
Steve Teixeira and Xavier Pacheco

201 West 103rd St., Indianapolis, Indiana, 46290 USA

Borland®

Delphi™ 6 Developer’s Guide

00 fmatter.qxd 11/19/01 12:11 PM Page i

Borland®

Delphi™ 6 Developer’s Guide
Copyright © 2002 by Sams Publishing
All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without written permission from the pub-
lisher. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

International Standard Book Number: 0-672-32115-7

Library of Congress Catalog Card Number: 2001086071

Printed in the United States of America

First Printing: October 2001

04 03 02 01 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to
the accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The authors and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book or from the use of the CD or
programs accompanying it.

EXECUTIVE EDITOR

Michael Stephens

ACQUISITIONS EDITOR

Carol Ackerman

DEVELOPMENT EDITOR

Tiffany Taylor

MANAGING EDITOR

Matt Purcell

PROJECT EDITOR

Christina Smith

PRODUCTION EDITOR

Rhonda Tinch-Mize

INDEXER

Sharon Shock

PROOFREADER

Harvey Stanbrough

TECHNICAL EDITOR

John Ray Thomas
Tom Theobold

TEAM COORDINATOR

Pamalee Nelson

MEDIA DEVELOPER

Dan Scherf

INTERIOR DESIGNER

Anne Jones

COVER DESIGNER

Aren Howell

PAGE LAYOUT

Octal Publishing, Inc.

00 fmatter.qxd 11/19/01 12:11 PM Page ii

Contents at a Glance
Introduction

Part I: Development Essentials

1 Programming in Delphi

2 The Object Pascal Language

3 Adventures in Messaging

Part II: Advanced Techniques

4 Writing Portable Code

5 Multithreaded Techniques

6 Dynamic Link Libraries

Part III: Database Development

7 Delphi Database Architecture

8 Database Development with dbExpress

9 Database Development with dbGo for ADO

Part IV: Component-Based Development

10 Component Architecture: VCL and CLX

11 VCL Component Building

12 Advanced VCL Component Building

13 CLX Component Development

14 Packages to the Max

15 COM Development

16 Windows Shell Programming

17 Using the Open Tools API

Part V: Enterprise Development

18 Transactional Development with COM+/MTS

19 CORBA Development

20 BizSnap Development: Writing SOAP-Based Web Services

21 DataSnap Development

00 fmatter.qxd 11/19/01 12:11 PM Page iii

Part VI: Internet Development

22 ASP Development

23 Building WebSnap Applications

24 Wireless Development

Index

00 fmatter.qxd 11/19/01 12:11 PM Page iv

Table of Contents
Introduction 1

Who Should Read This Book ..2
Conventions Used in This Book ..2
Delphi 6 Developer’s Guide Web Site ..2
Getting Started ..3

PART I Development Essentials 5

1 Programming in Delphi 7
The Delphi Product Family ..8
Delphi: What and Why ..10

The Quality of the Visual Development Environment11
The Speediness of the Compiler Versus the Efficiency

of the Compiled Code ..12
The Power of the Programming Language Versus

Its Complexity ..13
The Flexibility and Scalability of the Database Architecture14
The Design and Usage Patterns Enforced by the Framework15

A Little History ..15
Delphi 1 ..16
Delphi 2 ..16
Delphi 3 ..17
Delphi 4 ..18
Delphi 5 ..18
Delphi 6 ..19

The Delphi IDE ..19
The Main Window ..20
The Form Designer ..22
The Object Inspector ..22
The Code Editor ..22
The Code Explorer ..23
The Object TreeView ..23

A Tour of Your Project’s Source ..24
Tour of a Small Application ..26
What’s So Great About Events, Anyway? ..28

Contract-Free Programming ..28
Turbo Prototyping ..29
Extensible Components and Environment ..29

00 fmatter.qxd 11/19/01 12:11 PM Page v

DELPHI 6 DEVELOPER’S GUIDE

The Top 10 IDE Features You Must Know and Love30
1. Class Completion ..30
2. AppBrowser Navigation ..30
3. Interface/Implementation Navigation ..31
4. Dock It! ..31
5. The Object Browser ..31
6. GUID, Anyone? ..31
7. C++ Syntax Highlighting ..32
8. To Do.32
9. Use the Project Manager ..32
10. Use Code Insight to Complete Declarations

and Parameters ..33
Summary ..33

2 The Object Pascal Language 35
Comments ..36
Extended Procedure and Function Features ..37

Parentheses in Calls ..37
Overloading ..37
Default Value Parameters ..38

Variables ..39
Constants ..41
Operators ..43

Assignment Operators ..43
Comparison Operators ..43
Logical Operators ..44
Arithmetic Operators ..45
Bitwise Operators ..46
Increment and Decrement Procedures ..46
Do-and-Assign Operators ..47

Object Pascal Types ..48
A Comparison of Types ..48
Characters ..50
A Multitude of Strings ..51
Variant Types ..63
Currency ..75

User-Defined Types ..75
Arrays ..76
Dynamic Arrays ..77
Records ..78
Sets ..80
Objects ..82
Pointers ..83

vi

00 fmatter.qxd 11/19/01 12:11 PM Page vi

CONTENTS

Type Aliases ..86
Typecasting and Type Conversion ..87
String Resources ..88
Testing Conditions ..88

The if Statement ..88
Using case Statements ..89

Loops ..90
The for Loop ..90
The while Loop ..91
repeat..until ..92
The Break() Procedure ..92
The Continue() Procedure ..92

Procedures and Functions ..93
Passing Parameters ..94

Scope ..98
Units ..99

The uses Clause ..100
Circular Unit References ..101

Packages ..101
Using Delphi Packages ..102
Package Syntax ..102

Object-Oriented Programming ..103
Object-Based Versus Object-Oriented Programming105

Using Delphi Objects ..105
Declaration and Instantiation ..105
Destruction ..106
Methods ..107
Method Types ..108
Properties ..110
Visibility Specifiers ..111
Inside Objects ..112
TObject: The Mother of All Objects ..113
Interfaces ..114

Structured Exception Handling ..118
Exception Classes ..121
Flow of Execution ..123
Reraising an Exception ..125

Runtime Type Information ..126
Summary ..127

3 Adventures in Messaging 129
What Is a Message? ..130
Types of Messages ..131

vii

00 fmatter.qxd 11/19/01 12:11 PM Page vii

DELPHI 6 DEVELOPER’S GUIDE

How the Windows Message System Works132
Delphi’s Message System ..133

Message-Specific Records ..134
Handling Messages ..135

Message Handling: Not Contract Free ..138
Assigning Message Result Values ..139
The TApplication Type’s OnMessage Event139

Sending Your Own Messages ..140
The Perform() Method ..140
The SendMessage() and PostMessage() API Functions141

Nonstandard Messages ..142
Notification Messages ..142
Internal VCL Messages ..143
User-Defined Messages ..144

Anatomy of a Message System: VCL ..146
The Relationship Between Messages and Events154
Summary ..154

PART II Advanced Techniques 155

4 Writing Portable Code 157
General Compatibility ..158

Which Version? ..158
Units, Components, and Packages ..160
IDE Issues ..160

Delphi-Kylix Compatibility ..161
Not in Linux ..162
Compiler/Language Features ..162
Platform-isms ..163

New Delphi 6 Features ..163
Variants ..163
Enum Values ..163
$IF Directive ..164
Potential Binary DFM Incompatibility ..164

Migrating from Delphi 5 ..164
Writable Typed Constants ..164
Cardinal Unary Negation ..164

Migrating from Delphi 4 ..165
RTL Issues ..165
VCL Issues ..165
Internet Development Issues ..165
Database Issues ..166

viii

00 fmatter.qxd 11/19/01 12:11 PM Page viii

CONTENTS
ix

Migrating from Delphi 3 ..166
Unsigned 32-bit Integers ..166
64-Bit Integers ..168
The Real Type ..168

Migrating from Delphi 2 ..168
Changes to Boolean Types ..168
ResourceString ..169
RTL Changes ..169
TCustomForm ..169
GetChildren() ..170
Automation Servers ..170

Migrating from Delphi 1 ..171
Summary ..171

5 Multithreaded Techniques 173
Threads Explained ..174

Types of Multitasking ..174
Using Multiple Threads in Delphi Applications175
Misuse of Threads ..175

The TThread Object ..176
TThread Basics ..176
Thread Instances ..180
Thread Termination ..180
Synchronizing with VCL ..182
A Demo Application ..185
Priorities and Scheduling ..187
Suspending and Resuming Threads ..190
Timing a Thread ..190

Managing Multiple Threads ..192
Thread-Local Storage ..192
Thread Synchronization ..196

A Sample Multithreaded Application ..210
The User Interface ..211
The Search Thread ..219
Adjusting the Priority ..224

Multithreading BDE Access ..227
Multithreaded Graphics ..233
Fibers ..238
Summary ..244

6 Dynamic Link Libraries 247
What Exactly Is a DLL? ..248
Static Linking Versus Dynamic Linking ..250

00 fmatter.qxd 11/19/01 12:11 PM Page ix

DELPHI 6 DEVELOPER’S GUIDE
x

Why Use DLLs? ..252
Sharing Code, Resources, and Data with Multiple Applications ..252
Hiding Implementation ..252

Creating and Using DLLs ..253
Counting Your Pennies (A Simple DLL)253
Displaying Modal Forms from DLLs ..256

Displaying Modeless Forms from DLLs ..259
Using DLLs in Your Delphi Applications ..261
Loading DLLs Explicitly ..263
The Dynamically Linked Library Entry/Exit Function266

Process/Thread Initialization and Termination Routines266
DLL Entry/Exit Example ..267

Exceptions in DLLs ..271
Capturing Exceptions in 16-Bit Delphi ..271
Exceptions and the Safecall Directive ..272

Callback Functions ..273
Using the Callback Function ..276
Drawing an Owner-Draw List Box ..276

Calling Callback Functions from Your DLLs277
Sharing DLL Data Across Different Processes279

Creating a DLL with Shared Memory ..280
Using a DLL with Shared Memory ..284

Exporting Objects from DLLs ..287
Summary ..293

PART III Database Development 295

7 Delphi Database Architecture 297
Types of Databases ..298
Database Architecture ..299
Connecting to Database Servers ..299

Overview of Database Connectivity ..299
Establishing a Database Connection ..300

Working with Datasets ..300
Opening and Closing Datasets ..301
Navigating Datasets ..305
Manipulating Datasets ..310

Working with Fields ..315
Field Values ..315
Field Data Types ..316
Field Names and Numbers ..317

00 fmatter.qxd 11/19/01 12:11 PM Page x

CONTENTS
xi

Manipulating Field Data ..317
The Fields Editor ..318
Working with BLOB Fields ..324
Filtering Data ..330
Searching Datasets ..332
Using Data Modules ..336
The Search, Range, Filter Demo ..337
Bookmarks ..347

Summary ..348

8 Database Development with dbExpress 349
Using dbExpress ..350

Unidirectional, Read-Only Datasets ..350
dbExpress Versus the Borland Database Engine (BDE)350
dbExpress for Cross-Platform Development351

dbExpress Components ..351
TSQLConnection ..351
TSQLDataset ..354
Backward Compatibility Components ..358
TSQLMonitor ..358

Designing Editable dbExpress Applications359
TSQLClientDataset ..359

Deploying dbExpress Applications ..360
Summary ..361

9 Database Development with dbGo for ADO 363
Introduction to dbGo ..364
Overview of Microsoft’s Universal Data Access Strategy364
Overview of OLE DB, ADO, and ODBC ..364
Using dbGo for ADO ..365

Establishing an OLE DB Provider for ODBC365
The Access Database ..367

dbGo for ADO Components ..367
TADOConnection ..368
Bypassing/Replacing the Login Prompt ..370
TADOCommand ..372
TADODataset ..373
BDE-Like Dataset Components ..373
TADOQuery ..375
TADOStoredProc ..375

Transaction Processing ..375
Summary ..377

00 fmatter.qxd 11/19/01 12:11 PM Page xi

DELPHI 6 DEVELOPER’S GUIDE
xii

PART IV Component-Based Development 379

10 Component Architecture: VCL and CLX 381
More on the New CLX ..383
What Is a Component? ..383
Component Hierarchy ..384

Nonvisual Components ..385
Visual Components ..385

The Component Structure ..387
Properties ..388
Types of Properties ..389
Methods ..390
Events ..390
Streamability ..392
Ownership ..393
Parenthood ..394

The Visual Component Hierarchy ..394
The TPersistent Class ..395
TPersistent Methods ..395
The TComponent Class ..395
The TControl Class ..397
The TWinControl and TWidgetControl ..398
The TGraphicControl Class ..399
The TCustomControl Class ..400
Other Classes ..400

Runtime Type Information ..403
The TypInfo.pas Unit: Definer of Runtime Type Information405
Obtaining Type Information ..407
Obtaining Type Information on Method Pointers416
Obtaining Type Information for Ordinal Types420

Summary ..428

11 VCL Component Building 429
Component Building Basics ..430

Deciding Whether to Write a Component430
Component Writing Steps ..431
Deciding on an Ancestor Class ..432
Creating a Component Unit ..433
Creating Properties ..435
Creating Events ..445
Creating Methods ..451
Constructors and Destructors ..452

00 fmatter.qxd 11/19/01 12:11 PM Page xii

CONTENTS
xiii

Registering Your Component ..454
Testing the Component ..456
Providing a Component Icon ..458

Sample Components ..459
Extending Win32 Component Wrapper Capabilities459
TddgRunButton—Creating Properties ..470

TddgButtonEdit—Container Components ..477
Design Decisions ..477
Surfacing Properties ..478
Surfacing Events ..478
TddgDigitalClock—Creating Component Events481
Adding Forms to the Component Palette485

Summary ..488

12 Advanced VCL Component Building 489
Pseudo-Visual Components ..490

Extending Hints ..490
Creating a THintWindow Descendant ..490
An Elliptical Window ..493
Enabling the THintWindow Descendant494
Deploying TDDGHintWindow ..494

Animated Components ..494
The Marquee Component ..494
Writing the Component ..495
Drawing on an Offscreen Bitmap ..495
Painting the Component ..497
Animating the Marquee ..498
Testing TddgMarquee ..508

Writing Property Editors ..510
Creating a Descendant Property Editor Object511
Editing the Property As Text ..513
Registering the New Property Editor ..517

Component Editors ..522
TComponentEditor ..523
TDefaultEditor ..524
A Simple Component ..524
A Simple Component Editor ..525
Registering a Component Editor ..526

Streaming Nonpublished Component Data ..527
Defining Properties ..528
An Example of DefineProperty() ..529
TddgWaveFile: An Example of DefineBinaryProperty()530

00 fmatter.qxd 11/19/01 12:11 PM Page xiii

DELPHI 6 DEVELOPER’S GUIDE
xiv

Property Categories ..538
Category Classes ..539
Custom Categories ..540

Lists of Components: TCollection and TCollectionItem543
Defining the TCollectionItem Class: TRunBtnItem546
Defining the TCollection Class: TRunButtons546
Implementing the TddgLaunchPad, TRunBtnItem,

|and TRunButtons Objects ..547
Editing the List of TCollectionItem Components with a

Dialog Property Editor ..555
Summary ..561

13 CLX Component Development 563
What Is CLX? ..564
The CLX Architecture ..565
Porting Issues ..568

No More Messages ..569
Sample Components ..570

The TddgSpinner Component ..570
Design-Time Enhancements ..584
Component References and Image Lists591
Data-Aware CLX Components ..598

CLX Design Editors ..608
Packages ..613

Naming Conventions ..613
Runtime Packages ..615
Design-Time Packages ..618
Registration Units ..621
Component Bitmaps ..622

Summary ..623

14 Packages to the Max 625
Why Use Packages? ..626

Code Reduction ..626
A Smaller Distribution of Applications—

Application Partitioning ..626
Component Containment ..627

Why Not Use Packages? ..627
Types of Packages ..628
Package Files ..628
Using Runtime Packages ..629
Installing Packages into the Delphi IDE ..629

00 fmatter.qxd 11/19/01 12:11 PM Page xiv

CONTENTS
xv

Creating Packages ..630
The Package Editor ..630
Package Design Scenarios ..631

Package Versioning ..635
Package Compiler Directives ..635

More on {$WEAKPACKAGEUNIT} ..636
Package Naming Conventions ..637
Extensible Applications Using Runtime

(Add-In) Packages ..637
Generating Add-In Forms ..637

Exporting Functions from Packages ..644
Launching a Form from a Package Function644

Obtaining Information About a Package ..648
Summary ..651

15 COM Development 653
COM Basics ..654

COM: The Component Object Model ..654
COM Versus ActiveX Versus OLE ..655
Terminology ..655
What’s So Great About ActiveX? ..656
OLE 1 Versus OLE 2 ..657
Structured Storage ..657
Uniform Data Transfer ..657
Threading Models ..657
COM+ ..658

COM Meets Object Pascal ..658
Interfaces ..658
Using Interfaces ..661
The HResult Return Type ..666

COM Objects and Class Factories ..667
TComObject and TComObjectFactory ..667
In-Process COM Servers ..669
Out-of-Process COM Servers ..672
Aggregation ..672

Distributed COM ..673
Automation ..673

IDispatch ..674
Type Information ..675
Late Versus Early Binding ..676
Registration ..676
Creating Automation Servers ..676
Creating Automation Controllers ..692

00 fmatter.qxd 11/19/01 12:11 PM Page xv

DELPHI 6 DEVELOPER’S GUIDE
xvi

Advanced Automation Techniques ..700
Automation Events ..700
Automation Collections ..713
New Interface Types in the Type Library723
Exchanging Binary Data ..724
Behind the Scenes: Language Support for COM727

TOleContainer ..733
A Small Sample Application ..733
A Bigger Sample Application ..735

Summary ..746

16 Windows Shell Programming 747
A Tray-Notification Icon Component ..748

The API ..748
Handling Messages ..751
Icons and Hints ..752
Mouse Clicks ..752
Hiding the Application ..755
Sample Tray Application ..762

Application Desktop Toolbars ..764
The API ..764
TAppBar: The AppBar Form ..766
Using TAppBar ..775

Shell Links ..779
Obtaining an IShellLink Instance ..781
Using IShellLink ..781
A Sample Application ..790

Shell Extensions ..799
The COM Object Wizard ..801
Copy Hook Handlers ..801
Context Menu Handlers ..808
Icon Handlers ..818
InfoTip Handlers ..827

Summary ..833

17 Using the Open Tools API 835
Open Tools Interfaces ..836
Using the Open Tools API ..839

A Dumb Wizard ..839
The Wizard Wizard ..843
DDG Search ..855

Form Wizards ..868
Summary ..876

00 fmatter.qxd 11/19/01 12:11 PM Page xvi

CONTENTS

PART V Enterprise Development 877

18 Transactional Development with COM+/MTS 879
What Is COM+? ..880
Why COM? ..880
Services ..881

Transactions ..881
Security ..882
Just-In-Time Activation ..888
Queued Components ..888
Object Pooling ..897
Events ..898

Runtime ..906
Registration Database (RegDB) ..907
Configured Components ..907
Contexts ..907
Neutral Threading ..907

Creating COM+ Applications ..908
The Goal: Scale ..908
Execution Context ..908
Stateful Versus Stateless ..909
Lifetime Management ..910
COM+ Application Organization ..910
Thinking About Transactions ..911
Resources ..912

COM+ in Delphi ..912
COM+ Wizards ..912
COM+ Framework ..913
Tic-Tac-Toe: A Sample Application ..916
Debugging COM+ Applications ..934

Summary ..935

19 CORBA Development 937
CORBA Features ..938
CORBA Architecture ..939

OSAgent ..941
Interfaces ..942

Interface Definition Language (IDL) ..942
Basic Types ..943
User-Defined Types ..944
Aliases ..944
Enumerations ..944
Structures ..944

xvii

00 fmatter.qxd 11/19/01 12:11 PM Page xvii

DELPHI 6 DEVELOPER’S GUIDE

Arrays ..944
Sequences ..944
Method Arguments ..945
Modules ..945

The Bank Example ..946
Complex Data Types ..958
Delphi, CORBA, and Enterprise Java Beans (EJBs)965

A Crash Course in EJBs for Delphi Programmers965
An EJB Is a Specialized Component ..966
EJBs Live Within a Container ..966
EJBs Have Predefined APIs ..966
The Home and Remote Interfaces ..966
Types of EJBs ..967
Configuring JBuilder 5 for EJB Development967
Building a Simple “Hello, world” EJB ..968

CORBA and Web Services ..975
Creating the Web Service ..975
Creating the SOAP Client Application ..977
Adding the CORBA Client Code to the Web Service978

Summary ..981

20 BizSnap Development: Writing SOAP-Based Web Services 983
What Are Web Services? ..984
What Is SOAP? ..984
Writing a Web Service ..985

A Look at the TWebModule ..985
Defining an Invokable Interface ..986
Implementing an Invokable Interface ..987
Testing the Web Service ..989

Invoking a Web Service from a Client ..991
Generating an Import Unit for the Remote Invokable Object993
Using the THTTPRIO Component ..994

Summary ..995

21 DataSnap Development 997
Mechanics of Creating a Multitier Application998
Benefits of the Multitier Architecture ..999

Centralized Business Logic ..999
Thin-Client Architecture ..1000
Automatic Error Reconciliation ..1000
Briefcase Model ..1000
Fault Tolerance ..1000
Load Balancing ..1000

xviii

00 fmatter.qxd 11/19/01 12:11 PM Page xviii

CONTENTS

Typical DataSnap Architecture ..1001
Server ..1001
Client ..1004

Using DataSnap to Create an Application ..1007
Setting Up the Server ..1007
Creating the Client ..1009

More Options to Make Your Application Robust1015
Client Optimization Techniques ..1015
Application Server Techniques ..1018

Real-World Examples ..1027
Joins ..1027

More Client Dataset Features ..1039
Two-Tier Applications ..1039

Classic Mistakes ..1041
Deploying DataSnap Applications ..1041

Licensing Issues ..1042
DCOM Configuration ..1042
Files to Deploy ..1043
Internet Deployment Considerations (Firewalls)1044

Summary ..1046

PART VI Internet Development 1047

22 ASP Development 1049
Understanding Active Server Objects ..1050

Active Server Pages ..1050
The Active Server Object Wizard ..1052

Type Library Editor ..1055
ASP Response Object ..1059
First Run ..1060
ASP Request Object ..1061
Recompiling Active Server Objects ..1062
Running Active Server Pages Again ..1063

ASP Session, Server, and Application Objects1065
Active Server Objects and Databases ..1066
Active Server Objects and NetCLX Support1069
Debugging Active Server Objects ..1071

Debugging Active Server Objects with MTS1071
Debugging Using Windows NT 4 ..1073
Debugging Using Windows 2000 ..1074

Summary ..1076

xix

00 fmatter.qxd 11/19/01 12:11 PM Page xix

DELPHI 6 DEVELOPER’S GUIDE

23 Building WebSnap Applications 1077
WebSnap Features ..1078

Multiple Webmodules ..1078
Server-side Scripting ..1078
TAdapter Components ..1078
Multiple Dispatching Methods ..1079
Page Producer Components ..1079
Session Management ..1079
Login Services ..1079
User Tracking ..1080
HTML Management ..1080
File Uploading Services ..1080

Building a WebSnap Application ..1080
Designing the Application ..1080
Adding Functionality to the Application1089
Navigation Menu Bar ..1089
Logging In ..1092
Managing User Preference Data ..1095
Persisting Preference Data Between Sessions1099
Image Handling ..1101
Displaying Data ..1103
Converting the Application to an ISAPI DLL1107

Advanced Topics ..1107
LocateFileServices ..1108
File Uploading ..1109
Including Custom Templates ..1111
Custom Components in TAdapterPageProducer1112

Summary ..1114

24 Wireless Development 1115
Evolution of Development—How Did We Get Here?1116

Pre-1980s: Here There Be Dragons ..1116
Late 1980s: Desktop Database Applications1117
Early 1990s: Client/Server ..1117
Late 1990s: Multitier and Internet-Based Transactions1117
Early 2000s: Application Infrastructure Extends to

Wireless Mobile Devices ..1117
Mobile Wireless Devices ..1118

Mobile Phones ..1118
PalmOS Devices ..1118
Pocket PC ..1119
RIM BlackBerry ..1119

xx

00 fmatter.qxd 11/19/01 12:11 PM Page xx

CONTENTS

Radio Technologies ..1119
GSM, CDMA, and TDMA ..1119
CDPD ..1119
3G ..1120
GPRS ..1120
Bluetooth ..1120
802.11 ..1120

Server-Based Wireless Data Technologies1121
SMS ..1121
WAP ..1121
I-mode ..1132
PQA ..1132

Wireless User Experience ..1136
Circuit-Switched Versus Packet-Switched Networks1137
Wireless Is Not the Web ..1137
The Importance of Form Factor ..1137
Data Entry and Navigation Techniques1137
M-Commerce ..1138

Summary ..1138

xxi

00 fmatter.qxd 11/19/01 12:11 PM Page xxi

Foreword
“Delphi 6—two years in the making; a lifetime of productivity.”

I have been happily employed at Borland for more than 16 years now. I came to work here, in
the summer of 1985, to 1) be a part of the new generation of programming tools (the UCSD
Pascal System and command line tools just weren’t enough), 2) help improve the process of
programming (maybe even leaving a little more time for our families and friends), and 3) help
enrich the lives of programmers (myself included). We been innovating and advancing devel-
oper technology for the past 18 years. I enjoy being a part of this great worldwide Borland
community.

Turbo Pascal 1.0 changed the face of programming tools forever. It set the standard in 1983.
Delphi also changed the face of programming once again. Delphi 1.0 focused on making
object-oriented programming, Windows programming, and database programming easier. Later
versions of Delphi focused on easing the pain of writing Internet and distributed applications.
Even though we’ve added a host of features to our products over the years and written pages of
documentation and megabytes of online help, there’s still more information, knowledge, and
advice that is required for developers to complete successful projects.

How do you top the award winning and universally praised Delphi 5? Didn’t Delphi 5 already
simplify the process of building Internet and distributed applications while also improving the
productivity of Delphi programmers? Could the Delphi team push themselves again to meet
the demands of today’s and tomorrow’s developers?

The Delphi team spent more than two years listening to customers, seeing how developers
were using the product, looking at the pain points of programming in the new millennium.
They focused their efforts on radically simplifying the process of developing next generation
e-business Web applications, XML/SOAP based Web Services, B2b/B2C/P2P application
integration, cross-platform applications, distributed applications including integration with
AppServer/EJBs, and Microsoft Windows ME/2000 and Office 2000 applications.

Steve Teixeira and Xavier Pacheco have done it again. They have crafted their developer’s
guide so that you can take advantage of the depth and breadth of Delphi 6 programming.

I’ve known Steve Teixeira (some call him T-Rex) and Xavier Pacheco (some call him just X)
for years as friends, fellow employees, speakers at our annual conference, and as members of
the Borland community.

00 fmatter.qxd 11/19/01 12:11 PM Page xxii

Previous versions of their developer’s guides have been received enthusiastically by Delphi
developers around the world. Here now is the latest version ready for everyone to enjoy.

Have fun, learn a lot. Here’s hoping that all of your Delphi projects are enjoyable, successful,
and rewarding.

David Intersimone (David I)

Vice President, Developer Relations

Borland Software Corporation

davidi@borland.com

00 fmatter.qxd 11/19/01 12:11 PM Page xxiii

About the Lead Authors
Steve Teixeira is the Director of Core Technology at Zone Labs, a leading creator of Internet
security solutions. Steve has previously served as Chief Technology Officer of ThinSpace, a
mobile/wireless software company, and Full Moon Interactive, a full-service e-business builder.
As a research and development software engineer at Borland, Steve was instrumental in the
development of Delphi and C++Builder. Steve is the best-selling author of four award-winning
books and numerous magazine articles on software development, and his writings are distrib-
uted worldwide in a dozen languages. Steve is a frequent speaker at industry conferences and
events worldwide.

Xavier Pacheco is the President and CEO of Xapware Technologies Inc, a software develop-
ment and consulting company with a purpose of accelerating visions. Xavier is a frequent
speaker at industry conferences and is a contributing author for Delphi periodicals. Xavier is
an internationally known Delphi expert and member of Borland’s select group volunteers—
TeamB. He is the best-selling author of four award-winning books that are distributed world-
wide in a dozen languages. Xavier lives in Colorado Springs with his wife Anne and children
Amanda and Zachary.

00 fmatter.qxd 11/19/01 12:11 PM Page xxiv

About the Contributing Authors
Bob Swart (also known as Dr.Bob—www.drbob42.com) is a UK Borland Connections member
and an independent technical author, trainer, and consultant using Delphi, Kylix, and C++Builder
based in Helmond, The Netherlands. Bob writes regular columns for The Delphi Magazine,
Delphi Developer, UK-BUG Developer’s Magazine, as well as the DevX, TechRepublic, and the
Borland Community Web sites. Bob has written chapters for The Revolutionary Guide to Delphi
2, Delphi 4 Unleashed, C++Builder 4 Unleashed, C++Builder 5 Developer’s Guide, Kylix
Developer’s Guide, and now Delphi 6 Developer’s Guide (for Sams Publishing).

Bob is a frequent speaker at Borland and Delphi/Kylix related seminars all over the world, and
writes his own training material for Dr.Bob’s Delphi Clinics (in The Netherlands and the UK).

In his spare time, Bob likes to watch video tapes of Star Trek Voyager and Deep Space Nine
with his 7-year old son Erik Mark Pascal and 5-year old daughter Natasha Louise Delphine.

Dan Miser is an R&D Project Manager for the DSP group at Borland, where he spends most of
his time researching emerging technologies. Dan also worked on the Delphi R&D team where
his responsibilities included DataSnap development. Dan’s major focus is finding ways to allow
information to be shared across boundaries, and this has allowed him to work with a variety of
distributed computing technologies, including MIDAS, SOAP, DCOM, RMI, J2EE, EJB, Struts,
and RDS. He has also been involved with promoting Delphi by being a contributing author to
the Delphi Developer’s Guide series, acting as a technical editor, writing magazine articles,
participating on the Borland newsgroups as a member of TeamB, and being a speaker at
BorCon on topics such as COM and MIDAS.

David Sampson is an R&D engineer in the Borland RAD Tools Group and is responsible
for the CORBA integration into the RAD products. He is long time Pascal, Delphi, and C++
developer, and is a frequent speaker at the Borland Developer’s Conference. He lives in
Roswell, GA with his wife and enjoys hockey, Aikido, and helping his wife with her pack of
Basenjis.

Nick Hodges is a Senior Development Engineer with Lemanix Corporation in St. Paul, MN.
He is a member of Borland’s TeamB and a long time Pascal and Delphi developer. He serves
on the Borland Conference Advisory Board, is a frequent speaker at the conference, and is a
frequent writer for the Borland Community Site. He lives in St. Paul with his wife and two
children and enjoys reading, running, and helping his wife homeschool their two children.

Ray Konopka is the founder of Raize Software, Inc. and the chief architect for CodeSite and
Raize Components. Ray is also the author of the highly acclaimed Developing Custom Delphi
Components books and the popular “Delphi by Design” column, which appeared in Visual
Developer Magazine. Ray specializes in user interface design and Delphi component develop-
ment, and is a frequent speaker at developer conferences around the world.

00 fmatter.qxd 11/19/01 12:11 PM Page xxv

Dedication
This book is dedicated to the victims and heroes of September 11, 2001.

Thanks to my family, Helen, Cooper, and Ryan. Without their love, support, and welcome distractions, I’d
likely never be able to finish a book, and I’d almost certainly go crazy trying.

—Steve

Thanks to my family, Anne, Amanda, and Zachary. Your love, patience, and encouragement, I cherish.

—Xavier

00 fmatter.qxd 11/19/01 12:11 PM Page xxvi

Acknowledgments
We need to thank those who, without whose help, this book would never have been written. In
addition to our thanks, we also want to point out that any errors or omissions you find in the
book are our own, in spite of everyone’s efforts.

We’d first like to offer our enormous gratitude to our contributing authors, who lent their superior
software development and writing skills to making Delphi 6 Developer’s Guide better than
it could have been otherwise. Mr. Component himself, Ray Konopka, wrote the excellent Chapter
13, “CLX Component Development.” DataSnap guru Dan Miser pitched in by writing the
brilliant Chapter 21, “DataSnap Development.” Well-known CORBA expert, David Sampson, con-
tributed Chapter 19, “CORBA Development.” Thank you also to Robert “Dr. Bob” Swart, for
bringing his considerable talents to bear on Chapter 22, “ASP Development.” Last (but certainly
not least!), Web wizard Nick Hodges is back in this edition of the book in Chapter 23, “Building
WebSnap Applications.”

Another large round of thank-yous to our technical reviewers (and all around great guys),
Thomas Theobald and John Thomas. These guys managed to squeeze in their duties as uber-
technical reviewers among their day jobs of helping Borland create great software.

While writing the Delphi Developer’s Guide series, we received advice or tips from a number
of our friends and coworkers. These people include (in alphabetical order) Alain “Lino”
Tadros, Anders Hejlsberg, Anders Ohlsson, Charlie Calvert, Victor Hornback, Chuck Jazdzewski,
Daniel Polistchuck, Danny Thorpe, David Streever, Ellie Peters, Jeff Peters, Lance Bullock,
Mark Duncan, Mike Dugan, Nick Hodges, Paul Qualls, Rich Jones, Roland Bouchereau,
Scott Frolich, Steve Beebe, and Tom Butt. We’re certain there are others whose names we can’t
recall, and we owe you all a beer.

Finally, thanks to the gang at Pearson Technology Group: Carol Ackerman, Christina Smith,
Dan Scherf, and the zillions of behind-the-scenes people whom we never met, but without
whose help this book would not be a reality.

00 fmatter.qxd 11/19/01 12:11 PM Page xxvii

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d
like to see us publish in, and any other words of wisdom you’re willing to pass our way.

As an executive editor for Sams Publishing, I welcome your comments. You can fax, e-mail, or
write me directly to let me know what you did or didn’t like about this book—as well as what
we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book,
and that due to the high volume of mail I receive, I might not be able to reply to every
message.

When you write, please be sure to include this book’s title and authors’ names as well as your
name and phone or fax number. I will carefully review your comments and share them with the
authors and editors who worked on the book.

Fax: 317-581-4770

E-mail: feedback@samspublishing.com

Mail: Michael Stephens
Executive Editor
Sams Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

00 fmatter.qxd 11/19/01 12:11 PM Page xxviii

Introduction
You hold in your hands the fifth edition in the Delphi Developer’s Guide series, and the prod-
uct of literally thousands of man-hours over more than seven years of programming, writing,
and refinement. Xavier and Steve were members of the original Delphi team at Borland, and
this work is the outlet through which they can share their fifteen-plus years of combined expe-
rience developing software in Delphi. In Delphi 6 Developer’s Guide, we have striven to hold
true to the spirit that has made the Delphi Developer’s Guide series perhaps the world’s most
read Delphi books and two-time winner of the Delphi Informant Reader’s Choice award. This
is a book by developers, for developers.

The intent of Delphi 6 Developer’s Guide is to supplement and build on the Delphi Developer’s
Guide series. Ideally, we would have loved to include all the updated content form Delphi 5
Developer’s Guide and all the new content in one book, but Delphi 5 Developer’s Guide was
already thick enough to stretch the technical limitations of modern book binding. In order to
provide enough space to give proper coverage of the entire Delphi 6 feature set, we opted
to publish a new book with new information.

Delphi 6 Developer’s Guide contains a number of all-new chapters, many chapters that have
been significantly enhanced from previous editions, and some of the favorite topics from
Delphi 5 Developers Guide. The information in Delphi 5 Developer’s Guide will not be lost,
however. On the CD accompanying this book, you will find the entire contents of Delphi 5
Developer’s Guide, with each chapter in a separate PDF file. On the inside front cover, we
have also included the table of contents for Delphi 5 Developer’s Guide so you can know at a
glance where to find that programming tidbit. The end result for you, the reader, is essentially
two books in one.

Delphi 6 Developer’s Guide is divided into six sections. Part I, “Development Essentials,” pro-
vides you with the foundation knowledge necessary to be an effective Delphi developers. Part
II, “Advanced Techniques,” highlights some common advanced development issues, such as
threading and dynamic link libraries. Part III, “Database Development,” discusses the many
faces of Delphi’s data access layers. Part IV, “Component-Based Development,” takes you
through the many manifestations of component-based development, from VCL to CLX to
packages to COM and the Open Tools API. Part V, “Enterprise Development,” is intended to
give you the practical knowledge necessary to develop enterprise-grade applications with tech-
nologies such as COM+, CORBA, SOAP/BizSnap, and DataSnap. Finally, Part VI, “Internet
Development,” demonstrates the development of Internet and wireless applications in Delphi.

01 intro.qxd 11/19/01 12:11 PM Page 1

DELPHI 6 DEVELOPER’S GUIDE

Who Should Read This Book
As the title of this book says, this book is for developers. So, if you’re a developer, and you
use Delphi, you need to have this book. In particular, however, this book is aimed at three
groups of people:

• Delphi developers who are looking to take their craft to the next level.

• Experienced Pascal, C/C++, Java, or Basic programmers who are looking to hit the
ground running with Delphi.

• Programmers who are looking to get the most out of Delphi by leveraging some of its
more advanced and sometimes least obvious features.

Conventions Used in This Book
The following typographic conventions are used in this book:

• Code lines, commands, statements, variables, program output, and any text you see on
the screen appear in a computer typeface.

• Anything that you type appears in a bold computer typeface.

• Placeholders in syntax descriptions appear in an italic computer typeface. Replace the
placeholder with the actual filename, parameter, or whatever element it represents.

• Italics highlight technical terms when they first appear in the text and sometimes are
used to emphasize important points.

• Procedures and functions are indicated by open and close parentheses after the procedure
or function name. Although this isn’t standard Pascal syntax, it helps to differentiate
them from properties, variables, and types.

Within each chapter, you will encounter several Notes, Tips, and Cautions that help to high-
light the important points and aid you in steering clear of the pitfalls.

You will find all the source code and project files on the CD-ROM accompanying this book, as
well as source samples that we could not fit in the book itself.The CD also contains some pow-
erful trial versions of third-party components and tools.

Delphi 6 Developer’s Guide Web Site
Visit our Web site at http://www.xapware.com/ddg to join the Delphi Developer’s Guide
community and obtain updates, extras, and errata information for this book. You can also join
the mailing list for our newsletter and visit our discussion group.

2

01 intro.qxd 11/19/01 12:11 PM Page 2

INTRODUCTION

Getting Started
People sometimes ask what drives us to continue to write Delphi books. It’s hard to explain,
but whenever we meet with other developers and see their obviously well used, book marked,
ratty looking copy of Delphi Developer’s Guide, it somehow makes it worthwhile.

Now it’s time to relax and have some fun programming with Delphi. We’ll start slow but
progress into the more advanced topics at a quick but comfortable pace. Before you know it,
you’ll have the knowledge and technique required to truly be called a Delphi guru.

3

01 intro.qxd 11/19/01 12:11 PM Page 3

01 intro.qxd 11/19/01 12:11 PM Page 4

IN THIS PART
1 Programming in Delphi 7

2 The Object Pascal Language 35

3 Adventures in Messaging 129

Development Essentials
PART

I

02 part_01.qxd 11/19/01 12:06 PM Page 5

02 part_01.qxd 11/19/01 12:06 PM Page 6

CHAPTER

1
Programming in Delphi

IN THIS CHAPTER
• The Delphi Product Family 8

• Delphi: What and Why 10

• A Little History 15

• The Delphi IDE 19

• A Tour of Your Project’s Source 24

• Tour of a Small Application 26

• What’s So Great About Events, Anyway? 28

• Turbo Prototyping 29

• Extensible Components and Environment 25

• The Top 10 IDE Features You Must Know and
Love 30

03 chpt_01.qxd 11/19/01 12:07 PM Page 7

This chapter is intended to provide you with a high-level overview of Delphi, including history,
feature sets, how Delphi fits into the world of Windows development, and general tidbits of
information you need to know to be a Delphi developer. And just to get your technical juices
flowing, this chapter also discusses the need-to-know features of the Delphi IDE, pointing out
some of those hard-to-find features that even seasoned Delphi developers might not know
about.

This chapter isn’t about providing an education on the very basics of how one develops soft-
ware in Delphi. We figure you spent good money on this book to learn new and interesting
things—not to read a rehash of content you can already find in Borland’s documentation. True
to that, our mission is to deliver the goods: to show you the power features of this product and
ultimately how to employ those features to build commercial-quality software. Hopefully, our
backgrounds and experience with the tool will enable us to provide you with some interesting
and useful insights along the way. We feel that experienced and new Delphi developers alike
will benefit from this chapter (and this book!), as long as new developers understand that this
isn’t ground zero for a Delphi developer. Start with the Borland documentation and simple
examples. Once you’ve got the hang of how the IDE works and the general flow of application
development, welcome aboard and enjoy the ride!

The Delphi Product Family
Delphi 6 comes in three flavors designed to fit a variety of needs: Delphi 6 Personal, Delphi 6
Professional, and Delphi 6 Enterprise. Each of these versions is targeted at a different type of
developer.

Delphi 6 Personal is the entry-level version. It provides everything you need to start writing
applications with Delphi, and it’s ideal for hobbyists and students who want to break into
Delphi programming on a budget. This version includes the following features:

• Optimizing 32-bit Object Pascal compiler, including a variety of new and enhanced lan-
guage features.

• Visual Component Library (VCL), which includes over 85 components standard on the
Component Palette.

• Package support, which enables you to create small executables and component libraries.

• An IDE that includes an editor, debugger, form designer, and a host of productivity
features.

• IDE enhancements such as visual form inheritance and linking, object tree view, class
completion, and Code Insight.

Development Essentials

PART I
8

03 chpt_01.qxd 11/19/01 12:07 PM Page 8

• Full support for Win32 API, including COM, GDI, DirectX, multithreading, and various
Microsoft and third-party software development kits (SDKs).

• Licensing permits building applications for personal use only: No commercial distribu-
tion of applications built with Delphi 6 Personal is permitted.

Delphi 6 Professional is intended for use by professional developers who don’t require enter-
prise development capabilities. If you’re a professional developer building and deploying appli-
cations or Delphi components, this product is designed for you. The Professional edition
includes everything in the Personal edition, plus the following:

• More than 225 VCL components on the Component Palette

• More than 160 CLX components for cross-platform development between Windows and
Linux

• Database support, including DataCLX database architecture, data-aware VCL controls,
dbExpress cross-platform components and drivers, ActiveX Data Objects (ADO), the
Borland Database Engine (BDE) for legacy connectivity, a virtual dataset architecture
that enables you to incorporate other database types into VCL, the Database Explorer
tool, a data repository, and InterBase Express native InterBase components

• InterBase and MySQL drivers for dbExpress

• DataCLX database architecture (formerly known as MIDAS) with MyBase XML-based
local data engine

• Wizards for creating COM/COM+ components, such as ActiveX controls, ActiveForms,
Automation servers, property pages, and transactional components

• A variety of third-party tools and components, include the INDY internet tools, the
QuickReports reporting tool, the TeeChart graphing and charting components, and
NetMasters FastNet controls

• InterBase 6 database server and five-user license

• The Web Deployment feature for easy distribution of ActiveX content via the Web

• The InstallSHIELD MSI Light application-deployment tool

• The OpenTools API for developing components that integrate tightly within the Delphi
environment as well as an interface for PVCS version control

• NetCLX WebBroker tools and components for developing cross-platform applications
for the Internet

• Source code for the Visual Component Library (VCL), Component Library for Cross-
platform (CLX), runtime library (RTL), and property editors

• License for commercial distribution of applications developed with Delphi 6 Professional

Programming in Delphi

CHAPTER 1

1

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I

9

03 chpt_01.qxd 11/19/01 12:07 PM Page 9

Delphi 6 Enterprise is targeted toward developers who create enterprise-scale applications. The
Enterprise version includes everything included in the other two Delphi editions, plus the
following:

• Over 300 VCL components on the Component Palette

• BizSnap technology for creating XML-based applications and Web services

• WebSnap Web application design platform for integrating XML and scripting technolo-
gies with Web-based applications

• CORBA support for client and sever applications, including version 4.0x of the
VisiBroker ORB and Borland AppServer version 4.5

• TeamSource source control software, which enables team development and supports vari-
ous versioning engines (ZIP and PVCS included)

• Tools for easily translating and localizing applications

• SQLLinks BDE drivers for Oracle, MS SQL Server, InterBase, Informix, Sybase, and
DB2

• Oracle and DB2 drivers for dbExpress

• Advanced tools for building SQL-based applications, including SQL Explorer, SQL
Monitor, SQL Builder, and ADT column support in grid

Delphi: What and Why
We’re often asked questions such as “What makes Delphi so good?” and “Why should I
choose Delphi over Tool X?” Over the years, we’ve developed two answers to these types of
questions: a long answer and a short answer. The short answer is productivity. Using Delphi is
simply the most productive way we’ve found to build applications for Windows. Of course,
there are those (bosses and perspective clients) for whom the short answer will not suffice, so
then we must break out the long answer. The long answer describes the combined qualities that
make Delphi so productive. We boil down the productivity of software development tools into
a pentagon of five important attributes:

• The quality of the visual development environment

• The speediness of the compiler versus the efficiency of the compiled code

• The power of the programming language versus its complexity

• The flexibility and scalability of the database architecture

• The design and usage patterns enforced by the framework

Although admittedly many other factors are involved, such as deployment issues, documenta-
tion, third-party support, and so on, we’ve found this simple model to be quite accurate in

Development Essentials

PART I
10

03 chpt_01.qxd 11/19/01 12:07 PM Page 10

explaining to folks why we choose Delphi. Some of these categories also involve some amount
of subjectivity, but that’s the point; how productive are you with a particular tool? By rating a
tool on a scale of 1 to 5 for each attribute and plotting each on an axis of the graph shown in
Figure 1.1, the end result will be a pentagon. The greater the surface area of this pentagon, the
more productive the tool.

Programming in Delphi

CHAPTER 1

1

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I

11

Visual IDE

C
om

piler

LanguageDatabase

Fr
am

ew
or

k

FIGURE 1.1
The development tool productivity graph.

We won’t tell you what we came up with when we used this formula—that’s for you to decide!
Let’s take an in-depth look at each of these attributes and how they apply to Delphi as well as
how they compare with other Windows development tools.

The Quality of the Visual Development Environment
The visual development environment can generally be divided into three constituent compo-
nents: the editor, the debugger, and the form designer. Like most modern rapid application
development (RAD) tools, these three components work in harmony as you design an applica-
tion. While you’re working in the form designer, Delphi is generating code behind the scenes
for the components you drop and manipulate on forms. You can add additional code in the edi-
tor to define application behavior, and you can debug your application from the same editor by
setting breakpoints, watches, and so on.

Delphi’s editor is generally on par with those of other tools. The CodeInsight technologies,
which save you a lot of typing, are probably the best around. They’re based on compiler infor-
mation, rather than type library info like Visual Basic, and are therefore able to help in a wider
variety of situations. Although the Delphi editor sports some good configuration options, I
would rate Visual Studio’s editor as more configurable.

03 chpt_01.qxd 11/19/01 12:07 PM Page 11

Recent versions of Delphi’s debugger have finally caught up with the debugger support in
Visual Studio, with advanced features such as remote debugging, process attachment, DLL and
package debugging, automatic local watches, and a CPU window. Delphi also has some nice
IDE support for debugging by allowing windows to be placed and docked where you like dur-
ing debugging and enabling that state to be saved as a named desktop setting. One very nice
debugger feature that’s commonplace in interpreted environments such as Visual Basic and
some Java tools is the ability to change code to modify application behavior while the applica-
tion is being debugged. Unfortunately, this type of feature is much more difficult to accomplish
when compiling to native code and is therefore unsupported by Delphi.

A form designer is usually a feature unique to RAD tools, such as Delphi, Visual Basic,
C++Builder, and PowerBuilder. More classical development environments, such as Visual C++
and Borland C++, typically provide dialog editors, but those tend not to be as integrated into the
development workflow as a form designer. Based on the productivity graph from Figure 1.1,
you can see that the lack of a form designer really has a negative effect on the overall productiv-
ity of the tool for application development.

Over the years, Delphi and Visual Basic have engaged in a sort of tug-of-war of form designer
features, with each new version surpassing the other in functionality. One trait of Delphi’s form
designer that sets it apart from others is the fact that Delphi is built on top of a true object-
oriented framework. Given that, changes you make to base classes will propagate up to any
ancestor classes. A key feature that leverages this trait is visual form inheritance (VFI). VFI
enables you to dynamically descend from any of the other forms in your project or in the
Gallery. What’s more, changes made to the base form from which you descend will cascade
and reflect in its descendants. You’ll find more information on this feature in the electronic ver-
sion of Delphi 5 Developer’s Guide on the CD accompanying this book in Chapter 3,
“Application Frameworks and Design Concepts.”

The Speediness of the Compiler Versus the Efficiency
of the Compiled Code
A speedy compile enables you to develop software incrementally, thus making frequent
changes to your source code, recompiling, testing, changing, recompiling, testing again, and so
forth: a very efficient development cycle. When compilation speed is slower, developers are
forced to make source changes in batch, making multiple modifications prior to compiling and
adapting to a less efficient development cycle. The advantage of runtime efficiency is self-evi-
dent; faster runtime execution and smaller binaries are always good.

Perhaps the best-known feature of the Pascal compiler upon which Delphi is based is that it’s
fast. In fact, it’s probably the fastest high-level language native code compiler for Windows.

Development Essentials

PART I
12

03 chpt_01.qxd 11/19/01 12:07 PM Page 12

C++, which has traditionally been dog-slow in terms of compile speed, has made great strides
in recent years with incremental linking and various caching strategies found in Visual C++
and C++Builder in particular. Still, even these C++ compilers are typically several times
slower than Delphi’s compiler.

Does all this compile-time speed mean a tradeoff in runtime efficiency? The answer is, of
course, no. Delphi shares the compiler back end with the C++Builder compiler, so the effi-
ciency of the generated code is on par with that of a very good C++ compiler. In the latest reli-
able benchmarks, Visual C++ actually rated tops in speed and size efficiency in many cases,
thanks to some very nice optimizations. Although these small advantages are unnoticeable for
general application development, they might make a difference if you’re writing computation-
intensive code.

Visual Basic is a little unique with regard to compiler technology. During development, VB
operates in an interpreted mode and is quite responsive. When you want to deploy, you can
invoke the VB compiler to generate the EXE. This compiler is fairly slow and its speed effi-
ciency rates well behind Delphi and C++ tools. At the time of this writing, Microsoft’s next
iteration, Visual Basic.NET, is in beta and promises to make improvements in this area.

Java is another interesting case. Top Java-based tools such as JBuilder and Visual J++ boast
compile times approaching that of Delphi. Runtime speed efficiency, however, often leaves
something to be desired because Java is an interpreted language. Although Java continues to
make steady improvements, runtime speed in most real-world scenarios lags behind that of
Delphi and C++.

The Power of the Programming Language Versus
Its Complexity
Power and complexity are very much in the eye of the beholder, and this particular category
has served as the guidon for many an online flame war. What’s easy to one person might be
difficult to another, and what’s limiting to one might be considered elegant by yet another.
Therefore, the following is based on the authors’ experience and personal preferences.

Assembly is the ultimate power language. There’s very little you can’t do. However, writing
even the simplest Windows application in assembly is an arduous and error-prone venture. Not
only that, but it’s sometimes nearly impossible to maintain an assembly code base in a team
environment for any length of time. As code passes from one owner to the next to the next,
design ideas and intents become more and more cloudy, until the code starts to look more like
Sanskrit than a computer language. Therefore, we would score assembly very low in this cate-
gory because, although powerful, assembly language is too complex for nearly all application
development chores.

Programming in Delphi

CHAPTER 1

1

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I

13

03 chpt_01.qxd 11/19/01 12:07 PM Page 13

C++ is another extremely powerful language. With the aid of really potent features such as pre-
processor macros, templates, operator overloading, and more, you can very nearly design your
own language within C++. If the vast array of features at your disposal are used judiciously,
you can develop very clear and maintainable code. The problem, however, is that many devel-
opers can’t resist overusing these features, and it’s quite easy to create truly horrible code. In
fact, it’s easier to write bad C++ code than good because the language doesn’t lend itself
toward good design—it’s up to the developer.

Two languages that we feel are very similar in that they strike a very good balance between
complexity and power are Object Pascal and Java. Both take the approach of limiting available
features in an effort to enforce logical design on the developer. For example, both avoid the
very object-oriented but easy-to-abuse notion of multiple inheritance in favor of enabling a
class to implement multiple interfaces. Both lack the nifty but dangerous feature of operator
overloading. Also, both make source files first-class citizens in the language rather than a detail
to be dealt with by the linker. What’s more, both languages take advantage of power features
that add the most bang for the buck, such as exception handling, Runtime Type Information
(RTTI), and native memory-managed strings. Not coincidentally, both languages weren’t writ-
ten by committee but rather nurtured by an individual or small group within a single organiza-
tion with a common understanding of what the language should be.

Visual Basic started life as a language designed to be easy enough for programming beginners
to pick up quickly (hence the name). However, as language features were added to address
shortcomings over the years, Visual Basic has become more and more complex. In an effort to
hide the details from developers, Visual Basic still maintains some walls that must be navigated
around in order to build complex projects. Again, Microsoft’s next-generation Visual
Basic.NET is making significant changes in this area, albeit at the expense of backward
compatibility.

The Flexibility and Scalability of the Database
Architecture
Because of Borland’s lack of a database agenda, Delphi maintains what we feel to be one of
the most flexible database architectures of any tool. Out of the box, dbExpress is very efficient
(although at the expense of advanced functionality), but the selection of drivers is rather lim-
ited. BDE still works and performs relatively well for most applications against a wide range
of data sources, although it is being phased out by Borland. Additionally, the native ADO com-
ponents provide an efficient means for communicating through ADO or ODBC. If InterBase is
your bag, the IBExpress native InterBase components provide the most effective means to
communicate with that database server. If none of this provides the data access you’re looking

Development Essentials

PART I
14

03 chpt_01.qxd 11/19/01 12:07 PM Page 14

for, you can write your own data-access class by leveraging the abstract dataset architecture or
purchase a third-party dataset solution. Furthermore, DataCLX makes it easy to logically or
physically divide, into multiple tiers, access to any of these data sources.

Microsoft tools logically tend to focus on Microsoft’s own databases and data-access solutions,
be they ODBC, OLE DB, or others.

The Design and Usage Patterns Enforced by the
Framework
This is the magic bullet or the holy grail of software design that other tools seem to be miss-
ing. All other things being equal, VCL is the most important part of Delphi. The ability to
manipulate components at design time, design components, and inherit behavior from other
components using object-oriented (OO) techniques it a critical ingredient to Delphi’s level of
productivity. When writing VCL components, you can’t help but employ solid OO design
methodologies in many cases. By contrast, other component-based frameworks are often too
rigid or too complicated.

ActiveX controls, for example, provide many of the same design-time benefits of VCL con-
trols, but there’s no way to inherit from an ActiveX control to create a new class with some
different behaviors. Traditional class frameworks, such as OWL and MFC, typically require
you to have a great deal of internal framework knowledge in order to be productive, and
they’re hampered by a lack of RAD tool-like design-time support. Microsoft’s .NET common
library finally puts Microsoft on the right track in terms of component-based development, and
it even works with a variety of their tools, including C#, Visual C++, and Visual Basic.

A Little History
Delphi is, at heart, a Pascal compiler. Delphi 6 is the next step in the evolution of the same
Pascal compiler that Borland has been developing since Anders Hejlsberg wrote the first Turbo
Pascal compiler more than 17 years ago. Pascal programmers throughout the years have
enjoyed the stability, grace, and, of course, the compile speed that Turbo Pascal offers. Delphi
6 is no exception—its compiler is the synthesis of more than a decade of compiler experience
and a state-of-the-art 32-bit optimizing compiler. Although the capabilities of the compiler
have grown considerably over the years, the speed of the compiler has remarkably diminished
only slightly. What’s more, the stability of the Delphi compiler continues to be a yardstick by
which others are measured.

Now it’s time for a little walk down memory lane, as we look at each of the versions of Delphi
and a little of the historical context surrounding each product’s release.

Programming in Delphi

CHAPTER 1

1

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I

15

03 chpt_01.qxd 11/19/01 12:07 PM Page 15

Delphi 1
In the early days of DOS, programmers had a choice between productive-but-slow BASIC and
efficient-but-complex assembly language. Turbo Pascal, which offered the simplicity of a struc-
tured language and the performance of a real compiler, bridged that gap. Windows 3.1 pro-
grammers faced a similar choice—a choice between a powerful-yet-unwieldy language such as
C++ and an easy-to-use-but-limiting language such as Visual Basic. Delphi 1 answered that
call by offering a radically different approach to Windows development: visual development,
compiled executables, DLLs, databases, you name it—a visual environment without limits.
Delphi 1 was the first Windows development tool to combine a visual development environ-
ment, an optimizing native-code compiler, and a scalable database access engine. It defined the
phrase rapid application development (RAD).

The combination of compiler, RAD tool, and fast database access was too compelling for scads
of VB developers, and Delphi won many converts. Also, many Turbo Pascal developers rein-
vented their careers by transitioning to this slick, new tool. Word got out that Object Pascal
wasn’t the same as that language we had to use in college that made us feel like we were pro-
gramming with one hand behind our backs, and many more developers came to Delphi to take
advantage of the robust design patterns encouraged by the language and the tool. The Visual
Basic team at Microsoft, lacking serious competition before Delphi, was caught totally unpre-
pared. Slow, fat, and dumb, Visual Basic 3 was arguably no match for Delphi 1.

The year was 1995. Borland was appealing a huge lawsuit loss to Lotus for infringing on the 1-
2-3 “look and feel” with Quattro. Borland was also taking lumps from Microsoft for trying to
play in the application space with Microsoft. Borland got out of the application business by
selling the Quattro business to Novell and targeting dBASE and Paradox to database develop-
ers, as opposed to casual users. While Borland was playing in the applications market,
Microsoft had quietly leveraged its platform business to take away from Borland a vast share
of the Windows developer tools market. Newly refocused on its core competency of developer
tools, Borland was looking to do some damage with Delphi and a new release of Borland C++.

Delphi 2
A year later, Delphi 2 provided all these same benefits under the modern 32-bit operating sys-
tems of Windows 95 and Windows NT. Additionally, Delphi 2 extended productivity with addi-
tional features and functionality not found in version 1, such as a 32-bit compiler that produces
faster applications, an enhanced and extended object library, revamped database support,
improved string handling, OLE support, Visual Form Inheritance, and compatibility with 16-bit
Delphi projects. Delphi 2 became the yardstick by which all other RAD tools are measured.

Development Essentials

PART I
16

03 chpt_01.qxd 11/19/01 4:24 PM Page 16

The year was 1996, and the most important Windows platform release since 3.0—32-bit
Windows 95—had just happened in the latter part of the previous year. Borland was eager to
make Delphi the preeminent development tool for that platform. An interesting historical note
is that Delphi 2 was originally going to be called Delphi32, to underscore the fact that it was
designed for 32-bit Windows. However, the product name was changed before release to
Delphi 2 to illustrate that Delphi was a mature product and avoid what is known in the soft-
ware business as the “1.0 blues.”

Microsoft attempted to counter with Visual Basic 4, but it was plagued by poor performance,
lack of 16-to-32-bit portability, and key design flaws. Still, there’s an impressive number of
developers who continued to use Visual Basic for whatever the reason. Borland also longed to
see Delphi penetrate the high-end client/server market occupied by tools such as PowerBuilder,
but this version didn’t yet have the muscle necessary to unseat such products from their corpo-
rate perches.

The corporate strategy at this time was undeniably to focus on corporate customers. The deci-
sion to change direction in this way was no doubt fueled by the diminishing market relevance
of dBASE and Paradox, and the dwindling revenues realized in the C++ market also aided this
decision. In order to help jumpstart that effort to take on the enterprises, Borland made the
mistake of acquiring Open Environment Corporation, a middleware company with basically
two products: an outmoded DCE-based middleware that you might call an ancestor of CORBA
and a proprietary technology for distributed OLE about to be ushered into obsolescence by
DCOM.

Delphi 3
During the development of Delphi 1, the Delphi development team was preoccupied with sim-
ply creating and releasing a groundbreaking development tool. For Delphi 2, the development
team had its hands full primarily with the tasks of moving to 32 bit (while maintaining almost
complete backward compatibility) and adding new database and client/server features needed
by corporate IT. While Delphi 3 was being created, the development team had the opportunity
to expand the tool set to provide an extraordinary level of breadth and depth for solutions to
some of the sticky problems faced by Windows developers. In particular, Delphi 3 made it easy
to use the notoriously complicated technologies of COM and ActiveX, World Wide Web appli-
cation development, “thin client” applications, and multitier databases architectures. Delphi 3’s
Code Insight helped to make the actual code-writing process a bit easier, although for the most
part, the basic methodology for writing Delphi applications was the same as in Delphi 1.

This was 1997, and the competition was doing some interesting things. On the low end,
Microsoft finally started to get something right with Visual Basic 5, which included a compiler
to address long-standing performance problems, good COM/ActiveX support, and some key

Programming in Delphi

CHAPTER 1

1

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I

17

03 chpt_01.qxd 11/19/01 3:11 PM Page 17

new platform features. On the high-end, Delphi was now successfully unseating products such
as PowerBuilder and Forte in corporations.

Delphi lost a key member of the team during the Delphi 3 development cycle when Anders
Hejlsberg, the Chief Architect, decided to move on and took a position with Microsoft
Corporation. The team didn’t lose a beat, however, because Chuck Jazdzewski, long time co-
architect was able to step into the head role.

Delphi 4
Delphi 4 focused on making Delphi development easier. The Module Explorer was introduced
in Delphi, and it enabled you to browse and edit units from a convenient graphical interface.
New code navigation and class completion features enabled you to focus on the meat of your
applications with a minimum of busy work. The IDE was redesigned with dockable toolbars
and windows to make your development more convenient, and the debugger was greatly
improved. Delphi 4 extended the product’s reach into the enterprise with outstanding multitier
support using technologies such as MIDAS, DCOM, MTS, and CORBA.

This was 1998, and Delphi had effectively secured its position relative to the competition. The
front lines had stabilized somewhat, although Delphi continued to slowly gain market share.
CORBA was the industry buzz, and Delphi had it and the competition did not. There was a bit
of a down-side to Delphi 4 as well: After enjoying several years of being the most stable devel-
opment tool on the market, Delphi 4 had earned a reputation among long-time Delphi users for
not living up to the very high standard for solid engineering and stability.

The release of Delphi 4 followed the acquisition of Visigenic, one of the CORBA industry
leaders. Borland changed its name to Inprise in an effort to better penetrate the enterprise, and
the company was in a position to lead the industry to new ground by integrating its tools with
the CORBA technology. To really win, CORBA needed to be made as easy as COM or Internet
development had been made in past versions of Borland tools. However, for various reasons,
the integration wasn’t as full as it should have been, and the CORBA-development tool integra-
tion was destined to play a bit part in the overall software-development picture.

Delphi 5
Delphi 5 moved ahead on a few fronts: First, Delphi 5 continued what Delphi 4 started by
adding many more features to make easy those tasks that traditionally take time, hopefully
enabling you to concentrate more on what you want to write and less on how to write it. These
new productivity features include further IDE and debugger enhancements, TeamSource team
development software, and translation tools. Second, Delphi 5 contained a host of new features
aimed squarely at making Internet development easier. These new Internet features include the

Development Essentials

PART I
18

03 chpt_01.qxd 11/19/01 3:11 PM Page 18

Active Server Object Wizard for ASP creation, the InternetExpress components for XML sup-
port, and new MIDAS features, making it a very versatile data platform for the Internet.
Finally, Borland built time into the schedule to deliver the most important feature of all for
Delphi 5: stability. Like fine wine, you cannot rush great software, and Borland waited until
Delphi 5 was ready before letting it out the door.

Delphi 5 was released in the latter half of 1999. Delphi continues to penetrate the enterprise,
whereas Visual Basic continues to serve as competition on the low end. However, the battle
lines still appear stable. Inprise brought back the Borland name but only as a brand. The execu-
tive offices went through some turbulent times, with the company divisionalized between tools
and middleware, the abrupt departure of CEO Del Yocam, and the hiring of Internet-savvy
CEO Dale Fuller, who refocused the company back on software developers.

Delphi 6
Clearly the primary theme of Delphi 6 is compatibility with Borland’s Kylix development tool
for Linux. To this end, Borland developed the new Component Library for Cross-Platform
(CLX), which includes VisualCLX for visual development, DataCLX client data-access compo-
nents, and NetCLX Internet components. Applications written using only the CLX library and
portable RTL elements will easily port between the Windows and Linux operating systems.

The new dbExpress set of components and drivers is one of the biggest breakthroughs to come
out of the effort for Linux compatibility because it finally provides a real alternative for the
BDE, which has really begun to show its age in recent years.

A secondary theme of Delphi 6 is essentially to embrace all things XML. This includes XML
for database applications, Web-based applications, and SOAP-based Web services. Delphi
developers have the tools they need to fully embrace the industry-wide trend toward XML,
which provides great benefits in terms of applications that function across the traditional
boundaries of different development tools, platforms, databases, and across the Internet.

Of course, in addition to all these improvements and additions, Delphi 6 brings the normal host
of improvement you’ve come to expect between product versions in core areas like VCL, the
IDE, the debugger, the Object Pascal language, and the RTL.

The Delphi IDE
Just to make sure that we’re all on the same page with regard to terminology, Figure 1.2 shows
the Delphi IDE and calls attention to its major constituents: the main window, the Component
Palette, the toolbars, the Form Designer, the Code Editor, the Object Inspector, Object
TreeView, and the Code Explorer.

Programming in Delphi

CHAPTER 1

1

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I

19

03 chpt_01.qxd 11/19/01 3:11 PM Page 19

FIGURE 1.2
The Delphi 6 IDE.

The Main Window
Think of the main window as the control center for the Delphi IDE. The main window has all
the standard functionality of the main window of any other Windows program. It consists of
three parts: the main menu, the toolbars, and the Component Palette.

The Main Menu
As in any Windows program, you go to the main menu when you need to open and save files,
invoke wizards, view other windows, modify options, and so on. Most items on the main menu
can also be invoked via a button on a toolbar.

The Delphi Toolbars
The toolbars enable single-click access to some operation found on the main menu of the IDE,
such as opening a file or building a project. Notice that each of the buttons on the toolbars
offer a tooltip that contain a description of the function of a particular button. Not including the
Component Palette, there are five separate toolbars in the IDE: Debug, Desktops, Standard,

Development Essentials

PART I
20

Object TreeView Form Designer

Code ExplorerObject Inspector Code Editor

Component PaletteMain Window

Toolbars

03 chpt_01.qxd 11/19/01 3:11 PM Page 20

View, and Custom. Figure 1.2 shows the default button configuration for these toolbars, but
you can add or remove buttons by selecting Customize from the local menu on a toolbar.
Figure 1.3 shows the Customize toolbar dialog box. You add buttons by dragging them from
this dialog box and drop them on any toolbar. To remove a button, drag it off the toolbar.

Programming in Delphi

CHAPTER 1

1

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I

21

FIGURE 1.3
The Customize toolbar dialog box.

IDE toolbar customization doesn’t stop at configuring which buttons are shown. You can also
relocate each of the toolbars, the Component Palette, or the menu within the main window. To
do this, click the raised gray bars on the left side of the toolbars and drag them around the
main window. If you drag the mouse outside the confines of the main window while doing this,
you’ll see yet another level of customization: The toolbars can be undocked from the main
window and reside in their own floating tool windows. Undocked views of the toolbars are
shown in Figure 1.4.

FIGURE 1.4
Undocked toolbars.

The Component Palette
The Component Palette is a double-height toolbar that contains a page control filled with all
the VCL components and ActiveX controls installed in the IDE. The order and appearance of
pages and components on the Component Palette can be configured via a right-click or by
selecting Component, Configure Palette from the main menu.

03 chpt_01.qxd 11/19/01 3:11 PM Page 21

The Form Designer
The Form Designer begins as an empty window, ready for you to turn it into a Windows appli-
cation. Consider the Form Designer your artist’s canvas for creating Windows applications;
here is where you determine how your applications will be represented visually to your users.
You interact with the Form Designer by selecting components from the Component Palette and
dropping them onto your form. After you have a particular component on the form, you can
use the mouse to adjust the position or size of the component. You can control the appearance
and behavior of these components by using the Object Inspector and Code Editor.

The Object Inspector
With the Object Inspector, you can modify a form’s or component’s properties or enable your
form or component to respond to different events. Properties are data such as height, color, and
font that determine how an object appears onscreen. Events are portions of code executed in
response to occurrences within your application. A mouse-click message and a message for a
window to redraw itself are two examples of events. The Object Inspector window uses the
standard Windows notebook tab metaphor in switching between component properties or
events; just select the desired page from the tabs at the top of the window. The properties and
events displayed in the Object Inspector reflect whichever form or component currently has
focus in the Form Designer.

Delphi also has the capability to arrange the contents of the Object Inspector by category or
alphabetically by name. You can do this by right-clicking anywhere in the Object Inspector and
selecting Arrange from the local menu. Figure 1.5 shows two Object Inspectors side by side.
The one on the left is arranged by category, and the one on the right is arranged by name. You
can also specify which categories you would like to view by selecting View from the local
menu.

One of the most useful tidbits of knowledge that you as a Delphi programmer should know is
that the help system is tightly integrated with the Object Inspector. If you ever get stuck on a
particular property or event, just press the F1 key, and WinHelp comes to the rescue.

The Code Editor
The Code Editor is where you type the code that dictates how your program behaves and
where Delphi inserts the code that it generates based on the components in your application.
The top of the Code Editor window contains notebook tabs, where each tab corresponds to a
different source code module or file. Each time you add a new form to your application, a new
unit is created and added to the set of tabs at the top of the Code Editor. The local menu in the
Code Editor gives you a wide range of options while you’re editing, such as closing files, set-
ting bookmarks, and navigating to symbols.

Development Essentials

PART I
22

03 chpt_01.qxd 11/19/01 12:07 PM Page 22

FIGURE 1.5
Viewing the Object Inspector by category and by name.

Programming in Delphi

CHAPTER 1

1

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I

23

You can view multiple Code Editor windows simultaneous by selecting View, New Edit
Window from the main menu.

TIP

The Code Explorer
The Code Explorer provides a tree-style view of the unit shown in the Code Editor. The Code
Explorer allows easy navigation of units in addition to the ability to easily add new elements or
rename existing elements in a unit. It’s important to remember that there’s a one-to-one rela-
tionship between Code Explorer windows and Code Editor windows. Right-click a node in the
Code Explorer to view the options available for that node. You can also control behaviors such
as sorting and filtering in the Code Explorer by modifying the options found on the Explorer
tab of the Environment Options dialog box.

The Object TreeView
The Object TreeView provides a visual, hierarchical representation of the components placed
on a form, data module, or frame. The tree displays the relationship between individual compo-
nents, such as parent-child, property-to-component, or property-to-property relationships. In
addition to being a means to view relationships, the Object TreeView also serves as a conve-
nient means to establish relationships between components. This can be done most easily by

03 chpt_01.qxd 11/19/01 12:07 PM Page 23

dropping one component from the palette or the tree on another in the tree. This will establish
the relationship between two components that have a possibility of forming a relationship.

A Tour of Your Project’s Source
The Delphi IDE generates Object Pascal source code for you as you work with the visual com-
ponents of the Form Designer. The simplest example of this capability is starting a new project.
Select File, New Application in the main window to see a new form in the Form Designer and
that form’s source code skeleton in the Code Editor. The source code for the new form’s unit is
shown in Listing 1.1.

LISTING 1.1 Source Code for an Empty Form

unit Unit1;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs;

type
TForm1 = class(TForm)
private
{ Private declarations }

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation;

{$R *.dfm}

end.

It’s important to note that the source code module associated with any form is stored in a unit.
Although every form has a unit, not every unit has a form. If you’re not familiar with how the
Pascal language works and what exactly a unit is, see Chapter 2, “The Object Pascal
Language,” which discusses the Object Pascal language for those who are new to Pascal from
C++, Visual Basic, Java, or another language.

Development Essentials

PART I
24

03 chpt_01.qxd 11/19/01 12:07 PM Page 24

Let’s take a unit skeleton one piece at a time. Here’s the top portion:

type
TForm1 = class(TForm) ;
private
{ Private declarations }

public
{ Public declarations }

end;

It indicates that the form object, itself, is an object derived from TForm, and the space in which
you can insert your own public and private variables is labeled clearly. Don’t worry about what
class, public, or private means right now. Chapter 2 discusses Object Pascal in more detail.

The following line is very important:

{$R *.dfm};

The $R directive in Pascal is used to load an external resource file. This line links the .DFM
(which stands for Delphi form) file into the executable. The .DFM file contains a binary repre-
sentation of the form you created in the Form Designer. The * symbol in this case isn’t
intended to represent a wildcard; it represents the file having the same name as the current
unit. So, for example, if the preceding line was in a file called Unit1.pas, the *.DFM would
represent a file by the name of Unit1.dfm.

Programming in Delphi

CHAPTER 1

1

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I

25

A nice feature of the IDE is the ability for you to save new DFM files as text rather
than as binary. This option in enabled by default, but you can modify it using the
New Forms As Text check box on the Preferences page of the Environment Options
dialog box. Although saving forms as text format is just slightly less efficient in terms
of size, it’s a good practice for a few of reasons: First, it is very easy to make minor
changes to text DFMs in any text editor. Second, if the file should become corrupted,
it is far easier to repair a corrupted text file than a corrupted binary file. Finally, it
becomes much easier for version control systems to manage the form files. Keep in
mind also that previous versions of Delphi expect binary DFM files, so you will need
to disable this option if you want to create projects that will be used by other ver-
sions of Delphi.

NOTE

The application’s project file; is worth a glance, too. A project filename ends in .DPR (which
stands for Delphi project) and is really nothing more than a Pascal source file with a different
file extension. The project file is where the main portion of your program (in the Pascal sense)
lives. Unlike other versions of Pascal with which you might be familiar, most of the “work” of

03 chpt_01.qxd 11/19/01 12:07 PM Page 25

your program is done in units rather than in the main module. You can load your project’s
source file into the Code Editor by selecting Project, View Source from the main menu. Here’s
the project file from the sample application:

program Project1;

uses
Forms,
Unit1 in ‘Unit1.pas’ {Form1};

{$R *.RES}

begin
Application.Initialize;
Application.CreateForm(TForm1, Form1);
Application.Run;

end.

As you add more forms and units to the application, they appear in the uses clause of the pro-
ject file. Notice, too, that after the name of a unit in the uses clause, the name of the related
form appears in comments. If you ever get confused about which units go with which forms,
you can regain your bearings by selecting View, Project Manager to bring up the Project
Manager window.

Development Essentials

PART I
26

Each form has exactly one unit associated with it, and you can also have other “code-
only” units that aren’t associated with any form. In Delphi, you work mostly within
your program’s; units, and you’ll rarely edit your project’s .DPR file.

NOTE

Tour of a Small Application
The simple act of plopping a component such as a button onto a form causes code for that ele-
ment to be generated and added to the form object:

type
TForm1 = class(TForm)
Button1: TButton;

private
{ Private declarations }

public
{ Public declarations }

end;

03 chpt_01.qxd 11/19/01 12:07 PM Page 26

Now, as you can see, the button is an instance variable of the TForm1 class. When you refer to
the button in contexts outside TForm1 later in your source code, you must remember to address
it as part of the scope of TForm1 by saying Form1.Button1. Scoping is explained in more detail
in Chapter 2.

When this button is selected in the Form Designer, you can change its behavior through the
Object Inspector. Suppose that, at design time, you want to change the width of the button to
100 pixels, and at runtime, you want to make the button respond to a press by doubling its own
height. To change the button width, move over to the Object Browser window, find the Width
property, and change the value associated with Width to 100. Note that the change doesn’t take
effect in the Form Designer until you press Enter or move off the Width property. To make the
button respond to a mouse click, select the Events page on the Object Inspector window to
reveal the list of events to which the button can respond. Double-click in the column next to
the OnClick event, and Delphi generates a procedure skeleton for a mouse-click response and
whisks you away to that spot in the source code—in this case, a procedure called
TForm1.Button1Click(). All that’s left to do is to insert the code to double the button’s width
between the begin..end of the event’s response method:

Button1.Height := Button1.Height * 2;

To verify that the “application” compiles and runs, press the F9 key on your keyboard and
watch it go!

Programming in Delphi

CHAPTER 1

1

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I

27

Delphi maintains a reference between generated procedures and the controls to
which they correspond. When you compile or save a source code module, Delphi
scans your source code and removes all procedure skeletons for which you haven’t
entered any code between the begin and end. This means that if you didn’t write any
code between the begin and end of the TForm1.Button1Click() procedure, for exam-
ple, Delphi would have removed the procedure from your source code. The bottom
line here is this: Don’t delete event handler procedures that Delphi has created; just
delete your code and let Delphi remove the procedures for you.

NOTE

After you have fun making the button really big on the form, terminate your program and go
back to the Delphi IDE. Now is a good time to mention that you could have generated a
response to a mouse click for your button just by double-clicking a control after dropping it
onto the form. Double-clicking a component automatically invokes its associated component
editor. For most components, this response generates a handler for the first of that component’s
events listed in the Object Inspector.

03 chpt_01.qxd 11/19/01 12:07 PM Page 27

What’s So Great About Events, Anyway?
If you’ve ever developed Windows applications the traditional way, without a doubt you’ll find
the ease of use of Delphi events a welcome alternative to manually catching Windows messages,
cracking those messages, and testing for window handles, control IDs, WParam parameters,
LParam parameters, and so on. If you don’t know what all that means, that’s okay; Chapter 3,
“Adventures in Messaging,” covers messaging internals.

A Delphi event is often triggered by a Windows message. The OnMouseDown event of a
TButton, for example, is really just an encapsulation of the Windows WM_xBUTTONDOWN mes-
sages. Notice that the OnMouseDown event gives you information such as which button was
pressed and the location of the mouse when it happened. A form’s OnKeyDown event provides
similar useful information for key presses. For example, here’s the code that Delphi generates
for an OnKeyDown handler:

procedure TForm1.FormKeyDown(Sender: TObject; var Key: Word;
Shift: TShiftState);
begin
end;

All the information you need about the key is right at your fingertips. If you’re an experienced
Windows programmer, you’ll appreciate that there aren’t any LParam or WParam parameters,
inherited handlers, translates, or dispatches to worry about. This goes way beyond “message
cracking” as you might know it because one Delphi event can represent several different
Windows messages, as it does with OnMouseDown (which handles a variety of mouse messages).
What’s more, each of the message parameters is passed in as easy-to-understand parameters.
Chapter 3 gets into the gory details of how Delphi’s internal messaging system works.

Contract-Free Programming
Arguably the biggest benefit that Delphi’s event system has over the standard Windows mes-
saging system is that all events are contract free. What contract free means to the programmer
is that you never are required to do anything inside your event handlers. Unlike standard
Windows message handling, you don’t have to call an inherited handler or pass information
back to Windows after handling an event.

Of course, the downside to the contract-free programming model that Delphi’s event system
provides is that it doesn’t always give you the power or flexibility that directly handling
Windows messages gives you. You’re at the mercy of those who designed the event as far as
what level of control you’ll have over your application’s response to the event. For example,
you can modify and kill keystrokes in an OnKeyPress handler, but an OnResize handler pro-
vides you only with a notification that the event occurred—you have no power to prevent or
modify the resizing.

Development Essentials

PART I
28

03 chpt_01.qxd 11/19/01 12:07 PM Page 28

Never fear, though. Delphi doesn’t prevent you from working directly with Windows mes-
sages. It’s not as straightforward as the event system because message handling assumes that
the programmer has a greater level of knowledge of what Windows expects of every handled
message. You have complete power to handle all Windows messages directly by using the mes-
sage keyword. You’ll find out much more about writing Windows message handlers in Chapter
3.

The great thing about developing applications with Delphi is that you can use the high-level
easy stuff (such as events) when it suits you and still have access to the low-level stuff when-
ever you need it.

Turbo Prototyping
After hacking Delphi for a little while, you’ll probably notice that the learning curve is espe-
cially mild. In fact, even if you’re new to Delphi, you’ll find that writing your first project in
Delphi pays immediate dividends in the form of a short development cycle and a robust appli-
cation. Delphi excels in the one facet of application development that has been the bane of
many a Windows programmer: user interface (UI) design.

Sometimes the design of the UI and the general layout of a program is referred to as prototyp-
ing. In a nonvisual environment, prototyping an application often takes longer than writing the
application’s implementation, or what is called the back end. Of course, the back end of an
application is the whole objective of the program in the first place, right? Sure, an intuitive and
visually pleasing UI is a big part of the application, but what good would it be, for example, to
have a communications program with pretty windows and dialog boxes but no capacity to send
data through a modem? As it is with people, so it is with applications; a pretty face is nice to
look at, but it has to have substance to be a regular part of our lives. Please, no comments
about back ends.

Delphi enables you to use its custom controls to whip out nice-looking UIs in no time flat. In
fact, you’ll find that after you become comfortable with Delphi’s forms, controls, and event-
response methods, you’ll cut huge chunks off the time you usually take to develop application
prototypes. You’ll also find that the UIs you develop in Delphi look just as nice as—if not bet-
ter than—those designed with traditional tools. Often, what you “mock up” in Delphi turns out
to be the final product.

Extensible Components and Environment
Because of the object-oriented nature of Delphi, in addition to creating your own components
from scratch, you can also create your own customized components based on stock Delphi
components. For more details on this and other types of components, you should take a look at
Part IV, “Component-Based Development.”

Programming in Delphi

CHAPTER 1

1

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I

29

03 chpt_01.qxd 11/19/01 12:07 PM Page 29

In addition to allowing you to integrate custom components into the IDE, Delphi provides the
capability to integrate entire subprograms, called experts, into the environment. Delphi’s
Expert Interface enables you to add special menu items and dialog boxes to the IDE to inte-
grate some feature that you feel is worthwhile. An example of an expert is the Database Form
Expert located on the Delphi Database menu. Chapter 17, “Using The Open Tools API,” out-
lines the process for creating experts and integrating them into the Delphi IDE.

The Top 10 IDE Features You Must Know and Love
Before we can let you any further into the book, we’ve got to make sure that you’re equipped
with the tools you need to survive and the knowledge to use them. In that spirit, what follows
is a list of what we feel are the top 10 IDE features you must learn to know and love.

1. Class Completion
Nothing wastes a developer’s time more than have to type in all that blasted code! How often is
it that you know exactly what you want to write but are limited by how fast your fingers can
fly over the keys? Until the spec for the PCI-to-medulla oblongata bus is completed to rid you
of all that typing, Delphi has a feature called class completion that goes a long way toward
alleviating the busy work.

Arguably, the most important feature of class completion is that it is designed to work without
being in your face. Simply type in part of a class declaration, press the magic Ctrl+Shift+C
keystroke combination, and class completion will attempt to figure our what you’re trying to
do and generate the right code. For example, if you put the declaration for a procedure called
Foo in your class and invoke class completion, it will automatically create the definition for
this method in the implementation part of the unit. Declare a new property that reads from a
field and writes to a method and invoke class completion, and it will automatically generate the
code for the field and declare and implement the method.

If you haven’t already gotten hooked on class completion, give it a whirl. Soon you’ll be lost
without it.

2. AppBrowser Navigation
Do you ever look at a line of code in your Code Editor and think, “Gee, I wish I knew where
that method is declared”? Well, finding out is as easy as holding down the Ctrl key and click-
ing the name of the token you want to find. The IDE will use debug information assembled in
the background by the compiler to jump to the declaration of the token. Very handy. And like a

Development Essentials

PART I
30

03 chpt_01.qxd 11/19/01 12:07 PM Page 30

Web browser, there’s a history stack that you can navigate forward and back through using the
little arrows to the right of the tabs in the Code Editor.

3. Interface/Implementation Navigation
Want to navigate between the interface and implementation of a method? Just put the cursor on
the method and use Ctrl+Shift+up arrow or down arrow to toggle between the two positions.

4. Dock It!
The IDE allows you to organize the windows on your screen by docking together multiple
windows as panes in a single window. If you have full window drag set in your windows desk-
top, you can easily tell which windows are dockable because they draw a dithered box when
they’re dragged around the screen. The Code Editor offers three docking bays on its left, bot-
tom, and right sides to which you can affix windows. Windows can be docked side-by-side by
dragging one window to an edge of another or tab-docked by dragging one window to the mid-
dle of another. Once you come up with an arrangement you like, be sure to save it using the
Desktops toolbar. Want to prevent a window from docking? Hold down the Ctrl key while
dragging it or right-click in the window and uncheck Dockable in the local menu.

Programming in Delphi

CHAPTER 1

1

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I

31

Here’s a cute hidden feature: Right-click the tabs of tab-docked windows, and you’ll
be able to move the tabs to the top, bottom, left, or right of the window.

TIP

5. The Object Browser
Delphi 1 through 4 shipped with essentially the same icky object browser. If you didn’t know it
was there, don’t feel alone; many folks never used it because it didn’t have a lot to offer.
Delphi now comes equipped with an object browser that enables visual browsing of object
hierarchies. Shown in Figure 1.6, the browser is accessible by selecting View, Browser in the
main menu. This tool presents a tree view that lets you navigate globals, classes, and units and
drill down into scope, inheritance, and references of the symbols.

6. GUID, Anyone?
In the small-but-useful category, you’ll find the Ctrl+Shift+G keystroke combination. Pressing
this keystroke combination will place a fresh new GUID in the Code Editor, which is a real
timesaver when you’re declaring new interfaces.

03 chpt_01.qxd 11/19/01 12:07 PM Page 31

FIGURE 1.6
The new browser.

7. C++ Syntax Highlighting
If you’re like us, you often like to view C++ files, such as SDK headers, while you work in
Delphi. Because Delphi and C++Builder share the same editor source code, one of the advan-
tages to users is syntax highlighting of C++ files. Just load up a C++ file such as a .CPP or .H
module in the Code Editor, and it handles the rest automatically.

8. To Do. . .
Use the To Do List to manage work in progress in your source files. You can view the To Do
List by selecting View, To Do List from the main menu. This list is automatically populated
from any comments in your source code that begin with the token TODO. You can use the To Do
Items window to set the owner, priority, and category for any To Do item. This window is
shown in Figure 1.7, docked to the bottom of the Code Editor.

9. Use the Project Manager
The Project Manager can be a big timesaver when navigating around large projects—especially
those projects that are composed of multiple EXE or DLL modules, but it’s amazing how many
people forget that it’s there. You can access the Project Manager by selecting View, Project
Manager from the main menu. There are a number of time saving features in the Project
Manager, such as drag-and-drop copying and copy and paste between projects.

Development Essentials

PART I
32

03 chpt_01.qxd 11/19/01 12:07 PM Page 32

FIGURE 1.7
To Do Items window.

10. Use Code Insight to Complete Declarations
and Parameters
When you type Identifier., a window will automatically pop up after the dot to provide you
with a list of properties, methods, events, and fields available for that identifier. You can right-
click this window to sort the list by name or by scope. If the window goes away before you’re
ready, just press Ctrl+space to bring it back up.

Remembering all the parameters to a function can be a pain, so it’s nice that Code Insight
automatically helps by providing a tooltip with the parameter list when you type
FunctionName(in the Code Editor. Remember to press Ctrl+Shift+space to bring the
tooltip back up if it goes away before you’re ready.

Summary
By now you should have an understanding of the Delphi 6 product line and the Delphi IDE as
well as how Delphi fits into the Windows development picture in general. This chapter was
intended to acclimate you to Delphi and to the concepts used throughout the book. Now the
stage has been set for the really technical stuff to come. Before you move much deeper into the
book, make sure that you’re comfortable using and navigating around the IDE and know how
to work with small projects.

Programming in Delphi

CHAPTER 1

1

P
R

O
G

R
A

M
M

IN
G

IN
D

ELPH
I

33

03 chpt_01.qxd 11/19/01 12:07 PM Page 33

03 chpt_01.qxd 11/19/01 12:07 PM Page 34

CHAPTER

2
The Object Pascal Language

IN THIS CHAPTER
• Comments 36

• Extended Procedure and
Function Features 37

• Variables 39

• Constants 41

• Operators 43

• Object Pascal Types 47

• User-Defined Types 75

• Typecasting and Type
Conversion 87

• String Resources 88

• Testing Conditions 88

• Loops 90

• Procedures and
Functions 93

• Scope 97

• Units 99

• Packages 101

• Object-Oriented
Programming 103

• Using Delphi Objects 105

• Structured Exception
Handling 119

• Runtime Type
Information 126

04 chpt_02.qxd 11/19/01 12:15 PM Page 35

This chapter sets aside the visual elements of Delphi in order to provide you with an overview
of Delphi’s underlying language—Object Pascal. To begin with, you’ll receive an introduction
to the basics of the Object Pascal language, such as language rules and constructs. Later on,
you’ll learn about some of the more advanced aspects of Object Pascal, such as classes and
exception handling. Because this isn’t a beginner’s book, it assumes that you have some expe-
rience with other high-level computer languages such as Java, C/C++, or Visual Basic, and it
compares Object Pascal language structure to that of those other languages. By the time you’re
finished with this chapter, you’ll understand how programming concepts such as variables,
types, operators, loops, cases, exceptions, and objects work in Pascal as compared to Java,
C/C++, and Visual Basic.

Development Essentials

PART I
36

When we mention the C language in this chapter, we are generally referring to a lan-
guage element that exists in both C and C++. Features specific to the C++ language
are referred to as C++.

NOTE

Even if you have some recent experience with Pascal, you’ll find this chapter useful because
this is really the only point in the book where you learn the nitty-gritty of Pascal syntax and
semantics.

Comments
As a starting point, you should know how to make comments in your Pascal code. Object
Pascal supports three types of comments: curly brace comments, parenthesis/asterisk com-
ments, and double backslash comments. Examples of each type of comment follow:

{ Comment using curly braces }
(* Comment using paren and asterisk *)
// double backslash comment

The first two types of comments are virtually identical in behavior. The compiler considers the
comment to be everything between the open-comment and close-comment delimiters. For dou-
ble backslash comments, everything following the double backslash until the end of the line is
considered a comment.

You cannot nest comments of the same type. Although it is legal syntax to nest Pascal
comments of different types inside one another, we don’t recommend the practice.
Here are some examples:

NOTE

continues

04 chpt_02.qxd 11/19/01 12:15 PM Page 36

Extended Procedure and Function Features
Because procedures and functions are fairly universal topics as far as programming languages
are concerned, we won’t go into too much detail here. We just want to fill you in on a few
unique or little-known features in this area. Where appropriate, we’ll also point out the Delphi
version in which various language features appeared to aid in porting or maintaining code
compatible between various compiler versions.

Parentheses in Calls
Although it has been in the language since Delphi 2, one of the lesser-known features of
Object Pascal is that parentheses are optional when calling a procedure or function that takes
no parameters. Therefore, the following syntax examples are both valid:

Form1.Show;
Form1.Show();

Granted, this feature isn’t one of those things that sends chills up and down your spine, but it’s
particularly nice for those who split their time between Delphi and languages such as C or
Java, where parentheses are required. If you’re not able to spend 100% of your time in Delphi,
this feature means that you don’t have to remember to use different function-calling syntax for
different languages.

Overloading
Delphi 4 introduced the concept of function overloading (that is, the ability to have multiple
procedures or functions of the same name with different parameter lists). All overloaded meth-
ods are required to be declared with the overload directive, as shown here:

procedure Hello(I: Integer); overload;
procedure Hello(S: string); overload;
procedure Hello(D: Double); overload;

Note that the rules for overloading methods of a class are slightly different and are explained
in the section “Method Overloading.” Although this is one of the features most requested by
developers since Delphi 1, the phrase that comes to mind is “Be careful what you wish for.”
Having multiple functions and procedures with the same name (on top of the traditional ability

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

37

{ (* This is legal *) }
(* { This is legal } *)
(* (* This is illegal *) *)
{ { This is illegal }: }

04 chpt_02.qxd 11/19/01 12:15 PM Page 37

to have functions and procedures of the same name in different units) can make it more difficult
to predict the flow of control and debug your application. Because of this, overloading is a fea-
ture you should employ judiciously. Not to say that you should avoid it; just don’t overuse it.

Default Value Parameters
Also introduced in Delphi 4 were default value parameters (that is, the ability to provide a
default value for a function or procedure parameter and not have to pass that parameter when
calling the routine). In order to declare a procedure or function that contains default value para-
meters, follow the parameter type with an equal sign and the default value, as shown in the fol-
lowing example:

procedure HasDefVal(S: string; I: Integer = 0);

The HasDefVal() procedure can be called in one of two ways. First, you can specify both para-
meters:

HasDefVal(‘hello’, 26);

Second, you can specify only parameter S and use the default value for I:

HasDefVal(‘hello’); // default value used for I

You must follow several rules when using default value parameters:

• Parameters having default values must appear at the end of the parameter list. Parameters
without default values cannot follow parameters with default values in a procedure or
function’s parameter list.

• Default value parameters must be of an ordinal, pointer, or set type.

• Default value parameters must be passed by value or as const. They cannot be reference
(out) or untyped parameters.

One of the biggest benefits of default value parameters is in adding functionality to existing
functions and procedures without sacrificing backward compatibility. For example, suppose that
you sell a unit containing a revolutionary function called AddInts()that adds two numbers:

function AddInts(I1, I2: Integer): Integer;
begin
Result := I1 + I2;

end;

In order to keep up with the competition, you feel you must update this function so that it has
the capability for adding three numbers. However, you’re loathe to do so because adding a
parameter will cause existing code that calls this function to not compile. Thanks to default
parameters, you can enhance the functionality of AddInts() without compromising compatibil-
ity. Here’s an example:

Development Essentials

PART I
38

04 chpt_02.qxd 11/19/01 12:15 PM Page 38

function AddInts(I1, I2: Integer; I3: Integer = 0);
begin
Result := I1 + I2 + I3;

end;

Variables
You might be used to declaring variables off the cuff: “I need another integer, so I’ll just
declare one right here in the middle of this block of code.” This is a perfectly reasonable
notion if you’re coming from another language such as Java, C, or Visual Basic. If that has
been your practice, you’re going to have to retrain yourself a little in order to use variables in
Object Pascal. Object Pascal requires you to declare all variables up front in their own section
before you begin a procedure, function, or program. Perhaps you used to write free-wheeling
code like this:

void foo(void)
{
int x = 1;
x++;
int y = 2;
float f;
//... etc ...

}

In Object Pascal, any such code must be tidied up and structured a bit more to look like this:

Procedure Foo;
var
x, y: Integer;
f: Double;

begin
x := 1;
inc(x);
y := 2;
//... etc ...

end;

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

39

Object Pascal—like Visual Basic, but unlike Java and C—is not a case-sensitive lan-
guage. Upper- and lowercase is used for clarity’s sake, so use your best judgment, as
the style used in this book indicates. If the identifier name is several words mashed

NOTE

continues

04 chpt_02.qxd 11/19/01 12:15 PM Page 39

You might be wondering what all this structure business is and why it’s beneficial. You’ll find,
however, that Object Pascal’s structured style of variable declaration lends itself to code that’s
more readable, maintainable, and less buggy than other languages that rely on convention
rather than rule to enforce sanity.

Notice how Object Pascal enables you to group more than one variable of the same type
together on the same line with the following syntax:

VarName1, VarName2: SomeType;

Remember that when you’re declaring a variable in Object Pascal, the variable name precedes
the type, and there’s a colon between the variables and types. Note that the variable initializa-
tion is always separate from the variable declaration.

A language feature introduced in Delphi 2 enables you to initialize global variables inside a
var block. Here are some examples demonstrating the syntax for doing so:

var
i: Integer = 10;
S: string = ‘Hello world’;
D: Double = 3.141579;

Development Essentials

PART I
40

together, remember to capitalize for clarity. For example, the following name is
unclear and difficult to read:

procedure thisprocedurenamemakesnosense;

This code is quite readable, however:

procedure ThisProcedureNameIsMoreClear;

For a complete reference on the coding style guidelines used for this book, see the
electronic version of Delphi 5 Developer’s Guide on the CD accompanying this book.

Preinitialization of variables is only allowed for global variables, not variables that
are local to a procedure or function.

NOTE

04 chpt_02.qxd 11/19/01 12:15 PM Page 40

Constants
Constants in Pascal are defined in a const clause, which behaves similarly to the C/C++’s
const keyword. Here’s an example of three constant declarations in C:

const float ADecimalNumber = 3.14;
const int i = 10;
const char * ErrorString = “Danger, Danger, Danger!”;

The major difference between C constants and Object Pascal constants is that Object Pascal,
like Visual Basic, doesn’t require you to declare the constant’s type along with the value in the
declaration. The Delphi compiler automatically allocates proper space for the constant based
on its value, or, in the case of scalar constants such as Integer, the compiler keeps track of the
values as it works, and space never is allocated. Here’s an example:

const
ADecimalNumber = 3.14;
i = 10;
ErrorString = ‘Danger, Danger, Danger!’;

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

41

The Delphi compiler sees to it that all global data is automatically zero-initialized.
When your application starts, all integer types will hold 0, floating-point types will
hold 0.0, pointers will be nil, strings will be empty, and so forth. Therefore, it isn’t
necessary to zero-initialize global data in your source code.

TIP

Space is allocated for constants as follows: Integer values are “fit” into the smallest
type allowable (10 into a ShortInt, 32,000 into a SmallInt, and so on). Alphanumeric
values fit into Char or the currently defined (by $H) string type. Floating-point values
are mapped to the extended data type, unless the value contains four or fewer deci-
mal places explicitly, in which case it’s mapped to a Comp type. Sets of Integer and
Char are of course stored as themselves.

NOTE

04 chpt_02.qxd 11/19/01 12:15 PM Page 41

Optionally, you can also specify a constant’s type in the declaration. This provides you with
full control over how the compiler treats your constants:

const
ADecimalNumber: Double = 3.14;
I: Integer = 10;
ErrorString: string = ‘Danger, Danger, Danger!’;

Object Pascal permits the usage of compile-time functions in const and var declarations.
These routines include Ord(), Chr(), Trunc(), Round(), High(), Low(), and SizeOf(). For
example, all of the following code is, valid:

type
A = array[1..2] of Integer;

const
w: Word = SizeOf(Byte);

var
i: Integer = 8;
j: SmallInt = Ord(‘a’);
L: Longint = Trunc(3.14159);
x: ShortInt = Round(2.71828);
B1: Byte = High(A);
B2: Byte = Low(A);
C: char = Chr(46);

Development Essentials

PART I
42

The behavior of 32-bit Delphi type-specified constants is different from that in 16-bit
Delphi 1. In Delphi 1, the identifier declared wasn’t treated as a constant but as a
preinitialized variable called a typed constant. However, in Delphi 2 and later, type-
specified constants have the capability of being truly constant. Delphi provides a
backward-compatibility switch on the Compiler page of the Project, Options dialog
box, or you can use the $J compiler directive. By default, this switch is enabled for
compatibility with Delphi 1 code, but you’re best served not to rely on this capability
because the implementers of the Object Pascal language are trying to move away
from the notion of assignable constants.

CAUTION

If you try to change the value of any of these constants, the Delphi compiler emits an error
explaining that it’s against the rules to change the value of a constant. Because constants are
read-only, Object Pascal optimizes your data space by storing those constants that merit stor-
age in the application’s code pages. If you’re unclear about the notions of code and data pages,

04 chpt_02.qxd 11/19/01 12:15 PM Page 42

see Chapter 3, “The Win32 API,” in the electronic version of Delphi 5 Developer’s Guide on
the CD accompanying this, book.

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

43

Object Pascal doesn’t have a preprocessor as does C. There’s no concept of a macro
in Object Pascal and, therefore, no Object Pascal equivalent for C’s #define for con-
stant declaration. Although you can use Object Pascal’s $define compiler directive for
conditional compiles similar to C’s #define, you cannot use it to define constants. Use
const in Object Pascal where you would use #define to declare a constant in C.

NOTE

Operators
Operators are the symbols in your code that enable you to manipulate all types of data. For
example, there are operators for adding, subtracting, multiplying, and dividing numeric data.
There are also operators for addressing a particular element of an array. This section explains
some of the Pascal operators and describes some of the differences between their Java, C, and
Visual Basic counterparts.

Assignment Operators
If you’re new to Pascal, Delphi’s assignment operator is going to be one of the toughest things
to get used to. To assign a value to a variable, use the := operator as you would use the = oper-
ator in Java, C, or Visual Basic. Pascal programmers often call this the gets or assignment
operator, and, the expression

Number1 := 5;

is read either “Number1 gets the value 5” or “Number1 is assigned the value 5.”

Comparison Operators
If you’ve already programmed in Visual Basic, you should be very comfortable with Delphi’s
comparison operators, because they’re virtually identical. These operators are fairly standard
throughout programming languages, so they’re covered only briefly in this section.

Object Pascal uses the = operator to perform logical comparisons between two expressions or
values. Object Pascal’s = operator is analogous to the Java/C == operator, so a Java/C expres-
sion that would be written as

if (x == y)

04 chpt_02.qxd 11/19/01 12:15 PM Page 43

would be written as this in Object Pascal:

if x = y

Development Essentials

PART I
44

Remember that in Object Pascal, the := operator is used to assign a value to a vari-
able, and the = operator compares the values of two, operands.

NOTE

Object Pascal’s “not equal to” operator is <>, and its purpose is identical to C’s != operator. To
determine whether two expressions are not equal, use this code:

if x <> y then DoSomething

Logical Operators
Pascal uses the words and and or as logical “and” and “or” operators, whereas Java and C use
the && and || symbols, respectively, for these operators. The most common use of the and
and or operators is as part of an if statement or loop, as demonstrated in the following two
examples:

if (Condition 1) and (Condition 2) then
DoSomething;

while (Condition 1) or (Condition 2) do
DoSomething;

Pascal’s logical “not” operator is not, which is used to invert a Boolean expression. It’s analo-
gous to the Java/C’s ! operator. It’s also often used as a part of if statements, as shown here:

if not (condition) then (do something); // if condition is false then...

Table 2.1 provides an easy reference of how Pascal operators map to corresponding Java, C,
and Visual Basic operators.

TABLE 2.1 Assignment, Comparison, and Logical Operators

Operator Pascal Java/C Visual Basic

Assignment := = =

Comparison = == = or Is*

Not equal to <> != <>

Less than < < <

Greater than > > >

04 chpt_02.qxd 11/19/01 12:15 PM Page 44

TABLE 2.1 Continued

Operator Pascal Java/C Visual Basic

Less than or equal to <= <= <=

Greater than or equal to >= >= >=

Logical and and && And

Logical or or || Or

Logical not not ! Not

*The Is comparison operator is used for objects, whereas the = comparison operator is used for other
types.

Arithmetic Operators
You should already be familiar with most Object Pascal arithmetic operators because they’re
generally similar to those used in Java, C, and Visual Basic. Table 2.2 illustrates all the Pascal
arithmetic operators and their Java, C, and Visual Basic counterparts.

TABLE 2.2 Arithmetic Operators

Operator Pascal Java/C Visual Basic

Addition + + +

Subtraction - - -

Multiplication * * *

Floating-point division / / /

Integer division div / \

Modulus mod % Mod

Exponent None None ^

You might notice that Pascal and Visual Basic provide different division operators for floating-
point and integer math, although this isn’t the case for Java and C. The div operator automati-
cally truncates any remainder when you’re dividing two integer expressions.

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

45

Remember to use the correct division operator for the types of expressions with
which you’re working. The Object Pascal compiler gives you an error if you try to
divide two floating-point numbers with the integer div operator or two integers with
the floating-point / operator, as the following code illustrates:

NOTE

continues

04 chpt_02.qxd 11/19/01 12:15 PM Page 45

Bitwise Operators
Bitwise operators enable you to modify individual bits of a given variable. Common bitwise
operators enable you to shift the bits to the left or right or to perform bitwise “and,” “not,” “or,”
and “exclusive or” (xor) operations with two numbers. The Shift+left and Shift+right operators
are shl and shr, respectively, and they’re much like the Java/C << and >> operators. The
remainder of Pascal’s bitwise operators is easy enough to remember: and, not, or, and xor.
Table 2.3 lists the bitwise operators.

TABLE 2.3 Bitwise Operators

Operator Pascal Java/C Visual Basic

And and & And

Not not ~ Not

Or or | Or

Xor xor ^ Xor

Shift+left shl << None

Shift+right shr >> None

Increment and Decrement Procedures
Increment and decrement procedures generate optimized code for adding or subtracting 1 from
a given integral variable. Pascal doesn’t really provide honest-to-gosh increment and decrement
operators similar to the Java/C ++ and -- operators, but Pascal’s Inc() and Dec() procedures
compile optimally to one machine instruction.

Development Essentials

PART I
46

var
i: Integer;
r: Real;

begin
i := 4 / 3; // This line will cause a compiler error
f := 3.4 div 2.3; // This line also will cause an error

end;

Many other programming languages do not distinguish between integer and float-
ing-point division. Instead, they always perform floating-point division and then con-
vert the result back to an integer when necessary. This can be rather expensive in
terms of performance. The Pascal div operator is faster and more specific.

04 chpt_02.qxd 11/19/01 12:15 PM Page 46

You can call Inc() or Dec() with one or two parameters. For example, the following two lines
of code increment and decrement variable, respectively, by 1, using the inc and dec assembly
instructions:

Inc(variable);

Dec(variable);

Compare the following two lines, which increment or decrement variable by 3 using the add
and sub assembly instructions:

Inc(variable, 3);

Dec(variable, 3);

Table 2.4 compares the increment and decrement operators of different languages.

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

47

With compiler optimization enabled, the Inc() and Dec() procedures often produce
the same machine code as variable := variable + 1 syntax, so use whichever you
feel more comfortable with for incrementing and decrementing variables.

NOTE

TABLE 2.4 Increment and Decrement Operators

Operator Pascal Java/C Visual Basic

Increment Inc() ++ None

Decrement Dec() -- None

Do-and-Assign Operators
Not present in Object Pascal are handy do-and-assign operators like those found in Java and C.
These operators, such as += and *=, perform an arithmetic operation (in this case, an add and
an multiply) before making the assignment. In Object Pascal, this type of operation must be
performed using two separate operators. Therefore, this code in Java or C

x += 5;

becomes this in Object Pascal:

x := x + 5;

04 chpt_02.qxd 11/19/01 12:15 PM Page 47

Object Pascal Types
One of Object Pascal’s greatest features is that it’s strongly typed, or typesafe. This means that
actual variables passed to procedures and functions must be of the same type as the formal
parameters identified in the procedure or function definition. You won’t see any of the famous
compiler warnings about suspicious pointer conversions that C programmers have grown to
know and love. This is because the Object Pascal compiler won’t permit you to call a function
with one type of pointer when another type is specified in the function’s formal parameters
(although functions that take untyped Pointer types accept any type of pointer). Basically,
Pascal’s strongly typed nature enables it to perform a sanity check of your code—to ensure that
you’ aren’t trying to put a square peg in a round hole.

A Comparison of Types
Delphi’s base types are similar to those of Java, C, and Visual Basic. Table 2.5 compares and
contrasts the base types of Object Pascal with those of these other languages. You might want
to earmark this page because this table provides an excellent reference for matching types
when calling functions in non-Delphi dynamic link libraries (DLLs) or object files (OBJs)
from Delphi (and vice versa).

TABLE 2.5 A Pascal-to-Java-to-C-to-Visual Basic 32-bit Type Comparison

Type of Visual
Variable Pascal Java C/C++ Basic

8-bit signed ShortInt byte char None
integer
8-bit unsigned Byte None BYTE, Byte

integer unsigned short

16-bit signed SmallInt short short Short

integer

16-bit unsigned Word None unsigned short None
integer

32-bit signed Integer, int int, long Integer, Long

integer Longint

32-bit unsigned Cardinal, None unsigned long None
integer LongWord

64-bit signed Int64 long __int64 None
integer

Development Essentials

PART I
48

04 chpt_02.qxd 11/19/01 12:15 PM Page 48

TABLE 2.5 Continued

Type of Visual
Variable Pascal Java C/C++ Basic

4-byte floating Single float float Single

point

6-byte floating Real48 None None None
point

8-byte floating Double double double Double

point

10-byte floating Extended None long. double None
point

64-bit currency currency None None Currency

8-byte date/time TDateTime None None Date

16-byte variant Variant, None VARIANT** Variant(Default)
OleVariant, Variant†,
TVarData OleVariant†

1-byte character Char None char None

2-byte character WideChar char WCHAR

Fixed-length ShortString None None None
byte string

Dynamic string AnsiString AnsiString† String

Null-terminated PChar None char * None
string

Null-terminated PWideChar None LPCWSTR None
wide string

Dynamic 2-byte WideString String** WideString† None
string

1-byte Boolean Boolean, boolean (Any 1-byte) None
ByteBool

2-byte Boolean WordBool None (Any 2-byte) Boolean

4-byte Boolean BOOL, None BOOL None
LongBool

†A proprietary Borland C++Builder class that emulates the corresponding Object Pascal type
**Not a language element proper, but a commonly used structure or class

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

49

04 chpt_02.qxd 11/19/01 12:15 PM Page 49

Characters
Delphi provides three character types:

• AnsiChar—This is the standard one-byte ANSI character that programmers have grown
to know and love.

• WideChar—This character is two bytes in size and represents a Unicode character.

• Char—This is currently identical to AnsiChar, but Borland warns that the definition
might change to WideChar in a later version of Delphi.

Keep in mind that because a character is no longer guaranteed to be one byte in size, you
shouldn’t hard-code the size into your applications. Instead, you should use the SizeOf() func-
tion where appropriate.

Development Essentials

PART I
50

If you’re porting 16-bit code from Delphi 1, be sure to bear in mind that the size of
both the Integer and Cardinal types has increased from 16 to 32 bits. Actually, that’s
not quite accurate: Under Delphi 2 and 3, the Cardinal type was treated as an
unsigned 31-bit integer in order to preserve arithmetic precision (because Delphi 2
and 3 lacked a true unsigned 32-bit integer to which results of integer operations
could be promoted). Under Delphi 4 and higher, Cardinal is a true unsigned 32-bit
integer.

NOTE

In Delphi 1, 2, and 3, the Real type identifier specified a 6-byte floating-point num-
ber, which is a type unique to Pascal and generally incompatible with other lan-
guages. In Delphi 4, Real is an alias for the Double type. The old 6-byte floating-
point number is still there, but it’s now identified by Real48. You can also
force the Real identifier to refer to the 6-byte floating-point number using the
{$REALCOMPATIBILITY ON} directive.

CAUTION

The SizeOf() standard procedure returns the size, in bytes, of a type or instance.

NOTE

04 chpt_02.qxd 11/19/01 12:15 PM Page 50

A Multitude of Strings
Strings are variable types used to represent groups of characters. Every language has its own
spin on how string types are stored and used. Pascal has several different string types to suit
your programming needs:

• AnsiString, the default string type for Object Pascal, is comprised of AnsiChar charac-
ters and allows for virtually unlimited lengths. It’s also compatible with null-terminated
strings.

• ShortString remains in the language primarily for backward compatibility with Delphi 1.
Its capacity is limited to 255 characters.

• WideString is similar in functionality to AnsiString except that it’s comprised of
WideChar characters.

• PChar is a pointer to a null-terminated Char string—like C’s char * and lpstr types.

• PAnsiChar is a pointer to a null-terminated AnsiChar string.

• PWideChar is a pointer to a null-terminated WideChar string.

By default, when you declare a string variable in your code, as shown in the following exam-
ple, the compiler assumes that you’re creating an AnsiString:

var
S: string; // S is an AnsiString

Alternatively, you can cause variables declared as string types to be of type ShortString
instead using the $H compiler directive. When the value of the $H compiler directive is nega-
tive, string variables are ShortString types; and when the value of the directive is positive
(the default), string variables are AnsiString types. The following code demonstrates this
behavior:

var
{$H-}
S1: string; // S1 is a ShortString
{$H+}
S2: string; // S2 is an AnsiString

The exception to the $H rule is that a string declared with an explicit size (limited to a maxi-
mum of 255 characters) is always a ShortString:

var
S: string[63]; // A ShortString of up to 63 characters

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

51

04 chpt_02.qxd 11/19/01 12:15 PM Page 51

The AnsiString Type
The AnsiString (or long string) type was introduced to the language in Delphi 2. It exists pri-
marily as a result of widespread Delphi 1 customer demand for an easy-to-use string type with-
out the intrusive 255-character limitation. AnsiString is that and more.

Although AnsiString types maintain an almost identical interface as their predecessors, they’re
dynamically allocated and garbage-collected. Because of this, AnsiString is sometimes referred
to as a lifetime-managed type. Object Pascal also automatically manages allocation of string
temporaries as needed, so you needn’t worry about allocating buffers for intermediate results
as you would in C/C++. Additionally, AnsiString types are always guaranteed to be null ter-
minated, which makes them compatible with the null-terminated strings used by the Win32
API. The AnsiString type is actually implemented as a pointer to a string structure in heap
memory. Figure 2.1 shows how an AnsiString is laid out in memory.

Development Essentials

PART I
52

D D G #0Allocation size Ref count Length

AnsiString

FIGURE 2.1
An AnsiString in memory.

The complete internal format of the long string type is left undocumented by Borland,
and Borland reserves the right to change the internal format of long strings with
future releases of Delphi. The information here is intended mainly to help you under-
stand how AnsiString types work, and you should avoid being dependent on the
structure of an AnsiString in your code.

Developers who avoided the implementation of details of string moving from Delphi
1 to Delphi 2 were able to migrate their code with no problems. Those who wrote
code that depended on the internal format (such as the 0th element in the string
being the length) had to modify their code for Delphi 2.

CAUTION

As Figure 2.1 illustrates, AnsiString types are reference counted, which means that several
strings might point to the same physical memory. String copies, therefore, are very fast because
it’s merely a matter of copying a pointer rather than copying the actual string contents. When
two or more AnsiString types share a reference to the same physical string, the Delphi mem-
ory manager uses a copy-on-write technique, which enables it to wait until a string is modified
to release a reference and allocate a new physical string. The following example illustrates
these concepts:

04 chpt_02.qxd 11/19/01 12:15 PM Page 52

var
S1, S2: string;

begin
// store string in S1, ref count of S1 is 1
S1 := ‘And now for something... ‘;
S2 := S1; // S2 now references S1. Ref count of S1 is 2.
// S2 is changed, so it is copied to its own
// memory space, and ref count of S1 is decremented

S2 := S2 + ‘completely different!’;

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

53

Lifetime-Managed Types
In addition to AnsiString, Delphi provides several other types that are lifetime-
managed. These types include WideString, Variant, OleVariant, interface,
dispinterface, and dynamic arrays. You’ll learn more about each of these
types later in this chapter. For now, we’ll focus on what exactly lifetime-managed
types are and how they work.

Lifetime-managed types, sometimes called garbage-collected types, are types that
potentially consume some particular resource while in use and release the resource
automatically when they fall out of scope. Of course, the variety of resources used
depends on the type involved. For example, an AnsiString consumes memory for the
character string while in use, and the memory occupied by the character string is
released when it leaves scope.

For global variables, this process is fairly straightforward: As a part of the finalization
code generated for your application, the compiler inserts code to ensure that each
lifetime-managed global variable is cleaned up. Because all global data is zero-initial-
ized when your application loads, each lifetime-managed global variable will always
initially contain a zero, empty, or some other value indicating the variable is “unused.”
This way, the finalization code won’t attempt to free resources unless they’re actually
used in your application.

Whenever you declare a local lifetime-managed variable, the process is slightly more
complex: First, the compiler inserts code to ensure that the variable is initialized to
zero when the function or procedure is entered. Next, the compiler generates a
try..finally exception-handling block, which it wraps around the entire function
body. Finally, the compiler inserts code in the finally block to clean up the lifetime-
managed variable (exception handling is explained in more detail in the section
“Structured Exception Handling”). With this in mind, consider the following-
procedure:

04 chpt_02.qxd 11/19/01 12:15 PM Page 53

String Operations
You can concatenate two strings by using the + operator or the Concat() function. The pre-
ferred method of string concatenation is the + operator because the Concat() function exists
primarily for backward compatibility. The following example demonstrates the use of + and
Concat():

{ using + }
var
S, S2: string

begin
S:= ‘Cookie ‘:
S2 := ‘Monster’;
S := S + S2; { Cookie Monster }

end.

{ using Concat() }
var
S, S2: string;

begin
S:= ‘Cookie ‘;
S2 := ‘Monster’;
S := Concat(S, S2); { Cookie Monster }

end.

Development Essentials

PART I
54

procedure Foo;
var
S: string;

begin
// procedure body
// use S here

end;

Although this procedure looks simple, if you take into account the code generation
by the compiler behind the scenes, it would actually look like this:

procedure Foo;
var
S: string;

begin
S := ‘’;
try
// procedure body
// use S here

finally
// clean up S here
end;

end;

04 chpt_02.qxd 11/19/01 12:15 PM Page 54

Length and Allocation
When first declared, an AnsiString has no length and therefore no space allocated for the
characters in the string. To cause space to be allocated for the string, you can assign the string
to a literal or another string, or you can use the SetLength() procedure, as shown here:

var
S: string; // string initially has no length

begin
S := ‘Doh!’; // allocates at least enough space for string literal
{ or }
S := OtherString // increases ref count of OtherString

// (assume OtherString already points to a valid string)
{ or }
SetLength(S, 4); // allocates enough space for at least 4 chars

end;

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

55

Always use single quotation marks (‘A String’) when working with string literals in
Object Pascal.

NOTE

Concat()is one of many “compiler magic” functions and procedures (like ReadLn()
and WriteLn(), for example) that don’t have an Object Pascal definition. Such func-
tions and procedures are intended to accept an indeterminate number of parameters
or optional parameters, so they cannot be defined in terms of the Object Pascal lan-
guage. Because of this, the compiler provides a special case for each of these func-
tions and generates a call to one of the “compiler magic” helper functions defined in
the System unit. These helper functions are generally implemented in assembly lan-
guage in order to circumvent Pascal language rules.

In addition to the “compiler magic” string support functions and procedures, there
are a variety of functions and procedures in the SysUtils unit designed to make
working with strings easier. Search for “String-handling routines (Pascal-style)” in the
Delphi online help system.

Furthermore, you’ll find some very useful homebrewed string utility functions and
procedures in the StrUtils unit in the \Source\Utils directory on the CD-ROM
accompanying this book.

TIP

04 chpt_02.qxd 11/19/01 12:15 PM Page 55

You can index the characters of an AnsiString like an array, but be careful not to index
beyond the length of the string. For example, the following code snippet will cause an error:

var
S: string;

begin
S[1] := ‘a’; // Won’t work because S hasn’t been allocated!

end;

This code, however, works properly:

var
S: string;

begin
SetLength(S, 1);
S[1] := ‘a’; // Now S has enough space to hold the character

end;

Win32 Compatibility
As mentioned earlier, AnsiString types are always null-terminated, so they’re compatible with
null-terminated strings. This makes it easy to call Win32 API functions or other functions
requiring PChar-type strings. All that’s required is that you typecast the string as a PChar.
(Typecasting is explained in more detail in the section “Typecasting and Type Conversion.”)
The following code demonstrates how to call the Win32 GetWindowsDirectory() function,
which accepts a PChar and buffer length as parameters:

var
S: string;

begin
SetLength(S, 256); // important! get space for string first
// call function, S now holds directory string
GetWindowsDirectory(PChar(S), 256);

end;

After using an AnsiString in which a function or procedure expects a PChar, you must manu-
ally set the length of the string variable to its null-terminated length. The RealizeLength()
function, which also comes from the StrUtils unit, accomplishes that task:

procedure RealizeLength(var S: string);
begin
SetLength(S, StrLen(PChar(S)));

end;

Calling RealizeLength() completes the substitution of a long string for a PChar:

var
S: string;

Development Essentials

PART I
56

04 chpt_02.qxd 11/19/01 12:15 PM Page 56

begin
SetLength(S, 256); // important! get space for string first
// call function, S now holds directory string
GetWindowsDirectory(PChar(S), 256);
RealizeLength(S); // set S length to null length

end;

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

57

Exercise care when typecasting a string to a PChar variable. Because strings are
garbage-collected when they go out of scope, you must pay attention when making
assignments such as P := PChar(Str), where the scope (or lifetime) of P is greater
than Str.

CAUTION

Porting Issues
When you’re porting 16-bit Delphi 1 applications, you need to keep in mind a number of
issues when migrating to AnsiString types:

• In places where you used the PString (pointer to a ShortString) type, you should
instead use the string type. Remember, an AnsiString is already a pointer to a string.

• You can no longer access the 0th element of a string to get or set the length. Instead, use
the Length() function to get the string length and the SetLength() procedure to set the
length.

• There’s no longer any need to use StrPas() and StrPCopy() to convert back and forth
between strings and PChar types. As shown earlier, you can typecast an AnsiString to a
PChar. When you want to copy the contents of a PChar to an AnsiString, you can use a
direct assignment:

StringVar := PCharVar;

Remember that you must use the SetLength() procedure to set the length of a long
string, whereas the past practice was to directly access the 0th element of a short
string to set the length. This issue will arise when you attempt to port 16-bit
Delphi 1.0 code to 32, bits.

CAUTION

04 chpt_02.qxd 11/19/01 12:15 PM Page 57

The ShortString Type
If you’re a Delphi veteran, you’ll recognize the ShortString type as the Delphi 1.0 string
type. ShortString types are sometimes referred to as Pascal strings or length-byte strings. To
reiterate, remember that the value of the $H directive determines whether variables declared as
string are treated by the compiler as AnsiString or ShortString.

In memory, the string resembles an array of characters in which the 0th character in the string
contains the length of the string, and the string itself is contained in the following characters.
The storage size of a ShortString defaults to the maximum of 256 bytes. This means that you
can never have more than 255 characters in a ShortString (255 characters + 1 length byte =
256). As with AnsiString, working with ShortString is fairly painless because the compiler
allocates string temporaries as needed, so you don’t have to worry about allocating buffers for
intermediate results or disposing of them as you do with C.

Figure 2.2 illustrates how a Pascal string is laid out in memory.

Development Essentials

PART I
58

#3 D D G

FIGURE 2.2
A ShortString in memory.

A ShortString variable is declared and initialized with the following syntax:

var
S: ShortString;

begin
S := ‘Bob the cat.’;

end.

Optionally, you can allocate fewer than 256 bytes for a ShortString using just the string
type identifier and a length specifier, as in the following example:

var
S: string[45]; { a 45-character ShortString }

begin
S := ‘This string must be 45 or fewer characters.’;

end.

The preceding code causes a ShortString to be created regardless of the current setting of the
$H directive. The maximum length you can specify is 255 characters.

Never store more characters to a ShortString than you have allocated memory for. If you
declare a variable as a string[8], for example, and try to assign ‘a_pretty_darn_
long_string’ to that variable, the string would be truncated to only eight characters, and
you would lose data.

04 chpt_02.qxd 11/19/01 12:15 PM Page 58

When using an array subscript to address a particular character in a ShortString, you could
get bogus results or corrupt memory if you attempt to use a subscript index that’s greater than
the declared size of the ShortString. For example, suppose that you declare a variable as
follows:

var
Str: string[8];

If you then attempt to write to the 10th element of the string as follows, you’re likely to cor-
rupt memory used by other variables:

var
Str: string[8];
i: Integer;

begin
i := 10;

Str[i] := ‘s’; // will corrupt memory

You can have the compiler link in special logic to catch these types of errors at runtime by
selecting Range Checking in the Options, Project dialog box.

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

59

Although including range-checking logic in your program helps you find string errors,
range checking slightly hampers the performance of your application. It’s common
practice to use range checking during the development and debugging phases of
your program, but you should remove range checking after you become confident in
the stability of your program.

TIP

Unlike AnsiString types, ShortString types aren’t inherently compatible with null-termi-
nated strings. Because of this, a bit of work is required to be able to pass a ShortString to
a Win32 API function. The following function, ShortStringAsPChar(), is taken from the
STRUTILS.PAS unit mentioned earlier:

func function ShortStringAsPChar(var S: ShortString): PChar;
{ Function null-terminates a string so it can be passed to functions }
{ that require PChar types. If string is longer than 254 chars, then it will }
{ be truncated to 254. }
begin
if Length(S) = High(S) then Dec(S[0]); { Truncate S if it’s too long }
S[Ord(Length(S)) + 1] := #0; { Place null at end of string }
Result := @S[1]; { Return “PChar’d” string }

end;

04 chpt_02.qxd 11/19/01 12:15 PM Page 59

The WideString Type
The WideString type is a lifetime-managed type similar to AnsiString; they’re both dynami-
cally allocated, garbage collected, and even assignment compatible with one another. However,
WideString differs from AnsiString in three key respects:

• WideString types are comprised of WideChar characters rather than AnsiChar characters,
making them compatible with Unicode strings.

• WideString types are allocated using the SysAllocStrLen() API function, making them
compatible with OLE BSTR strings.

• WideString types aren’t reference counted, so assigning one WideString to another
requires the entire string to be copied from one location in memory to another. This
makes WideString types less efficient than AnsiString types in terms of speed and
memory use.

As mentioned earlier, the compiler automatically knows how to convert between variables of
AnsiString and WideString types, as shown here:

var
W: WideString;
S: string;

begin
W := ‘Margaritaville’;
S := W; // Wide converted to Ansi
S := ‘Come Monday’;
W := S; // Ansi converted to Wide

end;

In order to make working with WideString types feel natural, Object Pascal overloads the
Concat(), Copy(), Insert(), Length(), Pos(), and SetLength() routines and the +, =, and <>
operators for use with WideString types. Therefore, the following code is syntactically correct:

var
W1, W2: WideString;
P: Integer;

begin
W1 := ‘Enfield’;

Development Essentials

PART I
60

The functions and procedures in the Win32 API require null-terminated strings. Do
not try to pass a ShortString type to an API function because your program will not
compile. Your life will be easier if you use long strings when working with the API.

CAUTION

04 chpt_02.qxd 11/19/01 12:15 PM Page 60

W2 := ‘field’;
if W1 <> W2 then
P := Pos(W1, W2);

end;

As with the AnsiString and ShortString types, you can use array brackets to reference indi-
vidual characters of a WideString:

var
W: WideString;
C: WideChar;

begin
W := ‘Ebony and Ivory living in perfect harmony’;
C := W[Length(W)]; // C holds the last character in W

end;

Null-Terminated Strings
Earlier, this chapter mentioned that Delphi has three different null-terminated string types:
PChar, PAnsiChar, and PWideChar. As their names imply, each of these represents a null-termi-
nated string of each of Delphi’s three character types. In this chapter, we refer to each of these
string types generically as PChar. The PChar type in Delphi exists mainly for compatibility
with Delphi 1.0 and the Win32 API, which makes extensive use of null-terminated strings. A
PChar is defined as a pointer to a string followed by a null (zero) value (if you’re unsure of
exactly what a pointer is, read on; pointers are discussed in more detail later in this section).
Unlike memory for AnsiString and WideString types, memory for PChar types isn’t automat-
ically allocated and managed by Object Pascal. Therefore, you’ll usually need to allocate
memory for the string to which it points, using one of Object Pascal’s memory-allocation func-
tions. The theoretical maximum length of a PChar string is just under 4GB. The layout of a
PChar variable in memory is shown in Figure 2.3.

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

61

Object Pascal’s AnsiString type can be used as a PChar in most situations, so you
should use this type rather than the PChar type wherever possible. Because memory
management for strings occurs automatically, you greatly reduce the chance of intro-
ducing memory-corruption bugs into your applications if, where possible, you avoid
PChar types and the manual memory allocation associated with them.

TIP

04 chpt_02.qxd 11/19/01 12:15 PM Page 61

FIGURE 2.3
A PChar in memory.

As mentioned earlier, PChar variables require you to manually allocate and free the memory
buffers that contain their strings. Normally, you allocate memory for a PChar buffer using the
StrAlloc() function, but several other functions can be used to allocate memory for PChar
types, including AllocMem(), GetMem(), StrNew(), and even the VirtualAlloc() API function.
Corresponding functions also exist for many of these functions, which must be used to deallo-
cate memory. Table 2.6 lists several allocation functions and their corresponding deallocation
functions.

TABLE 2.6 Memory Allocation and Deallocation Functions

Memory Allocated with. . . Must Be Freed with. . .

AllocMem() FreeMem()

GlobalAlloc() GlobalFree()

GetMem() FreeMem()

New() Dispose()

StrAlloc() StrDispose()

StrNew() StrDispose()

VirtualAlloc() VirtualFree()

The following example demonstrates memory allocation techniques when working with PChar
and string types:

var
P1, P2: PChar;
S1, S2: string;

begin
P1 := StrAlloc(64 * SizeOf(Char)); // P1 points to an allocation of 63 Chars
StrPCopy(P1, ‘Delphi 6 ‘); // Copy literal string into P1
S1 := ‘Developer’’s Guide’; // Put some text in string S1
P2 := StrNew(PChar(S1)); // P1 points to a copy of S1
StrCat(P1, P2); // concatenate P1 and P2
S2 := P1; // S2 now holds ‘Delphi 6 Developer’s Guide’
StrDispose(P1); // clean up P1 and P2 buffers
StrDispose(P2);

end.

Development Essentials

PART I
62

D D G #0

PChar

04 chpt_02.qxd 11/19/01 12:15 PM Page 62

Notice, first of all, the use of SizeOf(Char) with StrAlloc() when allocating memory for P1.
Remember that the size of a Char might change from one byte to two in future versions of
Delphi; therefore, you cannot assume the value of Char to always be one byte. SizeOf()
ensures that the allocation will work properly no matter how many bytes a character occupies.

StrCat() is used to concatenate two PChar strings. Note here that you cannot use the + opera-
tor for concatenation as you can with long string and ShortString types.

The StrNew() function is used to copy the value contained by string S1 into P2 (a PChar). Be
careful when using this function. It’s common to have memory-overwrite errors when using
StrNew() because it allocates only enough memory to hold the string. Consider the following
example:

var
P1, P2: Pchar;
begin
P1 := StrNew(‘Hello ‘); // Allocate just enough memory for P1 and P2
P2 := StrNew(‘World’);
StrCat(P1, P2); // BEWARE: Corrupts memory!
.
.
.

end;

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

63

As with other types of strings, Object Pascal provides a decent library of utility func-
tions and procedures for operating on PChar types. Search for “String-handling rou-
tines (null-terminated)” in the Delphi online help system.

You’ll also find some useful null-terminated functions and procedures in the StrUtils
unit in the \Source\Utils directory on the CD-ROM accompanying this book.

TIP

Variant Types
Delphi 2 introduced a powerful data type called the Variant. Variants were brought about
primarily in order to support OLE Automation, which uses the Variant type heavily. In fact,
Delphi’s Variant data type is an encapsulation of the variant used with OLE. Delphi’s imple-
mentation of variants has also proven to be useful in other areas of Delphi programming, as
you’ll soon learn. Object Pascal is the only compiled language that completely integrates vari-
ants as a dynamic data type at runtime and as a static type at compile time in that the compiler
always knows that it’s a variant.

04 chpt_02.qxd 11/19/01 12:15 PM Page 63

Delphi 3 introduced a new type called OleVariant, which is identical to Variant except that it
can only hold Automation-compatible types. In this section, we initially focus on the Variant
type and then we discuss OleVariant and contrast it with Variant.

Variants Change Types Dynamically
One of the main purposes of variants is to have a variable whose underlying data type cannot
be determined at compile time. This means that a variant can change the type to which it refers
at runtime. For example, the following code will compile and run properly:

var
V: Variant;

begin
V := ‘Delphi is Great!’; // Variant holds a string
V := 1; // Variant now holds an Integer
V := 123.34; // Variant now holds a floating point
V := True; // Variant now holds a boolean
V := CreateOleObject(‘Word.Basic’); // Variant now holds an OLE object

end;

Variants can support all simple data types, such as integers, floating-point values, strings,
Booleans, date and time, currency, and also OLE Automation objects. Note that variants cannot
refer to Object Pascal objects. Also, variants can refer to a non-homogeneous array, which can
vary in size and whose data elements can refer to any of the preceding data types (including
another variant array).

The Variant Structure
The data structure defining the Variant type is defined in the System unit and is also shown in
the following code:

TVarType = Word;
PVarData = ^TVarData;
{$EXTERNALSYM PVarData}
TVarData = packed record
VType: TVarType;
case Integer of
0: (Reserved1: Word;

case Integer of
0: (Reserved2, Reserved3: Word;

case Integer of
varSmallInt: (VSmallInt: SmallInt);
varInteger: (VInteger: Integer);
varSingle: (VSingle: Single);
varDouble: (VDouble: Double);
varCurrency: (VCurrency: Currency);
varDate: (VDate: TDateTime);

Development Essentials

PART I
64

04 chpt_02.qxd 11/19/01 12:15 PM Page 64

varOleStr: (VOleStr: PWideChar);
varDispatch: (VDispatch: Pointer);
varError: (VError: LongWord);
varBoolean: (VBoolean: WordBool);
varUnknown: (VUnknown: Pointer);
varShortInt: (VShortInt: ShortInt);
varByte: (VByte: Byte);
varWord: (VWord: Word);
varLongWord: (VLongWord: LongWord);
varInt64: (VInt64: Int64);
varString: (VString: Pointer);
varAny: (VAny: Pointer);
varArray: (VArray: PVarArray);
varByRef: (VPointer: Pointer);

);
1: (VLongs: array[0..2] of LongInt);

);
2: (VWords: array [0..6] of Word);
3: (VBytes: array [0..13] of Byte);

end;

The TVarData structure consumes 16 bytes of memory. The first two bytes of the TVarData
structure contain a word value that represents the data type to which the variant refers. The fol-
lowing code shows the various values that might appear in the VType field of the TVarData
record. The next six bytes are unused. The remaining eight bytes contain the actual data or a
pointer to the data represented by the variant. Again, this structure maps directly to ‘COM’s
implementation of the variant type. Here’s the code:

{ Variant type codes (wtypes.h) }

varEmpty = $0000; { vt_empty }
varNull = $0001; { vt_null }
varSmallint = $0002; { vt_i2 }
varInteger = $0003; { vt_i4 }
varSingle = $0004; { vt_r4 }
varDouble = $0005; { vt_r8 }
varCurrency = $0006; { vt_cy }
varDate = $0007; { vt_date }
varOleStr = $0008; { vt_bstr }
varDispatch = $0009; { vt_dispatch }
varError = $000A; { vt_error }
varBoolean = $000B; { vt_bool }
varVariant = $000C; { vt_variant }
varUnknown = $000D; { vt_unknown }

//varDecimal = $000E; { vt_decimal } {UNSUPPORTED}
{ undefined $0f } {UNSUPPORTED}

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

65

04 chpt_02.qxd 11/19/01 12:15 PM Page 65

varShortInt = $0010; { vt_i1 }
varByte = $0011; { vt_ui1 }
varWord = $0012; { vt_ui2 }
varLongWord = $0013; { vt_ui4 }
varInt64 = $0014; { vt_i8 }

//varWord64 = $0015; { vt_ui8 } {UNSUPPORTED}

{ if adding new items, update Variants’ varLast, BaseTypeMap and OpTypeMap }
varStrArg = $0048; { vt_clsid }
varString = $0100; { Pascal string; not OLE compatible }
varAny = $0101; { Corba any }
varTypeMask = $0FFF;
varArray = $2000;
varByRef = $4000;

Development Essentials

PART I
66

As you might notice from the type codes in the preceding listing, a Variant cannot
contain a reference to a Pointer or class type.

