, wDay) +
EncodeTime (wHour, wMinute, wSecond, wMilliseconds)
end;

function DateTimeToFileTime(DateTime: TDateTime): TFileTime;
var
SysTime: TSystemTime;

191

(%)

SINDINHIIL
a3avadHLILINA

192 Advanced Techniques

PART Il

begin
with SysTime do
begin
DecodeDate(DateTime, wYear, wMonth, wDay);
DecodeTime (DateTime, wHour, wMinute, wSecond, wMilliseconds);
wDayOfWeek := DayOfWeek(DateTime);
end;
if not SystemTimeToFileTime (SysTime, Result) then
raise EConvertError.CreateFmt('SystemTimeToFileTime failed. ' +
+ 'Error code %d', [GetLastError]);
end;

CAUTION

Remember that the GetThreadTimes () function is implemented only under Windows
NT/2000. The function always returns False when called under Windows 95 or 98.
Unfortunately, Windows 95/98 doesn’t provide any mechanism for retrieving thread-
timing information.

Managing Multiple Threads

As indicated earlier, although threads can solve a variety of programming problems, they’re
also likely to introduce new types of problems that you must deal with in your applications.
Most commonly, these problems revolve around multiple threads accessing global resources,
such as global variables or handles. Additionally, problems can arise when you need to ensure
that some event in one thread always occurs before or after some other event in another thread.
In this section, you learn how to tackle these problems by using the facilities provided by
Delphi for thread-local storage and those provided by the API for thread synchronization.

Thread-Local Storage

Because each thread represents a separate and distinct path of execution within a process, it
logically follows that you will at some point want to have a means for storing data associated
with each thread. There are three techniques for storing data unique to each thread: the first
and most straightforward involves local (stack-based) variables. Because each thread gets its
own stack, each thread executing within a single procedure or function will have its own copy
of local variables. The second technique is to store local information in your TThread descen-
dant object. Finally, you can also use Object Pascal’s threadvar reserved word to take advan-
tage of operating-system—level thread-local storage.

Multithreaded Techniques
CHAPTER 5

TThread Storage
Storing pertinent data in the TThread descendant object should be your technique of choice for
thread-local storage. It’s both more straightforward and more efficient than using threadvar
(described later). To declare thread-local data in this manner, simply add it to the definition of
your TThread descendant, as shown here:
type

TMyThread = class(TThread)

private

FLocalInt: Integer;
FLocalStr: String;

end;

Tip

It's about 10 times faster to access a field of an object than to access a threadvar vari-
able, so you should store your thread-specific data in your TThread descendant, if pos-
sible. Data that doesn’t need to exist for more than the lifetime of a particular
procedure or function should be stored in local variables because those are faster still
than the fields of a TThread object.

threadvar: APl Thread-Local Storage

Earlier we mentioned that each thread is provided with its own stack for storing local variables,
whereas global data has to be shared by all threads within an application. For example, say you
have a procedure that sets or displays the value of a global variable. When you call the proce-
dure passing a text string, the global variable is set, and when you call the procedure passing
an empty string, the global variable is displayed. Such a procedure might look like this:

var
GlobalStr: String;
procedure SetShowStr(const S: String);
begin
if S ="' then
MessageBox (@, PChar(GlobalStr), 'The string is...', MB_OK)
else
GlobalStr := S;
end;

193

(%)

SINDINHIIL
a3avadHLILINA

194

Advanced Techniques
PART Il

If this procedure is called from within the context of one thread only, there wouldn’t be any
problems. You’d call the procedure once to set the value of GlobalStr and call it again to dis-
play the value. However, consider what can happen if two or more threads call this procedure
at any given time. In such a case, it’s possible that one thread could call the procedure to set
the string and then get preempted by another thread that might also call the function to set the
string. By the time the operating system gives CPU time back to the first thread, the value of
GlobalStr for that thread will be hopelessly lost.

For situations such as these, Win32 provides a facility known as thread-local storage that
enables you to create separate copies of global variables for each running thread. Delphi nicely
encapsulates this functionality with the threadvar clause. Just declare any global variables you
want to exist separately for each thread within a threadvar (as opposed to var) clause, and the
work is done. A redeclaration of the GlobalStr variable is as simple as this:

threadvar
GlobalStr: String;

The unit shown in Listing 5.3 illustrates this very problem. It represents the main unit to a
Delphi application that contains only a button on a form. When the button is clicked, the proce-
dure is called to set and then to show GlobalStr. Next, another thread is created, and the value
internal to the thread is set and shown again. After the thread creation, the primary thread again
calls setShowStr to display GlobalStr.

Try running this application with GlobalStr declared as a var and then as a threadvar. You'll
see a difference in the output.

LIsTING 5.3 The MAIN.PAS Unit for Thread-Local Storage Demo

unit Main;
interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;

type
TMainForm = class(TForm)
Buttoni: TButton;
procedure ButtoniClick(Sender: TObject);
private
{ Private declarations }
public
{ Public declarations }

Multithreaded Techniques

LisTING 5.3 Continued

CHAPTER 5

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

{ NOTE: Change GlobalStr from var to threadvar to see difference }

var
//threadvar
GlobalStr: string;

type
TTLSThread = class(TThread)
private
FNewStr: String;
protected
procedure Execute; override;
public

constructor Create(const ANewStr: String);
end;

procedure SetShowStr(const S: String);

begin
if S = '' then
MessageBox (@, PChar(GlobalStr), 'The string is...', MB_OK)
else

GlobalStr := S;
end;

constructor TTLSThread.Create(const ANewStr: String);
begin

FNewStr := ANewStr;

inherited Create(False);
end;

procedure TTLSThread.Execute;

begin
FreeOnTerminate := True;
SetShowStr (FNewStr) ;
SetShowStr('"');

end;

195

(%)

SINDINHIIL
a3avadHLILINA

196

Advanced Techniques
PART Il

LisTING 5.3 Continued

procedure TMainForm.ButtoniClick(Sender: TObject);
begin

SetShowStr('Hello world');

SetShowStr('');

TTLSThread.Create('Dilbert');

Sleep(100);

SetShowStr('');
end;

end.

NoTE

The demo program calls the Win32 APl Sleep() procedure after creating the thread.
Sleep() is declared as follows:

procedure Sleep(dwMilliseconds: DWORD); stdcall;

The Sleep() procedure tells the operating system that the current thread doesn’t
need any more CPU cycles for another dwMilliseconds milliseconds. Inserting this call
into the code has the effect of simulating system conditions where more multitasking
is occurring and introducing a bit more “randomness” into the application as to
which threads will be executing when.

It's often acceptable to pass zero in the dwMilliseconds parameter. Although that
doesn’t prevent the current thread from executing for any specific amount of time, it
does cause the operating system to give CPU cycles to any waiting threads of equal or
greater priority.

Be careful of using Sleep() to work around mysterious timing problems. Sleep ()
might work around a particular problem on your machine, but timing problems that
aren't solved conclusively will pop up again on somebody else’s machine, especially
when the machine is significantly faster or slower or has a different number of
processors than your machine.

Thread Synchronization

When working with multiple threads, you’ll often need to synchronize the access of threads to
some particular piece of data or resource. For example, suppose you have an application that
uses one thread to read a file into memory and another thread to count the number of charac-
ters in the file. It goes without saying that you can’t count all the characters in the file until the
entire file has been loaded into memory. However, because each operation occurs in its own

Multithreaded Techniques

CHAPTER 5

thread, the operating system would like to treat them as two completely unrelated tasks. To fix
this problem, you must synchronize the two threads so that the counting thread doesn’t execute
until the loading thread finishes.

These are the types of problems that thread synchronization addresses, and Win32 provides a
variety of ways to synchronize threads. In this section, you’ll see examples of thread synchro-
nization techniques using critical sections, mutexes, semaphores, and events.

In order to examine these techniques, first take a look at a problem involving threads that need
to be synchronized. For the purpose of illustration, suppose you have an array of integers that
needs to be initialized with ascending values. You want to first go through the array and set the
values from 1 to 128 and then reinitialize the array with values from 128 to 255. You’ll then
display the final thread in a list box. An approach to this might be to perform the initializations
in two separate threads. Consider the code in Listing 5.4 for a unit that attempts to perform this
task.

LisTING 5.4 A Unit That Attempts to Initialize an Array in Threads

unit Main;
interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;

type

TMainForm = class(TForm)

Buttoni: TButton;

ListBox1: TListBox;

procedure ButtoniClick(Sender: TObject);
private

procedure ThreadsDone(Sender: TObject);
end;

TFooThread = class(TThread)
protected

procedure Execute; override;
end;

var
MainForm: TMainForm;

implementation

197

(%)

SINDINHIIL
a3avadHLILINA

198 Advanced Techniques

PART Il

LisTING 5.4 Continued

{$R *.DFM}

const
MaxSize = 128;

var
NextNumber: Integer = 0;
DoneFlags: Integer = 0;
GlobalArray: array[1..MaxSize] of Integer;

function GetNextNumber: Integer;

begin
Result := NextNumber; // return global var
Inc (NextNumber); // inc global var
end;

procedure TFooThread.Execute;
var
i: Integer;
begin
OnTerminate := MainForm.ThreadsDone;
for i := 1 to MaxSize do
begin
GlobalArray[i] := GetNextNumber; // set array element
Sleep(5); // let thread intertwine
end;
end;

procedure TMainForm.ThreadsDone(Sender: TObject);

var
i: Integer;
begin
Inc(DoneFlags);
if DoneFlags = 2 then // make sure both threads finished
for i := 1 to MaxSize do
{ fill listbox with array contents }
Listbox1.Items.Add(IntToStr(GlobalArray[i]));
end;

procedure TMainForm.ButtoniClick(Sender: TObject);
begin
TFooThread.Create(False); // create threads
TFooThread.Create(False);
end;

end.

Multithreaded Techniques
CHAPTER 5

Because both threads will execute simultaneously, what happens is that the contents of the
array are corrupted as it’s initialized. As proof, take a look at the output of this code, as shown
in Figure 5.4.

«i No Synchronization Demo M= E3

FIGURE 5.4

Output from unsynchronized array initialization.

The solution to this problem is to synchronize the two threads as they access the global array
so that they don’t both dive in at the same time. You can take any of a number of valid
approaches to this problem.

Critical Sections

Critical sections provide one of the most straightforward ways to synchronize threads. A criti-
cal section is some section of code that allows for only one thread to execute through it at a
time. If you wrap the code used to initialize the array in a critical section, other threads will be
blocked from entering the code section until the first finishes.

Prior to using a critical section, you must initialize it using the InitializeCriticalSection()
API procedure, which is declared as follows:

procedure InitializeCriticalSection(var 1lpCriticalSection:
TRTLCriticalSection); stdcall;

lpCriticalSection is a TRTLCriticalSection record that’s passed by reference. The exact
definition of TRTLCriticalSection is unimportant because you’ll rarely (if ever) actually look
at the contents of one. You’ll pass an uninitialized record in the 1pCriticalSection parameter,
and the record will be filled by the procedure.

199

(%)

SINDINHIIL
a3avadHLILINA

200

Advanced Techniques
PART Il

NoTE

Microsoft deliberately obscures the structure of the TRTLCriticalSection record
because the contents vary from one hardware platform to another and tinkering
with the contents of this structure can potentially wreak havoc on your process. On
Intel-based systems, the critical section structure contains a counter, a field containing
the current thread handle, and (potentially) a handle of a system event. On Alpha
hardware, the counter is replaced with an Alpha-CPU data structure called a spinlock,
which is more efficient than the Intel solution.

When the record is filled, you can create a critical section in your application by wrapping
some block of code with calls to EnterCriticalSection() and LeaveCriticalSection().
These procedures are declared as follows:
procedure EnterCriticalSection(var lpCriticalSection:

TRTLCriticalSection); stdcall;

procedure LeaveCriticalSection(var 1lpCriticalSection:
TRTLCriticalSection); stdcall;

As you might guess, the 1pCriticalSection parameter you pass these guys is the same one
that’s filled in by the InitializeCriticalSection() procedure.

When you’re finished with the TRTLCriticalSection record, you should clean up by calling
the DeleteCriticalSection() procedure, which is declared as follows:

procedure DeleteCriticalSection(var 1lpCriticalSection:
TRTLCriticalSection); stdcall;

Listing 5.5 demonstrates the technique for synchronizing the array-initialization threads with
critical sections.

LisTING 5.5 Using Critical Sections

unit Main;
interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;

type
TMainForm = class(TForm)
Buttoni: TButton;

Multithreaded Techniques

LisTING 5.5 Continued

CHAPTER 5

ListBox1: TListBox;

procedure ButtoniClick(Sender: TObject);
private

procedure ThreadsDone(Sender: TObject);
end;

TFooThread = class(TThread)
protected

procedure Execute; override;
end;

var
MainForm: TMainForm;

implementation
{$R *.DFM}

const
MaxSize = 128;

var
NextNumber: Integer = 0;
DoneFlags: Integer = 0;
GlobalArray: array[1..MaxSize] of Integer;
CS: TRTLCriticalSection;

function GetNextNumber: Integer;
begin
Result := NextNumber; // return global var
inc (NextNumber) ; // inc global var
end;

procedure TFooThread.Execute;

var
i: Integer;
begin
OnTerminate := MainForm.ThreadsDone;
EnterCriticalSection(CS); // CS begins here
for i := 1 to MaxSize do
begin
GlobalArray[i] := GetNextNumber; // set array element
Sleep(5); // let thread intertwine
end;
LeaveCriticalSection(CS); // CS ends here

201

(%)

SINDINHIIL
a3avadHLILINA

202

Advanced Techniques
PART Il

LisTING 5.5 Continued

end;

procedure TMainForm.ThreadsDone(Sender: TObject);
var
i: Integer;
begin
inc(DoneFlags);
if DoneFlags = 2 then
begin // make sure both threads finished
for i := 1 to MaxSize do
{ fill listbox with array contents }
Listbox1.Items.Add(IntToStr(GlobalArray[i]));
DeleteCriticalSection(CS);
end;
end;

procedure TMainForm.ButtoniClick(Sender: TObject);

begin
InitializeCriticalSection(CS);
TFooThread.Create(False); // create threads
TFooThread.Create(False);

end;

end.

After the first thread passes through the call to EnterCriticalSection(), all other threads are
prevented from entering that block of code. The next thread that comes along to that line of
code is put to sleep until the first thread calls LeaveCriticalSection (). At that point, the sec-
ond thread is awakened and allowed to take control of the critical section. Figure 5.5 shows
the output of this application when the threads are synchronized.

Mutexes

Mutexes work very much like critical sections except for two key differences: First, mutexes
can be used to synchronize threads across process boundaries. Second, mutexes can be given a
string name, and additional handles to existing mutex objects can be created by referencing
that name.

Multithreaded Techniques
CHAPTER 5

i Critical Section Demo M= E3

128
123
130
13 =
132
133
134
135
136
137
138
133
140
141
142
143
144

145 [

| v

FIGURE 5.5
Output from synchronized array initialization.

Tip

Semantics aside, the biggest difference between critical sections and event objects
such as mutexes is performance: Critical sections are very lightweight—as few as

10-15 clock cycles to enter or leave the critical section when there are no thread colli-
sions. As soon as there is a thread collision for that critical section, the system creates
an event object (a mutex, probably). The cost of using event objects such as mutexes
is that it requires a roundtrip into the kernel, which requires a process context switch
and a change of ring levels, which piles up to 400 to 600 clock cycles each way. All
this overhead is incurred even if your app doesn’t currently have multiple threads, or
if no other threads are contending for the resource you're protecting.

The function used to create a mutex is appropriately called CreateMutex (). This function is
declared as follows:

function CreateMutex(lpMutexAttributes: PSecurityAttributes;
bInitialOwner: BOOL; lpName: PChar): THandle; stdcall;

lpMutexAttributes is a pointer to a TSecurityAttributes record. It’s common to pass nil in
this parameter, in which case the default security attributes will be used.

bInitialOwner indicates whether the thread creating the mutex should be considered the
owner of the mutex when it’s created. If this parameter is False, the mutex is unowned.

1pName is the name of the mutex. This parameter can be nil if you don’t want to name the
mutex. If this parameter is non-nil, the function will search the system for an existing mutex

203

(%)

SINDINHIIL
a3avadHLILINA

204

Advanced Techniques
PART Il

with the same name. If an existing mutex is found, a handle to the existing mutex is returned.
Otherwise, a handle to a new mutex is returned.

When you’re finished using a mutex, you should close it using the CloseHandle () API
function.

Listing 5.6 again demonstrates the technique for synchronizing the array-initialization threads,
except this time it uses mutexes.

LIsTING 5.6 Using Mutexes for Synchronization

unit Main;
interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;

type

TMainForm = class(TForm)

Buttoni: TButton;

ListBox1: TListBox;

procedure ButtoniClick(Sender: TObject);
private

procedure ThreadsDone(Sender: TObject);
end;

TFooThread = class(TThread)
protected

procedure Execute; override;
end;

var
MainForm: TMainForm;

implementation
{$R *.DFM}

const
MaxSize = 128;

var
NextNumber: Integer = 0;
DoneFlags: Integer = 0;

Multithreaded Techniques

LisTING 5.6 Continued

CHAPTER 5

GlobalArray: array[1
hMutex: THandle = 0;

function GetNextNumber:

begin
Result := NextNumber
Inc (NextNumber);
end;

..MaxSize] of Integer;

Integer;

; // return global var
// inc global var

procedure TFooThread.Execute;

var
i: Integer;
begin
FreeOnTerminate := True;
OnTerminate := MainForm.ThreadsDone;
if WaitForSingleObject(hMutex, INFINITE) = WAIT_OBJECT_O then
begin
for i := 1 to MaxSize do
begin
GlobalArray[i] := GetNextNumber; // set array element
Sleep(5); // let thread intertwine
end;
end;
ReleaseMutex (hMutex) ;
end;
procedure TMainForm.ThreadsDone(Sender: TObject);

// make sure both threads finished

Listbox1.Items.Add(IntToStr(GlobalArray[i]));

var
i: Integer;
begin
Inc(DoneFlags);
if DoneFlags = 2 then
begin
for i := 1 to MaxSize do
{ fill listbox with array contents }
CloseHandle (hMutex) ;
end;
end;

procedure TMainForm.ButtoniClick(Sender: TObject);

begin
hMutex

:= CreateMutex(nil, False, nil);
TFooThread.Create(False);

/] create threads

205

(%)

SINDINHIIL
a3avadHLILINA

206

Advanced Techniques
PART Il

LisTING 5.6 Continued

TFooThread.Create(False);
end;

end.

You’ll notice that in this case the WaitForSingleObject() function is used to control thread
entry into the synchronized block of code. This function is declared as follows:

function WaitForSingleObject(hHandle: THandle; dwMilliseconds: DWORD):
DWORD; stdcall;

The purpose of this function is to sleep the current thread up to dwMilliseconds milliseconds
until the API object specified in the hHandle parameter becomes signaled. Signaled means dif-
ferent things for different objects. A mutex becomes signaled when it’s not owned by a thread,
whereas a process, for example, becomes signaled when it terminates. Apart from an actual
period of time, the dwMilliseconds parameter can also have the value @, which means to
check the status of the object and return immediately, or INFINITE, which means to wait for-
ever for the object to become signaled. The return value of this function can be any one of the
values shown in Table 5.3.

TaBLE 5.3 WAIT Constants Used by WaitForSingleObject() API Function

Value Meaning

WAIT_ABANDONED The specified object is a mutex object, and the thread owning the
mutex was exited before it freed the mutex. This circumstance is
referred to as an abandoned mutex; in such a case, ownership of the
mutex object is granted to the calling thread, and the mutex is set to

nonsignaled.
WAIT_OBJECT_O The state of the specified object is signaled.
WAIT_TIMEOUT The timeout interval elapsed, and the object’s state is nonsignaled.

Again, when a mutex isn’t owned by a thread, it’s in the signaled state. The first thread to call
WaitForSingleObject () on this mutex is given ownership of the mutex, and the state of the
mutex object is set to nonsignaled. The thread’s ownership of the mutex is severed when the
thread calls the ReleaseMutex () function, passing the mutex handle as the parameter. At that
point, the state of the mutex again becomes signaled.

Multithreaded Techniques
CHAPTER 5

NoTEe

In addition to WaitForSingleObject (), the Win32 API also has functions called
WaitForMultipleObjects() and MsgWaitForMultipleObjects(), which enable you to
wait for the state of one or more objects to become signaled. These functions are
documented in the Win32 API online help.

Semaphores

Another technique for thread synchronization involves using semaphore API objects. Semaphores
build on the functionality of mutexes while adding one important feature: They offer the capa-
bility of resource counting so that a predetermined number of threads can enter synchronized
pieces of code at one time. The function used to create a semaphore is CreateSemaphore (),
and it’s declared as follows:

function CreateSemaphore(lpSemaphoreAttributes: PSecurityAttributes;
1InitialCount, 1MaximumCount: Longint; 1lpName: PChar): THandle;stdcall;

Like CreateMutex (), the first parameter to CreateSemaphore () is a pointer to a
TSecurityAttributes record to which you can pass Nil for the defaults.

1lInitialCount is the initial count of the semaphore object. This is a number between @ and
1IMaximumCount. A semaphore is signaled as long as this parameter is greater than zero. The
count of a semaphore is decremented whenever WaitForSingleObject () (or one of the other
wait functions) releases a thread. A semaphore’s count is increased by using the
ReleaseSemaphore () function.

1MaximumCount specifies the maximum count value of the semaphore object. If the semaphore
is used to count some resources, this number should represent the total number of resources
available.

1pName is the name of the semaphore. This parameter behaves the same as the parameter of the
same name in CreateMutex().

Listing 5.7 demonstrates using semaphores to perform synchronization of the array-initializa-
tion problem.

LisTING 5.7 Using Semaphores for Synchronization

207

(%)

unit Main;

interface

SINDINHIIL
a3avadHLILINA

208

Advanced Techniques
PART Il

LisTING 5.7 Continued

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Dialogs, StdCtrls;

type

TMainForm = class(TForm)

Buttoni: TButton;

ListBox1: TListBox;

procedure ButtoniClick(Sender: TObject);
private

procedure ThreadsDone(Sender: TObject);
end;

TFooThread = class(TThread)
protected

procedure Execute; override;
end;

var
MainForm: TMainForm;

implementation
{$R *.DFM}

const
MaxSize = 128;

var
NextNumber: Integer = 0;
DoneFlags: Integer = 0;
GlobalArray: array[1..MaxSize] of Integer;
hSem: THandle = 0;

function GetNextNumber: Integer;

begin
Result := NextNumber; // return global var
Inc (NextNumber); // inc global var
end;

procedure TFooThread.Execute;

Forms,

Multithreaded Techniques

CHAPTER 5

LisTING 5.7 Continued

209

var
i: Integer;
WaitReturn: DWORD;
begin
OnTerminate := MainForm.ThreadsDone;

WaitReturn := WaitForSingleObject(hSem, INFINITE);
if WaitReturn = WAIT_OBJECT_0 then

begin
for i := 1 to MaxSize do
begin
GlobalArray[i] := GetNextNumber; // set array element
Sleep(5); // let thread intertwine
end;
end;
ReleaseSemaphore (hSem, 1, nil);
end;

procedure TMainForm.ThreadsDone(Sender: TObject);
var
i: Integer;
begin
Inc(DoneFlags);
if DoneFlags = 2 then // make sure both threads finished
begin
for i := 1 to MaxSize do
{ fill listbox with array contents }
Listbox1.Items.Add(IntToStr(GlobalArray[i]));
CloseHandle (hSem);
end;
end;

procedure TMainForm.Buttoni1Click(Sender: TObject);

begin
hSem := CreateSemaphore(nil, 1, 1, nil);
TFooThread.Create(False); // create threads
TFooThread.Create(False);

end;

end.

Because you allow only one thread to enter the synchronized portion of code, the maximum
count for the semaphore is 1 in this case.

(%)

SINDINHIIL
a3avadHLILINA

210

Advanced Techniques
PART Il

The ReleaseSemaphore () function is used to increase the count for the semaphore. Notice that
this function is a bit more involved than its cousin, ReleaseMutex (). The declaration for
ReleaseSemaphore() is as follows:

function ReleaseSemaphore(hSemaphore: THandle; 1ReleaseCount: Longint;
1pPreviousCount: Pointer): BOOL; stdcall;

The 1ReleaseCount parameter enables you to specify the number by which the count of the
semaphore will be increased. The old count will be stored in the 1ongint pointed to by the
1pPreviousCount parameter if its value is not Nil. A subtle implication of this capability is
that a semaphore is never really owned by any thread in particular. For example, suppose that
the maximum count of a semaphore is 10, and 10 threads call WaitForSingleObject() to set
the count of the thread to 0 and put the thread in a nonsignaled state. All it takes is one of those
threads to call ReleaseSemaphore () with 10 as the 1ReleaseCount parameter in order not only
to make the thread signaled again, but also to increase the count back to 10. This powerful
capability can introduce some hard-to-track-down bugs into your applications, so you should
use it with care.

Be sure to use the CloseHandle() function to free the semaphore handle allocated with
CreateSemaphore().

A Sample Multithreaded Application

To demonstrate the usage of TThread objects within the context of a real-world application,
this section focuses on creating a file-search application that performs its searches in a special-
ized thread. The project is called DelSrch, which stands for Delphi Search, and the main form
for this utility is shown in Figure 5.6.

5 Delphi Search [_[O]]
e
Search Parameer Option:
Paif; [cdPatName Browse LlCsebesing
- = I~ File pames only
File Spec: [ediFileSpec I Recurse Subdis
Token: [ediToken I~ Run from Association
(=] Sezrch | @ Esit | Fiint | 2 Priority |
[Z

FIGURE 5.6

The Main form for the belSrch project.

Multithreaded Techniques

CHAPTER 5

The application works like this. The user chooses a path through which to search and provides
a file specification to indicate the types of files to be searched. The user also enters a token to
search for in the appropriate edit control. Some option check boxes on one side of the form
enable the user to tailor the application to suit his needs for a particular search. When the user
clicks the Search button, a search thread is created and the appropriate search information—
such as token, path, and file specification—is passed to the TThread descendant object. When
the search thread finds the search token in certain files, information is appended to the list box.
Finally, if the user double-clicks a file in the list box, he can browse it with a text editor or
view it from its desktop association.

Although this is a fairly full-featured application, we’ll focus mainly on explaining the applica-
tion’s key search features and how they relate to multithreading.

The User Interface

The main unit for the application is called Main.pas. Shown in Listing 5.8, this unit is respon-
sible for managing the main form and the overall user interface. In particular, this unit contains
the logic for owner-drawing the list box, invoking a viewer for files in the list box, invoking
the search thread, printing the list box contents, and reading and writing UI settings to an INI
file.

LisTING 5.8 The Main.pas Unit for the DelSrch Project

unit Main;
interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, Buttons, ExtCtrls, Menus, SrchIni,
SrchuU, ComCtrls, AppEvnts;

type

TMainForm = class(TForm)
1bFiles: TListBox;
StatusBar: TStatusBar;
pnlControls: TPanel;
PopupMenu: TPopupMenu;
FontDialog: TFontDialog;
pnlOptions: TPanel;
gbParams: TGroupBox;
LFileSpec: TLabel;
LToken: TLabel;
1PathName: TLabel;

211

(%)

SINDINHIIL
a3avadHLILINA

212 Advanced Techniques

PART Il

LisTING 5.8 Continued

edtFileSpec: TEdit;
edtToken: TEdit;
btnPath: TButton;
edtPathName: TEdit;
gbOptions: TGroupBox;
cbCaseSensitive: TCheckBox;
cbFileNamesOnly: TCheckBox;
cbRecurse: TCheckBox;
cbRunFromAss: TCheckBox;
pnlButtons: TPanel;
btnSearch: TBitBtn;
btnClose: TBitBtn;
btnPrint: TBitBtn;
btnPriority: TBitBtn;
Font1: TMenuItem;
Cleari: TMenuItem;
Print1: TMenuItem;
N1: TMenultem;
Exit1: TMenulItem;
ApplicationEvents: TApplicationEvents;
procedure btnSearchClick(Sender: TObject);
procedure btnPathClick(Sender: TObject);
procedure 1lbFilesDrawItem(Control: TWinControl; Index: Integer;
Rect: TRect; State: TOwnerDrawState);
procedure Font1Click(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure btnPrintClick(Sender: TObject);
procedure btnCloseClick(Sender: TObject);
procedure 1lbFilesDblClick(Sender: TObject);
procedure FormResize(Sender: TObject);
procedure btnPriorityClick(Sender: TObject);
procedure edtTokenChange(Sender: TObject);
procedure CleariClick(Sender: TObject);
procedure ApplicationEventsHint(Sender: TObject);
private
procedure ReadIni;
procedure WriteIni;
public
Running: Boolean;
SearchPri: Integer;
SearchThread: TSearchThread;
procedure EnableSearchControls(Enable: Boolean);
end;

Multithreaded Techniques

213

CHAPTER 5
LisTiING 5.8 Continued
var
MainForm: TMainForm;
implementation
{$R *.DFM}
uses Printers, ShellAPI, StrUtils, FileCtrl, Priu;
procedure PrintStrings(Strings: TStrings);
{ This procedure prints all of the strings in the Strings parameter }
var
Prn: TextFile;
I: Integer;
begin
if Strings.Count = @ then // Are there strings?
raise Exception.Create('No text to print!');
AssignPrn(Prn); // assign Prn to printer
try
Rewrite(Prn); // open printer
try
for I := 0 to Strings.Count - 1 do // iterate over all strings
WriteLn(Prn, Strings.Strings[I]); // write to printer
finally
CloseFile(Prn); // close printer
end;
except
on EInOutError do
MessageDlg('Error Printing text.', mtError, [mbOk], 0);
end;
end;
procedure TMainForm.EnableSearchControls(Enable: Boolean);
{ Enables or disables certain controls so options can't be modified }
{ while search is executing. }
begin
btnSearch.Enabled := Enable; // enable/disable proper controls

cbRecurse.Enabled Enable;
cbFileNamesOnly.Enabled := Enable;
chCaseSensitive.Enabled := Enable;
btnPath.Enabled := Enable;
edtPathName.Enabled := Enable;
edtFileSpec.Enabled := Enable;
edtToken.Enabled := Enable;

(%)

SINDINHIIL
a3avadHLILINA

214

Advanced Techniques
PART Il

LisTING 5.8 Continued

Running := not Enable; // set Running flag
edtTokenChange(nil);
with btnClose do
begin
if Enable then
begin // set props of Close/Stop button
Caption := '&Close';
Hint := 'Close Application';
end
else begin
Caption := '&Stop';
Hint := 'Stop Searching';
end;
end;
end;

procedure TMainForm.btnSearchClick(Sender: TObject);
{ Called when Search button is clicked. Invokes search thread. }

begin
EnableSearchControls(False); // disable controls
1bFiles.Clear; // clear listbox
{ start thread }
SearchThread := TSearchThread.Create(cbCaseSensitive.Checked,

cbFileNamesOnly.Checked, cbRecurse.Checked, edtToken.Text,
edtPathName.Text, edtFileSpec.Text);
end;

procedure TMainForm.edtTokenChange(Sender: TObject);
begin

btnSearch.Enabled := not Running and (edtToken.Text <> '');
end;

procedure TMainForm.btnPathClick(Sender: TObject);
{ Called when Path button is clicked. Allows user to choose new path.
var

ShowDir: string;

begin
ShowDir := edtPathName.Text;
if SelectDirectory('Choose a search path...', '', ShowDir) then

edtPathName.Text := ShowDir;
end;

procedure TMainForm.lbFilesDrawItem(Control: TWinControl;
Index: Integer; Rect: TRect; State: TOwnerDrawState);

Multithreaded Techniques

LisTING 5.8 Continued

CHAPTER 5

{ Called in order to owner draw listbox. }

var
CurStr: string;
begin
with 1lbFiles do
begin
CurStr := Items.Strings[Index];
Canvas.FillRect (Rect); // clear out rect
if not cbFileNamesOnly.Checked then // if not filename only...
{ if current line is filename... }
if (Pos('File ', CurStr) = 1) and
(CurStr[Length(CurStr)] = ':') then
with Canvas.Font do
begin
Style := [fsUnderline]; // underline font
Color := clRed; // paint red
end
else
Rect.Left := Rect.Left + 15; // otherwise, indent
DrawText (Canvas.Handle, PChar(CurStr), Length(CurStr), Rect,
DT_SINGLELINE);
end;
end;

procedure TMainForm.Fonti1Click(Sender: TObject);
{ Allows user to pick new font for listbox }
begin
{ Pick new listbox font }
if FontDialog.Execute then
1bFiles.Font := FontDialog.Font;
end;

procedure TMainForm.FormDestroy(Sender: TObject);
{ OnDestroy event handler for form }
begin
Writelni;
end;

procedure TMainForm.FormCreate(Sender: TObject);
{ OnCreate event handler for form }
begin
ReadIni; // read INI file
end;

215

(%)

SINDINHIIL
a3avadHLILINA

Advanced Techniques
PART Il

216

LisTING 5.8 Continued

procedure TMainForm.btnPrintClick(Sender: TObject);
{ Called when Print button is clicked. }
begin
if MessageD1lg('Send search results to printer?', mtConfirmation,
[mbYes, mbNo], @) = mrYes then
PrintStrings(1lbFiles.Items);
end;

procedure TMainForm.btnCloseClick(Sender: TObject);
{ Called to stop thread or close application }
begin

// if thread is running then terminate thread

if Running then SearchThread.Terminate

// otherwise close app

else Close;
end;

procedure TMainForm.lbFilesDblClick(Sender: TObject);
{ Called when user double-clicks in listbox. Invokes viewer for }
{ highlighted file. }
var
ProgramStr, FileStr: string;
RetVal: THandle;
begin
{ if user clicked on a file.. }
if (Pos('File ', 1lbFiles.Items[lbFiles.ItemIndex]) = 1) then
begin
{ load text editor from INI file. Notepad is default. }
ProgramStr := SrchIniFile.ReadString('Defaults', 'Editor', 'notepad');

FileStr := 1lbFiles.Items[lbFiles.ItemIndex]; // Get selected file
FileStr := Copy(FileStr, 6, Length(FileStr) - 5); // Remove prefix
if FileStr[Length(FileStr)] = ':' then // Remove ":"

DecStrLen(FileStr, 1);
if cbRunFromAss.Checked then
{ Run file from shell association }
RetVal := ShellExecute(Handle, 'open', PChar(FileStr), nil, nil,
SW_SHOWNORMAL)
else
{ View file using text editor }
RetVal := ShellExecute(Handle, 'open', PChar(ProgramStr),
PChar(FileStr), nil, SW_SHOWNORMAL) ;
{ Check for error }
if RetVal < 32 then RaiselLastWin32Error;
end;
end;

Multithreaded Techniques

217

CHAPTER 5
LisTiING 5.8 Continued
procedure TMainForm.FormResize(Sender: TObject);
{ OnResize event handler. Centers controls in form. }
begin
{ divide status bar into two panels with a 1/3 - 2/3 split }
with StatusBar do
begin
Panels[0].Width := Width div 3;
Panels[1].Width := Width * 2 div 3;
end;
end;
procedure TMainForm.btnPriorityClick(Sender: TObject);
{ Show thread priority form }
begin
ThreadPriWin.Show;
end;
procedure TMainForm.ReadIni;
{ Reads default values from Registry }
begin
with SrchIniFile do
begin
edtPathName.Text := ReadString('Defaults', 'LastPath', 'C:\"');
edtFileSpec.Text := ReadString('Defaults', 'LastFileSpec', '*.*');
edtToken.Text := ReadString('Defaults', 'LastToken', '');
cbFileNamesOnly.Checked := ReadBool('Defaults', 'FNamesOnly',6 False);
cbCaseSensitive.Checked := ReadBool('Defaults', 'CaseSens', False);
cbRecurse.Checked := ReadBool('Defaults', 'Recurse', False);

cbRunFromAss.Checked := ReadBool('Defaults', 'RunFromAss', False);
Left := ReadInteger('Position', 'Left', Left);
Top := ReadInteger('Position', 'Top', Top);
Width := ReadInteger('Position', 'Width', Width);
Height := ReadInteger('Position', 'Height', Height);
end;
end;

procedure TMainForm.WriteIni;
{ writes current settings back to Registry }
begin
with SrchIniFile do
begin
WriteString('Defaults', 'LastPath', edtPathName.Text);
WriteString('Defaults', 'LastFileSpec', edtFileSpec.Text);
x'Defaults', 'LastToken', edtToken.Text);

(%)

SINDINHIIL
a3avadHLILINA

218

Advanced Techniques
PART Il

LisTING 5.8 Continued

WriteBool('Defaults', 'CaseSens', cbCaseSensitive.Checked);
WriteBool('Defaults', 'FNamesOnly', cbFileNamesOnly.Checked);
WriteBool('Defaults', 'Recurse', cbRecurse.Checked);

WriteBool('Defaults', 'RunFromAss', cbRunFromAss.Checked);
WriteInteger('Position', 'Left', Left);
WriteInteger('Position', 'Top', Top);
WriteInteger('Position', 'Width', Width);
WriteInteger('Position', 'Height', Height);
end;
end;

procedure TMainForm.Cleari1Click(Sender: TObject);
begin

1bFiles.Items.Clear;
end;

procedure TMainForm.ApplicationEventsHint (Sender: TObject);
{ OnHint event handler for Application }

begin
{ Display application hints on status bar }
StatusBar.Panels[0].Text := Application.Hint;
end;
end.

Several things worth mentioning happen in this unit. First, you’ll notice the fairly small
PrintStrings() procedure that’s used to send the contents of TStrings to the printer. To
accomplish this, the procedure takes advantage of Delphi’s AssignPrn() standard procedure,
which assigns a TextFile variable to the printer. That way, any text written to the TextFile is
automatically written to the printer. When you’re finished writing to the printer, be sure to use
the CloseFile () procedure to close the connection to the printer.

Also of interest is the use of the ShellExecute () Win32 API procedure to launch a viewer for
a file that will be shown in the list box. ShellExecute() not only enables you to invoke exe-
cutable programs but also to invoke associations for registered file extensions. For example, if
you try to invoke a file with a . pas extension using ShellExecute(), it will automatically load
Delphi to view the file.

Multithreaded Techniques
CHAPTER 5

Tip

If ShellExecute () returns a value indicating an error, the application calls
RaiselLastWin32Error (). This procedure, located in the SysUtils unit, calls the
GetLastError() APl function and Delphi’s SysErrorMessage () in order to obtain
more detailed information about the error and to format that information into a
string. You can use RaiseLastWin32Error () in this manner in your own applications if
you want your users to obtain detailed error messages on API failures.

The Search Thread

The searching engine is contained within a unit called SrchU. pas, which is shown in Listing
5.9. This unit does a number of interesting things, including copying an entire file into a string,
recursing subdirectories, and communicating information back to the main form.

LisTING 5.9 The SrchuU.pas Unit

unit Srchu;
interface
uses Classes, StdCtrls;

type

TSearchThread = class(TThread)

private
LB: TListbox;
CaseSens: Boolean;
FileNames: Boolean;
Recurse: Boolean;
SearchStr: string;
SearchPath: string;
FileSpec: string;
AddStr: string;
FSearchFile: string;
procedure AddTolList;
procedure DoSearch(const Path: string);
procedure FindAllFiles(const Path: string);
procedure FixControls;

219

(%)

SINDINHIIL
a3avadHLILINA

220 Advanced Techniques

PART Il

LisTING 5.9 Continued

procedure ScanForStr(const FName: string; var FileStr: string);
procedure SearchFile(const FName: string);
procedure SetSearchFile;
protected
procedure Execute; override;
public
constructor Create(CaseS, FName, Rec: Boolean; const Str, SPath,
FSpec: string);
destructor Destroy; override;
end;

implementation
uses SysUtils, StrUtils, Windows, Forms, Main;

constructor TSearchThread.Create(CaseS, FName, Rec: Boolean; const Str,
SPath, FSpec: string);

begin
CaseSens := (CaseS;
FileNames := FName;
Recurse := Rec;

SearchStr := Str;
SearchPath := AddBackSlash(SPath);
FileSpec := FSpec;
inherited Create(False);
end;

destructor TSearchThread.Destroy;

begin
FSearchFile := '';
Synchronize(SetSearchFile);
Synchronize(FixControls);
inherited Destroy;

end;

procedure TSearchThread.Execute;

begin

FreeOnTerminate := True; // set up all the fields

LB := MainForm.lbFiles;

Priority := TThreadPriority(MainForm.SearchPri);

if not CaseSens then SearchStr := UpperCase(SearchStr);

FindAllFiles(SearchPath); // process current directory

if Recurse then // if subdirs, then...
DoSearch(SearchPath); /] recurse, otherwise...

end;

Multithreaded Techniques

CHAPTER 5

LisTING 5.9 Continued

procedure TSearchThread.FixControls;
{ Enables controls in main form. Must be called through Synchronize }
begin
MainForm.EnableSearchControls(True);
end;

procedure TSearchThread.SetSearchFile;
{ Updates status bar with filename. Must be called through Synchronize }
begin
MainForm.StatusBar.Panels[1].Text := FSearchFile;
end;

procedure TSearchThread.AddToList;
{ Adds string to main listbox. Must be called through Synchronize }
begin
LB.Items.Add(AddStr);
end;

procedure TSearchThread.ScanForStr(const FName: string;
var FileStr: string);
{ Scans a FileStr of file FName for SearchStr }
var
Marker: string[1];
FoundOnce: Boolean;
FindPos: integer;
begin
FindPos := Pos(SearchStr, FileStr);
FoundOnce := False;
while (FindPos <> @) and not Terminated do
begin
if not FoundOnce then
begin
{ use ":" only if user doesn't choose "filename only" }
if FileNames then
Marker := '
else
Marker := ':';
{ add file to listbox }
AddStr := Format('File %s%s', [FName, Marker]);
Synchronize (AddToList);
FoundOnce := True;
end;
{ don't search for same string in same file if filenames only }
if FileNames then Exit;

221

(%)

SINDINHIIL
a3avadHLILINA

222 Advanced Techniques

PART Il

LisTING 5.9 Continued

{ Add line if not filename only }
AddStr := GetCurLine(FileStr, FindPos);
Synchronize (AddToList);
FileStr := Copy(FileStr, FindPos + Length(SearchStr),
Length(FileStr));
FindPos := Pos(SearchStr, FileStr);
end;
end;

procedure TSearchThread.SearchFile(const FName: string);
{ Searches file FName for SearchStr }
var

DataFile: THandle;

FileSize: Integer;

SearchString: string;

begin
FSearchFile := FName;
Synchronize(SetSearchFile);
try

DataFile := FileOpen(FName, fmOpenRead or fmShareDenyWrite);
if DataFile = @ then raise Exception.Create('');
try
{ set length of search string }
FileSize := GetFileSize(DataFile, nil);
SetlLength(SearchString, FileSize);
{ Copy file data to string }
FileRead(DataFile, Pointer(SearchString)~, FileSize);
finally
CloseHandle(DataFile);
end;
if not CaseSens then SearchString := UpperCase(SearchString);
ScanForStr(FName, SearchString);
except
on Exception do
begin
AddStr := Format('Error reading file: %s', [FName]);
Synchronize (AddToList);
end;
end;
end;

procedure TSearchThread.FindAllFiles(const Path: string);
{ procedure searches Path subdir for files matching filespec }
var

SR: TSearchRec;

Multithreaded Techniques

CHAPTER 5

LisTING 5.9 Continued

begin
{ find first file matching spec }
if FindFirst(Path + FileSpec, faArchive, SR) = 0 then

try
repeat
SearchFile(Path + SR.Name); /] process file
until (FindNext(SR) <> @) or Terminated; // find next file
finally
SysUtils.FindClose(SR); // clean up
end;

end;

procedure TSearchThread.DoSearch(const Path: string);
{ procedure recurses through a subdirectory tree starting at Path }
var
SR: TSearchRec;
begin
{ look for directories }
if FindFirst(Path + '*.*', faDirectory, SR) = 0 then

try
repeat
{ if it's a directory and not '.' or '..' then... }
if ((SR.Attr and faDirectory) <> @) and (SR.Name[1] <> '.') and
not Terminated then
begin
FindAllFiles(Path + SR.Name + '\'); // process directory
DoSearch(Path + SR.Name + '\'); // recurse
end;
until (FindNext(SR) <> @) or Terminated; // find next directory
finally
SysUtils.FindClose(SR); // clean up
end;
end;
end.

When created, this thread first calls its FindAl1Files () method. This method uses
FindFirst() and FindNext () to search for all files in the current directory matching the file
specification indicated by the user. If the user has chosen to recurse subdirectories, the
DoSearch () method is then called in order to traverse down a directory tree. This method again
makes use of FindFirst() and FindNext () to find directories, but the twist is that it calls
itself recursively in order to traverse the tree. As each directory is found, FindAl1lFiles() is
called to process all matching files in the directory.

223

(%)

SINDINHIIL
a3avadHLILINA

Advanced Techniques
PART Il

224

Tip

The recursion algorithm used by the DoSearch() method is a standard technique for
traversing a directory tree. Because recursive algorithms are notoriously difficult to
debug, the smart programmer will make use of ones that are already known to work.
It's a good idea to save this method so that you can use it with other applications in
the future.

To process each file, you’ll notice that the algorithm for searching for a token within a file
involves using the TMemMapFile object, which encapsulates a Win32 memory-mapped file. This
object is discussed in detail in the electronic version of Delphi 5 Developer’s Guide in Chapter
12, “Working with Files,” which is on this book’s CD-ROM, but for now you can just assume
that this provides an easy way to map the contents of a file into memory. The entire algorithm
works like this:

1. When a file matching the file spec is found by the FindA11Files() method, the
SearchFile() method is called and the file contents are copied into a string.

2. The ScanForstr() method is called for each file-string. ScanForStr () searches for
occurrences of the search token within each string.

3. When an occurrence is found, the filename and/or the line of text is added to the list box.
The line of text is added only when the user unchecks the File Names Only check box.

Note that all the methods in the TSearchThread object periodically check the status of the
StopIt flag (which is tripped when the thread is told to stop) and the Terminated flag (which
is tripped when the TThread object is to terminate).

CAUTION

Remember that any methods within a TThread object that modify the application’s
user interface in any way must be called through the Synchronize () method, or the
user interface must be modified by sending messages.

Adjusting the Priority
Just to add yet another feature, DelSrch enables the user to adjust the priority of the search

thread dynamically. The form used for this purpose is shown in Figure 5.7, and the unit for this
form, PRIU.PAS, is shown in Listing 5.10.

FIGURE 5.7

i Search Thread Priority H=E3
! ;
Lowest Mormal Highest
|Z (¥ Revert |

The thread priority form for the DelSrch project.

LisTING 5.10 The Priu.pas Unit

Multithreaded Techniques
CHAPTER 5

unit Priu;
interface

uses

Windows, Messages, SysUtils,
Dialogs, StdCtrls, ComCtrls,

type

TThreadPriWin = class(TForm)
tbrPriTrackBar: TTrackBar;
Labell: TLabel;

Label2: TLabel;
Label3: TLabel;
btnOK: TBitBtn;

btnRevert:

TBitBtn;

Panell1: TPanel;
tbrPriTrackBarChange (Sender: TObject);
btnRevertClick(Sender: TObject);

FormClose(Sender: TObject; var Action: TCloseAction);

procedure
procedure
procedure
procedure
procedure
procedure
private
{ Private

OldPrival:

public

FormShow(Sender: TObject);
btnOKClick(Sender: TObject);
FormCreate(Sender: TObject);

declarations }
Integer;

{ Public declarations }

end;

var

ThreadPriWin: TThreadPriWin;

Classes, Graphics, Controls,
Buttons, ExtCtrls;

Forms,

225

(%)

SINDINHIIL
a3avadHLILINA

Advanced Techniques
PART Il

226

LisTING 5.10 Continued

implementation
{$R *.DFM}
uses Main, SrchuU;

procedure TThreadPriWin.tbrPriTrackBarChange (Sender: TObject);

begin
with MainForm do
begin
SearchPri := tbrPriTrackBar.Position;
if Running then
SearchThread.Priority := TThreadPriority(tbrPriTrackBar.Position);
end;
end;

procedure TThreadPriWin.btnRevertClick(Sender: TObject);
begin

tbrPriTrackBar.Position := 0OldPriVal;
end;

procedure TThreadPriWin.FormClose(Sender: TObject;
var Action: TCloseAction);

begin
Action := caHide;

end;

procedure TThreadPriWin.FormShow(Sender: TObject);
begin

0ldPriVal := tbrPriTrackBar.Position;
end;

procedure TThreadPriWin.btnOKClick (Sender: TObject);
begin

Close;
end;

procedure TThreadPriWin.FormCreate(Sender: TObject);
begin

tbrPriTrackBarChange (Sender); // initialize thread priority
end;

end.