NOTE

You’ll notice from the TVarData listing that the TVarData record is actually a variant record.
Don’t confuse this with the Variant type. Although the variant record and Variant type have
similar names, they represent two totally different constructs. Variant records allow for multiple
data fields to overlap in the same area of memory (like a C/C++ union). This is discussed in
more detail in the “Records” section later in this chapter. The case statement in the TVarData
variant record indicates the type of data to which the variant refers. For example, if the VType
field contains the value varInteger, only four bytes of the eight data bytes in the variant por-
tion of the record are used to hold an integer value. Likewise, if VType has the value varByte,
only one byte of the eight is used to hold a byte value.

You’ll notice that if VType contains the value varString, the eight data bytes don’t actually
hold the string; instead, they hold a pointer to this string. This is an important point because
you can access fields of a variant directly, as shown here:

var
V: Variant;

begin
TVarData(V).VType := varInteger;
TVarData(V).VInteger := 2;

end;

You must understand that in some cases this is a dangerous practice because it’s possible
to lose the reference to a string or other lifetime-managed entity, which will result in your

04 chpt_02.qxd 11/19/01 12:15 PM Page 66

application leaking memory or other resources. You’ll see what we mean by the term garbage
collected in the following section.

Variants Are Lifetime Managed
Delphi automatically handles the allocation and deallocation of memory required of a Variant
type. For example, examine the following code, which assigns a string to a Variant variable:

procedure ShowVariant(S: string);
var
V: Variant

begin
V := S;
ShowMessage(V);

end;

As discussed earlier in this chapter in the sidebar “Lifetime-Managed Types,” several things
are going on here that might not be apparent. Delphi first initializes the variant to an unas-
signed value. During the assignment, it sets its VType field to varString and copies the string
pointer into its VString field. It then increases the reference count of string S. When the vari-
ant leaves scope (that is, the procedure ends and returns to the code that called it), it’s cleared
and the reference count of string S is decremented. Delphi does this by implicitly inserting a
try..finally block in the procedure, as shown. here:

procedure ShowVariant(S: string);
var
V: Variant

begin
V := Unassigned; // initialize variant to “empty”
try
V := S;
ShowMessage(V);

finally
// Now clean up the resources associated with the variant

end;
end;

This same implicit release of resources occurs when you assign a different data type to the
variant. For example, examine the following code:

procedure ChangeVariant(S: string);
var
V: Variant

begin
V := S;
V := 34;

end;

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

67

04 chpt_02.qxd 11/19/01 12:15 PM Page 67

This code boils down to the following pseudo-code:

procedure ChangeVariant(S: string);
var
V: Variant

begin
Clear Variant V, ensuring it is initialized to “empty”
try
V.VType := varString; V.VString := S; Inc(S.RefCount);
Clear Variant V, thereby releasing reference to string;
V.VType := varInteger; V.VInteger := 34;

finally
Clean up the resources associated with the variant

end;
end;

If you understand what happens in the preceding examples, you’ll see why it’s not recom-
mended that you manipulate fields of the TVarData record directly, as shown here:

procedure ChangeVariant(S: string);
var
V: Variant

begin
V := S;
TVarData(V).VType := varInteger;
TVarData(V).VInteger := 32;
V := 34;

end;

Although this might appear to be safe, it’s not because it results in the failure to decrement the
reference count of string S, probably resulting in a memory leak. As a general rule, don’t access
the TVarData fields directly, or if you do, be absolutely sure that you know exactly what you’re
doing.

Typecasting Variants
You can explicitly typecast expressions to type Variant. For example, the expression

Variant(X)

results in a Variant type whose type code corresponds to the result of the expression X, which
must be an integer, real, currency, string, character, or Boolean type.

You can also typecast a variant to that of a simple data type. For example, given the assignment

V := 1.6;

Development Essentials

PART I
68

04 chpt_02.qxd 11/19/01 12:15 PM Page 68

where V is a variable of type Variant, the following expressions will have the results shown:

S := string(V); // S will contain the string ‘1.6’;
// I is rounded to the nearest Integer value, in this case: 2.
I := Integer(V);
B := Boolean(V); // B contains False if V contains 0, otherwise B is True
D := Double(V); // D contains the value 1.6

These results are dictated by certain type-conversion rules applicable to Variant types. These
rules are defined in detail in Delphi’s Object Pascal Language Guide.

By the way, in the preceding example, it’s not necessary to typecast the variant to another data
type to make the assignment. The following code would work just as well:

V := 1.6;
S := V;
I := V;
B := V;
D := V;

What happens here is that the conversions to the target data types are made through an implicit
typecast. However, because these conversions are made at runtime, there’s much more code
logic attached to this method. If you’re sure of the type a variant contains, you’re better off
explicitly typecasting it to that type in order to speed up the operation. This is especially true if
the variant is being used in an expression, which we’ll discuss. next.

Variants in Expressions
You can use variants in expressions with the following operators: +, =, *, /, div, mod, shl, shr,
and, or, xor, not, :=, <>, <, >, <=, and >=.

When using variants in expressions, Delphi knows how to perform the operations based on the
contents of the variant. For example, if two variants, V1 and V2, contain integers, the expression
V1 + V2 results in the addition of the two integers. However, if V1 and V2 contain strings, the
result is a concatenation of the two strings. What happens if V1 and V2 contain two different
data types? Delphi uses certain promotion rules in order to perform the operation. For exam-
ple, if V1 contains the string ‘4.5’ and V2 contains a floating-point number, V1 will be con-
verted to a floating point and then added to V2. The following code illustrates this:

var
V1, V2, V3: Variant;

begin
V1 := ‘100’; // A string type
V2 := ‘50’; // A string type
V3 := 200; // An Integer type
V1 := V1 + V2 + V3;

end;

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

69

04 chpt_02.qxd 11/19/01 12:15 PM Page 69

Based on what we just mentioned about promotion rules, it would seem at first glance that the
preceding code would result in the value 350 as an integer. However, if you take a closer look,
you’ll see that this is not the case. Because the order of precedence is from left to right, the
first equation executed. is V1 + V2. Because these two variants refer to strings, a string con-
catenation is performed, resulting in the string ‘10050’. That result is then added to the integer
value held by the variant V3. Because V3 is an integer, the result ‘10050’ is converted to an
integer and added to V3, thus providing an end result of 10250.

Delphi promotes the variants to the highest type in the equation in order to successfully carry
out the calculation. However, when an operation is attempted on two variants of which Delphi
cannot make any sense, an invalid variant type conversion exception is raised. The following
code illustrates this:

var
V1, V2: Variant;

begin
V1 := 77;
V2 := ‘hello’;
V1 := V1 / V2; // Raises an exception.

end;

As stated earlier, it’s sometimes a good idea to explicitly typecast a variant to a specific data
type if you know what that type is and if it’s used in an expression. Consider the following line
of code:

V4 := V1 * V2 / V3;

Before a result can be generated for this equation, each operation is handled by a runtime func-
tion that goes through several gyrations to determine the compatibility of the types the variants
represent. Then the conversions are made to the appropriate data types. This results in a large
amount of overhead and code size. A better solution is obviously not to use variants. However,
when necessary, you can also explicitly typecast the variants so the data types are resolved at
compile time:

V4 := Integer(V1) * Double(V2) / Integer(V3);

Keep in mind that this assumes you know the data types the variants represent.

Empty and Null
Two special VType values for variants merit a brief discussion. The first is varEmpty, which
means that the variant has not yet been assigned a value. This is the initial value of the variant
set by the compiler as it comes into scope. The other is varNull, which is different from
varEmpty in that it actually represents the value Null as opposed to a lack of value. This dis-
tinction between no value and a Null value is especially important when applied to the field

Development Essentials

PART I
70

04 chpt_02.qxd 11/19/01 12:15 PM Page 70

values of a database table. In Part III of this book, “Database Development,” you’ll learn how
variants are used in the context of database applications.

Another difference is that attempting to perform any equation with a variant containing a
varEmpty VType value will result in an invalid variant operation exception. The same isn’t true
of variants containing a varNull value, however. When a variant involved in an equation con-
tains a Null value, that value will propagate to the result. Therefore, the result of any equation
containing a Null is always Null.

If you want to assign or compare a variant to one of these two special values, the System unit
defines two variants, Unassigned and Null, which have the VType values of varEmpty and
varNull, respectively.

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

71

It might be tempting to use variants instead of the conventional data types because
they seem to offer so much flexibility. However, this will increase the size of your
code and cause your applications to run more slowly. Additionally, it will make your
code more difficult to maintain. Variants are useful in many situations. In fact, the
VCL, itself, uses variants in several places, most notably in the ActiveX and database
areas, because of the data type flexibility they offer. Generally speaking, however,
you should use the conventional data types instead of variants. Only in situations
where the flexibility of the variant outweighs the performance of the conventional
method should you resort to using variants. Ambiguous data types beget ambiguous
bugs.

CAUTION

Variant Arrays
Earlier we mentioned that a variant can refer to a nonhomogeneous array. Therefore, the fol-
lowing syntax is valid:

var
V: Variant;
I, J: Integer;

begin
I := V[J];

end;

Bear in mind that, although the preceding code will compile, you’ll get an exception at runtime
because V does not yet contain a variant array. Object Pascal provides several variant array sup-
port functions that allow you to create a variant array. Two of these functions are
VarArrayCreate() and VarArrayOf().

04 chpt_02.qxd 11/19/01 12:15 PM Page 71

VarArrayCreate()

VarArrayCreate() is defined in the Variants unit as

function VarArrayCreate(const Bounds: array of Integer;
VarType: Integer): Variant;

To use VarArrayCreate(), you pass in the array bounds for the array you want to create and a
variant type code for the type of the array elements (the first parameter is an open array, which
is discussed in the “Passing Parameters” section later in this chapter). For example, the follow-
ing code returns a variant array of integers and assigns values to the array items:

var
V: Variant;

begin
V := VarArrayCreate([1, 4], varInteger); // Create a 4-element array
V[1] := 1;
V[2] := 2;
V[3] := 3;
V[4] := 4;

end;

If variant arrays of a single type aren’t confusing enough, you can pass varVariant as the type
code in order to create a variant array of variants! This way, each element in the array has the
ability to contain a different type of data. You can also create a multidimensional array by pass-
ing in the additional bounds required. For example, the following code creates an array with
the bounds [1..4, 1..5]:

V := VarArrayCreate([1, 4, 1, 5], varInteger);

Development Essentials

PART I
72

The Variants unit was added to the RTL in Delphi 6 because the support for variants
was migrated out of the System unit. Among other things, this physical separation of
the variant support code helped to smooth compatibility with Borland Kylix and pro-
vided the ability to extend variants to support developer-specified data types.

NOTE

VarArrayOf()

The VarArrayOf() function is defined in the Variants unit as

function VarArrayOf(const Values: array of Variant): Variant;

This function returns a one-dimensional array whose elements are given in the Values parame-
ter. The following example creates a variant array of three elements with an integer, a string,
and a floating-point value:

V := VarArrayOf([1, ‘Delphi’, 2.2]);

04 chpt_02.qxd 11/19/01 12:15 PM Page 72

Variant Array Support Functions and Procedures
In addition to VarArrayCreate() and VarArrayOf(), there are several other variant array sup-
port functions and procedures. These functions are defined in the Variants System unit and
are also shown here:

procedure VarArrayRedim(var A: Variant; HighBound: Integer);
function VarArrayDimCount(const A: Variant): Integer;
function VarArrayLowBound(const A: Variant; Dim: Integer): Integer;
function VarArrayHighBound(const A: Variant; Dim: Integer): Integer;
function VarArrayLock(const A: Variant): Pointer;
procedure VarArrayUnlock(const A: Variant);
function VarArrayRef(const A: Variant): Variant;
function VarIsArray(const A: Variant): Boolean;

The VarArrayRedim() function allows you to resize the upper bound of the rightmost dimen-
sion of a variant array. The VarArrayDimCount() function returns the number of dimensions in
a variant array. VarArrayLowBound() and VarArrayHighBound() return the lower and upper
bounds of an array, respectively. VarArrayLock() and VarArrayUnlock() are two special func-
tions, which are described in further detail in the next section.

VarArrayRef() is intended to work around a problem that exists in passing variant arrays to
OLE Automation servers. The problem occurs when you pass a variant containing a variant
array to an automation method, like this:

Server.PassVariantArray(VA);

The array is passed not as a variant array but rather as a variant containing a variant array—an
important distinction. If the server expected a variant array rather than a reference to one, the
server will likely encounter an error condition when you call the method with the preceding
syntax. VarArrayRef() takes care of this situation by massaging the variant into the type and
value expected by the server. Here’s the syntax for using VarArrayRef():

Server.PassVariantArray(VarArrayRef(VA));

VarIsArray() is a simple Boolean check, which returns True if the variant parameter passed
to it is a variant array or False otherwise.

Initializing a Large Array: VarArrayLock() and VarArrayUnlock()
Variant arrays are important in OLE Automation because they provide the only means for pass-
ing raw binary data to an OLE Automation server (note that pointers aren’t a legal type in OLE
Automation, as you’ll learn in Chapter 15, “COM Development”). However, if used incor-
rectly, variant arrays can be a rather inefficient means of exchanging data. Consider the follow-
ing line of code:

V := VarArrayCreate([1, 10000], VarByte);

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

73

04 chpt_02.qxd 11/19/01 12:15 PM Page 73

This line creates a variant array of 10,000 bytes. Suppose that you have another array (nonvari-
ant) declared of the same size and you want to copy the contents of this nonvariant array to the
variant array. Normally, you can only do this by looping through the elements and assigning
them to the elements of the variant array, as shown here:

begin
V := VarArrayCreate([1, 10000], VarByte);
for i := 1 to 10000 do
V[i] := A[i];

end;

The problem with this code is that it’s bogged down by the significant overhead required just
to initialize the variant array elements. This is because the assignments to the array elements
must go through the runtime logic to determine type compatibility, the location of each ele-
ment, and so forth. To avoid these runtime checks, you can use the VarArrayLock() function
and the VarArrayUnlock() procedure.

VarArrayLock() locks the array in memory so that it cannot be moved or resized while it’s
locked, and it returns a pointer to the array data. VarArrayUnlock() unlocks an array locked
with VarArrayLock() and once again allows the variant array to be resized and moved in
memory. After the array is locked, you can employ a more efficient means to initialize the data
by using, for example, the Move() procedure with the pointer to the array’s data. The following
code performs the initialization of the variant array shown earlier, but in a much more efficient
manner:

begin
V := VarArrayCreate([1, 10000], VarByte);
P := VarArrayLock(V);
try
Move(A, P^, 10000);

finally
VarArrayUnlock(V);

end;
end;

Supporting Functions
There are several other common support functions for variants that you can use. These func-
tions are declared in the Variants System unit and are also listed here:

procedure VarClear(var V: Variant);
procedure VarCopy(var Dest: Variant; const Source: Variant);
procedure VarCast(var Dest: Variant; const Source: Variant; VarType: Integer);
function VarType(const V: Variant): Integer;
function VarAsType(const V: Variant; VarType: Integer): Variant;
function VarIsEmpty(const V: Variant): Boolean;

Development Essentials

PART I
74

04 chpt_02.qxd 11/19/01 12:15 PM Page 74

function VarIsNull(const V: Variant): Boolean;
function VarToStr(const V: Variant): string;
function VarFromDateTime(DateTime: TDateTime): Variant;
function VarToDateTime(const V: Variant): TDateTime;

The VarClear() procedure clears a variant and sets the VType field to varEmpty. VarCopy()
copies the Source variant to the Dest variant. The VarCast() procedure converts a variant to a
specified type and stores that result into another variant. VarType() returns one of the varXXX
type codes for a specified variant. VarAsType() has the same functionality as VarCast().
VarIsEmpty() returns True if the type code on a specified variant is varEmpty. VarIsNull()
indicates whether a variant contains a Null value. VarToStr() converts a variant to its string
representation (an empty string in the case of a Null or empty variant). VarFromDateTime()
returns a variant that contains a given TDateTime value. Finally, VarToDateTime() returns the
TDateTime value contained in a variant.

OleVariant
The OleVariant type is nearly identical to the Variant type described throughout this section
of this chapter. The only difference between OleVariant and Variant is that OleVariant
only supports Automation-compatible types. Currently, the only VType supported that’s not
Automation-compatible is varString, the code for AnsiString. When an attempt is made to
assign an AnsiString to an OleVariant, the AnsiString will be automatically converted to an
OLE BSTR and stored in the variant as a varOleStr.

Currency
Delphi 2.0 introduced a new type called Currency, which is ideal for financial calculations.
Unlike floating-point numbers, which allow the decimal point to “float” within a number,
Currency is a fixed-point decimal type that’s hard-coded to a precision of 15 digits before the
decimal and four digits after the decimal. As such, it’s not susceptible to round-off errors as are
floating-point types. When porting your Delphi 1.0 projects, it’s a good idea to use this type in
place of Single, Real, Double, and Extended where money is involved.

User-Defined Types
Integers, strings, and floating-point numbers often are not enough to adequately represent vari-
ables in the real-world problems that programmers must try to solve. In cases like these, you
must create your own types to better represent variables in the current problem. In Pascal,
these user-defined types usually come in the form of records or objects; you declare these
types using the Type keyword.

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

75

04 chpt_02.qxd 11/19/01 12:15 PM Page 75

Arrays
Object Pascal enables you to create arrays of any type of variable (except files). For example, a
variable declared as an array of eight integers reads like this:

var
A: Array[0..7] of Integer;

This statement is equivalent to the following C declaration:

int A[8];

It’s also equivalent to this Visual Basic statement:

Dim A(8) as Integer

Object Pascal arrays have a special property that differentiates them from other languages:
They don’t have to begin at a certain number. You can therefore declare a three-element array
that starts at 28, as in the following example:

var
A: Array[28..30] of Integer;

Because Object Pascal arrays aren’t guaranteed to begin at 0 or 1, you must use some care
when iterating over array elements in a for loop. The compiler provides built-in functions
called High() and Low(), which return the lower and upper bounds of an array variable or
type, respectively. Your code will be less error prone and easier to maintain if you use these
functions to control your for loop, as shown here:

var
A: array[28..30] of Integer;
i: Integer;

begin
for i := Low(A) to High(A) do // don’t hard-code for loop!
A[i] := i;

end;

Development Essentials

PART I
76

Always begin character arrays at 0. Zero-based character arrays can be passed to func-
tions that require PChar-type variables. This is a special-case allowance that the com-
piler provides.

TIP

To specify multiple dimensions, use a comma-delimited list of bounds:

var
// Two-dimensional array of Integer:
A: array[1..2, 1..2] of Integer;

04 chpt_02.qxd 11/19/01 12:15 PM Page 76

To access a multidimensional array, use commas to separate each dimension within one set of
brackets:

I := A[1, 2];

Dynamic Arrays
Dynamic arrays are dynamically allocated arrays in which the dimensions aren’t known at
compile time. To declare a dynamic array, just declare an array without including the dimen-
sions, like this:

var
// dynamic array of string:
SA: array of string;

Before you can use a dynamic array, you must use the SetLength() procedure to allocate
memory for the array:

begin
// allocate room for 33 elements:
SetLength(SA, 33);

Once memory has been allocated, you can access the elements of the dynamic array just like a
normal array:

SA[0] := ‘Pooh likes hunny’;
OtherString := SA[0];

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

77

Dynamic arrays are always zero-based.

NOTE

Dynamic arrays are lifetime managed, so there’s no need to free them when you’re through
using them because they’ll be released when they leave scope. However, there might come a
time when you want remove the dynamic array from memory before it leaves scope (if it uses
a lot of memory, for example) To do this, you need only assign the dynamic array to nil:

SA := nil; // releases SA

Dynamic arrays are manipulated using reference semantics similar to AnsiString types rather
than value semantics like a normal array. A quick test: What is the value of A1[0] at the end of
the following code fragment?

var
A1, A2: array of Integer;

04 chpt_02.qxd 11/19/01 12:15 PM Page 77

begin
SetLength(A1, 4);
A2 := A1;
A1[0] := 1;
A2[0] := 26;

The correct answer is 26. The reason is because the assignment A2 := A1 doesn’t create a new
array but instead provides A2 with a reference to the same array as A1. Therefore, any modifica-
tions to A2 will also affect A1. If you want instead to make a complete copy of A1 in A2, use the
Copy() standard procedure:

A2 := Copy(A1);

After this line of code is executed, A2 and A1 will be two separate arrays initially containing
the same data. Changes to one will not affect the other. You can optionally specify the starting
element and number of elements to be copied as parameters to Copy(), as shown here:

// copy 2 elements, starting at element one:
A2 := Copy(A1, 1, 2);

Dynamic arrays can also be multidimensional. To specify multiple dimensions, add an addi-
tional array of to the declaration for each dimension:

var
// two-dimensional dynamic array of Integer:
IA: array of array of Integer;

To allocate memory for a multidimensional dynamic array, pass the sizes of the other dimen-
sions as additional parameters to SetLength():

begin
// IA will be a 5 x 5 array of Integer
SetLength(IA, 5, 5);

You access multidimensional dynamic arrays the same way you do normal multidimensional
arrays; each element is separated by a comma with a single set of brackets:

IA[0,3] := 28;

Records
A user-defined structure is referred to as a record in Object Pascal, and it’s the equivalent of
C’s struct or Visual Basic’s Type. As an example, here’s a record definition in Pascal as well
as equivalent definitions in C and Visual Basic:

{ Pascal }
Type
MyRec = record
i: Integer;

Development Essentials

PART I
78

04 chpt_02.qxd 11/19/01 12:15 PM Page 78

d: Double;
end;

/* C */
typedef struct {
int i;
double d;

} MyRec;

‘Visual Basic
Type MyRec
i As Integer
d As Double

End Type

When working with a record, you use the dot symbol to access its fields. Here’s an example:

var
N: MyRec;

begin
N.i := 23;
N.d := 3.4;

end;

Object Pascal also supports variant records, which allow different pieces of data to overlay the
same portion of memory in the record. Not to be confused with the Variant data type, variant
records allow each overlapping data field to be accessed independently. If your background is
C, you’ll recognize variant records as being the same concept as a union within C struct. The
following code shows a variant record in which a Double, Integer, and char all occupy the
same memory space:

type
TVariantRecord = record
NullStrField: PChar;
IntField: Integer;
case Integer of
0: (D: Double);
1: (I: Integer);
2: (C: char);

end;

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

79

The rules of Object Pascal state that the variant portion of a record cannot be of any
lifetime-managed type.

NOTE

04 chpt_02.qxd 11/19/01 12:15 PM Page 79

Here’s the C equivalent of the preceding type declaration:

struct TUnionStruct
{
char * StrField;
int IntField;
union u
{
double D;
int i;
char c;

};
};

Sets
Sets are a uniquely Pascal type that have no equivalent in Visual Basic, C, or C++ (although
Borland C++Builder does implement a template class called Set, which emulates the behavior
of a Pascal set). Sets provide a very efficient means of representing a collection of ordinal,
character, or enumerated values. You can declare a new set type using the keywords set of
followed by an ordinal type or subrange of possible set values. Here’s an example:

type
TCharSet = set of char; // possible members: #0 - #255

TEnum = (Monday, Tuesday, Wednesday, Thursday, Friday);
TEnumSet = set of TEnum; // can contain any combination of TEnum members

TSubrangeSet = set of 1..10; // possible members: 1 - 10
TAlphaSet = set of ‘A’..’z’; // possible members: ‘A’ - ‘z’

Note that a set can only contain up to 256 elements. Additionally, only ordinal types can follow
the set of keywords. Therefore, the following declarations are illegal:

type
TIntSet = set of Integer; // Invalid: too many elements
TStrSet = set of string; // Invalid: not an ordinal type

Sets store their elements internally as individual bits, which makes them very efficient in terms
of speed and memory usage. Sets with fewer than 32 elements in the base type can be stored
and operated upon in CPU registers, for even greater efficiency. Sets with 32 or more elements
(such as a set of char–255 elements) are stored in memory. To get the maximum performance
benefit from sets, keep the number of elements in the set’s base type under 32.

Using Sets
Use square brackets when referencing set elements. The following code demonstrates how to
declare set type variables and assign them values:

Development Essentials

PART I
80

04 chpt_02.qxd 11/19/01 12:15 PM Page 80

type
TCharSet = set of char; // possible members: #0 - #255

TEnum = (Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday);
TEnumSet = set of TEnum; // can contain any combination of TEnum members

var
CharSet: TCharSet;
EnumSet: TEnumSet;
SubrangeSet: set of 1..10; // possible members: 1 - 10
AlphaSet: set of ‘A’..’z’; // possible members: ‘A’ - ‘z’

begin
CharSet := [‘A’..’J’, ‘a’, ‘m’];
EnumSet := [Saturday, Sunday];
SubrangeSet := [1, 2, 4..6];
AlphaSet := []; // Empty; no elements

end;

Set Operators
Object Pascal provides several operators for use in manipulating sets. You can use these opera-
tors to determine set membership, union, difference, and intersection.

Membership
Use the in operator to determine whether a given element is contained in a particular set. For
example, the following code would be used to determine whether the CharSet set mentioned
earlier contains the letter ‘S’:

if ‘S’ in CharSet then
// do something;

The following code determines whether EnumSet lacks the member Monday:

if not (Monday in EnumSet) then
// do something;

Union and Difference
Use the + and - operators or the Include() and Exclude() procedures to add and remove ele-
ments to and from a set variable:

Include(CharSet, ‘a’); // add ‘a’ to set
CharSet := CharSet + [‘b’]; // add ‘b’ to set
Exclude(CharSet, ‘x’); // remove ‘z’ from set
CharSet := CharSet - [‘y’, ‘z’]; // remove ‘y’ and ‘z’ from set

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

81

04 chpt_02.qxd 11/19/01 12:15 PM Page 81

Intersection
Use the * operator to calculate the intersection of two sets. The result of the expression Set1 *
Set2 is a set containing all the members that Set1 and Set2 have in common. For example, the
following code could be used as an efficient means for determining whether a given set con-
tains multiple elements:

if [‘a’, ‘b’, ‘c’] * CharSet = [‘a’, ‘b’, ‘c’] then
// do something

Objects
Think of objects as records that also contain functions and procedures. Delphi’s object model
is discussed in much greater detail later in the “Using Delphi Objects” section of this chapter,
so this section covers just the basic syntax of Object Pascal objects. An object is defined as
follows:

Type
TChildObject = class(TParentObject);
SomeVar: Integer;
procedure SomeProc;

end;

Although Delphi objects aren’t identical to C++ objects, this declaration is roughly equivalent
to the following C++ declaration:

class TChildObject : public TParentObject
{
int SomeVar;
void SomeProc();

};

Methods are defined in the same way as normal procedures and functions (which are discussed
in the section “Procedures and Functions”), with the addition of the object name and the dot
symbol operator:

procedure TChildObject.SomeProc;
begin
{ procedure code goes here }

end;

Development Essentials

PART I
82

When possible, use Include() and Exclude() to add and remove a single element to
and from a set rather than the + and - operators. Both Include() and Exclude() con-
stitute only one machine instruction each, whereas the + and - operators require 13 +
6n (where n is the size in bits of the set) instructions.

TIP

04 chpt_02.qxd 11/19/01 12:15 PM Page 82

Object Pascal’s . symbol is similar in functionality to Visual Basic’s . operator and C++’s ::
operator. You should note that, although all three languages allow usage of classes, only Object
Pascal and C++ allow the creation of new classes that behave in a fully object-oriented man-
ner, which we’ll describe in the section “Object-Oriented Programming.”

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

83

Object Pascal objects aren’t laid out in memory the same as C++ objects, so it’s not
possible to use C++ objects directly from Delphi (and vice versa). If you are interested
in learning more about how this is done, you might want to browse Chapter 13,
“Hard-core Techniques,” in the electronic version of Delphi 5 Developer’s Guide on
the CD accompanying this book. That chapter shows a technique for sharing objects
between C++ and Delphi.

An exception to this is Borland C++Builder’s capability of creating classes that map
directly to Object Pascal classes using the proprietary __declspec(delphiclass) direc-
tive. Such objects are likewise incompatible with regular C++ objects.

NOTE

Pointers
A pointer is a variable that contains a memory location. You already saw an example of a
pointer in the PChar type earlier in this chapter. Pascal’s generic pointer type is called, aptly,
Pointer. A Pointer is sometimes called an untyped pointer because it contains only a memory
address, and the compiler doesn’t maintain any information on the data to which it points. That
notion, however, goes against the grain of Pascal’s typesafe nature, so pointers in your code
will usually be typed pointers.

Pointers are a somewhat advanced topic, and you definitely don’t need to master
them to write a Delphi application. As you become more experienced, pointers will
become another valuable tool for your programmer’s toolbox.

NOTE

Typed pointers are declared by using the ^ (or pointer) operator in the Type section of your
program. Typed pointers help the compiler keep track of exactly what kind of type a particular
pointer points to, thus enabling the compiler to keep track of what you’re doing (and can do)
with a pointer variable. Here are some typical declarations for pointers:

Type
PInt = ^Integer; // PInt is now a pointer to an Integer

04 chpt_02.qxd 11/19/01 12:15 PM Page 83

Foo = record // A record type
GobbledyGook: string;
Snarf: Real;

end;
PFoo = ^Foo; // PFoo is a pointer to a foo type

var
P: Pointer; // Untyped pointer
P2: PFoo; // Instance of PFoo

Development Essentials

PART I
84

C programmers will notice the similarity between Object Pascal’s ^ operator and C’s *
operator. Pascal’s Pointer type corresponds to C’s void * type.

NOTE

Remember that a pointer variable only stores a memory address. Allocating space for whatever
the pointer points to is your job as a programmer. You can allocate space for a pointer by using
one of the memory-allocation routines discussed earlier and shown in Table 2.6.

When a pointer doesn’t point to anything (its value is zero), its value is said to be nil,
and it is often called a nil or null pointer.

NOTE

If you want to access the data that a particular pointer points to, follow the pointer variable
name with the ^ operator. This method is known as dereferencing the pointer. The following
code illustrates working with pointers:

Program PtrTest;

Type
MyRec = record
I: Integer;
S: string;
R: Real;

end;
PMyRec = ^MyRec;

var
Rec : PMyRec;

begin
New(Rec); // allocate memory for Rec
Rec^.I := 10; // Put stuff in Rec. Note the dereference
Rec^.S := ‘And now for something completely different.’;

04 chpt_02.qxd 11/19/01 12:15 PM Page 84

Rec^.R := 6.384;
{ Rec is now full }
Dispose(Rec); // Don’t forget to free memory!

end.

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

85

When to Use New()
Use the New() function to allocate memory for a pointer to a structure of a known
size. Because the compiler knows how big a particular structure is, a call to New() will
cause the correct number of bytes to be allocated, thus making it safer and more con-
venient to use than GetMem() or AllocMem(). Never allocate Pointer or PChar vari-
ables by using the New() function because the compiler cannot guess how many bytes
you need for this allocation. Remember to use Dispose() to free any memory you
allocate using the New() function.

You’ll typically use GetMem() or AllocMem() to allocate memory for structures for
which the compiler cannot know the size. The compiler cannot tell ahead of time
how much memory you want to allocate for PChar or Pointer types, for example,
because of their variable-length nature. Be careful not to try to manipulate more
data than you have allocated with these functions, however, because this is one of
the classic causes of an Access Violation error. You should use FreeMem() to clean up
any memory you allocate with GetMem() or AllocMem(). AllocMem(), by the way, is a
bit safer than GetMem() because AllocMem() always initializes the memory it allocates
to zero.

One aspect of Object Pascal that might give C programmers some headaches is the strict type
checking performed on pointer types. For example, the variables a and b in the following
example aren’t type compatible:

var
a: ^Integer;
b: ^Integer;

By contrast, the variables a and b in the equivalent declaration in C are type compatible:

int *a;
int *b

Object Pascal creates a unique type for each pointer-to-type declaration, so you must create a
named type if you want to assign values from a to b, as shown here:

type
PtrInteger = ^Integer; // create named type

var
a, b: PtrInteger; // now a and b are compatible

04 chpt_02.qxd 11/19/01 12:15 PM Page 85

Type Aliases
Object Pascal has the capability to create new names, or aliases, for types that are already
defined. For example, if you want to create a new name for an Integer called
MyReallyNiftyInteger, you could do so using the following code:

type
MyReallyNiftyInteger = Integer;

The newly defined type alias is compatible in all ways with the type for which it’s an alias,
meaning, in this case, that you could use MyReallyNiftyInteger anywhere in which you could
use Integer.

It’s possible, however, to define strongly typed aliases that are considered new, unique types by
the compiler. To do this, use the type reserved word in the following manner:

type
MyOtherNeatInteger = type Integer;

Using this syntax, the MyOtherNeatInteger type will be converted to an Integer when neces-
sary for purposes of assignment, but MyOtherNeatInteger will not be compatible with Integer
when used in var and out parameters. Therefore, the following code is syntactically correct:

var
MONI: MyOtherNeatInteger;
I: Integer;

begin
I := 1;
MONI := I;

On the other hand, the following code will not compile:

procedure Goon(var Value: Integer);
begin
// some code

end;

var
M: MyOtherNeatInteger;

begin
M := 29;
Goon(M); // Error: M is not var compatible with Integer

In addition to these compiler-enforced type compatibility issues, the compiler also generates
runtime type information for strongly typed aliases. This enables you to create unique property
editors for simple types, as you’ll learn in Chapter 12, “Advanced VCL Component Building.”

Development Essentials

PART I
86

04 chpt_02.qxd 11/19/01 12:15 PM Page 86

Typecasting and Type Conversion
Typecasting is a technique by which you can force the compiler to view a variable of one type
as another type. Because of Pascal’s strongly typed nature, you’ll find that the compiler is very
picky about types matching up in the formal and actual parameters of a function call. Hence,
you occasionally will be required to cast a variable of one type to a variable of another type to
make the compiler happy. Suppose, for example, that you need to assign the value of a charac-
ter to a byte variable:

var
c: char;
b: byte;

begin
c := ‘s’;
b := c; // compiler complains on this line

end.

In the following syntax, a typecast is required to convert c into a byte. In effect, a typecast
tells the compiler that you really know what you’re doing and want to convert one type to
another:

var
c: char;
b: byte;

begin
c := ‘s’;
b := byte(c); // compiler happy as a clam on this line

end.

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

87

You can typecast a variable of one type to another type only if the data size of the
two variables is the same. For example, you cannot typecast a Double as an Integer.
To convert a floating-point type to an integer, use the Trunc() or Round() functions.
To convert an integer into a floating-point value, use the assignment operator:
FloatVar := IntVar.

NOTE

Object Pascal also supports a special variety of typecasting between objects using the as opera-
tor, which is described later in the “Runtime Type Information” section of this chapter.

04 chpt_02.qxd 11/19/01 12:15 PM Page 87

String Resources
Delphi 3 introduced the capability to place string resources directly into Object Pascal source
code using the resourcestring clause. String resources are literal strings (usually those dis-
played to the user) that are physically located in a resource attached to the application or
library rather than embedded in the source code. Your source code references the string
resources in place of string literals. By separating strings from source code, your application
can be translated more easily by added string resources in a different language. String
resources are declared in the form of identifier = string literal in the resourcestring
clause, as shown here:

resourcestring
ResString1 = ‘Resource string 1’;
ResString2 = ‘Resource string 2’;
ResString3 = ‘Resource string 3’;

Syntactically, resource strings can be used in your source code in a manner identical to string
constants:

resourcestring
ResString1 = ‘hello’;
ResString2 = ‘world’;

var
String1: string;

begin
String1 := ResString1 + ‘ ‘ + ResString2;
.
.
.

end;

Testing Conditions
This section compares if and case constructs in Pascal to similar constructs in C and Visual
Basic. We assume that you’ve used these types of programmatic constructs before, so we don’t
spend time explaining them to you.

The if Statement
An if statement enables you to determine whether certain conditions are met before executing
a particular block of code. As an example, here’s an if statement in Pascal, followed by equiv-
alent definitions in C and Visual Basic:

Development Essentials

PART I
88

04 chpt_02.qxd 11/19/01 12:15 PM Page 88

{ Pascal }
if x = 4 then y := x;

/* C */
if (x == 4) y = x;

‘Visual Basic
If x = 4 Then y = x

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

89

If you have an if statement that makes multiple comparisons, make sure that you
enclose each set of comparisons in parentheses for code clarity. Do this:

if (x = 7) and (y = 8) then

However, don’t do this (it causes the compiler displeasure):

if x = 7 and y = 8 then

NOTE

Use the begin and end keywords in Pascal almost as you would use { and } in C and C++. For
example, use the following construct if you want to execute multiple lines of text when a given
condition is true:

if x = 6 then begin
DoSomething;
DoSomethingElse;
DoAnotherThing;

end;

You can combine multiple conditions using the if..else construct:

if x =100 then
SomeFunction

else if x = 200 then
SomeOtherFunction

else begin
SomethingElse;
Entirely;

end;

Using case Statements
The case statement in Pascal works in much the same way as a switch statement in C and C++.
A case statement provides a means for choosing one condition among many possibilities with-
out a huge if..else if..else if construct. Here’s an example of Pascal’s case statement:

case SomeIntegerVariable of
101 : DoSomething;

04 chpt_02.qxd 11/19/01 12:15 PM Page 89

202 : begin
DoSomething;
DoSomethingElse;

end;
303 : DoAnotherThing;
else DoTheDefault;

end;

Development Essentials

PART I
90

The selector type of a case statement must be an ordinal type. It’s illegal to use
nonordinal types, such as strings, as case selectors.

NOTE

Here’s the C switch statement equivalent to the preceding example:

switch (SomeIntegerVariable)
{
case 101: DoSomeThing(); break;
case 202: DoSomething();

DoSomethingElse(); break
case 303: DoAnotherThing(); break;
default: DoTheDefault();

}

Loops
A loop is a construct that enables you to repeatedly perform some type of action. Pascal’s loop
constructs are very similar to what you should be familiar with from your experience with
other languages, so we don’t spend any time teaching you about loops. This section describes
the various loop constructs you can use in Pascal.

The for Loop
A for loop is ideal when you need to repeat an action a predetermined number of times.
Here’s an example, albeit not a very useful one, of a for loop that adds the loop index to a
variable 10 times:

var
I, X: Integer;

begin
X := 0;
for I := 1 to 10 do
inc(X, I);

end.

04 chpt_02.qxd 11/19/01 12:15 PM Page 90

The C equivalent of the preceding example is as follows:

void main(void) {
int x, i;
x = 0;
for(i=1; i<=10; i++)
x += i;

}

Here’s the Visual Basic equivalent of the same concept:

X = 0
For I = 1 to 10
X = X + I

Next I

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

91

A caveat to those familiar with Delphi 1: Assignments to the loop control variable are
no longer allowed due to the way the loop is optimized and managed by the 32-bit
compiler.

CAUTION

The while Loop
Use a while loop construct when you want some part of your code to repeat itself while some
condition is true. A while loop’s conditions are tested before the loop is executed, and a classic
example for the use of a while loop is to repeatedly perform some action on a file as long as
the end of the file isn’t encountered. Here’s an example demonstrating a loop that reads one
line at a time from a file and writes it to the screen:

Program FileIt;

{$APPTYPE CONSOLE}

var
f: TextFile; // a text file
s: string;

begin
AssignFile(f, ‘foo.txt’);
Reset(f);
while not EOF(f) do begin
readln(f, S);
writeln(S);

end;
CloseFile(f);

end.

04 chpt_02.qxd 11/19/01 12:15 PM Page 91

Pascal’s while loop works basically the same as C’s while loop or Visual Basic’s Do While
loop.

repeat..until
The repeat..until loop addresses the same type of problem as a while loop but from a dif-
ferent angle. It repeats a given block of code until a certain condition becomes True. Unlike a
while loop, the loop code is always executed at least once because the condition is tested at the
end of the loop. Pascal’s repeat..until is roughly equivalent to C’s do..while loop.

For example, the following code snippet repeats a statement that increments a counter until the
value of the counter becomes greater than 100:

var
x: Integer;

begin
X := 1;
repeat
inc(x);

until x > 100;
end.

The Break() Procedure
Calling Break() from inside a while, for, or repeat loop causes the flow of your program to
skip immediately to the end of the currently executing loop. This method is useful when you
need to leave the loop immediately because of some circumstance that might arise within the
loop. Pascal’s Break() procedure is analogous to C’s break and Visual Basic’s Exit statement.
The following loop uses Break() to terminate the loop after five iterations:

var
i: Integer;

begin
for i := 1 to 1000000 do
begin
MessageBeep(0); // make the computer beep
if i = 5 then Break;

end;
end;

The Continue() Procedure
Call Continue() inside a loop when you want to skip over a portion of code and the flow of
control to continue with the next iteration of the loop. Note in the following example that the
code after Continue() isn’t executed in the first iteration of the loop:

Development Essentials

PART I
92

04 chpt_02.qxd 11/19/01 12:15 PM Page 92

var
i: Integer;

begin
for i := 1 to 3 do
begin
writeln(i, ‘. Before continue’);
if i = 1 then Continue;
writeln(i, ‘. After continue’);

end;
end;

Procedures and Functions
As a programmer, you should already be familiar with the basics of procedures and functions.
A procedure is a discrete program part that performs some particular task when it’s called and
then returns to the calling part of your code. A function works the same except that a function
returns a value after its exit to the calling part of the program.

If you’re familiar with C or C++, consider that a Pascal procedure is equivalent to a C or C++
function that returns void, whereas a function corresponds to a C or C++ function that has a
return value.

Listing 2.1 demonstrates a short Pascal program with a procedure and a function.

LISTING 2.1 An Example of Functions and Procedures

Program FuncProc;

{$APPTYPE CONSOLE}

procedure BiggerThanTen(i: Integer);
{ writes something to the screen if I is greater than 10 }
begin
if I > 10 then
writeln(‘Funky.’);

end;

function IsPositive(I: Integer): Boolean;
{ Returns True if I is 0 or positive, False if I is negative }
begin
if I < 0 then
Result := False

else
Result := True;

end;

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

93

04 chpt_02.qxd 11/19/01 12:15 PM Page 93

LISTING 2.1 Continued

var
Num: Integer;

begin
Num := 23;
BiggerThanTen(Num);
if IsPositive(Num) then
writeln(Num, ‘Is positive.’)

else
writeln(Num, ‘Is negative.’);

end.

Development Essentials

PART I
94

The local variable Result in the IsPositive() function deserves special attention.
Every Object Pascal function has an implicit local variable called Result that contains
the return value of the function. Note that unlike C and C++, the function doesn’t
terminate as soon as a value is assigned to Result.

You also can return a value from a function by assigning the name of a function to a
value inside the function’s code. This is standard Pascal syntax and a holdover from
previous versions of Borland Pascal. If you choose to use the function name within
the body, be careful to note that there is a huge difference between using the func-
tion name on the left side of an assignment operator and using it somewhere else in
your code. If on the left, you are assigning the function return value. If somewhere
else in your code, you are calling the function recursively!

Note that the implicit Result variable isn’t allowed when the compiler’s Extended
Syntax option is disabled in the Project, Options, Compiler dialog box or when you’re
using the {$X-} directive.

NOTE

Passing Parameters
Pascal enables you to pass parameters by value or by reference to functions and procedures.
The parameters you pass can be of any base or user-defined type or an open array (open arrays
are discussed later in this chapter). Parameters also can be constant if their values will not
change in the procedure or function.

Value Parameters
Value parameters are the default mode of parameter passing. When a parameter is passed by
value, it means that a local copy of that variable is created, and the function or procedure oper-
ates on the copy. Consider the following example:

procedure Foo(s: string);

04 chpt_02.qxd 11/19/01 12:15 PM Page 94

When you call a procedure in this way, a copy of string s will be made, and Foo() will operate
on the local copy of s. This means that you can choose the value of s without having any
effect on the variable passed into Foo().

Reference Parameters
Pascal enables you to pass variables to functions and procedures by reference; parameters
passed by reference are also called variable parameters. Passing by reference means that the
function or procedure receiving the variable can modify the value of that variable. To pass a
variable by reference, use the keyword var in the procedure’s or function’s parameter list:

procedure ChangeMe(var x: longint);
begin
x := 2; { x is now changed in the calling procedure }

end;

Instead of making a copy of x, the var keyword causes the address of the parameter to be
copied so that its value can be directly modified.

Using var parameters is equivalent to passing variables by reference in C++ using the & opera-
tor. Like C++’s & operator, the var keyword causes the address of the variable to be passed to
the function or procedure rather than the value of the variable.

Constant Parameters
If you don’t want the value of a parameter passed into a function to change, you can declare it
with the const keyword. The const keyword not only prevents you from modifying the value
of the parameters, but it also generates more optimal code for strings and records passed into
the procedure or function. Here’s an example of a procedure declaration that receives a con-
stant string parameter:

procedure Goon(const s: string);

Open Array Parameters
Open array parameters provide you with the capability for passing a variable number of argu-
ments to functions and procedures. You can either pass open arrays of some homogenous type
or constant arrays of differing types. The following code declares a function that accepts an
open array of integers:

function AddEmUp(A: array of Integer): Integer;

You can pass variables, constants, or constant expressions to open array functions and proce-
dures. The following code demonstrates this by calling AddEmUp() and passing a variety of dif-
ferent elements:

var
i, Rez: Integer;

const

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

95

04 chpt_02.qxd 11/19/01 12:15 PM Page 95

j = 23;
begin
i := 8;
Rez := AddEmUp([i, 50, j, 89]);

In order to work with an open array inside the function or procedure, you can use the High(),
Low(), and SizeOf() functions in order to obtain information about the array. To illustrate this,
the following code shows an implementation of the AddEmUp() function that returns the sum of
all the numbers passed in A:

function AddEmUp(A: array of Integer): Integer;
var
i: Integer;

begin
Result := 0;
for i := Low(A) to High(A) do
inc(Result, A[i]);

end;

Object Pascal also supports an array of const, which allows you to pass heterogeneous data
types in an array to a function or procedure. The syntax for defining a function or procedure
that accepts an array of const is as follows:

procedure WhatHaveIGot(A: array of const);

You could call the preceding function with the following syntax:

WhatHaveIGot([‘Tabasco’, 90, 5.6, @WhatHaveIGot, 3.14159, True, ‘s’]);

The compiler implicitly converts all parameters to type TVarRec when they are passed to the
function or procedure accepting the array of const. TVarRec is defined in the System unit as
follows:

type
PVarRec = ^TVarRec;
TVarRec = record
case Byte of
vtInteger: (VInteger: Integer; VType: Byte);
vtBoolean: (VBoolean: Boolean);
vtChar: (VChar: Char);
vtExtended: (VExtended: PExtended);
vtString: (VString: PShortString);
vtPointer: (VPointer: Pointer);
vtPChar: (VPChar: PChar);
vtObject: (VObject: TObject);
vtClass: (VClass: TClass);
vtWideChar: (VWideChar: WideChar);

Development Essentials

PART I
96

04 chpt_02.qxd 11/19/01 12:15 PM Page 96

vtPWideChar: (VPWideChar: PWideChar);
vtAnsiString: (VAnsiString: Pointer);
vtCurrency: (VCurrency: PCurrency);
vtVariant: (VVariant: PVariant);
vtInterface: (VInterface: Pointer);
vtWideString: (VWideString: Pointer);
vtInt64: (VInt64: PInt64);

end;

The VType field indicates what type of data the TVarRec contains. This field can have any one
of the following values:

const
{ TVarRec.VType values }
vtInteger = 0;
vtBoolean = 1;
vtChar = 2;
vtExtended = 3;
vtString = 4;
vtPointer = 5;
vtPChar = 6;
vtObject = 7;
vtClass = 8;
vtWideChar = 9;
vtPWideChar = 10;
vtAnsiString = 11;
vtCurrency = 12;
vtVariant = 13;
vtInterface = 14;
vtWideString = 15;
vtInt64 = 16;

As you might guess, because array of const in the code allows you to pass parameters
regardless of their type, they can be difficult to work with on the receiving end. As an example
of how to work with array of const, the following implementation for WhatHaveIGot() iter-
ates through the array and shows a message to the user indicating what type of data was passed
in which index:

procedure WhatHaveIGot(A: array of const);
var
i: Integer;
TypeStr: string;

begin
for i := Low(A) to High(A) do
begin
case A[i].VType of

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

97

04 chpt_02.qxd 11/19/01 12:15 PM Page 97

vtInteger : TypeStr := ‘Integer’;
vtBoolean : TypeStr := ‘Boolean’;
vtChar : TypeStr := ‘Char’;
vtExtended : TypeStr := ‘Extended’;
vtString : TypeStr := ‘String’;
vtPointer : TypeStr := ‘Pointer’;
vtPChar : TypeStr := ‘PChar’;
vtObject : TypeStr := ‘Object’;
vtClass : TypeStr := ‘Class’;
vtWideChar : TypeStr := ‘WideChar’;
vtPWideChar : TypeStr := ‘PWideChar’;
vtAnsiString : TypeStr := ‘AnsiString’;
vtCurrency : TypeStr := ‘Currency’;
vtVariant : TypeStr := ‘Variant’;
vtInterface : TypeStr := ‘Interface’;
vtWideString : TypeStr := ‘WideString’;
vtInt64 : TypeStr := ‘Int64’;

end;
ShowMessage(Format(‘Array item %d is a %s’, [i, TypeStr]));

end;
end;

Scope
Scope refers to some part of your program in which a given function or variable is known to
the compiler. A global constant is in scope at all points in your program, for example, whereas
a variable local to some procedure only has scope within that procedure. Consider Listing 2.2.

LISTING 2.2 An Illustration of Scope

program Foo;

{$APPTYPE CONSOLE}

const
SomeConstant = 100;

var
SomeGlobal: Integer;
R: Real;

procedure SomeProc(var R: Real);
var
LocalReal: Real;

begin

Development Essentials

PART I
98

04 chpt_02.qxd 11/19/01 12:15 PM Page 98

LISTING 2.2 Continued

LocalReal := 10.0;
R := R - LocalReal;

end;

begin
SomeGlobal := SomeConstant;
R := 4.593;
SomeProc(R);

end.

SomeConstant, SomeGlobal, and R have global scope—their values are known to the compiler
at all points within the program. Procedure SomeProc() has two variables in which the scope is
local to that procedure: R and LocalReal. If you try to access LocalReal outside of SomeProc(),
the compiler displays an unknown identifier error. If you access R within SomeProc(), you’ll
be referring to the local version, but if you access R outside that procedure, you’ll be referring
to the global version.

Units
Units are the individual source code modules that make up a Pascal program. A unit is a place
for you to group functions and procedures that can be called from your main program. To be a
unit, a source module must consist of at least three parts:

• A unit statement—Every unit must have as its first line a statement saying that it’s a
unit and identifying the unit name. The name of the unit must always match the file-
name. For example, if you have a file named FooBar, the statement would be

unit FooBar;

• The interface part—After the unit statement, a unit’s next functional line of code
should be the interface statement. Everything following this statement, up to the
implementation statement, is information that can be shared with your program and
with other units. The interface part of a unit is where you declare the types, constants,
variables, procedures, and functions that you want to make available to your main pro-
gram and to other units. Only declarations—never procedure bodies—can appear in the
interface. The interface statement should be one word on one line:

interface

• The implementation part—This follows the interface part of the unit. Although the
implementation part of the unit contains primarily procedures and functions, it’s also
where you declare any types, constants, and variables that you don’t want to make avail-
able outside of this unit. The implementation part is where you define any functions or

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

99

04 chpt_02.qxd 11/19/01 12:15 PM Page 99

procedures that you declared in the interface part. The implementation statement
should be one word on one line:

implementation

Optionally, a unit can also include two other parts:

• An initialization part—This portion of the unit, which is located near the end of the
file, contains any initialization code for the unit. This code will be executed before
the main program begins execution, and it executes only once.

• A finalization part—This portion of the unit, which is located in between the
initialization and end. of the unit, contains any cleanup code that executes
when the program terminates. The finalization section was introduced to the language
in Delphi 2.0. In Delphi 1.0, unit finalization was accomplished by adding a new exit
procedure using the AddExitProc() function. If you’re porting an application from
Delphi 1.0, you should move your exit procedures into the finalization part of your units.

Development Essentials

PART I
100

When several units have initialization/finalization code, execution of each sec-
tion proceeds in the order in which the units are encountered by the compiler (the
first unit in the program’s uses clause, then the first unit in that unit’s uses clause,
and so on). Also, it’s a bad idea to write initialization and finalization code that relies
on such ordering because one small change to the uses clause can cause some
difficult-to-find bugs!

NOTE

The uses Clause
The uses clause is where you list the units that you want to include in a particular program or
unit. For example, if you have a program called FooProg that uses functions and types in two
units, UnitA and UnitB, the proper uses declaration is as follows:

Program FooProg;

uses UnitA, UnitB;

Units can have two uses clauses: one in the interface section and one in the implementation
section.

Here’s code for a sample unit:

Unit FooBar;

interface

04 chpt_02.qxd 11/19/01 12:15 PM Page 100

uses BarFoo;

{ public declarations here }

implementation

uses BarFly;

{ private declarations here }

initialization
{ unit initialization here }

finalization
{ unit clean-up here }

end.

Circular Unit References
Occasionally, you’ll have a situation where UnitA uses UnitB and UnitB uses UnitA. This is
called a circular unit reference. The occurrence of a circular unit reference is often an indica-
tion of a design flaw in your application; you should avoid structuring your program with a cir-
cular reference. The optimal solution is often to move a piece of data that both UnitA and
UnitB need to use out to a third unit. However, as with most things, sometimes you just can’t
avoid the circular unit reference. In such a case, move one of the uses clauses to the imple-
mentation part of your unit and leave the other one in the interface part. This usually solves
the problem.

Packages
Delphi packages enable you to place portions of your application into separate modules, which
can be shared across multiple applications. If you already have an existing investment in
Delphi 1 or 2 code, you’ll appreciate that you can take advantage of packages without any
changes to your existing source code.

Think of a package as a collection of units stored in a separate DLL-like module (a Borland
Package Library, or BPL file). Your application can then link with these “packaged” units at
runtime rather than compile/link time. Because the code for these units resides in the BPL file
rather than in your EXE or DLL, the size of your EXE or DLL can become very small. Four
types of packages are available for you to create and use:

• Runtime package—This type of package contains units required at runtime by your
application. When compiled to depend on a particular runtime package, your application
will not run in the absence of that package. Delphi’s VCL60.BPL is an example of this
type of package.

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

101

04 chpt_02.qxd 11/19/01 12:15 PM Page 101

• Design package—This type of package contains elements necessary for application
design such as components, property and component editors, and experts. It can be
installed into Delphi’s component library using the Component, Install Package menu
item. Delphi’s DCL*.BPL packages are examples of this type of package. This type of
package is described in more detail in Chapter 11, “VCL Component Building.”

• Runtime and Design package—This package serves both of the purposes listed in the
first two items. Creating this type of package makes application development and distrib-
ution a bit simpler, but this type of package is less efficient because it must carry the
baggage of design support even in your distributed applications.

• Neither runtime nor design package—This rare breed of package is intended to be used
only by other packages and is not intended to be referenced directly by an application or
used in the design environment.

Using Delphi Packages
Package-enabling your Delphi applications is easy. Simply check the Build with Runtime
Packages check box in the Project, Options, Packages dialog box. The next time you build
your application after selecting this option, your application will be linked dynamically to run-
time packages rather than having units linked statically into your EXE or DLL. The result will
be a much more svelte application (although bear in mind that you’ll have to deploy the neces-
sary packages with your application).

Package Syntax
Packages are most commonly created using the Package Editor, which you invoke by choosing
the File, New, Package menu item. This editor generates a Delphi Package Source (DPK) file,
which will be compiled into a package. The syntax for this DPK file is quite simple, and it
uses the following format:

package PackageName

requires Package1, Package2, ...;

contains
Unit1 in ‘Unit1.pas’,
Unit2, in ‘Unit2.pas’,
...;

end.

Development Essentials

PART I
102

04 chpt_02.qxd 11/19/01 12:15 PM Page 102

Packages listed in the requires clause are required in order for this package to load. Typically,
packages containing units used by units listed in the contains clause are listed here. Units
listed in the contains clause will be compiled into this package. Note that units listed here
must not also be listed in the contains clause of any of the packages listed in the requires
clause. Note also that any units used by units in the contains clause will be implicitly pulled
into this package (unless they’re contained in a required package).

Object-Oriented Programming
Volumes have been written on the subject of object-oriented programming (OOP). Often, OOP
seems more like a religion than a programming methodology, spawning arguments about its
merits (or lack thereof) that are passionate and spirited enough to make the Crusades look like
a slight disagreement. We’re not orthodox OOPists, and we’re not going to get involved in the
relative merits of OOP; we just want to give you the lowdown on a fundamental principle on
which Delphi’s Object Pascal Language is based.

OOP is a programming paradigm that uses discrete objects—containing both data and code—
as application building blocks. Although the OOP paradigm doesn’t necessarily lend itself to
easier-to-write code, the result of using OOP traditionally has been easy-to-maintain code.
Having objects’ data and code together simplifies the process of hunting down bugs, fixing
them with minimal effect on other objects, and improving your program one part at a time.
Traditionally, an OOP language contains implementations of at least three OOP concepts:

• Encapsulation—Deals with combining related data fields and hiding the implementation
details. The advantages of encapsulation include modularity and isolation of code from
other code.

• Inheritance—The capability to create new objects that maintain the properties and behav-
ior of ancestor objects. This concept enables you to create object hierarchies such as
VCL—first creating generic objects and then creating more specific descendants of those
objects that have more narrow functionality.

The advantage of inheritance is the sharing of common code. Figure 2.4 presents an
example of inheritance—how one root object, fruit, is the ancestor object of all fruits,
including the melon. The melon is ancestor of all melons, including the watermelon. You
get the picture.

• Polymorphism—Literally, polymorphism means “many shapes.” Calls to methods of an
object variable will call code appropriate to whatever instance is actually in the variable.

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

103

04 chpt_02.qxd 11/19/01 12:15 PM Page 103

FIGURE 2.4
An illustration of inheritance.

Development Essentials

PART I
104

Fruit

Apples Bananas

Red Green

Red
Delicious Pippin

Watermelon Honeydew

Melons

A Note on Multiple Inheritance
Object Pascal doesn’t support multiple inheritance of objects as C++ does. Multiple
inheritance is the concept of a given object being derived from two separate objects,
creating an object that contains all the code and data of the two parent objects.

To expand on the analogy presented in Figure 2.4, multiple inheritance enables you
to create a candy apple object by creating a new object that inherits from the apple
class and some other class called “candy.” Although this functionality seems useful, it
often introduces more problems and inefficiencies into your code than it solves.

Object Pascal provides two approaches to solving this problem. The first solution is to
make one class contain the other class. You’ll see this solution throughout Delphi’s
VCL. To build upon the candy apple analogy, you would make the candy object a
member of the apple object. The second solution is to use interfaces (you’ll learn
more about interfaces in the section “Interfaces”). Using interfaces, you could essen-
tially have one object that supports both a candy and an apple interface.

You should understand the following three terms before you continue to explore the concept of
objects:

• Field—Also called field definitions or instance variables, fields are data variables con-
tained within objects. A field in an object is just like a field in a Pascal record. In C++,
fields sometimes are referred to as data members.

• Method—The name for procedures and functions belonging to an object. Methods are
called member functions in C++.

• Property—An entity that acts as an accessor to the data and code contained within an
object. Properties insulate the end user from the implementation details of an object.

04 chpt_02.qxd 11/19/01 12:15 PM Page 104

Object-Based Versus Object-Oriented Programming
In some tools, you manipulate entities (objects), but you cannot create your own objects. VBX
and ActiveX controls in older versions of Visual Basic are a good example of this. Although
you could use these controls in your applications, you couldn’t create one, and you couldn’t
inherit one ActiveX control from another. Environments such as these often are called object-
based environments.

Delphi is a fully object-oriented environment. This means that you can create new objects in
Delphi either from scratch or based on existing components. This includes all Delphi objects,
be they visual, nonvisual, or even design-time forms.

Using Delphi Objects
As mentioned earlier, objects (also called classes) are entities that can contain both data and
code. Delphi objects also provide you with all the power of object-oriented programming in
offering full support of inheritance, encapsulation, and polymorphism.

Declaration and Instantiation
Of course, before using an object, you must have declared an object using the class keyword.
As described earlier in this chapter, objects are declared in the type section of a unit or
program:

type
TFooObject = class;

In addition to an object type, you usually also will have a variable of that class type, or
instance, declared in the var section:

var
FooObject: TFooObject;

You create an instance of an object in Object Pascal by calling one of its constructors. A con-
structor is responsible for creating an instance of your object and allocating any memory or

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

105

It’s generally considered bad OOP style to access an object’s fields directly. This is
because the implementation details of the object may change. Instead, use accessor
properties, which allow a standard object interface without becoming embroiled in
the details of how the objects are implemented. Properties are explained in the
“Properties” section later in this chapter.

NOTE

04 chpt_02.qxd 11/19/01 12:15 PM Page 105

initializing any fields necessary so that the object is in a usable state upon exiting the construc-
tor. Object Pascal objects always have at least one constructor called Create()—although it’s
possible for an object to have more than one constructor. Depending on the type of object,
Create() can take different numbers of parameters. This chapter focuses on the simple case in
which Create() takes no parameters.

Unlike C++, object constructors in Object Pascal aren’t called automatically, and it’s incum-
bent on the programmer to call the object constructor. The syntax for calling a constructor is as
follows:

FooObject := TFooObject.Create;

Notice that the syntax for a constructor call is a bit unique. You’re referencing the Create()
method of the object by the type rather than the instance, as you would with other methods.
This might seem odd at first, but it does make sense. FooObject, a variable, is undefined at the
time of the call, but the code for TFooObject, a type, is static in memory. A static call to its
Create() method is therefore totally valid.

The act of calling a constructor to create an instance of an object is often called instantiation.

Development Essentials

PART I
106

When an object instance is created using the constructor, the compiler will ensure
that every field in your object is initialized. You can safely assume that all numbers
will be initialized to 0, all pointers to nil, and all strings will be empty.

NOTE

Destruction
When you’re finished using an object, you should deallocate the instance by calling its Free()
method. The Free() method first checks to ensure that the object instance is not nil; then it
calls the object’s destructor method, Destroy(). The destructor, of course, does the opposite of
the constructor; it deallocates any allocated memory and performs any other housekeeping
required in order for the object to be properly removed from memory. The syntax is simple:

FooObject.Free;

Unlike the call to Create(), the object instance is used in the call to the Free() method.
Remember never to call Destroy() directly but instead to call the safer Free() method.

04 chpt_02.qxd 11/19/01 12:15 PM Page 106

You might be asking yourself how all these methods got into your little object. You certainly
didn’t declare them yourself, right? Right. The methods just discussed actually come from the
Object Pascal’s base TObject object. In Object Pascal, all objects are always descendants of
TObject regardless of whether they’re declared as such. Therefore, the declaration

Type TFoo = Class;

is equivalent to the declaration

Type TFoo = Class(TObject);

Methods
Methods are procedures and functions belonging to a given object: They give an object behav-
ior rather than just data. Two important methods of the objects you create are the constructor
and the destructor methods, which we just covered. You can also create custom methods in
your objects to perform a variety of tasks.

Creating a method is a two-step process. You first must declare the method in the object type
declaration, and then you must define the method in the code. The following code demon-
strates the process of declaring and defining a method:

type
TBoogieNights = class
Dance: Boolean;
procedure DoTheHustle;

end;

procedure TBoogieNights.DoTheHustle;
begin
Dance := True;

end;

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

107

In C++, the destructor of an object declared statically is called automatically when
your object leaves scope, but you must manually cause the destructor to be called for
any dynamically allocated objects using the delete keyword. The rule is the same in
Object Pascal, except that all objects are implicitly dynamic in Object Pascal, so you
must follow the rule of thumb that anything you create, you must free. There are,
however, a couple of important exceptions to this rule: The first is when your object is
owned by other objects, it will be freed for you. The second is reference counted
objects (such as those descending from TInterfacedObject or TComObject), which are
destroyed when the last reference is released.

CAUTION

04 chpt_02.qxd 11/19/01 12:15 PM Page 107

Note that when defining the method body, you have to use the fully qualified name, as you did
when defining the DoTheHustle method. It’s important also to note that the object’s Dance field
can be accessed directly from within the method.

Method Types
Object methods can be declared, as static, virtual, dynamic, or message. Consider the fol-
lowing example object:

TFoo = class
procedure IAmAStatic;
procedure IAmAVirtual; virtual;
procedure IAmADynamic; dynamic;
procedure IAmAMessage(var M: TMessage); message wm_SomeMessage;

end;

Static Methods
IAmAStatic is a static method. The static method is the default method type, and it works sim-
ilarly to a regular procedure or function call. The compiler knows the address of these meth-
ods, so when you call a static method, it’s able to link that information into the executable
statically. Static methods execute the fastest; however, they don’t have the capability to be
overridden to provide polymorphism.

Development Essentials

PART I
108

Although Object Pascal supports static methods, it doesn’t support static data mem-
bers in the manner of C++ or Java. To achieve the same behavior in Object Pascal, you
should use a global variable. You can place the global in the implementation part of
the unit if you want it to behave as private data.

NOTE

Virtual Methods
IAmAVirtual is a virtual method. Virtual methods are called in the same way as static methods,
but because virtual methods can be overridden, the compiler doesn’t know the address of a par-
ticular virtual function when you call it in your code. The compiler, therefore, builds a Virtual
Method Table (VMT) that provides a means to look up function addresses at runtime. All vir-
tual method calls are dispatched at runtime through the VMT. An object’s VMT contains all its
ancestor’s virtual methods as well as the ones it declares; therefore, virtual methods use more
memory than dynamic methods, although they execute faster.

Dynamic Methods
IAmADynamic is a dynamic method. Dynamic methods are basically virtual methods with a dif-
ferent dispatching system. The compiler assigns a unique number to each dynamic method and

04 chpt_02.qxd 11/19/01 12:15 PM Page 108

uses those numbers, along with method addresses, to build a Dynamic Method Table (DMT).
Unlike the VMT, an object’s DMT contains only the dynamic methods that it declares, and that
method relies on its ancestor’s DMTs for the rest of its dynamic methods. Because of this,
dynamic methods are less memory intensive than virtual methods, but they take longer to call
because you might have to propagate through several ancestor DMTs before finding the
address of a particular dynamic method.

Message Methods
IAmAMessage is a message-handling method. The value after the message keyword dictates
what message the method will respond to. Message methods are used to create an automatic
response to Windows messages, and you generally don’t call them directly. Message handling
is discussed in detail in Chapter 3, “Adventures in Messaging.”

Overriding Methods
Overriding a method is Object Pascal’s implementation of the OOP concept of polymorphism.
It enables you to change the behavior of a method from descendant to descendant. Object
Pascal methods can be overridden only if they’re first declared as virtual or dynamic. To
override a method, just use the override directive instead of virtual or dynamic in your
descendant object type. For example, you could override the IAmAVirtual and IAmADynamic
methods as shown here:

TFooChild = class(TFoo)
procedure IAmAVirtual; override;
procedure IAmADynamic; override;
procedure IAmAMessage(var M: TMessage); message wm_SomeMessage;

end;

The override directive replaces the original method’s entry in the VMT with the new method.
If you had redeclared IAmAVirtual and IAmADynamic with the virtual or dynamic keyword
instead of override, you would have created new methods rather than overriding the ancestor
methods. Also, if you attempt to override a static method in a descendant type, the static
method in the new object completely replaces the method in the ancestor type.

Method Overloading
Like regular procedures and functions, methods can be overloaded so that a class can contain
multiple methods of the same name with differing parameter lists. Overloaded methods must
be marked with the overload directive, although the use of the directive on the first instance of
a method name in a class hierarchy is optional. The following code example shows a class con-
taining three overloaded methods:

type
TSomeClass = class
procedure AMethod(I: Integer); overload;

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

109

04 chpt_02.qxd 11/19/01 12:15 PM Page 109

procedure AMethod(S: string); overload;
procedure AMethod(D: Double); overload;

end;

Reintroducing Method Names
Occasionally, you might want to add a method to one of your classes to replace a method of
the same name in an ancestor of your class. In this case, you don’t want to override the ances-
tor method but instead obscure and completely supplant the base class method. If you simply
add the method and compile, you’ll see that the compiler will produce a warning explaining
that the new method hides a method of the same name in a base class. To suppress this error,
use the reintroduce directive on the method in the ancestor class. The following code exam-
ple demonstrates proper use of the reintroduce directive:

type
TSomeBase = class
procedure Cooper;

end;

TSomeClass = class
procedure Cooper; reintroduce;

end;

Self
An implicit variable called Self is available within all object methods. Self is a pointer to the
class instance that was used to call the method. Self is passed by the compiler as a hidden
parameter to all methods.

Properties
It might help to think of properties as special accessor fields that enable you to modify data
and execute code contained within your class. For components, properties are those things that
show up in the Object Inspector window when published. The following example illustrates a
simplified Object with a property:

TMyObject = class
private
SomeValue: Integer;
procedure SetSomeValue(AValue: Integer);

public
property Value: Integer read SomeValue write SetSomeValue;

end;

procedure TMyObject.SetSomeValue(AValue: Integer);
begin

Development Essentials

PART I
110

04 chpt_02.qxd 11/19/01 12:15 PM Page 110

if SomeValue <> AValue then
SomeValue := AValue;

end;

TMyObject is an object that contains the following: one field (an integer called SomeValue),
one method (a procedure called SetSomeValue), and one property called Value. The sole pur-
pose of the SetSomeValue procedure is to set the value of the SomeValue field. The Value
property doesn’t actually contain any data. Value is an accessor for the SomeValue field; when
you ask Value what number it contains, it reads the value from SomeValue. When you attempt
to set the value of the Value property, Value calls SetSomeValue to modify the value of
SomeValue. This is useful for two reasons: First, it allows you to present the users of the class
with a simple variable without making them worry about the class’s implementation details.
Second, you can allow the users to override accessor methods in descendant classes for poly-
morphic behavior.

Visibility Specifiers
Object Pascal offers you further control over the behavior of your objects by enabling you to
declare fields and methods with directives such as protected, private, public, published,
and automated. The syntax for using these keywords is as follows:

TSomeObject = class
private
APrivateVariable: Integer;
AnotherPrivateVariable: Boolean;

protected
procedure AProtectedProcedure;
function ProtectMe: Byte;

public
constructor APublicContructor;
destructor APublicKiller;

published
property AProperty read APrivateVariable write APrivateVariable;

end;

You can place as many fields or methods as you want under each directive. Style dictates that
you should indent the specifier the same as you indent the class name. The meanings of these
directives follow:

• private—These parts of your object are accessible only to code in the same unit as your
object’s implementation. Use this directive to hide implementation details of your objects
from users and to prevent users from directly modifying sensitive members of your
object.

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

111

04 chpt_02.qxd 11/19/01 12:15 PM Page 111

• protected—Your object’s protected members can be accessed by descendants of your
object. This capability enables you to hide the implementation details of your object
from users while still providing maximum flexibility to descendants of your object.

• public—These fields and methods are accessible anywhere in your program. Object
constructors and destructors always should be public.

• published—Runtime Type Information (RTTI) to be generated for the published portion
of your objects enables other parts of your application to get information on your object’s
published parts. The Object Inspector uses RTTI to build its list of properties.

• automated—The automated specifier is obsolete but remains for compatibility with
Delphi 2. Chapter 15 has more details onthis.

Here, then, is code for the TMyObject class that was introduced earlier, with directives added to
improve the integrity of the object:

TMyObject = class
private
SomeValue: Integer;
procedure SetSomeValue(AValue: Integer);

published
property Value: Integer read SomeValue write SetSomeValue;

end;

procedure TMyObject.SetSomeValue(AValue: Integer);
begin
if SomeValue <> AValue then
SomeValue := AValue;

end;

Now, users of your object will not be able to modify the value of SomeValue directly, and they
will have to go through the interface provided by the property Value to modify the object’s
data.

”Friend” Classes
The C++ language has a concept of friend classes (that is, classes that are allowed access to
the private data and functions in other classes). This is accomplished in C++ using the friend
keyword. Although, strictly speaking, Object Pascal doesn’t have a similar keyword, it does
allow for similar functionality. All objects declared within the same unit are considered “friends”
and are allowed access to the private information located in other objects in that unit.

Inside Objects
All class instances in Object Pascal are actually stored as 32-bit pointers to class instance data
located in heap memory. When you access fields, methods, or properties within a class, the
compiler automatically performs a little bit of hocus-pocus that generates the code to

Development Essentials

PART I
112

04 chpt_02.qxd 11/19/01 12:15 PM Page 112

dereference that pointer for you. Therefore, to the untrained eye, a class appears as a static
variable. What this means, however, is that unlike C++, Object Pascal offers no reasonable way
to allocate a class from an application’s data segment other than from the heap.

TObject: The Mother of All Objects
Because everything descends from TObject, every class has some methods that it inherits from
TObject, and you can make some special assumptions about the capabilities of an object. Every
class has the capability, for example, to tell you its name, its type, or even whether it’s inher-
ited from a particular class. The beauty of this is that you, as an applications programmer,
don’t have to care what kind of magic the compiler does to make this happen. You can just
take advantage of the functionality it provides!

TObject is a special object because its definition comes from the System unit, and the Object
Pascal compiler is “aware” of TObject. The following code illustrates the definition of the
TObject class:

type
TObject = class
constructor Create;
procedure Free;
class function InitInstance(Instance: Pointer): TObject;
procedure CleanupInstance;
function ClassType: TClass;
class function ClassName: ShortString;
class function ClassNameIs(const Name: string): Boolean;
class function ClassParent: TClass;
class function ClassInfo: Pointer;
class function InstanceSize: Longint;
class function InheritsFrom(AClass: TClass): Boolean;
class function MethodAddress(const Name: ShortString): Pointer;
class function MethodName(Address: Pointer): ShortString;
function FieldAddress(const Name: ShortString): Pointer;
function GetInterface(const IID: TGUID; out Obj): Boolean;
class function GetInterfaceEntry(const IID: TGUID): PInterfaceEntry;
class function GetInterfaceTable: PInterfaceTable;
function SafeCallException(ExceptObject: TObject;
ExceptAddr: Pointer): HResult; virtual;

procedure AfterConstruction; virtual;
procedure BeforeDestruction; virtual;
procedure Dispatch(var Message); virtual;
procedure DefaultHandler(var Message); virtual;
class function NewInstance: TObject; virtual;
procedure FreeInstance; virtual;
destructor Destroy; virtual;

end;

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

113

04 chpt_02.qxd 11/19/01 12:15 PM Page 113

You’ll find each of these methods documented in Delphi’s online help system.

In particular, note the methods that are preceded by the keyword class. Prepending the class
keyword to a method enables it to be called like a normal procedure or function without actu-
ally having an instance of the class of which the method is a member. This is a juicy bit of
functionality that was borrowed from C++’s static functions. Be careful, though, not to make
a class method depend on any instance information; otherwise, you’ll get a compiler error.

Interfaces
Perhaps the most significant addition to the Object Pascal language in the recent past is the
native support for interfaces, which was introduced in Delphi 3. Simply put, an interface defines
a set of functions and procedures that can be used to interact with an object. The definition of a
given interface is known to both the implementer and the client of the interface—acting as a
contract of sorts for how an interface will be defined and used. A class can implement multiple
interfaces, providing multiple known “faces” by which a client can control an object.

As its name implies, an interface defines only, well, an interface by which object and clients
communicate. This is similar in concept to a C++ PURE VIRTUAL class. It’s the job of a class
that supports an interface to implement each of the interface’s functions and procedures.

In this chapter you’ll learn about the language elements of interfaces. For information on using
interfaces within your applications, see Chapter 15.

Defining Interfaces
Just as all Delphi classes implicitly descend from TObject, all interfaces are implicitly derived
from an interface called IUnknown. IUnknown. is defined in the System unit as follows:

type
IUnknown = interface
[‘{00000000-0000-0000-C000-000000000046}’]
function QueryInterface(const IID: TGUID; out Obj): Integer; stdcall;
function _AddRef: Integer; stdcall;
function _Release: Integer; stdcall;

end;

As you can see, the syntax for defining an interface is very similar to that of a class. The pri-
mary difference is that an interface can optionally be associated with a globally unique identi-
fier (GUID), which is unique to the interface. The definition of IUnknown comes from the
Component Object Model (COM) specification provided by Microsoft. This is also described
in more detail in Chapter 15.

Defining a custom interface is straightforward if you understand how to create Delphi classes.
The following code defines a new interface called IFoo, which implements one method called
F1():

Development Essentials

PART I
114

04 chpt_02.qxd 11/19/01 12:15 PM Page 114

type
IFoo = interface
[‘{2137BF60-AA33-11D0-A9BF-9A4537A42701}’]
function F1: Integer;

end;

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

115

The Delphi IDE will manufacture new GUIDs for your interfaces when you use the
Ctrl+Shift+G key combination.

TIP

The following code defines a new interface, IBar, which descends from IFoo:

type
IBar = interface(IFoo)
[‘{2137BF61-AA33-11D0-A9BF-9A4537A42701}’]
function F2: Integer;

end;

Implementing Interfaces
The following bit of code demonstrates how to implement IFoo and IBar in a class called
TFooBar:

type
TFooBar = class(TInterfacedObject, IFoo, IBar)
function F1: Integer;
function F2: Integer;

end;

function TFooBar.F1: Integer;
begin
Result := 0;

end;

function TFooBar.F2: Integer;
begin
Result := 0;

end;

Note that multiple interfaces can be listed after the ancestor class in the first line of the class
declaration in order to implement multiple interfaces. The binding of an interface function to a
particular function in the class happens when the compiler matches a method signature in the
interface with a matching signature in the class. A compiler error will occur if a class declares
that it implements an interface but the class fails to implement one or more of the interface’s
methods.

04 chpt_02.qxd 11/19/01 12:15 PM Page 115

If a class implements multiple interfaces that have methods of the same signature, you must
alias the same-named methods as shown in the following short example:

type
IFoo = interface
[‘{2137BF60-AA33-11D0-A9BF-9A4537A42701}’]
function F1: Integer;

end;

IBar = interface
[‘{2137BF61-AA33-11D0-A9BF-9A4537A42701}’]
function F1: Integer;

end;

TFooBar = class(TInterfacedObject, IFoo, IBar)
// aliased methods
function IFoo.F1 = FooF1;
function IBar.F1 = BarF1;
// interface methods
function FooF1: Integer;
function BarF1: Integer;

end;

function TFooBar.FooF1: Integer;
begin
Result := 0;

end;

function TFooBar.BarF1: Integer;
begin
Result := 0;

end;

The implements Directive
Delphi 4 introduced the implements directive, which enables you to delegate the implementa-
tion of interface methods to another class or interface. This technique is sometimes called
implementation by delegation. Implements is used as the last directive on a property of class or
interface type like this:

type
TSomeClass = class(TInterfacedObject, IFoo)
// stuff
function GetFoo: TFoo;
property Foo: TFoo read GetFoo implements IFoo;
// stuff

end;

Development Essentials

PART I
116

04 chpt_02.qxd 11/19/01 12:15 PM Page 116

The use of implements in the preceding code example instructs the compiler to look to the Foo
property for the methods that implement the IFoo interface. The type of the property must be a
class that contains IFoo methods or an interface of type IFoo or a descendant of IFoo. You can
also provide a comma-delimited list of interfaces following the implements directive, in which
case the type of the property must contain the methods to implement the multiple interfaces.

The implements directive buys you two key advantages in your development: First, it allows
you to perform aggregation in a no-hassle manner. Aggregation is a COM concept pertaining
to the combination of multiple classes for a single purpose (see Chapter 15 for more informa-
tion on aggregation). Second, it allows you to defer the consumption of resources necessary to
implement an interface until it’s absolutely necessary. For example, say that there was an inter-
face whose implementation requires allocation of a 1MB bitmap, but that interface is seldom
required by clients. You probably wouldn’t want to implement that interface all the time “just
in case” because that would be a waste of resources. Using implements, you could create the
class to implement the interface on demand in the property accessor method.

Using Interfaces
A few important language rules apply when you’re using variables of interface types in your
applications. The foremost rule to remember is that an interface is a lifetime-managed type.
This means it’s always initialized to nil, it’s reference counted, a reference is automatically
added when you obtain an interface, and it’s automatically released when it leaves scope or is
assigned the value nil. The following code example illustrates the lifetime management of an
interface variable:

var
I: ISomeInterface;

begin
// I is initialized to nil
I := FunctionReturningAnInterface; // ref count of I is incremented
I.SomeFunc;
// ref count of I is decremented. If 0, I is automatically released

end;

Another unique rule of interface variables is that an interface is assignment compatible with
classes that implement the interface. For example, the following code is legal using the
TFooBar class defined earlier:

procedure Test(FB: TFooBar)
var

F: IFoo;
begin

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

117

04 chpt_02.qxd 11/19/01 12:15 PM Page 117

F := FB; // legal because FB supports IFoo
.
.
.

Finally, the as typecast operator can be used to QueryInterface a given interface variable for
another interface (this is explained in greater detail in Chapter 15). This is illustrated here:

var
FB: TFooBar;
F: IFoo;
B: IBar;

begin
FB := TFooBar.Create
F := FB; // legal because FB supports IFoo
B := F as IBar; // QueryInterface F for IBar
.
.
.

If the requested interface isn’t supported, an exception will be raised.

Structured Exception Handling
Structured exception handling (SEH) is a method of error handling that enables your applica-
tion to recover gracefully from otherwise fatal error conditions. In Delphi 1, exceptions were
implemented in the Object Pascal language, but starting in Delphi 2, exceptions are a part of
the Win32 API. What makes Object Pascal exceptions easy to use is that they’re just classes
that happen to contain information about the location and nature of a particular error. This
makes exceptions as easy to implement and use in your applications as any other class.

Delphi contains predefined exceptions for common program-error conditions, such as out of
memory, divide by zero, numerical overflow and underflow, and file I/O errors. Delphi also
enables you to define your own exception classes as you may see fit in your applications.

Listing 2.3 demonstrates how to use exception handling during file I/O.

LISTING 2.3 File I/O Using Exception Handling

Program FileIO;

uses Classes, Dialogs;

{$APPTYPE CONSOLE}

var

Development Essentials

PART I
118

04 chpt_02.qxd 11/19/01 12:15 PM Page 118

LISTING 2.3 Continued

F: TextFile;
S: string;

begin
AssignFile(F, ‘FOO.TXT’);
try
Reset(F);
try
ReadLn(F, S);

finally
CloseFile(F);

end;
except
on EInOutError do
ShowMessage(‘Error Accessing File!’);

end;
end.

In Listing 2.3, the inner try..finally block is used to ensure that the file is closed regardless
of whether any exceptions come down the pike. What this block means in English is “Hey,
program, try to execute the statements between the try and the finally. If you finish them or
run into an exception, execute the statements between the finally and the end. If an exception
does occur, move on to the next exception-handling block.” This means that the file will be
closed and the error can be properly handled no matter what error occurs.

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

119

The statements after finally in a try..finally block execute regardless of whether
an exception occurs. Make sure that the code in your finally block doesn’t assume
that an exception has occurred. Also, because the finally statement doesn’t stop the
migration of an exception, the flow of your program’s execution will continue on to
the next exception handler.

NOTE

The outer try..except block is used to handle the exceptions as they occur in the program.
After the file is closed in the finally block, the except block puts up a message informing the
user that an I/O error occurred.

One of the key advantages that exception handling provides over the traditional method of
error handling is the ability to distinctly separate the error-detection code from the error-
correction code. This is a good thing primarily because it makes your code easier to read and
maintain by enabling you to concentrate on one distinct aspect of the code at a time.

04 chpt_02.qxd 11/19/01 12:15 PM Page 119

The fact that you cannot trap any specific exception by using the try..finally block is signif-
icant. When you use a try..finally block in your code, it means that you don’t care what
exceptions might occur. You just want to perform some tasks when they do occur to gracefully
get out of a tight spot. The finally block is an ideal place to free any resources you’ve allo-
cated (such as files or Windows resources) because it will always execute in the case of an
error. In many cases, however, you need some type of error handling that’s able to respond dif-
ferently depending on the type of error that occurs. You can trap specific exceptions by using a
try..except block, which is again illustrated in Listing 2.4.

LISTING 2.4 A try..except Exception-Handling Block

Program HandleIt;

{$APPTYPE CONSOLE}

var
R1, R2: Double;

begin
while True do begin
try
Write(‘Enter a real number: ‘);
ReadLn(R1);
Write(‘Enter another real number: ‘);
ReadLn(R2);
Writeln(‘I will now divide the first number by the second...’);
Writeln(‘The answer is: ‘, (R1 / R2):5:2);

except
On EZeroDivide do
Writeln(‘You cannot divide by zero!’);

On EInOutError do
Writeln(‘That is not a valid number!’);

end;
end;

end.

Although you can trap specific exceptions with the try..except block, you also can catch
other exceptions by adding the catchall else clause to this construct. The syntax of the
try..except..else construct follows:

try
Statements

except
On ESomeException do Something;

else
{ do some default exception handling }

end;

Development Essentials

PART I
120

04 chpt_02.qxd 11/19/01 12:15 PM Page 120

You can achieve the same effect as a try..except..else construct by not specifying the
exception class in a try..except block, as shown in this example:

try
Statements

except
HandleException // almost the same as else statement

end;

Exception Classes
Exceptions are merely special instances of objects. These objects are instantiated when an
exception occurs and are destroyed when an exception is handled. The base exception object is
called Exception, and that object is defined as follows:

type
Exception = class(TObject)
private
FMessage: string;
FHelpContext: Integer;

public
constructor Create(const Msg: string);
constructor CreateFmt(const Msg: string; const Args: array of const);
constructor CreateRes(Ident: Integer); overload;
constructor CreateRes(ResStringRec: PResStringRec); overload;
constructor CreateResFmt(Ident: Integer; const Args: array of const);
overload;

constructor CreateResFmt(ResStringRec: PResStringRec;
const Args: array of const); overload;

constructor CreateHelp(const Msg: string; AHelpContext: Integer);
constructor CreateFmtHelp(const Msg: string; const Args: array of const;
AHelpContext: Integer);

constructor CreateResHelp(Ident: Integer; AHelpContext: Integer); overload;
constructor CreateResHelp(ResStringRec: PResStringRec;
AHelpContext: Integer); overload;

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

121

When using the try..except..else construct, you should be aware that the else
part will catch all exceptions—even exceptions you might not expect, such as out-of-
memory or other runtime-library exceptions. Be careful when using the else clause,
and use the clause sparingly. You should always reraise the exception when you trap
with unqualified exception handlers. This is explained in the section “Reraising an
Exception.”

CAUTION

04 chpt_02.qxd 11/19/01 12:15 PM Page 121

constructor CreateResFmtHelp(ResStringRec: PResStringRec;
const Args: array of const;
AHelpContext: Integer); overload;

constructor CreateResFmtHelp(Ident: Integer; const Args: array of const;
AHelpContext: Integer); overload;

property HelpContext: Integer read FHelpContext write FHelpContext;
property Message: string read FMessage write FMessage;

end;

The important element of the Exception object is the Message property, which is a string.
Message provides more information or explanation on the exception. The information provided
by Message depends on the type of exception that’s raised.

Development Essentials

PART I
122

If you define your own exception object, make sure that you derive it from a known
exception object such as Exception or one of its descendants. The reason for this is so
that generic exception handlers will be able to trap your exception.

CAUTION

When you handle a specific type of exception in an except block, that handler also will catch
any exceptions that are descendants of the specified exception. For example, EMathError is the
ancestor object for a variety of math-related exceptions, such as EZeroDivide and EOverflow.
You can catch any of these exceptions by setting up a handler for EMathError, as shown here:

try
Statements

except
on EMathError do // will catch EMathError or any descendant
HandleException

end;

Any exceptions that you don’t explicitly handle in your program eventually will flow to, and
be handled by, the default handler located within the Delphi runtime library. The default handler
will put up a message dialog box informing the user that an exception occurred. Incidentally,
Chapter 4, “Application Frameworks and Design Concepts,” on the electronic version of
Delphi 5 Developer’s Guide found on the CD accompanying this book will show an example
of how to override the default exception handling.

When handling an exception, you sometimes need to access the instance of the exception
object in order to retrieve more information on the exception, such as that provided by its
Message property. There are two ways to do this: Use an optional identifier with the on
ESomeException construct or use the ExceptObject() function.

04 chpt_02.qxd 11/19/01 12:15 PM Page 122

You can insert an optional identifier in the on ESomeException portion of an except block and
have the identifier map to an instance of the currently raised exception. The syntax for this is
to preface the exception type with an identifier and a colon, as follows:

try
Something

except
on E:ESomeException do
ShowMessage(E.Message);

end;

The identifier (E in this case) becomes the instance of the currently raised exception. This iden-
tifier is always of the same type as the exception it prefaces.

You can also use the ExceptObject() function, which returns an instance of the currently
raised exception. The drawback to ExceptObject(), however, is that it returns a TObject that
you must then typecast to the exception object of your choice. The following example shows
the usage of this function:

try
Something

except
on ESomeException do
ShowMessage(ESomeException(ExceptObject).Message);

end;

The ExceptObject() function will return nil if there is no active exception.

The syntax for raising an exception is similar to the syntax for creating an object instance. To
raise a user-defined exception called EBadStuff, for example, you would use this syntax:

Raise EBadStuff.Create(‘Some bad stuff happened.’);

Flow of Execution
After an exception is raised, the flow of execution of your program propagates up to the next
exception handler until the exception instance is finally handled and destroyed. This process is
determined by the call stack and therefore works program-wide (not just within one procedure
or unit). Listing 2.5 illustrates the flow of execution of a program when an exception is raised.
This listing is the main unit of a Delphi application that consists of one form with one button
on the form. When the button is clicked, the Button1Click() method calls Proc1(), which
calls Proc2(), which in turn calls Proc3(). An exception is raised in Proc3(), and you can
witness the flow of execution propagating through each try..finally block until the excep-
tion is finally handled inside Button1Click().

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

123

04 chpt_02.qxd 11/19/01 12:15 PM Page 123

LISTING 2.5 Main Unit for the Exception Propagation Project

unit Main;

interface

uses
SysUtils, Windows, Messages, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls;

type
TForm1 = class(TForm)
Button1: TButton;
procedure Button1Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

{$R *.DFM}

type
EBadStuff = class(Exception);

procedure Proc3;
begin
try
raise EBadStuff.Create(‘Up the stack we go!’);

finally
ShowMessage(‘Exception raised. Proc3 sees the exception’);

end;
end;

Development Essentials

PART I
124

When you run this program from the Delphi IDE, you’ll be able to see the flow of exe-
cution better if you disable the integrated debugger’s handling of exceptions by
unchecking Tools, Debugger Options, Language Exceptions, Stop on Delphi Exceptions.

TIP

04 chpt_02.qxd 11/19/01 12:15 PM Page 124

LISTING 2.5 Continued

procedure Proc2;
begin
try
Proc3;

finally
ShowMessage(‘Proc2 sees the exception’);

end;
end;

procedure Proc1;
begin
try
Proc2;

finally
ShowMessage(‘Proc1 sees the exception’);

end;
end;

procedure TForm1.Button1Click(Sender: TObject);
const
ExceptMsg = ‘Exception handled in calling procedure. The message is “%s”’;

begin
ShowMessage(‘This method calls Proc1 which calls Proc2 which calls Proc3’);
try
Proc1;

except
on E:EBadStuff do
ShowMessage(Format(ExceptMsg, [E.Message]));

end;
end;

end.

Reraising an Exception
When you need to perform special handling for a statement inside an existing try..except
block and still need to allow the exception to flow to the block’s outer default handler, you can
use a technique called reraising the exception. Listing 2.6 demonstrates an example of rerais-
ing an exception.

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

125

04 chpt_02.qxd 11/19/01 12:15 PM Page 125

LISTING 2.6 Reraising an Exception

try // this is outer block
{ statements }
{ statements }
(statements }
try // this is the special inner block
{ some statement that may require special handling }

except
on ESomeException do
begin
{ special handling for the inner block statement }
raise; // reraise the exception to the outer block

end;
end;

except
// outer block will always perform default handling
on ESomeException do Something;

end;

Runtime Type Information
Runtime Type Information (RTTI) is a language feature that gives a Delphi application the
capability to retrieve information about its objects at runtime. RTTI is also the key to links
between Delphi components and their incorporation into the Delphi IDE, but it isn’t just an
academic process that occurs in the shadows of the IDE.

Objects, by virtue of being TObject descendants, contain a pointer to their RTTI and have sev-
eral built-in methods that enable you to get some useful information out of the RTTI. Table 2.7
lists some of the TObject methods that use RTTI to retrieve information about a particular
object instance.

TABLE 2.7 TObject Methods that Use RTTI

Function Return Type Returns

ClassName() string The name of the object’s class

ClassType() TClass The object’s type

InheritsFrom() Boolean Boolean to indicate whether the class
descends from a given class

ClassParent() TClass The object ancestor’s type

InstanceSize() word The size, in bytes, of an instance

ClassInfo() Pointer A pointer to the object’s
in-memory RTTI

Development Essentials

PART I
126

04 chpt_02.qxd 11/19/01 12:15 PM Page 126

Object Pascal provides two operators, is and as, that allow comparisons and typecasts of
objects via RTTI.

The as keyword is a new form of typesafe typecast. It enables you to cast a low-level object to
a descendant and raises an exception if the typecast is invalid. Suppose that you have a proce-
dure to which you want to be able to pass any type of object. This function definition could be
defined as

Procedure Foo(AnObject: TObject);

If you want to do something useful with AnObject later in this procedure, you’ll probably have
to cast it to a descendant object. Suppose you want to assume that AnObject is a TEdit descen-
dant, and you want to change the text it contains (a TEdit is a Delphi VCL edit control). You
can use the following code:

(Foo as TEdit).Text := ‘Hello World.’;

You can use the Boolean comparison operator is to check whether two objects are of compati-
ble types. Use the is operator to compare an unknown object to a known type or instance to
determine what properties and behavior you can assume about the unknown object. For exam-
ple, you might want to check to see whether AnObject is pointer-compatible with TEdit before
attempting to typecast it:

If (Foo is TEdit) then
TEdit(Foo).Text := ‘Hello World.’;

Notice that you didn’t use the as operator to perform the typecast in this example. That’s
because a certain amount of overhead is involved in using RTTI. The first line has already
determined that Foo is a TEdit, so you can optimize the code by performing a traditional type-
cast in the second line. A traditional typecast generally carries with it no runtime overhead.

Summary
Quite a bit of material was covered in this chapter. You learned the basic syntax and semantics
of the Object Pascal language, including variables, operators, functions, procedures, types,
constructs, and style. You should also have a clear understanding of OOP, objects, fields, prop-
erties, methods, TObject, interfaces, exception handling, and RTTI.

Now that you have the big picture of how Delphi’s object-oriented Object Pascal language
works, you’re ready to move on to more advanced discussions of application frameworks and
design concepts.

The Object Pascal Language

CHAPTER 2

2

T
H

E
O

B
JEC

T
P

A
SC

A
L

L
A

N
G

U
A

G
E

127

04 chpt_02.qxd 11/19/01 12:15 PM Page 127

04 chpt_02.qxd 11/19/01 12:15 PM Page 128

CHAPTER

3
Adventures in Messaging

IN THIS CHAPTER
• What Is a Message? 130

• Types of Messages 131

• How the Windows Message System Works 132

• Delphi’s Message System 133

• Handling Messages 134

• Sending Your Own Messages 140

• Nonstandard Messages 142

• Anatomy of a Message System: VCL 146

• The Relationship Between Messages and
Events 154

05 chpt_03.qxd 11/19/01 12:10 PM Page 129

Although Visual Component Library (VCL) components expose many Win32 messages via
Object Pascal events, it’s still essential that you, the Win32 programmer, understand how the
Windows message system works.

As a Delphi applications programmer, you’ll find that the events surfaced by VCL will suit
most of your needs; only occasionally will you have to delve into the world of Win32 message
handling. As a Delphi component developer, however, you and messages will become very
good friends because you have to directly handle many Windows messages and then invoke
events corresponding to those messages.

Development Essentials

PART I
130

The messaging capabilities covered in this chapter are specific to the VCL and aren’t
supported under the CLX environment. For more on the CLX architectures, see
Chapters 10, “Component Architecture: VCL and CLX,” and 13, “CLX Component
Development.”

NOTE

What Is a Message?
A message is a notification of some occurrence sent by Windows to an application. Clicking a
mouse button, resizing a window, or pressing a key on the keyboard, for example, causes
Windows to send a message to an application notifying it of what occurred.

A message manifests itself as a record passed to an application by Windows. That record con-
tains information such as what type of event occurred and additional information specific to the
message. The message record for a mouse button click message, for example, contains the
mouse coordinates at the time the button was pressed. The record type passed from Windows
to the application is called a TMsg, which is defined in the Windows unit as shown in the follow-
ing code:

type
TMsg = packed record
hwnd: HWND; // the handle of the Window for which the message

// is intended
message: UINT; // the message constant identifier
wParam: WPARAM; // 32 bits of additional message-specific information
lParam: LPARAM; // 32 bits of additional message-specific information
time: DWORD; // the time that the message was created
pt: TPoint; // Mouse cursor position when the message was created

end;

05 chpt_03.qxd 11/19/01 12:10 PM Page 130

Now that you have an idea what makes up a message, it’s time to take a look at some different
types of Windows messages.

Types of Messages
The Win32 API predefines a constant for each Windows message. These constants are the val-
ues kept in the message field of the TMsg record. All these constants are defined in Delphi’s
Messages unit; most are also described in the online help. Notice that each of these constants
begins with the letters WM, which stand for Windows Message. Table 3.1 lists some of the
common Windows messages, along with their meanings and values.

Adventures in Messaging

CHAPTER 3

3

A
D

V
EN

TU
R

ES
IN

M
ESSA

G
IN

G
131

What’s in a Message?
Does the information in a message record look like Greek to you? If so, here’s a little
insight into what’s what:

hwnd The 32-bit window handle of the window for
which the message is intended. The window can
be almost any type of screen object because
Win32 maintains window handles for most visual
objects (windows, dialog boxes, buttons, edits,
and so on).

message A constant value that represents some message.
These constants can be defined by Windows in
the Windows unit or by you through user-defined
messages.

wParam This field often contains a constant value associ-
ated with the message; it can also contain a win-
dow handle or the identification number of
some window or control associated with the
message.

lParam This field often holds an index or pointer to
some data in memory. Because wParam, lParam,
and Pointer are all 32 bits in size, you can type-
cast interchangeably between them.

05 chpt_03.qxd 11/19/01 12:10 PM Page 131

TABLE 3.1 Common Windows Messages

Message
Identifier Value Tells a Window That. . .

wm_Activate $00l6 It’s being activated or deactivated.

wm_Char $0102 wm_KeyDown and wm_KeyUp messages have been sent
for one key.

wm_Close $0010 It should terminate.

wm_KeyDown $0100 A keyboard key is being pressed.

wm_KeyUp $0101 A keyboard key has been released.

wm_LButtonDown $0201 The user is pressing the left mouse button.

wm_MouseMove $0200 The mouse is being moved.

WM_PAINT $000F It must repaint its client area.

wm_Timer $0113 A timer event has occurred.

wm_Quit $0012 A request has been made to shut down the program.

How the Windows Message System Works
A Windows application’s message system has three key components:

• Message queue—Windows maintains a message queue for each application. A Windows
application must get messages from this queue and dispatch them to the proper windows.

• Message loop—This is the loop mechanism in a Windows program that fetches a mes-
sage from the application queue and dispatches it to the appropriate window, fetches the
next message, dispatches it to the appropriate window, and so on.

• Window procedure—Each window in your application has a window procedure that
receives each of the messages passed to it by the message loop. The window procedure’s
job is to take each window message and respond to it accordingly. A window procedure
is a callback function; a window procedure usually returns a value to Windows after pro-
cessing a message.

Development Essentials

PART I
132

A callback function is a function in your program that’s called by Windows or some
other external module.

NOTE

05 chpt_03.qxd 11/19/01 12:10 PM Page 132

Getting a message from point A (some event occurs, creating a message) to point B (a window
in your application responds to the message) is a five-step process:

1. Some event occurs in the system.

2. Windows translates this event into a message and places it into the message queue for
your application.

3. Your application retrieves the message from the queue and places it in a TMsg record.

4. Your application passes on the message to the window procedure of the appropriate win-
dow in your application.

5. The window procedure performs some action in response to the message.

Steps 3 and 4 make up the application’s message loop. The message loop is often considered
the heart of a Windows program because it’s the facility that enables your program to respond
to external events. The message loop spends its whole life fetching messages from the applica-
tion queue and passing them to the appropriate windows in your application. If there are no
messages in your application’s queue, Windows allows other applications to process their mes-
sages. Figure 3.1 shows these steps.

Adventures in Messaging

CHAPTER 3

3

A
D

V
EN

TU
R

ES
IN

M
ESSA

G
IN

G
133

Something Message
Loop

Window
procedure

Message
Queue

Event
Occurs

Windows
creates a
message

Message Loop
takes next
message from
the queue

And passes the
message on to the
window procedure
for the appropriate
window

Message is placed
at the end of the
applications message
queue

FIGURE 3.1
The Windows Message system.

Delphi’s Message System
VCL handles many of the details of the Windows message system for you. The message
loop is built into VCL’s Forms unit, for example, so you don’t have to worry about fetching

05 chpt_03.qxd 11/19/01 12:10 PM Page 133

messages from the queue or dispatching them to a window procedure. Delphi also places the
information located in the Windows TMsg record into a generic TMessage record:

type
TMessage = record
Msg: Cardinal;
case Integer of
0: (
WParam: Longint;
LParam: Longint;
Result: Longint);

1: (
WParamLo: Word;
WParamHi: Word;
LParamLo: Word;
LParamHi: Word;
ResultLo: Word;
ResultHi: Word);

end;

Notice that TMessage record has a little less information than does TMsg. That’s because Delphi
internalizes the other TMsg fields; TMessage contains just the essential information you need to
handle a message.

It’s important to note that the TMessage record also contains a Result field. As mentioned ear-
lier, some messages require the window procedure to return some value after processing a mes-
sage. With Delphi, you accomplish this process in a straightforward fashion by placing the
return value in the Result field of TMessage. This process is explained in detail later in the
section “Assigning Message Result Values.”

Message-Specific Records
In addition to the generic TMessage record, Delphi defines a message-specific record for every
Windows message. The purpose of these message-specific records is to give you all the infor-
mation the message offers without having to decipher the wParam and lParam fields of a
record. All the message-specific records can be found in the Messages unit. As an example,
here’s the message record used to hold most mouse messages:

type
TWMMouse = packed record
Msg: Cardinal;
Keys: Longint;
case Integer of
0: (
XPos: Smallint;

Development Essentials

PART I
134

05 chpt_03.qxd 11/19/01 12:10 PM Page 134

YPos: Smallint);
1: (
Pos: TSmallPoint;
Result: Longint);

end;

All the record types for specific mouse messages (WM_LBUTTONDOWN and WM_RBUTTONUP, for
example) are simply defined as equal to TWMMouse, as in the following example:

TWMRButtonUp = TWMMouse;
TWMLButtonDown = TWMMouse;

Adventures in Messaging

CHAPTER 3

3

A
D

V
EN

TU
R

ES
IN

M
ESSA

G
IN

G
135

A message record is defined for nearly every standard Windows message. The naming
convention dictates that the name of the record must be the same as the name of
the message with a T prepended, using camel capitalization and without the under-
score. For example, the name of the message record type for a WM_SETFONT message is
TWMSetFont.

By the way, TMessage works with all messages in all situations but isn’t as convenient
as message-specific records.

NOTE

Handling Messages
Handling or processing a message means that your application responds in some manner to a
Windows message. In a standard Windows application, message handling is performed in each
window procedure. By internalizing the window procedure, however, Delphi makes it much
easier to handle individual messages; instead of having one procedure that handles all mes-
sages, each message has its own procedure. Three requirements must be met for a procedure to
be a message-handling procedure:

• The procedure must be a method of an object.

• The procedure must take one var parameter of a TMessage or other message-specific
record type.

• The procedure must use the message directive followed by the constant value of the mes-
sage you want to process.

Here’s an example of a procedure that handles WM_PAINT messages:

procedure WMPaint(var Msg: TWMPaint); message WM_PAINT;

05 chpt_03.qxd 11/19/01 12:10 PM Page 135

As another example, let’s write a simple message-handling procedure for WM_PAINT that
processes the message simply by beeping.

Start by creating a new, blank project. Then access the Code Editor window for this project and
add the header for the WMPaint function to the private section of the TForm1 object:

procedure WMPaint(var Msg: TWMPaint); message WM_PAINT;

Now add the function definition to the implementation part of this unit. Remember to use the
dot operator to scope this procedure as a method of TForm1. Don’t use the message directive as
part of the function implementation:

procedure TForm1.WMPaint(var Msg: TWMPaint);
begin
Beep;
inherited;

end;

Notice the use of the inherited keyword here. Call inherited when you want to pass the
message to the ancestor object’s handler. By calling inherited in this example, you pass on
the message to TForm’s WM_PAINT handler.

Development Essentials

PART I
136

When naming message-handling procedures, the convention is to give them the same
name as the message itself, using camel capitalization and without the underscore.

NOTE

Unlike normal calls to inherited methods, here you don’t give the name of the inher-
ited method because the name of the method is unimportant when it’s dispatched.
Delphi knows what method to call based on the message value used with the
message directive in the class interface.

NOTE

The main unit in Listing 3.1 provides a simple example of a form that processes the WM_PAINT
message. Creating this project is easy: Just create a new project and add the code for the
WMPaint procedure to the TForm object.

05 chpt_03.qxd 11/19/01 12:10 PM Page 136

LISTING 3.1 GetMess—A Message-Handling Example

unit GMMain;

interface

uses
SysUtils, Windows, Messages, Classes, Graphics, Controls,
Forms, Dialogs;

type
TForm1 = class(TForm)
private
procedure WMPaint(var Msg: TWMPaint); message WM_PAINT;

end;

var
Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.WMPaint(var Msg: TWMPaint);
begin
MessageBeep(0);
inherited;

end;

end.

Whenever a WM_PAINT message comes down the pike, it’s passed to the WMPaint procedure.
The WMPaint procedure simply informs you of the WM_PAINT message by making some noise
with the MessageBeep() procedure and then passes the message to the inherited handler.

Adventures in Messaging

CHAPTER 3

3

A
D

V
EN

TU
R

ES
IN

M
ESSA

G
IN

G
137

MessageBeep(): The Poor Man’s Debugger
While we’re on the topic of beeping, now is a good time for a slight digression. The
MessageBeep() procedure is one of the most straightforward and useful elements in
the Win32 API. Its use is simple: Call MessageBeep(), pass a predefined constant, and
Windows beeps the PC’s speaker. (If you have a sound card, it plays a WAV file.) Big

continues

05 chpt_03.qxd 11/19/01 12:10 PM Page 137

Message Handling: Not Contract Free
Unlike responding to Delphi events, handling Windows messages is not “contract free.” Often,
when you decide to handle a message yourself, Windows expects you to perform some action
when processing the message. Most of the time, VCL has much of this basic message process-
ing built in—all you have to do is call inherited to get to it. Think of it this way: You write a
message handler so that your application will do the things you expect, and you call inherited
so that your application will do the additional things Windows expects.

Development Essentials

PART I
138

deal, you say? On the surface it might not seem like much, but MessageBeep() really
shines as an aid in debugging your programs.

If you’re looking for a quick-and-dirty way to tell whether your program is reaching a
certain place in your code—without having to bother with the debugger and break-
points—MessageBeep() is for you. Because it doesn’t require a handle or some other
Windows resource, you can use it practically anywhere in your code, and as a wise
man once said, “MessageBeep() is for the itch you can’t scratch with the debugger.” If
you have a sound card, you can pass MessageBeep() one of several predefined con-
stants to have it play a wider variety of sounds—these constants are defined under
MessageBeep() in the Win32 API help file.

If you’re like the authors and are too lazy to type out that whole big, long function
name and parameter, you can use the Beep() procedure found in the SysUtils unit.
The implementation of Beep() is simply a call to MessageBeep() with the parameter 0.

The contractual nature of message handling can be more than just calling the inher-
ited handler. In message handlers, you’re sometimes restricted in what you can do.
For example, in a WM_KILLFOCUS message, you cannot set focus to another control
without causing a crash.

NOTE

To demonstrate the inherited elements, consider the program in Listing 3.1 without calling
inherited in the WMPaint() method. the procedure would look like this:

procedure TForm1.WMPaint(var Msg: TWMPaint);
begin
MessageBeep(0);

end;

This procedure never gives Windows a chance to perform basic handling of the WM_PAINT mes-
sage, and the form will never paint itself. In fact, you might end up with several WM_PAINT

05 chpt_03.qxd 11/19/01 12:10 PM Page 138

messages stacking up in the message queue, causing the beep to continue until the queue is
cleared.

Sometimes there are circumstances in which you don’t want to call the inherited message han-
dler. An example is handling the WM_SYSCOMMAND messages to prevent a window from being
minimized or maximized.

Assigning Message Result Values
When you handle some Windows messages, Windows expects you to return a result value. The
classic example is the WM_CTLCOLOR message. When you handle this message, Windows expects
you to return a handle to a brush with which you want Windows to paint a dialog box or
control. (Delphi provides a Color property for components that does this for you, so the exam-
ple is just for illustration purposes.) You can return this brush handle easily with a message-
handling procedure by assigning a value to the Result field of TMessage (or another message
record) after calling inherited. For example, if you were handling WM_CTLCOLOR, you could
return a brush handle value to Windows with the following code:

procedure TForm1.WMCtlColor(var Msg: TWMCtlColor);
var
BrushHand: hBrush;

begin
inherited;
{ Create a brush handle and place into BrushHand variable }
Msg.Result := BrushHand;

end;

The TApplication Type’s OnMessage Event
Another technique for handling messages is to use TApplication’s OnMessage event. When
you assign a procedure to OnMessage, that procedure is called whenever a message is pulled
from the queue and about to be processed. This event handler is called before Windows itself
has a chance to process the message. The Application.OnMessage event handler is of
TMessageEvent type and must be defined with a parameter list, as shown here:

procedure SomeObject.AppMessageHandler(var Msg: TMsg;
var Handled: Boolean);

All the message parameters are passed to the OnMessage event handler in the Msg parameter.
(Note that this parameter is of the Windows TMsg record type described earlier in this chapter.)
The Handled field requires you to assign a Boolean value indicating whether you have handled
the message.

Adventures in Messaging

CHAPTER 3

3

A
D

V
EN

TU
R

ES
IN

M
ESSA

G
IN

G
139

05 chpt_03.qxd 11/19/01 12:10 PM Page 139

You can create an OnMessage event handler by using a TApplicationEvents component from
the Additional page of the Component Palette. Here is an example of such an event handler:

var
NumMessages: Integer;

procedure TForm1.ApplicationEvents1Message(var Msg: tagMSG;
var Handled: Boolean);

begin
Inc(NumMessages);
Handled := False;

end;

One limitation of OnMessage is that it’s executed only for messages pulled out of the queue and
not for messages sent directly to the window procedures of windows in your application.
Chapter 13, “Hard-Core Techniques,” of Delphi 5 Developers Guide, which is on this book’s
CD-ROM, shows techniques for working around this limitation by hooking into the application
window procedure.

Development Essentials

PART I
140

OnMessage sees all messages posted to all window handles in your application. This is
the busiest event in your application (thousands of messages per second), so don’t do
anything in an OnMessage handler that takes a lot of time because you’ll slow your
whole application to a crawl. Clearly, this is one place where a breakpoint would be a
very bad idea.

TIP

Sending Your Own Messages
Just as Windows sends messages to your application’s windows, you will occasionally need to
send messages between windows and controls within your application. Delphi provides several
ways to send messages within your application, such as the Perform() method (which works
independently of the Windows API) and the SendMessage() and PostMessage() API functions.

The Perform() Method
VCL provides the Perform() method for all TControl descendants; Perform() enables you to
send a message to any form or control object given an instance of that object. The Perform()
method takes three parameters—a message and its corresponding lParam and wParam—and is
defined as follows:

function TControl.Perform(Msg: Cardinal; WParam, LParam: Longint):
Longint;

05 chpt_03.qxd 11/19/01 12:10 PM Page 140

To send a message to a form or control, use the following syntax:

RetVal := ControlName.Perform(MessageID, wParam, lParam);

Perform() is synchronous in that it doesn’t return until the message has been handled. The
Perform() method packages its parameters into a TMessage record and then calls the object’s
Dispatch() method to send the message—bypassing the Windows API messaging system. The
Dispatch() method is described later in this chapter.

The SendMessage() and PostMessage() API Functions
Sometimes you need to send a message to a window for which you don’t have a Delphi object
instance. For example, you might want to send a message to a non-Delphi window, but you
have only a handle to that window. Fortunately, the Windows API offers two functions that fit
this bill: SendMessage() and PostMessage(). These two functions are essentially identical,
except for one key difference: SendMessage(), similar to Perform(), sends a message directly
to the window procedure of the intended window and waits until the message is processed
before returning; PostMessage() posts a message to the Windows message queue and returns
immediately.

SendMessage() and PostMessage() are declared as follows:

function SendMessage(hWnd: HWND; Msg: UINT; wParam: WPARAM;
lParam: LPARAM): LRESULT; stdcall;

function PostMessage(hWnd: HWND; Msg: UINT; wParam: WPARAM;
lParam: LPARAM): BOOL; stdcall;

• hWnd is the window handle for which the message is intended.

• Msg is the message identifier.

• wParam is 32 bits of additional message-specific information.

• lParam is 32 bits of additional message-specific information.

Adventures in Messaging

CHAPTER 3

3

A
D

V
EN

TU
R

ES
IN

M
ESSA

G
IN

G
141

Although SendMessage() and PostMessage() are used similarly, their respective return
values are different. SendMessage() returns the result value of the message being
processed, but PostMessage() returns only a BOOL that indicates whether the message
was placed in the target window’s queue. Another way to think of this is that
SendMessage() is a synchronous operation, whereas PostMessage() is asynchronous.

NOTE

continues

05 chpt_03.qxd 11/19/01 12:10 PM Page 141

Nonstandard Messages
Until now, the discussion has centered on regular Windows messages (those that begin with
WM_XXX). However, two other major categories of messages merit some discussion: notification
messages and user-defined messages.

Notification Messages
Notification messages are messages sent to a parent window when something happens in one
of its child controls that might require the parent’s attention. Notification messages occur only
with the standard Windows controls (button, list box, combo box, and edit control) and with
the Windows Common Controls (tree view, list view, and so on). For example, clicking or dou-
ble-clicking a control, selecting some text in a control, and moving the scrollbar in a control all
generate notification messages.

You can handle notification messages by writing message-handling procedures in the form that
contains a particular control. Table 3.2 lists the Win32 notification messages for standard
Windows controls.

TABLE 3.2 Standard Control Notification Messages

Notification Meaning

Button Notification

BN_CLICKED The user clicked a button.

BN_DISABLE A button is disabled.

BN_DOUBLECLICKED The user double-clicked a button.

BN_HILITE The user highlighted a button.

BN_PAINT The button should be painted.

BN_UNHILITE The highlight should be removed.

Combo Box Notification

CBN_CLOSEUP The list box of a combo box has closed.

CBN_DBLCLK The user double-clicked a string.

CBN_DROPDOWN The list box of a combo box is dropping down.

CBN_EDITCHANGE The user has changed text in the edit control.

CBN_EDITUPDATE Altered text is about to be displayed.

CBN_ERRSPACE The combo box is out of memory.

CBN_KILLFOCUS The combo box is losing the input focus.

CBN_SELCHANGE A new combo box list item is selected.

Development Essentials

PART I
142

05 chpt_03.qxd 11/19/01 12:10 PM Page 142

TABLE 3.2 Continued

Notification Meaning

CBN_SELENDCANCEL The user’s selection should be canceled.

CBN_SELENDOK The user’s selection is valid.

CBN_SETFOCUS The combo box is receiving the input focus.

Edit Notification

EN_CHANGE The display is updated after text changes.

EN_ERRSPACE The edit control is out of memory.

EN_HSCROLL The user clicked the horizontal scrollbar.

EN_KILLFOCUS The edit control is losing the input focus.

EN_MAXTEXT The insertion is truncated.

EN_SETFOCUS The edit control is receiving the input focus.

EN_UPDATE The edit control is about to display altered text.

EN_VSCROLL The user clicked the vertical scrollbar.

List Box Notification

LBN_DBLCLK The user double-clicked a string.

LBN_ERRSPACE The list box is out of memory.

LBN_KILLFOCUS The list box is losing the input focus.

LBN_SELCANCEL The selection is canceled.

LBN_SELCHANGE The selection is about to change.

LBN_SETFOCUS The list box is receiving the input focus.

Internal VCL Messages
VCL has an extensive collection of its own internal and notification messages. Although you
don’t commonly use these messages in your Delphi applications, Delphi component writers
will find them useful. These messages begin with CM_ (for component message) or CN_ (for
component notification), and they are used to manage VCL internals such as focus, color, visi-
bility, window re-creation, dragging, and so on. You can find a complete list of these messages
in the “Creating Custom Components” portion of the Delphi online help.

A common inquiry is how to detect that the mouse is entered or left a controls space. This can
be handled by processing the custom messages CM_MOUSEENTER and CM_MOUSELEAVE. Consider
the following component:

TSpecialPanel = class(TPanel)
protected

Adventures in Messaging

CHAPTER 3

3

A
D

V
EN

TU
R

ES
IN

M
ESSA

G
IN

G
143

05 chpt_03.qxd 11/19/01 12:10 PM Page 143

procedure CMMouseEnter(var Msg: TMessage); message CM_MOUSEENTER;
procedure CMMouseLeave(var Msg: TMessage); message CM_MOUSELEAVE;

end;
…
procedure TSpecialPanel.CMMouseEnter(var Msg: TMessage);
begin
inherited;
Color := clWhite;

end;

procedure TSpecialPanel.CMMouseLeave(var Msg: TMessage);
begin
inherited;
Color := clBtnFace;

end;

This component handles the custom messages by turning the panel white when the mouse has
entered the component’s surface area and then turns the color back to clBtnFace when the
mouse leaves. You’ll find an example of this code on the CD under the directory CustMessage.

User-Defined Messages
At some point, you’ll come across a situation in which one of your own applications must send
a message to itself, or you have to send messages between two of your own applications. At
this point, one question that might come to mind is, “Why would I send myself a message
instead of simply calling a procedure?” It’s a good question, and there are actually several
answers. First, messages give you polymorphism without requiring knowledge of the recipi-
ent’s type. Messages are therefore as powerful as virtual methods but more flexible. Also, mes-
sages allow for optional handling: If the recipient doesn’t do anything with the message, no
harm is done. Finally, messages allow for broadcast notifications to multiple recipients and
“parasitic” eavesdropping, which isn’t easily done with procedures alone.

Messages Within Your Application
Having an application send a message to itself is easy. Just use the Perform(), SendMessage(),
or PostMessage() function and use a message value in the range of WM_USER + 100 through
$7FFF (the value Windows reserves for user-defined messages):

const
SX_MYMESSAGE = WM_USER + 100;

begin
SomeForm.Perform(SX_MYMESSAGE, 0, 0);
{ or }
SendMessage(SomeForm.Handle, SX_MYMESSAGE, 0, 0);

Development Essentials

PART I
144

05 chpt_03.qxd 11/19/01 12:10 PM Page 144

{ or }
PostMessage(SomeForm.Handle, SX_MYMESSAGE, 0, 0);
.
.
.

end;

Then create a normal message-handling procedure for this message in the form in which you
want to handle the message:

TForm1 = class(TForm)
.
.
.

private
procedure SXMyMessage(var Msg: TMessage); message SX_MYMESSAGE;

end;

procedure TForm1.SXMyMessage(var Msg: TMessage);
begin
MessageDlg(‘She turned me into a newt!’, mtInformation, [mbOk], 0);

end;

As you can see, there’s little difference between using a user-defined message in your applica-
tion and handling any standard Windows message. The real key here is to start at WM_USER +
100 for interapplication messages and to give each message a name that has something to do
with its purpose.

Adventures in Messaging

CHAPTER 3

3

A
D

V
EN

TU
R

ES
IN

M
ESSA

G
IN

G
145

Never send messages with values of WM_USER through $7FFF unless you’re sure that
the intended recipient is equipped to handle the message. Because each window can
define these values independently, the potential for bad things to happen is great
unless you keep careful tabs on which recipients you send WM_USER through $7FFF
messages to.

CAUTION

Messaging Between Applications
When you want to send messages between two or more applications, it’s usually best to use the
RegisterWindowMessage() API function in each application. This method ensures that every
application uses the same message number for a given message.

RegisterWindowMessage() accepts a null-terminated string as a parameter and returns a new
message constant in the range of $C000 through $FFFF. This means that all you have to do is

05 chpt_03.qxd 11/19/01 12:10 PM Page 145

call RegisterWindowMessage() with the same string in each application between which you
want to send messages; Windows returns the same message value for each application. The
true benefit of RegisterWindowMessage() is that because a message value for any given string
is guaranteed to be unique throughout the system, you can safely broadcast such messages to
all windows with fewer harmful side effects. It can be a bit more work to handle this kind of
message, though; because the message identifier isn’t known until runtime, you can’t use
a standard message handler procedure, and you must override a control’s WndProc() or
DefaultHandler() method or subclass an existing window procedure. A technique for han-
dling registered messages is demonstrated in Chapter 13, “Hard-Core Techniques,” of Delphi 5
Developer’s Guide, found on this book’s CD-ROM. This useful demo shows how to prevent
multiple copies of your application from being launched.

Development Essentials

PART I
146

The number returned by RegisterWindowMessage() varies between Windows sessions
and can’t be determined until runtime.

NOTE

Broadcasting Messages
TWinControl descendants can broadcast a message record to each of their owned controls—
thanks to the Broadcast() method. This technique is useful when you need to send the same
message to a group of components. For example, to send a user-defined message called um_Foo
to all of Panel1’s owned controls, use the following code:

var
M: TMessage;

begin
with M do
begin
Message := UM_FOO;
wParam := 0;
lParam := 0;
Result := 0;

end;
Panel1.Broadcast(M);

end;

Anatomy of a Message System: VCL
There’s much more to VCL’s message system than handling messages with the message direc-
tive. After a message is issued by Windows, it makes a couple of stops before reaching your
message-handling procedure (and it might make a few more stops afterward). All along the
way, you have the power to act on the message.

05 chpt_03.qxd 11/19/01 12:10 PM Page 146

For posted messages, the first stop for a Windows message in VCL is the Application.Process
Message() method, which houses the VCL main message loop. The next stop for a message
is the handler for the Application.OnMessage event. OnMessage is called as messages are
fetched from the application queue in the ProcessMessage() method. Because sent messages
aren’t queued, OnMessage won’t be called for sent messages.

For posted messages, the DispatchMessage() API is then called internally to dispatch the mes-
sage to the StdWndProc() function. For sent messages, StdWndProc() will be called directly by
Win32. StdWndProc() is an assembler function that accepts the message from Windows and
routes it to the object for which the message is intended.

The object method that receives the message is called MainWndProc(). Beginning with
MainWndProc(), you can perform any special handling of the message your program might
require. Generally, you handle a message at this point only if you don’t want a message to
go through VCL’s normal dispatching.

After leaving the MainWndProc() method, the message is routed to the object’s WndProc()
method and then on to the dispatch mechanism. The dispatch mechanism, found in the object’s
Dispatch() method, routes the message to any specific message-handling procedure that
you’ve defined or that already exists within VCL.

Then the message finally reaches your message-specific handling procedure. After flowing
through your handler and the inherited handlers you might have invoked using the inherited
keyword, the message goes to the object’s DefaultHandler() method. DefaultHandler()
performs any final message processing and then passes the message to the Windows
DefWindowProc() function or other default window procedure (such as DefMDIProc) for
any Windows default processing. Figure 3.2 shows VCL’s message-processing mechanism.

Adventures in Messaging

CHAPTER 3

3

A
D

V
EN

TU
R

ES
IN

M
ESSA

G
IN

G
147

You should always call inherited when handling messages unless you’re absolutely
certain you want to prevent normal message processing.

NOTE

Because all unhandled messages flow to DefaultHandler(), that’s usually the best
place to handle interapplication messages in which the values were obtained by way
of the RegisterWindowMessage() procedure.

TIP

05 chpt_03.qxd 11/19/01 12:10 PM Page 147

FIGURE 3.2
VCL’s message system.

To better understand VCL’s message system, create a small program that can handle a message
at the Application.OnMessage, WndProc(), message procedure, or DefaultHandler() stage.
This project is called CatchIt; its main form is shown in Figure 3.3.

Development Essentials

PART I
148

Message SomeClass WndProc

SomeClass
Dispatch

Ancestor
Message Handler

AncestorN
Message Handler

SomeClass
Message Handler

SomeClass
Default Handler

FIGURE 3.3
The main form of the CatchIt message example.

The OnClick event handlers for PostMessButton and SendMessButton are shown in the fol-
lowing code. The former uses PostMessage() to post a user-defined message to the form; the
latter uses SendMessage() to send a user-defined message to the form. To differentiate between
post and send, note that the value 1 is passed in the wParam of PostMessage() and that the
value 0 (zero) is passed for SendMessage(). Here’s the code:

procedure TMainForm.PostMessButtonClick(Sender: TObject);
{ posts message to form }
begin
PostMessage(Handle, SX_MYMESSAGE, 1, 0);

end;

05 chpt_03.qxd 11/19/01 12:10 PM Page 148

procedure TMainForm.SendMessButtonClick(Sender: TObject);
{ sends message to form }
begin
SendMessage(Handle, SX_MYMESSAGE, 0, 0); // send message to form

end;

This application provides the user with the opportunity to “eat” the message in the OnMessage
handler, WndProc() method, message-handling method, or DefaultHandler() method (that is,
to not trigger the inherited behavior and to therefore stop the message from fully circulating
through VCL’s message-handling system). Listing 3.2 shows the completed source code for the
main unit of this project, thus demonstrating the flow of messages in a Delphi application.

LISTING 3.2 The Source Code for CIMain.PAS

unit CIMain;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ExtCtrls, Menus;

const
SX_MYMESSAGE = WM_USER; // User-defined message value
MessString = ‘%s message now in %s.’; // String to alert user

type
TMainForm = class(TForm)
GroupBox1: TGroupBox;
PostMessButton: TButton;
WndProcCB: TCheckBox;
MessProcCB: TCheckBox;
DefHandCB: TCheckBox;
SendMessButton: TButton;
AppMsgCB: TCheckBox;
EatMsgCB: TCheckBox;
EatMsgGB: TGroupBox;
OnMsgRB: TRadioButton;
WndProcRB: TRadioButton;
MsgProcRB: TRadioButton;
DefHandlerRB: TRadioButton;
procedure PostMessButtonClick(Sender: TObject);
procedure SendMessButtonClick(Sender: TObject);
procedure EatMsgCBClick(Sender: TObject);
procedure FormCreate(Sender: TObject);

Adventures in Messaging

CHAPTER 3

3

A
D

V
EN

TU
R

ES
IN

M
ESSA

G
IN

G
149

05 chpt_03.qxd 11/19/01 12:10 PM Page 149

LISTING 3.2 Continued

procedure AppMsgCBClick(Sender: TObject);
private
{ Handles messages at Application level }
procedure OnAppMessage(var Msg: TMsg; var Handled: Boolean);
{ Handles messages at WndProc level }
procedure WndProc(var Msg: TMessage); override;
{ Handles message after dispatch }
procedure SXMyMessage(var Msg: TMessage); message SX_MYMESSAGE;
{ Default message handler }
procedure DefaultHandler(var Msg); override;

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

const
// strings which will indicate whether a message is sent or posted
SendPostStrings: array[0..1] of String = (‘Sent’, ‘Posted’);

procedure TMainForm.FormCreate(Sender: TObject);
{ OnCreate handler for main form }
begin
// set OnMessage to my OnAppMessage method
Application.OnMessage := OnAppMessage;
// use the Tag property of checkboxes to store a reference to their
// associated radio buttons
AppMsgCB.Tag := Longint(OnMsgRB);
WndProcCB.Tag := Longint(WndProcRB);
MessProcCB.Tag := Longint(MsgProcRB);
DefHandCB.Tag := Longint(DefHandlerRB);
// use the Tag property of radio buttons to store a reference to their
// associated checkbox
OnMsgRB.Tag := Longint(AppMsgCB);
WndProcRB.Tag := Longint(WndProcCB);
MsgProcRB.Tag := Longint(MessProcCB);
DefHandlerRB.Tag := Longint(DefHandCB);

end;

procedure TMainForm.OnAppMessage(var Msg: TMsg; var Handled: Boolean);
{ OnMessage handler for Application }

Development Essentials

PART I
150

05 chpt_03.qxd 11/19/01 12:10 PM Page 150

LISTING 3.2 Continued

begin
// check to see if message is my user-defined message
if Msg.Message = SX_MYMESSAGE then
begin
if AppMsgCB.Checked then
begin
// Let user know about the message. Set Handled flag appropriately
ShowMessage(Format(MessString, [SendPostStrings[Msg.WParam],
‘Application.OnMessage’]));

Handled := OnMsgRB.Checked;
end;

end;
end;

procedure TMainForm.WndProc(var Msg: TMessage);
{ WndProc procedure of form }
var
CallInherited: Boolean;

begin
CallInherited := True; // assume we will call the inherited
if Msg.Msg = SX_MYMESSAGE then // check for our user-defined message
begin
if WndProcCB.Checked then // if WndProcCB checkbox is checked...
begin
// Let user know about the message.
ShowMessage(Format(MessString, [SendPostStrings[Msg.WParam],
‘WndProc’]));

// Call inherited only if we are not supposed to eat the message.
CallInherited := not WndProcRB.Checked;

end;
end;
if CallInherited then inherited WndProc(Msg);

end;

procedure TMainForm.SXMyMessage(var Msg: TMessage);
{ Message procedure for user-defined message }
var
CallInherited: Boolean;

begin
CallInherited := True; // assume we will call the inherited
if MessProcCB.Checked then // if MessProcCB checkbox is checked
begin
// Let user know about the message.
ShowMessage(Format(MessString, [SendPostStrings[Msg.WParam],

Adventures in Messaging

CHAPTER 3

3

A
D

V
EN

TU
R

ES
IN

M
ESSA

G
IN

G
151

05 chpt_03.qxd 11/19/01 12:10 PM Page 151

LISTING 3.2 Continued

‘Message Procedure’]));
// Call inherited only if we are not supposed to eat the message.
CallInherited := not MsgProcRB.Checked;

end;
if CallInherited then Inherited;

end;

procedure TMainForm.DefaultHandler(var Msg);
{ Default message handler for form }
var
CallInherited: Boolean;

begin
CallInherited := True; // assume we will call the inherited
// check for our user-defined message
if TMessage(Msg).Msg = SX_MYMESSAGE then begin
if DefHandCB.Checked then // if DefHandCB checkbox is checked
begin
// Let user know about the message.
ShowMessage(Format(MessString,
[SendPostStrings[TMessage(Msg).WParam], ‘DefaultHandler’]));

// Call inherited only if we are not supposed to eat the message.
CallInherited := not DefHandlerRB.Checked;

end;
end;
if CallInherited then inherited DefaultHandler(Msg);

end;

procedure TMainForm.PostMessButtonClick(Sender: TObject);
{ posts message to form }
begin
PostMessage(Handle, SX_MYMESSAGE, 1, 0);

end;

procedure TMainForm.SendMessButtonClick(Sender: TObject);
{ sends message to form }
begin
SendMessage(Handle, SX_MYMESSAGE, 0, 0); // send message to form

end;

procedure TMainForm.AppMsgCBClick(Sender: TObject);
{ enables/disables proper radio button for checkbox click }
begin
if EatMsgCB.Checked then
begin
with TRadioButton((Sender as TCheckBox).Tag) do

Development Essentials

PART I
152

05 chpt_03.qxd 11/19/01 12:10 PM Page 152

LISTING 3.2 Continued

begin
Enabled := TCheckbox(Sender).Checked;
if not Enabled then Checked := False;

end;
end;

end;

procedure TMainForm.EatMsgCBClick(Sender: TObject);
{ enables/disables radio buttons as appropriate }
var
i: Integer;
DoEnable, EatEnabled: Boolean;

begin
// get enable/disable flag
EatEnabled := EatMsgCB.Checked;
// iterate over child controls of GroupBox in order to
// enable/disable and check/uncheck radio buttons
for i := 0 to EatMsgGB.ControlCount - 1 do
with EatMsgGB.Controls[i] as TRadioButton do
begin
DoEnable := EatEnabled;
if DoEnable then DoEnable := TCheckbox(Tag).Checked;
if not DoEnable then Checked := False;
Enabled := DoEnable;

end;
end;

end.

Adventures in Messaging

CHAPTER 3

3

A
D

V
EN

TU
R

ES
IN

M
ESSA

G
IN

G
153

Although it’s fine to use just the inherited keyword to send the message to an
inherited handler in message-handler procedures, this technique doesn’t work with
WndProc() or DefaultHandler(). With these procedures, you must also provide the
name of the inherited procedure or function, as in this example:

inherited WndProc(Msg);

CAUTION

You might have noticed that the DefaultHandler() procedure is somewhat unusual in that it
takes one untyped var parameter. That’s because DefaultHandler() assumes that the first word
in the parameter is the message number; it isn’t concerned with the rest of the information being
passed. Because of this, you typecast the parameter as a TMessage so that you can access the
message parameters.

05 chpt_03.qxd 11/19/01 12:10 PM Page 153

The Relationship Between Messages and Events
Now that you know all the ins and outs of messages, recall that this chapter began by stating
that VCL encapsulates many Windows messages in its event system. Delphi’s event system is
designed to be an easy interface into Windows messages. Many VCL events have a direct cor-
relation with WM_XXX Windows messages. Table 3.3 shows some common VCL events and the
Windows message responsible for each event.

TABLE 3.3 VCL Events and Corresponding Windows Messages

VCL Event Windows Message

OnActivate wm_Activate

OnClick wm_XButtonDown

OnCreate wm_Create

OnDblClick wm_XButtonDblClick

OnKeyDown wm_KeyDown

OnKeyPress wm_Char

OnKeyUp wm_KeyUp

OnPaint WM_PAINT

OnResize wm_Size

OnTimer wm_Timer

Table 3.3 is a good rule-of-thumb reference when you’re looking for events that correspond
directly to messages.

Development Essentials

PART I
154

Never write a message handler when you can use a predefined event to do the same
thing. Because of the contract-free nature of events, you’ll have fewer problems han-
dling events than you will handling messages.

TIP

Summary
By now, you should have a pretty clear understanding of how the Win32 messaging system
works and how VCL encapsulates that messaging system. Although Delphi’s event system is
great, knowing how messages work is essential for any serious Win32 programmer.

05 chpt_03.qxd 11/19/01 12:10 PM Page 154

IN THIS PART
4 Writing Portable Code 157

5 Multithreaded Techniques 173

6 Dynamic Link Libraries 247

Advanced Techniques
PART

II

06 part_02.qxd 11/19/01 12:11 PM Page 155

06 part_02.qxd 11/19/01 12:11 PM Page 156

CHAPTER

4
Writing Portable Code

IN THIS CHAPTER
• General Compatibility 158

• Delphi-Kylix Compatibility 161

• New Delphi 6 Features 163

• Migrating from Delphi 5 164

• Migrating from Delphi 4 165

• Migrating from Delphi 3 166

• Migrating from Delphi 2 168

• Migrating from Delphi 1 171

07 chpt_04.qxd 11/19/01 12:07 PM Page 157

If you’re upgrading to Delphi 6 from a previous version or want to maintain compatibility
among Delphi versions, this chapter is written for you. The first section of this chapter dis-
cusses general compatibility issues you will face in moving between any versions of Delphi. In
the second section, you’ll find hints and tips for maintaining compatibility between Delphi on
the Win32 platform and Kylix on the Linux platform. The remainder of the chapter highlights
the often subtle differences between the various versions and how to take these differences into
account in writing portable code or migrating between versions. Although Borland makes a
concerted effort to ensure that your code is compatible between versions, it’s understandable
that some changes have to be made in the name of progress, and certain situations require code
changes if applications are to compile and run properly under the latest version of Delphi.

General Compatibility
A number of issues affect general compatibility between the various versions of Delphi,
C++Builder, and Kylix. By making yourself aware of the support built into the compiler for
writing compatible code, as well as some of the common gotchas, you’ll be well on your way
to targeting multiple versions from a single code base.

Which Version?
Although most Delphi code will compile for all versions of the compiler, in some instances
language or VCL differences require that you write slightly differently to accomplish a given
task for each product version. Occasionally, you might need to be able to compile for multiple
versions of Delphi from one code base. For this purpose, each version of the Delphi compiler
contains a VERxxx conditional define for which you can test in your source code. Because
Borland C++Builder and Kylix also ships with new versions of the compiler, these edition also
contain this conditional define. Table 4.1 shows the conditional defines for the various versions
of the Delphi compiler.

TABLE 4.1 Conditional Defines for Compiler Versions

Product Conditional Define

Delphi 1 VER80

Delphi 2 VER90

C++Builder 1 VER95

Delphi 3 VER100

C++Builder 3 VER110

Delphi 4 VER120

C++Builder 4 VER120

Advanced Techniques

PART II
158

07 chpt_04.qxd 11/19/01 12:07 PM Page 158

TABLE 4.1 Continued

Product Conditional Define

Delphi 5 VER130

C++Builder 5 VER130

Kylix 1 VER140

Delphi 6 VER140

Using these defines, the source code you must write in order to compile for different compiler
versions would look something similar to this:

{$IFDEF VER80}
Delphi 1 code goes here

{$ENDIF}
{$IFDEF VER90}
Delphi 2 code goes here

{$ENDIF}
{$IFDEF VER95}
C++Builder 1 code goes here

{$ENDIF}
{$IFDEF VER100}
Delphi 3 code goes here

{$ENDIF}
{$IFDEF VER110}
C++Builder 3 code goes here

{$ENDIF}
{$IFDEF VER120}
Delphi 4 and C++Builder 4 code goes here

{$ENDIF}
{$IFDEF VER130}
Delphi and C++Builder 5 code goes here

{$ENDIF}
{$IFDEF VER140}
Delphi 6 and Kylix code goes here

{$ENDIF}

Writing Portable Code

CHAPTER 4

4

W
R

ITIN
G

P
O

R
TA

B
LE

C
O

D
E

159

If you’re wondering why the Delphi 1.0 compiler is considered version 8, Delphi 2 ver-
sion 9, and so on, it’s because Delphi 1.0 is considered version 8 of Borland’s Pascal
compiler. The last Turbo Pascal version was 7.0, and Delphi is the evolution of that
product line.

NOTE

07 chpt_04.qxd 11/19/01 12:07 PM Page 159

Units, Components, and Packages
The binary format of Delphi compiled units (.dcu files) tends to differ from compiler version
to compiler version. This means that if you want to use the same unit in multiple versions of
Delphi, you must have either binary units built for that specific compiler version or the source
code to those units so that they can be recompiled. Bear in mind that if you use any custom
components in your application—your own components or those developed by third parties—
you must have the source to these components. If you don’t have the version-specific binary or
the source code to a particular third-party component, contact your vendor for a version of the
component specific to your version of Delphi.

Advanced Techniques

PART II
160

This issue of compiler version versus unit file version isn’t a new situation and is the
same as C++ compiler object file versioning. If you distribute (or buy) components
without source code, you must understand that what you’re distributing or buying is
a compiler-version–specific binary file that will probably need to be revised to keep
up with subsequent compiler releases.

What’s more, the issue of DCU versioning isn’t necessarily a compiler-only issue. Even
if the compiler weren’t changed between versions, changes and enhancements to
core VCL would probably still make it necessary that units be recompiled from source.

NOTE

Delphi 3 introduced packages, the idea of multiple units stored in a single binary file. Starting
with Delphi 3, the component library became a collection of packages rather than one massive
component library DLL. Like units, packages aren’t compatible across product versions, so
you’ll need to rebuild your packages for each version of Delphi, and you’ll need to contact the
vendors of your third-party components for version-specific packages.

IDE Issues
Problems with the IDE are likely the first you’ll encounter as you migrate your applications.
Here are a few of the issues you might encounter on the way:

• Delphi debugger symbol files (RSM) are not always compatible across versions. You’ll
know you’re having this problem when you see the message “Error reading symbol
file.”. If this happens, the fix is simple: Rebuild the application.

• Starting with version 5, Delphi defaults to storing form files in text mode. If you need to
maintain DFM compatibility with earlier versions of Delphi, you’ll need to save the
forms files in binary instead. You can do this by unchecking New Forms As Text on the
Preferences page of the Environment Options dialog box.

07 chpt_04.qxd 11/19/01 12:07 PM Page 160

• Code generation when importing and generating type libraries often changes from ver-
sion to version. As of Delphi 5, you can customize type-library–to–Pascal symbol name
mapping by editing the tlibimp.sym file. For directions, see the “Mapping Symbol
Names in the Type Library” topic in the online help.

Delphi-Kylix Compatibility
If you endeavor to build applications with any degree of portability between Delphi and Kylix,
the most important thing to realize is that VCL is a Windows-specific technology. If you want
to build cross platform applications and components, you should use the Component Library
for X-platform (CLX), which is currently supported until Delphi 6 and Kylix. CLX is described
in greater detail in Chapters 10, “Component Architecture: VCL and CLX,” and 13, “CLX
Component Development.” CLX can be broken down into four major components:

• BaseCLX, which contains the core portions of the component framework.

• DataCLX, which employs the dbExpress technology to provide efficient, lightweight
data access and management. dbExpress is described in detail in Chapter 8, “Database
Development with dbExpress.”

• NetCLX, which provides components and wizards for creating network clients and
servers. Perhaps most notably, NetCLX provides a very robust Web development appli-
cation framework that encompasses and includes the WebBroker technology from previ-
ous versions. NetCLX allows targeting of Linux or Windows clients and servers.

• VisualCLX, which provides the cross-platform GUI capability. VisualCLX is externally
very similar to VCL, but internally uses Troll Tech’s (http://www.trolltech.com) Qt
library (as opposed to the Win32 API like in VCL). Qt is a cross-platform GUI frame-
work that enables developers to target a variety of platforms, including Windows and
Linux.

When you create a new CLX application using File, New, CLX Application and view the uses
clause of the resulting main form unit, you will see a number of unit names beginning with the
letter Q, such as QGraphics, QControls, QForms, and so on. These units are similar in content
and function to the similarly named VCL units, although they are cross platform.

Writing Portable Code

CHAPTER 4

4

W
R

ITIN
G

P
O

R
TA

B
LE

C
O

D
E

161

Although the current versions of CLX support only Windows and Kylix, it is designed
such that it can be extended relatively easily to other platforms. Qt, for example, sup-
ports about a dozen different platforms.

NOTE

07 chpt_04.qxd 11/19/01 12:07 PM Page 161

Not in Linux
Of course, you won’t find the Windows-specific technologies you might have grown to know
and love on the Linux platform. This means that technologies such as ADO, COM/COM+,
BDE, and MAPI (among others) have no place in a cross-platform application. You should
therefore avoid using units such as Windows, ComObj, ComServ, ActiveX, and AdoDb and plat-
form-specific functions such as any WIn32 API call, RaiseLastWin32Error(), Win32Check(),
and so on. Additionally, there are a number of technologies found in Delphi 6 that aren’t avail-
able in Kylix 1 but will likely be found in future versions of Kylix. These include DataSnap,
BizSnap (SOAP), and WebSnap technologies.

Compiler/Language Features
Although the Delphi and Kylix compilers both target the x86 processor architecture, there are a
number of key differences in the compiler that you should be aware of in building portable
applications.

LINUX Define
The Kylix compiler defines the LINUX conditional, whereas Delphi defines MSWINDOWS and
WIN32, so that you can IFDEF your code in order to maintain platform-specific code in a single
unit. Such code would like something like this:

{$IFDEF LINUX}
// Linux-specific code goes here

{$ENDIF}
{$IFDEF MSWINDOWS}
// Windows-specific code goes here

{$ENDIF}

PIC Format
The Linux compiler produces executables in Position Independent Code (PIC) format, which is
a slight variation on the type of code produced by the Windows compiler. Although this change
has little or no effect if you’re just writing Pascal code, it can have a dramatic impact on exter-
nally linked assembler modules or built-in assembler. Most notably, PIC requires access to all
global data to be relative to the EBX register, so the following line in Delphi

mov eax, SomeVar

would be written for PIC as

mov eax [ebx].SomeVar

Because of the heavy reliance on the EBX register, PIC also requires that the value of EBX be
preserved across function calls and restored prior to external calls. If you want to IFDEF your

Advanced Techniques

PART II
162

07 chpt_04.qxd 11/19/01 12:07 PM Page 162

built-in assembly code for PIC and non-PIC, the compiler also defines a PIC conditional for
which you can check:

{$IFDEF PIC}
// PIC specific code goes here

{$ENDIF}

Calling Conventions
It’s worth noting that stdcall and safecall calling conventions don’t exist in Kylix. These
directives simply map to the cdecl calling convention in Kylix. This is generally only an issue
if you have assembly code that depends on parameter order and stack cleanup.

Platform-isms
In general, you should be wary of hard-coding platform-isms, or platform-specifics idioms into
your applications. Some items in the vein to keep in mind include

• The notion of drive letters does not exist on Linux.

• The directory separator is a backslash (\) on Windows and a forward slash (/) on Linux.
Delphi’s PathSeparator constant will show you which to use.

• The directory list delimiter is a semicolon (;) on Windows and a colon (:) on Linux.

• UNC pathnames exist only on Windows.

• Avoid depending on platform-specific directories, such as c:\winnt\system32 or
/usr/bin.

New Delphi 6 Features
A number of nice additions to Delphi 6, particularly in the language and compiler area, can make
application development go more smoothly. However, it’s important to bear in mind that employ-
ing these features might mean that your code will not compile in earlier product versions.

Variants
Rather than being implemented within the compiler, support for the Variant data type has
been opened up to support user-installable types. This support is found in the Variants unit.

Enum Values
In an effort to achieve greater compatibility with C++, the compiler now supports the assign-
ment of values to elements of an enumerated type, as shown here:

type
TFoo = (fTwo=2, fFour=4, fSix=6, fEight=8);

Writing Portable Code

CHAPTER 4

4

W
R

ITIN
G

P
O

R
TA

B
LE

C
O

D
E

163

07 chpt_04.qxd 11/19/01 12:07 PM Page 163

$IF Directive
One particular feature that is a long time coming is the addition of the $IF and $ELSEIF direc-
tives that allow you to check for defined symbols and to perform Boolean comparisons against
constants, as shown here:

{$IF Defined(MSWINDOWS) and SomeConstant >= 6}
// do something

{$ELSEIF SomeConstant < 2}
// do something else

{$ELSE}
// if all else fails

{$ENDIF}

Potential Binary DFM Incompatibility
The mechanism that saves and loads Delphi forms from stream has been modified, particularly
as it relates to high ASCII characters (those higher than 127). Binary DFMs containing high
ASCII characters might not be readable in earlier Delphi versions. A workaround would be to
use the text version of the form.

Migrating from Delphi 5
Although compatibility between Delphi 5 and 6 is quite good, there are a few minor issues you
should be aware of as you make the move.

Writable Typed Constants
The default state of the $J compiler switch (also known as $WRITEABLECONST) is now off,
where it was on in previous versions. This means that attempts to assign to typed constants will
raise a compiler error unless you explicitly enable this behavior using $J+.

Cardinal Unary Negation
Prior to Delphi 6, Delphi used 32-bit arithmetic to handle unary negation of Cardinal type
numbers. This could lead to unexpected results. Consider the following bit of code:

var
c: Cardinal;
i: Int64;

begin
c := 4294967294;
i := -c;
WriteLn(i);

end;

Advanced Techniques

PART II
164

07 chpt_04.qxd 11/19/01 12:07 PM Page 164

In Delphi 5, the value of i displayed would be 2. Although this behavior is incorrect, you might
have code that relies on this behavior. If so, you should know that Delphi 6 has corrected this
issue by promoting the Cardinal to an Int64 prior to performing the negation. The final value of
i displayed in Delphi 6 is 4294967294.

Migrating from Delphi 4
This section highlights some of the issues you can expect if you’re moving up from Delphi 4.

RTL Issues
The only issue you’re likely to come across here deals with the setting of the floating-point unit
(FPU) control word in DLLs. Prior to version 5, DLLs would set the FPU control word, thereby
changing the setting established by the host application. Now, DLL startup code no longer sets
the FPU control word. If you need to set the control word to ensure some specific behavior by
the FPU, you can do it manually using the Set8087CW() function in the System unit.

VCL Issues
There are a number of VCL issues that you may come across, but most involve some simple
edits as a means to get your project on track. Here’s a list of these issues:

• The type of properties that represent an index into an image list has changed from
Integer to TImageIndex type between Delphi 4 and 5. TImageIndex is a strongly typed
Integer defined in the ImgList unit as

TImageIndex = type Integer;

This should only cause problems in cases where exact type matching matters, such as
when you’re passing var parameters.

• TCustomTreeview.CustomDrawItem() added a var parameter called PaintImages of
type Boolean. If your application overrides this method, you’ll need to add this parame-
ter in order for it to compile in Delphi 5 or higher.

• If you’re invoking pop-up menus in response to WM_RBUTTONUP messages or OnMouseUp
events, you might exhibit “double” pop-up menus or no pop-up menus at all when com-
piling with Delphi 5 or later. Delphi now uses the WM_CONTEXT menu message to invoke
pop-up menus.

Internet Development Issues
If you’re developing applications with Internet support, we have some bad news and some
good news:

Writing Portable Code

CHAPTER 4

4

W
R

ITIN
G

P
O

R
TA

B
LE

C
O

D
E

165

07 chpt_04.qxd 11/19/01 12:07 PM Page 165

• The TWebBrowser component, which encapsulates the Microsoft Internet Explorer
ActiveX control, has replaced the THTML component from Netmasters. Although the
TWebBrowser control is much more feature rich, you’re faced with a good deal of rewrite
if you used THTML because the interface is totally different. If you don’t want to rewrite
your code, you can go back to the old control by importing the HTML.OCX file from the
\Info\Extras\NetManage directory on the Delphi CD-ROM.

• Packages are now supported when building ISAPI and NSAPI DLLs. You can take
advantage of this new support by replacing HTTPApp in your uses clause with
WebBroker.

Database Issues
A few database issues might trip you up as you migrate from Delphi 4. These involve some
renaming of existing symbols and the new DataSnap architecture (formerly called MIDAS):

• The type of the TDatabase.OnLogin event has been renamed TDatabaseLoginEvent
from TLoginEvent. This is unlikely to cause problems, but you might run into troubles if
you’re creating and assigning to OnLogin in code.

• The global FMTBCDToCurr() and CurrToFMTBCD() routines have been replaced by the
new BCDToCurr and CurrToBCD routines (and the corresponding protected methods on
TDataSet have been replaced by the protected and undocumented DataConvert method).

• DataSnap (formerly MIDAS) has undergone some significant changes since Delphi 4. See
Chapter 21, “DataSnap Development,” for information on the changes and new features.

Migrating from Delphi 3
Although there aren’t a great deal of compatibility issues between Delphi 3 and later versions,
the few issues that do exist can be potentially more problematic than porting from any other
previous version of Delphi to the next. Most of these issues revolve around new types and the
changing behavior of certain existing types.

Unsigned 32-bit Integers
Delphi 4 introduced the LongWord type, which is an unsigned 32-bit integer. In previous ver-
sions of Delphi, the largest integer type was a signed 32-bit integer. Because of this, many
of the types that you would expect to be unsigned, such as DWORD, UINT, HResult, HWND,
HINSTANCE, and other handle types, were defined simply as Integers. In Delphi 4 and later,
these types are redefined as LongWords. Additionally, the Cardinal type, which was previously
a subrange type of 0..MaxInt, is now also a LongWord. Although all this LongWord business
won’t cause problems in most circumstances, there are several problematic cases you should
know about:

Advanced Techniques

PART II
166

07 chpt_04.qxd 11/19/01 12:07 PM Page 166

• Integer and LongWord are not var-parameter compatible. Therefore, you cannot pass a
LongWord in a var Integer parameter, and vice versa. The compiler will give you an
error in this case, so you’ll need to change the parameter or variable type or typecast to
get around this problem.

• Literal constants having the value of $80000000 through $FFFFFFFF are considered
LongWords. You must typecast such a literal to an Integer if you want to assign it to
an Integer type. Here’s an example:

var
I: Integer;

begin
I := Integer($FFFFFFFF);

• Similarly, any literal having a negative value is out of range for a LongWord, and you’ll
need to typecast to assign a negative literal to a LongWord. Here’s an example:

var
L: LongWord;

begin
L := LongWord(-1);

• If you mix signed and unsigned integers in arithmetic or comparison operations, the
compiler will automatically promote each operand to Int64 in order to perform the arith-
metic or comparison. This can cause some very difficult-to-find bugs. Consider the fol-
lowing code:

var
I: Integer;
D: DWORD;

begin
I := -1;
D := $FFFFFFFF;
if I = D then DoSomething;

Under Delphi 3, DoSomething would execute because -1 and $FFFFFFFF are the same
value when contained in an Integer. However, because Delphi 4 and later will promote
each operand to Int64 in order to perform the most accurate comparison, the generated
code ends up comparing $FFFFFFFFFFFFFFFF against $00000000FFFFFFFF, which is defi-
nitely not what’s intended. In this case, DoSomething will not execute.

Writing Portable Code

CHAPTER 4

4

W
R

ITIN
G

P
O

R
TA

B
LE

C
O

D
E

167

The compiler in Delphi 4 and later generates a number of new hints, warnings, and
errors that deal with these types of compatibility problems and implicit type promo-
tions. Make sure that you turn on hints and warnings when compiling in order to let
the compiler help you write clean code.

TIP

07 chpt_04.qxd 11/19/01 12:07 PM Page 167

64-Bit Integers
Delphi 4 also introduced a new type called Int64, which is a signed 64-bit integer. This new
type is now used in the RTL and VCL where appropriate. For example, the Trunc() and
Round() standard functions now return Int64, and there are new versions of IntToStr(),
IntToHex(), and related functions that deal with Int64.

The Real Type
Starting with Delphi 4, the Real type became an alias for the Double type. In previous versions of
Delphi and Turbo Pascal, Real was a six-byte, floating-point type. This shouldn’t pose any prob-
lems for your code unless you have Reals written to some external storage (such as a file of
record) with an earlier version or you have code that depends on the organization of the Real in
memory. You can force Real to be the old 6-byte type by including the {$REALCOMPATIBILITY
ON} directive in the units you want to use the old behavior. If all you need to do is force a limited
number of instances of the Real type to use the old behavior, you can use the Real48 type
instead.

Migrating from Delphi 2
You’ll find that a high degree of compatibility between Delphi 2 and the later versions means a
smooth transition into a more up-to-date Delphi version. However, some changes have been
made since Delphi 2, both in the language and in VCL, that you’ll need to be aware of to
migrate to the latest version and take full advantage of its power.

Changes to Boolean Types
The implementation of the Delphi 2 Boolean types (Boolean, ByteBool, WordBool, LongBool)
dictated that True was ordinal value 1 and False ordinal value 0. To provide better compatibility
with the Win32 API, the implementations of ByteBool, WordBool, and LongBool have changed
slightly; the ordinal value of True is now -1 ($FF, $FFFF, and $FFFFFFFF, respectively). Note
that no change was made to the Boolean type. These changes have the potential to cause prob-
lems in your code—but only if you depend on the ordinal values of these types. For example,
consider the following declaration:

var
A: array[LongBool] of Integer;

This code is quite harmless under Delphi 2; it declares an array[False..True] (or [0..1]) of
Integer, for a total of three elements. Under Delphi 3 and later, however, this declaration can
cause some very unexpected results. Because True is defined as $FFFFFFFF for a LongBool, the
declaration boils down to array[0..$FFFFFFFF] of Integer, or an array of 4 billion
Integers! To avoid this problem, use the Boolean type as the array index.

Advanced Techniques

PART II
168

07 chpt_04.qxd 11/19/01 12:07 PM Page 168

Ironically, this change was necessary because a disturbing number of ActiveX controls and
control containers (such Visual Basic) test BOOLs by checking for -1 rather than testing for a
zero or nonzero value.

Writing Portable Code

CHAPTER 4

4

W
R

ITIN
G

P
O

R
TA

B
LE

C
O

D
E

169

To help ensure portability and to avoid bugs, never write code like this:

if BoolVar = True then ...

Instead, always test Boolean types like this:

if BoolVar then ...

TIP

ResourceString
If your application uses string resources, consider taking advantage of ResourceStrings as
described in Chapter 2, “The Object Pascal Language.” Although this won’t improve the effi-
ciency of your application in terms of size or speed, it will make language translation easier.
ResourceStrings and the related topic of resource DLLs are required to be able to write appli-
cations displaying different language strings but have them all running on the same core VCL
package.

RTL Changes
Several changes made to the runtime library (RTL) after Delphi 2 might cause problems as you
migrate your applications. First, the meaning of the HInstance global variable has changed
slightly: HInstance contains the instance handle of the current DLL, EXE, or package. Use the
new MainInstance global variable when you want to obtain the instance handle of the main
application.

The second significant change pertains to the IsLibrary global. In Delphi 2, you could check
the value of IsLibrary to determine whether your code was executing within the context of
a DLL or EXE. IsLibrary isn’t package aware, however, so you can no longer depend on
IsLibrary to be accurate, depending on whether it’s called from an EXE, DLL, or a module
within a package. Instead, you should use the ModuleIsLib global, which returns True when
called within the context of a DLL or package. You can use this in combination with the
ModuleIsPackage global to distinguish between a DLL and a package.

TCustomForm
The Delphi 3 VCL introduced a new class between TScrollingWinControl and TForm called
TCustomForm. In itself, that shouldn’t pose a problem for you in migrating your applications

07 chpt_04.qxd 11/19/01 12:07 PM Page 169

from Delphi 2; however, if you have any code that manipulates instances of TForm, you might
need to update it so that it manipulates TCustomForms instead of TForms. Some examples of
these are calls to GetParentForm(), ValidParentForm(), and any usage of the TDesigner class.

Advanced Techniques

PART II
170

The semantics for GetParentForm(), ValidParentForm(), and other VCL methods that
return Parent pointers have changed slightly from Delphi 2. These routines can now
return nil, even though your component has a parent window context in which to
draw. For example, when your component is encapsulated as an ActiveX control, it
might have a ParentWindow, but not a Parent control. This means that you must
watch out for Delphi 2 code that does this:

with GetParentForm(xx) do ...

GetParentForm() can now return nil depending on how your component is being
contained.

CAUTION

GetChildren()
Component writers, be aware that the declaration of TComponent.GetChildren() has changed
to read as follows:

procedure GetChildren(Proc: TGetChildProc; Root: TComponent); dynamic;

The new Root parameter holds the component’s root owner—that is, the component obtained
by walking up the chain of the component’s owners until Owner is nil.

Automation Servers
The code required for automation has changed significantly from Delphi 2. Chapter 15, “COM
Development,” describes the latest process of creating Automation servers in Delphi. Rather than
describe the details of the differences here, suffice it to say that you should never mix the Delphi
2 style of creating Automation servers with the more recent style found in Delphi 3 and later.

In Delphi 2, automation is facilitated through the infrastructure provided in the OleAuto and
Ole2 units. These units are present in later releases of Delphi only for backward compatibility,
and you shouldn’t use them for new projects. Now the same functionality is provided in the
ComObj, ComServ, and ActiveX units. You should never mix the former units with the latter in
the same project.

07 chpt_04.qxd 11/19/01 12:07 PM Page 170

Migrating from Delphi 1
If you’re lucky enough to still be maintaining code that must be compiled and run under both
16 and 32-bit Windows, you have our condolences. There are numerous points of incompatibil-
ity between Delphi 1 and later versions, ranging from most of the basic data types to VCL to
the Windows API. Because of the relatively small number of developers who continue to main-
tain and develop 16-bit applications, that information isn’t in the text of this book, but you’ll
find it in Chapter 15 of the electronic copy of Delphi 5 Developer’s Guide on the CD accom-
panying this book.

Summary
Armed with the information provided by this chapter, you should be able to migrate your pro-
jects smoothly from any previous version of Delphi to Delphi 6. Also, with a bit of work,
you’ll be able to maintain projects that work with multiple versions of Delphi.

Writing Portable Code

CHAPTER 4

4

W
R

ITIN
G

P
O

R
TA

B
LE

C
O

D
E

171

07 chpt_04.qxd 11/19/01 12:07 PM Page 171

07 chpt_04.qxd 11/19/01 12:07 PM Page 172

CHAPTERCHAPTER

5
Multithreaded Techniques

IN THIS CHAPTER
• Threads Explained 174

• The TThread Object 176

• Managing Multiple Threads 192

• A Sample Multithreaded Application 210

• Multithreading BDE Access 227

• Multithreaded Graphics 233

• Fibers 237

08 chpt_05.qxd 11/19/01 12:14 PM Page 173

The Win32 operating system provides you with the capability to have multiple threads of exe-
cution in your applications. Arguably the single most important benefit Win32 has over 16-bit
Windows, this feature provides the means for performing different types of processing simulta-
neously in your application. This is one of the primary reasons for upgrading to a 32-bit ver-
sion of Delphi, and this chapter gives you all the details on how to get the most out of threads
in your applications.

Threads Explained
A thread is an operating system object that represents a path of code execution within a partic-
ular process. Every Win32 application has at least one thread—often called the primary thread
or default thread—but applications are free to create other threads to perform other tasks.

Threads provide a means for running many distinct code routines simultaneously. Of course,
unless you have more than one CPU in your computer, two threads can’t truly run simultane-
ously. However, each thread is scheduled fractions of seconds of time by the operating system
in such a way as to give the feeling that many threads are running simultaneously.

Advanced Techniques

PART II
174

Threads aren’t and never will be supported under 16-bit Windows. This means that
any 32-bit Delphi code you write using threads will never be backward compatible to
Delphi 1. Keep this in mind if you still need to develop 16-bit compatible applications.

TIP

Types of Multitasking
The notion of threads is much different from the style of multitasking supported under 16-bit
Windows platforms. You might hear people talk about Win32 as a preemptive multitasking
operating system, whereas Windows 3.1 is a cooperative multitasking environment.

The key difference here is that under a preemptive multitasking environment, the operating
system is responsible for managing which thread executes when. When execution of thread one
is stopped in order for thread two to receive some CPU cycles, thread one is said to have been
preempted. If the code that one thread is executing happens to put itself into an infinite loop,
it’s usually not a tragic situation because the operating system will continue to schedule time
for all the other threads.

Under Windows 3.1, the application developer is responsible for giving control back to
Windows at points during application execution. Failure of an application to do so causes the
operating environment to appear locked up, and we all know what a painful experience that can
be. If you take a moment to think about it, it’s slightly amusing that the very foundation of 16-

08 chpt_05.qxd 11/19/01 3:08 PM Page 174

bit Windows depends on all applications behaving themselves and not putting themselves into
infinite loops, recursion, or any other unneighborly situation. Because all applications must
cooperate for Windows to work correctly, this type of multitasking is referred to as
cooperative.

Using Multiple Threads in Delphi Applications
It’s no secret that threads represent a serious boon for Windows programmers. You can create
secondary threads in your applications anywhere that it’s appropriate to do some sort of back-
ground processing. Calculating cells in a spreadsheet or spooling a word processing document
to the printer are examples of situations in which a thread would commonly be used. The goal
of the developer will most often be to perform necessary background processing while still
providing the best possible response time for the user interface.

Most of VCL has a built-in assumption that it’s being accessed by only one thread at any given
time. Although this limitation is especially apparent in the user interface portions of VCL, it’s
important to note that even many non-UI portions of VCL are not thread-safe.

Non-UI VCL
Actually, very few areas of VCL are guaranteed to be thread-safe. Perhaps the most notable
among these thread-safe areas is VCL’s property streaming mechanism, which ensures that
component streams can be effectively read and written by multiple threads. Remember that
even very basic classes in VCL, such as TList, are not designed to be manipulated from multi-
ple simultaneous threads. In some cases, VCL provides thread-safe alternatives that you can
use in cases where you need them. For example, use a TThreadList in place of a TList when
the list will be subject to manipulation by multiple threads.

UI VCL
VCL requires that all user interface control happens within the context of an application’s pri-
mary thread (the exception is the thread-safe TCanvas, which is explained later in this chapter).
Of course, techniques are available to update the user interface from a secondary thread (which
we discuss later), but this limitation essentially forces you to use threads a bit more judiciously
than you might do otherwise. The examples given in this chapter show some ideal uses for
multiple threads in Delphi applications.

Misuse of Threads
Too much of a good thing can be bad, and that’s definitely true in the case of threads. Even
though threads can help to solve some of the problems you might have from an application
design standpoint, they do introduce a whole new set of problems. For example, suppose that
you’re writing an integrated development environment, and you want the compiler to execute

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

175

08 chpt_05.qxd 11/19/01 3:08 PM Page 175

in its own thread so the programmer will be free to continue work on the application while the
program compiles. The problem here is this: What if the programmer changes a file that the
compiler is in the middle of compiling? There are a number of solutions to this problem, such
as making a temporary copy of the file while the compile continues or preventing the user from
editing not-yet-compiled files. The point is simply that threads aren’t a panacea; although they
solve some development problems, they invariably introduce others. What’s more, bugs
because of threading problems are also much, much harder to debug because threading prob-
lems are often time sensitive. Designing and implementing thread-safe code is also more diffi-
cult because you have a lot more factors to consider.

The TThread Object
Delphi encapsulates the API thread object into an Object Pascal object called TThread.
Although TThread encapsulates almost all the commonly used thread API functions into one
discrete object, there are some points—particularly those dealing with thread synchroniza-
tion—in which you have to use the API. In this section, you learn how the TThread object
works and how to use it in your applications.

TThread Basics
The TThread object is found in the Classes unit and is defined as follows:

TThread = class
private
FHandle: THandle;

{$IFDEF MSWINDOWS}
FThreadID: THandle;

{$ENDIF}
{$IFDEF LINUX}

// ** FThreadID is not THandle in Linux **
FThreadID: Cardinal;
FCreateSuspendedSem: TSemaphore;
FInitialSuspendDone: Boolean;

{$ENDIF}
FCreateSuspended: Boolean;
FTerminated: Boolean;
FSuspended: Boolean;
FFreeOnTerminate: Boolean;
FFinished: Boolean;
FReturnValue: Integer;
FOnTerminate: TNotifyEvent;
FMethod: TThreadMethod;
FSynchronizeException: TObject;
FFatalException: TObject;

Advanced Techniques

PART II
176

08 chpt_05.qxd 11/19/01 12:14 PM Page 176

procedure CheckThreadError(ErrCode: Integer); overload;
procedure CheckThreadError(Success: Boolean); overload;
procedure CallOnTerminate;

{$IFDEF MSWINDOWS}
function GetPriority: TThreadPriority;
procedure SetPriority(Value: TThreadPriority);
procedure SetSuspended(Value: Boolean);

{$ENDIF}
{$IFDEF LINUX}

// ** Priority is an Integer value in Linux
function GetPriority: Integer;
procedure SetPriority(Value: Integer);
function GetPolicy: Integer;
procedure SetPolicy(Value: Integer);
procedure SetSuspended(Value: Boolean);

{$ENDIF}
protected
procedure DoTerminate; virtual;
procedure Execute; virtual; abstract;
procedure Synchronize(Method: TThreadMethod);
property ReturnValue: Integer read FReturnValue write FReturnValue;
property Terminated: Boolean read FTerminated;

public
constructor Create(CreateSuspended: Boolean);
destructor Destroy; override;
procedure AfterConstruction; override;
procedure Resume;
procedure Suspend;
procedure Terminate;
function WaitFor: LongWord;
property FatalException: TObject read FFatalException;
property FreeOnTerminate: Boolean read FFreeOnTerminate
write FFreeOnTerminate;

property Handle: THandle read FHandle;
{$IFDEF MSWINDOWS}

property Priority: TThreadPriority read GetPriority write SetPriority;
{$ENDIF}
{$IFDEF LINUX}

// ** Priority is an Integer **
property Priority: Integer read GetPriority write SetPriority;
property Policy: Integer read GetPolicy write SetPolicy;

{$ENDIF}
property Suspended: Boolean read FSuspended write SetSuspended;

{$IFDEF MSWINDOWS}
property ThreadID: THandle read FThreadID;

{$ENDIF}

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

177

08 chpt_05.qxd 11/19/01 12:14 PM Page 177

{$IFDEF LINUX}
// ** ThreadId is Cardinal **
property ThreadID: Cardinal read FThreadID;

{$ENDIF}
property OnTerminate: TNotifyEvent read FOnTerminate write FOnTerminate;

end;

As you can tell from the declaration, TThread is a direct descendant of TObject and therefore
isn’t a component. Looking at all the IFDEFs in the code, you can also tell that TThread is
designed to be fairly compatible between Delphi and Kylix, albeit with a few differences. You
might further notice that the TThread.Execute() method is abstract. This means that the
TThread class itself is abstract, so you will never create an instance of TThread itself. You will
only create instances of TThread descendants. Speaking of which, the most straightforward
way to create a TThread descendant is to select Thread Object from the New Items dialog box
provided by the File, New Menu option. The New Items dialog box is shown in Figure 5.1.

Advanced Techniques

PART II
178

FIGURE 5.1
The Thread Object item in the New Items dialog box.

After choosing Thread Object from the New Items dialog box, you’ll be presented with a dia-
log box that prompts you to enter a name for the new object. You could enter TTestThread, for
example. Delphi will then create a new unit that contains your object. Your object will initially
be defined as follows:

type
TTestThread = class(TThread)
private
{ Private declarations }

protected
procedure Execute; override;

end;

08 chpt_05.qxd 11/19/01 12:14 PM Page 178

As you can see, the only method that you must override in order to create a functional descen-
dant of TThread is the Execute() method. Suppose, for example, that you want to perform a
complex calculation within TTestThread. In that case, you could define its Execute() method
as follows:

procedure TTestThread.Execute;
var
i, Answer: integer;

begin
Answer := 0;
for i := 1 to 2000000 do
inc(Answer, Round(Abs(Sin(Sqrt(i)))));

end;

Admittedly, the equation is contrived, but it still illustrates the point in this case because the
sole purpose of this equation is to take a relatively long time to execute.

You can now execute this sample thread by calling its Create() constructor. For now, you can
do this from a button click in the main form, as shown in the following code (remember to
include the unit containing TTestThread in the uses clause of the unit containing TForm1 to
avoid a compiler error):

procedure TForm1.Button1Click(Sender: TObject);
var
NewThread: TTestThread;

begin
NewThread := TTestThread.Create(False);

end;

If you run the application and click the button, you’ll notice that you can still manipulate the
form by moving it or resizing it while the calculation goes on in the background.

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

179

The single Boolean parameter passed to TThread’s Create() constructor is called
CreateSuspended, and it indicates whether to start the thread in a suspended state. If
this parameter is False, the object’s Execute() method will automatically be called fol-
lowing Create(). If this parameter is True, you must call TThread’s Resume() method at
some point to actually start the thread running. This will cause the Execute() method
to be invoked at that time. You would set CreateSuspended to True if you needed to
set additional properties on your thread object before allowing it to run. Setting the
properties after the thread is running would be asking for trouble.

To go a little deeper, the constructor of Create() calls the BeginThread() Delphi
Runtime Library (RTL) function, which calls the CreateThread() API function in order
to create the new thread. The value of the CreateSuspended parameter indicates
whether to pass the CREATE_SUSPENDED flag to CreateThread().

NOTE

08 chpt_05.qxd 11/19/01 12:14 PM Page 179

Thread Instances
Going back to the Execute() method for the TTestThread object, notice that it contains a local
variable called i. Consider what might happen to i if you create two instances of TTestThread.
Does the value for one thread overwrite the value for the other? Does the first thread take
precedence? Does it blow up? The answers are no, no, and no. Win32 maintains a separate
stack for each thread executing in the system. This means that as you create multiple instances
of the TTestThread object, each one keeps its own copy of i on its own stack. Therefore, all
the threads will operate independently of one another in that respect.

An important distinction to make, however, is that this notion of the same variable operating
independently in each thread doesn’t carry over to global variables. This topic is explored in
detail in the “Thread-Local Storage” and “Thread Synchronization” sections, later in this
chapter.

Thread Termination
A TThread is considered terminated when the Execute() method has finished executing. At
that point, the EndThread() Delphi standard procedure is called, which in turn calls the
ExitThread() API procedure. ExitThread() properly disposes of the thread’s stack and deal-
locates the API thread object. This cleans up the thread as far as the API is concerned.

You also need to ensure that the Object Pascal object is destroyed when you’re finished using a
TThread object. This will ensure that all memory occupied by that object has been properly
disposed of. Although this will automatically happen when your process terminates, you might
want to dispose of the object earlier so that your application doesn’t leak memory as it runs.
The easiest way to ensure that the TThread object is disposed of is to set its FreeOnTerminate
property to True. This can be done any time before the Execute() method finishes executing.
For example, you could do this for the TTestThread object by setting the property in the
Execute() method as follows:

procedure TTestThread.Execute;
var
i: integer;

begin
FreeOnTerminate := True;
for i := 1 to 2000000 do
inc(Answer, Round(Abs(Sin(Sqrt(i)))));

end;

The TThread object also has an OnTerminate event that’s called when the thread terminates.
It’s also acceptable to free the TThread object from within a handler for this event.

Advanced Techniques

PART II
180

08 chpt_05.qxd 11/19/01 12:14 PM Page 180

It’s also important to note that your thread’s Execute() method is responsible for checking the
status of the Terminated property to determine the need to make an earlier exit. Although this
means one more thing you must worry about when working with threads, the flip side is that
this type of architecture ensures that the rug isn’t pulled out from under you, and that you’ll be
able to perform any necessary cleanup on thread termination. To add this code to the Execute()
method of TTestThread is rather simple, and the addition is shown here:

procedure TTestThread.Execute;
var
i: integer;

begin
FreeOnTerminate := True;
for i := 1 to 2000000 do begin
if Terminated then Break;
inc(Answer, Round(Abs(Sin(Sqrt(i)))));

end;
end;

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

181

The OnTerminate event of TThread is called from the context of your application’s
main thread. This means that you can feel free to access VCL properties and methods
from within a handler for this event without using the Synchronize() method, as
described in the following section.

NOTE

In case of emergency, you can also use the Win32 API TerminateThread() function to
terminate an executing thread. You should do this only when no other options exist,
such as when a thread gets caught in an endless loop and stops responding. This
function is defined as follows:

function TerminateThread(hThread: THandle; dwExitCode: DWORD);

The Handle property of TThread provides the API thread handle, so you could call this
function with syntax similar to that shown here:

TerminateThread(MyHosedThread.Handle, 0);

If you choose to use this function, you should be wary of the negative side effects it
will cause. First, this function behaves differently under Windows NT/2000 and
Windows 95/98. Under Windows 95/98, TerminateThread() disposes of the stack

CAUTION

continues

08 chpt_05.qxd 11/19/01 12:14 PM Page 181

Synchronizing with VCL
As mentioned several times earlier in this chapter, you should only access VCL properties or
methods from the application’s primary thread. This means that any code that accesses or
updates your application’s user interface should be executed from the context of the primary
thread. The disadvantages of this architecture are obvious, and this requirement might seem
rather limiting on the surface, but it actually has some redeeming advantages that you should
know about.

Advantages of a Single-Threaded User Interface
First, it greatly reduces the complexity of your application to have only one thread accessing
the user interface. Win32 requires that each thread that creates a window have its own message
loop using the GetMessage() function. As you might imagine, having messages coming into
your application from a variety of sources can make it extremely difficult to debug. Because an
application’s message queue provides a means for serializing input—fully processing one con-
dition before moving on to the next—you can depend in most cases on certain messages com-
ing before or after others. Adding another message loop throws this serialization of input out
the door, thereby opening you up to potential synchronization problems and possibly introduc-
ing a need for complex synchronization code.

Additionally, because VCL can depend on the fact that it will be accessed by only one thread
at any given time, the need for code to synchronize multiple threads inside VCL is obviated.
The net result of this is better overall performance of your application due to a more stream-
lined architecture.

The Synchronize() Method
TThread provides a method called Synchronize() that allows for some of its own methods to
be executed from the application’s primary thread. Synchronize() is defined as follows:

procedure Synchronize(Method: TThreadMethod);

Advanced Techniques

PART II
182

associated with the thread; under Windows NT/2000, the stack sticks around until the
process is terminated. Second, on all Win32 operating systems, TerminateThread()
simply halts execution, wherever it might be, and doesn’t allow try..finally blocks
to clean up resources. This means that files opened by the thread wouldn’t be closed,
memory allocated by the thread wouldn’t be freed, and so forth. Also, DLLs loaded
by your process won’t be notified when a thread destroyed with TerminateThread()
goes away, and this might cause problems when the DLL closes. See Chapter 6,
“Dynamic Link Libraries,” for more information on thread notifications in DLLs.

08 chpt_05.qxd 11/19/01 12:14 PM Page 182

Its Method parameter is of type TThreadMethod (which means a procedural method that takes
no parameter), which is defined as follows:

type
TThreadMethod = procedure of object;

The method you pass as the Method parameter is the one that’s then executed from the applica-
tion’s primary thread. Going back to the TTestThread example, suppose you want to display
the result in an edit control on the main form. You could do this by introducing to TTestThread
a method that makes the necessary change to the edit control’s Text property and calling that
method by using Synchronize().

In this case, suppose this method is called GiveAnswer(). Listing 5.1 shows the complete
source code for this unit, called ThrdU, which includes the code to update the edit control on
the main form.

LISTING 5.1 The ThrdU.PAS Unit

unit ThrdU;

interface

uses
Classes;

type
TTestThread = class(TThread)
private
Answer: integer;

protected
procedure GiveAnswer;
procedure Execute; override;

end;

implementation

uses SysUtils, Main;

{ TTestThread }

procedure TTestThread.GiveAnswer;
begin
MainForm.Edit1.Text := InttoStr(Answer);

end;

procedure TTestThread.Execute;

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

183

08 chpt_05.qxd 11/19/01 12:14 PM Page 183

LISTING 5.1 Continued

var
I: Integer;

begin
FreeOnTerminate := True;
for I := 1 to 2000000 do
begin
if Terminated then Break;
Inc(Answer, Round(Abs(Sin(Sqrt(I)))));
Synchronize(GiveAnswer);

end;
end;

end.

You already know that the Synchronize() method enables you to execute methods from the
context of the primary thread, but up to this point you’ve treated Synchronize() as sort of a
mysterious black box. You don’t know how it works—you only know that it does. If you’d like
to take a peek at the man behind the curtain, read on.

The first time you create a secondary thread in your application, VCL creates and maintains a
hidden thread window from the context of its primary thread. The sole purpose of this window
is to serialize procedure calls made through the Synchronize() method.

The Synchronize() method stores the method specified in its Method parameter in a private
field called FMethod and sends a VCL-defined CM_EXECPROC message to the thread window,
passing Self (Self being the TThread object in this case) as the lParam of the message. When
the thread window’s window procedure receives this CM_EXECPROC message, it calls the method
specified in FMethod through the TThread object instance passed in the lParam. Remember,
because the thread window was created from the context of the primary thread, the window
procedure for the thread window is also executed by the primary thread. Therefore, the method
specified in the FMethod field is also executed by the primary thread.

To see a more visual illustration of what goes on inside Synchronize(), look at Figure 5.2.

Using Messages for Synchronization
As an alternative to the TThread.Synchronize() method, another technique for thread syn-
chronization is to use messages to communicate between threads. You can use the
SendMessage() or PostMessage() API function to send or post messages to windows operat-
ing in the context of another thread. For example, the following code could be used to set the
text in an edit control residing in another thread:

Advanced Techniques

PART II
184

08 chpt_05.qxd 11/19/01 12:14 PM Page 184

var
S: string;

begin
S := ‘hello from threadland’;
SendMessage(SomeEdit.Handle, WM_SETTEXT, 0, Integer(PChar(S)));

end;

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

185

Secondary Thread Primary Thread

Synchronize(Foo);

Sets FMethod to Foo.
Sends CM_EXECPROC
message to thread
window, passing Self as
IParam.

CM_EXECPROC

Hidden thread window

Message is processed by
window procedure of
thread window. IParam is
typecasted to TThread,
and call is made to
FMethod.

FIGURE 5.2
A road map of the Synchronize() method.

A Demo Application
To fully illustrate how multithreading in Delphi works, you can save the current project as
EZThrd. Then you can also put a memo control on the main form so that it resembles what’s
shown in Figure 5.3.

FIGURE 5.3
The main form of the EZThrd demo.

The source code for the main unit is shown in Listing 5.2.

08 chpt_05.qxd 11/19/01 12:14 PM Page 185

LISTING 5.2 The MAIN.PAS Unit for the EZThrd Demo

unit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, ThrdU;

type
TMainForm = class(TForm)
Edit1: TEdit;
Button1: TButton;
Memo1: TMemo;
Label1: TLabel;
Label2: TLabel;
procedure Button1Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.Button1Click(Sender: TObject);
var
NewThread: TTestThread;

begin
NewThread := TTestThread.Create(False);

end;

end.

Notice that after you click the button to invoke the secondary thread, you can still type in the
memo control as if the secondary thread doesn’t exist. When the calculation is completed, the
result will be displayed in the edit control.

Advanced Techniques

PART II
186

08 chpt_05.qxd 11/19/01 12:14 PM Page 186

Priorities and Scheduling
As mentioned earlier, the operating system is in charge of scheduling each thread some CPU
cycles in which it might execute. The amount of time scheduled for a particular thread depends
on the priority assigned to the thread. An individual thread’s overall priority is determined by a
combination of the priority of the process that created the thread—called the priority class—
and the priority of the thread itself—called the relative priority.

Process Priority Class
The process priority class describes the priority of a particular process running on the system.
Win32 supports four distinct priority classes: Idle, Normal, High, and Realtime. The default
priority class for any process, of course, is Normal. Each of these priority classes has a
corresponding flag defined in the Windows unit. You can or any of these flags with the
dwCreationFlags parameter of CreateProcess() in order to spawn a process with a specific
priority. Additionally, you can use these flags to dynamically adjust the priority class of a given
process, as shown in a moment. Furthermore, each priority class can also be represented by a
numeric priority level, which is a value between 4 and 24 (inclusive).

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

187

Modifying a process’s priority class requires special process privileges under Windows
NT/2000. The default settings allow processes to set their priority classes, but these
can be turned off by system administrators, particularly on high-load Windows
NT/2000 servers.

NOTE

Table 5.1 shows each priority class and its corresponding flag and numeric value.

TABLE 5.1 Process Priority Classes

Class Flag Value

Idle IDLE_PRIORITY_CLASS $40

Below Normal* BELOW_NORMAL_PRIORITY_CLASS $4000

Normal NORMAL_PRIORITY_CLASS $20

Above Normal* ABOVE_NORMAL_PRIORITY_CLASS $8000

High HIGH_PRIORITY_CLASS $80

Realtime REALTIME_PRIORITY_CLASS $100

*Available only on Windows 2000 and higher, and flag constant is not present in Delphi 6 version of
Windows.pas.

08 chpt_05.qxd 11/19/01 12:14 PM Page 187

To get and set the priority class of a given process dynamically, Win32 provides the
GetPriorityClass() and SetPriorityClass() functions, respectively. These functions are
defined as follows:

function GetPriorityClass(hProcess: THandle): DWORD; stdcall;

function SetPriorityClass(hProcess: THandle; dwPriorityClass: DWORD): BOOL;
stdcall;

The hProcess parameter in both cases represents a handle to a process. In most cases, you’ll
be calling these functions in order to access the priority class of your own process. In that
case, you can use the GetCurrentProcess() API function. This function is defined as follows:

function GetCurrentProcess: THandle; stdcall;

The return value of these functions is a pseudo-handle for the current process. We say pseudo
because the function doesn’t create a new handle, and the return value doesn’t have to be
closed with CloseHandle(). It merely provides a handle that can be used to reference an exist-
ing handle.

To set the priority class of your application to High, use code similar to the following:

if not SetPriorityClass(GetCurrentProcess, HIGH_PRIORITY_CLASS) then
ShowMessage(‘Error setting priority class.’);

Advanced Techniques

PART II
188

In almost all cases, you should avoid setting the priority class of any process to
Realtime. Because most of the operating system threads run in a priority class lower
than Realtime, your thread will receive more CPU time than the OS itself, and that
could cause some unexpected problems.

Even bumping the priority class of the process to High can cause problems if the
threads of the process don’t spend most of their time idle or waiting for external
events (such as file I/O). One high-priority thread is likely to drain all CPU time away
from lower-priority threads and processes until it blocks on an event, goes idle, or
processes messages. Preemptive multitasking can easily be defeated by abusing sched-
uler priorities.

CAUTION

Relative Priority
The other thing that goes into determining the overall priority of a thread is the relative priority
of a particular thread. The important distinction to make is that the priority class is associated
with a process and the relative priority is associated with individual threads within a process. A
thread can have any one of seven possible relative priorities: Idle, Lowest, Below Normal,
Normal, Above Normal, Highest, or Time Critical.

08 chpt_05.qxd 11/19/01 12:14 PM Page 188

TThread exposes a Priority property of an enumerated type TThreadPriority. There’s an
enumeration in this type for each relative priority:

type
TThreadPriority = (tpIdle, tpLowest, tpLower, tpNormal, tpHigher,
tpHighest, tpTimeCritical);

You can get and set the priority of any TThread object simply by reading from or writing to its
Priority property. The following code sets the priority of a TThread descendant instance
called MyThread to Highest:

MyThread.Priority := tpHighest.

Like priority classes, each relative priority is associated with a numeric value. The difference is
that relative priority is a signed value that, when added to a process’s class priority, is used to
determine the overall priority of a thread within the system. For this reason, relative priority is
sometimes called delta priority. The overall priority of a thread can be any value from 1 to 31
(1 being the lowest). Constants are defined in the Windows unit that represent the signed value
for each priority. Table 5.2 shows how each enumeration in TThreadPriority maps to an API
constant.

TABLE 5.2 Relative Priorities for Threads

TThreadPriority Constant Value

tpIdle THREAD_PRIORITY_IDLE -15*

tpLowest THREAD_PRIORITY_LOWEST -2

tpBelow Normal THREAD_PRIORITY_BELOW_NORMAL -1

tpNormal THREAD_PRIORITY_NORMAL 0

tpAbove Normal THREAD_PRIORITY_ABOVE_NORMAL 1

tpHighest THREAD_PRIORITY_HIGHEST 2

tpTimeCritical THREAD_PRIORITY_TIME_CRITICAL 15*

The reason the values for the tpIdle and tpTimeCritical priorities are marked with asterisks
is that, unlike the others, these relative priority values are not truly added to the class priority
to determine overall thread priority. Any thread that has the tpIdle relative priority, regardless
of its priority class, has an overall priority of 1. The exception to this rule is the Realtime pri-
ority class, which, when combined with the tpIdle relative priority, has an overall value of 16.
Any thread that has a priority of tpTimeCritical, regardless of its priority class, has an over-
all priority of 15. The exception to this rule is the Realtime priority class, which, when com-
bined with the tpTimeCritical relative priority, has an overall value of 31.

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

189

08 chpt_05.qxd 11/19/01 12:14 PM Page 189

Suspending and Resuming Threads
Recall when you learned about TThread’s Create() constructor earlier in this chapter. At the
time, you discovered that a thread could be created in a suspended state, and that you must call
its Resume() method in order for the thread to begin execution. As you might guess, a thread
can also be suspended and resumed dynamically. You accomplish this using the Suspend()
method in conjunction with the Resume() method.

Timing a Thread
Back in the 16-bit days when we programmed under Windows 3.x, it was pretty common to
wrap some portion of code with calls to GetTickCount() or timeGetTime() to determine how
much time a particular calculation would take (something like the following, for example):

var
StartTime, Total: Longint;

begin
StartTime := GetTickCount;
{ Do some calculation here }
Total := GetTickCount - StartTime;

In a multithreaded environment, this is much more difficult to do because your application
might be preempted by the operating system in the middle of the calculation in order to pro-
vide CPU cycles to other processes. Therefore, any timing you do that relies on the system
time can’t provide a true measure of how long it spends crunching the calculation in your
thread.

To avoid such problems, Win32 under Windows NT/2000 provides a function called
GetThreadTimes(), which provides quite detailed information on thread timing. This function
is declared as follows:

function GetThreadTimes(hThread: THandle; var lpCreationTime, lpExitTime,
lpKernelTime, lpUserTime: TFileTime): BOOL; stdcall;

The hThread parameter is the handle to the thread for which you want to obtain timing infor-
mation. The other parameters for this function are passed by reference and are filled in by the
function. Here’s an explanation of each:

• lpCreationTime—The time when the thread was created.

• lpExitTime—The time when the thread was exited. If the thread is still running, this
value is undefined.

• lpKernelTime—The amount of time the thread has spent executing operating system
code.

• lpUserTime—The amount of time the thread has spent executing application code.

Advanced Techniques

PART II
190

08 chpt_05.qxd 11/19/01 12:14 PM Page 190

Each of the last four parameters is of type TFileTime, which is defined in the Windows unit as
follows:

type
TFileTime = record
dwLowDateTime: DWORD;
dwHighDateTime: DWORD;

end;

The definition of this type is a bit unusual, but it’s a part of the Win32 API, so here goes:
dwLowDateTime and dwHighDateTime are combined into a quad word (64-bit) value that repre-
sents the number of 100-nanosecond intervals that have passed since January 1, 1601. This
means, of course, that if you wanted to write a simulation of English fleet movements as they
defeated the Spanish Armada in 1588, the TFileTime type would be a wholly inappropriate
way to keep track of time. . . but we digress.

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

191

Because the TFileTime type is 64 bits in size, you can typecast a TFileTime to an
Int64 type in order to perform arithmetic on TFileTime values. The following code
demonstrates how to quickly tell whether one TFileTime is greater than another:

if Int64(UserTime) > Int64(KernelTime) then Beep;

TIP

In order to help you work with TFileTime values in a manner more native to Delphi, the fol-
lowing functions allow you to convert back and forth between TFileTime and TDateTime
types:

function FileTimeToDateTime(FileTime: TFileTime): TDateTime;
var
SysTime: TSystemTime;

begin
if not FileTimeToSystemTime(FileTime, SysTime) then
raise EConvertError.CreateFmt(‘FileTimeToSystemTime failed. ‘ +
‘Error code %d’, [GetLastError]);

with SysTime do
Result := EncodeDate(wYear, wMonth, wDay) +
EncodeTime(wHour, wMinute, wSecond, wMilliseconds)

end;

function DateTimeToFileTime(DateTime: TDateTime): TFileTime;
var
SysTime: TSystemTime;

08 chpt_05.qxd 11/19/01 12:14 PM Page 191

begin
with SysTime do
begin
DecodeDate(DateTime, wYear, wMonth, wDay);
DecodeTime(DateTime, wHour, wMinute, wSecond, wMilliseconds);
wDayOfWeek := DayOfWeek(DateTime);

end;
if not SystemTimeToFileTime(SysTime, Result) then
raise EConvertError.CreateFmt(‘SystemTimeToFileTime failed. ‘ +
+ ‘Error code %d’, [GetLastError]);

end;

Advanced Techniques

PART II
192

Remember that the GetThreadTimes() function is implemented only under Windows
NT/2000. The function always returns False when called under Windows 95 or 98.
Unfortunately, Windows 95/98 doesn’t provide any mechanism for retrieving thread-
timing information.

CAUTION

Managing Multiple Threads
As indicated earlier, although threads can solve a variety of programming problems, they’re
also likely to introduce new types of problems that you must deal with in your applications.
Most commonly, these problems revolve around multiple threads accessing global resources,
such as global variables or handles. Additionally, problems can arise when you need to ensure
that some event in one thread always occurs before or after some other event in another thread.
In this section, you learn how to tackle these problems by using the facilities provided by
Delphi for thread-local storage and those provided by the API for thread synchronization.

Thread-Local Storage
Because each thread represents a separate and distinct path of execution within a process, it
logically follows that you will at some point want to have a means for storing data associated
with each thread. There are three techniques for storing data unique to each thread: the first
and most straightforward involves local (stack-based) variables. Because each thread gets its
own stack, each thread executing within a single procedure or function will have its own copy
of local variables. The second technique is to store local information in your TThread descen-
dant object. Finally, you can also use Object Pascal’s threadvar reserved word to take advan-
tage of operating-system–level thread-local storage.

08 chpt_05.qxd 11/19/01 12:14 PM Page 192

TThread Storage
Storing pertinent data in the TThread descendant object should be your technique of choice for
thread-local storage. It’s both more straightforward and more efficient than using threadvar
(described later). To declare thread-local data in this manner, simply add it to the definition of
your TThread descendant, as shown here:

type
TMyThread = class(TThread)
private
FLocalInt: Integer;
FLocalStr: String;
.
.
.

end;

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

193

It’s about 10 times faster to access a field of an object than to access a threadvar vari-
able, so you should store your thread-specific data in your TThread descendant, if pos-
sible. Data that doesn’t need to exist for more than the lifetime of a particular
procedure or function should be stored in local variables because those are faster still
than the fields of a TThread object.

TIP

threadvar: API Thread-Local Storage
Earlier we mentioned that each thread is provided with its own stack for storing local variables,
whereas global data has to be shared by all threads within an application. For example, say you
have a procedure that sets or displays the value of a global variable. When you call the proce-
dure passing a text string, the global variable is set, and when you call the procedure passing
an empty string, the global variable is displayed. Such a procedure might look like this:

var
GlobalStr: String;

procedure SetShowStr(const S: String);
begin
if S = ‘’ then
MessageBox(0, PChar(GlobalStr), ‘The string is...’, MB_OK)

else
GlobalStr := S;

end;

08 chpt_05.qxd 11/19/01 12:14 PM Page 193

If this procedure is called from within the context of one thread only, there wouldn’t be any
problems. You’d call the procedure once to set the value of GlobalStr and call it again to dis-
play the value. However, consider what can happen if two or more threads call this procedure
at any given time. In such a case, it’s possible that one thread could call the procedure to set
the string and then get preempted by another thread that might also call the function to set the
string. By the time the operating system gives CPU time back to the first thread, the value of
GlobalStr for that thread will be hopelessly lost.

For situations such as these, Win32 provides a facility known as thread-local storage that
enables you to create separate copies of global variables for each running thread. Delphi nicely
encapsulates this functionality with the threadvar clause. Just declare any global variables you
want to exist separately for each thread within a threadvar (as opposed to var) clause, and the
work is done. A redeclaration of the GlobalStr variable is as simple as this:

threadvar
GlobalStr: String;

The unit shown in Listing 5.3 illustrates this very problem. It represents the main unit to a
Delphi application that contains only a button on a form. When the button is clicked, the proce-
dure is called to set and then to show GlobalStr. Next, another thread is created, and the value
internal to the thread is set and shown again. After the thread creation, the primary thread again
calls SetShowStr to display GlobalStr.

Try running this application with GlobalStr declared as a var and then as a threadvar. You’ll
see a difference in the output.

LISTING 5.3 The MAIN.PAS Unit for Thread-Local Storage Demo

unit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;

type
TMainForm = class(TForm)
Button1: TButton;
procedure Button1Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

Advanced Techniques

PART II
194

08 chpt_05.qxd 11/19/01 12:14 PM Page 194

LISTING 5.3 Continued

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

{ NOTE: Change GlobalStr from var to threadvar to see difference }
var
//threadvar
GlobalStr: string;

type
TTLSThread = class(TThread)
private
FNewStr: String;

protected
procedure Execute; override;

public
constructor Create(const ANewStr: String);

end;

procedure SetShowStr(const S: String);
begin
if S = ‘’ then
MessageBox(0, PChar(GlobalStr), ‘The string is...’, MB_OK)

else
GlobalStr := S;

end;

constructor TTLSThread.Create(const ANewStr: String);
begin
FNewStr := ANewStr;
inherited Create(False);

end;

procedure TTLSThread.Execute;
begin
FreeOnTerminate := True;
SetShowStr(FNewStr);
SetShowStr(‘’);

end;

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

195

08 chpt_05.qxd 11/19/01 12:14 PM Page 195

LISTING 5.3 Continued

procedure TMainForm.Button1Click(Sender: TObject);
begin
SetShowStr(‘Hello world’);
SetShowStr(‘’);
TTLSThread.Create(‘Dilbert’);
Sleep(100);
SetShowStr(‘’);

end;

end.

Advanced Techniques

PART II
196

The demo program calls the Win32 API Sleep() procedure after creating the thread.
Sleep() is declared as follows:

procedure Sleep(dwMilliseconds: DWORD); stdcall;

The Sleep() procedure tells the operating system that the current thread doesn’t
need any more CPU cycles for another dwMilliseconds milliseconds. Inserting this call
into the code has the effect of simulating system conditions where more multitasking
is occurring and introducing a bit more “randomness” into the application as to
which threads will be executing when.

It’s often acceptable to pass zero in the dwMilliseconds parameter. Although that
doesn’t prevent the current thread from executing for any specific amount of time, it
does cause the operating system to give CPU cycles to any waiting threads of equal or
greater priority.

Be careful of using Sleep() to work around mysterious timing problems. Sleep()
might work around a particular problem on your machine, but timing problems that
aren’t solved conclusively will pop up again on somebody else’s machine, especially
when the machine is significantly faster or slower or has a different number of
processors than your machine.

NOTE

Thread Synchronization
When working with multiple threads, you’ll often need to synchronize the access of threads to
some particular piece of data or resource. For example, suppose you have an application that
uses one thread to read a file into memory and another thread to count the number of charac-
ters in the file. It goes without saying that you can’t count all the characters in the file until the
entire file has been loaded into memory. However, because each operation occurs in its own

08 chpt_05.qxd 11/19/01 12:14 PM Page 196

thread, the operating system would like to treat them as two completely unrelated tasks. To fix
this problem, you must synchronize the two threads so that the counting thread doesn’t execute
until the loading thread finishes.

These are the types of problems that thread synchronization addresses, and Win32 provides a
variety of ways to synchronize threads. In this section, you’ll see examples of thread synchro-
nization techniques using critical sections, mutexes, semaphores, and events.

In order to examine these techniques, first take a look at a problem involving threads that need
to be synchronized. For the purpose of illustration, suppose you have an array of integers that
needs to be initialized with ascending values. You want to first go through the array and set the
values from 1 to 128 and then reinitialize the array with values from 128 to 255. You’ll then
display the final thread in a list box. An approach to this might be to perform the initializations
in two separate threads. Consider the code in Listing 5.4 for a unit that attempts to perform this
task.

LISTING 5.4 A Unit That Attempts to Initialize an Array in Threads

unit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;

type
TMainForm = class(TForm)
Button1: TButton;
ListBox1: TListBox;
procedure Button1Click(Sender: TObject);

private
procedure ThreadsDone(Sender: TObject);

end;

TFooThread = class(TThread)
protected
procedure Execute; override;

end;

var
MainForm: TMainForm;

implementation

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

197

08 chpt_05.qxd 11/19/01 12:14 PM Page 197

LISTING 5.4 Continued

{$R *.DFM}

const
MaxSize = 128;

var
NextNumber: Integer = 0;
DoneFlags: Integer = 0;
GlobalArray: array[1..MaxSize] of Integer;

function GetNextNumber: Integer;
begin
Result := NextNumber; // return global var
Inc(NextNumber); // inc global var

end;

procedure TFooThread.Execute;
var
i: Integer;

begin
OnTerminate := MainForm.ThreadsDone;
for i := 1 to MaxSize do
begin
GlobalArray[i] := GetNextNumber; // set array element
Sleep(5); // let thread intertwine

end;
end;

procedure TMainForm.ThreadsDone(Sender: TObject);
var
i: Integer;

begin
Inc(DoneFlags);
if DoneFlags = 2 then // make sure both threads finished
for i := 1 to MaxSize do
{ fill listbox with array contents }
Listbox1.Items.Add(IntToStr(GlobalArray[i]));

end;

procedure TMainForm.Button1Click(Sender: TObject);
begin
TFooThread.Create(False); // create threads
TFooThread.Create(False);

end;

end.

Advanced Techniques

PART II
198

08 chpt_05.qxd 11/19/01 12:14 PM Page 198

Because both threads will execute simultaneously, what happens is that the contents of the
array are corrupted as it’s initialized. As proof, take a look at the output of this code, as shown
in Figure 5.4.

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

199

FIGURE 5.4
Output from unsynchronized array initialization.

The solution to this problem is to synchronize the two threads as they access the global array
so that they don’t both dive in at the same time. You can take any of a number of valid
approaches to this problem.

Critical Sections
Critical sections provide one of the most straightforward ways to synchronize threads. A criti-
cal section is some section of code that allows for only one thread to execute through it at a
time. If you wrap the code used to initialize the array in a critical section, other threads will be
blocked from entering the code section until the first finishes.

Prior to using a critical section, you must initialize it using the InitializeCriticalSection()
API procedure, which is declared as follows:

procedure InitializeCriticalSection(var lpCriticalSection:
TRTLCriticalSection); stdcall;

lpCriticalSection is a TRTLCriticalSection record that’s passed by reference. The exact
definition of TRTLCriticalSection is unimportant because you’ll rarely (if ever) actually look
at the contents of one. You’ll pass an uninitialized record in the lpCriticalSection parameter,
and the record will be filled by the procedure.

08 chpt_05.qxd 11/19/01 12:14 PM Page 199

When the record is filled, you can create a critical section in your application by wrapping
some block of code with calls to EnterCriticalSection() and LeaveCriticalSection().
These procedures are declared as follows:

procedure EnterCriticalSection(var lpCriticalSection:
TRTLCriticalSection); stdcall;

procedure LeaveCriticalSection(var lpCriticalSection:
TRTLCriticalSection); stdcall;

As you might guess, the lpCriticalSection parameter you pass these guys is the same one
that’s filled in by the InitializeCriticalSection() procedure.

When you’re finished with the TRTLCriticalSection record, you should clean up by calling
the DeleteCriticalSection() procedure, which is declared as follows:

procedure DeleteCriticalSection(var lpCriticalSection:
TRTLCriticalSection); stdcall;

Listing 5.5 demonstrates the technique for synchronizing the array-initialization threads with
critical sections.

LISTING 5.5 Using Critical Sections

unit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;

type
TMainForm = class(TForm)
Button1: TButton;

Advanced Techniques

PART II
200

Microsoft deliberately obscures the structure of the TRTLCriticalSection record
because the contents vary from one hardware platform to another and tinkering
with the contents of this structure can potentially wreak havoc on your process. On
Intel-based systems, the critical section structure contains a counter, a field containing
the current thread handle, and (potentially) a handle of a system event. On Alpha
hardware, the counter is replaced with an Alpha-CPU data structure called a spinlock,
which is more efficient than the Intel solution.

NOTE

08 chpt_05.qxd 11/19/01 12:14 PM Page 200

LISTING 5.5 Continued

ListBox1: TListBox;
procedure Button1Click(Sender: TObject);

private
procedure ThreadsDone(Sender: TObject);

end;

TFooThread = class(TThread)
protected
procedure Execute; override;

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

const
MaxSize = 128;

var
NextNumber: Integer = 0;
DoneFlags: Integer = 0;
GlobalArray: array[1..MaxSize] of Integer;
CS: TRTLCriticalSection;

function GetNextNumber: Integer;
begin
Result := NextNumber; // return global var
inc(NextNumber); // inc global var

end;

procedure TFooThread.Execute;
var
i: Integer;

begin
OnTerminate := MainForm.ThreadsDone;
EnterCriticalSection(CS); // CS begins here
for i := 1 to MaxSize do
begin
GlobalArray[i] := GetNextNumber; // set array element
Sleep(5); // let thread intertwine

end;
LeaveCriticalSection(CS); // CS ends here

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

201

08 chpt_05.qxd 11/19/01 12:14 PM Page 201

LISTING 5.5 Continued

end;

procedure TMainForm.ThreadsDone(Sender: TObject);
var
i: Integer;

begin
inc(DoneFlags);
if DoneFlags = 2 then
begin // make sure both threads finished
for i := 1 to MaxSize do
{ fill listbox with array contents }
Listbox1.Items.Add(IntToStr(GlobalArray[i]));

DeleteCriticalSection(CS);
end;

end;

procedure TMainForm.Button1Click(Sender: TObject);
begin
InitializeCriticalSection(CS);
TFooThread.Create(False); // create threads
TFooThread.Create(False);

end;

end.

After the first thread passes through the call to EnterCriticalSection(), all other threads are
prevented from entering that block of code. The next thread that comes along to that line of
code is put to sleep until the first thread calls LeaveCriticalSection(). At that point, the sec-
ond thread is awakened and allowed to take control of the critical section. Figure 5.5 shows
the output of this application when the threads are synchronized.

Mutexes
Mutexes work very much like critical sections except for two key differences: First, mutexes
can be used to synchronize threads across process boundaries. Second, mutexes can be given a
string name, and additional handles to existing mutex objects can be created by referencing
that name.

Advanced Techniques

PART II
202

08 chpt_05.qxd 11/19/01 12:14 PM Page 202

FIGURE 5.5
Output from synchronized array initialization.

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

203

Semantics aside, the biggest difference between critical sections and event objects
such as mutexes is performance: Critical sections are very lightweight—as few as
10–15 clock cycles to enter or leave the critical section when there are no thread colli-
sions. As soon as there is a thread collision for that critical section, the system creates
an event object (a mutex, probably). The cost of using event objects such as mutexes
is that it requires a roundtrip into the kernel, which requires a process context switch
and a change of ring levels, which piles up to 400 to 600 clock cycles each way. All
this overhead is incurred even if your app doesn’t currently have multiple threads, or
if no other threads are contending for the resource you’re protecting.

TIP

The function used to create a mutex is appropriately called CreateMutex(). This function is
declared as follows:

function CreateMutex(lpMutexAttributes: PSecurityAttributes;
bInitialOwner: BOOL; lpName: PChar): THandle; stdcall;

lpMutexAttributes is a pointer to a TSecurityAttributes record. It’s common to pass nil in
this parameter, in which case the default security attributes will be used.

bInitialOwner indicates whether the thread creating the mutex should be considered the
owner of the mutex when it’s created. If this parameter is False, the mutex is unowned.

lpName is the name of the mutex. This parameter can be nil if you don’t want to name the
mutex. If this parameter is non-nil, the function will search the system for an existing mutex

08 chpt_05.qxd 11/19/01 12:14 PM Page 203

with the same name. If an existing mutex is found, a handle to the existing mutex is returned.
Otherwise, a handle to a new mutex is returned.

When you’re finished using a mutex, you should close it using the CloseHandle() API
function.

Listing 5.6 again demonstrates the technique for synchronizing the array-initialization threads,
except this time it uses mutexes.

LISTING 5.6 Using Mutexes for Synchronization

unit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;

type
TMainForm = class(TForm)
Button1: TButton;
ListBox1: TListBox;
procedure Button1Click(Sender: TObject);

private
procedure ThreadsDone(Sender: TObject);

end;

TFooThread = class(TThread)
protected
procedure Execute; override;

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

const
MaxSize = 128;

var
NextNumber: Integer = 0;
DoneFlags: Integer = 0;

Advanced Techniques

PART II
204

08 chpt_05.qxd 11/19/01 12:14 PM Page 204

LISTING 5.6 Continued

GlobalArray: array[1..MaxSize] of Integer;
hMutex: THandle = 0;

function GetNextNumber: Integer;
begin
Result := NextNumber; // return global var
Inc(NextNumber); // inc global var

end;

procedure TFooThread.Execute;
var
i: Integer;

begin
FreeOnTerminate := True;
OnTerminate := MainForm.ThreadsDone;
if WaitForSingleObject(hMutex, INFINITE) = WAIT_OBJECT_0 then
begin
for i := 1 to MaxSize do
begin
GlobalArray[i] := GetNextNumber; // set array element
Sleep(5); // let thread intertwine

end;
end;
ReleaseMutex(hMutex);

end;

procedure TMainForm.ThreadsDone(Sender: TObject);
var
i: Integer;

begin
Inc(DoneFlags);
if DoneFlags = 2 then // make sure both threads finished
begin
for i := 1 to MaxSize do
{ fill listbox with array contents }
Listbox1.Items.Add(IntToStr(GlobalArray[i]));

CloseHandle(hMutex);
end;

end;

procedure TMainForm.Button1Click(Sender: TObject);
begin
hMutex := CreateMutex(nil, False, nil);
TFooThread.Create(False); // create threads

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

205

08 chpt_05.qxd 11/19/01 12:14 PM Page 205

LISTING 5.6 Continued

TFooThread.Create(False);
end;

end.

You’ll notice that in this case the WaitForSingleObject() function is used to control thread
entry into the synchronized block of code. This function is declared as follows:

function WaitForSingleObject(hHandle: THandle; dwMilliseconds: DWORD):
DWORD; stdcall;

The purpose of this function is to sleep the current thread up to dwMilliseconds milliseconds
until the API object specified in the hHandle parameter becomes signaled. Signaled means dif-
ferent things for different objects. A mutex becomes signaled when it’s not owned by a thread,
whereas a process, for example, becomes signaled when it terminates. Apart from an actual
period of time, the dwMilliseconds parameter can also have the value 0, which means to
check the status of the object and return immediately, or INFINITE, which means to wait for-
ever for the object to become signaled. The return value of this function can be any one of the
values shown in Table 5.3.

TABLE 5.3 WAIT Constants Used by WaitForSingleObject() API Function

Value Meaning

WAIT_ABANDONED The specified object is a mutex object, and the thread owning the
mutex was exited before it freed the mutex. This circumstance is
referred to as an abandoned mutex; in such a case, ownership of the
mutex object is granted to the calling thread, and the mutex is set to
nonsignaled.

WAIT_OBJECT_0 The state of the specified object is signaled.

WAIT_TIMEOUT The timeout interval elapsed, and the object’s state is nonsignaled.

Again, when a mutex isn’t owned by a thread, it’s in the signaled state. The first thread to call
WaitForSingleObject() on this mutex is given ownership of the mutex, and the state of the
mutex object is set to nonsignaled. The thread’s ownership of the mutex is severed when the
thread calls the ReleaseMutex() function, passing the mutex handle as the parameter. At that
point, the state of the mutex again becomes signaled.

Advanced Techniques

PART II
206

08 chpt_05.qxd 11/19/01 12:14 PM Page 206

Semaphores
Another technique for thread synchronization involves using semaphore API objects. Semaphores
build on the functionality of mutexes while adding one important feature: They offer the capa-
bility of resource counting so that a predetermined number of threads can enter synchronized
pieces of code at one time. The function used to create a semaphore is CreateSemaphore(),
and it’s declared as follows:

function CreateSemaphore(lpSemaphoreAttributes: PSecurityAttributes;
lInitialCount, lMaximumCount: Longint; lpName: PChar): THandle;stdcall;

Like CreateMutex(), the first parameter to CreateSemaphore() is a pointer to a
TSecurityAttributes record to which you can pass Nil for the defaults.

lInitialCount is the initial count of the semaphore object. This is a number between 0 and
lMaximumCount. A semaphore is signaled as long as this parameter is greater than zero. The
count of a semaphore is decremented whenever WaitForSingleObject() (or one of the other
wait functions) releases a thread. A semaphore’s count is increased by using the
ReleaseSemaphore() function.

lMaximumCount specifies the maximum count value of the semaphore object. If the semaphore
is used to count some resources, this number should represent the total number of resources
available.

lpName is the name of the semaphore. This parameter behaves the same as the parameter of the
same name in CreateMutex().

Listing 5.7 demonstrates using semaphores to perform synchronization of the array-initializa-
tion problem.

LISTING 5.7 Using Semaphores for Synchronization

unit Main;

interface

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

207

In addition to WaitForSingleObject(), the Win32 API also has functions called
WaitForMultipleObjects() and MsgWaitForMultipleObjects(), which enable you to
wait for the state of one or more objects to become signaled. These functions are
documented in the Win32 API online help.

NOTE

08 chpt_05.qxd 11/19/01 12:14 PM Page 207

LISTING 5.7 Continued

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;

type
TMainForm = class(TForm)
Button1: TButton;
ListBox1: TListBox;
procedure Button1Click(Sender: TObject);

private
procedure ThreadsDone(Sender: TObject);

end;

TFooThread = class(TThread)
protected
procedure Execute; override;

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

const
MaxSize = 128;

var
NextNumber: Integer = 0;
DoneFlags: Integer = 0;
GlobalArray: array[1..MaxSize] of Integer;
hSem: THandle = 0;

function GetNextNumber: Integer;
begin
Result := NextNumber; // return global var
Inc(NextNumber); // inc global var

end;

procedure TFooThread.Execute;

Advanced Techniques

PART II
208

08 chpt_05.qxd 11/19/01 12:14 PM Page 208

LISTING 5.7 Continued

var
i: Integer;
WaitReturn: DWORD;

begin
OnTerminate := MainForm.ThreadsDone;
WaitReturn := WaitForSingleObject(hSem, INFINITE);
if WaitReturn = WAIT_OBJECT_0 then
begin
for i := 1 to MaxSize do
begin
GlobalArray[i] := GetNextNumber; // set array element
Sleep(5); // let thread intertwine

end;
end;
ReleaseSemaphore(hSem, 1, nil);

end;

procedure TMainForm.ThreadsDone(Sender: TObject);
var
i: Integer;

begin
Inc(DoneFlags);
if DoneFlags = 2 then // make sure both threads finished
begin
for i := 1 to MaxSize do
{ fill listbox with array contents }
Listbox1.Items.Add(IntToStr(GlobalArray[i]));

CloseHandle(hSem);
end;

end;

procedure TMainForm.Button1Click(Sender: TObject);
begin
hSem := CreateSemaphore(nil, 1, 1, nil);
TFooThread.Create(False); // create threads
TFooThread.Create(False);

end;

end.

Because you allow only one thread to enter the synchronized portion of code, the maximum
count for the semaphore is 1 in this case.

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

209

08 chpt_05.qxd 11/19/01 12:14 PM Page 209

The ReleaseSemaphore() function is used to increase the count for the semaphore. Notice that
this function is a bit more involved than its cousin, ReleaseMutex(). The declaration for
ReleaseSemaphore() is as follows:

function ReleaseSemaphore(hSemaphore: THandle; lReleaseCount: Longint;
lpPreviousCount: Pointer): BOOL; stdcall;

The lReleaseCount parameter enables you to specify the number by which the count of the
semaphore will be increased. The old count will be stored in the longint pointed to by the
lpPreviousCount parameter if its value is not Nil. A subtle implication of this capability is
that a semaphore is never really owned by any thread in particular. For example, suppose that
the maximum count of a semaphore is 10, and 10 threads call WaitForSingleObject() to set
the count of the thread to 0 and put the thread in a nonsignaled state. All it takes is one of those
threads to call ReleaseSemaphore() with 10 as the lReleaseCount parameter in order not only
to make the thread signaled again, but also to increase the count back to 10. This powerful
capability can introduce some hard-to-track-down bugs into your applications, so you should
use it with care.

Be sure to use the CloseHandle() function to free the semaphore handle allocated with
CreateSemaphore().

A Sample Multithreaded Application
To demonstrate the usage of TThread objects within the context of a real-world application,
this section focuses on creating a file-search application that performs its searches in a special-
ized thread. The project is called DelSrch, which stands for Delphi Search, and the main form
for this utility is shown in Figure 5.6.

Advanced Techniques

PART II
210

FIGURE 5.6
The Main form for the DelSrch project.

08 chpt_05.qxd 11/19/01 12:14 PM Page 210

The application works like this. The user chooses a path through which to search and provides
a file specification to indicate the types of files to be searched. The user also enters a token to
search for in the appropriate edit control. Some option check boxes on one side of the form
enable the user to tailor the application to suit his needs for a particular search. When the user
clicks the Search button, a search thread is created and the appropriate search information—
such as token, path, and file specification—is passed to the TThread descendant object. When
the search thread finds the search token in certain files, information is appended to the list box.
Finally, if the user double-clicks a file in the list box, he can browse it with a text editor or
view it from its desktop association.

Although this is a fairly full-featured application, we’ll focus mainly on explaining the applica-
tion’s key search features and how they relate to multithreading.

The User Interface
The main unit for the application is called Main.pas. Shown in Listing 5.8, this unit is respon-
sible for managing the main form and the overall user interface. In particular, this unit contains
the logic for owner-drawing the list box, invoking a viewer for files in the list box, invoking
the search thread, printing the list box contents, and reading and writing UI settings to an INI
file.

LISTING 5.8 The Main.pas Unit for the DelSrch Project

unit Main;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, Buttons, ExtCtrls, Menus, SrchIni,
SrchU, ComCtrls, AppEvnts;

type
TMainForm = class(TForm)
lbFiles: TListBox;
StatusBar: TStatusBar;
pnlControls: TPanel;
PopupMenu: TPopupMenu;
FontDialog: TFontDialog;
pnlOptions: TPanel;
gbParams: TGroupBox;
LFileSpec: TLabel;
LToken: TLabel;
lPathName: TLabel;

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

211

08 chpt_05.qxd 11/19/01 12:14 PM Page 211

LISTING 5.8 Continued

edtFileSpec: TEdit;
edtToken: TEdit;
btnPath: TButton;
edtPathName: TEdit;
gbOptions: TGroupBox;
cbCaseSensitive: TCheckBox;
cbFileNamesOnly: TCheckBox;
cbRecurse: TCheckBox;
cbRunFromAss: TCheckBox;
pnlButtons: TPanel;
btnSearch: TBitBtn;
btnClose: TBitBtn;
btnPrint: TBitBtn;
btnPriority: TBitBtn;
Font1: TMenuItem;
Clear1: TMenuItem;
Print1: TMenuItem;
N1: TMenuItem;
Exit1: TMenuItem;
ApplicationEvents: TApplicationEvents;
procedure btnSearchClick(Sender: TObject);
procedure btnPathClick(Sender: TObject);
procedure lbFilesDrawItem(Control: TWinControl; Index: Integer;
Rect: TRect; State: TOwnerDrawState);
procedure Font1Click(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure btnPrintClick(Sender: TObject);
procedure btnCloseClick(Sender: TObject);
procedure lbFilesDblClick(Sender: TObject);
procedure FormResize(Sender: TObject);
procedure btnPriorityClick(Sender: TObject);
procedure edtTokenChange(Sender: TObject);
procedure Clear1Click(Sender: TObject);
procedure ApplicationEventsHint(Sender: TObject);

private
procedure ReadIni;
procedure WriteIni;

public
Running: Boolean;
SearchPri: Integer;
SearchThread: TSearchThread;
procedure EnableSearchControls(Enable: Boolean);

end;

Advanced Techniques

PART II
212

08 chpt_05.qxd 11/19/01 12:14 PM Page 212

LISTING 5.8 Continued

var
MainForm: TMainForm;

implementation

{$R *.DFM}

uses Printers, ShellAPI, StrUtils, FileCtrl, PriU;

procedure PrintStrings(Strings: TStrings);
{ This procedure prints all of the strings in the Strings parameter }
var
Prn: TextFile;
I: Integer;

begin
if Strings.Count = 0 then // Are there strings?
raise Exception.Create(‘No text to print!’);

AssignPrn(Prn); // assign Prn to printer
try
Rewrite(Prn); // open printer
try
for I := 0 to Strings.Count - 1 do // iterate over all strings
WriteLn(Prn, Strings.Strings[I]); // write to printer

finally
CloseFile(Prn); // close printer

end;
except
on EInOutError do
MessageDlg(‘Error Printing text.’, mtError, [mbOk], 0);

end;
end;

procedure TMainForm.EnableSearchControls(Enable: Boolean);
{ Enables or disables certain controls so options can’t be modified }
{ while search is executing. }
begin
btnSearch.Enabled := Enable; // enable/disable proper controls
cbRecurse.Enabled := Enable;
cbFileNamesOnly.Enabled := Enable;
cbCaseSensitive.Enabled := Enable;
btnPath.Enabled := Enable;
edtPathName.Enabled := Enable;
edtFileSpec.Enabled := Enable;
edtToken.Enabled := Enable;

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

213

08 chpt_05.qxd 11/19/01 12:14 PM Page 213

LISTING 5.8 Continued

Running := not Enable; // set Running flag
edtTokenChange(nil);
with btnClose do
begin
if Enable then
begin // set props of Close/Stop button
Caption := ‘&Close’;
Hint := ‘Close Application’;

end
else begin
Caption := ‘&Stop’;
Hint := ‘Stop Searching’;

end;
end;

end;

procedure TMainForm.btnSearchClick(Sender: TObject);
{ Called when Search button is clicked. Invokes search thread. }
begin
EnableSearchControls(False); // disable controls
lbFiles.Clear; // clear listbox
{ start thread }
SearchThread := TSearchThread.Create(cbCaseSensitive.Checked,

cbFileNamesOnly.Checked, cbRecurse.Checked, edtToken.Text,
edtPathName.Text, edtFileSpec.Text);

end;

procedure TMainForm.edtTokenChange(Sender: TObject);
begin
btnSearch.Enabled := not Running and (edtToken.Text <> ‘’);

end;

procedure TMainForm.btnPathClick(Sender: TObject);
{ Called when Path button is clicked. Allows user to choose new path. }
var
ShowDir: string;

begin
ShowDir := edtPathName.Text;
if SelectDirectory(‘Choose a search path...’, ‘’, ShowDir) then
edtPathName.Text := ShowDir;

end;

procedure TMainForm.lbFilesDrawItem(Control: TWinControl;
Index: Integer; Rect: TRect; State: TOwnerDrawState);

Advanced Techniques

PART II
214

08 chpt_05.qxd 11/19/01 12:14 PM Page 214

LISTING 5.8 Continued

{ Called in order to owner draw listbox. }
var
CurStr: string;

begin
with lbFiles do
begin
CurStr := Items.Strings[Index];
Canvas.FillRect(Rect); // clear out rect
if not cbFileNamesOnly.Checked then // if not filename only...
{ if current line is filename... }
if (Pos(‘File ‘, CurStr) = 1) and
(CurStr[Length(CurStr)] = ‘:’) then
with Canvas.Font do
begin
Style := [fsUnderline]; // underline font
Color := clRed; // paint red

end
else
Rect.Left := Rect.Left + 15; // otherwise, indent

DrawText(Canvas.Handle, PChar(CurStr), Length(CurStr), Rect,
DT_SINGLELINE);

end;
end;

procedure TMainForm.Font1Click(Sender: TObject);
{ Allows user to pick new font for listbox }
begin
{ Pick new listbox font }
if FontDialog.Execute then
lbFiles.Font := FontDialog.Font;

end;

procedure TMainForm.FormDestroy(Sender: TObject);
{ OnDestroy event handler for form }
begin
WriteIni;

end;

procedure TMainForm.FormCreate(Sender: TObject);
{ OnCreate event handler for form }
begin
ReadIni; // read INI file

end;

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

215

08 chpt_05.qxd 11/19/01 12:14 PM Page 215

LISTING 5.8 Continued

procedure TMainForm.btnPrintClick(Sender: TObject);
{ Called when Print button is clicked. }
begin
if MessageDlg(‘Send search results to printer?’, mtConfirmation,
[mbYes, mbNo], 0) = mrYes then
PrintStrings(lbFiles.Items);

end;

procedure TMainForm.btnCloseClick(Sender: TObject);
{ Called to stop thread or close application }
begin
// if thread is running then terminate thread
if Running then SearchThread.Terminate
// otherwise close app
else Close;

end;

procedure TMainForm.lbFilesDblClick(Sender: TObject);
{ Called when user double-clicks in listbox. Invokes viewer for }
{ highlighted file. }
var
ProgramStr, FileStr: string;
RetVal: THandle;

begin
{ if user clicked on a file.. }
if (Pos(‘File ‘, lbFiles.Items[lbFiles.ItemIndex]) = 1) then
begin
{ load text editor from INI file. Notepad is default. }
ProgramStr := SrchIniFile.ReadString(‘Defaults’, ‘Editor’, ‘notepad’);
FileStr := lbFiles.Items[lbFiles.ItemIndex]; // Get selected file
FileStr := Copy(FileStr, 6, Length(FileStr) - 5); // Remove prefix
if FileStr[Length(FileStr)] = ‘:’ then // Remove “:”
DecStrLen(FileStr, 1);

if cbRunFromAss.Checked then
{ Run file from shell association }
RetVal := ShellExecute(Handle, ‘open’, PChar(FileStr), nil, nil,
SW_SHOWNORMAL)

else
{ View file using text editor }
RetVal := ShellExecute(Handle, ‘open’, PChar(ProgramStr),
PChar(FileStr), nil, SW_SHOWNORMAL);

{ Check for error }
if RetVal < 32 then RaiseLastWin32Error;

end;
end;

Advanced Techniques

PART II
216

08 chpt_05.qxd 11/19/01 12:14 PM Page 216

LISTING 5.8 Continued

procedure TMainForm.FormResize(Sender: TObject);
{ OnResize event handler. Centers controls in form. }
begin
{ divide status bar into two panels with a 1/3 - 2/3 split }
with StatusBar do
begin
Panels[0].Width := Width div 3;
Panels[1].Width := Width * 2 div 3;

end;
end;

procedure TMainForm.btnPriorityClick(Sender: TObject);
{ Show thread priority form }
begin
ThreadPriWin.Show;

end;

procedure TMainForm.ReadIni;
{ Reads default values from Registry }
begin
with SrchIniFile do
begin
edtPathName.Text := ReadString(‘Defaults’, ‘LastPath’, ‘C:\’);
edtFileSpec.Text := ReadString(‘Defaults’, ‘LastFileSpec’, ‘*.*’);
edtToken.Text := ReadString(‘Defaults’, ‘LastToken’, ‘’);
cbFileNamesOnly.Checked := ReadBool(‘Defaults’, ‘FNamesOnly’, False);
cbCaseSensitive.Checked := ReadBool(‘Defaults’, ‘CaseSens’, False);
cbRecurse.Checked := ReadBool(‘Defaults’, ‘Recurse’, False);
cbRunFromAss.Checked := ReadBool(‘Defaults’, ‘RunFromAss’, False);
Left := ReadInteger(‘Position’, ‘Left’, Left);
Top := ReadInteger(‘Position’, ‘Top’, Top);
Width := ReadInteger(‘Position’, ‘Width’, Width);
Height := ReadInteger(‘Position’, ‘Height’, Height);

end;
end;

procedure TMainForm.WriteIni;
{ writes current settings back to Registry }
begin
with SrchIniFile do
begin
WriteString(‘Defaults’, ‘LastPath’, edtPathName.Text);
WriteString(‘Defaults’, ‘LastFileSpec’, edtFileSpec.Text);

x’Defaults’, ‘LastToken’, edtToken.Text);

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

217

08 chpt_05.qxd 11/19/01 12:14 PM Page 217

LISTING 5.8 Continued

WriteBool(‘Defaults’, ‘CaseSens’, cbCaseSensitive.Checked);
WriteBool(‘Defaults’, ‘FNamesOnly’, cbFileNamesOnly.Checked);
WriteBool(‘Defaults’, ‘Recurse’, cbRecurse.Checked);
WriteBool(‘Defaults’, ‘RunFromAss’, cbRunFromAss.Checked);
WriteInteger(‘Position’, ‘Left’, Left);
WriteInteger(‘Position’, ‘Top’, Top);
WriteInteger(‘Position’, ‘Width’, Width);
WriteInteger(‘Position’, ‘Height’, Height);

end;
end;

procedure TMainForm.Clear1Click(Sender: TObject);
begin
lbFiles.Items.Clear;

end;

procedure TMainForm.ApplicationEventsHint(Sender: TObject);
{ OnHint event handler for Application }
begin
{ Display application hints on status bar }
StatusBar.Panels[0].Text := Application.Hint;

end;

end.

Several things worth mentioning happen in this unit. First, you’ll notice the fairly small
PrintStrings() procedure that’s used to send the contents of TStrings to the printer. To
accomplish this, the procedure takes advantage of Delphi’s AssignPrn() standard procedure,
which assigns a TextFile variable to the printer. That way, any text written to the TextFile is
automatically written to the printer. When you’re finished writing to the printer, be sure to use
the CloseFile() procedure to close the connection to the printer.

Also of interest is the use of the ShellExecute() Win32 API procedure to launch a viewer for
a file that will be shown in the list box. ShellExecute() not only enables you to invoke exe-
cutable programs but also to invoke associations for registered file extensions. For example, if
you try to invoke a file with a .pas extension using ShellExecute(), it will automatically load
Delphi to view the file.

Advanced Techniques

PART II
218

08 chpt_05.qxd 11/19/01 12:14 PM Page 218

The Search Thread
The searching engine is contained within a unit called SrchU.pas, which is shown in Listing
5.9. This unit does a number of interesting things, including copying an entire file into a string,
recursing subdirectories, and communicating information back to the main form.

LISTING 5.9 The SrchU.pas Unit

unit SrchU;

interface

uses Classes, StdCtrls;

type
TSearchThread = class(TThread)
private
LB: TListbox;
CaseSens: Boolean;
FileNames: Boolean;
Recurse: Boolean;
SearchStr: string;
SearchPath: string;
FileSpec: string;
AddStr: string;
FSearchFile: string;
procedure AddToList;
procedure DoSearch(const Path: string);
procedure FindAllFiles(const Path: string);
procedure FixControls;

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

219

If ShellExecute() returns a value indicating an error, the application calls
RaiseLastWin32Error(). This procedure, located in the SysUtils unit, calls the
GetLastError() API function and Delphi’s SysErrorMessage() in order to obtain
more detailed information about the error and to format that information into a
string. You can use RaiseLastWin32Error() in this manner in your own applications if
you want your users to obtain detailed error messages on API failures.

TIP

08 chpt_05.qxd 11/19/01 12:14 PM Page 219

LISTING 5.9 Continued

procedure ScanForStr(const FName: string; var FileStr: string);
procedure SearchFile(const FName: string);
procedure SetSearchFile;

protected
procedure Execute; override;

public
constructor Create(CaseS, FName, Rec: Boolean; const Str, SPath,
FSpec: string);

destructor Destroy; override;
end;

implementation

uses SysUtils, StrUtils, Windows, Forms, Main;

constructor TSearchThread.Create(CaseS, FName, Rec: Boolean; const Str,
SPath, FSpec: string);

begin
CaseSens := CaseS;
FileNames := FName;
Recurse := Rec;
SearchStr := Str;
SearchPath := AddBackSlash(SPath);
FileSpec := FSpec;
inherited Create(False);

end;

destructor TSearchThread.Destroy;
begin
FSearchFile := ‘’;
Synchronize(SetSearchFile);
Synchronize(FixControls);
inherited Destroy;

end;

procedure TSearchThread.Execute;
begin
FreeOnTerminate := True; // set up all the fields
LB := MainForm.lbFiles;
Priority := TThreadPriority(MainForm.SearchPri);
if not CaseSens then SearchStr := UpperCase(SearchStr);
FindAllFiles(SearchPath); // process current directory
if Recurse then // if subdirs, then...
DoSearch(SearchPath); // recurse, otherwise...

end;

Advanced Techniques

PART II
220

08 chpt_05.qxd 11/19/01 12:14 PM Page 220

LISTING 5.9 Continued

procedure TSearchThread.FixControls;
{ Enables controls in main form. Must be called through Synchronize }
begin
MainForm.EnableSearchControls(True);

end;

procedure TSearchThread.SetSearchFile;
{ Updates status bar with filename. Must be called through Synchronize }
begin
MainForm.StatusBar.Panels[1].Text := FSearchFile;

end;

procedure TSearchThread.AddToList;
{ Adds string to main listbox. Must be called through Synchronize }
begin
LB.Items.Add(AddStr);

end;

procedure TSearchThread.ScanForStr(const FName: string;
var FileStr: string);

{ Scans a FileStr of file FName for SearchStr }
var
Marker: string[1];
FoundOnce: Boolean;
FindPos: integer;

begin
FindPos := Pos(SearchStr, FileStr);
FoundOnce := False;
while (FindPos <> 0) and not Terminated do
begin
if not FoundOnce then
begin
{ use “:” only if user doesn’t choose “filename only” }
if FileNames then
Marker := ‘’

else
Marker := ‘:’;

{ add file to listbox }
AddStr := Format(‘File %s%s’, [FName, Marker]);
Synchronize(AddToList);
FoundOnce := True;

end;
{ don’t search for same string in same file if filenames only }
if FileNames then Exit;

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

221

08 chpt_05.qxd 11/19/01 12:14 PM Page 221

LISTING 5.9 Continued

{ Add line if not filename only }
AddStr := GetCurLine(FileStr, FindPos);
Synchronize(AddToList);
FileStr := Copy(FileStr, FindPos + Length(SearchStr),
Length(FileStr));

FindPos := Pos(SearchStr, FileStr);
end;

end;

procedure TSearchThread.SearchFile(const FName: string);
{ Searches file FName for SearchStr }
var
DataFile: THandle;
FileSize: Integer;
SearchString: string;

begin
FSearchFile := FName;
Synchronize(SetSearchFile);
try
DataFile := FileOpen(FName, fmOpenRead or fmShareDenyWrite);
if DataFile = 0 then raise Exception.Create(‘’);
try
{ set length of search string }
FileSize := GetFileSize(DataFile, nil);
SetLength(SearchString, FileSize);
{ Copy file data to string }
FileRead(DataFile, Pointer(SearchString)^, FileSize);

finally
CloseHandle(DataFile);

end;
if not CaseSens then SearchString := UpperCase(SearchString);
ScanForStr(FName, SearchString);

except
on Exception do
begin
AddStr := Format(‘Error reading file: %s’, [FName]);
Synchronize(AddToList);

end;
end;

end;

procedure TSearchThread.FindAllFiles(const Path: string);
{ procedure searches Path subdir for files matching filespec }
var
SR: TSearchRec;

Advanced Techniques

PART II
222

08 chpt_05.qxd 11/19/01 12:14 PM Page 222

LISTING 5.9 Continued

begin
{ find first file matching spec }
if FindFirst(Path + FileSpec, faArchive, SR) = 0 then
try
repeat
SearchFile(Path + SR.Name); // process file

until (FindNext(SR) <> 0) or Terminated; // find next file
finally
SysUtils.FindClose(SR); // clean up

end;
end;

procedure TSearchThread.DoSearch(const Path: string);
{ procedure recurses through a subdirectory tree starting at Path }
var
SR: TSearchRec;

begin
{ look for directories }
if FindFirst(Path + ‘*.*’, faDirectory, SR) = 0 then
try
repeat
{ if it’s a directory and not ‘.’ or ‘..’ then... }
if ((SR.Attr and faDirectory) <> 0) and (SR.Name[1] <> ‘.’) and
not Terminated then

begin
FindAllFiles(Path + SR.Name + ‘\’); // process directory
DoSearch(Path + SR.Name + ‘\’); // recurse

end;
until (FindNext(SR) <> 0) or Terminated; // find next directory

finally
SysUtils.FindClose(SR); // clean up

end;
end;

end.

When created, this thread first calls its FindAllFiles() method. This method uses
FindFirst() and FindNext() to search for all files in the current directory matching the file
specification indicated by the user. If the user has chosen to recurse subdirectories, the
DoSearch() method is then called in order to traverse down a directory tree. This method again
makes use of FindFirst() and FindNext() to find directories, but the twist is that it calls
itself recursively in order to traverse the tree. As each directory is found, FindAllFiles() is
called to process all matching files in the directory.

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

223

08 chpt_05.qxd 11/19/01 12:14 PM Page 223

To process each file, you’ll notice that the algorithm for searching for a token within a file
involves using the TMemMapFile object, which encapsulates a Win32 memory-mapped file. This
object is discussed in detail in the electronic version of Delphi 5 Developer’s Guide in Chapter
12, “Working with Files,” which is on this book’s CD-ROM, but for now you can just assume
that this provides an easy way to map the contents of a file into memory. The entire algorithm
works like this:

1. When a file matching the file spec is found by the FindAllFiles() method, the
SearchFile() method is called and the file contents are copied into a string.

2. The ScanForStr() method is called for each file-string. ScanForStr() searches for
occurrences of the search token within each string.

3. When an occurrence is found, the filename and/or the line of text is added to the list box.
The line of text is added only when the user unchecks the File Names Only check box.

Note that all the methods in the TSearchThread object periodically check the status of the
StopIt flag (which is tripped when the thread is told to stop) and the Terminated flag (which
is tripped when the TThread object is to terminate).

Advanced Techniques

PART II
224

The recursion algorithm used by the DoSearch() method is a standard technique for
traversing a directory tree. Because recursive algorithms are notoriously difficult to
debug, the smart programmer will make use of ones that are already known to work.
It’s a good idea to save this method so that you can use it with other applications in
the future.

TIP

Remember that any methods within a TThread object that modify the application’s
user interface in any way must be called through the Synchronize() method, or the
user interface must be modified by sending messages.

CAUTION

Adjusting the Priority
Just to add yet another feature, DelSrch enables the user to adjust the priority of the search
thread dynamically. The form used for this purpose is shown in Figure 5.7, and the unit for this
form, PRIU.PAS, is shown in Listing 5.10.

08 chpt_05.qxd 11/19/01 12:14 PM Page 224

FIGURE 5.7
The thread priority form for the DelSrch project.

LISTING 5.10 The PriU.pas Unit

unit PriU;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, ComCtrls, Buttons, ExtCtrls;

type
TThreadPriWin = class(TForm)
tbrPriTrackBar: TTrackBar;
Label1: TLabel;
Label2: TLabel;
Label3: TLabel;
btnOK: TBitBtn;
btnRevert: TBitBtn;
Panel1: TPanel;
procedure tbrPriTrackBarChange(Sender: TObject);
procedure btnRevertClick(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure FormShow(Sender: TObject);
procedure btnOKClick(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
{ Private declarations }
OldPriVal: Integer;

public
{ Public declarations }

end;

var
ThreadPriWin: TThreadPriWin;

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

225

08 chpt_05.qxd 11/19/01 12:14 PM Page 225

LISTING 5.10 Continued

implementation

{$R *.DFM}

uses Main, SrchU;

procedure TThreadPriWin.tbrPriTrackBarChange(Sender: TObject);
begin
with MainForm do
begin
SearchPri := tbrPriTrackBar.Position;
if Running then
SearchThread.Priority := TThreadPriority(tbrPriTrackBar.Position);

end;
end;

procedure TThreadPriWin.btnRevertClick(Sender: TObject);
begin
tbrPriTrackBar.Position := OldPriVal;

end;

procedure TThreadPriWin.FormClose(Sender: TObject;
var Action: TCloseAction);

begin
Action := caHide;

end;

procedure TThreadPriWin.FormShow(Sender: TObject);
begin
OldPriVal := tbrPriTrackBar.Position;

end;

procedure TThreadPriWin.btnOKClick(Sender: TObject);
begin
Close;

end;

procedure TThreadPriWin.FormCreate(Sender: TObject);
begin
tbrPriTrackBarChange(Sender); // initialize thread priority

end;

end.

Advanced Techniques

PART II
226

08 chpt_05.qxd 11/19/01 12:14 PM Page 226

The code for this unit is fairly straightforward. All it does is set the value of the SearchPri
variable in the main form to match that of the track bar position. If the thread is running, it
also sets the priority of the thread. Because TThreadPriority is an enumerated type, a straight
typecast maps the values 1 to 5 in the track bar to enumerations in TThreadPriority.

Multithreading BDE Access
Although database programming isn’t really discussed until later in the book, this section is
intended to give you some tips on how to use multiple threads in the context of BDE database
development. If you’re unfamiliar with database programming under Delphi, you might want
to look through the later database chapters prior to reading on in this section.

The most common request for database applications developers in Win32 is for the capability
to perform complex queries or stored procedures in a background thread. Thankfully, this type
of thing is supported by the 32-bit Borland Database Engine (BDE) and is fairly easy to do in
Delphi.

There are really only two requirements for running a background query through, for example,
a TQuery component:

• Each threaded query must reside within its own session. You can provide a TQuery with
its own session by placing a TSession component on your form and assigning its name
to the TQuery’s SessionName property. This also implies that, if your TQuery uses a
TDatabase component, a unique TDatabase must also be used for each session.

• The TQuery must not be attached to any TDataSource components at the time the query
is opened from the secondary thread. When the query is attached to a TDataSource, it
must be done through the context of the primary thread. TDataSource is only used to
connect datasets to user interface controls, and user interface manipulation must be per-
formed in the main thread.

To illustrate the techniques for background queries, Figure 5.8 shows the main form for a
demo project called BDEThrd. This form enables you to specify a BDE alias, username, and
password for a particular database and to enter a query against the database. When the Go!
button is clicked, a secondary thread is spawned to process the query and the results are dis-
played in a child form.

The child form, TQueryForm, is shown in Figure 5.9. Notice that this form contains one each of
a TQuery, TDatabase, TSession, TDataSource, and TDBGrid component. Therefore, each
instance of TQueryForm has its own instances of these components.

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

227

08 chpt_05.qxd 11/19/01 12:14 PM Page 227

FIGURE 5.8
The main form for the BDEThrd demo.

Advanced Techniques

PART II
228

FIGURE 5.9
The child query form for the BDEThrd demo.

Listing 5.11 shows Main.pas, the application’s main unit.

LISTING 5.11 The Main.pas Unit for the BDEThrd Demo

unit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, Grids, StdCtrls, ExtCtrls;

type
TMainForm = class(TForm)
pnlBottom: TPanel;

08 chpt_05.qxd 11/19/01 12:14 PM Page 228

LISTING 5.11 Continued

pnlButtons: TPanel;
GoButton: TButton;
Button1: TButton;
memQuery: TMemo;
pnlTop: TPanel;
Label1: TLabel;
AliasCombo: TComboBox;
Label3: TLabel;
UserNameEd: TEdit;
Label4: TLabel;
PasswordEd: TEdit;
Label2: TLabel;
procedure Button1Click(Sender: TObject);
procedure GoButtonClick(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

uses QryU, DB, DBTables;

var
FQueryNum: Integer = 0;

procedure TMainForm.Button1Click(Sender: TObject);
begin
Close;

end;

procedure TMainForm.GoButtonClick(Sender: TObject);
begin
Inc(FQueryNum); // keep querynum unique
{ invoke new query }
NewQuery(FQueryNum, memQuery.Lines, AliasCombo.Text, UserNameEd.Text,
PasswordEd.Text);

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

229

08 chpt_05.qxd 11/19/01 12:14 PM Page 229

LISTING 5.11 Continued

end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
{ fill drop-down list with BDE Aliases }
Session.GetAliasNames(AliasCombo.Items);

end;

end.

As you can see, there’s not much to this unit. The AliasCombo combobox is filled with BDE
aliases in the OnCreate handler for the main form using TSession’s GetAliasNames() method.
The handler for the Go! button OnClick event is in charge of invoking a new query by calling
the NewQuery() procedure that lives in a second unit, QryU.pas. Notice that it passes a new
unique number, FQueryNum, to the NewQuery() procedure with every button click. This number
is used to create a unique session and database name for each query thread.

Listing 5.12 shows the code for the QryU unit.

LISTING 5.12 The QryU.pas Unit

unit QryU;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Grids,
DBGrids, DB, DBTables, StdCtrls;

type
TQueryForm = class(TForm)
Query: TQuery;
DataSource: TDataSource;
Session: TSession;
Database: TDatabase;
dbgQueryGrid: TDBGrid;
memSQL: TMemo;
procedure FormClose(Sender: TObject; var Action: TCloseAction);

private
{ Private declarations }

public
{ Public declarations }

end;

Advanced Techniques

PART II
230

08 chpt_05.qxd 11/19/01 12:14 PM Page 230

LISTING 5.12 Continued

procedure NewQuery(QryNum: integer; Qry: TStrings; const Alias, UserName,
Password: string);

implementation

{$R *.DFM}

type
TDBQueryThread = class(TThread)
private
FQuery: TQuery;
FDataSource: TDataSource;
FQueryException: Exception;
procedure HookUpUI;
procedure QueryError;

protected
procedure Execute; override;

public
constructor Create(Q: TQuery; D: TDataSource); virtual;

end;

constructor TDBQueryThread.Create(Q: TQuery; D: TDataSource);
begin
inherited Create(True); // create suspended thread
FQuery := Q; // set parameters
FDataSource := D;
FreeOnTerminate := True;
Resume; // thread that puppy!

end;

procedure TDBQueryThread.Execute;
begin
try
FQuery.Open; // open the query
Synchronize(HookUpUI); // update UI from main thread

except
FQueryException := ExceptObject as Exception;
Synchronize(QueryError); // show exception from main thread

end;
end;

procedure TDBQueryThread.HookUpUI;
begin
FDataSource.DataSet := FQuery;

end;

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

231

08 chpt_05.qxd 11/19/01 12:14 PM Page 231

LISTING 5.12 Continued

procedure TDBQueryThread.QueryError;
begin
Application.ShowException(FQueryException);

end;

procedure NewQuery(QryNum: integer; Qry: TStrings; const Alias, UserName,
Password: string);

begin
{ Create a new Query form to show query results }
with TQueryForm.Create(Application) do
begin
{ Set a unique session name }
Session.SessionName := Format(‘Sess%d’, [QryNum]);
with Database do
begin
{ set a unique database name }
DatabaseName := Format(‘DB%d’, [QryNum]);
{ set alias parameter }
AliasName := Alias;
{ hook database to session }
SessionName := Session.SessionName;
{ user-defined username and password }
Params.Values[‘USER NAME’] := UserName;
Params.Values[‘PASSWORD’] := Password;

end;
with Query do
begin
{ hook query to database and session }
DatabaseName := Database.DatabaseName;
SessionName := Session.SessionName;
{ set up the query strings }
SQL.Assign(Qry);

end;
{ display query strings in SQL Memo }
memSQL.Lines.Assign(Qry);
{ show query form }
Show;
{ open query in its own thread }
TDBQueryThread.Create(Query, DataSource);

end;
end;

procedure TQueryForm.FormClose(Sender: TObject; var Action: TCloseAction);
begin

Advanced Techniques

PART II
232

08 chpt_05.qxd 11/19/01 12:14 PM Page 232

LISTING 5.12 Continued

Action := caFree;
end;

end.

The NewQuery() procedure creates a new instance of the child form TQueryForm, sets up the
properties for each of its data-access components, and creates unique names for its TDatabase
and TSession components. The query’s SQL property is filled from the TStrings passed in the
Qry parameter, and the query thread is then spawned.

The code inside the TDBQueryThread itself is rather sparse. The constructor merely sets up
some instance variables, and the Execute() method opens the query and calls the HookupUI()
method through Synchronize() to attach the query to the data source. You should also take
note of the try..except block inside the Execute() procedure, which uses Synchronize() to
show exception messages from the context of the primary thread.

Multithreaded Graphics
We mentioned earlier that VCL isn’t designed to be manipulated simultaneously by multiple
threads, but this statement isn’t entirely accurate. VCL has the capability to have multiple
threads manipulate individual graphics objects. Thanks to new Lock() and Unlock() methods
introduced in TCanvas, the entire Graphics unit has been made thread-safe. This includes the
TCanvas, TPen, TBrush, TFont, TBitmap, TMetafile, TPicture, and TIcon classes.

The code for these Lock() methods is similar in that it uses a critical section and the
EnterCriticalSection() API function (described earlier in this chapter) to guard access to
the canvas or graphics object. After a particular thread calls a Lock() method, that thread is
free to exclusively manipulate the canvas or graphics object. Other threads waiting to enter the
portion of code following the call to Lock() will be put to sleep until the thread owning the
critical section calls Unlock(), which calls LeaveCriticalSection() to release the critical
section and lets the next waiting thread (if any) into the protected portion of code. The follow-
ing portion of code shows how these methods can be used to control access to a canvas object:

Form.Canvas.Lock;
// code which manipulates canvas goes here
Form.Canvas.Unlock;

To further illustrate this point, Listing 5.13 shows the unit Main of the MTGraph project—an
application that demonstrates multiple threads accessing a form’s canvas.

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

233

08 chpt_05.qxd 11/19/01 12:14 PM Page 233

LISTING 5.13 The Main.pas Unit of the MTGraph Project

unit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Menus;

type
TMainForm = class(TForm)
MainMenu1: TMainMenu;
Options1: TMenuItem;
AddThread: TMenuItem;
RemoveThread: TMenuItem;
ColorDialog1: TColorDialog;
Add10: TMenuItem;
RemoveAll: TMenuItem;
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure AddThreadClick(Sender: TObject);
procedure RemoveThreadClick(Sender: TObject);
procedure Add10Click(Sender: TObject);
procedure RemoveAllClick(Sender: TObject);

private
ThreadList: TList;

public
{ Public declarations }

end;

TDrawThread = class(TThread)
private
FColor: TColor;
FForm: TForm;

public
constructor Create(AForm: TForm; AColor: TColor);
procedure Execute; override;

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

Advanced Techniques

PART II
234

08 chpt_05.qxd 11/19/01 12:14 PM Page 234

LISTING 5.13 Continued

{ TDrawThread }

constructor TDrawThread.Create(AForm: TForm; AColor: TColor);
begin
FColor := AColor;
FForm := AForm;
inherited Create(False);

end;

procedure TDrawThread.Execute;
var
P1, P2: TPoint;

procedure GetRandCoords;
var
MaxX, MaxY: Integer;

begin
// initialize P1 and P2 to random points within Form bounds
MaxX := FForm.ClientWidth;
MaxY := FForm.ClientHeight;
P1.x := Random(MaxX);
P2.x := Random(MaxX);
P1.y := Random(MaxY);
P2.y := Random(MaxY);

end;

begin
FreeOnTerminate := True;
// thread runs until it or the application is terminated
while not (Terminated or Application.Terminated) do
begin
GetRandCoords; // initialize P1 and P2
with FForm.Canvas do
begin
Lock; // lock canvas
// only one thread at a time can execute the following code:
Pen.Color := FColor; // set pen color
MoveTo(P1.X, P1.Y); // move to canvas position P1
LineTo(P2.X, P2.Y); // draw a line to position P2
// after the next line executes, another thread will be allowed
// to enter the above code block
Unlock; // unlock canvas

end;
end;

end;

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

235

08 chpt_05.qxd 11/19/01 12:14 PM Page 235

LISTING 5.13 Continued

{ TMainForm }

procedure TMainForm.FormCreate(Sender: TObject);
begin
ThreadList := TList.Create;

end;

procedure TMainForm.FormDestroy(Sender: TObject);
begin
RemoveAllClick(nil);
ThreadList.Free;

end;

procedure TMainForm.AddThreadClick(Sender: TObject);
begin
// add a new thread to the list... allow user to choose color
if ColorDialog1.Execute then
ThreadList.Add(TDrawThread.Create(Self, ColorDialog1.Color));

end;

procedure TMainForm.RemoveThreadClick(Sender: TObject);
begin
// terminate the last thread in the list and remove it from list
TDrawThread(ThreadList[ThreadList.Count - 1]).Terminate;
ThreadList.Delete(ThreadList.Count - 1);

end;

procedure TMainForm.Add10Click(Sender: TObject);
var
i: Integer;

begin
// create 10 threads, each with a random color
for i := 1 to 10 do
ThreadList.Add(TDrawThread.Create(Self, Random(MaxInt)));

end;

procedure TMainForm.RemoveAllClick(Sender: TObject);
var
i: Integer;

begin
Cursor := crHourGlass;
try

Advanced Techniques

PART II
236

08 chpt_05.qxd 11/19/01 12:14 PM Page 236

LISTING 5.13 Continued

for i := ThreadList.Count - 1 downto 0 do
begin
TDrawThread(ThreadList[i]).Terminate; // terminate thread
TDrawThread(ThreadList[i]).WaitFor; // make sure thread terminates

end;
ThreadList.Clear;

finally
Cursor:= crDefault;

end;
end;

initialization
Randomize; // seed random number generator

end.

This application has a main menu containing four items, as shown in Figure 5.10. The first
item, Add Thread, creates a new TDrawThread instance, which paints random lines on the main
form. This option can be selected repeatedly in order to throw more and more threads into the
mix of threads accessing the main form. The next item, Remove Thread, removes the last
thread added. The third item, Add 10, creates 10 new TDrawThread instances. Finally, the
fourth item, Remove All, terminates and destroys all TDrawThread instances. Figure 5.10
also shows the results of 10 threads simultaneously drawing to the form’s canvas.

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

237

FIGURE 5.10
The MTGraph main form.

08 chpt_05.qxd 11/19/01 12:14 PM Page 237

Canvas-locking rules dictate that as long as every user of a canvas locks it before drawing and
unlocks it afterwards, multiple threads using that canvas won’t interfere with each other. Note
that all OnPaint events and Paint() method calls initiated by VCL automatically lock and
unlock the canvas for you; therefore, existing, normal Delphi code can coexist with new back-
ground thread graphics operations.

Using this application as an example, examine the consequences or symptoms of thread colli-
sions if you fail to properly perform canvas locking. If thread 1 sets a canvas’s pen color to
red and then draws a line, and thread 2 sets the pen color to blue and draws a circle, and these
threads don’t lock the canvas before starting these operations, the following thread collision
scenario is possible: Thread 1 sets the pen color to red. The OS scheduler switches execution
to thread 2. Thread 2 sets the pen color to blue and draws a circle. Execution switches to thread
1. Thread 1 draws a line. However, the line isn’t red, it is blue because thread 2 had the oppor-
tunity to slip in between the operations of thread 1.

Note also that it only takes one errant thread to cause problems. If thread 1 locks the canvas
and thread 2 doesn’t, the scenario just described is unchanged. Both threads must lock the can-
vas around their canvas operations to prevent that thread collision scenario.

Fibers
Fibers are a sort of schedule-your-own thread. Like threads, fibers provide state information
and execution context in the form their own stack and CPU registers. Unlike threads, however,
fibers aren’t preemptively scheduled by the operating system. Instead, it is the developer’s
responsibility to switch between multiple fibers of execution. From an application design point
of view, there are probably few occasions when you will elect to use fibers instead of a multi-
threaded architecture, except in the infrequent case in which you want to receive the context
benefits of multiple stack and CPU register states without having to worry about thread syn-
chronization issues.

Advanced Techniques

PART II
238

Fibers are available on Windows NT 3.51 SP3 and higher, Windows 2000, Windows XP,
Windows 98, and Windows ME.

NOTE

Fibers are designed to run within the context of a thread, so one thread might host multiple
fibers. Before you can begin using fibers within a thread, the thread itself must be converted to
as fiber using the ConvertThreadToFiber() API function. This function is defined in the
Windows unit as

function ConvertThreadToFiber(lpParameter: Pointer): BOOL; stdcall;

08 chpt_05.qxd 11/19/01 12:14 PM Page 238

The lone parameter, lpParameter, enables you to pass 32-bits of fiber-specific data, in much
the same manner you would pass data to a thread in the BeginThread() or CreateThread()
functions. The return value definition is defined incorrectly in the Windows unit. Although
listed as a BOOL, the return value is actually a pointer to the fiber object. As you will see, you
will need to typecast the return value to use it.

Once a thread has been converted to a fiber, you will be able to create other fibers and begin
scheduling between the fibers. You can create additional fibers using the CreateFiber() API
function, which is defined in the Windows unit as

function CreateFiber(dwStackSize: DWORD; lpStartAddress: TFNFiberStartRoutine;
lpParameter: Pointer): BOOL; stdcall;

The dwStackSize parameter specifies the initial size (in bytes) of the fiber’s stack, or you can
pass 0 to set it to the default stack size. The lpStartAddress specifies the address of the pro-
cedure the fiber should begin executing when execution begins. lpParameter specifies any
32-bits of fiber-specific data you might want to pass. The return value for this function, like
ConvertThreadToFiber(), is also incorrect as defined; it is really a pointer to the created fiber
object and will need to be typecast to be used (more on this later).

After creating the fibers, you can switch between them using the SwitchToFiber() API func-
tion. This function is defined in the Windows unit as

function SwitchToFiber(lpFiber: Pointer): BOOL; stdcall;

Calling this method with a fiber object pointer in the lpFiber parameter is all you need to do
to jump from one fiber’s execution context to another. The operating system handles the inter-
nal details associated with the context switch, such as modifying the stack pointer and CPU
registers. The return value for this function, defined as a BOOL, is again incorrect; this should be
defined as a procedure with no return value. You therefore shouldn’t expect a valid return value
from this function.

When you’re ready to do away with a particular fiber, just pass the fiber object pointer to the
DeleteFiber API function:

function DeleteFiber(lpFiber: Pointer): BOOL; stdcall;

By the way, like SwitchToFiber(), the return value for this function is defined incorrectly as
well; it should also be a procedure returning no value, so don’t expect a valid return value.

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

239

Calling DeleteFiber() on the currently executing fiber will result in a call to
ExitThread(), which will terminate the entire thread. Unless you mean to terminate
the thread, you should only call DeleteFiber() on fibers other than the one currently
executing.

CAUTION

08 chpt_05.qxd 11/19/01 12:14 PM Page 239

Most of the work you’ll need to do with fibers can be accomplished with the four preceding
functions. The Win32 header files additionally define a couple of additional helper functions
and types not present in Delphi, but we have provided them for your convenience in the fol-
lowing. Listing 5.14 contains the Fiber unit, which provides additional definitions not present
in the Windows unit.

LISTING 5.14 The Fiber.pas Unit

unit Fibers;

interface

uses Windows;

// type defn for fiber start routine from winbase.h:
type
PFIBER_START_ROUTINE = procedure (lpFiberParameter: Pointer); stdcall;
LPFIBER_START_ROUTINE = PFIBER_START_ROUTINE;
TFiberFunc = PFIBER_START_ROUTINE;

function GetCurrentFiber: Pointer;
function GetFiberData: Pointer;

implementation

// x86-specific fiber inline routines from winnt.h:

function GetCurrentFiber: Pointer;
asm
mov eax, fs:[$10]

end;

function GetFiberData: Pointer;
asm
mov eax, fs:[$10]
mov eax, [eax]

end;

end.

To provide an example of fibers in action, we will create a test program that creates a handful
of fibers and switches between them to do what we’ll pretend is useful work. The main form
for this application is shown in Figure 5.11.

Advanced Techniques

PART II
240

08 chpt_05.qxd 11/19/01 12:14 PM Page 240

FIGURE 5.11
The FibTest main form.

The main unit for this form is shown in Listing 5.15.

LISTING 5.15 FibMain.pas—the Main Unit for FibTest

unit FibMain;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, AppEvnts;

type
TForm1 = class(TForm)
BtnWee: TButton;
BtnStop: TButton;
Label1: TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
AppEvents: TApplicationEvents;
procedure BtnWeeClick(Sender: TObject);
procedure AppEventsMessage(var Msg: tagMSG;
var Handled: Boolean);

procedure BtnStopClick(Sender: TObject);
private
{ Private declarations }
FThreadID: LongWord;
FThreadHandle: Integer;

public
{ Public declarations }

end;

var
Form1: TForm1;

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

241

08 chpt_05.qxd 11/19/01 12:14 PM Page 241

LISTING 5.15 Continued

implementation

uses Fibers;

{$R *.dfm}

const
DDG_THREADMSG = WM_USER;

var
FFibers: array[0..3] of Pointer;
StopIt: Boolean;

procedure FiberFunc(Param: Pointer); stdcall;
var
J, FibNum, NextNum: Integer;
I: Cardinal;
Fiber: Pointer;

begin
try
I := 0;
FibNum := 1; // suppress compiler warning
Fiber := GetCurrentFiber; // save away our fiber ptr for later
// figure out where current fiber is in the array and save for later
for J := Low(FFibers) to High(FFibers) do
if FFibers[J] = Fiber then
begin
FibNum := J;
Break;

end;
// HIGH TECH: count from zero to really, really high
while not StopIt do
begin
// send the number to the main thread for display every 100
if I mod 100 = 0 then
PostMessage(Application.Handle, DDG_THREADMSG,
Integer(GetFiberData), I);

// switch fibers every 1000
if I mod 1000 = 0 then
begin
if FibNum = High(FFibers) then NextNum := Low(FFibers)
else NextNum := FibNum + 1;
SwitchToFiber(FFibers[NextNum]);

end;

Advanced Techniques

PART II
242

08 chpt_05.qxd 11/19/01 12:14 PM Page 242

LISTING 5.15 Continued

Inc(I);
end;

except
// stifle all unhandled exceptions

end;
end;

function ThreadFunc(Param: Pointer): Integer;
var
I: Integer;

begin
Result := 0;
// convert this thread to a fiber
FFibers[0] := Pointer(ConvertThreadToFiber(Pointer(1)));
// create the other fibers
FFibers[1] := Pointer(CreateFiber(0, @FiberFunc, Pointer(2)));
FFibers[2] := Pointer(CreateFiber(0, @FiberFunc, Pointer(3)));
FFibers[3] := Pointer(CreateFiber(0, @FiberFunc, Pointer(4)));
// join in the fun
FiberFunc(Pointer(1));
// when done, kill all the fibers
// killing the current fiber calls ExitThread
for I := High(FFibers) downto Low(FFibers) do
DeleteFiber(FFibers[I]);

end;

procedure TForm1.BtnWeeClick(Sender: TObject);
begin
BtnWee.Enabled := False; // pressing the button twice will cause grief
FThreadHandle := BeginThread(nil, 0, @ThreadFunc, nil, 0, FThreadID);

end;

procedure TForm1.AppEventsMessage(var Msg: tagMSG;
var Handled: Boolean);

begin
if Msg.message = DDG_THREADMSG then
begin
// The wParam tells us which fiber is sending the message,
// and therefore which label to update
case Msg.wParam of
1: Label1.Caption := IntToStr(Msg.lParam);
2: Label2.Caption := IntToStr(Msg.lParam);
3: Label3.Caption := IntToStr(Msg.lParam);
4: Label4.Caption := IntToStr(Msg.lParam);

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

243

08 chpt_05.qxd 11/19/01 12:14 PM Page 243

LISTING 5.15 Continued

end;
Handled := True;

end;
end;

procedure TForm1.BtnStopClick(Sender: TObject);
begin
StopIt := True;

end;

end.

The most interesting work in this example is done in ThreadFunc(), which is the thread
function for secondary thread created in response to the button click. This function calls
ConvertThreadToFiber() to fiber-ize the thread and then calls CreateFiber() multiple times
to create three additional fibers. All the fibers are then prepared to execute FiberFunc(), which
simply counts up from 0 to infinity and sends a message every 100 counts to display the value
in the UI and switches to the next fiber every 1000 counts.

The application uses the simple and reliable technique of communicating with the main thread
by posting a message to the Application window handle. Each fiber holds a value between 1
and 4 because its fiber data and the message handler in the main thread uses this to determine
which fiber sent the message.

Figure 5.12 shows the FibTest application in action. The fact that the number in each of the
labels is very close in value illustrates that each of the fibers are executing using their own
stack.

Advanced Techniques

PART II
244

FIGURE 5.12
FibTest in action.

Summary
By now you’ve had a thorough introduction to threads and how to use them properly in the
Delphi environment. You’ve learned several techniques for synchronizing multiple threads, and

08 chpt_05.qxd 11/19/01 12:14 PM Page 244

you’ve learned how to communicate between secondary threads and a Delphi application’s
primary thread. Additionally, you’ve seen examples of using threads within the context of a
real-world file-search application, you’ve gotten the lowdown on how to leverage threads in
database applications, and you’ve learned about drawing to a TCanvas with multiple threads.
Finally, you’ve learned about the nifty fiber, which provide bring-your-own-scheduler function-
ality. In Chapter 6, “Dynamic Link Libraries,” you’ll learn everything you need to know about
creating and using DLLs in Delphi.

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

245

08 chpt_05.qxd 11/19/01 12:14 PM Page 245

08 chpt_05.qxd 11/19/01 12:14 PM Page 246

CHAPTER

6
Dynamic Link Libraries

IN THIS CHAPTER
• What Exactly Is a DLL? 248

• Static Linking Versus Dynamic Linking 250

• Why Use DLLs? 252

• Creating and Using DLLs 253

• Displaying Modeless Forms from DLLs 259

• Using DLLs in Your Delphi Applications 261

• Loading DLLs Explicitly 263

• The Dynamically Linked Library Entry/Exit
Function 266

• Exceptions in DLLs 271

• Callback Functions 273

• Calling Callback Functions from Your
DLLs 277

• Sharing DLL Data Across Different
Processes 279

• Exporting Objects from DLLs 287

09 chpt_06.qxd 11/19/01 12:09 PM Page 247

This chapter discusses Win32 dynamic link libraries, otherwise known as DLLs. DLLs are a
key component to writing any Windows application. This chapter discusses several aspects of
using and creating DLLs. It gives you an overview of how DLLs work and discusses how to
create and use DLLs. You learn different methods of loading DLLs and linking to the proce-
dures and functions they export. This chapter also covers the use of callback functions and
illustrates how to share DLL data among different calling processes.

What Exactly Is a DLL?
Dynamic link libraries are program modules that contain code, data, or resources that can be
shared among many Windows applications. One of the primary uses of DLLs is to enable
applications to load code to execute at runtime instead of linking that code to the application at
compile time. Therefore, multiple applications can simultaneously use the same code provided
by the DLL. In fact, the files Kernel32.dll, User32.dll, and GDI32.dll are three DLLs on
which Win32 relies heavily. Kernel32.dll is responsible for memory, process, and thread
management. User32.dll contains routines for the user interface that deal with the creation of
windows and the handling of Win32 messages. GDI32.dll deals with graphics. You’ll also hear
of other system DLLs, such as AdvAPI32.dll and ComDlg32.dll, which deal with object secu-
rity/Registry manipulation and common dialog boxes, respectively.

Another advantage to using DLLs is that your applications become modular. This simplifies
updating your applications because you need to replace only DLLs instead of replacing the
entire application. The Windows environment presents a typical example of this type of modu-
larity. Each time you install a new device, you also install a device driver DLL to enable that
device to communicate with Windows. The advantage to modularity becomes obvious when
you imagine having to reinstall Windows each time you install a new device to your system.

On disk, a DLL is basically the same as a Windows EXE file. One major difference is that a
DLL isn’t an independently executable file, although it might contain executable code. The
most common DLL file extension is .dll. Other file extensions are .drv for device drivers,
.sys for system files, and .fon for font resources, which contain no executable code.

Advanced Techniques

PART II
248

Delphi introduces a special-purpose DLL known as a package, which is used in the
Delphi and C++Builder environments. We’ll go into greater depth on packages in
Chapter 14, “Packages to the Max.”

NOTE

DLLs share their code with other applications through a process called dynamic linking, which
is discussed later in this chapter. In general, when an application uses a DLL, the Win32

09 chpt_06.qxd 11/19/01 12:09 PM Page 248

system ensures that only one copy of that DLL resides in memory. It does this by using
memory-mapped files. The DLL is first loaded into the Win32 system’s global heap. It’s then
mapped into the address space of the calling process. In the Win32 system, each process is
given its own 32-bit linear address space. When the DLL is loaded by multiple processes, each
process receives its own image of the DLL. Therefore, processes don’t share the same physical
code, data, or resources, as was the case in 16-bit Windows. In Win32, the DLL appears as
though it’s actually code belonging to the calling process. For more information on Win32 con-
structs, you can refer to Chapter 3 of Delphi 5 Developer’s Guide, “The Win32 API,” on this
book’s CD-ROM.

This doesn’t mean that when multiple processes load a DLL, the physical memory is con-
sumed by each usage of the DLL. The DLL image is placed into each process’s address space
by mapping its image from the system’s global heap to the address space of each process that
uses the DLL, at least in the ideal scenario (see the following sidebar).

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
249

Setting a DLL’s Preferred Base Address
DLL code is only shared between processes if the DLL can be loaded into the process
address space of all interested clients at the DLL’s preferred base address. If the pre-
ferred base address and range of the DLL overlaps with something already allocated
in a process, the Win32 loader has to relocate the entire DLL image to some other
base address. When that happens, none of the relocated DLL image is shared with
any other process in the system—each relocated DLL instance consumes its own chunk
of physical memory and swap file space.

It’s critical that you set the base address of every DLL you produce to a value that
doesn’t conflict with or overlap other address ranges used by your application by
using the $IMAGEBASE directive.

If your DLL will be used by multiple applications, choose a unique base address that’s
unlikely to collide with application addresses at the low end of the process virtual
address range or common DLLs (such as VCL packages) at the high end of the address
range. The default base address for all executable files (EXEs and DLLs) is $400000,
which means that unless you change your DLL base address, it will always collide with
the base address of its host EXE and therefore never be shared between processes.

There’s another side benefit to base address loading. Because the DLL doesn’t require
relocation or fixes (which is usually the case) and because it’s stored on a local disk
drive, the DLL’s memory pages are mapped directly onto the DLL file on disk. The DLL
code doesn’t consume any space in the system’s page file (called a swap file). This is
why the system’s total committed page count and size statistics can be much larger
than the system swap file plus RAM.