Multithreaded Techniques

CHAPTER 5

The code for this unit is fairly straightforward. All it does is set the value of the SearchPri
variable in the main form to match that of the track bar position. If the thread is running, it
also sets the priority of the thread. Because TThreadPriority is an enumerated type, a straight
typecast maps the values 1 to 5 in the track bar to enumerations in TThreadPriority.

Multithreading BDE Access

Although database programming isn’t really discussed until later in the book, this section is
intended to give you some tips on how to use multiple threads in the context of BDE database
development. If you’re unfamiliar with database programming under Delphi, you might want
to look through the later database chapters prior to reading on in this section.

The most common request for database applications developers in Win32 is for the capability
to perform complex queries or stored procedures in a background thread. Thankfully, this type
of thing is supported by the 32-bit Borland Database Engine (BDE) and is fairly easy to do in
Delphi.

There are really only two requirements for running a background query through, for example,
a TQuery component:

» Each threaded query must reside within its own session. You can provide a TQuery with
its own session by placing a TSession component on your form and assigning its name
to the TQuery’s SessionName property. This also implies that, if your TQuery uses a
TDatabase component, a unique TDatabase must also be used for each session.

e The TQuery must not be attached to any TDataSource components at the time the query
is opened from the secondary thread. When the query is attached to a TDataSource, it
must be done through the context of the primary thread. TDataSource is only used to
connect datasets to user interface controls, and user interface manipulation must be per-
formed in the main thread.

To illustrate the techniques for background queries, Figure 5.8 shows the main form for a
demo project called BDEThrd. This form enables you to specify a BDE alias, username, and
password for a particular database and to enter a query against the database. When the Go!
button is clicked, a secondary thread is spawned to process the query and the results are dis-
played in a child form.

The child form, TQueryForm, is shown in Figure 5.9. Notice that this form contains one each of
a TQuery, TDatabase, TSession, TDataSource, and TDBGrid component. Therefore, each
instance of TQueryForm has its own instances of these components.

227

(%)

SINDINHIIL
a3avadHLILINA

228

Advanced Techniques
PART Il

FIGURE 5.8

I[=] E3

Alias: [BCDEMDS v] UserNeme: [opsdba
Password: Im

i DDG Multi-threaded query demo

Enter a SOL Query:

select * from orders]

The main form for the BDEThrd demo.

FIGURE 5.9

Gol LCloze
i QueryForm H=E3
SaleDate |ShipDate |EmpMo ShipToCor =
1351 4/12/88 5/3/8812:00 114

2156 4/17/88 4/18/88 145 | Maria Ever
1356 | 4/20/88 1/21/88 120 110
1380 11/6/94 11/7/88 120 46
1384 5/1/88 5/2/88 45
1510 5/3/88 5/4/88 12
15135/11/88 5/12/88 71

1 o

select * from orders

The child query form for the BDEThrd demo.

Listing 5.11 shows Main. pas, the application’s main unit.

LisTING 5.11 The Main.pas Unit for the BDEThrd Demo

unit Main;

interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,

Dialogs, Grids, StdCtrls, ExtCtrls;

type

TMainForm = class(TForm)
pnlBottom: TPanel;

Multithreaded Techniques

LisTING 5.11 Continued

CHAPTER 5

pnlButtons: TPanel;

GoButton: TButton;

Buttoni: TButton;

memQuery: TMemo;

pnlTop: TPanel;

Labell: TLabel;

AliasCombo: TComboBox;

Label3: TLabel;

UserNameEd: TEdit;

Label4: TLabel;

PasswordEd: TEdit;

Label2: TLabel;

procedure ButtoniClick(Sender: TObject);
procedure GoButtonClick(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
{ Private declarations }
public
{ Public declarations }
end;
var

MainForm: TMainForm;
implementation
{$R *.DFM}
uses QryU, DB, DBTables;

var
FQueryNum: Integer = 0;

procedure TMainForm.ButtoniClick(Sender: TObject);
begin

Close;
end;

procedure TMainForm.GoButtonClick(Sender: TObject);
begin
Inc (FQueryNum); // keep querynum unique
{ invoke new query }
NewQuery (FQueryNum, memQuery.Lines, AliasCombo.Text,
PasswordEd.Text);

UserNameEd.Text,

229

(%)

SINDINHIIL
a3avadHLILINA

230

Advanced Techniques
PART Il

LisTING 5.11 Continued

end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
{ fill drop-down list with BDE Aliases }
Session.GetAliasNames(AliasCombo.Items);
end;

end.

As you can see, there’s not much to this unit. The AliasCombo combobox is filled with BDE
aliases in the OnCreate handler for the main form using TSession’s GetAliasNames () method.
The handler for the Go! button OnClick event is in charge of invoking a new query by calling
the NewQuery () procedure that lives in a second unit, QryU. pas. Notice that it passes a new
unique number, FQueryNum, to the NewQuery () procedure with every button click. This number
is used to create a unique session and database name for each query thread.

Listing 5.12 shows the code for the QryU unit.

LIsTING 5.12 The QryU.pas Unit

unit QryuU;
interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Grids,
DBGrids, DB, DBTables, StdCtrls;

type
TQueryForm = class(TForm)
Query: TQuery;
DataSource: TDataSource;
Session: TSession;
Database: TDatabase;
dbgQueryGrid: TDBGrid;
memSQL: TMemo;
procedure FormClose(Sender: TObject; var Action: TCloseAction);
private
{ Private declarations }
public
{ Public declarations }
end;

Multithreaded Techniques

LisTING 5.12 Continued

231

procedure NewQuery(QryNum: integer; Qry: TStrings; const Alias, UserName,

Password: string);
implementation
{$R *.DFM}

type

TDBQueryThread = class(TThread)
private

FQuery: TQuery;

FDataSource: TDataSource;

FQueryException: Exception;

procedure HookUpUI;

procedure QueryError;
protected

procedure Execute; override;
public

constructor Create(Q: TQuery; D: TDataSource); virtual;
end;

constructor TDBQueryThread.Create(Q: TQuery; D: TDataSource);

begin
inherited Create(True); /] create suspended thread
FQuery := Q; // set parameters
FDataSource := D;
FreeOnTerminate := True;
Resume; // thread that puppy!

end;

procedure TDBQueryThread.Execute;

begin
try
FQuery.Open; // open the query
Synchronize (HookUpUI) ; // update UI from main thread
except
FQueryException := ExceptObject as Exception;
Synchronize(QueryError); // show exception from main thread
end;
end;

procedure TDBQueryThread.HookUpUI;
begin

FDataSource.DataSet := FQuery;
end;

(%)

SINDINHIIL
a3avadHLILINA

232 Advanced Techniques

PART Il

LisTING 5.12 Continued

procedure TDBQueryThread.QueryError;

begin
Application.ShowException(FQueryException);

end;

procedure NewQuery(QryNum: integer; Qry: TStrings; const Alias, UserName,
Password: string);

begin
{ Create a new Query form to show query results }
with TQueryForm.Create(Application) do

begin
{ Set a unique session name }
Session.SessionName := Format('Sess%d', [QryNum]);
with Database do
begin

{ set a unique database name }
DatabaseName := Format('DB%d', [QryNum]);
{ set alias parameter }

AliasName := Alias;
{ hook database to session }
SessionName := Session.SessionName;

{ user-defined username and password }
Params.Values['USER NAME'] := UserName;
Params.Values['PASSWORD'] := Password;

end;

with Query do

begin
{ hook query to database and session }
DatabaseName := Database.DatabaseName;
SessionName := Session.SessionName;

{ set up the query strings }
SQL.Assign(Qry);

end;

{ display query strings in SQL Memo }

memSQL.Lines.Assign(Qry);

{ show query form }

Show;

{ open query in its own thread }

TDBQueryThread.Create(Query, DataSource);

end;
end;

procedure TQueryForm.FormClose(Sender: TObject; var Action: TCloseAction);
begin

Multithreaded Techniques

CHAPTER 5

LisTING 5.12 Continued

Action := caFree;
end;

end.

The NewQuery () procedure creates a new instance of the child form TQueryForm, sets up the
properties for each of its data-access components, and creates unique names for its TDatabase
and TSession components. The query’s SQL property is filled from the TStrings passed in the
Qry parameter, and the query thread is then spawned.

The code inside the TDBQueryThread itself is rather sparse. The constructor merely sets up
some instance variables, and the Execute () method opens the query and calls the HookupUI ()
method through Synchronize() to attach the query to the data source. You should also take
note of the try..except block inside the Execute () procedure, which uses Synchronize() to
show exception messages from the context of the primary thread.

Multithreaded Graphics

We mentioned earlier that VCL isn’t designed to be manipulated simultaneously by multiple
threads, but this statement isn’t entirely accurate. VCL has the capability to have multiple
threads manipulate individual graphics objects. Thanks to new Lock () and Unlock () methods
introduced in TCanvas, the entire Graphics unit has been made thread-safe. This includes the
TCanvas, TPen, TBrush, TFont, TBitmap, TMetafile, TPicture, and TIcon classes.

The code for these Lock () methods is similar in that it uses a critical section and the
EnterCriticalSection() API function (described earlier in this chapter) to guard access to
the canvas or graphics object. After a particular thread calls a Lock () method, that thread is
free to exclusively manipulate the canvas or graphics object. Other threads waiting to enter the
portion of code following the call to Lock () will be put to sleep until the thread owning the
critical section calls Unlock (), which calls LeaveCriticalSection() to release the critical
section and lets the next waiting thread (if any) into the protected portion of code. The follow-
ing portion of code shows how these methods can be used to control access to a canvas object:

Form.Canvas.Lock;
// code which manipulates canvas goes here
Form.Canvas.Unlock;

To further illustrate this point, Listing 5.13 shows the unit Main of the MTGraph project—an
application that demonstrates multiple threads accessing a form’s canvas.

233

(%)

SINDINHIIL
a3avadHLILINA

234

Advanced Techniques
PART Il

LisTING 5.13 The Main.pas Unit of the MTGraph Project

unit Main;
interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,

type

TMainForm = class(TForm)
MainMenul: TMainMenu;
Optionsi: TMenuItem;
AddThread: TMenuItem;
RemoveThread: TMenuItem;
ColorDialogi: TColorDialog;
Add10: TMenultem;
RemoveAll: TMenuItem;
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);

procedure AddThreadClick(Sender: TObject);
procedure RemoveThreadClick(Sender: TObject);

procedure Add10Click(Sender: TObject);

procedure RemoveAllClick(Sender: TObject);

private

ThreadList: TList;
public

{ Public declarations }
end;

TDrawThread = class(TThread)
private

FColor: TColor;

FForm: TForm;
public

constructor Create(AForm: TForm; AColor:

procedure Execute; override;
end;

var

MainForm: TMainForm;

implementation

{$R *.DFM}

TColor);

Menus;

Multithreaded Techniques

LisTING 5.13 Continued

CHAPTER 5

{ TDra

constr

begin
FCol
FFor
inhe

end;

proced
var
P1,

proc

var
Ma

begi
/1
Ma
Ma
P1

P2.

P1

P2.

end;

begin
Free
/]t
whil
begi
Ge
wi
be

en
end;
end;

wThread }

uctor TDrawThread.Create(AForm: TForm; AColor: TColor);
or := AColor;

m := AForm;

rited Create(False);

ure TDrawThread.Execute;

P2: TPoint;

edure GetRandCoords;

xX, MaxY: Integer;

n
initialize P1 and P2 to random points within Form bounds

xX := FForm.ClientWidth;
xY := FForm.ClientHeight;
.X := Random(MaxX);
X := Random(MaxX) ;
.y := Random(MaxY);
y := Random(MaxY);
OnTerminate := True;
hread runs until it or the application is terminated
e not (Terminated or Application.Terminated) do
n
tRandCoords; // initialize P1 and P2
th FForm.Canvas do
gin
Lock; // lock canvas
// only one thread at a time can execute the following code:
Pen.Color := FColor; // set pen color
MoveTo(P1.X, P1.Y); // move to canvas position P1
LineTo(P2.X, P2.Y); // draw a line to position P2

// after the next line executes, another thread will be allowed
// to enter the above code block

Unlock; // unlock canvas

d;

235

(%)

SINDINHIIL
a3avadHLILINA

236

Advanced Techniques
PART Il

LisTING 5.13 Continued

{ TMainForm }

procedure TMainForm.FormCreate(Sender: TObject);
begin

ThreadList := TList.Create;
end;

procedure TMainForm.FormDestroy(Sender: TObject);
begin

RemoveAllClick(nil);

ThreadList.Free;
end;

procedure TMainForm.AddThreadClick(Sender: TObject);
begin
// add a new thread to the list... allow user to choose color
if ColorDialogi.Execute then
ThreadList.Add(TDrawThread.Create(Self, ColorDialogi.Color));
end;

procedure TMainForm.RemoveThreadClick(Sender: TObject);

begin
// terminate the last thread in the list and remove it from list
TDrawThread(ThreadList[ThreadList.Count - 1]).Terminate;
ThreadList.Delete(ThreadList.Count - 1);

end;

procedure TMainForm.Add1@Click(Sender: TObject);
var

i: Integer;
begin

// create 10 threads, each with a random color

for i :=1 to 10 do

ThreadList.Add(TDrawThread.Create(Self, Random(MaxInt)));

end;

procedure TMainForm.RemoveAllClick(Sender: TObject);
var

i: Integer;
begin

Cursor := crHourGlass;

try

Multithreaded Techniques

CHAPTER 5

LisTING 5.13 Continued

for i := ThreadList.Count - 1 downto @ do
begin
TDrawThread(ThreadList[i]).Terminate; // terminate thread
TDrawThread(ThreadList[i]).WaitFor; // make sure thread terminates
end;
ThreadList.Clear;
finally
Cursor:= crDefault;
end;
end;

initialization
Randomize; // seed random number generator
end.

This application has a main menu containing four items, as shown in Figure 5.10. The first
item, Add Thread, creates a new TDrawThread instance, which paints random lines on the main
form. This option can be selected repeatedly in order to throw more and more threads into the
mix of threads accessing the main form. The next item, Remove Thread, removes the last
thread added. The third item, Add 10, creates 10 new TDrawThread instances. Finally, the
fourth item, Remove All, terminates and destroys all TDrawThread instances. Figure 5.10

also shows the results of 10 threads simultaneously drawing to the form’s canvas.

hieaded Graphics Demo

FiGURE 5.10

The NTGraph main form.

237

(%)

SINDINHIIL
a3aavayHLONl

238

Advanced Techniques
PART Il

Canvas-locking rules dictate that as long as every user of a canvas locks it before drawing and
unlocks it afterwards, multiple threads using that canvas won’t interfere with each other. Note
that all OnPaint events and Paint () method calls initiated by VCL automatically lock and
unlock the canvas for you; therefore, existing, normal Delphi code can coexist with new back-
ground thread graphics operations.

Using this application as an example, examine the consequences or symptoms of thread colli-
sions if you fail to properly perform canvas locking. If thread 1 sets a canvas’s pen color to

red and then draws a line, and thread 2 sets the pen color to blue and draws a circle, and these
threads don’t lock the canvas before starting these operations, the following thread collision
scenario is possible: Thread 1 sets the pen color to red. The OS scheduler switches execution
to thread 2. Thread 2 sets the pen color to blue and draws a circle. Execution switches to thread
1. Thread 1 draws a line. However, the line isn’t red, it is blue because thread 2 had the oppor-
tunity to slip in between the operations of thread 1.

Note also that it only takes one errant thread to cause problems. If thread 1 locks the canvas
and thread 2 doesn’t, the scenario just described is unchanged. Both threads must lock the can-
vas around their canvas operations to prevent that thread collision scenario.

Fibers

Fibers are a sort of schedule-your-own thread. Like threads, fibers provide state information
and execution context in the form their own stack and CPU registers. Unlike threads, however,
fibers aren’t preemptively scheduled by the operating system. Instead, it is the developer’s
responsibility to switch between multiple fibers of execution. From an application design point
of view, there are probably few occasions when you will elect to use fibers instead of a multi-
threaded architecture, except in the infrequent case in which you want to receive the context
benefits of multiple stack and CPU register states without having to worry about thread syn-
chronization issues.

NoTE

Fibers are available on Windows NT 3.51 SP3 and higher, Windows 2000, Windows XP,
Windows 98, and Windows ME.

Fibers are designed to run within the context of a thread, so one thread might host multiple
fibers. Before you can begin using fibers within a thread, the thread itself must be converted to
as fiber using the ConvertThreadToFiber () API function. This function is defined in the
Windows unit as

function ConvertThreadToFiber (lpParameter: Pointer): BOOL; stdcall;

Multithreaded Techniques
CHAPTER 5

The lone parameter, 1pParameter, enables you to pass 32-bits of fiber-specific data, in much
the same manner you would pass data to a thread in the BeginThread() or CreateThread()
functions. The return value definition is defined incorrectly in the Windows unit. Although
listed as a BOOL, the return value is actually a pointer to the fiber object. As you will see, you
will need to typecast the return value to use it.

Once a thread has been converted to a fiber, you will be able to create other fibers and begin
scheduling between the fibers. You can create additional fibers using the CreateFiber () API
function, which is defined in the Windows unit as

function CreateFiber(dwStackSize: DWORD; lpStartAddress: TFNFiberStartRoutine;
lpParameter: Pointer): BOOL; stdcall;

The dwStackSize parameter specifies the initial size (in bytes) of the fiber’s stack, or you can
pass 0 to set it to the default stack size. The 1pStartAddress specifies the address of the pro-
cedure the fiber should begin executing when execution begins. 1pParameter specifies any
32-bits of fiber-specific data you might want to pass. The return value for this function, like
ConvertThreadToFiber (), is also incorrect as defined; it is really a pointer to the created fiber
object and will need to be typecast to be used (more on this later).

After creating the fibers, you can switch between them using the SwitchToFiber () API func-
tion. This function is defined in the Windows unit as

function SwitchToFiber(1lpFiber: Pointer): BOOL; stdcall;

Calling this method with a fiber object pointer in the 1pFiber parameter is all you need to do
to jump from one fiber’s execution context to another. The operating system handles the inter-
nal details associated with the context switch, such as modifying the stack pointer and CPU
registers. The return value for this function, defined as a BOOL, is again incorrect; this should be
defined as a procedure with no return value. You therefore shouldn’t expect a valid return value
from this function.

When you’re ready to do away with a particular fiber, just pass the fiber object pointer to the
DeleteFiber API function:

function DeleteFiber(1lpFiber: Pointer): BOOL; stdcall;

By the way, like SwitchToFiber (), the return value for this function is defined incorrectly as
well; it should also be a procedure returning no value, so don’t expect a valid return value.

CAUTION

Calling DeleteFiber () on the currently executing fiber will result in a call to
ExitThread(), which will terminate the entire thread. Unless you mean to terminate
the thread, you should only call DeleteFiber () on fibers other than the one currently
executing.

239

(%)

SINDINHIIL
a3avadHLILINA

240

Advanced Techniques
PART Il

Most of the work you’ll need to do with fibers can be accomplished with the four preceding
functions. The Win32 header files additionally define a couple of additional helper functions
and types not present in Delphi, but we have provided them for your convenience in the fol-
lowing. Listing 5.14 contains the Fiber unit, which provides additional definitions not present
in the Windows unit.

LiISTING 5.14 The Fiber.pas Unit

unit Fibers;

interface

uses Windows;

/! type defn for fiber start routine from winbase.h:

type
PFIBER_START_ROUTINE = procedure (lpFiberParameter: Pointer); stdcall;
LPFIBER_START_ROUTINE = PFIBER_START_ROUTINE;
TFiberFunc = PFIBER_START_ROUTINE;

function GetCurrentFiber: Pointer;
function GetFiberData: Pointer;

implementation
/] x86-specific fiber inline routines from winnt.h:
function GetCurrentFiber: Pointer;
asm
mov eax, fs:[$10]

end;

function GetFiberData: Pointer;

asm
mov eax, fs:[$10]
mov eax, [eax]

end;

end.

To provide an example of fibers in action, we will create a test program that creates a handful
of fibers and switches between them to do what we’ll pretend is useful work. The main form
for this application is shown in Figure 5.11.

Multithreaded Techniques

CHAPTER 5

e DDG Fiber Test

FIGURE 5.11

The FibTest main form.

The main unit for this form is shown in Listing 5.15.

LisTING 5.15 FibMain.pas—the Main Unit for FibTest

unit FibMain;
interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, AppEvnts;

type
TForm1 = class(TForm)
BtnWee: TButton;
BtnStop: TButton;
Labell: TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
AppEvents: TApplicationEvents;
procedure BtnWeeClick(Sender: TObject);
procedure AppEventsMessage(var Msg: tagMSG;
var Handled: Boolean);
procedure BtnStopClick(Sender: TObject);
private
{ Private declarations }
FThreadID: LongWord;
FThreadHandle: Integer;
public
{ Public declarations }
end;

var
Form1: TFormi;

241

(%)

SINDINHIIL
a3avadHLILINA

242 Advanced Techniques

PART Il

LisTING 5.15 Continued

implementation
uses Fibers;
{$R *.dfm}

const
DDG_THREADMSG = WM_USER;

var
FFibers: array[0..3] of Pointer;

StopIt: Boolean;

procedure FiberFunc(Param: Pointer); stdcall;

var
J, FibNum, NextNum: Integer;
I: Cardinal;
Fiber: Pointer;
begin
try
I :=0;
FibNum := 1; /] suppress compiler warning
Fiber := GetCurrentFiber; // save away our fiber ptr for later

// figure out where current fiber is in the array and save for later
for J := Low(FFibers) to High(FFibers) do
if FFibers[J] = Fiber then
begin
FibNum := J;
Break;
end;
// HIGH TECH: count from zero to really, really high
while not StopIt do
begin
// send the number to the main thread for display every 100
if I mod 100 = @ then
PostMessage (Application.Handle, DDG_THREADMSG,
Integer(GetFiberData), I);
// switch fibers every 1000
if I mod 1000 = @ then

begin
if FibNum = High(FFibers) then NextNum := Low(FFibers)
else NextNum := FibNum + 1;

SwitchToFiber (FFibers[NextNum]);
end;

Multithreaded Techniques

CHAPTER 5

LisTING 5.15 Continued

243

Inc(I);
end;
except
// stifle all unhandled exceptions
end;
end;

function ThreadFunc(Param: Pointer): Integer;
var
I: Integer;
begin
Result := 0;
// convert this thread to a fiber
FFibers[@] := Pointer(ConvertThreadToFiber(Pointer(1)));
// create the other fibers
FFibers[1] := Pointer(CreateFiber (0, @FiberFunc, Pointer(2)));
FFibers[2] := Pointer(CreateFiber (@, @FiberFunc, Pointer(3)));
FFibers[3] := Pointer(CreateFiber (@, @FiberFunc, Pointer(4)));
// join in the fun
FiberFunc(Pointer(1));
// when done, kill all the fibers
// killing the current fiber calls ExitThread
for I := High(FFibers) downto Low(FFibers) do
DeleteFiber (FFibers[I]);
end;

procedure TFormi.BtnWeeClick(Sender: TObject);
begin
BtnWee.Enabled := False; // pressing the button twice will cause grief
FThreadHandle := BeginThread(nil, @, @ThreadFunc, nil, @, FThreadID);
end;

procedure TForml.AppEventsMessage(var Msg: tagMSG;
var Handled: Boolean);
begin
if Msg.message = DDG_THREADMSG then
begin
// The wParam tells us which fiber is sending the message,
// and therefore which label to update
case Msg.wParam of
1: Label1.Caption := IntToStr(Msg.lParam);
2: Label2.Caption := IntToStr(Msg.lParam);
3: Label3.Caption := IntToStr(Msg.lParam)
4: Label4.Caption := IntToStr(Msg.lParam)

H

3

(%)

SINDINHIIL
a3avadHLILINA

244

Advanced Techniques
PART Il

LisTING 5.15 Continued

end;
Handled := True;
end;
end;

procedure TForm1.BtnStopClick(Sender: TObject);
begin

StopIt := True;
end;

end.

The most interesting work in this example is done in ThreadFunc (), which is the thread
function for secondary thread created in response to the button click. This function calls
ConvertThreadToFiber() to fiber-ize the thread and then calls CreateFiber () multiple times
to create three additional fibers. All the fibers are then prepared to execute FiberFunc (), which
simply counts up from O to infinity and sends a message every 100 counts to display the value
in the UI and switches to the next fiber every 1000 counts.

The application uses the simple and reliable technique of communicating with the main thread
by posting a message to the Application window handle. Each fiber holds a value between 1
and 4 because its fiber data and the message handler in the main thread uses this to determine
which fiber sent the message.

Figure 5.12 shows the FibTest application in action. The fact that the number in each of the
labels is very close in value illustrates that each of the fibers are executing using their own
stack.

T=ET
93000 98300 98000 98000
Wieee! | Stop |

FIGURE 5.12

FibTest in action.

Summary

By now you’ve had a thorough introduction to threads and how to use them properly in the
Delphi environment. You’ve learned several techniques for synchronizing multiple threads, and

Multithreaded Techniques

CHAPTER 5

you’ve learned how to communicate between secondary threads and a Delphi application’s
primary thread. Additionally, you’ve seen examples of using threads within the context of a
real-world file-search application, you’ve gotten the lowdown on how to leverage threads in
database applications, and you’ve learned about drawing to a TCanvas with multiple threads.
Finally, you’ve learned about the nifty fiber, which provide bring-your-own-scheduler function-
ality. In Chapter 6, “Dynamic Link Libraries,” you’ll learn everything you need to know about
creating and using DLLs in Delphi.

245

(%)

SINDINHIIL
a3avadHLILINA

Dynamic Link Libraries CHAPTER

IN THIS CHAPTER

e What Exactly Is a DLL? 248

e Static Linking Versus Dynamic Linking 250
e Why Use DLLs? 252

e Creating and Using DLLs 253

¢ Displaying Modeless Forms from DLLs 259
e Using DLLs in Your Delphi Applications 261
¢ Loading DLLs Explicitly 263

¢ The Dynamically Linked Library Entry/Exit
Function 266

e Exceptions in DLLs 271
¢ Callback Functions 273

¢ Calling Callback Functions from Your
DLLs 277

¢ Sharing DLL Data Across Different
Processes 279

e Exporting Objects from DLLs 287

248

Advanced Techniques
PART Il

This chapter discusses Win32 dynamic link libraries, otherwise known as DLLs. DLLs are a
key component to writing any Windows application. This chapter discusses several aspects of
using and creating DLLs. It gives you an overview of how DLLs work and discusses how to
create and use DLLs. You learn different methods of loading DLLs and linking to the proce-
dures and functions they export. This chapter also covers the use of callback functions and
illustrates how to share DLL data among different calling processes.

What Exactly Is a DLL?

Dynamic link libraries are program modules that contain code, data, or resources that can be
shared among many Windows applications. One of the primary uses of DLLs is to enable
applications to load code to execute at runtime instead of linking that code to the application at
compile time. Therefore, multiple applications can simultaneously use the same code provided
by the DLL. In fact, the files Kernel32.d11, User32.d11, and GDI32.d11 are three DLLSs on
which Win32 relies heavily. Kernel32.d11 is responsible for memory, process, and thread
management. User32.d11 contains routines for the user interface that deal with the creation of
windows and the handling of Win32 messages. GDI32.d11 deals with graphics. You’ll also hear
of other system DLLs, such as AdvAPI32.d11 and ComD1g32.d11, which deal with object secu-
rity/Registry manipulation and common dialog boxes, respectively.

Another advantage to using DLLs is that your applications become modular. This simplifies
updating your applications because you need to replace only DLLs instead of replacing the
entire application. The Windows environment presents a typical example of this type of modu-
larity. Each time you install a new device, you also install a device driver DLL to enable that
device to communicate with Windows. The advantage to modularity becomes obvious when
you imagine having to reinstall Windows each time you install a new device to your system.

On disk, a DLL is basically the same as a Windows EXE file. One major difference is that a
DLL isn’t an independently executable file, although it might contain executable code. The

most common DLL file extension is .d11. Other file extensions are .drv for device drivers,
.sys for system files, and . fon for font resources, which contain no executable code.

NoOTE

Delphi introduces a special-purpose DLL known as a package, which is used in the
Delphi and C++Builder environments. We'll go into greater depth on packages in
Chapter 14, "Packages to the Max."”

DLLs share their code with other applications through a process called dynamic linking, which
is discussed later in this chapter. In general, when an application uses a DLL, the Win32

Dynamic Link Libraries
CHAPTER 6

system ensures that only one copy of that DLL resides in memory. It does this by using
memory-mapped files. The DLL is first loaded into the Win32 system’s global heap. It’s then
mapped into the address space of the calling process. In the Win32 system, each process is
given its own 32-bit linear address space. When the DLL is loaded by multiple processes, each
process receives its own image of the DLL. Therefore, processes don’t share the same physical
code, data, or resources, as was the case in 16-bit Windows. In Win32, the DLL appears as
though it’s actually code belonging to the calling process. For more information on Win32 con-
structs, you can refer to Chapter 3 of Delphi 5 Developer’s Guide, “The Win32 APL,” on this
book’s CD-ROM.

This doesn’t mean that when multiple processes load a DLL, the physical memory is con-
sumed by each usage of the DLL. The DLL image is placed into each process’s address space
by mapping its image from the system’s global heap to the address space of each process that
uses the DLL, at least in the ideal scenario (see the following sidebar).

Setting a DLL's Preferred Base Address

DLL code is only shared between processes if the DLL can be loaded into the process
address space of all interested clients at the DLL's preferred base address. If the pre-
ferred base address and range of the DLL overlaps with something already allocated
in a process, the Win32 loader has to relocate the entire DLL image to some other
base address. When that happens, none of the relocated DLL image is shared with
any other process in the system—each relocated DLL instance consumes its own chunk
of physical memory and swap file space.

It's critical that you set the base address of every DLL you produce to a value that
doesn’t conflict with or overlap other address ranges used by your application by
using the $IMAGEBASE directive.

If your DLL will be used by multiple applications, choose a unique base address that’s
unlikely to collide with application addresses at the low end of the process virtual
address range or common DLLs (such as VCL packages) at the high end of the address
range. The default base address for all executable files (EXEs and DLLs) is $400000,
which means that unless you change your DLL base address, it will always collide with
the base address of its host EXE and therefore never be shared between processes.

There's another side benefit to base address loading. Because the DLL doesn’t require
relocation or fixes (which is usually the case) and because it's stored on a local disk
drive, the DLL's memory pages are mapped directly onto the DLL file on disk. The DLL
code doesn’t consume any space in the system’s page file (called a swap file). This is
why the system’s total committed page count and size statistics can be much larger
than the system swap file plus RAM.

You'll find detailed information on using the $IMAGEBASE directive by looking up
“Image Base Address” in the Delphi 6 online help.

249

()]

saMvEan
NI DINVYNAQ

250 Advanced Techniques

PART Il

Following are some terms you’ll need to know in regard to DLLs:

* Application—A Windows program residing in an .exe file.

» Executable—A file containing executable code. Executable files include .d11 and .exe
files.

* Instance—When referring to applications and DLLs, an instance is the occurrence of an
executable. Each instance can be referred to by an instance handle, which is assigned by
the Win32 system. When an application is run twice, for example, there are two instances
of that application and, therefore, two instance handles. When a DLL is loaded, there’s
an instance of that DLL as well as a corresponding instance handle. The term instance,
as used here, shouldn’t be confused with the instance of a class.

* Module—In 32-bit Windows, module and instance can be used synonymously. This dif-
fers from 16-bit Windows, in which the system maintains a database to manage modules
and provides a module handle for each module. In Win32, each instance of an applica-
tion gets its own address space; therefore, there’s no need for a separate module identi-
fier. However, Microsoft still uses the term in its own documentation. Just be aware that
module and instance are one and the same.

» Task—Windows is a multitasking (or task-switching) environment. It must be able to
allocate system resources and time to the various instances running under it. It does this
by maintaining a task database that maintains instance handles and other necessary infor-
mation to enable it to perform its task-switching functions. The task is the element to
which Windows grants resources and time blocks.

Static Linking Versus Dynamic Linking

Static linking refers to the method by which the Delphi compiler resolves a function or proce-
dure call to its executable code. The function’s code can exist in the application’s .dpr file or
in a unit. When linking your applications, these functions and procedures become part of the
final executable file. In other words, on disk, each function will reside at a specific location in
the program’s .exe file.

A function’s location also is predetermined at a location relative to where the program is
loaded in memory. Any calls to that function cause program execution to jump to where the
function resides, execute the function, and then return to the location from which it was called.
The relative address of the function is resolved during the linking process.

This is a loose description of a more complex process that the Delphi compiler uses to perform
static linking. However, for the purpose of this book, you don’t need to understand the underly-
ing operations that the compiler performs to use DLLs effectively in your applications.

Dynamic Link Libraries
CHAPTER 6

NoTEe

Delphi implements a smart linker that automatically removes functions, procedures,
variables, and typed constants that never get referenced in the final project. Therefore,
functions residing in large units that never get used don’t become a part of your EXE
file.

Suppose you have two applications that use the same function that resides in a unit. Both
applications, of course, would have to include the unit in their uses statements. If you ran both
applications simultaneously in Windows, the function would exist twice in memory. If you had
a third application, there would be a third instance of the function in memory, and you would
be using up three times its memory space. This small example illustrates one of the primary
reasons for dynamic linking. Through dynamic linking, this function resides in a DLL. Then,
when an application loads the function into memory, all other applications that need to refer-
ence it can share its code by mapping the image of the DLL into their own process memory
space. The end result is that the DLL’s function exists only once in memory—theoretically.

With dynamic linking, the link between a function call and its executable code is resolved at
runtime by using an external reference to the DLL’s function. These references can be declared
in the application, but usually they’re placed in a separate import unit. The import unit
declares the imported functions and procedures and defines the various types required by DLL
functions.

For example, suppose you have a DLL named MaxLib.d11 that contains a function:
function Max (i1, I2: integer): integer;

This function returns the higher of the two integers passed to it. A typical import unit would
look like this:

unit MaxUnit;

interface

function Max(I1, I2: integer): integer;
implementation

function Max; external 'MAXLIB';

end.

You’ll notice that although this looks somewhat like a typical unit, it doesn’t define the func-
tion Max (). The keyword external simply says that the function resides in the DLL of the
name that follows it. To use this unit, an application would simply place MaxUnit in its uses
statement. When the application runs, the DLL is loaded into memory automatically, and any
calls to Max () are linked to the Max () function in the DLL.

251

()]

saMvEan
NI DINVYNAQ

252

Advanced Techniques
PART Il

This illustrates one of two ways to load a DLL; it’s called implicit loading, which causes
Windows to automatically load the DLL when the application loads. Another method is to
explicitly load the DLL,; this is discussed later in this chapter.

Why Use DLLs?

There are several reasons for using DLLs, some of which were mentioned earlier. In general,
you use DLLs to share code or system resources, to hide your code implementation or low-
level system routines, or to design custom controls. We discuss these topics in the following
sections.

Sharing Code, Resources, and Data with
Multiple Applications

Earlier in this chapter, you learned that the most common reason for creating a DLL is to share
code. Unlike units, which enable you to share code with different Delphi applications, DLLs
enable you to share code with any Windows application that can call functions from DLLs.

Additionally, DLLs provide a way for you to share resources such as bitmaps, fonts, icons, and
so on that you normally would put into a resource file and link directly into your application. If
you place these resources into a DLL, many applications can make use of them without using
up the memory required to load them more often.

Back in 16-bit Windows, DLLs had their own data segment, so all applications that used a
DLL could access the same data—global and static variables. In the Win32 system, this is a
different story. Because the DLL image is mapped to each process’s address space, all data in
the DLL belongs to that process. One thing worth mentioning here is that although the DLL’s
data isn’t shared between different processes, it’s shared by multiple threads within the same
process. Because threads execute independently of one another, you must take precautions not
to cause conflicts when accessing a DLL’s global data.

This doesn’t mean that there aren’t ways to make multiple processes share data made accessi-

ble through a DLL. One technique would be to create a shared memory area (using a memory-
mapped file) from within the DLL. Each application using that DLL would be able to read the
data stored in the shared memory area. This technique is shown later in the chapter.

Hiding Implementation

In some cases, you might want to hide the details of the routines that you make available from
a DLL. Regardless of your reason for deciding to hide your code’s implementation, a DLL pro-
vides a way for you to make your functions available to the public and not give away your
source code in doing so. All you need to do is provide an interface unit to enable others to

Dynamic Link Libraries

CHAPTER 6

access your DLL. If you’re thinking that this is already possible with Delphi compiled units
(DCUs), consider that DCUs apply only to other Delphi applications that are created with the
same version of Delphi. DLLs are language independent, so you can create a DLL that can be
used by C++, VB, or any other language that supports DLLs.

The Windows unit is the interface unit to the Win32 DLLs. The Win32 API unit source files are
included with Delphi 6. One of the files you get is Windows. pas, the source to the Windows
unit. In Windows. pas, you find function definitions such as the following in the interface sec-
tion:

function ClientToScreen(Hwnd: HWND; var 1lpPoint: TPoint): BOOL; stdcall;

The corresponding link to the DLL is in the implementation section, as in the following
example:

function ClientToScreen; external user32 name 'ClientToScreen';

This basically says that the procedure ClientToScreen() exists in the dynamic link library
User32.dll1, and its name is ClientToScreen.

Creating and Using DLLs

The following sections take you through the process of actually creating a DLL with Delphi.
You’ll see how to create an interface unit so that you can make your DLLs available to other
programs. You’ll also learn how to incorporate Delphi forms into DLLs before going on to
using DLLs in Delphi.

Counting Your Pennies (A Simple DLL)

The following DLL example illustrates placing a routine that’s a favorite of many computer
science professors into a DLL. The routine converts a monetary amount in pennies to the mini-
mum number of nickels, dimes, or quarters needed to match the total number of pennies.

A Basic DLL
The library contains the PenniesToCoins () method. Listing 6.1 shows the complete DLL
project.

LisTING 6.1 PenniesLib.dpr—A DLL to Convert Pennies to Other Coins

library PenniesLib;
{$DEFINE PENNIESLIB}
uses

SysUtils,

Classes,

PenniesInt;

253

()]

saMvEan
NI DINVYNAQ

254

Advanced Techniques
PART Il

LisTING 6.1 Continued

function PenniesToCoins(TotPennies: word;
CoinsRec: PCoinsRec): word; StdCall;
begin
Result := TotPennies; // Assign value to Result
{ Calculate the values for quarters, dimes, nickels, pennies }
with CoinsRec” do

begin
Quarters := TotPennies div 25;
TotPennies := TotPennies - Quarters * 25;
Dimes := TotPennies div 10;
TotPennies := TotPennies - Dimes * 10;
Nickels := TotPennies div 5;
TotPennies := TotPennies - Nickels * 5;
Pennies := TotPennies;

end;

end;

{ Export the function by name }
exports

PenniesToCoins;
end.

Notice that this library uses the unit PenniesInt. We’ll discuss this in more detail momentarily.

The exports clause specifies which functions or procedures in the DLL get exported and made
available to calling applications.

Defining an Interface Unit

Interface units enable users of your DLL to statically import your DLL’s routines into their
applications by just placing the import unit’s name in their module’s uses statement. Interface
units also allow the DLL writer to define common structures used by both the library and the
calling application. We demonstrate that here with the interface unit. Listing 6.2 shows the
source code to PenniesInt.pas

LISTING 6.2 PenniesInt.pas—The interface Unit for PennieslLib.D11

unit PenniesInt;
{ Interface routine for PENNIES.DLL }

interface
type

Dynamic Link Libraries

CHAPTER 6

LisTING 6.2 Continued

{ This record will hold the denominations after the conversions have
been made }
PCoinsRec = "“TCoinsRec;
TCoinsRec = record
Quarters,
Dimes,
Nickels,
Pennies: word;
end;

{$IFNDEF PENNIESLIB}
{ Declare function with export keyword }

function PenniesToCoins(TotPennies: word;
CoinsRec: PCoinsRec): word; StdCall;
{$ENDIF}

implementation

{$IFNDEF PENNIESLIB}

{ Define the imported function }

function PenniesToCoins; external 'PENNIESLIB.DLL' name 'PenniesToCoins';

{$ENDIF}

end.

255

In the type section of this project, you declare the record TCoinsRec as well as a pointer to this
record. This record will hold the denominations that will make up the penny amount passed
into the PenniesToCoins () function. The function takes two parameters—the total amount of
money in pennies and a pointer to a TCoinsRec variable. The result of the function is the
amount of pennies passed in.

PenniesInt.pas declares the function that the PenniesLib.d11 exports in its interface
section. The definition of the PenniesToCoins () function is placed in the implementation
section. This definition specifies that the function is an external function existing in the DLL
file PenniesLib.d11. It links to the DLL function by the name of the function. Notice that

you used a compiler directive PENNIESLIB to conditionally compile the declaration of the
PenniesToCoins () function. You do this because it’s not necessary to link this declaration
when compiling the interface unit for the library. This allows you to share the interface unit’s
type definitions with both the library and any applications that intend to use the library. Any
changes to the structures used by both only have to be made in the interface unit.

()]

saMvEan
NI DINVYNAQ

256

Advanced Techniques
PART Il

Tip

To define an application-wide conditional directive, specify the conditional in the
Directories/Conditionals page of the Project, Options dialog box. Note that you must
rebuild your project for changes to conditional defines to take effect because Make
logic doesn’t reevaluate conditional defines.

NoTE

The following definition shows one of two ways to import a DLL function:
function PenniesToCoins; external 'PENNIESLIB.DLL' index 1;

This method is called importing by ordinal. The other method by which you can
import DLL functions is by name:

function PenniesToCoins; external 'PENNIESLIB.DLL' name 'PenniesToCoins';

The by-name method uses the name specified after the name keyword to determine
which function to link to in the DLL.

The by-ordinal method reduces the DLL's load time because it doesn’t have to look up
the function name in the DLL's name table. However, this isn't the preferred method
in Win32. Importing by name is the preferred technique so that applications won't be
hypersensitive to relocation of DLL entry points as DLLs get updated over time. When
you import by ordinal, you are binding to a place in the DLL. When you import by
name, you're binding to the function name, regardless of where it happens to be
placed in the DLL.

If this were an actual DLL that you planned to deploy, you would provide both
PenniesLib.d1ll and PenniesInt.pas to your users. This would enable them to use the DLL
by defining the types and functions in PenniesInt.pas that PenniesLib.d11 requires.
Additionally, programmers using different languages, such as C++, could convert
PenniesInt.pas to their languages, thus enabling them to use your DLL in their development
environments. You’ll find a sample project that uses PenniesLib.d11 on the CD that accompa-
nies this book.

Displaying Modal Forms from DLLs

This section shows you how to make modal forms available from a DLL. Placing commonly
used forms in a DLL is beneficial because it enables you to extend your forms for use with any
Windows application or development environment, such as C++ and Visual Basic.

Dynamic Link Libraries

CHAPTER 6

To do this, remove your DLL-based form from the list of autocreated forms.

We’ve created such a form that contains a TCalendar component on the main form. The call-
ing application will call a DLL function that will invoke this form. When the user selects a day
on the calendar, the date will be returned to the calling application.

Listing 6.3 shows the source for CalendarLib.dpr, the DLL project file. Listing 6.4, in the
section, “Displaying Modeless Forms from DLLs,” shows the source code for D11Frm.pas, the
DLL form’s unit, which illustrates how to encapsulate the form into a DLL.

LisTING 6.3 Library Project Source—CalendarLib.dpr

unit DLLFrm;
interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, Grids, Calendar;

type

TDLLForm = class(TForm)

calDllCalendar: TCalendar;

procedure calDl1lCalendarDblClick(Sender: TObject);
end;

{ Declare the export function }
function ShowCalendar(AHandle: THandle; ACaption: String):
TDateTime; StdCall;

implementation
{$R *.DFM}

function ShowCalendar(AHandle: THandle; ACaption: String): TDateTime;
var
DLLForm: TD1lForm;
begin
// Copy application handle to DLL's TApplication object
Application.Handle := AHandle;
DLLForm := TDLLForm.Create(Application);
try
DLLForm.Caption := ACaption;
DLLForm.ShowModal;
// Pass the date back in Result
Result := DLLForm.calDLLCalendar.CalendarDate;

257

()]

saMvEan
NI DINVYNAQ

258 Advanced Techniques

PART Il

LisTING 6.3 Continued

finally
DLLForm.Free;
end;
end;

procedure TDLLForm.calDllCalendarDblClick(Sender: TObject);
begin

Close;
end;

end.

The main form in this DLL is incorporated into the exported function. Notice that the DLLForm
declaration was removed from the interface section and declared inside the function instead.

The first thing that the DLL function does is to assign the AHandle parameter to the
Application.Handle property. Delphi projects, including library projects, contain a global
Application object. In a DLL, this object is separate from the Application object that exists
in the calling application. For the form in the DLL to truly act as a modal form for the calling
application, you must assign the handle of the calling application to the DLL’s
Application.Handle property, as has been illustrated. Not doing so will result in erratic
behavior, especially when you start minimizing the DLL’s form. Also, as shown, you must
make sure not to pass nil as the owner of the DLL’s form.

After the form is created, you assign the ACaption string to the Caption of the DLL form. It’s
then displayed modally. When the form closes, the date selected by the user in the TCalendar
component is passed back to the calling function. The form closes after the user double-clicks
the TCalendar component.

CAUTION

ShareMem must be the first unit in your library’s uses clause and your project’s (select
View, Project Source) uses clause if your DLL exports any procedures or functions that
pass strings or dynamic arrays as parameters or function results. This applies to all
strings passed to and from your DLL—even those nested in records and classes.
ShareMenm is the interface unit to the Borlndmm.d11 shared memory manager, which
must be deployed along with your DLL. To avoid using Bor1lndmm.d11, pass string
information using PChar or ShortString parameters.

ShareMenm is only required when heap-allocated strings or dynamic arrays are passed
between modules, and such transfers also assign ownership of that string memory.
continues

Dynamic Link Libraries
CHAPTER 6

Typecasting an internal string to a PChar and passing it to another module as a PChar
doesn't transfer ownership of the string memory to the calling module, so ShareMem

isn't required.

Note that this ShareMem issue applies only to Delphi/C++Builder DLLs that pass strings
or dynamic arrays to other Delphi/BCB DLLs or EXEs. You should never expose Delphi
strings or dynamic arrays (as parameters or function results of DLL exported func-
tions) to non-Delphi DLLs or host apps. They won’t know how to dispose of the

Delphi items correctly.

Also, ShareMem is never required between modules built with packages. The memory

allocator is implicitly shared between packaged modules.

This is all that’s required when encapsulating a modal form into a DLL. In the next section,

we’ll discuss displaying a modeless form in a DLL.

Displaying Modeless Forms from DLLs

To illustrate placing modeless forms in a DLL, we’ll use the same calendar form as the previ-

ous section.

When displaying modeless forms from a DLL, the DLL must provide two routines. The first
routine must take care of creating and displaying the form. A second routine is required to free
the form. Listing 6.4 displays the source code for the illustration of a modeless form in a DLL.

LiSTING 6.4 A Modeless Form in a DLL

unit DLLFrm;

interface

uses

SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,

Forms, Dialogs, Grids, Calendar;

type
TDLLForm = class(TForm)
calDl1lCalendar: TCalendar;
end;

{ Declare the export function }

function ShowCalendar(AHandle: THandle; ACaption: String):

Longint; stdCall;

259

()]

saMvEan
NI DINVYNAQ

260

Advanced Techniques
PART Il

LisTING 6.4 Continued

procedure CloseCalendar(AFormRef: Longint); stdcall;

implementation
{$R *.DFM}

function ShowCalendar(AHandle: THandle; ACaption: String): Longint;
var
DLLForm: TD1llForm;
begin
// Copy application handle to DLL's TApplication object
Application.Handle := AHandle;
DLLForm := TDLLForm.Create(Application);
Result := Longint(DLLForm);
DLLForm.Caption := ACaption;
DLLForm.Show;
end;

procedure CloseCalendar(AFormRef: Longint);
begin
if AFormRef > @ then
TDLLForm(AFormRef) .Release;
end;

end.

This listing displays the routines ShowCalendar() and CloseCalendar (). ShowCalendar() is
similar to the same function in the modal form example in that it makes the assignment of the
calling application’s application handle to the DLL’s application handle and creates the form.
Instead of calling ShowModal (), however, this routine calls Show(). Notice that it doesn’t free
the form. Also, the function returns a longint value to which you assign the DLLForm instance
because a reference of the created form must be maintained, and it’s best to have the calling
application maintain this instance. This would take care of any issues regarding other applica-
tions calling this DLL and creating another instance of the form.

In the CloseCalendar () procedure, you simply check for a valid reference to the form and
invoke its Release () method. Here, the calling application should pass back the same refer-
ence that was returned to it from ShowCalendar().

When using such a technique, you must be careful that your DLL never frees the form inde-
pendently of the host. If it does (for example, returning caFree in CanClose()), the call to
CloseCalendar () will crash.

Demos of both the model and modeless forms are on the CD that accompanies this book.