You’ll find detailed information on using the $IMAGEBASE directive by looking up
“Image Base Address” in the Delphi 6 online help.

09 chpt_06.qxd 11/19/01 12:09 PM Page 249

Following are some terms you’ll need to know in regard to DLLs:

• Application—A Windows program residing in an .exe file.

• Executable—A file containing executable code. Executable files include .dll and .exe
files.

• Instance—When referring to applications and DLLs, an instance is the occurrence of an
executable. Each instance can be referred to by an instance handle, which is assigned by
the Win32 system. When an application is run twice, for example, there are two instances
of that application and, therefore, two instance handles. When a DLL is loaded, there’s
an instance of that DLL as well as a corresponding instance handle. The term instance,
as used here, shouldn’t be confused with the instance of a class.

• Module—In 32-bit Windows, module and instance can be used synonymously. This dif-
fers from 16-bit Windows, in which the system maintains a database to manage modules
and provides a module handle for each module. In Win32, each instance of an applica-
tion gets its own address space; therefore, there’s no need for a separate module identi-
fier. However, Microsoft still uses the term in its own documentation. Just be aware that
module and instance are one and the same.

• Task—Windows is a multitasking (or task-switching) environment. It must be able to
allocate system resources and time to the various instances running under it. It does this
by maintaining a task database that maintains instance handles and other necessary infor-
mation to enable it to perform its task-switching functions. The task is the element to
which Windows grants resources and time blocks.

Static Linking Versus Dynamic Linking
Static linking refers to the method by which the Delphi compiler resolves a function or proce-
dure call to its executable code. The function’s code can exist in the application’s .dpr file or
in a unit. When linking your applications, these functions and procedures become part of the
final executable file. In other words, on disk, each function will reside at a specific location in
the program’s .exe file.

A function’s location also is predetermined at a location relative to where the program is
loaded in memory. Any calls to that function cause program execution to jump to where the
function resides, execute the function, and then return to the location from which it was called.
The relative address of the function is resolved during the linking process.

This is a loose description of a more complex process that the Delphi compiler uses to perform
static linking. However, for the purpose of this book, you don’t need to understand the underly-
ing operations that the compiler performs to use DLLs effectively in your applications.

Advanced Techniques

PART II
250

09 chpt_06.qxd 11/19/01 12:09 PM Page 250

Suppose you have two applications that use the same function that resides in a unit. Both
applications, of course, would have to include the unit in their uses statements. If you ran both
applications simultaneously in Windows, the function would exist twice in memory. If you had
a third application, there would be a third instance of the function in memory, and you would
be using up three times its memory space. This small example illustrates one of the primary
reasons for dynamic linking. Through dynamic linking, this function resides in a DLL. Then,
when an application loads the function into memory, all other applications that need to refer-
ence it can share its code by mapping the image of the DLL into their own process memory
space. The end result is that the DLL’s function exists only once in memory—theoretically.

With dynamic linking, the link between a function call and its executable code is resolved at
runtime by using an external reference to the DLL’s function. These references can be declared
in the application, but usually they’re placed in a separate import unit. The import unit
declares the imported functions and procedures and defines the various types required by DLL
functions.

For example, suppose you have a DLL named MaxLib.dll that contains a function:

function Max(i1, I2: integer): integer;

This function returns the higher of the two integers passed to it. A typical import unit would
look like this:

unit MaxUnit;
interface
function Max(I1, I2: integer): integer;
implementation
function Max; external ‘MAXLIB’;
end.

You’ll notice that although this looks somewhat like a typical unit, it doesn’t define the func-
tion Max(). The keyword external simply says that the function resides in the DLL of the
name that follows it. To use this unit, an application would simply place MaxUnit in its uses
statement. When the application runs, the DLL is loaded into memory automatically, and any
calls to Max() are linked to the Max() function in the DLL.

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
251

Delphi implements a smart linker that automatically removes functions, procedures,
variables, and typed constants that never get referenced in the final project. Therefore,
functions residing in large units that never get used don’t become a part of your EXE
file.

NOTE

09 chpt_06.qxd 11/19/01 12:09 PM Page 251

This illustrates one of two ways to load a DLL; it’s called implicit loading, which causes
Windows to automatically load the DLL when the application loads. Another method is to
explicitly load the DLL; this is discussed later in this chapter.

Why Use DLLs?
There are several reasons for using DLLs, some of which were mentioned earlier. In general,
you use DLLs to share code or system resources, to hide your code implementation or low-
level system routines, or to design custom controls. We discuss these topics in the following
sections.

Sharing Code, Resources, and Data with
Multiple Applications
Earlier in this chapter, you learned that the most common reason for creating a DLL is to share
code. Unlike units, which enable you to share code with different Delphi applications, DLLs
enable you to share code with any Windows application that can call functions from DLLs.

Additionally, DLLs provide a way for you to share resources such as bitmaps, fonts, icons, and
so on that you normally would put into a resource file and link directly into your application. If
you place these resources into a DLL, many applications can make use of them without using
up the memory required to load them more often.

Back in 16-bit Windows, DLLs had their own data segment, so all applications that used a
DLL could access the same data—global and static variables. In the Win32 system, this is a
different story. Because the DLL image is mapped to each process’s address space, all data in
the DLL belongs to that process. One thing worth mentioning here is that although the DLL’s
data isn’t shared between different processes, it’s shared by multiple threads within the same
process. Because threads execute independently of one another, you must take precautions not
to cause conflicts when accessing a DLL’s global data.

This doesn’t mean that there aren’t ways to make multiple processes share data made accessi-
ble through a DLL. One technique would be to create a shared memory area (using a memory-
mapped file) from within the DLL. Each application using that DLL would be able to read the
data stored in the shared memory area. This technique is shown later in the chapter.

Hiding Implementation
In some cases, you might want to hide the details of the routines that you make available from
a DLL. Regardless of your reason for deciding to hide your code’s implementation, a DLL pro-
vides a way for you to make your functions available to the public and not give away your
source code in doing so. All you need to do is provide an interface unit to enable others to

Advanced Techniques

PART II
252

09 chpt_06.qxd 11/19/01 12:09 PM Page 252

access your DLL. If you’re thinking that this is already possible with Delphi compiled units
(DCUs), consider that DCUs apply only to other Delphi applications that are created with the
same version of Delphi. DLLs are language independent, so you can create a DLL that can be
used by C++, VB, or any other language that supports DLLs.

The Windows unit is the interface unit to the Win32 DLLs. The Win32 API unit source files are
included with Delphi 6. One of the files you get is Windows.pas, the source to the Windows
unit. In Windows.pas, you find function definitions such as the following in the interface sec-
tion:

function ClientToScreen(Hwnd: HWND; var lpPoint: TPoint): BOOL; stdcall;

The corresponding link to the DLL is in the implementation section, as in the following
example:

function ClientToScreen; external user32 name ‘ClientToScreen’;

This basically says that the procedure ClientToScreen() exists in the dynamic link library
User32.dll, and its name is ClientToScreen.

Creating and Using DLLs
The following sections take you through the process of actually creating a DLL with Delphi.
You’ll see how to create an interface unit so that you can make your DLLs available to other
programs. You’ll also learn how to incorporate Delphi forms into DLLs before going on to
using DLLs in Delphi.

Counting Your Pennies (A Simple DLL)
The following DLL example illustrates placing a routine that’s a favorite of many computer
science professors into a DLL. The routine converts a monetary amount in pennies to the mini-
mum number of nickels, dimes, or quarters needed to match the total number of pennies.

A Basic DLL
The library contains the PenniesToCoins() method. Listing 6.1 shows the complete DLL
project.

LISTING 6.1 PenniesLib.dpr—A DLL to Convert Pennies to Other Coins

library PenniesLib;
{$DEFINE PENNIESLIB}
uses
SysUtils,
Classes,
PenniesInt;

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
253

09 chpt_06.qxd 11/19/01 12:09 PM Page 253

LISTING 6.1 Continued

function PenniesToCoins(TotPennies: word;
CoinsRec: PCoinsRec): word; StdCall;

begin
Result := TotPennies; // Assign value to Result
{ Calculate the values for quarters, dimes, nickels, pennies }
with CoinsRec^ do
begin
Quarters := TotPennies div 25;
TotPennies := TotPennies - Quarters * 25;
Dimes := TotPennies div 10;
TotPennies := TotPennies - Dimes * 10;
Nickels := TotPennies div 5;
TotPennies := TotPennies - Nickels * 5;
Pennies := TotPennies;

end;
end;

{ Export the function by name }
exports
PenniesToCoins;

end.

Notice that this library uses the unit PenniesInt. We’ll discuss this in more detail momentarily.

The exports clause specifies which functions or procedures in the DLL get exported and made
available to calling applications.

Defining an Interface Unit
Interface units enable users of your DLL to statically import your DLL’s routines into their
applications by just placing the import unit’s name in their module’s uses statement. Interface
units also allow the DLL writer to define common structures used by both the library and the
calling application. We demonstrate that here with the interface unit. Listing 6.2 shows the
source code to PenniesInt.pas.

LISTING 6.2 PenniesInt.pas—The interface Unit for PenniesLib.Dll

unit PenniesInt;
{ Interface routine for PENNIES.DLL }

interface
type

Advanced Techniques

PART II
254

09 chpt_06.qxd 11/19/01 12:09 PM Page 254

LISTING 6.2 Continued

{ This record will hold the denominations after the conversions have
been made }

PCoinsRec = ^TCoinsRec;
TCoinsRec = record
Quarters,
Dimes,
Nickels,
Pennies: word;

end;

{$IFNDEF PENNIESLIB}
{ Declare function with export keyword }

function PenniesToCoins(TotPennies: word;
CoinsRec: PCoinsRec): word; StdCall;

{$ENDIF}

implementation

{$IFNDEF PENNIESLIB}
{ Define the imported function }
function PenniesToCoins; external ‘PENNIESLIB.DLL’ name ‘PenniesToCoins’;
{$ENDIF}

end.

In the type section of this project, you declare the record TCoinsRec as well as a pointer to this
record. This record will hold the denominations that will make up the penny amount passed
into the PenniesToCoins() function. The function takes two parameters—the total amount of
money in pennies and a pointer to a TCoinsRec variable. The result of the function is the
amount of pennies passed in.

PenniesInt.pas declares the function that the PenniesLib.dll exports in its interface
section. The definition of the PenniesToCoins() function is placed in the implementation
section. This definition specifies that the function is an external function existing in the DLL
file PenniesLib.dll. It links to the DLL function by the name of the function. Notice that
you used a compiler directive PENNIESLIB to conditionally compile the declaration of the
PenniesToCoins() function. You do this because it’s not necessary to link this declaration
when compiling the interface unit for the library. This allows you to share the interface unit’s
type definitions with both the library and any applications that intend to use the library. Any
changes to the structures used by both only have to be made in the interface unit.

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
255

09 chpt_06.qxd 11/19/01 12:09 PM Page 255

If this were an actual DLL that you planned to deploy, you would provide both
PenniesLib.dll and PenniesInt.pas to your users. This would enable them to use the DLL
by defining the types and functions in PenniesInt.pas that PenniesLib.dll requires.
Additionally, programmers using different languages, such as C++, could convert
PenniesInt.pas to their languages, thus enabling them to use your DLL in their development
environments. You’ll find a sample project that uses PenniesLib.dll on the CD that accompa-
nies this book.

Displaying Modal Forms from DLLs
This section shows you how to make modal forms available from a DLL. Placing commonly
used forms in a DLL is beneficial because it enables you to extend your forms for use with any
Windows application or development environment, such as C++ and Visual Basic.

Advanced Techniques

PART II
256

To define an application-wide conditional directive, specify the conditional in the
Directories/Conditionals page of the Project, Options dialog box. Note that you must
rebuild your project for changes to conditional defines to take effect because Make
logic doesn’t reevaluate conditional defines.

TIP

The following definition shows one of two ways to import a DLL function:

function PenniesToCoins; external ‘PENNIESLIB.DLL’ index 1;

This method is called importing by ordinal. The other method by which you can
import DLL functions is by name:

function PenniesToCoins; external ‘PENNIESLIB.DLL’ name ‘PenniesToCoins’;

The by-name method uses the name specified after the name keyword to determine
which function to link to in the DLL.

The by-ordinal method reduces the DLL’s load time because it doesn’t have to look up
the function name in the DLL’s name table. However, this isn’t the preferred method
in Win32. Importing by name is the preferred technique so that applications won’t be
hypersensitive to relocation of DLL entry points as DLLs get updated over time. When
you import by ordinal, you are binding to a place in the DLL. When you import by
name, you’re binding to the function name, regardless of where it happens to be
placed in the DLL.

NOTE

09 chpt_06.qxd 11/19/01 12:09 PM Page 256

To do this, remove your DLL-based form from the list of autocreated forms.

We’ve created such a form that contains a TCalendar component on the main form. The call-
ing application will call a DLL function that will invoke this form. When the user selects a day
on the calendar, the date will be returned to the calling application.

Listing 6.3 shows the source for CalendarLib.dpr, the DLL project file. Listing 6.4, in the
section, “Displaying Modeless Forms from DLLs,” shows the source code for DllFrm.pas, the
DLL form’s unit, which illustrates how to encapsulate the form into a DLL.

LISTING 6.3 Library Project Source—CalendarLib.dpr

unit DLLFrm;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, Grids, Calendar;

type

TDLLForm = class(TForm)
calDllCalendar: TCalendar;
procedure calDllCalendarDblClick(Sender: TObject);

end;

{ Declare the export function }
function ShowCalendar(AHandle: THandle; ACaption: String):
TDateTime; StdCall;

implementation
{$R *.DFM}

function ShowCalendar(AHandle: THandle; ACaption: String): TDateTime;
var
DLLForm: TDllForm;

begin
// Copy application handle to DLL’s TApplication object
Application.Handle := AHandle;
DLLForm := TDLLForm.Create(Application);
try
DLLForm.Caption := ACaption;
DLLForm.ShowModal;
// Pass the date back in Result
Result := DLLForm.calDLLCalendar.CalendarDate;

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
257

09 chpt_06.qxd 11/19/01 12:09 PM Page 257

LISTING 6.3 Continued

finally
DLLForm.Free;

end;
end;

procedure TDLLForm.calDllCalendarDblClick(Sender: TObject);
begin
Close;

end;

end.

The main form in this DLL is incorporated into the exported function. Notice that the DLLForm
declaration was removed from the interface section and declared inside the function instead.

The first thing that the DLL function does is to assign the AHandle parameter to the
Application.Handle property. Delphi projects, including library projects, contain a global
Application object. In a DLL, this object is separate from the Application object that exists
in the calling application. For the form in the DLL to truly act as a modal form for the calling
application, you must assign the handle of the calling application to the DLL’s
Application.Handle property, as has been illustrated. Not doing so will result in erratic
behavior, especially when you start minimizing the DLL’s form. Also, as shown, you must
make sure not to pass nil as the owner of the DLL’s form.

After the form is created, you assign the ACaption string to the Caption of the DLL form. It’s
then displayed modally. When the form closes, the date selected by the user in the TCalendar
component is passed back to the calling function. The form closes after the user double-clicks
the TCalendar component.

Advanced Techniques

PART II
258

ShareMem must be the first unit in your library’s uses clause and your project’s (select
View, Project Source) uses clause if your DLL exports any procedures or functions that
pass strings or dynamic arrays as parameters or function results. This applies to all
strings passed to and from your DLL—even those nested in records and classes.
ShareMem is the interface unit to the Borlndmm.dll shared memory manager, which
must be deployed along with your DLL. To avoid using Borlndmm.dll, pass string
information using PChar or ShortString parameters.

ShareMem is only required when heap-allocated strings or dynamic arrays are passed
between modules, and such transfers also assign ownership of that string memory.

CAUTION

continues

09 chpt_06.qxd 11/19/01 12:09 PM Page 258

This is all that’s required when encapsulating a modal form into a DLL. In the next section,
we’ll discuss displaying a modeless form in a DLL.

Displaying Modeless Forms from DLLs
To illustrate placing modeless forms in a DLL, we’ll use the same calendar form as the previ-
ous section.

When displaying modeless forms from a DLL, the DLL must provide two routines. The first
routine must take care of creating and displaying the form. A second routine is required to free
the form. Listing 6.4 displays the source code for the illustration of a modeless form in a DLL.

LISTING 6.4 A Modeless Form in a DLL

unit DLLFrm;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, Grids, Calendar;

type

TDLLForm = class(TForm)
calDllCalendar: TCalendar;

end;

{ Declare the export function }
function ShowCalendar(AHandle: THandle; ACaption: String):
Longint; stdCall;

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
259

Typecasting an internal string to a PChar and passing it to another module as a PChar
doesn’t transfer ownership of the string memory to the calling module, so ShareMem
isn’t required.

Note that this ShareMem issue applies only to Delphi/C++Builder DLLs that pass strings
or dynamic arrays to other Delphi/BCB DLLs or EXEs. You should never expose Delphi
strings or dynamic arrays (as parameters or function results of DLL exported func-
tions) to non-Delphi DLLs or host apps. They won’t know how to dispose of the
Delphi items correctly.

Also, ShareMem is never required between modules built with packages. The memory
allocator is implicitly shared between packaged modules.

09 chpt_06.qxd 11/19/01 12:09 PM Page 259

LISTING 6.4 Continued

procedure CloseCalendar(AFormRef: Longint); stdcall;

implementation
{$R *.DFM}

function ShowCalendar(AHandle: THandle; ACaption: String): Longint;
var
DLLForm: TDllForm;

begin
// Copy application handle to DLL’s TApplication object
Application.Handle := AHandle;
DLLForm := TDLLForm.Create(Application);
Result := Longint(DLLForm);
DLLForm.Caption := ACaption;
DLLForm.Show;

end;

procedure CloseCalendar(AFormRef: Longint);
begin
if AFormRef > 0 then
TDLLForm(AFormRef).Release;

end;

end.

This listing displays the routines ShowCalendar() and CloseCalendar(). ShowCalendar() is
similar to the same function in the modal form example in that it makes the assignment of the
calling application’s application handle to the DLL’s application handle and creates the form.
Instead of calling ShowModal(), however, this routine calls Show(). Notice that it doesn’t free
the form. Also, the function returns a longint value to which you assign the DLLForm instance
because a reference of the created form must be maintained, and it’s best to have the calling
application maintain this instance. This would take care of any issues regarding other applica-
tions calling this DLL and creating another instance of the form.

In the CloseCalendar() procedure, you simply check for a valid reference to the form and
invoke its Release() method. Here, the calling application should pass back the same refer-
ence that was returned to it from ShowCalendar().

When using such a technique, you must be careful that your DLL never frees the form inde-
pendently of the host. If it does (for example, returning caFree in CanClose()), the call to
CloseCalendar() will crash.

Demos of both the model and modeless forms are on the CD that accompanies this book.

Advanced Techniques

PART II
260

09 chpt_06.qxd 11/19/01 12:09 PM Page 260

Using DLLs in Your Delphi Applications
Earlier in this chapter, you learned that there are two ways to load or import DLLs: implicitly
and explicitly. Both techniques are illustrated in this section with the DLLs just created.

The first DLL created in this chapter included an interface unit. You’ll use this interface
unit in the following example to illustrate implicit linking of a DLL. The sample project’s main
form has a TMaskEdit, TButton, and nine TLabel components.

In this application, the user enters an amount of pennies. Then, when the user clicks the button,
the labels will show the breakdown of denominations of change adding up to that amount. This
information is obtained from the PenniesLib.dll exported function PenniesToCoins().

The main form is defined in the unit MainFrm.pas shown in Listing 6.5.

LISTING 6.5 Main Form for the Pennies Demo

unit MainFrm;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, Mask;

type

TMainForm = class(TForm)
lblTotal: TLabel;
lblQlbl: TLabel;
lblDlbl: TLabel;
lblNlbl: TLabel;
lblPlbl: TLabel;
lblQuarters: TLabel;
lblDimes: TLabel;
lblNickels: TLabel;
lblPennies: TLabel;
btnMakeChange: TButton;
meTotalPennies: TMaskEdit;
procedure btnMakeChangeClick(Sender: TObject);

end;

var
MainForm: TMainForm;

implementation

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
261

09 chpt_06.qxd 11/19/01 12:09 PM Page 261

LISTING 6.5 Continued

uses PenniesInt; // Use an interface unit

{$R *.DFM}

procedure TMainForm.btnMakeChangeClick(Sender: TObject);
var
CoinsRec: TCoinsRec;
TotPennies: word;

begin
{ Call the DLL function to determine the minimum coins required
for the amount of pennies specified. }

TotPennies := PenniesToCoins(StrToInt(meTotalPennies.Text), @CoinsRec);
with CoinsRec do
begin
{ Now display the coin information }
lblQuarters.Caption := IntToStr(Quarters);
lblDimes.Caption := IntToStr(Dimes);
lblNickels.Caption := IntToStr(Nickels);
lblPennies.Caption := IntToStr(Pennies);

end
end;

end.

Notice that MainFrm.pas uses the unit PenniesInt. Recall that PenniesInt.pas includes the
external declarations to the functions existing in PenniesLib.dpr. When this application runs,
the Win32 system automatically loads PenniesLib.dll and maps it to the process address
space for the calling application.

Usage of an import unit is optional. You can remove PenniesInt from the uses statement and
place the external declaration to PenniesToCoins() in the implementation section of
MainFrm.pas, as in the following code:

implementation

function PenniesToCoins(TotPennies: word; ChangeRec: PChangeRec): word;
➥StdCall external ‘PENNIESLIB.DLL’;

You also would have to define PChangeRec and TChangeRec again in MainFrm.pas, or you can
compile your application using the compiler directive PENNIESLIB. This technique is fine in the
case where you only need access to a few routines from a DLL. In many cases, you’ll find that
you require not only the external declarations to the DLL’s routines but also access to the types
defined in the interface unit.

Advanced Techniques

PART II
262

09 chpt_06.qxd 11/19/01 12:09 PM Page 262

You’ll find this demo on the accompanying CD.

Loading DLLs Explicitly
Although loading DLLs implicitly is convenient, it isn’t always the most desired method.
Suppose you have a DLL that contains many routines. If it’s likely that your application will
never call any of the DLL’s routines, it would be a waste of memory to load the DLL every
time your application runs. This is especially true when using multiple DLLs with one applica-
tion. Another example is when using DLLs as large objects: a standard list of functions that are
implemented by multiple DLLs but do slightly different things, such as printer drivers and file
format readers. In this situation, it would be beneficial to load the DLL when specifically
requested to do so by the application. This is referred to as explicitly loading a DLL.

To illustrate explicitly loading a DLL, we return to the sample DLL with a modal form. Listing
6.6 shows the code for the main form of the application that demonstrates explicitly loading
this DLL. The project file for this application is on the accompanying CD.

LISTING 6.6 Main Form for Calendar DLL Demo Application

unit MainFfm;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls;

type
{ First, define a procedural data type, this should reflect the
procedure that is exported from the DLL. }

TShowCalendar = function (AHandle: THandle; ACaption: String):
TDateTime; StdCall;

{ Create a new exception class to reflect a failed DLL load }
EDLLLoadError = class(Exception);

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
263

Many times, when using another vendor’s DLL, you won’t have a Pascal interface
unit; instead, you’ll have a C/C++ import library. In this case, you have to translate the
library to a Pascal equivalent interface unit.

NOTE

09 chpt_06.qxd 11/19/01 12:09 PM Page 263

LISTING 6.6 Continued

TMainForm = class(TForm)
lblDate: TLabel;
btnGetCalendar: TButton;
procedure btnGetCalendarClick(Sender: TObject);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.btnGetCalendarClick(Sender: TObject);
var
LibHandle : THandle;
ShowCalendar: TShowCalendar;

begin

{ Attempt to load the DLL }
LibHandle := LoadLibrary(‘CALENDARLIB.DLL’);
try
{ If the load failed, LibHandle will be zero.
If this occurs, raise an exception. }

if LibHandle = 0 then
raise EDLLLoadError.Create(‘Unable to Load DLL’);

{ If the code makes it here, the DLL loaded successfully, now obtain
the link to the DLL’s exported function so that it can be called. }

@ShowCalendar := GetProcAddress(LibHandle, ‘ShowCalendar’);
{ If the function is imported successfully, then set
lblDate.Caption to reflect the returned date from
the function. Otherwise, show the return raise an exception. }

if not (@ShowCalendar = nil) then
lblDate.Caption := DateToStr(ShowCalendar(Application.Handle, Caption))

else
RaiseLastWin32Error;

finally
FreeLibrary(LibHandle); // Unload the DLL.

end;
end;

end.

Advanced Techniques

PART II
264

09 chpt_06.qxd 11/19/01 12:09 PM Page 264

This unit first defines a procedural data type, TShowCalendar, that reflects the definition of the
function it will be using from CalendarLib.dll. It then defines a special exception, which is
raised when there’s a problem loading the DLL. In the btnGetCalendarClick() event handler,
you’ll notice the use of three Win32 API functions: LoadLibrary(), FreeLibrary(), and
GetProcAddress().

LoadLibrary() is defined this way:

function LoadLibrary(lpLibFileName: PChar): HMODULE; stdcall;

This function loads the DLL module specified by lpLibFileName and maps it into the address
space of the calling process. If this function succeeds, it returns a handle to the module. If it
fails, it returns the value 0, and an exception is raised. You can look up LoadLibrary() in the
online help for detailed information on its functionality and possible return error values.

FreeLibrary() is defined like this:

function FreeLibrary(hLibModule: HMODULE): BOOL; stdcall;

FreeLibrary() decrements the instance count of the library specified by LibModule. It
removes the library from memory when the library’s instance count is zero. The instance count
keeps track of the number of tasks using the DLL.

Here’s how GetProcAddress() is defined:

function GetProcAddress(hModule: HMODULE; lpProcName: LPCSTR):
FARPROC; stdcall

GetProcAddress() returns the address of a function within the module specified in its first
parameter, hModule. hModule is the THandle returned from a call to LoadLibrary(). If
GetProcAddress() fails, it returns nil. You must call GetLastError() for extended error
information.

In Button1’s OnClick event handler, LoadLibrary() is called to load CALDLL. If it fails to load,
an exception is raised. If the call is successful, a call to the window’s GetProcAddress() is
made to get the address of the function ShowCalendar(). Prepending the procedural data type
variable ShowCalendar with the address of operator (@) character prevents the compiler from
issuing a type mismatch error due to its strict type-checking. After obtaining the address of
ShowCalendar(), you can use it as defined by TShowCalendar. Finally, FreeLibrary() is
called within the finally block to ensure that the library is freed from memory when no
longer required.

You can see that the library is loaded and freed each time this function is called. If this func-
tion was called only once during the run of an application, it becomes apparent how explicit

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
265

09 chpt_06.qxd 11/19/01 12:09 PM Page 265

loading can save much-needed and often limited memory resources. On the other hand, if this
function were called frequently, the DLL loading and unloading would add a lot of overhead.

The Dynamically Linked Library Entry/Exit
Function
You can provide optional entry and exit code for your DLLs when required under various ini-
tialization and shutdown operations. These operations can occur during process or thread
initialization/termination.

Process/Thread Initialization and Termination Routines
Typical initialization operations include registering Windows classes, initializing global vari-
ables, and initializing an entry/exit function. This occurs during the method of entry for the
DLL, which is referred to as the DLLEntryPoint function. This function is actually represented
by the begin..end block of the DLL project file. This is the location where you would set up
an entry/exit procedure. This procedure must take a single parameter of the type DWord.

The global DLLProc variable is a procedural pointer to which you can assign the entry/exit pro-
cedure. This variable is initially nil unless you set up your own procedure. By setting up an
entry/exit procedure, you can respond to the events listed in Table 6.1.

TABLE 6.1 DLL Entry/Exit Events

Event Purpose

DLL_PROCESS_ATTACH The DLL is attaching to the address space of the current process
when the process starts up or when a call to LoadLibrary() is
made. DLLs initialize any instance data during this event.

DLL_PROCESS_DETACH The DLL is detaching from the address space of the calling
process. This occurs during a clean process exit or when a call to
FreeLibrary() is made. The DLL can uninitialize any instance
data during this event.

DLL_THREAD_ATTACH This event occurs when the current process creates a new thread.
When this occurs, the system calls the entry-point function of
any DLLs attached to the process. This call is made in the con-
text of the new thread and can be used to allocate any thread-spe-
cific data.

DLL_THREAD_DETACH This event occurs when the thread is exiting. During this event,
the DLL can free any thread-specific initialized data.

Advanced Techniques

PART II
266

09 chpt_06.qxd 11/19/01 12:09 PM Page 266

DLL Entry/Exit Example
Listing 6.7 illustrates how you would install an entry/exit procedure to the DLL’s DLLProc
variable.

LISTING 6.7 The Source Code for DllEntry.dpr

library DllEntry;
uses
SysUtils,
Windows,
Dialogs,
Classes;

procedure DLLEntryPoint(dwReason: DWord);
begin
case dwReason of
DLL_PROCESS_ATTACH: ShowMessage(‘Attaching to process’);
DLL_PROCESS_DETACH: ShowMessage(‘Detaching from process’);
DLL_THREAD_ATTACH: MessageBeep(0);
DLL_THREAD_DETACH: MessageBeep(0);

end;
end;
begin
{ First, assign the procedure to the DLLProc variable }
DllProc := @DLLEntryPoint;
{ Now invoke the procedure to reflect that the DLL is attaching to the
process }

DLLEntryPoint(DLL_PROCESS_ATTACH);
end.

The entry/exit procedure is assigned to the DLL’s DLLProc variable in the begin..end block of
the DLL project file. This procedure, DLLEntryPoint(), evaluates its word parameter to deter-
mine which event is being called. These events correspond to the events listed in Table 6.1. For
illustration purposes, we have each event display a message box when the DLL is being loaded
or destroyed. When a thread in the calling application is being created or destroyed, a message
beep occurs.

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
267

Threads terminated abnormally—by calling TerminateThread()—are not guaranteed
to call DLL_THREAD_DETACH.

NOTE

09 chpt_06.qxd 11/19/01 12:09 PM Page 267

To illustrate the use of this DLL, examine the code shown in Listing 6.8.

LISTING 6.8 Sample Code for DLL Entry/Exit Demo

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ComCtrls, Gauges;

type

{ Define a TThread descendant }

TTestThread = class(TThread)
procedure Execute; override;
procedure SetCaptionData;

end;

TMainForm = class(TForm)
btnLoadLib: TButton;
btnFreeLib: TButton;
btnCreateThread: TButton;
btnFreeThread: TButton;
lblCount: TLabel;
procedure btnLoadLibClick(Sender: TObject);
procedure btnFreeLibClick(Sender: TObject);
procedure btnCreateThreadClick(Sender: TObject);
procedure btnFreeThreadClick(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
LibHandle : THandle;
TestThread : TTestThread;
Counter : Integer;
GoThread : Boolean;

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

Advanced Techniques

PART II
268

09 chpt_06.qxd 11/19/01 12:09 PM Page 268

LISTING 6.8 Continued

procedure TTestThread.Execute;
begin
while MainForm.GoThread do
begin
Synchronize(SetCaptionData);
Inc(MainForm.Counter);

end;
end;

procedure TTestThread.SetCaptionData;
begin
MainForm.lblCount.Caption := IntToStr(MainForm.Counter);

end;

procedure TMainForm.btnLoadLibClick(Sender: TObject);
{ This procedure loads the library DllEntryLib.DLL }
begin
if LibHandle = 0 then
begin
LibHandle := LoadLibrary(‘DLLENTRYLIB.DLL’);
if LibHandle = 0 then
raise Exception.Create(‘Unable to Load DLL’);

end
else
MessageDlg(‘Library already loaded’, mtWarning, [mbok], 0);

end;

procedure TMainForm.btnFreeLibClick(Sender: TObject);
{ This procedure frees the library }
begin
if not (LibHandle = 0) then
begin
FreeLibrary(LibHandle);
LibHandle := 0;

end;
end;

procedure TMainForm.btnCreateThreadClick(Sender: TObject);
{ This procedure creates the TThread instance. If the DLL is loaded a
message beep will occur. }

begin
if TestThread = nil then
begin
GoThread := True;

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
269

09 chpt_06.qxd 11/19/01 12:09 PM Page 269

LISTING 6.8 Continued

TestThread := TTestThread.Create(False);
end;

end;

procedure TMainForm.btnFreeThreadClick(Sender: TObject);
{ In freeing the TThread a message beep will occur if the DLL is loaded. }
begin
if not (TestThread = nil) then
begin
GoThread := False;
TestThread.Free;
TestThread := nil;
Counter := 0;

end;

end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
LibHandle := 0;
TestThread := nil;

end;

end.

This project consists of a main form with four TButton components. BtnLoadLib loads the
DLL DllEntryLib.dll. BtnFreeLib frees the library from the process. BtnCreateThread cre-
ates a TThread descendant object, which in turn creates a thread. BtnFreeThread destroys the
TThread object. The lblCount is used just to show the thread execution.

The btnLoadLibClick() event handler calls LoadLibrary() to load DllEntryLib.dll. This
causes the DLL to load and be mapped to the process’s address space. Additionally, the initial-
ization code in the DLL gets executed. Again, this is the code that appears in the begin..end
block of the DLL, which performs the following to set up an entry/exit procedure for the DLL:

begin
{ First, assign the procedure to the DLLProc variable }
DllProc := @DLLEntryPoint;
{ Now invoke the procedure to reflect that the DLL is attaching to the
process }

DLLEntryPoint(DLL_PROCESS_ATTACH);
end.

Advanced Techniques

PART II
270

09 chpt_06.qxd 11/19/01 12:09 PM Page 270

This initialization section will only be called once per process. If another process loads this
DLL, this section will be called again, except in the context of the separate process—processes
don’t share DLL instances.

The btnFreeLibClick() event handler unloads the DLL by calling FreeLibrary(). When this
happens, the procedure to which the DLLProc points, DLLEntryProc(), gets called with the
value of DLL_PROCESS_DETACH passed as the parameter.

The btnCreateThreadClick() event handler creates the TThread descendant object. This
causes the DLLEntryProc() to get called, and the DLL_THREAD_ATTACH value is passed as the
parameter. The btnFreeThreadClick() event handler invokes DLLEntryProc again but passes
DLL_THREAD_DETACH as the value to the procedure.

Although you invoke only a message box when the events occur, you’ll use these events to per-
form any process or thread initialization or cleanup that might be necessary for your applica-
tion. Later, you’ll see an example of using this technique to set up sharable DLL global data.
You can look at the demo of this DLL in the project DLLEntryTest.dpr on the CD.

Exceptions in DLLs
This section discusses issues regarding DLLs and Win32 exceptions.

Capturing Exceptions in 16-Bit Delphi
Back in the 16-bit days with Delphi 1, Delphi exceptions were language specific. Therefore, if
exceptions were raised in a DLL, you were required to capture the exception before it escaped
from the DLL so that it wouldn’t creep up the calling modules stack, causing it to crash. You
had to wrap every DLL entry point with an exception handler, like this:

procedure SomeDLLProc;
begin
try
{ Do your stuff }

except
on Exception do

{ Don’t let it get away, handle it and don’t re-raise it }
end;

end;

This is no longer the case as of Delphi 2. Delphi 6 exceptions map themselves to Win32
exceptions. Exceptions raised in DLLs are no longer a compiler/language feature of Delphi
but rather a feature of the Win32 system.

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
271

09 chpt_06.qxd 11/19/01 12:09 PM Page 271

For this to work, however, you must make sure that SysUtils is included in the DLL’s uses
clause. Not including SysUtils disables Delphi’s exception support inside the DLL.

Advanced Techniques

PART II
272

Most Win32 applications aren’t designed to handle exceptions, so even though
Delphi language exceptions get turned into Win32 exceptions, exceptions that you let
escape from a DLL into the host application are likely to shut down the application.

If the host application is built with Delphi or C++Builder, this shouldn’t be much of an
issue, but there’s still a lot of raw C and C++ code out there that doesn’t like exceptions.

Therefore, to make your DLLs bulletproof, you might still consider using the 16-bit
method of protecting DLL entry points with try..except blocks to capture exceptions
raised in your DLLs.

CAUTION

Exceptions and the Safecall Directive
Safecall functions are used for COM and exception handling. They guarantee that any excep-
tion will propagate to the caller of the function. A Safecall function converts an exception
into an HResult return value. Safecall also implies the StdCall calling convention. Therefore,
a Safecall function declared as

function Foo(i: integer): string; Safecall;

really looks like this according to the compiler:

function Foo(i: integer): string; HResult; StdCall;

The compiler then inserts an implicit try..except block that wraps the entire function con-
tents and catches any exceptions raised. The except block invokes a call to
SafecallExceptionHandler() to convert the exception into an HResult. This is somewhat
similar to the 16-bit method of capturing exceptions and passing back error values.

When a non-Delphi application uses a DLL written in Delphi, it won’t be able to utilize
the Delphi language-specific exception classes. However, it can be handled as a Win32
system exception given the exception code of $0EEDFACE. The exception address will
be the first entry in the ExceptionInformation array of the Win32 system EXCEPTION_
RECORD. The second entry contains a reference to the Delphi exception object. Look up
EXCEPTION_RECORD in the Delphi online help for additional information.

NOTE

09 chpt_06.qxd 11/19/01 12:09 PM Page 272

Callback Functions
A callback function is a function in your application called by Win32 DLLs or other DLLs.
Basically, Windows has several API functions that require a callback function. When calling
these functions, you pass in an address of a function defined by your application that Windows
can call. If you’re wondering how this all relates to DLLs, remember that the Win32 API is
really several routines exported from system DLLs. Essentially, when you pass a callback
function to a Win32 function, you’re passing this function to a DLL.

One such function is the EnumWindows() API function, which enumerates through all top-level
windows. This function passes the handle of each window in the enumeration to your applica-
tion-defined callback function. You’re required to define and pass the callback function’s
address to the EnumWindows() function. The callback function that you must provide to
EnumWindows() is defined this way:

function EnumWindowsProc(Hw: HWnd; lp: lParam): Boolean; stdcall;

We illustrate the use of the EnumWindows() function in the CallBack.dpr project on the CD
and shown in Listing 6.9.

LISTING 6.9 MainForm.pas—Source to Callback Example

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ComCtrls;

type

{ Define a record/class to hold the window name and class name for
each window. Instances of this class will get added to ListBox1 }

TWindowInfo = class
WindowName, // The window name
WindowClass: String; // The window’s class name

end;

TMainForm = class(TForm)
lbWinInfo: TListBox;
btnGetWinInfo: TButton;
hdWinInfo: THeaderControl;
procedure btnGetWinInfoClick(Sender: TObject);

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
273

09 chpt_06.qxd 11/19/01 12:09 PM Page 273

LISTING 6.9 Continued

procedure FormDestroy(Sender: TObject);
procedure lbWinInfoDrawItem(Control: TWinControl; Index: Integer;
Rect: TRect; State: TOwnerDrawState);

procedure hdWinInfoSectionResize(HeaderControl: THeaderControl;
Section: THeaderSection);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}
function EnumWindowsProc(Hw: HWnd; AMainForm: TMainForm):

Boolean; stdcall;
{ This procedure is called by the User32.DLL library as it enumerates
through windows active in the system. }

var
WinName, CName: array[0..144] of char;
WindowInfo: TWindowInfo;

begin
{ Return true by default which indicates not to stop enumerating
through the windows }

Result := True;
GetWindowText(Hw, WinName, 144); // Obtain the current window text
GetClassName(Hw, CName, 144); // Obtain the class name of the window
{ Create a TWindowInfo instance and set its fields with the values of
the window name and window class name. Then add this object to
ListBox1’s Objects array. These values will be displayed later by
the listbox }

WindowInfo := TWindowInfo.Create;
with WindowInfo do
begin
SetLength(WindowName, strlen(WinName));
SetLength(WindowClass, StrLen(CName));
WindowName := StrPas(WinName);
WindowClass := StrPas(CName);

end;
// Add to Objects array
MainForm.lbWinInfo.Items.AddObject(‘’, WindowInfo); end;

procedure TMainForm.btnGetWinInfoClick(Sender: TObject);

Advanced Techniques

PART II
274

09 chpt_06.qxd 11/19/01 12:09 PM Page 274

LISTING 6.9 Continued

begin
{ Enumerate through all top-level windows being displayed. Pass in the
call back function EnumWindowsProc which will be called for each
window }

EnumWindows(@EnumWindowsProc, 0);
end;

procedure TMainForm.FormDestroy(Sender: TObject);
var
i: integer;

begin
{ Free all instances of TWindowInfo }
for i := 0 to lbWinInfo.Items.Count - 1 do
TWindowInfo(lbWinInfo.Items.Objects[i]).Free

end;

procedure TMainForm.lbWinInfoDrawItem(Control: TWinControl;
Index: Integer;Rect: TRect; State: TOwnerDrawState);

begin
{ First, clear the rectangle to which drawing will be performed }
lbWinInfo.Canvas.FillRect(Rect);
{ Now draw the strings of the TWindowInfo record stored at the
Index’th position of the listbox. The sections of HeaderControl
will give positions to which to draw each string }

with TWindowInfo(lbWinInfo.Items.Objects[Index]) do
begin
DrawText(lbWinInfo.Canvas.Handle, PChar(WindowName),
Length(WindowName), Rect,dt_Left or dt_VCenter);

{ Shift the drawing rectangle over by using the size
HeaderControl1’s sections to determine where to draw the next
string }

Rect.Left := Rect.Left + hdWinInfo.Sections[0].Width;
DrawText(lbWinInfo.Canvas.Handle, PChar(WindowClass),
Length(WindowClass), Rect, dt_Left or dt_VCenter);

end;
end;

procedure TMainForm.hdWinInfoSectionResize(HeaderControl:
THeaderControl; Section: THeaderSection);

begin
lbWinInfo.Invalidate; // Force ListBox1 to redraw itself.

end;

end.

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
275

09 chpt_06.qxd 11/19/01 12:09 PM Page 275

This application uses the EnumWindows() function to extract the window name and classname
of all top-level windows and adds them to the owner-draw list box on the main form. The main
form uses an owner-draw list box to make both the window name and window classname
appear in a columnar fashion. First we’ll explain the use of the callback function. Then we’ll
explain how we created the columnar list box.

Using the Callback Function
You saw in Listing 6.9 that we defined a procedure, EnumWindowsProc(), that takes a window
handle as its first parameter. The second parameter is user-defined data, so you can pass what-
ever data you deem necessary as long as its size is the equivalent to an integer data type.

EnumWindowsProc() is the callback procedure that you’ll pass to the EnumWindows() Win32
API function. It must be declared with the StdCall directive to specify that it uses the Win32
calling convention. When passing this procedure to EnumWindows(), it will get called for each
top-level window whose window handle gets passed as the first parameter. You use this win-
dow handle to obtain both the window name and classname of each window. You then create
an instance of the TWindowInfo class and set its fields with this information. The TWindowInfo
class instance is then added to the lbWinInfo.Objects array. The data in this list box will be
used when the list box is drawn to show this data in a columnar fashion.

Notice that, in the main form’s OnDestroy event handler, you make sure to clean up any allo-
cated instances of the TWindowInfo class.

The btnGetWinInfoClick()event handler calls the EnumWindows() procedure and passes
EnumWindowsProc() as its first parameter.

When you run the application and click the button, you’ll see that the information is obtained
from each window and is shown in the list box.

Drawing an Owner-Draw List Box
The window names and classnames of top-level windows are drawn in a columnar fashion in
lbWinInfo from the previous project. This was done by using a TListBox with its Style prop-
erty set to lbOwnerDraw. When this style is set as such, the TListBox.OnDrawItem event is
called each time the TListBox is to draw one of its items. You’re responsible for drawing the
items as illustrated in the example.

In Listing 6.9, the event handler lbWinInfoDrawItem() contains the code that performs the
drawing of list box items. Here, you draw the strings contained in the TWindowInfo class
instances, which are stored in the lbWinInfo.Objects array. These values are obtained from
the callback function EnumWindowsProc(). You can refer to the code commentary to determine
what this event handler does.

Advanced Techniques

PART II
276

09 chpt_06.qxd 11/19/01 12:09 PM Page 276

Calling Callback Functions from Your DLLs
Just as you can pass callback functions to DLLs, you can also have your DLLs call callback
functions. This section illustrates how you can create a DLL whose exported function takes a
callback procedure as a parameter. Then, based on whether the user passes in a callback proce-
dure, the procedure gets called. Listing 6.10 contains the source code to this DLL.

LISTING 6.10 Calling a Callback Demo—Source Code for StrSrchLib.dll

library StrSrchLib;

uses
Wintypes,
WinProcs,
SysUtils,
Dialogs;

type
{ declare the callback function type }
TFoundStrProc = procedure(StrPos: PChar); StdCall;

function SearchStr(ASrcStr, ASearchStr: PChar; AProc: TFarProc):
Integer; StdCall;

{ This function looks for ASearchStr in ASrcStr. When founc ASearchStr,
the callback procedure referred to by AProc is called if one has been
passed in. The user may pass nil as this parameter. }

var
FindStr: PChar;

begin
FindStr := ASrcStr;
FindStr := StrPos(FindStr, ASearchStr);
while FindStr <> nil do
begin
if AProc <> nil then
TFoundStrProc(AProc)(FindStr);

FindStr := FindStr + 1;
FindStr := StrPos(FindStr, ASearchStr);

end;
end;

exports
SearchStr;

begin

end.

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
277

09 chpt_06.qxd 11/19/01 12:09 PM Page 277

The DLL also defines a procedural type, TFoundStrProc, for the callback function, which will
be used to typecast the callback function when it’s called.

The exported procedure SearchStr() is where the callback function is called. The commentary
in the listing explains what this procedure does.

An example of this DLL’s usage is given in the project CallBackDemo.dpr in the \DLLCallBack
directory on the CD. The source for the main form of this demo is shown in Listing 6.11.

LISTING 6.11 The Main Form for the DLL Callback Demo

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls;

type
TMainForm = class(TForm)
btnCallDLLFunc: TButton;
edtSearchStr: TEdit;
lblSrchWrd: TLabel;
memStr: TMemo;
procedure btnCallDLLFuncClick(Sender: TObject);

end;

var
MainForm: TMainForm;
Count: Integer;

implementation

{$R *.DFM}

{ Define the DLL’s exported procedure }
function SearchStr(ASrcStr, ASearchStr: PChar; AProc: TFarProc):

Integer; StdCall external
‘STRSRCHLIB.DLL’;

{ Define the callback procedure, make sure to use the StdCall directive }
procedure StrPosProc(AStrPsn: PChar); StdCall;
begin
inc(Count); // Increment the Count variable.

end;

Advanced Techniques

PART II
278

09 chpt_06.qxd 11/19/01 12:09 PM Page 278

LISTING 6.11 Continued

procedure TMainForm.btnCallDLLFuncClick(Sender: TObject);
var
S: String;
S2: String;

begin
Count := 0; // Initialize Count to zero.
{ Retrieve the length of the text on which to search. }
SetLength(S, memStr.GetTextLen);
{ Now copy the text to the variable S }
memStr.GetTextBuf(PChar(S), memStr.GetTextLen);
{ Copy Edit1’s Text to a string variable so that it can be passed to
the DLL function }

S2 := edtSearchStr.Text;
{ Call the DLL function }
SearchStr(PChar(S), PChar(S2), @StrPosProc);
{ Show how many times the word occurs in the string. This has been
stored in the Count variable which is used by the callback function }

ShowMessage(Format(‘%s %s %d %s’, [edtSearchStr.Text,
‘occurs’, Count, ‘times.’]));

end;

end.

This application contains a TMemo control. EdtSearchStr.Text contains a string that will be
searched for in memStr’s contents. memStr’s contents are passed as the source string to the DLL
function SearchStr(), and edtSearchStr.Text is passed as the search string.

The function StrPosProc() is the actual callback function. This function increments the value
of the global variable Count, which you use to hold the number of times the search string
occurs in memStr’s text.

Sharing DLL Data Across Different Processes
Back in the world of 16-bit Windows, DLL memory was handled differently than it is in the
32-bit world of Win32. One often-used trait of 16-bit DLLs is that they share global memory
among different applications. In other words, if you declare a global variable in a 16-bit DLL,
any application using that DLL will have access to that variable, and changes made to that
variable by an application will be seen by other applications.

In some ways, this behavior can be dangerous because one application can overwrite data on
which another application is dependent. In other ways, developers have made use of this
characteristic.

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
279

09 chpt_06.qxd 11/19/01 12:09 PM Page 279

In Win32, this sharing of DLL global data no longer exists. Because each application process
maps the DLL to its own address space, the DLL’s data also gets mapped to that same address
space. This results in each application getting its own instance of DLL data. Changes made to
the DLL global data by one application won’t be seen from another application.

If you’re planning on porting a 16-bit application that relies on the sharable behavior of DLL
global data, you can still provide a means for applications to share data in a DLL with other
applications. The process isn’t automatic, and it requires the use of memory-mapped files to
store the shared data. Memory-mapped files are covered in Chapter 12 of Delphi 5 Developer’s
Guide, “Working with Files,” on the CD. We’ll use them here to illustrate this method.

Creating a DLL with Shared Memory
Listing 6.12 shows a DLL project file that contains the code to allow applications using this
DLL to share its global data. This global data is stored in the variable appropriately named
GlobalData.

LISTING 6.12 ShareLib—A DLL That Illustrates Sharing Global Data

library ShareLib;

uses
ShareMem,
Windows,
SysUtils,
Classes;

const

cMMFileName: PChar = ‘SharedMapData’;

{$I DLLDATA.INC}

var
GlobalData : PGlobalDLLData;
MapHandle : THandle;

{ GetDLLData will be the exported DLL function }
procedure GetDLLData(var AGlobalData: PGlobalDLLData); StdCall;
begin
{ Point AGlobalData to the same memory address referred to by GlobalData. }
AGlobalData := GlobalData;

end;

procedure OpenSharedData;

Advanced Techniques

PART II
280

09 chpt_06.qxd 11/19/01 12:09 PM Page 280

LISTING 6.12 Continued

var
Size: Integer;

begin
{ Get the size of the data to be mapped. }
Size := SizeOf(TGlobalDLLData);

{ Now get a memory-mapped file object. Note the first parameter passes
the value $FFFFFFFF or DWord(-1) so that space is allocated from
the system’s
paging file. This requires that a name for the memory-mapped
object get passed as the last parameter. }

MapHandle := CreateFileMapping(DWord(-1), nil, PAGE_READWRITE, 0,
Size, cMMFileName);

if MapHandle = 0 then
RaiseLastWin32Error;

{ Now map the data to the calling process’s address space and get a
pointer to the beginning of this address }

GlobalData := MapViewOfFile(MapHandle, FILE_MAP_ALL_ACCESS, 0, 0, Size);
{ Initialize this data }
GlobalData^.S := ‘ShareLib’;
GlobalData^.I := 1;
if GlobalData = nil then
begin
CloseHandle(MapHandle);
RaiseLastWin32Error;

end;
end;

procedure CloseSharedData;
{ This procedure un-maps the memory-mapped file and releases the memory-mapped
file handle }

begin
UnmapViewOfFile(GlobalData);
CloseHandle(MapHandle);

end;

procedure DLLEntryPoint(dwReason: DWord);
begin
case dwReason of
DLL_PROCESS_ATTACH: OpenSharedData;
DLL_PROCESS_DETACH: CloseSharedData;

end;

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
281

09 chpt_06.qxd 11/19/01 12:09 PM Page 281

LISTING 6.12 Continued

end;

exports
GetDLLData;

begin
{ First, assign the procedure to the DLLProc variable }
DllProc := @DLLEntryPoint;
{ Now invoke the procedure to reflect that the DLL is attaching
to the process }

DLLEntryPoint(DLL_PROCESS_ATTACH);
end.

GlobalData is of the type PGlobalDLLData, which is defined in the include file DllData.inc.
This include file contains the following type definition (note that the include file is linked by
using the include directive $I):

type

PGlobalDLLData = ^TGlobalDLLData;
TGlobalDLLData = record
S: String[50];
I: Integer;

end;

In this DLL, you use the same process discussed earlier in the chapter to add entry and exit code
to the DLL in the form of an entry/exit procedure. This procedure is called DLLEntryPoint(), as
shown in the listing. When a process loads the DLL, the OpenSharedData() method gets called.
When a process detaches from the DLL, the CloseSharedData() method is called.

Memory-mapped files provide a means for you to reserve a region of address space in the
Win32 system to which physical storage gets committed. This is similar to allocating memory
and referring to that memory with a pointer. With memory-mapped files, however, you can
map a disk file to this address space and refer to the space within the file as though you were
just referencing an area of memory with a pointer.

With memory-mapped files, you must first get a handle to an existing file on disk to which a
memory-mapped object will be mapped. You then map the memory-mapping object to that file.
At the beginning of the chapter, we told you how the system shares DLLs with multiple appli-
cations by first loading the DLL into memory and then giving each application its own image
of the DLL so that it appears that each application has loaded a separate instance of the DLL.

Advanced Techniques

PART II
282

09 chpt_06.qxd 11/19/01 12:09 PM Page 282

In reality, however, the DLL exists in memory only once. This is done by using memory-
mapped files. You can use the same process to give access to data files. You just make neces-
sary Win32 API calls that deal with creating and accessing memory-mapped files.

Now, consider this scenario: Suppose an application, which we’ll call App1, creates a memory-
mapped file that gets mapped to a file on disk, MyFile.dat. App1 can now read and write data
in that file. If, while App1 is running, App2 also maps to that same file, changes made to the file
by App1 will be seen by App2. Actually, it’s a bit more complex; certain flags must be set so
that changes to the file are immediately set and so forth. For this discussion, it suffices to say
that changes will be realized by both applications because this is possible.

One of the ways in which memory-mapped files can be used is to create a file mapping from
the Win32 paging file rather than an existing file. This means that instead of mapping to an
existing file on disk, you can reserve an area of memory to which you can refer as though it
were a disk file. This prevents you from having to create and destroy a temporary file if all you
want to do is to create an address space that can be accessed by multiple processes. The Win32
system manages its paging file, so when memory is no longer required of the paging file, this
memory gets released.

In the preceding paragraphs, we presented a scenario that illustrated how two applications can
access the same file data by using a memory-mapped file. The same can be done between an
application and a DLL. In fact, if the DLL creates the memory-mapped file when it’s loaded
by an application, it will use the same memory-mapped file when loaded by another applica-
tion. There will be two images of the DLL, one for each calling application, both of which use
the same memory-mapped file instance. The DLL can make the data referred to by the file
mapping available to its calling application. When one application makes changes to this data,
the second application will see these changes because they’re referring to the same data,
mapped by two different memory-mapped object instances. We use this technique in the
example.

In Listing 6.12, OpenSharedData() is responsible for creating the memory-mapped file. It uses
the CreateFileMapping() function to first create the file-mapping object, which it then passes
to the MapViewOfFile() function. The MapViewOfFile() function maps a view of the file into
the address space of the calling process. The return value of this function is the beginning of
that address space. Now remember, this is the address space of the calling process. For two dif-
ferent applications using this DLL, this address location might be different, although the data
to which they refer will be the same.

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
283

09 chpt_06.qxd 11/19/01 12:09 PM Page 283

After the call to MapViewOfFile(), the variable GlobalData refers to the address space for the
memory-mapped file. The exported function GetDLLData() assigns that memory to which
GlobalData refers to the AGlobalData parameter. AGlobalData is passed in from the calling
application; therefore, the calling application has read/write access to this data.

The CloseSharedData() procedure is responsible for unmapping the view of the file from the
calling process and releasing the file-mapping object. This doesn’t affect other file-mapping
objects or file mappings from other applications.

Using a DLL with Shared Memory
To illustrate the use of the shared memory DLL, we’ve created two applications that make use
of it. The first application, App1.dpr, allows you to modify the DLL’s data. The second appli-
cation, App2.dpr, also refers to the DLL’s data and continually updates a couple of TLabel
components by using a TTimer component. When you run both applications, you’ll be able to
see the sharable access to the DLL data—App2 will reflect changes made by App1.

Listing 6.13 shows the source code for the App1 project.

LISTING 6.13 The Main Form for App1.dpr

unit MainFrmA1;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ExtCtrls, Mask;

{$I DLLDATA.INC}

type

Advanced Techniques

PART II
284

The first parameter to CreateFileMapping() is a handle to a file to which the mem-
ory-mapped file gets mapped. However, if you’re mapping to an address space of the
system paging file, pass the value $FFFFFFFF (which is the same as DWord(-1)) as this
parameter value. You must also supply a name for the file-mapping object as the last
parameter to CreateFileMapping(). This is the name that the system uses to refer to
this file mapping. If multiple processes create a memory-mapped file using the same
name, the mapping objects will refer to the same system memory.

NOTE

09 chpt_06.qxd 11/19/01 12:09 PM Page 284

LISTING 6.13 Continued

TMainForm = class(TForm)
edtGlobDataStr: TEdit;
btnGetDllData: TButton;
meGlobDataInt: TMaskEdit;
procedure btnGetDllDataClick(Sender: TObject);
procedure edtGlobDataStrChange(Sender: TObject);
procedure meGlobDataIntChange(Sender: TObject);
procedure FormCreate(Sender: TObject);

public
GlobalData: PGlobalDLLData;

end;

var
MainForm: TMainForm;

{ Define the DLL’s exported procedure }
procedure GetDLLData(var AGlobalData: PGlobalDLLData);
StdCall External ‘SHARELIB.DLL’;

implementation

{$R *.DFM}

procedure TMainForm.btnGetDllDataClick(Sender: TObject);
begin
{ Get a pointer to the DLL’s data }
GetDLLData(GlobalData);
{ Now update the controls to reflect GlobalData’s field values }
edtGlobDataStr.Text := GlobalData^.S;
meGlobDataInt.Text := IntToStr(GlobalData^.I);

end;

procedure TMainForm.edtGlobDataStrChange(Sender: TObject);
begin
{ Update the DLL data with the changes }
GlobalData^.S := edtGlobDataStr.Text;

end;

procedure TMainForm.meGlobDataIntChange(Sender: TObject);
begin
{ Update the DLL data with the changes }
if meGlobDataInt.Text = EmptyStr then
meGlobDataInt.Text := ‘0’;

GlobalData^.I := StrToInt(meGlobDataInt.Text);
end;

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
285

09 chpt_06.qxd 11/19/01 12:09 PM Page 285

LISTING 6.13 Continued

procedure TMainForm.FormCreate(Sender: TObject);
begin
btnGetDllDataClick(nil);

end;

end.

This application also links in the include file DllData.inc, which defines the TGlobalDLLData
data type and its pointer. The btnGetDllDataClick() event handler gets a pointer to the DLL’s
data, which is accessed by a memory-mapped file in the DLL. It does this by calling the DLL’s
GetDLLData() function. It then updates its controls with the value of this pointer, GlobalData.
The OnChange event handlers for the edit controls change the values of GlobalData. Because
GlobalData refers to the DLL’s data, it modifies the data referred to by the DLL’s memory-
mapped file.

Listing 6.14 shows the source code for the main form for App2.dpr.

LISTING 6.14 The Source Code for Main Form for App2.dpr

unit MainFrmA2;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
ExtCtrls, StdCtrls;

{$I DLLDATA.INC}

type

TMainForm = class(TForm)
lblGlobDataStr: TLabel;
tmTimer: TTimer;
lblGlobDataInt: TLabel;
procedure tmTimerTimer(Sender: TObject);

public
GlobalData: PGlobalDLLData;

end;

{ Define the DLL’s exported procedure }
procedure GetDLLData(var AGlobalData: PGlobalDLLData);
StdCall External ‘SHARELIB.DLL’;

Advanced Techniques

PART II
286

09 chpt_06.qxd 11/19/01 12:09 PM Page 286

LISTING 6.14 Continued

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.tmTimerTimer(Sender: TObject);
begin
GetDllData(GlobalData); // Get access to the data
{ Show the contents of GlobalData’s fields.}
lblGlobDataStr.Caption := GlobalData^.S;
lblGlobDataInt.Caption := IntToStr(GlobalData^.I);

end;

end.

This form contains two TLabel components, which get updated during the tmTimer’s OnTimer
event. When the user changes the values of the DLL’s data from App1, App2 will reflect these
changes.

You can run both applications to experiment with them. You’ll find them on this book’s CD.

Exporting Objects from DLLs
It’s possible to access an object and its methods even if that object is contained within a DLL.
There are some requirements, however, to how that object is defined within the DLL as well as
some limitations as to how the object can be used. The technique we illustrate here is useful in
very specific situations. Typically, you can achieve the same functionality by using packages or
interfaces.

The following list summarizes the conditions and limitations to exporting an object from a
DLL:

• The calling application can only use methods of the object that have been declared as
virtual.

• The object instances must be created only within the DLL.

• The object must be defined in both the DLL and calling application with methods
defined in the same order.

• You cannot create a descendant object from the object contained within the DLL.

Some additional limitations might exist, but the ones listed are the primary limitations.

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
287

09 chpt_06.qxd 11/19/01 12:09 PM Page 287

To illustrate this technique, we’ve created a simple, yet illustrative example of an object that
we export. This object contains a function that returns the uppercase or lowercase value of a
string based on the value of a parameter indicating either uppercase or lowercase. This object
is defined in Listing 6.15.

LISTING 6.15 Object to Be Exported from a DLL

type

TConvertType = (ctUpper, ctLower);

TStringConvert = class(TObject)
{$IFDEF STRINGCONVERTLIB}
private
FPrepend: String;
FAppend : String;

{$ENDIF}
public
function ConvertString(AConvertType: TConvertType; AString: String):

String;
virtual; stdcall; {$IFNDEF STRINGCONVERTLIB} abstract; {$ENDIF}

{$IFDEF STRINGCONVERTLIB}
constructor Create(APrepend, AAppend: String);
destructor Destroy; override;

{$ENDIF}
end;

{ For any application using this class, STRINGCONVERTLIB is not defined and
therefore, the class definition will be equivalent to:

TStringConvert = class(TObject)
public
function ConvertString(AConvertType: TConvertType; AString: String):

String;
virtual; stdcall; abstract;

end;
}

Listing 6.15 is actually an include file named StrConvert.inc. This object is placed in an
include file to meet the third requirement in the preceding list—that the object be equally
defined in both the DLL and in the calling application. By placing the object in an include file,
both the calling application and DLL can include this file. If changes are made to the object,
you only have to compile both projects instead of typing the changes twice—once in the call-
ing application and once in the DLL, which is error prone.

Advanced Techniques

PART II
288

09 chpt_06.qxd 11/19/01 12:09 PM Page 288

Observe the following definition of the ConvertSring() method:

function ConvertString(AConvertType: TConvertType; AString: String):
➥String; virtual; stdcall;

The reason you declare this method as virtual isn’t so that one can create a descendant object
that can then override the ConvertString() method. Instead, it’s declared as virtual so that an
entry to the ConvertString() method is made in the Virtual Method Table (VMT). Think of
the VMT as a block of memory that holds pointers to virtual methods of an object. Because of
the VMT, the calling application can obtain a pointer to the method of the object. Without
declaring the method as virtual, the VMT wouldn’t have an entry for the method, and the call-
ing application would have no way of obtaining the pointer to the method. So really, what you
have in the calling application is a pointer to the function. Because you’ve based this pointer
on a method type defined in an object, Delphi automatically handles any fix-ups, such as pass-
ing the implicit self parameter to the method.

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
289

The Virtual Method Table is covered in greater detail in Chapter 13 of Delphi 5
Developer’s Guide, “Hard Core Techniques,” on the CD.

NOTE

Note the conditional define STRINGCONVERTLIB. When you’re exporting the object, the only
methods that need redefinition in the calling application are the methods to be accessed exter-
nally from the DLL. Also, these methods can be defined as abstract methods to avoid generat-
ing a compile-time error. This is valid because at runtime, these methods will be implemented
in the DLL code. The source code comments show what the TStringConvert object looks like
on the application side.

Listing 6.16 shows the implementation of the TStringConvert object.

LISTING 6.16 Implementation of the TStringConvert Object

unit StringConvertImp;
{$DEFINE STRINGCONVERTLIB}S
interface
uses SysUtils;
{$I StrConvert.inc}

function InitStrConvert(APrepend, AAppend: String): TStringConvert; stdcall;

implementation

09 chpt_06.qxd 11/19/01 12:09 PM Page 289

LISTING 6.16 Continued

constructor TStringConvert.Create(APrepend, AAppend: String);
begin
inherited Create;
FPrepend := APrepend;
FAppend := AAppend;

end;

destructor TStringConvert.Destroy;
begin
inherited Destroy;

end;

function TStringConvert.ConvertString(AConvertType:
TConvertType; AString: String): String;

begin
case AConvertType of
ctUpper: Result := Format(‘%s%s%s’, [FPrepend, UpperCase(AString),
FAppend]);
ctLower: Result := Format(‘%s%s%s’, [FPrepend, LowerCase(AString),
FAppend]);

end;
end;

function InitStrConvert(APrepend, AAppend: String): TStringConvert;
begin
Result := TStringConvert.Create(APrepend, AAppend);

end;

end.

As stated in the conditions, the object must be created in the DLL. This is done in a standard
DLL exported function InitStrConvert(), which takes two parameters that are passed to the
constructor. We added this to illustrate how you would pass information to an object’s con-
structor through an interface function.

Also, notice that in this unit you declare the conditional directive STRINGCONVERTLIB. The rest
of this unit is self-explanatory. Listing 6.17 shows the DLL’s project file.

LISTING 6.17 The Project File for StringConvertLib.dll

library StringConvertLib;
uses
ShareMem,
SysUtils,

Advanced Techniques

PART II
290

09 chpt_06.qxd 11/19/01 12:09 PM Page 290

LISTING 6.17 Continued

Classes,
StringConvertImp in ‘StringConvertImp.pas’;

exports
InitStrConvert;

end.

Generally, this library doesn’t contain anything we haven’t already covered. Do note, however,
that you used the ShareMem unit. This unit must be the first unit declared in the library project
file as well as in the calling application’s project file. This is an extremely important thing to
remember.

Listing 6.18 shows an example of how to use the exported object to convert a string to both
uppercase and lowercase. You’ll find this demo project on the CD as StrConvertTest.dpr.

LISTING 6.18 The Demo Project for the String Conversion Object

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls;

{$I strconvert.inc}

type

TMainForm = class(TForm)
btnUpper: TButton;
edtConvertStr: TEdit;
btnLower: TButton;
procedure btnUpperClick(Sender: TObject);
procedure btnLowerClick(Sender: TObject);

private
public
end;

var
MainForm: TMainForm;

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
291

09 chpt_06.qxd 11/19/01 12:09 PM Page 291

LISTING 6.18 Continued

function InitStrConvert(APrepend, AAppend: String): TStringConvert; stdcall;
external ‘STRINGCONVERTLIB.DLL’;

implementation

{$R *.DFM}

procedure TMainForm.btnUpperClick(Sender: TObject);
var
ConvStr: String;
FStrConvert: TStringConvert;

begin
FStrConvert := InitStrConvert(‘Upper ‘, ‘ end’);
try

ConvStr := edtConvertStr.Text;
if ConvStr <> EmptyStr then
edtConvertStr.Text := FStrConvert.ConvertString(ctUpper, ConvStr);

finally
FStrConvert.Free;

end;
end;

procedure TMainForm.btnLowerClick(Sender: TObject);
var
ConvStr: String;
FStrConvert: TStringConvert;

begin
FStrConvert := InitStrConvert(‘Lower ‘, ‘ end’);
try

ConvStr := edtConvertStr.Text;
if ConvStr <> EmptyStr then
edtConvertStr.Text := FStrConvert.ConvertString(ctLower, ConvStr);

finally
FStrConvert.Free;

end;
end;

end.

Advanced Techniques

PART II
292

09 chpt_06.qxd 11/19/01 12:09 PM Page 292

Summary
DLLs are an essential part of creating Windows applications while focusing in on code
reusability. This chapter covered the reasons for creating or using DLLs. The chapter illus-
trated how to create and use DLLs in your Delphi applications and showed different methods
of loading DLLs. The chapter discussed some of the special considerations you must take
when using DLLs with Delphi and showed you how to make DLL data sharable with different
applications.

With this knowledge under your belt, you should be able to create DLLs with Delphi and use
them in your Delphi applications with ease.

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
293

09 chpt_06.qxd 11/19/01 12:09 PM Page 293

09 chpt_06.qxd 11/19/01 12:09 PM Page 294

IN THIS PART
7 Delphi Database Architecture 297

8 Database Development with dbExpress 349

9 Database Development with dbGo for ADO 363

Database Development
PART

III

10 part_03.qxd 11/19/01 12:06 PM Page 295

10 part_03.qxd 11/19/01 12:06 PM Page 296

CHAPTER

7
Delphi Database Architecture

IN THIS CHAPTER
• Types of Databases 298

• Database Architecture 299

• Connecting to Database Servers 299

• Working with Datasets 300

• Working with Fields 315

11 chpt_07.qxd 11/19/01 12:12 PM Page 297

In this chapter, you’ll learn the art and science of accessing external database files from your
Delphi applications. If you’re new to database programming, we do assume a bit of database
knowledge, but this chapter will get you started on the road to creating high-quality database
applications. If database applications are “old hat” to you, you’ll benefit from the chapter’s
demonstration of Delphi’s spin on database programming. Delphi 6 offers several mechanisms
for accessing data, which we will cover in this chapter, and then in more detail in chapters to
follow. This chapter discusses the architecture upon which all data access mechanisms in
Delphi 6 are built.

Types of Databases
The following list is taken from Delphi’s online help under “Using Databases.” The references
mentioned in the list are also found in the online help. We’ll refer to this information here
because we felt that Borland described the types of database supported by Delphi’s architecture
best:

• The BDE page of the Component Palette contains components that use the Borland
Database Engine (BDE). The BDE defines a large API for interacting with databases. Of
all the data access mechanisms, the BDE supports the broadest range of functions and
comes with the most supporting utilities. It is the best way to work with data in Paradox
or dBASE tables. However, it is also the most complicated mechanism to deploy. For
more information about using the BDE components, see “Using the Borland Database
Engine.”

• The ADO page of the Component Palette contains components that use ActiveX Data
Objects (ADO) to access database information through OLEDB. ADO is a Microsoft
Standard. A broad range of ADO drivers is available for connecting to different database
servers. Using ADO-based components lets you integrate your application into an ADO-
based environment (for example, making use of ADO-based application servers). For
more information about using the ADO components, see “Working with ADO
Components.”

• The dbExpress page of the Component Palette contains components that use dbExpress
to access database information. dbExpress is a lightweight set of drivers that provide the
fastest access to database information. In addition, dbExpress components support cross-
platform development because they are also available on Linux. However, dbExpress
database components also support the narrowest range of data manipulation functions.
For more information about using the dbExpress components, see “Using Unidirectional
Datasets.”

• The InterBase page of the Component Palette contains components that access InterBase
databases directly, without going through a separate engine layer. For more information
about using the InterBase components, see “Getting Started with InterBase Express.”

Database Development

PART III
298

11 chpt_07.qxd 11/19/01 12:12 PM Page 298

Database Architecture
Delphi’s database architecture is made up of components that represent and properly encapsu-
late database information. Figure 7.1 represents this relationship as defined by Delphi 6’s
online help under “Database Architecture.”

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

299

Dataset

Data module

UI
Connection

to data
Data source

FIGURE 7.1
Delphi database architecture.

Figure 7.1 shows the database architecture in its simplest form. That is, a user interface inter-
acts with data through a data source, which connects to the dataset that encapsulates the data.
In the prior section, we discussed different types of databases with which Delphi can work.
These different data repositories require different types of datasets. The dataset shown in
Figure 7.1 represents an abstract dataset from which others will descend to provide access to
different types of data.

Connecting to Database Servers
Okay, so you want to be a database developer. Naturally, the first thing you’ll want to do is
learn how to make a connection from Delphi to the database of your choice. In this section,
you’ll learn a number of ways Delphi enables you to make connections to servers.

Overview of Database Connectivity
Datasets must connect to database servers. This is typically done through a connection compo-
nent. Connection components encapsulate the connectivity to a database server and serve as a
single connection point for all datasets in the application.

Connection components are encapsulated in the TCustomConnection component.
TCustomConnection is descended from to create components to encapsulate specific
data repository types. Among the different types of data access components are the following
for each type of data repository:

• TDatabase is the connection component for BDE based datasets. Such datasets are TTable,
TQuery, and TStoreproc. BDE database connectivity is covered in Chapter 28 in the CD
copy of Delphi 5 Developer’s Guide.

11 chpt_07.qxd 11/19/01 12:12 PM Page 299

• TADOConnection is the connection component for ADO databases such as Microsoft
Access and Microsoft SQL. Such datasets are TADODataset, TADOTable, TADOQuery,
and TADOStoredProc. ADO database connectivity is covered in Chapter 9, “Database
Development with dbGo for ADO.”

• TSQLConnection is the connection component for dbExpress based datasets. DbExpress
datasets are special lightweight unidirectional datasets. These are TSQLDataset, TSQLTable,
TSQLQuery and TSQLStoredProc. DbExpress is covered in Chapter 8, “Database
Development with dbExpress.”

• TIBDatabase is the connection component for Interbase Express datasets. The datasets
are TIBDataSet, TIBTable, TIBQuery, and TIBStoredProc. Interbase Express isn’t
covered in this book because much of the functionality mimics the other connection
methods.

Each of these datasets provides the common functionality contained in the TCustomConnection
component. This common functionality includes methods, properties, and events related to

• Connecting and disconnecting to the data repository

• Login and support for establishing secure connections

• Dataset management

Establishing a Database Connection
Although each connection component surfaces many of the same methods for database connec-
tivity, there are some differences. The reason for this is that each connection component pro-
vides the connection functionality of its underlying data repository. Therefore, the
TADOConnection might function slightly differently from the TDatabase connection. The con-
nection methods for TSQLConnection and TADOConnection are covered in their respective
chapters (Chapters 8 and 9). Connecting to a BDE based dataset is covered in Chapter 28 in
the CD copy of Delphi 5 Developer’s Guide.

Working with Datasets
A dataset is a collection of rows and columns of data. Each column is of some homogeneous
data type, and each row is made up of a collection of data of each column data type. Additionally,
a column is also known as a field, and a row is sometimes called a record. VCL encapsulates a
dataset into an abstract component called TDataSet. TDataSet introduces many of the proper-
ties and methods necessary for manipulating and navigating a dataset and serves as the compo-
nent from which special types of different datasets descend.

Database Development

PART III
300

11 chpt_07.qxd 11/19/01 12:12 PM Page 300

To help keep the nomenclature clear and to cover some of the basics, the following list explains
some of the common database terms that are used in this and other database-oriented chapters:

• A dataset is a collection of discrete data records. Each record is made up of multiple
fields. Each field can contain a different type of data (integer number, string, decimal
number, graphic, and so on).

• A table is a special type of dataset. A table is generally a file containing records that are
physically stored on a disk somewhere. TTable, TADOTable, TSQLTable, and TIBTable
components encapsulate this functionality.

• A query is also a special type of dataset. Think of queries as commands that are executed
against a database server. Such commands might result in resultsets (memory tables).
These resultsets are the special datasets that are encapsulated by TQuery, TADOQuery,
TSQLQuery, and TIBQuery components.

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

301

We mentioned earlier that this chapter assumes a bit of database knowledge. This
chapter isn’t intended to be a primer on database programming, and we expect that
you’re already familiar with the items in this list. If terms such as database, table, and
index sound foreign to you, you might want to obtain an introductory text on data-
base concepts.

NOTE

Opening and Closing Datasets
Before you can do anything with a dataset, you must first open it. To open a dataset, simply
call its Open() method, as shown in this example:

Table1.Open;

This is equivalent, by the way, to setting a dataset’s Active property to True:

Table1.Active := True;

There’s slightly less overhead in the latter method because the Open() method ends up setting
the Active property to True. However, the overhead is so minimal that it’s not worth worrying
about.

Once the dataset has been opened, you’re free to manipulate it, as you’ll see in just a moment.
When you finish using the dataset, you should close it by calling its Close() method, like this:

Table1.Close;

Alternatively, you could close it by setting its Active property to False, like this:

Table1.Active := False;

11 chpt_07.qxd 11/19/01 12:12 PM Page 301

To illustrate how similar it is to open and close the different type of datasets, we’ve provide the
example shown in Listing 7.1.

LISTING 7.1 Opening and Closing Datasets

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, FMTBcd, DBXpress, IBDatabase, ADODB, DBTables, DB, SqlExpr,
IBCustomDataSet, IBQuery, IBTable, StdCtrls;

type
TForm1 = class(TForm)
SQLDataSet1: TSQLDataSet;
SQLTable1: TSQLTable;
SQLQuery1: TSQLQuery;

ADOTable1: TADOTable;
ADODataSet1: TADODataSet;
ADOQuery1: TADOQuery;

IBTable1: TIBTable;
IBQuery1: TIBQuery;
IBDataSet1: TIBDataSet;

Table1: TTable;
Query1: TQuery;

SQLConnection1: TSQLConnection;
Database1: TDatabase;
ADOConnection1: TADOConnection;

Database Development

PART III
302

When you’re communicating with SQL servers, a connection to the database must be
established when you first open a dataset in that database. When you close the last
dataset in a database, your connection is terminated. Opening and closing these con-
nections involves a certain amount of overhead. Therefore, if you find that you open
and close the connection to the database often, use a TDatabase component instead
to maintain a connection to a SQL server’s database throughout many open and close
operations. The TDatabase component is explained in more detail in the next chapter.

TIP

11 chpt_07.qxd 11/19/01 12:12 PM Page 302

LISTING 7.1 Continued

IBDatabase1: TIBDatabase;
Button1: TButton;
Label1: TLabel;
Button2: TButton;
IBTransaction1: TIBTransaction;
procedure FormCreate(Sender: TObject);
procedure Button1Click(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure Button2Click(Sender: TObject);

private
{ Private declarations }
procedure OpenDatasets;
procedure CloseDatasets;

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

{$R *.dfm}

procedure TForm1.FormCreate(Sender: TObject);
begin
IBDatabase1.Connected := True;
ADOConnection1.Connected := True;
Database1.Connected := True;
SQLConnection1.Connected := True;

end;

procedure TForm1.Button1Click(Sender: TObject);
begin
OpenDatasets;

end;

procedure TForm1.FormClose(Sender: TObject; var Action: TCloseAction);
begin
CloseDatasets;
IBDatabase1.Connected := false;
ADOConnection1.Connected := false;
Database1.Connected := false;
SQLConnection1.Connected := false;

end;

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

303

11 chpt_07.qxd 11/19/01 12:12 PM Page 303

LISTING 7.1 Continued

procedure TForm1.CloseDatasets;
begin

// Disconnect from dbExpress datasets
SQLDataSet1.Close; // or .Active := false;
SQLTable1.Close; // or .Active := false;
SQLQuery1.Close; // or .Active := false;

// Disconnect from ADO datasets
ADOTable1.Close; // or .Active := false;
ADODataSet1.Close; // or .Active := false;
ADOQuery1.Close; // or .Active := false;

// Disconnect from Interbase Express datasets
IBTable1.Close; // or .Active := false;
IBQuery1.Close; // or .Active := false;
IBDataSet1.Close; // or .Active := false;

// Disconnect from BDE datasets
Table1.Close; // or .Active := false;
Query1.Close; // or .Active := false;

Label1.Caption := ‘Datasets are closed.’
end;

procedure TForm1.OpenDatasets;
begin

// Connect to dbExpress datasets
SQLDataSet1.Open; // or .Active := true;
SQLTable1.Open; // or .Active := true;
SQLQuery1.Open; // or .Active := true;

// Connect to ADO datasets
ADOTable1.Open; // or .Active := true;
ADODataSet1.Open; // or .Active := true;
ADOQuery1.Open; // or .Active := true;

// Connect to Interbase Express datasets
IBTable1.Open; // or .Active := true;
IBQuery1.Open; // or .Active := true;
IBDataSet1.Open; // or .Active := true;

// Connect to BDE datasets
Table1.Open; // or .Active := true;

Database Development

PART III
304

11 chpt_07.qxd 11/19/01 12:12 PM Page 304

LISTING 7.1 Continued

Query1.Open; // or .Active := true;

Label1.Caption := ‘Datasets are open.’;
end;

procedure TForm1.Button2Click(Sender: TObject);
begin
CloseDatasets;

end;

end.

This example is provided on the CD. You might have some problems setting up the database
connections because the example was created on our development machine. You’ll have to set
up connections based on your machine. Nevertheless, the purpose of showing you this example
was to illustrate the similarities of the different datasets.

Navigating Datasets
TDataSet provides some simple methods for basic record navigation. The First() and Last()
methods move you to the first and last records in the dataset, respectively, and the Next() and
Prior() methods move you either one record forward or back in the dataset. Additionally, the
MoveBy() method, which accepts an Integer parameter, moves you a specified number of
records forward or back.

BOF, EOF, and Looping
BOF and EOF are Boolean properties of TDataSet that reveal whether the current record is the
first or last record in the dataset. For example, you might need to iterate through each record in
a dataset until reaching the last record. The easiest way to do so would be to employ a while
loop to keep iterating over records until the EOF property returns True, as shown here:

Table1.First; // go to beginning of data set
while not Table1.EOF do // iterate over table
begin
// do some stuff with current record
Table1.Next; // move to next record

end;

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

305

Be sure to call the Next() method inside your while-not-EOF loop; otherwise, your
application will get caught in an endless loop.

CAUTION

11 chpt_07.qxd 11/19/01 12:12 PM Page 305

Avoid using a repeat..until loop to perform actions on a dataset. The following code might
look okay on the surface, but bad things might happen if you try to use it on an empty dataset
because the DoSomeStuff() procedure will always execute at least once, regardless of whether
the dataset contains records:

repeat
DoSomeStuff;
Table1.Next;

until Table1.EOF;

Because the while-not-EOF loop performs the check up front, you won’t encounter such a
problem with this construct.

To illustrate how similar it is to navigate among the different type of datasets, we’ve provided
the example shown in Listing 7.2.

LISTING 7.2 Navigation with the Different Datasets

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, FMTBcd, DBXpress, IBDatabase, ADODB, DBTables, DB, SqlExpr,
IBCustomDataSet, IBQuery, IBTable, StdCtrls, Grids, DBGrids, ExtCtrls;

type
TForm1 = class(TForm)
SQLTable1: TSQLTable;
ADOTable1: TADOTable;
IBTable1: TIBTable;
Table1: TTable;

SQLConnection1: TSQLConnection;
Database1: TDatabase;
ADOConnection1: TADOConnection;
IBDatabase1: TIBDatabase;
Button1: TButton;
Label1: TLabel;
Button2: TButton;
IBTransaction1: TIBTransaction;
DBGrid1: TDBGrid;
DataSource1: TDataSource;
RadioGroup1: TRadioGroup;
btnFirst: TButton;

Database Development

PART III
306

11 chpt_07.qxd 11/19/01 12:12 PM Page 306

LISTING 7.2 Continued

btnLast: TButton;
btnNext: TButton;
btnPrior: TButton;
procedure FormCreate(Sender: TObject);
procedure Button1Click(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure Button2Click(Sender: TObject);
procedure RadioGroup1Click(Sender: TObject);
procedure btnFirstClick(Sender: TObject);
procedure btnLastClick(Sender: TObject);
procedure btnNextClick(Sender: TObject);
procedure btnPriorClick(Sender: TObject);
procedure DataSource1DataChange(Sender: TObject; Field: TField);

private
{ Private declarations }
procedure OpenDatasets;
procedure CloseDatasets;

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

{$R *.dfm}

procedure TForm1.FormCreate(Sender: TObject);
begin
IBDatabase1.Connected := True;
ADOConnection1.Connected := True;
Database1.Connected := True;
SQLConnection1.Connected := True;

Datasource1.DataSet := IBTable1;
OpenDatasets;

end;

procedure TForm1.Button1Click(Sender: TObject);
begin
OpenDatasets;

end;

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

307

11 chpt_07.qxd 11/19/01 12:12 PM Page 307

LISTING 7.2 Continued

procedure TForm1.FormClose(Sender: TObject; var Action: TCloseAction);
begin
CloseDatasets;
IBDatabase1.Connected := false;
ADOConnection1.Connected := false;
Database1.Connected := false;
SQLConnection1.Connected := false;

end;

procedure TForm1.CloseDatasets;
begin

// Disconnect from dbExpress dataset
SQLTable1.Close; // or .Active := false;

// Disconnect from ADO dataset
ADOTable1.Close; // or .Active := false;

// Disconnect from Interbase Express dataset
IBTable1.Close; // or .Active := false;

// Disconnect from BDE datasets
Table1.Close; // or .Active := false;

Label1.Caption := ‘Datasets are closed.’
end;

procedure TForm1.OpenDatasets;
begin

// Connect to dbExpress dataset
SQLTable1.Open; // or .Active := true;

// Connect to ADO dataset
ADOTable1.Open; // or .Active := true;

// Connect to Interbase Express dataset
IBTable1.Open; // or .Active := true;

// Connect to BDE dataset
Table1.Open; // or .Active := true;

Label1.Caption := ‘Datasets are open.’;
end;

Database Development

PART III
308

11 chpt_07.qxd 11/19/01 12:12 PM Page 308

LISTING 7.2 Continued

procedure TForm1.Button2Click(Sender: TObject);
begin
CloseDatasets;

end;

procedure TForm1.RadioGroup1Click(Sender: TObject);
begin
case RadioGroup1.ItemIndex of
0: Datasource1.DataSet := IBTable1;
1: Datasource1.DataSet := Table1;
2: Datasource1.DataSet := ADOTable1;

end; // case
end;

procedure TForm1.btnFirstClick(Sender: TObject);
begin
DataSource1.DataSet.First;

end;

procedure TForm1.btnLastClick(Sender: TObject);
begin
DataSource1.DataSet.Last;

end;

procedure TForm1.btnNextClick(Sender: TObject);
begin
DataSource1.DataSet.Next;

end;

procedure TForm1.btnPriorClick(Sender: TObject);
begin
DataSource1.DataSet.Prior;

end;

procedure TForm1.DataSource1DataChange(Sender: TObject; Field: TField);
begin
btnLast.Enabled := not DataSource1.DataSet.Eof;
btnNext.Enabled := not DataSource1.DataSet.Eof;
btnFirst.Enabled := not DataSource1.DataSet.Bof;
btnPrior.Enabled := not DataSource1.DataSet.Bof;

end;

end.

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

309

11 chpt_07.qxd 11/19/01 12:12 PM Page 309

In this example, a TRadioGroup is used to allow the user to select from three of the database
types. Additionally, the OnDataChange event handler shows how to evaluate the BOF and EOF
properties to properly enable or disable the buttons when one of the two are true. You should
notice that the same methods are invoked to navigate through the dataset regardless of which
dataset is selected.

Database Development

PART III
310

You’ll notice that we did not include the dbExpress component as part of this exam-
ple. This is because dbExpress datasets are unidirectional datasets. That is, they can
only navigate in one direction and are treated as read-only. In fact, if you attempt to
connect a navigable component such as a TDBGrid to a dbExpress dataset, you will
get an error. Navigating through unidirectional datasets requires some specific setup,
which is discussed in Chapter 8.

NOTE

Manipulating Datasets
A database application isn’t really a database application unless you can manipulate its data.
Fortunately, datasets provide methods that allow you to do this. With datasets, you are able to
add, edit, and delete records from the underlying table. The methods to do this are appropri-
ately named Insert(), Edit(), and Delete().

Listing 7.3 shows a simple application illustrating how to use these methods.

LISTING 7.3 MainFrm.pas—Showing Simple Data Manipulation

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Mask, DBCtrls, DB, Grids, DBGrids, ADODB;

type
TMainForm = class(TForm)
ADOConnection1: TADOConnection;
adodsCustomer: TADODataSet;
dtsrcCustomer: TDataSource;
DBGrid1: TDBGrid;
adodsCustomerCustNo: TAutoIncField;
adodsCustomerCompany: TWideStringField;
adodsCustomerAddress1: TWideStringField;

11 chpt_07.qxd 11/19/01 12:12 PM Page 310

LISTING 7.3 Continued

adodsCustomerAddress2: TWideStringField;
adodsCustomerCity: TWideStringField;
adodsCustomerStateAbbr: TWideStringField;
adodsCustomerZip: TWideStringField;
adodsCustomerCountry: TWideStringField;
adodsCustomerPhone: TWideStringField;
adodsCustomerFax: TWideStringField;
adodsCustomerContact: TWideStringField;
Label1: TLabel;
dbedtCompany: TDBEdit;
Label2: TLabel;
dbedtAddress1: TDBEdit;
Label3: TLabel;
dbedtAddress2: TDBEdit;
Label4: TLabel;
dbedtCity: TDBEdit;
Label5: TLabel;
dbedtState: TDBEdit;
Label6: TLabel;
dbedtZip: TDBEdit;
Label7: TLabel;
dbedtPhone: TDBEdit;
Label8: TLabel;
dbedtFax: TDBEdit;
Label9: TLabel;
dbedtContact: TDBEdit;
btnAdd: TButton;
btnEdit: TButton;
btnSave: TButton;
btnCancel: TButton;
Label10: TLabel;
dbedtCountry: TDBEdit;
btnDelete: TButton;
procedure btnAddClick(Sender: TObject);
procedure btnEditClick(Sender: TObject);
procedure btnSaveClick(Sender: TObject);
procedure btnCancelClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure btnDeleteClick(Sender: TObject);

private
{ Private declarations }
procedure SetButtons;

public

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

311

11 chpt_07.qxd 11/19/01 12:12 PM Page 311

LISTING 7.3 Continued

{ Public declarations }
end;

var
MainForm: TMainForm;

implementation

{$R *.dfm}

procedure TMainForm.btnAddClick(Sender: TObject);
begin
adodsCustomer.Insert;
SetButtons;

end;

procedure TMainForm.btnEditClick(Sender: TObject);
begin
adodsCustomer.Edit;
SetButtons;

end;

procedure TMainForm.btnSaveClick(Sender: TObject);
begin
adodsCustomer.Post;
SetButtons;

end;

procedure TMainForm.btnCancelClick(Sender: TObject);
begin
adodsCustomer.Cancel;
SetButtons;

end;

procedure TMainForm.SetButtons;
begin
btnAdd.Enabled := adodsCustomer.State = dsBrowse;
btnEdit.Enabled := adodsCustomer.State = dsBrowse;
btnSave.Enabled := (adodsCustomer.State = dsInsert) or
(adodsCustomer.State = dsEdit);

btnCancel.Enabled := (adodsCustomer.State = dsInsert) or
(adodsCustomer.State = dsEdit);

btnDelete.Enabled := adodsCustomer.State = dsBrowse;
end;

Database Development

PART III
312

11 chpt_07.qxd 11/19/01 12:12 PM Page 312

LISTING 7.3 Continued

procedure TMainForm.FormCreate(Sender: TObject);
begin
adodsCustomer.Open;
SetButtons;

end;

procedure TMainForm.FormClose(Sender: TObject; var Action: TCloseAction);
begin
adodsCustomer.Close;
ADOConnection1.Connected := False;

end;

procedure TMainForm.btnDeleteClick(Sender: TObject);
begin
adodsCustomer.Delete;

end;

end.

Figure 7.2 illustrates a simple data manipulation application.

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

313

FIGURE 7.2
Main form for the data manipulation application.

11 chpt_07.qxd 11/19/01 12:12 PM Page 313

This application manipulates data in the simplest form. You’ll see the use of the manipulation
methods listed as follows:

• Insert() allows the user to insert a new record.

• Edit() allows the user to modify the active record.

• Post() saves changes to a new or existing record to the table.

• Cancel() cancels any changes made to the record.

• Delete() deletes the active record from the table.

Dataset States
Listing 7.3 also shows how we referred to the TDataSet.State property to examine the
dataset’s state so that we could enable or disable our buttons appropriately. This allows us to
do things such as disable our Add button when the dataset is already in Insert or Edit mode.
Other states are shown in Table 7.1.

TABLE 7.1 Values for TDataset.State

Value Meaning

dsBrowse The dataset is in Browse (normal) mode.

dsCalcFields The OnCalcFields event has been called, and a record value cal-
culation is in progress.

dsEdit The dataset is in Edit mode. This means that the Edit() method
has been called, but the edited record hasn’t yet been posted.

dsInactive The dataset is closed.

dsInsert The dataset is in Insert mode. This typically means that Insert()
has been called but changes haven’t been posted.

dsSetKey The dataset is in SetKey mode, meaning that SetKey() has been
called but GotoKey() hasn’t yet been called.

dsNewValue The dataset is in a temporary state where the NewValue property is
being accessed.

dsOldValue The dataset is in a temporary state where the OldValue property is
being accessed.

dsCurValue The dataset is in a temporary state where the OldValue property is
being accessed.

dsFilter The dataset is currently processing a record filter, lookup, or some
other operation that requires a filter.

dsBlockRead Data is being buffered en masse, so data-aware controls are not
updated and events are not triggered when the cursor moves while
this member is set.

Database Development

PART III
314

11 chpt_07.qxd 11/19/01 12:12 PM Page 314

TABLE 7.1 Continued

Value Meaning

dsInternalCalc A field value is currently being calculated for a field that has a
FieldKind of fkInternalCalc.

dsOpening The dataSet is in the process of opening but has not finished. This
state occurs when the dataset is opened for asynchronous fetching.

Working with Fields
Delphi enables you to access the fields of any dataset through the TField object and its
descendants. Not only can you get and set the value of a given field of the current record of
a dataset, but you can also change the behavior of a field by modifying its properties. You can
also modify the dataset, itself, by changing the visual order of fields, removing fields, or even
creating new calculated or lookup fields.

Field Values
It’s very easy to access field values from Delphi. TDataSet provides a default array property
called FieldValues[] that returns the value of a particular field as a Variant. Because
FieldValues[] is the default array property, you don’t need to specify the property name to
access the array. For example, the following piece of code assigns the value of Table1’s
CustName field to String S:

S := Table1[‘CustName’];

You could just as easily store the value of an integer field called CustNo in an integer variable
called I:

I := Table1[‘CustNo’];

A powerful corollary to this is the capability to store the values of several fields into a Variant
array. The only catches are that the Variant array index must be zero based and the Variant
array contents should be varVariant. The following code demonstrates this capability:

const
AStr = ‘The %s is of the %s category and its length is %f in.’;

var
VarArr: Variant;
F: Double;

begin
VarArr := VarArrayCreate([0, 2], varVariant);
{ Assume Table1 is attached to Biolife table }

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

315

11 chpt_07.qxd 11/19/01 12:12 PM Page 315

VarArr := Table1[‘Common_Name;Category;Length_In’];
F := VarArr[2];
ShowMessage(Format(AStr, [VarArr[0], VarArr[1], F]));

end;

You can also use the TDataset.Fields[] array property or FieldsByName() function to access
individual TField objects associated with the dataset. The TField component provides infor-
mation about a specific field.

Fields[] is a zero-based array of TField objects, so Fields[0] returns a TField representing
the first logical field in the record. FieldsByName() accepts a string parameter that corresponds
to a given field name in the table; therefore, FieldsByName(‘OrderNo’) would return a TField
component representing the OrderNo field in the current record of the dataset.

Given a TField object, you can retrieve or assign the field’s value using one of the TField
properties shown in Table 7.2.

TABLE 7.2 Properties to Access TField Values

Property Return Type

AsBoolean Boolean

AsFloat Double

AsInteger Longint

AsString String

AsDateTime TDateTime

Value Variant

If the first field in the current dataset is a string, you can store its value in the String variable
S, like this:

S := Table1.Fields[0].AsString;

The following code sets the integral variable I to contain the value of the ‘OrderNo’ field in
the current record of the table:

I := Table1.FieldsByName(‘OrderNo’).AsInteger;

Field Data Types
If you want to know the type of a field, look at TField’s DataType property, which indicates
the data type with respect to the database table (irrespective of a corresponding Object Pascal
type). The DataType property is of TFieldType, and TFieldType is defined as follows:

Database Development

PART III
316

11 chpt_07.qxd 11/19/01 12:12 PM Page 316

type
TFieldType = (ftUnknown, ftString, ftSmallint, ftInteger, ftWord,
ftBoolean, ftFloat, ftCurrency, ftBCD, ftDate, ftTime, ftDateTime,
ftBytes, ftVarBytes, ftAutoInc, ftBlob, ftMemo, ftGraphic, ftFmtMemo,
ftParadoxOle, ftDBaseOle, ftTypedBinary, ftCursor, ftFixedChar,
ftWideString, ftLargeint, ftADT, ftArray, ftReference, ftDataSet,
ftOraBlob, ftOraClob, ftVariant, ftInterface, ftIDispatch, ftGuid);

Descendants of TField are designed to work specifically with many of the preceding data
types. These are covered a bit later in this chapter.

Field Names and Numbers
To find the name of a specified field, use the TField.FieldName property. For example, the
following code places the name of the first field in the current table in the String variable S:

var
S: String;

begin
S := Table1.Fields[0].FieldName;

end;

Likewise, you can obtain the number of a field you know only by name by using the FieldNo
property. The following code stores the number of the OrderNo field in the Integer variable I:

var
I: integer;

begin
I := Table1.FieldsByName(‘OrderNo’).FieldNo;

end;

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

317

To determine how many fields a dataset contains, use TDataset’s FieldList property.
FieldList represents a flattened view of all the nested fields in a table containing
fields that are abstract data types.

For backward compatibility, the FieldCount property still works, but it will skip over
any ADT fields.

NOTE

Manipulating Field Data
Here’s a three-step process for editing one or more fields in the current record:

1. Call the dataset’s Edit() method to put the dataset into Edit mode.

2. Assign new values to the fields of your choice.

11 chpt_07.qxd 11/19/01 12:12 PM Page 317

3. Post the changes to the dataset either by calling the Post() method or by moving to a
new record, which will automatically post the edit.

For instance, a typical record edit looks like this:

Table1.Edit;
Table1[‘Age’] := 23;
Table1.Post;

Database Development

PART III
318

Sometimes you work with datasets that contain read-only data. Examples of this
would include a table located on a CD-ROM drive or a query with a non-live resultset.
Before attempting to edit data, you can determine whether the dataset contains
read-only data before you try to modify it by checking the value of the CanModify
property. If CanModify is True, you have the green light to edit the dataset.

TIP

The Fields Editor
Delphi gives you a great degree of control and flexibility when working with dataset fields
through the Fields Editor. You can view the Fields Editor for a particular dataset in the Form
Designer, either by double-clicking the TTable, TQuery, or TStoredProc or by selecting Fields
Editor from the dataset’s local menu. The Fields Editor window enables you to determine
which of a dataset’s fields you want to work with and create new calculated or lookup fields.
You can use a local menu to accomplish these tasks. The Fields Editor window with its local
menu deployed is shown in Figure 7.3.

FIGURE 7.3
The Fields Editor’s local menu.

11 chpt_07.qxd 11/19/01 12:12 PM Page 318

To demonstrate the usage of the Fields Editor, open a new project and drop a TTable compo-
nent onto the main form. Set the Table1.DatabaseName property to DBDEMOS (this is the alias
that points to the Delphi sample tables) and set the TableName property to ORDERS.DB. To pro-
vide some visual feedback, also drop a TDataSource and TDBGrid component on the form.
Hook DataSource1 to Table1 and then hook DBGrid1 to DataSource1. Now set Table1’s
Active property to True, and you’ll see Table1’s data in the grid.

Adding Fields
Invoke the Fields Editor by double-clicking Table1, and you’ll see the Fields Editor window,
as shown in Figure 7.3. Let’s say that you want to limit your view of the table to only a few
fields. Select Add Fields from the Fields Editor local menu. This will invoke the Add Fields
dialog box. Highlight the OrderNo, CustNo, and ItemsTotal fields in this dialog box and click
OK. The three selected fields will now be visible in the Fields Editor and in the grid.

Delphi creates TField descendant objects, which map to the dataset fields you select in the
Fields Editor. For example, for the three fields mentioned in the preceding paragraph, Delphi
adds the following declarations of TField descendants to the source code for your form:

Table1OrderNo: TFloatField;
Table1CustNo: TFloatField;
Table1ItemsTotal: TCurrencyField;

Notice that the name of the field object is the concatenation of the TTable name and the field
name. Because these fields are created in code, you can also access TField descendant proper-
ties and methods in your code rather than solely at design time.

TField Descendants
There are one or more different TField descendant objects for each field type. (Field types are
described in the “Field Data Types” section, earlier in this chapter.) Many of these field types
also map to Object Pascal data types. Table 7.3 shows the various classes in the TField hierar-
chy, their ancestor classes, their field types, and the Object Pascal types to which they equate.

TABLE 7.3 TField Descendants and Their Field Types

Field Class Ancestor Field Type Object Pascal Type

TStringField TField ftString String

TWideStringField TStringField ftWideString WideString

TGuidField TStringField ftGuid TGUID

TNumericField TField * *

TIntegerField TNumericField ftInteger Integer

TSmallIntField TIntegerField ftSmallInt SmallInt

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

319

11 chpt_07.qxd 11/19/01 12:12 PM Page 319

TABLE 7.3 Continued

Field Class Ancestor Field Type Object Pascal Type

TLargeintField TNumericField ftLargeint Int64

TWordField TIntegerField ftWord Word

TAutoIncField TIntegerField ftAutoInc Integer

TFloatField TNumericField ftFloat Double

TCurrencyField TFloatField ftCurrency Currency

TBCDField TNumericField ftBCD Double

TBooleanField TField ftBoolean Boolean

TDateTimeField TField ftDateTime TDateTime

TDateField TDateTimeField ftDate TDateTime

TTimeField TDateTimeField ftTime TDateTime

TBinaryField TField * *

TBytesField TBinaryField ftBytes none

TVarBytesField TBytesField ftVarBytes none

TBlobField TField ftBlob none

TMemoField TBlobField ftMemo none

TGraphicField TBlobField ftGraphic none

TObjectField TField * *

TADTField TObjectField ftADT none

TArrayField TObjectField ftArray none

TDataSetField TObjectField ftDataSet TDataSet

TReferenceField TDataSetField ftReference

TVariantField TField ftVariant OleVariant

TInterfaceField TField ftInterface IUnknown

TIDispatchField TInterfaceField ftIDispatch IDispatch

TAggregateField TField none none
*Denotes an abstract base class in the TField hierarchy

As Table 7.3 shows, BLOB and Object field types are special in that they don’t map directly to
native Object Pascal types. BLOB fields are discussed in more detail later in this chapter.

Database Development

PART III
320

11 chpt_07.qxd 11/19/01 12:12 PM Page 320

Fields and the Object Inspector
When you select a field in the Fields Editor, you can access the properties and events associ-
ated with that TField descendant object in the Object Inspector. This feature enables you to
modify field properties such as minimum and maximum values, display formats, and whether
the field is required as well as whether it’s read-only. Some of these properties, such as
ReadOnly, are obvious in their purpose, but some aren’t quite as intuitive.

Switch to the Events page of the Object Inspector, and you’ll see that there are also events
associated with field objects. The events OnChange, OnGetText, OnSetText, and OnValidate
are all well-documented in the online help. Simply click to the left of the event in the Object
Inspector and press F1. Of these, OnChange is probably the most common to use. It enables
you to perform some action whenever the contents of the field change (moving to another
record or adding a record, for example).

Calculated Fields
You can also add calculated fields to a dataset using the Fields Editor. Let’s say, for example,
that you wanted to add a field that figures the wholesale total for each entry in the ORDERS
table, and the wholesale total was 32% of the normal total. Select New Field from the Fields
Editor local menu, and you’ll be presented with the New Field dialog box, as shown in Figure
7.4. Enter the name, WholesaleTotal, for the new field in the Name edit control. The type of
this field is Currency, so enter that in the Type edit control. Make sure that the Calculated radio
button is selected in the Field Type group; then press OK. Now the new field will show up in
the grid, but it won’t yet contain any data.

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

321

FIGURE 7.4
Adding a calculated field with the New Field dialog box.

To cause the new field to become populated with data, you must assign a method to the
Table1.OnCalcFields event. The code for this event simply assigns the value of the
WholesaleTotal field to be 32% of the value of the existing SalesTotal field. This method,
which handles Table1.OnCalcFields, is shown here:

11 chpt_07.qxd 11/19/01 12:12 PM Page 321

procedure TForm1.Table1CalcFields(DataSet: TDataSet);
begin
DataSet[‘WholesaleTotal’] := DataSet[‘ItemsTotal’] * 0.68;

end;

Figure 7.5 shows that the WholesaleTotal field in the grid now contains the correct data.

Database Development

PART III
322

FIGURE 7.5
The calculated field has been added to the table.

Lookup Fields
Lookup fields enable you to create fields in a dataset that actually look up their values from
another dataset. To illustrate this, you’ll add a lookup field to the current project. The CustNo
field of the ORDERS table doesn’t mean anything to someone who doesn’t have all the customer
numbers memorized. You can add a lookup field to Table1 that looks into the CUSTOMER table
and then, based on the customer number, retrieves the name of the current customer.

First, you should drop in a second TTable object, setting its DatabaseName property to DBDEMOS
and its TableName property to CUSTOMER. This is Table2. Then you once again select New Field
from the Fields Editor local menu to invoke the New Field dialog box. This time, you’ll call
the field CustName, and the field type will be a String. The size of the string is 15 characters.
Don’t forget to select the Lookup button in the Field Type radio group. The Dataset control in
this dialog box should be set to Table2—the dataset you want to look into. The Key Fields and
Lookup Keys controls should be set to CustNo—this is the common field upon which the
lookup will be performed. Finally, the Result field should be set to Contact—this is the field
you want displayed. Figure 7.6 shows the New Field dialog box for the new lookup field. The
new field will now display the correct data, as shown in the completed project in Figure 7.7.

11 chpt_07.qxd 11/19/01 12:12 PM Page 322

FIGURE 7.6
Adding a lookup field with the New Field dialog box.

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

323

FIGURE 7.7
Viewing the table containing a lookup field.

Drag-and-Drop Fields
Another less obvious feature of the Fields Editor is that it enables you to drag fields from its
Fields list box and drop them onto your forms. We can easily demonstrate this feature by start-
ing a new project that contains only a TTable on the main form. Assign Table1.DatabaseName
to DBDEMOS and assign Table1.TableName to BIOLIFE.DB. Invoke the Fields Editor for this
table and add all the fields in the table to the Fields Editor list box. You can now drag one or
more of the fields at a time from the Fields Editor window and drop them on your main form.

You’ll notice a couple of cool things happening here: First, Delphi senses what kind of field
you’re dropping onto your form and creates the appropriate data-aware control to display the
data (that is, a TDBEdit is created for a string field, whereas a TDBImage is created for a graphic
field). Second, Delphi checks to see if you have a TDataSource object connected to the dataset;
it hooks to an existing one if available or creates one if needed. Figure 7.8 shows the result of
dragging and dropping the fields of the BIOLIFE table onto a form.

11 chpt_07.qxd 11/19/01 12:12 PM Page 323

FIGURE 7.8
Dragging and dropping fields on a form.

Working with BLOB Fields
A BLOB (Binary Large Object) field is a field that’s designed to contain an indeterminate
amount of data. A BLOB field in one record of a dataset might contain three bytes of data,
whereas the same field in another record of that dataset might contain 3KB. Blobs are most
useful for holding large amounts of text, graphic images, or raw data streams such as OLE
objects.

TBlobField and Field Types
As discussed earlier, VCL includes a TField descendant called TBlobField, which encapsu-
lates a BLOB field. TBlobField has a BlobType property of type TBlobType, which indicates
what type of data is stored in the BLOB field. TBlobType is defined in the DB unit as follows:

TBlobType = ftBlob..ftOraClob;

All these field types and the type of data associated with these field types are listed in Table 7.4.

TABLE 7.4 TBlobField Field Types

Field Type Type of Data

ftBlob Untyped or user-defined data

ftMemo Text

ftGraphic Windows bitmap

ftFmtMemo Paradox formatted memo

ftParadoxOle Paradox OLE object

ftDBaseOLE dBASE OLE object

Database Development

PART III
324

11 chpt_07.qxd 11/19/01 12:12 PM Page 324

TABLE 7.4 Continued

Field Type Type of Data

ftTypedBinary Raw data representation of an existing type

ftCursor..ftDataSet Not valid BLOB types

ftOraBlob BLOB fields in Oracle8 tables

ftOraClob CLOB fields in Oracle8 tables

You’ll find that most of the work you need to do in getting data in and out of TBlobField com-
ponents can be accomplished by loading or saving the BLOB to a file or by using a
TBlobStream. TBlobStream is a specialized descendant of TStream that uses the BLOB field
inside the physical table as the stream location. To demonstrate these techniques for interacting
with TBlobField components, you’ll create a sample application.

BLOB Field Example
This project creates an application that enables the user to store WAV files in a database table
and play them directly from the table. Start the project by creating a main form with the com-
ponents shown in Figure 7.9. The TTable component can map to the Wavez table in the
DDGData alias or your own table of the same structure. The structure of the table is as follows:

Field Name Field Type Size

WaveTitle Character 25

FileName Character 25

Wave BLOB

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

325

FIGURE 7.9
Main form for Wavez, the BLOB field example.

The Add button is used to load a WAV file from disk and add it to the table. The method
assigned to the OnClick event of the Add button is shown here:

procedure TMainForm.sbAddClick(Sender: TObject);
begin
if OpenDialog.Execute then
begin
tblSounds.Append;

11 chpt_07.qxd 11/19/01 12:12 PM Page 325

tblSounds[‘FileName’] := ExtractFileName(OpenDialog.FileName);
tblSoundsWave.LoadFromFile(OpenDialog.FileName);
edTitle.SetFocus;

end;
end;

The code first attempts to execute OpenDialog. If it’s successful, tblSounds is put into Append
mode, the FileName field is assigned a value, and the Wave BLOB field is loaded from the file
specified by OpenDialog. Notice that TBlobField’s LoadFromFile method is very handy here,
and the code is very clean for loading a file into a BLOB field.

Similarly, the Save button saves the current WAV sound found in the Wave field to an external
file. The code for this button is as follows:

procedure TMainForm.sbSaveClick(Sender: TObject);
begin
with SaveDialog do
begin
FileName := tblSounds[‘FileName’]; // initialize file name
if Execute then // execute dialog
tblSoundsWave.SaveToFile(FileName); // save blob to file

end;
end;

There’s even less code here. SaveDialog is initialized with the value of the FileName field. If
SaveDialog’s execution is successful, the tblSoundsWave.SaveToFile() method is called to
save the contents of the BLOB field to the file.

The handler for the Play button does the work of reading the WAV data from the BLOB field
and passing it to the PlaySound() API function to be played. The code for this handler, shown
next, is a bit more complex than the code shown thus far:

procedure TMainForm.sbPlayClick(Sender: TObject);
var
B: TBlobStream;
M: TMemoryStream;

begin
B := TBlobStream.Create(tblSoundsWave, bmRead); // create blob stream
Screen.Cursor := crHourGlass; // wait hourglass
try
M := TMemoryStream.Create; // create memory stream
try
M.CopyFrom(B, B.Size); // copy from blob to memory stream
// Attempt to play sound. Raise exception if something goes wrong
Win32Check(PlaySound(M.Memory, 0, SND_SYNC or SND_MEMORY));

Database Development

PART III
326

11 chpt_07.qxd 11/19/01 12:12 PM Page 326

finally
M.Free;

end;
finally
Screen.Cursor := crDefault;
B.Free; // clean up

end;
end;

The first thing this method does is to create an instance of TBlobStream, B, using the
tblSoundsWave BLOB field. The first parameter passed to TBlobStream.Create() is the
BLOB field object, and the second parameter indicates how you want to open the stream.
Typically, you’ll use bmRead for read-only access to the BLOB stream or bmReadWrite for
read/write access.

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

327

The dataset must be in Edit, Insert, or Append mode to open a TBlobStream with
bmReadWrite privilege.

TIP

An instance of TMemoryStream, M, is then created. At this point, the cursor shape is changed to
an hourglass to let the user know that the operation may take a couple of seconds. The stream B
is then copied to the stream M. The function used to play a WAV sound, PlaySound(), requires a
filename or a memory pointer as its first parameter. TBlobStream doesn’t provide pointer access
to the stream data, but TMemoryStream does through its Memory property. Given that, you can
successfully call PlaySound() to play the data pointed at by M.Memory. Once the function is
called, it cleans up by freeing the streams and restoring the cursor. The complete code for the
main unit of this project is shown in Listing 7.4.

LISTING 7.4 The Main Unit for the Wavez Project

unit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
ExtCtrls, DBCtrls, DB, DBTables, StdCtrls, Mask, Buttons, ComCtrls;

type
TMainForm = class(TForm)
tblSounds: TTable;
dsSounds: TDataSource;

11 chpt_07.qxd 11/19/01 12:12 PM Page 327

LISTING 7.4 Continued

tblSoundsWaveTitle: TStringField;
tblSoundsWave: TBlobField;
edTitle: TDBEdit;
edFileName: TDBEdit;
Label1: TLabel;
Label2: TLabel;
OpenDialog: TOpenDialog;
tblSoundsFileName: TStringField;
SaveDialog: TSaveDialog;
pnlToobar: TPanel;
sbPlay: TSpeedButton;
sbAdd: TSpeedButton;
sbSave: TSpeedButton;
sbExit: TSpeedButton;
Bevel1: TBevel;
dbnNavigator: TDBNavigator;
stbStatus: TStatusBar;
procedure sbPlayClick(Sender: TObject);
procedure sbAddClick(Sender: TObject);
procedure sbSaveClick(Sender: TObject);
procedure sbExitClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);

private
procedure OnAppHint(Sender: TObject);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

uses MMSystem;

procedure TMainForm.sbPlayClick(Sender: TObject);
var
B: TBlobStream;
M: TMemoryStream;

begin
B := TBlobStream.Create(tblSoundsWave, bmRead); // create blob stream
Screen.Cursor := crHourGlass; // wait hourglass
try

Database Development

PART III
328

11 chpt_07.qxd 11/19/01 12:12 PM Page 328

LISTING 7.4 Continued

M := TMemoryStream.Create; // create memory stream
try
M.CopyFrom(B, B.Size); // copy from blob to memory stream
// Attempt to play sound. Raise exception if something goes wrong
Win32Check(PlaySound(M.Memory, 0, SND_SYNC or SND_MEMORY));

finally
M.Free;

end;
finally
Screen.Cursor := crDefault;
B.Free; // clean up

end;
end;

procedure TMainForm.sbAddClick(Sender: TObject);
begin
if OpenDialog.Execute then
begin
tblSounds.Append;
tblSounds[‘FileName’] := ExtractFileName(OpenDialog.FileName);
tblSoundsWave.LoadFromFile(OpenDialog.FileName);
edTitle.SetFocus;

end;
end;

procedure TMainForm.sbSaveClick(Sender: TObject);
begin
with SaveDialog do
begin
FileName := tblSounds[‘FileName’]; // initialize file name
if Execute then // execute dialog
tblSoundsWave.SaveToFile(FileName); // save blob to file

end;
end;

procedure TMainForm.sbExitClick(Sender: TObject);
begin
Close;

end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
Application.OnHint := OnAppHint;
tblSounds.Open;

end;

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

329

11 chpt_07.qxd 11/19/01 12:12 PM Page 329

LISTING 7.4 Continued

procedure TMainForm.OnAppHint(Sender: TObject);
begin
stbStatus.SimpleText := Application.Hint;

end;

procedure TMainForm.FormClose(Sender: TObject; var Action: TCloseAction);
begin
tblSounds.Close;

end;

end.

Filtering Data
Filters enable you to do simple dataset searching or filtering using only Object Pascal code.
The primary advantage of using filters is that they don’t require an index or any other prepara-
tion on the datasets with which they’re used. In many cases, filters can be a bit slower than
index-based searching (which is covered later in this chapter), but they’re still very usable in
almost any type of application.

Using TDataset’s Filtering Capabilities
One of the more common uses of Delphi’s filtering mechanism is to limit a view of a dataset to
some specific records only. This is a simple two-step process:

1. Assign a procedure to the dataset’s OnFilterRecord event. Inside of this procedure, you
should write code that accepts records based on the values of one or more fields.

2. Set the dataset’s Filtered property to True.

As an example, Figure 7.10 shows a form containing TDBGrid, which displays an unfiltered
view of Delphi’s CUSTOMER table.

In step 1, you write a handler for the table’s OnFilterRecord event. In this case, we’ll accept only
records whose Company field starts with the letter S. The code for this procedure is shown here:

procedure TForm1.Table1FilterRecord(DataSet: TDataSet;
var Accept: Boolean);

var
FieldVal: String;

begin
FieldVal := DataSet[‘Company’]; // Get the value of the Company field
Accept := FieldVal[1] = ‘S’; // Accept record if field starts with ‘S’

end;

Database Development

PART III
330

11 chpt_07.qxd 11/19/01 12:12 PM Page 330

FIGURE 7.10
An unfiltered view of the CUSTOMER table.

After following step 2 and setting the table’s Filtered property to True, you can see in
Figure 7.11 that the grid displays only those records that meet the filter criteria.

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

331

FIGURE 7.11
A filtered view of the CUSTOMER table.

The OnFilterRecord event should only be used in cases where the filter cannot be
expressed in the Filter property. The reason for this is that it can provide significant
performance benefits. On SQL databases, for example, the TTable component will
pass the contents of the FILTER property in a WHERE clause to the database, which is
generally much faster than the record-by-record search performed in OnFilterRecord.

NOTE

11 chpt_07.qxd 11/19/01 12:12 PM Page 331

Searching Datasets
Datasets provide variations on how to search through datasets. The coverage here shows only
the non-SQL type searching techniques. SQL based techniques are covered in Chapter 29 on
the CD copy of Delphi 5 Developer’s Guide.

FindFirst() and FindNext()
TDataSet also provides methods called FindFirst(), FindNext(), FindPrior(), and FindLast()
that employ filters to find records that match a particular search criteria. All these functions
work on unfiltered datasets by calling that dataset’s OnFilterRecord event handler. Based on
the search criteria in the event handler, these functions will find the first, next, previous, or last
match, respectively. Each of these functions accepts no parameters and returns a Boolean,
which indicates whether a match was found.

Locating a Record Using the Locate() Method
Not only are filters useful for defining a subset view of a particular dataset, but they can also
be used to search for records within a dataset based on the value of one or more fields. For this
purpose, TDataSet provides a method called Locate(). Once again, because Locate() employs
filters to do the searching, it will work irrespective of any index applied to the dataset. The
Locate() method is defined as follows:

function Locate(const KeyFields: string; const KeyValues: Variant;
Options: TLocateOptions): Boolean;

The first parameter, KeyFields, contains the name of the field(s) on which you want to search.
The second parameter, KeyValues, holds the field value(s) you want to locate. The third and
last parameter, Options, allows you to customize the type of search you want to perform. This
parameter is of type TLocateOptions, which is a set type defined in the DB unit as follows:

type
TLocateOption = (loCaseInsensitive, loPartialKey);
TLocateOptions = set of TLocateOption;

If the set includes the loCaseInsensitive member, a not case sensitive search of the data will
be performed. If the set includes the loPartialKey member, the values contained in KeyValues
will match even if they’re substrings of the field value.

Locate() will return True if it finds a match. For example, to search for the first occurrence of
the value 1356 in the CustNo field of Table1, use the following syntax:

Table1.Locate(‘CustNo’, 1356, []);

Database Development

PART III
332

11 chpt_07.qxd 11/19/01 12:12 PM Page 332

Table Key Searching
This section describes the common properties and methods of the TTable component and how
to use them. In particular, you learn how to search for records, filter records using ranges, and
create tables. This section also contains a discussion of TTable events.

TTable Record Searching
When you need to search for records in a table, VCL provides several methods to help you out.
When you’re working with dBASE and Paradox tables, Delphi assumes that the fields on
which you search are indexed. For SQL tables, the performance of your search will suffer if
you search on non-indexed fields.

Say, for example, you have a table that’s keyed on field 1, which is numeric, and on field 2,
which is alphanumeric. You can search for a specific record based on those two criteria in one
of two ways: using the FindKey() technique or the SetKey()..GotoKey() technique.

FindKey()

TTable’s FindKey() method enables you to search for a record matching one or more keyed
fields in one function call. FindKey() accepts an array of const (the search criteria) as a
parameter and returns True when it’s successful. For example, the following code causes the
dataset to move to the record where the first field in the index has the value 123 and the second
field in the index contains the string Hello:

if not Table1.FindKey([123, ‘Hello’]) then MessageBeep(0);

If a match isn’t found, FindKey() returns False and the computer beeps.

SetKey()..GotoKey()

Calling TTable’s SetKey() method puts the table in a mode that prepares its fields to be loaded
with values representing search criteria. Once the search criteria have been established, use the

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

333

You should use Locate() whenever possible to search for records because it will
always attempt to use the fastest method possible to find the item, switching indexes
temporarily if necessary. This makes your code independent of indexes. Also, if you
determine that you no longer need an index on a particular field or if adding one
will make your program faster, you can make that change on the data without hav-
ing to recode the application.

TIP

11 chpt_07.qxd 11/19/01 12:12 PM Page 333

GotoKey() method to do a top-down search for a matching record. The previous example can
be rewritten with SetKey()..GotoKey(), as follows:

with Table1 do begin
SetKey;
Fields[0].AsInteger := 123;
Fields[1].AsString := ‘Hello’;
if not GotoKey then MessageBeep(0);

end;

The Closest Match
Similarly, you can use FindNearest() or the SetKey..GotoNearest methods to search for a
value in the table that’s the closest match to the search criteria. To search for the first record in
which the value of the first indexed field is closest to (greater than or equal to) 123, use the fol-
lowing code:

Table1.FindNearest([123]);

Once again, FindNearest() accepts an array of const as a parameter that contains the field
values for which you want to search.

To search using the longhand technique provided by SetKey()..GotoNearest(), you can use
this code:

with Table1 do begin
SetKey;
Fields[0].AsInteger := 123;
GotoNearest;

end;

If the search is successful and the table’s KeyExclusive property is set to False, the record
pointer will be on the first matching record. If KeyExclusive is True, the current record will be
the one immediately following the match.

Database Development

PART III
334

If you want to search on the indexed fields of a table, use FindKey() and
FindNearest()—rather than SetKey()..GotoX()—whenever possible because you
type less code and leave less room for human error.

TIP

11 chpt_07.qxd 11/19/01 12:12 PM Page 334

Which Index?
All these searching methods assume that you’re searching under the table’s primary index. If
you want to search using a secondary index, you need to set the table’s IndexName parameter
to the desired index. For instance, if your table had a secondary index on the Company field
called ByCompany, the following code would enable you to search for the company “Unisco”:

with Table1 do begin
IndexName := ‘ByCompany’;
SetKey;
FieldValues[‘Company’] := ‘Unisco’;
GotoKey;

end;

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

335

Keep in mind that some overhead is involved in switching indexes while a table is
opened. You should expect a delay of a second or more when you set the IndexName
property to a new value.

NOTE

Ranges enable you to filter a table so that it contains only records with field values that fall
within a certain scope you define. Ranges work similarly to key searches, and as with searches,
there are several ways to apply a range to a given table—either using the SetRange() method
or the manual SetRangeStart(), SetRangeEnd(), and ApplyRange() methods.

If you are working with dBASE or Paradox tables, ranges only work with indexed
fields. If you’re working with SQL data, performance will suffer greatly if you don’t
have an index on the ranged field.

CAUTION

SetRange()
Like FindKey() and FindNearest(), SetRange() enables you to perform a fairly complex
action on a table with one function call. SetRange() accepts two array of const variables as
parameters: The first represents the field values for the start of the range, and the second repre-
sents the field values for the end of the range. As an example, the following code filters through
only those records where the value of the first field is greater than or equal to 10 but less than
or equal to 15:

Table1.SetRange([10], [15]);

11 chpt_07.qxd 11/19/01 12:12 PM Page 335

ApplyRange()

To use the ApplyRange() method of setting a range, follow these steps:

1. Call the SetRangeStart() method and then modify the Fields[] array property of the
table to establish the starting value of the keyed field(s).

2. Call the SetRangeEnd() method and modify the Fields[] array property once again to
establish the ending value of the keyed field(s).

3. Call ApplyRange() to establish the new range filter.

The preceding range example could be rewritten using this technique:

with Table1 do begin
SetRangeStart;
Fields[0].AsInteger := 10; // range starts at 10
SetRangeEnd;
Fields[0].AsInteger := 15; // range ends at 15
ApplyRange;

end;

Database Development

PART III
336

Use SetRange() whenever possible to filter records—your code will be less prone to
error when doing so.

TIP

To remove a range filter from a table and restore the table to the state it was in before you
called ApplyRange() or SetRange(), just call TTable’s CancelRange() method.

Table1.CancelRange;

Using Data Modules
Data modules enable you to keep all your database rules and relationships in one central location
to be shared across projects, groups, or enterprises. Data modules are encapsulated by VCL’s
TDataModule component. Think of TDataModule as an invisible form on which you can drop data-
access components to be used throughout a project. Creating a TDataModule instance is simple:
Select File, New from the main menu and then select Data Module from the Object Repository.

The simple justification for using TDataModule over just putting data-access components on a
form is that it’s easier to share the same data across multiple forms and units in your project. In
a more complex situation, you would have an arrangement of multiple TTable, TQuery, and/or
TStoredProc components. You might have relationships defined between the components and
perhaps rules enforced on the field level, such as minimum/maximum values or display formats.
Perhaps this assortment of data-access components models the business rules of your enterprise.

11 chpt_07.qxd 11/19/01 12:12 PM Page 336

After taking great pains to set up something so impressive, you wouldn’t want to have to do it
again for another application, would you? Of course you wouldn’t. In such cases, you would
want to save your data module to the Object Repository for later use. If you work in a team
environment, you might even want to keep the Object Repository on a shared network drive for
the use of all the developers on your team.

In the example that follows, you’ll create a simple instance of a data module so that many
forms have access to the same data. In the database applications shown in several of the later
chapters, you’ll build more complex relationships into data modules.

The Search, Range, Filter Demo
Now it’s time to create a sample application to help drive home some of the key concepts that
were covered in this chapter. In particular, this application will demonstrate the proper use of
filters, key searches, and range filters in your applications. This project, called SRF, contains
multiple forms. The main form consists mainly of a grid for browsing a table, and other forms
demonstrate the different concepts mentioned earlier. Each of these forms will be explained in
turn.

The Data Module
Although we’re starting a bit out of order, the data module for this project will be covered first.
This data module, called DM, contains only a TTable and a TDataSource component.
The TTable, called Table1, is hooked to the CUSTOMERS.DB table in the DBDEMOS alias. The
TDataSource, DataSource1, is wired to Table1. All the data-aware controls in this project
will use DataSource1 as their DataSource. DM is contained in a unit called DataMod.

The Main Form
The main form for SRF, appropriately called MainForm, is shown in Figure 7.12. This form is
contained in a unit called Main. As you can see, it contains a TDBGrid control, DBGrid1, for
browsing a table, and it contains a radio button that enables you to switch between different
indexes on the table. DBGrid1, as explained earlier, is hooked to DM.DataSource1 as its data
source.

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

337

In order for DBGrid1 to be able to hook to DM.DataSource1 at design time, the
DataMod unit must be in the uses clause of the Main unit. The easiest way to do this is
to bring up the Main unit in the Code Editor and select File, Use Unit from the main
menu. You’ll then be presented with a list of units in your project from which you can
select DataMod. You must do this for each of the units from which you want to access
the data contained within DM.

NOTE

11 chpt_07.qxd 11/19/01 12:12 PM Page 337

FIGURE 7.12
MainForm in the SRF project.

The radio group, called RGKeyField, is used to determine which of the table’s two indexes is
currently active. The code attached to the OnClick event for RGKeyField is shown here:

procedure TMainForm.RGKeyFieldClick(Sender: TObject);
begin
case RGKeyField.ItemIndex of
0: DM.Table1.IndexName := ‘’; // primary index
1: DM.Table1.IndexName := ‘ByCompany’; // secondary, by company

end;
end;

MainForm also contains a TMainMenu component, MainMenu1, which enables you to open and
close each of the other forms. The items on this menu are Key Search, Range, Filter, and Exit.
The Main unit, in its entirety, is shown in Listing 7.5.

Database Development

PART III
338

In order for DBGrid1 to be able to hook to DM.DataSource1 at design time, the
DataMod unit must be in the uses clause of the Main unit. The easiest way to do this is
to bring up the Main unit in the Code Editor and select File, Use Unit from the main
menu. You’ll then be presented with a list of units in your project from which you can
select DataMod. You must do this for each of the units from which you want to access
the data contained within DM.

NOTE

The radio group, called RGKeyField, is used to determine which of the table’s two indexes is
currently active. The code attached to the OnClick event for RGKeyField is shown here:

11 chpt_07.qxd 11/19/01 12:12 PM Page 338

procedure TMainForm.RGKeyFieldClick(Sender: TObject);
begin
case RGKeyField.ItemIndex of
0: DM.Table1.IndexName := ‘’; // primary index
1: DM.Table1.IndexName := ‘ByCompany’; // secondary, by company

end;
end;

MainForm also contains a TMainMenu component, MainMenu1, which enables you to open and
close each of the other forms. The items on this menu are Key Search, Range, Filter, and Exit.
The Main unit, in its entirety, is shown in Listing 7.5.

LISTING 7.5 Main.pas—Demonstrating Dataset Ranges

unit Main;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ExtCtrls, Grids, DBGrids, DB, DBTables,
Buttons, Mask, DBCtrls, Menus, KeySrch, Rng, Fltr;

type
TMainForm = class(TForm)
DBGrid1: TDBGrid;
RGKeyField: TRadioGroup;
MainMenu1: TMainMenu;
Forms1: TMenuItem;
KeySearch1: TMenuItem;
Range1: TMenuItem;
Filter1: TMenuItem;
N1: TMenuItem;
Exit1: TMenuItem;
procedure RGKeyFieldClick(Sender: TObject);
procedure KeySearch1Click(Sender: TObject);
procedure Range1Click(Sender: TObject);
procedure Filter1Click(Sender: TObject);
procedure Exit1Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

339

11 chpt_07.qxd 11/19/01 12:12 PM Page 339

LISTING 7.5 Continued

var
MainForm: TMainForm;

implementation

uses DataMod;

{$R *.DFM}

procedure TMainForm.RGKeyFieldClick(Sender: TObject);
begin
case RGKeyField.ItemIndex of
0: DM.Table1.IndexName := ‘’; // primary index
1: DM.Table1.IndexName := ‘ByCompany’; // secondary, by company

end;
end;

procedure TMainForm.KeySearch1Click(Sender: TObject);
begin
KeySearch1.Checked := not KeySearch1.Checked;
KeySearchForm.Visible := KeySearch1.Checked;

end;

procedure TMainForm.Range1Click(Sender: TObject);
begin
Range1.Checked := not Range1.Checked;
RangeForm.Visible := Range1.Checked;

end;

procedure TMainForm.Filter1Click(Sender: TObject);
begin
Filter1.Checked := not Filter1.Checked;
FilterForm.Visible := Filter1.Checked;

end;

procedure TMainForm.Exit1Click(Sender: TObject);
begin
Close;

end;

end.

Database Development

PART III
340

11 chpt_07.qxd 11/19/01 12:12 PM Page 340

The Key Search Form
KeySearchForm, contained in the KeySrch unit, provides a means for the user of the application
to search for a particular key value in the table. The form enables the user to search for a value
in one of two ways. First, when the Normal radio button is selected, the user can search by
typing text into the Search For edit control and pressing the Exact or Nearest button to find an
exact match or closest match in the table. Second, when the Incremental radio button is selected,
the user can perform an incremental search on the table every time he or she changes the text
in the Search For edit control. The code for the KeySrch unit is shown in Listing 7.6.

LISTING 7.6 The Source Code for KeySrch.PAS

unit KeySrch;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls;

type
TKeySearchForm = class(TForm)
Panel1: TPanel;
Label3: TLabel;
SearchEdit: TEdit;
RBNormal: TRadioButton;
Incremental: TRadioButton;
Label6: TLabel;
ExactButton: TButton;
NearestButton: TButton;
procedure ExactButtonClick(Sender: TObject);

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

341

Pay close attention to the following line of code from the Rng unit:

DM.Table1.SetRange([StartEdit.Text], [EndEdit.Text]);

You might find it strange that although the keyed field can be of either a Numeric
type or Text type, you’re always passing strings to the SetRange() method. Delphi
allows this because SetRange(), FindKey(), and FindNearest() will perform the con-
version from String to Integer, and vice versa, automatically.

What this means to you is that you shouldn’t bother calling IntToStr() or StrToInt()
in these situations—it will be taken care of for you.

NOTE

11 chpt_07.qxd 11/19/01 12:12 PM Page 341

LISTING 7.6 Continued

procedure NearestButtonClick(Sender: TObject);
procedure RBNormalClick(Sender: TObject);
procedure IncrementalClick(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);

private
procedure NewSearch(Sender: TObject);

end;

var
KeySearchForm: TKeySearchForm;

implementation

uses DataMod, Main;

{$R *.DFM}

procedure TKeySearchForm.ExactButtonClick(Sender: TObject);
begin
{ Try to find record where key field matches SearchEdit’s Text value. }
{ Notice that Delphi handles the type conversion from the string }
{ edit control to the numeric key field value. }
if not DM.Table1.FindKey([SearchEdit.Text]) then
MessageDlg(Format(‘Match for “%s” not found.’, [SearchEdit.Text]),

mtInformation, [mbOk], 0);
end;

procedure TKeySearchForm.NearestButtonClick(Sender: TObject);
begin
{ Find closest match to SearchEdit’s Text value. Note again the }
{ implicit type conversion. }
DM.Table1.FindNearest([SearchEdit.Text]);

end;

procedure TKeySearchForm.NewSearch(Sender: TObject);
{ This is the method which is wired to the SearchEdit’s OnChange }
{ event whenever the Incremental radio is selected. }
begin
DM.Table1.FindNearest([SearchEdit.Text]); // search for text

end;

procedure TKeySearchForm.RBNormalClick(Sender: TObject);
begin

Database Development

PART III
342

11 chpt_07.qxd 11/19/01 12:12 PM Page 342

LISTING 7.6 Continued

ExactButton.Enabled := True; // enable search buttons
NearestButton.Enabled := True;
SearchEdit.OnChange := Nil; // unhook the OnChange event

end;

procedure TKeySearchForm.IncrementalClick(Sender: TObject);
begin
ExactButton.Enabled := False; // disable search buttons
NearestButton.Enabled := False;
SearchEdit.OnChange := NewSearch; // hook the OnChange event
NewSearch(Sender); // search current text

end;

procedure TKeySearchForm.FormClose(Sender: TObject;
var Action: TCloseAction);

begin
Action := caHide;
MainForm.KeySearch1.Checked := False;

end;

end.