Dynamic Link Libraries

CHAPTER 6

Using DLLs in Your Delphi Applications

Earlier in this chapter, you learned that there are two ways to load or import DLLs: implicitly
and explicitly. Both techniques are illustrated in this section with the DLLs just created.

The first DLL created in this chapter included an interface unit. You’ll use this interface
unit in the following example to illustrate implicit linking of a DLL. The sample project’s main
form has a TMaskEdit, TButton, and nine TLabel components.

In this application, the user enters an amount of pennies. Then, when the user clicks the button,
the labels will show the breakdown of denominations of change adding up to that amount. This
information is obtained from the PenniesLib.d11 exported function PenniesToCoins().

The main form is defined in the unit MainFrm.pas shown in Listing 6.5.

LiISTING 6.5 Main Form for the Pennies Demo

unit MainFrm;
interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, Mask;

type

TMainForm = class(TForm)
1blTotal: TLabel;
1b1Qlbl: TLabel;
1b1D1bl: TLabel;
1bIN1bl: TLabel;
1b1P1bl: TLabel;
1blQuarters: TLabel;
1blDimes: TLabel;
1bINickels: TLabel;
1blPennies: TLabel;
btnMakeChange: TButton;
meTotalPennies: TMaskEdit;
procedure btnMakeChangeClick(Sender: TObject);
end;

var
MainForm: TMainForm;

implementation

261

()]

saMvEan
NI DINVYNAQ

262

Advanced Techniques
PART Il

LisTING 6.5 Continued

uses PenniesInt; // Use an interface unit
{$R *.DFM}

procedure TMainForm.btnMakeChangeClick (Sender: TObject);
var
CoinsRec: TCoinsRec;
TotPennies: word;
begin
{ Call the DLL function to determine the minimum coins required
for the amount of pennies specified. }

TotPennies := PenniesToCoins(StrToInt(meTotalPennies.Text), @CoinsRec);
with CoinsRec do
begin

{ Now display the coin information }
1blQuarters.Caption := IntToStr(Quarters);

1blDimes.Caption := IntToStr(Dimes);
1blNickels.Caption := IntToStr(Nickels);
1blPennies.Caption := IntToStr(Pennies);
end
end;
end.

Notice that MainFrm.pas uses the unit PenniesInt. Recall that PenniesInt.pas includes the
external declarations to the functions existing in PenniesLib.dpr. When this application runs,
the Win32 system automatically loads PenniesLib.d11 and maps it to the process address
space for the calling application.

Usage of an import unit is optional. You can remove PenniesInt from the uses statement and
place the external declaration to PenniesToCoins() in the implementation section of
MainFrm.pas, as in the following code:

implementation

function PenniesToCoins(TotPennies: word; ChangeRec: PChangeRec): word;
wStdCall external 'PENNIESLIB.DLL';

You also would have to define PChangeRec and TChangeRec again in MainFrm.pas, or you can
compile your application using the compiler directive PENNIESLIB. This technique is fine in the
case where you only need access to a few routines from a DLL. In many cases, you’ll find that
you require not only the external declarations to the DLL’s routines but also access to the types
defined in the interface unit.

Dynamic Link Libraries
CHAPTER 6

NoTE

Many times, when using another vendor’s DLL, you won’t have a Pascal interface
unit; instead, you’ll have a C/C++ import library. In this case, you have to translate the
library to a Pascal equivalent interface unit.

You’ll find this demo on the accompanying CD.

Loading DLLs Explicitly

Although loading DLLs implicitly is convenient, it isn’t always the most desired method.
Suppose you have a DLL that contains many routines. If it’s likely that your application will
never call any of the DLL’s routines, it would be a waste of memory to load the DLL every
time your application runs. This is especially true when using multiple DLLs with one applica-
tion. Another example is when using DLLs as large objects: a standard list of functions that are
implemented by multiple DLLs but do slightly different things, such as printer drivers and file
format readers. In this situation, it would be beneficial to load the DLL when specifically
requested to do so by the application. This is referred to as explicitly loading a DLL.

To illustrate explicitly loading a DLL, we return to the sample DLL with a modal form. Listing
6.6 shows the code for the main form of the application that demonstrates explicitly loading
this DLL. The project file for this application is on the accompanying CD.

LISTING 6.6 Main Form for Calendar DLL Demo Application

unit MainFfm;
interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls;

type
{ First, define a procedural data type, this should reflect the
procedure that is exported from the DLL. }
TShowCalendar = function (AHandle: THandle; ACaption: String):
TDateTime; StdCall;

{ Create a new exception class to reflect a failed DLL load }
EDLLLoadError = class(Exception);

263

()]

saMvEan
NI DINVYNAQ

Advanced Techniques
PART Il

264

LiSTING 6.6 Continued

TMainForm = class(TForm)

1blDate: TLabel;

btnGetCalendar: TButton;

procedure btnGetCalendarClick(Sender: TObject);
end;

var
MainForm: TMainForm;

implementation
{$R *.DFM}

procedure TMainForm.btnGetCalendarClick(Sender: TObject);

var
LibHandle : THandle;
ShowCalendar: TShowCalendar;
begin

{ Attempt to load the DLL }
LibHandle := LoadLibrary('CALENDARLIB.DLL');
try
{ If the load failed, LibHandle will be zero.
If this occurs, raise an exception. }
if LibHandle = @ then
raise EDLLLoadError.Create('Unable to Load DLL');
{ If the code makes it here, the DLL loaded successfully, now obtain
the link to the DLL's exported function so that it can be called. }
@ShowCalendar := GetProcAddress(LibHandle, 'ShowCalendar');
{ If the function is imported successfully, then set
1blDate.Caption to reflect the returned date from
the function. Otherwise, show the return raise an exception. }
if not (@ShowCalendar = nil) then
1blDate.Caption := DateToStr(ShowCalendar(Application.Handle, Caption))
else
RaiselLastWin32Error;
finally
FreeLibrary(LibHandle); // Unload the DLL.
end;
end;

end.

Dynamic Link Libraries

CHAPTER 6

This unit first defines a procedural data type, TShowCalendar, that reflects the definition of the
function it will be using from CalendarLib.d11. It then defines a special exception, which is
raised when there’s a problem loading the DLL. In the btnGetCalendarClick() event handler,
you’ll notice the use of three Win32 API functions: LoadLibrary(), FreeLibrary(), and
GetProcAddress().

LoadLibrary () is defined this way:
function LoadLibrary(lpLibFileName: PChar): HMODULE; stdcall;

This function loads the DLL module specified by 1pLibFileName and maps it into the address
space of the calling process. If this function succeeds, it returns a handle to the module. If it
fails, it returns the value @, and an exception is raised. You can look up LoadLibrary() in the
online help for detailed information on its functionality and possible return error values.

FreeLibrary () is defined like this:
function FreeLibrary(hLibModule: HMODULE): BOOL; stdcall;

FreeLibrary() decrements the instance count of the library specified by LibModule. It
removes the library from memory when the library’s instance count is zero. The instance count
keeps track of the number of tasks using the DLL.

Here’s how GetProcAddress () is defined:

function GetProcAddress(hModule: HMODULE; 1lpProcName: LPCSTR):
FARPROC; stdcall

GetProcAddress () returns the address of a function within the module specified in its first
parameter, hModule. hModule is the THandle returned from a call to LoadLibrary (). If
GetProcAddress () fails, it returns nil. You must call GetLastError () for extended error
information.

In Button1’s OnClick event handler, LoadLibrary () is called to load CALDLL. If it fails to load,
an exception is raised. If the call is successful, a call to the window’s GetProcAddress() is
made to get the address of the function ShowCalendar (). Prepending the procedural data type
variable ShowCalendar with the address of operator (@) character prevents the compiler from
issuing a type mismatch error due to its strict type-checking. After obtaining the address of
ShowCalendar (), you can use it as defined by TShowCalendar. Finally, FreeLibrary() is
called within the finally block to ensure that the library is freed from memory when no
longer required.

You can see that the library is loaded and freed each time this function is called. If this func-
tion was called only once during the run of an application, it becomes apparent how explicit

265

()]

saMvEan
NI DINVYNAQ

266

Advanced Techniques
PART Il

loading can save much-needed and often limited memory resources. On the other hand, if this
function were called frequently, the DLL loading and unloading would add a lot of overhead.

The Dynamically Linked Library Entry/Exit
Function

You can provide optional entry and exit code for your DLLs when required under various ini-
tialization and shutdown operations. These operations can occur during process or thread
initialization/termination.

Process/Thread Initialization and Termination Routines

Typical initialization operations include registering Windows classes, initializing global vari-
ables, and initializing an entry/exit function. This occurs during the method of entry for the
DLL, which is referred to as the DLLEntryPoint function. This function is actually represented
by the begin. .end block of the DLL project file. This is the location where you would set up
an entry/exit procedure. This procedure must take a single parameter of the type DWord.

The global DLLProc variable is a procedural pointer to which you can assign the entry/exit pro-
cedure. This variable is initially nil unless you set up your own procedure. By setting up an
entry/exit procedure, you can respond to the events listed in Table 6.1.

TABLE 6.1 DLL Entry/Exit Events

Event Purpose

DLL_PROCESS_ATTACH The DLL is attaching to the address space of the current process
when the process starts up or when a call to LoadLibrary() is
made. DLLs initialize any instance data during this event.

DLL_PROCESS_DETACH The DLL is detaching from the address space of the calling
process. This occurs during a clean process exit or when a call to
FreeLibrary() is made. The DLL can uninitialize any instance
data during this event.

DLL_THREAD_ATTACH This event occurs when the current process creates a new thread.
When this occurs, the system calls the entry-point function of
any DLLs attached to the process. This call is made in the con-
text of the new thread and can be used to allocate any thread-spe-
cific data.

DLL_THREAD_DETACH This event occurs when the thread is exiting. During this event,
the DLL can free any thread-specific initialized data.

Dynamic Link Libraries

CHAPTER 6

NoTE

Threads terminated abnormally—by calling TerminateThread () —are not guaranteed
to call DLL_THREAD_DETACH.

DLL Entry/Exit Example

Listing 6.7 illustrates how you would install an entry/exit procedure to the DLL’s DLLProc
variable.

LISTING 6.7 The Source Code for D11Entry.dpr

library D11Entry;
uses
SysUtils,
Windows,
Dialogs,
Classes;
procedure DLLEntryPoint(dwReason: DWord);
begin
case dwReason of
DLL_PROCESS_ATTACH: ShowMessage('Attaching to process');
DLL_PROCESS_DETACH: ShowMessage('Detaching from process');
DLL_THREAD_ATTACH: MessageBeep(0Q);
DLL_THREAD_DETACH: MessageBeep(0Q);
end;
end;
begin
{ First, assign the procedure to the DLLProc variable }
D11Proc := @DLLEntryPoint;
{ Now invoke the procedure to reflect that the DLL is attaching to the
process }
DLLEntryPoint (DLL_PROCESS_ATTACH) ;
end.

267

The entry/exit procedure is assigned to the DLL’s DLLProc variable in the begin. .end block of
the DLL project file. This procedure, DLLEntryPoint (), evaluates its word parameter to deter-

mine which event is being called. These events correspond to the events listed in Table 6.1. For
illustration purposes, we have each event display a message box when the DLL is being loaded
or destroyed. When a thread in the calling application is being created or destroyed, a message
beep occurs.

()]

saMvEan
NI DINVYNAQ

268 Advanced Techniques

PART Il

To illustrate the use of this DLL, examine the code shown in Listing 6.8.

LisTING 6.8 Sample Code for DLL Entry/Exit Demo

unit MainFrm;
interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ComCtrls, Gauges;

type
{ Define a TThread descendant }

TTestThread = class(TThread)
procedure Execute; override;
procedure SetCaptionData;

end;

TMainForm = class(TForm)
btnLoadLib: TButton;
btnFreeLib: TButton;
btnCreateThread: TButton;
btnFreeThread: TButton;
1blCount: TLabel;
procedure btnLoadLibClick(Sender: TObject);
procedure btnFreeLibClick(Sender: TObject);
procedure btnCreateThreadClick(Sender: TObject);
procedure btnFreeThreadClick(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
LibHandle : THandle;
TestThread : TTestThread;
Counter : Integer;
GoThread : Boolean;
end;
var

MainForm: TMainForm;
implementation

{$R *.DFM}

Dynamic Link Libraries

LisTING 6.8 Continued

CHAPTER 6

procedure TTestThread.Execute;
begin
while MainForm.GoThread do
begin
Synchronize(SetCaptionData);
Inc (MainForm.Counter);
end;
end;

procedure TTestThread.SetCaptionData;
begin

MainForm.1lblCount.Caption := IntToStr(MainForm.Counter);
end;

procedure TMainForm.btnLoadLibClick(Sender: TObject);
{ This procedure loads the library Dl1lEntryLib.DLL }
begin
if LibHandle = @ then
begin
LibHandle := LoadLibrary('DLLENTRYLIB.DLL");
if LibHandle = @ then
raise Exception.Create('Unable to Load DLL');

end
else
MessageDlg('Library already loaded', mtWarning, [mbok], 0);
end;

procedure TMainForm.btnFreeLibClick(Sender: TObject);
{ This procedure frees the library }
begin
if not (LibHandle = 0) then
begin
FreeLibrary(LibHandle);
LibHandle := 0;
end;
end;

procedure TMainForm.btnCreateThreadClick(Sender: TObject);
{ This procedure creates the TThread instance. If the DLL is loaded
message beep will occur. }

begin
if TestThread = nil then
begin
GoThread = True;

269

()]

saMvEan
NI DINVYNAQ

270

Advanced Techniques
PART Il

LisTING 6.8 Continued

TestThread := TTestThread.Create(False);
end;
end;

procedure TMainForm.btnFreeThreadClick(Sender: TObject);
{ In freeing the TThread a message beep will occur if the DLL is loaded. }

begin
if not (TestThread = nil) then
begin
GoThread := False;

TestThread.Free;

TestThread := nil;

Counter 1= 0;
end;

end;

procedure TMainForm.FormCreate(Sender: TObject);

begin
LibHandle := 0;
TestThread := nil;
end;
end.

This project consists of a main form with four TButton components. BtnLoadLib loads the
DLL D1lEntryLib.dll. BtnFreeLib frees the library from the process. BtnCreateThread cre-
ates a TThread descendant object, which in turn creates a thread. BtnFreeThread destroys the
TThread object. The 1blCount is used just to show the thread execution.

The btnLoadLibClick() event handler calls LoadLibrary () to load D11EntryLib.d11. This
causes the DLL to load and be mapped to the process’s address space. Additionally, the initial-
ization code in the DLL gets executed. Again, this is the code that appears in the begin. .end
block of the DLL, which performs the following to set up an entry/exit procedure for the DLL:

begin
{ First, assign the procedure to the DLLProc variable }
D11Proc := @DLLEntryPoint;
{ Now invoke the procedure to reflect that the DLL is attaching to the
process }
DLLEntryPoint (DLL_PROCESS_ATTACH) ;
end.

Dynamic Link Libraries

CHAPTER 6

This initialization section will only be called once per process. If another process loads this
DLL, this section will be called again, except in the context of the separate process—processes
don’t share DLL instances.

The btnFreeLibClick () event handler unloads the DLL by calling FreeLibrary (). When this
happens, the procedure to which the DLLProc points, DLLEntryProc(), gets called with the
value of DLL_PROCESS_DETACH passed as the parameter.

The btnCreateThreadClick () event handler creates the TThread descendant object. This
causes the DLLEntryProc() to get called, and the DLL_THREAD_ATTACH value is passed as the
parameter. The btnFreeThreadClick() event handler invokes DLLEntryProc again but passes
DLL_THREAD_DETACH as the value to the procedure.

Although you invoke only a message box when the events occur, you’ll use these events to per-
form any process or thread initialization or cleanup that might be necessary for your applica-
tion. Later, you’ll see an example of using this technique to set up sharable DLL global data.
You can look at the demo of this DLL in the project DLLEntryTest.dpr on the CD.

Exceptions in DLLs

This section discusses issues regarding DLLs and Win32 exceptions.

Capturing Exceptions in 16-Bit Delphi

Back in the 16-bit days with Delphi 1, Delphi exceptions were language specific. Therefore, if
exceptions were raised in a DLL, you were required to capture the exception before it escaped
from the DLL so that it wouldn’t creep up the calling modules stack, causing it to crash. You
had to wrap every DLL entry point with an exception handler, like this:

procedure SomeDLLProc;
begin
try
{ Do your stuff }
except
on Exception do
{ Don't let it get away, handle it and don't re-raise it }
end;
end;

This is no longer the case as of Delphi 2. Delphi 6 exceptions map themselves to Win32
exceptions. Exceptions raised in DLLs are no longer a compiler/language feature of Delphi
but rather a feature of the Win32 system.

271

()]

saMvEan
NI DINVYNAQ

272

Advanced Techniques
PART Il

For this to work, however, you must make sure that SysUtils is included in the DLL’s uses
clause. Not including SysUtils disables Delphi’s exception support inside the DLL.

CAUTION

Most Win32 applications aren’t designed to handle exceptions, so even though
Delphi language exceptions get turned into Win32 exceptions, exceptions that you let
escape from a DLL into the host application are likely to shut down the application.

If the host application is built with Delphi or C++Builder, this shouldn't be much of an
issue, but there’s still a lot of raw C and C++ code out there that doesn’t like exceptions.

Therefore, to make your DLLs bulletproof, you might still consider using the 16-bit
method of protecting DLL entry points with try..except blocks to capture exceptions
raised in your DLLs.

NoTE

When a non-Delphi application uses a DLL written in Delphi, it won't be able to utilize
the Delphi language-specific exception classes. However, it can be handled as a Win32
system exception given the exception code of $0EEDFACE. The exception address will
be the first entry in the ExceptionInformation array of the Win32 system EXCEPTION
RECORD. The second entry contains a reference to the Delphi exception object. Look up
EXCEPTION_RECORD in the Delphi online help for additional information.

Exceptions and the Safecall Directive

Safecall functions are used for COM and exception handling. They guarantee that any excep-
tion will propagate to the caller of the function. A Safecall function converts an exception
into an HResult return value. Safecall also implies the StdCall calling convention. Therefore,
a Safecall function declared as

function Foo(i: integer): string; Safecall;
really looks like this according to the compiler:
function Foo(i: integer): string; HResult; StdCall;

The compiler then inserts an implicit try..except block that wraps the entire function con-
tents and catches any exceptions raised. The except block invokes a call to
SafecallExceptionHandler () to convert the exception into an HResult. This is somewhat
similar to the 16-bit method of capturing exceptions and passing back error values.

Dynamic Link Libraries

CHAPTER 6

Callback Functions

A callback function is a function in your application called by Win32 DLLs or other DLLs.
Basically, Windows has several API functions that require a callback function. When calling
these functions, you pass in an address of a function defined by your application that Windows
can call. If you’re wondering how this all relates to DLLs, remember that the Win32 API is
really several routines exported from system DLLs. Essentially, when you pass a callback
function to a Win32 function, you’re passing this function to a DLL.

One such function is the EnumWindows () API function, which enumerates through all top-level
windows. This function passes the handle of each window in the enumeration to your applica-
tion-defined callback function. You’re required to define and pass the callback function’s
address to the EnumWindows () function. The callback function that you must provide to
EnumWindows () is defined this way:

function EnumWindowsProc(Hw: HWnd; lp: 1Param): Boolean; stdcall;

We illustrate the use of the EnumWindows () function in the CallBack.dpr project on the CD
and shown in Listing 6.9.

LISTING 6.9 MainForm.pas—Source to Callback Example

unit MainFrm;
interface
uses

Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ComCtrls;

type

{ Define a record/class to hold the window name and class name for
each window. Instances of this class will get added to ListBox1 }
TWindowInfo = class

WindowName, // The window name
WindowClass: String; // The window's class name
end;

TMainForm = class(TForm)
1bWinInfo: TListBox;
btnGetWinInfo: TButton;
hdwinInfo: THeaderControl;
procedure btnGetWinInfoClick(Sender: TObject);

273

()]

saMvEan
NI DINVYNAQ

274 Advanced Techniques

PART Il

LisTING 6.9 Continued

procedure FormDestroy(Sender: TObject);
procedure 1lbWinInfoDrawItem(Control: TWinControl; Index: Integer;
Rect: TRect; State: TOwnerDrawState);
procedure hdWinInfoSectionResize(HeaderControl: THeaderControl;
Section: THeaderSection);
end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}
function EnumWindowsProc (Hw: HWnd; AMainForm: TMainForm):
Boolean; stdcall;
{ This procedure is called by the User32.DLL library as it enumerates
through windows active in the system. }
var
WinName, CName: array[0..144] of char;
WindowInfo: TWindowInfo;
begin
{ Return true by default which indicates not to stop enumerating
through the windows }

Result := True;
GetWindowText (Hw, WinName, 144); // Obtain the current window text
GetClassName (Hw, CName, 144); // Obtain the class name of the window

{ Create a TWindowInfo instance and set its fields with the values of
the window name and window class name. Then add this object to
ListBox1's Objects array. These values will be displayed later by
the listbox }

WindowInfo := TWindowInfo.Create;
with WindowInfo do
begin

SetLength(WindowName, strlen(WinName));
SetlLength(WindowClass, StrLen(CName));

WindowName := StrPas(WinName);
WindowClass := StrPas(CName);
end;

// Add to Objects array
MainForm.1lbWinInfo.Items.AddObject('', WindowInfo); end;

procedure TMainForm.btnGetWinInfoClick(Sender: TObject);

Dynamic Link Libraries

LisTING 6.9 Continued

275

begin

{ Enumerate through all top-level windows being displayed. Pass in the

call back function EnumWindowsProc which will be called for each
window }
EnumWindows (@EnumWindowsProc, 0);
end;

procedure TMainForm.FormDestroy(Sender: TObject);
var

i: integer;
begin

{ Free all instances of TWindowInfo }

for i := 0 to lbWinInfo.Items.Count - 1 do

TWindowInfo(lbWinInfo.Items.Objects[i]).Free

end;

procedure TMainForm.lbWinInfoDrawItem(Control: TWinControl;

Index: Integer;Rect: TRect; State: TOwnerDrawState);

begin

{ First, clear the rectangle to which drawing will be performed }

1bWinInfo.Canvas.FillRect(Rect);

{ Now draw the strings of the TWindowInfo record stored at the
Index'th position of the listbox. The sections of HeaderControl
will give positions to which to draw each string }

with TWindowInfo(lbWinInfo.Items.Objects[Index]) do

begin
DrawText (lbWinInfo.Canvas.Handle, PChar(WindowName),

Length(WindowName), Rect,dt_Left or dt_VCenter);

{ Shift the drawing rectangle over by using the size
HeaderControlil's sections to determine where to draw the next
string }

Rect.Left := Rect.Left + hdWinInfo.Sections[@].Width;

DrawText (lbWinInfo.Canvas.Handle, PChar(WindowClass),
Length(WindowClass), Rect, dt_Left or dt_VCenter);

end;

end;

procedure TMainForm.hdWinInfoSectionResize(HeaderControl:
THeaderControl; Section: THeaderSection);
begin
1bWinInfo.Invalidate; // Force ListBox1 to redraw itself.
end;

end.

()]

saMvEan
NI DINVYNAQ

276

Advanced Techniques
PART Il

This application uses the EnumWindows () function to extract the window name and classname
of all top-level windows and adds them to the owner-draw list box on the main form. The main
form uses an owner-draw list box to make both the window name and window classname
appear in a columnar fashion. First we’ll explain the use of the callback function. Then we’ll
explain how we created the columnar list box.

Using the Callback Function

You saw in Listing 6.9 that we defined a procedure, EnumWindowsProc (), that takes a window
handle as its first parameter. The second parameter is user-defined data, so you can pass what-
ever data you deem necessary as long as its size is the equivalent to an integer data type.

EnumWindowsProc () is the callback procedure that you’ll pass to the EnumWindows () Win32
API function. It must be declared with the StdCall directive to specify that it uses the Win32
calling convention. When passing this procedure to EnumWindows (), it will get called for each
top-level window whose window handle gets passed as the first parameter. You use this win-
dow handle to obtain both the window name and classname of each window. You then create
an instance of the TWindowInfo class and set its fields with this information. The TWindowInfo
class instance is then added to the 1bWinInfo.Objects array. The data in this list box will be
used when the list box is drawn to show this data in a columnar fashion.

Notice that, in the main form’s OnDestroy event handler, you make sure to clean up any allo-
cated instances of the TWindowInfo class.

The btnGetWinInfoClick ()event handler calls the EnumWindows () procedure and passes
EnumWindowsProc () as its first parameter.

When you run the application and click the button, you’ll see that the information is obtained
from each window and is shown in the list box.

Drawing an Owner-Draw List Box

The window names and classnames of top-level windows are drawn in a columnar fashion in
lbwinInfo from the previous project. This was done by using a TListBox with its Style prop-
erty set to 1bownerDraw. When this style is set as such, the TListBox.OnDrawItem event is
called each time the TListBox is to draw one of its items. You're responsible for drawing the
items as illustrated in the example.

In Listing 6.9, the event handler 1bWinInfoDrawItem() contains the code that performs the
drawing of list box items. Here, you draw the strings contained in the TWindowInfo class
instances, which are stored in the 1bWinInfo.Objects array. These values are obtained from
the callback function EnumWindowsProc (). You can refer to the code commentary to determine
what this event handler does.

Dynamic Link Libraries

CHAPTER 6

Calling Callback Functions from Your DLLs

Just as you can pass callback functions to DLLs, you can also have your DLLs call callback
functions. This section illustrates how you can create a DLL whose exported function takes a
callback procedure as a parameter. Then, based on whether the user passes in a callback proce-
dure, the procedure gets called. Listing 6.10 contains the source code to this DLL.

LisTiNG 6.10 Calling a Callback Demo—Source Code for StrSrchLib.d11l

library StrSrchLib;

uses
Wintypes,
WinProcs,
SysUtils,
Dialogs;

type
{ declare the callback function type }
TFoundStrProc = procedure(StrPos: PChar); StdCall;

function SearchStr(ASrcStr, ASearchStr: PChar; AProc: TFarProc):
Integer; StdCall;

{ This function looks for ASearchStr in ASrcStr. When founc ASearchStr,
the callback procedure referred to by AProc is called if one has been
passed in. The user may pass nil as this parameter. }

var
FindStr: PChar;

begin
FindStr := ASrcStr;

FindStr := StrPos(FindStr, ASearchStr);
while FindStr <> nil do
begin
if AProc <> nil then
TFoundStrProc (AProc) (FindStr);
FindStr := FindStr + 1;
FindStr := StrPos(FindStr, ASearchStr);
end;
end;

exports
SearchStr;

begin

end.

277

()]

saMvEan
NI DINVYNAQ

278

Advanced Techniques
PART Il

The DLL also defines a procedural type, TFoundStrProc, for the callback function, which will
be used to typecast the callback function when it’s called.

The exported procedure SearchStr () is where the callback function is called. The commentary
in the listing explains what this procedure does.

An example of this DLL’s usage is given in the project CallBackDemo.dpr in the \DLLCallBack
directory on the CD. The source for the main form of this demo is shown in Listing 6.11.

LiSTING 6.11 The Main Form for the DLL Callback Demo

unit MainFrm;
interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls;

type
TMainForm = class(TForm)
btnCallDLLFunc: TButton;
edtSearchStr: TEdit;
1b1lSrchWrd: TLabel;
memStr: TMemo;
procedure btnCallDLLFuncClick(Sender: TObject);
end;

var
MainForm: TMainForm;
Count: Integer;

implementation
{$R *.DFM}

{ Define the DLL's exported procedure }

function SearchStr (ASrcStr, ASearchStr: PChar; AProc: TFarProc):
Integer; StdCall external
'STRSRCHLIB.DLL"';

{ Define the callback procedure, make sure to use the StdCall directive }
procedure StrPosProc(AStrPsn: PChar); StdCall;
begin
inc(Count); // Increment the Count variable.
end;

Dynamic Link Libraries

CHAPTER 6

LisTING 6.11 Continued

procedure TMainForm.btnCallDLLFuncClick(Sender: TObject);
var
S: String;
S2: String;
begin
Count := @; // Initialize Count to zero.
{ Retrieve the length of the text on which to search. }
SetLength(S, memStr.GetTextLen);
{ Now copy the text to the variable S }
memStr.GetTextBuf (PChar(S), memStr.GetTextLen);
{ Copy Edit1's Text to a string variable so that it can be passed to
the DLL function }
S2 := edtSearchStr.Text;
{ Call the DLL function }
SearchStr(PChar(S), PChar(S2), @StrPosProc);
{ Show how many times the word occurs in the string. This has been
stored in the Count variable which is used by the callback function }
ShowMessage (Format('%s %s %d %s', [edtSearchStr.Text,
‘occurs', Count, 'times.']));
end;

end.

279

This application contains a TMemo control. EdtSearchStr.Text contains a string that will be
searched for in memStr’s contents. memStr’s contents are passed as the source string to the DLL
function SearchStr (), and edtSearchStr.Text is passed as the search string.

The function StrPosProc () is the actual callback function. This function increments the value
of the global variable Count, which you use to hold the number of times the search string
occurs in memStr’s text.

Sharing DLL Data Across Different Processes

Back in the world of 16-bit Windows, DLL memory was handled differently than it is in the
32-bit world of Win32. One often-used trait of 16-bit DLLs is that they share global memory
among different applications. In other words, if you declare a global variable in a 16-bit DLL,
any application using that DLL will have access to that variable, and changes made to that
variable by an application will be seen by other applications.

In some ways, this behavior can be dangerous because one application can overwrite data on
which another application is dependent. In other ways, developers have made use of this
characteristic.

()]

saMvEan
NI DINVYNAQ

280

Advanced Techniques
PART Il

In Win32, this sharing of DLL global data no longer exists. Because each application process

maps the DLL to its own address space, the DLL’s data also gets mapped to that same address
space. This results in each application getting its own instance of DLL data. Changes made to
the DLL global data by one application won’t be seen from another application.

If you’re planning on porting a 16-bit application that relies on the sharable behavior of DLL
global data, you can still provide a means for applications to share data in a DLL with other
applications. The process isn’t automatic, and it requires the use of memory-mapped files to
store the shared data. Memory-mapped files are covered in Chapter 12 of Delphi 5 Developer’s
Guide, “Working with Files,” on the CD. We’ll use them here to illustrate this method.

Creating a DLL with Shared Memory

Listing 6.12 shows a DLL project file that contains the code to allow applications using this
DLL to share its global data. This global data is stored in the variable appropriately named
GlobalData.

LisTING 6.12 shareLib—A DLL That lllustrates Sharing Global Data

library SharelLib;

uses
ShareMem,
Windows,
SysUtils,
Classes;
const

CMMFileName: PChar = 'SharedMapData’;
{$I DLLDATA.INC}

var
GlobalData : PGlobalDLLData;
MapHandle : THandle;

{ GetDLLData will be the exported DLL function }

procedure GetDLLData(var AGlobalData: PGlobalDLLData); StdCall;

begin
{ Point AGlobalData to the same memory address referred to by GlobalData. }
AGlobalData := GlobalData;

end;

procedure OpenSharedData;

Dynamic Link Libraries 281

CHAPTER 6

LisTING 6.12 Continued

()]

var
Size: Integer;

begin
{ Get the size of the data to be mapped. }
Size := SizeOf(TGlobalDLLData);

{ Now get a memory-mapped file object. Note the first parameter passes
the value $FFFFFFFF or DWord(-1) so that space is allocated from
the system's
paging file. This requires that a name for the memory-mapped
object get passed as the last parameter. }

MapHandle := CreateFileMapping(DWord(-1), nil, PAGE_READWRITE, 0,
Size, cMMFileName);

if MapHandle = @ then
RaiselLastWin32Error;
{ Now map the data to the calling process's address space and get a
pointer to the beginning of this address }
GlobalData := MapViewOfFile(MapHandle, FILE_MAP_ALL_ACCESS, 0, 0, Size);
{ Initialize this data }
GlobalData”.S := 'SharelLib';
GlobalbData".I := 1;
if GlobalData = nil then
begin
CloseHandle (MapHandle) ;
RaiselLastWin32Error;
end;
end;

procedure CloseSharedData;

{ This procedure un-maps the memory-mapped file and releases the memory-mapped
file handle }

begin
UnmapViewOfFile(GlobalData);
CloseHandle (MapHandle);

end;

procedure DLLEntryPoint(dwReason: DWord);
begin
case dwReason of
DLL_PROCESS_ATTACH: OpenSharedData;
DLL_PROCESS_DETACH: CloseSharedData;
end;

saMvEan
NI DINVYNAQ

282 Advanced Techniques

PART Il

LisTING 6.12 Continued

end;

exports
GetDLLData;

begin
{ First, assign the procedure to the DLLProc variable }
D11Proc := @DLLEntryPoint;
{ Now invoke the procedure to reflect that the DLL is attaching
to the process }
DLLEntryPoint (DLL_PROCESS_ATTACH);
end.

GlobalData is of the type PGlobalDLLData, which is defined in the include file D11Data.inc.
This include file contains the following type definition (note that the include file is linked by
using the include directive $1I):

type

PGlobalDLLData = "“TGlobalDLLData;
TGlobalDLLData = record

S: String[50];

I: Integer;
end;

In this DLL, you use the same process discussed earlier in the chapter to add entry and exit code
to the DLL in the form of an entry/exit procedure. This procedure is called DLLEntryPoint (), as
shown in the listing. When a process loads the DLL, the OpenSharedData() method gets called.
When a process detaches from the DLL, the CloseSharedData() method is called.

Memory-mapped files provide a means for you to reserve a region of address space in the
Win32 system to which physical storage gets committed. This is similar to allocating memory
and referring to that memory with a pointer. With memory-mapped files, however, you can
map a disk file to this address space and refer to the space within the file as though you were
just referencing an area of memory with a pointer.

With memory-mapped files, you must first get a handle to an existing file on disk to which a
memory-mapped object will be mapped. You then map the memory-mapping object to that file.
At the beginning of the chapter, we told you how the system shares DLLs with multiple appli-
cations by first loading the DLL into memory and then giving each application its own image
of the DLL so that it appears that each application has loaded a separate instance of the DLL.

Dynamic Link Libraries

CHAPTER 6

In reality, however, the DLL exists in memory only once. This is done by using memory-
mapped files. You can use the same process to give access to data files. You just make neces-
sary Win32 API calls that deal with creating and accessing memory-mapped files.

Now, consider this scenario: Suppose an application, which we’ll call App1, creates a memory-
mapped file that gets mapped to a file on disk, MyFile.dat. App1 can now read and write data
in that file. If, while App1 is running, App2 also maps to that same file, changes made to the file
by App1 will be seen by App2. Actually, it’s a bit more complex; certain flags must be set so
that changes to the file are immediately set and so forth. For this discussion, it suffices to say
that changes will be realized by both applications because this is possible.

One of the ways in which memory-mapped files can be used is to create a file mapping from
the Win32 paging file rather than an existing file. This means that instead of mapping to an
existing file on disk, you can reserve an area of memory to which you can refer as though it
were a disk file. This prevents you from having to create and destroy a temporary file if all you
want to do is to create an address space that can be accessed by multiple processes. The Win32
system manages its paging file, so when memory is no longer required of the paging file, this
memory gets released.

In the preceding paragraphs, we presented a scenario that illustrated how two applications can
access the same file data by using a memory-mapped file. The same can be done between an
application and a DLL. In fact, if the DLL creates the memory-mapped file when it’s loaded
by an application, it will use the same memory-mapped file when loaded by another applica-
tion. There will be two images of the DLL, one for each calling application, both of which use
the same memory-mapped file instance. The DLL can make the data referred to by the file
mapping available to its calling application. When one application makes changes to this data,
the second application will see these changes because they’re referring to the same data,
mapped by two different memory-mapped object instances. We use this technique in the
example.

In Listing 6.12, OpenSharedData() is responsible for creating the memory-mapped file. It uses
the CreateFileMapping () function to first create the file-mapping object, which it then passes
to the MapviewOfFile() function. The MapviewOfFile () function maps a view of the file into
the address space of the calling process. The return value of this function is the beginning of
that address space. Now remember, this is the address space of the calling process. For two dif-
ferent applications using this DLL, this address location might be different, although the data
to which they refer will be the same.

283

()]

saMvEan
NI DINVYNAQ

284

Advanced Techniques
PART Il

NoTE

The first parameter to CreateFileMapping() is a handle to a file to which the mem-
ory-mapped file gets mapped. However, if you're mapping to an address space of the
system paging file, pass the value $FFFFFFFF (which is the same as DWord(-1)) as this
parameter value. You must also supply a name for the file-mapping object as the last
parameter to CreateFileMapping (). This is the name that the system uses to refer to
this file mapping. If multiple processes create a memory-mapped file using the same
name, the mapping objects will refer to the same system memory.

After the call to MapViewOfFile (), the variable GlobalData refers to the address space for the
memory-mapped file. The exported function GetDLLData() assigns that memory to which
GlobalData refers to the AGlobalData parameter. AGlobalData is passed in from the calling
application; therefore, the calling application has read/write access to this data.

The CloseSharedData() procedure is responsible for unmapping the view of the file from the
calling process and releasing the file-mapping object. This doesn’t affect other file-mapping
objects or file mappings from other applications.

Using a DLL with Shared Memory

To illustrate the use of the shared memory DLL, we’ve created two applications that make use
of it. The first application, App1.dpr, allows you to modify the DLL’s data. The second appli-
cation, App2.dpr, also refers to the DLL’s data and continually updates a couple of TLabel
components by using a TTimer component. When you run both applications, you’ll be able to
see the sharable access to the DLL data—App2 will reflect changes made by App1.

Listing 6.13 shows the source code for the App1 project.

LisTING 6.13 The Main Form for App1.dpr

unit MainFrmA1;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, StdCtrls, ExtCtrls, Mask;

{$I DLLDATA.INC}

type

Dynamic Link Libraries

LisTING 6.13 Continued

CHAPTER 6

TMainForm = class(TForm)
edtGlobDataStr: TEdit;
btnGetDllData: TButton;
meGlobDataInt: TMaskEdit;
procedure btnGetDllDataClick(Sender: TObject);
procedure edtGlobDataStrChange(Sender: TObject);
procedure meGlobDataIntChange(Sender: TObject);
procedure FormCreate(Sender: TObject);

public
GlobalData: PGlobalDLLData;

end;

var
MainForm: TMainForm;

{ Define the DLL's exported procedure }
procedure GetDLLData(var AGlobalData: PGlobalDLLData);
StdCall External 'SHARELIB.DLL';

implementation
{$R *.DFM}

procedure TMainForm.btnGetDllDataClick(Sender: TObject);
begin
{ Get a pointer to the DLL's data }
GetDLLData(GlobalData);
{ Now update the controls to reflect GlobalData's field values }
edtGlobDataStr.Text := GlobalData".S;
meGlobDataInt.Text := IntToStr(GlobalData".I);
end;

procedure TMainForm.edtGlobDataStrChange(Sender: TObject);
begin

{ Update the DLL data with the changes }

GlobalData~.S := edtGlobDataStr.Text;
end;

procedure TMainForm.meGlobDataIntChange(Sender: TObject);
begin
{ Update the DLL data with the changes }
if meGlobDataInt.Text = EmptyStr then
meGlobDataInt.Text := 'Q';
GlobalData~.I := StrToInt(meGlobDatalInt.Text);
end;

285

()]

saMvEan
NI DINVYNAQ

286

Advanced Techniques
PART Il

LisTING 6.13 Continued

procedure TMainForm.FormCreate(Sender: TObject);
begin

btnGetDllDataClick(nil);
end;

end.

This application also links in the include file D11Data. inc, which defines the TGlobalDLLData
data type and its pointer. The btnGetDl1lDataClick() event handler gets a pointer to the DLL’s
data, which is accessed by a memory-mapped file in the DLL. It does this by calling the DLL’s
GetDLLData() function. It then updates its controls with the value of this pointer, GlobalData.
The onChange event handlers for the edit controls change the values of GlobalData. Because
GlobalData refers to the DLL’s data, it modifies the data referred to by the DLL’s memory-
mapped file.

Listing 6.14 shows the source code for the main form for App2.dpr.

LisTING 6.14 The Source Code for Main Form for App2.dpr

unit MainFrmA2;
interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
ExtCtrls, StdCtrls;

{$I DLLDATA.INC}

type

TMainForm = class(TForm)

1blGlobDataStr: TLabel;

tmTimer: TTimer;

1blGlobDatalInt: TLabel;

procedure tmTimerTimer(Sender: TObject);
public

GlobalData: PGlobalDLLData;
end;

{ Define the DLL's exported procedure }
procedure GetDLLData(var AGlobalData: PGlobalDLLData);
StdCall External 'SHARELIB.DLL';

Dynamic Link Libraries

CHAPTER 6

LisTING 6.14 Continued

var
MainForm: TMainForm;

implementation
{$R *.DFM}

procedure TMainForm.tmTimerTimer (Sender: TObject);
begin
GetDllData(GlobalData); // Get access to the data
{ Show the contents of GlobalData's fields.}
1blGlobDataStr.Caption := GlobalData".S;
1blGlobDataInt.Caption := IntToStr(GlobalData".I);
end;

end.

287

This form contains two TLabel components, which get updated during the tmTimer’s OnTimer
event. When the user changes the values of the DLL’s data from App1, App2 will reflect these
changes.

You can run both applications to experiment with them. You’ll find them on this book’s CD.

Exporting Objects from DLLs

It’s possible to access an object and its methods even if that object is contained within a DLL.
There are some requirements, however, to how that object is defined within the DLL as well as
some limitations as to how the object can be used. The technique we illustrate here is useful in
very specific situations. Typically, you can achieve the same functionality by using packages or
interfaces.

The following list summarizes the conditions and limitations to exporting an object from a
DLL:

e The calling application can only use methods of the object that have been declared as
virtual.
* The object instances must be created only within the DLL.

* The object must be defined in both the DLL and calling application with methods
defined in the same order.

* You cannot create a descendant object from the object contained within the DLL.

Some additional limitations might exist, but the ones listed are the primary limitations.

()]

saMvEan
NI DINVYNAQ

288

Advanced Techniques
PART Il

To illustrate this technique, we’ve created a simple, yet illustrative example of an object that
we export. This object contains a function that returns the uppercase or lowercase value of a
string based on the value of a parameter indicating either uppercase or lowercase. This object
is defined in Listing 6.15.

LiIsTING 6.15 Object to Be Exported from a DLL

type
TConvertType = (ctUpper, ctLower);

TStringConvert = class(TObject)
{$IFDEF STRINGCONVERTLIB}
private
FPrepend: String;
FAppend : String;
{$ENDIF}
public
function ConvertString(AConvertType: TConvertType; AString: String):
String;
virtual; stdcall; {$IFNDEF STRINGCONVERTLIB} abstract; {$ENDIF}
{$IFDEF STRINGCONVERTLIB}
constructor Create(APrepend, AAppend: String);
destructor Destroy; override;
{$ENDIF}
end;

{ For any application using this class, STRINGCONVERTLIB is not defined and
therefore, the class definition will be equivalent to:

TStringConvert = class(TObject)
public
function ConvertString(AConvertType: TConvertType; AString: String):
String;
virtual; stdcall; abstract;
end;

}

Listing 6.15 is actually an include file named StrConvert.inc. This object is placed in an
include file to meet the third requirement in the preceding list—that the object be equally
defined in both the DLL and in the calling application. By placing the object in an include file,
both the calling application and DLL can include this file. If changes are made to the object,
you only have to compile both projects instead of typing the changes twice—once in the call-
ing application and once in the DLL, which is error prone.

Dynamic Link Libraries
CHAPTER 6

Observe the following definition of the ConvertSring () method:

function ConvertString(AConvertType: TConvertType; AString: String):
=»String; virtual; stdcall;

The reason you declare this method as virtual isn’t so that one can create a descendant object
that can then override the ConvertString() method. Instead, it’s declared as virtual so that an
entry to the ConvertString() method is made in the Virtual Method Table (VMT). Think of
the VMT as a block of memory that holds pointers to virtual methods of an object. Because of
the VMT, the calling application can obtain a pointer to the method of the object. Without
declaring the method as virtual, the VMT wouldn’t have an entry for the method, and the call-
ing application would have no way of obtaining the pointer to the method. So really, what you
have in the calling application is a pointer to the function. Because you’ve based this pointer
on a method type defined in an object, Delphi automatically handles any fix-ups, such as pass-
ing the implicit self parameter to the method.

NoTEe

The Virtual Method Table is covered in greater detail in Chapter 13 of Delphi 5
Developer’s Guide, "Hard Core Techniques,” on the CD.

Note the conditional define STRINGCONVERTLIB. When you’re exporting the object, the only
methods that need redefinition in the calling application are the methods to be accessed exter-
nally from the DLL. Also, these methods can be defined as abstract methods to avoid generat-
ing a compile-time error. This is valid because at runtime, these methods will be implemented
in the DLL code. The source code comments show what the TStringConvert object looks like
on the application side.

Listing 6.16 shows the implementation of the TStringConvert object.

LISTING 6.16 Implementation of the TStringConvert Object

unit StringConvertImp;
{$DEFINE STRINGCONVERTLIB}S
interface

uses SysUtils;

{$I StrConvert.inc}

function InitStrConvert(APrepend, AAppend: String): TStringConvert; stdcall;

implementation

289

()]

saMvEan
NI DINVYNAQ

Advanced Techniques
PART Il

290

LisTING 6.16 Continued

constructor TStringConvert.Create(APrepend, AAppend: String);
begin

inherited Create;

FPrepend := APrepend;

FAppend := AAppend;
end;

destructor TStringConvert.Destroy;
begin

inherited Destroy;
end;

function TStringConvert.ConvertString(AConvertType:
TConvertType; AString: String): String;
begin
case AConvertType of
ctUpper: Result := Format('%s%s%s', [FPrepend, UpperCase(AString),
FAppend]) ;
ctLower: Result
FAppend]) ;
end;
end;

Format('%s%s%s', [FPrepend, LowerCase(AString),

function InitStrConvert(APrepend, AAppend: String): TStringConvert;
begin

Result := TStringConvert.Create(APrepend, AAppend);
end;

end.

As stated in the conditions, the object must be created in the DLL. This is done in a standard
DLL exported function InitStrConvert (), which takes two parameters that are passed to the
constructor. We added this to illustrate how you would pass information to an object’s con-
structor through an interface function.

Also, notice that in this unit you declare the conditional directive STRINGCONVERTLIB. The rest
of this unit is self-explanatory. Listing 6.17 shows the DLL’s project file.

LisTING 6.17 The Project File for StringConvertLib.d1l

library StringConvertLib;
uses

ShareMem,

SysUtils,

Dynamic Link Libraries

CHAPTER 6

LisTING 6.17 Continued

291

Classes,
StringConvertImp in 'StringConvertImp.pas';

exports
InitStrConvert;
end.

Generally, this library doesn’t contain anything we haven’t already covered. Do note, however,
that you used the ShareMem unit. This unit must be the first unit declared in the library project
file as well as in the calling application’s project file. This is an extremely important thing to

remember.

Listing 6.18 shows an example of how to use the exported object to convert a string to both
uppercase and lowercase. You'll find this demo project on the CD as StrConvertTest.dpr.

LisTING 6.18 The Demo Project for the String Conversion Object

unit MainFrm;
interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,

StdCtrls;

{$I strconvert.inc}

type

TMainForm = class(TForm)
btnUpper: TButton;
edtConvertStr: TEdit;
btnLower: TButton;
procedure btnUpperClick(Sender: TObject);
procedure btnLowerClick(Sender: TObject);
private
public
end;

var
MainForm: TMainForm;

()]

saMvEan
NI DINVYNAQ

292

Advanced Techniques
PART Il

LisTING 6.18 Continued

function InitStrConvert (APrepend, AAppend: String): TStringConvert; stdcall;
external 'STRINGCONVERTLIB.DLL';

implementation
{$R *.DFM}

procedure TMainForm.btnUpperClick(Sender: TObject);
var
ConvStr: String;
FStrConvert: TStringConvert;
begin
FStrConvert := InitStrConvert('Upper ', ' end');
try
ConvStr := edtConvertStr.Text;
if ConvStr <> EmptyStr then
edtConvertStr.Text := FStrConvert.ConvertString(ctUpper, ConvStr);
finally
FStrConvert.Free;
end;
end;

procedure TMainForm.btnLowerClick(Sender: TObject);
var

ConvStr: String;

FStrConvert: TStringConvert;

begin
FStrConvert := InitStrConvert('Lower ', ' end');
try
ConvStr := edtConvertStr.Text;
if ConvStr <> EmptyStr then
edtConvertStr.Text := FStrConvert.ConvertString(ctLower, ConvStr);
finally
FStrConvert.Free;
end;
end;

end.

Dynamic Link Libraries

CHAPTER 6

Summary

DLLs are an essential part of creating Windows applications while focusing in on code
reusability. This chapter covered the reasons for creating or using DLLs. The chapter illus-
trated how to create and use DLLs in your Delphi applications and showed different methods
of loading DLLs. The chapter discussed some of the special considerations you must take
when using DLLs with Delphi and showed you how to make DLL data sharable with different

applications.

With this knowledge under your belt, you should be able to create DLLs with Delphi and use
them in your Delphi applications with ease.

293

()]

saMvEan
NI DINVYNAQ

PART

Database Development

IN THIS PART

7 Delphi Database Architecture 297
8 Database Development with dbExpress 349
9 Database Development with dbGo for ADO 363

Delphi Database Architecture CHAPTER

IN THIS CHAPTER

¢ Types of Databases 298

e Database Architecture 299

e Connecting to Database Servers 299
e Working with Datasets 300

¢ Working with Fields 315

298

Database Development
PArT llI

In this chapter, you’ll learn the art and science of accessing external database files from your
Delphi applications. If you're new to database programming, we do assume a bit of database
knowledge, but this chapter will get you started on the road to creating high-quality database
applications. If database applications are “old hat” to you, you’ll benefit from the chapter’s
demonstration of Delphi’s spin on database programming. Delphi 6 offers several mechanisms
for accessing data, which we will cover in this chapter, and then in more detail in chapters to
follow. This chapter discusses the architecture upon which all data access mechanisms in
Delphi 6 are built.

Types of Databases

The following list is taken from Delphi’s online help under “Using Databases.” The references
mentioned in the list are also found in the online help. We’ll refer to this information here
because we felt that Borland described the types of database supported by Delphi’s architecture
best:

* The BDE page of the Component Palette contains components that use the Borland
Database Engine (BDE). The BDE defines a large API for interacting with databases. Of
all the data access mechanisms, the BDE supports the broadest range of functions and
comes with the most supporting utilities. It is the best way to work with data in Paradox
or dBASE tables. However, it is also the most complicated mechanism to deploy. For
more information about using the BDE components, see “Using the Borland Database
Engine.”

* The ADO page of the Component Palette contains components that use ActiveX Data
Objects (ADO) to access database information through OLEDB. ADO is a Microsoft
Standard. A broad range of ADO drivers is available for connecting to different database
servers. Using ADO-based components lets you integrate your application into an ADO-
based environment (for example, making use of ADO-based application servers). For
more information about using the ADO components, see “Working with ADO
Components.”

» The dbExpress page of the Component Palette contains components that use dbExpress
to access database information. dbExpress is a lightweight set of drivers that provide the
fastest access to database information. In addition, dbExpress components support cross-
platform development because they are also available on Linux. However, dbExpress
database components also support the narrowest range of data manipulation functions.
For more information about using the dbExpress components, see “Using Unidirectional
Datasets.”

* The InterBase page of the Component Palette contains components that access InterBase
databases directly, without going through a separate engine layer. For more information
about using the InterBase components, see “Getting Started with InterBase Express.”

Delphi Database Architecture
CHAPTER 7

Database Architecture

Delphi’s database architecture is made up of components that represent and properly encapsu-
late database information. Figure 7.1 represents this relationship as defined by Delphi 6’s
online help under “Database Architecture.”

Data module

Ul
»| | Data source |[€«—>»| Dataset «—>((Connection
to data
FIGURE 7.1

Delphi database architecture.

A
\

Figure 7.1 shows the database architecture in its simplest form. That is, a user interface inter-
acts with data through a data source, which connects to the dataset that encapsulates the data.
In the prior section, we discussed different types of databases with which Delphi can work.
These different data repositories require different types of datasets. The dataset shown in
Figure 7.1 represents an abstract dataset from which others will descend to provide access to
different types of data.

Connecting to Database Servers

Okay, so you want to be a database developer. Naturally, the first thing you’ll want to do is
learn how to make a connection from Delphi to the database of your choice. In this section,
you’ll learn a number of ways Delphi enables you to make connections to servers.

Overview of Database Connectivity

Datasets must connect to database servers. This is typically done through a connection compo-
nent. Connection components encapsulate the connectivity to a database server and serve as a
single connection point for all datasets in the application.

Connection components are encapsulated in the TCustomConnection component.
TCustomConnection is descended from to create components to encapsulate specific

data repository types. Among the different types of data access components are the following
for each type of data repository:

* TDatabase is the connection component for BDE based datasets. Such datasets are TTable,
TQuery, and TStoreproc. BDE database connectivity is covered in Chapter 28 in the CD
copy of Delphi 5 Developer’s Guide.

299

MNLILHYY |
Isvavivq IHd13g

300

Database Development
PArT llI

e TADOConnection is the connection component for ADO databases such as Microsoft
Access and Microsoft SQL. Such datasets are TADODataset, TADOTable, TADOQuery,
and TADOStoredProc. ADO database connectivity is covered in Chapter 9, “Database
Development with dbGo for ADO.”

* TSQLConnection is the connection component for dbExpress based datasets. DbExpress
datasets are special lightweight unidirectional datasets. These are TSQLDataset, TSQLTable,
TSQLQuery and TSQLStoredProc. DbExpress is covered in Chapter 8, “Database
Development with dbExpress.”

* TIBDatabase is the connection component for Interbase Express datasets. The datasets
are TIBDataSet, TIBTable, TIBQuery, and TIBStoredProc. Interbase Express isn’t
covered in this book because much of the functionality mimics the other connection
methods.

Each of these datasets provides the common functionality contained in the TCustomConnection
component. This common functionality includes methods, properties, and events related to

* Connecting and disconnecting to the data repository
* Login and support for establishing secure connections

* Dataset management

Establishing a Database Connection

Although each connection component surfaces many of the same methods for database connec-
tivity, there are some differences. The reason for this is that each connection component pro-
vides the connection functionality of its underlying data repository. Therefore, the
TADOConnection might function slightly differently from the TDatabase connection. The con-
nection methods for TSQLConnection and TADOConnection are covered in their respective
chapters (Chapters 8 and 9). Connecting to a BDE based dataset is covered in Chapter 28 in
the CD copy of Delphi 5 Developer’s Guide.

Working with Datasets

A dataset is a collection of rows and columns of data. Each column is of some homogeneous
data type, and each row is made up of a collection of data of each column data type. Additionally,
a column is also known as a field, and a row is sometimes called a record. VCL encapsulates a
dataset into an abstract component called TDataSet. TDataSet introduces many of the proper-
ties and methods necessary for manipulating and navigating a dataset and serves as the compo-
nent from which special types of different datasets descend.

Delphi Database Architecture
CHAPTER 7

To help keep the nomenclature clear and to cover some of the basics, the following list explains
some of the common database terms that are used in this and other database-oriented chapters:

* A dataset is a collection of discrete data records. Each record is made up of multiple
fields. Each field can contain a different type of data (integer number, string, decimal
number, graphic, and so on).

* A table is a special type of dataset. A table is generally a file containing records that are
physically stored on a disk somewhere. TTable, TADOTable, TSQLTable, and TIBTable
components encapsulate this functionality.

* A query is also a special type of dataset. Think of queries as commands that are executed
against a database server. Such commands might result in resultsets (memory tables).
These resultsets are the special datasets that are encapsulated by TQuery, TADOQuery,
TSQLQuery, and TIBQuery components.

NoTE

We mentioned earlier that this chapter assumes a bit of database knowledge. This
chapter isn't intended to be a primer on database programming, and we expect that
you're already familiar with the items in this list. If terms such as database, table, and
index sound foreign to you, you might want to obtain an introductory text on data-
base concepts.

Opening and Closing Datasets

Before you can do anything with a dataset, you must first open it. To open a dataset, simply
call its Open () method, as shown in this example:

Table1.Open;
This is equivalent, by the way, to setting a dataset’s Active property to True:
Tablei.Active := True;

There’s slightly less overhead in the latter method because the Open () method ends up setting
the Active property to True. However, the overhead is so minimal that it’s not worth worrying
about.

Once the dataset has been opened, you're free to manipulate it, as you’ll see in just a moment.
When you finish using the dataset, you should close it by calling its Close () method, like this:

Tablei.Close;
Alternatively, you could close it by setting its Active property to False, like this:

Tablei.Active := False;

301

MNLILHYY |
Isvavivq IHd13g

Database Development
PArT llI

302

Tip

When you’re communicating with SQL servers, a connection to the database must be
established when you first open a dataset in that database. When you close the last

dataset in a database, your connection is terminated. Opening and closing these con-
nections involves a certain amount of overhead. Therefore, if you find that you open
and close the connection to the database often, use a TDatabase component instead

to maintain a connection to a SQL server’s database throughout many open and close
operations. The TDatabase component is explained in more detail in the next chapter.

To illustrate how similar it is to open and close the different type of datasets, we’ve provide the
example shown in Listing 7.1.

LisTINnG 7.1 Opening and Closing Datasets

unit MainFrm;
interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, FMTBcd, DBXpress, IBDatabase, ADODB, DBTables, DB, SqlExpr,
IBCustomDataSet, IBQuery, IBTable, StdCtrls;

type
TForm1 = class(TForm)
SQLDataSet1: TSQLDataSet;
SQLTablel: TSQLTable;
SQLQuery1: TSQLQuery;

ADOTable1: TADOTable;
ADODataSet1: TADODataSet;
ADOQuery1: TADOQuery;

IBTablel: TIBTable;
IBQuery1: TIBQuery;
IBDataSet1: TIBDataSet;

Tablel: TTable;
Queryi: TQuery;

SQLConnection1: TSQLConnection;
Database1: TDatabase;
ADOConnectioni: TADOConnection;

Delphi Database Architecture

CHAPTER 7

LisTING 7.1 Continued

IBDatabase1: TIBDatabase;
Buttoni: TButton;

Labeltl: TLabel;

Button2: TButton;
IBTransactionl: TIBTransaction;

procedure
procedure
procedure
procedure
private
{ Private
procedure
procedure
public

FormCreate(Sender: TObject);

ButtoniClick(Sender: TObject);

FormClose(Sender: TObject; var Action: TCloseAction);
Button2Click(Sender: TObject);

declarations }
OpenDatasets;
CloseDatasets;

{ Public declarations }

end;

var

Form1: TFormi;

implementation

{$R *.dfm}

procedure TFormi.FormCreate(Sender: TObject);

begin
IBDatabasel.Connected := True;
ADOConnectioni.Connected := True;
Database1.Connected = True;
SQLConnectiont.Connected := True;

end;

procedure TFormi.ButtoniClick(Sender: TObject);

begin

OpenDatasets;

end;

procedure TForm1.FormClose(Sender: TObject; var Action: TCloseAction);

begin
CloseDatasets;
IBDatabasel.Connected = false;
ADOConnectioni.Connected := false;
Databasei1.Connected := false;
SQLConnection1.Connected := false;

end;

303

MNLILHYY |
Isvavivq IHd13g

304 Database Development

PArT 11l

LisTING 7.1 Continued

procedure TFormi.CloseDatasets;
begin

// Disconnect from dbExpress datasets

SQLDataSet1.Close; // or .Active := false;
SQLTable1.Close; // or .Active := false;
SQLQuery1.Close; // or .Active := false;

// Disconnect from ADO datasets

ADOTablel.Close; // or .Active := false;
ADODataSet1.Close; // or .Active := false;
ADOQuery1.Close; // or .Active := false;

// Disconnect from Interbase Express datasets
IBTable1.Close; // or .Active := false;
IBQuery1.Close; // or .Active := false;
IBDataSet1.Close; // or .Active := false;

// Disconnect from BDE datasets

Tablel1.Close; // or .Active := false;

Queryi.Close; // or .Active := false;

Labell.Caption := 'Datasets are closed.'
end;

procedure TForm1.0OpenDatasets;
begin

// Connect to dbExpress datasets

SQLDataSet1.0pen; // or .Active := true;
SQLTable1.0Open; // or .Active := true;
SQLQuery1.0pen; // or .Active := true;

// Connect to ADO datasets

ADOTable1.0pen; // or .Active := true;
ADODataSet1.0pen; // or .Active := true;
ADOQuery1.0pen; // or .Active := true;

// Connect to Interbase Express datasets
IBTable1.0pen; // or .Active := true;
IBQuery1.0pen; /] or .Active := true;
IBDataSet1.0pen; // or .Active := true;

// Connect to BDE datasets
Tablel1.Open; // or .Active := true;

Delphi Database Architecture
CHAPTER 7

LisTING 7.1 Continued

Query1.0pen; // or .Active := true;
Labell.Caption := 'Datasets are open.';
end;

procedure TForm1.Button2Click(Sender: TObject);
begin

CloseDatasets;
end;

end.

This example is provided on the CD. You might have some problems setting up the database
connections because the example was created on our development machine. You’ll have to set
up connections based on your machine. Nevertheless, the purpose of showing you this example
was to illustrate the similarities of the different datasets.

Navigating Datasets

TDataSet provides some simple methods for basic record navigation. The First() and Last()
methods move you to the first and last records in the dataset, respectively, and the Next () and
Prior() methods move you either one record forward or back in the dataset. Additionally, the
MoveBy () method, which accepts an Integer parameter, moves you a specified number of
records forward or back.

BOF, EOF, and Looping

BOF and EOF are Boolean properties of TDataSet that reveal whether the current record is the
first or last record in the dataset. For example, you might need to iterate through each record in
a dataset until reaching the last record. The easiest way to do so would be to employ a while
loop to keep iterating over records until the EOF property returns True, as shown here:

Tablel.First; // go to beginning of data set
while not Tablel.EOF do // iterate over table
begin
// do some stuff with current record
Tablel.Next; // move to next record
end;

CAUTION

Be sure to call the Next () method inside your while-not-EOF loop; otherwise, your
application will get caught in an endless loop.

305

MNLILHYY |
Isvavivq IHd13g

306

Database Development
PArT llI

Avoid using a repeat..until loop to perform actions on a dataset. The following code might
look okay on the surface, but bad things might happen if you try to use it on an empty dataset
because the DoSomeStuff () procedure will always execute at least once, regardless of whether
the dataset contains records:

repeat
DoSomeStuff;
Tablel.Next;

until Table1.EOF;

Because the while-not-EOF loop performs the check up front, you won’t encounter such a
problem with this construct.

To illustrate how similar it is to navigate among the different type of datasets, we’ve provided
the example shown in Listing 7.2.

LIsTING 7.2 Navigation with the Different Datasets

unit MainFrm;
interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, FMTBcd, DBXpress, IBDatabase, ADODB, DBTables, DB, SqlExpr,
IBCustomDataSet, IBQuery, IBTable, StdCtrls, Grids, DBGrids, ExtCtrls;

type
TForm1 = class(TForm)
SQLTablel: TSQLTable;
ADOTablel: TADOTable;
IBTablel: TIBTable;
Tablel: TTable;

SQLConnection1: TSQLConnection;
Databasei1: TDatabase;
ADOConnectioni: TADOConnection;
IBDatabase1: TIBDatabase;
Buttoni: TButton;

Labell: TLabel;

Button2: TButton;
IBTransaction1: TIBTransaction;
DBGridi1: TDBGrid;

DataSource1: TDataSource;
RadioGroup1: TRadioGroup;
btnFirst: TButton;

Delphi Database Architecture

LisTING 7.2 Continued

CHAPTER 7

btnLast: TButton;
btnNext: TButton;

btnPrior:
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
private
{ Private
procedure
procedure
public

TButton;

FormCreate(Sender: TObject);

ButtoniClick(Sender: TObject);

FormClose(Sender: TObject; var Action: TCloseAction);
Button2Click(Sender: TObject);
RadioGroupi1Click(Sender: TObject);
btnFirstClick(Sender: TObject);

btnLastClick(Sender: TObject);

btnNextClick(Sender: TObject);

btnPriorClick(Sender: TObject);
DataSourceiDataChange(Sender: TObject; Field: TField);

declarations }
OpenDatasets;
CloseDatasets;

{ Public declarations }

end;

var

Form1: TFormi;

implementation

{$R *.dfm}

procedure TForml.FormCreate(Sender: TObject);

begin
IBDatabasei1.Connected := True;
ADOConnectioni.Connected := True;
Databasei1.Connected = True;
SQLConnectiont.Connected := True;

Datasourcel

.DataSet := IBTablel;

OpenDatasets;

end;

procedure TForm1.ButtoniClick(Sender: TObject);

begin

OpenDatasets;

end;

307

MNLILHYY |
Isvavivq IHd13g

308

Database Development
PArT llI

LisTING 7.2 Continued

procedure TFormi.FormClose(Sender: TObject; var Action:

begin
CloseDatasets;
IBDatabase1.Connected := false;
ADOConnectioni.Connected := false;
Database1.Connected = false;
SQLConnection1.Connected := false;

end;

procedure TFormi.CloseDatasets;
begin

// Disconnect from dbExpress dataset
SQLTablel.Close; /] or .Active := false;

// Disconnect from ADO dataset
ADOTable1.Close; // or .Active := false;

// Disconnect from Interbase Express dataset
IBTablel1.Close; // or .Active := false;

// Disconnect from BDE datasets

Tablei.Close; // or .Active := false;
Labelt1.Caption := 'Datasets are closed.'
end;

procedure TFormi.OpenDatasets;
begin

// Connect to dbExpress dataset
SQLTable1.0pen; // or .Active := true;

// Connect to ADO dataset
ADOTable1.0pen; // or .Active := true;

// Connect to Interbase Express dataset
IBTable1.0pen; // or .Active := true;

// Connect to BDE dataset
Tablel1.Open; // or .Active := true;

Label1.Caption := 'Datasets are open.';
end;

TCloseAction);

Delphi Database Architecture

CHAPTER 7

LisTING 7.2 Continued

procedure TForm1.Button2Click(Sender: TObject);
begin

CloseDatasets;
end;

procedure TForm1.RadioGroupiClick(Sender: TObject);
begin
case RadioGroup1.ItemIndex of
0: Datasourcel.DataSet IBTablet;
1: Datasourcel.DataSet := Tableil;
2: Datasourcel.DataSet := ADOTableil;
end; // case
end;

procedure TFormi.btnFirstClick(Sender: TObject);
begin

DataSourcel.DataSet.First;
end;

procedure TFormi.btnLastClick(Sender: TObject);
begin

DataSourcel.DataSet.Last;
end;

procedure TFormi.btnNextClick(Sender: TObject);
begin

DataSource1.DataSet.Next;
end;

procedure TForml.btnPriorClick(Sender: TObject);
begin

DataSourcel.DataSet.Prior;
end;

procedure TFormi.DataSourceiDataChange(Sender: TObject; Field: TField);
begin

btnLast.Enabled not DataSourcel.DataSet.Eof;

btnNext.Enabled not DataSourcel.DataSet.Eof;

btnFirst.Enabled := not DataSourcei.DataSet.Bof;

btnPrior.Enabled := not DataSourcel.DataSet.Bof;
end;

end.

309

MNLILHYY |
Isvavivq IHd13g

310 Database Development

PArT 11l

In this example, a TRadioGroup is used to allow the user to select from three of the database
types. Additionally, the OnDataChange event handler shows how to evaluate the BOF and EOF
properties to properly enable or disable the buttons when one of the two are true. You should
notice that the same methods are invoked to navigate through the dataset regardless of which
dataset is selected.

NoTE

You'll notice that we did not include the dbExpress component as part of this exam-
ple. This is because dbExpress datasets are unidirectional datasets. That is, they can
only navigate in one direction and are treated as read-only. In fact, if you attempt to
connect a navigable component such as a TDBGrid to a dbExpress dataset, you will
get an error. Navigating through unidirectional datasets requires some specific setup,
which is discussed in Chapter 8.

Manipulating Datasets

A database application isn’t really a database application unless you can manipulate its data.
Fortunately, datasets provide methods that allow you to do this. With datasets, you are able to
add, edit, and delete records from the underlying table. The methods to do this are appropri-
ately named Insert(), Edit(), and Delete().

Listing 7.3 shows a simple application illustrating how to use these methods.

LIsTING 7.3 MainFrm.pas—Showing Simple Data Manipulation

unit MainFrm;
interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Mask, DBCtrls, DB, Grids, DBGrids, ADODB;

type
TMainForm = class(TForm)

ADOConnectioni: TADOConnection;
adodsCustomer: TADODataSet;
dtsrcCustomer: TDataSource;
DBGridi1: TDBGrid;
adodsCustomerCustNo: TAutoIncField;
adodsCustomerCompany: TWideStringField;
adodsCustomerAddressi: TWideStringField;

Delphi Database Architecture 311
CHAPTER 7
LisTiNG 7.3 Continued
adodsCustomerAddress2: TWideStringField;
adodsCustomerCity: TWideStringField;
adodsCustomerStateAbbr: TWideStringField;
adodsCustomerzZip: TWideStringField;
adodsCustomerCountry: TWideStringField;
adodsCustomerPhone: TWideStringField;
adodsCustomerFax: TWideStringField;
adodsCustomerContact: TWideStringField;
Labeltl: TLabel;
dbedtCompany: TDBEdit; 7
Label2: TLabel;
dbedtAddressi: TDBEdit; %’
Label3: TLabel; = o
dbedtAddress2: TDBEdit; ﬁ
Label4: TLabel; =
dbedtCity: TDBEdit; =

Label5: TLabel;
dbedtState: TDBEdit;
Label6: TLabel;
dbedtZip: TDBEdit;
Label7: TLabel;
dbedtPhone: TDBEdit;
Label8: TLabel;
dbedtFax: TDBEdit;
Label9: TLabel;
dbedtContact: TDBEdit;
btnAdd: TButton;
btnEdit: TButton;
btnSave: TButton;
btnCancel: TButton;
Label1@: TLabel;
dbedtCountry: TDBEdit;
btnDelete: TButton;
procedure btnAddClick(Sender: TObject);
procedure btnEditClick(Sender: TObject);
procedure btnSaveClick(Sender: TObject);
procedure btnCancelClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure btnDeleteClick(Sender: TObject);
private
{ Private declarations }
procedure SetButtons;
public

isvavivq IHd13g

312

Database Development
PArT llI

LisTING 7.3 Continued

{ Public declarations }
end;

var
MainForm: TMainForm;

implementation
{$R *.dfm}

procedure TMainForm.btnAddClick(Sender: TObject);
begin

adodsCustomer.Insert;

SetButtons;
end;

procedure TMainForm.btnEditClick(Sender: TObject);
begin

adodsCustomer.Edit;

SetButtons;
end;

procedure TMainForm.btnSaveClick(Sender: TObject);
begin

adodsCustomer.Post;

SetButtons;
end;

procedure TMainForm.btnCancelClick(Sender: TObject);
begin

adodsCustomer.Cancel;

SetButtons;
end;

procedure TMainForm.SetButtons;
begin

btnAdd.Enabled = adodsCustomer.State = dsBrowse;

btnEdit.Enabled := adodsCustomer.State = dsBrowse;

btnSave.Enabled := (adodsCustomer.State = dsInsert) or
(adodsCustomer.State = dsEdit);

btnCancel.Enabled := (adodsCustomer.State = dslInsert) or
(adodsCustomer.State = dsEdit);

btnDelete.Enabled := adodsCustomer.State = dsBrowse;

end;

Delphi Database Architecture

LisTING 7.3 Continued

CHAPTER 7

procedure TMainForm.FormCreate(Sender:
begin

adodsCustomer.Open;

SetButtons;

TObject);

end;

procedure TMainForm.FormClose(Sender: TObject; var Action:

begin
adodsCustomer.Close;
ADOConnectioni.Connected :=
end;

False;

procedure TMainForm.btnDeleteClick(Sender: TObject);
begin

adodsCustomer.Delete;
end;

end.

TCloseAction);

Figure 7.2 illustrates a simple data manipulation application.

12 Delphi 6 Developer's Guide Database Dema

=10l x|

Comp: Ciy
[dbedtCompany [dbed(City

fas]fam
\»E gog b

ADDCcadods!dtsreCustome|
3

Address’ Statedbbr: Zip:

[dbediéddress]

[dbed [dbedZip

[dbed(Country

dd Phi F;

[dbediddiess2 |dbediPhone [dbediFar

Contact

dbediContact

add | Edi Delete

save | Cancel

j_l

FIGURE 7.2
Main form for the data manipulation application.

313

MNLILHYY |
Isvavivq IHd13g

314 Database Development

PArT 11l

This application manipulates data in the simplest form. You’ll see the use of the manipulation
methods listed as follows:

e Insert() allows the user to insert a new record.

e Edit() allows the user to modify the active record.

* Post() saves changes to a new or existing record to the table.

* Cancel() cancels any changes made to the record.

e Delete() deletes the active record from the table.

Dataset States

Listing 7.3 also shows how we referred to the TDataSet.State property to examine the
dataset’s state so that we could enable or disable our buttons appropriately. This allows us to
do things such as disable our Add button when the dataset is already in Insert or Edit mode.
Other states are shown in Table 7.1.

TABLE 7.1 Values for TDataset.State

Value Meaning

dsBrowse The dataset is in Browse (normal) mode.

dsCalcFields The OnCalcFields event has been called, and a record value cal-
culation is in progress.

dsEdit The dataset is in Edit mode. This means that the Edit () method
has been called, but the edited record hasn’t yet been posted.

dsInactive The dataset is closed.

dsInsert The dataset is in Insert mode. This typically means that Insert()

has been called but changes haven’t been posted.

dsSetKey The dataset is in SetKey mode, meaning that SetKey () has been
called but GotoKey () hasn’t yet been called.

dsNewvalue The dataset is in a temporary state where the Newvalue property is
being accessed.

dsOldvalue The dataset is in a temporary state where the 01dvalue property is
being accessed.

dsCurvalue The dataset is in a temporary state where the 01dvalue property is
being accessed.

dsFilter The dataset is currently processing a record filter, lookup, or some
other operation that requires a filter.

dsBlockRead Data is being buffered en masse, so data-aware controls are not
updated and events are not triggered when the cursor moves while
this member is set.

Delphi Database Architecture

CHAPTER 7
TaBLE 7.1 Continued
Value Meaning
dsInternalCalc A field value is currently being calculated for a field that has a
FieldKind of fkInternalCalc.
dsOpening The dataSet is in the process of opening but has not finished. This

state occurs when the dataset is opened for asynchronous fetching.

Working with Fields

Delphi enables you to access the fields of any dataset through the TField object and its
descendants. Not only can you get and set the value of a given field of the current record of

a dataset, but you can also change the behavior of a field by modifying its properties. You can
also modify the dataset, itself, by changing the visual order of fields, removing fields, or even
creating new calculated or lookup fields.

Field Values

It’s very easy to access field values from Delphi. TDataSet provides a default array property
called Fieldvalues[] that returns the value of a particular field as a Variant. Because
Fieldvalues[] is the default array property, you don’t need to specify the property name to
access the array. For example, the following piece of code assigns the value of Tablel’s
CustName field to String S:

S := Tablel1['CustName'];

You could just as easily store the value of an integer field called CustNo in an integer variable
called I:

I := Tablei['CustNo'];

A powerful corollary to this is the capability to store the values of several fields into a Variant
array. The only catches are that the Variant array index must be zero based and the variant
array contents should be varvariant. The following code demonstrates this capability:

const

AStr = 'The %s is of the %s category and its length is %f in.';
var

VarArr: Variant;

F: Double;
begin

VarArr := VarArrayCreate([0, 2], varVariant);

{ Assume Table1 is attached to Biolife table }

315

MNLILHYY |
Isvavivq IHd13g

316

Database Development
PArT llI

VarArr := Table1['Common_Name;Category;Length_In'];

F := VarArr[2];

ShowMessage (Format (AStr, [VarArr[@], VarArr[1], F]));
end;

You can also use the TDataset.Fields[] array property or FieldsByName () function to access
individual TField objects associated with the dataset. The TField component provides infor-
mation about a specific field.

Fields[] is a zero-based array of TField objects, so Fields[@] returns a TField representing
the first logical field in the record. FieldsByName () accepts a string parameter that corresponds
to a given field name in the table; therefore, FieldsByName('OrderNo') would return a TField
component representing the OrderNo field in the current record of the dataset.

Given a TField object, you can retrieve or assign the field’s value using one of the TField
properties shown in Table 7.2.

TABLE 7.2 Properties to Access TField Values

Property Return Type
AsBoolean Boolean
AsFloat Double
AsInteger Longint
AsString String
AsDateTime TDateTime
Value Variant

If the first field in the current dataset is a string, you can store its value in the String variable
S, like this:

S := Tablel1.Fields[0].AsString;

The following code sets the integral variable I to contain the value of the 'OrderNo' field in
the current record of the table:

I := Tablei1.FieldsByName('OrderNo').AsInteger;

Field Data Types

If you want to know the type of a field, look at TField’s DataType property, which indicates
the data type with respect to the database table (irrespective of a corresponding Object Pascal
type). The DataType property is of TFieldType, and TFieldType is defined as follows:

Delphi Database Architecture
CHAPTER 7

type
TFieldType = (ftUnknown, ftString, ftSmallint, ftInteger, ftWord,
ftBoolean, ftFloat, ftCurrency, ftBCD, ftDate, ftTime, ftDateTime,
ftBytes, ftvarBytes, ftAutoInc, ftBlob, ftMemo, ftGraphic, ftFmtMemo,
ftParadoxOle, ftDBaseOle, ftTypedBinary, ftCursor, ftFixedChar,
ftWideString, ftlLargeint, ftADT, ftArray, ftReference, ftDataSet,
ftOraBlob, ftOraClob, ftVariant, ftInterface, ftIDispatch, ftGuid);

Descendants of TField are designed to work specifically with many of the preceding data
types. These are covered a bit later in this chapter.

Field Names and Numbers

To find the name of a specified field, use the TField.FieldName property. For example, the
following code places the name of the first field in the current table in the String variable S:

var

S: String;
begin

S := Tablel.Fields[0Q].FieldName;
end;

Likewise, you can obtain the number of a field you know only by name by using the FieldNo
property. The following code stores the number of the OrderNo field in the Integer variable I:

var
I: integer;
begin
I := Tablel.FieldsByName('OrderNo').FieldNo;
end;

NoTE

To determine how many fields a dataset contains, use TDataset’s FieldList property.
FieldList represents a flattened view of all the nested fields in a table containing
fields that are abstract data types.

For backward compatibility, the FieldCount property still works, but it will skip over
any ADT fields.

Manipulating Field Data

Here’s a three-step process for editing one or more fields in the current record:

1. Call the dataset’s Edit () method to put the dataset into Edit mode.

2. Assign new values to the fields of your choice.

317

MNLILHYY |
Isvavivq IHd13g

318 Database Development

PArT 11l

3. Post the changes to the dataset either by calling the Post () method or by moving to a
new record, which will automatically post the edit.

For instance, a typical record edit looks like this:

Tablel.Edit;
Table1['Age'] := 23;
Tablel.Post;

Tip

Sometimes you work with datasets that contain read-only data. Examples of this
would include a table located on a CD-ROM drive or a query with a non-live resultset.
Before attempting to edit data, you can determine whether the dataset contains
read-only data before you try to modify it by checking the value of the CanModify
property. If CanModify is True, you have the green light to edit the dataset.

The Fields Editor

Delphi gives you a great degree of control and flexibility when working with dataset fields
through the Fields Editor. You can view the Fields Editor for a particular dataset in the Form
Designer, either by double-clicking the TTable, TQuery, or TStoredProc or by selecting Fields
Editor from the dataset’s local menu. The Fields Editor window enables you to determine
which of a dataset’s fields you want to work with and create new calculated or lookup fields.
You can use a local menu to accomplish these tasks. The Fields Editor window with its local
menu deployed is shown in Figure 7.3.

Add fields.. Chri+a
New field... Crl+n
Add all fields Ctri+F

Cut: Chrl%
Copy Chrl+C
Paste Gl
Delete Del

Select all e+l

Retrieve attributes Chri+R
Save attributes Crl45
Saye attributes as,,, Chri+E

Chrl+0

FIGURE 7.3

The Fields Editor’s local menu.

Delphi Database Architecture

CHAPTER 7

To demonstrate the usage of the Fields Editor, open a new project and drop a TTable compo-
nent onto the main form. Set the Table1.DatabaseName property to DBDEMOS (this is the alias
that points to the Delphi sample tables) and set the TableName property to ORDERS.DB. To pro-
vide some visual feedback, also drop a TDataSource and TDBGrid component on the form.
Hook DataSource1 to Table1 and then hook DBGrid1 to DataSourcel. Now set Table1’s
Active property to True, and you’ll see Table1’s data in the grid.

Adding Fields

Invoke the Fields Editor by double-clicking Table1, and you’ll see the Fields Editor window,
as shown in Figure 7.3. Let’s say that you want to limit your view of the table to only a few
fields. Select Add Fields from the Fields Editor local menu. This will invoke the Add Fields
dialog box. Highlight the OrderNo, CustNo, and ItemsTotal fields in this dialog box and click
OK. The three selected fields will now be visible in the Fields Editor and in the grid.

Delphi creates TField descendant objects, which map to the dataset fields you select in the
Fields Editor. For example, for the three fields mentioned in the preceding paragraph, Delphi
adds the following declarations of TField descendants to the source code for your form:

Table1OrderNo: TFloatField;
Tablei1CustNo: TFloatField;
TableiItemsTotal: TCurrencyField;

Notice that the name of the field object is the concatenation of the TTable name and the field
name. Because these fields are created in code, you can also access TField descendant proper-
ties and methods in your code rather than solely at design time.

TField Descendants

There are one or more different TField descendant objects for each field type. (Field types are
described in the “Field Data Types” section, earlier in this chapter.) Many of these field types
also map to Object Pascal data types. Table 7.3 shows the various classes in the TField hierar-
chy, their ancestor classes, their field types, and the Object Pascal types to which they equate.

TABLE 7.3 TField Descendants and Their Field Types

Field Class Ancestor Field Type Object Pascal Type
TStringField TField ftString String
TWideStringField TStringField ftWideString WideString
TGuidField TStringField ftGuid TGUID
TNumericField TField * *

TIntegerField TNumericField ftInteger Integer

TSmallIntField TIntegerField ftSmallInt Smalllnt

319

MNLILHYY |
Isvavivq IHd13g

320

Database Development
PArT llI

TaBLE 7.3 Continued

Field Class Ancestor Field Type Object Pascal Type
TLargeintField TNumericField ftLargeint Int64
TWordField TIntegerField ftWord Word
TAutoIncField TIntegerField ftAutolInc Integer
TFloatField TNumericField ftFloat Double
TCurrencyField TFloatField ftCurrency Currency
TBCDField TNumericField ftBCD Double
TBooleanField TField ftBoolean Boolean
TDateTimeField TField ftDateTime TDateTime
TDateField TDateTimeField ftDate TDateTime
TTimeField TDateTimeField ftTime TDateTime
TBinaryField TField * *
TBytesField TBinaryField ftBytes none
TvarBytesField TBytesField ftvarBytes none
TBlobField TField ftBlob none
TMemoField TBlobField ftMemo none
TGraphicField TBlobField ftGraphic none
TObjectField TField * *
TADTField TObjectField ftADT none
TArrayField TObjectField ftArray none
TDataSetField TObjectField ftDataSet TDataSet
TReferenceField TDataSetField ftReference
TVariantField TField ftVariant Olevariant
TInterfaceField TField ftinterface IUnknown
TIDispatchField TInterfaceField ftIDispatch IDispatch
TAggregateField TField none none

*Denotes an abstract base class in the TField hierarchy

As Table 7.3 shows, BLOB and Object field types are special in that they don’t map directly to
native Object Pascal types. BLOB fields are discussed in more detail later in this chapter.

Delphi Database Architecture

CHAPTER 7

Fields and the Object Inspector

When you select a field in the Fields Editor, you can access the properties and events associ-
ated with that TField descendant object in the Object Inspector. This feature enables you to
modify field properties such as minimum and maximum values, display formats, and whether
the field is required as well as whether it’s read-only. Some of these properties, such as
ReadOnly, are obvious in their purpose, but some aren’t quite as intuitive.

Switch to the Events page of the Object Inspector, and you’ll see that there are also events
associated with field objects. The events OnChange, OnGetText, OnSetText, and Onvalidate
are all well-documented in the online help. Simply click to the left of the event in the Object
Inspector and press F1. Of these, OnChange is probably the most common to use. It enables
you to perform some action whenever the contents of the field change (moving to another
record or adding a record, for example).

Calculated Fields

You can also add calculated fields to a dataset using the Fields Editor. Let’s say, for example,
that you wanted to add a field that figures the wholesale total for each entry in the ORDERS
table, and the wholesale total was 32% of the normal total. Select New Field from the Fields
Editor local menu, and you’ll be presented with the New Field dialog box, as shown in Figure
7.4. Enter the name, WholesaleTotal, for the new field in the Name edit control. The type of
this field is Currency, so enter that in the Type edit control. Make sure that the Calculated radio
button is selected in the Field Type group; then press OK. Now the new field will show up in
the grid, but it won’t yet contain any data.

pewred x]
—Field propertie:
Name: [WholesaleTotal Component: [TablelWhelesaleTotal
Type =] Siee Jo
Field type
[P Data & Calculated " Lookup ‘
Lookup definitior
KeyFigids: | =] Dateset | =
Laghup Keps: | =] BesultField: [=

T =

FIGURE 7.4
Adding a calculated field with the New Field dialog box.

To cause the new field to become populated with data, you must assign a method to the
Tablei.0OnCalcFields event. The code for this event simply assigns the value of the
WholesaleTotal field to be 32% of the value of the existing SalesTotal field. This method,
which handles Table1.0nCalcFields, is shown here:

321

MNLILHYY |
Isvavivq IHd13g

322

Database Development
PArT llI

procedure TFormi.Table1CalcFields(DataSet: TDataSet);
begin

DataSet['WholesaleTotal'] := DataSet['ItemsTotal'] * 0.68;
end;

Figure 7.5 shows that the WholesaleTotal field in the grid now contains the correct data.

o]

Paymenthethod|ItemsTotal_[TasRate [Freight [AmountPaid [WholesalsTotal] ﬁl
Credit $1,250.00 4.50% $0.00 $0.00 $650.00
Check 47.685.00 0.00% 5000 $7.88500 $5361.80
Visa $4,607.00 0.00% 5000 $4807.00 $326876
Visa $31,987.00 0.00% $0.00 $0.00 $21.75116
Visa $6,500.00 0.00% 5000 $E50000 $4.42000
Visa 144350 0.00% $0.00 $0.00 $985.66
oo 45,587.00 0.00% $0.00 $0.00 $379316
oo $4,995.00 0.00% 5000 $499600 $3397.28
oo 4267385 0.00% 5000 $267965 $1.82230

I T I I 3

E,

FIGURE 7.5
The calculated field has been added to the table.

Lookup Fields

Lookup fields enable you to create fields in a dataset that actually look up their values from
another dataset. To illustrate this, you’ll add a lookup field to the current project. The CustNo
field of the ORDERS table doesn’t mean anything to someone who doesn’t have all the customer
numbers memorized. You can add a lookup field to Table1 that looks into the CUSTOMER table
and then, based on the customer number, retrieves the name of the current customer.

First, you should drop in a second TTable object, setting its DatabaseName property to DBDEMOS
and its TableName property to CUSTOMER. This is Table2. Then you once again select New Field
from the Fields Editor local menu to invoke the New Field dialog box. This time, you’ll call
the field CustName, and the field type will be a String. The size of the string is 15 characters.
Don’t forget to select the Lookup button in the Field Type radio group. The Dataset control in
this dialog box should be set to Table2—the dataset you want to look into. The Key Fields and
Lookup Keys controls should be set to CustNo—this is the common field upon which the
lookup will be performed. Finally, the Result field should be set to Contact—this is the field
you want displayed. Figure 7.6 shows the New Field dialog box for the new lookup field. The
new field will now display the correct data, as shown in the completed project in Figure 7.7.

Delphi Database Architecture
CHAPTER 7

pewred L
Field propertie:

Name: [CustName Component: [Table] Custhame

Iype. [Suing | Siee: |

Field type

[P Data Calculated @ Lookup ‘
Lookup definitior:

KeyFields: ~ [Custo | Dataset: [Table2 |
Lookup Keys: [Custa ~| Besul Fied: [FEE

T =

FIGURE 7.6
Adding a lookup field with the New Field dialog box.

$0.00 Phylis Spooner
$7.885.00 Tanya Wagner

$4.,807.00 Chris Thomas
$0.00 Emmest Banatt
$6,500.00 Russell Christopher
$0.00 Paul Gardner
$0.00 Susan Wang
$4.995.00 Joyce Marsh
4267985 SamWitherspoon

FIGURE 7.7
Viewing the table containing a lookup field.

Drag-and-Drop Fields

Another less obvious feature of the Fields Editor is that it enables you to drag fields from its
Fields list box and drop them onto your forms. We can easily demonstrate this feature by start-
ing a new project that contains only a TTable on the main form. Assign Table1.DatabaseName
to DBDEMOS and assign Table1.TableName to BIOLIFE.DB. Invoke the Fields Editor for this
table and add all the fields in the table to the Fields Editor list box. You can now drag one or
more of the fields at a time from the Fields Editor window and drop them on your main form.

You’ll notice a couple of cool things happening here: First, Delphi senses what kind of field
you’re dropping onto your form and creates the appropriate data-aware control to display the
data (that is, a TDBEdit is created for a string field, whereas a TDBImage is created for a graphic
field). Second, Delphi checks to see if you have a TbataSource object connected to the dataset;
it hooks to an existing one if available or creates one if needed. Figure 7.8 shows the result of
dragging and dropping the fields of the BIOLIFE table onto a form.

323

MNLILHYY |
Isvavivq IHd13g

324

Database Development
PArT llI

FIGURE 7.8
Dragging and dropping fields on a form.

Working with BLOB Fields

A BLOB (Binary Large Object) field is a field that’s designed to contain an indeterminate
amount of data. A BLOB field in one record of a dataset might contain three bytes of data,
whereas the same field in another record of that dataset might contain 3KB. Blobs are most
useful for holding large amounts of text, graphic images, or raw data streams such as OLE
objects.

TBlobField and Field Types

As discussed earlier, VCL includes a TField descendant called TBlobField, which encapsu-
lates a BLOB field. TBlobField has a BlobType property of type TBlobType, which indicates
what type of data is stored in the BLOB field. TBlobType is defined in the DB unit as follows:

TBlobType = ftBlob..ftOraClob;

All these field types and the type of data associated with these field types are listed in Table 7.4.

TABLE 7.4 TBlobField Field Types

Field Type Type of Data

ftBlob Untyped or user-defined data
ftMemo Text

ftGraphic Windows bitmap

ftFmtMemo Paradox formatted memo
ftParadoxOle Paradox OLE object

ftDBaseOLE dBASE OLE object

Delphi Database Architecture

CHAPTER 7

TaBLE 7.4 Continued

Field Type Type of Data

ftTypedBinary Raw data representation of an existing type
ftCursor..ftDataSet Not valid BLOB types

ftOraBlob BLOB fields in Oracle8 tables

ftOraClob CLOB fields in Oracle8 tables

You’ll find that most of the work you need to do in getting data in and out of TBlobField com-
ponents can be accomplished by loading or saving the BLOB to a file or by using a
TBlobStream. TBlobStream is a specialized descendant of TStream that uses the BLOB field
inside the physical table as the stream location. To demonstrate these techniques for interacting
with TBlobField components, you’ll create a sample application.

BLOB Field Example

This project creates an application that enables the user to store WAV files in a database table
and play them directly from the table. Start the project by creating a main form with the com-
ponents shown in Figure 7.9. The TTable component can map to the Wavez table in the
DDGData alias or your own table of the same structure. The structure of the table is as follows:

Field Name Field Type Size
WaveTitle Character 25
FileName Character 25
Wave BLOB
=] 3]
sl]| ol o]
Wave Tille:[edTile ?\:
File Name: [edFieName IDDEATI_IUEMS

Dial

A

FIGURE 7.9
Main form for Wavez, the BLOB field example.

The Add button is used to load a WAV file from disk and add it to the table. The method
assigned to the OnClick event of the Add button is shown here:

procedure TMainForm.sbAddClick(Sender: TObject);
begin
if OpenDialog.Execute then
begin
tb1lSounds.Append;

325

MNLILHYY |
Isvavivq IHd13g

326

Database Development
PArT llI

tblSounds['FileName'] := ExtractFileName(OpenDialog.FileName);
tblSoundsWave.LoadFromFile (OpenDialog.FileName);
edTitle.SetFocus;
end;
end;

The code first attempts to execute OpenDialog. If it’s successful, tb1Sounds is put into Append
mode, the FileName field is assigned a value, and the Wave BLOB field is loaded from the file
specified by OpenDialog. Notice that TBlobField’s LoadFromFile method is very handy here,
and the code is very clean for loading a file into a BLOB field.

Similarly, the Save button saves the current WAV sound found in the Wave field to an external
file. The code for this button is as follows:

procedure TMainForm.sbSaveClick(Sender: TObject);

begin
with SaveDialog do
begin
FileName := tblSounds['FileName']; // initialize file name
if Execute then /] execute dialog
tblSoundsWave.SaveToFile(FileName); // save blob to file
end;
end;

There’s even less code here. SaveDialog is initialized with the value of the FileName field. If
SaveDialog’s execution is successful, the tb1SoundsWave.SaveToFile () method is called to
save the contents of the BLOB field to the file.

The handler for the Play button does the work of reading the WAV data from the BLOB field
and passing it to the PlaySound() API function to be played. The code for this handler, shown
next, is a bit more complex than the code shown thus far:

procedure TMainForm.sbPlayClick(Sender: TObject);
var

B: TBlobStream;

M: TMemoryStream;

begin
B := TBlobStream.Create(tblSoundsWave, bmRead); // create blob stream
Screen.Cursor := crHourGlass; // wait hourglass
try
M := TMemoryStream.Create; // create memory stream
try
M.CopyFrom(B, B.Size); // copy from blob to memory stream

// Attempt to play sound. Raise exception if something goes wrong
Win32Check (PlaySound(M.Memory, @, SND_SYNC or SND_MEMORY)) ;

Delphi Database Architecture
CHAPTER 7

finally
M.Free;
end;
finally
Screen.Cursor := crDefault;
B.Free; // clean up
end;
end;

The first thing this method does is to create an instance of TBlobStream, B, using the
tblSoundsWave BLOB field. The first parameter passed to TBlobStream.Create() is the
BLOB field object, and the second parameter indicates how you want to open the stream.
Typically, you’ll use bmRead for read-only access to the BLOB stream or bmReadwrite for
read/write access.

Tip

The dataset must be in Edit, Insert, or Append mode to open a TBlobStream with
bmReadWrite privilege.

An instance of TMemoryStream, M, is then created. At this point, the cursor shape is changed to
an hourglass to let the user know that the operation may take a couple of seconds. The stream B
is then copied to the stream M. The function used to play a WAV sound, PlaySound (), requires a
filename or a memory pointer as its first parameter. TBlobStream doesn’t provide pointer access
to the stream data, but TMemoryStream does through its Memory property. Given that, you can
successfully call P1laySound() to play the data pointed at by M.Memory. Once the function is
called, it cleans up by freeing the streams and restoring the cursor. The complete code for the
main unit of this project is shown in Listing 7.4.

LisTING 7.4 The Main Unit for the Wavez Project

unit Main;
interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
ExtCtrls, DBCtrls, DB, DBTables, StdCtrls, Mask, Buttons, ComCtrls;

type
TMainForm = class(TForm)
tblSounds: TTable;
dsSounds: TDataSource;

327

MNLILHYY |
Isvavivq IHd13g

328 Database Development

PArT 11l

LisTING 7.4 Continued

tblSoundsWaveTitle: TStringField;

tblSoundsWave: TBlobField;

edTitle: TDBEdit;

edFileName: TDBEdit;

Labell: TLabel;

Label2: TLabel;

OpenDialog: TOpenDialog;

tblSoundsFileName: TStringField;

SaveDialog: TSaveDialog;

pnlToobar: TPanel;

sbPlay: TSpeedButton;

sbAdd: TSpeedButton;

sbSave: TSpeedButton;

sbExit: TSpeedButton;

Bevell: TBevel;

dbnNavigator: TDBNavigator;

stbStatus: TStatusBar;

procedure sbPlayClick(Sender: TObject);

procedure sbAddClick(Sender: TObject);

procedure sbSaveClick(Sender: TObject);

procedure sbExitClick(Sender: TObject);

procedure FormCreate(Sender: TObject);

procedure FormClose(Sender: TObject; var Action: TCloseAction);
private

procedure OnAppHint(Sender: TObject);
end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

uses MMSystem;

procedure TMainForm.sbPlayClick(Sender: TObject);
var

B: TBlobStream;
M: TMemoryStream;

begin
B := TBlobStream.Create(tblSoundsWave, bmRead); // create blob stream
Screen.Cursor := crHourGlass; // wait hourglass

try

Delphi Database Architecture

329

CHAPTER 7
Listing 7.4 Continued
M := TMemoryStream.Create; // create memory stream
try
M.CopyFrom(B, B.Size); // copy from blob to memory stream

// Attempt to play sound. Raise exception if something goes wrong
Win32Check (PlaySound(M.Memory, @, SND_SYNC or SND_MEMORY));
finally
M.Free;
end;
finally
Screen.Cursor := crDefault;
B.Free; // clean up
end;
end;

procedure TMainForm.sbAddClick(Sender: TObject);
begin
if OpenDialog.Execute then
begin
tblSounds.Append;
tb1lSounds['FileName'] := ExtractFileName(OpenDialog.FileName);
tblSoundsWave.LoadFromFile (OpenDialog.FileName) ;
edTitle.SetFocus;
end;
end;

procedure TMainForm.sbSaveClick(Sender: TObject);

begin
with SaveDialog do
begin
FileName := tblSounds['FileName']; // initialize file name
if Execute then // execute dialog

tblSoundsWave.SaveToFile(FileName); // save blob to file
end;
end;

procedure TMainForm.sbExitClick(Sender: TObject);
begin

Close;
end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
Application.OnHint := OnAppHint;
tb1lSounds.Open;
end;

MNLILHYY |
Isvavivq IHd13g

330

Database Development
PArT llI

LisTING 7.4 Continued

procedure TMainForm.OnAppHint(Sender: TObject);
begin

stbStatus.SimpleText := Application.Hint;
end;

procedure TMainForm.FormClose(Sender: TObject; var Action: TCloseAction);
begin

tblSounds.Close;
end;

end.