The code for the KeySrch unit should be fairly straightforward to you. You might notice that,
once again, we can safely pass text strings to the FindKey() and FindNearest() methods with
the knowledge that they will do the right thing with regard to type conversion. You might also
appreciate the small trick that’s employed to switch to and from incremental searching on-the-
fly. This is accomplished by either assigning a method to or assigning Nil to the OnChange
event of the SearchEdit edit control. When assigned a handler method, the OnChange event
will fire whenever the text in the control is modified. By calling FindNearest() inside that
handler, an incremental search can be performed as the user types.

The Filter Form
The purpose of FilterForm, found in the Fltr unit, is two-fold. First, it enables the user to
filter the view of the table to a set where the value of the State field matches that of the cur-
rent record. Second, this form enables the user to search for a record where the value of any
field in the table is equal to some value she has specified.

The record-filtering functionality actually involves very little code. First, the state of the
check box labeled Filter on This State (called cbFiltered) determines the setting of

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

343

11 chpt_07.qxd 11/19/01 12:12 PM Page 343

DM.Table1’s Filtered property. This is accomplished with the following line of code
attached to cbFiltered.OnClick:

DM.Table1.Filtered := cbFiltered.Checked;

When DM.Table1.Filtered is True, Table1 filters records using the following
OnFilterRecord method, which is actually located in the DataMod unit:

procedure TDM.Table1FilterRecord(DataSet: TDataSet;
var Accept: Boolean);

begin
{ Accept record as a part of the filter if the value of the State }
{ field is the same as that of DBEdit1.Text. }
Accept := Table1State.Value = FilterForm.DBEdit1.Text;

end;

To perform the filter-based search, the Locate() method of TTable is employed:

DM.Table1.Locate(CBField.Text, EValue.Text, LO);

The field name is taken from a combo box called CBField. The contents of this combo box are
generated in the OnCreate event of this form using the following code to iterate through the
fields of Table1:

procedure TFilterForm.FormCreate(Sender: TObject);
var
i: integer;

begin
with DM.Table1 do begin
for i := 0 to FieldCount - 1 do
CBField.Items.Add(Fields[i].FieldName);

end;
end;

Database Development

PART III
344

The preceding code will only work when DM is created prior to this form. Otherwise,
any attempts to access DM before it’s created will probably result in an Access
Violation error. To make sure that the data module, DM, is created prior to any of the
child forms, we manually adjusted the creation order of the forms in the Autocreate
Forms list on the Forms page of the Project Options dialog (found under Options,
Project on the main menu).

The main form must, of course, be the first one created, but other than that, this
little trick ensures that the data module gets created prior to any other form in the
application.

TIP

11 chpt_07.qxd 11/19/01 12:12 PM Page 344

The complete code for the Fltr unit is shown in Listing 7.7.

LISTING 7.7 The Source Code for Fltr.pas

unit Fltr;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, Buttons, Mask, DBCtrls, ExtCtrls;

type
TFilterForm = class(TForm)
Panel1: TPanel;
Label4: TLabel;
DBEdit1: TDBEdit;
cbFiltered: TCheckBox;
Label5: TLabel;
SpeedButton1: TSpeedButton;
SpeedButton2: TSpeedButton;
SpeedButton3: TSpeedButton;
SpeedButton4: TSpeedButton;
Panel2: TPanel;
EValue: TEdit;
LocateBtn: TButton;
Label1: TLabel;
Label2: TLabel;
CBField: TComboBox;
MatchGB: TGroupBox;
RBExact: TRadioButton;
RBClosest: TRadioButton;
CBCaseSens: TCheckBox;
procedure cbFilteredClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure LocateBtnClick(Sender: TObject);
procedure SpeedButton1Click(Sender: TObject);
procedure SpeedButton2Click(Sender: TObject);
procedure SpeedButton3Click(Sender: TObject);
procedure SpeedButton4Click(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);

end;

var
FilterForm: TFilterForm;

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

345

11 chpt_07.qxd 11/19/01 12:12 PM Page 345

LISTING 7.7 Continued

implementation

uses DB, DataMod, Main;

{$R *.DFM}

procedure TFilterForm.cbFilteredClick(Sender: TObject);
begin
{ Filter table if checkbox is checked }
DM.Table1.Filtered := cbFiltered.Checked;

end;

procedure TFilterForm.FormCreate(Sender: TObject);
var
i: integer;

begin
with DM.Table1 do begin
for i := 0 to FieldCount - 1 do
CBField.Items.Add(Fields[i].FieldName);

end;
end;

procedure TFilterForm.LocateBtnClick(Sender: TObject);
var
LO: TLocateOptions;

begin
LO := [];
if not CBCaseSens.Checked then Include(LO, loCaseInsensitive);
if RBClosest.Checked then Include(LO, loPartialKey);
if not DM.Table1.Locate(CBField.Text, EValue.Text, LO) then
MessageDlg(‘Unable to locate match’, mtInformation, [mbOk], 0);

end;

procedure TFilterForm.SpeedButton1Click(Sender: TObject);
begin
DM.Table1.FindFirst;

end;

procedure TFilterForm.SpeedButton2Click(Sender: TObject);
begin
DM.Table1.FindNext;

end;

procedure TFilterForm.SpeedButton3Click(Sender: TObject);

Database Development

PART III
346

11 chpt_07.qxd 11/19/01 12:12 PM Page 346

LISTING 7.7 Continued

begin
DM.Table1.FindPrior;

end;

procedure TFilterForm.SpeedButton4Click(Sender: TObject);
begin
DM.Table1.FindLast;

end;

procedure TFilterForm.FormClose(Sender: TObject; var Action: TCloseAction);
begin
Action := caHide;
MainForm.Filter1.Checked := False;

end;

end.

Bookmarks
Bookmarks enable you to save your place in a dataset so that you can come back to the same
spot at a later time. Bookmarks are very easy to use in Delphi because you only have one
property to remember.

Delphi represents a bookmark as type TBookmarkStr. TTable has a property of this type called
Bookmark. When you read from this property, you obtain a bookmark, and when you write to
this property, you go to a bookmark. When you find a particularly interesting place in a dataset
that you’d like to be able to get back to easily, here’s the syntax to use:

var
BM: TBookmarkStr;

begin
BM := Table1.Bookmark;

When you want to return to the place in the dataset you marked, just do the reverse—set the
Bookmark property to the value you obtained earlier by reading the Bookmark property:

Table1.Bookmark := BM;

TBookmarkStr is defined as an AnsiString, so memory is automatically managed for book-
marks (you never have to free them). If you’d like to clear an existing bookmark, just set it to
an empty string:

BM := ‘’;

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

347

11 chpt_07.qxd 11/19/01 12:12 PM Page 347

Note that TBookmarkStr is an AnsiString for storage convenience. You should consider it an
opaque data type and not depend on the implementation because the bookmark data is com-
pletely determined by BDE and the underlying data layers.

Database Development

PART III
348

Although 32-bit Delphi still supports GetBookmark(), GotoBookmark(), and
FreeBookmark() from Delphi 1.0, because the 32-bit Delphi technique is a bit cleaner
and less prone to error, you should use this newer technique unless you have to main-
tain compatibility with 16-bit projects.

NOTE

You’ll find an example of using bookmarks with an ADO dataset on the CD in the \Bookmark
subdirectory for this chapter.

Summary
After reading this chapter, you should be ready for just about any type of database program-
ming with Delphi. You learned the ins and outs of Delphi’s TDataSet component, which is the
ancestor of the different types of datasets. You also learned techniques for manipulating
datasets, how to manage fields, and how to work with text tables.

In the following chapters, you will learn about dbExpress, Delphi’s lightweight database devel-
opment technology and about dbGo, Delphi’s connectivity to ADO data in greater depth.

11 chpt_07.qxd 11/19/01 12:12 PM Page 348

CHAPTER

8
Database Development with
dbExpress

IN THIS CHAPTER
• Using dbExpress 350

• dbExpress Components 351

• Designing Editable dbExpress
Applications 359

• Deploying dbExpress Applications 360

12 chpt_08.qxd 11/19/01 12:08 PM Page 349

dbExpress is Borland’s new technology that provides lightweight database development to
Delphi 6 developers.

dbExpress is important for three reasons. First, it is much lighter from a deployment standpoint
than its predecessor, the BDE. Second, it is the cross-platform technology that you should use
if developing applications intended for the Linux platform using Kylix. Third, it is extensible.
To develop dbExpress drivers, one simply implements the required interfaces and provides the
resulting database access library.

dbExpress’s underlying architecture consists of drivers for supported databases, each of which
implement a set of interfaces enabling access to server specific data. These drivers interact with
applications through DataCLX connection components in much the same way a TDatabase
component interacts with the BDE—minus the extra overhead.

Using dbExpress
dbExpress is designed to efficiently access data and to carry little overhead. To accomplish
this, dbExpress uses unidirectional datasets.

Unidirectional, Read-Only Datasets
The nature of unidirectional datasets means that they don’t buffer records for navigation or
modification. This is where the efficiency is gained against the bi-directional BDE datasets that
do buffer data in memory. Some limitations that result are

• Unidirectional datasets only support the First() and Next() navigational methods.
Attempts to call other methods—such as Last() or Prior()—will result in an exception.

• Unidirectional dataset records aren’t editable because there is no buffer support for edit-
ing. Note, however, that you would use other components (TClientDataset,
TSQLClientDataset) for editing, which we’ll discuss later.

• Unidirectional datasets don’t support filtering because this is a multirecord feature and
unidirectional datasets don’t buffer multiple records.

• Unidirectional datasets don’t support lookup fields.

dbExpress Versus the Borland Database Engine (BDE)
dbExpress offers several advantages over the BDE, which we’ll briefly go over.

Unlike the BDE, dbExpress doesn’t consume server resources with metadata queries or other
extraneous requests when user-defined queries are executed against the database server.

Database Development

PART III
350

12 chpt_08.qxd 11/19/01 12:08 PM Page 350

dbExpress doesn’t consume as many client resources as the BDE. Because of the unidirec-
tional cursor, no caching is done. dbExpress doesn’t cache metadata on the client either.
Metadata definition is handled through the data-access interface DLLs.

Unlike the BDE, dbExpress doesn’t generate internal queries for things like navigation and
BLOB retrieval. This makes dbExpress much more efficient at runtime in that only those
queries specified by the user are executed against the database server. dbExpress is far simpler
than the BDE.

dbExpress for Cross-Platform Development
A key advantage to dbExpress is that it is cross-platform between Windows (using Delphi 6)
and Linux (using Kylix). By using the CLX components for dbExpress, you can compile your
application with Kylix and have the same application running in Linux. In fact, dbExpress can
use a cross-platform database such as MySQL or InterBase.

Database Development with dbExpress

CHAPTER 8

8

D
A

TA
B

A
SE

D
EV

ELO
PM

EN
T

W
ITH

D
BE

X
PR

ESS

351

At the time of this writing, support for the latest version of mySQL was limited to an
earlier version (3.22). However, Delphi 6 can work with the latest version of the data-
base (3.23) by using the shipping version of the dbExpress DLL. Borland is working on
an update of the library.

NOTE

dbExpress Components
All the dbExpress components appear on the dbExpress tab of the Component Palette.

TSQLConnection
For those who have done BDE development, the TSQLConnection will appear very similar to the
TDatabase component. In fact, the purpose is the same in that they both encapsulate the database
connection. It is through the TSQLConnection that dbExpress datasets access server data.

TSQLConnection relies on two configuration files, dbxdrivers.ini and dbxconnections.ini.
These files are installed to the “\Program Files\Common Files\Borland Shared\DbExpress”
directory. dbxdrivers.ini contains a listing of all dbExpress supported drivers and driver spe-
cific settings. Dbxconnections.ini contains a listing of “named connections”—which can be
considered similar in nature to a BDE alias—and any specific settings for these connections. It
is possible not to use the default dbxconnections.ini file at runtime by setting the
TSQLConnection.LoadParamsOnConnect property to true. We’ll show an example of doing
this momentarily.

12 chpt_08.qxd 11/19/01 12:08 PM Page 351

A TSQLConnection component must use a dbExpress driver specific to the type of database
that you are using. This driver is specified in the dbxdrivers.ini file.

The TSQLConnection’s methods and properties are adequately covered in the online help. As
always, we direct you to the online help for detailed information. In this book, we will walk
you through establishing a database connection and in creating a new connection.

Establishing a Database Connection
To establish a connection with an existing database, simply drop a TSQLConnection on a form
and specify a ConnectionName by selecting one from the drop-down list in the Object
Inspector. When doing so, you should see at least four different connections: IBLocal,
DB2Connection, MSConnection, and Oracle. If you didn’t install a version of InterBase when
you installed Delphi, do so now. You’ll need one for this example. Once you have one
installed, select the IBLocal connection because Local InterBase should have been installed
with your Delphi 6 installation.

Upon selecting a ConnectionName, you’ll see that other properties such as DriverName,
GetDriverFunc, LibraryName, and VendorLib are automatically filled in. These default values
are specified in the dbxdrivers.ini file. You can examine and modify other driver specific
properties from the Params property’s editor, shown in Figure 8.1.

Database Development

PART III
352

FIGURE 8.1
TSQLConnection.Params property editor.

The default value in the “Database” key in the Params property editor is simply
“database.gdb”. This refers to an nonexistent database. You can change this value to
the “Employee.gdb” example database that should exist in a subdirectory of your
InterBase installation. On our machine, this is “...\Program Files\Borland\
InterBase6\examples\Database\Employee.gdb”.

NOTE

12 chpt_08.qxd 11/19/01 12:08 PM Page 352

Once you have the TSQLConnection component referring to a valid database, you can change
the Connected property value to True. You’ll be prompted for a username and password, which
are “sysdba” and “masterkey”, respectively. This should connect you to the database. It would
be a good idea to refer to the help files for each of the TSQLConnection properties at this point.

Creating a New Database Connection
You can create additional “named” connections that refer to databases that you specify. For
instance, this would be helpful if you were creating an application that used two separate data-
bases such as a live and a test database. To create a new connection, simply double-click on the
TSQLConnection component to bring up the Connection Editor (see Figure 8.2). You can also
right-click and select “Edit Connection Properties” from the TSQLConnection local menu to
invoke this editor.

Database Development with dbExpress

CHAPTER 8

8

D
A

TA
B

A
SE

D
EV

ELO
PM

EN
T

W
ITH

D
BE

X
PR

ESS

353

FIGURE 8.2
The TSQLConnection Connection Editor.

You’ll see that there are five speed buttons on this editor. We’ll examine the “Add” button now.
When pressed, you are asked to provide a Driver Name and a Connection Name. The Driver
Name drop-down will be one of the four supported database drivers. You can select InterBase
in this example. You can specify any name for the Connection Name such as
“MyIBConnection”. When you select “OK”, you’ll see the Connection Settings grid display the
driver settings for your specific connection. These are the same as the TSQLConnection.Params
property values. Again, you’ll need to change the “Database” setting to a valid InterBase data-
base. At this point, you should be able to close the editor and set the Connected property to
True by specifying the proper username and password.

Bypassing/Replacing the Login Prompt
Bypassing the login prompt is easy. Simply set the LoginPrompt property to False. You’ll have
to make sure that the UserName and Password settings in the Params property have a valid user
name and password, respectively.

12 chpt_08.qxd 11/19/01 12:08 PM Page 353

To replace the login prompt with your own login dialog, the LoginPrompt property must be set
to True. Then, you must add an event handler to the OnLogin event. For instance, the following
code illustrates how this might look:

procedure TMainForm.SQLConnection1Login(Database: TSQLConnection;
LoginParams: TStrings);

var
UserName: String;
Password: String;

begin
if InputQuery(‘Get UserName’, ‘Enter UserName’, UserName) then
if InputQuery(‘Get Password’, ‘Enter Password’, Password) then
begin
LoginParams.Values[‘UserName’] := UserName;
LoginParams.Values[‘Password’] := Password;

end;
end;

In this example, we’re using a call to the InputQuery() function to retrieve the values needed.
You would be able to use your own dialog for the same purpose. You’ll find this example on
the CD that also demonstrates the use of the AfterConnect and AfterDisconnect events.

Loading Connection Settings at Runtime
The connection settings that you see from the Connection Editor or the Params property editor
are defaults that get loaded at design time from the dbxconnections.ini file. It is possible for
you to load these at runtime. You might do this, for example, if you needed to provide a sepa-
rate dbxconnections.ini file than that provided with Delphi. Of course, you must remember
to deploy this new file with your application installation.

To enable your application to load these settings at runtime, you must set the LoadParamsOn
Connect property to True. When your application launches, the TSQLConnection component
will look to the registry for the “Connection Registry File” key in “HKEY_CURRENT_USER\
Software\Borland\DBExpress”. You must modify this value to point to the location of your
own dbxconnections.ini file. This is something that you would probably do in the installa-
tion of your application.

TSQLDataset
TSQLDataset is the unidirectional dataset used for retrieving data from a dbExpress supported
server. This dataset can be used to represent data in a database table, a selection query, or the
results of a stored procedure. It can also execute a stored procedure.

Database Development

PART III
354

12 chpt_08.qxd 11/19/01 12:08 PM Page 354

TSQLDataset’s key properties are CommandType and CommandText. The value selected for
CommandType determines how the content of CommandText will be used. Possible values for
CommandType are listed in Table 8.1 and in the Delphi help file.

TABLE 8.1 CommandType Values (from Delphi Online Help)

CommandType Corresponding CommandText

ctQuery An SQL statement that the dataset executes.

ctStoredProc The name of a stored procedure.

ctTable The name of a table on the database server. The SQL dataset automati-
cally generates a SELECT statement to fetch all the records of all the
fields in this table.

When the CommandType property contains the ctQuery value, CommandText is an SQL state-
ment. This statement might be a SELECT statement that returns a resultset such as the following
SQL statement: “SELECT * FROM CUSTOMER”.

If CommandType is ctTable, CommandText refers to a table name on the database server. The
CommandText property will change to a drop down. If this is an SQL database, any SQL state-
ments needed to retrieve data are automatically generated.

If CommandType has the value ctStoredProc, CommentText will then contain the name of a
stored procedure to execute. This would be executed by calling the TSQLDataSet.ExecSQL()
method rather then by setting the Active property to True. Note, that ExecSQL() should be
used if CommandType is ctQuery and the SQL statement doesn’t result in a resultset.

Retrieving Table Data
To extract table data using the TSQLDataset, you simply set the TSQLDataSet.CommandType
property to ctTable. The CommandText property will change to a drop down from which you
can select the table name. You can look at an example on the CD in the “TableData” directory.

Displaying Query Results
To extract data from a query select statement, simply set the TSQLDataSet.CommandType prop-
erty to ctQuery. In the CommandText property, you can enter a query select statement such as
“Select * from Country”. This is demonstrated in the example on the CD under the
“QueryData” directory.

Database Development with dbExpress

CHAPTER 8

8

D
A

TA
B

A
SE

D
EV

ELO
PM

EN
T

W
ITH

D
BE

X
PR

ESS

355

12 chpt_08.qxd 11/19/01 12:08 PM Page 355

Displaying Stored Procedure Results
Given a stored procedure that returns a resultset such as the InterBase procedure that follows,
you can extract the resultset using a TSQLDataset component:

CREATE PROCEDURE SELECT_COUNTRIES RETURNS (
RCOUNTRY VARCHAR(15),
RCURRENCY VARCHAR(10)

) AS
BEGIN
FOR SELECT
COUNTRY, CURRENCY FROM COUNTRY

INTO
:rCOUNTRY, :rCURRENCY

DO
SUSPEND;

END

To do this, set the TSQLDataset.CommandType property to ctQuery and add the following to its
CommandText property: Select * from SELECT_COUNTRIES. Note that we use the stored proce-
dure name as though it were a table.

Executing a Stored Procedure
Using the TSQLDataset component, you can execute a stored procedure that does not return a
resultset. To do this, set the TSQLDataSet.CommandType property to ctStoredProc. The
TSQLDataset.CommandText property will become a drop down that displays a list of stored
procedures on the database. You must select one of the stored procedures that doesn’t return a
resultset. For example, the example on the CD under the directory “ExecSProc” executes the
following stored procedure:

CREATE PROCEDURE ADD_COUNTRY (
ICOUNTRY VARCHAR(15),
ICURRENCY VARCHAR(10)

) AS
BEGIN
INSERT INTO COUNTRY(COUNTRY, CURRENCY)
VALUES (:iCOUNTRY, :iCURRENCY);
SUSPEND;

END

This procedure is a simple insert statement into the country table. To execute the procedure,
you must call the TSQLDataset.ExecSQL() method as shown in the following code:

procedure TForm1.btnAddCurrencyClick(Sender: TObject);
begin
sqlDSAddCountry.ParamByName(‘ICountry’).AsString := edtCountry.Text;

Database Development

PART III
356

12 chpt_08.qxd 11/19/01 12:08 PM Page 356

sqlDSAddCountry.ParamByName(‘ICURRENCY’).AsString := edtCurrency.Text;
sqlDSAddCountry.ExecSQL(False);

end;

The first thing you must do is to set the parameter values. Then, by calling ExecSQL(), the
specified procedure will be executed with the values you’ve added. Note that ExecSQL() takes
a Boolean parameter. This parameter is used to determine whether any parameters need to be
prepared. By default, this parameter should be true.

Metadata Representation
You can retrieve information about a database using the TSQLDataset component. To do this,
you use the TSQLDataset.SetSchemaInfo() procedure to specify the type of schema informa-
tion you desire. SetSchemaInfo is defined as

procedure SetSchemaInfo(SchemaType: TSchemaType;
➥SchemaObjectName, SchemaPattern: string);

The SchemaType parameter specifies the type of schema information that you are requesting.
SchemaObjectName holds the name of a table or procedure in the case of a request for parame-
ter, column, or index information. SchemaPattern is an SQL pattern mask used for filtering the
resultset.

Table 8.2 is taken from the Delphi online help for the SetSchemaInfo() procedure and
describes the types of schema information that you can retrieve.

TABLE 8.2 SchemaType Values (from Delphi Online Help)

SchemaType Value Description

stNoSchema No schema information. The SQL dataset is populated with the
results of its query or stored procedure rather than metadata from
the server.

stables Information about all the data tables on the database server that
match the criteria specified by the SQL connection’s TableScope
property.

stSysTables Information about all the system tables on the database server. Not
all servers use system tables to store metadata. Requesting a list of
system tables from a server that doesn’t use them results in an
empty dataset.

stProcedures Information about all the stored procedures on the database server.

stColumns Information about all the columns (fields) in a specified table.

stProcedureParams Information about all the parameters of a specified stored procedure.

stIndexes Information about all the indexes defined for a specified table.

Database Development with dbExpress

CHAPTER 8

8

D
A

TA
B

A
SE

D
EV

ELO
PM

EN
T

W
ITH

D
BE

X
PR

ESS

357

12 chpt_08.qxd 11/19/01 12:08 PM Page 357

We’ve provided an example of using the SetSchemaInfo() procedure on the CD under the
directory “SchemaInfo”. Listing 8.1 shows some of the code for this procedure from this
example.

LISTING 8.1 Example of TSQLDataset.SetSchemaInfo()

procedure TMainForm.Button1Click(Sender: TObject);
begin
sqldsSchemaInfo.Close;
cdsSchemaInfo.Close;

case RadioGroup1.ItemIndex of
0: sqldsSchemaInfo.SetSchemaInfo(stSysTables, ‘’, ‘’);
1: sqldsSchemaInfo.SetSchemaInfo(stTables, ‘’, ‘’);
2: sqldsSchemaInfo.SetSchemaInfo(stProcedures, ‘’, ‘’);
3: sqldsSchemaInfo.SetSchemaInfo(stColumns, ‘COUNTRY’, ‘’);
4: sqldsSchemaInfo.SetSchemaInfo(stProcedureParams, ‘ADD_COUNTRY’, ‘’);
5: sqldsSchemaInfo.SetSchemaInfo(stIndexes, ‘COUNTRY’, ‘’);
end; // case

sqldsSchemaInfo.Open;
cdsSchemaInfo.Open;

end;

In the example, we use the selection in TRadioGroup component to determine which type of
schema information we want. We then call the SetSchemaInfo() procedure using the proper
SchemaType parameter before opening the dataset. The values are stored in a TDBGrid in the
example.

Backward Compatibility Components
You’ll find three components on the dbExpress tab in the Component Palette that are synony-
mous with the BDE dataset components. These are TSQLTable, TSQLQuery, and
TSQLStoredProc. These components are used very much in the same manner as their BDE
counterparts except that they cannot be used in a bidirectional manner. For the most part, you
will be using the TSQLDataset components.

TSQLMonitor
The TSQLMonitor component is useful for debugging SQL applications. TSQLMonitor logs the
SQL commands being communicated through a TSQLConnection component. To use this, you
simply set the TSQLMonitor.SQLConnection parameter to a valid TSQLConnection component.

Database Development

PART III
358

12 chpt_08.qxd 11/19/01 12:08 PM Page 358

The TSQLMonitor.Tracelist property will then log the commands being passed between the
client and the database server. TraceList is a simple TStrings descendant, so you can save
this information to a file or add it to a memo component for viewing the information.

Database Development with dbExpress

CHAPTER 8

8

D
A

TA
B

A
SE

D
EV

ELO
PM

EN
T

W
ITH

D
BE

X
PR

ESS

359

You can use the FileName and AutoSave properties to automatically store the
TraceList contents.

NOTE

The example code provided on the CD in the SQLMon directory shows how to add the contents
of the TraceList to a memo control. The resulting SQL tracelist is shown in Figure 8.3.

FIGURE 8.3
Results of the TSQLMonitor component.

Designing Editable dbExpress Applications
Up to now, we have discussed dbExpress in the context of unidirectional/read-only datasets.
The only exception is the example using a TSQLDataset component to execute a stored proce-
dure that adds data to a table. Another method to make datasets editable as with a bidirectional
dataset is to use cached updates. To do so, this requires the use of another component,
TSQLClientDataset.

TSQLClientDataset
TSQLClientDataset is a component that contains an internal TSQLDataset and TProvider
component. The internal TSQLDataset gives the TSQLClientDataset the fast data access bene-
fits of dbExpress. The internal TSQLProvider gives the TSQLClientDataset the bidirectional
navigation and ability to edit data.

Using the TSQLClientDataset is very much the same as using the standard TClientDataset.
This information is covered in Chapter 21, “DataSnap Development.”

12 chpt_08.qxd 11/19/01 12:08 PM Page 359

Setting up an application using TSQLClientDataset is relatively simple. You’ll need a
TSQLConnection, a TSQLClientDataset, and a TDatasource component if you intend to dis-
play the data. An example is provided on the CD under the directory “Editable”.

The TSQLClientDataset.DBConnection property must be set to the TSQLConnection compo-
nent. Use the CommandType and CommandText properties as previously discussed for the
TSQLDataset component.

Now, when running this application, you will note that it is navigable in both directions and it is
possible to add, edit, and delete records from the dataset. However, when you close the dataset,
none of your changes will persist because you are actually editing the in-memory buffer held by
the TSQLClientDataset component. Any changes you make are cached in memory. To save
your changes to the database server, you must call the TSQLClientDataset.ApplyUpdates()
method. In the sample provided on the CD, we’ve added the ApplyUpdates() call to the
AfterDelete and AfterPost events of the TSQLClientDataset component. This gives us a row-
by-row update of server data. For further information on using TSQLClientDataset, refer to
Chapter 21, or Chapters 32 and 34 in Delphi 5 Developer’s Guide, which is provided on the CD.

Database Development

PART III
360

The TSQLClientDataset contains a TSQLDataSet and TProvider component. However,
it doesn’t expose all the properties and events of these two components. If access to
these events are needed, you can use the regular TClientDataset and
TDatasetProvider components in lieu of the TSQLClientDataset component.

NOTE

Deploying dbExpress Applications
You can deploy dbExpress applications as a standalone executable or by providing the required
dbExpress driver DLLs. To compile as a standalone, you’ll need to add the units listed in Table
8.3 to the uses clause of your application as described in the Delphi online help.

TABLE 8.3 Units Required for dbExpress Standalone Application

Database unit When to Include

dbExpInt Applications connecting to InterBase databases

dbExpOra Applications connecting to Oracle databases

dbExpDb2 Applications connecting to DB2 databases

dbExpMy Applications connecting to MySQL databases

Crtl, MidasLib Required by dbExpress executables that use client datasets such as
TSQLClientDataSet

12 chpt_08.qxd 11/19/01 12:08 PM Page 360

If you want to deploy the DLLs along with your application, you will have to deploy the DLLs
specified in Table 8.4.

TABLE 8.4 DLLs to Deploy with a dbExpress Application

Database DLL When to Deploy

dbexpint.dll Applications connecting to InterBase databases

dbexpora.dll Applications connecting to Oracle databases

dbexpdb2.dll Applications connecting to DB2 databases

dbexpmy.dll Applications connecting to MySQL databases

Midas.dll Required by database applications that use client datasets

Summary
With dbExpress, it will be possible to develop robust and lightweight applications not otherwise
possible using the BDE. Combined with the caching mechanisms built into TSQLClientDataset
and TClientDataset, developers can develop complete cross-platform database applications.

Database Development with dbExpress

CHAPTER 8

8

D
A

TA
B

A
SE

D
EV

ELO
PM

EN
T

W
ITH

D
BE

X
PR

ESS

361

12 chpt_08.qxd 11/19/01 12:08 PM Page 361

12 chpt_08.qxd 11/19/01 12:08 PM Page 362

CHAPTER

9
Database Development with
dbGo for ADO

IN THIS CHAPTER
• Introduction to dbGo 364

• Overview of Microsoft’s Universal Data Access
Strategy 364

• Overview of OLE DB, ADO, and ODBC 364

• Using dbGo for ADO 365

• dbGo for ADO Components 367

• Transaction Processing 375

13 chpt_09.qxd 11/19/01 12:06 PM Page 363

Introduction to dbGo
This chapter will get you programming using Microsoft’s ActiveX Data Objects (ADO), which
are encapsulated by Delphi’s dbGo for ADO components.

dbGo for ADO is represented by those components residing on the ADO tab of the Component
Palette and provide data access through the ADO framework.

Overview of Microsoft’s Universal Data Access
Strategy
Microsoft’s strategy for Universal Data Access is to provide access to a wide range of data
through a single access model. This data might consist of both relational and non-relational
data. Microsoft accomplishes this through the Microsoft Data Access Components (MDAC),
which comes installed in all Windows 2000 systems or can be downloaded from
http://www.microsoft.com/data/.

MDAC is comprised of three elements: OLE DB, Microsoft ActiveX Data Objects (ADO), and
Open Database Connectivity (ODBC).

Overview of OLE DB, ADO, and ODBC
OLE DB is a system level interface that uses COM to provide access to many sorts of data
including relational and non-relational formats. It is possible to write code that directly inter-
faces with the OLE DB layer; although with ADO, it’s much more complex and in most cases,
unnecessary.

Many OLE DB providers are implementations of the OLE DB interfaces for providing access
to specific vendor data. For instance, some OLE DB providers give access to data from Paradox,
Oracle, Microsoft SQL Server, the Microsoft Jet Engine, and ODBC just to name a few.

ADO is the application level interface that developers use to access data. Whereas OLE DB
consists of many (more than 60) different interfaces, ADO only consists of few with which
developers must concern themselves. ADO actually uses OLE DB as the underlying technol-
ogy for accessing data.

ODBC was the precursor to OLE DB and is still a very useful mechanism by which developers
can gain access to relational, and some non-relational, data. In fact, one of the OLE DB
providers goes through the ODBC layer.

Database Development

PART III
364

13 chpt_09.qxd 11/19/01 12:06 PM Page 364

Using dbGo for ADO
dbGo for ADO is made up of the set of Delphi components that encapsulate the ADO inter-
faces and adapt them to the abstract way of doing database development that is common in
Delphi.

The following sections will show you how to use these components. For this chapter, we will
primarily use a Microsoft Access database through an ODBC provider.

Establishing an OLE DB Provider for ODBC
To establish a connection to the database, you must create an ODBC Data Source Name
(DSN). DSNs are similar to BDE aliases in that they allow you to provide system-level connec-
tion points with connection information for databases centrally accessible on your system. To
create DSNs you must use the ODBC Administrator that ships with Windows. On Windows
2000, this is accessed via Control Panel under the Administrative Tools subdirectory. When
launching this application, you’ll get the dialog box shown in Figure 9.1.

Database Development with dbGo for ADO

CHAPTER 9

9

D
A

TA
B

A
SE

D
EV

ELO
PM

EN
T

365

FIGURE 9.1
ODBC Administrator.

There are three types of DSNs:

• User DSN—User data sources are local to a computer and are accessible only when
logged in as the current user.

• System DSN—System data sources are local to a computer and are accessible to any
user. These are available systemwide to all users with appropriate privileges.

• File DSN—File data sources are available to all users who have the appropriate file dri-
vers installed.

13 chpt_09.qxd 11/19/01 12:06 PM Page 365

For this example, you will create a System DSN. First, launch the ODBC Administrator. Then,
select the System DSN tab and click the Add button. This launches the Create New Data
Source dialog box shown in Figure 9.2.

Database Development

PART III
366

FIGURE 9.2
The Create New Data Source dialog box.

In this dialog box, you are presented a list of available drivers. The driver you need is the
Microsoft Access Driver (*.mdb). When you click Finish, you will be shown the ODBC
Microsoft Access Setup dialog box (see Figure 9.3).

FIGURE 9.3
The ODBC Microsoft Access Setup dialog box.

Here, you must provide a DSN that will be referenced from within your Delphi application.
Again, this is similar to a BDE alias. You may also provide a description if you like. Next, you
must select a database by clicking Select. This will launch a File Open dialog box from which
you must select a valid *.mdb file. The file that you’ll use is ddgADO.mdb and should be
installed in the ..\Delphi Developer’s Guide\Data directory where you installed the files
from this book. When you click OK, your DSN will appear in the list of available System Data
Sources. You can now click OK to finish working with the ODBC Administrator.

13 chpt_09.qxd 11/19/01 12:06 PM Page 366

The Access Database
The database for which you just created a DSN is shown in Figure 9.4.

Database Development with dbGo for ADO

CHAPTER 9

9

D
A

TA
B

A
SE

D
EV

ELO
PM

EN
T

367

Customer

CustomerOrder

EmployeeOrder

OrderOrderItem

PartOrderItem

Custno:li

Company:txt(50)
Address1:txt(50)
Address2:txt(50)

Order

Orderno:li

Custno:li [customer]
Empno:li [employee]
Date:dt

Employee

Empno:li

Lastname:txt(20)
Firstname:txt(20)
Phoneext:txt(5)
Hiredate:dt

Part

Partno:txt(10)

Description:txt(30)
Onhand:li
Onorder:li
Cost:cur
Listprice:cur

Orderitem

Orderno:li [order]
Partno:txt(10) [part]

FIGURE 9.4
The sample database.

This is a simple order entry database that you’ll use for the purpose of this chapter. There’s
nothing complicated about this database and frankly, it’s not really complete. We simply put a
few tables together with some meaningful relationships to show you how to use the dbGo for
ADO components.

dbGo for ADO Components
All the dbGo for ADO components appear on the ADO tab of the Component Palette.

13 chpt_09.qxd 11/19/01 12:06 PM Page 367

TADOConnection
TADOConnection encapsulates the ADO connection object. You use this component to connect
to ADO provided data and through which other components hook to ADO data sources. This
component is similar to the TDatabase component for BDE database connections. Similar to
TDatabase, it handles functionality such as login and transactions.

Establishing a Database Connection
You can create a new application if you want or just read on to learn how to establish a data-
base connection. You’ll start with a form containing a TADOConnection component. You must
modify the TADOConnection.ConnectionString property by clicking the ellipsis button on this
property, which launches the ConnectionString Property Editor (see Figure 9.5).

Database Development

PART III
368

FIGURE 9.5
The TADOConnection.ConnectionString Property Editor.

The ConnectionString contains one or more arguments that ADO requires to establish a con-
nection with the database. The arguments required depend on the type of OLE DB Provider
that you are using.

The ConnectionString Property Editor asks for the connection source from either a Data Link
File (file containing the connection string) or by building the connection string, which you can
later save to a file. You’ve already created a DSN, so you’ll build a connection string that refer-
ences your DSN. Click the Build button to launch the Data Link Properties dialog box (see
Figure 9.6).

The first page in this dialog box allows you to select an OLE DB provider. In this case, you’ll
select Microsoft OLE DB Provider For ODBC Drivers as shown in Figure 9.6. Clicking the
Next button takes you to the Connection Page from which you can select our DSN in the drop-
down list for a Data Source Name (see Figure 9.7).

You didn’t provide any security for your database, so you should be able to click Text
Connection to obtain a successful connection to your database. Click OK twice to return to the
main form. The connection string that results is shown here:

Provider=MSDASQL.1;Persist Security Info=False;Data Source=DdgADOOrders

13 chpt_09.qxd 11/19/01 12:06 PM Page 368

FIGURE 9.6
The Data Link Properties dialog box.

Database Development with dbGo for ADO

CHAPTER 9

9

D
A

TA
B

A
SE

D
EV

ELO
PM

EN
T

369

FIGURE 9.7
Selecting a data source name.

13 chpt_09.qxd 11/19/01 12:06 PM Page 369

Had you used a different OLE DB provider, the connection string would have been completely
different. For instance, had you used the Microsoft Jet 4.0 OLE DB Provider, your connection
string would be the following:

Provider=Microsoft.Jet.OLEDB.4.0;Data Source=”C:\Program Files\Delphi ‘
➥Developer’s Guide\Data\ddgADO.mdb”;Persist Security Info=False

At this point, you should be able to connect to our database by setting the TADO
Connection.Connected property to True. You’ll be presented with a Login prompt;
simply click OK to connect without entering any login information. The next section
will show you how to bypass this login dialog, or to replace it with your own. The example
shown here is on the CD-ROM under the ADOConnect directory.

Bypassing/Replacing the Login Prompt
To bypass the Login prompt, you simply have to set the TADOConnection.LoginPrompt prop-
erty to False. If there are no login settings, nothing else needs to be done. However, if a user-
name and password are required, you’ll need to do some extra work.

Database Development

PART III
370

You can test this by adding a password to the database. You can use Microsoft Access
to do this; however, to add a password, you must open the database exclusively,
which is a setting in the Tools, Options, Advanced Page in Microsoft Access. Otherwise,
you can simply use the ddgADOPW.mdb file provided on the CD-ROM. The password for
this database is ddg—go figure.

TIP

For this exercise, we’ve created a new DSN, DdgADOOrdersSecure, which refers to our data-
base, ddgADOPW.mdb. If you’d like to try this example, you must create this DSN.

To bypass the login prompt on a secure database, you must provide a valid username and
password in the ConnectionString. This can be done manually or by invoking the
ConnectionString property editor, adding the correct username and password, and
checking the Allow Saving Password check box (see Figure 9.8).

Now the ConnectionString appears as follows:

Provider=MSDASQL.1;Password=ddg;Persist Security Info=True;
➥User ID=Admin;Data Source=DdgADOOrdersSecure

Note the presence of the password and username (ID). Now, you should be able to set the
Connected property to True while the LoginPrompt property is False.

13 chpt_09.qxd 11/19/01 12:06 PM Page 370

FIGURE 9.8
Adding a username and password to the ConnectionString.

Suppose, however, that you want to provide another login dialog. In this case, you’ll want to
remove the password from the ConnectionString property and create an event handler for the
TADOConnection.OnWillConnect event such as that shown in Listing 9.1.

LISTING 9.1 OnWillConnect Event Handler

procedure TForm1.ADOConnection1WillConnect(Connection: TADOConnection;
var ConnectionString, UserID, Password: WideString;
var ConnectOptions: TConnectOption; var EventStatus: TEventStatus);

var
vUserID,
vPassword: String;

begin
if InputQuery(‘Provide User name’, ‘Enter User name’, vUserID) then
if InputQuery(‘Provide Password’, ‘Enter Password’, vPassword) then
begin
UserID := vUserID;
Password := vPassword;

end;
end;

Database Development with dbGo for ADO

CHAPTER 9

9

D
A

TA
B

A
SE

D
EV

ELO
PM

EN
T

371

13 chpt_09.qxd 11/19/01 12:06 PM Page 371

This simplified exchange represents the hand off of the username and password. A production
application will likely be slightly more complex.

Database Development

PART III
372

It might seem that the TADOConnection.OnLogin event is where you would provide
a username and password to stay with the TDatabase paradigm. However, the
TADOConnection.OnWillConnnect event wraps the standard ADO event for this pur-
pose. OnLogin is provided to be used by the TDispatchConnection class, which has to
do with providing multitier support.

NOTE

TADOCommand
The TADOCommand component encapsulates the ADO Command object. This component is used
for executing statements that don’t return resultsets such as Data Definition Language (DDL)
or SQL statements. You would use this component for executing SQL statements such as
INSERT, DELETE, or UPDATE. For instance, you’ll find an example on the CD-ROM under the
directory ADOCommand. This is a simple example that illustrates how to insert and delete a
record from the employee table by using the INSERT and DELETE SQL statements. In the exam-
ple, the TADOCommand.CommandText for the component to insert a record contains the SQL
statement:

DELETE FROM EMPLOYEE WHERE
FirstName=’Rob’ AND LastName=’Smith

The CommandText for the inserting TADOCommand component contains the SQL statement:

INSERT INTO EMPLOYEE (
LastName,
FirstName,
PhoneExt,
HireDate)

VALUES
(
‘Smith’,
‘Rob’,
‘123’,
‘12/28/1998’)

To run the SQL statement, you would invoke the TADOCommand.Execute() method.

13 chpt_09.qxd 11/19/01 12:06 PM Page 372

TADODataset
The TADODataset component retrieves data from one or more tables in a database. This com-
ponent can also run SQL statements that don’t return resultsets and can run user-defined stored
procedures.

Much like the TADOCommand component, TADODataset can execute statements such as INSERT,
DELETE, and UPDATE. However, TADODataset can also retrieve resultsets by issuing the SELECT
statement. The example on the CD-ROM named ADODataset illustrates the use of the
TADODataSet component. This example performs the following SELECT statement against the
database:

SELECT * FROM Customer

This statement returns the entire resultset from the Customer table. You can also use SQL fil-
tering schemes such as the WHERE clause if you need to.

In the example, we’ve connected a TDBNavigator component to the TADODataSet component
to illustrate the ability to edit and navigate the component.

Later in this chapter, we’ll further illustrate the use of TADODataSet in a sample order entry
application.

BDE-Like Dataset Components
The ADO tab in the Component Palette contains three components that have been included to
make transitioning from BDE applications to ADO applications easier. These components are
TADOTable, TADOQuery, and TADOStoredProc. There’s no reason that you can’t use only the
TADODataSet component when developing ADO applications. However, if it makes it easier,
you can use these alternative components that are very similar to their BDE counterparts:
TTable, TQuery, and TStoredProc.

TADOTable
TADOTable is a direct descendant of TCustomADODataSet. TADOTable allows you to work on a
single table in the database. It operates very similar to the BDE TTable component. In fact,
TADOTable adds a drop-down TableName property. Some advantages to a table type of dataset
is that they support indexes. Indexes allow for sorting and quick searching. This is particularly
true with non-SQL databases such as Microsoft Access. However, when using an SQL type of
database, it is best to sort, filter, and so on through the SQL language. To find out more about
table-type datasets, look up “Overview of ADO components” in the Delphi online help.

Database Development with dbGo for ADO

CHAPTER 9

9

D
A

TA
B

A
SE

D
EV

ELO
PM

EN
T

373

13 chpt_09.qxd 11/19/01 12:06 PM Page 373

The example on the CD-ROM, ADOTableIndex, illustrates the use of the TADOTable component
with an index. Additionally, it illustrates how to perform a search on the table using the
TADOTable.Locate() function. Listing 9.2 shows partial source for this demo.

LISTING 9.2 Using the TADOTable Component

procedure TForm1.FormCreate(Sender: TObject);
var
i: integer;

begin
adotblCustomer.Open;
for i := 0 to adotblCustomer.FieldCount - 1 do
ListBox1.Items.Add(adotblCustomer.Fields[i].FieldName);

end;

procedure TForm1.ListBox1Click(Sender: TObject);
begin
adotblCustomer.IndexFieldNames := ListBox1.Items[ListBox1.ItemIndex];

end;

procedure TForm1.Button1Click(Sender: TObject);
begin
adotblCustomer.Locate(‘Company’, Edit1.Text, [loPartialKey]);

end;

In the FormCreate() event handler, you open the table and populate a TListBox control
with all the table’s field names. Then, in the TListBox.OnClick event handler, you set the
TADOTable.IndexFieldName property to the field name on which we want to sort out table.

Database Development

PART III
374

According to the Delphi online help, one of the advantages for using table-
type datasets is the ease in emptying tables. The example given uses the
TCustomADODataSet.DeleteRecords() method as the means to do this. However,
a problem exists in the ADO RecordSet object that prevents this from working.
In fact, a call to

TCustomADODataSet.Supports([coDelete])

will return True, yet the DeleteRecords() call will still fail with an exception.
Therefore, to empty a table, you must use a DELETE FROM TableName statement, or
you must loop through each record and delete it individually.

CAUTION

13 chpt_09.qxd 11/19/01 12:06 PM Page 374

Finally, the Button1Click() event illustrates performing a search on the table using the
Locate() method.

TADOTable is useful for those accustomed to using a TTable component. However, when using
SQL databases, it is more efficient to use either the TADODataSet or TADOQuery components.

TADOQuery
TADOQuery, also a descendant of TCustomADODataSet, is very similar to TADODataSet. TADOQuery
has a SQL property into which you would place your SQL statement. On the TADODataSet
component, this would go in the CommandText property as long as TADODataSet.CommandType
is set to cmdText.

We won’t cover this component in great depth because most everything that applies to the
TADODataSet component also applies to TADOQuery.

TADOStoredProc
The TADOStoredProc component allows you to use a stored procedure that exists on a database
server. This is no different from using the TADOCommand component with its CommandType prop-
erty set to cmdStoredProc. Its use is pretty much the same as TStoredProc discussed in
Chapter 29, “Developing Client/Server Applications” of Delphi 5 Developer’s Guide, which
you’ll find on the CD-ROM.

Transaction Processing
ADO supports transaction processing, and this is handled through the TADOConnection compo-
nent. As an example, the code in Listing 9.3 is taken from our simple order entry application.

LISTING 9.3 Transaction Processing with TADOConnection

procedure TMainForm.Button1Click(Sender: TObject);
begin
if TNewOrderForm.Execute then
begin
ADOConnection1.BeginTrans;
try
// First Create an Orders Record
adodsOrders.Insert;
adodsOrders.FieldByName(‘CustNo’).Value :=
adodsCustomer.FieldByName(‘CustNo’).Value;

adodsOrders.FieldByName(‘EmpNo’).Value :=
adodsEmployee.FieldByName(‘EmpNo’).Value;

adodsOrders.FieldByName(‘Date’).Value := Date;

Database Development with dbGo for ADO

CHAPTER 9

9

D
A

TA
B

A
SE

D
EV

ELO
PM

EN
T

375

13 chpt_09.qxd 11/19/01 12:06 PM Page 375

LISTING 9.3 Continued

ShowMessage(IntToStr(adodsOrders.FieldByName(‘OrderNo’).AsInteger));
adodsOrders.Post;

// Now create the Order Line Items.

cdsPartList.First;
while not cdsPartList.Eof do
begin
adocmdInsertOrderItem.Parameters.ParamByName(‘iOrderNo’).Value :=
adodsOrders.FieldByName(‘OrderNo’).Value;

adocmdInsertOrderItem.Parameters.ParamByName(‘iPartNo’).Value :=
cdsPartListPartNo.Value;

adocmdInsertOrderItem.Execute;
cdsPartList.Next;

end;
adodsOrderItemList.Requery([]);
ADOConnection1.CommitTrans;
cdsPartList.EmptyDataSet;

except
ADOConnection1.RollbackTrans;
raise;

end;
end;

end;

The method in Listing 9.3 is responsible for creating a customer order. There are two parts to
this transaction. First, the order record must be created in the Order table. Second, the order
line items must be added to the OrderItem table. Because there are two table updates, it makes
sense to place this into a single transaction.

Here is a skeleton of our transaction:

begin
ADOConnection1.BeginTrans;
try
// First Create an Orders Record
// Now create the Order Line Items.
ADOConnection1.CommitTrans;

except
ADOConnection1.RollbackTrans;
raise;

end;
end;

end;

Database Development

PART III
376

13 chpt_09.qxd 11/19/01 12:06 PM Page 376

You’ll see that we encapsulate our transaction inside of a try...except block. ADO
Connection1.BeginTrans() method starts the transaction. The ADOConnection1.Commit
Trans() method commits the transaction. If there are any failures, an exception occurs and the
ADOConnection1.RollbackTrans() method will roll back any changes that were made to any
tables.

Summary
This chapter got you started working with Borland’s dbGo for ADO components. These com-
ponents give you the ability to use Microsoft’s ADO technology for accessing both relational
and non-relational data.

Database Development with dbGo for ADO

CHAPTER 9

9

D
A

TA
B

A
SE

D
EV

ELO
PM

EN
T

377

13 chpt_09.qxd 11/19/01 12:06 PM Page 377

13 chpt_09.qxd 11/19/01 12:06 PM Page 378

IN THIS PART
10 Component Architecture: VCL and CLX 381

11 VCL Component Building 429

12 Advanced VCL Component Building 489

13 CLX Component Development 563

14 Packages to the Max 625

15 COM Development 653

16 Windows Shell Programming 747

17 Using the Open Tools API 835

Component-Based
Development

PART

IV

14 part_04.qxd 11/19/01 12:11 PM Page 379

14 part_04.qxd 11/19/01 12:11 PM Page 380

CHAPTER

10
Component Architecture: VCL
and CLX

IN THIS CHAPTER
• More on the New CLX 383

• What Is a Component? 383

• Component Hierarchy 384

• The Component Structure 387

• The Visual Component Hierarchy 394

• Runtime Type Information 403

15 chpt_10.qxd 11/19/01 12:16 PM Page 381

Few will recall Borland’s first Object Windows Library (OWL), which was introduced with
Turbo Pascal for Windows. OWL ushered in a drastic simplification over traditional Windows
programming. OWL objects automated and streamlined many tedious tasks you otherwise were
required to code yourself. No longer did you have to write huge case statements to capture mes-
sages or big chunks of code to manage Windows classes; OWL did this for you. On the other
hand, you had to learn a new programming methodology—object-oriented programming.

Then, with Delphi 1, Borland introduced Visual Component Library (VCL). The VCL was
based on an object model similar to OWL’s in principle but radically different in implementa-
tion. The VCL in Delphi 6 is pretty much the same as its predecessors in all previous versions
of Delphi.

With Delphi 6, Borland, once again, introduced a new technology, Component Library for Cross-
Platform (CLX). According to Borland, CLX is “the next-generation component library and
framework for developing native Linux and Windows applications and reusable components.”

Both the VCL and CLX are designed specifically to work within Delphi’s visual environment.
Instead of creating a window or dialog box and adding its behavior in code, you modify the
behavioral and visual characteristics of components as you design your program visually.

The level of knowledge required about the VCL/CLX really depends on how you use them.
First, you must realize that there are two types of Delphi developers: applications developers
and visual component writers. Applications developers create complete applications by inter-
acting with the Delphi visual environment (a concept nonexistent in many other frameworks).
These people use the VCL/CLX to create their GUI and other elements of their application
such as database connectivity. Component writers, on the other hand, expand the existing
VCL/CLX by developing more components. Such components are made available through
third-party companies.

Whether you plan to create applications with Delphi or to create Delphi components, under-
standing the VCL/CLX is essential. An applications developer should know which properties,
events, and methods are available for each component. Additionally, it’s advantageous to fully
understand the object model inherent in a Delphi application that’s provided by the VCL/CLX.
A common problem we see with Delphi developers is that they tend to fight the tool—a symp-
tom of not understanding it completely. Component writers take this knowledge one step fur-
ther to determine whether to write a new component or to extend an existing one by knowing
how VCL/CLX works internally: how they handle messages, notifications, component owner-
ship, parenting/ownership issues, property editors, and so on.

This chapter introduces you to the VCL/CLX. It discusses the component hierarchy and
explains the purpose of the key levels within the hierarchy. It also discusses the purposes of the
common properties, methods, and events that appear at the different component levels. Finally,
we complete this chapter by covering Runtime Type Information (RTTI).

Component-Based Development

PART IV
382

15 chpt_10.qxd 11/19/01 12:16 PM Page 382

More on the New CLX
CLX, the new cross platform library, is actually composed of four pieces. These are explained
in Table 10.1.

TABLE 10.1 CLX Parts (from Delphi 6 Online Help)

Part Description

VisualCLX Native cross-platform GUI components and graphics. The components
in this area might differ on Linux and Windows.

DataCLX Client data-access components. The components in this area are a sub-
set of the local, client/server, and n-tier based on client datasets. The
code is the same on Linux and Windows.

NetCLX Internet components including Apache DSO and CGI Web Broker.
These are the same on Linux and Windows.

RTL Runtime Library up to and including Classes.pas. The code is the same
on Linux and Windows. Under Linux, this file is BaseRTL.

VisualCLX sits on top of the Qt framework from Trolltech. Qt is pronounced “cute” by most
people, although Trolltech will tell you that it’s pronounced “kyu-tee.” This framework cur-
rently runs under Linux and Windows. VisualCLX is discussed in this chapter, and we cover
the other CLX elements in other chapters.

What Is a Component?
Components are the building blocks developers use to design the user interface and provide
some non-visual capability to their applications. As far as applications developers are con-
cerned, a component is something developers get from the Component Palette and place on
their forms. From there, they can manipulate the various properties and add event handlers to
give the component a specific appearance or behavior. From the perspective of a component
writer, components are objects in Object Pascal code. These objects can encapsulate the behav-
ior of elements provided by the system (such as the standard Windows controls). Other objects
can introduce entirely new visual or non-visual elements; in which case a component’s code
makes up the entire behavior of the component.

The complexity of components varies widely. Some components are simple; others encapsulate
elaborate tasks. There’s no limit to what a component can do or be made up of. You can have a
simple component such as a TLabel, or you can have a much more complex component that
encapsulates the complete functionality of a spreadsheet.

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

383

15 chpt_10.qxd 11/19/01 12:16 PM Page 383

The key to understanding the VCL/CLX is to know what types of components exist. You
should understand the common elements of components. You should also understand the com-
ponent hierarchy and the purpose of each level within the hierarchy. The following sections
provide this information.

Component Hierarchy
Figures 10.1 and 10.2 show the VCL and CLX hierarchies, respectively. You’ll see that there
are many similarities between both the VCL and CLX.

Component-Based Development

PART IV
384

TObject

TListTRegistryTPersistent

TGraphicsObject TStrings

TComponent
TFont TStringList

TDataSource
TControl

TTimer

TWinControl
TGraphicControl

TBevel

TCustomEdit TCustomControl

TEdit TMediaPlayer

TCustomLabel

TCustomPanel

TPanel

TLabel

Streamable Classes

Nonstreamable Classes

Nonvisual Components

Use a Window
Handle and
Receive Input
Focus

Custom Paint Method
with Canvas

Automation and
ActiveX Support

Visual Components

Do Not Receive Input
Focus
Custom Paint Method
with Canvas

TComObject

TTypedComObject

TAutoObject

TActiveXControl

FIGURE 10.1
The VCL hierarchy.

Two types of components exist: nonvisual and visual.

15 chpt_10.qxd 11/19/01 12:16 PM Page 384

FIGURE 10.2
The CLX hierarchy.

Nonvisual Components
Nonvisual components aren’t visible to the end user. These components encapsulate behavior
and allow the developer to modify certain characteristics of that component through the Object
Inspector at design time by modifying its properties and providing event handlers for its
events. Examples of such components are TOpenDialog, TTable, and TTimer. As Figures 10.1
and 10.2 indicate, these nonvisual components descend directly from TComponent.

Visual Components
Visual components, as the name implies, are components that the end user sees. Visual compo-
nents add visibility and behavior, but not necessarily interaction. These components directly
descend from TControl. In fact, TControl is the class that introduces properties and methods
that have to do with visibility such as Top, Left, Color, and so forth.

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

385

TObject

TListTCustomIniFileTPersistent

TGraphicsObject TStrings TComponent

TFont TStringList

THandleComponentTDataSource

TControl
TTimer

TWidgetControl
TGraphicControl

TBevel
TCustomEdit TFrameControl TCustomControl

TEdit TCustomLabel TCustomPanel

TLabel TPanel

Streamable Classes

Nonstreamable Classes

Nonvisual Components

Use a Window
Handle and
Receive Input
Focus

Custom Paint Method
with Canvas

Visual Components

Do Not Receive Input
Focus
Custom Paint Method
with Canvas

15 chpt_10.qxd 11/19/01 12:16 PM Page 385

Visual components come in two flavors—those that can have focus and those that cannot.

Visible Controls That Gain Focus
Certain types of controls gain user focus. By this, we mean that the user can manipulate such
controls. These types of controls are descendants of TWinControl (VCL) or TWidgetControl
(CLX). TWinControl descendants are wrappers around Windows controls, whereas
TWidgetControl descendants are wrappers around Qt screen objects. Characteristics of
these controls are as follows:

• They can get focus and do things such as handle keyboard events.

• The user can interact with them.

• They can be containers (parents) to other controls.

• They have an associated handle (VCL) or widget (CLX).

Component-Based Development

PART IV
386

You’ll often see the terms component and control used interchangeably, although
they’re not always the same. A control refers to a visual user-interface element. In
Delphi, controls are always components because they descend from the TComponent
class. Components are the objects whose basic behavior allows them to appear on the
Component Palette and be manipulated in the form designer. Components are of the
type TComponent and aren’t always controls—that is, they aren’t always visual user-
interface elements.

NOTE

Both TWinControl and TWidgetControl have a property named Handle.
TWinControl’s Handle refers to the underlying Windows Handle for the control.
TWidgetControl’s Handle refers to the underlying Qt object pointer (widget). Both
are named Handle for backward compatibility and cross compilation between CLX
and VCL applications.

NOTE

In Chapters 11–14, you’ll learn much more about TWinControls and TWidgetControls as you
learn how to create components for both VCL and CLX.

15 chpt_10.qxd 11/19/01 12:16 PM Page 386

Visible Controls That Do Not Gain Focus
Other controls, although visible, don’tave the same characteristics as Windowed controls.
These controls are for visibility only and are frequently referred to as graphical controls,
which descend directly from TGraphicControl (see Figures 10.1 and 10.2).

Unlike windowed controls, graphical controls don’t receive the input focus from the user. They
are useful when you want to display something to the user but don’t want the component to
use up resources such as windowed controls. Graphical controls don’t use Windows resources
because they require no window handle (or CLX Gadget), which is also the reason they can’t
get focus. Examples of graphical controls are TLabel and TShape. Such controls can’t serve as
containers either; that is, they can’t parent other controls placed on top of them. Other exam-
ples of graphical controls are TImage, TBevel, and TPaintBox.

The Component Structure
As we mentioned earlier, components are Object Pascal classes that encapsulate the functional-
ity and behavior of elements developers use to add visual and behavioral characteristics to their
programs. All components have a certain structure. The following sections discuss the makeup
of Delphi components.

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

387

Handles
Handles are 32-bit numbers issued by Win32 that refer to certain object instances.
The term objects here refers to Win32 objects, not Delphi objects. There are different
types of objects under Win32: kernel objects, user objects, and GDI objects. Kernel
objects apply to items such as events, file-mapping objects, and processes. User
objects refer to window objects such as edit controls, list boxes, and buttons. GDI
objects refer to bitmaps, brushes, fonts, and so on.

In the Win32 environment, every window has a unique handle. Many Windows API
functions require a handle so that they know the window on which they are to per-
form the operation. Delphi encapsulates much of the Win32 API and performs handle
management. If you want to use a Windows API function that requires a window
handle, you must use descendants of TWinControl and TCustomControl, which both
have a Handle property.

Understand the distinction between a component and a class. A component is a class
that can be manipulated within the Delphi environment. A class is an Object Pascal
structure, as explained in Chapter 2, “The Object Pascal Language.”

NOTE

15 chpt_10.qxd 11/19/01 12:16 PM Page 387

Properties
Chapter 2 introduced you to properties. Properties give the user an interface to a component’s
internal storage fields. Using properties, the component user can modify or read storage field
values. Typically, the user doesn’t have direct access to component storage fields because
they’re declared in the private section of a component’s class definition.

Properties: Storage Field Accessors
Properties provide access to storage fields by either accessing the storage fields directly or
through access methods. Take a look at the following property definition:

TCustomEdit = class(TWinControl)
private
FMaxLength: Integer;

protected
procedure SetMaxLength(Value: Integer);

...
published
property MaxLength: Integer read FMaxLength write SetMaxLength default 0;

...
end;

The property MaxLength is the access to the storage field FMaxLength. The parts of a property
definition consist of the property name, the property type, a read declaration, a write declara-
tion, and an optional default value. The read declaration specifies how the component’s stor-
age fields are read. The MaxLength property directly reads the value from the FMaxLength
storage field. The write declaration specifies the method by which the storage fields are
assigned values. For the property MaxLength, the writer access method SetMaxLength() is used
to assign the value to the storage field FMaxLength. A property can also contain a reader access
method; in which case the MaxLength property would be declared as this:

property MaxLength: Integer read GetMaxLength write SetMaxLength default 0;

The reader access method GetMaxLength() would be declared as follows:

function GetMaxLength: Integer;

Property Access Methods
Access methods take a single parameter of the same type as the property. The purpose of the
writer access method is to assign the value of the parameter to the internal storage field to
which the property refers. The reason for using the method layer to assign values is to protect
the storage field from receiving erroneous data as well as to perform various side effects, if
required. For example, examine the implementation of the following SetMaxLength() method:

Component-Based Development

PART IV
388

15 chpt_10.qxd 11/19/01 12:16 PM Page 388

procedure TCustomEdit.SetMaxLength(Value: Integer);
begin
if FMaxLength <> Value then
begin
FMaxLength := Value;
if HandleAllocated then SendMessage(Handle, EM_LIMITTEXT, Value, 0);

end;
end;

This method first checks to verify that the component user isn’t attempting to assign the same
value as that which the property already holds. If not, it makes the assignment to the internal
storage field FMaxLength and then calls the SendMessage() function to pass the EM_LIMITTEXT
Windows message to the window that the TCustomEdit encapsulates. This message limits the
amount of text that a user can enter into an edit control. Calling SendMessage() in the prop-
erty’s writer access method is known as a side effect when assigning property values.

Side effects are any actions affected by the assignment of a value to a property. In assigning a
value to the MaxLength property of TCustomEdit, the side effect is that the encapsulated edit
control is given an entry limit. Side effects can be much more sophisticated than this.

One key advantage to providing access to a component’s internal storage fields through proper-
ties is that the component writer can change the implementation of the field access without
affecting the behavior for the component user.

A reader access method, for example, can change the type of the returned value to something
different from the type of the storage field to which the property refers.

Another fundamental reason for the use of properties is to make modifications available to
them during design time. When a property appears in the published section of a component’s
declaration, it also appears in the Object Inspector so that the component user can make modi-
fications to this property.

You learn more about properties and how to create them and their access methods in Chapters
11, “VCL Component Building,” and 13, “CLX Component Development,” for VCL and CLX,
respectively.

Types of Properties
The standard rules that apply to Object Pascal data types apply to properties as well. The
important point about properties is that their types also determine how they’re edited in the
Object Inspector. Properties can be of the types shown in Table 10.2. For more detailed infor-
mation, look up “properties” in the online help.

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

389

15 chpt_10.qxd 11/19/01 12:16 PM Page 389

TABLE 10.2 Property Types

Property Type Object Inspector Treatment

Simple Numeric, character, and string properties appear in the Object Inspector
as numbers, characters, and strings, respectively. The user can type and
edit the value of the property directly.

Enumerated Properties of enumerated types (including Boolean) display the value
as defined in the source code. The user can cycle through the possible
values by double-clicking the Value column. There’s also a drop-down
list that shows all possible values of the enumerated type.

Set Properties of set types appear in the Object Inspector grouped as a set.
By expanding the set, the user can treat each element of the set as a
Boolean value: True if the element is included in the set and False if
it’s not included.

Object Properties that are themselves objects often have their own property
editors. However, if the object that’s a property also has published
properties, the Object Inspector allows the user to expand the list of
object properties and edit them individually. Object properties must
descend from TPersistent.

Array Array properties must have their own property editors. The Object
Inspector has no built-in support for editing array properties.

Methods
Because components are objects, they can therefore have methods. You’ve already seen infor-
mation on object methods in Chapter 2 (that information is not repeated here). The later sec-
tion “The Visual Component Hierarchy” describes some of the key methods of the different
component levels in the component hierarchy.

Events
Events are occurrences of an action, typically a system action such as a button control click or
a keypress on a keyboard. Components contain special properties called events; component
users can plug code into the event (called event handlers) that executes when the event is
invoked.

Plugging Code into Events at Design Time
If you look at the events page of a TEdit component, you’ll find events such as OnChange,
OnClick, and OnDblClick. To component writers, events are really pointers to methods. When
users of a component assign code to an event, they create an event handler. For example, when

Component-Based Development

PART IV
390

15 chpt_10.qxd 11/19/01 12:16 PM Page 390

you double-click an event in the Object Inspector’s events page for a component, Delphi gener-
ates a method to which you add your code, such as the following code for the OnClick event of
a TButton component:

TForm1 = class(TForm)
Button1: Tbutton;
procedure Button1Click(Sender: TObject);

end;
...
procedure TForm1.Button1Click(Sender: TObject);
begin
{ Event code goes here }

end;

This code is generated by Delphi.

Plugging Code into Events at Runtime
It becomes clear how events are method pointers when you assign an event handler to an event
programmatically. For example, to link your own event handler to an OnClick event of a
TButton component, you first declare and define the method you intend to assign to the but-
ton’s OnClick event. This method might belong to the form that owns the TButton component,
as shown here:

TForm1 = class(TForm)
Button1: TButton;

...
private
MyOnClickEvent(Sender: TObject); // Your method declaration

end;
...
{ Your method definition below }
procedure TForm1.MyOnClickEvent(Sender: TObject);
begin
{ Your code goes here }

end;

The preceding example shows a user-defined method called MyOnClickEvent() that serves as
the event handler for Button1.OnClick. The following line shows how you assign this method
to the Button1.OnClick event in code, which is usually done in the form’s OnCreate event
handler:

procedure TForm1.FormCreate(Sender: TObject);
begin
Button1.OnClick := MyOnClickEvent;

end;

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

391

15 chpt_10.qxd 11/19/01 12:16 PM Page 391

This technique can be used to add different event handlers to events, based on various condi-
tions in your code. Additionally, you can disable an event handler from an event by assigning
nil to the event, as shown here:

Button1.OnClick := nil;

Assigning event handlers at runtime is essentially what happens when you create an event han-
dler through Delphi’s Object Inspector—except that Delphi generates the method declaration.
You can’t just assign any method to a particular event handler. Because event properties are
method pointers, they have specific method signatures, depending on the type of event. For
example, an OnMouseDown method is of the type TMouseEvent, a procedure definition shown
here:

TMouseEvent = procedure (Sender: TObject; Button: TMouseButton; Shift:
TShiftState; X, Y: Integer) of object;

Therefore, the methods that become event handlers for certain events must follow the same sig-
nature as the event types. They must contain the same type, number, and order of parameters.

Earlier, we said that events are properties. Similar to data properties, events refer to private
data fields of a component. This data field is of the procedure type, such as TMouseEvent.
Examine this code:

TControl = class(TComponent)
private
FOnMouseDown: TMouseEvent;

protected
property OnMouseDown: TMouseEvent read FOnMouseDown write FOnMouseDown;

public
end;

Recall the discussion of properties and how they refer to private data fields of a component.
You can see how events, being properties, refer to private method pointer fields of a compo-
nent.

You learn more about creating events and event handlers in Chapters 11 and 13.

Streamability
One characteristic of components is that they must have the capability to be streamed.
Streaming is a way to store a component and information regarding its properties’ values to a
file. Delphi’s streaming capabilities take care of all this for you. In fact, the DFM file created
by Delphi is nothing more than a resource file containing the streamed information on the form
and its components as an RCDATA resource. As a component writer, however, you must some-
times go beyond what Delphi can do automatically. The streaming mechanism of Delphi is
explained in greater depth in Chapter 12, “Advanced VCL Component Building.”

Component-Based Development

PART IV
392

15 chpt_10.qxd 11/19/01 12:16 PM Page 392

Ownership
Components have the capability of owning other components. A component’s owner is speci-
fied by its Owner property. When a component owns other components, it’s responsible for
freeing the components it owns when it’s destroyed. Typically, the form owns all components
that appear on it. When you place a component on a form in the form designer, the form auto-
matically becomes the component’s owner. When you create a component at runtime, you
must pass the ownership of the component to the component’s Create constructor; it’s
assigned to the new component’s Owner property. The following line shows how to pass the
form’s implicit Self variable to a TButton.Create() constructor, thus making the form the
owner of the newly created component:

MyButton := TButton.Create(self);

When the form is destroyed, the TButton instance to which MyButton refers is also destroyed.
This is handled internally in the VCL. Essentially, the form iterates through the components
referred to by its Components array property (explained in more detail shortly) and destroys
them.

It’s possible to create a component without an owner by passing nil to the component’s
Create() method. However, when this is done, it’s your responsibility to destroy the compo-
nent programmatically. The following code shows this technique:

MyTable := TTable.Create(nil)
try
{ Do stuff with MyTable }

finally
MyTable.Free;

end;

When using this technique, you should use a try..finally block to ensure that you free up
any allocated resources if an exception is raised. You wouldn’t use this technique except in
specific circumstances when it’s impossible to pass an owner to the component.

Another property associated with ownership is the Components property. The Components
property is an array property that maintains a list of all components belonging to a component.
For example, to loop through all the components on a form to show their classnames, execute
the following code:

var
i: integer;

begin
for i := 0 to ComponentCount - 1 do

ShowMessage(Components[i].ClassName);
end;

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

393

15 chpt_10.qxd 11/19/01 12:16 PM Page 393

Obviously, you’ll probably perform a more meaningful operation on these components. The
preceding code merely illustrates the technique.

Parenthood
Not to be confused with ownership is the concept of parenthood. Components can be parents
to other components. Only windowed components such as TWinControl and TWidgetControl
descendants can serve as parents to other components. Parent components are responsible for
calling the child component methods to force them to draw themselves. Parent components are
responsible for the proper painting of child components. A component’s parent is specified
through its Parent property.

A component’s parent doesn’t necessarily have to be its owner. It’s perfectly legal for a compo-
nent to have different parents and owners.

The Visual Component Hierarchy
Remember from Chapter 2 that the abstract class TObject is the base class from which all
classes descend (see Figures 10.1 and 10.2).

As a component writer, you don’t descend your components directly from TObject. The VCL
already has TObject class descendants from which your new components can be derived.
These existing classes provide much of the functionality you require for your own components.
Only when you create noncomponent classes do your classes descend from TObject.

TObject’s Create() and Destroy() methods are responsible for allocating and deallocating
memory for an object instance. In fact, the TObject.Create() constructor returns a reference
to the object being created. TObject has several functions that return useful information about
a specific object.

The VCL uses most of TObject’s methods internally. You can obtain useful information about
an instance of a TObject or TObject descendant such as the instance’s class type, classname,
and ancestor classes.

Component-Based Development

PART IV
394

Use TObject.Free instead of TObject.Destroy. The free method calls destroy for
you but first checks to see whether the object is nil before calling destroy. This
method ensures that you won’t generate an exception by attempting to destroy an
invalid object.

CAUTION

15 chpt_10.qxd 11/19/01 12:16 PM Page 394

The TPersistent Class
The TPersistent class descends directly from TObject. The special characteristic of
TPersistent is that objects descending from it can read their properties from and write them
to a stream after they’re created. Because all components are descendants of TPersistent,
they are all streamable. TPersistent defines no special properties or events, although it does
define some methods that are useful to both the component user and writer.

TPersistent Methods
Table 10.3 lists some methods of interest defined by the TPersistent class.

TABLE 10.3 Methods of the TPersistent Class

Method Purpose

Assign() This public method allows a component to assign to itself the
data associated with another component.

AssignTo() This protected method is where TPersistent descendants
must implement the VCL definition for AssignTo().
TPersistent raises an exception when this method is called.
AssignTo() is where a component can assign its data values
to another instance or class—the reverse of Assign().

DefineProperties() This protected method allows component writers to define
how the component stores extra or unpublished properties.
This method is typically used to provide a way for a compo-
nent to store data that’s not of a simple data type, such as
binary data.

The streamability of components is described in greater depth in Chapter 12, “Working with
Files,” from Delphi 5 Developer’s Guide on the CD-ROM. For now, it’s enough to know that
components can be stored and retrieved from a disk file by means of streaming.

The TComponent Class
The TComponent class descends directly from TPersistent. TComponent’s special characteris-
tics are that its properties can be manipulated at design time through the Object Inspector and
that it can own other components.

Nonvisual components also descend from TComponent so that they inherit the capability to be
manipulated at design time. A good example of a nonvisual TComponent descendant is the
TTimer component. TTimer components aren’t visual controls, but they are still available on
the Component Palette.

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

395

15 chpt_10.qxd 11/19/01 12:16 PM Page 395

TComponent defines several properties and methods of interest, as described in the following
sections.

TComponent Properties
The properties defined by TComponent and their purposes are shown in Table 10.4.

TABLE 10.4 The Special Properties of TComponent

Property Name Purpose

Owner Points to the component’s owner.

ComponentCount Holds the number of components that the component owns.

ComponentIndex The position of this component in its owner’s list of components.
The first component in this list has the value 0.

Components A property array containing a list of components owned by this
component. The first component in this list has the value 0.

ComponentState This property holds the current state of a component of the type
TComponentState. Additional information about TComponentState
can be found in the online help and in Chapter 11.

ComponentStyle Governs various behavioral characteristics of the component.
csInheritable and csCheckPropAvail are two values that can be
assigned to this property; both values are explained in the online
help.

Name Holds the name of a component.

Tag An integer property that has no defined meaning. This property
shouldn’t be used by component writers—it’s intended to be used
by application writers. Because this value is an integer type, point-
ers to data structures—or even object instances—can be referred
to by this property.

DesignInfo Used by the form designer. Do not access this property.

TComponent Methods
TComponent defines several methods having to do with its capacity to own other components
and to be manipulated on the form designer.

TComponent defines the component’s Create() constructor, which was discussed earlier in this
chapter. This constructor is responsible for creating an instance of the component and giving it an
owner based on the parameter passed to it. Unlike TObject.Create(), TComponent.Create() is
virtual. TComponent descendants that implement a constructor must declare the Create()
constructor with the override directive. Although you can declare other constructors on a

Component-Based Development

PART IV
396

15 chpt_10.qxd 11/19/01 12:16 PM Page 396

component class, TComponent.Create() is the only constructor VCL will use to create an
instance of the class at design time and at runtime when loading the component from a stream.

The TComponent.Destroy() destructor is responsible for freeing the component and any
resources allocated by the component.

The TComponent.Destroying() method is responsible for setting a component and its owned
components to a state indicating that they are being destroyed; the TComponent.Destroy
Components() method is responsible for destroying the components. You probably won’t have
to deal with these methods.

The TComponent.FindComponent() method is handy when you want to refer to a component
for which you know only the name. Suppose you know that the main form has a TEdit compo-
nent named Edit1. When you don’t have a reference to this component, you can retrieve a
pointer to its instance by executing the following code:

EditInstance := FindComponent.(‘Edit1’);

In this example, EditInstance is a TEdit type. FindComponent() will return nil if the name
doesn’t exist.

The TComponent.GetParentComponent() method retrieves an instance to the component’s par-
ent component. This method can return nil if there is no parent to a component.

The TComponent.HasParent() method returns a Boolean value indicating whether the compo-
nent has a parent component. Note that this method doesn’t refer to whether this component
has an owner.

The TComponent.InsertComponent() method adds a component so that it’s owned by the call-
ing component; TComponent.RemoveComponent() removes an owned component from the calling
component. You wouldn’t normally use these methods because they’re called automatically by
the component’s Create() constructor and Destroy() destructor.

The TControl Class
The TControl class defines many properties, methods, and events commonly used by visual
components. For example, TControl introduces the capability for a control to display itself.
The TControl class includes position properties such as Top and Left as well as size properties
such as Width and Height, which hold the horizontal and vertical sizes. Other properties
include ClientRect, ClientWidth, and ClientHeight.

TControl also introduces properties regarding appearances and accessibility, such as Visible,
Enabled, and Color. You can even specify a font for the text of a TControl through its Font
property. This text is provided through the TControl properties Text and Caption.

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

397

15 chpt_10.qxd 11/19/01 12:16 PM Page 397

TControl also introduces some standard events, such as the mouse events OnClick,
OnDblClick, OnMouseDown, OnMouseMove, and OnMouseUp. It also introduces drag events
such as OnDragOver, OnDragDrop, and OnEndDrag.

TControl isn’t very useful at the TControl level. You’ll never create descendants of TControl.

Another concept introduced by TControl is that it can have a parent component. Although
TControl might have a parent, its parent must be a TWinControl (VCL) or a TWidgetControl
(CLX). Parent controls must be windowed controls. The TControl introduces the Parent
property.

Most of Delphi’s controls are derived from TControl’s descendants: TWinControl and
TWidgetControl.

The TWinControl and TWidgetControl
Standard controls descend from the classes TWinControl for VCL controls and TWidgetControl
for CLX controls. These controls are the user-interface objects you see in most applications.
Items such as edit controls, list boxes, combo boxes, and buttons are examples of these con-
trols. Because Delphi encapsulates the behavior of standard controls instead of using Windows
or Qt API level functions to manipulate them, you use the properties provided by each of the
various control components.

The three basic characteristics of these controls are that they have a Windows handle, can
receive input focus, and can be parents to other controls. CLX controls don’t have a window
handle; rather, they have an object pointer that accomplished the same thing. You’ll find that
the properties, methods, and events belonging to these controls support focus changing, key-
board events, drawing of controls, and other necessary functions.

An applications developer primarily uses TWinControl/TWidgetControl descendants. A com-
ponent writer must understand these controls and their descendants in much greater depth.

TWinControl/TWidgetControl Properties
TWinControl and TWidgetControl define several properties applicable to changing the focus
and appearance of the control. In the remaining text, we’ll refer only to TWinControl although
it will also be applicable to TWidgetControl.

The TWinControl.Brush property is used to draw the patterns and shapes of the control (See
Chapter 8, “Graphics Programming with GDI and Fonts,” in Delphi 5 Developer’s Guide on
this book’s CD-ROM.)

TWinControl.Controls is an array property that maintains a list of all controls to which the
calling TWinControl is a parent.

Component-Based Development

PART IV
398

15 chpt_10.qxd 11/19/01 12:16 PM Page 398

The TWinControl.ControlCount property holds the count of controls to which it is a parent.

TWinControl.Ctl3D is a property that specifies whether to draw the control using a three-
dimensional appearance.

The TWinControl.Handle property corresponds to the handle of the Windows object that the
TWinControl encapsulates. This is the handle you would pass to Win32 API functions requir-
ing a window handle parameter.

TWinControl.HelpContext holds a help context number that corresponds to a help screen in a
help file. This is used to provide context-sensitive help for individual controls.

TWinControl.Showing indicates whether a control is visible.

The TWinControl.TabStop property holds a Boolean value to determine whether a user can
tab to the said control. The TWinControl.TabOrder property specifies where in the parent’s list
of tabbed controls the control exists.

TWinControl Methods
The TWinControl component also offers several methods that have to do with window creation,
focus control, event dispatching, and positioning. There are too many methods to discuss in
depth in this chapter; however, they’re all documented in Delphi’s online help. We’ll list only
those methods of particular interest in the following paragraphs.

Methods that relate to window creation, re-creation, and destruction apply mainly to component
writers and are discussed in Chapter 11. These methods are CreateParams(), CreateWnd(),
CreateWindowHandle(), DestroyWnd(), DestroyWindowHandle(), and RecreateWnd() for
VCL. For CLX’s TWidgetControl, these methods are CreateWidget(), DestroyWidget(),
CreateHandle(), and DestroyHandle().

Methods having to do with window focusing, positioning, and alignment are CanFocus(),
Focused(), AlignControls(), EnableAlign(), DisableAlign(), and ReAlign().

TWinControl Events
TWinControl introduces events for keyboard interaction and focus change. Keyboard events
are OnKeyDown, OnKeyPress, and OnKeyUp. Focus-change events are OnEnter and OnExit. All
these events are documented in Delphi’s online help.

The TGraphicControl Class
TGraphicControls, unlike TWinControls, don’t have a window handle and therefore can’t
receive input focus. They also can’t be parents to other controls. TGraphicControls are used
when you want to display something to the user on the form, but you don’t want this control to
function as a regular user-input control. The advantage of TGraphicControls is that they don’t

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

399

15 chpt_10.qxd 11/19/01 12:16 PM Page 399

request a handle from Windows that uses up system resources. Additionally, not having a win-
dow handle means that TGraphicControls don’t have to go through the convoluted Windows
paint process. This makes drawing with TGraphicControls much faster than using the
TWinControl equivalents.

TGraphicControls can respond to mouse events. Actually, the TGraphicControl parent
processes the mouse message and sends it to its child controls.

TGraphicControl allows you to paint the control and therefore provides the property Canvas,
which is of the type TCanvas. TGraphicControl also provides a Paint() method that its
descendants must override.

The TCustomControl Class
You might have noticed that the names of some TWinControl descendants begin with TCustom,
such as TCustomComboBox, TCustomControl, TCustomEdit, and TCustomListBox.

Custom controls have the same functionality as other TWinControl descendants, except that
with specialized visual and interactive characteristics, custom controls provide you with a base
from which you can derive and create your own customized components. You provide the func-
tionality for the custom control to draw itself if you’re a component writer.

Other Classes
Several classes aren’t components but serve as supporting classes to the existing component.
These classes are typically properties of other components and descend directly from
TPersistent. Some of these classes are of the type TStrings, TCanvas, and TCollection.

The TStrings and TStringLists Classes
The TStrings abstract class gives you the capability to manipulate lists of strings that belong
to a component such as a TListBox. TStrings doesn’t actually maintain the memory for the
strings (that’s done by the native control that owns the TStrings class). Instead, TStrings
defines the methods and properties to access and manipulate the control’s strings without hav-
ing to use the control’s set of API level functions and messages.

Notice that we said TStrings is an abstract class. This means that TStrings doesn’t really
implement the code required to manipulate the strings—it just defines the methods that must
be there. It’s up to the descendant components to implement the actual string-manipulation
methods.

To explain this point further, some examples of components and their TStrings properties are
TListBox.Items, TMemo.Lines, and TComboBox.Items. Each of these properties is of the type

Component-Based Development

PART IV
400

15 chpt_10.qxd 11/19/01 12:16 PM Page 400

TStrings. You might wonder, if their properties are TStrings, how can you call methods of
these properties when these methods have yet to be implemented in code? That’s a good ques-
tion. The answer is that, even though each of these properties is defined as TStrings, the vari-
able to which the property refers (TListBox.FItems, for example) was instantiated as a
descendant class. To clarify this, FItems is the private storage field for the Items property of
TListBox:

TCustomListBox = class(TWinControl)
private
FItems: TStrings;

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

401

Although the class type shown in the preceding code snippet is a TCustomListBox,
the TListBox descends directly from TCustomListBox in the same unit and therefore
has access to its private fields.

NOTE

The unit StdCtrls.pas, which is part of the Delphi VCL, defines a descendant class
TListBoxStrings, which is a descendant of TStrings. Listing 10.1 shows its definition.

LISTING 10.1 The Declaration of the TListBoxStrings Class

TListBoxStrings = class(TStrings)
private
ListBox: TCustomListBox;

protected
procedure Put(Index: Integer; const S: string); override;
function Get(Index: Integer): string; override;
function GetCount: Integer; override;
function GetObject(Index: Integer): TObject; override;
procedure PutObject(Index: Integer; AObject: TObject); override;
procedure SetUpdateState(Updating: Boolean); override;

public
function Add(const S: string): Integer; override;
procedure Clear; override;
procedure Delete(Index: Integer); override;
procedure Exchange(Index1, Index2: Integer); override;
function IndexOf(const S: string): Integer; override;
procedure Insert(Index: Integer; const S: string); override;
procedure Move(CurIndex, NewIndex: Integer); override;

end;

15 chpt_10.qxd 11/19/01 12:16 PM Page 401

StdCtrls.pas then defines the implementation of each method of this descendant class. When
TListBox creates its class instances for its FItems variable, it actually creates an instance of
this descendant class and refers to it with the FItems property:

constructor TCustomListBox.Create(AOwner: TComponent);
begin
inherited Create(AOwner);
...
// An instance of TListBoxStrings is created
FItems := TListBoxStrings.Create;
...

end;

We want to make it clear that although the TStrings class defines its methods, it doesn’t
implement these methods to manipulate strings. The TStrings descendant class does the
implementation of these methods. This is important if you’re a component writer because you
must know how to perform this technique as the Delphi components did it. It’s always good to
refer to the VCL or CLX source code to see how Borland performs these techniques when
you’re unsure.

If you’re not a component writer but want to manipulate a list of strings, you can use the
TStringList class, another descendant of TStrings, with which you can instantiate a com-
pletely self-contained class. TStringList maintains a list of strings external to components.
The best part is that TStringList is totally compatible with TStrings, which means that you
can directly assign a TStringList instance to a control’s TStrings property. The following
code shows how you can create an instance of TStringList:

var
MyStringList: TStringList;

begin
MyStringList := TStringList.Create;

To add strings to this TStringList instance, do the following:

MyStringList.Add(‘Red’);
MyStringList.Add(‘White’);
MyStringList.Add(‘Blue’);

If you want to add these same strings to both a TMemo component and a TListBox component,
all you have to do is take advantage of the compatibility between the different components’
TStrings properties and make the assignments in one line of code each:

Memo1.Lines.Assign(MyStringList);
ListBox1.Items.Assign(MyStringList);

You use the Assign() method to copy TStrings instances instead of making a direct assign-
ment such as Memo1.Lines := MyStringList.

Component-Based Development

PART IV
402

15 chpt_10.qxd 11/19/01 12:16 PM Page 402

Table 10.5 shows some common methods of TStrings classes.

TABLE 10.5 Some Common TStrings Methods

TStrings Method Description

Add(const S: String): Integer Adds the string S to the string’s list and returns
the string’s position in the list.

AddObject(const S: string; Appends both a string and an object to a string
AObject: TObject): Integer or string list object.

AddStrings(Strings: TStrings) Copies strings from one TStrings to the end of
its existing list of strings.

Assign(Source: TPersistent) Replaces the existing strings with those speci-
fied by the Source parameter.

Clear Removes all strings from the list.

Delete(Index: Integer) Removes the string at the location specified by
Index.

Exchange(Index1, Index2: Integer) Switches the location of the two strings speci-
fied by the two index values.

IndexOf(const S: String): Integer Returns the position of the string S on the list.

Insert(Index: Integer; Inserts the string S into the position in the list
const S: String) specified by Index.

Move(CurIndex, NewIndex: Integer) Moves the string at the position CurIndex to the
position NewIndex.

LoadFromFile(const FileName: Reads the text file, FileName, and places its
String) lines into the string list.

SaveToFile(const FileName: string) Saves the string list to the text file, FileName.

The TCanvas Class
The Canvas property, of type TCanvas, is provided for windowed controls and represents the
drawing surface of the control. TCanvas encapsulates what’s called the device context of a win-
dow. It provides many of the functions and objects required for drawing to the window’s sur-
face. (Chapter 8, “Graphics Programming with GDI and Fonts,” of Delphi 5 Developer’s Guide
on this book’s CD-ROM goes into detail about the TCanvas class.)

Runtime Type Information
Back in Chapter 2 you were introduced to Runtime Type Information (RTTI). This chapter
delves much deeper into the RTTI innards that will allow you to take advantage of RTTI

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

403

15 chpt_10.qxd 11/19/01 12:16 PM Page 403

beyond what you get in the normal usage of the Object Pascal language. In other words, we’re
going to show you how to obtain type information on objects and data types much similar to
the way the Delphi IDE obtains the same information.

So how does RTTI manifest itself? You’ll see RTTI at work in at least two areas with which
you normally work. The first place is right in the Delphi IDE, as stated earlier. Through RTTI,
the IDE magically knows everything about the object and components with which you work
(see the Object Inspector). Actually, there’s more to it than just RTTI. But for the sake of this
discussion, we’re covering only the RTTI aspect. The second area is in the runtime code that
you write. Already, in Chapter 2 you read about the is and as operators.

Let’s examine the is operator to illustrate typical usage of RTTI.

Suppose that you need to make all TEdit components read-only on a given form. This is simple
enough—just loop through all components, use the is operator to determine whether the com-
ponent is a TEdit class, and then set the ReadOnly property accordingly. Here’s an example:

for i := 0 to ComponentCount - 1 do
if Components[i] is TEdit then
TEdit(Components[i]).ReadOnly := True;

A typical usage for the as operator would be to perform an action on the Sender parameter of
an event handler, where the handler is attached to several different components. Assuming that
you know that all components are derived from a common ancestor whose property you want
to access, the event handler can use the as operator to safely typecast Sender as the desired
descendant, thus surfacing the wanted property. Here’s an example:

procedure TForm1.ControlOnClickEvent(Sender: TObject);
var
i: integer;

begin
(Sender as TControl).Enabled := False;
end;

These examples of typesafe programming illustrate enhancements to the Object Pascal lan-
guage that indirectly use RTTI. Now let’s look at a problem that would call for direct usage of
RTTI.

Suppose you have a form containing components that are data aware and components that
aren’t data aware. However, you need to perform some action on the data-aware components
only. Certainly you could loop through the Components array for the form and test for each
data-aware component type. However, this could get messy to maintain because you would
have to test against every type of data-aware component. Also, you don’t have a base class to
test against that’s common to only data-aware components. For instance, something such as
TDataAwareControl would have been nice, but it doesn’t exist.

Component-Based Development

PART IV
404

15 chpt_10.qxd 11/19/01 12:16 PM Page 404

A clean way to determine whether a component is data aware is to test for the existence of a
DataSource property. You are sure that this property exists for all data-aware components. To
do this, however, you need to use RTTI directly.

The following sections discuss RTTI in more depth to give you the background knowledge
needed to solve problems such as the one mentioned earlier.

The TypInfo.pas Unit: Definer of Runtime Type
Information
Type information exists for any object (a descendant of TObject). This information exists in
memory and is queried by the IDE and the Runtime Library to obtain information about
objects. The TypInfo.pas unit defines the structures that allow you to query for type informa-
tion. The TObject methods shown in Table 10.6 are repeated from Chapter 2.

TABLE 10.6 TObject Methods

Function Return Type Returns

ClassName() string The name of the object’s class

ClassType() TClass The object’s type

InheritsFrom() Boolean Boolean to indicate whether the class descends
from a given class

ClassParent() TClass The object Cancestor’s type

InstanceSize() word The size, in bytes, of an instance

ClassInfo() Pointer A pointer to the object’s in-memory RTTI

For now, we want to focus on the ClassInfo() function, which is defined as follows:

class function ClassInfo: Pointer;

This function returns a pointer to the RTTI for the calling class. The structure to which this
pointer refers is of the type PTypeInfo. This type is defined in the TypInfo.pas unit as a
pointer to a TTypeInfo structure. Both definitions are given in the following code as they
appear in TypInfo.pas:

PPTypeInfo = ^PTypeInfo;
PTypeInfo = ^TTypeInfo;
TTypeInfo = record
Kind: TTypeKind;
Name: ShortString;
{TypeData: TTypeData}
end;

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

405

15 chpt_10.qxd 11/19/01 12:16 PM Page 405

The commented field, TypeData, represents the actual reference to the type information for the
given class. The type to which it actually refers depends on the value of the Kind field. Kind
can be any of the enumerated values defined in the TTypeKind:

TTypeKind = (tkUnknown, tkInteger, tkChar, tkEnumeration, tkFloat,
tkString, tkSet, tkClass, tkMethod, tkWChar, tkLString, tkWString,
tkVariant, tkArray, tkRecord, tkInterface);

Take a look at the TypInfo.pas unit at this time to examine the subtypes to some of the pre-
ceding enumerated values to get yourself familiar with them. For example, the tkFloat value
can be further broken down into one of the following:

TFloatType = (ftSingle, ftDouble, ftExtended, ftComp, ftCurr);

Now you know that Kind determines to which type TypeData refers. The TTypeData structure
is defined in TypInfo.pas, as shown in Listing 10.2.

LISTING 10.2 The TTypeData Structure

PTypeData = ^TTypeData;
TTypeData = packed record
case TTypeKind of
tkUnknown, tkLString, tkWString, tkVariant: ();
tkInteger, tkChar, tkEnumeration, tkSet, tkWChar: (

OrdType: TOrdType;
case TTypeKind of
tkInteger, tkChar, tkEnumeration, tkWChar: (
MinValue: Longint;
MaxValue: Longint;
case TTypeKind of
tkInteger, tkChar, tkWChar: ();
tkEnumeration: (
BaseType: PPTypeInfo;
NameList: ShortStringBase));

tkSet: (
CompType: PPTypeInfo));

tkFloat: (FloatType: TFloatType);
tkString: (MaxLength: Byte);
tkClass: (

ClassType: TClass;
ParentInfo: PPTypeInfo;
PropCount: SmallInt;
UnitName: ShortStringBase;
{PropData: TPropData});

tkMethod: (
MethodKind: TMethodKind;
ParamCount: Byte;

Component-Based Development

PART IV
406

15 chpt_10.qxd 11/19/01 12:16 PM Page 406

LISTING 10.2 Continued

ParamList: array[0..1023] of Char
{ParamList: array[1..ParamCount] of
record
Flags: TParamFlags;
ParamName: ShortString;
TypeName: ShortString;

end;
ResultType: ShortString});

tkInterface: (
IntfParent : PPTypeInfo; { ancestor }
IntfFlags : TIntfFlagsBase;
Guid : TGUID;
IntfUnit : ShortStringBase;
{PropData: TPropData});

tkInt64: (
MinInt64Value, MaxInt64Value: Int64);

end;

As you can see, the TTypeData structure is really just a big variant record. If you’re familiar
with working with variant records and pointers, you’ll see that dealing with RTTI is really sim-
ple. It just seems complex because it’s an undocumented feature.

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

407

Often, Borland doesn’t document a feature because it might change between ver-
sions. When using features such as the undocumented RTTI, realize that your code
might not be fully portable between versions of Delphi.

NOTE

At this point, we’re ready to demonstrate how to use these structures of RTTI to obtain type
information.

Obtaining Type Information
To demonstrate how to obtain Runtime Type Information on an object, we’ve created a project
whose main form is defined in Listing 10.3.

LISTING 10.3 Main Form for ClassInfo.dpr

unit MainFrm;

interface

15 chpt_10.qxd 11/19/01 12:16 PM Page 407

LISTING 10.3 Continued

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls, DBClient, MidasCon, MConnect;

type

TMainForm = class(TForm)
pnlTop: TPanel;
pnlLeft: TPanel;
lbBaseClassInfo: TListBox;
spSplit: TSplitter;
lblBaseClassInfo: TLabel;
pnlRight: TPanel;
lblClassProperties: TLabel;
lbPropList: TListBox;
lbSampClasses: TListBox;
procedure FormCreate(Sender: TObject);
procedure lbSampClassesClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
MainForm: TMainForm;

implementation
uses TypInfo;

{$R *.DFM}

function CreateAClass(const AClassName: string): TObject;
{ This method illustrates how you can create a class from the class name. Note
that this requires that you register the class using RegisterClasses() as
shown in the initialization method of this unit. }

var
C : TFormClass;
SomeObject: TObject;

begin
C := TFormClass(FindClass(AClassName));
SomeObject := C.Create(nil);
Result := SomeObject;

end;

Component-Based Development

PART IV
408

15 chpt_10.qxd 11/19/01 12:16 PM Page 408

LISTING 10.3 Continued

procedure GetBaseClassInfo(AClass: TObject; AStrings: TStrings);
{ This method obtains some basic RTTI data from the given object and adds that
information to the AStrings parameter. }

var
ClassTypeInfo: PTypeInfo;
ClassTypeData: PTypeData;
EnumName: String;

begin
ClassTypeInfo := AClass.ClassInfo;
ClassTypeData := GetTypeData(ClassTypeInfo);
with AStrings do
begin
Add(Format(‘Class Name: %s’, [ClassTypeInfo.Name]));
EnumName := GetEnumName(TypeInfo(TTypeKind), Integer(ClassTypeInfo.Kind));
Add(Format(‘Kind: %s’, [EnumName]));
Add(Format(‘Size: %d’, [AClass.InstanceSize]));
Add(Format(‘Defined in: %s.pas’, [ClassTypeData.UnitName]));
Add(Format(‘Num Properties: %d’,[ClassTypeData.PropCount]));

end;
end;

procedure GetClassAncestry(AClass: TObject; AStrings: TStrings);
{ This method retrieves the ancestry of a given object and adds the
class names of the ancestry to the AStrings parameter. }

var
AncestorClass: TClass;

begin
AncestorClass := AClass.ClassParent;
{ Iterate through the Parent classes starting with Sender’s
Parent until the end of the ancestry is reached. }

AStrings.Add(‘Class Ancestry’);
while AncestorClass <> nil do
begin
AStrings.Add(Format(‘ %s’,[AncestorClass.ClassName]));
AncestorClass := AncestorClass.ClassParent;

end;
end;

procedure GetClassProperties(AClass: TObject; AStrings: TStrings);
{ This method retrieves the property names and types for the given object
and adds that information to the AStrings parameter. }

var
PropList: PPropList;

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

409

15 chpt_10.qxd 11/19/01 12:16 PM Page 409

LISTING 10.3 Continued

ClassTypeInfo: PTypeInfo;
ClassTypeData: PTypeData;
i: integer;
NumProps: Integer;

begin

ClassTypeInfo := AClass.ClassInfo;
ClassTypeData := GetTypeData(ClassTypeInfo);

if ClassTypeData.PropCount <> 0 then
begin
// allocate the memory needed to hold the references to the TPropInfo
// structures on the number of properties.
GetMem(PropList, SizeOf(PPropInfo) * ClassTypeData.PropCount);
try
// fill PropList with the pointer references to the TPropInfo structures
GetPropInfos(AClass.ClassInfo, PropList);
for i := 0 to ClassTypeData.PropCount - 1 do
// filter out properties that are events (method pointer properties)
if not (PropList[i]^.PropType^.Kind = tkMethod) then
AStrings.Add(Format(‘%s: %s’, [PropList[i]^.Name,
PropList[i]^.PropType^.Name]));

// Now get properties that are events (method pointer properties)
NumProps := GetPropList(AClass.ClassInfo, [tkMethod], PropList);
if NumProps <> 0 then begin
AStrings.Add(‘’);
AStrings.Add(‘ EVENTS ================ ‘);
AStrings.Add(‘’);

end;
// Fill the AStrings with the events.
for i := 0 to NumProps - 1 do

AStrings.Add(Format(‘%s: %s’, [PropList[i]^.Name,
PropList[i]^.PropType^.Name]));

finally
FreeMem(PropList, SizeOf(PPropInfo) * ClassTypeData.PropCount);

end;
end;

end;

procedure TMainForm.FormCreate(Sender: TObject);
begin

Component-Based Development

PART IV
410

15 chpt_10.qxd 11/19/01 12:16 PM Page 410

LISTING 10.3 Continued

// Add some example classes to the list box.
lbSampClasses.Items.Add(‘TApplication’);
lbSampClasses.Items.Add(‘TButton’);
lbSampClasses.Items.Add(‘TForm’);
lbSampClasses.Items.Add(‘TListBox’);
lbSampClasses.Items.Add(‘TPaintBox’);
lbSampClasses.Items.Add(‘TMidasConnection’);
lbSampClasses.Items.Add(‘TFindDialog’);
lbSampClasses.Items.Add(‘TOpenDialog’);
lbSampClasses.Items.Add(‘TTimer’);
lbSampClasses.Items.Add(‘TComponent’);
lbSampClasses.Items.Add(‘TGraphicControl’);

end;

procedure TMainForm.lbSampClassesClick(Sender: TObject);
var
SomeComp: TObject;

begin
lbBaseClassInfo.Items.Clear;
lbPropList.Items.Clear;

// Create an instance of the selected class.
SomeComp := CreateAClass(lbSampClasses.Items[lbSampClasses.ItemIndex]);
try
GetBaseClassInfo(SomeComp, lbBaseClassInfo.Items);
GetClassAncestry(SomeComp, lbBaseClassInfo.Items);
GetClassProperties(SomeComp, lbPropList.Items);

finally
SomeComp.Free;

end;
end;

initialization
begin
RegisterClasses([TApplication, TButton, TForm, TListBox, TPaintBox,
TMidasConnection, TFindDialog, TOpenDialog, TTimer, TComponent,
TGraphicControl]);

end;

end.

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

411

15 chpt_10.qxd 11/19/01 12:16 PM Page 411

This main form contains three list boxes. lbSampClasses contains classnames for a few sample
objects whose type information we’ll retrieve. On selecting an object from lbSampClasses,
lbBaseClassInfo will be populated with basic information about the selected object, such as
its size and ancestry. lbPropList will display the properties belonging to the selected object
from lbSampClasses.

Three helper procedures are used to obtain class information:

• GetBaseClassInfo()—Populates a string list with basic information about an object,
such as its type, size, defining unit, and number of properties

• GetClassAncestry()—Populates a string list with the object names of a given object’s
ancestry

• GetClassProperties()—Populates a string list with the properties and their types for a
given class

Each procedure takes an object instance and a string list as parameters.

As the user selects one of the classes from lbSampClasses, its OnClick event,
lbSampClassesClick(), calls a helper function, CreateAClass(), which creates an instance of
a class given the name of the class type. It then passes the object instance and the appropriate
TListBox.Items property to be populated.

Component-Based Development

PART IV
412

CLX versions of the RTTI demos shown here reside on the CD-ROM under the subdi-
rectory CLX for this chapter.

NOTE

The CreateAClass() function can be used to create any class by its name. However, as
demonstrated, you must make sure that any classes passed to it have been registered
by calling the RegisterClasses() procedure.

TIP

Obtaining Runtime Type Information for Objects
GetBaseClassInfo() passes the return value from TObject.ClassInfo() to the function
GetTypeData(). GetTypeData() is defined in TypInfo.pas. Its purpose is to return a pointer to
the TTypeData structure based on the class whose PTypeInfo structure was passed to it (see
Listing 10.2). GetBaseClassInfo() simply refers to the various fields of both the TTypeInfo
and TTypeData structures to populate the AStrings string list. Note the use of the function

15 chpt_10.qxd 11/19/01 12:16 PM Page 412

GetEnumName() to return the string for an enumerated type. This is also a function of RTTI
defined in TypInfo.pas. Type information on enumerated types is discussed in a later section.

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

413

Use the GetTypeData() function defined in TypInfo.pas to return a pointer
to the TTypeInfo structure for a given class. You must pass the result of
TObject.ClassInfo() to GetTypeData().

TIP

Obtaining the Ancestry for an Object
The GetClassAncestry() procedure populates a string list with the classnames of the given
object’s ancestry. This is a simple operation that uses the ClassParent() class procedure on
the given object. ClassParent() will return a TClass reference to the given class’s parent or
nil if the top of the ancestry is reached. GetClassAncestry() simply walks up the ancestry
and adds each classname to the string list until the top is reached.

Obtaining Type Information on Object Properties
If an object has properties, its TTypeData.PropCount value will contain the number of proper-
ties it has. There are several approaches you can use to obtain the property information for a
given class—we demonstrate two.

The GetClassProperties() procedure begins much like the previous two methods in that it
passes the ClassInfo() result to GetTypeData() to obtain the reference to the TTypeData
structure for the class. It then allocates memory for the PropList variable based on the value
of ClassTypeData.PropCount. PropList is defined as the type PPropList. PPropList is
defined in TypInfo.pas as follows:

type
PPropList = ^TPropList;
TPropList = array[0..16379] of PPropInfo;

The TPropList array stores pointers to the TPropInfo data for each property. TPropInfo is
defined in TypInfo.pas as follows:

PPropInfo = ^TPropInfo;
TPropInfo = packed record

You can use the GetEnumName() function to obtain the name of an enumeration value
as a string. GetEnumValue() returns the enumeration value given its name.

TIP

15 chpt_10.qxd 11/19/01 12:16 PM Page 413

PropType: PPTypeInfo;
GetProc: Pointer;
SetProc: Pointer;
StoredProc: Pointer;
Index: Integer;
Default: Longint;
NameIndex: SmallInt;
Name: ShortString;

end;

TPropInfo is the Runtime Type Information for a property.

GetClassProperties() uses the GetPropInfos() function to fill this array with pointers to the
RTTI information for all properties for the given object. It then loops through the array and
writes out the name and type for the property by accessing that property’s type information.
Note the following line:

if not (PropList[i]^.PropType^.Kind = tkMethod) then

This is used to filter out properties that are events (method pointers). We populate these proper-
ties last, which allows us to demonstrate an alternative method for retrieving property RTTI. In
the final part of the GetClassProperties() method, we use the GetPropList() function to
return the TPropList for properties of a specific type. In this case, we want only properties of
the type tkMethod. GetPropList() is also defined in TypInfo.pas. Refer to the source com-
mentary for additional information.

Component-Based Development

PART IV
414

Use GetPropInfos() when you want to retrieve a pointer to the property Runtime
Type Information for all properties of a given object. Use GetPropList() if you want
to retrieve the same information, except for properties of a specific type.

TIP

Figure 10.3 shows the output of the main form with Runtime Type Information for a selected
class.

Checking for the Existence of a Property for an Object
Earlier we presented the problem of needing to check for the existence of a property for a
given object. Specifically, we were referring to the DataSource property. Using functions
defined in TypInfo.pas, we could write the following function to determine whether a control
is data aware:

function IsDataAware(AComponent: TComponent): Boolean;
var
PropInfo: PPropInfo;

15 chpt_10.qxd 11/19/01 12:16 PM Page 414

begin
// Find the property named datasource.
PropInfo := GetPropInfo(AComponent.ClassInfo, ‘DataSource’);
Result := PropInfo <> nil;

// Double check, make sure it descends from TDataSource
if Result then
if not ((PropInfo^.Proptype^.Kind = tkClass) and

(GetTypeData(PropInfo^.PropType^).ClassType.InheritsFrom(TDataSource)))
then

Result := False;
end;

Here, we’re using the GetPropInfo() function to return the TPropInfo pointer on a given
property. This function returns nil if the property doesn’t exist. As an additional check, we
make sure that the property named DataSource is actually a descendant of TDataSource.

We also could have written this function more generically to check for the existence of any
property by its name, like this:

function HasProperty(AComponent: TComponent; APropertyName: String): Boolean;
var
PropInfo: PPropInfo;

begin
PropInfo := GetPropInfo(AComponent.ClassInfo, APropertyName);
Result := PropInfo <> nil;

end;

Note, however, that this works only on published properties. RTTI doesn’t exist for unpub-
lished properties.

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

415

FIGURE 10.3
Output of a class’s Runtime Type Information.

15 chpt_10.qxd 11/19/01 12:16 PM Page 415

Obtaining Type Information on Method Pointers
Runtime Type Information can be obtained on method pointers. For example, you can deter-
mine the type of method (procedure, function, and so on) and its parameters. Listing 10.4
demonstrates how to obtain Runtime Type Information for a selected group of methods.

LISTING 10.4 Obtaining Runtime Type Information for Methods

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls, DBClient, MidasCon, MConnect;

type

TMainForm = class(TForm)
lbSampMethods: TListBox;
lbMethodInfo: TMemo;
lblBasicMethodInfo: TLabel;
procedure FormCreate(Sender: TObject);
procedure lbSampMethodsClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
MainForm: TMainForm;

implementation
uses TypInfo, DBTables, Provider;

{$R *.DFM}

type
// It is necessary to redefine this record as it is commented out in
// typinfo.pas.

PParamRecord = ^TParamRecord;
TParamRecord = record
Flags: TParamFlags;
ParamName: ShortString;

Component-Based Development

PART IV
416

15 chpt_10.qxd 11/19/01 12:16 PM Page 416

LISTING 10.4 Continued

TypeName: ShortString;
end;

procedure GetBaseMethodInfo(ATypeInfo: PTypeInfo; AStrings: TStrings);
{ This method obtains some basic RTTI data from the TTypeInfo and adds that
information to the AStrings parameter. }

var
MethodTypeData: PTypeData;
EnumName: String;

begin
MethodTypeData := GetTypeData(ATypeInfo);
with AStrings do
begin
Add(Format(‘Class Name: %s’, [ATypeInfo^.Name]));
EnumName := GetEnumName(TypeInfo(TTypeKind), Integer(ATypeInfo^.Kind));
Add(Format(‘Kind: %s’, [EnumName]));
Add(Format(‘Num Parameters: %d’,[MethodTypeData.ParamCount]));

end;
end;

procedure GetMethodDefinition(ATypeInfo: PTypeInfo; AStrings: TStrings);
{ This method retrieves the property info on a method pointer. We use this
information to reconstruct the method definition. }

var
MethodTypeData: PTypeData;
MethodDefine: String;
ParamRecord: PParamRecord;
TypeStr: ^ShortString;
ReturnStr: ^ShortString;
i: integer;

begin
MethodTypeData := GetTypeData(ATypeInfo);

// Determine the type of method
case MethodTypeData.MethodKind of
mkProcedure: MethodDefine := ‘procedure ‘;
mkFunction: MethodDefine := ‘function ‘;
mkConstructor: MethodDefine := ‘constructor ‘;
mkDestructor: MethodDefine := ‘destructor ‘;
mkClassProcedure: MethodDefine := ‘class procedure ‘;
mkClassFunction: MethodDefine := ‘class function ‘;

end;

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

417

15 chpt_10.qxd 11/19/01 12:16 PM Page 417

LISTING 10.4 Continued

// point to the first parameter
ParamRecord := @MethodTypeData.ParamList;
i := 1; // first parameter

// loop through the method’s parameters and add them to the string list as
// they would be normally defined.
while i <= MethodTypeData.ParamCount do
begin
if i = 1 then
MethodDefine := MethodDefine+’(‘;

if pfVar in ParamRecord.Flags then
MethodDefine := MethodDefine+(‘var ‘);

if pfconst in ParamRecord.Flags then
MethodDefine := MethodDefine+(‘const ‘);

if pfArray in ParamRecord.Flags then
MethodDefine := MethodDefine+(‘array of ‘);

// we won’t do anything for the pfAddress but know that the Self parameter
// gets passed with this flag set.
{

if pfAddress in ParamRecord.Flags then
MethodDefine := MethodDefine+(‘*address* ‘);

}
if pfout in ParamRecord.Flags then
MethodDefine := MethodDefine+(‘out ‘);

// Use pointer arithmetic to get the type string for the parameter.
TypeStr := Pointer(Integer(@ParamRecord^.ParamName) +
Length(ParamRecord^.ParamName)+1);

MethodDefine := Format(‘%s%s: %s’, [MethodDefine, ParamRecord^.ParamName,
TypeStr^]);

inc(i); // Increment the counter.

// Go the next parameter. Notice that use of pointer arithmetic to
// get to the appropriate location of the next parameter.
ParamRecord := PParamRecord(Integer(ParamRecord) + SizeOf(TParamFlags) +
(Length(ParamRecord^.ParamName) + 1) + (Length(TypeStr^)+1));

// if there are still parameters then setup
if i <= MethodTypeData.ParamCount then

Component-Based Development

PART IV
418

15 chpt_10.qxd 11/19/01 12:16 PM Page 418

LISTING 10.4 Continued

begin
MethodDefine := MethodDefine + ‘; ‘;

end
else
MethodDefine := MethodDefine + ‘)’;

end;

// If the method type is a function, it has a return value. This is also
// placed in the method definition string. The return value will be at the
// location following the last parameter.
if MethodTypeData.MethodKind = mkFunction then
begin
ReturnStr := Pointer(ParamRecord);
MethodDefine := Format(‘%s: %s;’, [MethodDefine, ReturnStr^])

end
else
MethodDefine := MethodDefine+’;’;

// finally, add the string to the listbox.
with AStrings do
begin
Add(MethodDefine)

end;
end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
{ Add some method types to the list box. Also, store the pointer to the RTTI
data in listbox’s Objects array }

with lbSampMethods.Items do
begin
AddObject(‘TNotifyEvent’, TypeInfo(TNotifyEvent));
AddObject(‘TMouseEvent’, TypeInfo(TMouseEvent));
AddObject(‘TBDECallBackEvent’, TypeInfo(TBDECallBackEvent));
AddObject(‘TDataRequestEvent’, TypeInfo(TDataRequestEvent));
AddObject(‘TGetModuleProc’, TypeInfo(TGetModuleProc));
AddObject(‘TReaderError’, TypeInfo(TReaderError));

end;
end;

procedure TMainForm.lbSampMethodsClick(Sender: TObject);
begin
lbMethodInfo.Lines.Clear;
with lbSampMethods do

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

419

15 chpt_10.qxd 11/19/01 12:16 PM Page 419

LISTING 10.4 Continued

begin
GetBaseMethodInfo(PTypeInfo(Items.Objects[ItemIndex]), lbMethodInfo.Lines);
GetMethodDefinition(PTypeInfo(Items.Objects[ItemIndex]),
lbMethodInfo.Lines);

end;
end;

end.

In Listing 10.4, we populate a list box, lbSampMethods, with some sample method names. We
also store the references to those methods’ RTTI data in the Objects array of the list box.
We do this by using the TypeInfo() function, which is a special function that can retrieve a
pointer to Runtime Type Information for a given type identifier. When the user selects one of
these methods, we use that RTTI data from the Objects array to retrieve and reconstruct the
method definition from the information we have about the method and its parameters in the
RTTI data. Refer to the listing’s commentary for further information.

Component-Based Development

PART IV
420

Use the TypeInfo() function to retrieve a pointer to the compiler-generated Runtime
Type Information for a given type identifier. For example, the following line retrieves
a pointer to the RTTI for the TButton type:

TypeInfoPointer := TypeInfo(TButton);

TIP

Obtaining Type Information for Ordinal Types
We’ve already covered the more difficult pieces to RTTI. However, you can also obtain RTTI
for ordinal types. The following sections illustrate how to obtain RTTI data on integer, enumer-
ated, and set types.

Type Information for Integer Types
Obtaining type information for integer types is simple. Listing 10.5 illustrates this process.

LISTING 10.5 Obtaining Runtime Type Information for Integers

procedure TMainForm.lbSampsClick(Sender: TObject);
var
OrdTypeInfo: PTypeInfo;
OrdTypeData: PTypeData;

15 chpt_10.qxd 11/19/01 12:16 PM Page 420

LISTING 10.5 Continued

TypeNameStr: String;
TypeKindStr: String;
MinVal, MaxVal: Integer;

begin
memInfo.Lines.Clear;
with lbSamps do
begin

// Get the TTypeInfo pointer
OrdTypeInfo := PTypeInfo(Items.Objects[ItemIndex]);
// Get the TTypeData pointer
OrdTypeData := GetTypeData(OrdTypeInfo);

// Get the type name string
TypeNameStr := OrdTypeInfo.Name;
// Get the type kind string
TypeKindStr := GetEnumName(TypeInfo(TTypeKind),

Integer(OrdTypeInfo^.Kind));

// Get the minimum and maximum values for the type
MinVal := OrdTypeData^.MinValue;
MaxVal := OrdTypeData^.MaxValue;

// Add the information to the memo
with memInfo.Lines do
begin
Add(‘Type Name: ‘+TypeNameStr);
Add(‘Type Kind: ‘+TypeKindStr);

Add(‘Min Val: ‘+IntToStr(MinVal));
Add(‘Max Val: ‘+IntToStr(MaxVal));

end;
end;

end;

Here, we use the TypeInfo() function to obtain a pointer to the TTypeInfo structure for the
Integer data type. We then pass that reference to the GetTypeData() function to obtain a
pointer to the TTypeData structure. We use both those structures to populate a list box with the
integer’s RTTI. See the demo named IntegerRTTI.dpr in the directory for this chapter on
the CD-ROM accompanying this book for a more detailed demonstration.

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

421

15 chpt_10.qxd 11/19/01 12:16 PM Page 421

Type Information for Enumerated Types
Obtaining RTTI for enumerated types is just as easy as it is for integers. In fact, you’ll see that
Listing 10.6 is almost identical to Listing 10.5, with the exception of the additional for loop to
show the values of the enumeration type.

LISTING 10.6 Obtaining RTTI for an Enumerated Type

procedure TMainForm.lbSampsClick(Sender: TObject);
var
OrdTypeInfo: PTypeInfo;
OrdTypeData: PTypeData;

TypeNameStr: String;
TypeKindStr: String;
MinVal, MaxVal: Integer;
i: integer;

begin
memInfo.Lines.Clear;
with lbSamps do
begin

// Get the TTypeInfo pointer
OrdTypeInfo := PTypeInfo(Items.Objects[ItemIndex]);
// Get the TTypeData pointer
OrdTypeData := GetTypeData(OrdTypeInfo);

// Get the type name string
TypeNameStr := OrdTypeInfo.Name;
// Get the type kind string
TypeKindStr := GetEnumName(TypeInfo(TTypeKind),

Integer(OrdTypeInfo^.Kind));

// Get the minimum and maximum values for the type
MinVal := OrdTypeData^.MinValue;
MaxVal := OrdTypeData^.MaxValue;

// Add the information to the memo
with memInfo.Lines do
begin
Add(‘Type Name: ‘+TypeNameStr);
Add(‘Type Kind: ‘+TypeKindStr);

Add(‘Min Val: ‘+IntToStr(MinVal));
Add(‘Max Val: ‘+IntToStr(MaxVal));

Component-Based Development

PART IV
422

15 chpt_10.qxd 11/19/01 12:16 PM Page 422

LISTING 10.6 Continued

// Show the values and names of the enumerated types
if OrdTypeInfo^.Kind = tkEnumeration then
for i := MinVal to MaxVal do
Add(Format(‘ Value: %d Name: %s’, [i,
GetEnumName(OrdTypeInfo, i)]));

end;
end;

end;

You’ll find a more detailed demo named EnumRTTI.dpr on the CD-ROM in the directory for
this chapter.

Type Information for Set Types
Obtaining RTTI for set types is only slightly more complex than the two previous techniques.
Listing 10.7 is the main form for the project SetRTTI.dpr, which you’ll find on the CD-ROM
in the directory for this chapter.

LISTING 10.7 Obtaining RTTI for Set Types

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, Grids;

type
TMainForm = class(TForm)
lbSamps: TListBox;
memInfo: TMemo;
procedure FormCreate(Sender: TObject);
procedure lbSampsClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
MainForm: TMainForm;

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

423

15 chpt_10.qxd 11/19/01 12:16 PM Page 423

LISTING 10.7 Continued

implementation
uses TypInfo, Buttons;

{$R *.DFM}

procedure TMainForm.FormCreate(Sender: TObject);
begin
// Add some example enumerated types
with lbSamps.Items do
begin
AddObject(‘TBorderIcons’, TypeInfo(TBorderIcons));
AddObject(‘TGridOptions’, TypeInfo(TGridOptions));

end;
end;

procedure GetTypeInfoForOrdinal(AOrdTypeInfo: PTypeInfo; AStrings: TStrings);
var
// OrdTypeInfo: PTypeInfo;
OrdTypeData: PTypeData;

TypeNameStr: String;
TypeKindStr: String;
MinVal, MaxVal: Integer;
i: integer;

begin

// Get the TTypeData pointer
OrdTypeData := GetTypeData(AOrdTypeInfo);

// Get the type name string
TypeNameStr := AOrdTypeInfo.Name;
// Get the type kind string
TypeKindStr := GetEnumName(TypeInfo(TTypeKind), Integer(AOrdTypeInfo^.Kind));

// Get the minimum and maximum values for the type
MinVal := OrdTypeData^.MinValue;
MaxVal := OrdTypeData^.MaxValue;

// Add the information to the memo
with AStrings do
begin
Add(‘Type Name: ‘+TypeNameStr);
Add(‘Type Kind: ‘+TypeKindStr);

Component-Based Development

PART IV
424

15 chpt_10.qxd 11/19/01 12:16 PM Page 424

LISTING 10.7 Continued

// Call this function recursively to show the enumeration
// values for this set type.
if AOrdTypeInfo^.Kind = tkSet then
begin
Add(‘==========’);
Add(‘’);
GetTypeInfoForOrdinal(OrdTypeData^.CompType^, AStrings);

end;

// Show the values and names of the enumerated types belonging to the
// set.
if AOrdTypeInfo^.Kind = tkEnumeration then
begin
Add(‘Min Val: ‘+IntToStr(MinVal));
Add(‘Max Val: ‘+IntToStr(MaxVal));

for i := MinVal to MaxVal do
Add(Format(‘ Value: %d Name: %s’, [i,
GetEnumName(AOrdTypeInfo, i)]));

end;
end;

end;

procedure TMainForm.lbSampsClick(Sender: TObject);
begin
memInfo.Lines.Clear;
with lbSamps do
GetTypeInfoForOrdinal(PTypeInfo(Items.Objects[ItemIndex]), memInfo.Lines);

end;
end.

In this demo, we set up two set types in a list box. We add the pointer to the TTypeInfo struc-
tures for these two types to the Objects array of the list box by using the TypeInfo() function.
When the user selects one of the items in the list box, the GetTypeInfoForOrdinal() proce-
dure is called, passing both the PTypeInfo pointer and the memInfo.Lines property that’s pop-
ulated with the RTTI data.

The GetTypeInfoForOrdinal() procedure goes through the same steps you’ve already seen
for getting the pointer to the type’s TTypeData structure. This initial type information is stored
to the TStrings parameter and then the GetTypeInfoForOrdinal() is called recursively, pass-
ing OrdTypeData^.CompType^, which refers to the enumerated data type for the set. This RTTI
data is also added to the same TStrings property.

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

425

15 chpt_10.qxd 11/19/01 12:16 PM Page 425

Assigning Values to Properties Through RTTI
Now that we’ve shown you how to find and determine which published properties exist for
components, we ought to show you how to assign values to properties through RTTI. This task
is simple. The TypInfo.pas unit contains many helper routines to allow you to interrogate and
manipulate component-published properties. These are the same helper routines used by the
Delphi IDE (Object Inspector). It would be a good idea to open TypInfo.pas and to familiar-
ize yourself with these routines. We’ll demonstrate a few of them here.

Suppose that you want to assign an integer value to a property for a given component. Also
suppose that you don’t know whether this property exists on that component. Here’s a proce-
dure that assigns an integer value to a property for a given component, only if that property
exists:

procedure SetIntegerPropertyIfExists(AComp: TComponent; APropName: String;
AValue: Integer);

var
PropInfo: PPropInfo;

begin
PropInfo := GetPropInfo(AComp.ClassInfo, APropName);
if PropInfo <> nil then
begin
if PropInfo^.PropType^.Kind = tkInteger then
SetOrdProp(AComp, PropInfo, Integer(AValue));

end;
end;

This procedure takes three parameters. The first, AComp, is the component whose property you
want to modify. The second parameter, APropName, is the name of the property to which you
want to assign the value of the third parameter, AValue. This procedure uses the GetPropInfo()
function to retrieve the TPropInfo pointer on the specified property. GetPropInfo() will return
nil if the property doesn’t exist. If the property does exist, the second if clause determines
whether the property is of the correct type. The property type tkInteger is defined in the
TypInfo.pas unit along with other possible property types, as shown here:

TTypeKind = (tkUnknown, tkInteger, tkChar, tkEnumeration, tkFloat,
tkString, tkSet, tkClass, tkMethod, tkWChar, tkLString, tkWString,
tkVariant, tkArray, tkRecord, tkInterface, tkInt64, tkDynArray);

Finally, the assignment is made to the property using the SetOrdProp() procedure, another
helper routine from TypInfo.pas used to set values to ordinal-type properties. The call to this
procedure might look something like the following:

SetIntegerPropertyIfExists(Button2, ‘Width’, 50);

SetOrdProp() is referred to as a setter method, a method used to set a value to a property.
There is also a getter method, which retrieves the property value. Several of these

Component-Based Development

PART IV
426

15 chpt_10.qxd 11/19/01 12:16 PM Page 426

SetXXXProp() helper routines are in the TypInfo.pas unit for the possible property types, as
shown in Table 10.7.

TABLE 10.7 Getter and Setter Methods

Property Type Setter Method Getter Method

Ordinal SetOrdProp() GetOrdProp()

Enumerated SetEnumProp() GetEnumProp()

Objects SetObjectProp() GetObjectProp()

String SetStrProp() GetStrProp()

Floating Point SetFloatProp() GetFloatProp()

Variant SetVariantProp() GetVariantProp()

Methods (Events) SetMethodProp() GetMethodProp()

Int64 SetInt64Prop() GetInt64Prop()

Again, there are many other helper routines you’ll find useful in TypInfo.pas.

The following code shows how to assign an object property:

procedure SetObjectPropertyIfExists(AComponent: TComponent; APropName: String;
AValue: TObject);

var
PropInfo: PPropInfo;

begin
PropInfo := GetPropInfo(AComponent.ClassInfo, APropName);
if PropInfo <> nil then
begin
if PropInfo^.PropType^.Kind = tkClass then
SetObjectProp(AComponent, PropInfo, AValue);

end;
end;

This method might be called as follows:

var
F: TFont;

begin
F := TFont.Create;
F.Name := ‘Arial’;
F.Size := 24;
F.Color := clRed;
SetObjectPropertyIfExists(Panel1, ‘Font’, F);

end;

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

427

15 chpt_10.qxd 11/19/01 12:16 PM Page 427

The following code shows how to assign a method property:

procedure SetMethodPropertyIfExists(AComp: TComponent; APropName: String;
AMethod: TMethod);

var
PropInfo: PPropInfo;

begin
PropInfo := GetPropInfo(AComp.ClassInfo, APropName);
if PropInfo <> nil then
begin
if PropInfo^.PropType^.Kind = tkMethod then
SetMethodProp(AComp, PropInfo, AMethod);

end;
end;

This method requires the use of the TMethod type, which is defined in the System.pas unit.
To call this method to assign an event handler from one component to another, you can use
GetMethodProp to retrieve the TMethod value from the source component, as shown here:

SetMethodPropertyIfExists(Button5, ‘OnClick’,
GetMethodProp(Panel1, ‘OnClick’));

The accompanying CD-ROM has a project, SetProperties.dpr, that demonstrates these
routines.

Summary
This chapter introduced you to the Visual Component Library (VCL) and Component Library
for Cross Platform (CLX). We discussed the hierarchies and the special characteristics of com-
ponents at different levels in each hierarchy. We also covered Runtime Type Information in
depth. This chapter prepared you for the following chapters, which cover component writing.

Component-Based Development

PART IV
428

15 chpt_10.qxd 11/19/01 12:16 PM Page 428

CHAPTER

11
VCL Component Building

IN THIS CHAPTER
• Component Building Basics 430

• Sample Components 459

• TddgButtonEdit—Container
Components 477

16 chpt_11.qxd 11/19/01 12:10 PM Page 429

The ability to easily write custom components in Delphi 6 is a chief productivity advantage
that you wield over other programmers. In most other environments, folks are stuck using the
standard controls available through Windows or else have to use an entirely different set of
complex controls that were developed by somebody else. Being able to incorporate your cus-
tom components into your Delphi applications means that you have complete control over the
application’s user interface. Custom controls give you the final say in your application’s look
and feel.

In Delphi 6, you have the option of writing components for the Delphi VCL, which has existed
since Delphi 1. You can also write components for Delphi’s CLX architecture, which will be
covered in Chapter 13, “CLX Component Development.”

If your forte is component design, you will appreciate all the information this chapter has to
offer. You will learn about all aspects of component design from concept to integration into the
Delphi environment. You will also learn about the pitfalls of component design, as well as
some tips and tricks to developing highly functional and extensible components.

Even if your primary interest is application development and not component design, you will
get a great deal out of this chapter. Incorporating a custom component or two into your pro-
grams is an ideal way to spice up and enhance the productivity of your applications. Invariably,
you will get caught in a situation while writing your application where, of all the components
at your disposal, none is quite right for some particular task. That’s where component design
comes in. You will be able to tailor a component to meet your exact needs, and hopefully
design it smart enough to use again and again in subsequent applications.

Component Building Basics
The following sections teach you the basic skills required to get you started in writing compo-
nents. Then, we show you how to apply those skills by demonstrating how we designed some
useful components.

Deciding Whether to Write a Component
Why go through the trouble of writing a custom control in the first place when it’s probably
less work to make do with an existing component or hack together something quick and dirty
that “will do”? There are a number of reasons to write your own custom control:

• You want to design a new user-interface element that can be used in more than one
application.

• You want to make your application more robust by separating its elements into logical
object-oriented classes.

Component-Based Development

PART IV
430

16 chpt_11.qxd 11/19/01 12:10 PM Page 430

• You cannot find an existing Delphi component or ActiveX control that suits your needs
for a particular situation.

• You recognize a market for a particular component, and you want to create a component
to share with other Delphi developers for fun or profit.

• You want to increase your knowledge of Delphi, VCL internals, and the Win32 API.

One of the best ways to learn how to create custom components is from the people who
invented them. Delphi’s VCL source code is an invaluable resource for component writers, and
it is highly recommended for anyone who is serious about creating custom components. The
VCL source code is included in the Enterprise and Professional versions of Delphi.

Writing custom components can seem like a pretty daunting task, but don’t believe the hype.
Writing a custom component is only as hard or as easy as you make it. Components can be
tough to write, of course, but you also can create very useful components fairly easily.

Component Writing Steps
Assuming that you have already defined a problem and have a component-based solution, here
are the important points in creating a component from concept to deployment:

• First, you need an idea for a useful and hopefully unique component.

• Next, sit down and map out the algorithm for how the component will work.

• Start with the preliminaries—don’t jump right into the component. Ask yourself, “What
do I need up front to make this component work?”

• Try to break up the construction of your component into logical portions. This will not
only modularize and simplify the creation of the component, but it also will help you to
write cleaner, more organized code. Design your component with the thought that some-
one else might try to create a descendant component.

• Test your component in a test project first. You will be sorry if you immediately add it to
the Component Palette.

• Finally, add the component and an optional bitmap to the Component Palette. After a lit-
tle fine-tuning, it will be ready for you to drop into your Delphi applications.

The six basic steps to writing your Delphi component are as follows:

1. Deciding on an ancestor class.

2. Creating the Component Unit.

3. Adding properties, methods, and events to your new component.

4. Testing your component.

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

431

16 chpt_11.qxd 11/19/01 12:10 PM Page 431

5. Registering your component with the Delphi environment.

6. Creating a help file for your component.

In this chapter, we will discuss the first five steps; however, it is beyond the scope of this chap-
ter to get into the topic of writing help files. However, this doesn’t mean that this step is any
less important than the others. We recommend that you look into some of the third-party tools
available that simplify writing help files. Also, Borland provides information on how to do this
in its online help. Look up “Providing Help for Your Component” in the online help for more
information.

Deciding on an Ancestor Class
In Chapter 10, “Component Architecture: VCL and CLX,” we discussed the VCL hierarchy
and the special purposes of the different classes at the different hierarchical levels. We wrote
about four basic components from which your components will descend: standard controls,
custom controls, graphical controls, and non-visual components. For instance, if you need to
simply extend the behavior of an existing Win32 control such as TMemo, you’ll be extending a
standard control. If you need to define an entirely new component class, you’ll be dealing with
a custom control. Graphical controls let you create components that have a visual effect, but
don’t take up Win32 resources. Finally, if you want to create a component that can be edited
from Delphi’s Object Inspector but doesn’t necessarily have a visual characteristic, you’ll be
creating a non-visual component. Different VCL classes represent these diverse types of com-
ponents. You might want to review Chapter 10 unless you’re quite comfortable with these con-
cepts. Table 11.1 gives you a quick reference.

TABLE 11.1 VCL Classes as Component Base Classes

VCL Class Types of Custom Controls

TObject Although classes descending directly from TObject aren’t compo-
nents, strictly speaking, they do merit mention. You will use TObject
as a base class for many things that you don’t need to work with at
design time. A good example is the TIniFile object.

TComponent This is a starting point for many non-visual components. Its forte is
that it offers built-in streaming capability to load and save itself in
the IDE at design time.

TGraphicControl Use this class when you want to create a custom component that has
no window handle. TGraphicControl descendants are drawn on
their parent’s client surface, so they are easier on resources.

TWinControl This is the base class for all components that require a window han-
dle. It provides you with common properties and events specific to
windowed controls.

Component-Based Development

PART IV
432

16 chpt_11.qxd 11/19/01 12:10 PM Page 432

TABLE 11.1 Continued

VCL Class Types of Custom Controls

TCustomControl This class descends from TWinControl. It introduces the concepts of
a canvas and a Paint() method to give you greater control over the
component’s appearance. Use this class for most of your window-
handled custom component needs.

TCustomClassName The VCL contains several classes that don’t publish all their proper-
ties; they leave it up to descendant classes to do. This allows com-
ponent developers to create custom components from the same base
class and to publish only the predefined properties required for each
customized class.

TComponentName This is an existing class such as TEdit, TPanel, or TScrollBox. Use
an already established component as a base class for your class
(such as TEdit), and custom components when you want to extend
them rather than create a new one from scratch. Many of your cus-
tom components will fall into this category.

It is extremely important that you understand these various classes and also the capabilities of
the existing components. The majority of the time, you’ll find that an existing component
already provides most of the functionality you require of your new component. Only by know-
ing the capabilities of existing components will you be able to decide from which component
to derive your new component. We can’t inject this knowledge into your brain from this book.
What we can do is to tell you that you must make every effort to learn about each component
and class within Delphi’s VCL, and the only way to do that is to use it, even if only
experimentally.

Creating a Component Unit
When you have decided on a component from which your new component will descend, you
can go ahead and create a unit for your new component. We’re going to go through the steps of
designing a new component in the next several sections. Because we want to focus on the
steps, and not on component functionality, this component will do nothing other than to illus-
trate these necessary steps.

The component is appropriately named TddgWorthless. TddgWorthless will descend from
TCustomControl and will therefore have both a window handle and the capability to paint
itself. This component will also inherit several properties, methods, and events already belong-
ing to TCustomControl.

The easiest way to get started is to use the Component Expert, shown in Figure 11.1, to create
a component unit.

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

433

16 chpt_11.qxd 11/19/01 12:10 PM Page 433

FIGURE 11.1
The Component Expert.

You invoke the Component Expert by selecting Component, New Component. In the
Component Expert, you enter the component’s ancestor classname, the component’s class-
name, the palette page on which you want the component to appear, and the unit name for the
component. When you click OK, Delphi automatically creates the component unit that has the
component’s type declaration and a register procedure. Listing 11.1 shows the unit created by
Delphi.

LISTING 11.1 Worthless.pas—A Sample Delphi Component

unit Worthless;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs;

type
TddgWorthless = class(TCustomControl)
private
{ Private declarations }

protected
{ Protected declarations }

public
{ Public declarations }

published
{ Published declarations }

end;
procedure Register;
implementation
procedure Register;
begin
RegisterComponents(‘DDG’, [TddgWorthless]);

end;
end.