Filtering Data

Filters enable you to do simple dataset searching or filtering using only Object Pascal code.
The primary advantage of using filters is that they don’t require an index or any other prepara-
tion on the datasets with which they’re used. In many cases, filters can be a bit slower than
index-based searching (which is covered later in this chapter), but they’re still very usable in
almost any type of application.

Using TDataset's Filtering Capabilities
One of the more common uses of Delphi’s filtering mechanism is to limit a view of a dataset to
some specific records only. This is a simple two-step process:

1. Assign a procedure to the dataset’s OnFilterRecord event. Inside of this procedure, you
should write code that accepts records based on the values of one or more fields.
2. Set the dataset’s Filtered property to True.

As an example, Figure 7.10 shows a form containing TDBGrid, which displays an unfiltered
view of Delphi’s CUSTOMER table.

In step 1, you write a handler for the table’s OnFilterRecord event. In this case, we’ll accept only
records whose Company field starts with the letter S. The code for this procedure is shown here:

procedure TFormi.Table1FilterRecord(DataSet: TDataSet;
var Accept: Boolean);

var
FieldVal: String;

begin
FieldVal := DataSet['Company']; // Get the value of the Company field
Accept := Fieldval[1] = 'S'; /] Accept record if field starts with 'S’

end;

Delphi Database Architecture
CHAPTER 7

rromt =1oix|
Addr
4-976 Sugarloaf Huy Suite 103

|| 1231 |Unisco PO Box Z-547

|| 1351 Sight Diver 1 Neptune Lane

|| 1354 | Cayman Divers World Unlimited PO Box 541

|| 1356 | Tom Sawyer Diving Centre £321 Third Frydenhoj

|| 1380 Blue Jack Aqua Center 23-738 Paddington Lane Suite 310

|| 1384 VIP Divers Club 32 Main 5t.

|| 1510 Ocean Paradise PO Box 8745

|| 1513 | Fantastigue Aguatica Z32 933 #128.77 AA,

|| 1551 | Marmet Divers Club 872 Queen St

|| 1560 The Depth Charge 15243 Underwater Fiay.

|| 1563 Blue Sports 20312th Ave. Bon 746

|| 1624 Makai SCUBA Club PO Box 8534

|| 1645 Action Club PO Box 5451-F

|| 1651 | Jamaica SCUBA Centre PO Box B8

|| 1680 Island Finders £1331/3 Stone Avenue

|| 1984 Adventure Undersea PO Box 744 &

ki o

FIGURE 7.10

An unfiltered view of the CUSTOMER table.

After following step 2 and setting the table’s Filtered property to True, you can see in
Figure 7.11 that the grid displays only those records that meet the filter criteria.

fiprorm1 =lofx]
Addr
REGE Sight Diver 1 Neptune Lane
2163 SCUBA Heaven PO Bowx 0-8874
2165 Shangri-La Sports Center PO Box D-5495
3051 San Pablo Dive Center 1701-D N Broadway
5163 Safar Under the Sea PO Box 7456
KN Mz

FIGURE 7.11

A filtered view of the CUSTOMER fable.

NoTE

The OnFilterRecord event should only be used in cases where the filter cannot be
expressed in the Filter property. The reason for this is that it can provide significant
performance benefits. On SQL databases, for example, the TTable component will
pass the contents of the FILTER property in a WHERE clause to the database, which is
generally much faster than the record-by-record search performed in OnFilterRecord.

331

MNLILHYY |
Isvavivq IHd13g

332

Database Development
PArT llI

Searching Datasets

Datasets provide variations on how to search through datasets. The coverage here shows only
the non-SQL type searching techniques. SQL based techniques are covered in Chapter 29 on
the CD copy of Delphi 5 Developer’s Guide.

FindFirst() and FindNext()

TDataSet also provides methods called FindFirst(), FindNext(), FindPrior(), and FindLast()
that employ filters to find records that match a particular search criteria. All these functions
work on unfiltered datasets by calling that dataset’s OnFilterRecord event handler. Based on
the search criteria in the event handler, these functions will find the first, next, previous, or last
match, respectively. Each of these functions accepts no parameters and returns a Boolean,
which indicates whether a match was found.

Locating a Record Using the Locate() Method

Not only are filters useful for defining a subset view of a particular dataset, but they can also
be used to search for records within a dataset based on the value of one or more fields. For this
purpose, TDataSet provides a method called Locate (). Once again, because Locate () employs
filters to do the searching, it will work irrespective of any index applied to the dataset. The
Locate () method is defined as follows:

function Locate(const KeyFields: string; const KeyValues: Variant;
Options: TLocateOptions): Boolean;

The first parameter, KeyFields, contains the name of the field(s) on which you want to search.
The second parameter, KeyValues, holds the field value(s) you want to locate. The third and
last parameter, Options, allows you to customize the type of search you want to perform. This
parameter is of type TLocateOptions, which is a set type defined in the DB unit as follows:
type

TLocateOption = (loCaseInsensitive, loPartialKey);

TLocateOptions = set of TLocateOption;

If the set includes the loCaseInsensitive member, a not case sensitive search of the data will
be performed. If the set includes the loPartialKey member, the values contained in KeyVvalues
will match even if they’re substrings of the field value.

Locate() will return True if it finds a match. For example, to search for the first occurrence of
the value 1356 in the CustNo field of Table1, use the following syntax:

Tablel.Locate('CustNo', 1356, []);

Delphi Database Architecture
CHAPTER 7

Tip

You should use Locate () whenever possible to search for records because it will
always attempt to use the fastest method possible to find the item, switching indexes
temporarily if necessary. This makes your code independent of indexes. Also, if you
determine that you no longer need an index on a particular field or if adding one
will make your program faster, you can make that change on the data without hav-
ing to recode the application.

Table Key Searching

This section describes the common properties and methods of the TTable component and how
to use them. In particular, you learn how to search for records, filter records using ranges, and
create tables. This section also contains a discussion of TTable events.

TTable Record Searching

When you need to search for records in a table, VCL provides several methods to help you out.
When you’re working with dBASE and Paradox tables, Delphi assumes that the fields on
which you search are indexed. For SQL tables, the performance of your search will suffer if
you search on non-indexed fields.

Say, for example, you have a table that’s keyed on field 1, which is numeric, and on field 2,
which is alphanumeric. You can search for a specific record based on those two criteria in one
of two ways: using the FindKey () technique or the SetKey()..GotoKey() technique.

FindKey ()

TTable’s FindKey () method enables you to search for a record matching one or more keyed
fields in one function call. FindKey () accepts an array of const (the search criteria) as a
parameter and returns True when it’s successful. For example, the following code causes the
dataset to move to the record where the first field in the index has the value 123 and the second
field in the index contains the string Hello:

if not Tableil.FindKey([123, 'Hello']) then MessageBeep(0);
If a match isn’t found, FindKey () returns False and the computer beeps.
SetKey()..GotoKey()

Calling TTable’s SetKey () method puts the table in a mode that prepares its fields to be loaded
with values representing search criteria. Once the search criteria have been established, use the

333

MNLILHYY |
Isvavivq IHd13g

334

Database Development
PArT llI

GotoKey () method to do a top-down search for a matching record. The previous example can
be rewritten with SetKey () ..GotoKey (), as follows:

with Table1 do begin

SetKey;

Fields[Q] .AsInteger := 123;

Fields[1].AsString := 'Hello';

if not GotoKey then MessageBeep(0Q);
end;

The Closest Match

Similarly, you can use FindNearest () or the SetKey..GotoNearest methods to search for a
value in the table that’s the closest match to the search criteria. To search for the first record in
which the value of the first indexed field is closest to (greater than or equal to) 123, use the fol-
lowing code:

Tablei.FindNearest([123]);

Once again, FindNearest () accepts an array of const as a parameter that contains the field
values for which you want to search.

To search using the longhand technique provided by SetKey () ..GotoNearest(), you can use
this code:

with Tablel do begin

SetKey;
Fields[0Q] .AsInteger := 123;
GotoNearest;

end;

If the search is successful and the table’s KeyExclusive property is set to False, the record
pointer will be on the first matching record. If KeyExclusive is True, the current record will be
the one immediately following the match.

Tip

If you want to search on the indexed fields of a table, use FindKey() and
FindNearest ()—rather than SetKey () ..GotoX()—whenever possible because you
type less code and leave less room for human error.

Delphi Database Architecture
CHAPTER 7

Which Index?

All these searching methods assume that you’re searching under the table’s primary index. If
you want to search using a secondary index, you need to set the table’s IndexName parameter
to the desired index. For instance, if your table had a secondary index on the Company field
called ByCompany, the following code would enable you to search for the company "Unisco":

with Table1 do begin

IndexName := 'ByCompany';
SetKey;
FieldValues['Company'] := 'Unisco';
GotoKey;
end;
NoTE

Keep in mind that some overhead is involved in switching indexes while a table is
opened. You should expect a delay of a second or more when you set the IndexName
property to a new value.

Ranges enable you to filter a table so that it contains only records with field values that fall
within a certain scope you define. Ranges work similarly to key searches, and as with searches,
there are several ways to apply a range to a given table—either using the SetRange () method
or the manual SetRangeStart(), SetRangeEnd(), and ApplyRange () methods.

CAUTION

If you are working with dBASE or Paradox tables, ranges only work with indexed
fields. If you're working with SQL data, performance will suffer greatly if you don’t
have an index on the ranged field.

SetRange()

Like FindKey () and FindNearest (), SetRange() enables you to perform a fairly complex
action on a table with one function call. SetRange () accepts two array of const variables as
parameters: The first represents the field values for the start of the range, and the second repre-
sents the field values for the end of the range. As an example, the following code filters through
only those records where the value of the first field is greater than or equal to 10 but less than
or equal to 15:

Tablei.SetRange([10], [15]);

335

MNLILHYY |
Isvavivq IHd13g

336

Database Development
PArT llI

ApplyRange()
To use the ApplyRange () method of setting a range, follow these steps:

1. Call the SsetRangeStart () method and then modify the Fields[] array property of the
table to establish the starting value of the keyed field(s).

2. Call the setRangeEnd () method and modify the Fields[] array property once again to
establish the ending value of the keyed field(s).

3. Call ApplyRange() to establish the new range filter.

The preceding range example could be rewritten using this technique:

with Table1l do begin
SetRangeStart;
Fields[0].AsInteger :
SetRangeEnd;
Fields[@].AsInteger := 15; // range ends at 15
ApplyRange;

end;

10; // range starts at 10

Tip

Use SetRange () whenever possible to filter records—your code will be less prone to
error when doing so.

To remove a range filter from a table and restore the table to the state it was in before you
called ApplyRange() or SetRange(), just call TTable’s CancelRange () method.

Tablel.CancelRange;

Using Data Modules

Data modules enable you to keep all your database rules and relationships in one central location
to be shared across projects, groups, or enterprises. Data modules are encapsulated by VCL’s
TDataModule component. Think of TDataModule as an invisible form on which you can drop data-
access components to be used throughout a project. Creating a TDataModule instance is simple:
Select File, New from the main menu and then select Data Module from the Object Repository.

The simple justification for using TDataModule over just putting data-access components on a
form is that it’s easier to share the same data across multiple forms and units in your project. In
a more complex situation, you would have an arrangement of multiple TTable, TQuery, and/or
TStoredProc components. You might have relationships defined between the components and
perhaps rules enforced on the field level, such as minimum/maximum values or display formats.
Perhaps this assortment of data-access components models the business rules of your enterprise.

Delphi Database Architecture
CHAPTER 7

After taking great pains to set up something so impressive, you wouldn’t want to have to do it
again for another application, would you? Of course you wouldn’t. In such cases, you would
want to save your data module to the Object Repository for later use. If you work in a team
environment, you might even want to keep the Object Repository on a shared network drive for
the use of all the developers on your team.

In the example that follows, you’ll create a simple instance of a data module so that many
forms have access to the same data. In the database applications shown in several of the later
chapters, you’ll build more complex relationships into data modules.

The Search, Range, Filter Demo

Now it’s time to create a sample application to help drive home some of the key concepts that
were covered in this chapter. In particular, this application will demonstrate the proper use of
filters, key searches, and range filters in your applications. This project, called SRF, contains
multiple forms. The main form consists mainly of a grid for browsing a table, and other forms
demonstrate the different concepts mentioned earlier. Each of these forms will be explained in
turn.

The Data Module

Although we’re starting a bit out of order, the data module for this project will be covered first.
This data module, called DM, contains only a TTable and a TDataSource component.

The TTable, called Table1, is hooked to the CUSTOMERS.DB table in the DBDEMOS alias. The
TDataSource, DataSourcel, is wired to Table1. All the data-aware controls in this project

will use DataSource1 as their DataSource. DM is contained in a unit called DataMod .

The Main Form

The main form for SRF, appropriately called MainForm, is shown in Figure 7.12. This form is
contained in a unit called Main. As you can see, it contains a TDBGrid control, DBGrid1, for
browsing a table, and it contains a radio button that enables you to switch between different
indexes on the table. DBGrid1, as explained earlier, is hooked to DM.DataSource1 as its data
source.

NoTEe

In order for DBGrid1 to be able to hook to DM.DataSource1 at design time, the
DataMod unit must be in the uses clause of the Main unit. The easiest way to do this is
to bring up the Main unit in the Code Editor and select File, Use Unit from the main
menu. You'll then be presented with a list of units in your project from which you can
select DataMod. You must do this for each of the units from which you want to access
the data contained within DM.

337

MNLILHYY |
Isvavivq IHd13g

338

Database Development

PArT Il
[Search/Range/Filter Demo =10l x|
Show
—Key Field:
& Custio ¢ Company ‘
Company [Addi [Addz -
""" Kavai Dive Shoppe 4976 Sugarloaf Huy Suite 103
I Unisca PO Box 2547
I Sight Diver 1 Heptune Lane
I Cayman Divers Warld Uniimited PO Box 541
I Tom Sawyer Diving Centre £32-1 Third Fiydenhoj
I Blue Jack Aqua Center 23738 Paddinglon Lane Suite 310
I VIF Divers Club 32 Main St
I Ocean Paradise PO Box 6745
I Fanlastique Aquatica 232 993 #124.77 A4,
I Marmt Divers Club 872 Queen 5t
I The Depth Charge 15243 Underwater Fuy
I Blue Sparts 203 12th Ave, Bow 746
I Makai SCUBA Club PO Box 8534
I Action Club PO Box 5451-F
I Jamaica SCUBA Centre FO Box 68 =
Laf-1 [
FIGURE 7.12

MainForm in the SRF project.

The radio group, called RGKeyField, is used to determine which of the table’s two indexes is
currently active. The code attached to the OnClick event for RGKeyField is shown here:

procedure TMainForm.RGKeyFieldClick(Sender: TObject);

begin
case RGKeyField.ItemIndex of
0: DM.Tablel1.IndexName := ''; // primary index
1: DM.Tablel1.IndexName := 'ByCompany'; // secondary, by company
end;
end;

MainForm also contains a TMainMenu component, MainMenud, which enables you to open and
close each of the other forms. The items on this menu are Key Search, Range, Filter, and Exit.
The Main unit, in its entirety, is shown in Listing 7.5.

NoTE

In order for DBGrid1 to be able to hook to DM.DataSource1 at design time, the
DataMod unit must be in the uses clause of the Main unit. The easiest way to do this is
to bring up the Main unit in the Code Editor and select File, Use Unit from the main
menu. You'll then be presented with a list of units in your project from which you can
select DataMod. You must do this for each of the units from which you want to access
the data contained within DM.

The radio group, called RGKeyField, is used to determine which of the table’s two indexes is
currently active. The code attached to the OnClick event for RGKeyField is shown here:

Delphi Database Architecture

CHAPTER 7

procedure TMainForm.RGKeyFieldClick(Sender: TObject);

begin
case RGKeyField.ItemIndex of
0: DM.Tablel.IndexName := ''; // primary index
1: DM.Tablel1.IndexName := 'ByCompany'; // secondary, by company
end;
end;

MainForm also contains a TMainMenu component, MainMenu1, which enables you to open and
close each of the other forms. The items on this menu are Key Search, Range, Filter, and Exit.
The Main unit, in its entirety, is shown in Listing 7.5.

LisTING 7.5 WMain.pas—Demonstrating Dataset Ranges

339

unit Main;
interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ExtCtrls, Grids, DBGrids, DB, DBTables,
Buttons, Mask, DBCtrls, Menus, KeySrch, Rng, Fltr;

type
TMainForm = class(TForm)
DBGridi: TDBGrid;
RGKeyField: TRadioGroup;
MainMenu1: TMainMenu;
Forms1: TMenultem;
KeySearch1: TMenulItem;
Range1: TMenuItem;
Filteri: TMenuItem;
N1: TMenuItem;
Exit1: TMenuItem;
procedure RGKeyFieldClick(Sender: TObject);
procedure KeySearchiClick(Sender: TObject);
procedure RangeiClick(Sender: TObject);
procedure FilteriClick(Sender: TObject);
procedure Exit1Click(Sender: TObject);
private
{ Private declarations }
public
{ Public declarations }
end;

MNLILHYY |
Isvavivq IHd13g

340

Database Development
PArT llI

LisTING 7.5 Continued

var
MainForm: TMainForm;

implementation
uses DataMod;

{$R *.DFM}

procedure TMainForm.RGKeyFieldClick (Sender:

begin
case RGKeyField.ItemIndex of
0: DM.Table1.IndexName := '';
1: DM.Table1.IndexName := 'ByCompany';
end;
end;

procedure TMainForm.KeySearchi1Click(Sender:

begin

TObject);

// primary index
// secondary, by company

TObject);

KeySearch1.Checked := not KeySearchi.Checked;
KeySearchForm.Visible := KeySearchi.Checked;

end;

procedure TMainForm.Rangei1Click(Sender: TObject);

begin
Range1.Checked := not Range1.Checked;
RangeForm.Visible := Rangel.Checked;
end;

procedure TMainForm.Filteri1Click(Sender: TObject);

begin
Filter1.Checked := not Filter1.Checked;
FilterForm.Visible := Filter1.Checked;
end;

procedure TMainForm.Exit1Click(Sender: TObject);

begin
Close;
end;

end.

Delphi Database Architecture
CHAPTER 7

NoTEe

Pay close attention to the following line of code from the Rng unit:
DM.Tablel.SetRange([StartEdit.Text], [EndEdit.Text]);

You might find it strange that although the keyed field can be of either a Numeric

type or Text type, you're always passing strings to the SetRange () method. Delphi

allows this because SetRange (), FindKey (), and FindNearest () will perform the con-

version from String to Integer, and vice versa, automatically.

What this means to you is that you shouldn’t bother calling IntToStr() or StrToInt()
in these situations—it will be taken care of for you.

The Key Search Form

KeySearchForm, contained in the KeySrch unit, provides a means for the user of the application
to search for a particular key value in the table. The form enables the user to search for a value
in one of two ways. First, when the Normal radio button is selected, the user can search by
typing text into the Search For edit control and pressing the Exact or Nearest button to find an
exact match or closest match in the table. Second, when the Incremental radio button is selected,
the user can perform an incremental search on the table every time he or she changes the text
in the Search For edit control. The code for the KeySrch unit is shown in Listing 7.6.

LisTING 7.6 The Source Code for KeySrch.PAS

unit KeySrch;
interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls;

type
TKeySearchForm = class(TForm)

Paneli: TPanel;
Label3: TLabel;
SearchEdit: TEdit;
RBNormal: TRadioButton;
Incremental: TRadioButton;
Label6: TLabel;
ExactButton: TButton;
NearestButton: TButton;
procedure ExactButtonClick(Sender: TObject);

341

MNLILHYY |
Isvavivq IHd13g

Database Development
PArT llI

342

LisTING 7.6 Continued

procedure NearestButtonClick(Sender: TObject);

procedure RBNormalClick(Sender: TObject);

procedure IncrementalClick(Sender: TObject);

procedure FormClose(Sender: TObject; var Action: TCloseAction);
private

procedure NewSearch(Sender: TObject);
end;

var
KeySearchForm: TKeySearchForm;

implementation
uses DataMod, Main;
{$R *.DFM}

procedure TKeySearchForm.ExactButtonClick(Sender: TObject);

begin
{ Try to find record where key field matches SearchEdit's Text value. }
{ Notice that Delphi handles the type conversion from the string }
{ edit control to the numeric key field value. }

if not DM.Tablel.FindKey([SearchEdit.Text]) then
MessageDlg(Format('Match for "%s" not found.', [SearchEdit.Text]),
mtInformation, [mbOk], 0);
end;

procedure TKeySearchForm.NearestButtonClick(Sender: TObject);

begin
{ Find closest match to SearchEdit's Text value. Note again the }
{ implicit type conversion. }
DM.Table1.FindNearest([SearchEdit.Text]);

end;

procedure TKeySearchForm.NewSearch(Sender: TObject);
{ This is the method which is wired to the SearchEdit's OnChange }
{ event whenever the Incremental radio is selected. }
begin

DM.Tablel.FindNearest([SearchEdit.Text]); // search for text
end;

procedure TKeySearchForm.RBNormalClick(Sender: TObject);
begin

Delphi Database Architecture

CHAPTER 7

LisTING 7.6 Continued

ExactButton.Enabled := True; // enable search buttons

NearestButton.Enabled := True;

SearchEdit.OnChange := Nil; // unhook the OnChange event
end;

procedure TKeySearchForm.IncrementalClick(Sender: TObject);
begin
ExactButton.Enabled := False; // disable search buttons
NearestButton.Enabled := False;
SearchEdit.OnChange := NewSearch; // hook the OnChange event
NewSearch(Sender) ; /| search current text
end;

procedure TKeySearchForm.FormClose(Sender: TObject;
var Action: TCloseAction);

begin
Action := caHide;
MainForm.KeySearch1.Checked := False;
end;
end.

The code for the KeySrch unit should be fairly straightforward to you. You might notice that,
once again, we can safely pass text strings to the FindKey () and FindNearest () methods with
the knowledge that they will do the right thing with regard to type conversion. You might also
appreciate the small trick that’s employed to switch to and from incremental searching on-the-
fly. This is accomplished by either assigning a method to or assigning Nil to the OnChange
event of the SearchEdit edit control. When assigned a handler method, the OnChange event
will fire whenever the text in the control is modified. By calling FindNearest () inside that
handler, an incremental search can be performed as the user types.

The Filter Form

The purpose of FilterForm, found in the F1tr unit, is two-fold. First, it enables the user to
filter the view of the table to a set where the value of the State field matches that of the cur-
rent record. Second, this form enables the user to search for a record where the value of any
field in the table is equal to some value she has specified.

The record-filtering functionality actually involves very little code. First, the state of the
check box labeled Filter on This State (called cbFiltered) determines the setting of

343

MNLILHYY |
Isvavivq IHd13g

Database Development
PArT llI

344

DM.Table1’s Filtered property. This is accomplished with the following line of code
attached to cbFiltered.OnClick:

DM.Tablel1.Filtered := cbFiltered.Checked;

When DM.Table1.Filtered is True, Table1 filters records using the following
OnFilterRecord method, which is actually located in the DataMod unit:

procedure TDM.TableiFilterRecord(DataSet: TDataSet;
var Accept: Boolean);

begin
{ Accept record as a part of the filter if the value of the State }
{ field is the same as that of DBEditi1.Text. }
Accept := TableiState.Value = FilterForm.DBEdit1.Text;

end;

To perform the filter-based search, the Locate () method of TTable is employed:

DM.Tablel1.Locate(CBField.Text, EValue.Text, LO);

The field name is taken from a combo box called CBField. The contents of this combo box are
generated in the OnCreate event of this form using the following code to iterate through the
fields of Table1:

procedure TFilterForm.FormCreate(Sender: TObject);
var

i: integer;
begin

with DM.Table1 do begin

for i := @ to FieldCount - 1 do
CBField.Items.Add(Fields[i].FieldName);

end;

end;

Tip

The preceding code will only work when DM is created prior to this form. Otherwise,
any attempts to access DM before it's created will probably result in an Access
Violation error. To make sure that the data module, DV, is created prior to any of the
child forms, we manually adjusted the creation order of the forms in the Autocreate
Forms list on the Forms page of the Project Options dialog (found under Options,
Project on the main menu).

The main form must, of course, be the first one created, but other than that, this
little trick ensures that the data module gets created prior to any other form in the
application.

Delphi Database Architecture

CHAPTER 7

The complete code for the F1tr unit is shown in Listing 7.7.

LisTING 7.7 The Source Code for Fltr.pas

unit Fltr;
interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, Buttons, Mask, DBCtrls, ExtCtrls;

type
TFilterForm = class(TForm)
Panell1: TPanel;
Label4: TLabel;
DBEdit1: TDBEdit;
cbFiltered: TCheckBox;
Label5: TLabel;
SpeedButtoni: TSpeedButton;
SpeedButton2: TSpeedButton;
SpeedButton3: TSpeedButton;
SpeedButton4: TSpeedButton;
Panel2: TPanel;
EValue: TEdit;
LocateBtn: TButton;
Labell: TLabel;
Label2: TLabel;
CBField: TComboBox;
MatchGB: TGroupBox;
RBExact: TRadioButton;
RBClosest: TRadioButton;
CBCaseSens: TCheckBox;
procedure chFilteredClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure LocateBtnClick(Sender: TObject);
procedure SpeedButtoniClick(Sender: TObject);
procedure SpeedButton2Click(Sender: TObject);
procedure SpeedButton3Click(Sender: TObject)
procedure SpeedButton4Click(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
end;

3

var
FilterForm: TFilterForm;

345

MNLILHYY |
Isvavivq IHd13g

Database Development
PArT llI

346

LisTING 7.7 Continued

implementation
uses DB, DataMod, Main;
{$R *.DFM}

procedure TFilterForm.cbFilteredClick(Sender: TObject);
begin
{ Filter table if checkbox is checked }
DM.Tablel.Filtered := cbFiltered.Checked;
end;

procedure TFilterForm.FormCreate(Sender: TObject);
var

i: integer;
begin

with DM.Table1 do begin

for i := 0 to FieldCount - 1 do
CBField.Items.Add(Fields[i].FieldName);

end;

end;

procedure TFilterForm.LocateBtnClick(Sender: TObject);

var

LO: TLocateOptions;
begin

LO :=[];

if not CBCaseSens.Checked then Include(LO, loCaselnsensitive);
if RBClosest.Checked then Include(LO, loPartialKey);
if not DM.Tablel.Locate(CBField.Text, EValue.Text, LO) then
MessageD1lg('Unable to locate match', mtInformation, [mbOk], 0);
end;

procedure TFilterForm.SpeedButtoniClick(Sender: TObject);
begin

DM.Tablel1.FindFirst;
end;

procedure TFilterForm.SpeedButton2Click(Sender: TObject);
begin

DM.Tablel.FindNext;
end;

procedure TFilterForm.SpeedButton3Click(Sender: TObject);

Delphi Database Architecture

CHAPTER 7

LisTING 7.7 Continued

begin
DM.Table1.FindPrior;
end;

procedure TFilterForm.SpeedButton4Click(Sender: TObject);
begin

DM.Tablel.FindLast;
end;

procedure TFilterForm.FormClose(Sender: TObject; var Action: TCloseAction);

begin
Action := caHide;
MainForm.Filter1.Checked := False;
end;
end.
Bookmarks

Bookmarks enable you to save your place in a dataset so that you can come back to the same
spot at a later time. Bookmarks are very easy to use in Delphi because you only have one
property to remember.

Delphi represents a bookmark as type TBookmarkStr. TTable has a property of this type called
Bookmark. When you read from this property, you obtain a bookmark, and when you write to
this property, you go to a bookmark. When you find a particularly interesting place in a dataset
that you’d like to be able to get back to easily, here’s the syntax to use:

var
BM: TBookmarkStr;
begin
BM := Tablel.Bookmark;

When you want to return to the place in the dataset you marked, just do the reverse—set the
Bookmark property to the value you obtained earlier by reading the Bookmark property:

Tablel.Bookmark := BM;

TBookmarkStr is defined as an AnsiString, so memory is automatically managed for book-
marks (you never have to free them). If you’d like to clear an existing bookmark, just set it to
an empty string:

BM := ""';

347

MNLILHYY |
Isvavivq IHd13g

348

Database Development
PArT llI

Note that TBookmarkStr is an AnsiString for storage convenience. You should consider it an
opaque data type and not depend on the implementation because the bookmark data is com-
pletely determined by BDE and the underlying data layers.

NoTE

Although 32-bit Delphi still supports GetBookmark (), GotoBookmark(), and
FreeBookmark () from Delphi 1.0, because the 32-bit Delphi technique is a bit cleaner
and less prone to error, you should use this newer technique unless you have to main-
tain compatibility with 16-bit projects.

You’ll find an example of using bookmarks with an ADO dataset on the CD in the \Bookmark
subdirectory for this chapter.

Summary

After reading this chapter, you should be ready for just about any type of database program-
ming with Delphi. You learned the ins and outs of Delphi’s TDataSet component, which is the
ancestor of the different types of datasets. You also learned techniques for manipulating
datasets, how to manage fields, and how to work with text tables.

In the following chapters, you will learn about dbExpress, Delphi’s lightweight database devel-
opment technology and about dbGo, Delphi’s connectivity to ADO data in greater depth.

Database Development with
dbExpress

IN THIS CHAPTER

e Using dbExpress 350
¢ dbExpress Components 351

e Designing Editable dbExpress
Applications 359

¢ Deploying dbExpress Applications 360

CHAPTER

8

350

Database Development
PArT llI

dbExpress is Borland’s new technology that provides lightweight database development to
Delphi 6 developers.

dbExpress is important for three reasons. First, it is much lighter from a deployment standpoint
than its predecessor, the BDE. Second, it is the cross-platform technology that you should use
if developing applications intended for the Linux platform using Kylix. Third, it is extensible.
To develop dbExpress drivers, one simply implements the required interfaces and provides the
resulting database access library.

dbExpress’s underlying architecture consists of drivers for supported databases, each of which
implement a set of interfaces enabling access to server specific data. These drivers interact with
applications through DataCLX connection components in much the same way a TDatabase
component interacts with the BDE—minus the extra overhead.

Using dbExpress

dbExpress is designed to efficiently access data and to carry little overhead. To accomplish
this, dbExpress uses unidirectional datasets.

Unidirectional, Read-Only Datasets

The nature of unidirectional datasets means that they don’t buffer records for navigation or
modification. This is where the efficiency is gained against the bi-directional BDE datasets that
do buffer data in memory. Some limitations that result are

* Unidirectional datasets only support the First() and Next () navigational methods.
Attempts to call other methods—such as Last () or Prior()—will result in an exception.

» Unidirectional dataset records aren’t editable because there is no buffer support for edit-
ing. Note, however, that you would use other components (TClientDataset,
TSQLClientDataset) for editing, which we’ll discuss later.

» Unidirectional datasets don’t support filtering because this is a multirecord feature and
unidirectional datasets don’t buffer multiple records.

* Unidirectional datasets don’t support lookup fields.

dbExpress Versus the Borland Database Engine (BDE)

dbExpress offers several advantages over the BDE, which we’ll briefly go over.

Unlike the BDE, dbExpress doesn’t consume server resources with metadata queries or other
extraneous requests when user-defined queries are executed against the database server.

Database Development with dbExpress
CHAPTER 8

dbExpress doesn’t consume as many client resources as the BDE. Because of the unidirec-
tional cursor, no caching is done. dbExpress doesn’t cache metadata on the client either.
Metadata definition is handled through the data-access interface DLLs.

Unlike the BDE, dbExpress doesn’t generate internal queries for things like navigation and
BLOB retrieval. This makes dbExpress much more efficient at runtime in that only those
queries specified by the user are executed against the database server. dbExpress is far simpler
than the BDE.

dbExpress for Cross-Platform Development

A key advantage to dbExpress is that it is cross-platform between Windows (using Delphi 6)
and Linux (using Kylix). By using the CLX components for dbExpress, you can compile your
application with Kylix and have the same application running in Linux. In fact, dbExpress can
use a cross-platform database such as MySQL or InterBase.

NoOTE

At the time of this writing, support for the latest version of mySQL was limited to an
earlier version (3.22). However, Delphi 6 can work with the latest version of the data-
base (3.23) by using the shipping version of the dbExpress DLL. Borland is working on
an update of the library.

dbExpress Components

All the dbExpress components appear on the dbExpress tab of the Component Palette.

TSQLConnection

For those who have done BDE development, the TSQLConnection will appear very similar to the
TDatabase component. In fact, the purpose is the same in that they both encapsulate the database
connection. It is through the TSQLConnection that dbExpress datasets access server data.

TSQLConnection relies on two configuration files, dbxdrivers.ini and dbxconnections.ini.
These files are installed to the “\Program Files\Common Files\Borland Shared\DbExpress”
directory. dbxdrivers.ini contains a listing of all dbExpress supported drivers and driver spe-
cific settings. Dbxconnections.ini contains a listing of “named connections”—which can be
considered similar in nature to a BDE alias—and any specific settings for these connections. It
is possible not to use the default dbxconnections.ini file at runtime by setting the
TSQLConnection.LoadParamsOnConnect property to true. We’ll show an example of doing
this momentarily.

351

00

$S34dX39a HLIM

1N3INdOT13IAIQg

isvavivqg

352

Database Development

PArT 11l

A TSQLConnection component must use a dbExpress driver specific to the type of database
that you are using. This driver is specified in the dbxdrivers.ini file.

The TSQLConnection’s methods and properties are adequately covered in the online help. As
always, we direct you to the online help for detailed information. In this book, we will walk
you through establishing a database connection and in creating a new connection.

Establishing a Database Connection
To establish a connection with an existing database, simply drop a TSQLConnection on a form
and specify a ConnectionName by selecting one from the drop-down list in the Object
Inspector. When doing so, you should see at least four different connections: IBLocal,
DB2Connection, MSConnection, and Oracle. If you didn’t install a version of InterBase when
you installed Delphi, do so now. You’ll need one for this example. Once you have one
installed, select the IBLocal connection because Local InterBase should have been installed
with your Delphi 6 installation.

Upon selecting a ConnectionName, you’ll see that other properties such as DriverName,
GetDriverFunc, LibraryName, and VendorLib are automatically filled in. These default values
are specified in the dbxdrivers.ini file. You can examine and modify other driver specific
properties from the Params property’s editor, shown in Figure 8.1.

FIGURE 8.1

|

Yalue List editor

Kep

[Value

BlobSize
CommitRetain
Database
LocaleCode
Password
RoleName
ServerCharSet
SOLDialect
Interbase Translsolation
User_MName
‘WaitOnLocks

Code Editor...

False
database.adb
00000
masterkey
FioleName
ASCII

1
ReadCommited
sysdba

True

aK I Cancel

Help

TSQLConnection.Params property editor.

NoOTE

The default value in the “Database” key in the Params property editor is simply
“database.gdb”. This refers to an nonexistent database. You can change this value to
the “Employee.gdb” example database that should exist in a subdirectory of your
InterBase installation. On our machine, this is “...\Program Files\Borland\
InterBase6\examples\Database\Employee.gdb"”.

Database Development with dbExpress
CHAPTER 8

Once you have the TSQLConnection component referring to a valid database, you can change

the Connected property value to True. You’ll be prompted for a username and password, which
are “sysdba” and “masterkey”, respectively. This should connect you to the database. It would
be a good idea to refer to the help files for each of the TSQLConnection properties at this point.

Creating a New Database Connection

You can create additional “named” connections that refer to databases that you specify. For
instance, this would be helpful if you were creating an application that used two separate data-
bases such as a live and a test database. To create a new connection, simply double-click on the
TSQLConnection component to bring up the Connection Editor (see Figure 8.2). You can also
right-click and select “Edit Connection Properties” from the TSQLConnection local menu to
invoke this editor.

& dbExpress Connections: D:\Program Files\Common Filt x|

A =] A =

Diiver Name Connection Setings

] =l [key Value

Connection Name BlobSizs A
Database DBNAME

DDEDemo Driverhlame DB2

BLocal

MSCannection LocaleCods 00000

MylBConnection Password password
Oracle .
DEZ Translsolation | FeadCommited

User_Name user

oK | Cancel Help

FIGURE 8.2

The TsQLConnection Connection Editor.

You’ll see that there are five speed buttons on this editor. We’ll examine the “Add” button now.
When pressed, you are asked to provide a Driver Name and a Connection Name. The Driver
Name drop-down will be one of the four supported database drivers. You can select InterBase
in this example. You can specify any name for the Connection Name such as
“MyIBConnection”. When you select “OK”, you’ll see the Connection Settings grid display the
driver settings for your specific connection. These are the same as the TSQLConnection.Params
property values. Again, you’ll need to change the “Database” setting to a valid InterBase data-
base. At this point, you should be able to close the editor and set the Connected property to
True by specifying the proper username and password.

Bypassing/Replacing the Login Prompt

Bypassing the login prompt is easy. Simply set the LoginPrompt property to False. You’ll have
to make sure that the UserName and Password settings in the Params property have a valid user
name and password, respectively.

353

00

$S34dX39a HLIM

1N3INdOT13IAIQg

isvavivqg

354

Database Development
PArT llI

To replace the login prompt with your own login dialog, the LoginPrompt property must be set
to True. Then, you must add an event handler to the OnLogin event. For instance, the following
code illustrates how this might look:

procedure TMainForm.SQLConnectioniLogin(Database: TSQLConnection;
LoginParams: TStrings);

var
UserName: String;
Password: String;

begin
if InputQuery('Get UserName', 'Enter UserName', UserName) then
if InputQuery('Get Password', 'Enter Password', Password) then
begin
LoginParams.Values['UserName'] := UserName;
LoginParams.Values['Password'] := Password;
end;
end;

In this example, we’re using a call to the InputQuery () function to retrieve the values needed.
You would be able to use your own dialog for the same purpose. You’ll find this example on
the CD that also demonstrates the use of the AfterConnect and AfterDisconnect events.

Loading Connection Settings at Runtime

The connection settings that you see from the Connection Editor or the Params property editor
are defaults that get loaded at design time from the dbxconnections.ini file. It is possible for
you to load these at runtime. You might do this, for example, if you needed to provide a sepa-
rate dbxconnections.ini file than that provided with Delphi. Of course, you must remember
to deploy this new file with your application installation.

To enable your application to load these settings at runtime, you must set the LoadParamsOn
Connect property to True. When your application launches, the TSQLConnection component
will look to the registry for the “Connection Registry File” key in “HKEY_CURRENT_USER\
Software\Borland\DBExpress”. You must modify this value to point to the location of your
own dbxconnections.ini file. This is something that you would probably do in the installa-
tion of your application.

TSQLDataset

TSQLDataset is the unidirectional dataset used for retrieving data from a dbExpress supported
server. This dataset can be used to represent data in a database table, a selection query, or the
results of a stored procedure. It can also execute a stored procedure.

Database Development with dbExpress

CHAPTER 8

TSQLDataset’s key properties are CommandType and CommandText. The value selected for
CommandType determines how the content of CommandText will be used. Possible values for
CommandType are listed in Table 8.1 and in the Delphi help file.

TaBLE 8.1 CommandType Values (from Delphi Online Help)

CommandType Corresponding CommandText

ctQuery An SQL statement that the dataset executes.

ctStoredProc The name of a stored procedure.

ctTable The name of a table on the database server. The SQL dataset automati-

cally generates a SELECT statement to fetch all the records of all the
fields in this table.

When the CommandType property contains the ctQuery value, CommandText is an SQL state-
ment. This statement might be a SELECT statement that returns a resultset such as the following
SQL statement: "SELECT * FROM CUSTOMER".

If commandType is ctTable, CommandText refers to a table name on the database server. The
CommandText property will change to a drop down. If this is an SQL database, any SQL state-
ments needed to retrieve data are automatically generated.

If CommandType has the value ctStoredProc, CommentText will then contain the name of a
stored procedure to execute. This would be executed by calling the TSQLDataSet.ExecSQL ()
method rather then by setting the Active property to True. Note, that ExecSQL () should be
used if CommandType is ctQuery and the SQL statement doesn’t result in a resultset.

Retrieving Table Data

To extract table data using the TSQLDataset, you simply set the TSQLDataSet.CommandType
property to ctTable. The CommandText property will change to a drop down from which you
can select the table name. You can look at an example on the CD in the “TableData” directory.

Displaying Query Results

To extract data from a query select statement, simply set the TSQLDataSet.CommandType prop-
erty to ctQuery. In the CommandText property, you can enter a query select statement such as
"Select * from Country". This is demonstrated in the example on the CD under the
“QueryData” directory.

355

00

$S34dX39a HLIM

1N3INdOT13IAIQg

isvavivqg

356

Database Development
PArT llI

Displaying Stored Procedure Results
Given a stored procedure that returns a resultset such as the InterBase procedure that follows,
you can extract the resultset using a TSQLDataset component:

CREATE PROCEDURE SELECT_COUNTRIES RETURNS (
RCOUNTRY VARCHAR(15),
RCURRENCY VARCHAR(10)
) AS
BEGIN
FOR SELECT
COUNTRY, CURRENCY FROM COUNTRY
INTO
:rCOUNTRY, :rCURRENCY
DO
SUSPEND;
END

To do this, set the TSQLDataset.CommandType property to ctQuery and add the following to its
CommandText property: Select * from SELECT_COUNTRIES. Note that we use the stored proce-
dure name as though it were a table.

Executing a Stored Procedure

Using the TSQLDataset component, you can execute a stored procedure that does not return a
resultset. To do this, set the TSQLDataSet.CommandType property to ctStoredProc. The
TSQLDataset.CommandText property will become a drop down that displays a list of stored
procedures on the database. You must select one of the stored procedures that doesn’t return a
resultset. For example, the example on the CD under the directory “ExecSProc” executes the
following stored procedure:

CREATE PROCEDURE ADD_COUNTRY (
ICOUNTRY VARCHAR(15),
ICURRENCY VARCHAR(10)

) AS

BEGIN
INSERT INTO COUNTRY (COUNTRY, CURRENCY)
VALUES (:iCOUNTRY, :iCURRENCY);
SUSPEND;

END

This procedure is a simple insert statement into the country table. To execute the procedure,
you must call the TSQLDataset.ExecSQL () method as shown in the following code:
procedure TForm1.btnAddCurrencyClick(Sender: TObject);
begin

sqlDSAddCountry.ParamByName ('ICountry').AsString := edtCountry.Text;

Database Development with dbExpress

CHAPTER 8

sqlDSAddCountry.ParamByName (' ICURRENCY ') .AsString := edtCurrency.Text;
sqlDSAddCountry.ExecSQL (False);
end;

The first thing you must do is to set the parameter values. Then, by calling ExecSQL (), the
specified procedure will be executed with the values you’ve added. Note that ExecSQL () takes
a Boolean parameter. This parameter is used to determine whether any parameters need to be
prepared. By default, this parameter should be true.

Metadata Representation

You can retrieve information about a database using the TSQLDataset component. To do this,
you use the TSQLDataset.SetSchemaInfo() procedure to specify the type of schema informa-
tion you desire. SetSchemaInfo is defined as

procedure SetSchemaInfo(SchemaType: TSchemaType;
=SchemaObjectName, SchemaPattern: string);

The SchemaType parameter specifies the type of schema information that you are requesting.
SchemaObjectName holds the name of a table or procedure in the case of a request for parame-
ter, column, or index information. SchemaPattern is an SQL pattern mask used for filtering the
resultset.

Table 8.2 is taken from the Delphi online help for the SetSchemaInfo() procedure and
describes the types of schema information that you can retrieve.

TABLE 8.2 SchemaType Values (from Delphi Online Help)

SchemaType Value Description

stNoSchema No schema information. The SQL dataset is populated with the
results of its query or stored procedure rather than metadata from
the server.

stables Information about all the data tables on the database server that
match the criteria specified by the SQL connection’s TableScope
property.

stSysTables Information about all the system tables on the database server. Not

all servers use system tables to store metadata. Requesting a list of
system tables from a server that doesn’t use them results in an
empty dataset.

stProcedures Information about all the stored procedures on the database server.
stColumns Information about all the columns (fields) in a specified table.
stProcedureParams Information about all the parameters of a specified stored procedure.

stIndexes Information about all the indexes defined for a specified table.

357

00

$S34dX39a HLIM

1N3INdOT13IAIQg

isvavivqg

358

Database Development
PArT llI

We’ve provided an example of using the SetSchemaInfo() procedure on the CD under the
directory “SchemaInfo”. Listing 8.1 shows some of the code for this procedure from this
example.

LisTING 8.1 Example of TSQLDataset.SetSchemaInfo()

procedure TMainForm.Buttoni1Click(Sender: TObject);
begin

sqldsSchemaInfo.Close;

cdsSchemaInfo.Close;

case RadioGroup1.ItemIndex of

0: sqldsSchemaInfo.SetSchemaInfo(stSysTables, '', '');

1: sqldsSchemaInfo.SetSchemalnfo(stTables, '', '');

2: sqldsSchemaInfo.SetSchemaInfo(stProcedures, '', '');

3: sqldsSchemaInfo.SetSchemaInfo(stColumns, 'COUNTRY', '');

4: sqldsSchemaInfo.SetSchemaInfo(stProcedureParams, 'ADD_COUNTRY', '');
5: sqldsSchemaInfo.SetSchemaInfo(stIndexes, 'COUNTRY', '');

end; // case

sqldsSchemaInfo.Open;
cdsSchemaInfo.Open;
end;

In the example, we use the selection in TRadioGroup component to determine which type of
schema information we want. We then call the SetSchemaInfo() procedure using the proper
SchemaType parameter before opening the dataset. The values are stored in a TDBGrid in the
example.

Backward Compatibility Components

You’ll find three components on the dbExpress tab in the Component Palette that are synony-
mous with the BDE dataset components. These are TSQLTable, TSQLQuery, and
TSQLStoredProc. These components are used very much in the same manner as their BDE
counterparts except that they cannot be used in a bidirectional manner. For the most part, you
will be using the TSQLDataset components.

TSQLMonitor

The TSQLMonitor component is useful for debugging SQL applications. TSQLMonitor logs the
SQL commands being communicated through a TSQLConnection component. To use this, you
simply set the TSQLMonitor.SQLConnection parameter to a valid TSQLConnection component.

Database Development with dbExpress
CHAPTER 8

The TSQLMonitor.Tracelist property will then log the commands being passed between the
client and the database server. TraceList is a simple TStrings descendant, so you can save
this information to a file or add it to a memo component for viewing the information.

NoTE

You can use the FileName and AutoSave properties to automatically store the
TracelList contents.

The example code provided on the CD in the SQLMon directory shows how to add the contents
of the TraceList to a memo control. The resulting SQL tracelist is shown in Figure 8.3.

[irroceion e

INTEFBASE - isc_altach_database
INTERBASE - se_dsgl_allocate_statement

|4, RDBSRELATION_NAME
INTERBASE - isc_dsql_prepare
INTERBASE - se_dsgl_deseribe_bind
INTERBASE - isc_dsql_execute
INTERBASE - isc_dsg_fetch
INTERBASE - isc_commil_retaining

FIGURE 8.3

Results of the TsQLMonitor component.

Designing Editable dbExpress Applications

Up to now, we have discussed dbExpress in the context of unidirectional/read-only datasets.
The only exception is the example using a TSQLDataset component to execute a stored proce-
dure that adds data to a table. Another method to make datasets editable as with a bidirectional
dataset is to use cached updates. To do so, this requires the use of another component,
TSQLClientDataset.

TSQLClientDataset

TSQLClientDataset is a component that contains an internal TSQLDataset and TProvider
component. The internal TSQLDataset gives the TSQLClientDataset the fast data access bene-
fits of dbExpress. The internal TSQLProvider gives the TSQLClientDataset the bidirectional
navigation and ability to edit data.

Using the TSQLClientDataset is very much the same as using the standard TClientDataset.
This information is covered in Chapter 21, “DataSnap Development.”

359

00

$S34dX39a HLIM

1N3INdO13AIQg

isvavivqg

360

Database Development
PArT llI

Setting up an application using TSQLClientDataset is relatively simple. You’ll need a
TSQLConnection, a TSQLClientDataset, and a TDatasource component if you intend to dis-
play the data. An example is provided on the CD under the directory “Editable”.

The TSQLClientDataset.DBConnection property must be set to the TSQLConnection compo-
nent. Use the CommandType and CommandText properties as previously discussed for the
TSQLDataset component.

Now, when running this application, you will note that it is navigable in both directions and it is
possible to add, edit, and delete records from the dataset. However, when you close the dataset,
none of your changes will persist because you are actually editing the in-memory buffer held by
the TSQLClientDataset component. Any changes you make are cached in memory. To save
your changes to the database server, you must call the TSQLClientDataset.ApplyUpdates()
method. In the sample provided on the CD, we’ve added the ApplyUpdates() call to the
AfterDelete and AfterPost events of the TSQLClientDataset component. This gives us a row-
by-row update of server data. For further information on using TSQLClientDataset, refer to
Chapter 21, or Chapters 32 and 34 in Delphi 5 Developer’s Guide, which is provided on the CD.

NoTE

The TSQLClientDataset contains a TSQLDataSet and TProvider component. However,
it doesn’t expose all the properties and events of these two components. If access to
these events are needed, you can use the regular TClientDataset and
TDatasetProvider components in lieu of the TSQLClientDataset component.

Deploying dbExpress Applications

You can deploy dbExpress applications as a standalone executable or by providing the required
dbExpress driver DLLs. To compile as a standalone, you’ll need to add the units listed in Table
8.3 to the uses clause of your application as described in the Delphi online help.

TaBLE 8.3 Units Required for dbExpress Standalone Application

Database unit When to Include

dbExpInt Applications connecting to InterBase databases
dbExpOra Applications connecting to Oracle databases
dbExpDb2 Applications connecting to DB2 databases
dbExpMy Applications connecting to MySQL databases

Crtl, MidasLib Required by dbExpress executables that use client datasets such as
TSQLClientDataSet

Database Development with dbExpress

CHAPTER 8

If you want to deploy the DLLs along with your application, you will have to deploy the DLLs

specified in Table 8.4.

TaBLE 8.4 DLLs to Deploy with a dbExpress Application

Database DLL

When to Deploy

dbexpint.dll
dbexpora.dll
dbexpdb2.d1l1
dbexpmy.dll
Midas.dll

Applications connecting to InterBase databases
Applications connecting to Oracle databases
Applications connecting to DB2 databases

Applications connecting to MySQL databases

Required by database applications that use client datasets

361

Summary

With dbExpress, it will be possible to develop robust and lightweight applications not otherwise
possible using the BDE. Combined with the caching mechanisms built into TSQLClientDataset
and TClientDataset, developers can develop complete cross-platform database applications.

00

$S34dX39a HLIM

1N3INdOT13IAIQg

isvavivqg

Database Development with CHAPTER
dbGo for ADO

IN THIS CHAPTER

¢ Introduction to dbGo 364

e Overview of Microsoft’s Universal Data Access
Strategy 364

e Overview of OLE DB, ADO, and ODBC 364
¢ Using dbGo for ADO 365
¢ dbGo for ADO Components 367

¢ Transaction Processing 375

364

Database Development
PArT llI

Introduction to dbGo

This chapter will get you programming using Microsoft’s ActiveX Data Objects (ADO), which
are encapsulated by Delphi’s dbGo for ADO components.

dbGo for ADO is represented by those components residing on the ADO tab of the Component
Palette and provide data access through the ADO framework.

Overview of Microsoft’s Universal Data Access
Strategy

Microsoft’s strategy for Universal Data Access is to provide access to a wide range of data
through a single access model. This data might consist of both relational and non-relational
data. Microsoft accomplishes this through the Microsoft Data Access Components (MDAC),
which comes installed in all Windows 2000 systems or can be downloaded from
http://www.microsoft.com/data/.

MDAC is comprised of three elements: OLE DB, Microsoft ActiveX Data Objects (ADO), and
Open Database Connectivity (ODBC).

Overview of OLE DB, ADO, and ODBC

OLE DB is a system level interface that uses COM to provide access to many sorts of data
including relational and non-relational formats. It is possible to write code that directly inter-
faces with the OLE DB layer; although with ADO, it’s much more complex and in most cases,
unnecessary.

Many OLE DB providers are implementations of the OLE DB interfaces for providing access
to specific vendor data. For instance, some OLE DB providers give access to data from Paradox,
Oracle, Microsoft SQL Server, the Microsoft Jet Engine, and ODBC just to name a few.

ADO is the application level interface that developers use to access data. Whereas OLE DB
consists of many (more than 60) different interfaces, ADO only consists of few with which
developers must concern themselves. ADO actually uses OLE DB as the underlying technol-
ogy for accessing data.

ODBC was the precursor to OLE DB and is still a very useful mechanism by which developers
can gain access to relational, and some non-relational, data. In fact, one of the OLE DB
providers goes through the ODBC layer.

Database Development with dbGo for ADO
CHAPTER 9

Using dbGo for ADO

dbGo for ADO is made up of the set of Delphi components that encapsulate the ADO inter-
faces and adapt them to the abstract way of doing database development that is common in
Delphi.

The following sections will show you how to use these components. For this chapter, we will
primarily use a Microsoft Access database through an ODBC provider.

Establishing an OLE DB Provider for ODBC

To establish a connection to the database, you must create an ODBC Data Source Name
(DSN). DSNs are similar to BDE aliases in that they allow you to provide system-level connec-
tion points with connection information for databases centrally accessible on your system. To
create DSNs you must use the ODBC Administrator that ships with Windows. On Windows
2000, this is accessed via Control Panel under the Administrative Tools subdirectory. When
launching this application, you’ll get the dialog box shown in Figure 9.1.

UserDSN System DSN | File DS | Diivers | Tracing | Connection Padling | About |
System Dalta Sources
[Driver] Add. |
InterSystems Cache ODBC
InterSystems Cache ODBC Remove
Ddg#D00ders Micosolt Access Driver [* mdh)
DdgAD00ersSecure Mictosoft Access Driver [*.mdh) Configure.
ECDCMusic Miciosolt Access Driver [*.mdb]
Opendit Microsolt Access Driver [* mdb)

An DDBC System dats source stores information about how ta connect ta
§ the indicated data provider. A System data source is visible to all users
on this machine, including NT services

aK I Cancel Apply Help

FIGURE 9.1
ODBC Administrator.

There are three types of DSNs:
* User DSN—User data sources are local to a computer and are accessible only when
logged in as the current user.

* System DSN—System data sources are local to a computer and are accessible to any
user. These are available systemwide to all users with appropriate privileges.

» File DSN—File data sources are available to all users who have the appropriate file dri-
vers installed.

365

ININdoT1anag |\©

jsvavivqg

366

Database Development
PArT llI

For this example, you will create a System DSN. First, launch the ODBC Administrator. Then,
select the System DSN tab and click the Add button. This launches the Create New Data
Source dialog box shown in Figure 9.2.

Create New Data Source | x|

Select a diiver for which you want to set up a data source

Driver da Microsoft dBase [* dbf]
Driver da Microsoft Excel[* 4]
Driver da Microsoft Parados (%.db)
Driver para o Miciosaft Visusl FosPro
InterSystems Cache ODBC

Microsaft Accass Driver [mdb]
Microsoft Access-Treiber [mdb]
hicar,

et AR ara Mrivar (% ARA

Iﬁ:ﬁ«hmm«h«h«h
4

< Back I Finish I Cancel

FIGURE 9.2

The Create New Data Source dialog box.

In this dialog box, you are presented a list of available drivers. The driver you need is the
Microsoft Access Driver (*.mdb). When you click Finish, you will be shown the ODBC
Microsoft Access Setup dialog box (see Figure 9.3).

DDBC Microsoft Access Setup [21|
Data Source Name: | oK
Description [
Cancel |

~Databa:

Databass: Help

Select. | Cieae. | Pepai Compact... |
Advanced.

- System Dalaba

@ None

" Dalabase:

System Datzbase

Options>>

FIGURE 9.3
The ODBC Microsoft Access Setup dialog box.

Here, you must provide a DSN that will be referenced from within your Delphi application.
Again, this is similar to a BDE alias. You may also provide a description if you like. Next, you
must select a database by clicking Select. This will launch a File Open dialog box from which
you must select a valid *.mdb file. The file that you’ll use is ddgADO.mdb and should be
installed in the ..\Delphi Developer's Guide\Data directory where you installed the files
from this book. When you click OK, your DSN will appear in the list of available System Data
Sources. You can now click OK to finish working with the ODBC Administrator.

Database Development with dbGo for ADO
CHAPTER 9

The Access Database
The database for which you just created a DSN is shown in Figure 9.4.

Customer

Employee

Part

Custno:li

Empno:li

Partno:txt(10)

Company:txt(50)
Address1:txt(50)

Lastname:txt(20)
Firstname:txt(20)

Description:txt(30)
Onhand:li

Address2:txt(50) Phoneext:txt(5) Onorder:li
L) Hiredate:dt Cost:cur
| CustomerOrder L Listprice:cur
1 T
1 1
] em—m—mmm e ————]
| : EmployeeOrder
1
1
p ! L N PartOrderltem
Order
Orderno:li
Custno:li [customer]
Empno:li [employee]
Date:dt]
\ J (h
| OrderOrderitem Orderitem

Orderno:li [order]
Partno:txt(10) [part]

FIGURE 9.4

The sample database.

This is a simple order entry database that you’ll use for the purpose of this chapter. There’s
nothing complicated about this database and frankly, it’s not really complete. We simply put a
few tables together with some meaningful relationships to show you how to use the dbGo for

ADO components.

dbGo for ADO Components

All the dbGo for ADO components appear on the ADO tab of the Component Palette.

367

ININdoT1anag |\©

isvavivqg

368

Database Development
PArT llI

TADOConnection

TADOConnection encapsulates the ADO connection object. You use this component to connect
to ADO provided data and through which other components hook to ADO data sources. This
component is similar to the TDatabase component for BDE database connections. Similar to
TDatabase, it handles functionality such as login and transactions.

Establishing a Database Connection

You can create a new application if you want or just read on to learn how to establish a data-
base connection. You’ll start with a form containing a TADOConnection component. You must
modify the TADOConnection.ConnectionString property by clicking the ellipsis button on this
property, which launches the ConnectionString Property Editor (see Figure 9.5).

[Forms ADOCommectiont Connectionstring]
Source of Connection
 Use Data Link File
[= | Bowe
' Use Connection Sting
I Buid...

ok I Cancel | Help |

FIGURE 9.5
The TADOConnection.ConnectionString Property Editor.

The ConnectionString contains one or more arguments that ADO requires to establish a con-
nection with the database. The arguments required depend on the type of OLE DB Provider
that you are using.

The ConnectionString Property Editor asks for the connection source from either a Data Link
File (file containing the connection string) or by building the connection string, which you can
later save to a file. You’ve already created a DSN, so you’ll build a connection string that refer-
ences your DSN. Click the Build button to launch the Data Link Properties dialog box (see
Figure 9.6).

The first page in this dialog box allows you to select an OLE DB provider. In this case, you’ll
select Microsoft OLE DB Provider For ODBC Drivers as shown in Figure 9.6. Clicking the
Next button takes you to the Connection Page from which you can select our DSN in the drop-
down list for a Data Source Name (see Figure 9.7).

You didn’t provide any security for your database, so you should be able to click Text
Connection to obtain a successful connection to your database. Click OK twice to return to the
main form. The connection string that results is shown here:

Provider=MSDASQL.1;Persist Security Info=False;Data Source=DdgADOOrders

FIGURE 9.6

Database Development with dbGo for ADO

B Data Link Propetties _.

Pravider | Eonnectionl Advancedl Al I

Select the data you want to connect to;

OLE DB Provider(s]

Microsoft [SAM 1.1 OLE DB Provider
Microsoft Jet 4.0 OLE DB Provider

Microzoft OLE DB Provider for Indexing Service
Microzoft OLE DB Provider for Int Publishing
i ft OLE DB Provider for DDBC Dri
Microsoft OLE DB Provider for OLAP Services
Microsoft OLE DB Provider for Oracle
Microsoft OLE DB Provider for SOL Server
Microzoft OLE DB Simple Provider

Microzoft Project 9.0 OLE DB Provider
MSDataShape

OLE DB Provider for Microsoft Directory Services

MNewt > |

QK I Cancel | Help

The Data Link Properties dialog box.

FIGURE 9.7
Selecting a data source name.

B Data Link Propetties _.

Frovider Connection |Advanced| Al I

Specify the following to connect to ODBC data:
1. Specify the source of data:
& se data source name

j Refresh |

Is Cache32: Samples
Cache32: User
dBASE Files

DdgaAD00rdersSecure
DeluxeCD

ECDCMusic

Excel Files

g FoxPro Files - word

MS Access Database
r Opendir

‘isual FoxPro D atabase
3. Enteq Vizual FoxPro Tables

2. Ente

o

dB ase Files - Word Build..
DdgaD00rders LI

| =
Test Connection |

QK I Cancel | Help

CHAPTER 9

369

ININdoT1anag |\©

jsvavivqg

370

Database Development
PArT llI

Had you used a different OLE DB provider, the connection string would have been completely
different. For instance, had you used the Microsoft Jet 4.0 OLE DB Provider, your connection
string would be the following:

Provider=Microsoft.Jet.OLEDB.4.0;Data Source="C:\Program Files\Delphi '
wDeveloper's Guide\Data\ddgADO.mdb";Persist Security Info=False

At this point, you should be able to connect to our database by setting the TADO
Connection.Connected property to True. You'll be presented with a Login prompt;

simply click OK to connect without entering any login information. The next section

will show you how to bypass this login dialog, or to replace it with your own. The example
shown here is on the CD-ROM under the ADOConnect directory.

Bypassing/Replacing the Login Prompt
To bypass the Login prompt, you simply have to set the TADOConnection.LoginPrompt prop-

erty to False. If there are no login settings, nothing else needs to be done. However, if a user-
name and password are required, you’ll need to do some extra work.

Tip

You can test this by adding a password to the database. You can use Microsoft Access
to do this; however, to add a password, you must open the database exclusively,
which is a setting in the Tools, Options, Advanced Page in Microsoft Access. Otherwise,
you can simply use the ddgADOPW.mdb file provided on the CD-ROM. The password for
this database is ddg—go figure.

For this exercise, we’ve created a new DSN, DdgADOOrdersSecure, which refers to our data-
base, ddgADOPW.mdb. If you’d like to try this example, you must create this DSN.

To bypass the login prompt on a secure database, you must provide a valid username and
password in the ConnectionString. This can be done manually or by invoking the
ConnectionString property editor, adding the correct username and password, and
checking the Allow Saving Password check box (see Figure 9.8).

Now the ConnectionString appears as follows:

Provider=MSDASQL.1;Password=ddg;Persist Security Info=True;
wUser ID=Admin;Data Source=DdgADOOrdersSecure

Note the presence of the password and username (ID). Now, you should be able to set the
Connected property to True while the LoginPrompt property is False.

Database Development with dbGo for ADO

B Data Link Propetties [x|

Frovider Connection |Advanced| Al I

Specify the following to connect to ODBC data:
1. Specify the source of data:

IDdgADDDrdersSecure j Hefreshl

" Use connection string
Connection sting:

| Build... |

2. Enter information to log on to the server

User name: IAdmin

Password: I

[™ Blark password ¥ Allow saving password

3. Enter the initial catalog to use:

| =
Test Connection |

QK I Cancel | Help |

FIGURE 9.8

Adding a username and password to the ConnectionString.

Suppose, however, that you want to provide another login dialog. In this case, you’ll

CHAPTER 9

want to

remove the password from the ConnectionString property and create an event handler for the

TADOConnection.OnWillConnect event such as that shown in Listing 9.1.

LisTING 9.1 o0OnWillConnect Event Handler

371

procedure TFormi.ADOConnectioniWillConnect(Connection: TADOConnection;
var ConnectionString, UserID, Password: WideString;
var ConnectOptions: TConnectOption; var EventStatus: TEventStatus);
var

vUserlID,
vPassword: String;
begin
if InputQuery('Provide User name', 'Enter User name', vUserID) then
if InputQuery('Provide Password', 'Enter Password', vPassword) then
begin
UserID := vUserlID;
Password := vPassword;
end;

end;

ININdoT1anag |\©

jsvavivqg

372

Database Development
PArT llI

This simplified exchange represents the hand off of the username and password. A production
application will likely be slightly more complex.

NoTE

It might seem that the TADOConnection.OnLogin event is where you would provide

a username and password to stay with the TDatabase paradigm. However, the
TADOConnection.OnWillConnnect event wraps the standard ADO event for this pur-
pose. OnLogin is provided to be used by the TDispatchConnection class, which has to
do with providing multitier support.

TADOCommand

The TADOCommand component encapsulates the ADO Command object. This component is used
for executing statements that don’t return resultsets such as Data Definition Language (DDL)
or SQL statements. You would use this component for executing SQL statements such as
INSERT, DELETE, or UPDATE. For instance, you’ll find an example on the CD-ROM under the
directory ADOCommand. This is a simple example that illustrates how to insert and delete a
record from the employee table by using the INSERT and DELETE SQL statements. In the exam-
ple, the TADOCommand . CommandText for the component to insert a record contains the SQL
statement:

DELETE FROM EMPLOYEE WHERE
FirstName='Rob' AND LastName='Smith

The CommandText for the inserting TADOCommand component contains the SQL statement:

INSERT INTO EMPLOYEE (
LastName,
FirstName,
PhoneExt,
HireDate)

VALUES
(
‘Smith',
'Rob',
‘123",
'12/28/1998")

To run the SQL statement, you would invoke the TADOCommand . Execute () method.

Database Development with dbGo for ADO

CHAPTER 9

TADODataset

The TADODataset component retrieves data from one or more tables in a database. This com-
ponent can also run SQL statements that don’t return resultsets and can run user-defined stored
procedures.

Much like the TADOCommand component, TADODataset can execute statements such as INSERT,
DELETE, and UPDATE. However, TADODataset can also retrieve resultsets by issuing the SELECT
statement. The example on the CD-ROM named ADODataset illustrates the use of the
TADODataSet component. This example performs the following SELECT statement against the
database:

SELECT * FROM Customer

This statement returns the entire resultset from the Customer table. You can also use SQL fil-
tering schemes such as the WHERE clause if you need to.

In the example, we’ve connected a TDBNavigator component to the TADODataSet component
to illustrate the ability to edit and navigate the component.

Later in this chapter, we’ll further illustrate the use of TADODataSet in a sample order entry
application.

BDE-Like Dataset Components

The ADO tab in the Component Palette contains three components that have been included to
make transitioning from BDE applications to ADO applications easier. These components are
TADOTable, TADOQuery, and TADOStoredProc. There’s no reason that you can’t use only the
TADODataSet component when developing ADO applications. However, if it makes it easier,
you can use these alternative components that are very similar to their BDE counterparts:
TTable, TQuery, and TStoredProc.

TADOTable

TADOTable is a direct descendant of TCustomADODataSet. TADOTable allows you to work on a
single table in the database. It operates very similar to the BDE TTable component. In fact,
TADOTable adds a drop-down TableName property. Some advantages to a table type of dataset
is that they support indexes. Indexes allow for sorting and quick searching. This is particularly
true with non-SQL databases such as Microsoft Access. However, when using an SQL type of
database, it is best to sort, filter, and so on through the SQL language. To find out more about
table-type datasets, look up “Overview of ADO components” in the Delphi online help.

373

ININdoT1anag |\©

jsvavivqg

Database Development
PArT llI

374

CAUTION

According to the Delphi online help, one of the advantages for using table-
type datasets is the ease in emptying tables. The example given uses the
TCustomADODataSet.DeleteRecords () method as the means to do this. However,
a problem exists in the ADO RecordSet object that prevents this from working.
In fact, a call to

TCustomADODataSet.Supports([coDelete])
will return True, yet the DeleteRecords () call will still fail with an exception.
Therefore, to empty a table, you must use a DELETE FROM TableName statement, or
you must loop through each record and delete it individually.

The example on the CD-ROM, ADOTableIndex, illustrates the use of the TADOTable component
with an index. Additionally, it illustrates how to perform a search on the table using the
TADOTable.Locate () function. Listing 9.2 shows partial source for this demo.

LISTING 9.2 Using the TADOTable Component

procedure TForml.FormCreate(Sender: TObject);
var
i: integer;
begin
adotblCustomer.Open;
for i := 0 to adotblCustomer.FieldCount - 1 do
ListBox1.Items.Add(adotblCustomer.Fields[i].FieldName);
end;

procedure TFormi.ListBox1Click(Sender: TObject);
begin

adotblCustomer.IndexFieldNames := ListBox1.Items[ListBox1.ItemIndex];
end;

procedure TFormi.ButtoniClick(Sender: TObject);
begin

adotblCustomer.Locate('Company', Edit1.Text, [loPartialKey]);
end;

In the FormCreate () event handler, you open the table and populate a TListBox control
with all the table’s field names. Then, in the TListBox.0OnClick event handler, you set the
TADOTable.IndexFieldName property to the field name on which we want to sort out table.

Database Development with dbGo for ADO

CHAPTER 9

Finally, the Button1Click () event illustrates performing a search on the table using the
Locate () method.

TADOTable is useful for those accustomed to using a TTable component. However, when using
SQL databases, it is more efficient to use either the TADODataSet or TADOQuery components.

TADOQuery

TADOQuery, also a descendant of TCustomADODataSet, is very similar to TADODataSet. TADOQuery
has a SQL property into which you would place your SQL statement. On the TADODataSet
component, this would go in the CommandText property as long as TADODataSet.CommandType
is set to cmdText.

We won’t cover this component in great depth because most everything that applies to the
TADODataSet component also applies to TADOQuery.

TADOStoredProc

The TADOStoredProc component allows you to use a stored procedure that exists on a database
server. This is no different from using the TADOCommand component with its CommandType prop-
erty set to cmdStoredProc. Its use is pretty much the same as TStoredProc discussed in
Chapter 29, “Developing Client/Server Applications” of Delphi 5 Developer’s Guide, which
you’ll find on the CD-ROM.

Transaction Processing

ADO supports transaction processing, and this is handled through the TADOConnection compo-
nent. As an example, the code in Listing 9.3 is taken from our simple order entry application.

LisTING 9.3 Transaction Processing with TADOConnection

375

procedure TMainForm.ButtoniClick(Sender: TObject);
begin
if TNewOrderForm.Execute then
begin
ADOConnectioni.BeginTrans;
try
// First Create an Orders Record
adodsOrders.Insert;
adodsOrders.FieldByName('CustNo').Value :=
adodsCustomer.FieldByName('CustNo').Value;
adodsOrders.FieldByName('EmpNo').Value :=
adodsEmployee.FieldByName('EmpNo').Value;
adodsOrders.FieldByName('Date').Value := Date;

ININdoT1anag |\©

jsvavivqg

376 Database Development

PArT 11l

LisTING 9.3 Continued

ShowMessage (IntToStr(adodsOrders.FieldByName('OrderNo').AsInteger));
adodsOrders.Post;

// Now create the Order Line Items.

cdsPartList.First;
while not cdsPartList.Eof do
begin
adocmdInsertOrderItem.Parameters.ParamByName('iOrderNo').Value :=
adodsOrders.FieldByName('OrderNo').Value;
adocmdInsertOrderItem.Parameters.ParamByName('iPartNo').Value :=
cdsPartListPartNo.Value;
adocmdInsertOrderItem.Execute;
cdsPartList.Next;
end;
adodsOrderItemList.Requery([]);
ADOConnectioni.CommitTrans;
cdsPartList.EmptyDataSet;
except
ADOConnectioni.RollbackTrans;
raise;
end;
end;
end;

The method in Listing 9.3 is responsible for creating a customer order. There are two parts to
this transaction. First, the order record must be created in the Order table. Second, the order
line items must be added to the Orderltem table. Because there are two table updates, it makes
sense to place this into a single transaction.

Here is a skeleton of our transaction:

begin
ADOConnectioni.BeginTrans;
try
// First Create an Orders Record
// Now create the Order Line Items.
ADOConnectioni.CommitTrans;
except
ADOConnectioni1.RollbackTrans;
raise;
end;
end;
end;

Database Development with dbGo for ADO

CHAPTER 9

You’ll see that we encapsulate our transaction inside of a try. ..except block. ADO
Connectioni.BeginTrans() method starts the transaction. The ADOConnectioni.Commit
Trans () method commits the transaction. If there are any failures, an exception occurs and the
ADOConnectioni.RollbackTrans() method will roll back any changes that were made to any

tables.

Summary

This chapter got you started working with Borland’s dbGo for ADO components. These com-
ponents give you the ability to use Microsoft’s ADO technology for accessing both relational
and non-relational data.

377

ININdoT1anag |\©

jsvavivqg

PART

Component-Based
Development

IN

10
1
12
13
14
15
16
17

THIS PART

Component Architecture: VCL and CLX 381
VCL Component Building 429

Advanced VCL Component Building 489
CLX Component Development 563
Packages to the Max 625

COM Development 653

Windows Shell Programming 747

Using the Open Tools API 835

Component Architecture: VCL CHAPTER
and CLX

IN THIS CHAPTER

e More on the New CLX 383

e What Is a Component? 383

e Component Hierarchy 384

e The Component Structure 387

¢ The Visual Component Hierarchy 394

¢ Runtime Type Information 403

382

Component-Based Development
PART IV

Few will recall Borland’s first Object Windows Library (OWL), which was introduced with
Turbo Pascal for Windows. OWL ushered in a drastic simplification over traditional Windows
programming. OWL objects automated and streamlined many tedious tasks you otherwise were
required to code yourself. No longer did you have to write huge case statements to capture mes-
sages or big chunks of code to manage Windows classes; OWL did this for you. On the other
hand, you had to learn a new programming methodology—object-oriented programming.

Then, with Delphi 1, Borland introduced Visual Component Library (VCL). The VCL was
based on an object model similar to OWL’s in principle but radically different in implementa-
tion. The VCL in Delphi 6 is pretty much the same as its predecessors in all previous versions
of Delphi.

With Delphi 6, Borland, once again, introduced a new technology, Component Library for Cross-
Platform (CLX). According to Borland, CLX is “the next-generation component library and
framework for developing native Linux and Windows applications and reusable components.”

Both the VCL and CLX are designed specifically to work within Delphi’s visual environment.
Instead of creating a window or dialog box and adding its behavior in code, you modify the
behavioral and visual characteristics of components as you design your program visually.

The level of knowledge required about the VCL/CLX really depends on how you use them.
First, you must realize that there are two types of Delphi developers: applications developers
and visual component writers. Applications developers create complete applications by inter-
acting with the Delphi visual environment (a concept nonexistent in many other frameworks).
These people use the VCL/CLX to create their GUI and other elements of their application
such as database connectivity. Component writers, on the other hand, expand the existing
VCL/CLX by developing more components. Such components are made available through
third-party companies.

Whether you plan to create applications with Delphi or to create Delphi components, under-
standing the VCL/CLX is essential. An applications developer should know which properties,
events, and methods are available for each component. Additionally, it’s advantageous to fully
understand the object model inherent in a Delphi application that’s provided by the VCL/CLX.
A common problem we see with Delphi developers is that they tend to fight the tool—a symp-
tom of not understanding it completely. Component writers take this knowledge one step fur-
ther to determine whether to write a new component or to extend an existing one by knowing
how VCL/CLX works internally: how they handle messages, notifications, component owner-
ship, parenting/ownership issues, property editors, and so on.

This chapter introduces you to the VCL/CLX. It discusses the component hierarchy and
explains the purpose of the key levels within the hierarchy. It also discusses the purposes of the
common properties, methods, and events that appear at the different component levels. Finally,
we complete this chapter by covering Runtime Type Information (RTTI).

Component Architecture: VCL and CLX

CHAPTER 10

More on the New CLX

CLX, the new cross platform library, is actually composed of four pieces. These are explained
in Table 10.1.

TaBLE 10.1 CLX Parts (from Delphi 6 Online Help)

Part Description

Visual CLX Native cross-platform GUI components and graphics. The components
in this area might differ on Linux and Windows.

DataCLX Client data-access components. The components in this area are a sub-
set of the local, client/server, and n-tier based on client datasets. The
code is the same on Linux and Windows.

NetCLX Internet components including Apache DSO and CGI Web Broker.
These are the same on Linux and Windows.

RTL Runtime Library up to and including Classes.pas. The code is the same
on Linux and Windows. Under Linux, this file is BaseRTL.

Visual CLX sits on top of the Qt framework from Trolltech. Qt is pronounced “cute” by most
people, although Trolltech will tell you that it’s pronounced “kyu-tee.” This framework cur-
rently runs under Linux and Windows. VisualCLX is discussed in this chapter, and we cover
the other CLX elements in other chapters.

What Is a Component?

Components are the building blocks developers use to design the user interface and provide
some non-visual capability to their applications. As far as applications developers are con-
cerned, a component is something developers get from the Component Palette and place on
their forms. From there, they can manipulate the various properties and add event handlers to
give the component a specific appearance or behavior. From the perspective of a component
writer, components are objects in Object Pascal code. These objects can encapsulate the behav-
ior of elements provided by the system (such as the standard Windows controls). Other objects
can introduce entirely new visual or non-visual elements; in which case a component’s code
makes up the entire behavior of the component.

The complexity of components varies widely. Some components are simple; others encapsulate
elaborate tasks. There’s no limit to what a component can do or be made up of. You can have a
simple component such as a TLabel, or you can have a much more complex component that
encapsulates the complete functionality of a spreadsheet.

383

XT1D GNV DA |

UNLIALIHYY |
1N3INOdINOD

Component-Based Development
PART IV

384

The key to understanding the VCL/CLX is to know what types of components exist. You
should understand the common elements of components. You should also understand the com-
ponent hierarchy and the purpose of each level within the hierarchy. The following sections
provide this information.

Component Hierarchy

Figures 10.1 and 10.2 show the VCL and CLX hierarchies, respectively. You’ll see that there
are many similarities between both the VCL and CLX.

TObject
|
| NS Frrr——1—
TPersistent : TRegistry TList : : TComObject :
|1
- F—= I_ I p— : Nonstreamable Classes | | I !
| - . - | | TTypedComObject :
|| TGraphicsObject TStrings : | [|
| |
| o i |
: I I I7c omp:on S | TAutoObject |
| TFont TStringList | === : | I
| ; |
: Streamable Classes | : TActiveXControl |
______________ - | Automation and :
] i . ,———1 ————— 4——19_“"_@@"3@'1__'
! TControl ! | I
: : || TDataSource | TTimer |
|
| L Il Nonvisual Components |
| - - - - - - - - T-T-T-TT
: r— |- A }
| : TGraphicControl : | : |
I | : | :
|
| : TBevel : | | R i] : :
: : o : : TCustomEdit | TCustomControl : I
I h
I 1 ! | | I
|
: : TLabel : : TEdit | | TMediaPlayer TCustomPanel : I
I h
: | Do Not Receive Input | : | [: I
| :Focus : | Use aWindow | TPanel | : |
| |Custom Paint Method || Handle and | custom Paint Method Iy :
| | with Canvas 1! Receive Input | with Canvas]l I
fo==————— == “\Focus T TTTTTTTTTTTTTTTTT I
| Visual Components ___ _ —~ ~ - - --------ZZIZIZ-C"C"C"C"C"CZ)

FiGure 10.1
The VCL hierarchy.

Two types of components exist: nonvisual and visual.

Component Architecture: VCL and CLX 385

CHAPTER 10

TObject
|
[S R 177
TPersistent |~ TCustomlIniFile TList |
| |
I | |
r————f——————— - _i | Nonstreamable Classes |
: TGraphicsObject TStrings | TComponent
|
T N
| TFont TStringList :
|
I I r—r] - = ——
|
i i | TDataSource
|
: TControl : |
|
| |
| || Nonvisual Components __ _______
N s [|
| TorpoGomel] | 77T T T T T mmmbamoT T T I
i tro
: : O e || TWidgetControl | :
| |
11 | o __h
I [T 1 I
I ' :::
| : LS : : TCustomEdit TFrameControl : TCustomControl : : :
: Do Not Receive Input | : | I | I : |
| Focus I Tt TCustomLabel | | TCustomPanel i
ICustom Paint Method | | I | I | :
IwIith Canvas | | i | 11
: —————————— | Use a Window TLabel | TPanel L
| : ;’a"‘?’e “;"d : ustom Paint Method ! : |
| ecelve Inpu with Canvas _! | :
4
|

Ficure 10.2
The CLX hierarchy.

Nonvisual Components

Nonvisual components aren’t visible to the end user. These components encapsulate behavior
and allow the developer to modify certain characteristics of that component through the Object
Inspector at design time by modifying its properties and providing event handlers for its
events. Examples of such components are TOpenDialog, TTable, and TTimer. As Figures 10.1
and 10.2 indicate, these nonvisual components descend directly from TComponent.

Visual Components

Visual components, as the name implies, are components that the end user sees. Visual compo-
nents add visibility and behavior, but not necessarily interaction. These components directly
descend from TControl. In fact, TControl is the class that introduces properties and methods
that have to do with visibility such as Top, Left, Color, and so forth.

XT1D GNV DA |

UNLIALIHYY |
1N3INOdINOD

386

Component-Based Development
PART IV

NoTE

You'll often see the terms component and control used interchangeably, although
they're not always the same. A control refers to a visual user-interface element. In
Delphi, controls are always components because they descend from the TComponent
class. Components are the objects whose basic behavior allows them to appear on the
Component Palette and be manipulated in the form designer. Components are of the
type TComponent and aren’t always controls—that is, they aren’t always visual user-
interface elements.

Visual components come in two flavors—those that can have focus and those that cannot.

Visible Controls That Gain Focus

Certain types of controls gain user focus. By this, we mean that the user can manipulate such
controls. These types of controls are descendants of TWinControl (VCL) or TWidgetControl
(CLX). TwinControl descendants are wrappers around Windows controls, whereas
TwidgetControl descendants are wrappers around Qt screen objects. Characteristics of
these controls are as follows:

* They can get focus and do things such as handle keyboard events.
* The user can interact with them.

* They can be containers (parents) to other controls.
* They have an associated handle (VCL) or widget (CLX).

NoTE

Both TwinControl and TWidgetControl have a property named Handle.
TWinControl's Handle refers to the underlying Windows Handle for the control.
TWidgetControl's Handle refers to the underlying Qt object pointer (widget). Both
are named Handle for backward compatibility and cross compilation between CLX
and VCL applications.

In Chapters 11-14, you’ll learn much more about TWinControls and TWidgetControls as you
learn how to create components for both VCL and CLX.

Component Architecture: VCL and CLX
CHAPTER 10

Handles

Handles are 32-bit numbers issued by Win32 that refer to certain object instances.
The term objects here refers to Win32 objects, not Delphi objects. There are different
types of objects under Win32: kernel objects, user objects, and GDI objects. Kernel
objects apply to items such as events, file-mapping objects, and processes. User
objects refer to window objects such as edit controls, list boxes, and buttons. GDI
objects refer to bitmaps, brushes, fonts, and so on.

In the Win32 environment, every window has a unique handle. Many Windows API
functions require a handle so that they know the window on which they are to per-
form the operation. Delphi encapsulates much of the Win32 API and performs handle
management. If you want to use a Windows API function that requires a window
handle, you must use descendants of TWinControl and TCustomControl, which both
have a Handle property.

Visible Controls That Do Not Gain Focus

Other controls, although visible, don’tave the same characteristics as Windowed controls.
These controls are for visibility only and are frequently referred to as graphical controls,
which descend directly from TGraphicControl (see Figures 10.1 and 10.2).

Unlike windowed controls, graphical controls don’t receive the input focus from the user. They
are useful when you want to display something to the user but don’t want the component to
use up resources such as windowed controls. Graphical controls don’t use Windows resources
because they require no window handle (or CLX Gadget), which is also the reason they can’t
get focus. Examples of graphical controls are TLabel and TShape. Such controls can’t serve as
containers either; that is, they can’t parent other controls placed on top of them. Other exam-
ples of graphical controls are TImage, TBevel, and TPaintBox.

The Component Structure

As we mentioned earlier, components are Object Pascal classes that encapsulate the functional-
ity and behavior of elements developers use to add visual and behavioral characteristics to their
programs. All components have a certain structure. The following sections discuss the makeup
of Delphi components.

NoTEe

387

Understand the distinction between a component and a class. A component is a class
that can be manipulated within the Delphi environment. A class is an Object Pascal
structure, as explained in Chapter 2, “The Object Pascal Language.”

XT1D GNV DA |

UNLIALIHYY |
1N3INOdINOD

388

Component-Based Development
PART IV

Properties

Chapter 2 introduced you to properties. Properties give the user an interface to a component’s
internal storage fields. Using properties, the component user can modify or read storage field
values. Typically, the user doesn’t have direct access to component storage fields because
they’re declared in the private section of a component’s class definition.

Properties: Storage Field Accessors
Properties provide access to storage fields by either accessing the storage fields directly or
through access methods. Take a look at the following property definition:

TCustomEdit = class(TWinControl)
private
FMaxLength: Integer;
protected
procedure SetMaxLength(Value: Integer);

published

property MaxLength: Integer read FMaxLength write SetMaxLength default 0;
end;
The property MaxLength is the access to the storage field FMaxLength. The parts of a property
definition consist of the property name, the property type, a read declaration, a write declara-
tion, and an optional default value. The read declaration specifies how the component’s stor-
age fields are read. The MaxLength property directly reads the value from the FMaxLength
storage field. The write declaration specifies the method by which the storage fields are
assigned values. For the property MaxLength, the writer access method SetMaxLength() is used
to assign the value to the storage field FMaxLength. A property can also contain a reader access
method; in which case the MaxLength property would be declared as this:

property MaxLength: Integer read GetMaxLength write SetMaxLength default 0;
The reader access method GetMaxLength() would be declared as follows:

function GetMaxLength: Integer;

Property Access Methods

Access methods take a single parameter of the same type as the property. The purpose of the
writer access method is to assign the value of the parameter to the internal storage field to
which the property refers. The reason for using the method layer to assign values is to protect
the storage field from receiving erroneous data as well as to perform various side effects, if
required. For example, examine the implementation of the following SetMaxLength () method:

Component Architecture: VCL and CLX

CHAPTER 10

procedure TCustomEdit.SetMaxLength(Value: Integer);
begin
if FMaxLength <> Value then
begin
FMaxLength := Value;
if HandleAllocated then SendMessage(Handle, EM_LIMITTEXT, Value, 0);
end;
end;

This method first checks to verify that the component user isn’t attempting to assign the same
value as that which the property already holds. If not, it makes the assignment to the internal
storage field FMaxLength and then calls the SendMessage () function to pass the EM_LIMITTEXT
Windows message to the window that the TCustomEdit encapsulates. This message limits the
amount of text that a user can enter into an edit control. Calling SendMessage () in the prop-
erty’s writer access method is known as a side effect when assigning property values.

Side effects are any actions affected by the assignment of a value to a property. In assigning a
value to the MaxLength property of TCustomEdit, the side effect is that the encapsulated edit
control is given an entry limit. Side effects can be much more sophisticated than this.

One key advantage to providing access to a component’s internal storage fields through proper-
ties is that the component writer can change the implementation of the field access without
affecting the behavior for the component user.

A reader access method, for example, can change the type of the returned value to something
different from the type of the storage field to which the property refers.

Another fundamental reason for the use of properties is to make modifications available to
them during design time. When a property appears in the published section of a component’s
declaration, it also appears in the Object Inspector so that the component user can make modi-
fications to this property.

You learn more about properties and how to create them and their access methods in Chapters
11, “VCL Component Building,” and 13, “CLX Component Development,” for VCL and CLX,
respectively.

Types of Properties

The standard rules that apply to Object Pascal data types apply to properties as well. The
important point about properties is that their types also determine how they’re edited in the
Object Inspector. Properties can be of the types shown in Table 10.2. For more detailed infor-
mation, look up “properties” in the online help.

389

XT1D GNV DA |

UNLIALIHYY |

1N3INOdINOD

390

Component-Based Development
PART IV

TaBLE 10.2 Property Types

Property Type Object Inspector Treatment

Simple Numeric, character, and string properties appear in the Object Inspector
as numbers, characters, and strings, respectively. The user can type and
edit the value of the property directly.

Enumerated Properties of enumerated types (including Boolean) display the value
as defined in the source code. The user can cycle through the possible
values by double-clicking the Value column. There’s also a drop-down
list that shows all possible values of the enumerated type.

Set Properties of set types appear in the Object Inspector grouped as a set.
By expanding the set, the user can treat each element of the set as a
Boolean value: True if the element is included in the set and False if
it’s not included.

Object Properties that are themselves objects often have their own property
editors. However, if the object that’s a property also has published
properties, the Object Inspector allows the user to expand the list of
object properties and edit them individually. Object properties must
descend from TPersistent.

Array Array properties must have their own property editors. The Object
Inspector has no built-in support for editing array properties.

Methods

Because components are objects, they can therefore have methods. You’ve already seen infor-
mation on object methods in Chapter 2 (that information is not repeated here). The later sec-
tion “The Visual Component Hierarchy” describes some of the key methods of the different
component levels in the component hierarchy.

Events

Events are occurrences of an action, typically a system action such as a button control click or
a keypress on a keyboard. Components contain special properties called events; component
users can plug code into the event (called event handlers) that executes when the event is
invoked.

Plugging Code into Events at Design Time

If you look at the events page of a TEdit component, you’ll find events such as OnChange,
OnClick, and OnDb1Click. To component writers, events are really pointers to methods. When
users of a component assign code to an event, they create an event handler. For example, when

Component Architecture: VCL and CLX 391

CHAPTER 10

you double-click an event in the Object Inspector’s events page for a component, Delphi gener-
ates a method to which you add your code, such as the following code for the OnClick event of
a TButton component:

TForm1 = class(TForm)

Buttoni: Tbutton;

procedure ButtoniClick(Sender: TObject);
end;

procedure TForm1.ButtoniClick(Sender: TObject);
begin

{ Event code goes here }
end;

This code is generated by Delphi.

Plugging Code into Events at Runtime

It becomes clear how events are method pointers when you assign an event handler to an event
programmatically. For example, to link your own event handler to an OnClick event of a
TButton component, you first declare and define the method you intend to assign to the but-
ton’s OnClick event. This method might belong to the form that owns the TButton component,
as shown here:

TForm1 = class(TForm)
Buttoni: TButton;

private
MyOnClickEvent (Sender: TObject); // Your method declaration
end;

{ Your method definition below }
procedure TForm1.MyOnClickEvent(Sender: TObject);
begin
{ Your code goes here }
end;

The preceding example shows a user-defined method called MyOnClickEvent () that serves as
the event handler for Button1.0nClick. The following line shows how you assign this method
to the Button1.0nClick event in code, which is usually done in the form’s OnCreate event
handler:

procedure TForml.FormCreate(Sender: TObject);
begin ﬁ
Button1.0nClick := MyOnClickEvent; -
end; E
o
(@)
-
X

UNLIALIHYY |

1N3INOdINOD

392

Component-Based Development
PART IV

This technique can be used to add different event handlers to events, based on various condi-
tions in your code. Additionally, you can disable an event handler from an event by assigning
nil to the event, as shown here:

Buttoni.0nClick := nil;

Assigning event handlers at runtime is essentially what happens when you create an event han-
dler through Delphi’s Object Inspector—except that Delphi generates the method declaration.
You can’t just assign any method to a particular event handler. Because event properties are
method pointers, they have specific method signatures, depending on the type of event. For
example, an OnMouseDown method is of the type TMouseEvent, a procedure definition shown
here:

TMouseEvent = procedure (Sender: TObject; Button: TMouseButton; Shift:
TShiftState; X, Y: Integer) of object;

Therefore, the methods that become event handlers for certain events must follow the same sig-
nature as the event types. They must contain the same type, number, and order of parameters.

Earlier, we said that events are properties. Similar to data properties, events refer to private
data fields of a component. This data field is of the procedure type, such as TMouseEvent.
Examine this code:

TControl = class(TComponent)
private
FOnMouseDown: TMouseEvent;
protected
property OnMouseDown: TMouseEvent read FOnMouseDown write FOnMouseDown;
public
end;

Recall the discussion of properties and how they refer to private data fields of a component.
You can see how events, being properties, refer to private method pointer fields of a compo-
nent.

You learn more about creating events and event handlers in Chapters 11 and 13.

Streamability

One characteristic of components is that they must have the capability to be streamed.
Streaming is a way to store a component and information regarding its properties’ values to a
file. Delphi’s streaming capabilities take care of all this for you. In fact, the DFM file created
by Delphi is nothing more than a resource file containing the streamed information on the form
and its components as an RCDATA resource. As a component writer, however, you must some-
times go beyond what Delphi can do automatically. The streaming mechanism of Delphi is
explained in greater depth in Chapter 12, “Advanced VCL Component Building.”

Component Architecture: VCL and CLX

CHAPTER 10

Ownership

Components have the capability of owning other components. A component’s owner is speci-
fied by its Owner property. When a component owns other components, it’s responsible for
freeing the components it owns when it’s destroyed. Typically, the form owns all components
that appear on it. When you place a component on a form in the form designer, the form auto-
matically becomes the component’s owner. When you create a component at runtime, you
must pass the ownership of the component to the component’s Create constructor; it’s
assigned to the new component’s Owner property. The following line shows how to pass the
form’s implicit Self variable to a TButton.Create () constructor, thus making the form the
owner of the newly created component:

MyButton := TButton.Create(self);

When the form is destroyed, the TButton instance to which MyButton refers is also destroyed.
This is handled internally in the VCL. Essentially, the form iterates through the components
referred to by its Components array property (explained in more detail shortly) and destroys
them.

It’s possible to create a component without an owner by passing nil to the component’s
Create () method. However, when this is done, it’s your responsibility to destroy the compo-
nent programmatically. The following code shows this technique:

MyTable := TTable.Create(nil)
try

{ Do stuff with MyTable }
finally

MyTable.Free;
end;

When using this technique, you should use a try..finally block to ensure that you free up
any allocated resources if an exception is raised. You wouldn’t use this technique except in
specific circumstances when it’s impossible to pass an owner to the component.

Another property associated with ownership is the Components property. The Components
property is an array property that maintains a list of all components belonging to a component.
For example, to loop through all the components on a form to show their classnames, execute
the following code:

var
i: integer;
begin
for i := @ to ComponentCount - 1 do
ShowMessage (Components[i].ClassName);
end;

393

XT1D GNV DA |

UNLIALIHYY |

1N3INOdINOD

394

Component-Based Development
PART IV

Obviously, you’ll probably perform a more meaningful operation on these components. The
preceding code merely illustrates the technique.

Parenthood

Not to be confused with ownership is the concept of parenthood. Components can be parents
to other components. Only windowed components such as TWinControl and TWidgetControl
descendants can serve as parents to other components. Parent components are responsible for
calling the child component methods to force them to draw themselves. Parent components are
responsible for the proper painting of child components. A component’s parent is specified
through its Parent property.

A component’s parent doesn’t necessarily have to be its owner. It’s perfectly legal for a compo-
nent to have different parents and owners.

The Visual Component Hierarchy

Remember from Chapter 2 that the abstract class TObject is the base class from which all
classes descend (see Figures 10.1 and 10.2).

As a component writer, you don’t descend your components directly from TObject. The VCL
already has TObject class descendants from which your new components can be derived.
These existing classes provide much of the functionality you require for your own components.
Only when you create noncomponent classes do your classes descend from TObject.

TObject’s Create() and Destroy() methods are responsible for allocating and deallocating
memory for an object instance. In fact, the TObject.Create() constructor returns a reference
to the object being created. TObject has several functions that return useful information about
a specific object.

The VCL uses most of TObject’s methods internally. You can obtain useful information about
an instance of a TObject or TObject descendant such as the instance’s class type, classname,
and ancestor classes.

CAUTION

Use TObject.Free instead of TObject.Destroy. The free method calls destroy for
you but first checks to see whether the object is nil before calling destroy. This
method ensures that you won't generate an exception by attempting to destroy an
invalid object.

Component Architecture: VCL and CLX 395

CHAPTER 10

The TPersistent Class

The TPersistent class descends directly from TObject. The special characteristic of
TPersistent is that objects descending from it can read their properties from and write them
to a stream after they’re created. Because all components are descendants of TPersistent,
they are all streamable. TPersistent defines no special properties or events, although it does
define some methods that are useful to both the component user and writer.

TPersistent Methods

Table 10.3 lists some methods of interest defined by the TPersistent class.

TaBLE 10.3 Methods of the TPersistent Class

Method Purpose

Assign() This public method allows a component to assign to itself the
data associated with another component.