Component-Based Development

PART IV
434

16 chpt_11.qxd 11/19/01 12:10 PM Page 434

At this point, you can see that TddgWorthless is nothing more than a skeleton component. In
the following sections, you’ll add properties, methods, and events to TddgWorthless.

Creating Properties
In Chapter 10, we discussed using properties with your components. This section shows you
how to add the various types of properties to your components.

Types of Properties
In Chapter 10, we listed the various property types. We’re going to add properties of each of
these types to the TddgWorthless component to illustrate the differences between each type.
Each type of property is edited a bit differently from the Object Inspector. You will examine
each of these types and how they are edited.

Adding Simple Properties to Components
Simple properties refer to numbers, strings, and characters. They can be edited directly by the
user from within the Object Inspector and require no special access method. Listing 11.2
shows the TddgWorthless component with three simple properties.

LISTING 11.2 Simple Properties

TddgWorthless = class(TCustomControl)
private
// Internal Data Storage
FIntegerProp: Integer;
FStringProp: String;
FCharProp: Char;

published
// Simple property types
property IntegerProp: Integer read FIntegerProp write FIntegerProp;
property StringProp: String read FStringProp write FStringProp;
property CharProp: Char read FCharProp write FCharProp;

end;

You should already be familiar with the syntax used here because it was discussed previously
in Chapter 10. Here, you have your internal data storage for the component declared in the
private section. The properties that refer to these storage fields are declared in the published
section, meaning that when you install the component in Delphi, you can edit the properties in
the Object Inspector.

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

435

16 chpt_11.qxd 11/19/01 12:10 PM Page 435

Adding Enumerated Properties to Components
You can edit user-defined enumerated properties and Boolean properties in the Object
Inspector by double-clicking in the Value section or by selecting the property value from a
drop-down list. An example of such a property is the Align property that exists on most visual
components. To create an enumerated property, you must first define the enumerated type as
follows:

TEnumProp = (epZero, epOne, epTwo, epThree);

You then define the internal storage field to hold the value specified by the user. Listing 11.3
shows two enumerated property types for the TddgWorthless component.

LISTING 11.3 Enumerated Properties

TddgWorthless = class(TCustomControl)
private
// Enumerated data types
FEnumProp: TEnumProp;
FBooleanProp: Boolean;

published
property EnumProp: TEnumProp read FEnumProp write FEnumProp;
property BooleanProp: Boolean read FBooleanProp write FBooleanProp;

end;

We’ve excluded the other properties for illustrative purposes. If you were to install this compo-
nent, its enumerated properties would appear in the Object Inspector as shown in Figure 11.2.

Adding Set Properties to Components
Set properties, when edited in the Object Inspector, appear as a set in Pascal syntax. An easier
way to edit them is to expand the properties in the Object Inspector. Each set item then works
in the Object Inspector like a Boolean property. To create a set property for the TddgWorthless
component, we must first define a set type as follows:

TSetPropOption = (poOne, poTwo, poThree, poFour, poFive);
TSetPropOptions = set of TSetPropOption;

Component-Based Development

PART IV
436

When writing components, the convention is to make private field names begin with
the letter F. For components and types in general, give the object or type a name
starting with the letter T. Your code will be much more clear if you follow these sim-
ple conventions.

NOTE

16 chpt_11.qxd 11/19/01 12:10 PM Page 436

FIGURE 11.2
The Object Inspector showing enumerated properties for TddgWorthless.

Here, you first define a range for the set by defining an enumerated type, TSetPropOption.
Then you define the set TSetPropOptions.

You can now add a property of TSetPropOptions to the TddgWorthless component as follows:

TddgWorthless = class(TCustomControl) s
private
FOptions: TSetPropOptions;

published
property Options: TSetPropOptions read FOptions write FOptions;

end;

Figure 11.3 shows how this property looks when expanded in the Object Inspector.

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

437

FIGURE 11.3
The set property in the Object Inspector.

16 chpt_11.qxd 11/19/01 12:10 PM Page 437

Adding Object Properties to Components
Properties can also be objects or other components. For example, the TBrush and TPen proper-
ties of a TShape component are also objects. When a property is an object, it can be expanded
in the Object Inspector so its own properties can also be modified. Properties that are objects
must be descendants of TPersistent so that their published properties can be streamed and
displayed in the Object Inspector.

To define an object property for the TddgWorthless component, you must first define an object
that will serve as this property’s type. This object is shown in Listing 11.4.

LISTING 11.4 TSomeObject Definition

TSomeObject = class(TPersistent)
private
FProp1: Integer;
FProp2: String;

public
procedure Assign(Source: TPersistent);

published
property Prop1: Integer read FProp1 write FProp1;
property Prop2: String read FProp2 write FProp2;

end;

The TSomeObject class descends directly from TPersistent, although it doesn’t have to. As
long as the object from which the new class descends is, itself, a descendant of TPersistent, it
can be used as another object’s property.

We’ve given this class two properties of its own: Prop1 and Prop2, which are both simple
property types. We’ve also added a procedure, Assign(), to TSomeObject, which we’ll discuss
momentarily.

Now, you can add a field of the type TSomeObject to the TddgWorthless component. However,
because this property is an object, it must be created. Otherwise, when the user places a
TddgWorthless component on the form, there won’t be an instance of TSomeObject that the
user can edit. Therefore, it is necessary to override the Create() constructor for
TddgWorthless to create an instance of TSomeObject. Listing 11.5 shows the declaration of
TddgWorthless with its new object property.

LISTING 11.5—Adding Object Properties

TddgWorthless = class(TCustomControl)
private
FSomeObject: TSomeObject;
procedure SetSomeObject(Value: TSomeObject);

Component-Based Development

PART IV
438

16 chpt_11.qxd 11/19/01 12:10 PM Page 438

LISTING 11.5—Continued

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

published
property SomeObject: TSomeObject read FSomeObject write SetSomeObject;

end;

Notice that we’ve included the overridden Create() constructor and Destroy() destructor.
We’ve also declared a write access method, SetSomeObject(), for the SomeObject property. A
write access method is often referred to as a writer method or setter method. Read access
methods are called reader or getter methods. As you might recall from Chapter 10, writer
methods must have one parameter of the same type as the property to which they belong. By
convention, the name of the writer method usually begins with Set.

We’ve defined the TddgWorthless.Create() constructor as follows:

constructor TddgWorthless.Create(AOwner: TComponent);
begin
inherited Create(AOwner);
FSomeObject := TSomeObject.Create;

end;

Here, we first call the inherited Create() constructor and then create the instance of the
TSomeObject class. Because Create() is called both when the user drops the component on
the form at design time and when the application is run, you can be assured that FSomeObject
will always be valid.

You must also override the Destroy() destructor to free the object before you free the
TddgWorthless component. The code to do this follows:

destructor TddgWorthless.Destroy;
begin
FSomeObject.Free;
inherited Destroy;

end;

Now that we’ve shown how to create the instance of TSomeObject, consider what would hap-
pen if the user executes the following code at runtime:

var
MySomeObject: TSomeObject;

begin
MySomeObject := TSomeObject.Create;
ddgWorthless.SomeObjectj := MySomeObject;

end;

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

439

16 chpt_11.qxd 11/19/01 12:10 PM Page 439

If the TddgWorthless.SomeObject property were defined without a writer method like the fol-
lowing, when the user assigns her own object to the SomeObject field, the previous instance to
which FSomeObject referred would be lost:

property SomeObject: TSomeObject read FSomeObject write FSomeObject;

As you might recall from Chapter 2, “The Object Pascal Language,” object instances are really
pointer references to the actual object. When you make an assignment as shown in the preced-
ing example, you refer the pointer to another object instance while the previous object instance
still hangs around. When designing components, you want to avoid having to place conditions
on your users when accessing properties. To prevent this pitfall, foolproof your component by
creating access methods for properties that are objects. These access methods can then ensure
that no resources get lost when the user assigns new values to these properties. The access
method for SomeObject does just that and is shown here:

procedure TddgWorthLess.SetSomeObject(Value: TSomeObject);
begin
if Assigned(Value) then
FSomeObject.Assign(Value);

end;

The SetSomeObject() method calls the FSomeObject.Assign(), passing it the new
TSomeObject reference. TSomeObject.Assign() is implemented as follows:

procedure TSomeObject.Assign(Source: TPersistent);
begin
if Source is TSomeObject then
begin
FProp1 := TSomeObject(Source).Prop1;
FProp2 := TSomeObject(Source).Prop2;
inherited Assign(Source);

end;
end;

In TSomeObject.Assign(), you first ensure that the user has passed in a valid TSomeObject
instance. If so, you then copy the property values from Source accordingly. This illustrates
another technique you’ll see throughout the VCL for assigning objects to other objects. If you
have the VCL source code, you might take a look at the various Assign() methods such as
TBrush and TShape to see how they are implemented. This would give you some ideas on how
to implement them in your components.

Component-Based Development

PART IV
440

16 chpt_11.qxd 11/19/01 12:10 PM Page 440

Adding Array Properties to Components
Some properties lend themselves to being accessed as though they were arrays. That is, they
contain a list of items that can be referenced with an index value. The actual items referenced
can be of any object type. Examples of such properties are TScreen.Fonts, TMemo.Lines, and
TDBGrid.Columns. Such properties require their own property editors. We will get into creating
property editors in Chapter 12, “Advanced VCL Component Building.” Therefore, we will not
go into detail on creating array properties with a list of different object types until later. For
now, we’ll show a simple method for defining a property that can be indexed as though it were
an array of items, yet contains no list at all. We’re going to put aside the TddgWorthless com-
ponent for a moment and instead look at the TddgPlanets component. TddgPlanets contains
two properties: PlanetName and PlanetPosition. PlanetName will be an array property that
returns the name of the planet based on the value of an integer index. PlanetPosition won’t
use an integer index, but rather a string index. If this string is one of the planet names, the
result will be the planet’s position in the solar system.

For example, the following statement will display the string “Neptune” by using the
TddgPlanets.PlanetName property:

ShowMessage(ddgPlanets.PlanetName[8]);

Compare the difference when the sentence From the sun, Neptune is planet number: 8 is
generated from the following statement:

ShowMessage(‘From the sun, Neptune is planet number: ‘+
IntToStr(ddgPlanets.PlanetPosition[‘Neptune’]));

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

441

Never make an assignment to a property in a property’s writer method. For example,
examine the following property declaration:

property SomeProp: integer read FSomeProp write SetSomeProp;
....
procedure SetSomeProp(Value:integer);
begin
SomeProp := Value; // This causes infinite recursion }

end;

Because you are accessing the property itself (not the internal storage field), you
cause the SetSomeProp() method to be called again, which results in a recursive loop.
Eventually, the program will crash with a stack overflow. Always access the internal
storage field in the writer methods of properties.

CAUTION

16 chpt_11.qxd 11/19/01 12:10 PM Page 441

Before we show you this component, we’ll list some key characteristics of array properties that
differ from the other properties we’ve mentioned:

• Array properties are declared with one or more index parameters. These indexes can be
of any simple type. For example, the index can be an integer or a string, but not a record
or a class.

• Both the read and write property access directives must be methods. They cannot be
one of the component’s fields.

• If the array property is indexed by multiple index values, that is, the property represents a
multidimensional array, the access method must include parameters for each index in the
same order as defined by the property.

Now, we’ll get to the actual component shown in Listing 11.6.

LISTING 11.6 Using TddgPlanets to Illustrate Array Properties

unit planets;

interface

uses
Classes, SysUtils;

type

TddgPlanets = class(TComponent)
private
// Array property access methods
function GetPlanetName(const AIndex: Integer): String;
function GetPlanetPosition(const APlanetName: String): Integer;

public
{ Array property indexed by an integer value. This will be the default
array property. }

property PlanetName[const AIndex: Integer]: String
read GetPlanetName; default;

// Array property index by a string value
property PlanetPosition[const APlantetName: String]: Integer

read GetPlanetPosition;
end;

implementation

const

Component-Based Development

PART IV
442

16 chpt_11.qxd 11/19/01 12:10 PM Page 442

LISTING 11.6 Continued

// Declare a constant array containing planet names
PlanetNames: array[1..9] of String[7] =
(‘Mercury’, ‘Venus’, ‘Earth’, ‘Mars’, ‘Jupiter’, ‘Saturn’,
‘Uranus’, ‘Neptune’, ‘Pluto’);

function TddgPlanets.GetPlanetName(const AIndex: Integer): String;
begin
{ Return the name of the planet specified by Index. If Index is
out of the range, then raise an exception }

if (AIndex < 0) or (AIndex > 9) then
raise Exception.Create(‘Wrong Planet number, enter a number 1-9’)

else
Result := PlanetNames[AIndex];

end;

function TddgPlanets.GetPlanetPosition(const APlanetName: String): Integer;
var
i: integer;

begin
Result := 0;
i := 0;
{ Compare PName to each planet name and return the index of the
appropriate position where PName appears in the constant array.
Otherwise return zero. }

repeat
inc(i);

until (i = 10) or (CompareStr(UpperCase(APlanetName),
UpperCase(PlanetNames[i])) = 0);

if i <> 10 then // A Planet name was found
Result := i;

end;

end.

This component gives you an idea of how you would create an array property with both an
integer and string being used as an index. Notice how the value returned from reading the
property’s value is based on the function return value and not a value from a storage field, as is
the case with the other properties. You can refer to the code’s comments for additional explana-
tion on this component.

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

443

16 chpt_11.qxd 11/19/01 12:10 PM Page 443

Default Values
You can give a property a default value by assigning a value to the property in the component’s
constructor. Therefore, if we added the following statement to the constructor of the
TddgWorthless component, its FIntegerProp property would always default to 100 when the
component is first placed onto the form:

FIntegerProp := 100;

This is probably the best place to mention the Default and NoDefault directives for property
declarations. If you’ve looked at Delphi’s VCL source code, you’ve probably noticed that some
property declarations contain the Default directive, as is the case with the TComponent.FTag
property:

property Tag: Longint read FTag write FTag default 0;

Don’t confuse this statement with the default value specified in the component’s constructor
that actually sets the property value. For example, change the declaration of the IntegerProp
property for the TddgWorthless component to read as follows:

property IntegerProp: Integer read FIntegerProp write FIntegerProp default 100;

This statement doesn’t set the value of the property to 100. This only affects whether the prop-
erty value is saved when you save a form containing the TddgWorthless component. If
IntegerProp’s value isn’t 100, the value will be saved to the DFM file. Otherwise, it doesn’t
get saved because 100 is what the property value will be in a newly constructed object prior to
reading its properties from the stream. It is recommended that you use the Default directive
whenever possible because it might speed up the load time of your forms. It is important for
you to realize that the Default directive doesn’t set the value of the property. You must do that
in the component’s constructor as was shown previously.

The NoDefault directive is used to redeclare a property that specifies a default value, so it will
always be written to the stream regardless of its value. For example, you can redeclare your
component to not specify a default value for the Tag property:

TSample = class(TComponent)
published
property Tag NoDefault;

Note that you should never declare anything NoDefault unless you have a specific reason. An
example of such a property is TForm.PixelsPerInch, which must always be stored so that
scaling will work right at runtime. Also, string, floating point, and int64 type properties can-
not declare default values.

Component-Based Development

PART IV
444

16 chpt_11.qxd 11/19/01 12:10 PM Page 444

To change a property’s default value, you redeclare it by using the new default value (but no
reader or writer methods).

Default Array Properties
You can declare an array property so that it is the default property for the component to which
it belongs. This allows the component user to implement the object instance as though it
were an array variable. For example, using the TddgPlanets component, we declared the
TddgPlanets.PlanetName property with the default keyword. By doing this, the component
user isn’t required to use the property name, PlanetName, in order to retrieve a value. One sim-
ply has to place the index next to the object identifier. Therefore, the following two lines of
code will produce the same result:

ShowMessage(ddgPlanets.PlanetName[8]);
ShowMessage(ddgPlanets[8]);

Only one default array property can be declared for an object, and it cannot be overridden in
descendants.

Creating Events
In Chapter 10, we introduced events and told you that events were special properties linked to
code that get executed whenever a particular action occurs. In this section, we’re going to dis-
cuss events in more detail. We’ll show you how events are generated and how you can define
your own event properties for your custom components.

Where Do Events Come From?
The general definition of an event is basically any type of occurrence that might result from
user interaction, the system, or from code logic. The event is linked to some code that responds
to that occurrence. The linkage of the event to code that responds to an event is called an event
property and is provided in the form of a method pointer. The method to which an event prop-
erty points is called an event handler.

For example, when the user clicks the mouse button, a WM_MOUSEDOWN message is sent to the
Win32 system. Win32 passes that message to the control for which the message was intended.
This control can then respond to the message. The control can respond to this event by first
checking to see whether there is any code to execute. It does this by checking to see whether
the event property points to any code. If so, it executes that code, or rather, the event handler.

The OnClick event is just one of the standard event properties defined by Delphi. OnClick and
other event properties each have a corresponding event-dispatching method. This method is
typically a protected method of the component to which it belongs. This method performs the

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

445

16 chpt_11.qxd 11/19/01 12:10 PM Page 445

logic to determine whether the event property refers to any code provided by the user of the
component. For the OnClick property, this would be the Click() method. Both the OnClick
property and the Click() method are defined by TControl as follows:

TControl = class(TComponent)
private
FOnClick: TNotifyEvent;

protected
procedure Click; dynamic;
property OnClick: TNotifyEvent read FOnClick write FOnClick;

end;

Here is the TControl.Click() method:

procedure TControl.Click;
begin
if Assigned(FOnClick) then FOnClick(Self);

end;

One bit of essential information that you must understand is that event properties are nothing
more than method pointers. Notice that the FOnClick property is defined to be a
TNotifyEvent. TNotifyEvent is defined as follows:

TNotifyEvent = procedure(Sender: TObject) of object;

This says that TNotifyEvent is a procedure that takes one parameter, Sender, which is of the
type TObject. The directive, of object, is what makes this procedure become a method. This
means that an additional implicit parameter that you don’t see in the parameter list also gets
passed to this procedure. This is the Self parameter that refers to the object to which this
method belongs. When the Click() method of a component is called, it checks to see if
FOnClick actually points to a method, and if so, calls that method.

As a component writer, you write all the code that defines your event, your event property, and
your dispatching methods. The component user will provide the event handler when using your
component. Your event-dispatching method will check to see whether the user has assigned any
code to your event property and then execute it when code exists.

In Chapter 10, we discussed how event handlers are assigned to event properties either at run-
time or at design time. In the following section, we show you how to create your own events,
event properties, and dispatching methods.

Defining Event Properties
Before you define an event property, you need to determine whether you need a special event
type. It helps to be familiar with the common event properties that exist in the Delphi VCL.
Most of the time, you’ll be able to have your component descend from one of the existing

Component-Based Development

PART IV
446

16 chpt_11.qxd 11/19/01 12:10 PM Page 446

components and just use its event properties, or you might have to surface a protected event
property. If you determine that none of the existing events meet your need, you can define your
own.

As an example, consider the following scenario. Suppose you want a component containing an
event that gets called every half-minute based on the system clock. That is, it gets invoked on
the minute and on the half minute. Well, you can certainly use a TTimer component to check
the system time and then perform some action whenever the time is at the minute or half
minute. However you might want to incorporate this code into your own component and then
make that component available to your users so that all they have to do is add code to your
OnHalfMinute event.

The TddgHalfMinute component shown in Listing 11.7 illustrates how you would design such
a component. More importantly, it shows how you would go about creating your own event
type.

LISTING 11.7 TddgHalfMinute—Event Creation

unit halfmin;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, ExtCtrls;

type
{ Define a procedure for the event handler. The event property will
be of this procedure type. This type will take two parameters, the
object that invoked the event and a TDateTime value to represent
the time that the event occurred. For our component this will be
every half-minute. }

TTimeEvent = procedure(Sender: TObject; TheTime: TDateTime) of object;

TddgHalfMinute = class(TComponent)
private
FTimer: TTimer;
{ Define a storage field to point to the user’s event handler.
The user’s event handler must be of the procedural type
TTimeEvent. }

FOnHalfMinute: TTimeEvent;
FOldSecond, FSecond: Word; // Variables used in the code
{ Define a procedure, FTimerTimer that will be assigned to
FTimer.OnClick. This procedure must be of the type TNotifyEvent
which is the type of TTimer.OnClick. }

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

447

16 chpt_11.qxd 11/19/01 12:10 PM Page 447

LISTING 11.7 Continued

procedure FTimerTimer(Sender: TObject);
protected
{ Define the dispatching method for the OnHalfMinute event. }
procedure DoHalfMinute(TheTime: TDateTime); dynamic;

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

published
// Define the actual property that will show in the Object Inspector
property OnHalfMinute: TTimeEvent read FOnHalfMinute write FOnHalfMinute;

end;

implementation

constructor TddgHalfMinute.Create(AOwner: TComponent);
{ The Create constructor, creates the TTimer instanced for FTimer. It
then sets up the various properties of FTimer, including its OnTimer
event handler which is TddgHalfMinute’s FTimerTimer() method. Notice
that FTimer.Enabled is set to true only if the component is running
and not while the component is in design mode. }

begin
inherited Create(AOwner);
// If the component is in design mode, do not enable FTimer.
if not (csDesigning in ComponentState) then
begin
FTimer := TTimer.Create(self);
FTimer.Enabled := True;
// Set up the other properties, including the FTimer.OnTimer event handler
FTimer.Interval := 500;
FTimer.OnTimer := FTimerTimer;
end;

end;

destructor TddgHalfMinute.Destroy;
begin
FTimer.Free;
inherited Destroy;

end;

procedure TddgHalfMinute.FTimerTimer(Sender: TObject);
{ This method serves as the FTimer.OnTimer event handler and is assigned
to FTimer.OnTimer at run-time in TddgHalfMinute’s constructor.

Component-Based Development

PART IV
448

16 chpt_11.qxd 11/19/01 12:10 PM Page 448

LISTING 11.7 Continued

This method gets the system time, and then determines whether or not
the time is on the minute, or on the half-minute. If either of these
conditions are true, it calls the OnHalfMinute dispatching method,
DoHalfMinute. }

var
DT: TDateTime;
Temp: Word;

begin
DT := Now; // Get the system time.
FOldSecond := FSecond; // Save the old second.
// Get the time values, needed is the second value
DecodeTime(DT, Temp, Temp, FSecond, Temp);

{ If not the same second when this method was last called, and if
it is a half minute, call DoOnHalfMinute. }

if FSecond <> FOldSecond then
if ((FSecond = 30) or (FSecond = 0)) then
DoHalfMinute(DT)

end;

procedure TddgHalfMinute.DoHalfMinute(TheTime: TDateTime);
{ This method is the dispatching method for the OnHalfMinute event.
it checks to see if the user of the component has attached an
event handler to OnHalfMinute and if so, calls that code. }

begin
if Assigned(FOnHalfMinute) then
FOnHalfMinute(Self, TheTime);

end;

end.

When creating your own events, you must determine what information you want to provide to
users of your component as a parameter in the event handler. For example, when you create an
event handler for the TEdit.OnKeyPress event, your event handler looks like the following
code:

procedure TForm1.Edit1KeyPress(Sender: TObject; var Key: Char);
begin
end;

Not only do you get a reference to the object that caused the event, but you also get a Char
parameter specifying the key that was pressed. Deep in the Delphi VCL, this event occurred as

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

449

16 chpt_11.qxd 11/19/01 12:11 PM Page 449

a result of a WM_CHAR Win32 message that drags along some additional information relating to
the key pressed. Delphi takes care of extracting the necessary data and making it available to
component users as event handler parameters. One of the nice things about the whole scheme
is that it enables component writers to take information that might be somewhat complex to
understand and make it available to component users in a much more understandable and easy-
to-use format.

Notice the var parameter in the preceding Edit1KeyPress() method. You might be wondering
why this method wasn’t declared as a function that returns a Char type instead of a procedure.
Although method types can be functions, you shouldn’t declare events as functions because it
will introduce ambiguity; when you refer to a method pointer that is a function, you can’t
know whether you’re referring to the function result or to the function pointer value itself. By
the way, one function event in the VCL slipped past the developers from the Delphi 1 days,
and now it must remain. This event is the TApplication.OnHelp event.

Looking at Listing 11.7, you’ll see that we’ve defined the procedure type TOnHalfMinute as
this:

TTimeEvent = procedure(Sender: TObject; TheTime: TDateTime) of object;

This procedure type defines the procedure type for the OnHalfMinute event handler. Here, we
decided that we want the user to have a reference to the object causing the event to occur and
the TDateTime value of when the event occurred.

The FOnHalfMinute storage field is the reference to the user’s event handler and is surfaced to
the Object Inspector at design time through the OnHalfMinute property.

The basic functionality of the component uses a TTimer object to check the seconds value
every half second. If the seconds value is 0 or 30, it invokes the DoHalfMinute() method,
which is responsible for checking for the existence of an event handler and then calling it.
Much of this is explained in the code’s comments, which you should read over.

After installing this component to Delphi’s Component Palette, you can place the component
on the form and add the following event handler to the OnHalfMinute event:

procedure TForm1.ddgHalfMinuteHalfMinute(Sender: TObject; TheTime: TDateTime);
begin
ShowMessage(‘The Time is ‘+TimeToStr(TheTime));

end;

This should illustrate how your newly defined event type becomes an event handler.

Component-Based Development

PART IV
450

16 chpt_11.qxd 11/19/01 12:11 PM Page 450

Creating Methods
Adding methods to components is no different from adding methods to other objects. However,
there are a few guidelines that you should always take into account when designing compo-
nents.

No Interdependencies!
One of the key goals behind creating components is to simplify the use of the component for
the end user. Therefore, you will want to avoid any method interdependencies as much as pos-
sible. For example, you never want to force the user to have to call a particular method in order
to use the component, and methods shouldn’t have to be called in any particular order. Also,
methods called by the user shouldn’t place the component in a state that makes other events or
methods invalid. Finally, you will want to give your methods meaningful names so that the
user doesn’t have to try to guess what a method does.

Method Exposure
Part of designing a component is to know what methods to make private, public, or protected.
You must take into account not only users of your component, but also those who might use
your component as an ancestor for yet another custom component. Table 11.2 will help you
decide what goes where in your custom component.

TABLE 11.2 Private, Protected, Public, or Published?

Directive What Goes There?

Private Instance variables and methods that you don’t want the descendant type to be
able to access or modify. Typically, you will give access to some private
instance variables through properties that have read and write directives set
in such a way as to help prevent users from shooting themselves in the foot.
Therefore, you want to avoid giving access to any methods that are property-
implementation methods.

Protected Instance variables, methods, and properties that you want descendant classes
to be able to access and modify—but not users of your class. It is a common
practice to place properties in the protected section of a base class for
descendant classes to publish at their discretion.

Public Methods and properties that you want to have accessible to any user of your
class. If you have properties that you want to be accessible at runtime, but
not at design time, this is the place to put them.

Published Properties that you want to be placed on the Object Inspector at design time.
Runtime Type Information (RTTI) is generated for all properties in this section.

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

451

16 chpt_11.qxd 11/19/01 12:11 PM Page 451

Constructors and Destructors
When creating a new component, you have the option of overriding the ancestor component’s
constructor and defining your own. You should keep a few precautions in mind when doing so.

Overriding Constructors
Always make sure to include the override directive when declaring a constructor on a
TComponent descendant class. Here’s an example:

TSomeComopnent = class(TComponent)
private
{ Private declarations }

protected
{ Protected declarations }

public
constructor Create(AOwner: TComponent); override;

published
{ Published declarations }

end;

Component-Based Development

PART IV
452

The Create() constructor is made virtual at the TComponent level. Non-component
classes have static constructors that are invoked from within the constructor of
TComponent classes. Therefore, if you are creating a non-component, descendant class
such as the following, the constructor cannot be overridden because it is not virtual:

TMyObject = class(TPersistant)

You simply redeclare the constructor in this instance.

NOTE

Although not adding the override directive is syntactically legal, it can cause problems when
using your component. This is because when you use the component (both at design time and
at runtime), the non-virtual constructor won’t be called by code that creates the component
through a class reference (such as the streaming system).

Also, be sure that you call the inherited constructor inside your constructor’s code:

constructor TSomeComponent.Create(AOwner: TComponent);
begin
inherited Create(AOwner);
// Place your code here.

end;

16 chpt_11.qxd 11/19/01 12:11 PM Page 452

Design-Time Behavior
Remember that your component’s constructor is called whenever the component is created.
This includes the component’s design-time creation—when you place it on the form. You
might want to prevent certain actions from occurring when the component is being designed.
For example, in the TddgHalfMinute component, you created a TTimer component inside the
component’s constructor. Although it doesn’t hurt to do this, it can be avoided by making sure
that the TTimer is only created at runtime.

You can check the ComponentState property of a component to determine its current state.
Table 11.3 lists the various component states as shown in Delphi 6’s online help.

TABLE 11.3 Component State Values

Flag Component State

csAncestor Set if the component was introduced in an ancestor form. Only set if
csDesigning is also set.

csDesigning Design mode, meaning that it is in a form being manipulated by a form
designer.

csDestroying The component is about to be destroyed.

csFixups Set if the component is linked to a component in another form that
hasn’t yet been loaded. This flag is cleared when all pending fixups are
resolved.

csLoading Loading from a filer object.

csReading Reading its property values from a stream.

csUpdating The component is being updated to reflect changes in an ancestor form.
Only set if csAncestor is also set.

csWriting Writing its property values to a stream.

You will mostly use the csDesigning state to determine whether your component is in design
mode. You can do this with the following statement:

inherited Create(AOwner);
if csDesigning in ComponentState then
{ Do your stuff }

You should note that the csDesigning state is uncertain until after the inherited constructor has
been called and the component is being created with an owner. This is almost always the case
in the IDE form designer.

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

453

16 chpt_11.qxd 11/19/01 12:11 PM Page 453

Overriding Destructors
The general guideline to follow when overriding destructors is to make sure that you call the
inherited destructor only after you free up resources allocated by your component, not before.
The following code illustrates this:

destructor TMyComponent.Destroy;
begin
FTimer.Free;
MyStrings.Free;
inherited Destroy;

end;

Component-Based Development

PART IV
454

As a rule of thumb, when you override constructors, you usually call the inherited
constructor first, and when you override destructors, you usually call the inherited
destructor last. This ensures that the class has been set up before you modify it and
that all dependent resources have been cleaned up before you dispose of a class.

There are exceptions to this rule, but you generally should stick with it unless you
have a good reason not to.

TIP

Registering Your Component
Registering the component tells Delphi which component to place on the Component Palette.
If you used the Component Expert to design your component, you don’t have to do anything
here because Delphi has already generated the code for you. However, if you are creating your
component manually, you’ll need to add the Register() procedure to your component’s unit.

All you have to do is add the procedure Register() to the interface section of the compo-
nent’s unit.

The Register procedure simply calls the RegisterComponents() procedure for every compo-
nent that you are registering in Delphi. The RegisterComponents() procedure takes two para-
meters: the name of the page on which to place the components, and an array of component
types. Listing 11.8 shows how to do this.

LISTING 11.8 Registering Components

Unit MyComp;
interface
type
TMyComp = class(TComponent)
...
end;

16 chpt_11.qxd 11/19/01 12:11 PM Page 454

LISTING 11.8 Continued

TOtherComp = class(TComponent)
...
end;

procedure Register;
implementation
{ TMyComp methods }
{ TOtherCompMethods }
procedure Register;
begin
RegisterComponents(‘DDG’, [TMyComp, TOtherComp]);

end;
end.

The preceding code registers the components TMyComp and TOtherComp and places them on
Delphi’s Component Palette on a page labeled DDG.

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

455

The Component Palette
In Delphi 1 and 2, Delphi maintained a single component library file that stored all
components, icons, and editors for design-time usage. Although it was sometimes
convenient to have everything dealing with design in one file, it could easily get
unwieldy when many components were placed in the component library. Addition-
ally, the more components you added to the palette, the longer it would take to
rebuild the component library when adding new components.

Thanks to packages, introduced with Delphi 3, you can split up your components into
several design packages. Although it’s slightly more complex to deal with multiple
files, this solution is significantly more configurable. The time required to rebuild a
package after adding a component is a fraction of the time it took to rebuild the
component library.

By default, new components are added to a package called DclUser6, but you can
create and install new design packages using the File, New, Package menu item.
The CD-ROM accompanying this book contains a pre-built design package called
DdgDT6.dpk, which includes the components from this book. The runtime package is
named DdgRT6.dpk.

If your design-time support involves anything more than a call to RegisterComponents()
(like property editors or component editors or expert registrations), you should move
the Register() procedure and the information it registers into a unit separate from
your component. The reason for this is that if you compile your all-in-one unit into a
runtime package, and your all-in-one unit’s Register procedure refers to classes or
procedures that exist only in design-time IDE packages, your runtime package is unus-
able. Design-time support should be packaged separately from runtime material.

16 chpt_11.qxd 11/19/01 12:11 PM Page 455

Testing the Component
Although it’s very exciting when you finally write a component and are in the testing stages,
don’t get carried away by trying to add your component to the Component Palette before it has
been debugged sufficiently. You should do all preliminary testing with your component by cre-
ating a project that creates and uses a dynamic instance of the component. The reason for this
is that your component lives inside the IDE when it is used at design time. If your component
contains a bug that corrupts memory, for example, it might crash the IDE as well. Listing 11.9
depicts a unit for testing the TddgExtendedMemo component that will be created later in this
chapter. This project can be found on the CD in the project TestEMem.dpr.

LISTING 11.9 Testing the TddgExtendedMemo Component

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, exmemo, ExtCtrls;

type

TMainForm = class(TForm)
btnCreateMemo: TButton;
btnGetRowCol: TButton;
btnSetRowCol: TButton;
edtColumn: TEdit;
edtRow: TEdit;
Panel1: TPanel;
procedure btnCreateMemoClick(Sender: TObject);
procedure btnGetRowColClick(Sender: TObject);
procedure btnSetRowColClick(Sender: TObject);

public
EMemo: TddgExtendedMemo; // Declare the component.
procedure OnScroll(Sender: TObject);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

Component-Based Development

PART IV
456

16 chpt_11.qxd 11/19/01 12:11 PM Page 456

LISTING 11.9 Continued

procedure TMainForm.btnCreateMemoClick(Sender: TObject);
begin
{ Dynamically create the component. Make sure to make the appropriate
property assignments so that the component can be used normally.
These assignments depend on the component being tested }

if not Assigned(EMemo) then
begin
EMemo := TddgExtendedMemo.Create(self);
EMemo.Parent := Panel1;
EMemo.ScrollBars := ssBoth;
EMemo.WordWrap := True;
EMemo.Align := alClient;
// Assign event handlers to untested events.
EMemo.OnVScroll := OnScroll;
EMemo.OnHScroll := OnScroll;

end;
end;

{ Write whatever methods are required to test the run-time behavior
of the component. This includes methods to access each of the
new properties and methods belonging to the component.

Also, create event handlers for user-defined events so that you can
test them. Since you’re creating the comoponent at run-time, you
have to manually assign the event handlers as was done in the
above Create() constructor.

}
procedure TMainForm.btnGetRowColClick(Sender: TObject);
begin
if Assigned(EMemo) then
ShowMessage(Format(‘Row: %d Column: %d’, [EMemo.Row, EMemo.Column]));

EMemo.SetFocus;
end;

procedure TMainForm.btnSetRowColClick(Sender: TObject);
begin
if Assigned(EMemo) then
begin
EMemo.Row := StrToInt(edtRow.Text);
EMemo.Column := StrToInt(edtColumn.Text);
EMemo.SetFocus;

end;
end;

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

457

16 chpt_11.qxd 11/19/01 12:11 PM Page 457

LISTING 11.9 Continued

procedure TMainForm.OnScroll(Sender: TObject);
begin
MessageBeep(0);

end;

end.

Keep in mind that even testing the component at design time doesn’t mean that your compo-
nent is foolproof. Some design-time behavior can still raise havoc with the Delphi IDE, such as
not calling the inherited Create() constructor.

Component-Based Development

PART IV
458

You cannot assume that your component has been created and set up by the design-
time environment. Your component must be fully usable after only the Create() con-
structor has executed. Therefore, you shouldn’t treat the Loaded() method as part of
the component construction process. The Loaded() method is called only when the
component is loaded from a stream—such as when it is placed in a form built at
design time. Loaded() marks the end of the streaming process. If your component
was simply created (not streamed), Loaded() isn’t called.

NOTE

Providing a Component Icon
No custom component would be complete without its own icon for the Component Palette. To
create one of these icons, use Delphi’s Image Editor (or your favorite bitmap editor) to create
a 24×24 bitmap on which you will draw the component’s icon. This bitmap must be stored
within a DCR file. A file with a .dcr extension is nothing more than a renamed RES file.
Therefore, if you store your icon in a RES file, you can simply rename it to a DCR file.

Even if you have a 256 or higher color driver, save your Component Palette icon as a
16-color bitmap if you plan on releasing the component to others. Your 256-color
bitmaps most likely will look awful on machines running 16-color drivers.

TIP

After you create the bitmap in the DCR file, give the bitmap the same name as the classname of
your component—in all capital letters. Save the resource file as the same name as your compo-
nent’s unit with a .dcr extension. Therefore, if your component is named TXYZComponent, the

16 chpt_11.qxd 11/19/01 12:11 PM Page 458

bitmap name is TXYZCOMPONENT. If the component’s unit name is XYZCOMP.PAS, name the
resource file XYZCOMP.DCR. Place this file in the same directory as the unit, and when you
recompile the unit, the bitmap is linked into the component library automatically.

Sample Components
The remaining sections of this chapter give some real examples of component creation. The
components created here serve two primary purposes. First, they illustrate the techniques
explained in the first part of this chapter. Second, you can actually use these components in
your applications. You might even decide to extend their functionality to meet your needs.

Extending Win32 Component Wrapper Capabilities
In some cases, you might want to extend the functionality of existing components, especially
those components that wrap the Win32 control classes. We’re going to show you how to do
this by creating two components that extend the behavior of the TMemo control and the
TListBox control.

TddgExtendedMemo: Extending the TMemo Component
Although the TMemo component is quite robust, there are a few features it doesn’t make avail-
able that would be useful. For starters, it’s not capable of providing the caret position in terms
of the row and column on which the caret sits. We’ll extend the TMemo component to provide
these as public properties.

Additionally, it is sometimes convenient to perform some action whenever the user touches the
TMemo’s scrollbars. You’ll create events to which the user can attach code whenever these
scrolling events occur.

The source code for the TddgExtendedMemo component is shown in Listing 11.10.

LISTING 11.10 ExtMemo.pas—The Source for the TddgExtendedMemo Component

unit ExtMemo;

interface

uses
Windows, Messages, Classes, StdCtrls;

type

TddgExtendedMemo = class(TMemo)
private
FRow: Longint;

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

459

16 chpt_11.qxd 11/19/01 12:11 PM Page 459

LISTING 11.10 Continued

FColumn: Longint;
FOnHScroll: TNotifyEvent;
FOnVScroll: TNotifyEvent;
procedure WMHScroll(var Msg: TWMHScroll); message WM_HSCROLL;
procedure WMVScroll(var Msg: TWMVScroll); message WM_VSCROLL;
procedure SetRow(Value: Longint);
procedure SetColumn(Value: Longint);
function GetRow: Longint;
function GetColumn: Longint;

protected
// Event dispatching methods
procedure HScroll; dynamic;
procedure VScroll; dynamic;

public
property Row: Longint read GetRow write SetRow;
property Column: Longint read GetColumn write SetColumn;

published
property OnHScroll: TNotifyEvent read FOnHScroll write FOnHScroll;
property OnVScroll: TNotifyEvent read FOnVScroll write FOnVScroll;

end;

implementation

procedure TddgExtendedMemo.WMHScroll(var Msg: TWMHScroll);
begin
inherited;
HScroll;

end;

procedure TddgExtendedMemo.WMVScroll(var Msg: TWMVScroll);
begin
inherited;
VScroll;

end;

procedure TddgExtendedMemo.HScroll;
{ This is the OnHScroll event dispatch method. It checks to see
if OnHScroll points to an event handler and calls it if it does. }

begin
if Assigned(FOnHScroll) then
FOnHScroll(self);

end;

Component-Based Development

PART IV
460

16 chpt_11.qxd 11/19/01 12:11 PM Page 460

LISTING 11.10 Continued

procedure TddgExtendedMemo.VScroll;
{ This is the OnVScroll event dispatch method. It checks to see
if OnVScroll points to an event handler and calls it if it does. }

begin
if Assigned(FOnVScroll) then
FOnVScroll(self);

end;

procedure TddgExtendedMemo.SetRow(Value: Longint);
{ The EM_LINEINDEX returns the character position of the first
character in the line specified by wParam. The Value is used for
wParam in this instance. Setting SelStart to this return value
positions the caret on the line specified by Value. }

begin
SelStart := Perform(EM_LINEINDEX, Value, 0);
FRow := SelStart;

end;

function TddgExtendedMemo.GetRow: Longint;
{ The EM_LINEFROMCHAR returns the line in which the character specified
by wParam sits. If -1 is passed as wParam, the line number at which
the caret sits is returned. }

begin
Result := Perform(EM_LINEFROMCHAR, -1, 0);

end;

procedure TddgExtendedMemo.SetColumn(Value: Longint);
begin
{ Get the length of the current line using the EM_LINELENGTH
message. This message takes a character position as WParam.
The length of the line in which that character sits is returned. }

FColumn := Perform(EM_LINELENGTH, Perform(EM_LINEINDEX, GetRow, 0), 0);
{ If the FColumn is greater than the value passed in, then set
FColumn to the value passed in }

if FColumn > Value then
FColumn := Value;

// Now set SelStart to the newly specified position
SelStart := Perform(EM_LINEINDEX, GetRow, 0) + FColumn;

end;

function TddgExtendedMemo.GetColumn: Longint;
begin
{ The EM_LINEINDEX message returns the line index of a specified
character passed in as wParam. When wParam is -1 then it

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

461

16 chpt_11.qxd 11/19/01 12:11 PM Page 461

LISTING 11.10 Continued

returns the index of the current line. Subtracting SelStart from this
value returns the column position }

Result := SelStart - Perform(EM_LINEINDEX, -1, 0);
end;

end.

We’ll discuss adding the capability to provide row and column information to TddgExtendedMemo.
Notice that we’ve added two private fields to the component, FRow and FColumn. These fields
will hold the row and column of the TddgExtendedMemo’s caret position. We’ve also provided
the Row and Column public properties. These properties are made public because there’s really
no use for them at design time. The Row and Column properties have both reader and writer
access methods. For the Row property, these access methods are GetRow() and SetRow(). The
Column access methods are GetColumn() and SetColumn(). For all practical purposes, you
probably could do away with the FRow and FColumn storage fields because the values for Row
and Column are provided through access methods. However, we’ve left them there because it
offers the opportunity to extend this component.

The four access methods make use of various EM_XXXX Messages. The code comments explain
what is going on in each method and how these messages are used to provide Row and Column
information for the component. The TddgExtendedMemo component also provides two new
events: OnHScroll and OnVScroll. The OnHScroll event occurs whenever the user clicks the
horizontal scrollbar of the control. Likewise, the OnVScroll occurs when the user clicks the
vertical scrollbar. To surface such events, you have to capture the WM_HSCROLL and WM_VSCROLL
Win32 messages that are passed to the control whenever the user clicks either scrollbar. Thus,
you’ve created the two message handlers: WMHScroll() and WMVScroll(). These two message
handlers call the event-dispatching methods HScroll() and VScroll(). These methods are
responsible for checking whether the component user has provided event handlers for the
OnHScroll and OnVScroll events and then calling those event handlers. If you’re wondering
why we didn’t just perform this check in the message handler methods, it’s because often times
you want to be able to invoke an event handler as a result of a different action, such as when
the user changes the caret position.

You can install and use the TddgExtendedMemo with your applications. You might even con-
sider extending this component; for example, whenever the user changes the caret position, a
WM_COMMAND message is sent to the control’s owner. The HiWord(wParam) carries a notification
code indicating the action that occurred. This code would have the value of EN_CHANGE, which
stands for edit-notification message change. It is possible to have your component subclass its
parent and capture this message in the parent’s window procedure. It can then automatically

Component-Based Development

PART IV
462

16 chpt_11.qxd 11/19/01 12:11 PM Page 462

update the FRow and FColumn fields. Subclassing is an altogether different and advanced topic
that is discussed later.

TddgTabbedListBox—Extending the TListBox Component
VCL’s TListbox component is merely an Object Pascal wrapper around the standard Win32
API LISTBOX control. Although it does a fair job encapsulating most of that functionality, there
is a little bit of room for improvement. This section takes you through the steps in creating a
custom component based on TListbox.

The Idea
The idea for this component, like most, was born out of necessity. A list box was needed with
the capability to use tab stops (which is supported in the Win32 API, but not in a TListbox),
and a horizontal scrollbar was needed to view strings that were longer than the list box width
(also supported by the API but not a TListbox). This component will be called a
TddgTabListbox.

The plan for the TddgTabListbox component isn’t terribly complex; We did this by creating a
TListbox descendant component containing the correct field properties, overridden methods,
and new methods to achieve the desired behavior.

The Code
When creating a scrollable list box with tab stops you must include specific window styles in
the TddgTabListbox’s style when the listbox window is created. The window styles needed
are lbs_UseTabStops for tabs and ws_HScroll to allow a horizontal scrollbar. Whenever you
add window styles to a descendant of TWinControl, do so by overriding the CreateParams()
method, as shown in the following code:

procedure TddgTabListbox.CreateParams(var Params: TCreateParams);
begin
inherited CreateParams(Params);
Params.Style := Params.Style or lbs_UseTabStops or ws_HScroll;

end;

To set the tab stops, the TddgTabListbox performs an lb_SetTabStops message, passing the
number of tab stops and a pointer to an array of tabs as the wParam and lParam (these two
variables will be stored in the class as FNumTabStops and FTabStops). The only catch is that
listbox tab stops are handled in a unit of measure called dialog box units. Because dialog box
units don’t make sense for the Delphi programmer, you will surface tabs only in pixels. With
the help of the PixDlg.pas unit shown in Listing 11.11, you can convert back and forth
between dialog box units and screen pixels in both the X and Y planes.

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

463

16 chpt_11.qxd 11/19/01 12:11 PM Page 463

LISTING 11.11 The Source Code for PixDlg.pas

unit Pixdlg;

interface

function DialogUnitsToPixelsX(DlgUnits: word): word;
function DialogUnitsToPixelsY(DlgUnits: word): word;
function PixelsToDialogUnitsX(PixUnits: word): word;
function PixelsToDialogUnitsY(PixUnits: word): word;

implementation
uses WinProcs;

function DialogUnitsToPixelsX(DlgUnits: word): word;
begin
Result := (DlgUnits * LoWord(GetDialogBaseUnits)) div 4;

end;

Component-Based Development

PART IV
464

CreateParams()

Whenever you need to modify any of the parameters—such as style or window
class—that are passed to the CreateWindowEx() API function, you should do so in the
CreateParams() method. CreateWindowEx() is the function used to create the
window handle associated with a TWinControl descendant. By overriding
CreateParams(), you can control the creation of a window on the API level.

CreateParams accepts one parameter of type TCreateParams, which follows:

TCreateParams = record
Caption: PChar;
Style: Longint;
ExStyle: Longint;
X, Y: Integer;
Width, Height: Integer;
WndParent: HWnd;
Param: Pointer;
WindowClass: TWndClass;
WinClassName: array[0..63] of Char;

end;

As a component writer, you will override CreateParams() frequently—whenever you
need to control the creation of a component on the API level. Make sure that you call
the inherited CreateParams() first in order to fill up the Params record for you.

16 chpt_11.qxd 11/19/01 12:11 PM Page 464

LISTING 11.11 Continued

function DialogUnitsToPixelsY(DlgUnits: word): word;
begin
Result := (DlgUnits * HiWord(GetDialogBaseUnits)) div 8;

end;

function PixelsToDialogUnitsX(PixUnits: word): word;
begin
Result := PixUnits * 4 div LoWord(GetDialogBaseUnits);

end;

function PixelsToDialogUnitsY(PixUnits: word): word;
begin
Result := PixUnits * 8 div HiWord(GetDialogBaseUnits);

end;

end.

When you know the tab stops, you can calculate the extent of the horizontal scrollbar. The
scrollbar should extend at least to the end of the longest string in the listbox. Luckily, the
Win32 API provides a function called GetTabbedTextExtent() that retrieves just the informa-
tion you need. When you know the length of the longest string, you can set the scrollbar range
by performing the lb_SetHorizontalExtent message, passing the desired extent as the
wParam.

You also need to write message handlers for some special Win32 messages. In particular, you
need to handle the messages that control inserting and deleting because you need to be able to
measure the length of any new string or know when a long string has been deleted. The mes-
sages you’re concerned with are lb_AddString, lb_InsertString, and lb_DeleteString.
Listing 11.12 contains the source code for the LbTab.pas unit, which contains the
TddgTabListbox component.

LISTING 11.12 LbTab.pas—The TddgTabListBox

unit Lbtab;

interface

uses
SysUtils, Windows, Messages, Classes, Controls, StdCtrls;

type

EddgTabListboxError = class(Exception);

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

465

16 chpt_11.qxd 11/19/01 12:11 PM Page 465

LISTING 11.12 Continued

TddgTabListBox = class(TListBox)
private
FLongestString: Word;
FNumTabStops: Word;
FTabStops: PWord;
FSizeAfterDel: Boolean;
function GetLBStringLength(S: String): word;
procedure FindLongestString;
procedure SetScrollLength(S: String);
procedure LBAddString(var Msg: TMessage); message lb_AddString;
procedure LBInsertString(var Msg: TMessage); message lb_InsertString;
procedure LBDeleteString(var Msg: TMessage); message lb_DeleteString;

protected
procedure CreateParams(var Params: TCreateParams); override;

public
constructor Create(AOwner: TComponent); override;
procedure SetTabStops(A: array of word);

published
property SizeAfterDel: Boolean read FSizeAfterDel

➥ write FSizeAfterDel default True;
end;

implementation

uses PixDlg;

constructor TddgTabListBox.Create(AOwner: TComponent);
begin
inherited Create(AOwner);
FSizeAfterDel := True;
{ set tab stops to Windows defaults... }
FNumTabStops := 1;
GetMem(FTabStops, SizeOf(Word) * FNumTabStops);
FTabStops^ := DialogUnitsToPixelsX(32);

end;

procedure TddgTabListBox.SetTabStops(A: array of word);
{ This procedure sets the listbox’s tabstops to those specified
in the open array of word, A. New tabstops are in pixels, and must
be in ascending order. An exception will be raised if new tabs
fail to set. }

var
i: word;
TempTab: word;
TempBuf: PWord;

Component-Based Development

PART IV
466

16 chpt_11.qxd 11/19/01 12:11 PM Page 466

LISTING 11.12 Continued

begin
{ Store new values in temps in case exception occurs in setting tabs }
TempTab := High(A) + 1; // Figure number of tabstops
GetMem(TempBuf, SizeOf(A)); // Allocate new tabstops
Move(A, TempBuf^, SizeOf(A));// copy new tabstops }
{ convert from pixels to dialog units, and... }
for i := 0 to TempTab - 1 do
A[i] := PixelsToDialogUnitsX(A[i]);

{ Send new tabstops to listbox. Note that we must use dialog units. }
if Perform(lb_SetTabStops, TempTab, Longint(@A)) = 0 then
begin
{ if zero, then failed to set new tabstops, free temp
tabstop buffer and raise an exception }

FreeMem(TempBuf, SizeOf(Word) * TempTab);
raise EddgTabListboxError.Create(‘Failed to set tabs.’)

end
else begin
{ if nonzero, then new tabstops set okay, so
Free previous tabstops }

FreeMem(FTabStops, SizeOf(Word) * FNumTabStops);
{ copy values from temps... }
FNumTabStops := TempTab; // set number of tabstops
FTabStops := TempBuf; // set tabstop buffer
FindLongestString; // reset scrollbar
Invalidate; // repaint

end;
end;

procedure TddgTabListBox.CreateParams(var Params: TCreateParams);
{ We must OR in the styles necessary for tabs and horizontal scrolling
These styles will be used by the API CreateWindowEx() function. }

begin
inherited CreateParams(Params);
{ lbs_UseTabStops style allows tabs in listbox
ws_HScroll style allows horizontal scrollbar in listbox }

Params.Style := Params.Style or lbs_UseTabStops or ws_HScroll;
end;

function TddgTabListBox.GetLBStringLength(S: String): word;
{ This function returns the length of the listbox string S in pixels }
var
Size: Integer;

begin

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

467

16 chpt_11.qxd 11/19/01 12:11 PM Page 467

LISTING 11.12 Continued

// Get the length of the text string
Canvas.Font := Font;
Result := LoWord(GetTabbedTextExtent(Canvas.Handle, PChar(S),

StrLen(PChar(S)), FNumTabStops, FTabStops^));
// Add a little bit of space to the end of the scrollbar extent for looks
Size := Canvas.TextWidth(‘X’);
Inc(Result, Size);

end;

procedure TddgTabListBox.SetScrollLength(S: String);
{ This procedure resets the scrollbar extent if S is longer than the }
{ previous longest string }
var
Extent: Word;

begin
Extent := GetLBStringLength(S);
// If this turns out to be the longest string...
if Extent > FLongestString then
begin
// reset longest string
FLongestString := Extent;
//reset scrollbar extent
Perform(lb_SetHorizontalExtent, Extent, 0);

end;
end;

procedure TddgTabListBox.LBInsertString(var Msg: TMessage);
{ This procedure is called in response to a lb_InsertString message.
This message is sent to the listbox every time a string is inserted.
Msg.lParam holds a pointer to the null-terminated string being
inserted. This will cause the scrollbar length to be adjusted if
the new string is longer than any of the existing strings. }

begin
inherited;
SetScrollLength(PChar(Msg.lParam));

end;

procedure TddgTabListBox.LBAddString(var Msg: TMessage);
{ This procedure is called in response to a lb_AddString message.
This message is sent to the listbox every time a string is added.
Msg.lParam holds a pointer to the null-terminated string being
added. This Will cause the scrollbar length to be ajdusted if the
new string is longer than any of the existing strings.}

Component-Based Development

PART IV
468

16 chpt_11.qxd 11/19/01 12:11 PM Page 468

LISTING 11.12 Continued

begin
inherited;
SetScrollLength(PChar(Msg.lParam));

end;

procedure TddgTabListBox.FindLongestString;
var
i: word;
Strg: String;

begin
FLongestString := 0;
{ iterate through strings and look for new longest string }
for i := 0 to Items.Count - 1 do
begin
Strg := Items[i];
SetScrollLength(Strg);

end;
end;

procedure TddgTabListBox.LBDeleteString(var Msg: TMessage);
{ This procedure is called in response to a lb_DeleteString message.
This message is sent to the listbox everytime a string is deleted.
Msg.wParam holds the index of the item being deleted. Note that
by setting the SizeAfterDel property to False, you can cause the
scrollbar update to not occur. This will improve performance
if you’re deleting often. }

var
Str: String;

begin
if FSizeAfterDel then
begin
Str := Items[Msg.wParam]; // Get string to be deleted
inherited; // Delete string
{ Is deleted string the longest? }
if GetLBStringLength(Str) = FLongestString then
FindLongestString;

end
else
inherited;

end;

end.

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

469

16 chpt_11.qxd 11/19/01 12:11 PM Page 469

One particular point of interest in this component is the SetTabStops() method, which accepts
an open array of word as a parameter. This enables users to pass in as many tabstops as they
want. Here is an example:

ddgTabListboxInstance.SetTabStops([50, 75, 150, 300]);

If the text in the listbox extends beyond the viewable window, the horizontal scrollbar will
appear automatically.

TddgRunButton—Creating Properties
If you wanted to run another executable program in 16-bit Windows, you could use the
WinExec() API function. Although these functions still work in Win32, it isn’t the recom-
mended approach. Now, you should use the CreateProcess() or ShellExecute() functions to
launch another application. CreateProcess() can be a somewhat daunting task when needed
just for that purpose. Therefore, we’ve provided the ProcessExecute() method, which we’ll
show in a moment.

To illustrate the use of ProcessExecute(), we’ve created the component TddgRunButton. All
that is required of the user is to click the button and the application executes.

The TddgRunButton component is an ideal example of creating properties, validating property
values, and encapsulating complex operations. Additionally, we’ll show you how to grab the
application icon from an executable file and how to display it in the TddgRunButton at design
time. There’s one other thing; TddgRunButton descends from TSpeedButton. Because TSpeed
Button contains certain properties that you don’t want accessible at design time through the
Object Inspector, we’ll show you how you can hide (sort of) existing properties from the com-
ponent user. Admittedly, this technique isn’t exactly the cleanest approach to use. Typically, you
would create a component of your own if you want to take the purist approach—of which the
authors are advocates. However, this is one of those instances in which Borland, in all its
infinite wisdom, didn’t provide an intermediate component in between TSpeedButton and
TCustomControl (from which TSpeedButton descends), as Borland did with its other compo-
nents. Therefore, the choice was either to roll our own component that pretty much duplicates
the functionality you get from TSpeedButton, or borrow from TSpeedButton’s functionality
and hide a few properties that aren’t applicable for your needs. We opted for the latter, but only
out of necessity. However, this should clue you in to practice careful forethought as to how
component writers might want to extend your own components.

The code to TddgRunButton is shown in Listing 11.13.

Component-Based Development

PART IV
470

16 chpt_11.qxd 11/19/01 12:11 PM Page 470

LISTING 11.13 RunBtn.pas—The Source to the TddgRunButton Component

unit RunBtn;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, Buttons;

type

TCommandLine = type string;

TddgRunButton = class(TSpeedButton)
private
FCommandLine: TCommandLine;
// Hiding Properties from the Object Inspector
FCaption: TCaption;
FAllowAllUp: Boolean;
FFont: TFont;
FGroupIndex: Integer;
FLayOut: TButtonLayout;
procedure SetCommandLine(Value: TCommandLine);

public
constructor Create(AOwner: TComponent); override;
procedure Click; override;

published
property CommandLine: TCommandLine read FCommandLine write SetCommandLine;
// Read only properties are hidden
property Caption: TCaption read FCaption;
property AllowAllUp: Boolean read FAllowAllUp;
property Font: TFont read FFont;
property GroupIndex: Integer read FGroupIndex;
property LayOut: TButtonLayOut read FLayOut;

end;

implementation

uses ShellAPI;

const
EXEExtension = ‘.EXE’;

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

471

16 chpt_11.qxd 11/19/01 12:11 PM Page 471

LISTING 11.13 Continued

function ProcessExecute(CommandLine: TCommandLine; cShow: Word): Integer;
{ This method encapsulates the call to CreateProcess() which creates
a new process and its primary thread. This is the method used in
Win32 to execute another application, This method requires the use
of the TStartInfo and TProcessInformation structures. These structures
are not documented as part of the Delphi 6 online help but rather
the Win32 help as STARTUPINFO and PROCESS_INFORMATION.

The CommandLine parameter specifies the pathname of the file to
execute.

The cShow parameter specifies one of the SW_XXXX constants which
specifies how to display the window. This value is assigned to the
sShowWindow field of the TStartupInfo structure. }

var
Rslt: LongBool;
StartUpInfo: TStartUpInfo; // documented as STARTUPINFO
ProcessInfo: TProcessInformation; // documented as PROCESS_INFORMATION

begin
{ Clear the StartupInfo structure }
FillChar(StartupInfo, SizeOf(TStartupInfo), 0);
{ Initialize the StartupInfo structure with required data.
Here, we assign the SW_XXXX constant to the wShowWindow field
of StartupInfo. When specifying a value to this field the
STARTF_USESSHOWWINDOW flag must be set in the dwFlags field.
Additional information on the TStartupInfo is provided in the Win32
online help under STARTUPINFO. }

with StartupInfo do
begin
cb := SizeOf(TStartupInfo); // Specify size of structure
dwFlags := STARTF_USESHOWWINDOW or STARTF_FORCEONFEEDBACK;
wShowWindow := cShow

end;

{ Create the process by calling CreateProcess(). This function
fills the ProcessInfo structure with information about the new
process and its primary thread. Detailed information is provided
in the Win32 online help for the TProcessInfo structure under
PROCESS_INFORMATION. }

Rslt := CreateProcess(PChar(CommandLine), nil, nil, nil, False,
NORMAL_PRIORITY_CLASS, nil, nil, StartupInfo, ProcessInfo);

{ If Rslt is true, then the CreateProcess call was successful.
Otherwise, GetLastError will return an error code representing the
error which occurred. }

Component-Based Development

PART IV
472

16 chpt_11.qxd 11/19/01 12:11 PM Page 472

LISTING 11.13 Continued

if Rslt then
with ProcessInfo do
begin
{ Wait until the process is in idle. }
WaitForInputIdle(hProcess, INFINITE);
CloseHandle(hThread); // Free the hThread handle
CloseHandle(hProcess);// Free the hProcess handle
Result := 0; // Set Result to 0, meaning successful

end
else Result := GetLastError; // Set result to the error code.

end;

function IsExecutableFile(Value: TCommandLine): Boolean;
{ This method returns whether or not the Value represents a valid
executable file by ensuring that its file extension is ‘EXE’ }

var
Ext: String[4];

begin
Ext := ExtractFileExt(Value);
Result := (UpperCase(Ext) = EXEExtension);

end;

constructor TddgRunButton.Create(AOwner: TComponent);
{ The constructor sets the default height and width properties
to 45x45 }

begin
inherited Create(AOwner);
Height := 45;
Width := 45;

end;

procedure TddgRunButton.SetCommandLine(Value: TCommandLine);
{ This write access method sets the FCommandLine field to Value, but
only if Value represents a valid executable file name. It also
set the icon for the TddgRunButton to the application icon of the
file specified by Value. }

var
Icon: TIcon;

begin
{ First check to see that Value *is* an executable file and that
it actually exists where specified. }

if not IsExecutableFile(Value) then
Raise Exception.Create(Value+’ is not an executable file.’);

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

473

16 chpt_11.qxd 11/19/01 12:11 PM Page 473

LISTING 11.13 Continued

if not FileExists(Value) then
Raise Exception.Create(‘The file: ‘+Value+’ cannot be found.’);

FCommandLine := Value; // Store the Value in FCommandLine

{ Now draw the application icon for the file specified by Value
on the TddgRunButton icon. This requires us to create a TIcon
instance to which to load the icon. It is then copied from this
TIcon instance to the TddgRunButton’s Canvas.

We must use the Win32 API function ExtractIcon() to retrieve the
icon for the application. }

Icon := TIcon.Create; // Create the TIcon instance
try
{ Retrieve the icon from the application’s file }
Icon.Handle := ExtractIcon(hInstance, PChar(FCommandLine), 0);
with Glyph do
begin
{ Set the TddgRunButton properties so that the icon held by Icon
can be copied onto it. }

{ First, clear the canvas. This is required in case another
icon was previously drawn on the canvas }

Canvas.Brush.Style := bsSolid;
Canvas.FillRect(Canvas.ClipRect);
{ Set the Icon’s width and height }
Width := Icon.Width;
Height := Icon.Height;
Canvas.Draw(0, 0, Icon); // Draw the icon to TddgRunButton’s Canvas

end;
finally
Icon.Free; // Free the TIcon instance.

end;
end;

procedure TddgRunButton.Click;
var
WERetVal: Word;

begin
inherited Click; // Call the inherited Click method
{ Execute the ProcessExecute method and check it’s return value.
if the return value is <> 0 then raise an exception because
an error occurred. The error code is shown in the exception }

WERetVal := ProcessExecute(FCommandLine, sw_ShowNormal);
if WERetVal <> 0 then begin

Component-Based Development

PART IV
474

16 chpt_11.qxd 11/19/01 12:11 PM Page 474

LISTING 11.13 Continued

raise Exception.Create(‘Error executing program. Error Code:; ‘+
IntToStr(WERetVal));

end;
end;

end.

TddgRunButton has one property, CommandLine, which is defined to be of the type String. The
private storage field for CommandLine is FCommandLine.

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

475

It is worth discussing the special definition of TCommandLine. Here is the syntax used:

TCommandLine = type string;

By defining TCommandLine as such, you tell the compiler to treat TCommandLine as a
unique type that is still compatible with other string types. The new type will get its
own runtime type information and therefore can have its own property editor. This
same technique can be used with other types as well. Here is an example:

TMySpecialInt = type Integer;

We will show you how we use this to create a property editor for the CommandLine
property in the next chapter. We don’t show you this technique in this chapter
because creating property editors is an advanced topic that we want to talk about in
more depth.

TIP

The write access method for CommandLine is SetCommandLine(). We’ve provided two helper
functions: IsExecutableFile() and ProcessExecute().

IsExecutableFile() is a function that determines whether a filename passed to it is an exe-
cutable file based on the file’s extension.

Creating and Executing a Process
ProcessExecute() is a function that encapsulates the CreateProcess() Win32 API function
that enables you to launch another application. The application to launch is specified by the
CommandLine parameter, which holds the filename path. The second parameter contains one of
the SW_XXXX constants that indicate how the process’s main windows is to be displayed. Table
11.4 lists the various SW_XXXX constants and their meanings as explained in the online help.

16 chpt_11.qxd 11/19/01 12:11 PM Page 475

TABLE 11.4 SW_XXXX Constants

SW_XXXX Constant Meaning

SW_HIDE Hides the window. Another window will become active.

SW_MAXIMIZE Displays the window as maximized.

SW_MINIMIZE Minimizes the window.

SW_RESTORE Displays a window at its size before it was maximized/minimized.

SW_SHOW Displays a window at its current size/position.

SW_SHOWDEFAULT Shows a window at the state specified by the TStartupInfo struc-
ture passed to CreateProcess().

SW_SHOWMAXIMIZED Activates/displays the window as maximized.

SW_SHOWMINIMIZED Activates/displays the window as minimized.

SW_SHOWMINNOACTIVE Displays the window as minimized, but the currently active window
remains active.

SW_SHOWNA Displays the window at its current state. The currently active win-
dow remains active.

SW_SHOWNOACTIVATE Displays the window at the most recent size/position. The currently
active window remains active.

SW_SHOWNORMAL Activates/displays the window at its more recent size/position. This
position is restored if the window was previously maximized/
minimized.

ProcessExecute() is a handy utility function that you might want to keep around in a separate
unit that can be shared by other applications.

TddgRunButton Methods
The TddgRunButton.Create() constructor simply sets a default size for itself after calling the
inherited constructor.

The SetCommandLine() method, which is the writer access method for the CommandLine para-
meter, performs several tasks. It determines whether the value being assigned to CommandLine
is a valid executable filename. If not, it raises an exception.

If the entry is valid, it is assigned to the FCommandLine field. SetCommandLine() then extracts
the icon from the application file and draws it to TddgRunButton’s canvas. The Win32 API
function ExtractIcon() is used to do this. The technique used is explained in the source code
comments.

TddgRunButton.Click() is the event-dispatching method for the TSpeedButton.OnClick
event. It is necessary to call the inherited Click() method that will invoke the OnClick event

Component-Based Development

PART IV
476

16 chpt_11.qxd 11/19/01 12:11 PM Page 476

handler if assigned. After calling the inherited Click(), you call ProcessExecute() and exam-
ine its result value to determine whether the call was successful. If not, an exception is raised.

TddgButtonEdit—Container Components
Occasionally you might like to create a component that is composed of one or more other
components. Delphi’s TDBNavigator is a good example of such a component because it con-
sists of a TPanel and a number of TSpeedButton components. Specifically, this section illus-
trates this concept by creating a component that is a combination of a TEdit and a
TSpeedButton component. We will call this component TddgButtonEdit.

Design Decisions
Considering that Object Pascal is based on a single-inheritance object model, TddgButtonEdit
will need to be a component in its own right, which must contain both a TEditl and a
TSpeedButton. Furthermore, because it’s necessary that this component contain windowed
controls, it will need to be a windowed control itself. For these reasons, we chose to descend
TddgButtonEdit from TWinControl. We created both the TEdit and TSpeedButton in
TddgButtonEdit’s constructor using the following code:

constructor TddgButtonEdit.Create(AOwner: TComponent);
begin
inherited Create(AOwner);
FEdit := TEdit.Create(Self);
FEdit.Parent := self;
FEdit.Height := 21;

FSpeedButton := TSpeedButton.Create(Self);
FSpeedButton.Left := FEdit.Width;
FSpeedButton.Height := 19; // two less then TEdit’s Height
FSpeedButton.Width := 19;
FSpeedButton.Caption := ‘...’;
FSpeedButton.Parent := Self;

Width := FEdit.Width+FSpeedButton.Width;
Height := FEdit.Height;

end;

When creating a component that contains other components, The challenge is surfacing the
properties of the “inner” components from the container component. For example, the
TddgButtonEdit will need a Text property. You also might want to be able to change the font
for the text in the control, therefore, a Font property is needed. Finally, there needs to be an
OnClick event for the button in the control. You wouldn’t want to attempt to implement this
yourself in the container component when it is already available from the inner components.

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

477

16 chpt_11.qxd 11/19/01 12:11 PM Page 477

The goal, then, is to surface the appropriate properties of the inner controls without rewriting
the interfaces to these controls.

Surfacing Properties
This usually boils down to the simple but time-consuming task of writing reader and writer
methods for each of the inner component properties you want to resurface through the con-
tainer component. In the case of the Text property, for example, you might give the
TddgButtonEdit a Text property with read and write methods:

TddgButtonEdit = class(TWinControl)
private
FEdit: TEdit;
protected
procedure SetText(Value: String);
function GetText: String;

published
property Text: String read GetText write SetText;

end;

The SetText() and GetText() methods directly access the Text property of the contained
TEdit control, as shown in the following:

function TddgButtonEdit.GetText: String;
begin
Result := FEdit.Text;

end;

procedure TddgButtonEdit.SetText(Value: String);
begin
FEdit.Text := Value;

end;

Surfacing Events
In addition to properties, it’s also quite likely that you might want to resurface events that exist
in the inner components. For example, when the user clicks the TSpeedButton control, you
would want to surface its OnClick event. Resurfacing events is just as straightforward as resur-
facing properties—after all, events are properties.

You need to first give the TddgButtonEdit its own OnClick event. For clarity, we named this
event OnButtonClick. The read and write methods for this event simply redirect the assign-
ment to the OnClick event of the internal TSpeedButton.

Listing 11.14 shows the TddgButtonEdit container component.

Component-Based Development

PART IV
478

16 chpt_11.qxd 11/19/01 12:11 PM Page 478

LISTING 11.14 TddgButtonEdit—A Container Component

unit ButtonEdit;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, Buttons;

type
TddgButtonEdit = class(TWinControl)
private
FSpeedButton: TSpeedButton;
FEdit: TEdit;

protected
procedure WMSize(var Message: TWMSize); message WM_SIZE;
procedure SetText(Value: String);
function GetText: String;
function GetFont: TFont;
procedure SetFont(Value: TFont);
function GetOnButtonClick: TNotifyEvent;
procedure SetOnButtonClick(Value: TNotifyEvent);

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

published
property Text: String read GetText write SetText;
property Font: TFont read GetFont write SetFont;
property OnButtonClick: TNotifyEvent read GetOnButtonClick

write SetOnButtonClick;
end;

implementation

procedure TddgButtonEdit.WMSize(var Message: TWMSize);
begin
inherited;
FEdit.Width := Message.Width-FSpeedButton.Width;
FSpeedButton.Left := FEdit.Width;

end;

constructor TddgButtonEdit.Create(AOwner: TComponent);
begin
inherited Create(AOwner);
FEdit := TEdit.Create(Self);

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

479

16 chpt_11.qxd 11/19/01 12:11 PM Page 479

LISTING 11.14 Continued

FEdit.Parent := self;
FEdit.Height := 21;

FSpeedButton := TSpeedButton.Create(Self);
FSpeedButton.Left := FEdit.Width;
FSpeedButton.Height := 19; // two less than TEdit’s Height
FSpeedButton.Width := 19;
FSpeedButton.Caption := ‘...’;
FSpeedButton.Parent := Self;

Width := FEdit.Width+FSpeedButton.Width;
Height := FEdit.Height;

end;

destructor TddgButtonEdit.Destroy;
begin
FSpeedButton.Free;
FEdit.Free;
inherited Destroy;

end;

function TddgButtonEdit.GetText: String;
begin
Result := FEdit.Text;

end;

procedure TddgButtonEdit.SetText(Value: String);
begin
FEdit.Text := Value;

end;

function TddgButtonEdit.GetFont: TFont;
begin
Result := FEdit.Font;

end;

procedure TddgButtonEdit.SetFont(Value: TFont);
begin
if Assigned(FEdit.Font) then
FEdit.Font.Assign(Value);

end;

function TddgButtonEdit.GetOnButtonClick: TNotifyEvent;

Component-Based Development

PART IV
480

16 chpt_11.qxd 11/19/01 12:11 PM Page 480

LISTING 11.14 Continued

begin
Result := FSpeedButton.OnClick;

end;

procedure TddgButtonEdit.SetOnButtonClick(Value: TNotifyEvent);
begin
FSpeedButton.OnClick := Value;

end;

end.

TddgDigitalClock—Creating Component Events
TddgDigitalClock illustrates the process of creating and making available user-defined events.
We will use the same technique that was discussed earlier when we illustrated creating events
with the TddgHalfMinute component.

TddgDigitalClock descends from TPanel. We decided that TPanel was an ideal component
from which TddgDigitalClock could descend because TPanel has the BevelXXXX properties.
This enables you to give the TddgDigitalClock a pleasing visual appearance. Also, you can
use the TPanel.Caption property to display the system time.

TddgDigitalClock contains the following events to which the user can assign code:

OnHour Occurs on the hour, every hour.

OnHalfPast Occurs on the half hour.

OnMinute Occurs on the minute.

OnHalfMinute Occurs every 30 seconds, on the minute and on the half
minute.

OnSecond Occurs on the second.

TddgDigitalClock uses a TTimer component internally. Its OnTimer event handler performs
the logic to paint the time information and to invoke the event-dispatching methods for the pre-
viously listed events accordingly. Listing 11.15 shows the source code for DdgClock.pas.

LISTING 11.15 DdgClock.pas—Source for the TddgDigitalClock Component

{$IFDEF VER110}
{$OBJEXPORTALL ON}
{$ENDIF}

unit DDGClock;

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

481

16 chpt_11.qxd 11/19/01 12:11 PM Page 481

LISTING 11.15 Continued

interface

uses
Windows, Messages, Controls, Forms, SysUtils, Classes, ExtCtrls;

type

{ Declare an event type which takes the sender of the event, and
a TDateTime variable as parameters }

TTimeEvent = procedure(Sender: TObject; DDGTime: TDateTime) of object;

TddgDigitalClock = class(TPanel)
private
{ Data fields }
FHour,
FMinute,
FSecond: Word;
FDateTime: TDateTime;
FOldMinute,
FOldSecond: Word;
FTimer: TTimer;
{ Event handlers }
FOnHour: TTimeEvent; // Occurs on the hour
FOnHalfPast: TTimeEvent; // Occurs every half-hour
FOnMinute: TTimeEvent; // Occurs on the minute
FOnSecond: TTimeEvent; // Occurs every second
FOnHalfMinute: TTimeEvent; // Occurs every 30 seconds
{ Define OnTimer event handler for internal TTimer, FTimer }
procedure TimerProc(Sender: TObject);

protected
{ Override the Paint methods }
procedure Paint; override;

{ Define the various event dispatching methods }
procedure DoHour(Tm: TDateTime); dynamic;
procedure DoHalfPast(Tm: TDateTime); dynamic;
procedure DoMinute(Tm: TDateTime); dynamic;
procedure DoHalfMinute(Tm: TDateTime); dynamic;
procedure DoSecond(Tm: TDateTime); dynamic;

public
{ Override the Create constructor and Destroy destructor }
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

Component-Based Development

PART IV
482

16 chpt_11.qxd 11/19/01 12:11 PM Page 482

LISTING 11.15 Continued

published
{ Define event properties }
property OnHour: TTimeEvent read FOnHour write FOnHour;
property OnHalfPast: TTimeEvent read FOnHalfPast write FOnHalfPast;
property OnMinute: TTimeEvent read FOnMinute write FOnMinute;
property OnHalfMinute: TTimeEvent read FOnHalfMinute

write FOnHalfMinute;
property OnSecond: TTimeEvent read FOnSecond write FOnSecond;

end;

implementation

constructor TddgDigitalClock.Create(AOwner: TComponent);
begin
inherited Create(AOwner); // Call the inherited constructor
Height := 25; // Set default width and height properties
Width := 120;
BevelInner := bvLowered; // Set Default bevel properties
BevelOuter := bvLowered;
{ Set the inherited Caption property to an empty string }
inherited Caption := ‘’;
{ Create the TTimer instance and set both its Interval property and
OnTime event handler. }

FTimer:= TTimer.Create(self);
FTimer.interval:= 200;
FTimer.OnTimer:= TimerProc;

end;

destructor TddgDigitalClock.Destroy;
begin
FTimer.Free; // Free the TTimer instance.
inherited Destroy; // Call inherited Destroy method

end;

procedure TddgDigitalClock.Paint;
begin
inherited Paint; // Call the inherited Paint method
{ Now set the inherited Caption property to current time. }
inherited Caption := TimeToStr(FDateTime);

end;

procedure TddgDigitalClock.TimerProc(Sender: TObject);
var

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

483

16 chpt_11.qxd 11/19/01 12:11 PM Page 483

LISTING 11.15 Continued

HSec: Word;
begin
{ Save the old minute and second for later use }
FOldMinute := FMinute;
FOldSecond := FSecond;
FDateTime := Now; // Get the current time.
{ Extract the individual time elements }
DecodeTime(FDateTime, FHour, FMinute, FSecond, Hsec);

refresh; // Redraw the component so that the new time is displayed.

{ Now call the event handlers depending on the time }
if FMinute = 0 then
DoHour(FDateTime);

if FMinute = 30 then
DoHalfPast(FDateTime);

if (FMinute <> FOldMinute) then
DoMinute(FDateTime);

if FSecond <> FOldSecond then
if ((FSecond = 30) or (FSecond = 0)) then
DoHalfMinute(FDateTime)

else
DoSecond(FDateTime);

end;

{ The event dispatching methods below determine if component user has
attached event handlers to the various clock events and calls them
if they exist }

procedure TddgDigitalClock.DoHour(Tm: TDateTime);
begin
if Assigned(FOnHour) then
TTimeEvent(FOnHour)(Self, Tm);

end;

procedure TddgDigitalClock.DoHalfPast(Tm: TDateTime);
begin
if Assigned(FOnHalfPast) then
TTimeEvent(FOnHalfPast)(Self, Tm);

end;

procedure TddgDigitalClock.DoMinute(Tm: TDateTime);
begin
if Assigned(FOnMinute) then
TTimeEvent(FOnMinute)(Self, Tm);

end;

Component-Based Development

PART IV
484

16 chpt_11.qxd 11/19/01 12:11 PM Page 484

LISTING 11.15 Continued

procedure TddgDigitalClock.DoHalfMinute(Tm: TDateTime);
begin
if Assigned(FOnHalfMinute) then
TTimeEvent(FOnHalfMinute)(Self, Tm);

end;

procedure TddgDigitalClock.DoSecond(Tm: TDateTime);
begin
if Assigned(FOnSecond) then
TTimeEvent(FOnSecond)(Self, Tm);

end;

end.

The logic behind this component is explained in the source commentary. The methods used are
no different from those that were previously explained when we discussed creating events.
TddgDigitalClock only adds more events and contains logic to determine when each event is
invoked.

Adding Forms to the Component Palette
Adding forms to the Object Repository is a convenient way to give forms a starting point. But
what if you develop a form that you reuse often that doesn’t need to be inherited and doesn’t
require added functionality? Delphi 6 provides a way you can reuse your forms as components
on the Component Palette. In fact, the TFontDialog and TOpenDialog components are exam-
ples of forms that are accessible from the Component Palette. Actually, these dialogs aren’t
Delphi forms; these are dialogs provided by the CommDlg.dll. Nevertheless, the concept is the
same.

To add forms to the Component Palette, you must wrap your form with a component to make
it a separate, installable component. The process as described here uses a simple password dia-
log whose functionality will verify your password automatically. Although this is a very simple
project, the purpose of this discussion is not to show you how to install a complex dialog as a
component, but rather to show you the general method for adding dialog boxes to the
Component Palette. The same method applies to dialog boxes of any complexity.

You must create the form that is going to be wrapped by the component. The form we used is
defined in the file PwDlg.pas. This unit also shows a component wrapper for this form.

Listing 11.16 shows the unit defining the TPasswordDlg form and its wrapper component,
TddgPasswordDialog.

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

485

16 chpt_11.qxd 11/19/01 12:11 PM Page 485

LISTING 11.16 PwDlg.pas—TPasswordDlg Form and Its Component Wrapper
TddgPasswordDialog

unit PwDlg;

interface

uses Windows, SysUtils, Classes, Graphics, Forms, Controls, StdCtrls,
Buttons;

type

TPasswordDlg = class(TForm)
Label1: TLabel;
Password: TEdit;
OKBtn: TButton;
CancelBtn: TButton;

end;

{ Now declare the wrapper component. }
TddgPasswordDialog = class(TComponent)
private
PassWordDlg: TPasswordDlg; // TPassWordDlg instance
FPassWord: String; // Place holder for the password

public
function Execute: Boolean; // Function to launch the dialog

published
property PassWord: String read FPassword write FPassword;

end;

implementation
{$R *.DFM}

function TddgPasswordDialog.Execute: Boolean;
begin
{ Create a TPasswordDlg instance }
PasswordDlg := TPasswordDlg.Create(Application);
try
Result := False; // Initialize the result to false
{ Show the dialog and return true if the password
is correct. }

if PasswordDlg.ShowModal = mrOk then
Result := PasswordDlg.Password.Text = FPassword;

Component-Based Development

PART IV
486

16 chpt_11.qxd 11/19/01 12:11 PM Page 486

LISTING 11.16 Continued

finally
PasswordDlg.Free; // Free instance of PasswordDlg

end;
end;

end.

The TddgPasswordDialog is called a wrapper component because it wraps the form with a
component that can be installed into Delphi 6’s Component Palette.

TddgPasswordDialog descends directly from TComponent. You might recall from the last chap-
ter that TComponent is the lowest-level class that can be manipulated by the Form Designer in
the IDE. This class has two private variables: PasswordDlg of type TPasswordDlg and
FPassWord of type string. PasswordDlg is the TPasswordDlg instance that this wrapper com-
ponent displays. FPassWord is an internal storage field that holds a password string.

FPassWord gets its data through the property PassWord. Thus, PassWord doesn’t actually store
data; rather, it serves as an interface to the storage variable FPassWord.

TddgPassWordDialog’s Execute() function creates a TPasswordDlg instance and displays it as
a modal dialog box. When the dialog box terminates, the string entered in the password TEdit
control is compared against the string stored in FPassword.

The code here is contained within a try..finally construct. The finally portion ensures that
the TPasswordDlg component is disposed of regardless of any error that might occur.

After you have added TddgPasswordDialog to the Component Palette, you can create a project
that uses it. As with any other component, you select TddgPasswordDialog from the
Component Palette and place it on your form. The project created in the preceding section con-
tains a TddgPasswordDialog and one button whose OnClick event handler does the following:

procedure TForm1.Button1Click(Sender: TObject);
begin
if ddgPasswordDialog.Execute then // Launch the PasswordDialog
ShowMessage(‘You got it!’) // Correct password

else
ShowMessage(‘Sorry, wrong answer!’); // Incorrect password

end;

The Object Inspector contains three properties for the TddgPasswordDialog component: Name,
Password, and Tag. To use the component, you must set the Password property to some string

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

487

16 chpt_11.qxd 11/19/01 12:11 PM Page 487

value. When you run the project, TddgPasswordDialog prompts the user for a password and
compares it against the password you entered for the Password property.

Summary
Knowing how components work is fundamental to understanding Delphi, and you work with
many more custom components later in the book. Now that you can see what happens behind
the scenes, components will no longer seem like just a black box. The next chapter goes
beyond component creation into more advanced component building techniques.

Component-Based Development

PART IV
488

16 chpt_11.qxd 11/19/01 12:11 PM Page 488

CHAPTER

12
Advanced VCL Component
Building

IN THIS CHAPTER
• Pseudo-Visual Components 490

• Animated Components 494

• Writing Property Editors 510

• Component Editors 522

• Streaming Nonpublished Component Data 527

• Property Categories 538

• Lists of Components: TCollection
and TCollectionItem 543

17 chpt_12.qxd 11/19/01 12:07 PM Page 489

The last chapter broke into writing Delphi custom components, and it gave you a solid intro-
duction to the basics. In this chapter, you’ll learn how to take component writing to the next
level by incorporating advanced design techniques into your Delphi custom components. This
chapter provides examples of advanced techniques such as pseudo-visual components, detailed
property editors, component editors, and collections.

Pseudo-Visual Components
You’ve learned about visual components such as TButton and TEdit, and you’ve learned about
nonvisual components such as TTable and TTimer. In this section, you’ll also learn about a
type of component that kind of falls in between visual and nonvisual components—we’ll call
these components pseudo-visual components.

Extending Hints
Specifically, the pseudo-visual component shown in this section is an extension of a Delphi
pop-up hint window. We call this a pseudo-visual component because it’s not a component
that’s used visually from the Component Palette at design time, but it does represent itself visu-
ally at runtime in the body of pop-up hints.

Replacing the default style hint window in a Delphi application requires that you complete the
following four steps:

1. Create a descendant of THintWindow.

2. Destroy the old hint window class.

3. Assign the new hint window class.

4. Create the new hint window class.

Creating a THintWindow Descendant
Before you write the code for a THintWindow descendant, you must first decide how you want
your new hint window class to behave differently from the default one. In this case, you’ll cre-
ate an elliptical hint window rather than the default square one. This actually demonstrates
another cool technique: creating nonrectangular windows! Listing 12.1 shows the RndHint.pas
unit, which contains the THintWindow descendant TDDGHintWindow.

LISTING 12.1 RndHint.pas—Illustrates an Elliptical Hint

unit RndHint;

interface

uses Windows, Classes, Controls, Forms, Messages, Graphics;

Component-Based Development

PART IV
490

17 chpt_12.qxd 11/19/01 12:07 PM Page 490

LISTING 12.1 Continued

type
TDDGHintWindow = class(THintWindow)
private
FRegion: THandle;
procedure FreeCurrentRegion;

public
destructor Destroy; override;
procedure ActivateHint(Rect: TRect; const AHint: string); override;
procedure Paint; override;
procedure CreateParams(var Params: TCreateParams); override;

end;

implementation

destructor TDDGHintWindow.Destroy;
begin
FreeCurrentRegion;
inherited Destroy;

end;

procedure TDDGHintWindow.FreeCurrentRegion;
{ Regions, like other API objects, should be freed when you are }
{ through using them. Note, however, that you cannot delete a }
{ region which is currently set in a window, so this method sets }
{ the window region to 0 before deleting the region object. }
begin
if FRegion <> 0 then begin // if Region is alive...
SetWindowRgn(Handle, 0, True); // set win region to 0
DeleteObject(FRegion); // kill the region
FRegion := 0; // zero out field

end;
end;

procedure TDDGHintWindow.ActivateHint(Rect: TRect; const AHint: string);
{ Called when the hint is activated by putting the mouse pointer }
{ above a control. }
begin
with Rect do
Right := Right + Canvas.TextWidth(‘WWWW’); // add some slop

BoundsRect := Rect;
FreeCurrentRegion;
with BoundsRect do
{ Create a round rectangular region to display the hint window }
FRegion := CreateRoundRectRgn(0, 0, Width, Height, Width, Height);

Advanced VCL Component Building

CHAPTER 12

12

A
D

V
A

N
C

ED
V

C
L

C
O

M
PO

N
EN

T
B

U
ILD

IN
G

491

17 chpt_12.qxd 11/19/01 12:07 PM Page 491

LISTING 12.1 Continued

if FRegion <> 0 then
SetWindowRgn(Handle, FRegion, True); // set win region

inherited ActivateHint(Rect, AHint); // call inherited
end;

procedure TDDGHintWindow.CreateParams(var Params: TCreateParams);
{ We need to remove the border created on the Windows API-level }
{ when the window is created. }
begin
inherited CreateParams(Params);
Params.Style := Params.Style and not ws_Border; // remove border

end;

procedure TDDGHintWindow.Paint;
{ This method gets called by the WM_PAINT handler. It is }
{ responsible for painting the hint window. }
var
R: TRect;

begin
R := ClientRect; // get bounding rectangle
Inc(R.Left, 1); // move left side slightly
Canvas.Font.Color := clInfoText; // set to proper color
{ paint string in the center of the round rect }
DrawText(Canvas.Handle, PChar(Caption), Length(Caption), R,

DT_NOPREFIX or DT_WORDBREAK or DT_CENTER or DT_VCENTER);
end;

initialization
Application.ShowHint := False; // destroy old hint window
HintWindowClass := TDDGHintWindow; // assign new hint window
Application.ShowHint := True; // create new hint window

end.

The overridden CreateParams() and Paint() methods are fairly straightforward. CreateParams()
provides an opportunity to adjust the structure of the window styles before the hint window is
created on an API level. In this method, the WS_BORDER style is removed from the window class
in order to prevent a rectangular border from being drawn around the window. The Paint()
method is responsible for rendering the window. In this case, the method must paint the hint’s
Caption property into the center of the caption window. The color of the text is set to
clInfoText, which is the system-defined color of hint text.

Component-Based Development

PART IV
492

17 chpt_12.qxd 11/19/01 12:07 PM Page 492

An Elliptical Window
The ActivateHint() method contains the magic for creating the nonrectangular hint window.
Well, it’s not really magic. Actually, two API calls make it happen: CreateRoundRectRgn()
and SetWindowRgn().

CreateRoundRectRgn() defines a rounded rectangular region within a particular window. A
region is a special API object that allows you to perform special painting, hit testing, filling,
and clipping in one area. In addition to CreateRoundRectRgn(), a number of other Win32 API
functions create different types of regions, including the following:

• CreateEllipticRgn()

• CreateEllipticRgnIndirect()

• CreatePolygonRgn()

• CreatePolyPolygonRgn()

• CreateRectRgn()

• CreateRectRgnIndirect()

• CreateRoundRectRgn()

• ExtCreateRegion()

Additionally, the CombineRgn() function can be used to combine multiple regions into one
complex region. All these functions are described in detail in the Win32 API online help.

SetWindowRgn() is then called, passing the recently created region handle as a parameter. This
function causes the operating system to take ownership of the region, and all subsequent draw-
ing in the specified window will occur only within the region. Therefore, if the region defined
is a rounded rectangle, painting will occur only within that rounded rectangular region.

Advanced VCL Component Building

CHAPTER 12

12

A
D

V
A

N
C

ED
V

C
L

C
O

M
PO

N
EN

T
B

U
ILD

IN
G

493

You need to be aware of two side effects when using SetWindowRgn(). First, because
only the portion of the window within the region is painted, your window probably
won’t have a frame or title bar. You must be prepared to provide the user with an
alternative way to move, size, and close the window without the aid of a frame or
title bar. Second, because the operating system takes ownership of the region
specified in SetWindowRgn(), you must be careful not to manipulate or delete the
region while it’s in use. The TDDGHintWindow component handles this by calling its
FreeCurrentRegion() method before the window is destroyed or a new window is
created.

CAUTION

17 chpt_12.qxd 11/19/01 12:07 PM Page 493

Enabling the THintWindow Descendant
The initialization code for the RndHint unit does the work of making the TDDGHintWindow
component the application-wide active hint window. Setting Application.ShowHint to False
causes the old hint window to be destroyed. At that point, you must assign your THintWindow
descendant class to the HintWindowClass global variable. Then, setting Application.ShowHint
back to True causes a new hint window to be created—this time it will be an instance of your
descendant class.

Deploying TDDGHintWindow
Deploying this pseudo-visual component is different from normal visual and non-visual compo-
nents. Because all the work for instantiating the component is performed in the initialization
part of its unit, the unit shouldn’t be added to a design package for use on the Component
Palette but merely added to the uses clause of one of the source files in your project.

Animated Components
Once upon a time while writing a Delphi application, we thought to ourselves, “This is a really
cool application, but our About dialog is kind of boring. We need something to spice it up a lit-
tle.” Suddenly, a light bulb came on and an idea for a new component was born We would cre-
ate a scrolling credits marquee window to incorporate into our About dialogs.

The Marquee Component
Let’s take a moment to analyze how the marquee component works. The marquee control: is
able to take a bunch of strings and scroll them across the component on command, like a real-
life marquee. You’ll use TCustomPanel as the base class for this TddgMarquee component
because it already has the basic built-in functionality you need, including a pretty 3D, beveled
border.

TddgMarquee paints some text strings to a bitmap residing in memory and then copies portions
of the memory bitmap to its own canvas to simulate a scrolling effect. It does this using the
BitBlt() API function to copy a component-sized portion of the memory canvas to the com-
ponent, starting at the top. Then, it moves down a couple pixels on the memory canvas and
copies that image to the control. It moves down again, copies again, and repeats the process
over and over so that the entire contents of the memory canvas appear to scroll through the
component.

Now is the time to identify any additional classes you might need to integrate into the
TddgMarquee component in order to bring it to life. There are really only two such classes.
First, you need the TStringList class to hold all the strings you want to scroll. Second, you

Component-Based Development

PART IV
494

17 chpt_12.qxd 11/19/01 12:07 PM Page 494

must have a memory bitmap on which you can render all the text strings. VCL’s own TBitmap
component will work nicely for this purpose.

Writing the Component
As with the previous components in this chapter, the code for TddgMarquee should be approached
with a logical plan of attack. In this case, we break up the code work into reasonable parts. The
TddgMarquee component: can be divided into five major parts:

• The mechanism that renders the text onto the memory canvas

• The mechanism that copies the text from the memory canvas to the marquee window

• The timer that keeps track of when and how to scroll the window to perform the animation

• The class constructor, destructor, and associated methods

• The finishing touches, such as various helper properties and methods

Drawing on an Offscreen Bitmap
When creating an instance of TBitmap, you need to know how big it must be to hold the entire
list of strings in memory. You do this by first figuring out how high each line of text will be
and then multiplying by the number of lines. To find the height and spacing of a line of text in
a particular font, use the GetTextMetrics() API function by passing it the canvas’s handle. A
TTextMetric record to be filled in by the function:

var
Metrics: TTextMetric;

begin
GetTextMetrics(Canvas.Handle, Metrics);

Advanced VCL Component Building

CHAPTER 12

12

A
D

V
A

N
C

ED
V

C
L

C
O

M
PO

N
EN

T
B

U
ILD

IN
G

495

The GetTextMetrics() API function modifies a TTextMetric record that contains a
great deal of quantitative information about a device context’s currently selected
font. This function gives you information not only on font height and width but also
on whether the font is boldfaced, italicized, struck out, or even what the character
set name is.

The TextHeight() method of TCanvas won’t work here. That method only determines
the height of a specific line of text rather than the spacing for the font in general.

NOTE

The tmHeight field of the Metrics record gives the height of a character cell in the canvas’s
current font. If you add to that value the tmInternalLeading field—to allow for some space
between lines—you get the height for each line of text to be drawn on the memory canvas:

LineHi := Metrics.tmHeight + Metrics.tmInternalLeading;

17 chpt_12.qxd 11/19/01 12:07 PM Page 495

The height necessary for the memory canvas then can be determined by multiplying LineHi by
the number of lines of text and adding that value to two times the height of the TddgMarquee
control (to create the blank space at the beginning and end of the marquee). Suppose that the
TStringList in which all the strings live is called FItems; now place the memory canvas
dimensions in a TRect structure:

var
VRect: TRect;

begin
{ VRect rectangle represents entire memory bitmap }
VRect := Rect(0, 0, Width, LineHi * FItems.Count + Height * 2);

end;

After being instantiated and sized, the memory bitmap is initialized further by setting the font
to match the Font property of TddgMarquee, filling the background with a color determined by
the Color property of TddgMarquee, and setting the Style property of Brush to bsClear.

Component-Based Development

PART IV
496

When you render text on TCanvas, the text background is filled with the current color
of TCanvas.Brush. To cause the text background to be invisible, set
TCanvas.Brush.Style to bsClear.

TIP

Most of the preliminary work is now in place, so it’s time to render the text on the memory
bitmap. The most straightforward way to output the text onto a canvas is to use the TextOut()
method of TCanvas; however, you have more control over the formatting of the text when you
use the more complex DrawText() API function. Because it requires control over justification,
TddgMarquee will use the DrawText() function. An enumerated type is ideal to represent the
text justification:

type
TJustification = (tjCenter, tjLeft, tjRight);

The following code shows the PaintLine() method for TddgMarquee, which makes use of
DrawText() to render text onto the memory bitmap. In this method, FJust represents an
instance variable of type TJustification. Here’s the code:

procedure TddgMarquee.PaintLine(R: TRect; LineNum: Integer);
{ this method is called to paint each line of text onto MemBitmap }
const
Flags: array[TJustification] of DWORD = (DT_CENTER, DT_LEFT, DT_RIGHT);

var
S: string;

17 chpt_12.qxd 11/19/01 12:07 PM Page 496

begin
{ Copy next line to local variable for clarity }
S := FItems.Strings[LineNum];
{ Draw line of text onto memory bitmap }
DrawText(MemBitmap.Canvas.Handle, PChar(S), Length(S), R,
Flags[FJust] or DT_SINGLELINE or DT_TOP);

end;

Painting the Component
Now that you know how to create the memory bitmap and paint text onto it, the next step is
learning how to copy that text to the TddgMarquee canvas.

The Paint() method of a component is invoked in response to a Windows WM_PAINT message.
The Paint() method is what gives your component life; you use the Paint() method to paint,
draw, and fill to determine the graphical appearance of your components.

The job of TddgMarquee.Paint() is to copy the strings from the memory canvas to the canvas
of TddgMarquee. This feat is accomplished by the BitBlt() API function, which copies the
bits from one device context to another.

To determine whether TddgMarquee is currently running, the component will maintain a Boolean
instance variable called FActive that reveals whether the marquee’s scrolling capability has
been activated. Therefore, the Paint() method paints differently depending on whether the
component is active:

procedure TddgMarquee.Paint;
{ this virtual method is called in response to a }
{ Windows paint message }
begin
if FActive then
{ Copy from memory bitmap to screen }
BitBlt(Canvas.Handle, 0, 0, InsideRect.Right, InsideRect.Bottom,
MemBitmap.Canvas.Handle, 0, CurrLine, srcCopy)

else
inherited Paint;

end;

If the marquee is active, the component uses the BitBlt() function to paint a portion of the
memory canvas onto the TddgMarquee canvas. Notice the CurrLine variable, which is passed
as the next-to-last parameter to BitBlt(). The value of this parameter determines which por-
tion of the memory canvas to transfer onto the screen. By continuously incrementing or decre-
menting the value of CurrLine, you can give TddgMarquee the appearance that the text is
scrolling up or down.

Advanced VCL Component Building

CHAPTER 12

12

A
D

V
A

N
C

ED
V

C
L

C
O

M
PO

N
EN

T
B

U
ILD

IN
G

497

17 chpt_12.qxd 11/19/01 12:07 PM Page 497

Animating the Marquee
The visual aspects of the TddgMarquee component are now in place. The rest of the work
involved in getting the component working is just hooking up the plumbing, so to speak. At
this point, TddgMarquee requires some mechanism to change the value of CurrLine every so
often and to repaint the component. This trick can be accomplished fairly easily using Delphi’s
TTimer component.

Before you can use TTimer, of course, you must create and initialize the class instance.
TddgMarquee will have a TTimer instance called FTimer, and you’ll initialize it in a procedure
called DoTimer:

procedure DoTimer;
{ procedure sets up TddgMarquee’s timer }
begin
FTimer := TTimer.Create(Self);
with FTimer do
begin
Enabled := False;
Interval := TimerInterval;
OnTimer := DoTimerOnTimer;

end;
end;

In this procedure, FTimer is created, and it’s disabled initially. Its Interval property then is
assigned to the value of a constant called TimerInterval. Finally, the OnTimer event for
FTimer is assigned to a method of TddgMarquee called DoTimerOnTimer. This is the method
that will be called when an OnTimer event occurs.

Component-Based Development

PART IV
498

When assigning values to events in your code, you need to follow two rules:

• The procedure you assign to the event must be a method of some object
instance. It can’t be a standalone procedure or function.

• The method you assign to the event must accept the same parameter list as the
event type. For example, the OnTimer event for TTimer is of type TNotifyEvent.
Because TNotifyEvent accepts one parameter, Sender, of type TObject, any
method you assign to OnTimer must also take one parameter of type TObject.

NOTE

The DoTimerOnTimer() method is defined as follows:

procedure TddgMarquee.DoTimerOnTimer(Sender: TObject);
{ This method is executed in response to a timer event }

17 chpt_12.qxd 11/19/01 12:07 PM Page 498

begin
IncLine;
{ only repaint within borders }
InvalidateRect(Handle, @InsideRect, False);

end;

In this method, a procedure named IncLine() is called; this procedure increments or decrements
the value of CurrLine as necessary. Then the InvalidateRect() API function is called to “inval-
idate” (or repaint) the interior portion of the component. We chose to use InvalidateRect()
rather than the Invalidate() method of TCanvas because Invalidate() causes the entire can-
vas to be repainted rather than just the portion within a defined rectangle, as is the case with
InvalidateRect(). This method, because it doesn’t continuously repaint the entire component,
eliminates much of the flicker that would otherwise occur. Remember: Flicker is bad.

The IncLine() method, which updates the value of CurrLine and detects whether scrolling
has completed, is defined as follows:

procedure TddgMarquee.IncLine;
{ this method is called to increment a line }
begin
if not FScrollDown then // if Marquee is scrolling upward
begin
{ Check to see if marquee has scrolled to end yet }
if FItems.Count * LineHi + ClientRect.Bottom -
ScrollPixels >= CurrLine then
{ not at end, so increment current line }
Inc(CurrLine, ScrollPixels)

else SetActive(False);
end
else begin // if Marquee is scrolling downward
{ Check to see if marquee has scrolled to end yet }
if CurrLine >= ScrollPixels then
{ not at end, so decrement current line }
Dec(CurrLine, ScrollPixels)

else SetActive(False);
end;

end;

The constructor for TddgMarquee is actually quite simple. It calls the inherited Create()
method, creates a TStringList instance, sets up FTimer, and then sets all the default values for
the instance variables. Once again, you must remember to call the inherited Create() method
in your components. Failure to do so means your components will miss out on important and

Advanced VCL Component Building

CHAPTER 12

12

A
D

V
A

N
C

ED
V

C
L

C
O

M
PO

N
EN

T
B

U
ILD

IN
G

499

17 chpt_12.qxd 11/19/01 12:07 PM Page 499

useful functionality, such as handle and canvas creation, streaming, and Windows message
response. The following code shows the TddgMarquee constructor, Create():

constructor TddgMarquee.Create(AOwner: TComponent);
{ constructor for TddgMarquee class }

procedure DoTimer;
{ procedure sets up TddgMarquee’s timer }
begin
FTimer := TTimer.Create(Self);
with FTimer do
begin
Enabled := False;
Interval := TimerInterval;
OnTimer := DoTimerOnTimer;

end;
end;

begin
inherited Create(AOwner);
FItems := TStringList.Create; { instantiate string list }
DoTimer; { set up timer }
{ set instance variable default values }
Width := 100;
Height := 75;
FActive := False;
FScrollDown := False;
FJust := tjCenter;
BevelWidth := 3;

end;

The TddgMarquee destructor is even simpler: The method deactivates the component by pass-
ing False to the SetActive() method, frees the timer and the string list, and then calls the
inherited Destroy() method:

destructor TddgMarquee.Destroy;
{ destructor for TddgMarquee class }
begin
SetActive(False);
FTimer.Free; // free allocated objects
FItems.Free;
inherited Destroy;

end;

Component-Based Development

PART IV
500

17 chpt_12.qxd 11/19/01 12:07 PM Page 500

The SetActive() method, which is called by both the IncLine() method and the destructor
(in addition to serving as the writer for the Active property), serves as a vehicle that starts and
stops the marquee scrolling up the canvas:

procedure TddgMarquee.SetActive(Value: Boolean);
{ called to activate/deactivate the marquee }
begin
if Value and (not FActive) and (FItems.Count > 0) then
begin
FActive := True; // set active flag
MemBitmap := TBitmap.Create;
FillBitmap; // Paint Image on bitmap
FTimer.Enabled := True; // start timer

end
else if (not Value) and FActive then
begin
FTimer.Enabled := False; // disable timer,
if Assigned(FOnDone) // fire OnDone event,
then FOnDone(Self);

FActive := False; // set FActive to False
MemBitmap.Free; // free memory bitmap
Invalidate; // clear control window

end;
end;

An important feature of TddgMarquee that’s lacking thus far is an event that tells the user when
scrolling is complete. Never fear—this feature is very straightforward to add by way of an
event: FOnDone. The first step to adding an event to your component is to declare an instance
variable of some event type in the private portion of the class definition. You’ll use the
TNotifyEvent type for the FOnDone event:

FOnDone: TNotifyEvent;

Advanced VCL Component Building

CHAPTER 12

12

A
D

V
A

N
C

ED
V

C
L

C
O

M
PO

N
EN

T
B

U
ILD

IN
G

501

As a rule of thumb, when you override constructors, you usually call inherited first,
and when you override destructors, you usually call inherited last. It might help to
remember “first in, last out.” This ensures that the class has been set up before you
modify it and that all dependent resources have been cleaned up before you dispose
of the class.

Exceptions to this rule exist; however, you should generally stick to it unless you have
good reason not to.

TIP

17 chpt_12.qxd 11/19/01 12:07 PM Page 501

The event should then be declared in the published part of the class as a property:

property OnDone: TNotifyEvent read FOnDone write FOnDone;

Recall that the read and write directives specify from which function or variable a given prop-
erty should get or set its value.

Taking just these two small steps will cause an entry for OnDone to be displayed in the Events
page of the Object Inspector at design time. The only other thing that needs to be done is to
call the user’s handler for OnDone (if a method is assigned to OnDone), as demonstrated by
TddgMarquee with this line of code in the Deactivate() method:

if Assigned(FOnDone) then FOnDone(Self); // fire OnDone event

This line basically reads, “If the component user has assigned a method to the OnDone event,
call that method and pass the TddgMarquee class instance (Self) as a parameter.”

Listing 12.2 shows the completed source code for the Marquee unit. Notice that because the
component descends from a TCustomXXX class, you need to publish many of the properties pro-
vided by TCustomPanel.

LISTING 12.2 Marquee.pas—Illustrates the TddgMarquee Component

unit Marquee;

interface

uses
SysUtils, Windows, Classes, Forms, Controls, Graphics,
Messages, ExtCtrls, Dialogs;

const
ScrollPixels = 3; // num of pixels for each scroll
TimerInterval = 50; // time between scrolls in ms

type
TJustification = (tjCenter, tjLeft, tjRight);

EMarqueeError = class(Exception);

TddgMarquee = class(TCustomPanel)
private
MemBitmap: TBitmap;
InsideRect: TRect;
FItems: TStringList;
FJust: TJustification;

Component-Based Development

PART IV
502

17 chpt_12.qxd 11/19/01 12:07 PM Page 502

LISTING 12.2 Continued

FScrollDown: Boolean;
LineHi : Integer;
CurrLine : Integer;
VRect: TRect;
FTimer: TTimer;
FActive: Boolean;
FOnDone: TNotifyEvent;
procedure SetItems(Value: TStringList);
procedure DoTimerOnTimer(Sender: TObject);
procedure PaintLine(R: TRect; LineNum: Integer);
procedure SetLineHeight;
procedure SetStartLine;
procedure IncLine;
procedure SetActive(Value: Boolean);

protected
procedure Paint; override;
procedure FillBitmap; virtual;

public
property Active: Boolean read FActive write SetActive;
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

published
property ScrollDown: Boolean read FScrollDown write FScrollDown;
property Justify: TJustification read FJust write FJust default tjCenter;
property Items: TStringList read FItems write SetItems;
property OnDone: TNotifyEvent read FOnDone write FOnDone;
{ Publish inherited properties: }
property Align;
property Alignment;
property BevelInner;
property BevelOuter;
property BevelWidth;
property BorderWidth;
property BorderStyle;
property Color;
property Ctl3D;
property Font;
property Locked;
property ParentColor;
property ParentCtl3D;
property ParentFont;
property Visible;
property OnClick;
property OnDblClick;

Advanced VCL Component Building

CHAPTER 12

12

A
D

V
A

N
C

ED
V

C
L

C
O

M
PO

N
EN

T
B

U
ILD

IN
G

503

17 chpt_12.qxd 11/19/01 12:07 PM Page 503

LISTING 12.2 Continued

property OnMouseDown;
property OnMouseMove;
property OnMouseUp;
property OnResize;

end;

implementation

constructor TddgMarquee.Create(AOwner: TComponent);
{ constructor for TddgMarquee class }

procedure DoTimer;
{ procedure sets up TddgMarquee’s timer }
begin
FTimer := TTimer.Create(Self);
with FTimer do
begin
Enabled := False;
Interval := TimerInterval;
OnTimer := DoTimerOnTimer;

end;
end;

begin
inherited Create(AOwner);
FItems := TStringList.Create; { instantiate string list }
DoTimer; { set up timer }
{ set instance variable default values }
Width := 100;
Height := 75;
FActive := False;
FScrollDown := False;
FJust := tjCenter;
BevelWidth := 3;

end;

destructor TddgMarquee.Destroy;
{ destructor for TddgMarquee class }
begin
SetActive(False);
FTimer.Free; // free allocated objects
FItems.Free;
inherited Destroy;

end;

Component-Based Development

PART IV
504

17 chpt_12.qxd 11/19/01 12:07 PM Page 504

LISTING 12.2 Continued

procedure TddgMarquee.DoTimerOnTimer(Sender: TObject);
{ This method is executed in response to a timer event }
begin
IncLine;
{ only repaint within borders }
InvalidateRect(Handle, @InsideRect, False);

end;

procedure TddgMarquee.IncLine;
{ this method is called to increment a line }
begin
if not FScrollDown then // if Marquee is scrolling upward
begin
{ Check to see if marquee has scrolled to end yet }
if FItems.Count * LineHi + ClientRect.Bottom -
ScrollPixels >= CurrLine then
{ not at end, so increment current line }
Inc(CurrLine, ScrollPixels)

else SetActive(False);
end
else begin // if Marquee is scrolling downward
{ Check to see if marquee has scrolled to end yet }
if CurrLine >= ScrollPixels then
{ not at end, so decrement current line }
Dec(CurrLine, ScrollPixels)

else SetActive(False);
end;

end;

procedure TddgMarquee.SetItems(Value: TStringList);
begin
if FItems <> Value then
FItems.Assign(Value);

end;

procedure TddgMarquee.SetLineHeight;
{ this virtual method sets the LineHi instance variable }
var
Metrics : TTextMetric;

begin
{ get metric info for font }
GetTextMetrics(Canvas.Handle, Metrics);
{ adjust line height }
LineHi := Metrics.tmHeight + Metrics.tmInternalLeading;

end;

Advanced VCL Component Building

CHAPTER 12

12

A
D

V
A

N
C

ED
V

C
L

C
O

M
PO

N
EN

T
B

U
ILD

IN
G

505

17 chpt_12.qxd 11/19/01 12:07 PM Page 505

LISTING 12.2 Continued

procedure TddgMarquee.SetStartLine;
{ this virtual method initializes the CurrLine instance variable }
begin
// initialize current line to top if scrolling up, or...
if not FScrollDown then CurrLine := 0
// bottom if scrolling down
else CurrLine := VRect.Bottom - Height;

end;

procedure TddgMarquee.PaintLine(R: TRect; LineNum: Integer);
{ this method is called to paint each line of text onto MemBitmap }
const
Flags: array[TJustification] of DWORD = (DT_CENTER, DT_LEFT, DT_RIGHT);

var
S: string;

begin
{ Copy next line to local variable for clarity }
S := FItems.Strings[LineNum];
{ Draw line of text onto memory bitmap }
DrawText(MemBitmap.Canvas.Handle, PChar(S), Length(S), R,
Flags[FJust] or DT_SINGLELINE or DT_TOP);

end;

procedure TddgMarquee.FillBitmap;
var
y, i : Integer;
R: TRect;

begin
SetLineHeight; // set height of each line
{ VRect rectangle represents entire memory bitmap }
VRect := Rect(0, 0, Width, LineHi * FItems.Count + Height * 2);
{ InsideRect rectangle represents interior of beveled border }
InsideRect := Rect(BevelWidth, BevelWidth, Width - (2 * BevelWidth),
Height - (2 * BevelWidth));

R := Rect(InsideRect.Left, 0, InsideRect.Right, VRect.Bottom);
SetStartLine;
MemBitmap.Width := Width; // initialize memory bitmap
with MemBitmap do
begin
Height := VRect.Bottom;
with Canvas do
begin
Font := Self.Font;

Component-Based Development

PART IV
506

17 chpt_12.qxd 11/19/01 12:07 PM Page 506

LISTING 12.2 Continued

Brush.Color := Color;
FillRect(VRect);
Brush.Style := bsClear;

end;
end;
y := Height;
i := 0;
repeat
R.Top := y;
PaintLine(R, i);
{ increment y by the height (in pixels) of a line }
inc(y, LineHi);
inc(i);

until i >= FItems.Count; // repeat for all lines
end;

procedure TddgMarquee.Paint;
{ this virtual method is called in response to a }
{ Windows paint message }
begin
if FActive then
{ Copy from memory bitmap to screen }
BitBlt(Canvas.Handle, 0, 0, InsideRect.Right, InsideRect.Bottom,
MemBitmap.Canvas.Handle, 0, CurrLine, srcCopy)

else
inherited Paint;

end;

procedure TddgMarquee.SetActive(Value: Boolean);
{ called to activate/deactivate the marquee }
begin
if Value and (not FActive) and (FItems.Count > 0) then
begin
FActive := True; // set active flag
MemBitmap := TBitmap.Create;
FillBitmap; // Paint Image on bitmap
FTimer.Enabled := True; // start timer

end
else if (not Value) and FActive then
begin
FTimer.Enabled := False; // disable timer,
if Assigned(FOnDone) // fire OnDone event,
then FOnDone(Self);

FActive := False; // set FActive to False

Advanced VCL Component Building

CHAPTER 12

12

A
D

V
A

N
C

ED
V

C
L

C
O

M
PO

N
EN

T
B

U
ILD

IN
G

507

17 chpt_12.qxd 11/19/01 12:07 PM Page 507

LISTING 12.2 Continued

MemBitmap.Free; // free memory bitmap
Invalidate; // clear control window

end;
end;

end.

Component-Based Development

PART IV
508

Notice the default directive and value used with the Justify property of TddgMarquee.
This use of default optimizes streaming of the component, which improves the com-
ponent’s design-time performance. You can give default values to properties of any
ordinal type (Integer, Word, Longint, as well as enumerated types, for example), but
you can’t give them to nonordinal property types such as strings, floating-point num-
bers, arrays, records, and classes.

You also need to initialize the default values for the properties in your constructor.
Failure to do so will cause streaming problems.

TIP

Testing TddgMarquee
Although it’s very exciting to finally have this component written and in the testing stages,
don’t get carried away by trying to add it to the Component Palette just yet. It has to be
debugged first. You should do all preliminary testing with the component by creating a project
that creates and uses a dynamic instance of the component. Listing 12.3 depicts the main unit
for a project called TestMarq, which is used to test the TddgMarquee component. This simple
project consists of a form that contains two buttons.

LISTING 12.3 TestU.pas—Tests the TddgMarquee Component

unit Testu;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, Marquee, StdCtrls, ExtCtrls;

type
TForm1 = class(TForm)
Button1: TButton;
Button2: TButton;

17 chpt_12.qxd 11/19/01 12:07 PM Page 508

LISTING 12.3 Continued

procedure FormCreate(Sender: TObject);
procedure Button1Click(Sender: TObject);
procedure Button2Click(Sender: TObject);

private
Marquee1: TddgMarquee;
procedure MDone(Sender: TObject);

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.MDone(Sender: TObject);
begin
Beep;

end;

procedure TForm1.FormCreate(Sender: TObject);
begin
Marquee1 := TddgMarquee.Create(Self);
with Marquee1 do
begin
Parent := Self;
Top := 10;
Left := 10;
Height := 200;
Width := 150;
OnDone := MDone;
Show;
with Items do
begin
Add(‘Greg’);
Add(‘Peter’);
Add(‘Bobby’);
Add(‘Marsha’);
Add(‘Jan’);
Add(‘Cindy’);

end;
end;

end;

Advanced VCL Component Building

CHAPTER 12

12

A
D

V
A

N
C

ED
V

C
L

C
O

M
PO

N
EN

T
B

U
ILD

IN
G

509

17 chpt_12.qxd 11/19/01 12:07 PM Page 509

LISTING 12.3 Continued

procedure TForm1.Button1Click(Sender: TObject);
begin
Marquee1.Active := True;

end;

procedure TForm1.Button2Click(Sender: TObject);
begin
Marquee1.Active := False;

end;

end.

Component-Based Development

PART IV
510

Always create a test project for your new components. Never try to do initial testing
on a component by adding it to the Component Palette. By trying to debug a compo-
nent that resides on the palette, not only will you waste time with a lot of gratuitous
package rebuilding, but it’s possible to crash the IDE as a result of a bug in your
component.

TIP

After you squash all the bugs you find in this program, it’s time to add it to the Component
Palette. As you might recall, doing so is easy: Simply choose Component, Install
Component. . . from the main menu and then fill in the unit filename and package name in the
Install Component dialog. Click OK and Delphi will rebuild the package to which the compo-
nent was added and update the Component Palette. Of course, your component will need to
expose a Register() procedure in order to be placed on the Component Palette. The
TddgMarquee component is registered in the DDGReg.pas unit of the DDGDsgn package on the
CD-ROM accompanying this book.

Writing Property Editors
Chapter 11, “VCL Component Building,” shows how properties are edited in the Object
Inspector for most of the common property types. The means by which a property is edited is
determined by its property editor. Several predefined property editors are used for the existing
properties. However, there might be a situation in which none of the predefined editors meet
your needs, such as when you’ve created a custom property. Given this situation, you’ll need to
create your own editor for that property.

17 chpt_12.qxd 11/19/01 12:07 PM Page 510

You can edit properties in the Object Inspector in two ways. One is to allow the user to edit the
value as a text string. The other is to use a dialog that performs the editing of the property. In
some cases, you’ll want to allow both editing capabilities for a single property.

Here are the steps required for writing a property editor:

1. Create a descendant property editor object.

2. Edit the property as text.

3. Edit the property as a whole with a dialog (optional).

4. Specify the property editor’s attributes.

5. Register the property editor.

The following sections cover each of these steps.

Creating a Descendant Property Editor Object
Delphi defines several property editors in the unit DesignEditors.pas, all of which descend
from the base class TPropertyEditor. When you create a property editor, your property editor
must descend from TPropertyEditor or one of its descendants. Table 12.1 shows the
TPropertyEditor descendants that are used with the existing properties.

TABLE 12.1 Property Editors Defined in DesignEditors.pas

Property Editor Description

TOrdinalProperty The base class for all ordinal property editors, such as
TIntegerProperty, TEnumProperty, TCharProperty, and
so on.

TIntegerProperty The default property editor for integer properties of all
sizes.

TCharProperty The property editor for properties that are a char type
and a subrange of char; that is, ‘A’..’Z’.

TEnumProperty The default property for all user-defined enumerated
types.

TFloatProperty The default property editor for floating-point numeric
properties.

TStringProperty The default property editor for string type properties.

TSetElementProperty The default property editor for individual set elements.
Each element in the set is displayed as an individual
Boolean option.

Advanced VCL Component Building

CHAPTER 12

12

A
D

V
A

N
C

ED
V

C
L

C
O

M
PO

N
EN

T
B

U
ILD

IN
G

511

17 chpt_12.qxd 11/19/01 12:07 PM Page 511

TABLE 12.1 Continued

Property Editor Description

TSetProperty The default property editor for set properties. The set
expands into separate set elements for each element in
the set.

TClassProperty The default property editor for properties that are, them-
selves, objects.

TMethodProperty The default property editor for properties that are method
pointers—that is, events.

TComponentProperty The default property editor for properties that refer to a
component. This isn’t the same as the TClassProperty
editor. Instead, this editor allows the user to specify a
component to which the property refers—that is,
ActiveControl.

TColorProperty The default property editor for properties of the type
TColor.

TFontNameProperty The default property editor for font names. This editor
displays a drop-down list of fonts available on the
system.

TFontProperty The default property editor for properties of type TFont,
which allows the editing of subproperties.
TFontProperty allows the editing of subproperties
because it derives from TClassProperty.

TInt64Property The default property editor for all Int64 and its
derivatives.

TNestedProperty This property editor uses its parent’s property editor.

TClassProperty The default property editor for objects.

TMethodProperty The default property editor for methods.

TInterfaceProperty The default property editor for interface references.

TComponentNameProperty Property editor for the Name property. It restricts the Name
property from being displayed when more than one com-
ponent is selected.

TDateProperty The default property editor for the date portion of a
TDateTime type property.

TTimePropery The property editor for the time portion of a TDateTime
property.

TDateTimeProperty The property editor for a TDateTime property type.

TVariantProperty The property editor for variant types.

Component-Based Development

PART IV
512

17 chpt_12.qxd 11/19/01 12:07 PM Page 512

The property editor from which your property editor must descend depends on how the prop-
erty is going to behave when it’s edited. In some cases, for example, your property might
require the same functionality as TIntegerProperty, but it might also require additional logic
in the editing process. Therefore, it would be logical that your property editor descend from
TIntegerProperty.

Advanced VCL Component Building

CHAPTER 12

12

A
D

V
A

N
C

ED
V

C
L

C
O

M
PO

N
EN

T
B

U
ILD

IN
G

513

Bear in mind that there are cases in which you don’t need to create a property editor
that depends on your property type. For example, subrange types are checked auto-
matically (for example, 1..10 is checked for by TIntegerProperty), enumerated types
get drop-down lists automatically, and so on. You should try to use type definitions
instead of custom property editors because they’re enforced by the language at com-
pile time as well as by the default property editors.

TIP

Editing the Property As Text
The property editor has two basic purposes: One is to provide a means for the user to edit the
property; this is obvious. The other not-so-obvious purpose is to provide the string representa-
tion of the property value to the Object Inspector so that it can be displayed accordingly.

When you create a descendant property editor class, you must override the GetValue() and
SetValue() methods. GetValue() returns the string representation of the property value for the
Object Inspector to display. SetValue() sets the value based on its string representation as it’s
entered in the Object Inspector.

As an example, examine the definition of the TIntegerProperty class type as it’s defined in
DSGNINTF.PAS:

TIntegerProperty = class(TOrdinalProperty)
public
function GetValue: string; override;
procedure SetValue(const Value: string); override;

end;

Here, you see that the GetValue() and SetValue() methods have been overridden. The
GetValue() implementation is as follows:

function TIntegerProperty.GetValue: string;
begin
Result := IntToStr(GetOrdValue);

end;

17 chpt_12.qxd 11/19/01 12:07 PM Page 513

Here’s the SetValue() implementation:

procedure TIntegerProperty.SetValue(const Value: String);
var
L: Longint;

begin
L := StrToInt(Value);
with GetTypeData(GetPropType)^ do
if (L < MinValue) or (L > MaxValue) then
raise EPropertyError.CreateResFmt(SOutOfRange, [MinValue, MaxValue]);

SetOrdValue(L);
end;

GetValue() returns the string representation of an integer property. The Object Inspector
uses this value to display the property’s value. GetOrdValue() is a method defined by
TPropertyEditor and is used to retrieve the value of the property referenced by the property
editor.

SetValue() takes the string value entered by the user and assigns it to the property in the cor-
rect format. SetValue() also performs some error checking to ensure that the value is within a
specified range of values. This illustrates how you might perform error checking with your
descendant property editors. The SetOrdValue() method assigns the value to the property ref-
erenced by the property editor.

TPropertyEditor defines several methods similar to GetOrdValue() for getting the string rep-
resentation of various types. Additionally, TPropertyEditor contains the equivalent “set”
methods for setting the values in their respective format. TPropertyEditor descendants inherit
these methods. These methods are used for getting and setting the values of the properties that
the property editor references. Table 12.2 shows these methods.

TABLE 12.2 Read/Write Property Methods for TPropertyEditor

Property Type “Get” Method “Set” Method

Floating point GetFloatValue() SetFloatValue()

Event GetMethodValue() SetMethodValue()

Ordinal GetOrdValue() SetOrdValue()

String GetStrValue() SetStrValue()

Variant GetVarValue() SetVarValue(), SetVarValueAt()

To illustrate creating a new property editor, we’ll have some more fun with the solar system
example introduced in the last chapter. This time, we’ve created a simple component, TPlanet,
to represent a single planet. TPlanet contains the property PlanetName. Internal storage for

Component-Based Development

PART IV
514

17 chpt_12.qxd 11/19/01 12:07 PM Page 514

PlanetName is going to be of type integer and will hold the planet’s position in the solar sys-
tem. However, it will be displayed in the Object Inspector as the name of the planet.

So far this sounds easy, but here’s the catch: We want to enable the user to type two values to
represent the planet. The user should be able to type the planet name as a string, such as
Venus, VENUS, or VeNuS. He should also be able to type the position of the planet in the solar
system. Therefore, for the planet Venus, the user would type the numeric value 2.

The component TPlanet is as follows:

type
TPlanetName = type Integer;

TPlanet = class(TComponent)
private
FPlanetName: TPlanetName;

published
property PlanetName: TPlanetName read FPlanetName write FPlanetName;

end;

As you can see, there’s not much to this component. It has only one property: PlanetName of
the type TPlanetName. Here, the special definition of TPlanetName is used so that it’s given its
own runtime type information, yet it’s still treated like an integer type.

This functionality doesn’t come from the TPlanet component; rather, it comes from the prop-
erty editor for the TPlanetName property type. This property editor is shown in Listing 12.4.

LISTING 12.4 PlanetPE.PAS—The Source Code for TPlanetNameProperty

unit PlanetPE;

interface

uses
Windows, SysUtils, DsgnIntF;

type
TPlanetNameProperty = class(TIntegerProperty)
public
function GetValue: string; override;
procedure SetValue(const Value: string); override;

end;

implementation

const
{ Declare a constant array containing planet names }

Advanced VCL Component Building

CHAPTER 12

12

A
D

V
A

N
C

ED
V

C
L

C
O

M
PO

N
EN

T
B

U
ILD

IN
G

515

17 chpt_12.qxd 11/19/01 12:07 PM Page 515

LISTING 12.4 Continued

PlanetNames: array[1..9] of String[7] =
(‘Mercury’, ‘Venus’, ‘Earth’, ‘Mars’, ‘Jupiter’, ‘Saturn’,
‘Uranus’, ‘Neptune’, ‘Pluto’);

function TPlanetNameProperty.GetValue: string;
begin
Result := PlanetNames[GetOrdValue];

end;

procedure TPlanetNameProperty.SetValue(const Value: String);
var
PName: string[7];
i, ValErr: Integer;

begin
PName := UpperCase(Value);
i := 1;
{ Compare the Value with each of the planet names in the PlanetNames
array. If a match is found, the variable i will be less than 10 }

while (PName <> UpperCase(PlanetNames[i])) and (i < 10) do
inc(i);

{ If i is less than 10, a valid planet name was entered. Set the value
and exit this procedure. }

if i < 10 then // A valid planet name was entered.
begin
SetOrdValue(i);
Exit;

end
{ If i was greater than 10, the user might have typed in a planet number, or
an invalid planet name. Use the Val function to test if the user typed in
a number, if an ValErr is non-zero, an invalid name was entered,
otherwise, test the range of the number entered for (0 < i < 10). }

else begin
Val(Value, i, ValErr);
if ValErr <> 0 then
raise Exception.Create(Format(‘Sorry, Never heard of the planet %s.’,
[Value]));

if (i <= 0) or (i >= 10) then
raise Exception.Create(‘Sorry, that planet is not in OUR solar

system.’);
SetOrdValue(i);

end;
end;

end.

Component-Based Development

PART IV
516

17 chpt_12.qxd 11/19/01 12:07 PM Page 516

First, we create our property editor, TPlanetNameProperty, which descends from
TIntegerProperty. By the way, it’s necessary to include the DesignEditors and
DesignIntf units in the uses clause of this unit.

We’ve defined an array of string constants to represent the planets in the solar system by their
position from the sun. These strings will be used to display the string representation of the
planet in the Object Inspector.

As stated earlier, we have to override the GetValue() and SetValue() methods. In the
GetValue() method, we just return the string from the PlanetNames array, which is indexed by
the property value. Of course, this value must be within the range of 1–9. We handle this by
not allowing the user to enter a number out of that range in the SetValue() method.

SetValue() gets a string as it’s entered from the Object Inspector. This string can either be a
planet name or a number representing a planet’s position. If a valid planet name or planet num-
ber is entered, as determined by the code logic, the value assigned to the property is specified
by the SetOrdValue() method. If the user enters an invalid planet name or planet position, the
code raises the appropriate exception.

That’s all there is to defining a property editor. Well, not quite; it must still be registered before
it becomes known to the property to which you want to attach it.

Registering the New Property Editor
You register a property editor by using the appropriately named procedure
RegisterPropertyEditor(). This method is declared as follows:

procedure RegisterPropertyEditor(PropertyType: PTypeInfo;
ComponentClass: TClass; const PropertyName: string;
EditorClass: TPropertyEditorClass);

The first parameter, PropertyType, is a pointer to the Runtime Type Information of the
property being edited. This information is obtained by using the TypeInfo() function.
ComponentClass is used to specify to which class this property editor will apply.
PropertyName specifies the property name on the component, and the EditorClass
parameter specifies the type of property editor to use. For the TPlanet.PlanetName property,
the function looks like this:

RegisterPropertyEditor(TypeInfo(TPlanetName), TPlanet, ‘PlanetName’,
TPlanetNameProperty);

Advanced VCL Component Building

CHAPTER 12

12

A
D

V
A

N
C

ED
V

C
L

C
O

M
PO

N
EN

T
B

U
ILD

IN
G

517

17 chpt_12.qxd 11/19/01 12:07 PM Page 517

You can register the property editor along with the registration of the component in the compo-
nent’s unit, as shown in Listing 12.5.

LISTING 12.5 Planet.pas—The TPlanet Component

unit Planet;

interface

uses
Classes, SysUtils;

type
TPlanetName = type Integer;

TddgPlanet = class(TComponent)
private
FPlanetName: TPlanetName;

published
property PlanetName: TPlanetName read FPlanetName write FPlanetName;

end;

implementation

end.

Component-Based Development

PART IV
518

Although, for the purpose of illustration, this particular property editor is registered
for use only with the TPlanet component and ‘PlanetName’ property name, you
might choose to be less restrictive in registering your custom property editors. By set-
ting the ComponentClass parameter to nil and the PropertyName parameter to ‘’,
your property editor will work for any component’s property of type TPlanetName.

TIP

Placing the property editor registration in the Register() procedure of the compo-
nent’s unit will force all the property editor code to be linked in with your compo-
nent when it’s put into a package. For complex components, the design-time tools
might take up more code space than the components themselves. Although code size
isn’t much of an issue for a small component such as this, keep in mind that

TIP

17 chpt_12.qxd 11/19/01 12:07 PM Page 518

Editing the Property as a Whole with a Dialog
Sometimes it’s necessary to provide more editing capability than the in-place editing of the
Object Inspector. This is when it becomes necessary to use a dialog as a property editor. An
example of this would be the Font property for most Delphi components. Certainly, the makers
of Delphi could have forced the user to type the font name and other font-related information.
However, it would be unreasonable to expect the user to know this information. It’s far easier
to provide the user with a dialog where he can set these various attributes related to the font
and see an example before selecting it.

To illustrate using a dialog to edit a property, we’re going to extend the functionality of the
TddgRunButton component created in Chapter 11. Now the user will be able to click an ellipsis
button in the Object Inspector for the CommandLine property, which will invoke an Open File
dialog from which the user can select a file for TddgRunButton to represent.

Sample Dialog Property Editor: Extending TddgRunButton
The TddgRunButton component is shown in Listing 11.13 in Chapter 11. We won’t show it
again here, but there are a few things we want to point out. The TddgRunButton.CommandLine
property is of type TCommandLine, which is defined as follows:

TCommandLine = type string;

Again, this is a special declaration that attaches unique Runtime Type Information to this spe-
cial type. This allows you to define a property editor specific to the TCommandLine type.
Additionally, because TCommandLine is treated as a string, the property editor for editing string
properties still applies to the TCommandLine type as well.

Also, as we illustrate the property editor for the TCommandLine type, keep in mind that
TddgRunButton already has included the necessary error checking of property assignments in
the properties’ access methods. Therefore, it isn’t necessary to repeat this error checking in the
property editor’s logic.

Advanced VCL Component Building

CHAPTER 12

12

A
D

V
A

N
C

ED
V

C
L

C
O

M
PO

N
EN

T
B

U
ILD

IN
G

519

everything that’s listed in the interface section of your component’s unit (such as the
Register() procedure) as well as everything it touches (such as the property editor
class type) will tag along with your component when it’s compiled into a package.
For this reason, you might want to perform registration of your property editor in a
separate unit. Furthermore, some component writers choose to create both design-
time and runtime packages for their components, whereas the property editors and
other design-time tools reside only in the design-time package. You’ll note that the
packages containing this book’s code do this using the DdgRT6 runtime package and
the DDGDT6 design package.

17 chpt_12.qxd 11/19/01 12:07 PM Page 519

Listing 12.6 shows the definition of the TCommandLineProperty property editor.

LISTING 12.6 RunBtnPE.pas—The Unit Containing TCommandLineProperty

unit runbtnpe;

interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, Buttons, DsgnIntF, TypInfo;

type

{ Descend from the TStringProperty class so that this editor
inherits the string property editing capabilities }

TCommandLineProperty = class(TStringProperty)
function GetAttributes: TPropertyAttributes; override;
procedure Edit; override;

end;

implementation

function TCommandLineProperty.GetAttributes: TPropertyAttributes;
begin
Result := [paDialog]; // Display a dialog in the Edit method

end;

procedure TCommandLineProperty.Edit;
{ The Edit method displays a TOpenDialog from which the user obtains
an executable file name that gets assigned to the property }

var
OpenDialog: TOpenDialog;

begin
{ Create the TOpenDialog }
OpenDialog := TOpenDialog.Create(Application);
try
{ Show only executable files }
OpenDialog.Filter := ‘Executable Files|*.EXE’;
{ If the user selects a file, then assign it to the property. }
if OpenDialog.Execute then
SetStrValue(OpenDialog.FileName);

finally
OpenDialog.Free // Free the TOpenDialog instance.

end;
end;

end.

Component-Based Development

PART IV
520

17 chpt_12.qxd 11/19/01 12:07 PM Page 520

Examination of TCommandLineProperty shows that the property editor itself is very simple.
First, notice that it descends from TStringProperty so that the string-editing capabilities are
maintained. Therefore, in the Object Inspector, it isn’t necessary to invoke the dialog. The user
can just type the command line directly. Also, we didn’t override the SetValue() and
GetValue() methods because TStringProperty already handles this correctly. However, it was
necessary to override the GetAttributes() method in order for the Object Inspector to know
that this property is capable of being edited with a dialog. GetAttributes() merits further dis-
cussion.

Specifying the Property Editor’s Attributes
Every property editor must tell the Object Inspector how a property is to be edited and what
special attributes (if any) must be used when editing a property. Most of the time, the inherited
attributes from a descendant property editor will suffice. In certain circumstances, however,
you must override the GetAttributes() method of TPropertyEditor, which returns a set of
property attribute flags (TPropertyAttribute flags) that indicate special property-editing
attributes. The various TPropertyAttribute flags are shown in Table 12.3.

TABLE 12.3 TPropertyAttribute Flags

Attribute How the Property Editor Works with the Object Inspector

paValueList Returns an enumerated list of values for the property. The GetValues()
method populates the list. A drop-down arrow button appears to the
right of the property value. This applies to enumerated properties such
as TForm.BorderStyle and integer const groups such as TColor and
TCharSet.

paSubProperties Subproperties are displayed indented below the current property in out-
line format. paValueList must also be set. This applies to set proper-
ties and class properties such as TOpenDialog.Options and
TForm.Font.

paDialog An ellipsis button is displayed to the right of the property in the Object
Inspector, which, when clicked, causes the property editor’s Edit()
method to invoke a dialog. This applies to properties such as
TForm.Font.

paMultiSelect Properties are displayed when more than one component is selected on
the Form Designer, allowing the user to change the property values for
multiple components at once. Some properties aren’t appropriate for
this capability, such as the Name property.

paAutoUpdate SetValue() is called on each change made to the property. If this flag
isn’t set, SetValue() is called when the user presses Enter or moves off
the property in the Object Inspector. This applies to properties such as
TForm.Caption.

Advanced VCL Component Building

CHAPTER 12

12

A
D

V
A

N
C

ED
V

C
L

C
O

M
PO

N
EN

T
B

U
ILD

IN
G

521

17 chpt_12.qxd 11/19/01 12:07 PM Page 521

TABLE 12.3 Continued

Attribute How the Property Editor Works with the Object Inspector

paFullWidthName Tells the Object Inspector that the value doesn’t need to be rendered and,
as such, the name should be rendered the full width of the inspector.

paSortList The Object Inspector sorts the list returned by GetValues().

paReadOnly The property value can’t be changed.

paRevertable The property can be reverted to its original value. Some properties,
such as nested properties, shouldn’t be reverted. TFont is an example
of this.

Component-Based Development

PART IV
522

You should take a look at DesignEditors.pas and examine which TPropertyAttribute
flags are set for various property editors.

NOTE

Setting the paDialog Attribute for TCommandLineProperty
Because TCommandLineProperty is to display a dialog, you must tell the Object Inspector to use
this capability by setting the paDialog attribute in the TCommandLineProperty.GetAttributes()
method. This will place an ellipsis button to the right of the CommandLine property value in the
Object Inspector. When the user clicks this button, the TCommandLineProperty.Edit() method
will be called.

Registering the TCommandLineProperty
The final step required for implementing the TCommandLineProperty property editor is to reg-
ister it using the RegisterProperyEditor() procedure discussed earlier in this chapter. This
procedure was added to the Register() procedure in DDGReg.pas in the DDGDsgn package:

RegisterComponents(‘DDG’, [TddgRunButton]);
RegisterPropertyEditor(TypeInfo(TCommandLine), TddgRunButton,

‘’, TCommandLineProperty);

Also, note that the units DsgnIntf and RunBtnPE had to be added to the uses clause.

Component Editors
Component editors extend the design-time behavior of your components by allowing you to
add items to the local menu associated with a particular component and by allowing you to
change the default action when a component is double-clicked in the Form Designer. You
might already be familiar with component editors without knowing it if you’ve ever used the
fields editor provided with the TTable, TQuery, and TStoredProc components.

17 chpt_12.qxd 11/19/01 12:07 PM Page 522

TComponentEditor
You might not be aware of this, but a different component editor is created for each component
that’s selected in the Form Designer. The type of component editor created depends on the
component’s type, although all component editors descend from TComponentEditor. This class
is defined in the DesignEditors unit as follows:

TComponentEditor = class(TBaseComponentEditor, IComponentEditor)
private
FComponent: TComponent;
FDesigner: IDesigner;

public
constructor Create(AComponent: TComponent; ADesigner: IDesigner); override;
procedure Edit; virtual;
procedure ExecuteVerb(Index: Integer); virtual;
function GetComponent: TComponent;
function GetDesigner: IDesigner;
function GetVerb(Index: Integer): string; virtual;
function GetVerbCount: Integer; virtual;
function IsInInlined: Boolean;

procedure Copy; virtual;
procedure PrepareItem(Index: Integer; const AItem: IMenuItem); virtual;
property Component: TComponent read FComponent;
property Designer: IDesigner read GetDesigner;

end;

Properties
The Component property of TComponentEditor is the instance of the component you’re in the
process of editing. Because this property is of the generic TComponent type, you must typecast
the property in order to access fields introduced by descendant classes.

The Designer property is the instance of IDesigner that’s currently hosting the application at
design time. You’ll find the complete definition for this class in the DesignEditors.pas unit.

Methods
The Edit() method is called when the user double-clicks the component at design time. Often,
this method will invoke some sort of design dialog. The default behavior for this method is to
call ExecuteVerb(0) if GetVerbCount() returns a value of 1 or greater. You must call
Designer.Modified() if you modify the component from this (or any) method.

The use of the term verb as it applies to object methods applies to actions an object can take.
Delphi has no knowledge of new objects or components initially, and needs to “learn” about
them as they are added. With this in mind, it was designed with several methods that can be
used to identify an object’s actions. The GetVerbCount, GetVerb, and ExecuteVerb methods

Advanced VCL Component Building

CHAPTER 12

12

A
D

V
A

N
C

ED
V

C
L

C
O

M
PO

N
EN

T
B

U
ILD

IN
G

523

17 chpt_12.qxd 11/19/01 12:07 PM Page 523

are generic methods intended for a wide variety of components, and they are the calls you will
use to tell Delphi about your component.

The GetVerbCount() method is called to retrieve the number of items that are to be added to
the local menu.

GetVerb() accepts an integer, Index, and returns a string containing the text that should appear
on the local menu in the position corresponding to Index.

When an item is chosen from the local menu, the ExecuteVerb() method is called. This
method receives the zero-based index of the item selected from the local menu in the Index
parameter. You should respond by performing whatever action is necessary based on the verb
the user selected from the local. menu.

The Paste() method is called whenever the component is pasted to the Clipboard. Delphi
places the component’s filed stream image on the Clipboard, but you can use this method to
paste data on the Clipboard in a different type of format.

TDefaultEditor
If a custom component editor isn’t registered for a particular component, that component will
use the default component editor, TDefaultEditor. TDefaultEditor overrides the behavior of
the Edit() method so that it searches the properties of the component and generates (or navi-
gates to) the OnCreate, OnChanged, or OnClick event (whichever it finds first). If none of these
events exists for this component, the first event defined will be selected.

A Simple Component
Consider the following simple custom component:

type
TComponentEditorSample = class(TComponent)
protected
procedure SayHello; virtual;
procedure SayGoodbye; virtual;

end;

procedure TComponentEditorSample.SayHello;
begin
MessageDlg(‘Hello, there!’, mtInformation, [mbOk], 0);

end;

procedure TComponentEditorSample.SayGoodbye;
begin
MessageDlg(‘See ya!’, mtInformation, [mbOk], 0);

end;

Component-Based Development

PART IV
524

17 chpt_12.qxd 11/19/01 12:07 PM Page 524

As you can see, this little guy doesn’t do much: It’s a nonvisual component that descends
directly from TComponent, and it contains two methods, SayHello() and SayGoodbye(), that
simply display message dialogs.

A Simple Component Editor
To make the component a bit more exiting, you’ll create a component editor that calls into the
component and executes its methods at design time. The minimum TComponentEditor meth-
ods that must be overridden are ExecuteVerb(), GetVerb(), and GetVerbCount(). The code
for this component editor is as follows:

type
TSampleEditor = class(TComponentEditor)
private
procedure ExecuteVerb(Index: Integer); override;
function GetVerb(Index: Integer): string; override;
function GetVerbCount: Integer; override;

end;

procedure TSampleEditor.ExecuteVerb(Index: Integer);
begin
case Index of
0: TComponentEditorSample(Component).SayHello; // call function
1: TComponentEditorSample(Component).SayGoodbye; // call function

end;
end;

function TSampleEditor.GetVerb(Index: Integer): string;
begin
case Index of
0: Result := ‘Hello’; // return hello string
1: Result := ‘Goodbye’; // return goodbye string

end;
end;

function TSampleEditor.GetVerbCount: Integer;
begin
Result := 2; // two possible verbs

end;

The GetVerbCount() method returns 2, indicating that there are two different verbs the compo-
nent editor is prepared to execute. GetVerb() returns a string for each of these verbs to appear
on the local menu. The ExecuteVerb() method calls the appropriate method inside the compo-
nent, based on the verb index it receives as a parameter.

Advanced VCL Component Building

CHAPTER 12

12

A
D

V
A

N
C

ED
V

C
L

C
O

M
PO

N
EN

T
B

U
ILD

IN
G

525

17 chpt_12.qxd 11/19/01 12:07 PM Page 525

Registering a Component Editor
Like components and property editors, component editors must also be registered with the IDE
within a unit’s Register() method. To register a component editor, call the aptly named
RegisterComponentEditor() procedure, which is defined as follows:

procedure RegisterComponentEditor(ComponentClass: TComponentClass;
ComponentEditor: TComponentEditorClass);

The first parameter to this function is the component type for which you want to register a
component editor, and the second parameter is the component editor itself.

Listing 12.7 shows the CompEdit.pas unit, which includes the component, component editor,
and registration calls.

LISTING 12.7 CompEdit.pas—Illustrates a Component Editor

unit CompEdit;

interface

uses
SysUtils, Windows, Messages, Classes, Graphics, Controls, Forms, Dialogs,
DsgnIntf;

type
TComponentEditorSample = class(TComponent)
protected
procedure SayHello; virtual;
procedure SayGoodbye; virtual;

end;

TSampleEditor = class(TComponentEditor)
private
procedure ExecuteVerb(Index: Integer); override;
function GetVerb(Index: Integer): string; override;
function GetVerbCount: Integer; override;

end;

implementation

{ TComponentEditorSample }

procedure TComponentEditorSample.SayHello;
begin
MessageDlg(‘Hello, there!’, mtInformation, [mbOk], 0);

end;

Component-Based Development

PART IV
526

17 chpt_12.qxd 11/19/01 12:07 PM Page 526

LISTING 12.7 Continued

procedure TComponentEditorSample.SayGoodbye;
begin
MessageDlg(‘See ya!’, mtInformation, [mbOk], 0);

end;

{ TSampleEditor }

const
vHello = ‘Hello’;
vGoodbye = ‘Goodbye’;

procedure TSampleEditor.ExecuteVerb(Index: Integer);
begin
case Index of
0: TComponentEditorSample(Component).SayHello; // call function
1: TComponentEditorSample(Component).SayGoodbye; // call function

end;
end;

function TSampleEditor.GetVerb(Index: Integer): string;
begin
case Index of
0: Result := vHello; // return hello string
1: Result := vGoodbye; // return goodbye string

end;
end;

function TSampleEditor.GetVerbCount: Integer;
begin
Result := 2; // two possible verbs

end;

end.

Streaming Nonpublished Component Data
Chapter 11 indicates that the Delphi IDE automatically knows how to stream the published
properties of a component to and from a DFM file. What happens, however, when you have
nonpublished data that you want to be persistent by keeping it in the DFM file? Fortunately,
Delphi components provide a mechanism for writing and reading programmer-defined data to
and from the DFM file.

Advanced VCL Component Building

CHAPTER 12

12

A
D

V
A

N
C

ED
V

C
L

C
O

M
PO

N
EN

T
B

U
ILD

IN
G

527

17 chpt_12.qxd 11/19/01 12:07 PM Page 527

Defining Properties
The first step in defining persistent nonpublished “properties” is to override a component’s
DefineProperties() method. This method is inherited from TPersistent, and it’s defined as
follows:

procedure DefineProperties(Filer: TFiler); virtual;

By default, this method handles reading and writing published properties to and from the DFM
file. You can override this method, and, after calling inherited, you can call the TFiler
method DefineProperty() or DefineBinaryProperty() once for each piece of data you want
to become part of the DFM file. These methods are defined, respectively, as follows:

procedure DefineProperty(const Name: string; ReadData: TReaderProc;
WriteData: TWriterProc; HasData: Boolean); virtual;

procedure DefineBinaryProperty(const Name: string; ReadData,
WriteData: TStreamProc; HasData: Boolean); virtual;

DefineProperty() is used to make standard data types such as strings, integers, Booleans,
chars, floats, and enumerated types persistent. DefineBinaryProperty() is used to provide
access to raw binary data, such as a graphic or sound, written to the DFM file.

For both of these functions, the Name parameter identifies the property name that should be
written to the DFM file. This doesn’t have to be the same as the internal name of the data
field you’re accessing. The ReadData and WriteData parameters differ in type between
DefineProperty() and DefineBinaryProperty(), but they serve the same purpose: These
methods are called in order to write or read data to or from the DFM file. (We’ll discuss these
in more detail in just a moment.) The HasData parameter indicates whether the “property” has
data that it needs to store.

The ReadData and WriteData parameters of DefineProperty() are of type TReaderProc and
TWriterProc, respectively. These types are defined as follows:

type
TReaderProc = procedure(Reader: TReader) of object;
TWriterProc = procedure(Writer: TWriter) of object;

TReader and TWriter are specialized descendants of TFiler that have additional methods for
reading and writing native types. Methods of these types provide the conduit between pub-
lished component data and the DFM file.

The ReadData and WriteData parameters of DefineBinaryProperty() are of type
TStreamProc, which is defined as follows:

type
TStreamProc = procedure(Stream: TStream) of object;

Component-Based Development

PART IV
528

17 chpt_12.qxd 11/19/01 12:07 PM Page 528

Because TStreamProc type methods receive only TStream as a parameter, this allows you to
read and write binary data very easily to and from the stream. Like the other method types
described earlier, methods of this type provide the conduit between nonstandard data and the
DFM file.

An Example of DefineProperty()
In order to bring all this rather technical information together, Listing 12.8 shows the
DefProp.pas unit. This unit illustrates the use of DefineProperty() by providing storage for
two private data fields: a string and an integer.

LISTING 12.8 DefProp.pas Illustrated Using the DefineProperty() Function

unit DefProp;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs;

type
TDefinePropTest = class(TComponent)
private
FString: String;
FInteger: Integer;
procedure ReadStrData(Reader: TReader);
procedure WriteStrData(Writer: TWriter);
procedure ReadIntData(Reader: TReader);
procedure WriteIntData(Writer: TWriter);

protected
procedure DefineProperties(Filer: TFiler); override;

public
constructor Create(AOwner: TComponent); override;

end;

implementation

constructor TDefinePropTest.Create(AOwner: TComponent);
begin
inherited Create(AOwner);
{ Put data in private fields }
FString := ‘The following number is the answer...’;
FInteger := 42;

end;

Advanced VCL Component Building

CHAPTER 12

12

A
D

V
A

N
C

ED
V

C
L

C
O

M
PO

N
EN

T
B

U
ILD

IN
G

529

17 chpt_12.qxd 11/19/01 12:07 PM Page 529

LISTING 12.8 Continued

procedure TDefinePropTest.DefineProperties(Filer: TFiler);
begin
inherited DefineProperties(Filer);
{ Define new properties and reader/writer methods }
Filer.DefineProperty(‘StringProp’, ReadStrData, WriteStrData,
FString <> ‘’);

Filer.DefineProperty(‘IntProp’, ReadIntData, WriteIntData, True);
end;

procedure TDefinePropTest.ReadStrData(Reader: TReader);
begin
FString := Reader.ReadString;

end;

procedure TDefinePropTest.WriteStrData(Writer: TWriter);
begin
Writer.WriteString(FString);

end;

procedure TDefinePropTest.ReadIntData(Reader: TReader);
begin
FInteger := Reader.ReadInteger;

end;

procedure TDefinePropTest.WriteIntData(Writer: TWriter);
begin
Writer.WriteInteger(FInteger);

end;

end.

Component-Based Development

PART IV
530

Always use the ReadString() and WriteString() methods of TReader and TWriter to
read and write string data. Never use the similar-looking ReadStr() and WriteStr()
methods because they’ll corrupt your DFM file.

CAUTION

TddgWaveFile: An Example of DefineBinaryProperty()
We mentioned earlier that a good time to use DefineBinaryProperty() is when you need to
store graphic or sound information along with a component. In fact, VCL uses this technique
for storing images associated with components—the Glyph of a TBitBtn, for example, or the

17 chpt_12.qxd 11/19/01 12:07 PM Page 530

Icon of a TForm. In this section, you’ll learn how to use this technique when storing the sound
associated with the TddgWaveFile component.

Advanced VCL Component Building

CHAPTER 12

12

A
D

V
A

N
C

ED
V

C
L

C
O

M
PO

N
EN

T
B

U
ILD

IN
G

531

TddgWaveFile is quite a full-featured component, complete with a custom property,
property editor, and component editor to allow you to play sounds at design time.
You’ll be able to pick through the code for all this a little later in the chapter, but for
now we’re going to focus the discussion on the mechanism for storing the binary
property.

NOTE

The DefineProperties() method for TddgWaveFile is as follows:

procedure TddgWaveFile.DefineProperties(Filer: TFiler);
{ Defines binary property called “Data” for FData field. }
{ This allows FData to be read from and written to DFM file. }

function DoWrite: Boolean;
begin
if Filer.Ancestor <> nil then
Result := not (Filer.Ancestor is TddgWaveFile) or
not Equal(TddgWaveFile(Filer.Ancestor))

else
Result := not Empty;

end;

begin
inherited DefineProperties(Filer);
Filer.DefineBinaryProperty(‘Data’, ReadData, WriteData, DoWrite);

end;

This method defines a binary property called Data, which is read and written using the compo-
nent’s ReadData() and WriteData() methods. Additionally, data is written only if the return
value of DoWrite() is True. (You’ll learn more about DoWrite() in just a moment.)

The ReadData() and WriteData() methods are defined as follows:

procedure TddgWaveFile.ReadData(Stream: TStream);
{ Reads WAV data from DFM stream. }
begin
LoadFromStream(Stream);

end;

procedure TddgWaveFile.WriteData(Stream: TStream);
{ Writes WAV data to DFM stream }

17 chpt_12.qxd 11/19/01 12:07 PM Page 531

begin
SaveToStream(Stream);

end;

As you can see, there isn’t much to these methods; they simply call the LoadFromStream()
and SaveToStream() methods, which are also defined by the TddgWaveFile component. The
LoadFromStream() method is as follows:

procedure TddgWaveFile.LoadFromStream(S: TStream);
{ Loads WAV data from stream S. This procedure will free }
{ any memory previously allocated for FData. }
begin
if not Empty then
FreeMem(FData, FDataSize);

FDataSize := 0;
FData := AllocMem(S.Size);
FDataSize := S.Size;
S.Read(FData^, FDataSize);

end;

This method first checks to see whether memory has been previously allocated by testing the
value of the FDataSize field. If it’s greater than zero, the memory pointed to by the FData field
is freed. At that point, a new block of memory is allocated for FData, and FDataSize is set to
the size of the incoming data stream. The contents of the stream are then read into the FData
pointer.

The SaveToStream() method is much simpler; it’s defined as follows:

procedure TddgWaveFile.SaveToStream(S: TStream);
{ Saves WAV data to stream S. }
begin
if FDataSize > 0 then
S.Write(FData^, FDataSize);

end;

This method writes the data pointed to by pointer FData to TStream S.

The local DoWrite() function inside the DefineProperties() method determines whether the
Data property needs to be streamed. Of course, if FData is empty, there’s no need to stream
data. Additionally, you must take extra measures to ensure that your component works cor-
rectly with form inheritance: You must check to see whether the Ancestor property for Filer
is non-nil. If it is and it points to an ancestor version of the current component, you must
check to see whether the data you’re about to write is different from the ancestor. If you don’t
perform these additional tests, a copy of the data (the wave file, in this case) will be written in
each of the descendant forms, and changes to the ancestor’s wave file won’t be copied to the
descendant forms.

Component-Based Development

PART IV
532

17 chpt_12.qxd 11/19/01 12:07 PM Page 532

Listing 12.9 shows Wavez.pas, which includes the complete source code for the component.

LISTING 12.9 Wavez.pas—Illustrates a Component Encapsulating a Wave File

unit Wavez;

interface

uses
SysUtils, Classes;

type
{ Special string “descendant” used to make a property editor. }
TWaveFileString = type string;

EWaveError = class(Exception);

TWavePause = (wpAsync, wpsSync);
TWaveLoop = (wlNoLoop, wlLoop);

TddgWaveFile = class(TComponent)
private
FData: Pointer;
FDataSize: Integer;
FWaveName: TWaveFileString;
FWavePause: TWavePause;
FWaveLoop: TWaveLoop;
FOnPlay: TNotifyEvent;
FOnStop: TNotifyEvent;
procedure SetWaveName(const Value: TWaveFileString);
procedure WriteData(Stream: TStream);
procedure ReadData(Stream: TStream);

protected
procedure DefineProperties(Filer: TFiler); override;

public
destructor Destroy; override;
function Empty: Boolean;
function Equal(Wav: TddgWaveFile): Boolean;
procedure LoadFromFile(const FileName: String);
procedure LoadFromStream(S: TStream);
procedure Play;
procedure SaveToFile(const FileName: String);
procedure SaveToStream(S: TStream);
procedure Stop;

published
property WaveLoop: TWaveLoop read FWaveLoop write FWaveLoop;

Advanced VCL Component Building

CHAPTER 12

12

A
D

V
A

N
C

ED
V

C
L

C
O

M
PO

N
EN

T
B

U
ILD

IN
G

533

17 chpt_12.qxd 11/19/01 12:07 PM Page 533

LISTING 12.9 Continued

property WaveName: TWaveFileString read FWaveName write SetWaveName;
property WavePause: TWavePause read FWavePause write FWavePause;
property OnPlay: TNotifyEvent read FOnPlay write FOnPlay;
property OnStop: TNotifyEvent read FOnStop write FOnStop;

end;

implementation

uses MMSystem, Windows;

{ TddgWaveFile }

destructor TddgWaveFile.Destroy;
{ Ensures that any allocated memory is freed }
begin
if not Empty then
FreeMem(FData, FDataSize);

inherited Destroy;
end;

function StreamsEqual(S1, S2: TMemoryStream): Boolean;
begin
Result := (S1.Size = S2.Size) and CompareMem(S1.Memory, S2.Memory, S1.Size);

end;

procedure TddgWaveFile.DefineProperties(Filer: TFiler);
{ Defines binary property called “Data” for FData field. }
{ This allows FData to be read from and written to DFM file. }

function DoWrite: Boolean;
begin
if Filer.Ancestor <> nil then
Result := not (Filer.Ancestor is TddgWaveFile) or
not Equal(TddgWaveFile(Filer.Ancestor))

else
Result := not Empty;

end;

begin
inherited DefineProperties(Filer);
Filer.DefineBinaryProperty(‘Data’, ReadData, WriteData, DoWrite);

end;

function TddgWaveFile.Empty: Boolean;

Component-Based Development

PART IV
534

17 chpt_12.qxd 11/19/01 12:07 PM Page 534

LISTING 12.9 Continued

begin
Result := FDataSize = 0;

end;

function TddgWaveFile.Equal(Wav: TddgWaveFile): Boolean;
var
MyImage, WavImage: TMemoryStream;

begin
Result := (Wav <> nil) and (ClassType = Wav.ClassType);
if Empty or Wav.Empty then
begin
Result := Empty and Wav.Empty;
Exit;

end;
if Result then
begin
MyImage := TMemoryStream.Create;
try
SaveToStream(MyImage);
WavImage := TMemoryStream.Create;
try
Wav.SaveToStream(WavImage);
Result := StreamsEqual(MyImage, WavImage);

finally
WavImage.Free;

end;
finally
MyImage.Free;

end;
end;

end;

procedure TddgWaveFile.LoadFromFile(const FileName: String);
{ Loads WAV data from FileName. Note that this procedure does }
{ not set the WaveName property. }
var
F: TFileStream;

begin
F := TFileStream.Create(FileName, fmOpenRead);
try
LoadFromStream(F);

finally
F.Free;

end;
end;

Advanced VCL Component Building

CHAPTER 12

12

A
D

V
A

N
C

ED
V

C
L

C
O

M
PO

N
EN

T
B

U
ILD

IN
G

535

17 chpt_12.qxd 11/19/01 12:07 PM Page 535

LISTING 12.9 Continued

procedure TddgWaveFile.LoadFromStream(S: TStream);
{ Loads WAV data from stream S. This procedure will free }
{ any memory previously allocated for FData. }
begin
if not Empty then
FreeMem(FData, FDataSize);

FDataSize := 0;
FData := AllocMem(S.Size);
FDataSize := S.Size;
S.Read(FData^, FDataSize);

end;

procedure TddgWaveFile.Play;
{ Plays the WAV sound in FData using the parameters found in }
{ FWaveLoop and FWavePause. }
const
LoopArray: array[TWaveLoop] of DWORD = (0, SND_LOOP);
PauseArray: array[TWavePause] of DWORD = (SND_ASYNC, SND_SYNC);

begin
{ Make sure component contains data }
if Empty then
raise EWaveError.Create(‘No wave data’);

if Assigned(FOnPlay) then FOnPlay(Self); // fire event
{ attempt to play wave sound }
if not PlaySound(FData, 0, SND_MEMORY or PauseArray[FWavePause] or

LoopArray[FWaveLoop]) then
raise EWaveError.Create(‘Error playing sound’);

end;

procedure TddgWaveFile.ReadData(Stream: TStream);
{ Reads WAV data from DFM stream. }
begin
LoadFromStream(Stream);

end;

procedure TddgWaveFile.SaveToFile(const FileName: String);
{ Saves WAV data to file FileName. }
var
F: TFileStream;

begin
F := TFileStream.Create(FileName, fmCreate);
try
SaveToStream(F);

finally

Component-Based Development

PART IV
536

17 chpt_12.qxd 11/19/01 12:07 PM Page 536

LISTING 12.9 Continued

F.Free;
end;

end;

procedure TddgWaveFile.SaveToStream(S: TStream);
{ Saves WAV data to stream S. }
begin
if not Empty then
S.Write(FData^, FDataSize);

end;

procedure TddgWaveFile.SetWaveName(const Value: TWaveFileString);
{ Write method for WaveName property. This method is in charge of }
{ setting WaveName property and loading WAV data from file Value. }
begin
if Value <> ‘’ then begin
FWaveName := ExtractFileName(Value);
{ don’t load from file when loading from DFM stream }
{ because DFM stream will already contain data. }
if (not (csLoading in ComponentState)) and FileExists(Value) then
LoadFromFile(Value);

end
else begin
{ if Value is an empty string, that is the signal to free }
{ memory allocated for WAV data. }
FWaveName := ‘’;
if not Empty then
FreeMem(FData, FDataSize);

FDataSize := 0;
end;

end;

procedure TddgWaveFile.Stop;
{ Stops currently playing WAV sound }
begin
if Assigned(FOnStop) then FOnStop(Self); // fire event
PlaySound(Nil, 0, SND_PURGE);

end;

procedure TddgWaveFile.WriteData(Stream: TStream);
{ Writes WAV data to DFM stream }
begin
SaveToStream(Stream);

end;

end.

Advanced VCL Component Building

CHAPTER 12

12

A
D

V
A

N
C

ED
V

C
L

C
O

M
PO

N
EN

T
B

U
ILD

IN
G

537

17 chpt_12.qxd 11/19/01 12:07 PM Page 537

Property Categories
As you learned back in Chapter 1, “Programming in Delphi,” a feature new as of Delphi 5 is
property categories. This feature provides a means for the properties of VCL components to be
specified as belonging to particular categories and for the Object Inspector to be sorted by
these categories. Properties can be registered as belonging to a particular category using the
RegisterPropertyInCategory() and RegisterPropertiesInCategory() functions declared
in the DesignIntf unit. The former enables you to register a single property for a category,
whereas the latter allows you to register multiple properties with one call.

RegisterPropertyInCategory() is overloaded in order to provide four different
versions of this function to suit your exact needs. All the versions of this function take a
TPropertyCategoryClass as the first parameter, describing the category. From there, each
of these versions takes a different combination of property name, property type, and compo-
nent class to enable you to choose the best method for registering your properties. The various
versions of RegisterPropertyInCategory() are shown here:

function RegisterPropertyInCategory(ACategoryClass: TPropertyCategoryClass;
const APropertyName: string): TPropertyFilter; overload;

function RegisterPropertyInCategory(ACategoryClass: TPropertyCategoryClass;
AComponentClass: TClass; const APropertyName: string): TPropertyFilter
overload;

function RegisterPropertyInCategory(ACategoryClass: TPropertyCategoryClass;
APropertyType: PTypeInfo; const APropertyName: string): TPropertyFilter;
overload;

function RegisterPropertyInCategory(ACategoryClass: TPropertyCategoryClass;
APropertyType: PTypeInfo): TPropertyFilter; overload;

These functions are also smart enough to understand wildcard symbols, so you can, for exam-
ple, add all properties that match ‘Data*’ to a particular category. Refer to the online help for
the TMask class for a complete list of supported wildcard characters and their behavior.

RegisterPropertiesInCategory() comes in three overloaded variations:

function RegisterPropertiesInCategory(ACategoryClass: TPropertyCategoryClass;
const AFilters: array of const): TPropertyCategory; overload;

function RegisterPropertiesInCategory(ACategoryClass: TPropertyCategoryClass;
AComponentClass: TClass; const AFilters: array of string): TPropertyCategory;
overload;

function RegisterPropertiesInCategory(ACategoryClass: TPropertyCategoryClass;
APropertyType: PTypeInfo; const AFilters: array of string):

TPropertyCategory;
overload;

Component-Based Development

PART IV
538

17 chpt_12.qxd 11/19/01 12:07 PM Page 538

Category Classes
The TPropertyCategoryClass type is a class reference for a TPropertyCategory.
TPropertyCategory is the base class for all standard property categories in VCL. There
are 12 standard property categories, and these classes are described in Table 12.4.

TABLE 12.4 Standard Property Category Classes

Class Name Description

TactionCategory Properties related to runtime actions. The Enabled and Hint
properties of TControl are in this category.

TDatabaseCategory Properties related to database operations. The
DatabaseName and SQL properties of TQuery are in this
category.

TDragNDropCategory Properties related to drag-and-drop and docking operations.
The DragCursor and DragKind properties of TControl are
in this category.

THelpCategory Properties related to using online help and hints. The
HelpContext and Hint properties of TWinControl are in
this category.

TLayoutCategory Properties related to the visual display of a control at design
time. The Top and Left properties of TControl are in this
category.

TLegacyCategory Properties related to obsolete operations. The Ctl3D and
ParentCtl3D properties of TWinControl are in this
category.

TLinkageCategory Properties related to associating or linking one component
to another. The DataSet property of TDataSource is in this
category.

TLocaleCategory Properties related to international locales. The BiDiMode
and ParentBiDiMode properties of TControl are in this
category.

TLocalizableCategory Properties related to database operations. The DatabaseName
and SQL properties of TQuery are in this category.

TMiscellaneousCategory Properties that either do not fit a category, do not need to be
categorized, or are not explicitly registered to a specific cat-
egory. The AllowAllUp and Name properties of
TSpeedButton are in this category.

Advanced VCL Component Building

CHAPTER 12

12

A
D

V
A

N
C

ED
V

C
L

C
O

M
PO

N
EN

T
B

U
ILD

IN
G

539

17 chpt_12.qxd 11/19/01 12:07 PM Page 539

TABLE 12.4 Continued

Class Name Description

TVisualCategory Properties related to the visual display of a control at run-
time; the Align and Visible properties of TControl are in
this category.

TInputCategory Properties related to the input of data (they need not be
related to database operations). The Enabled and ReadOnly
properties of TEdit are in this category.

As an example, let’s say that you’ve written a component called TNeato with a property called
Keen, and you want to register the Keen property as a member of the Action category repre-
sented by TActionCategory. You could do this by adding a call to
RegisterPropertyInCategory() to the Register() procedure for your control, as shown
here:

RegisterPropertyInCategory(TActionCategory, TNeato, ‘Keen’);

Custom Categories
As you’ve already learned, a property category is represented in code as a class that descends
from TPropertyCategory. How difficult is it, then, to create your own property categories in
this way? It’s quite easy, actually. In most cases, all you need to do is override the Name() and
Description() virtual class functions of TPropertyCategory to return information specific to
your category.

As an illustration, we’ll create a new Sound category that will be used to categorize some of
the properties of the TddgWaveFile component, which you learned about earlier in this chapter.
This new category class, called TSoundCategory, is shown in Listing 12.10. This listing con-
tains WavezEd.pas, which is a file that contains the component’s category, property editor, and
component editor.

LISTING 12.10 WavezEd.pas—Illustrates a Property Editor for the Wave File Component

unit WavezEd;

interface

uses DsgnIntf;

type
{ Category for some of TddgWaveFile’s properties }
TSoundCategory = class(TPropertyCategory)

Component-Based Development

PART IV
540

17 chpt_12.qxd 11/19/01 12:07 PM Page 540

LISTING 12.10 Continued

public
class function Name: string; override;
class function Description: string; override;

end;

{ Property editor for TddgWaveFile’s WaveName property }
TWaveFileStringProperty = class(TStringProperty)
public
procedure Edit; override;
function GetAttributes: TPropertyAttributes; override;

end;

{ Component editor for TddgWaveFile. Allows user to play and stop }
{ WAV sounds from local menu in IDE. }
TWaveEditor = class(TComponentEditor)
private
procedure EditProp(PropertyEditor: TPropertyEditor);

public
procedure Edit; override;
procedure ExecuteVerb(Index: Integer); override;
function GetVerb(Index: Integer): string; override;
function GetVerbCount: Integer; override;

end;

implementation

uses TypInfo, Wavez, Classes, Controls, Dialogs;

{ TSoundCategory }

class function TSoundCategory.Name: string;
begin
Result := ‘Sound’;

end;

class function TSoundCategory.Description: string;
begin
Result := ‘Properties dealing with the playing of sounds’

end;

{ TWaveFileStringProperty }

procedure TWaveFileStringProperty.Edit;
{ Executed when user clicks the ellipses button on the WavName }

Advanced VCL Component Building

CHAPTER 12

12

A
D

V
A

N
C

ED
V

C
L

C
O

M
PO

N
EN

T
B

U
ILD

IN
G

541

17 chpt_12.qxd 11/19/01 12:07 PM Page 541

LISTING 12.10 Continued

{ property in the Object Inspector. This method allows the user }
{ to pick a file from an OpenDialog and sets the property value. }
begin
with TOpenDialog.Create(nil) do
try
{ Set up properties for dialog }
Filter := ‘Wav files|*.wav|All files|*.*’;
DefaultExt := ‘*.wav’;
{ Put current value in the FileName property of dialog }
FileName := GetStrValue;
{ Execute dialog and set property value if dialog is OK }
if Execute then
SetStrValue(FileName);

finally
Free;

end;
end;

function TWaveFileStringProperty.GetAttributes: TPropertyAttributes;
{ Indicates the property editor will invoke a dialog. }
begin
Result := [paDialog];

end;

{ TWaveEditor }

const
VerbCount = 2;
VerbArray: array[0..VerbCount - 1] of string[7] = (‘Play’, ‘Stop’);

procedure TWaveEditor.Edit;
{ Called when user double-clicks on the component at design time. }
{ This method calls the GetComponentProperties method in order to }
{ invoke the Edit method of the WaveName property editor. }
var
Components: TDesignerSelectionList;

begin
Components := TDesignerSelectionList.Create;
try
Components.Add(Component);
GetComponentProperties(Components, tkAny, Designer, EditProp);

finally
Components.Free;

end;
end;

Component-Based Development

PART IV
542

17 chpt_12.qxd 11/19/01 12:07 PM Page 542

LISTING 12.10 Continued

procedure TWaveEditor.EditProp(PropertyEditor: TPropertyEditor);
{ Called once per property in response to GetComponentProperties }
{ call. This method looks for the WaveName property editor and }
{ calls its Edit method. }
begin
if PropertyEditor is TWaveFileStringProperty then begin
TWaveFileStringProperty(PropertyEditor).Edit;
Designer.Modified; // alert Designer to modification

end;
end;

procedure TWaveEditor.ExecuteVerb(Index: Integer);
begin
case Index of
0: TddgWaveFile(Component).Play;
1: TddgWaveFile(Component).Stop;

end;
end;

function TWaveEditor.GetVerb(Index: Integer): string;
begin
Result := VerbArray[Index];

end;

function TWaveEditor.GetVerbCount: Integer;
begin
Result := VerbCount;

end;

end.

With the category class defined, all that needs to be done is register the properties for the cate-
gory using one of the registration functions. This is done in the Register() procedure for
TddgWaveFile using the following line of code:

RegisterPropertiesInCategory(TSoundCategory, TddgWaveFile,
[‘WaveLoop’, ‘WaveName’, ‘WavePause’]);

Lists of Components: TCollection and
TCollectionItem
It’s common for components to maintain or own a list of items such as data types, records,
objects, or even other components. In some cases, it’s suitable to encapsulate this list within its

Advanced VCL Component Building

CHAPTER 12

12

A
D

V
A

N
C

ED
V

C
L

C
O

M
PO

N
EN

T
B

U
ILD

IN
G

543

17 chpt_12.qxd 11/19/01 12:07 PM Page 543

own object and then make this object a property of the owner component. An example of this
arrangement is the Lines property of a TMemo component. Lines is a TStrings object type that
encapsulates a list of strings. With this arrangement, the TStrings object is responsible for the
streaming mechanism used to store its lines to the form file when the user saves the form.

What if you wanted to save a list of items such as components or objects that weren’t already
encapsulated by an existing class such as TStrings? Well, you could create a class that per-
forms the streaming of the listed items and then make that a property of the owner component.
Alternatively, you could override the default streaming mechanism of the owner component so
that it knows how to stream its list of items. However, a better solution would be to take advan-
tage of the TCollection and TCollectionItem classes.

The TCollection class is an object used to store a list of TCollectionItem objects.
TCollection, itself, isn’t a component but rather a descendant of TPersistent. Typically,
TCollection is associated with an existing component.

To use TCollection to store a list of items, you would derive a descendant class from
TCollection, which you could call TNewCollection. TNewCollection will serve as a
property type for a component. Then, you must derive a class from the TCollectionItem
class, which you could call TNewCollectionItem. TNewCollection will maintain a list of
TNewCollectionItem objects. The beauty of this is that data belonging to TNewCollectionItem
that needs to be streamed only needs to be published by TNewCollectionItem. Delphi already
knows how to stream published properties.

An example of where TCollection is used is with the TStatusBar component. TStatusBar is
a TWinControl descendant. One of its properties is Panels. TStatusBar.Panels is of type
TStatusPanels, which is a TCollection descendant and defined as follows:

type
TStatusPanels = class(TCollection)
private
FStatusBar: TStatusBar;
function GetItem(Index: Integer): TStatusPanel;
procedure SetItem(Index: Integer; Value: TStatusPanel);

protected
procedure Update(Item: TCollectionItem); override;

public
constructor Create(StatusBar: TStatusBar);
function Add: TStatusPanel;
property Items[Index: Integer]: TStatusPanel read GetItem write SetItem;
default;

end;

TStatusPanels stores a list of TCollectionItem descendants, TStatusPanel, as defined here:

Component-Based Development

PART IV
544

17 chpt_12.qxd 11/19/01 12:07 PM Page 544

type
TStatusPanel = class(TCollectionItem)
private
FText: string;
FWidth: Integer;
FAlignment: TAlignment;
FBevel: TStatusPanelBevel;
FStyle: TStatusPanelStyle;
procedure SetAlignment(Value: TAlignment);
procedure SetBevel(Value: TStatusPanelBevel);
procedure SetStyle(Value: TStatusPanelStyle);
procedure SetText(const Value: string);
procedure SetWidth(Value: Integer);

public
constructor Create(Collection: TCollection); override;
procedure Assign(Source: TPersistent); override;

published
property Alignment: TAlignment read FAlignment
write SetAlignment default taLeftJustify;

property Bevel: TStatusPanelBevel read FBevel
write SetBevel default pbLowered;

property Style: TStatusPanelStyle read FStyle write SetStyle
default psText;

property Text: string read FText write SetText;
property Width: Integer read FWidth write SetWidth;

end;

The TStatusPanel properties in the published section of the class declaration will automati-
cally be streamed by Delphi. TStatusPanel takes a TCollection parameter in its Create()
constructor, and it associates itself with that TCollection. Likewise, TStatusPanels takes the
TStatusBar component in its constructor to which it associates itself. The TCollection engine
knows how to deal with the streaming of TCollectionItem components and also defines some
methods and properties for manipulating the items maintained in TCollection. You can look
these up in the online help.

To illustrate how you might use these two new classes, we’ve created the TddgLaunchPad com-
ponent. TddgLaunchPad will enable the user to store a list of TddgRunButton components,
which we created in Chapter 11.

TddgLaunchPad is a descendant of the TScrollBox component. One of the properties of
TddgLaunchPad is RunButtons, a TCollection descendant. RunButtons maintains a list of
TRunBtnItem components. TRunBtnItem is a TCollectionItem descendant whose properties
are used to create a TddgRunButton component, which is placed on TddgLaunchPad. In the fol-
lowing sections, we’ll discuss how we created this component.

Advanced VCL Component Building

CHAPTER 12

12

A
D

V
A

N
C

ED
V

C
L

C
O

M
PO

N
EN

T
B

U
ILD

IN
G

545

17 chpt_12.qxd 11/19/01 12:07 PM Page 545

Defining the TCollectionItem Class: TRunBtnItem
The first step is to define the item to be maintained in a list. For TddgLaunchPad, this would
be a TddgRunButton component. Therefore, each TRunBtnItem instance must associate itself
with a TddgRunButton component. The following code shows a partial definition of the
TRunBtnItem class:

type
TRunBtnItem = class(TCollectionItem)
private
FCommandLine: String; // Store the command line
FLeft: Integer; // Store the positional properties for the
FTop: Integer; // TddgRunButton.
FRunButton: TddgRunButton; // Reference to a TddgRunButton
…

public
constructor Create(Collection: TCollection); override;

published
{ The published properties will be streamed }
property CommandLine: String read FCommandLine write SetCommandLine;
property Left: Integer read FLeft write SetLeft;
property Top: Integer read FTop write SetTop;

end;

Notice that TRunBtnItem keeps a reference to a TddgRunButton component, yet it only streams
the properties required to build a TddgRunButton. At first you might think that because
TRunBtnItem associates itself with a TddgRunButton, it could just publish the component and
let the streaming engine do the rest. Well, this poses some problems with the streaming engine
and how it handles the streaming of TComponent classes differently from TPersistent classes.
The fundamental rule here is that the streaming system is responsible for creating new
instances for every TComponent-derived classname it finds in a stream, whereas it assumes
that TPersistent instances already exist and doesn’t attempt to instantiate new ones.
Following this rule, we stream the information required of the TddgRunButton and then we cre-
ate the TddgRunButton in the TRunBtnItem constructor, which we’ll illustrate shortly.

Defining the TCollection Class: TRunButtons
The next step is to define the object that will maintain this list of TRunBtnItem components.
We already said that this object must be a TCollection descendant. We call this class
TRunButtons; its definition is as follows:

type
TRunButtons = class(TCollection)
private
FLaunchPad: TddgLaunchPad; // Keep a reference to the TddgLaunchPad

Component-Based Development

PART IV
546

17 chpt_12.qxd 11/19/01 12:07 PM Page 546

function GetItem(Index: Integer): TRunBtnItem;
procedure SetItem(Index: Integer; Value: TRunBtnItem);

protected
procedure Update(Item: TCollectionItem); override;

public
constructor Create(LaunchPad: TddgLaunchPad);
function Add: TRunBtnItem;
procedure UpdateRunButtons;
property Items[Index: Integer]: TRunBtnItem read GetItem
write SetItem; default;

end;

TRunButtons associates itself with a TddgLaunchPad component that we’ll show a bit later. It
does this in its Create() constructor, which, as you can see, takes a TddgLaunchPad compo-
nent as its parameter. Notice the various properties and methods that have been added to allow
the user to manipulate the individual TRunBtnItem classes. In particular, the Items property is
an array to the TRunBtnItem list.

The use of the TRunBtnItem and TRunButtons classes will become clearer as we discuss the
implementation of the TddgLaunchPad component.

Implementing the TddgLaunchPad, TRunBtnItem, and
TRunButtons Objects
The TddgLaunchPad component has a property of the type TRunButtons. Its implementation, as
well as the implementation of TRunBtnItem and TRunButtons, is shown in Listing 12.11.

LISTING 12.11 LnchPad.pas—Illustrates the TddgLaunchPad Implementation

unit LnchPad;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, RunBtn, ExtCtrls;

type
TddgLaunchPad = class;

TRunBtnItem = class(TCollectionItem)
private
FCommandLine: string; // Store the command line
FLeft: Integer; // Store the positional properties for the
FTop: Integer; // TddgRunButton.

Advanced VCL Component Building

CHAPTER 12

12

A
D

V
A

N
C

ED
V

C
L

C
O

M
PO

N
EN

T
B

U
ILD

IN
G

547

17 chpt_12.qxd 11/19/01 12:07 PM Page 547

LISTING 12.11 Continued

FRunButton: TddgRunButton; // Reference to a TddgRunButton
FWidth: Integer; // Keep track of the width and height
FHeight: Integer;
procedure SetCommandLine(const Value: string);
procedure SetLeft(Value: Integer);
procedure SetTop(Value: Integer);

public
constructor Create(Collection: TCollection); override;
destructor Destroy; override;
procedure Assign(Source: TPersistent); override;
property Width: Integer read FWidth;
property Height: Integer read FHeight;

published
{ The published properties will be streamed }
property CommandLine: String read FCommandLine
write SetCommandLine;

property Left: Integer read FLeft write SetLeft;
property Top: Integer read FTop write SetTop;

end;

TRunButtons = class(TCollection)
private
FLaunchPad: TddgLaunchPad; // Keep a reference to the TddgLaunchPad
function GetItem(Index: Integer): TRunBtnItem;
procedure SetItem(Index: Integer; Value: TRunBtnItem);

protected
procedure Update(Item: TCollectionItem); override;

public
constructor Create(LaunchPad: TddgLaunchPad);
function Add: TRunBtnItem;
procedure UpdateRunButtons;
property Items[Index: Integer]: TRunBtnItem read
GetItem write SetItem; default;

end;

TddgLaunchPad = class(TScrollBox)
private
FRunButtons: TRunButtons;
TopAlign: Integer;
LeftAlign: Integer;
procedure SetRunButtons(Value: TRunButtons);
procedure UpdateRunButton(Index: Integer);

public
constructor Create(AOwner: TComponent); override;

Component-Based Development

PART IV
548

17 chpt_12.qxd 11/19/01 12:07 PM Page 548

LISTING 12.11 Continued

destructor Destroy; override;
procedure GetChildren(Proc: TGetChildProc; Root: TComponent); override;

published
property RunButtons: TRunButtons read FRunButtons write SetRunButtons;

end;

implementation

{ TRunBtnItem }

constructor TRunBtnItem.Create(Collection: TCollection);
{ This constructor gets the TCollection that owns this TRunBtnItem. }
begin
inherited Create(Collection);
{ Create an FRunButton instance. Make the launch pad the owner
and parent. Then initialize its various properties. }

FRunButton := TddgRunButton.Create(TRunButtons(Collection).FLaunchPad);
FRunButton.Parent := TRunButtons(Collection).FLaunchPad;
FWidth := FRunButton.Width; // Keep track of the width and the
FHeight := FRunButton.Height; // height.

end;

destructor TRunBtnItem.Destroy;
begin
FRunButton.Free; // Destroy the TddgRunButton instance.
inherited Destroy; // Call the inherited Destroy destructor.

end;

procedure TRunBtnItem.Assign(Source: TPersistent);
{ It is necessary to override the TCollectionItem.Assign method so that
it knows how to copy from one TRunBtnItem to another. If this is done,
then don’t call the inherited Assign(). }

begin
if Source is TRunBtnItem then
begin
{ Instead of assigning the command line to the FCommandLine storage
field, make the assignment to the property so that the accessor
method will be called. The accessor method as some side-effects
that we want to occur. }

CommandLine := TRunBtnItem(Source).CommandLine;
{ Copy values to the remaining fields. Then exit the procedure. }
FLeft := TRunBtnItem(Source).Left;
FTop := TRunBtnItem(Source).Top;

Advanced VCL Component Building

CHAPTER 12

12

A
D

V
A

N
C

ED
V

C
L

C
O

M
PO

N
EN

T
B

U
ILD

IN
G

549

17 chpt_12.qxd 11/19/01 12:07 PM Page 549

LISTING 12.11 Continued

Exit;
end;
inherited Assign(Source);

end;

procedure TRunBtnItem.SetCommandLine(const Value: string);
{ This is the write accessor method for TRunBtnItem.CommandLine. It
ensures that the private TddgRunButton instance, FRunButton, gets
assigned the specified string from Value }

begin
if FRunButton <> nil then
begin
FCommandLine := Value;
FRunButton.CommandLine := FCommandLine;
{ This will cause the TRunButtons.Update method to be called
for each TRunBtnItem }

Changed(False);
end;

end;

procedure TRunBtnItem.SetLeft(Value: Integer);
{ Access method for the TRunBtnItem.Left property. }
begin
if FRunButton <> nil then
begin
FLeft := Value;
FRunButton.Left := FLeft;
end;

end;

procedure TRunBtnItem.SetTop(Value: Integer);
{ Access method for the TRunBtnItem.Top property }
begin
if FRunButton <> nil then
begin
FTop := Value;
FRunButton.Top := FTop;
end;

end;

{ TRunButtons }

constructor TRunButtons.Create(LaunchPad: TddgLaunchPad);
{ The constructor points FLaunchPad to the TddgLaunchPad parameter.
LauchPad is the owner of this collection. It is necessary to keep

Component-Based Development

PART IV
550

17 chpt_12.qxd 11/19/01 12:07 PM Page 550

LISTING 12.11 Continued

a reference to LauchPad as it will be accessed internally. }
begin
inherited Create(TRunBtnItem);
FLaunchPad := LaunchPad;

end;

function TRunButtons.GetItem(Index: Integer): TRunBtnItem;
{ Access method for TRunButtons.Items which returns the TRunBtnItem
instance. }

begin
Result := TRunBtnItem(inherited GetItem(Index));

end;

procedure TRunButtons.SetItem(Index: Integer; Value: TRunBtnItem);
{ Access method for TddgRunButton.Items which makes the assignment to
the specified indexed item. }

begin
inherited SetItem(Index, Value)

end;

procedure TRunButtons.Update(Item: TCollectionItem);
{ TCollection.Update is called by TCollectionItems
whenever a change is made to any of the collection items. This is
initially an abstract method. It must be overridden to contain
whatever logic is necessary when a TCollectionItem has changed.
We use it to redraw the item by calling TddgLaunchPad.UpdateRunButton.}

begin
if Item <> nil then
FLaunchPad.UpdateRunButton(Item.Index);

end;

procedure TRunButtons.UpdateRunButtons;
{ UpdateRunButtons is a public procedure that we made available so that
users of TRunButtons can force all run-buttons to be re-drawn. This
method calls TddgLaunchPad.UpdateRunButton for each TRunBtnItem
instance. }

var
i: integer;

begin
for i := 0 to Count - 1 do
FLaunchPad.UpdateRunButton(i);

end;

function TRunButtons.Add: TRunBtnItem;

Advanced VCL Component Building

CHAPTER 12

12

A
D

V
A

N
C

ED
V

C
L

C
O

M
PO

N
EN

T
B

U
ILD

IN
G

551

17 chpt_12.qxd 11/19/01 12:07 PM Page 551

LISTING 12.11 Continued

{ This method must be overridden to return the TRunBtnItem instance when
the inherited Add method is called. This is done by typcasting the
original result }

begin
Result := TRunBtnItem(inherited Add);

end;

{ TddgLaunchPad }

constructor TddgLaunchPad.Create(AOwner: TComponent);
{ Initializes the TRunButtons instance and internal variables
used for positioning of the TRunBtnItem as they are drawn }

begin
inherited Create(AOwner);
FRunButtons := TRunButtons.Create(Self);
TopAlign := 0;
LeftAlign := 0;

end;

destructor TddgLaunchPad.Destroy;
begin
FRunButtons.Free; // Free the TRunButtons instance.
inherited Destroy; // Call the inherited destroy method.

end;

procedure TddgLaunchPad.GetChildren(Proc: TGetChildProc; Root: TComponent);
{ Override GetChildren to cause TddgLaunchPad to ignore any TRunButtons
that it owns since they do not need to be streamed in the context
TddgLaunchPad. The information necessary for creating the TddgRunButton
instances is already streamed as published properties of the
TCollectionItem descendant, TRunBtnItem. This method prevents the
TddgRunButton’s from being streamed twice. }

var
I: Integer;

begin
for I := 0 to ControlCount - 1 do
{ Ignore the run buttons and the scrollbox }
if not (Controls[i] is TddgRunButton) then
Proc(TComponent(Controls[I]));

end;

procedure TddgLaunchPad.SetRunButtons(Value: TRunButtons);
{ Access method for the RunButtons property }

Component-Based Development

PART IV
552

17 chpt_12.qxd 11/19/01 12:07 PM Page 552

LISTING 12.11 Continued

begin
FRunButtons.Assign(Value);

end;

procedure TddgLaunchPad.UpdateRunButton(Index: Integer);
{ This method is responsible for drawing the TRunBtnItem instances.
It ensures that the TRunBtnItem’s do not extend beyond the width
of the TddgLaunchPad. If so, it creates rows. This is only in effect
as the user is adding/removing TRunBtnItems. The user can still
resize the TddgLaunchPad so that it is smaller than the width of a
TRunBtnItem }

begin
{ If the first item being drawn, set both positions to zero. }
if Index = 0 then
begin
TopAlign := 0;
LeftAlign := 0;

end;
{ If the width of the current row of TRunBtnItems is more than
the width of the TddgLaunchPad, then start a new row of TRunBtnItems. }

if (LeftAlign + FRunButtons[Index].Width) > Width then
begin
TopAlign := TopAlign + FRunButtons[Index].Height;
LeftAlign := 0;

end;
FRunButtons[Index].Left := LeftAlign;
FRunButtons[Index].Top := TopAlign;
LeftAlign := LeftAlign + FRunButtons[Index].Width;
end;

end.

Implementing TRunBtnItem
The TRunBtnItem.Create() constructor creates an instance of TddgRunButton. Each
TRunBtnItem in the collection will maintain its own TddgRunButton instance. The following
two lines in TRunBtnItem.Create() require further explanation:

FRunButton := TddgRunButton.Create(TRunButtons(Collection).FLaunchPad);
FRunButton.Parent := TRunButtons(Collection).FLaunchPad;

The first line creates a TddgRunButton instance, FRunButton. The owner of FRunButton is
FLaunchPad, which is a TddgLaunchPad component and a field of the TCollection object
passed in as a parameter. It’s necessary to use the FLaunchPad as the owner of FRunButton.

Advanced VCL Component Building

CHAPTER 12

12

A
D

V
A

N
C

ED
V

C
L

C
O

M
PO

N
EN

T
B

U
ILD

IN
G

553

17 chpt_12.qxd 11/19/01 12:07 PM Page 553

Neither a TRunBtnItem instance nor a TRunButtons object can be owners because they descend
from TPersistent. Remember, an owner must be a TComponent.

We want to point out a problem that arises by making FLaunchPad the owner of FRunButton.
By doing this, we effectively make FLaunchPad the owner of FRunButton at design time. The
normal behavior of the streaming engine will cause Delphi to stream FRunButton as a compo-
nent owned by the FLaunchPad instance when the user saves the form. This isn’t a desired
behavior because FRunButton is already being created in the constructor of TRunBtnItem,
based on the information that’s also streamed in the context of TRunBtnItem. This is a vital tid-
bit of information. Later, you’ll see how we prevent TddgRunButton components from being
streamed by TddgLaunchPad in order to remedy this undesired behavior.

The second line assigns FLaunchPad as the parent to FRunButton so that FLaunchPad can take
care of drawing FRunButton.

The TRunBtnItem.Destroy() destructor frees FRunButton before calling its inherited destructor.

Under certain circumstances, it becomes necessary to override the TRunBtnItem.Assign()
method that’s called. One such instance is when the application is first run and the form is read
from the stream. In the Assign() method, we tell the TRunBtnItem instance to assign the
streamed values of its properties to the properties of the component (in this case
TddgRunButton) that it encompasses.

The other methods are simply access methods for the various properties of TRunBtnItem; they
are explained in the code’s comments.

Implementing TRunButtons
TRunButtons.Create() simply points FLaunchPad to the TddgLaunchPad parameter passed to
it so that LaunchPad can be referred to later.

TRunButtons.Update() is a method that’s invoked whenever a change has been made to any of
the TRunBtnItem instances. This method contains logic that should occur due to that change.
We use it to call the method of TddgLaunchPad that redraws the TRunBtnItem instances. We’ve
also added a public method, UpdateRunButtons(), to allow the user to force a redraw.

The remaining methods of TRunButtons are property access methods, which are explained in
the code’s comments in Listing 12.11.

Implementing TddgLaunchPad
The constructor and destructor for TddgLaunchPad are simple. TddgLaunchPad.Create()
creates an instance of the TRunButtons object and passes itself as a parameter.
TddgLaunchPad.Destroy() frees the TRunButtons instance.

Component-Based Development

PART IV
554

17 chpt_12.qxd 11/19/01 12:07 PM Page 554

The overriding of the TddgLaunchPad.GetChildren() method is important to note here. This
is where we prevent the TddgRunButton instances stored by the collection from being streamed
as owned components of TddgLaunchPad. Remember that this is necessary because they
shouldn’t be created in the context of the TddgLaunchPad object but rather in the context of the
TRunBtnItem instances. Because no TddgRunButton components are passed to the Proc proce-
dure, they won’t be streamed or read from a stream.

The TddgLaunchPad.UpdateRunButton() method is where the TddgRunButton instances main-
tained by the collection are drawn. The logic in this code ensures that they never extend
beyond the width of TddgLaunchPad. Because TddgLaunchPad is a descendant of TScrollBox,
scrolling will occur vertically.

The other methods are simply property-access methods and are commented in the code in
Listing 12.11.

Finally, we register the property editor for the TRunButtons collection class in this unit’s
Register() procedure. The next section discusses this property editor and illustrates how to
edit a list of components from a dialog property editor.

Editing the List of TCollectionItem Components with a
Dialog Property Editor
Now that we’ve defined the TddgLaunchPad component, the TRunButtons collection class, and
the TRunBtnItem collection class, we must provide a way for the user to add TddgRunButton
components to the TRunButtons collection. The best way to do this is through a property editor
that manipulates the list maintained by the TRunButtons collection.

This dialog directly manipulates the TRunBtnItem components maintained by the RunButtons
collection of TddgLaunchPad. The various CommandLine strings for each TddgRunButton
enclosed in TRunBtnItem are displayed in PathListBox. A TddgRunButton component reflects
the currently selected item in the list box to allow the user to test the selection. The dialog also
contains buttons to allow the user to add or remove an item, accept the changes, and cancel
the operation. As the user makes changes in the dialog, the changes are reflected on the
TddgLaunchPad.

Advanced VCL Component Building

CHAPTER 12

12

A
D

V
A

N
C

ED
V

C
L

C
O

M
PO

N
EN

T
B

U
ILD

IN
G

555

A convention for property editors is to include an Apply button to invoke changes on
the form. We didn’t show this here, but you might consider adding such a button to
the RunButtons property editor as an exercise. To see how an Apply button works,
take a look at the property editor for the Panels property of the TStatusBar compo-
nent from the Win32 page of the Component Palette.

TIP

17 chpt_12.qxd 11/19/01 12:07 PM Page 555

Listing 12.12 shows the source code for the TddgLaunchPad-RunButtons property editor and
its dialog.

LISTING 12.12 LPadPE.pas—The TRunButtons Property Editor

unit LPadPE;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, Buttons, RunBtn, StdCtrls, LnchPad, DesignIntf, DesignEditors,
ExtCtrls, TypInfo;

type

{ First declare the editor dialog }
TLaunchPadEditor = class(TForm)
PathListBox: TListBox;
AddBtn: TButton;
RemoveBtn: TButton;
CancelBtn: TButton;
OkBtn: TButton;
Label1: TLabel;
pnlRBtn: TPanel;
procedure PathListBoxClick(Sender: TObject);
procedure AddBtnClick(Sender: TObject);
procedure RemoveBtnClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure CancelBtnClick(Sender: TObject);

private
TestRunBtn: TddgRunButton;
FLaunchPad: TddgLaunchPad; // To be used as a backup
FRunButtons: TRunButtons; // Will refer to the actual TRunButtons
Modified: Boolean;
procedure UpdatePathListBox;

end;

{ Now declare the TPropertyEditor descendant and override the
required methods }

TRunButtonsProperty = class(TPropertyEditor)
function GetAttributes: TPropertyAttributes; override;
function GetValue: string; override;
procedure Edit; override;

end;

Component-Based Development

PART IV
556

17 chpt_12.qxd 11/19/01 12:07 PM Page 556

LISTING 12.12 Continued

{ This function will be called by the property editor. }
function EditRunButtons(RunButtons: TRunButtons): Boolean;

implementation

{$R *.DFM}

function EditRunButtons(RunButtons: TRunButtons): Boolean;
{ Instantiates the TLaunchPadEditor dialog which directly modifies
the TRunButtons collection. }

begin
with TLaunchPadEditor.Create(Application) do
try
FRunButtons := RunButtons; // Point to the actual TRunButtons
{ Copy the TRunBtnItems to the backup FLaunchPad which will be
used as a backup in case the user cancels the operation }

FLaunchPad.RunButtons.Assign(RunButtons);
{ Draw the listbox with the list of TRunBtnItems. }
UpdatePathListBox;
ShowModal; // Display the form.
Result := Modified;

finally
Free;

end;
end;

{ TLaunchPadEditor }

procedure TLaunchPadEditor.FormCreate(Sender: TObject);
begin
{ Created the backup instances of TLaunchPad to be used if the user
cancels editing the TRunBtnItems }

FLaunchPad := TddgLaunchPad.Create(Self);

// Create the TddgRunButton instance and align it to the
// enclosing panel.
TestRunBtn := TddgRunButton.Create(Self);
TestRunBtn.Parent := pnlRBtn;

TestRunBtn.Width := pnlRBtn.Width;
TestRunBtn.Height := pnlRBtn.Height;

end;

procedure TLaunchPadEditor.FormDestroy(Sender: TObject);

Advanced VCL Component Building

CHAPTER 12

12

A
D

V
A

N
C

ED
V

C
L

C
O

M
PO

N
EN

T
B

U
ILD

IN
G

557

17 chpt_12.qxd 11/19/01 12:07 PM Page 557

LISTING 12.12 Continued

begin
TestRunBtn.Free;
FLaunchPad.Free; // Free the TLaunchPad instance.

end;

procedure TLaunchPadEditor.PathListBoxClick(Sender: TObject);
{ When the user clicks on an item in the list of TRunBtnItems, make
the test TRunButton reflect the currently selected item }

begin
if PathListBox.ItemIndex > -1 then
TestRunBtn.CommandLine := PathListBox.Items[PathListBox.ItemIndex];

end;

procedure TLaunchPadEditor.UpdatePathListBox;
{ Re-initializes the PathListBox so that it reflects the list of
TRunBtnItems }

var
i: integer;

begin
PathListBox.Clear; // First clear the list box.
for i := 0 to FRunButtons.Count - 1 do
PathListBox.Items.Add(FRunButtons[i].CommandLine);

end;

procedure TLaunchPadEditor.AddBtnClick(Sender: TObject);
{ When the add button is clicked, launch a TOpenDialog to retrieve
an executable filename and path. Then add this file to the
PathListBox. Also, add a new FRunBtnItem. }

var
OpenDialog: TOpenDialog;

begin
OpenDialog := TOpenDialog.Create(Application);
try
OpenDialog.Filter := ‘Executable Files|*.EXE’;
if OpenDialog.Execute then
begin
{ add to the PathListBox. }
PathListBox.Items.Add(OpenDialog.FileName);
FRunButtons.Add; // Create a new TRunBtnItem instance.
{ Set focus to the new item in PathListBox }
PathListBox.ItemIndex := FRunButtons.Count - 1;
{ Set the command line for the new TRunBtnItem to that of the
file name gotten as specified by PathListBox.ItemIndex }

FRunButtons[PathListBox.ItemIndex].CommandLine :=

Component-Based Development

PART IV
558

17 chpt_12.qxd 11/19/01 12:07 PM Page 558

LISTING 12.12 Continued

PathListBox.Items[PathListBox.ItemIndex];
{ Invoke the PathListBoxClick event handler so that the test
TRunButton will reflect the newly added item }

PathListBoxClick(nil);
Modified := True;

end;
finally
OpenDialog.Free

end;
end;

procedure TLaunchPadEditor.RemoveBtnClick(Sender: TObject);
{ Remove the selected path/filename from PathListBox as well as the
corresponding TRunBtnItem from FRunButtons }

var
i: integer;

begin
i := PathListBox.ItemIndex;
if i >= 0 then
begin
PathListBox.Items.Delete(i); // Remove the item from the listbox
FRunButtons[i].Free; // Remove the item from the collection
TestRunBtn.CommandLine := ‘’; // Erase the test run button
Modified := True;

end;
end;

procedure TLaunchPadEditor.CancelBtnClick(Sender: TObject);
{ When the user cancels the operation, copy the backup LaunchPad
TRunBtnItems back to the original TLaunchPad instance. Then,
close the form by setting ModalResult to mrCancel. }

begin
FRunButtons.Assign(FLaunchPad.RunButtons);
Modified := False;
ModalResult := mrCancel;

end;

{ TRunButtonsProperty }

function TRunButtonsProperty.GetAttributes: TPropertyAttributes;
{ Tell the Object Inspector that the property editor will use a
dialog. This will cause the Edit method to be invoked when the user
clicks the ellipsis button in the Object Inspector. }

Advanced VCL Component Building

CHAPTER 12

12

A
D

V
A

N
C

ED
V

C
L

C
O

M
PO

N
EN

T
B

U
ILD

IN
G

559

17 chpt_12.qxd 11/19/01 12:07 PM Page 559

LISTING 12.12 Continued

begin
Result := [paDialog];

end;

procedure TRunButtonsProperty.Edit;
{ Invoke the EditRunButton() method and pass in the reference to the
TRunButton’s instance being edited. This reference can be obtain by
using the GetOrdValue method. Then redraw the LaunchDialog by calling
the TRunButtons.UpdateRunButtons method. }

begin
if EditRunButtons(TRunButtons(GetOrdValue)) then
Modified;

TRunButtons(GetOrdValue).UpdateRunButtons;
end;

function TRunButtonsProperty.GetValue: string;
{ Override the GetValue method so that the class type of the property
being edited is displayed in the Object Inspector. }

begin
Result := Format(‘(%s)’, [GetPropType^.Name]);

end;

end.

This unit first defines the TddgLaunchPadEditor dialog and then the TRunButtonsProperty
property editor. We’re going to discuss the property editor first because it’s the property editor
that invokes the dialog.

The TRunButtonsProperty property editor isn’t much different from the dialog property editor
we showed earlier. Here, we override the GetAttributes(), Edit(), and GetValue() methods.

GetAttributes() simply sets the TPropertyAttributes return value to specify that this editor
invokes a dialog. Again, this will place an ellipsis button on the Object Inspector.

The GetValue() method uses the GetPropType() function to return a pointer to the Runtime
Type Information for the property being edited. It returns the name field of this information
that represents the property’s type string. The string is displayed in the Object Inspector within
parentheses, which is a convention used by Delphi.

Finally, the Edit() method calls a function defined in this unit, EditRunButtons(). As a para-
meter, it passes the reference to the TRunButtons property by using the GetOrdValue function.
When the function returns, the method UpdateRunButton() is invoked to cause RunButtons to
be redrawn to reflect any changes.

Component-Based Development

PART IV
560

17 chpt_12.qxd 11/19/01 12:07 PM Page 560

The EditRunButtons() function creates the TddgLaunchPadEditor instance and points its
FRunButtons field to the TRunButtons parameter passed to it. It uses this reference internally
to make changes to the TRunButtons collection. The function then copies the TRunButtons col-
lection of the property to an internal TddgLaunchPad component, FLaunchPad. It uses this
instance as a backup in case the user cancels the edit operation.

Earlier we talked about the possibility of adding an Apply button to this dialog. To do so, you
can edit the FLaunchPad component’s RunButtons collection instance instead of directly modi-
fying the actual collection. This way, if the user cancels the operation, nothing happens; if the
user clicks Apply or OK, the changes are invoked.

The form’s Create() constructor creates the internal TddgLaunchPad instance. The Destroy()
destructor ensures that it’s freed when the form is destroyed.

PathListBoxClick() is the OnClick event handler for PathListBox. This method makes
TestRunBtn (the test TddgRunButton) reflect the currently selected item in PathListBox,
which displays a path to the executable file. The user can click this TddgRunButton instance to
launch the application.

UpdatePathListBox() initializes PathListBox with the items in the collection.

AddButtonClick() is the OnClick event handler for the Add button. This event handler invokes
a File Open dialog to retrieve an executable filename from the user and adds the path of this
filename to PathListBox. It also creates a TRunBtnItem instance in the collection and assigns
the path to its CommandLine property, which in turn does the same for the TddgRunButton com-
ponent it encloses.

RemoveBtnClick() is the OnClick event handler for the Remove button. It removes the
selected item from PathListBox as well as the TRunBtnItem instance from the collection.

CancelBtnClick() is the OnClick event handler for the Cancel button. It copies the backup
collection from FLaunchPad to the actual TRunButtons collection and closes the form.

The TCollection and TCollectionItems objects are extremely useful and offer themselves to
being used for a variety of purposes. Get to know them well, and next time you need to store a
list of components, you’ll already have a solution.

Summary
This chapter let you in on some of the more advanced tricks and techniques for Delphi compo-
nent design. Among other things, you learned about extending hints and animating components
as well as component editors, property editors, and component collections. Armed with this
information, as well as the more conventional information you learned in the preceding chap-
ter, you should be able to write a component to suit just about any of your programming needs.

Advanced VCL Component Building

CHAPTER 12

12

A
D

V
A

N
C

ED
V

C
L

C
O

M
PO

N
EN

T
B

U
ILD

IN
G

561

17 chpt_12.qxd 11/19/01 12:07 PM Page 561

17 chpt_12.qxd 11/19/01 12:07 PM Page 562

CHAPTERCHAPTER

13
CLX Component Development

IN THIS CHAPTER
• What Is CLX? 564

• The CLX Architecture 565

• Porting Issues 568

• Sample Components 570

• CLX Design Editors 608

• Packages 613

18 chpt_13.qxd 11/19/01 12:15 PM Page 563

The last three chapters have focused on creating custom components in Delphi. More precisely,
Chapters 11, “VCL Component Building,” and 12, “Advanced VCL Component Building,”
have focused on creating custom VCL components. However, as noted in Chapter 10,
“Component Architecture: VCL and CLX,” there are two component class hierarchies in
Delphi 6: the VCL and CLX. In this chapter, we change our focus slightly to that of creating
custom CLX components. Fortunately, much of what you have learned in creating VCL com-
ponents also applies to creating CLX components.

What Is CLX?
CLX, pronounced “clicks,” is an acronym for Component Library for Cross-Platform, and was
first introduced in Borland’s new Linux RAD tool, Kylix. However, CLX isn’t just simply the
VCL under Linux. That is, the CLX architecture is also available in Delphi 6, and therefore
provides the foundation for creating native cross-platform applications using Delphi 6 and
Kylix.

In Delphi, the VCL is typically associated with the components that appear on the Component
Palette. This isn’t surprising because the vast majority of the components appearing on the
palette are visual controls. However, CLX encompasses much more than a visual component
hierarchy. Specifically, CLX is divided into four separate parts: BaseCLX, VisualCLX,
DataCLX, and NetCLX.

BaseCLX, as it is called in Kylix, contains the base units and classes that are shared between
Kylix and Delphi 6. For example, the System, SysUtils, and Classes units are part of
BaseCLX. VisualCLX is similar to what most people consider the VCL. However, VisualCLX
is based on the Qt widget library rather than the standard Windows controls defined in
User32.dll or ComCtl32.dll. DataCLX contains the data access components and encom-
passes the new dbExpress technology. And finally, NetCLX contains the new cross-platform
WebBroker technology.

If you are familiar with previous versions of Delphi, you will recognize that the units included
in BaseCLX have been available in Delphi since version 1. As such, you could argue that these
units are also part of the VCL. In fact, Borland recognized the confusion caused by calling
these base units collectively as BaseCLX, and in Delphi 6 these base units are referred to as
the RTL.

The point of all this is that even though these base units will be used in both VCL and CLX
applications, a CLX application is typically defined as one built using the classes in
VisualCLX.

In this chapter, we will be focusing on VisualCLX. In particular, we’ll be investigating how to
extend the VisualCLX architecture by creating our own custom CLX components. As noted

Component-Based Development

PART IV
564

18 chpt_13.qxd 11/19/01 12:15 PM Page 564

earlier, VisualCLX is based on the Qt widget library, which is produced by Troll Tech. Qt, pro-
nounced “cute,” is a platform independent C++ class library of user interface (UI) widgets (or
controls).To be precise, Qt currently supports Windows and the X Window System, and thus
can be used on both Windows and Linux desktops. In fact, Qt is the most prevalent class
library used for Linux GUI development. For instance, Qt is used in the development of the
KDE Window Manager.

Other cross-platform class libraries are available, but Borland chose to build VisualCLX on top
of Qt for several reasons. First, Qt classes look very much like VCL components. For example,
properties are defined as get/set method pairs. Qt also incorporates the notion of events
through a mechanism called a signal. Plus, the Qt graphics model is very similar to the one
used in the VCL. And finally, the Qt library defines a wide variety of standard user interface
controls, which are called widgets in the Qt nomenclature. As a result, the Borland engineers
were able to wrap many of the existing Qt widgets with Object Pascal wrappers rather than
create the required components from scratch.

The CLX Architecture
As suggested previously, VisualCLX consists of Object Pascal classes that wrap around exist-
ing functionality defined in the Qt classes. This is very similar to the way in which the VCL
encapsulates the functionality of the Windows API and the Common Controls. One of the
design goals in creating CLX was to make it as easy as possible to port existing VCL applica-
tions to the CLX architecture. As a result, the class hierarchy in CLX is very similar to the
VCL as illustrated in Figures 13.1 and 13.2. The dark gray boxes in Figure 13.1 highlight the
principal base classes in the VCL.

However, the class hierarchies aren’t identical. In particular, some new classes have been
added and some classes have been moved to different branches from their VCL counterparts.
Figure 13.2 highlights these differences with light gray boxes. For example, the CLX Timer
component does not descend directly from TComponent as it does in the VCL. Instead, it
descends from the new THandleComponent, which is a base class that should be used whenever
a nonvisual component requires access to the handle of an underlying Qt control. Also, note
how the CLX Label component is no longer a graphical control, but rather a descendant of the
new TFrameControl class. The Qt library provides a wide variety of bordering options for con-
trols, and the TFrameControl class provides a wrapper around that functionality.

As noted earlier, controls in the Qt library are called widgets. As a result, the TWidgetControl
class is the CLX equivalent to the VCL’s TWinControl. Why change the classname? Switching
to Widget puts the class in line with the base Qt classes, and removing Win further removes the
dependency on the Windows controls in VisualCLX.

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
565

18 chpt_13.qxd 11/19/01 12:15 PM Page 565

FIGURE 13.1
The VCL Base Class hierarchy.

Surprisingly, Borland also defined the TWinControl class in CLX as an alias for
TWidgetControl. During the development of Kylix and CLX, one of the early ideas that was
promoted was that a single source file could be used to define both a CLX component and a
VCL component. Conditional directives would be used to specify a VCL uses clause when
compiled under Windows and a CLX uses clause when compiled under Linux. However, this
approach is only feasible for very simple components. In practice, there are usually enough
significant changes between the implementations to warrant the creation of separate units.

Component-Based Development

PART IV
566

TObject

TListTRegistryTPersistent

TGraphicsObject TStrings

TComponent
TFont TStringList

TDataSource
TControl

TTimer

TWinControl
TGraphicControl

TBevel

TCustomEdit TCustomControl

TEdit TMediaPlayer

TCustomLabel

TCustomPanel

TPanel

TLabel

Streamable Classes

Nonstreamable Classes

Nonvisual Components

Use a Window
Handle and
Receive Input
Focus

Custom Paint Method
with Canvas

Automation and
ActiveX Support

Visual Components

Do Not Receive Input
Focus
Custom Paint Method
with Canvas

TComObject

TTypedComObject

TAutoObject

TActiveXControl

Creating a VCL component and a CLX component in a single source file is different
from creating a CLX component (in a single source file) that can be used in both
Delphi 6 and Kylix. This chapter illustrates how to do the latter.

NOTE

18 chpt_13.qxd 11/19/01 12:15 PM Page 566

FIGURE 13.2
The CLX Base Class hierarchy.

Fortunately, the changes in the class hierarchy illustrated in Figure 13.2 should have little
impact on application developers. That is, most of the VCL components that come with Delphi
have VisualCLX equivalents such as TEdit, TListBox, TComboBox, and so on. Unfortunately,
component writers aren’t so lucky because they will be much more affected by changes to the
class hierarchy.

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
567

TObject

TListTCustomIniFileTPersistent

TGraphicsObject TStrings TComponent

TFont TStringList

THandleComponentTDataSource

TControl
TTimer

TWidgetControl
TGraphicControl

TBevel
TCustomEdit TFrameControl TCustomControl

TEdit TCustomLabel TCustomPanel

TLabel TPanel

Streamable Classes

Nonstreamable Classes

Nonvisual Components

Use a Window
Handle and
Receive Input
Focus

Custom Paint Method
with Canvas

Visual Components

Do Not Receive Input
Focus
Custom Paint Method
with Canvas

The Object Browser in Delphi 6 and Kylix is extremely helpful in learning the struc-
ture of the new class hierarchy. However, because of the TWinControl alias to
TWidgetControl, you will actually see two identical class hierarchies in the Object
Browser.

NOTE

18 chpt_13.qxd 11/19/01 12:15 PM Page 567

Fortunately, there are actually quite a few similarities between the VCL and CLX architectures
that the figures don’t illustrate. For instance, the TCanvas class is very similar in both architec-
tures. Of course, the implementation encapsulated by the class is quite different. Under the
VCL, the TCanvas class provides a wrapper around a Windows GDI device context, which is
accessible through the TCanvas.Handle property. Under CLX, the TCanvas class provides a
wrapper around a Qt painter, which is also accessible through the TCanvas.Handle property.
As a result, you can use the Handle property to access any of the low-level GDI functions in a
VCL application and the Qt graphics library functions in a CLX application.

The components in CLX were designed to ease porting an existing VCL application to a CLX
application. As a result, the public and published interfaces to many of the components are
nearly identical in both architectures. This means that events such as OnClick, OnChange, and
OnKeyPress as well as their corresponding event dispatch methods—Click(), Change(), and
KeyPress()—are implemented in both the VCL and CLX.

Porting Issues
CLX does indeed share many similarities with the VCL. However, many platform differences
must be addressed, especially for component writers. You must address Win32 dependencies in
your code. For example, any calls to the Win32 API (in Windows.pas) will need to be changed
if the component is to operate in Kylix.

Component-Based Development

PART IV
568

Building a CLX component implies that you want to use the component in Kylix
under Linux and possibly in Delphi 6 under Windows. If you only need to support
Windows, create a VCL component and not a CLX component.

NOTE

In addition, several runtime library (RTL) issues must be handled differently on Linux versus
Windows such as case sensitivity for filenames and path delimiters under Linux. For some
VCL components, it will simply be impossible to port to Linux. Consider a VCL component
that provides a wrapper around the Messaging API (MAPI). Because MAPI doesn’t exist under
Linux, a different mechanism will need to be used.

In addition to the platform issues described previously, some additional porting issues must be
considered when migrating to CLX. For example, COM certainly isn’t supported under Linux,
but interfaces most certainly are. Owner-Draw techniques available in many VCL wrappers
around Windows controls aren’t recommended in CLX components. Owner-Draw capabilities
have been deprecated in lieu of Qt Styles. Other VCL features that aren’t supported under CLX
include docking, bi-directional support, the input method editor, and Asian locale support.

18 chpt_13.qxd 11/19/01 12:15 PM Page 568

One additional change that will certainly cause developers some problems is that the CLX ver-
sions of components are located in a different set of units from the VCL controls. For example,
the Controls.pas unit in the VCL becomes the QControls.pas unit in CLX. The problem
with this change is that if you are developing a CLX component or application under Delphi 6,
the VCL units are still available. As a result, it is quite possible to inadvertently mix CLX and
VCL units into your component units. In some cases, your component might run correctly
under Windows. However, if you move the component over to Kylix, you will get compiler
errors because the VCL units aren’t available on Linux.

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
569

Borland suggests that developers create their CLX components in Kylix on Linux to
help prevent the misuse of VCL units in a CLX component. However, many developers
will probably opt to develop under Delphi 6, with its new IDE enhancements and the
comfort of Windows, and then test their components under Kylix.

NOTE

Another issue that developers must contend with when writing CLX components (and applica-
tions for that matter) is case sensitivity under Linux. In particular because filenames and paths
are case sensitive under Linux, the unit names that you specify on your uses clause of your
own units must be the correct case. This requirement is needed in order for the Kylix compiler
to be able to locate the units under Linux. Although Delphi is not case sensitive, this isn’t the
first time that Delphi requires an element to be case sensitive. The first situation involves the
naming of the Register() procedure in a unit to be exported from a package.

No More Messages
Linux, or more appropriately XWindows, doesn’t implement a messaging architecture like
Windows does. As a result, there are no wm_LButtonDown, wm_SetCursor, or wm_Char messages
passing around on Linux. When a CLX component is used under Linux, the underlying Qt
classes handle the appropriate system events and provide the necessary hooks in order to
respond to those events. The bottom line is that system events are handled by the Qt classes
even on Windows. Therefore, a CLX component won’t be able to hook into a Windows
message.

As a result, VCL component message handlers such as CMTextChanged() have been replaced
with dynamic methods—for example, TextChanged(). This will be highlighted in the follow-
ing section. This also means that implementing certain behaviors, which are easily imple-
mented using messages in the VCL, must be implemented quite differently under CLX.

18 chpt_13.qxd 11/19/01 12:15 PM Page 569

Sample Components
In this section, we will take a detailed look into several VCL components that have been trans-
formed into CLX components. The first one is a custom spinner component that involves sev-
eral principle features including custom painting, keyboard handling, focus changes, mouse
interactions, and even custom events.

The next three components are successive descendants of the base spinner component—each
extending the previous component. The first descendant extends the base spinner by adding
support for handling mouse events at design time and displaying custom cursors. The second
spinner descendant adds support for displaying images from an ImageList. The final spinner
component adds support for connecting the control to a field in a dataset.

Component-Based Development

PART IV
570

All the units presented in this chapter can be used in both Delphi 6 and Kylix.

NOTE

The TddgSpinner Component
Figure 13.3 shows three instances of the TddgSpinner component being used in a CLX appli-
cation. Unlike traditional spin-edits, this custom component displays the increment and decre-
ment buttons that change the spinner’s value at each end of the spinner rather than on top of
one another at one end.

FIGURE 13.3
The TddgSpinner CLX component can be used to specify integer values.

Listing 13.1 shows the complete source code for the QddgSpin.pas unit, which implements the
TddgSpinner component. This particular component started out as a custom spinner control
that descended from the TCustomControl class in the VCL. However, the TddgSpinner class
now descends from the CLX TCustomControl class, and as a result, can be used in both
Windows and Linux.

Although classnames rarely change when migrating to CLX, unit names are typically prefixed
with the letter Q to indicate their dependency on the Qt library via VisualCLX.

18 chpt_13.qxd 11/19/01 12:15 PM Page 570

LISTING 13.1 QddgSpin.pas—Source Code for the TddgSpinner Component

unit QddgSpin;

interface

uses
SysUtils, Classes, Types, Qt, QControls, QGraphics;
(*
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
ImgList;
*)

type
TddgButtonType = (btMinus, btPlus);
TddgSpinnerEvent = procedure (Sender: TObject; NewValue: Integer;

var AllowChange: Boolean) of object;

TddgSpinner = class(TCustomControl)
private
// Instance Data for Component
FValue: Integer;
FIncrement: Integer;
FButtonColor: TColor;
FButtonWidth: Integer;
FMinusBtnDown: Boolean;
FPlusBtnDown: Boolean;

// Method Pointers to Hold Custom Events
FOnChange: TNotifyEvent;
FOnChanging: TddgSpinnerEvent;

(*
// VCL->CLX: These message handlers are not available in CLX

// Window Message Handling Method
procedure WMGetDlgCode(var Msg: TWMGetDlgCode);
message wm_GetDlgCode;

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
571

Although commented out, each listing includes the original VCL-specific code.
Comments that start with VCL->CLX: highlight specific issues involved in transforming
the control from the VCL to CLX.

NOTE

18 chpt_13.qxd 11/19/01 12:15 PM Page 571

LISTING 13.1 Continued

// Component Message Handling Method
procedure CMEnabledChanged(var Msg: TMessage);
message cm_EnabledChanged;

*)
protected
procedure Paint; override;
procedure DrawButton(Button: TddgButtonType; Down: Boolean;

Bounds: TRect); virtual;

// Support Methods
procedure DecValue(Amount: Integer); virtual;
procedure IncValue(Amount: Integer); virtual;

function CursorPosition: TPoint;
function MouseOverButton(Btn: TddgButtonType): Boolean;

// VCL->CLX: EnabledChanged replaces cm_EnabledChanged
// component message handler
procedure EnabledChanged; override;

// New Event Dispatch Methods
procedure Change; dynamic;
function CanChange(NewValue: Integer): Boolean; dynamic;

// Overridden Event Dispatch Methods
procedure DoEnter; override;
procedure DoExit; override;
procedure KeyDown(var Key: Word; Shift: TShiftState); override;

procedure MouseDown(Button: TMouseButton; Shift: TShiftState;
X, Y: Integer); override;

procedure MouseUp(Button: TMouseButton; Shift: TShiftState;
X, Y: Integer); override;

(*
// VCL->CLX: These following declarations have changed in CLX

function DoMouseWheelDown(Shift: TShiftState;
MousePos: TPoint): Boolean; override;

function DoMouseWheelUp(Shift: TShiftState;
MousePos: TPoint): Boolean; override;

*)

Component-Based Development

PART IV
572

18 chpt_13.qxd 11/19/01 12:15 PM Page 572

LISTING 13.1 Continued

function DoMouseWheelDown(Shift: TShiftState;
const MousePos: TPoint): Boolean; override;

function DoMouseWheelUp(Shift: TShiftState;
const MousePos: TPoint): Boolean; override;

// Access Methods for Properties
procedure SetButtonColor(Value: TColor); virtual;
procedure SetButtonWidth(Value: Integer); virtual;
procedure SetValue(Value: Integer); virtual;

public
// Don’t forget to specify override for constructor
constructor Create(AOwner: TComponent); override;

published
// New Property Declarations
property ButtonColor: TColor
read FButtonColor
write SetButtonColor
default clBtnFace;

property ButtonWidth: Integer
read FButtonWidth
write SetButtonWidth
default 18;

property Increment: Integer
read FIncrement
write FIncrement
default 1;

property Value: Integer
read FValue
write SetValue;

// New Event Declarations

property OnChange: TNotifyEvent
read FOnChange
write FOnChange;

property OnChanging: TddgSpinnerEvent
read FOnChanging
write FOnChanging;

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
573

18 chpt_13.qxd 11/19/01 12:15 PM Page 573

LISTING 13.1 Continued

// Inherited Properties and Events
property Color;
(*
property DragCursor; // VCL->CLX: Property not yet in CLX
*)
property DragMode;
property Enabled;
property Font;
property Height default 18;
property HelpContext;
property Hint;
property ParentShowHint;
property PopupMenu;
property ShowHint;
property TabOrder;
property TabStop default True;
property Visible;
property Width default 80;

property OnClick;
property OnDragDrop;
property OnDragOver;
property OnEndDrag;
property OnEnter;
property OnExit;
property OnKeyDown;
property OnKeyPress;
property OnKeyUp;
property OnMouseDown;
property OnMouseMove;
property OnMouseUp;
property OnStartDrag;

end;

implementation

{=========================}
{== TddgSpinner Methods ==}
{=========================}

constructor TddgSpinner.Create(AOwner: TComponent);
begin

Component-Based Development

PART IV
574

18 chpt_13.qxd 11/19/01 12:15 PM Page 574

LISTING 13.1 Continued

inherited Create(AOwner);

// Initialize Instance Data
FButtonColor := clBtnFace;
FButtonWidth := 18;
FValue := 0;
FIncrement := 1;

FMinusBtnDown := False;
FPlusBtnDown := False;

// Initializing inherited properties
Width := 80;
Height := 18;
TabStop := True;

// VCL->CLX: TWidgetControl sets Color property to clNone
Color := clWindow;

// VCL->CLX: InputKeys assignment replaces handling the
// wm_GetDlgCode message.
InputKeys := InputKeys + [ikArrows];

end;

{== Property Access Methods ==}

procedure TddgSpinner.SetButtonColor(Value: TColor);
begin
if FButtonColor <> Value then
begin
FButtonColor := Value;
Invalidate;

end;
end;

procedure TddgSpinner.SetButtonWidth(Value: Integer);
begin
if FButtonWidth <> Value then
begin
FButtonWidth := Value;
Invalidate;

end;
end;

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
575

18 chpt_13.qxd 11/19/01 12:15 PM Page 575

LISTING 13.1 Continued

procedure TddgSpinner.SetValue(Value: Integer);
begin
if FValue <> Value then
begin
if CanChange(Value) then
begin
FValue := Value;
Invalidate;

// Trigger Change event
Change;

end;
end;

end;

{== Painting Related Methods ==}

procedure TddgSpinner.Paint;
var
R: TRect;
YOffset: Integer;
S: string;
XOffset: Integer; // VCL->CLX: Added for CLX support

begin
inherited Paint;
with Canvas do
begin
Font := Self.Font;
Pen.Color := clBtnShadow;

if Enabled then
Brush.Color := Self.Color

else
begin
Brush.Color := clBtnFace;
Font.Color := clBtnShadow;

end;

// Display Value
(*
// VCL->CLX: SetTextAlign not available in CLX
SetTextAlign(Handle, ta_Center or ta_Top); // GDI function
*)

Component-Based Development

PART IV
576

18 chpt_13.qxd 11/19/01 12:15 PM Page 576

LISTING 13.1 Continued

R := Rect(FButtonWidth - 1, 0,
Width - FButtonWidth + 1, Height);

Canvas.Rectangle(R.Left, R.Top, R.Right, R.Bottom);
InflateRect(R, -1, -1);

S := IntToStr(FValue);
YOffset := R.Top + (R.Bottom - R.Top -

Canvas.TextHeight(S)) div 2;

// VCL->CLX: Calculate XOffset b/c no SetTextAlign function
XOffset := R.Left + (R.Right - R.Left -

Canvas.TextWidth(S)) div 2;

(*
// VCL->CLX: Change TextRect call b/c no SetTextAlign function
TextRect(R, Width div 2, YOffset, S);
*)
TextRect(R, XOffset, YOffset, S);

DrawButton(btMinus, FMinusBtnDown,
Rect(0, 0, FButtonWidth, Height));

DrawButton(btPlus, FPlusBtnDown,
Rect(Width - FButtonWidth, 0, Width, Height));

if Focused then
begin
Brush.Color := Self.Color;
DrawFocusRect(R);

end;
end;

end; {= TddgSpinner.Paint =}

procedure TddgSpinner.DrawButton(Button: TddgButtonType;
Down: Boolean; Bounds: TRect);

begin
with Canvas do
begin
if Down then // Set background color
Brush.Color := clBtnShadow

else
Brush.Color := FButtonColor;

Pen.Color := clBtnShadow;

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
577

18 chpt_13.qxd 11/19/01 12:15 PM Page 577

LISTING 13.1 Continued

Rectangle(Bounds.Left, Bounds.Top,
Bounds.Right, Bounds.Bottom);

if Enabled then
begin
(*
// VCL->CLX: clActiveCaption is set to
// clActiveHighlightedText in CLX.
Pen.Color := clActiveCaption;
Brush.Color := clActiveCaption;
*)
Pen.Color := clActiveBorder;
Brush.Color := clActiveBorder;

end
else
begin
Pen.Color := clBtnShadow;
Brush.Color := clBtnShadow;

end;

if Button = btMinus then // Draw the Minus Button
begin
Rectangle(4, Height div 2 - 1,

FButtonWidth - 4, Height div 2 + 1);
end
else // Draw the Plus Button
begin
Rectangle(Width - FButtonWidth + 4, Height div 2 - 1,

Width - 4, Height div 2 + 1);
Rectangle(Width - FButtonWidth div 2 - 1,

(Height div 2) - (FButtonWidth div 2 - 4),
Width - FButtonWidth div 2 + 1,
(Height div 2) + (FButtonWidth div 2 - 4));

end;
Pen.Color := clWindowText;
Brush.Color := clWindow;

end;
end; {= TddgSpinner.DrawButton =}

procedure TddgSpinner.DoEnter;
begin
inherited DoEnter;

Component-Based Development

PART IV
578

18 chpt_13.qxd 11/19/01 12:15 PM Page 578

LISTING 13.1 Continued

// Controls gets focus--update display to show focus border
Repaint;

end;

procedure TddgSpinner.DoExit;
begin
inherited DoExit;
// Control lost focus--update display to remove focus border
Repaint;

end;

// VCL->CLX: EnabledChanged replaces cm_EnabledChanged handler

procedure TddgSpinner.EnabledChanged;
begin
inherited;
// Repaint the component so that it reflects the state change
Repaint;

end;

{== Event Dispatch Methods ==}

{==
TddgSpinner.CanChange

This is the event dispatch method supporting the OnChanging
event. Notice that this method is a function, rather than the
common procedure variety. As a function, the Result variable is
assigned a value before calling the user defined event handler.

==}

function TddgSpinner.CanChange(NewValue: Integer): Boolean;
var
AllowChange: Boolean;

begin
AllowChange := True;
if Assigned(FOnChanging) then
FOnChanging(Self, NewValue, AllowChange);

Result := AllowChange;
end;

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
579

18 chpt_13.qxd 11/19/01 12:15 PM Page 579

LISTING 13.1 Continued

procedure TddgSpinner.Change;
begin
if Assigned(FOnChange) then
FOnChange(Self);

end;

// Notice that both DecValue and IncValue assign the new value to
// the Value property (not FValue), which indirectly calls SetValue

procedure TddgSpinner.DecValue(Amount: Integer);
begin
Value := Value - Amount;

end;

procedure TddgSpinner.IncValue(Amount: Integer);
begin
Value := Value + Amount;

end;

{== Keyboard Processing Methods ==}

(*
// VCL->CLX: Replaced with InputKeys assignment in constructor

procedure TddgSpinner.WMGetDlgCode(var Msg: TWMGetDlgCode);
begin
inherited;
Msg.Result := dlgc_WantArrows; // Control will handle arrow keys

end;
*)

procedure TddgSpinner.KeyDown(var Key: Word; Shift: TShiftState);
begin
inherited KeyDown(Key, Shift);

// VCL->CLX: Key constants changed in CLX.
// vk_ prefix changed to Key_

case Key of
Key_Left, Key_Down:
DecValue(FIncrement);

Component-Based Development

PART IV
580

18 chpt_13.qxd 11/19/01 12:15 PM Page 580

LISTING 13.1 Continued

Key_Up, Key_Right:
IncValue(FIncrement);

end;
end;

{== Mouse Processing Methods ==}

function TddgSpinner.CursorPosition: TPoint;
begin
GetCursorPos(Result);
Result := ScreenToClient(Result);

end;

function TddgSpinner.MouseOverButton(Btn: TddgButtonType): Boolean;
var
R: TRect;

begin
// Get bounds of appropriate button
if Btn = btMinus then
R := Rect(0, 0, FButtonWidth, Height)

else
R := Rect(Width - FButtonWidth, 0, Width, Height);

// Is cursor position within bounding rectangle?
Result := PtInRect(R, CursorPosition);

end;

procedure TddgSpinner.MouseDown(Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
inherited MouseDown(Button, Shift, X, Y);

if not (csDesigning in ComponentState) then
SetFocus; // Move focus to Spinner only at runtime

if (Button = mbLeft) and
(MouseOverButton(btMinus) or MouseOverButton(btPlus)) then

begin
FMinusBtnDown := MouseOverButton(btMinus);
FPlusBtnDown := MouseOverButton(btPlus);

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
581

18 chpt_13.qxd 11/19/01 12:15 PM Page 581

LISTING 13.1 Continued

Repaint;
end;

end;

procedure TddgSpinner.MouseUp(Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
inherited MouseUp(Button, Shift, X, Y);

if Button = mbLeft then
begin
if MouseOverButton(btPlus) then
IncValue(FIncrement)

else if MouseOverButton(btMinus) then
DecValue(FIncrement);

FMinusBtnDown := False;
FPlusBtnDown := False;

Repaint;
end;

end;

function TddgSpinner.DoMouseWheelDown(Shift: TShiftState;
const MousePos: TPoint): Boolean;

begin
inherited DoMouseWheelDown(Shift, MousePos);
DecValue(FIncrement);
Result := True;

end;

function TddgSpinner.DoMouseWheelUp(Shift: TShiftState;
const MousePos: TPoint): Boolean;

begin
inherited DoMouseWheelUp(Shift, MousePos);
IncValue(FIncrement);
Result := True;

end;

end.

Component-Based Development

PART IV
582

18 chpt_13.qxd 11/19/01 12:15 PM Page 582

As you can see, the source code for the CLX version is very similar to the VCL edition.
However, there are several important differences.

First, notice the inclusion of the Qt specific units: Qt, QControls, and QGraphics. Types is
also a new unit that is shared between the VCL and CLX. Fortunately, the majority of the
TddgSpinner CLX class declaration looks identical to what you would find in the VCL. That
is, instance fields are declared the same way, as are method pointers to hold event handlers, as
well as event dispatch methods.

The CMEnabledChanged() and WMGetDlgCode() message handling methods represent the first
implementation change that we must handle in migrating to CLX. Specifically, the correspond-
ing cm_EnabledChanged and wm_GetDlgCode messages don’t exist in CLX. Therefore the func-
tionality implemented in these message handlers must be moved elsewhere.

As noted earlier, in CLX, component messages such as cm_EnabledChanged have been
replaced with appropriate dynamic methods. So instead of sending a cm_EnabledChanged
message whenever the Enabled property is changed, the TControl class in CLX simply calls
the EnabledChanged() method. Therefore, the code from the old CMEnabledChanged() method
is simply moved to the overridden EnabledChanged() method.

A common task in component writing is to handle the arrow keys on the keyboard. For the
TddgSpinner component, the arrow keys can be used to increment and decrement the value. In
a VCL component, this behavior is accomplished by handling the wm_GetDlgCode message and
specifying which keys your control will handle. As noted previously, the wm_GetDlgCode mes-
sage doesn’t exist for a CLX component. Thus a different approach must be taken. Fortunately,
the TWidgetControl class defines the InputKeys property, which allows us to specify the keys
we want to handle in the constructor of our component.

The constructor code also indicates another change between the VCL and CLX. That is, the
TWidgetControl class sets the Color property, which is declared in the TControl class to be
clNone. In the VCL, the TWinControl class simply uses the inherited Color value of clWindow.
As a result, we need to set the Color property in the constructor to clWindow so that the spin-
ner appears in the correct color.

After these constructor changes, there aren’t too many other changes. As you can see, most
event dispatch methods are also available under CLX. As a result, it is much easier to migrate
to CLX if you are currently overriding event dispatch methods in your VCL components rather
than handling specific Windows messages for the underlying window handle.

At the beginning of this chapter, it was noted that all the techniques you learned about VCL
component building in the previous chapters also apply to creating CLX components. You will
notice that property declarations, access methods, and even custom events are handled the
same way in both the VCL and CLX.

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
583

18 chpt_13.qxd 11/19/01 12:15 PM Page 583

More than any other component method, the Paint() method will probably require the most
modifications when transforming a VCL component into a CLX component.

When transforming a VCL control into a CLX component, display methods, such as Paint(),
will usually require the most modifications even though the TCanvas classes in both architec-
tures have nearly identical interfaces.

Two display issues needed to be handled in transforming the TddgSpinner component. First,
the VCL version of the TddgSpinner used the SetTextAlign GDI function to automatically
center the text of the spinner in display area. However, under Linux, this API function doesn’t
exist. And even under Windows, this function wouldn’t work because it expects a handle to a
GDI device context, and CLX components don’t have access to a device context the
Canvas.Handle property references a Qt Painter object.

Fortunately, most of the TCanvas methods do exist under both Windows and Linux. Therefore,
we can circumvent this problem by calculating the center position manually.

The second display problem involves the DrawButton() method. In particular, the plus and
minus symbols on the buttons are drawn using the clActiveCaption color in the VCL.
Unfortunately, the clActiveCaption identifier is assigned to the clActiveHighlightedText
value in the QGraphics.pas unit, which clearly isn’t what we want.

Component-Based Development

PART IV
584

To perform any painting outside of your CLX component’s Paint() method, you must
first call the Canvas.Start() method and then call the Canvas.Stop() method when
you are finished.

NOTE

Not everything migrates as easily as you would have expected. The virtual key code constants
defined in the VCL, such as vk_Left, aren’t available in CLX. Instead, a completely new set of
constants is used to determine which key was pressed. It turns out that the virtual key codes are
part of the Windows API, and thus aren’t available under Linux.

And that’s it! We now have a fully functional custom CLX component that can be used in both
Windows applications developed with Delphi 6 and Linux applications developed with Kylix.
Of course, the most important aspect of this is that the same source code is used for both
platforms.

Design-Time Enhancements
All things considered, migrating the TddgSpinner VCL component to CLX was fairly straight-
forward and not too tricky—although discovering the InputKeys property did take some effort.

18 chpt_13.qxd 11/19/01 12:15 PM Page 584

However, as you shall see, once you start adding more functionality to our CLX components,
the differences between the VCL and CLX will become evident.

Consider the source code displayed in Listing 13.2. This unit implements the TddgDesign
Spinner, which is a descendant of TddgSpinner. Figure 13.4 illustrates how this component
simply changes the mouse cursor whenever the mouse is positioned over one of the buttons.
The descendant component also adds the ability to change the spinner value by clicking the
plus or minus buttons directly on the form at design time as illustrated in Figure 13.5.

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
585

FIGURE 13.4
The TddgDesignSpinner displays a custom mouse cursor when the mouse is positioned over either button.

FIGURE 13.5
The TddgDesignSpinner allows the Value property to be changed at design time by simply clicking on the component’s
buttons.

LISTING 13.2 QddgDsnSpin.pas—Source Code for the TddgDesignSpinner Component

unit QddgDsnSpn;

interface

uses
SysUtils, Classes, Qt, QddgSpin;
(*
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
ddgSpin;
*)

18 chpt_13.qxd 11/19/01 12:15 PM Page 585

LISTING 13.2 Continued

type
TddgDesignSpinner = class(TddgSpinner)
private
// VCL->CLX: Custom cursor stored in QCursorH field
FThumbCursor: QCursorH;

(*
// VCL->CLX: Custom cursors and design-time interactions are
// handled differently under CLX. The following
// block is VCL-specific.

FThumbCursor: HCursor;

// Window Message Handling Method
procedure WMSetCursor(var Msg : TWMSetCursor);
message wm_SetCursor;

// Component Message Handling Method
procedure CMDesignHitTest(var Msg: TCMDesignHitTest);
message cm_DesignHitTest;

*)
protected
procedure Change; override;

// VCL->CLX: The following two methods are overridden for CLX
procedure MouseMove(Shift: TShiftState;

X, Y: Integer); override;
function DesignEventQuery(Sender: QObjectH;

Event: QEventH): Boolean; override;
public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

end;

implementation

(*
// VCL->CLX: CLX does not support cursor resources
{$R DdgDsnSpn.res} // Link in custom cursor resource
*)

uses
Types, QControls, QForms; // VCL->CLX: Add CLX units

Component-Based Development

PART IV
586

18 chpt_13.qxd 11/19/01 12:15 PM Page 586

LISTING 13.2 Continued

// VCL->CLX: Two arrays of bytes (one for the image and one for
// the mask) are used to represent custom cursors in CLX

const
Bits: array[0..32*4-1] of Byte = (
$00, $30, $00, $00, $00, $48, $00, $00,
$00, $48, $00, $00, $00, $48, $00, $00,
$00, $48, $00, $00, $00, $4E, $00, $00,
$00, $49, $C0, $00, $00, $49, $30, $00,
$00, $49, $28, $00, $03, $49, $24, $00,
$04, $C0, $24, $00, $04, $40, $04, $00,
$02, $40, $04, $00, $02, $00, $04, $00,
$01, $00, $04, $00, $01, $00, $04, $00,
$00, $80, $08, $00, $00, $40, $08, $00,
$00, $40, $08, $00, $00, $20, $10, $00,
$00, $20, $10, $00, $00, $7F, $F8, $00,
$00, $7F, $F8, $00, $00, $7F, $E8, $00,
$00, $7F, $F8, $00, $00, $00, $00, $00,
$00, $00, $00, $00, $00, $00, $00, $00,
$00, $00, $00, $00, $00, $00, $00, $00,
$00, $00, $00, $00, $00, $00, $00, $00);

Mask: array[0..32*4-1] of Byte = (
$00, $30, $00, $00, $00, $78, $00, $00,
$00, $78, $00, $00, $00, $78, $00, $00,
$00, $78, $00, $00, $00, $7E, $00, $00,
$00, $7F, $C0, $00, $00, $7F, $F0, $00,
$00, $7F, $F8, $00, $03, $7F, $FC, $00,
$07, $FF, $FC, $00, $07, $FF, $FC, $00,
$03, $FF, $FC, $00, $03, $FF, $FC, $00,
$01, $FF, $FC, $00, $01, $FF, $FC, $00,
$00, $FF, $F8, $00, $00, $7F, $F8, $00,
$00, $7F, $F8, $00, $00, $3F, $F0, $00,
$00, $3F, $F0, $00, $00, $7F, $F8, $00,
$00, $7F, $F8, $00, $00, $7F, $E8, $00,
$00, $7F, $F8, $00, $00, $00, $00, $00,
$00, $00, $00, $00, $00, $00, $00, $00,
$00, $00, $00, $00, $00, $00, $00, $00,
$00, $00, $00, $00, $00, $00, $00, $00);

{===============================}
{== TddgDesignSpinner Methods ==}
{===============================}

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
587

18 chpt_13.qxd 11/19/01 12:15 PM Page 587

LISTING 13.2 Continued

constructor TddgDesignSpinner.Create(AOwner: TComponent);
var
BitsBitmap: QBitmapH;
MaskBitmap: QBitmapH;

begin
inherited Create(AOwner);

(*
// VCL->CLX: No LoadCursor in CLX
FThumbCursor := LoadCursor(HInstance, ‘DdgDSNSPN_BTNCURSOR’);
*)

// VCL->CLX: Byte arrays are used to create a custom cursor
BitsBitmap := QBitmap_create(32, 32, @Bits, False);
MaskBitmap := QBitmap_create(32, 32, @Mask, False);
try
FThumbCursor := QCursor_create(BitsBitmap, MaskBitmap, 8, 0);

finally
QBitmap_destroy(BitsBitmap);
QBitmap_destroy(MaskBitmap);

end;
end;

destructor TddgDesignSpinner.Destroy;
begin
(*
VCL->CLX: In CLX, use QCursor_Destroy instead of DestroyCursor
DestroyCursor(FThumbCursor); // Release GDI cursor object
*)
QCursor_Destroy(FThumbCursor);
inherited Destroy;

end;

// If the mouse is over one of the buttons, then change cursor to
// the custom cursor that resides in the DdgDsnSpn.res
// resource file

(*
// VCL->CLX: There is no wm_SetCursor in CLX
procedure TddgDesignSpinner.WMSetCursor(var Msg: TWMSetCursor);
begin
if MouseOverButton(btMinus) or MouseOverButton(btPlus) then
SetCursor(FThumbCursor)

Component-Based Development

PART IV
588

18 chpt_13.qxd 11/19/01 12:15 PM Page 588

LISTING 13.2 Continued

else
inherited;

end;
*)

// VCL->CLX: Override MouseMove to handle displaying custom cursor

procedure TddgDesignSpinner.MouseMove(Shift: TShiftState;
X, Y: Integer);

begin
if MouseOverButton(btMinus) or MouseOverButton(btPlus) then
QWidget_setCursor(Handle, FThumbCursor)

else
QWidget_UnsetCursor(Handle);

inherited;
end;

(*
// VCL->CLX: cm_DesignHitTest does not exist in CLX. Instead,
// override the DesignEventQuery method (see below).

procedure TddgDesignSpinner.CMDesignHitTest(var Msg:
TCMDesignHitTest);

begin
// Handling this component message allows the Value of the
// spinner to be changed at design-time using the left mouse
// button. If the mouse is positioned over one of the buttons,
// then set the Msg.Result value to 1. This instructs Delphi to
// allow mouse events to “get through to” the component.

if MouseOverButton(btMinus) or MouseOverButton(btPlus) then
Msg.Result := 1

else
Msg.Result := 0;

end;
*)

function TddgDesignSpinner.DesignEventQuery(Sender: QObjectH;
Event: QEventH): Boolean;

var
MousePos: TPoint;

begin
Result := False;

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
589

18 chpt_13.qxd 11/19/01 12:15 PM Page 589

LISTING 13.2 Continued

if (Sender = Handle) and
(QEvent_type(Event) in [QEventType_MouseButtonPress,

QEventType_MouseButtonRelease,
QEventType_MouseButtonDblClick]) then

begin
// Note: extracting MousePos is not actually needed in this
// example, but if you need to get the position of the
// mouse, this is how you do it.

MousePos := Point(QMouseEvent_x(QMouseEventH(Event)),
QMouseEvent_y(QMouseEventH(Event)));

if MouseOverButton(btMinus) or MouseOverButton(btPlus) then
Result := True

else
Result := False;

end;
end;

procedure TddgDesignSpinner.Change;
var
Form: TCustomForm;

begin
inherited Change;

// Force the Object Inspector to update what it shows for the
// Value property of the spinner when changed via the mouse.

if csDesigning in ComponentState then
begin
Form := GetParentForm(Self);

(*
// VCL->CLX: Form.Designer replaced with DesignerHook in CLX
if (Form <> nil) and (Form.Designer <> nil) then
Form.Designer.Modified;

*)

if (Form <> nil) and (Form.DesignerHook <> nil) then
Form.DesignerHook.Modified;

end;
end;

end.

Component-Based Development

PART IV
590

18 chpt_13.qxd 11/19/01 12:15 PM Page 590

As you can see from the commented blocks of VCL-based code included in the source code,
implementing these two features wasn’t trivial because both features use messages in the VCL.
As noted earlier, Linux doesn’t use a message loop and thus CLX must use a different mecha-
nism to implement these features.

First of all, specifying the mouse cursor to use in the control is much more complicated. In the
VCL version, we simply attached a Windows resource file that included a custom cursor, and
we then called the LoadCursor API function to get a reference to the cursor (a handle). This
cursor handle is then used in handling the wm_SetCursor message, which Windows sends to
any control that needs to have its mouse pointer updated.

Under CLX, this approach cannot be used. First, Qt doesn’t support cursor resources. The
Qt.pas unit defines several QCursor_create() methods—each providing a different way to
construct a mouse cursor except from a cursor resource. You could specify one of the stock Qt
cursors by passing an appropriate integer value to the QCursor_create() method. But, to cre-
ate a custom cursor, you need to create two arrays of bytes that contain the bit layout for the
cursor. The first array represents the black or white pixels, whereas the second array represents
the mask, which determines which regions in the cursor are transparent.

Next, in order to display the mouse cursor at the appropriate time, we override the MouseMove()
event dispatch method instead of handling the wm_SetCursor message. To change the cursor,
the QWidget_setCursor() function is called whenever the mouse is positioned over either but-
ton. Otherwise, the QWidget_UnsetCursor() method is called.

In the VCL, handling the cm_DesignHitTest component message allows mouse events to be
handled by a component at design-time. Unfortunately, this message doesn’t exist in CLX.
Instead, to accomplish the same features, we need to override the new DesignEventQuery()

method. This method provides a way for component writers to become notified when the
underlying Qt widget receives an input event at design-time. If the method returns True, the
control should respond to the event. In our example, we are only concerned with mouse input
events. Therefore, we must first determine whether the input event meets our criteria. If so, we
must determine whether the mouse is positioned over one of the buttons.

The Change() method must be overridden in TddgDesignSpinner so that the Object Inspector’s
display of the Value property can remain in-sync with the selected component. If this method
isn’t overridden, the Object Inspector won’t be updated as the user clicks directly on the spin-
ner’s button on the Form Designer. As you can see, the only change is the reference of
Form.Designer to Form.DesignerHook.

Component References and Image Lists
The next component once again extends the functionality of the spinner. In particular, the
TddgImgListSpinner component descends from the TddgDesignSpinner and implements a

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
591

18 chpt_13.qxd 11/19/01 12:15 PM Page 591

component reference property to allow the user to connect the spinner to an ImageList. The
images in the ImageList can then be displayed in place of the plus and minus default symbols
as shown in Figure 13.6.

Component-Based Development

PART IV
592

FIGURE 13.6
The TddgImgListSpinner supports displaying images from an ImageList for each button.

Listing 13.3 shows the complete source code for the QddgILSpin.pas unit, which implements
the TddgImgListSpinner component. Unlike the TddgDesignSpinner, this component required
very little changes in moving to CLX.

LISTING 13.3 QddgILSpin.pas—Source Code for the TddgImgListSpinner Component

unit QddgILSpin;

interface

uses
Classes, Types, QddgSpin, QddgDsnSpn, QImgList;
(*
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
ddgSpin, ddgDsnSpn, ImgList;
*)

type
TddgImgListSpinner = class(TddgDesignSpinner)
private
FImages: TCustomImageList;
FImageIndexes: array[1..2] of Integer;
FImageChangeLink: TChangeLink;

// Internal Event Handlers
procedure ImageListChange(Sender: TObject);

protected

18 chpt_13.qxd 11/19/01 12:15 PM Page 592

LISTING 13.3 Continued

procedure Notification(AComponent : TComponent;
Operation : TOperation); override;

procedure DrawButton(Button: TddgButtonType; Down: Boolean;
Bounds: TRect); override;

procedure CalcCenterOffsets(Bounds: TRect; var L, T: Integer);

procedure CheckMinSize;

// Property Access Methods
procedure SetImages(Value: TCustomImageList); virtual;
function GetImageIndex(PropIndex: Integer): Integer; virtual;
procedure SetImageIndex(PropIndex: Integer;

Value: Integer); virtual;
public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

published
property Images: TCustomImageList
read FImages
write SetImages;

property ImageIndexMinus: Integer
index 1
read GetImageIndex
write SetImageIndex;

property ImageIndexPlus: Integer
index 2
read GetImageIndex
write SetImageIndex;

end;

implementation

uses
QGraphics; // VCL->CLX: Added for CLX support

{================================}
{== TddgImgListSpinner Methods ==}
{================================}

constructor TddgImgListSpinner.Create(AOwner: TComponent);

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
593

18 chpt_13.qxd 11/19/01 12:15 PM Page 593

LISTING 13.3 Continued

begin
inherited Create(AOwner);

FImageChangeLink := TChangeLink.Create;
FImageChangeLink.OnChange := ImageListChange;
// NOTE: Since, the component user does not have direct access to
// the change link, the user cannot assign custom event handlers.

FImageIndexes[1] := -1;
FImageIndexes[2] := -1;

end;

destructor TddgImgListSpinner.Destroy;
begin
FImageChangeLink.Free;
inherited Destroy;

end;

procedure TddgImgListSpinner.Notification(AComponent: TComponent;
Operation: TOperation);

begin
inherited Notification(AComponent, Operation);
if (Operation = opRemove) and (AComponent = FImages) then
SetImages(nil); // Note the call to access method

end;

function TddgImgListSpinner.GetImageIndex(PropIndex:
Integer): Integer;

begin
Result := FImageIndexes[PropIndex];

end;

procedure TddgImgListSpinner.SetImageIndex(PropIndex: Integer;
Value: Integer);

begin
if FImageIndexes[PropIndex] <> Value then
begin
FImageIndexes[PropIndex] := Value;
Invalidate;

end;
end;

Component-Based Development

PART IV
594

18 chpt_13.qxd 11/19/01 12:15 PM Page 594

LISTING 13.3 Continued

procedure TddgImgListSpinner.SetImages(Value: TCustomImageList);
begin
if FImages <> nil then
FImages.UnRegisterChanges(FImageChangeLink);

FImages := Value;

if FImages <> nil then
begin
FImages.RegisterChanges(FImageChangeLink);
FImages.FreeNotification(Self);
CheckMinSize;

end;
Invalidate;

end;

procedure TddgImgListSpinner.ImageListChange(Sender: TObject);
begin
if Sender = Images then
begin
CheckMinSize;
// Call Update instead of Invalidate to prevent flicker
Update;

end;
end;

procedure TddgImgListSpinner.CheckMinSize;
begin
// Ensures button area will display entire image
if FImages.Width > ButtonWidth then
ButtonWidth := FImages.Width;

if FImages.Height > Height then
Height := FImages.Height;

end;

procedure TddgImgListSpinner.DrawButton(Button: TddgButtonType;
Down: Boolean;
Bounds: TRect);

var
L, T: Integer;

begin
with Canvas do
begin

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
595

18 chpt_13.qxd 11/19/01 12:15 PM Page 595

LISTING 13.3 Continued

Brush.Color := ButtonColor;
Pen.Color := clBtnShadow;
Rectangle(Bounds.Left, Bounds.Top,

Bounds.Right, Bounds.Bottom);

if Button = btMinus then // Draw the Minus (-) Button
begin
if (Images <> nil) and (ImageIndexMinus <> -1) then
begin
(*
// VCL->CLX: DrawingStyle does not exist in CLX TImageList
// BkColor is used instead.
if Down then
FImages.DrawingStyle := dsSelected

else
FImages.DrawingStyle := dsNormal;

*)
if Down then
FImages.BkColor := clBtnShadow

else
FImages.BkColor := clBtnFace;

CalcCenterOffsets(Bounds, L, T);

(*
// VCL->CLX: TImageList.Draw is different in CLX
FImages.Draw(Canvas, L, T, ImageIndexMinus, Enabled);
*)
FImages.Draw(Canvas, L, T, ImageIndexMinus, itImage,

Enabled);
end
else
inherited DrawButton(Button, Down, Bounds);

end
else // Draw the Plus (+) Button
begin
if (Images <> nil) and (ImageIndexPlus <> -1) then
begin
(*
// VCL->CLX: DrawingStyle does not exist in CLX TImageList
// BkColor is used instead.
if Down then
FImages.DrawingStyle := dsSelected

else

Component-Based Development

PART IV
596

18 chpt_13.qxd 11/19/01 12:15 PM Page 596

LISTING 13.3 Continued

FImages.DrawingStyle := dsNormal;
*)
if Down then
FImages.BkColor := clBtnShadow

else
FImages.BkColor := clBtnFace;

CalcCenterOffsets(Bounds, L, T);

(*
// VCL->CLX: TImageList.Draw is different in CLX
FImages.Draw(Canvas, L, T, ImageIndexPlus, Enabled);
*)
FImages.Draw(Canvas, L, T, ImageIndexPlus, itImage,

Enabled);
end
else
inherited DrawButton(Button, Down, Bounds);

end;
end;

end; {= TddgImgListSpinner.DrawButton =}

procedure TddgImgListSpinner.CalcCenterOffsets(Bounds: TRect;
var L, T: Integer);

begin
if FImages <> nil then
begin
L := Bounds.Left + (Bounds.Right - Bounds.Left) div 2 -

(FImages.Width div 2);
T := Bounds.Top + (Bounds.Bottom - Bounds.Top) div 2 -

(FImages.Height div 2);
end;

end;

end.

As usual, the uses clause of the unit needs to be changed to include the CLX specific units and
to remove the VCL specific ones. In particular, notice that the QImgList unit replaces the
ImgList unit. This is significant because under the VCL, the TCustomImageList component is
a wrapper around the ImageList common control implemented in the ComCtl32.dll. Borland
created a CLX version of the TCustomImageList component that uses the graphics primitives
of Qt instead of the ComCtl32.dll.

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
597

18 chpt_13.qxd 11/19/01 12:15 PM Page 597

The benefit of this is clearly visible in the class declaration. The declaration of the CLX ver-
sion of TddgImgListSpinner is identical to the VCL version. Furthermore, the implementa-
tions of all but one of the component’s methods are also identical.

Of course, it is the single display method, the overridden DrawButton() method, that requires
some tweaking. In particular, two issues need to be addressed. The first illustrates a key point
in comparing classes that exist in both the VCL and CLX. That is, just because a VCL class
has a corresponding class in CLX, it doesn’t necessarily mean that all the functionality of the
VCL class is also available in the CLX version.

In the case of the TCustomImageList class, the VCL version implements the DrawingStyle
property, which is used by the VCL version of the TddgImgListSpinner to display the button’s
image differently when clicked. The DrawingStyle property doesn’t exist in the CLX version,
and therefore a different approach must be taken.

The second modification to the DrawButton() method results from the
TCustomImageList.Draw() method being different between the two architectures.

Data-Aware CLX Components
In this fourth sample component, data awareness is added to the spinner component. That is,
the TddgDBSpinner component can be connected to an integer field in a dataset through its
DataSource and DataField properties. Figure 13.7 shows a TddgDBSpinner component con-
nected to the VenueNo field of the Events dataset.

Component-Based Development

PART IV
598

FIGURE 13.7
The TddgDBSpinner can be used to display and edit integer fields in a dataset.

Listing 13.4 shows the source code for the QddgDBSpin.pas unit, which implements the
TddgDBSpinner component, which in turn descends from TddgImgListSpinner.

18 chpt_13.qxd 11/19/01 12:15 PM Page 598

LISTING 13.4 QddgDBSpin.pas—Source Code for the TddgDBSpinner Component

unit QddgDBSpin;

interface

uses
SysUtils, Classes, Qt, QddgILSpin, DB, QDBCtrls;
(*
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
ddgILSpin, DB, DBCtrls;
*)

type
TddgDBSpinner = class(TddgImgListSpinner)
private
FDataLink: TFieldDataLink; // Provides Access to Data

// Internal Event Handlers for DataLink Events
procedure DataChange(Sender: TObject);
procedure UpdateData(Sender: TObject);
procedure ActiveChange(Sender: TObject);

(*
// VCL->CLX: Component Message handling methods not in CLX
procedure CMExit(var Msg: TCMExit); message cm_Exit;
procedure CMDesignHitTest(var Msg: TCMDesignHitTest);
message cm_DesignHitTest;

*)
protected
procedure Notification(AComponent : TComponent;

Operation : TOperation); override;
procedure CheckFieldType(const Value: string); virtual;

// Overridden event dispatch methods
procedure Change; override;
procedure KeyPress(var Key : Char); override;

// VCL->CLX: DoExit replaces CMExit
procedure DoExit; override;
// VCL->CLX: DesignEventQuery replaces CMDesignHitTest
function DesignEventQuery(Sender: QObjectH;

Event: QEventH): Boolean; override;

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
599

18 chpt_13.qxd 11/19/01 12:15 PM Page 599

LISTING 13.4 Continued

// Overridden support methods
procedure DecValue(Amount: Integer); override;
procedure IncValue(Amount: Integer); override;

// Property Access Methods
function GetField: TField; virtual;
function GetDataField: string; virtual;
procedure SetDataField(const Value: string); virtual;
function GetDataSource: TDataSource; virtual;
procedure SetDataSource(Value: TDataSource); virtual;
function GetReadOnly: Boolean; virtual;
procedure SetReadOnly(Value: Boolean); virtual;

// Give Descendants Access to Field object and DataLink
property Field: TField
read GetField;

property DataLink: TFieldDataLink
read FDataLink;

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

published
property DataField: string
read GetDataField
write SetDataField;

property DataSource: TDataSource
read GetDataSource
write SetDataSource;

// This property controls the ReadOnly state of the DataLink
property ReadOnly: Boolean
read GetReadOnly
write SetReadOnly
default False;

end;

type
EInvalidFieldType = class(Exception);

resourcestring
SInvalidFieldType = ‘DataField can only be connected to ‘ +

‘columns of type Integer, Smallint, Word, ‘ +
‘and Float’;

Component-Based Development

PART IV
600

18 chpt_13.qxd 11/19/01 12:15 PM Page 600

LISTING 13.4 Continued

implementation

uses
Types; // VCL->CLX: Added for CLS support

{===========================}
{== TddgDBSpinner Methods ==}
{===========================}

constructor TddgDBSpinner.Create(AOwner: TComponent);
begin
inherited Create(AOwner);

FDataLink := TFieldDataLink.Create;

// To support the TField.FocusControl method, set the
// FDataLink.Control property to point to the spinner.
// The Control property requires a TWinControl component.
FDataLink.Control := Self;

// Assign Event Handlers
FDataLink.OnDataChange := DataChange;
FDataLink.OnUpdateData := UpdateData;
FDataLink.OnActiveChange := ActiveChange;

// NOTE: Since, the component user does not have direct access to
// the data link, the user cannot assign custom event handlers.

end;

destructor TddgDBSpinner.Destroy;
begin
FDataLink.Free;
FDataLink := nil;
inherited Destroy;

end;

procedure TddgDBSpinner.Notification(AComponent: TComponent;
Operation: TOperation);

begin
inherited Notification(AComponent, Operation);
if (Operation = opRemove) and

(FDataLink <> nil) and

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
601

18 chpt_13.qxd 11/19/01 12:15 PM Page 601

LISTING 13.4 Continued

(AComponent = FDataLink.DataSource) then
begin
DataSource := nil; // Indirectly calls SetDataSource

end;
end;

function TddgDBSpinner.GetField: TField;
begin
Result := FDataLink.Field;

end;

function TddgDBSpinner.GetDataField: string;
begin
Result := FDataLink.FieldName;

end;

procedure TddgDBSpinner.SetDataField(const Value: string);
begin
CheckFieldType(Value);
FDataLink.FieldName := Value;

end;

function TddgDBSpinner.GetDataSource: TDataSource;
begin
Result := FDataLink.DataSource;

end;

procedure TddgDBSpinner.SetDataSource(Value: TDataSource);
begin
if FDatalink.DataSource <> Value then
begin
FDataLink.DataSource := Value;

// FreeNotification must be called b/c DataSource may be
// located on another form or data module.
if Value <> nil then
Value.FreeNotification(Self);

end;
end;

Component-Based Development

PART IV
602

18 chpt_13.qxd 11/19/01 12:15 PM Page 602

LISTING 13.4 Continued

function TddgDBSpinner.GetReadOnly: Boolean;
begin
Result := FDataLink.ReadOnly;

end;

procedure TddgDBSpinner.SetReadOnly(Value: Boolean);
begin
FDataLink.ReadOnly := Value;

end;

procedure TddgDBSpinner.CheckFieldType(const Value: string);
var
FieldType: TFieldType;

begin
// Make sure the field type corresponding to the column
// referenced by Value is either ftInteger, ftSmallInt, ftWord,
// or ftFloat. If it is not, an EInvalidFieldType exception is
// raised.

if (Value <> ‘’) and
(FDataLink <> nil) and
(FDataLink.Dataset <> nil) and
(FDataLink.Dataset.Active) then

begin
FieldType := FDataLink.Dataset.FieldByName(Value).DataType;
if (FieldType <> ftInteger) and

(FieldType <> ftSmallInt) and
(FieldType <> ftWord) and
(FieldType <> ftFloat) then

begin
raise EInvalidFieldType.Create(SInvalidFieldType);

end;
end;

end;

procedure TddgDBSpinner.Change;
begin
// Tell the FDataLink that the data has changed
if FDataLink <> nil then
FDataLink.Modified;

inherited Change; // Generates OnChange event
end;

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
603

18 chpt_13.qxd 11/19/01 12:15 PM Page 603

LISTING 13.4 Continued

procedure TddgDBSpinner.KeyPress(var Key: Char);
begin
inherited KeyPress(Key);

if Key = #27 then
begin
FDataLink.Reset; // Esc key pressed
Key := #0; // Set to #0 so Esc won’t close dialog

end;
end;

procedure TddgDBSpinner.DecValue(Amount: Integer);
begin
if ReadOnly or not FDataLink.CanModify then
begin
// Prevent change if FDataLink is ReadOnly
(*
// VCL->CLX: MessageBeep is a Windows API function
MessageBeep(0)
*)
Beep;

end
else
begin
// Try to put Dataset in edit mode--only dec if in edit mode
if FDataLink.Edit then
inherited DecValue(Amount);

end;
end;

procedure TddgDBSpinner.IncValue(Amount: Integer);
begin
if ReadOnly or not FDataLink.CanModify then
begin
// Prevent change if FDataLink is ReadOnly
(*
// VCL->CLX: MessageBeep is a Windows API function
MessageBeep(0)
*)
Beep;

end
else

Component-Based Development

PART IV
604

18 chpt_13.qxd 11/19/01 12:15 PM Page 604

LISTING 13.4 Continued

begin
// Try to put Dataset in edit mode--only inc if in edit mode
if FDataLink.Edit then
inherited IncValue(Amount);

end;
end;

{==
TddgDBSpinner.DataChange

This method gets called as a result of a number of
different events:

1. The underlying field value changes. Occurs when changing the
value of the column tied to this control and then move to a
new column or a new record.

2. The corresponding Dataset goes into Edit mode.
3. The corresponding Dataset referenced by DataSource changes.
4. The current cursor is scrolled to a new record in the table.
5. The record is reset through a Cancel call.
6. The DataField property changes to reference another column.

==}

procedure TddgDBSpinner.DataChange(Sender: TObject);
begin
if FDataLink.Field <> nil then
Value := FDataLink.Field.AsInteger;

end;

{==
TddgDBSpinner.UpdateData

This method gets called when the corresponding field value and
the contents of the Spinner need to be synchronized. Note that
this method only gets called if this control was responsible for
altering the data.

==}

procedure TddgDBSpinner.UpdateData(Sender: TObject);
begin
FDataLink.Field.AsInteger := Value;

end;

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
605

18 chpt_13.qxd 11/19/01 12:15 PM Page 605

LISTING 13.4 Continued

{==
TddgDBSpinner.ActiveChange

This method gets called whenever the Active property of the
attached Dataset changes.

NOTE: You can use the FDataLink.Active property to determine
the *new* state of the Dataset.

==}

procedure TddgDBSpinner.ActiveChange(Sender: TObject);
begin
// If the Dataset is becoming Active, then check to make sure the
// field type of the DataField property is a valid type.

if (FDataLink <> nil) and FDataLink.Active then
CheckFieldType(DataField);

end;

(*
// VCL->CLX: CMExit replaced with DoExit (see below)

procedure TddgDBSpinner.CMExit(var Msg: TCMExit);
begin
try // Attempt to update the record if focus leaves the spinner
FDataLink.UpdateRecord;

except
SetFocus; // Keep the focus on the control if Update fails
raise; // Reraise the exception

end;
inherited;

end;
*)

procedure TddgDBSpinner.DoExit;
begin
try // Attempt to update the record if focus leaves the spinner
FDataLink.UpdateRecord;

except
SetFocus; // Keep the focus on the control if Update fails
raise; // Reraise the exception

end;
inherited;

end;

Component-Based Development

PART IV
606

18 chpt_13.qxd 11/19/01 12:15 PM Page 606

LISTING 13.4 Continued

(*
// VCL->CLX: CMDesignHitTest replaced by DesignEventQuery

procedure TddgDBSpinner.CMDesignHitTest(var Msg: TCMDesignHitTest);
begin
// Ancestor component allows Value to be changed at design-time.
// This is not valid in a data-aware component because it would
// put the connected dataset into edit mode.
Msg.Result := 0;

end;
*)

function TddgDBSpinner.DesignEventQuery(Sender: QObjectH;
Event: QEventH): Boolean;

begin
// Ancestor component allows Value to be changed at design-time.
// This is not valid in a data-aware component because it would
// put the connected dataset into edit mode.
Result := False;

end;

end.

Fortunately, incorporating data awareness into a CLX component is nearly identical to the
VCL implementation. That is, once you have a working nondata-aware CLX component, you
simply need to embed a TFieldDataLink object into your CLX component and respond to the
DataChange and UpdateData events. Of course, you will need to implement the DataSource,
DataField, and ReadOnly properties, but this is no different from doing the same thing in a
VCL component.

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
607

Don’t forget to change the DBCtrls unit to QDBCtrls. Although the DB unit is shared
between the VCL and CLX, the DBCtrls unit isn’t. Both DBCtrls and QDBCtrls define
a TFieldDataLink class. Unfortunately, under Delphi 6, you won’t receive any errors if
you use the VCL version of the TFieldDataLink instead of the CLX version. In fact, the
component might even operate correctly under Windows. However, when you try the
component under Kylix, you will receive many syntax errors from the compiler.

NOTE

However, one situation will require your attention. Many data-aware VCL components handle
the cm_Exit component message in order to call the UpdateRecord method of the data link.

18 chpt_13.qxd 11/19/01 12:15 PM Page 607

However, CLX doesn’t implement the cm_Exit message, and therefore the DoExit() event dis-
patch method must be overridden instead.

The TddgDBSpinner is a direct descendant of TddgImgListSpinner, which in turn descends
from TddgDesignSpinner. Recall that one of the features of the TddgDesignSpinner was to
allow the user to change the value of the spinner using the mouse at design time. This feature
is no longer useful in our data-aware component because if the user changes the value of the
spinner, the associated dataset will be placed into edit mode. Unfortunately, at design-time
there is no way to get out of edit mode once this happens. Therefore, the TddgDBSpinner over-
rides the DesignEventQuery() method and simply returns False to prevent mouse operations
from being handled by the component at design-time.