AssignTo() This protected method is where TPersistent descendants
must implement the VCL definition for AssignTo().
TPersistent raises an exception when this method is called.
AssignTo() is where a component can assign its data values
to another instance or class—the reverse of Assign().

DefineProperties() This protected method allows component writers to define
how the component stores extra or unpublished properties.
This method is typically used to provide a way for a compo-
nent to store data that’s not of a simple data type, such as
binary data.

The streamability of components is described in greater depth in Chapter 12, “Working with
Files,” from Delphi 5 Developer’s Guide on the CD-ROM. For now, it’s enough to know that
components can be stored and retrieved from a disk file by means of streaming.

The TComponent Class

The TComponent class descends directly from TPersistent. TComponent’s special characteris-
tics are that its properties can be manipulated at design time through the Object Inspector and
that it can own other components.

Nonvisual components also descend from TComponent so that they inherit the capability to be
manipulated at design time. A good example of a nonvisual TComponent descendant is the
TTimer component. TTimer components aren’t visual controls, but they are still available on
the Component Palette.

XT1D GNV DA |

UNLIALIHYY |

1N3INOdINOD

396

Component-Based Development
PART IV

TComponent defines several properties and methods of interest, as described in the following
sections.

TComponent Properties
The properties defined by TComponent and their purposes are shown in Table 10.4.

TAaBLE 10.4 The Special Properties of TComponent

Property Name Purpose

Oowner Points to the component’s owner.

ComponentCount Holds the number of components that the component owns.
ComponentIndex The position of this component in its owner’s list of components.

The first component in this list has the value 0.

Components A property array containing a list of components owned by this
component. The first component in this list has the value .

ComponentState This property holds the current state of a component of the type
TComponentState. Additional information about TComponentState
can be found in the online help and in Chapter 11.

ComponentStyle Governs various behavioral characteristics of the component.
csInheritable and csCheckPropAvail are two values that can be
assigned to this property; both values are explained in the online

help.
Name Holds the name of a component.
Tag An integer property that has no defined meaning. This property

shouldn’t be used by component writers—it’s intended to be used
by application writers. Because this value is an integer type, point-
ers to data structures—or even object instances—can be referred
to by this property.

DesignInfo Used by the form designer. Do not access this property.

TComponent Methods
TComponent defines several methods having to do with its capacity to own other components
and to be manipulated on the form designer.

TComponent defines the component’s Create () constructor, which was discussed earlier in this
chapter. This constructor is responsible for creating an instance of the component and giving it an
owner based on the parameter passed to it. Unlike TObject.Create(), TComponent.Create() is
virtual. Tcomponent descendants that implement a constructor must declare the Create()
constructor with the override directive. Although you can declare other constructors on a

Component Architecture: VCL and CLX

CHAPTER 10

component class, TComponent.Create() is the only constructor VCL will use to create an
instance of the class at design time and at runtime when loading the component from a stream.

The TComponent.Destroy () destructor is responsible for freeing the component and any
resources allocated by the component.

The TComponent.Destroying() method is responsible for setting a component and its owned
components to a state indicating that they are being destroyed; the TComponent.Destroy
Components () method is responsible for destroying the components. You probably won’t have
to deal with these methods.

The TComponent.FindComponent () method is handy when you want to refer to a component
for which you know only the name. Suppose you know that the main form has a TEdit compo-
nent named Edit1. When you don’t have a reference to this component, you can retrieve a
pointer to its instance by executing the following code:

EditInstance := FindComponent. ('Edit1"');

In this example, EditInstance is a TEdit type. FindComponent () will return nil if the name
doesn’t exist.

The TComponent.GetParentComponent () method retrieves an instance to the component’s par-
ent component. This method can return nil if there is no parent to a component.

The TComponent.HasParent () method returns a Boolean value indicating whether the compo-
nent has a parent component. Note that this method doesn’t refer to whether this component
has an owner.

The TComponent.InsertComponent () method adds a component so that it’s owned by the call-
ing component; TComponent.RemoveComponent () removes an owned component from the calling
component. You wouldn’t normally use these methods because they’re called automatically by
the component’s Create () constructor and Destroy () destructor.

The TControl Class

The TControl class defines many properties, methods, and events commonly used by visual
components. For example, TControl introduces the capability for a control to display itself.
The TControl class includes position properties such as Top and Left as well as size properties
such as Width and Height, which hold the horizontal and vertical sizes. Other properties
include ClientRect, ClientWidth, and ClientHeight.

TControl also introduces properties regarding appearances and accessibility, such as Visible,
Enabled, and Color. You can even specify a font for the text of a TControl through its Font
property. This text is provided through the TControl properties Text and Caption.

397

XT1D GNV DA |

UNLIALIHYY |

1N3INOdINOD

398

Component-Based Development
PART IV

TControl also introduces some standard events, such as the mouse events OnClick,
OnDblClick, OnMouseDown, OnMouseMove, and OnMouseUp. It also introduces drag events
such as onDragOver, OnDragDrop, and OnEndDrag.

TControl isn’t very useful at the TControl level. You’ll never create descendants of TControl.

Another concept introduced by TControl is that it can have a parent component. Although
TControl might have a parent, its parent must be a TWinControl (VCL) or a TWidgetControl
(CLX). Parent controls must be windowed controls. The TControl introduces the Parent

property.

Most of Delphi’s controls are derived from TControl’s descendants: TWinControl and
TWidgetControl.

The TWinControl and TWidgetControl

Standard controls descend from the classes TWinControl for VCL controls and TWidgetControl
for CLX controls. These controls are the user-interface objects you see in most applications.
Items such as edit controls, list boxes, combo boxes, and buttons are examples of these con-
trols. Because Delphi encapsulates the behavior of standard controls instead of using Windows
or Qt API level functions to manipulate them, you use the properties provided by each of the
various control components.

The three basic characteristics of these controls are that they have a Windows handle, can
receive input focus, and can be parents to other controls. CLX controls don’t have a window
handle; rather, they have an object pointer that accomplished the same thing. You’ll find that
the properties, methods, and events belonging to these controls support focus changing, key-
board events, drawing of controls, and other necessary functions.

An applications developer primarily uses TWinControl/TWidgetControl descendants. A com-
ponent writer must understand these controls and their descendants in much greater depth.

TWinControl/TWidgetControl Properties

TWinControl and TWidgetControl define several properties applicable to changing the focus
and appearance of the control. In the remaining text, we’ll refer only to TWinControl although
it will also be applicable to TWidgetControl.

The TWinControl.Brush property is used to draw the patterns and shapes of the control (See
Chapter 8, “Graphics Programming with GDI and Fonts,” in Delphi 5 Developer’s Guide on
this book’s CD-ROM.)

TWinControl.Controls is an array property that maintains a list of all controls to which the
calling TWinControl is a parent.

Component Architecture: VCL and CLX 399

CHAPTER 10

The TWinControl.ControlCount property holds the count of controls to which it is a parent.

TWinControl.Ct13D is a property that specifies whether to draw the control using a three-
dimensional appearance.

The TwinControl.Handle property corresponds to the handle of the Windows object that the
TWinControl encapsulates. This is the handle you would pass to Win32 API functions requir-
ing a window handle parameter.

TWinControl.HelpContext holds a help context number that corresponds to a help screen in a
help file. This is used to provide context-sensitive help for individual controls.

TWinControl.Showing indicates whether a control is visible.

The TwinControl.TabStop property holds a Boolean value to determine whether a user can
tab to the said control. The TWinControl.TabOrder property specifies where in the parent’s list
of tabbed controls the control exists.

TWinControl Methods

The TWinControl component also offers several methods that have to do with window creation,
focus control, event dispatching, and positioning. There are too many methods to discuss in
depth in this chapter; however, they’re all documented in Delphi’s online help. We’ll list only
those methods of particular interest in the following paragraphs.

Methods that relate to window creation, re-creation, and destruction apply mainly to component
writers and are discussed in Chapter 11. These methods are CreateParams(), CreateWnd(),
CreateWindowHandle (), DestroyWnd(), DestroyWindowHandle (), and RecreateWnd() for
VCL. For CLX’s TWidgetControl, these methods are CreateWidget (), DestroyWidget(),
CreateHandle (), and DestroyHandle().

Methods having to do with window focusing, positioning, and alignment are CanFocus (),
Focused(), AlignControls(), EnableAlign(), DisableAlign(), and ReAlign().

TWinControl Events

TWinControl introduces events for keyboard interaction and focus change. Keyboard events
are OnKeyDown, OnKeyPress, and OnKeyUp. Focus-change events are OnEnter and OnExit. All
these events are documented in Delphi’s online help.

The TGraphicControl Class

TGraphicControls, unlike TWinControls, don’t have a window handle and therefore can’t
receive input focus. They also can’t be parents to other controls. TGraphicControls are used
when you want to display something to the user on the form, but you don’t want this control to
function as a regular user-input control. The advantage of TGraphicControls is that they don’t

XT1D GNV DA |

UNLIALIHYY |

1N3INOdINOD

Component-Based Development
PART IV

400

request a handle from Windows that uses up system resources. Additionally, not having a win-
dow handle means that TGraphicControls don’t have to go through the convoluted Windows
paint process. This makes drawing with TGraphicControls much faster than using the
TWinControl equivalents.

TGraphicControls can respond to mouse events. Actually, the TGraphicControl parent
processes the mouse message and sends it to its child controls.

TGraphicControl allows you to paint the control and therefore provides the property Canvas,
which is of the type TCanvas. TGraphicControl also provides a Paint () method that its
descendants must override.

The TCustomControl Class

You might have noticed that the names of some TWinControl descendants begin with TCustom,
such as TCustomComboBox, TCustomControl, TCustomEdit, and TCustomListBox.

Custom controls have the same functionality as other TWinControl descendants, except that
with specialized visual and interactive characteristics, custom controls provide you with a base
from which you can derive and create your own customized components. You provide the func-
tionality for the custom control to draw itself if you’re a component writer.

Other Classes

Several classes aren’t components but serve as supporting classes to the existing component.
These classes are typically properties of other components and descend directly from
TPersistent. Some of these classes are of the type TStrings, TCanvas, and TCollection.

The TStrings and TStringLists Classes

The TStrings abstract class gives you the capability to manipulate lists of strings that belong
to a component such as a TListBox. TStrings doesn’t actually maintain the memory for the
strings (that’s done by the native control that owns the TStrings class). Instead, TStrings
defines the methods and properties to access and manipulate the control’s strings without hav-
ing to use the control’s set of API level functions and messages.

Notice that we said TStrings is an abstract class. This means that TStrings doesn’t really
implement the code required to manipulate the strings—it just defines the methods that must
be there. It’s up to the descendant components to implement the actual string-manipulation
methods.

To explain this point further, some examples of components and their TStrings properties are
TListBox.Items, TMemo.Lines, and TComboBox.Items. Each of these properties is of the type

Component Architecture: VCL and CLX
CHAPTER 10

TStrings. You might wonder, if their properties are TStrings, how can you call methods of
these properties when these methods have yet to be implemented in code? That’s a good ques-
tion. The answer is that, even though each of these properties is defined as TStrings, the vari-
able to which the property refers (TListBox.FItems, for example) was instantiated as a
descendant class. To clarify this, FItems is the private storage field for the Items property of
TListBox:

TCustomListBox = class(TWinControl)

private
FItems: TStrings;

NoTE

Although the class type shown in the preceding code snippet is a TCustomListBox,
the TListBox descends directly from TCustomListBox in the same unit and therefore
has access to its private fields.

The unit StdCtrls.pas, which is part of the Delphi VCL, defines a descendant class
TListBoxStrings, which is a descendant of TStrings. Listing 10.1 shows its definition.

LisTING 10.1 The Declaration of the TListBoxStrings Class

TListBoxStrings = class(TStrings)
private
ListBox: TCustomListBox;
protected
procedure Put(Index: Integer; const S: string); override;
function Get(Index: Integer): string; override;
function GetCount: Integer; override;
function GetObject(Index: Integer): TObject; override;
procedure PutObject(Index: Integer; AObject: TObject); override;
procedure SetUpdateState(Updating: Boolean); override;
public
function Add(const S: string): Integer; override;
procedure Clear; override;
procedure Delete(Index: Integer); override;
procedure Exchange(Index1, Index2: Integer); override;
function IndexOf(const S: string): Integer; override;
procedure Insert(Index: Integer; const S: string); override;
procedure Move(CurIndex, NewIndex: Integer); override;
end;

401

XT1D GNV DA |

UNLIALIHYY |

1N3INOdINOD

402

Component-Based Development
PART IV

StdCtrls.pas then defines the implementation of each method of this descendant class. When
TListBox creates its class instances for its FItems variable, it actually creates an instance of
this descendant class and refers to it with the FItems property:

constructor TCustomListBox.Create(AOwner: TComponent);
begin
inherited Create(AOwner);

// An instance of TListBoxStrings is created
FItems := TListBoxStrings.Create;

end;

We want to make it clear that although the TStrings class defines its methods, it doesn’t
implement these methods to manipulate strings. The TStrings descendant class does the
implementation of these methods. This is important if you’re a component writer because you
must know how to perform this technique as the Delphi components did it. It’s always good to

refer to the VCL or CLX source code to see how Borland performs these techniques when
you’re unsure.

If you’re not a component writer but want to manipulate a list of strings, you can use the
TStringList class, another descendant of TStrings, with which you can instantiate a com-
pletely self-contained class. TStringList maintains a list of strings external to components.
The best part is that TStringList is totally compatible with TStrings, which means that you
can directly assign a TStringList instance to a control’s TStrings property. The following
code shows how you can create an instance of TStringlList:

var
MyStringlList: TStringList;

begin
MyStringList := TStringList.Create;

To add strings to this TStringlList instance, do the following:

MyStringList.Add('Red');
MyStringList.Add('White');
MyStringList.Add('Blue');

If you want to add these same strings to both a TMemo component and a TListBox component,
all you have to do is take advantage of the compatibility between the different components’
TStrings properties and make the assignments in one line of code each:

Memo1.Lines.Assign(MyStringList);
ListBox1.Items.Assign(MyStringList);

You use the Assign () method to copy TStrings instances instead of making a direct assign-
ment such as Memo1.Lines := MyStringlList.

Component Architecture: VCL and CLX

CHAPTER 10

Table 10.5 shows some common methods of TStrings classes.

TaBLE 10.5 Some Common TStrings Methods

TStrings Method

Description

Add(const S: String): Integer
AddObject(const S: string;
AObject: TObject): Integer

AddStrings(Strings: TStrings)

Assign(Source: TPersistent)

Clear

Delete(Index: Integer)

Exchange(Index1, Index2: Integer)

IndexOf(const S: String): Integer

Insert(Index: Integer;
const S: String)

Move (CurIndex, NewIndex: Integer)

LoadFromFile(const FileName:
String)

SaveToFile(const FileName: string)

Adds the string S to the string’s list and returns
the string’s position in the list.

Appends both a string and an object to a string
or string list object.

Copies strings from one TStrings to the end of
its existing list of strings.

Replaces the existing strings with those speci-
fied by the Source parameter.

Removes all strings from the list.

Removes the string at the location specified by
Index.

Switches the location of the two strings speci-
fied by the two index values.

Returns the position of the string S on the list.

Inserts the string S into the position in the list
specified by Index.

Moves the string at the position CurIndex to the
position NewIndex.

Reads the text file, FileName, and places its
lines into the string list.

Saves the string list to the text file, FileName.

403

The Tcanvas Class

The Canvas property, of type TCanvas, is provided for windowed controls and represents the
drawing surface of the control. TCanvas encapsulates what’s called the device context of a win-
dow. It provides many of the functions and objects required for drawing to the window’s sur-
face. (Chapter 8, “Graphics Programming with GDI and Fonts,” of Delphi 5 Developer’s Guide
on this book’s CD-ROM goes into detail about the TCanvas class.)

Runtime Type Information

Back in Chapter 2 you were introduced to Runtime Type Information (RTTTI). This chapter
delves much deeper into the RTTI innards that will allow you to take advantage of RTTI

XT1D GNV DA |

UNLIALIHYY |

1N3INOdINOD

404

Component-Based Development
PART IV

beyond what you get in the normal usage of the Object Pascal language. In other words, we’re
going to show you how to obtain type information on objects and data types much similar to
the way the Delphi IDE obtains the same information.

So how does RTTI manifest itself? You’ll see RTTI at work in at least two areas with which
you normally work. The first place is right in the Delphi IDE, as stated earlier. Through RTTI,
the IDE magically knows everything about the object and components with which you work
(see the Object Inspector). Actually, there’s more to it than just RTTI. But for the sake of this
discussion, we’re covering only the RTTI aspect. The second area is in the runtime code that
you write. Already, in Chapter 2 you read about the is and as operators.

Let’s examine the is operator to illustrate typical usage of RTTI.

Suppose that you need to make all TEdit components read-only on a given form. This is simple
enough—just loop through all components, use the is operator to determine whether the com-
ponent is a TEdit class, and then set the ReadOnly property accordingly. Here’s an example:

for 1 := @ to ComponentCount - 1 do
if Components[i] is TEdit then
TEdit (Components[i]).ReadOnly := True;

A typical usage for the as operator would be to perform an action on the Sender parameter of
an event handler, where the handler is attached to several different components. Assuming that
you know that all components are derived from a common ancestor whose property you want
to access, the event handler can use the as operator to safely typecast Sender as the desired
descendant, thus surfacing the wanted property. Here’s an example:

procedure TFormi.ControlOnClickEvent(Sender: TObject);
var
i: integer;
begin
(Sender as TControl).Enabled := False;
end;

These examples of typesafe programming illustrate enhancements to the Object Pascal lan-
guage that indirectly use RTTI. Now let’s look at a problem that would call for direct usage of
RTTIL

Suppose you have a form containing components that are data aware and components that
aren’t data aware. However, you need to perform some action on the data-aware components
only. Certainly you could loop through the Components array for the form and test for each
data-aware component type. However, this could get messy to maintain because you would
have to test against every type of data-aware component. Also, you don’t have a base class to
test against that’s common to only data-aware components. For instance, something such as
TDataAwareControl would have been nice, but it doesn’t exist.

Component Architecture: VCL and CLX

CHAPTER 10

A clean way to determine whether a component is data aware is to test for the existence of a
DataSource property. You are sure that this property exists for all data-aware components. To
do this, however, you need to use RTTI directly.

The following sections discuss RTTI in more depth to give you the background knowledge
needed to solve problems such as the one mentioned earlier.

The TypInfo.pas Unit: Definer of Runtime Type
Information

Type information exists for any object (a descendant of TObject). This information exists in
memory and is queried by the IDE and the Runtime Library to obtain information about
objects. The TypInfo.pas unit defines the structures that allow you to query for type informa-
tion. The TObject methods shown in Table 10.6 are repeated from Chapter 2.

TaBLE 10.6 TObject Methods

Function Return Type Returns

ClassName() string The name of the object’s class

ClassType() TClass The object’s type

InheritsFrom() Boolean Boolean to indicate whether the class descends
from a given class

ClassParent() TClass The object Cancestor’s type

InstanceSize() word The size, in bytes, of an instance

ClassInfo() Pointer A pointer to the object’s in-memory RTTI

For now, we want to focus on the ClassInfo() function, which is defined as follows:
class function ClassInfo: Pointer;

This function returns a pointer to the RTTI for the calling class. The structure to which this
pointer refers is of the type PTypeInfo. This type is defined in the TypInfo.pas unit as a
pointer to a TTypeInfo structure. Both definitions are given in the following code as they
appear in TypInfo.pas:

PPTypeInfo = "PTypeInfo;
PTypeInfo = “TTypeInfo;
TTypeInfo = record

Kind: TTypeKind;
Name: ShortString;
{TypeData: TTypeData}

end;

405

XT1D GNV DA |

UNLIALIHYY |
1N3INOdINOD

Component-Based Development
PART IV

406

The commented field, TypeData, represents the actual reference to the type information for the
given class. The type to which it actually refers depends on the value of the Kind field. Kind
can be any of the enumerated values defined in the TTypeKind:

TTypeKind = (tkUnknown, tkInteger, tkChar, tkEnumeration, tkFloat,
tkString, tkSet, tkClass, tkMethod, tkWChar, tkLString, tkWString,
tkvariant, tkArray, tkRecord, tkInterface);

Take a look at the TypInfo.pas unit at this time to examine the subtypes to some of the pre-
ceding enumerated values to get yourself familiar with them. For example, the tkFloat value
can be further broken down into one of the following:

TFloatType = (ftSingle, ftDouble, ftExtended, ftComp, ftCurr);

Now you know that Kind determines to which type TypeData refers. The TTypeData structure
is defined in TypInfo.pas, as shown in Listing 10.2.

LisTinG 10.2 The TTypeData Structure

PTypeData = ~“TTypeData;
TTypeData = packed record
case TTypeKind of
tkUnknown, tkLString, tkWString, tkVariant: ();
tkInteger, tkChar, tkEnumeration, tkSet, tkWChar: (
OrdType: TOrdType;
case TTypeKind of
tkInteger, tkChar, tkEnumeration, tkWChar: (
MinValue: Longint;
MaxValue: Longint;
case TTypeKind of
tkInteger, tkChar, tkWChar: ();
tkEnumeration: (
BaseType: PPTypelnfo;
NameList: ShortStringBase));
tkSet: (
CompType: PPTypelInfo));
tkFloat: (FloatType: TFloatType);
tkString: (MaxLength: Byte);
tkClass: (
ClassType: TClass;
ParentInfo: PPTypelnfo;
PropCount: Smalllnt;
UnitName: ShortStringBase;
{PropData: TPropData});
tkMethod: (
MethodKind: TMethodKind;
ParamCount: Byte;

Component Architecture: VCL and CLX
CHAPTER 10

LisTiING 10.2 Continued

ParamList: array[0..1023] of Char
{ParamList: array[1..ParamCount] of
record
Flags: TParamFlags;
ParamName: ShortString;
TypeName: ShortString;
end;
ResultType: ShortString});
tkInterface: (
IntfParent : PPTypelInfo; { ancestor }
IntfFlags : TIntfFlagsBase;
Guid : TGUID;
IntfUnit : ShortStringBase;
{PropData: TPropData});
tkInt64: (
MinInt64Value, MaxInt64Value: Int64);
end;

As you can see, the TTypeData structure is really just a big variant record. If you’re familiar
with working with variant records and pointers, you’ll see that dealing with RTTI is really sim-
ple. It just seems complex because it’s an undocumented feature.

NoTE

Often, Borland doesn’t document a feature because it might change between ver-
sions. When using features such as the undocumented RTTI, realize that your code
might not be fully portable between versions of Delphi.

At this point, we’re ready to demonstrate how to use these structures of RTTI to obtain type
information.

Obtaining Type Information

To demonstrate how to obtain Runtime Type Information on an object, we’ve created a project
whose main form is defined in Listing 10.3.

Listing 10.3 Main Form for ClassInfo.dpr

unit MainFrm;

interface

407

XT1D GNV DA |

UNLIALIHYY |

1N3INOdINOD

408

Component-Based Development
PART IV

LisTiNnG 10.3 Continued

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls, DBClient, MidasCon, MConnect;

type

TMainForm = class(TForm)
pnlTop: TPanel;
pnlLeft: TPanel;
1bBaseClassInfo: TListBox;
spSplit: TSplitter;
lblBaseClassInfo: TLabel;
pnlRight: TPanel;
1blClassProperties: TLabel;
1bPropList: TListBox;
1bSampClasses: TListBox;
procedure FormCreate(Sender: TObject);
procedure 1lbSampClassesClick(Sender: TObject);

private
{ Private declarations }
public
{ Public declarations }
end;
var

MainForm: TMainForm;

implementation
uses TypInfo;

{$R *.DFM}

function CreateAClass(const AClassName: string): TObject;

{ This method illustrates how you can create a class from the class name. Note
that this requires that you register the class using RegisterClasses() as
shown in the initialization method of this unit. }

var
C : TFormClass;

SomeObject: TObject;

begin
C := TFormClass(FindClass(AClassName));

SomeObject := C.Create(nil);
Result := SomeObject;
end;

Component Architecture: VCL and CLX

CHAPTER 10

LisTiINnG 10.3 Continued

procedure GetBaseClassInfo(AClass: TObject; AStrings: TStrings);
{ This method obtains some basic RTTI data from the given object and adds that
information to the AStrings parameter. }
var
ClassTypeInfo: PTypelnfo;
ClassTypeData: PTypeData;
EnumName: String;
begin
ClassTypeInfo := AClass.ClassInfo;
ClassTypeData := GetTypeData(ClassTypelInfo);
with AStrings do

begin
Add (Format('Class Name: %s', [ClassTypeInfo.Name]));
EnumName := GetEnumName(TypeInfo(TTypeKind), Integer(ClassTypelInfo.Kind));
Add (Format ('Kind: %s', [EnumName]));
Add (Format('Size: %d', [AClass.InstanceSize]));
Add (Format ('Defined in: %s.pas', [ClassTypeData.UnitName]));
Add (Format ('Num Properties: %d',[ClassTypeData.PropCount]));

end;

end;

procedure GetClassAncestry(AClass: TObject; AStrings: TStrings);
{ This method retrieves the ancestry of a given object and adds the
class names of the ancestry to the AStrings parameter. }

var
AncestorClass: TClass;

begin
AncestorClass := AClass.ClassParent;

{ Iterate through the Parent classes starting with Sender's
Parent until the end of the ancestry is reached. }

AStrings.Add('Class Ancestry');

while AncestorClass <> nil do

begin
AStrings.Add(Format(' %s',[AncestorClass.ClassName]));
AncestorClass := AncestorClass.ClassParent;
end;
end;

procedure GetClassProperties(AClass: TObject; AStrings: TStrings);

{ This method retrieves the property names and types for the given object
and adds that information to the AStrings parameter. }

var
PropList: PPropList;

409

XT1D GNV DA |

UNLIALIHYY |
1N3INOdINOD

Component-Based Development
PART IV

410

LisTiNnG 10.3 Continued

ClassTypeInfo: PTypelnfo;
ClassTypeData: PTypeData;
i: integer;
NumProps: Integer;

begin

ClassTypeInfo := AClass.ClassInfo;
ClassTypeData := GetTypeData(ClassTypelInfo);

if ClassTypeData.PropCount <> @ then
begin
// allocate the memory needed to hold the references to the TPropInfo
// structures on the number of properties.
GetMem(PropList, SizeOf (PPropInfo) * ClassTypeData.PropCount);
try
// fill PropList with the pointer references to the TPropInfo structures
GetPropInfos(AClass.ClassInfo, PropList);
for i := @ to ClassTypeData.PropCount - 1 do
// filter out properties that are events (method pointer properties)
if not (PropList[i]”.PropType”.Kind = tkMethod) then
AStrings.Add(Format('%s: %s', [PropList[i]".Name,
PropList[i]"~.PropType~.Name]));

// Now get properties that are events (method pointer properties)
NumProps := GetPropList(AClass.ClassInfo, [tkMethod], PropList);
if NumProps <> 0@ then begin

AStrings.Add('"');

AStrings.Add(' EVENTS ================ ')}
AStrings.Add('");

end;

// Fill the AStrings with the events.

for i := @ to NumProps - 1 do

AStrings.Add(Format('%s: %s', [PropList[i]".Name,
PropList[i]"~.PropType~.Name]));

finally
FreeMem(PropList, SizeOf(PPropInfo) * ClassTypeData.PropCount);
end;
end;

end;

procedure TMainForm.FormCreate(Sender: TObject);
begin

Component Architecture: VCL and CLX

CHAPTER 10

LisTiINnG 10.3 Continued

411

// Add some example classes to the list box.
1bSampClasses.Items.Add('TApplication');

1bSampClasses.Items.Add('TButton');
1bSampClasses.Items.Add('TForm');
1bSampClasses.Items.Add('TListBox"');

1bSampClasses.Items.Add
1bSampClasses.Items.Add
1bSampClasses.Items.Add
1bSampClasses.Items.Add
1bSampClasses.Items.Add
1bSampClasses.Items.Add
1bSampClasses.Items.Add
end;

'TPaintBox');
'TMidasConnection');
'TFindDialog');
'TOpenDialog');
'TTimer');
TComponent');
'TGraphicControl');

—~ o~~~ o~~~ o~~~

procedure TMainForm.lbSampClassesClick(Sender: TObject);
var

SomeComp: TObject;
begin

1bBaseClassInfo.Items.Clear;

1bPropList.Items.Clear;

/] Create an instance of the selected class.

SomeComp := CreateAClass(lbSampClasses.Items[lbSampClasses.ItemIndex]);

try
GetBaseClassInfo(SomeComp, lbBaseClassInfo.Items);
GetClassAncestry(SomeComp, lbBaseClassInfo.Items);
GetClassProperties(SomeComp, lbPropList.Items);

finally
SomeComp.Free;

end;

end;

initialization
begin
RegisterClasses([TApplication, TButton, TForm, TListBox, TPaintBox,
TMidasConnection, TFindDialog, TOpenDialog, TTimer, TComponent,
TGraphicControl]);
end;

end.

XT1D GNV DA |

UNLIALIHYY |

1N3INOdINOD

412

Component-Based Development
PART IV

NoTE

CLX versions of the RTTI demos shown here reside on the CD-ROM under the subdi-
rectory CLX for this chapter.

This main form contains three list boxes. 1bSampClasses contains classnames for a few sample
objects whose type information we’ll retrieve. On selecting an object from 1bSampClasses,
lbBaseClassInfo will be populated with basic information about the selected object, such as
its size and ancestry. 1bPropList will display the properties belonging to the selected object
from 1bSampClasses.

Three helper procedures are used to obtain class information:
* GetBaseClassInfo()—Populates a string list with basic information about an object,
such as its type, size, defining unit, and number of properties

* GetClassAncestry()—Populates a string list with the object names of a given object’s
ancestry

* GetClassProperties()—Populates a string list with the properties and their types for a
given class

Each procedure takes an object instance and a string list as parameters.

As the user selects one of the classes from 1bSampClasses, its OnClick event,
lbSampClassesClick (), calls a helper function, CreateAClass (), which creates an instance of
a class given the name of the class type. It then passes the object instance and the appropriate
TListBox.Items property to be populated.

Tip

The CreateAClass () function can be used to create any class by its name. However, as
demonstrated, you must make sure that any classes passed to it have been registered
by calling the RegisterClasses() procedure.

Obtaining Runtime Type Information for Objects

GetBaseClassInfo() passes the return value from TObject.ClassInfo() to the function
GetTypeData(). GetTypeData() is defined in TypInfo.pas. Its purpose is to return a pointer to
the TTypeData structure based on the class whose PTypeInfo structure was passed to it (see
Listing 10.2). GetBaseClassInfo() simply refers to the various fields of both the TTypeInfo
and TTypeData structures to populate the AStrings string list. Note the use of the function

Component Architecture: VCL and CLX
CHAPTER 10

GetEnumName () to return the string for an enumerated type. This is also a function of RTTI
defined in TypInfo.pas. Type information on enumerated types is discussed in a later section.

Tip

Use the GetTypeData() function defined in TypInfo.pas to return a pointer
to the TTypeInfo structure for a given class. You must pass the result of
TObject.ClassInfo() to GetTypeData().

Tip

You can use the GetEnumName () function to obtain the name of an enumeration value
as a string. GetEnumValue () returns the enumeration value given its name.

Obtaining the Ancestry for an Object

The GetClassAncestry() procedure populates a string list with the classnames of the given
object’s ancestry. This is a simple operation that uses the ClassParent() class procedure on
the given object. ClassParent () will return a TClass reference to the given class’s parent or
nil if the top of the ancestry is reached. GetClassAncestry() simply walks up the ancestry
and adds each classname to the string list until the top is reached.

Obtaining Type Information on Object Properties

If an object has properties, its TTypeData.PropCount value will contain the number of proper-
ties it has. There are several approaches you can use to obtain the property information for a
given class—we demonstrate two.

The GetClassProperties() procedure begins much like the previous two methods in that it
passes the ClassInfo() result to GetTypeData() to obtain the reference to the TTypeData
structure for the class. It then allocates memory for the PropList variable based on the value
of ClassTypeData.PropCount. PropList is defined as the type PPropList. PPropList is
defined in TypInfo.pas as follows:
type

PPropList = "“TProplList;

TPropList = array[0..16379] of PPropInfo;

The TPropList array stores pointers to the TPropInfo data for each property. TPropInfo is
defined in TypInfo.pas as follows:

PPropInfo
TPropInfo

“TPropInfo;
packed record

413

XT1D GNV DA |

UNLIALIHYY |

1N3INOdINOD

Component-Based Development
PART IV

414

PropType: PPTypeInfo;
GetProc: Pointer;
SetProc: Pointer;
StoredProc: Pointer;
Index: Integer;
Default: Longint;
NameIndex: Smalllnt;
Name: ShortString;
end;

TPropInfo is the Runtime Type Information for a property.

GetClassProperties() uses the GetPropInfos() function to fill this array with pointers to the
RTTI information for all properties for the given object. It then loops through the array and
writes out the name and type for the property by accessing that property’s type information.
Note the following line:

if not (PropList[i]”.PropType”.Kind = tkMethod) then

This is used to filter out properties that are events (method pointers). We populate these proper-
ties last, which allows us to demonstrate an alternative method for retrieving property RTTI. In
the final part of the GetClassProperties () method, we use the GetPropList () function to
return the TPropList for properties of a specific type. In this case, we want only properties of
the type tkMethod. GetPropList() is also defined in TypInfo.pas. Refer to the source com-
mentary for additional information.

Tip

Use GetPropInfos() when you want to retrieve a pointer to the property Runtime
Type Information for all properties of a given object. Use GetPropList() if you want
to retrieve the same information, except for properties of a specific type.

Figure 10.3 shows the output of the main form with Runtime Type Information for a selected
class.

Checking for the Existence of a Property for an Object

Earlier we presented the problem of needing to check for the existence of a property for a
given object. Specifically, we were referring to the DataSource property. Using functions
defined in TypInfo.pas, we could write the following function to determine whether a control
is data aware:

function IsDataAware(AComponent: TComponent): Boolean;

var
PropInfo: PPropInfo;

Component Architecture: VCL and CLX

CHAPTER 10

begin
// Find the property named datasource.

PropInfo := GetPropInfo(AComponent.ClassInfo, 'DataSource’);
Result := PropInfo <> nil;

// Double check, make sure it descends from TDataSource
if Result then

if not ((PropInfo”.Proptype”.Kind = tkClass) and

(GetTypeData(PropInfo”.PropType”).ClassType.InheritsFrom(TDataSource)))

then
Result := False;
end;

Here, we’re using the GetPropInfo() function to return the TPropInfo pointer on a given
property. This function returns nil if the property doesn’t exist. As an additional check, we
make sure that the property named DataSource is actually a descendant of TDataSource.

We also could have written this function more generically to check for the existence of any
property by its name, like this:

function HasProperty(AComponent: TComponent; APropertyName: String): Boolean;
var

PropInfo: PPropInfo;

begin
PropInfo := GetPropInfo(AComponent.ClassInfo, APropertyName);
Result := PropInfo <> nil;

end;

Note, however, that this works only on published properties. RTTI doesn’t exist for unpub-
lished properties.

ETE]
Base Class [nformation Class Properties
Class Name: TButton Name: TComponentMame -
Kind: thClass Tag: Integer
Size: 536 Left: Integer
Defined in: Stdctrls.pas Top: Integer
Hum Properties: 48 mldg[:tl[:lefga;r
Class Ancestry
TBuctonCentral ﬁ“‘rcf"é'ilntg”m’r
TWinContral HelpType: THelpType
ITCenerel Helpkepwaord: String
TComponent HelpContext: THelpCortext
TPersistent Action: TBasicAction
TObject Anchars: TAnchars
BiDiMode: TBiDiMode
Cancel: Boolean
Capticn: TCapiion_ =l

TApplication

TMidssConnection
TFindDizlog
TOpenDialog
TTimer
TCampanent
TGraphicConirol

FiGure 10.3

Output of a class’s Runtime Type Information.

415
10
SZ0
~00
L=
233
m o
qu
Nnc
> T

416

Component-Based Development
PART IV

Obtaining Type Information on Method Pointers

Runtime Type Information can be obtained on method pointers. For example, you can deter-
mine the type of method (procedure, function, and so on) and its parameters. Listing 10.4
demonstrates how to obtain Runtime Type Information for a selected group of methods.

LisTING 10.4 Obtaining Runtime Type Information for Methods

unit MainFrm;
interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls, DBClient, MidasCon, MConnect;

type

TMainForm = class(TForm)
1bSampMethods: TListBox;
1bMethodInfo: TMemo;
1blBasicMethodInfo: TLabel;
procedure FormCreate(Sender: TObject);
procedure 1lbSampMethodsClick(Sender: TObject);

private
{ Private declarations }
public
{ Public declarations }
end;
var

MainForm: TMainForm;

implementation
uses TypInfo, DBTables, Provider;

{$R *.DFM}

type
// It is necessary to redefine this record as it is commented out in
// typinfo.pas.

PParamRecord = “TParamRecord;
TParamRecord = record
Flags: TParamFlags;
ParamName: ShortString;

Component Architecture: VCL and CLX 217

CHAPTER 10

LisTiING 10.4 Continued

TypeName:
end;

ShortString;

procedure GetBaseMethodInfo(ATypeInfo: PTypelInfo; AStrings: TStrings);

{ This method obtains some basic RTTI data from the TTypeInfo and adds that
information to the AStrings parameter. }

var
MethodTypeData: PTypeData;
EnumName: String;

begin

MethodTypeData := GetTypeData(ATypeInfo);

with AStrings do

begin
Add (Format('Class Name: %s', [ATypeInfo”.Namel]));
EnumName := GetEnumName (TypeInfo(TTypeKind), Integer (ATypeInfo”.Kind));
Add (Format('Kind: %s', [EnumName]));
Add (Format('Num Parameters: %d',[MethodTypeData.ParamCount]));

end;

end;

procedure GetMethodDefinition(ATypeInfo: PTypeInfo; AStrings: TStrings);
{ This method retrieves the property info on a method pointer. We use this
information to reconstruct the method definition. }

var
MethodTypeData: PTypeData;
MethodDefine: String;
ParamRecord: PParamRecord;
TypeStr: ~ShortString;
ReturnStr: ~ShortString;
i: integer;
begin
MethodTypeData := GetTypeData(ATypeInfo);

// Determine the type of method
case MethodTypeData.MethodKind of

mkProcedure: MethodDefine := 'procedure ';

mkFunction: MethodDefine := 'function ';

mkConstructor: MethodDefine := 'constructor ';

mkDestructor: MethodDefine := 'destructor ';

mkClassProcedure: MethodDefine := 'class procedure ';

mkClassFunction: MethodDefine := 'class function ';
end;

XT1D GNV DA |

UNLIALIHYY |

1N3INOdINOD

418

Component-Based Development
PART IV

LisTiINnG 10.4 Continued

I
I

// point to the first parameter
ParamRecord := @VMethodTypeData.ParamList;
i:=1; // first parameter

// loop through the method's parameters and add them to the string list as
// they would be normally defined.
while i <= MethodTypeData.ParamCount do
begin
if i = 1 then
MethodDefine := MethodDefine+'("';

if pfVar in ParamRecord.Flags then
MethodDefine := MethodDefine+('var ');
if pfconst in ParamRecord.Flags then
MethodDefine := MethodDefine+('const ');
if pfArray in ParamRecord.Flags then
MethodDefine := MethodDefine+('array of ');
we won't do anything for the pfAddress but know that the Self parameter
gets passed with this flag set.

if pfAddress in ParamRecord.Flags then
MethodDefine := MethodDefine+('*address* ');

if pfout in ParamRecord.Flags then
MethodDefine := MethodDefine+('out ');

// Use pointer arithmetic to get the type string for the parameter.
TypeStr := Pointer(Integer(@ParamRecord”.ParamName) +
Length(ParamRecord”.ParamName)+1);

MethodDefine := Format('%s%s: %s', [MethodDefine, ParamRecord”.ParamName,
TypeStr~]);

inc(i); // Increment the counter.

// Go the next parameter. Notice that use of pointer arithmetic to

// get to the appropriate location of the next parameter.

ParamRecord := PParamRecord(Integer(ParamRecord) + SizeOf(TParamFlags) +
(Length(ParamRecord”.ParamName) + 1) + (Length(TypeStr~)+1));

// if there are still parameters then setup
if i <= MethodTypeData.ParamCount then

Component Architecture: VCL and CLX

CHAPTER 10

LisTiING 10.4 Continued

419

begin
MethodDefine := MethodDefine + '; ';
end
else
MethodDefine := MethodDefine + ')';
end;

// If the method type is a function, it has a return value. This is also
// placed in the method definition string. The return value will be at the
// location following the last parameter.
if MethodTypeData.MethodKind = mkFunction then
begin
ReturnStr := Pointer(ParamRecord);
MethodDefine := Format('%s: %s;', [MethodDefine, ReturnStr~])
end
else
MethodDefine := MethodDefine+';"';

// finally, add the string to the listbox.
with AStrings do
begin
Add (MethodDefine)
end;
end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
{ Add some method types to the list box. Also, store the pointer to the RTTI
data in listbox's Objects array }
with lbSampMethods.Items do

begin
AddObject('TNotifyEvent', TypeInfo(TNotifyEvent));
AddObject('TMouseEvent', TypeInfo(TMouseEvent));
AddObject('TBDECallBackEvent', TypeInfo(TBDECallBackEvent));
AddObject('TDataRequestEvent', TypeInfo(TDataRequestEvent));
AddObject('TGetModuleProc', TypelInfo(TGetModuleProc));
AddObject('TReaderError', TypeInfo(TReaderError));

end;

end;

procedure TMainForm.lbSampMethodsClick(Sender: TObject);
begin

1bMethodInfo.Lines.Clear;

with 1lbSampMethods do

XT1D GNV DA |

UNLIALIHYY |

1N3INOdINOD

420

Component-Based Development
PART IV

LisTiINnG 10.4 Continued

begin
GetBaseMethodInfo(PTypeInfo(Items.Objects[ItemIndex]), lbMethodInfo.Lines);
GetMethodDefinition (PTypeInfo(Items.Objects[ItemIndex]),
1bMethodInfo.Lines);
end;
end;

end.

In Listing 10.4, we populate a list box, 1bSampMethods, with some sample method names. We
also store the references to those methods’ RTTI data in the Objects array of the list box.

We do this by using the TypeInfo() function, which is a special function that can retrieve a
pointer to Runtime Type Information for a given type identifier. When the user selects one of
these methods, we use that RTTI data from the Objects array to retrieve and reconstruct the
method definition from the information we have about the method and its parameters in the
RTTI data. Refer to the listing’s commentary for further information.

Tip

Use the TypeInfo() function to retrieve a pointer to the compiler-generated Runtime
Type Information for a given type identifier. For example, the following line retrieves
a pointer to the RTTI for the TButton type:

TypeInfoPointer := TypeInfo(TButton);

Obtaining Type Information for Ordinal Types

We’ve already covered the more difficult pieces to RTTI. However, you can also obtain RTTI
for ordinal types. The following sections illustrate how to obtain RTTI data on integer, enumer-
ated, and set types.

Type Information for Integer Types
Obtaining type information for integer types is simple. Listing 10.5 illustrates this process.

Listing 10.5 Obtaining Runtime Type Information for Integers

procedure TMainForm.lbSampsClick(Sender: TObject);
var

OrdTypeInfo: PTypeInfo;

OrdTypeData: PTypeData;

Component Architecture: VCL and CLX

CHAPTER 10

LisTiINnG 10.5 Continued

TypeNameStr: String;

TypeKindStr: String;

MinVal, MaxVal: Integer;
begin

memInfo.Lines.Clear;

with 1lbSamps do

begin

// Get the TTypeInfo pointer

OrdTypeInfo := PTypeInfo(Items.Objects[ItemIndex]);
// Get the TTypeData pointer

OrdTypeData := GetTypeData(OrdTypelInfo);

// Get the type name string

TypeNameStr := OrdTypeInfo.Name;

// Get the type kind string

TypeKindStr := GetEnumName(TypeInfo(TTypeKind),
Integer(OrdTypeInfo”.Kind));

// Get the minimum and maximum values for the type
MinVal := OrdTypeData”.MinValue;
MaxVal := OrdTypeData”.MaxValue;

// Add the information to the memo
with memInfo.Lines do
begin
Add('Type Name: '+TypeNameStr);
Add('Type Kind: '+TypeKindStr);

Add('Min Val: '+IntToStr(MinVal));
Add('Max Val: '+IntToStr(MaxVal));
end;
end;
end;

421

Here, we use the TypeInfo() function to obtain a pointer to the TTypeInfo structure for the
Integer data type. We then pass that reference to the GetTypeData() function to obtain a
pointer to the TTypeData structure. We use both those structures to populate a list box with the
integer’s RTTI. See the demo named IntegerRTTI.dpr in the directory for this chapter on

the CD-ROM accompanying this book for a more detailed demonstration.

XT1D GNV DA |

UNLIALIHYY |
1N3INOdINOD

Component-Based Development
PART IV

422

Type Information for Enumerated Types

Obtaining RTTI for enumerated types is just as easy as it is for integers. In fact, you’ll see that
Listing 10.6 is almost identical to Listing 10.5, with the exception of the additional for loop to
show the values of the enumeration type.

LisTinG 10.6 Obtaining RTTI for an Enumerated Type

procedure TMainForm.lbSampsClick(Sender: TObject);
var

OrdTypeInfo: PTypeInfo;

OrdTypeData: PTypeData;

TypeNameStr: String;
TypeKindStr: String;
MinVal, MaxVal: Integer;
i: integer;

begin
memInfo.Lines.Clear;
with lbSamps do
begin

// Get the TTypeInfo pointer

OrdTypeInfo := PTypelInfo(Items.Objects[ItemIndex]);
// Get the TTypeData pointer

OrdTypeData := GetTypeData(OrdTypelInfo);

// Get the type name string

TypeNameStr := OrdTypelInfo.Name;

// Get the type kind string

TypeKindStr := GetEnumName (TypeInfo(TTypeKind),
Integer(OrdTypeInfo”.Kind));

// Get the minimum and maximum values for the type
MinVal := OrdTypeData”.MinValue;
MaxVal := OrdTypeData”.MaxValue;

// Add the information to the memo
with memInfo.Lines do
begin
Add('Type Name: '+TypeNameStr);
Add('Type Kind: '+TypeKindStr);

Add('Min Val: '+IntToStr(MinVal));
Add('Max Val: '+IntToStr(MaxVal));

Component Architecture: VCL and CLX

CHAPTER 10

LisTiING 10.6 Continued

423

// Show the values and names of the enumerated types
if OrdTypeInfo~.Kind = tkEnumeration then
for i := MinVal to MaxVal do
Add (Format(' Value: %d Name: %s', [1i,
GetEnumName (OrdTypelInfo, 1)]));

end;
end;
end;

You’ll find a more detailed demo named EnumRTTI.dpr on the CD-ROM in the directory for
this chapter.

Type Information for Set Types

Obtaining RTTI for set types is only slightly more complex than the two previous techniques.
Listing 10.7 is the main form for the project SetRTTI.dpr, which you’ll find on the CD-ROM
in the directory for this chapter.

Listing 10.7 Obtaining RTTI for Set Types

unit MainFrm;
interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, Grids;

type
TMainForm = class(TForm)
1bSamps: TListBox;
memInfo: TMemo;
procedure FormCreate(Sender: TObject);
procedure lbSampsClick(Sender: TObject);

private
{ Private declarations }
public
{ Public declarations }
end;
var

MainForm: TMainForm;

XT1D GNV DA |

UNLIALIHYY |

1N3INOdINOD

Component-Based Development
PART IV

424

LisTiING 10.7 Continued

implementation
uses TypInfo, Buttons;

{$R *.DFM}

procedure TMainForm.FormCreate(Sender: TObject);
begin
// Add some example enumerated types
with lbSamps.Items do
begin
AddObject('TBorderIcons', TypeInfo(TBorderIcons));
AddObject('TGridOptions', TypeInfo(TGridOptions));
end;
end;

procedure GetTypeInfoForOrdinal (AOrdTypeInfo: PTypelInfo; AStrings: TStrings);
var
// 0OrdTypeInfo: PTypeInfo;

OrdTypeData: PTypeData;

TypeNameStr: String;
TypeKindStr: String;
MinVal, MaxVal: Integer;
i: integer;

begin

// Get the TTypeData pointer
OrdTypeData := GetTypeData(AOrdTypeInfo);

// Get the type name string

TypeNameStr := AOrdTypeInfo.Name;

// Get the type kind string

TypeKindStr := GetEnumName (TypeInfo(TTypeKind), Integer(AOrdTypeInfo”.Kind));

// Get the minimum and maximum values for the type
MinVal := OrdTypeData”.MinValue;
MaxVal := OrdTypeData”.MaxValue;

// Add the information to the memo
with AStrings do
begin
Add('Type Name: '+TypeNameStr);
Add('Type Kind: '+TypeKindStr);

Component Architecture: VCL and CLX

CHAPTER 10

LisTiING 10.7 Continued

// Call this function recursively to show the enumeration
// values for this set type.
if AOrdTypeInfo”.Kind = tkSet then

begin

Add ('==========");

Add('');

GetTypeInfoForOrdinal (OrdTypeData”.CompType”, AStrings);
end;

// Show the values and names of the enumerated types belonging to the
/] set.
if AOrdTypelInfo”.Kind = tkEnumeration then
begin
Add('Min Val: '+IntToStr(MinVal));
Add('Max Val: '+IntToStr(MaxVal));

for i := MinVal to MaxVal do
Add(Format (' Value: %d Name: %s', [1i,
GetEnumName (AOrdTypeInfo, 1)]));
end;
end;

end;

procedure TMainForm.lbSampsClick(Sender: TObject);
begin
memInfo.Lines.Clear;
with lbSamps do
GetTypeInfoForOrdinal (PTypeInfo(Items.Objects[ItemIndex]), memInfo.Lines);
end;
end.

In this demo, we set up two set types in a list box. We add the pointer to the TTypeInfo struc-
tures for these two types to the Objects array of the list box by using the TypeInfo() function.
When the user selects one of the items in the list box, the GetTypeInfoForOrdinal() proce-
dure is called, passing both the PTypeInfo pointer and the memInfo.Lines property that’s pop-
ulated with the RTTI data.

The GetTypeInfoForOrdinal() procedure goes through the same steps you’ve already seen
for getting the pointer to the type’s TTypeData structure. This initial type information is stored
to the TStrings parameter and then the GetTypeInfoForOrdinal() is called recursively, pass-
ing OrdTypeData”.CompType~, which refers to the enumerated data type for the set. This RTTI
data is also added to the same TStrings property.

425

XT1D GNV DA |

UNLIALIHYY |

1N3INOdINOD

426

Component-Based Development
PART IV

Assigning Values to Properties Through RTTI

Now that we’ve shown you how to find and determine which published properties exist for
components, we ought to show you how to assign values to properties through RTTI. This task
is simple. The TypInfo.pas unit contains many helper routines to allow you to interrogate and
manipulate component-published properties. These are the same helper routines used by the
Delphi IDE (Object Inspector). It would be a good idea to open TypInfo.pas and to familiar-
ize yourself with these routines. We’ll demonstrate a few of them here.

Suppose that you want to assign an integer value to a property for a given component. Also
suppose that you don’t know whether this property exists on that component. Here’s a proce-
dure that assigns an integer value to a property for a given component, only if that property
exists:

procedure SetIntegerPropertyIfExists(AComp: TComponent; APropName: String;
AValue: Integer);

var
PropInfo: PPropInfo;

begin
PropInfo := GetPropInfo(AComp.ClassInfo, APropName);
if PropInfo <> nil then
begin

if PropInfo”.PropType”.Kind = tkInteger then
SetOrdProp(AComp, PropInfo, Integer(AValue));

end;

end;

This procedure takes three parameters. The first, AComp, is the component whose property you
want to modify. The second parameter, APropName, is the name of the property to which you
want to assign the value of the third parameter, Avalue. This procedure uses the GetPropInfo()
function to retrieve the TPropInfo pointer on the specified property. GetPropInfo() will return
nil if the property doesn’t exist. If the property does exist, the second if clause determines
whether the property is of the correct type. The property type tkInteger is defined in the
TypInfo.pas unit along with other possible property types, as shown here:

TTypeKind = (tkUnknown, tkInteger, tkChar, tkEnumeration, tkFloat,

tkString, tkSet, tkClass, tkMethod, tkWChar, tkLString, tkWString,
tkvariant, tkArray, tkRecord, tkInterface, tkInt64, tkDynArray);

Finally, the assignment is made to the property using the SetOrdProp () procedure, another
helper routine from TypInfo.pas used to set values to ordinal-type properties. The call to this
procedure might look something like the following:

SetIntegerPropertyIfExists(Button2, 'Width', 50);

SetOrdProp () is referred to as a setter method, a method used to set a value to a property.
There is also a getter method, which retrieves the property value. Several of these

Component Architecture: VCL and CLX

CHAPTER 10

SetXXXProp() helper routines are in the TypInfo.pas unit for the possible property types, as
shown in Table 10.7.

TaBLE 10.7 Getter and Setter Methods

Property Type Setter Method Getter Method
Ordinal SetOrdProp() GetOrdProp()
Enumerated SetEnumProp() GetEnumProp()
Objects SetObjectProp() GetObjectProp()
String SetStrProp() GetStrProp()
Floating Point SetFloatProp() GetFloatProp()
Variant SetVariantProp() GetVariantProp()
Methods (Events) SetMethodProp () GetMethodProp()
Int64 SetInt64Prop() GetInt64Prop()

Again, there are many other helper routines you’ll find useful in TypInfo.pas.

The following code shows how to assign an object property:

procedure SetObjectPropertyIfExists(AComponent: TComponent; APropName: String;
AValue: TObject);
var
PropInfo: PPropInfo;
begin
PropInfo := GetPropInfo(AComponent.ClassInfo, APropName);
if PropInfo <> nil then
begin
if PropInfo”.PropType”.Kind = tkClass then
SetObjectProp(AComponent, PropInfo, AValue);
end;
end;

This method might be called as follows:

var
F: TFont;
begin
F := TFont.Create;
F.Name := 'Arial';
F.Size 1= 24;
F.Color := clRed;
SetObjectPropertyIfExists(Panell, 'Font', F);
end;

427

XT1D GNV DA |

UNLIALIHYY |

1N3INOdINOD

428 Component-Based Development

PART IV

The following code shows how to assign a method property:

procedure SetMethodPropertyIfExists(AComp: TComponent; APropName: String;
AMethod: TMethod);
var
PropInfo: PPropInfo;
begin
PropInfo := GetPropInfo(AComp.ClassInfo, APropName);
if PropInfo <> nil then
begin
if PropInfo”.PropType”.Kind = tkMethod then
SetMethodProp (AComp, PropInfo, AMethod);
end;
end;

This method requires the use of the TMethod type, which is defined in the System.pas unit.
To call this method to assign an event handler from one component to another, you can use
GetMethodProp to retrieve the TMethod value from the source component, as shown here:

SetMethodPropertyIfExists(Button5, 'OnClick’,
GetMethodProp(Panell, 'OnClick'));

The accompanying CD-ROM has a project, SetProperties.dpr, that demonstrates these
routines.

Summary

This chapter introduced you to the Visual Component Library (VCL) and Component Library
for Cross Platform (CLX). We discussed the hierarchies and the special characteristics of com-
ponents at different levels in each hierarchy. We also covered Runtime Type Information in
depth. This chapter prepared you for the following chapters, which cover component writing.

VCL Component Building

IN THIS CHAPTER

e Component Building Basics 430
¢ Sample Components 459

¢ TddgButtonEdit—Container
Components 477

CHAPTER

11

430

Component-Based Development
PART IV

The ability to easily write custom components in Delphi 6 is a chief productivity advantage
that you wield over other programmers. In most other environments, folks are stuck using the
standard controls available through Windows or else have to use an entirely different set of
complex controls that were developed by somebody else. Being able to incorporate your cus-
tom components into your Delphi applications means that you have complete control over the
application’s user interface. Custom controls give you the final say in your application’s look
and feel.

In Delphi 6, you have the option of writing components for the Delphi VCL, which has existed
since Delphi 1. You can also write components for Delphi’s CLX architecture, which will be
covered in Chapter 13, “CLX Component Development.”

If your forte is component design, you will appreciate all the information this chapter has to
offer. You will learn about all aspects of component design from concept to integration into the
Delphi environment. You will also learn about the pitfalls of component design, as well as
some tips and tricks to developing highly functional and extensible components.

Even if your primary interest is application development and not component design, you will
get a great deal out of this chapter. Incorporating a custom component or two into your pro-
grams is an ideal way to spice up and enhance the productivity of your applications. Invariably,
you will get caught in a situation while writing your application where, of all the components
at your disposal, none is quite right for some particular task. That’s where component design
comes in. You will be able to tailor a component to meet your exact needs, and hopefully
design it smart enough to use again and again in subsequent applications.

Component Building Basics

The following sections teach you the basic skills required to get you started in writing compo-
nents. Then, we show you how to apply those skills by demonstrating how we designed some
useful components.

Deciding Whether to Write a Component

Why go through the trouble of writing a custom control in the first place when it’s probably
less work to make do with an existing component or hack together something quick and dirty
that “will do”? There are a number of reasons to write your own custom control:

* You want to design a new user-interface element that can be used in more than one
application.

* You want to make your application more robust by separating its elements into logical
object-oriented classes.

VCL Component Building

CHAPTER 11

* You cannot find an existing Delphi component or ActiveX control that suits your needs

for a particular situation.

* You recognize a market for a particular component, and you want to create a component

to share with other Delphi developers for fun or profit.

* You want to increase your knowledge of Delphi, VCL internals, and the Win32 API.

One of the best ways to learn how to create custom components is from the people who
invented them. Delphi’s VCL source code is an invaluable resource for component writers, and
it is highly recommended for anyone who is serious about creating custom components. The
VCL source code is included in the Enterprise and Professional versions of Delphi.

Writing custom components can seem like a pretty daunting task, but don’t believe the hype.
Writing a custom component is only as hard or as easy as you make it. Components can be
tough to write, of course, but you also can create very useful components fairly easily.

Component Writing Steps

Assuming that you have already defined a problem and have a component-based solution, here
are the important points in creating a component from concept to deployment:

First, you need an idea for a useful and hopefully unique component.

Next, sit down and map out the algorithm for how the component will work.

Start with the preliminaries—don’t jump right into the component. Ask yourself, “What
do I need up front to make this component work?”

Try to break up the construction of your component into logical portions. This will not
only modularize and simplify the creation of the component, but it also will help you to
write cleaner, more organized code. Design your component with the thought that some-
one else might try to create a descendant component.

Test your component in a test project first. You will be sorry if you immediately add it to
the Component Palette.

Finally, add the component and an optional bitmap to the Component Palette. After a lit-
tle fine-tuning, it will be ready for you to drop into your Delphi applications.

The six basic steps to writing your Delphi component are as follows:

1.
2.
3.
4.

Deciding on an ancestor class.
Creating the Component Unit.
Adding properties, methods, and events to your new component.

Testing your component.

431

-—
=

oNiaTing
ININOdINOD TIA

432

Component-Based Development
PART IV

5. Registering your component with the Delphi environment.

6. Creating a help file for your component.

In this chapter, we will discuss the first five steps; however, it is beyond the scope of this chap-
ter to get into the topic of writing help files. However, this doesn’t mean that this step is any
less important than the others. We recommend that you look into some of the third-party tools
available that simplify writing help files. Also, Borland provides information on how to do this
in its online help. Look up “Providing Help for Your Component” in the online help for more
information.

Deciding on an Ancestor Class

In Chapter 10, “Component Architecture: VCL and CLX,” we discussed the VCL hierarchy
and the special purposes of the different classes at the different hierarchical levels. We wrote
about four basic components from which your components will descend: standard controls,
custom controls, graphical controls, and non-visual components. For instance, if you need to
simply extend the behavior of an existing Win32 control such as TMemo, you’ll be extending a
standard control. If you need to define an entirely new component class, you’ll be dealing with
a custom control. Graphical controls let you create components that have a visual effect, but
don’t take up Win32 resources. Finally, if you want to create a component that can be edited
from Delphi’s Object Inspector but doesn’t necessarily have a visual characteristic, you’ll be
creating a non-visual component. Different VCL classes represent these diverse types of com-
ponents. You might want to review Chapter 10 unless you’re quite comfortable with these con-
cepts. Table 11.1 gives you a quick reference.

TaBLE 11.1 VCL Classes as Component Base Classes

VCL Class Types of Custom Controls

TObject Although classes descending directly from TObject aren’t compo-
nents, strictly speaking, they do merit mention. You will use TObject
as a base class for many things that you don’t need to work with at
design time. A good example is the TIniFile object.

TComponent This is a starting point for many non-visual components. Its forte is
that it offers built-in streaming capability to load and save itself in
the IDE at design time.

TGraphicControl Use this class when you want to create a custom component that has
no window handle. TGraphicControl descendants are drawn on
their parent’s client surface, so they are easier on resources.

TWinControl This is the base class for all components that require a window han-
dle. It provides you with common properties and events specific to
windowed controls.

VCL Component Building 433
CHAPTER 11
TasLE 11.1 Continued 1

VCL Class Types of Custom Controls <

@)

TCustomControl This class descends from TWinControl. It introduces the concepts of @ r':

a canvas and a Paint () method to give you greater control over the 5 2

component’s appearance. Use this class for most of your window- g 3

handled custom component needs. E

-

TCustomClassName The VCL contains several classes that don’t publish all their proper-
ties; they leave it up to descendant classes to do. This allows com-
ponent developers to create custom components from the same base
class and to publish only the predefined properties required for each
customized class.

TComponentName This is an existing class such as TEdit, TPanel, or TScrollBox. Use
an already established component as a base class for your class
(such as TEdit), and custom components when you want to extend
them rather than create a new one from scratch. Many of your cus-
tom components will fall into this category.

It is extremely important that you understand these various classes and also the capabilities of
the existing components. The majority of the time, you’ll find that an existing component
already provides most of the functionality you require of your new component. Only by know-
ing the capabilities of existing components will you be able to decide from which component
to derive your new component. We can’t inject this knowledge into your brain from this book.
What we can do is to tell you that you must make every effort to learn about each component
and class within Delphi’s VCL, and the only way to do that is to use it, even if only
experimentally.

Creating a Component Unit

When you have decided on a component from which your new component will descend, you
can go ahead and create a unit for your new component. We’re going to go through the steps of
designing a new component in the next several sections. Because we want to focus on the
steps, and not on component functionality, this component will do nothing other than to illus-
trate these necessary steps.

The component is appropriately named TddgWorthless. TddgWorthless will descend from
TCustomControl and will therefore have both a window handle and the capability to paint
itself. This component will also inherit several properties, methods, and events already belong-
ing to TCustomControl.

The easiest way to get started is to use the Component Expert, shown in Figure 11.1, to create
a component unit.

434

Component-Based Development

PART IV
ew Componene £
New Component |
Ancestor type: ITEnmpnner\t [Classes] =l
Class Name: [TddgWorthless
Palette Page: [Samples -
Urit fle name: [iprogram fles\borand\deiphiesLibddgwort J
Search path: |$[DELF‘HI]\L\b:ﬂi[DELFH\]\E\M:$[DELFH\]\ImDDr J
sl [0k | Cancel | heb |
FiGure 11.1

The Component Expert.

You invoke the Component Expert by selecting Component, New Component. In the
Component Expert, you enter the component’s ancestor classname, the component’s class-
name, the palette page on which you want the component to appear, and the unit name for the
component. When you click OK, Delphi automatically creates the component unit that has the
component’s type declaration and a register procedure. Listing 11.1 shows the unit created by
Delphi.

LisTING 11.1 Worthless.pas—A Sample Delphi Component

unit Worthless;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs;
type
TddgWorthless = class(TCustomControl)
private
{ Private declarations }
protected
{ Protected declarations }
public
{ Public declarations }
published
{ Published declarations }
end;
procedure Register;
implementation
procedure Register;
begin
RegisterComponents('DDG', [TddgWorthless]);
end;
end.

VCL Component Building

CHAPTER 11

At this point, you can see that TddgWorthless is nothing more than a skeleton component. In
the following sections, you’ll add properties, methods, and events to TddgWorthless.

Creating Properties

In Chapter 10, we discussed using properties with your components. This section shows you
how to add the various types of properties to your components.

Types of Properties

In Chapter 10, we listed the various property types. We’re going to add properties of each of
these types to the TddgWorthless component to illustrate the differences between each type.
Each type of property is edited a bit differently from the Object Inspector. You will examine
each of these types and how they are edited.

Adding Simple Properties to Components

Simple properties refer to numbers, strings, and characters. They can be edited directly by the
user from within the Object Inspector and require no special access method. Listing 11.2
shows the TddgWorthless component with three simple properties.

LisTING 11.2 Simple Properties

TddgWorthless = class(TCustomControl)
private
// Internal Data Storage
FIntegerProp: Integer;
FStringProp: String;
FCharProp: Char;
published
// Simple property types
property IntegerProp: Integer read FIntegerProp write FIntegerProp;
property StringProp: String read FStringProp write FStringProp;
property CharProp: Char read FCharProp write FCharProp;
end;

You should already be familiar with the syntax used here because it was discussed previously
in Chapter 10. Here, you have your internal data storage for the component declared in the
private section. The properties that refer to these storage fields are declared in the published
section, meaning that when you install the component in Delphi, you can edit the properties in
the Object Inspector.

435

-—
=

oNiaTing
ININOdINOD TIA

436

Component-Based Development
PART IV

NoTE

When writing components, the convention is to make private field names begin with
the letter £ For components and types in general, give the object or type a name
starting with the letter T. Your code will be much more clear if you follow these sim-
ple conventions.

Adding Enumerated Properties to Components

You can edit user-defined enumerated properties and Boolean properties in the Object
Inspector by double-clicking in the Value section or by selecting the property value from a
drop-down list. An example of such a property is the Align property that exists on most visual
components. To create an enumerated property, you must first define the enumerated type as
follows:

TEnumProp = (epZero, epOne, epTwo, epThree);

You then define the internal storage field to hold the value specified by the user. Listing 11.3
shows two enumerated property types for the TddgWorthless component.

LisTING 11.3 Enumerated Properties

TddgWorthless = class(TCustomControl)
private
// Enumerated data types
FEnumProp: TEnumProp;
FBooleanProp: Boolean;
published
property EnumProp: TEnumProp read FEnumProp write FEnumProp;
property BooleanProp: Boolean read FBooleanProp write FBooleanProp;
end;

We’ve excluded the other properties for illustrative purposes. If you were to install this compo-
nent, its enumerated properties would appear in the Object Inspector as shown in Figure 11.2.

Adding Set Properties to Components

Set properties, when edited in the Object Inspector, appear as a set in Pascal syntax. An easier
way to edit them is to expand the properties in the Object Inspector. Each set item then works
in the Object Inspector like a Boolean property. To create a set property for the TddgWorthless
component, we must first define a set type as follows:

TSetPropOption = (poOne, poTwo, poThree, poFour, poFive);
TSetPropOptions = set of TSetPropOption;

VCL Component Building

CHAPTER 11

X
ddaiw/orthlessT Tddgworthless |

Propeties | Evenlgl

BoolearProp | False
ChaProp |HO

Cursor ciDefault
ErumPiop |epfein -
Height epne

HelpContext |epThres
HelpKeyword |2pTwo

T

Hint

IntegeiProp |100

Left 56

Name ddaworthlessl
E10ptions i
E1Somelbiect | (TSomelbject]

StingProp

Tag 0

Top 2

Width 100
All shown v

FIGURE 11.2

The Object Inspector showing enumerated properties for TddgWorthless.

Here, you first define a range for the set by defining an enumerated type, TSetPropOption.
Then you define the set TSetPropOptions

You can now add a property of TSetPropOptions to the TddgWorthless component as follows:

TddgWorthless = class(TCustomControl) s

private

FOptions: TSetPropOptions;
published

property Options: TSetPropOptions read FOptions write FOptions;
end;

Figure 11.3 shows how this property looks when expanded in the Object Inspector.

X
ddaiw/orthlessT Tddgworthless |

Propeties | Evenlgl

BooleanProp |False -
ChaProp |#0
Cursor cDefault
EnumProp |epZer
Height 41
HelpCortest |0
HelpKeyword
HelpType | htContext
Hint
IntegerPiop |100
Left 56
Name ddgworthless1
polne False
poTwo True
poThies | True
poFour False
poFive False
ESomelbiect | (TSomeDbject] d|
All shown 4

FiGURE 11.3
The set property in the Object Inspector.

437

-—
=

oNiaTing
ININOdINOD TIA

438

Component-Based Development
PART IV

Adding Object Properties to Components

Properties can also be objects or other components. For example, the TBrush and TPen proper-
ties of a TShape component are also objects. When a property is an object, it can be expanded
in the Object Inspector so its own properties can also be modified. Properties that are objects
must be descendants of TPersistent so that their published properties can be streamed and
displayed in the Object Inspector.

To define an object property for the TddgWorthless component, you must first define an object
that will serve as this property’s type. This object is shown in Listing 11.4.

LisTING 11.4 TSomeObject Definition

TSomeObject = class(TPersistent)
private
FProp1: Integer;
FProp2: String;
public
procedure Assign(Source: TPersistent);
published
property Propi: Integer read FPropl write FPropi;
property Prop2: String read FProp2 write FProp2;
end;

The TSomeObject class descends directly from TPersistent, although it doesn’t have to. As
long as the object from which the new class descends is, itself, a descendant of TPersistent, it
can be used as another object’s property.

We’ve given this class two properties of its own: Prop1 and Prop2, which are both simple
property types. We’ve also added a procedure, Assign(), to TSomeObject, which we’ll discuss
momentarily.

Now, you can add a field of the type TSomeObject to the TddgWorthless component. However,
because this property is an object, it must be created. Otherwise, when the user places a
TddgWorthless component on the form, there won’t be an instance of TSomeObject that the
user can edit. Therefore, it is necessary to override the Create() constructor for
TddgWorthless to create an instance of TSomeObject. Listing 11.5 shows the declaration of
TddgWorthless with its new object property.

ListiNG 11.5—Adding Object Properties

TddgWorthless = class(TCustomControl)
private
FSomeObject: TSomeObject;
procedure SetSomeObject(Value: TSomeObject);

VCL Component Building

CHAPTER 11

LisTING 11.5—Continued

public

constructor Create(AOwner: TComponent); override;

destructor Destroy; override;
published

property SomeObject: TSomeObject read FSomeObject write SetSomeObject;
end;

Notice that we’ve included the overridden Create () constructor and Destroy() destructor.
We’ve also declared a write access method, SetSomeObject (), for the SomeObject property. A
write access method is often referred to as a writer method or setter method. Read access
methods are called reader or getter methods. As you might recall from Chapter 10, writer
methods must have one parameter of the same type as the property to which they belong. By
convention, the name of the writer method usually begins with Set.

We’ve defined the TddgWorthless.Create() constructor as follows:

constructor TddgWorthless.Create(AOwner: TComponent);
begin

inherited Create(AOwner);

FSomeObject := TSomeObject.Create;
end;

Here, we first call the inherited Create () constructor and then create the instance of the
TSomeObject class. Because Create() is called both when the user drops the component on
the form at design time and when the application is run, you can be assured that FSomeObject
will always be valid.

You must also override the Destroy () destructor to free the object before you free the
TddgWorthless component. The code to do this follows:

destructor TddgWorthless.Destroy;
begin

FSomeObject.Free;

inherited Destroy;
end;

Now that we’ve shown how to create the instance of TSomeObject, consider what would hap-
pen if the user executes the following code at runtime:

var
MySomeObject: TSomeObject;

begin
MySomeObject := TSomeObject.Create;
ddgWorthless.SomeObjectj := MySomeObject;

end;

439

-—
=

oNiaTing
ININOdINOD TIA

440

Component-Based Development
PART IV

If the TddgWorthless.SomeObject property were defined without a writer method like the fol-
lowing, when the user assigns her own object to the SomeObject field, the previous instance to
which FSomeObject referred would be lost:

property SomeObject: TSomeObject read FSomeObject write FSomeObject;

As you might recall from Chapter 2, “The Object Pascal Language,” object instances are really
pointer references to the actual object. When you make an assignment as shown in the preced-
ing example, you refer the pointer to another object instance while the previous object instance
still hangs around. When designing components, you want to avoid having to place conditions
on your users when accessing properties. To prevent this pitfall, foolproof your component by
creating access methods for properties that are objects. These access methods can then ensure
that no resources get lost when the user assigns new values to these properties. The access
method for SomeObject does just that and is shown here:

procedure TddgWorthLess.SetSomeObject(Value: TSomeObject);
begin
if Assigned(Value) then
FSomeObject.Assign(Value);
end;

The SetSomeObject () method calls the FSomeObject.Assign(), passing it the new
TSomeObject reference. TSomeObject.Assign() is implemented as follows:

procedure TSomeObject.Assign(Source: TPersistent);
begin
if Source is TSomeObject then
begin
FProp1 := TSomeObject(Source).Propil;
FProp2 := TSomeObject(Source).Prop2;
inherited Assign(Source);
end;
end;

In TSomeObject.Assign(), you first ensure that the user has passed in a valid TSomeObject
instance. If so, you then copy the property values from Source accordingly. This illustrates
another technique you’ll see throughout the VCL for assigning objects to other objects. If you
have the VCL source code, you might take a look at the various Assign() methods such as
TBrush and TShape to see how they are implemented. This would give you some ideas on how
to implement them in your components.

VCL Component Building
CHAPTER 11

CAUTION

Never make an assignment to a property in a property’s writer method. For example,
examine the following property declaration:

property SomeProp: integer read FSomeProp write SetSomeProp;

procedure SetSomeProp(Value:integer);
begin
SomeProp := Value; // This causes infinite recursion }

end;
Because you are accessing the property itself (not the internal storage field), you
cause the SetSomeProp () method to be called again, which results in a recursive loop.
Eventually, the program will crash with a stack overflow. Always access the internal
storage field in the writer methods of properties.

Adding Array Properties to Components

Some properties lend themselves to being accessed as though they were arrays. That is, they
contain a list of items that can be referenced with an index value. The actual items referenced
can be of any object type. Examples of such properties are TScreen.Fonts, TMemo.Lines, and
TDBGrid.Columns. Such properties require their own property editors. We will get into creating
property editors in Chapter 12, “Advanced VCL Component Building.” Therefore, we will not
go into detail on creating array properties with a list of different object types until later. For
now, we’ll show a simple method for defining a property that can be indexed as though it were
an array of items, yet contains no list at all. We’re going to put aside the TddgWorthless com-
ponent for a moment and instead look at the TddgPlanets component. TddgPlanets contains
two properties: PlanetName and PlanetPosition. PlanetName will be an array property that
returns the name of the planet based on the value of an integer index. PlanetPosition won’t
use an integer index, but rather a string index. If this string is one of the planet names, the
result will be the planet’s position in the solar system.

For example, the following statement will display the string "Neptune" by using the
TddgPlanets.PlanetName property:

ShowMessage (ddgPlanets.PlanetName[8]);

Compare the difference when the sentence From the sun, Neptune is planet number: 8is
generated from the following statement:

ShowMessage('From the sun, Neptune is planet number: '+
IntToStr(ddgPlanets.PlanetPosition['Neptune']));

441

-—
=

oNiaTing
ININOdINOD TIA

Component-Based Development
PART IV

442

Before we show you this component, we’ll list some key characteristics of array properties that
differ from the other properties we’ve mentioned:

* Array properties are declared with one or more index parameters. These indexes can be
of any simple type. For example, the index can be an integer or a string, but not a record
or a class.

* Both the read and write property access directives must be methods. They cannot be
one of the component’s fields.

« If the array property is indexed by multiple index values, that is, the property represents a
multidimensional array, the access method must include parameters for each index in the
same order as defined by the property.

Now, we’ll get to the actual component shown in Listing 11.6.

LisTING 11.6 Using TddgPlanets to lllustrate Array Properties

unit planets;
interface

uses
Classes, SysUtils;

type

TddgPlanets = class(TComponent)
private
// Array property access methods
function GetPlanetName(const AIndex: Integer): String;
function GetPlanetPosition(const APlanetName: String): Integer;
public
{ Array property indexed by an integer value. This will be the default
array property. }
property PlanetName[const AIndex: Integer]: String
read GetPlanetName; default;
// Array property index by a string value
property PlanetPosition[const APlantetName: String]: Integer
read GetPlanetPosition;
end;

implementation

const

VCL Component Building

CHAPTER 11

LisTING 11.6 Continued

// Declare a constant array containing planet names
PlanetNames: array[1..9] of String[7] =
('Mercury', 'Venus', 'Earth', 'Mars', 'Jupiter', 'Saturn',
‘Uranus', 'Neptune', 'Pluto');

function TddgPlanets.GetPlanetName(const AIndex: Integer): String;
begin
{ Return the name of the planet specified by Index. If Index is
out of the range, then raise an exception }
if (AIndex < @) or (AIndex > 9) then
raise Exception.Create('Wrong Planet number, enter a number 1-9')
else
Result := PlanetNames[AIndex];
end;

function TddgPlanets.GetPlanetPosition(const APlanetName: String): Integer;
var

i: integer;

begin

Result := 0;

i = 0;

{ Compare PName to each planet name and return the index of the
appropriate position where PName appears in the constant array.
Otherwise return zero. }

repeat
inc(i);

until (i = 10) or (CompareStr(UpperCase(APlanetName),

UpperCase (PlanetNames[i])) = 0);

if i <> 10 then // A Planet name was found
Result := ij;

end;

end.

443

This component gives you an idea of how you would create an array property with both an
integer and string being used as an index. Notice how the value returned from reading the
property’s value is based on the function return value and not a value from a storage field, as is
the case with the other properties. You can refer to the code’s comments for additional explana-
tion on this component.

-—
=

oNiaTing
ININOdINOD TIA

444

Component-Based Development
PART IV

Default Values

You can give a property a default value by assigning a value to the property in the component’s
constructor. Therefore, if we added the following statement to the constructor of the
TddgWorthless component, its FIntegerProp property would always default to 100 when the
component is first placed onto the form:

FIntegerProp := 100;

This is probably the best place to mention the Default and NoDefault directives for property
declarations. If you’ve looked at Delphi’s VCL source code, you’ve probably noticed that some
property declarations contain the Default directive, as is the case with the TComponent.FTag
property:

property Tag: Longint read FTag write FTag default 0;

Don’t confuse this statement with the default value specified in the component’s constructor
that actually sets the property value. For example, change the declaration of the IntegerProp
property for the TddgWorthless component to read as follows:

property IntegerProp: Integer read FIntegerProp write FIntegerProp default 100;

This statement doesn’t set the value of the property to 100. This only affects whether the prop-
erty value is saved when you save a form containing the TddgWorthless component. If
IntegerProp’s value isn’t 100, the value will be saved to the DFM file. Otherwise, it doesn’t
get saved because 100 is what the property value will be in a newly constructed object prior to
reading its properties from the stream. It is recommended that you use the Default directive
whenever possible because it might speed up the load time of your forms. It is important for
you to realize that the Default directive doesn’t set the value of the property. You must do that
in the component’s constructor as was shown previously.

The NoDefault directive is used to redeclare a property that specifies a default value, so it will
always be written to the stream regardless of its value. For example, you can redeclare your
component to not specify a default value for the Tag property:

TSample = class(TComponent)
published
property Tag NoDefault;

Note that you should never declare anything NoDefault unless you have a specific reason. An
example of such a property is TForm.PixelsPerInch, which must always be stored so that
scaling will work right at runtime. Also, string, floating point, and int64 type properties can-
not declare default values.

VCL Component Building

CHAPTER 11

To change a property’s default value, you redeclare it by using the new default value (but no
reader or writer methods).

Default Array Properties

You can declare an array property so that it is the default property for the component to which
it belongs. This allows the component user to implement the object instance as though it

were an array variable. For example, using the TddgPlanets component, we declared the
TddgPlanets.PlanetName property with the default keyword. By doing this, the component
user isn’t required to use the property name, PlanetName, in order to retrieve a value. One sim-
ply has to place the index next to the object identifier. Therefore, the following two lines of
code will produce the same result:

ShowMessage (ddgPlanets.PlanetName[8]);
ShowMessage (ddgPlanets[8]);

Only one default array property can be declared for an object, and it cannot be overridden in
descendants.

Creating Events

In Chapter 10, we introduced events and told you that events were special properties linked to
code that get executed whenever a particular action occurs. In this section, we’re going to dis-
cuss events in more detail. We’ll show you how events are generated and how you can define
your own event properties for your custom components.

Where Do Events Come From?

The general definition of an event is basically any type of occurrence that might result from
user interaction, the system, or from code logic. The event is linked to some code that responds
to that occurrence. The linkage of the event to code that responds to an event is called an event
property and is provided in the form of a method pointer. The method to which an event prop-
erty points is called an event handler.

For example, when the user clicks the mouse button, a WM_MOUSEDOWN message is sent to the
Win32 system. Win32 passes that message to the control for which the message was intended.
This control can then respond to the message. The control can respond to this event by first
checking to see whether there is any code to execute. It does this by checking to see whether
the event property points to any code. If so, it executes that code, or rather, the event handler.

The OnClick event is just one of the standard event properties defined by Delphi. OnClick and
other event properties each have a corresponding event-dispatching method. This method is
typically a protected method of the component to which it belongs. This method performs the

445

-—
=

oNiaTing
ININOdINOD TIA

446

Component-Based Development
PART IV

logic to determine whether the event property refers to any code provided by the user of the
component. For the OnClick property, this would be the Click() method. Both the OnClick
property and the Click() method are defined by TControl as follows:

TControl = class(TComponent)
private
FOnClick: TNotifyEvent;
protected
procedure Click; dynamic;
property OnClick: TNotifyEvent read FOnClick write FOnClick;
end;

Here is the TControl.Click() method:

procedure TControl.Click;
begin

if Assigned(FOnClick) then FOnClick(Self);
end;

One bit of essential information that you must understand is that event properties are nothing
more than method pointers. Notice that the FOnClick property is defined to be a
TNotifyEvent. TNotifyEvent is defined as follows:

TNotifyEvent = procedure(Sender: TObject) of object;

This says that TNotifyEvent is a procedure that takes one parameter, Sender, which is of the
type TObject. The directive, of object, is what makes this procedure become a method. This
means that an additional implicit parameter that you don’t see in the parameter list also gets
passed to this procedure. This is the Self parameter that refers to the object to which this
method belongs. When the Click() method of a component is called, it checks to see if
FOnClick actually points to a method, and if so, calls that method.

As a component writer, you write all the code that defines your event, your event property, and
your dispatching methods. The component user will provide the event handler when using your
component. Your event-dispatching method will check to see whether the user has assigned any
code to your event property and then execute it when code exists.

In Chapter 10, we discussed how event handlers are assigned to event properties either at run-
time or at design time. In the following section, we show you how to create your own events,
event properties, and dispatching methods.

Defining Event Properties

Before you define an event property, you need to determine whether you need a special event
type. It helps to be familiar with the common event properties that exist in the Delphi VCL.
Most of the time, you’ll be able to have your component descend from one of the existing

VCL Component Building

CHAPTER 11

components and just use its event properties, or you might have to surface a protected event
property. If you determine that none of the existing events meet your need, you can define your
own.

As an example, consider the following scenario. Suppose you want a component containing an
event that gets called every half-minute based on the system clock. That is, it gets invoked on
the minute and on the half minute. Well, you can certainly use a TTimer component to check
the system time and then perform some action whenever the time is at the minute or half
minute. However you might want to incorporate this code into your own component and then
make that component available to your users so that all they have to do is add code to your
OnHalfMinute event.

The TddgHalfMinute component shown in Listing 11.7 illustrates how you would design such
a component. More importantly, it shows how you would go about creating your own event

type.

LisTING 11.7 TddgHalfMinute—Event Creation

unit halfmin;
interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, ExtCtrls;

type
{ Define a procedure for the event handler. The event property will
be of this procedure type. This type will take two parameters, the
object that invoked the event and a TDateTime value to represent
the time that the event occurred. For our component this will be
every half-minute. }
TTimeEvent = procedure(Sender: TObject; TheTime: TDateTime) of object;

TddgHalfMinute = class(TComponent)
private

FTimer: TTimer;

{ Define a storage field to point to the user's event handler.
The user's event handler must be of the procedural type
TTimeEvent. }

FOnHalfMinute: TTimeEvent;

FOldSecond, FSecond: Word; // Variables used in the code

{ Define a procedure, FTimerTimer that will be assigned to
FTimer.OnClick. This procedure must be of the type TNotifyEvent
which is the type of TTimer.OnClick. }

447

-—
=

oNiaTing
ININOdINOD TIA

Component-Based Development
PART IV

448

LisTING 11.7 Continued

procedure FTimerTimer(Sender: TObject);
protected
{ Define the dispatching method for the OnHalfMinute event. }
procedure DoHalfMinute(TheTime: TDateTime); dynamic;
public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;
published
// Define the actual property that will show in the Object Inspector
property OnHalfMinute: TTimeEvent read FOnHalfMinute write FOnHalfMinute;
end;

implementation

constructor TddgHalfMinute.Create (AOwner: TComponent);

{ The Create constructor, creates the TTimer instanced for FTimer. It
then sets up the various properties of FTimer, including its OnTimer
event handler which is TddgHalfMinute's FTimerTimer() method. Notice
that FTimer.Enabled is set to true only if the component is running
and not while the component is in design mode. }

begin
inherited Create(AOwner);

// If the component is in design mode, do not enable FTimer.
if not (csDesigning in ComponentState) then

begin
FTimer := TTimer.Create(self);
FTimer.Enabled := True;

// Set up the other properties, including the FTimer.OnTimer event handler
FTimer.Interval := 500;
FTimer.OnTimer := FTimerTimer;
end;
end;

destructor TddgHalfMinute.Destroy;
begin

FTimer.Free;

inherited Destroy;
end;

procedure TddgHalfMinute.FTimerTimer (Sender: TObject);
{ This method serves as the FTimer.OnTimer event handler and is assigned
to FTimer.OnTimer at run-time in TddgHalfMinute's constructor.

VCL Component Building

CHAPTER 11

LisTinG 11.7 Continued

This method gets the system time, and then determines whether or not
the time is on the minute, or on the half-minute. If either of these
conditions are true, it calls the OnHalfMinute dispatching method,
DoHalfMinute. }

var
DT: TDateTime;
Temp: Word;
begin

DT := Now; // Get the system time.

FOldSecond := FSecond; // Save the old second.

// Get the time values, needed is the second value
DecodeTime (DT, Temp, Temp, FSecond, Temp);

{ If not the same second when this method was last called, and if
it is a half minute, call DoOnHalfMinute. }
if FSecond <> FOldSecond then
if ((FSecond = 30) or (FSecond = 0)) then
DoHalfMinute (DT)
end;

procedure TddgHalfMinute.DoHalfMinute(TheTime: TDateTime);

{ This method is the dispatching method for the OnHalfMinute event.
it checks to see if the user of the component has attached an
event handler to OnHalfMinute and if so, calls that code. }

begin
if Assigned(FOnHalfMinute) then

FOnHalfMinute (Self, TheTime);
end;

end.

449

When creating your own events, you must determine what information you want to provide to
users of your component as a parameter in the event handler. For example, when you create an
event handler for the TEdit.OnKeyPress event, your event handler looks like the following
code:

procedure TFormi.Edit1KeyPress(Sender: TObject; var Key: Char);

begin
end;

Not only do you get a reference to the object that caused the event, but you also get a Char
parameter specifying the key that was pressed. Deep in the Delphi VCL, this event occurred as

-—
=

oNiaTing
ININOdINOD TIA

450

Component-Based Development
PART IV

a result of a WM_CHAR Win32 message that drags along some additional information relating to
the key pressed. Delphi takes care of extracting the necessary data and making it available to
component users as event handler parameters. One of the nice things about the whole scheme
is that it enables component writers to take information that might be somewhat complex to
understand and make it available to component users in a much more understandable and easy-
to-use format.

Notice the var parameter in the preceding Edit1KeyPress () method. You might be wondering
why this method wasn’t declared as a function that returns a Char type instead of a procedure.
Although method types can be functions, you shouldn’t declare events as functions because it
will introduce ambiguity; when you refer to a method pointer that is a function, you can’t
know whether you’re referring to the function result or to the function pointer value itself. By
the way, one function event in the VCL slipped past the developers from the Delphi 1 days,
and now it must remain. This event is the TApplication.OnHelp event.

Looking at Listing 11.7, you’ll see that we’ve defined the procedure type TOnHalfMinute as
this:

TTimeEvent = procedure(Sender: TObject; TheTime: TDateTime) of object;

This procedure type defines the procedure type for the OnHalfMinute event handler. Here, we
decided that we want the user to have a reference to the object causing the event to occur and
the TDateTime value of when the event occurred.

The FOnHalfMinute storage field is the reference to the user’s event handler and is surfaced to
the Object Inspector at design time through the OnHalfMinute property.

The basic functionality of the component uses a TTimer object to check the seconds value
every half second. If the seconds value is O or 30, it invokes the DoHalfMinute () method,
which is responsible for checking for the existence of an event handler and then calling it.
Much of this is explained in the code’s comments, which you should read over.

After installing this component to Delphi’s Component Palette, you can place the component
on the form and add the following event handler to the OnHalfMinute event:
procedure TFormi.ddgHalfMinuteHalfMinute(Sender: TObject; TheTime: TDateTime);
begin

ShowMessage('The Time is '+TimeToStr(TheTime));
end;

This should illustrate how your newly defined event type becomes an event handler.

VCL Component Building

CHAPTER 11

Creating Methods

Adding methods to components is no different from adding methods to other objects. However,
there are a few guidelines that you should always take into account when designing compo-
nents.

No Interdependencies!

One of the key goals behind creating components is to simplify the use of the component for
the end user. Therefore, you will want to avoid any method interdependencies as much as pos-
sible. For example, you never want to force the user to have to call a particular method in order
to use the component, and methods shouldn’t have to be called in any particular order. Also,
methods called by the user shouldn’t place the component in a state that makes other events or
methods invalid. Finally, you will want to give your methods meaningful names so that the
user doesn’t have to try to guess what a method does.

Method Exposure

Part of designing a component is to know what methods to make private, public, or protected.
You must take into account not only users of your component, but also those who might use
your component as an ancestor for yet another custom component. Table 11.2 will help you
decide what goes where in your custom component.

TaBLE 11.2 Private, Protected, Public, or Published?

451

Directive What Goes There?

Private Instance variables and methods that you don’t want the descendant type to be
able to access or modify. Typically, you will give access to some private
instance variables through properties that have read and write directives set
in such a way as to help prevent users from shooting themselves in the foot.
Therefore, you want to avoid giving access to any methods that are property-
implementation methods.

Protected Instance variables, methods, and properties that you want descendant classes
to be able to access and modify—but not users of your class. It is a common
practice to place properties in the protected section of a base class for
descendant classes to publish at their discretion.

Public Methods and properties that you want to have accessible to any user of your
class. If you have properties that you want to be accessible at runtime, but
not at design time, this is the place to put them.

Published Properties that you want to be placed on the Object Inspector at design time.
Runtime Type Information (RTTI) is generated for all properties in this section.

-—
=

oNiaTing
ININOdINOD TIA

452

Component-Based Development
PART IV

Constructors and Destructors

When creating a new component, you have the option of overriding the ancestor component’s
constructor and defining your own. You should keep a few precautions in mind when doing so.

Overriding Constructors
Always make sure to include the override directive when declaring a constructor on a
TComponent descendant class. Here’s an example:

TSomeComopnent = class(TComponent)
private
{ Private declarations }
protected
{ Protected declarations }
public
constructor Create(AOwner: TComponent); override;
published
{ Published declarations }
end;

NoTE

The Create() constructor is made virtual at the TComponent level. Non-component

classes have static constructors that are invoked from within the constructor of

TComponent classes. Therefore, if you are creating a non-component, descendant class

such as the following, the constructor cannot be overridden because it is not virtual:
TMyObject = class(TPersistant)

You simply redeclare the constructor in this instance.

Although not adding the override directive is syntactically legal, it can cause problems when
using your component. This is because when you use the component (both at design time and
at runtime), the non-virtual constructor won’t be called by code that creates the component
through a class reference (such as the streaming system).

Also, be sure that you call the inherited constructor inside your constructor’s code:

constructor TSomeComponent.Create(AOwner: TComponent);
begin

inherited Create(AOwner);

// Place your code here.
end;

VCL Component Building

CHAPTER 11

Design-Time Behavior

Remember that your component’s constructor is called whenever the component is created.
This includes the component’s design-time creation—when you place it on the form. You
might want to prevent certain actions from occurring when the component is being designed.
For example, in the TddgHalfMinute component, you created a TTimer component inside the
component’s constructor. Although it doesn’t hurt to do this, it can be avoided by making sure
that the TTimer is only created at runtime.

You can check the ComponentState property of a component to determine its current state.
Table 11.3 lists the various component states as shown in Delphi 6’s online help.

TaBLe 11.3 Component State Values

453

Flag Component State

csAncestor Set if the component was introduced in an ancestor form. Only set if
csDesigning is also set.

csDesigning Design mode, meaning that it is in a form being manipulated by a form
designer.

csDestroying The component is about to be destroyed.

csFixups Set if the component is linked to a component in another form that
hasn’t yet been loaded. This flag is cleared when all pending fixups are
resolved.

csLoading Loading from a filer object.

csReading Reading its property values from a stream.

csUpdating The component is being updated to reflect changes in an ancestor form.

Only set if csAncestor is also set.

csWriting Writing its property values to a stream.

You will mostly use the csDesigning state to determine whether your component is in design
mode. You can do this with the following statement:
inherited Create(AOwner);

if csDesigning in ComponentState then
{ Do your stuff }

You should note that the csDesigning state is uncertain until after the inherited constructor has

been called and the component is being created with an owner. This is almost always the case
in the IDE form designer.

-—
=

oNiaTing
ININOdINOD TIA

454

Component-Based Development
PART IV

Overriding Destructors

The general guideline to follow when overriding destructors is to make sure that you call the
inherited destructor only after you free up resources allocated by your component, not before.
The following code illustrates this:

destructor TMyComponent.Destroy;
begin

FTimer.Free;

MyStrings.Free;

inherited Destroy;
end;

Tip

As a rule of thumb, when you override constructors, you usually call the inherited
constructor first, and when you override destructors, you usually call the inherited
destructor last. This ensures that the class has been set up before you modify it and
that all dependent resources have been cleaned up before you dispose of a class.
There are exceptions to this rule, but you generally should stick with it unless you
have a good reason not to.

Registering Your Component

Registering the component tells Delphi which component to place on the Component Palette.
If you used the Component Expert to design your component, you don’t have to do anything
here because Delphi has already generated the code for you. However, if you are creating your
component manually, you’ll need to add the Register () procedure to your component’s unit.

All you have to do is add the procedure Register() to the interface section of the compo-
nent’s unit.

The Register procedure simply calls the RegisterComponents() procedure for every compo-
nent that you are registering in Delphi. The RegisterComponents() procedure takes two para-
meters: the name of the page on which to place the components, and an array of component
types. Listing 11.8 shows how to do this.

LisTING 11.8 Registering Components

Unit MyComp;
interface
type
TMyComp = class(TComponent)

end;

VCL Component Building
CHAPTER 11

LisTING 11.8 Continued

TOtherComp = class(TComponent)
end;
procedure Register;
implementation
{ TMyComp methods }
{ TOtherCompMethods }
procedure Register;
begin
RegisterComponents('DDG', [TMyComp, TOtherComp]);
end;
end.

The preceding code registers the components TMyComp and TOtherComp and places them on
Delphi’s Component Palette on a page labeled DDG.

The Component Palette

In Delphi 1 and 2, Delphi maintained a single component library file that stored all
components, icons, and editors for design-time usage. Although it was sometimes
convenient to have everything dealing with design in one file, it could easily get
unwieldy when many components were placed in the component library. Addition-
ally, the more components you added to the palette, the longer it would take to
rebuild the component library when adding new components.

Thanks to packages, introduced with Delphi 3, you can split up your components into
several design packages. Although it's slightly more complex to deal with multiple
files, this solution is significantly more configurable. The time required to rebuild a
package after adding a component is a fraction of the time it took to rebuild the
component library.

By default, new components are added to a package called DclUser6, but you can
create and install new design packages using the File, New, Package menu item.
The CD-ROM accompanying this book contains a pre-built design package called
DdgDT6.dpk, which includes the components from this book. The runtime package is
named DAgRT6. dpk.

If your design-time support involves anything more than a call to RegisterComponents ()
(like property editors or component editors or expert registrations), you should move
the Register() procedure and the information it registers into a unit separate from
your component. The reason for this is that if you compile your all-in-one unit into a
runtime package, and your all-in-one unit’s Register procedure refers to classes or
procedures that exist only in design-time IDE packages, your runtime package is unus-
able. Design-time support should be packaged separately from runtime material.

455

-—
=

oNiaTing
ININOdINOD TOA

456

Component-Based Development
PART IV

Testing the Component

Although it’s very exciting when you finally write a component and are in the testing stages,
don’t get carried away by trying to add your component to the Component Palette before it has
been debugged sufficiently. You should do all preliminary testing with your component by cre-
ating a project that creates and uses a dynamic instance of the component. The reason for this
is that your component lives inside the IDE when it is used at design time. If your component
contains a bug that corrupts memory, for example, it might crash the IDE as well. Listing 11.9
depicts a unit for testing the TddgExtendedMemo component that will be created later in this
chapter. This project can be found on the CD in the project TestEMem.dpr.

LisTING 11.9 Testing the TddgExtended