CLX Design Editors
Design editors for CLX components are implemented in exactly the same way they are for
VCL components. However, there are few changes that you must be aware of. The most signif-
icant is that the units that implement the base design-time functionality have been broken up
and placed into new units. Specifically, the DsgnIntf unit has been renamed to DesignIntf. In
most cases, you will also need to add the new DesignEditors unit to your uses clause. The
DesignIntf unit defines the interfaces used by the Form Designer and Object Inspector. The
DesignEditors unit implements the basic property editor and component editor classes.

Unfortunately, not all the design-time features of the VCL have made it over into CLX. For
example, owner-draw property editors are only available in the VCL. As a result, CLX specific
editors are implemented in the CLXEditors unit, whereas VCL specific editors are defined in
the VCLEditors unit.

Figure 13.8 shows the TddgRadioGroupEditor, a custom component editor for the CLX
TRadioGroup component, allowing a user to easily set the ItemIndex property. The
TddgRadioGroupEditor is defined in the QddgRgpEdt.pas unit, which appears in Listing 13.5.

Component-Based Development

PART IV
608

18 chpt_13.qxd 11/19/01 12:15 PM Page 608

FIGURE 13.8
Selecting an item in the CLX RadioGroup is a snap with this custom component editor.

LISTING 13.5 QddgRgpEdt.pas—Source Code for the TddgRadioGroupEditor Component
Editor

unit QddgRgpEdt;

interface

uses
DesignIntf, DesignEditors, QExtCtrls, QDdgDsnEdt;

type
TddgRadioGroupEditor = class(TddgDefaultEditor)
protected
function RadioGroup: TRadioGroup; virtual;

public
function GetVerbCount: Integer; override;
function GetVerb(Index: Integer) : string; override;
procedure ExecuteVerb(Index: Integer); override;

end;

implementation

uses
QControls;

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
609

18 chpt_13.qxd 11/19/01 12:15 PM Page 609

LISTING 13.5 Continued

{==================================}
{== TddgRadioGroupEditor Methods ==}
{==================================}

function TddgRadioGroupEditor.RadioGroup: TRadioGroup;
begin
// Helper function to provide quick access to component being
// edited. Also makes sure Component is a TRadioGroup
Result := Component as TRadioGroup;

end;

function TddgRadioGroupEditor.GetVerbCount: Integer;
begin
// Return the number of new menu items to display
Result := RadioGroup.Items.Count + 1;

end;

function TddgRadioGroupEditor.GetVerb(Index: Integer): string;
begin
// Menu item caption for context menu
if Index = 0 then
Result := ‘Edit Items...’

else
Result := RadioGroup.Items[Index - 1];

end;

procedure TddgRadioGroupEditor.ExecuteVerb(Index: Integer);
begin
if Index = 0 then
EditPropertyByName(‘Items’) // Defined in QDdgDsnEdt.pas

else
begin
if RadioGroup.ItemIndex <> Index - 1 then
RadioGroup.ItemIndex := Index - 1

else
RadioGroup.ItemIndex := -1; // Uncheck all items

Designer.Modified;
end;

end;

end.

Component-Based Development

PART IV
610

18 chpt_13.qxd 11/19/01 12:15 PM Page 610

The techniques illustrated in the TddgRadioGroupEditor apply to both the VCL and CLX. In
this example, the context menu of the TRadioGroup component is changed to reflect the items
currently in the group. Selecting a group item’s corresponding menu item causes the radio
group’s ItemIndex property to be set accordingly. If no items are in the group, only the Edit
Items menu item is added.

If the user chooses this menu item, the string list editor is invoked on the Items property for
the TRadioGroup. The EditPropertyByName() method isn’t part of CLX or the VCL—it is
defined in the TddgDefaultEditor class. This method can be used to invoke the currently reg-
istered property editor for any named property of a component within the context of a compo-
nent editor. Listing 13.6 shows the source code for the QddgDsnEdt.pas unit, which
implements the TddgDefaultEditor class.

LISTING 13.6 QddgDsnEdt.pas—Source Code for the TddgDefaultEditor Component
Editor

unit QddgDsnEdt;

interface

uses
Classes, DesignIntf, DesignEditors;

type
TddgDefaultEditor = class(TDefaultEditor)
private
FPropName: string;
FContinue: Boolean;
FPropEditor: IProperty;
procedure EnumPropertyEditors(const PropertyEditor: IProperty);
procedure TestPropertyEditor(const PropertyEditor: IProperty;

var Continue: Boolean);
protected
procedure EditPropertyByName(const APropName: string);

end;

implementation

uses
SysUtils, TypInfo;

{===============================}
{== TddgDefaultEditor Methods ==}
{===============================}

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
611

18 chpt_13.qxd 11/19/01 12:15 PM Page 611

LISTING 13.6 Continued

procedure TddgDefaultEditor.EnumPropertyEditors(const
PropertyEditor: IProperty);

begin
if FContinue then
TestPropertyEditor(PropertyEditor, FContinue);

end;

procedure TddgDefaultEditor.TestPropertyEditor(const
PropertyEditor: IProperty;
var Continue: Boolean);

begin
if not Assigned(FPropEditor) and

(CompareText(PropertyEditor.GetName, FPropName) = 0) then
begin
Continue := False;
FPropEditor := PropertyEditor;

end;
end;

procedure TddgDefaultEditor.EditPropertyByName(const
APropName: string);

var
Components: IDesignerSelections;

begin
Components := TDesignerSelections.Create;
FContinue := True;
FPropName := APropName;
Components.Add(Component);
FPropEditor := nil;
try
GetComponentProperties(Components, tkAny, Designer,

EnumPropertyEditors);
if Assigned(FPropEditor) then
FPropEditor.Edit;

finally
FPropEditor := nil;

end;
end;

end.

Component-Based Development

PART IV
612

18 chpt_13.qxd 11/19/01 12:15 PM Page 612

Packages
CLX components, like VCL components, need to be placed into a package in order to be
installed into the Kylix or Delphi IDEs. However, it is important to note that a compiled
Delphi 6 package containing a CLX component cannot be installed into Kylix. This is because
packages under Windows are implemented as specially compiled DLLs, whereas packages
under Linux are implemented as shared object (.so) files. Fortunately, the format and syntax of
package source files under both platforms is identical.

However, the information that you need to provide in the packages will differ between
Windows and Linux. For example, the requires clause for a Linux runtime package will usu-
ally specify the baseclx and visualclx packages. However, baseclx doesn’t exist in Delphi
6. Under Windows, a runtime package containing CLX components will only require the
visualclx package. Of course, as with VCL packages, CLX design packages will require the
runtime packages containing your new custom CLX components.

Naming Conventions
The CLX components presented in this chapter are contained in the packages described in
Tables 13.1 and 13.2. Table 13.1 shows the BPL files generated under Windows and also lists
the packages required for each custom package. Table 13.2 shows the shared object files gener-
ated under Linux and likewise lists the required packages. The package source files are the
same in both tables. As you can see, we’ve adopted a specific naming convention for package
names.

TABLE 13.1 CLX Packages for Windows (Delphi 6)

Package Source Compiled Version Requires

QddgSamples.dpk QddgSamples60.bpl visualclx

QddgSamples_Dsgn.dpk QddgSamples_Dsgn60.bpl visualclx

designide

QddgSamples

QddgDBSamples.dpk QddgDBSamples60.bpl visualclx

dbrtl

visualdbclx

QddgSamples

QddgDBSamples_Dsgn.dpk QddgDBSamples_Dsgn60.bpl visualclx

QddgSamples_Dsgn

QddgDBSamples

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
613

18 chpt_13.qxd 11/19/01 12:15 PM Page 613

TABLE 13.2 CLX Packages for Linux (Kylix)

Package Source Compiled Version Requires

QddgSamples.dpk bplQddg6Samples.so.6 baseclx

visualclx

QddgSamples_Dsgn.dpk bplQddgSamples_Dsgn.so.6 baseclx

visualclx

designide

QddgSamples

QddgDBSamples.dpk bplQddgDBSamples.so.6 baseclx

visualclx

visualdbclx

dataclx

QddgSamples

QddgDBSamples_Dsgn.dpk bplQddgDBSamples_Dsgn.so.6 baseclx

visualclx

QddgSamples_Dsgn

QddgDBSamples

CLX packages to be used under Windows typically incorporate the product version in the
name. For example, QddgSamples60.bpl indicates that this file is for Delphi 6 and is a Borland
Package Library as noted by the .bpl extension. Under Linux, Borland has chosen to follow
traditional Linux practices in naming shared objects. For example, rather than use an extension
to indicate the type of file, a bpl prefix is used to indicate a package. Borland will occasionally
name some of its design packages with the dcl prefix. However, we discourage this practice
because design packages are more clearly identified by the _Dsgn suffix. In addition, all pack-
ages (runtime and design) under Windows use a .bpl extension. Using a bpl prefix for all
packages under Linux establishes a certain level of consistency. The suffix used for a Linux
shared object is typically .so followed by a version number. The prefix and suffix used in gen-
erating a compiled package are controlled through the package options.

You will also note that the package source files don’t specify a version number. In previous
versions of Delphi, it was common practice to add a suffix to the package name to indicate
which version of the VCL the package required. However, starting in Kylix and Delphi 6,
Borland has added several new options controlling the names used when compiling package. In
the Delphi 6 examples in Table 13.1, the new {$LIBSUFFIX} option is used to specify 60. When
Delphi compiles the package, the suffix is automatically added to the end of the bpl file. In the
Kylix examples in Table 13.2, the {$SOPREFIX} directive specifies bpl, whereas the {$SOVER-
SION} directive specifies 6.

Component-Based Development

PART IV
614

18 chpt_13.qxd 11/19/01 12:15 PM Page 614

Runtime Packages
Listings 13.7 and 13.8 show the source code for the nondata-aware and data-aware runtime
packages containing the components presented in this chapter. Note the use of the conditional
symbols MSWINDOWS and LINUX to specify the appropriate directives and to include the appro-
priate packages in the requires clause. MSWINDOWS is defined when compiling under Delphi 6,
whereas LINUX is defined when compiling under Kylix.

LISTING 13.7 QddgSamples.dpk—Source Code for the NonData-Aware CLX Runtime
Package

package QddgSamples;

{$R *.res}
{$ALIGN 8}
{$ASSERTIONS ON}
{$BOOLEVAL OFF}
{$DEBUGINFO ON}
{$EXTENDEDSYNTAX ON}
{$IMPORTEDDATA ON}
{$IOCHECKS ON}
{$LOCALSYMBOLS ON}
{$LONGSTRINGS ON}
{$OPENSTRINGS ON}
{$OPTIMIZATION ON}
{$OVERFLOWCHECKS OFF}
{$RANGECHECKS OFF}
{$REFERENCEINFO OFF}
{$SAFEDIVIDE OFF}
{$STACKFRAMES OFF}
{$TYPEDADDRESS OFF}
{$VARSTRINGCHECKS ON}
{$WRITEABLECONST ON}
{$MINENUMSIZE 1}
{$IMAGEBASE $400000}
{$DESCRIPTION ‘DDG: CLX Components’}
b
{$IFDEF MSWINDOWS}
{$LIBSUFFIX ‘60’}
{$ENDIF}

{$IFDEF LINUX}
{$SOPREFIX ‘bpl’}
{$SOVERSION ‘6’}
{$ENDIF}

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
615

18 chpt_13.qxd 11/19/01 12:15 PM Page 615

LISTING 13.7 Continued

{$RUNONLY}
{$IMPLICITBUILD OFF}

requires
{$IFDEF LINUX}
baseclx,
{$ENDIF}
visualclx;

contains
QddgSpin in ‘QddgSpin.pas’,
QddgDsnSpn in ‘QddgDsnSpn.pas’,
QddgILSpin in ‘QddgILSpin.pas’;

end.

Component-Based Development

PART IV
616

When specifying platform specific blocks of code, use separate {$IDFEF}..{$ENDIF}
blocks for each platform as illustrated in the package source files. In particular, you
want to avoid constructs such as the following:

{$IFDEF MSWINDOWS}
// Windows specific code here
{$ELSE}
// Linux specific code here
{$ENDIF}

If Borland ever decides to support another platform, the preceding construct will
cause the Linux specific code to be used as long as the platform isn’t Windows.

NOTE

LISTING 13.8 QddgDBSamples.dpk—Source Code for the Data-Aware CLX Runtime
Package

package QddgDBSamples;

{$R *.res}
{$ALIGN 8}
{$ASSERTIONS ON}
{$BOOLEVAL OFF}
{$DEBUGINFO ON}
{$EXTENDEDSYNTAX ON}
{$IMPORTEDDATA ON}
{$IOCHECKS ON}

18 chpt_13.qxd 11/19/01 12:15 PM Page 616

LISTING 13.8 Continued

{$LOCALSYMBOLS ON}
{$LONGSTRINGS ON}
{$OPENSTRINGS ON}
{$OPTIMIZATION ON}
{$OVERFLOWCHECKS OFF}
{$RANGECHECKS OFF}
{$REFERENCEINFO OFF}
{$SAFEDIVIDE OFF}
{$STACKFRAMES OFF}
{$TYPEDADDRESS OFF}
{$VARSTRINGCHECKS ON}
{$WRITEABLECONST ON}
{$MINENUMSIZE 1}
{$IMAGEBASE $400000}
{$DESCRIPTION ‘DDG: CLX Components (Data-Aware)’}

{$IFDEF MSWINDOWS}
{$LIBSUFFIX ‘60’}
{$ENDIF}

{$IFDEF LINUX}
{$SOPREFIX ‘bpl’}
{$SOVERSION ‘6’}
{$ENDIF}

{$RUNONLY}
{$IMPLICITBUILD OFF}

requires
{$IFDEF MSWINDOWS}
dbrtl,
{$ENDIF}

{$IFDEF LINUX}
baseclx,
dataclx,
{$ENDIF}

visualclx,
visualdbclx,
QddgSamples;

contains
QddgDBSpin in ‘QddgDBSpin.pas’;

end.

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
617

18 chpt_13.qxd 11/19/01 12:15 PM Page 617

Design-Time Packages
Although it is possible to put your custom components into a combination runtime/design
package, this approach isn’t recommended. In fact, this approach only works if you don’t have
any design editors included in your package. If you do, your package will require the designide
package, which cannot be redistributed.

The solution is to create separate design packages that handle registering the components con-
tained in your runtime packages. Listings 13.9 and 13.10 show the source code for the non-
data-aware and data-aware design packages, respectively. Again note the use of the conditional
symbols MSWINDOWS and LINUX to specify the appropriate directives and to include the appropri-
ate packages in the requires clause.

LISTING 13.9 QddgSamples_Dsgn.dpk—Source Code for the Nondata-Aware CLX
Design-Time Package

package QddgSamples_Dsgn;

{$R *.res}
{$R ‘QddgSamples_Reg.dcr’}
{$ALIGN 8}
{$ASSERTIONS OFF}
{$BOOLEVAL OFF}
{$DEBUGINFO OFF}
{$EXTENDEDSYNTAX ON}
{$IMPORTEDDATA ON}
{$IOCHECKS ON}
{$LOCALSYMBOLS OFF}
{$LONGSTRINGS ON}
{$OPENSTRINGS ON}
{$OPTIMIZATION ON}
{$OVERFLOWCHECKS OFF}
{$RANGECHECKS OFF}
{$REFERENCEINFO OFF}
{$SAFEDIVIDE OFF}
{$STACKFRAMES OFF}
{$TYPEDADDRESS OFF}
{$VARSTRINGCHECKS ON}
{$WRITEABLECONST ON}
{$MINENUMSIZE 1}
{$IMAGEBASE $400000}
{$DESCRIPTION ‘DDG: CLX Components’}

{$IFDEF MSWINDOWS}
{$LIBSUFFIX ‘60’}
{$ENDIF}

Component-Based Development

PART IV
618

18 chpt_13.qxd 11/19/01 12:15 PM Page 618

LISTING 13.9 Continued

{$IFDEF LINUX}
{$SOPREFIX ‘bpl’}
{$SOVERSION ‘6’}
{$ENDIF}

{$DESIGNONLY}
{$IMPLICITBUILD OFF}

requires
{$IFDEF LINUX}
baseclx,
{$ENDIF}
visualclx,
designide,
QddgSamples;

contains
QddgSamples_Reg in ‘QddgSamples_Reg.pas’,
QddgDsnEdt in ‘QddgDsnEdt.pas’,
QddgRgpEdt in ‘QddgRgpEdt.pas’;

end.

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
619

In order to support both Kylix and Delphi 6 with the same package source files, the
names specified in the requires and contains clauses must match the case of the
actual filename. For example, in the VCL it is common to specify the DesignIDE pack-
age in mixed case. However, under Linux, the designide package uses all lowercase
letters. If mixed case is used in the source file, Kylix won’t be able to locate the
designide.dcp file because DesignIDE.dcp is different from designide.dcp on Linux.

NOTE

LISTING 13.10 QddgDBSamples_Dsgn.dpk—Source Code for the Data-Aware CLX
Design-Time Package

package QddgDBSamples_Dsgn;

{$R *.res}
{$ALIGN 8}
{$ASSERTIONS OFF}
{$BOOLEVAL OFF}
{$DEBUGINFO OFF}

18 chpt_13.qxd 11/19/01 12:15 PM Page 619

LISTING 13.10 Continued

{$EXTENDEDSYNTAX ON}
{$IMPORTEDDATA ON}
{$IOCHECKS ON}
{$LOCALSYMBOLS OFF}
{$LONGSTRINGS ON}
{$OPENSTRINGS ON}
{$OPTIMIZATION ON}
{$OVERFLOWCHECKS OFF}
{$RANGECHECKS OFF}
{$REFERENCEINFO OFF}
{$SAFEDIVIDE OFF}
{$STACKFRAMES OFF}
{$TYPEDADDRESS OFF}
{$VARSTRINGCHECKS ON}
{$WRITEABLECONST ON}
{$MINENUMSIZE 1}
{$IMAGEBASE $400000}
{$DESCRIPTION ‘DDG: CLX Components (Data-Aware)’}

{$IFDEF MSWINDOWS}
{$LIBSUFFIX ‘60’}
{$ENDIF}

{$IFDEF LINUX}
{$SOPREFIX ‘bpl’}
{$SOVERSION ‘6’}
{$ENDIF}

{$DESIGNONLY}
{$IMPLICITBUILD OFF}

requires
{$IFDEF LINUX}
baseclx,
{$ENDIF}
visualclx,
QddgSamples_Dsgn,
QddgDBSamples;

contains
QddgDBSamples_Reg in ‘QddgDBSamples_Reg.pas’;

end.

Component-Based Development

PART IV
620

18 chpt_13.qxd 11/19/01 12:15 PM Page 620

Registration Units
As you can see from the source listings for the design packages, registration units are used to
handle registering all components. As is customary when creating VCL components, these reg-
istration units (QddgSamples_Reg and QddgDBSamples_Reg) are only contained within a design
package. Listing 13.11 shows the source code for the QddgSamples_Reg.pas unit, which is
responsible for registering the nondata-aware components and the TddgRadioGroupEditor
component editor.

LISTING 13.11 QddgSamples_Reg.pas—Registration Unit for Nondata-Aware CLX Sample
Components

{==
QddgSamples_Reg Unit

Registration Unit for all non-data-aware DDG-CLX components.

Copyright © 2001 by Ray Konopka
==}

unit QddgSamples_Reg;

interface

procedure Register;

implementation

uses
Classes, DesignIntf, DesignEditors, QExtCtrls,
QddgSpin, QddgDsnSpn, QddgILSpin,
QddgRgpEdt;

{========================}
{== Register Procedure ==}
{========================}

procedure Register;
begin
{== Register Components ==}

RegisterComponents(‘DDG-CLX’,
[TddgSpinner,

TddgDesignSpinner,
TddgImgListSpinner]);

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
621

18 chpt_13.qxd 11/19/01 12:15 PM Page 621

LISTING 13.11 Continued

{== Register Component Editors ==}

RegisterComponentEditor(TRadioGroup, TddgRadioGroupEditor);
end;

end.

Component Bitmaps
In order to identify your newly created custom CLX component on the Component Palette, you
should create a component bitmap, which is a 16-color bitmap that is 24x24 pixels in size.
The online help for Kylix and Delphi suggest that you create a separate resource file for each
component unit.

However, the Package Editor searches for a matching .dcr file whenever you add a unit to a
package. Unfortunately, the Package Editor does this for both runtime and design packages,
and linking palette bitmaps into a runtime package is pointless because the bitmaps will go
unused and simply waste space.

Therefore, instead of creating separate .dcr files for each component unit, simply create a sin-
gle .dcr file containing all the component bitmaps. Fortunately, resources in Kylix are the
same as those used in Delphi. That is, even though Kylix generates native Linux executables,
the format used to attach resources is the Win32 resource format. As a result, we can use any
resource editor that can create Windows .res files and then simply rename the file with a .dcr
extension. For example, Figure 13.9 shows the QddgSamples_Reg.dcr file being edited in the
Image Editor.

Notice that the name of the resource file is the same as the registration unit. As a result, when
the registration unit is added to the design package, the component resource file is also added.
Furthermore, because the registration unit isn’t used in the runtime packages, the component
bitmaps won’t be linked into them.

As a final comment, don’t underestimate the importance of well-designed bitmaps to represent
your components. The component bitmaps are the first impression users will have of your
components. Unprofessional bitmaps give the impression of unprofessional components. If you
build components for the commercial market, you might want to get a professional graphics
artist to design the bitmaps.

Component-Based Development

PART IV
622

18 chpt_13.qxd 11/19/01 12:15 PM Page 622

FIGURE 13.9
The Image Editor can be used to create DCR files for CLX components.

Summary
You can do several things in your current VCL-based components to aid in porting them to
CLX in the future. First, use existing VCL wrappers wherever possible. For example, use the
TCanvas methods instead of calling GDI functions directly. Override existing event dispatch
methods such as MouseDown() instead of handling the wm_LButtonDown window message.
Linux doesn’t use messages; therefore, the wm_LButtonDown message doesn’t even exist under
Linux. Another helpful technique is to create your own abstraction classes to help isolate plat-
form dependent code.

Although CLX was modeled after the VCL, migrating your existing VCL components to CLX
will definitely require some effort. Platform specific calls such as calls to the Win32 API or to
libc must be eliminated or at least wrapped within platform conditional compilation directives.
However, it is indeed possible to create a custom CLX component using a single source file
that will operate under both Delphi/Windows and Kylix/Linux.

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
623

18 chpt_13.qxd 11/19/01 12:15 PM Page 623

18 chpt_13.qxd 11/19/01 12:15 PM Page 624

CHAPTER

14
Packages to the Max

IN THIS CHAPTER
• Why Use Packages? 626

• Why Not Use Packages? 627

• Types of Packages 628

• Package Files 628

• Using Runtime Packages 629

• Installing Packages into the Delphi IDE 629

• Creating Packages 630

• Package Versioning 635

• Package Compiler Directives 635

• Package Naming Conventions 637

• Extensible Applications Using Runtime
(Add-In) Packages 637

• Exporting Functions from Packages 644

• Obtaining Information About a Package 648

19 chpt_14.qxd 11/19/01 12:09 PM Page 625

Delphi 3 introduced packages, which enable you to place portions of your application into sep-
arate modules that can be shared across multiple applications. Packages are simply special
dynamic link libraries (DLLs) that contain additional Delphi specific information. They differ
from DLLs in how they are used. Packages are primarily used to store collections of compo-
nents in a separate, sharable module (a Borland Package Library, or .bpl file). As you or other
developers create Delphi applications, the packages you create can be used by the application
at runtime instead of being directly linked at compile/link time. Because the code for these
units resides in the .bpl file rather than in your .exe or .dll, the size of your .exe or .dll
can become very small.

Packages are specific to the VCL; that is, applications written in other languages can’t use
packages created by Delphi (with the exception of C++Builder). One of the reasons behind
packages was to get around a limitation of Delphi 1 and 2. In these prior versions of Delphi,
the VCL added a minimum of 150KB to 200KB of code to every executable. Therefore, even if
you were to separate a piece of your application into a DLL, both the DLL and the application
would contain redundant code. This was especially a problem if you were providing a suite of
applications on one machine. Packages allow you to reduce the footprint of your applications
and provide a convenient way for you to distribute your component collections.

Why Use Packages?
There are several reasons why you might want to use packages. Three important reasons are
discussed in the following sections: code reduction, application partitioning, and component
containment.

Code Reduction
A primary reason behind using packages is to reduce the size of your applications and DLLs.
Delphi already ships with several predefined packages that break up the VCL into logical
groupings. In fact, you can choose to compile your application so that it assumes the existence
of many of these Delphi packages.

A Smaller Distribution of Applications—
Application Partitioning
You’ll find that many programs are available over the Internet as full-blown applications,
downloadable demos, or updates to existing applications. Consider the benefit of giving users
the option of downloading smaller versions of the application when pieces of the application
might already exist on their system, such as when they have a prior installation.

Component-Based Development

PART IV
626

19 chpt_14.qxd 11/19/01 12:09 PM Page 626

By partitioning your applications using packages, you also allow your users to obtain updates
to only those parts of the application that they need. Note, however, that there are some ver-
sioning issues that you’ll have to take into account. We’ll cover these versioning issues in this
chapter.

Component Containment
Probably one of the most common reasons for using packages is the distribution of third-party
components. If you are a component vendor, you must know how to create packages because
certain design-time elements—such as component and property editors, wizards, and experts—
are all provided by packages.

Packages to the Max

CHAPTER 14

14

P
A

C
K

A
G

ES
TO

TH
E

M
A

X
627

Packages Versus DLLs
Using DLLs to host administrative forms for their server applications results in the DLL
having its own copy of Forms.pas. This will cause a weird error involving Windows’
handling of the window handles generated within the DLL—when the DLL is unloaded,
the Window handle isn’t dereferenced by the operating system. The next message
that crosses the queue for all top-level windows causes a fault at the application,
which the operating system then shuts down because the application is in an invalid
state. Using packages instead of DLLs overcomes this problem because the packages
refer to the main application’s copy of Forms.pas, and the message queue can broad-
cast successfully to the application.

Why Not Use Packages?
You shouldn’t use runtime packages unless you are sure that other applications will be using
these packages. Otherwise, these packages will end up using more disk space than if you were
to just compile the source code into your final executable. Why is this so? If you create a pack-
aged application resulting in a code reduction from 200KB to roughly 30KB, it might seem
like you’ve saved quite a bit of space. However, you still have to distribute your packages and
possibly even the Vcl60.dcp package, which is roughly 2MB in size. You can see that this isn’t
quite the saving you had hoped for. Our point is that you should use packages to share code
when that code will be used by multiple executables. Note that this only applies to runtime
packages. If you are a component writer, you must provide a design package that contains the
component you want to make available to the Delphi IDE.

19 chpt_14.qxd 11/19/01 12:09 PM Page 627

Types of Packages
Four types of packages are available for you to create and use:

• Runtime package—Runtime packages contain code, components, and so on needed by
an application at runtime. If you write an application that depends on a particular runtime
package, the application won’t run in the absence of that package.

• Design package—Design packages contain components, property/component editors,
experts, and so on necessary for application design in the Delphi IDE. This type of pack-
age is used only by Delphi and is never distributed with your applications.

• Runtime and design package—A package that is both design- and runtime-enabled is
typically used when there are no design-specific elements such as property/component
editors and experts. You can create this type of package to simplify application develop-
ment and deployment. However, if this package does contain design elements, its runtime
use will carry the extra baggage of the design support in your deployed applications. In
the event of many design time elements, we recommend creating both a design and run-
time package to separate design-specific elements when they are present.

• Neither runtime nor design package—This rare breed of package is intended to be used
only by other packages and isn’t intended to be referenced directly by an application or
used in the design environment. This implies that packages can use or include other
packages.

Package Files
Table 14.1 lists and describes the types of package-specific files based on their file extensions.

TABLE 14.1 Package Files

File Extension File Type Description

.dpk Package source This file is created when you invoke the
file Package Editor. You can think of this as you

might think of the .dpr file for a Delphi project.

.dcp Runtime/Design This is the compiled version of the package
package symbol that contains the symbol information for the
file package and its units. Additionally, there is header

information required by the Delphi IDE.

.dcu Compiled unit A compiled version of a unit contained in a pack-
age. One .dcu file will be created for each unit
contained in the package.

Component-Based Development

PART IV
628

19 chpt_14.qxd 11/19/01 12:09 PM Page 628

TABLE 14.1 Continued

File Extension File Type Description

.bpl Runtime/Design This is the runtime or design package library
package, equivalent to a Windows DLL. If this is
a runtime package, you will distribute the file
along with your applications (if they are enabled
for runtime packages). If this file represents a
design package, you will distribute it along with
its runtime partner to programmers that will use it
to write programs. Note that if you aren’t distrib-
uting source code, you must distribute the corre-
sponding .dcp files.

Using Runtime Packages
To use runtime packages in your Delphi applications, simply check the Build With Runtime
Packages check box found in the Project, Options dialog on the Packages page. The next time
you build your application after this option is selected, your application will be linked dynami-
cally to runtime packages instead of having units linked statically into your .exe or .dll. The
result will be a much more svelte application (although bear in mind that you will have to
deploy the necessary packages with your application).

Installing Packages into the Delphi IDE
It’s sometimes necessary to install a package into the Delphi IDE. This would be the case if you
were to acquire a third-party component set or Delphi add-in that didn’t do this during the install.

This being the case, you must first place the package files in their appropriate location. Table 14.2
shows where package files are typically located.

TABLE 14.2 Package File Locations

Package File Location

Runtime packages (*.bpl) Runtime package files should be placed in the \Windows\
System\ directory (Windows 95/98) or \WinNT\System32\
directory (Windows NT/2000).

Design packages (*.bpl) Because it is possible that you will obtain several packages
from various vendors, design packages should be placed in
a common directory where they can be properly managed.
For example, create a \PKG directory off your \Delphi 6\
directory and place design packages in that location.

Packages to the Max

CHAPTER 14

14

P
A

C
K

A
G

ES
TO

TH
E

M
A

X
629

19 chpt_14.qxd 11/19/01 12:09 PM Page 629

TABLE 14.2 Continued

Package File Location

Package symbol files (*.dcp) You can place package symbol files in the same location
as design package files (*.bpl).

Compiled units (*.dcu) You must distribute compiled units if you are distributing
design packages without source. We recommend keeping
DCUs from third-party vendors in a directory similar to
the \Delphi 6\Lib directory. For example, you can create
the directory \Delphi 6\3PrtyLib in which third-party
components’ *.dcus will reside. Your search path will
have to include this directory.

To install a package, you simply invoke the Packages page of the Project Options dialog box
by selecting Component, Install Packages from the Delphi 6 menu.

By clicking the Add button, you can select the specific .bpl file. Upon doing so, this file will
become the selected file on the Project page. When you click OK, the new package is installed
into the Delphi IDE. If this package contains components, you will see the new component
page on the Component Palette along with any newly installed components.

Creating Packages
Before creating a package, you’ll need to decide on a few things. First, you need to know what
type of package you’re going to create (runtime, design, and so on). This will be based on one
or more of the scenarios that we present momentarily. Second, you need to know what you
intend on naming your newly created package and where you want to store the package pro-
ject. Keep in mind that the directory where your deployed package exists will probably not be
the same as where you create your package. Finally, you need to know which units your pack-
age will contain and which other packages your new package will require.

The Package Editor
Packages are most commonly created using the Package Editor, which you invoke by selecting
the Packages icon from the Object Repository. (Select File, New, Other from the Delphi main
menu.) You’ll notice that the Package Editor contains two folders: Contains and Requires.

The Contains Folder
In the Contains folder, you specify units that need to be compiled into your new package.
There are a few rules for placing units into the Contains page of a package:

Component-Based Development

PART IV
630

19 chpt_14.qxd 11/19/01 12:09 PM Page 630

• The unit must not be listed in the contains clause of another package or uses clause of
a unit within another package, which will be loaded concurrently with the package the
unit is to be contained in.

• The units listed in the contains clause of a package, either directly or indirectly (they
exist in uses clauses of units listed in the package’s contains clause), cannot be listed in
the package’s requires clause. This is because these units are already bound to the
package when it is compiled.

• You cannot list a unit in a package’s contains clause if it is already listed in the con-
tains clause of another package used by the sameapplication.

The Requires Folder
In the Requires folder, you specify other packages that are required by the new package. This is
similar to the uses clause of a Delphi unit. In most cases, any packages you create will have
VCL60—the package that hosts Delphi’s standard VCL components—in its requires clause.
The typical arrangement here, for example, is that you place all your components into a runtime
package. Then you create a design package that includes the runtime package in its requires
clause. There are a few rules for placing packages on the Requires folder of another package:

• Avoid circular references—Package1 cannot have Package1 in its requires clause, nor
can it contain another package that has Package1 in its requires clause.

• The chain of references must not refer back to a package previously referenced in the
chain.

The Package Editor has a toolbar and context-sensitive menus. Refer to the Delphi 6 online
help under “Package Editor” for an explanation of what these buttons do. We won’t repeat that
information here.

Package Design Scenarios
Earlier we said that you must know what type of package you want to create based on a partic-
ular scenario. In this section, we’re going to present four possible scenarios in which you
would use design and/or runtime packages.

Scenario 1—Design and Runtime Packages for Components
The Design and Runtime Packages for Components scenario is the case in which you are a
component writer and one or both of the following conditions apply:

• You want Delphi programmers to be able to compile/link your components right into
their applications or to distribute them separately along with their applications.

• You have a component package, and you don’t want to force your users to have to com-
pile design features (component/property editors and so on) into their application code.

Packages to the Max

CHAPTER 14

14

P
A

C
K

A
G

ES
TO

TH
E

M
A

X
631

19 chpt_14.qxd 11/19/01 12:09 PM Page 631

Given this scenario, you would create both a design and runtime package. Figure 14.1 depicts
this arrangement. As the figure illustrates, the design package (ddgDT60.dpk) encompasses
both the design features (property and component editors) and the runtime package
(ddgRT60.dpk). The runtime package (ddgRT60.dpk) includes only your components. This
arrangement is accomplished by listing the runtime package into the requires section of the
design package, as shown in Figure 14.1.

Component-Based Development

PART IV
632

ddgDT60.dpk

DdgReg.pas
Component editors
Property Editors

ddgRT60.dpk

TddgButtonEdit
TddgDigitalClock
TddgLaunchPad
TddgRunButton

FIGURE 14.1
Design packages hosts design elements and runtime packages.

You must also apply the appropriate usage options for each package before compiling that
package. You do this from the Package Options dialog box. (You access the Package Options
dialog box by right-clicking within the Package Editor to invoke the local menu. Select Options
to get to the dialog box.) For the runtime package, DdgRT60.dpk, the usage option should be
set to Runtime Only. This ensures that the package cannot be installed into the IDE as a design
package (see the sidebar “Component Security” later in this chapter). For the design package,
DdgDT60.dpk, the usage option Design Time Only should be selected. This enables users to
install the package into the Delphi IDE, yet prevents them from using the package as a runtime
package.

Adding the runtime package to the design package doesn’t make the components contained in
the runtime package available to the Delphi IDE yet. You must still register your components
with the IDE. As you already know, whenever you create a component, Delphi automatically
inserts a Register() procedure into the component unit, which in turn calls the
RegisterComponents() procedure. RegisterComponents() is the procedure that actually
registers your component with the Delphi IDE when you install the component. When working
with packages, the recommended approach is to move the Register() procedure from the
component unit into a separate registration unit. This registration unit registers all your compo-
nents by calling RegisterComponents(). This not only makes it easier for you to manage the
registration of your components, but it also prevents anyone from being able to install and use
your runtime package illegally because the components won’t be available to the Delphi IDE.

19 chpt_14.qxd 11/19/01 12:09 PM Page 632

As an example, the components used in this book are hosted by the runtime package
DdgRT60.dpk. The property editors, component editors, and registration unit (DdgReg.pas)
for our components exist in the design package DdgDT60.dpk. DdgDT60.dpk also includes
DdgRT60.dpk in its requires clause. Listing 14.1 shows what our registration unit looks like.

LISTING 14.1 Registration Unit for Delphi 6 Developer’s Guide Components

unit DDGReg;

interface

procedure Register;

implementation

uses Classes, ExptIntf, DsgnIntf, TrayIcon, AppBars, ABExpt, Worthless,
RunBtn, PwDlg, Planets, LbTab, HalfMin, DDGClock, ExMemo, MemView,
Marquee, PlanetPE, RunBtnPE, CompEdit, DefProp, Wavez,
WavezEd, LnchPad, LPadPE, Cards, ButtonEdit, Planet, DrwPnel;

procedure Register;
begin

// Register the components.
RegisterComponents(‘DDG’,
[TddgTrayNotifyIcon, TddgDigitalClock, TddgHalfMinute, tddgButtonEdit,
TddgExtendedMemo, TddgTabListbox, TddgRunButton, TddgLaunchPad,
TddgMemView, TddgMarquee, TddgWaveFile, TddgCard, TddgPasswordDialog,
TddgPlanet, TddgPlanets, TddgWorthLess, TddgDrawPanel,
TComponentEditorSample, TDefinePropTest]);

// Register any property editors.
RegisterPropertyEditor(TypeInfo(TRunButtons), TddgLaunchPad, ‘’,
TRunButtonsProperty);

RegisterPropertyEditor(TypeInfo(TWaveFileString), TddgWaveFile, ‘WaveName’,
TWaveFileStringProperty);

RegisterComponentEditor(TddgWaveFile, TWaveEditor);
RegisterComponentEditor(TComponentEditorSample, TSampleEditor);
RegisterPropertyEditor(TypeInfo(TPlanetName), TddgPlanet,
‘PlanetName’, TPlanetNameProperty);
RegisterPropertyEditor(TypeInfo(TCommandLine), TddgRunButton, ‘’,
TCommandLineProperty);

Packages to the Max

CHAPTER 14

14

P
A

C
K

A
G

ES
TO

TH
E

M
A

X
633

19 chpt_14.qxd 11/19/01 12:09 PM Page 633

LISTING 14.1 Continued

// Register any custom modules, library experts.
RegisterCustomModule(TAppBar, TCustomModule);
RegisterLibraryExpert(TAppBarExpert.Create);

end;

end.

Component-Based Development

PART IV
634

Component Security
It is possible for someone to register your components, even though he has only your
runtime package. He would do this by creating his own registration unit in which he
would register your components. He would then add this unit to a separate package
that would also have your runtime package in the requires clause. After he installs
this new package into the Delphi IDE, your components will appear on the Component
Palette. However, it is still not possible to compile any applications using your compo-
nents because the required *.dcu files for your component units will be missing.

Package Distribution
When distributing your packages to component writers without the source code, you must dis-
tribute both compiled packages, DdgDT6.bpl and DdgRT6.bpl, both *.dcp files, and any com-
piled units (*.dcu) necessary to compile your components. Programmers using your components
who want their applications’ runtime packages enabled must distribute the DdgRT6.bpl pack-
age along with their applications and any other runtime package that they might be using.

Scenario 2—Design Package Only for Components
The Design Package Only for Components scenario is the case in which you want to distribute
components that you don’t want to be distributed in runtime packages. In this case, you will
include the components, component editors, property editors, component registration unit, and
so on in one package file.

Package Distribution
When distributing your package to component writers without the source code, you must
distribute the compiled package, DdgDT6.bpl, the DdgDT6.dcp file, and any compiled units
(*.dcu) necessary to compile your components. Programmers using your components must
compile your components into their applications. They will not be distributing any of your
components as runtime packages.

19 chpt_14.qxd 11/19/01 12:09 PM Page 634

Scenario 3—Design Features Only (No Components)
IDE Enhancements
The Design Features Only (No Components) IDE Enhancements scenario is the case in which
you are providing enhancements to the Delphi IDE, such as experts. For this scenario, you will
register your expert with the IDE in your registration unit. The distribution for this scenario is
simple; you only have to distribute the compiled *.bpl file.

Scenario 4—Application Partitioning
The Application Partitioning scenario is the case in which you want to partition your applica-
tion into logical pieces, each of which can be distributed separately. You might want to do this
for several reasons:

• This scenario is easier to maintain.

• Users can purchase only the needed functionality when they need it. Later, when they
need added functionality, they can download the necessary package only, which will be
much smaller than downloading the entire application.

• You can provide fixes (patches) to parts of the application more easily without requiring
users to obtain a new version of the application altogether.

In this scenario, you will provide only the *.bpl files required by your application. This sce-
nario is similar to the last with the difference being that instead of providing a package for the
Delphi IDE, you will be providing a package for your own application. When partitioning your
applications as such, you must pay attention to the issues regarding package versioning that we
discuss in the next section.

Package Versioning
Package versioning is a topic that isn’t well understood. You can think of package versioning
in much the same way as you think of unit versioning. That is, any package you provide for
your application must be compiled using the same Delphi version used to compile the applica-
tion. Therefore, you cannot provide a package written in Delphi 6 to be used by an application
written in Delphi 5. The Borland developers refer to the version of a package as a code base.
So a package written in Delphi 6 has a code base of 6.0. This concept should influence the
naming convention that you use for your package files.

Package Compiler Directives
There are some specific compiler directives that you can insert into the source code of your
packages. Some of these directives are specific to units that are being packaged; others are spe-
cific to the package file. These directives are listed and described in Tables 14.3 and 14.4.

Packages to the Max

CHAPTER 14

14

P
A

C
K

A
G

ES
TO

TH
E

M
A

X
635

19 chpt_14.qxd 11/19/01 12:09 PM Page 635

TABLE 14.3 Compiler Directives for Units Being Packaged

Directive Meaning

{$G} or {IMPORTEDDATA OFF} Use this when you want to prevent the unit from being
packaged—when you want it to be linked directly to the
application. Contrast this to the {$WEAKPACKAGEUNIT}
directive, which allows a unit to be included in a package
but whose code gets statically linked to the application.

{$DENYPACKAGEUNIT} Same as {$G}.

{$WEAKPACKAGEUNIT} See the section “More on {$WEAKPACKAGEUNIT}.”

TABLE 14.4 Compiler Directives for the Package .dpk File

Directive Meaning

{$DESIGNONLY ON} Compiles the package as a design-time only package.

{$RUNONLY ON} Compiles the package as a runtime only package.

{$IMPLICITBUILD OFF} Prevents the package from being rebuilt later. Use this
option when the package isn’t changed frequently.

More on {$WEAKPACKAGEUNIT}
The concept of a weak package is simple. Basically, it is used where your package might be
referencing libraries (DLLs) that might not be present. For example, the package Vcl60 makes
calls to the core Win32 API included with the Windows operating system. Many of these calls
exist in DLLs that aren’t present on every machine. These calls are exposed by units that con-
tain the {$WEAKPACKAGEUNIT} directive. By including this directive, you keep the unit’s source
code in the package but place it into the DCP file rather than in the BPL file (think of a DCP
as a DCU and a BPL as a DLL). Therefore, any references to functions of these weakly pack-
aged units get statically linked to the application rather than dynamically referenced through
the package.

The {$WEAKPACKAGEUNIT} directive is one that you will rarely use, if at all. It was created out
of necessity by the Delphi developers to handle a specific situation. The problem exists if there
are two components, each in a separate package and referencing the same interface unit of a
DLL. When an application uses both of the components, this causes two instances of the DLL
to be loaded, which raises havoc with initialization and global variable referencing. The solu-
tion was to provide the interface unit into one of the standard Delphi packages such as Vcl60.bpl.
However, this raises the other problem for specialized DLLs that may not be present such as
PENWIN.DLL. If Vcl60.bpl contains the interface unit for a DLL that isn’t present, it will render

Component-Based Development

PART IV
636

19 chpt_14.qxd 11/19/01 12:09 PM Page 636

Vcl60.bpl, and Delphi for that matter, unusable. The Delphi developers addressed this by
allowing Vcl60.bpl to contain the interface unit in a single package, but to make it statically
linked when used and not dynamically loaded whenever Vcl60 is used with the Delphi IDE.

You’ll most likely never have to use this directive, unless you anticipate a similar scenario that
the Delphi developers faced or if you want to make certain that a particular unit is included
with a package but statically linked to the using application. A reason for the latter might be
for optimization purposes. Note that any units that are weakly packaged cannot have global
variables or code in their initialization/finalization sections. You must also distribute any *.dcu
files for weakly packaged units along with your packages.

Package Naming Conventions
Earlier we said that the package versioning issue should influence how you name your pack-
ages. There isn’t a set rule for how to name your packages, but we suggest using a naming
convention that incorporates the code base into the package’s name. For example, the compo-
nents for this book are contained in a runtime package whose name contains the 6 qualifier for
Delphi 6 (DdgRT6.dpk). The same goes for the design package (DdgDT6.dpk). A previous ver-
sion of the package would be DdgRT5.dpk. By using such a convention, you will prevent any
confusion for your package users as to which version of the package they have and as to which
version of the Delphi compiler applies to them. Note that our package name starts with a
3-character author/company identifier, followed by RT to indicate a runtime package and DT
to signify a design time package. You can follow whatever naming convention you like. Just be
consistent and use the recommended inclusion of the Delphi version into your package name.

Extensible Applications Using Runtime
(Add-In) Packages
Add-in packages allow you to partition your applications into modules and to distribute those
modules separately from the main application. This is useful because it allows you to extend
the functionality of your application without having to recompile/redesign the entire applica-
tion. This, however, requires careful architectural design planning. Although it is beyond the
scope of this book to go into such design issues, our discussion will illustrate how to take
advantage of this powerful capability.

Generating Add-In Forms
The application is partitioned into three logical pieces: the main application (ChildTest.exe),
the TChildForm package (AIChildFrm6.bpl), and the concrete TChildForm descendant classes,
each residing in its own package.

Packages to the Max

CHAPTER 14

14

P
A

C
K

A
G

ES
TO

TH
E

M
A

X
637

19 chpt_14.qxd 11/19/01 12:09 PM Page 637

The package AIChildFrm6.bpl contains the base TChildForm class. The other packages con-
tain descendant TChildForm classes or concrete TChildForms. We will refer to these packages
as the base package and concrete packages, respectively.

The main application uses the abstract package (AIChildFrm6.bpl). Each concrete package
also uses the abstract package. In order for this to work properly the main application must be
compiled with runtime packages including the AIChildFrm6.dcp package. Likewise, each con-
crete package must require the AIChildFrm6.dcp package. We will not list the TChildForm
source nor the concrete descendants to each TChildForm descendant unit, which must include
initialization and finalization blocks that look like this:

initialization
RegisterClass(TCF2Form);

finalization
UnRegisterClass(TCF2Form);

The call to RegisterClass() is necessary to make the TChildForm descendant class available
to the main application’s streaming system when the main application loads its package. This
is similar to how RegisterComponents() makes available components to the Delphi IDE.
When the package is unloaded, the call to UnRegisterClass() is required to remove the regis-
tered class. Note, however, that RegisterClass() only makes the class available to the main
application. The main application still doesn’t know of the classname. So how does the main
application create an instance of a class whose classname is unknown? Isn’t the intent of this
exercise to make these forms available to the main application without having to hard-code
their classnames into the main applications source? Listing 14.2 shows the source code to the
main application’s main form where we will highlight how we accomplish add-in forms with
add-in packages.

LISTING 14.2 Main Form to the Main Application Using Add-In Packages

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls, ChildFrm, Menus;

const
{ Child form registration location in the Windows Registry. }
cAddInIniFile = ‘AddIn.ini’;
cCFRegSection = ‘ChildForms’; // Module initialization data section

FMainCaption = ‘Delphi 6 Developer’’s Guide Child Form Demo’;

Component-Based Development

PART IV
638

19 chpt_14.qxd 11/19/01 12:09 PM Page 638

LISTING 14.2 Continued

type

TChildFormClass = class of TChildForm;

TMainForm = class(TForm)
pnlMain: TPanel;
Splitter1: TSplitter;
pnlParent: TPanel;
mmMain: TMainMenu;
mmiFile: TMenuItem;
mmiExit: TMenuItem;
mmiHelp: TMenuItem;
mmiForms: TMenuItem;
procedure mmiExitClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);

private
// reference to the child form.
FChildForm: TChildForm;
// a list of available child forms used to build a menu.
FChildFormList: TStringList;
// Index to the Close Form menu which shifts position.
FCloseFormIndex: Integer;
// Handle to the currently loaded package.
FCurrentModuleHandle: HModule;
// method to create menus for available child forms.
procedure CreateChildFormMenus;
// Handler to load a child form and its package.
procedure LoadChildFormOnClick(Sender: TObject);
// Handler to unload a child form and its package.
procedure CloseFormOnClick(Sender: TObject);
// Method to retrieve the classname for a TChildForm descendant
function GetChildFormClassName(const AModuleName: String): String;

public
{ Public declarations }

end;

var
MainForm: TMainForm;

implementation
uses IniFiles;

{$R *.DFM}

Packages to the Max

CHAPTER 14

14

P
A

C
K

A
G

ES
TO

TH
E

M
A

X
639

19 chpt_14.qxd 11/19/01 12:09 PM Page 639

LISTING 14.2 Continued

function RemoveExt(const AFileName: String): String;
{ Helper function to remove the extension from a file name. }
begin
if Pos(‘.’, AFileName) <> 0 then
Result := Copy(AFileName, 1, Pos(‘.’, AFileName)-1)

else
Result := AFileName;

end;

procedure TMainForm.mmiExitClick(Sender: TObject);
begin
Close;

end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
FChildFormList := TStringList.Create;
CreateChildFormMenus;

end;

procedure TMainForm.FormDestroy(Sender: TObject);
begin
FChildFormList.Free;
// Unload any loaded child forms.
if FCurrentModuleHandle <> 0 then
CloseFormOnClick(nil);

end;

procedure TMainForm.CreateChildFormMenus;
{ All available child forms are registered in the Windows Registry.
Here, we use this information to create menu items for loading each of the
child forms. }

var
IniFile: TIniFile;
MenuItem: TMenuItem;
i: integer;

begin
inherited;

{ Retrieve a list of all child forms and build a menu based on the
entries in the registry. }

IniFile :=
TIniFile.Create(ExtractFilePath(Application.ExeName)+cAddInIniFile);
try

Component-Based Development

PART IV
640

19 chpt_14.qxd 11/19/01 12:09 PM Page 640

LISTING 14.2 Continued

IniFile.ReadSectionValues(cCFRegSection, FChildFormList);
finally
IniFile.Free;

end;

{ Add Menu items for each module. Note the mmMain.AutoHotKeys property must
bet set to maAutomatic }

for i := 0 to FChildFormList.Count - 1 do
begin
MenuItem := TMenuItem.Create(mmMain);
MenuItem.Caption := FChildFormList.Names[i];
MenuItem.OnClick := LoadChildFormOnClick;
mmiForms.Add(MenuItem);

end;

// Create Separator
MenuItem := TMenuItem.Create(mmMain);
MenuItem.Caption := ‘-’;
mmiForms.Add(MenuItem);

// Create Close Module menu item
MenuItem := TMenuItem.Create(mmMain);
MenuItem.Caption := ‘&Close Form’;
MenuItem.OnClick := CloseFormOnClick;
MenuItem.Enabled := False;
mmiForms.Add(MenuItem);

{ Save a reference to the index of the menu item required to
close a child form. This will be referred to in another method. }

FCloseFormIndex := MenuItem.MenuIndex;
end;

procedure TMainForm.LoadChildFormOnClick(Sender: TObject);
var
ChildFormClassName: String;
ChildFormClass: TChildFormClass;
ChildFormName: String;
ChildFormPackage: String;

begin

// The menu caption represents the module name.
ChildFormName := (Sender as TMenuItem).Caption;
// Get the actual Package file name.
ChildFormPackage := FChildFormList.Values[ChildFormName];

Packages to the Max

CHAPTER 14

14

P
A

C
K

A
G

ES
TO

TH
E

M
A

X
641

19 chpt_14.qxd 11/19/01 12:09 PM Page 641

LISTING 14.2 Continued

// Unload any previously loaded packages.
if FCurrentModuleHandle <> 0 then
CloseFormOnClick(nil);

try
// Load the specified package
FCurrentModuleHandle := LoadPackage(ChildFormPackage);

// Return the classname that needs to be created
ChildFormClassName := GetChildFormClassName(ChildFormPackage);

{ Create an instance of the class using the FindClass() procedure. Note,
this requires that the class already be registered with the streaming
system using RegisterClass(). This is done in the child form
initialization section for each child form package. }

ChildFormClass := TChildFormClass(FindClass(ChildFormClassName));
FChildForm := ChildFormClass.Create(self, pnlParent);
Caption := FChildForm.GetCaption;

{ Merge child form menus with the main menu }
if FChildForm.GetMainMenu <> nil then
mmMain.Merge(FChildForm.GetMainMenu);

FChildForm.Show;

mmiForms[FCloseFormIndex].Enabled := True;
except
on E: Exception do
begin
CloseFormOnClick(nil);
raise;

end;
end;

end;

function TMainForm.GetChildFormClassName(const AModuleName: String): String;
{ The Actual class name of the TChildForm implementation resides in the
registry. This method retrieves that class name. }

var
IniFile: TIniFile;

begin
IniFile :=

TIniFile.Create(ExtractFilePath(Application.ExeName)+cAddInIniFile);
try

Component-Based Development

PART IV
642

19 chpt_14.qxd 11/19/01 12:09 PM Page 642

LISTING 14.2 Continued

Result := IniFile.ReadString(RemoveExt(AModuleName), ‘ClassName’,
EmptyStr);

finally
IniFile.Free;

end;
end;

procedure TMainForm.CloseFormOnClick(Sender: TObject);
begin
if FCurrentModuleHandle <> 0 then
begin
if FChildForm <> nil then
begin
FChildForm.Free;
FChildForm := nil;

end;

// Unregister any classes provided by the module
UnRegisterModuleClasses(FCurrentModuleHandle);
// Unload the child form package
UnloadPackage(FCurrentModuleHandle);

FCurrentModuleHandle := 0;
mmiForms[FCloseFormIndex].Enabled := False;
Caption := FMainCaption;

end;
end;

end.

The application’s logic is actually very simple. It uses the system registry to determine which
packages are available, the menu captions to use when building menus for loading each pack-
age, and the classname of the form contained in each package.

The LoadChildFormOnClick() event handler is where most of the work is performed. After
determining the package filename, the method loads the package using the LoadPackage()
function. The LoadPackage() function is basically the same thing as LoadLibrary() for DLLs.
The method then determines the classname for the form contained in the loaded package.

In order to create a class, you require a class reference like TButton or TForm1. However, this
main application doesn’t have the hard-coded classname of the concrete TChildForms, so this is
why we retrieve the classname from the system registry. The main application can pass this
classname to the FindClass() function to return a class reference for the specified class that

Packages to the Max

CHAPTER 14

14

P
A

C
K

A
G

ES
TO

TH
E

M
A

X
643

19 chpt_14.qxd 11/19/01 12:09 PM Page 643

has already been registered with the streaming system. Remember, we did this in the initializa-
tion section of the concrete form’s unit that is called when the package is loaded. We then
create the class with the lines:

ChildFormClass := TChildFormClass(FindClass(ChildFormClassName));
FChildForm := ChildFormClass.Create(self, pnlParent);

Component-Based Development

PART IV
644

A class reference is simply an area in memory that contains information about a class.
This is the same as a type-definition for a class. It gets into memory when the class is
registered with the VCL streaming system; when the RegisterClass() function is
called. The FindClass() function locates the area of memory for a class of a specified
name and returns a pointer to that location. This isn’t the same as a class instance.
Class instances are usually created when the constructor, a class function (see Chapter 2,
“The Object Pascal Language”), is called.

NOTE

The variable ChildFormClass is a pre-declared class reference to TChildForm and can poly-
morphically refer to a class reference for a TChildForm descendant.

The CloseFormOnClick() event handler simply closes the child form and unloads its package.
The rest of the code is basically set up code to create the package menus and to read the infor-
mation from the INI file.

Using this technique, you can create very extensible and loosely coupled application frame-
works.

Exporting Functions from Packages
Given that packages are simply enhanced DLLs, it seems that you should be able to export
functions and procedures from packages just as you can from DLLs. Well, you can. In this sec-
tion, we’ll show you how to use packages in the same way.

Launching a Form from a Package Function
Listing 14.3 is a unit contained inside of a package.

LISTING 14.3 Package Unit with Two Exported Functions

unit FunkFrm;

interface

19 chpt_14.qxd 11/19/01 12:09 PM Page 644

LISTING 14.3 Continued

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;

type

TFunkForm = class(TForm)
Label1: TLabel;
Button1: TButton;

private
{ Private declarations }

public
{ Public declarations }

end;

// Declare the package functions using the StdCall calling convention
procedure FunkForm; stdcall;
function AddEm(Op1, Op2: Integer): Integer; stdcall;

// Export the functions.
exports
FunkForm,
AddEm;

implementation

{$R *.dfm}

procedure FunkForm;
var
FunkForm: TFunkForm;

begin
FunkForm := TFunkForm.Create(Application);
try
FunkForm.ShowModal;

finally
FunkForm.Free;

end;
end;

function AddEm(Op1, Op2: Integer): Integer;
begin
Result := Op1+Op2;

end;

end.

Packages to the Max

CHAPTER 14

14

P
A

C
K

A
G

ES
TO

TH
E

M
A

X
645

19 chpt_14.qxd 11/19/01 12:09 PM Page 645

The procedure FunkForm() simply displays the form declared in the unit as a modal form;
nothing clever here. AdEm() is a function that takes two operands and returns their sum. Notice
that the functions are declared in the interface section of this unit using the StdCall calling
convention.

Listing 14.4 is an application that demonstrates how to invoke a function from a package.

LISTING 14.4 Demo Application

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Mask;

const
cFunkForm = ‘FunkForm’;
cAddEm = ‘AddEm’;

type
TForm1 = class(TForm)
btnPkgForm: TButton;
meOp1: TMaskEdit;
meOp2: TMaskEdit;
btnAdd: TButton;
lblPlus: TLabel;
lblEquals: TLabel;
lblResult: TLabel;
procedure btnAddClick(Sender: TObject);
procedure btnPkgFormClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

// Defined the method signatures
TAddEmProc = function(Op1, Op2: Integer): integer; stdcall;
TFunkFormProc = procedure; stdcall;

var
Form1: TForm1;

implementation

Component-Based Development

PART IV
646

19 chpt_14.qxd 11/19/01 12:09 PM Page 646

LISTING 14.4 Continued

{$R *.dfm}

procedure TForm1.btnAddClick(Sender: TObject);
var
PackageModule: THandle;
AddEmProc: TAddEmProc;
Rslt: Integer;
Op1, Op2: integer;

begin
PackageModule := LoadPackage(‘ddgPackFunk.bpl’);
try

@AddEmProc := GetProcAddress(PackageModule, PChar(cAddEm));
if not (@AddEmProc = nil) then
begin
Op1 := StrToInt(meOp1.Text);
Op2 := StrToInt(meOp2.Text);

Rslt := AddEmProc(Op1, Op2);
lblResult.Caption := IntToStr(Rslt);

end;

finally
UnloadPackage(PackageModule);

end;
end;

procedure TForm1.btnPkgFormClick(Sender: TObject);
var
PackageModule: THandle;
FunkFormProc: TFunkFormProc;

begin
PackageModule := LoadPackage(‘ddgPackFunk.bpl’);
try
@FunkFormProc := GetProcAddress(PackageModule, PChar(cFunkForm));
if not (@FunkFormProc = nil) then
FunkFormProc;

finally
UnloadPackage(PackageModule);

end;
end;

end.

Packages to the Max

CHAPTER 14

14

P
A

C
K

A
G

ES
TO

TH
E

M
A

X
647

19 chpt_14.qxd 11/19/01 12:09 PM Page 647

First notice that we had to declare the two procedural types, TAddEmProc and TFunkFormProc.
These are declared exactly as they exist in the package.

We’ll discuss the btnPkgFormClick() event handler first. This code should look familiar from
Chapter 6, “Dynamic Link Libraries.” Instead of making a LoadLibrary() call, we’re using
LoadPackage(). In fact, LoadPackage() ends up calling LoadLibrary(). Next, we retrieve
the reference to the procedure using the GetProcAddress() function. You can refer back to
Chapter 6 if you need to know more about this function. The cFunkForm constant is the same
name as the function name in the package.

You can see that the method of exporting functions and procedures from packages is almost
exactly the same as exporting from dynamic link libraries.

Obtaining Information About a Package
It is possible to query a package for information about which units it contains and which pack-
ages it requires. Two functions are used to do this: EnumModules() and GetPackageInfo().
Both of these functions require callback functions. Listing 14.5 illustrates the use of these
functions. You’ll find this demo on the CD.

LISTING 14.5 Package Information Demo

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, ComCtrls, DBXpress, DB, SqlExpr, DBTables;

type
TForm1 = class(TForm)
Button1: TButton;
TreeView1: TTreeView;
Table1: TTable;
SQLConnection1: TSQLConnection;
procedure Button1Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form1: TForm1;

Component-Based Development

PART IV
648

19 chpt_14.qxd 11/19/01 12:09 PM Page 648

LISTING 14.5 Continued

implementation

{$R *.dfm}

type
TNodeHolder = class
ContainsNode: TTreeNode;
RequiresNode: TTreeNode;

end;

procedure RealizeLength(var S: string);
begin
SetLength(S, StrLen(PChar(S)));

end;

procedure PackageInfoProc(const Name: string; NameType:
TNameType; Flags: Byte; Param: Pointer);

var
NodeHolder: TNodeHolder;
TempStr: String;

begin
with Form1.TreeView1.Items do
begin

TempStr := EmptyStr;

if (Flags and ufMainUnit) <> 0 then
TempStr := ‘Main unit’

else if (Flags and ufPackageUnit) <> 0 then
TempStr := ‘Package unit’ else

if (Flags and ufWeakUnit) <> 0 then
TempStr := ‘Weak unit’;

if TempStr <> EmptyStr then
TempStr := Format(‘ (%s)’, [TempStr]);

NodeHolder := TNodeHolder(Param);
case NameType of
ntContainsUnit: AddChild(NodeHolder.ContainsNode,
Format(‘%s %s’, [Name,TempStr]));

ntRequiresPackage: AddChild(NodeHolder.RequiresNode, Name);
end; // case

end;
end;

Packages to the Max

CHAPTER 14

14

P
A

C
K

A
G

ES
TO

TH
E

M
A

X
649

19 chpt_14.qxd 11/19/01 12:09 PM Page 649

LISTING 14.5 Continued

function EnumModuleProc(HInstance: integer; Data: Pointer): Boolean;
var
ModFileName: String;
ModNode: TTreeNode;
ContainsNode: TTreeNode;
RequiresNode: TTreeNode;
ModDesc: String;
Flags: Integer;
NodeHolder: TNodeHolder;

begin
with Form1.TreeView1 do
begin
SetLength(ModFileName, 255);
GetModuleFileName(HInstance, PChar(ModFileName), 255);
RealizeLength(ModFileName);
ModNode := Items.Add(nil, ModFileName);

ModDesc := GetPackageDescription(PChar(ModFileName));
ContainsNode := Items.AddChild(ModNode, ‘Contains’);
RequiresNode := Items.Addchild(ModNode, ‘Requires’);

if ModDesc <> EmptyStr then
begin

NodeHolder := TNodeHolder.Create;
try
NodeHolder.ContainsNode := ContainsNode;
NodeHolder.RequiresNode := RequiresNode;

GetPackageInfo(HInstance, NodeHolder, Flags, PackageInfoProc);
finally
NodeHolder.Free;

end;

Items.AddChild(ModNode, ModDesc);

if Flags and pfDesignOnly = pfDesignOnly then
Items.AddChild(ModNode, ‘Design-time package’);

if Flags and pfRunOnly = pfRunOnly then
Items.AddChild (ModNode, ‘Run-time package’);

end;

Component-Based Development

PART IV
650

19 chpt_14.qxd 11/19/01 12:09 PM Page 650

LISTING 14.5 Continued

end;
Result := True;

end;

procedure TForm1.Button1Click(Sender: TObject);
begin
EnumModules(EnumModuleProc, nil);

end;

end.

EnumModules() is first called. It enumerates the executable and any packages in the executable.
The callback function passed to EnumModules() is EnumModuleProc(). This function populates
a TTreeview component with information about each package in the application. Much of the
code is setup code for the TTreeView component. The function GetPackageDescription()
returns the description string contained in the packages resource. The call to
GetPackageInfo() passes the callback function PackageInfoProc().

In PackageInfoProc(), we are able to process the information in the package’s information
table. This function is called for every unit included in the package and for every package
required by the package. Here, we again populate the TTreeview component with this informa-
tion by examining the values of the Flags parameter and the NameType parameter. For addi-
tional information, both of these are explained in the online help under “TPackageInfoProc.”

This code demonstration is a modification of a demo from Marco Cantu’s excellent book
Mastering Delphi 5, a must for every Delphi library.

Summary
Packages are a key part of the Delphi/VCL architecture. By learning how to use packages for
more then just component containment, you can develop very elegantly designed and loosely
bound architectures.

Packages to the Max

CHAPTER 14

14

P
A

C
K

A
G

ES
TO

TH
E

M
A

X
651

19 chpt_14.qxd 11/19/01 12:09 PM Page 651

19 chpt_14.qxd 11/19/01 12:09 PM Page 652

CHAPTER

15
COM Development

IN THIS CHAPTER
• COM Basics 654

• COM Meets Object Pascal 658

• COM Objects and Class Factories 667

• Distributed COM 673

• Automation 673

• Advanced Automation Techniques 700

• TOleContainer 733

20 chpt_15.qxd 11/19/01 12:13 PM Page 653

Robust support for COM-based technologies is one of the marquee features of Delphi. This
chapter covers COM and the various sundry technologies that rely on COM as their founda-
tion. These technologies include (but definitely aren’t limited to) COM servers and clients,
ActiveX controls, object linking and embedding (OLE), and Automation. However, all this new
technology at your fingertips can be a bit perplexing, if not daunting. This chapter is designed
to give you a complete overview of the technologies that make up COM, ActiveX, and OLE
and help you leverage these technologies in your own applications. In earlier days, this topic
referred primarily to OLE, which provides a method for sharing data among different applica-
tions, dealing primarily with linking or embedding data associated with one type of application
to data associated with another application (such as embedding a spreadsheet into a word
processor document). However, there’s a lot more to COM than just OLE-based word proces-
sor tricks!

In this chapter, you’ll first get a solid background in the basics of COM-based technologies in
general and extensions to Object Pascal and VCL added to support COM. You’ll learn how to
apply this knowledge in order to control Automation servers from your Delphi applications and
write Automation servers of your own. You’ll also learn about more sophisticated COM topics,
such as advanced Automation techniques and MTS. Finally, this chapter covers VCL’s
TOleContainer class, which encapsulates ActiveX containers. This chapter doesn’t teach you
everything there is to know about COM—that could take volumes—but it does cover all the
important features of COM, particularly as they apply to Delphi.

COM Basics
First things first. Before we jump into the topic at hand, it’s important that you understand the
basic concepts and terminology associated with the technology. This section introduces you to
basic ideas and terms behind the COM-based technologies.

COM: The Component Object Model
The Component Object Model (COM) forms the foundation upon which OLE and ActiveX
technology is built. COM defines an API and a binary standard for communication between
objects that’s independent of any particular programming language or (in theory) platform.
COM objects are similar to the VCL objects you’re familiar with—except that they have only
methods and properties associated with them, not data fields.

A COM object consists of one or more interfaces (described in the “Interfaces” section later in
this chapter), which are essentially tables of functions associated with that object. You can call
an interface’s methods just like the methods of a Delphi object.

The component objects you use can be implemented from any EXE or DLL, although the
implementation is transparent to you as a user of the object because of a service provided by

Component-Based Development

PART IV
654

20 chpt_15.qxd 11/19/01 12:13 PM Page 654

COM called marshaling. The COM marshaling mechanism handles all the intricacies of call-
ing functions across process—and even machine—boundaries, which makes it possible to use
a 32-bit object from a 16-bit application or access an object located on machine A from an
application running on machine B. This intermachine communication is known as Distributed
COM (DCOM) and is described in greater detail in the “Distributed COM” section later in this
chapter.

COM Versus ActiveX Versus OLE
“So, what’s the difference between COM, OLE, and ActiveX, anyway?” That’s one of the most
common (and reasonable) questions developers ask as they get into this technology. It’s a rea-
sonable question because it seems that the purveyor of this technology, Microsoft, does little to
clarify the matter. You’ve already learned that COM is the API and binary standard that forms
the building blocks of the other technologies. In the old days (like 1995), OLE was the blanket
term used to describe the entire suite of technologies built on the COM architecture. These
days, OLE refers only to those technologies associated specifically with linking and embed-
ding, such as containers, servers, in-place activation, drag-and-drop, and menu merging. In
1996, Microsoft embarked on an aggressive marketing campaign in an attempt to create brand
recognition for the term ActiveX, which became the blanket term used to describe non-OLE
technologies built on top of COM. ActiveX technologies include Automation (formerly called
OLE Automation) controls, documents, containers, scripting, and several Internet technologies.
Because of the confusion created by using the term ActiveX to describe everything short of the
family pet, Microsoft has backed off a bit and now sometimes refers to non-OLE COM tech-
nologies simply as COM-based technologies.

Those with a more cynical view of the industry might say that the term OLE became associ-
ated with adjectives such as slow and bloated, and marketing-savvy Microsoft needed a new
term for those APIs on which it planned to base its future operating system and Internet tech-
nologies. Also amusing is the fact that Microsoft now claims OLE no longer stands for object
linking and embedding—it’s just a word that’s pronounced Oh-lay.

Terminology
COM technologies bring with them a great deal of new terminology, so some terms are pre-
sented here before going any deeper into the guts of ActiveX and OLE.

Although an instance of a COM object is usually referred to simply as an object, the type that
identifies that object is usually referred to as a component class or coclass. Therefore, to create
an instance of a COM object, you must pass the CLSID of the COM class you want to create.

The chunk of data that’s shared between applications is referred to as an OLE object.
Applications that have the capability to contain OLE objects are referred to as OLE containers.

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
655

20 chpt_15.qxd 11/19/01 12:13 PM Page 655

Applications that have the capability to have their data contained within an OLE container are
called OLE servers.

A document that contains one or more OLE objects is usually referred to as a compound docu-
ment. Although OLE objects can be contained within a particular document, full-scale applica-
tions that can be hosted within the context of another document are known as ActiveX
documents.

As the name implies, an OLE object can be linked or embedded into a compound document.
Linked objects are stored in a file on disk. With object linking, multiple containers—or even
the server application—can link to the same OLE object on disk. When one application modi-
fies the linked object, the modification is reflected in all the other applications maintaining a
link to that object. Embedded objects are stored by the OLE container application. Only the
container application is able to edit the OLE object. Embedding prevents other applications
from accessing (and therefore modifying or corrupting) your data, but it does put the burden of
managing the data on the container.

Another facet of ActiveX that you’ll learn more about in this chapter is Automation, which is a
means by which you can allow applications (called Automation controllers) to manipulate
objects associated with other applications or libraries (called an Automation server).
Automation enables you to manipulate objects in another application and, conversely, to
expose elements of your application to other developers.

What’s So Great About ActiveX?
The coolest thing about ActiveX is that it enables you to easily build the capability to manipu-
late many types of data into your applications. You might snicker at the word easily, but it’s
true. It is much easier, for example, to give your application the capability to contain ActiveX
objects than it is to build word processing, spreadsheet, or graphics-manipulation capabilities
into your application.

ActiveX fits very well with Delphi’s tradition of maximum code reuse. You don’t have to write
code to manipulate a particular kind of data if you already have an OLE server application that
does the job. As complicated as OLE can be, it often makes more sense than the alternatives.

It also is no secret that Microsoft has a large investment in ActiveX technology, and serious
developers for Windows 95, NT, and other upcoming operating systems will have to become
familiar with using ActiveX in their applications. So, like it or not, COM is here for a while,
and it behooves you, as a developer, to become comfortable with it.

Component-Based Development

PART IV
656

20 chpt_15.qxd 11/19/01 12:13 PM Page 656

OLE 1 Versus OLE 2
One of the primary differences between OLE objects associated with 16-bit OLE version 1
servers and those associated with OLE version 2 servers is in how they activate themselves.
When you activate an object created with an OLE 1 server, the server application starts up and
receives focus, and then the OLE object appears in the server application, ready for editing.
When you activate an OLE 2 object, the OLE 2 server application becomes active “inside”
your container application. This is known as in-place activation or visual editing.

When an OLE 2 object is activated, the menus and toolbars of the server application replace or
merge with those of the client application, and a portion of the client application’s window
essentially becomes the window of the server application. This process is demonstrated in the
sample application in the “TOleContainer” section later in this chapter.

Structured Storage
OLE 2 defines a system for storing information on disk known as structured storage. This sys-
tem basically does on a file level what DOS does on a disk level. A storage object is one physi-
cal file on a disk, but it equates with the DOS concept of a directory, and it’s made up of
multiple storages and streams. A storage equates to a subdirectory, and a stream equates to a
DOS file. You’ll often hear this implementation referred to as compound files.

Uniform Data Transfer
OLE 2 also has the concept of a data object, which is the basic object used to exchange data
under the rules of uniform data transfer. Uniform data transfer (UDT) governs data transfers
through the Clipboard, drag-and-drop, DDE, and OLE. Data objects allow for a greater degree
of description about the kind of data they contain than previously was practical given the limi-
tations of those transfer media. In fact, UDT is destined to replace DDE. A data object can be
aware of its important properties, such as size, color, and even what device it’s designed to be
rendered on. Try doing that on the Windows Clipboard!

Threading Models
Every COM object operates in a particular threading model that dictates how an object can be
manipulated in a multithreaded environment. When a COM server is registered, each of the
COM objects contained in that server should register the threading model they support. For
COM objects written in Delphi, the threading model chosen in the Automation, ActiveX con-
trol, or COM object wizards dictates how a control is registered. The COM threading models
include the following:

• Single—The entire COM server runs on a single thread.

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
657

20 chpt_15.qxd 11/19/01 12:13 PM Page 657

• Apartment—Also known as single-threaded apartment (STA). Each COM object exe-
cutes within the context of its own thread, and multiple instances of the same type of
COM object can execute within separate threads. Because of this, any data that’s shared
between object instances (such as global variables) must be protected by thread synchro-
nization objects when appropriate.

• Free—Also known as multithreaded apartment (MTA). A client can call a method of an
object on any thread at any time. This means that the COM object must protect even its
own instance data from simultaneous access by multiple threads.

• Both—Both the apartment and free threading models are supported.

Keep in mind that merely selecting the desired threading model in the wizard doesn’t guaran-
tee that your COM object will be safe for that threading model. You must write the code to
ensure that your COM servers operate correctly for the threading model you want to support.
This most often includes using thread synchronization objects to protect access to global or
instance data in your COM objects. For more information on multithreaded development in
Delphi, see Chapter 5, “Multithreaded Techniques.”

COM+
As a part of the Windows 2000 release, Microsoft has provided the most significant update to
COM in recent memory with the release of a new iteration called COM+. The goal of COM+
is the simplification of the COM development process through the integration of several satel-
lite technologies, most notably MTS and Microsoft Message Queue (MSMQ). The integration
of these technologies into the standard COM+ runtime means that all COM+ developers will
be able to take advantage of features such as transaction control, security, administration,
queued components, and publish and subscribe event services. Because COM+ consists mostly
of off-the-shelf parts, this means complete backward compatibility, such that all existing COM
and MTS applications automatically become COM+ applications. You can learn more about
COM+ and MTS technologies in Chapter 18, “Transactional Development with COM+/MTS.”

COM Meets Object Pascal
Now that you understand the basic concepts and terms behind COM, ActiveX, and OLE, it’s
time to discuss how the concepts are implemented in Delphi. This section goes into more detail
on COM and gives you a look at how it fits into the Object Pascal language and VCL.

Interfaces
COM defines a standard map for how an object’s functions are laid out in memory. Functions
are arranged in virtual tables (called vtables)—tables of function addresses identical to Delphi
class virtual method tables (VMTs). The programming language description of each vtable is
referred to as an interface.

Component-Based Development

PART IV
658

20 chpt_15.qxd 11/19/01 12:13 PM Page 658

Think of an interface as a facet of a particular class. Each facet represents a specific set of
functions or procedures that you can use to manipulate the class. For example, a COM object
that represents a bitmap image might support two interfaces: one containing methods that
enable the bitmap to render itself to the screen or printer and another interface to manage stor-
ing and retrieving the bitmap to and from a file on disk.

An interface really has two parts: The first part is the interface definition, which consists of a
collection of one or more function declarations in a specific order. The interface definition is
shared between the object and the user of the object. The second part is the interface imple-
mentation, which is the actual implementation of the functions described in the interface decla-
ration. The interface definition is like a contract between the COM object and a client of that
object—a guarantee to the client that the object will implement specific methods in a specific
order.

Introduced in Delphi 3, the interface keyword in Object Pascal enables you to easily define
COM interfaces. An interface declaration is semantically similar to a class declaration, with a
few exceptions. Interfaces can consist only of properties and methods—no data. Because inter-
faces cannot contain data, their properties must write and read to and from methods. Most
important, interfaces have no implementation because they only define a contract.

IUnknown
Just as all Object Pascal classes implicitly descend from TObject, all COM interfaces (and
therefore all Object Pascal interfaces) implicitly derive from IUnknown, which is defined in the
System unit as follows:

type
IUnknown = interface
[‘{00000000-0000-0000-C000-000000000046}’]
function QueryInterface(const IID: TGUID; out Obj): Integer; stdcall;
function _AddRef: Integer; stdcall;
function _Release: Integer; stdcall;

end;

Aside from the use of the interface keyword, another obvious difference between an interface
and class declaration that you’ll notice from the preceding code is the presence of a globally
unique identifier (GUID).

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
659

You can generate a new GUID in the Delphi IDE using the Ctrl+Shift+G keystroke in
the Code Editor.

TIP

20 chpt_15.qxd 11/19/01 12:13 PM Page 659

Component-Based Development

PART IV
660

Globally Unique Identifiers (GUIDs)
A GUID (pronounced goo-id) is a 128-bit integer used in COM to uniquely identify an
interface, coclass, or other entity. Because of their large size and the hairy algorithm
used to generate these numbers, GUIDs are almost guaranteed to be globally unique
(hence the name). GUIDs are generated using the CoCreateGUID() API function, and
the algorithm employed by this function to generate new GUIDs combines informa-
tion such as the current date and time, CPU clock sequence, network card number,
and the balance of Bill Gates’s bank accounts. (Okay, so we made up the last one.) If
you have a network card installed on a particular machine, a GUID generated on that
machine is guaranteed to be unique because every network card has an internal ID
that’s globally unique. If you don’t have a network card, it will synthesize a close
approximation using other hardware information.

Because there’s no language type that holds something as large as 128 bits in size,
GUIDs are represented by the TGUID record, which is defined as follows in the System
unit:

type
PGUID = ^TGUID;
TGUID = record
D1: LongWord;
D2: Word;
D3: Word;
D4: array[0..7] of Byte;

end;

Because it can be a pain to assign GUID values to variables and constants in this
record format, Object Pascal also allows a TGUID to be represented as a string with
the following format:

‘{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx}’

Thanks to this, the following declarations are equivalent as far as the Delphi com-
piler is concerned:

MyGuid: TGUID = (
D1:$12345678;D2:$1234;D3:$1234;D4:($01,$02,$03,$04,$05,$06,$07,$08));

MyGuid: TGUID = ‘{12345678-1234-1234-12345678}’;

In COM, every interface or class has an accompanying GUID that uniquely defines that
interface. In this way, two interfaces or classes having the same name defined by two
different people will never conflict because their respective GUIDs will be different.
When used to represent an interface, a GUID is normally referred to as an interface
ID (IID). When used to represent a class, a GUID is referred to as a class ID (CLSID).

20 chpt_15.qxd 11/19/01 12:13 PM Page 660

In addition to its IID, IUnknown declares three methods: QueryInterface(), _AddRef(), and
_Release(). Because IUnknown is the base interface for COM, all interfaces must implement
IUnknown and its methods. The _AddRef() method should be called when a client obtains and
wants to use a pointer to a given interface, and a call to _AddRef() must have an accompany-
ing call to _Release() when the client is finished using the interface. In this way, the object
that implements the interfaces can maintain a count of clients that are keeping a reference to
the object, or reference count. When the reference count reaches zero, the object should free
itself from memory. The QueryInterface() function is used to query whether an object sup-
ports a given interface and, if so, to return a pointer to that interface. For example, suppose that
object O supports two interfaces, I1 and I2, and you have a pointer to O’s I1 interface. To
obtain a pointer to O’s I2 interface, you would call I1.QueryInterface().

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
661

If you’re an experienced COM developer, you might have noticed that the underscore
in front of the _AddRef() and _Release() methods isn’t consistent with other COM
programming languages or even with Microsoft’s COM documentation. Because
Object Pascal is “IUnknown aware,” you won’t normally call these methods directly
(more on this in a moment), so the underscores exist primarily to make you think
before calling these methods.

NOTE

Because every interface in Delphi implicitly descends from IUnknown, every Delphi class that
implements interfaces must also implement the three IUnknown methods. You can do this your-
self manually, or you can let VCL do the dirty work for you by descending your class from
TInterfacedObject, which implements IUnknown for you.

Using Interfaces
Chapter 2, “The Object Pascal Language,” and Delphi’s own “Object Pascal Language Guide”
documentation cover the semantics of using interface instances, so we won’t rehash that mater-
ial here. Instead, we’ll discuss how IUnknown is seamlessly integrated into the rules of Object
Pascal.

When an interface variable is assigned a value, the compiler automatically generates a call to
the interface’s _AddRef() method so that the reference count of the object is incremented.
When an interface variable falls out of scope or is assigned the value nil, the compiler auto-
matically generates a call to the interface’s _Release() method. Consider the following piece
of code:

var
I: ISomeInteface;

20 chpt_15.qxd 11/19/01 12:13 PM Page 661

begin
I := FunctionThatReturnsAnInterface;
I.SomeMethod;

end;

Now take a look at the following code snippet, which shows the code you would type (in bold)
and an approximate Pascal version of the code the compiler generates (in normal font):

var
I: ISomeInterface;

begin
// interface is automatically initialized to nil
I := nil;
try
// your code goes here
I := FunctionThatReturnsAnInterface;
// _AddRef() is called implicitly when I is assigned
I._AddRef;
I.SomeMethod;

finally
// implicit finally block ensures that the reference to the
// interface is released
if I <> nil I._Release;

end;
end;

The Delphi compiler is also smart enough to know when to call _AddRef() and _Release() as
interfaces are reassigned to other interface instances or assigned the value nil. For example,
consider the following code block:

var
I: ISomeInteface;

begin
// assign I
I := FunctionThatReturnsAnInterface;
I.SomeMethod;
// reassign I
I := OtherFunctionThatReturnsAnInterface;
I.OtherMethod;
// set I to nil
I := nil;

end;

Again, here’s a composite of the user-written (bold) code and the approximate compiler-gener-
ated (normal) code:

Component-Based Development

PART IV
662

20 chpt_15.qxd 11/19/01 12:13 PM Page 662

var
I: ISomeInterface;

begin
// interface is automatically initialized to nil
I := nil;
try
// your code goes here
// assign I
I := FunctionThatReturnsAnInterface;
// _AddRef() is called implicitly when I is assigned
I._AddRef;
I.SomeMethod;
// reassign I
I._Release;
I := OtherFunctionThatReturnsAnInterface;
I._AddRef;
I.OtherMethod;
// set I to nil
I._Release;
I := nil;

finally
// implicit finally block ensures that the reference to the
// interface is released
if I <> nil I._Release;

end;
end;

The preceding code example also helps to illustrate why Delphi prepends the underscore to the
_AddRef() and _Release() methods. Forgetting to increment or decrement the reference of an
interface was one of the classic COM programming bugs in the pre-interface days. Delphi’s
interface support is designed to alleviate these problems by handling the housekeeping details
for you, so there’s rarely ever a reason to call these methods directly.

Because the compiler knows how to generate calls to _AddRef() and _Release(), wouldn’t it
make sense if the compiler had some inherent knowledge of the third IUnknown method,
QueryInterface()? It would, and it does. Given an interface pointer for an object, you can use
the as operator to “typecast” the interface to another interface supported by the COM object.
We say typecast because this application of the as operator isn’t really a typecast in the strict
sense but rather an internal call to the QueryInterface() method. The following sample code
demonstrates this:

var
I1: ISomeInterface;
I2: ISomeOtherInterface;

begin

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
663

20 chpt_15.qxd 11/19/01 12:13 PM Page 663

// assign to I1
I1 := FunctionThatReturnsAnInterface;
// QueryInterface I1 for an I2 interface
I2 := I1 as ISomeOtherInterface;

end;

In the preceding example, if the object referenced by I1 doesn’t support the ISomeOtherInterface
interface, an exception will be raised by the as operator.

One additional language rule pertaining to interfaces is that an interface variable is assignment
compatible with an Object Pascal class that implements that interface. For example, consider
the following interface and class declarations:

type
IFoo = interface
// definition of IFoo

end;

IBar = interface(IFoo)
// definition of IBar

end;

TBarClass = class(TObject, IBar)
// definition of TBarClass

end;

Given the preceding declarations, the following code is correct:

var
IB: IBar;
TB: TBarClass;

begin
TB := TBarClass.Create;
try
// obtain TB’s IBar interface pointer:
IB := TB;
// use TB and IB

finally
IB := nil; // explicitly release IB
TB.Free;

end;
end;

Although this feature seems to violate traditional Pascal assignment-compatibility rules, it does
make interfaces feel more natural and easier to work with.

An important but nonobvious corollary to this rule is that interfaces are only assignment com-
patible with classes that explicitly support the interface. For example, the TBarClass class
defined earlier declares explicit support for the IBar interface. Because IBar descends from

Component-Based Development

PART IV
664

20 chpt_15.qxd 11/19/01 12:13 PM Page 664

IFoo, conventional wisdom might indicate that TBarClass also directly supports IFoo. This
isn’t the case, however, as the following sample code illustrates:

var
IF: IFoo;
TB: TBarClass;

begin
TB := TBarClass.Create;
try
// compiler error raised on the next line because TBarClass
// doesn’t explicitly support IFoo.
IF := TB;
// use TB and IF

finally
IF := nil; // expicitly release IF
TB.Free;

end;
end;

Interfaces and IIDs
Because the interface ID is declared as a part of an interface declaration, the Object Pascal
compiler knows how to obtain the IID from an interface. Therefore, you can pass an interface
type to a procedure or function that requires a TIID or TGUID as a parameter. For example, sup-
pose that you have a function like this:

procedure TakesIID(const IID: TIID);

The following code is syntactically correct:

TakesIID(IUnknown);

This capability obviates the need for IID_InterfaceType constants defined for each interface
type that you might be familiar with if you’ve done COM development in C++.

Method Aliasing
A problem that occasionally arises when you implement multiple interfaces in a single class is
that there can be a collision of method names in two or more interfaces. For example, consider
the following interfaces:

type
IIntf1 = interface
procedure AProc;

end;

IIntf2 = interface
procedure AProc;

end;

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
665

20 chpt_15.qxd 11/19/01 12:13 PM Page 665

Given that each of the interfaces contains a method called AProc(), how can you declare a
class that implements both interfaces? The answer is method aliasing. Method aliasing enables
you to map a particular interface method to a method of a different name in a class. The fol-
lowing code example demonstrates how to declare a class that implements IIntf1 and IIntf2:

type
TNewClass = class(TInterfacedObject, IIntf1, IIntf2)
protected
procedure IIntf2.AProc = AProc2;
procedure AProc; // binds to IIntf1.AProc
procedure AProc2; // binds to IIntf2.AProc

end;

In this declaration, the AProc() method of IIntf2 is mapped to a method with the name
AProc2(). Creating aliases in this way enables you to implement any interface on any class
without fear of method name collisions.

The HResult Return Type
You might notice that the QueryInterface() method of IUnknown returns a result of type
HResult. HResult is a very common return type for many ActiveX and OLE interface methods
and COM API functions. HResult is defined in the System unit as a type LongWord. Possible
HResult values are listed in the Windows unit. (If you have the VCL source code, you can find
them under the heading { HRESULT value definitions }.) An HResult value of S_OK or
NOERROR (0) indicates success, whereas if the high bit of the HResult value is set, it indicates
failure or some type of error condition. Two functions in the Windows unit, Succeeded() and
Failed(), take an HResult as a parameter and return a BOOL, indicating success or failure.
Here’s the syntax for calling these methods:

if Succeeded(FunctionThatReturnsHResult) then
\\ continue as normal

if Failed(FunctionThatReturnsHResult) then
\\ error condition code

Of course, checking the return value of every single function call can become tedious. Also,
dealing with errors returned by functions undermines Delphi’s exception-handling methods for
error detection and recovery. For these reasons, the ComObj unit defines a procedure called
OleCheck() that converts HResult errors to exceptions. The syntax for calling this method is

OleCheck(FunctionThatReturnsHResult);

This procedure can be quite handy, and it will clean up your ActiveX code considerably.

Component-Based Development

PART IV
666

20 chpt_15.qxd 11/19/01 12:13 PM Page 666

COM Objects and Class Factories
In addition to supporting one or more interfaces that descend from IUnknown and implement-
ing reference counting for lifetime management, COM objects also have another special fea-
ture: They are created through special objects called class factories. Each COM class has an
associated class factory that’s responsible for creating instances of that COM class. Class fac-
tories are special COM objects that support the IClassFactory interface. This interface is
defined in the ActiveX unit as follows:

type
IClassFactory = interface(IUnknown)
[‘{00000001-0000-0000-C000-000000000046}’]
function CreateInstance(const unkOuter: IUnknown; const iid: TIID;
out obj): HResult; stdcall;

function LockServer(fLock: BOOL): HResult; stdcall;
end;

The CreateInstance() method is called to create an instance of the class factory’s associated
COM object. The unkOuter parameter of this method references the controlling IUnknown if
the object is being created as a part of an aggregate (aggregation is explained a bit later). The
iid parameter contains the IID of the interface by which you want to manipulate the object.
Upon return, the obj parameter will hold a pointer to the interface indicated by iid.

The LockServer() method is called to keep a COM server in memory, even though no clients
might be referencing the server. The fLock parameter, when True, should increment the
server’s lock count. When False, fLock should decrement the server’s lock count. When the
server’s lock count is 0 and no clients are referencing the server, COM will unload the server.

TComObject and TComObjectFactory
Delphi provides two classes that encapsulate COM objects and class factories: TComObject and
TComObjectFactory, respectively. TComObject contains the necessary infrastructure for sup-
porting IUnknown and creation via TComObjectFactory. Likewise, TComObjectFactory sup-
ports IClassFactory and has the capability to create TComObject objects. You can easily
generate a COM object using the COM Object Wizard found on the ActiveX page of the New
Items dialog box. Listing 15.1 shows pseudocode for the unit generated by this wizard, which
illustrates the relationship between these classes. Note that the wizard’s Include Type Library
check box is unchecked; type libraries are discussed in the “Automation” section later in this
chapter.

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
667

20 chpt_15.qxd 11/19/01 12:13 PM Page 667

LISTING 15.1 COM Server Unit Pseudocode

unit ComDemo;

{$WARN SYMBOL_PLATFORM OFF}

interface

uses
Windows, ActiveX, Classes, ComObj;

type
TSomeComObject = class(TComObject, interfaces supported)
class and interface methods declared here

end;

const
Class_SomeObject: TGUID = ‘{CB11BA07-735D-4937-885A-1CFB5312AEC8}’;

implementation

uses ComServ;

TSomeComObject implementation here

initialization
TComObjectFactory.Create(ComServer, TSomeObject, Class_SomeObject,
‘SomeObject’, ‘The SomeObject class’, ciMultiInstance, tmApartment);end;

The TComServer descendant is declared and implemented like most VCL classes. What binds it
to its corresponding TComObjectFactory object is the parameters passed to TComObjectFactory’s
constructor Create(). The first constructor parameter is a TComServer object. You almost
always will pass the global ComServer object declared in the ComServ unit in this parameter.
The second parameter is the TComObject class you want to bind to the class factory. The third
parameter is the CLSID of the TComObject’s COM class. The fourth and fifth parameters are
the class name and description strings used to describe the COM class in the System Registry.
The sixth parameter indicates the instancing of the COM object, and the final parameter indi-
cates the threading model of the object.

The TTypedComObjectFactory instance is created in the initialization of the unit in order to
ensure that the class factory will be available to create instances of the COM object as soon as
the COM server is loaded. Exactly how the COM server is loaded depends on whether the
COM server is an in-process server (a DLL) or an out-of-process server (an application).

Component-Based Development

PART IV
668

20 chpt_15.qxd 11/19/01 12:13 PM Page 668

In-Process COM Servers
In-process (or in-proc, for short) COM servers are DLLs that can create COM objects for use
by the host application. This type of COM server is called in-process because, as a DLL, it
resides in the same process as the calling application. An in-proc server must export four stan-
dard entry-point functions:

function DllRegisterServer: HResult; stdcall;
function DllUnregisterServer: HResult; stdcall;
function DllGetClassObject (const CLSID, IID: TGUID; var Obj): HResult;
stdcall;

function DllCanUnloadNow: HResult; stdcall;

Each of these functions is already implemented by the ComServ unit, so the only work to be
done for your Delphi COM servers is to ensure that these functions are added to an exports
clause in your project.

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
669

A good example of a real-world application of in-process COM servers can be found
in Chapter 16, “Windows Shell Programming,” which demonstrates how to create
shell extensions.

NOTE

DllRegisterServer()
The DllRegisterServer() function is called to register a COM server DLL with the System
Registry. If you simply export this method from your Delphi application, as described earlier,
VCL will iterate over all the COM objects in your application and register them with the
System Registry. When a COM server is registered, it will make a key entry in the System
Registry under

HKEY_CLASSES_ROOT\CLSID\{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxx}

for each COM class, where the Xs denote the CLSID of the COM class. For in-proc servers, an
additional entry is created as a subkey of the preceding key called InProcServer32. The
default value for this key is the full path to the in-proc server DLL. Figure 15.1 shows a COM
server registered with the System Registry.

DllUnregsterServer()
The DllUnregisterServer() function’s job is simply to undo what is done by the
DllRegisterServer() function. When called, it should remove all the entries in the System
Registry made by DllRegisterServer().

20 chpt_15.qxd 11/19/01 12:13 PM Page 669

FIGURE 15.1
A COM server as shown in the Registry Editor.

DllGetClassObject()
DllGetClassObject() is called by the COM engine in order to retrieve a class factory for a
particular COM class. The CLSID parameter of this method is the CLSID of the type of COM
class you want to create. The IID parameter holds the IID of the interface instance pointer you
want to obtain for the class factory object (usually, IClassFactory’s interface ID is passed
here). Upon successful return, the Obj parameter contains a pointer to the class factory inter-
face denoted by IID that’s capable of creating COM objects of the class type denoted by
CLSID.

DllCanUnloadNow()
DllCanUnloadNow() is called by the COM engine to determine whether the COM server DLL
is capable of being unloaded from memory. If there are references to any COM object within
the DLL, this function should return S_FALSE, indicating that the DLL shouldn’t be unloaded.
If none of the DLL’s COM objects are in use, this method should return S_TRUE.

Component-Based Development

PART IV
670

Even after all references to an in-proc server’s COM objects have been freed, COM
might not necessarily call DllCanUnloadNow() to begin the process of releasing the in-
proc server DLL from memory. If you want to ensure that all unused COM server DLLs
have been released from memory, call the CoFreeUnusedLibraries() API function,
which is defined in the ActiveX units as follows:

procedure CoFreeUnusedLibraries; stdcall;

TIP

Creating an Instance of an In-Proc COM Server
To create an instance of a COM server in Delphi, use the CreateComObject() function, which
is defined in the ComObj unit as follows:

20 chpt_15.qxd 11/19/01 12:13 PM Page 670

function CreateComObject(const ClassID: TGUID): IUnknown;

The ClassID parameter holds the CLSID, which identifies the type of COM object you want to
create. The return value of this function is the IUnknown interface of the requested COM
object, or the function raises an exception if the COM object cannot be created.

CreateComObject() is a wrapper around the CoCreateInstance() COM API function.
Internally, CoCreateInstance() calls the CoGetClassObject() API function to obtain an
IClassFactory for the specified COM object. CoCreateInstance() does this by looking in
the Registry for the COM class’s InProcServer32 entry in order to find the path to the in-proc
server DLL, calling LoadLibrary() on the in-proc server DLL, and then calling the DLL’s
DllGetClassObject() function. After obtaining the IClassFactory interface pointer,
CoCreateInstance() calls IClassFactory.CreateInstance() to create an instance of the
specified COM class.

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
671

CreateComObject() can be inefficient if you need to create multiple objects from a
class factory because it disposes of the IClassFactory interface pointer obtained by
CoGetClassObject() after creating the requested COM object. In cases where you
need to create multiple instances of the same COM object, you should call
CoGetClassObject() directly and use IClassFactory.CreateInstance() to create
multiple instances of the COM object.

TIP

Before you can use any COM or OLE API functions, you must initialize the COM
library using the CoInitialize() function. The single parameter to this function must
be nil. To properly shut down the COM library, you should call the CoUninitialize()
function as the last call to the OLE library. Calls are cumulative, so each call to
CoInitialize() in your application must have a corresponding call to
CoUninitialize().

For applications, CoInitialize() is called automatically from Application.Initialize(),
and CoUninitialize() is called automatically from the finalization of ComObj.

It’s not necessary to call these functions from in-process libraries because their client
applications are required to perform the initialization and uninitialization for the
process.

NOTE

20 chpt_15.qxd 11/19/01 12:13 PM Page 671

Out-of-Process COM Servers
Out-of-process servers are executables that can create COM objects for use by other applica-
tions. The name comes from the fact that they do not execute from within the same process of
the client but instead are executables that operate within the context of their own processes.

Registration
Similar to their in-proc cousins, out-of-process servers must also be registered with the System
Registry. Out-of-process servers must make an entry under

HKEY_CLASSES_ROOT\CLSID\{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxx}

called LocalServer32, which identifies the full pathname of the out-of-process server executable.

Delphi applications’ COM servers are registered in the Application.Initialize() method,
which is usually the first line of code in an application’s project file. If the /regserver com-
mand-line switch is passed to your application, Application.Initialize() will register the
COM classes with the System Registry and immediately terminate the application. Likewise, if
the /unregserver command-line switch is passed, Application.Initialize() will unregister
the COM classes with the System Registry and immediately terminate the application. If neither
of these switches are passed, Application.Initialize() will register the COM classes with
the System Registry and continue to run the application normally.

Creating an Instance of an Out-of-Proc COM Server
On the surface, the method for creating instances of COM objects from out-of-process servers
is the same as for in-proc servers: Just call ComObj’s CreateComObject() function. Behind the
scenes, however, the process is quite different. In this case, CoGetClassObject() looks for the
LocalServer32 entry in the System Registry and invokes the associated application using the
CreateProcess() API function. When the out-of-proc server application is invoked, the server
must register its class factories using the CoRegisterClassObject() COM API function. This
function adds an IClassFactory pointer to COM’s internal table of active registered class
objects. CoGetClassObject() can then obtain the requested COM class’s IClassFactory
pointer from this table to create an instance of the COM object.

Aggregation
You know now that interfaces are the basic building blocks of COM as well as that inheritance
is possible with interfaces, but interfaces are entities without implementation. What happens,
then, when you want to recycle the implementation of one COM object within another? COM’s
answer to this question is a concept called aggregation. Aggregation means that the containing
(outer) object creates the contained (inner) object as part of its creation process, and the inter-
faces of the inner object are exposed by the outer. An object has to allow itself to operate as an

Component-Based Development

PART IV
672

20 chpt_15.qxd 11/19/01 12:13 PM Page 672

aggregate by providing a means to forward all calls to its IUnknown methods to the containing
object. For an example of aggregation within the context of VCL COM objects, you should take
a look at the TAggregatedObject class in the AxCtrls unit.

Distributed COM
Introduced with Windows NT 4, Distributed COM (or DCOM) provides a means for accessing
COM objects located on other machines on a network. In addition to remote object creation,
DCOM also provides security facilities that allow servers to specify which clients have rights
to create instances of which servers and what operations they might perform. Windows NT 4
and Windows 98 have built-in DCOM capability, but Windows 95 requires an add-on available
on Microsoft’s Web site (http://www.microsoft.com) to serve as a DCOM client.

You can create remote COM objects using the CreateRemoteComObject() function, which is
declared in the ComObj unit as follows:

function CreateRemoteComObject(const MachineName: WideString;
const ClassID: TGUID): IUnknown;

The first parameter, MachineName, to this function is a string representing the network name
of the machine containing the COM class. The ClassID parameter specifies the CLSID of the
COM class to be created. The return value for this function is the IUnknown interface pointer
for the COM object specified in CLSID. An exception will be raised if the object cannot be
created.

CreateRemoteComObject() is a wrapper around the CoCreateInstanceEx() COM API func-
tion, which is an extended version of CoCreateInstance() that knows how to create objects
remotely.

Automation
Automation (formerly known as OLE Automation) provides a means for applications or DLLs
to expose programmable objects for use by other applications. Applications or DLLs that
expose programmable objects are referred to as Automation servers. Applications that access
and manipulate the programmable objects contained within Automation servers are known as
Automation controllers. Automation controllers are able to program the Automation server
using a macro-like language exposed by the server.

Among the chief advantages to using Automation in your applications is its language-indepen-
dent nature. An Automation controller is able to manipulate a server regardless of the program-
ming language used to develop either component. Additionally, because Automation is
supported at the operating system level, the theory is that you’ll be able to leverage future

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
673

20 chpt_15.qxd 11/19/01 12:13 PM Page 673

advancements in this technology by using Automation today. If these things sound good to
you, read on. What follows is information on creating Automation servers and controllers in
Delphi.

Component-Based Development

PART IV
674

If you have an Automation project from Delphi 2 that you want to migrate to the
current version of Delphi, you should be forewarned that the techniques for
Automation changed drastically starting with Delphi 3. In general, you shouldn’t mix
Delphi 2’s Automation unit, OleAuto, with the newer ComObj or ComServ units. If you
want to compile a Delphi 2 Automation project in Delphi 5, the OleAuto unit remains
in the \Delphi5\lib\Delphi2 subdirectory for backward compatibility.

CAUTION

IDispatch
Automation objects are essentially COM objects that implement the IDispatch interface.
IDispatch is defined in the System unit as shown here:

type
IDispatch = interface(IUnknown)
[‘{00020400-0000-0000-C000-000000000046}’]
function GetTypeInfoCount(out Count: Integer): Integer; stdcall;
function GetTypeInfo(Index, LocaleID: Integer; out TypeInfo):
Integer; stdcall;
function GetIDsOfNames(const IID: TGUID; Names: Pointer;
NameCount, LocaleID: Integer; DispIDs: Pointer): Integer; stdcall;

function Invoke(DispID: Integer; const IID: TGUID; LocaleID: Integer;
Flags: Word; var Params; VarResult, ExcepInfo, ArgErr: Pointer): Integer;

end;

The first thing you should know is that you don’t have to understand the ins and outs of the
IDispatch interface to take advantage of Automation in Delphi, so don’t let this complicated
interface alarm you. You generally don’t have to interact with this interface directly because
Delphi provides an elegant encapsulation of Automation, but the description of IDispatch in
this section should provide you with a good foundation for understanding Automation.

Central to the function of IDispatch is the Invoke() method, so we’ll start there. When a
client obtains an IDispatch pointer for an Automation server, it can call the Invoke() method
to execute a particular method on the server. The DispID parameter of this method holds a
number, called a dispatch ID, that indicates which method on the server should be invoked.
The IID parameter is unused. The LocaleID parameter contains language information. The
Flags parameter describes what kind of method is to be invoked and whether it’s a normal
method or a put or get method for a property. The Params property contains a pointer to an

20 chpt_15.qxd 11/19/01 12:13 PM Page 674

array of TDispParams, which holds the parameters passed to the method. The VarResult para-
meter is a pointer to an OleVariant, which will hold the return value of the method that’s
invoked. ExcepInfo is a pointer to a TExcepInfo record that will contain error information if
Invoke() returns DISP_E_EXCEPTION. Finally, if Invoke() returns DISP_E_TYPEMISMATCH or
DISP_E_PARAMNOTFOUND, the ArgError parameter is a pointer to an integer that will contain the
index of the offending parameter in the Params array.

The GetIDsOfName() method of IDispatch is called to obtain the dispatch ID of one or more
method names given strings identifying those methods. The IID parameter of this method is
unused. The Names parameter points to an array of PWideChar method names. The NameCount
parameter holds the number of strings in the Names array. LocaleID contains language informa-
tion. The last parameter, DispIDs, is a pointer to an array of NameCount integers, which
GetIDsOfNames() will fill in with the dispatch IDs for the methods listed in the Names parameter.

GetTypeInfo() retrieves the type information (type information is described next) for the
Automation object. The Index parameter represents the type of information to obtain and
should normally be 0. The LCID parameter holds language information. Upon successful return,
the TypeInfo parameter will hold an ITypeInfo pointer for the Automation object’s type
information.

The GetTypeInfoCount() method retrieves the number of type information interfaces sup-
ported by the Automation object in the Count parameter. Currently, Count will only contain
two possible values: 0, meaning the Automation object doesn’t support type information, and
1, meaning the Automation object does support type information.

Type Information
After you’ve spent a great deal of time carefully crafting an Automation server, it would be a
shame if potential users of your server couldn’t exploit its capabilities to the fullest because of
lack of documentation on the methods and properties provided. Fortunately, Automation pro-
vides a means for helping avoid this problem by allowing developers to associate type infor-
mation with Automation objects. This type information is stored in something called a type
library, and an Automation server’s type library can be linked to the server application or
library as a resource or stored in an external file. Type libraries contain information about
classes, interfaces, types, and other entities in a server. This information provides clients of the
Automation server with the information needed to create instances of each of its classes and
properly call methods on each interface.

Delphi generates type libraries for you when you add Automation objects to applications and
libraries. Additionally, Delphi knows how to translate type library information into Object
Pascal so that you can easily control Automation servers from your Delphi applications.

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
675

20 chpt_15.qxd 11/19/01 12:13 PM Page 675

Late Versus Early Binding
The elements of Automation that you’ve learned about so far in this chapter deal with
what’s called late binding. Late binding is a fancy way to say that a method is called through
IDispatch’s Invoke() method. It’s called late binding because the method call isn’t
resolved until runtime. At compile time, an Automation method call resolves into a call to
IDispatch.Invoke() with the proper parameters, and at runtime, Invoke() executes the
Automation method. When you call an Automation method via a Delphi Variant or
OleVariant type, you’re using late binding because Delphi must call IDispatch.GetIDs
OfNames() to convert the method name into a DispID, and then it can invoke the method by
calling IDispatch.Invoke() with the DispID.

A common optimization of early binding is to resolve the DispIDs of methods at compile time
and therefore avoid the runtime calls to GetIDsOfNames() in order to invoke a method. This
optimization is often referred to as ID binding, and it’s the convention used when you invoke
methods via a Delphi dispinterface type.

Early binding occurs when the Automation object exposes methods by means of a custom
interface descending from IDispatch. This way, controllers can call Automation objects
directly through the vtable without going through IDispatch.Invoke(). Because the call is
direct, a call to such as method will generally occur faster than a call through late binding.
Early binding is used you when call a method using a Delphi interface type.

An Automation object that allows methods to be called both from Invoke() and directly from
an IDispatch descendant interface is said to support a dual interface. Delphi-generated
Automation objects always support a dual interface, and Delphi controllers allow methods to
be called both through Invoke() and directly through an interface.

Registration
Automation objects must make all the same Registry entries as regular COM objects, but
Automation servers typically also make an additional entry under

HKEY_CLASSES_ROOT\CLSID\{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxx}

called ProgID, which provides a string identifier for the Automation class. Yet another Registry
entry under HKEY_CLASSES_ROOT\(ProgID string) is made, which contains the CLSID of the
Automation class in order to cross-reference back to the first Registry entry under CLSID.

Creating Automation Servers
Delphi makes it a fairly simple chore to create both out-of-process and in-process Automation
servers. The process for creating an Automation server can be boiled down into four steps:

1. Create the application or DLL you want to automate. You can even use one of your exist-
ing applications as a starting point in order to spice it up with some automation. This is

Component-Based Development

PART IV
676

20 chpt_15.qxd 11/19/01 12:13 PM Page 676

the only step in which you’ll see a real difference between creating in-process and out-
of-process servers.

2. Create the Automation object and add it to your project. Delphi provides an Automation
Object Expert to help this step go smoothly.

3. Add properties and methods to the Automation object by means of the type library.
These are the properties and methods that will be exposed to Automation controllers.

4. Implement the methods generated by Delphi from your type library in your source code.

Creating an Out-of-Process Automation Server
This section walks you through the creation of a simple out-of-process Automation server.
Start by creating a new project and placing a TShape and a TEdit component on the main
form, as shown in Figure 15.2. Save this project as Srv.dpr.

FIGURE 15.2
The main form of the Srv project.

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
677

Now add an Automation object to the project by selecting File, New from the main menu and
choosing Automation Object from the ActiveX page of the New Items dialog box, as shown in
Figure 15.3. This will invoke the Automation Object Wizard shown in Figure 15.4.

FIGURE 15.3
Adding a new Automation object.

20 chpt_15.qxd 11/19/01 12:13 PM Page 677

FIGURE 15.4
The Automation Object Wizard.

In the Class Name field of the Automation Object Wizard dialog box, you should enter the
name you want to give the COM class for this Automation object. The wizard will automati-
cally prepend a T to the classname when creating the Object Pascal class for the Automation
object and an I to the classname when creating the primary interface for the Automation object.
The Instancing combo box in the wizard can hold any one of these three values:

Value Description

Internal This OLE object will be used internal to the application
only, and it will not be registered with the System Registry.
External processes cannot access internal instanced
Automation servers.

Single Instance Each instance of the server can export only one instance of
the OLE object. If a controller application requests another
instance of the OLE object, Windows will start a new
instance of the server application.

Multiple Instance Each server instance can create and export multiple
instances of the OLE object. In-process servers are always
multiple instance.

When you complete the wizard’s dialog, Delphi will create a new type library for your project
(if one doesn’t already exist) and add an interface and a coclass to the type library. Additionally,
the wizard will generate a new unit in your project that contains the implementation of the
Automation interface added to the type library. Figure 15.5 shows the type library editor imme-
diately after the wizard’s dialog is dismissed, and Listing 15.2 shows the implementation unit
for the Automation object.

Component-Based Development

PART IV
678

20 chpt_15.qxd 11/19/01 12:13 PM Page 678

FIGURE 15.5
A new Automation project as shown in the type library editor.

LISTING 15.2 Automation Object Implementation Unit

unit TestImpl;

interface

uses
ComObj, ActiveX, Srv_TLB;

type
TAutoTest = class(TAutoObject, IAutoTest)
protected
{ Protected declarations }

end;

implementation

uses ComServ;

initialization
TAutoObjectFactory.Create(ComServer, TAutoTest, Class_AutoTest,
ciMultiInstance, tmApartment);

end.

The Automation object, TAutoTest, is a class that descends from TAutoObject. TAutoObject
is the base class for all Automation servers. As you add methods to your interface by using the
type library editor, new method skeletons will be generated in this unit that you’ll implement,
thus forming the innards of your Automation object.

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
679

20 chpt_15.qxd 11/19/01 12:13 PM Page 679

Component-Based Development

PART IV
680

Again, be careful not to confuse Delphi 2’s TAutoObject (from the OleAuto unit) with
Delphi 5’s TAutoObject (from the ComObj unit). The two aren’t compatible.

Similarly, the automated visibility specifier introduced in Delphi 2 is now mostly
obsolete.

CAUTION

When the Automation object has been added to the project, you must add one or more proper-
ties or methods to the primary interface using the type library editor. For this project, the type
library will contain properties to get and set the shape, color, and type as well as the edit con-
trol’s text. For good measure, you’ll also add a method that displays the current status of these
properties in a dialog. Figure 15.6 shows the completed type library for the Srv project. Note
especially the enumeration added to the type library (whose values are shown in the right pane)
to support the ShapeType property.

As you add properties and methods to Automation objects in the type library, keep in
mind that the parameters and return values used for these properties and methods
must be of Automation-compatible types. Types compatible with Automation include
Byte, SmallInt, Integer, Single, Double, Currency, TDateTime, WideString, WordBool,
PSafeArray, TDecimal, OleVariant, IUnknown, and IDispatch.

NOTE

FIGURE 15.6
The completed type library.

20 chpt_15.qxd 11/19/01 12:13 PM Page 680

When the type library has been completed, all that is left to do is fill in the implementation for
each of the method stubs created by the type library editor. This unit is shown in Listing 15.3.

LISTING 15.3 The Completed Implementation Unit

unit TestImpl;

interface

uses
ComObj, ActiveX, Srv_TLB;

type
TAutoTest = class(TAutoObject, IAutoTest)
protected
function Get_EditText: WideString; safecall;
function Get_ShapeColor: OLE_COLOR; safecall;
procedure Set_EditText(const Value: WideString); safecall;
procedure Set_ShapeColor(Value: OLE_COLOR); safecall;
function Get_ShapeType: TxShapeType; safecall;
procedure Set_ShapeType(Value: TxShapeType); safecall;
procedure ShowInfo; safecall;

end;

implementation

uses ComServ, SrvMain, TypInfo, ExtCtrls, Dialogs, SysUtils, Graphics;

function TAutoTest.Get_EditText: WideString;
begin
Result := FrmAutoTest.Edit.Text;

end;

function TAutoTest.Get_ShapeColor: OLE_COLOR;
begin
Result := ColorToRGB(FrmAutoTest.Shape.Brush.Color);

end;

procedure TAutoTest.Set_EditText(const Value: WideString);
begin
FrmAutoTest.Edit.Text := Value;

end;

procedure TAutoTest.Set_ShapeColor(Value: OLE_COLOR);
begin
FrmAutoTest.Shape.Brush.Color := Value;

end;

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
681

20 chpt_15.qxd 11/19/01 12:13 PM Page 681

LISTING 15.3 Continued

function TAutoTest.Get_ShapeType: TxShapeType;
begin
Result := TxShapeType(FrmAutoTest.Shape.Shape);

end;

procedure TAutoTest.Set_ShapeType(Value: TxShapeType);
begin
FrmAutoTest.Shape.Shape := TShapeType(Value);

end;

procedure TAutoTest.ShowInfo;
const
SInfoStr = ‘The Shape’’s color is %s, and it’’s shape is %s.’#13#10 +
‘The Edit’’s text is “%s.”’;

begin
with FrmAutoTest do
ShowMessage(Format(SInfoStr, [ColorToString(Shape.Brush.Color),
GetEnumName(TypeInfo(TShapeType), Ord(Shape.Shape)), Edit.Text]));

end;

initialization
TAutoObjectFactory.Create(ComServer, TAutoTest, Class_AutoTest,
ciMultiInstance, tmApartment);

end.

The uses clause for this unit contains a unit called Srv_TLB. This unit is the Object Pascal
translation of the project type library, and it’s shown in Listing 15.4.

LISTING 15.4 Srv_TLB—The Type Library File

unit Srv_TLB;

// ** //
// WARNING
// -------
// The types declared in this file were generated from data read from a
// Type Library. If this type library is explicitly or indirectly (via
// another type library referring to this type library) re-imported, or the
// ‘Refresh’ command of the Type Library Editor activated while editing the
// Type Library, the contents of this file will be regenerated and all
// manual modifications will be lost.
// ** //

Component-Based Development

PART IV
682

20 chpt_15.qxd 11/19/01 12:13 PM Page 682

LISTING 15.4 Continued

// PASTLWTR : $Revision: 1.130 $
// File generated on 8/27/2001 1:23:58 AM from Type Library described below.

// ** //
// Type Lib: C:\ D6DG\Source\Ch15\Automate\Srv.tlb (1)
// LIBID: {B43DD7DB-21F8-4244-A494-C4793366691B}
// LCID: 0
// Helpfile:
// DepndLst:
// (1) v2.0 stdole, (C:\WINNT\System32\stdole2.tlb)
// (2) v4.0 StdVCL, (C:\WINNT\System32\stdvcl40.dll)
// ** //
{$TYPEDADDRESS OFF} // Unit must be compiled without type-checked pointers.
{$WARN SYMBOL_PLATFORM OFF}
{$WRITEABLECONST ON}

interface

uses ActiveX, Classes, Graphics, StdVCL, Variants, Windows;

// ***//
// GUIDS declared in the TypeLibrary. Following prefixes are used:
// Type Libraries : LIBID_xxxx
// CoClasses : CLASS_xxxx
// DISPInterfaces : DIID_xxxx
// Non-DISP interfaces: IID_xxxx
// ***//
const
// TypeLibrary Major and minor versions
SrvMajorVersion = 1;
SrvMinorVersion = 0;

LIBID_Srv: TGUID = ‘{B43DD7DB-21F8-4244-A494-C4793366691B}’;

IID_IAutoTest: TGUID = ‘{C16B6A4C-842C-417F-8BF2-2F306F6C6B59}’;
CLASS_AutoTest: TGUID = ‘{64C576F0-C9A7-420A-9EAB-0BE98264BC9E}’;

// ***//
// Declaration of Enumerations defined in Type Library
// ***//
// Constants for enum TxShapeType
type
TxShapeType = TOleEnum;

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
683

20 chpt_15.qxd 11/19/01 12:13 PM Page 683

LISTING 15.4 Continued

const
stRectangle = $00000000;
stSquare = $00000001;
stRoundRect = $00000002;
stRoundSquare = $00000003;
stEllipse = $00000004;
stCircle = $00000005;

type

// ***//
// Forward declaration of types defined in TypeLibrary
// ***//
IAutoTest = interface;
IAutoTestDisp = dispinterface;

// ***//
// Declaration of CoClasses defined in Type Library
// (NOTE: Here we map each CoClass to its Default Interface)
// ***//
AutoTest = IAutoTest;

// ***//
// Interface: IAutoTest
// Flags: (4416) Dual OleAutomation Dispatchable
// GUID: {C16B6A4C-842C-417F-8BF2-2F306F6C6B59}
// ***//
IAutoTest = interface(IDispatch)
[‘{C16B6A4C-842C-417F-8BF2-2F306F6C6B59}’]
function Get_EditText: WideString; safecall;
procedure Set_EditText(const Value: WideString); safecall;
function Get_ShapeColor: OLE_COLOR; safecall;
procedure Set_ShapeColor(Value: OLE_COLOR); safecall;
function Get_ShapeType: TxShapeType; safecall;
procedure Set_ShapeType(Value: TxShapeType); safecall;
procedure ShowInfo; safecall;
property EditText: WideString read Get_EditText write Set_EditText;
property ShapeColor: OLE_COLOR read Get_ShapeColor write Set_ShapeColor;
property ShapeType: TxShapeType read Get_ShapeType write Set_ShapeType;

end;

// ***//
// DispIntf: IAutoTestDisp

Component-Based Development

PART IV
684

20 chpt_15.qxd 11/19/01 12:13 PM Page 684

LISTING 15.4 Continued

// Flags: (4416) Dual OleAutomation Dispatchable
// GUID: {C16B6A4C-842C-417F-8BF2-2F306F6C6B59}
// ***//
IAutoTestDisp = dispinterface
[‘{C16B6A4C-842C-417F-8BF2-2F306F6C6B59}’]
property EditText: WideString dispid 1;
property ShapeColor: OLE_COLOR dispid 2;
property ShapeType: TxShapeType dispid 3;
procedure ShowInfo; dispid 4;

end;

// ***//
// The Class CoAutoTest provides a Create and CreateRemote method to
// create instances of the default interface IAutoTest exposed by
// the CoClass AutoTest. The functions are intended to be used by
// clients wishing to automate the CoClass objects exposed by the
// server of this typelibrary.
// ***//
CoAutoTest = class
class function Create: IAutoTest;
class function CreateRemote(const MachineName: string): IAutoTest;

end;

implementation

uses ComObj;

class function CoAutoTest.Create: IAutoTest;
begin
Result := CreateComObject(CLASS_AutoTest) as IAutoTest;

end;

class function CoAutoTest.CreateRemote(const MachineName: string): IAutoTest;
begin
Result := CreateRemoteComObject(MachineName, CLASS_AutoTest) as IAutoTest;

end;

end.

Looking at this unit from the top down, you’ll notice that the type library version is specified
first and then the GUID for the type library, LIBID_Srv, is declared. This GUID will be used
when the type library is registered with the System Registry. Next, the values for the TxShapeType
enumeration are listed. What’s interesting about the enumeration is that the values are declared

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
685

20 chpt_15.qxd 11/19/01 12:13 PM Page 685

as constants rather than as an Object Pascal enumerated type. This is because type library
enums are like C/C++ enums (and unlike Object Pascal) in that they don’t have to start at the
ordinal value zero or be sequential in value.

Next, in the Srv_TLB unit the IAutoTest interface is declared. In this interface declaration
you’ll see the properties and methods you created in the type library editor. Additionally, you’ll
see the Get_XXX and Set_XXX methods generated as the read and write methods for each of
the properties.

Component-Based Development

PART IV
686

Safecall

Safecall is the default calling convention for methods entered into the type library
editor, as you can see from the IAutoTest declaration earlier. Safecall is actually
more than a calling convention because it implies two things: First, it means that the
method will be called using the safecall calling convention. Second, it means that
the method will be encapsulated so that it returns an HResult value to the caller. For
example, suppose that you have a method that looks like this in Object Pascal:

function Foo(W: WideString): Integer; safecall;

This method actually compiles to code that looks something like this:

function Foo(W: WideString; out RetVal: Integer): HResult; stdcall;

The advantage of safecall is that it catches all exceptions before they flow back into
the caller. When an unhandled exception is raised in a safecall method, the excep-
tion is handled by the implicit wrapper and converted into an HResult, which is
returned to the caller.

Next in Srv_TLB is the dispinterface declaration for the Automation object: IAutoTestDisp.
A dispinterface signals to the caller that Automation methods might be executed by Invoke()
but doesn’t imply a custom interface through which methods can be executed. Although the
IAutoTest interface can be used by development tools that support early-binding Automation,
IAutoTestDisp’s dispinterface can be used by tools that support late binding.

The Srv_TLB unit then declares a class called CoAutoTest, which makes creation of the
Automation object easy; just call CoAutoTest.Create() to create an instance of the
Automation object.

Finally, Srv_TLB creates a class called TAutoTest that wraps the server into a component that
can be placed on the palette. This feature, new in Delphi 5, is targeted more toward
Automation servers that you import rather than new Automation servers that you create.

20 chpt_15.qxd 11/19/01 12:13 PM Page 686

As mentioned earlier, you must run this application once to register it with the System
Registry. Later, in the “Automation” section of this chapter, you’ll learn about the controller
application used to manipulate this server.

Creating an In-Process Automation Server
Just as out-of-process servers start out as applications, in-process servers start out as DLLs.
You can begin with an existing DLL or with a new DLL, which you can create by selecting
DLL from the New Items dialog found under the File, New menu.

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
687

If you’re not familiar with DLLs, they’re covered in depth in Chapter 6, “Dynamic Link
Libraries.” This chapter assumes that you have some knowledge of DLL programming.

NOTE

As mentioned earlier, in order to serve as an in-process Automation server, a DLL must export
four functions that are defined in the ComServ unit: DllGetClassObject(), DllCanUnloadNow(),
DllRegisterServer(), and DllUnregisterServer(). Do this by adding these functions to the
exports clause in your project file, as shown in the project file IPS.dpr in Listing 15.5.

LISTING 15.5 IPS.dpr—The Project File for an In-Process Server

library IPS;

uses
ComServ;

exports
DllRegisterServer,
DllUnregisterServer,
DllGetClassObject,
DllCanUnloadNow;

begin
end.

The Automation object is added to the DLL project in the same manner as an executable pro-
ject: through the Automation Object Wizard. For this project, you’ll add only one property and
one method, as shown in the type library editor in Figure 15.7. The Object Pascal version of
the type library, IPS_TLB, is shown in Listing 15.6.

20 chpt_15.qxd 11/19/01 12:13 PM Page 687

FIGURE 15.7
The IPS project in the type library editor.

LISTING 15.6 IPS_TLB.pas—The Type Library Import File for the In-Process Server Project

unit IPS_TLB;

// ** //
// WARNING
// -------
// The types declared in this file were generated from data read from a
// Type Library. If this type library is explicitly or indirectly (via
// another type library referring to this type library) re-imported, or the
// ‘Refresh’ command of the Type Library Editor activated while editing the
// Type Library, the contents of this file will be regenerated and all
// manual modifications will be lost.
// ** //

// PASTLWTR : $Revision: 1.130 $
// File generated on 8/27/2001 1:27:45 AM from Type Library described below.

// ** //
// Type Lib: C:\ D6DG\Source\Ch15\Automate\IPS.tlb (1)
// LIBID: {17A05B88-0094-11D1-A9BF-F15F8BE883D4}
// LCID: 0
// Helpfile:
// DepndLst:
// (1) v1.0 stdole, (C:\WINNT\System32\stdole32.tlb)
// (2) v2.0 StdType, (C:\WINNT\System32\olepro32.dll)
// (3) v1.0 StdVCL, (C:\WINNT\System32\STDVCL32.DLL)
// ** //

Component-Based Development

PART IV
688

20 chpt_15.qxd 11/19/01 12:13 PM Page 688

LISTING 15.6 Continued

{$TYPEDADDRESS OFF} // Unit must be compiled without type-checked pointers.
{$WARN SYMBOL_PLATFORM OFF}
{$WRITEABLECONST ON}

interface

uses ActiveX, Classes, Graphics, StdVCL, Variants, Windows;

// ***//
// GUIDS declared in the TypeLibrary. Following prefixes are used:
// Type Libraries : LIBID_xxxx
// CoClasses : CLASS_xxxx
// DISPInterfaces : DIID_xxxx
// Non-DISP interfaces: IID_xxxx
// ***//
const
// TypeLibrary Major and minor versions
IPSMajorVersion = 1;
IPSMinorVersion = 0;

LIBID_IPS: TGUID = ‘{17A05B88-0094-11D1-A9BF-F15F8BE883D4}’;

IID_IIPTest: TGUID = ‘{17A05B89-0094-11D1-A9BF-F15F8BE883D4}’;
CLASS_IPTest: TGUID = ‘{17A05B8A-0094-11D1-A9BF-F15F8BE883D4}’;

type

// ***//
// Forward declaration of types defined in TypeLibrary
// ***//
IIPTest = interface;
IIPTestDisp = dispinterface;

// ***//
// Declaration of CoClasses defined in Type Library
// (NOTE: Here we map each CoClass to its Default Interface)
// ***//
IPTest = IIPTest;

// ***//
// Interface: IIPTest
// Flags: (4432) Hidden Dual OleAutomation Dispatchable
// GUID: {17A05B89-0094-11D1-A9BF-F15F8BE883D4}

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
689

20 chpt_15.qxd 11/19/01 12:13 PM Page 689

LISTING 15.6 Continued

// ***//
IIPTest = interface(IDispatch)
[‘{17A05B89-0094-11D1-A9BF-F15F8BE883D4}’]
function Get_MessageStr: WideString; safecall;
procedure Set_MessageStr(const Value: WideString); safecall;
function ShowMessageStr: Integer; safecall;
property MessageStr: WideString read Get_MessageStr write Set_MessageStr;

end;

// ***//
// DispIntf: IIPTestDisp
// Flags: (4432) Hidden Dual OleAutomation Dispatchable
// GUID: {17A05B89-0094-11D1-A9BF-F15F8BE883D4}
// ***//
IIPTestDisp = dispinterface
[‘{17A05B89-0094-11D1-A9BF-F15F8BE883D4}’]
property MessageStr: WideString dispid 1;
function ShowMessageStr: Integer; dispid 2;

end;

// ***//
// The Class CoIPTest provides a Create and CreateRemote method to
// create instances of the default interface IIPTest exposed by
// the CoClass IPTest. The functions are intended to be used by
// clients wishing to automate the CoClass objects exposed by the
// server of this typelibrary.
// ***//
CoIPTest = class
class function Create: IIPTest;
class function CreateRemote(const MachineName: string): IIPTest;

end;

implementation

uses ComObj;

class function CoIPTest.Create: IIPTest;
begin
Result := CreateComObject(CLASS_IPTest) as IIPTest;

end;

class function CoIPTest.CreateRemote(const MachineName: string): IIPTest;

Component-Based Development

PART IV
690

20 chpt_15.qxd 11/19/01 12:13 PM Page 690

LISTING 15.6 Continued

begin
Result := CreateRemoteComObject(MachineName, CLASS_IPTest) as IIPTest;

end;

end.

Clearly, this is a pretty simple Automation server, but it serves to illustrate the point. The
MessageStr property can be set to a value and then shown with the ShowMessageStr() func-
tion. The implementation of the IIPTest interface resides in the unit IPSMain.pas, which is
shown in Listing 15.7.

LISTING 15.7 IPSMain.pas—The Main Unit for the In-Process Server Project

unit IPSMain;

interface

uses
ComObj, IPS_TLB;

type
TIPTest = class(TAutoObject, IIPTest)
private
MessageStr: string;

protected
function Get_MessageStr: WideString; safecall;
procedure Set_MessageStr(const Value: WideString); safecall;
function ShowMessageStr: Integer; safecall;

end;

implementation

uses Windows, ComServ;

function TIPTest.Get_MessageStr: WideString;
begin
Result := MessageStr;

end;

function TIPTest.ShowMessageStr: Integer;
begin
MessageBox(0, PChar(MessageStr), ‘Your string is...’, MB_OK);
Result := Length(MessageStr);

end;

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
691

20 chpt_15.qxd 11/19/01 12:13 PM Page 691

LISTING 15.7 Continued

procedure TIPTest.Set_MessageStr(const Value: WideString);
begin
MessageStr := Value;

end;

initialization
TAutoObjectFactory.Create(ComServer, TIPTest, Class_IPTest, ciMultiInstance,
tmApartment);

end.

As you learned earlier in this chapter, in-process servers are registered differently than out-of-
process servers; an in-process server’s DllRegisterServer() function is called to register it
with the System Registry. The Delphi IDE makes this very easy: Select Run, Register ActiveX
server from the main menu.

Creating Automation Controllers
Delphi makes it extremely easy to control Automation servers in your applications. Delphi also
gives you a great amount of flexibility in how you want to control Automation servers: with
options for early binding using interfaces or late binding using dispinterfaces or variants.

Controlling Out-of-Process Servers
The Control project is an Automation controller that demonstrates all three types of
Automation (interfaces, dispinterface, and variants). Control is the controller for the Srv
Automation server application from earlier in this chapter. The main form for this project is
shown in Figure 15.8.

When the Connect button is clicked, the Control application connects to the server in several
different ways with the following code:

FIntf := CoAutoTest.Create;
FDispintf := CreateComObject(Class_AutoTest) as IAutoTestDisp;
FVar := CreateOleObject(‘Srv.AutoTest’);

This code shows interface, dispinterface, and OleVariant variables, each creating an
instance of the Automation server in different ways. What’s interesting about these different
techniques is that they’re almost totally interchangeable. For example, the following code is
also correct:

FIntf := CreateComObject(Class_AutoTest) as IAutoTest;
FDispintf := CreateOleObject(‘Srv.AutoTest’) as IAutoTestDisp;
FVar := CoAutoTest.Create;

Component-Based Development

PART IV
692

20 chpt_15.qxd 11/19/01 12:13 PM Page 692

FIGURE 15.8
The main form for the Control project.

Listing 15.8 shows the Ctrl unit, which contains the rest of the source code for the Automation
controller. Notice that the application allows you to manipulate the server using either the
interface, dispinterface, or OleVariant.

LISTING 15.8 Ctrl.pas—The Main Unit for the Controller Project for the Out-of-Process
Server Project

unit Ctrl;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ColorGrd, ExtCtrls, Srv_TLB, Buttons;

type
TControlForm = class(TForm)
CallViaRG: TRadioGroup;
ShapeTypeRG: TRadioGroup;
GroupBox1: TGroupBox;
GroupBox2: TGroupBox;
Edit: TEdit;
GroupBox3: TGroupBox;
ConBtn: TButton;
DisBtn: TButton;
InfoBtn: TButton;

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
693

20 chpt_15.qxd 11/19/01 12:13 PM Page 693

LISTING 15.8 Continued

ColorBtn: TButton;
ColorDialog: TColorDialog;
ColorShape: TShape;
ExitBtn: TButton;
TextBtn: TButton;
procedure ConBtnClick(Sender: TObject);
procedure DisBtnClick(Sender: TObject);
procedure ColorBtnClick(Sender: TObject);
procedure ExitBtnClick(Sender: TObject);
procedure TextBtnClick(Sender: TObject);
procedure InfoBtnClick(Sender: TObject);
procedure ShapeTypeRGClick(Sender: TObject);

private
{ Private declarations }
FIntf: IAutoTest;
FDispintf: IAutoTestDisp;
FVar: OleVariant;
procedure SetControls;
procedure EnableControls(DoEnable: Boolean);

public
{ Public declarations }

end;

var
ControlForm: TControlForm;

implementation

{$R *.DFM}

uses ComObj;

procedure TControlForm.SetControls;
// Initializes the controls to the current server values
begin
case CallViaRG.ItemIndex of
0:
begin
ColorShape.Brush.Color := FIntf.ShapeColor;
ShapeTypeRG.ItemIndex := FIntf.ShapeType;
Edit.Text := FIntf.EditText;

end;
1:
begin
ColorShape.Brush.Color := FDispintf.ShapeColor;

Component-Based Development

PART IV
694

20 chpt_15.qxd 11/19/01 12:13 PM Page 694

LISTING 15.8 Continued

ShapeTypeRG.ItemIndex := FDispintf.ShapeType;
Edit.Text := FDispintf.EditText;

end;
2:
begin
ColorShape.Brush.Color := FVar.ShapeColor;
ShapeTypeRG.ItemIndex := FVar.ShapeType;
Edit.Text := FVar.EditText;

end;
end;

end;

procedure TControlForm.EnableControls(DoEnable: Boolean);
begin
DisBtn.Enabled := DoEnable;
InfoBtn.Enabled := DoEnable;
ColorBtn.Enabled := DoEnable;
ShapeTypeRG.Enabled := DoEnable;
Edit.Enabled := DoEnable;
TextBtn.Enabled := DoEnable;

end;

procedure TControlForm.ConBtnClick(Sender: TObject);
begin
FIntf := CoAutoTest.Create;
FDispintf := CreateComObject(Class_AutoTest) as IAutoTestDisp;
FVar := CreateOleObject(‘Srv.AutoTest’);
EnableControls(True);
SetControls;

end;

procedure TControlForm.DisBtnClick(Sender: TObject);
begin
FIntf := nil;
FDispintf := nil;
FVar := Unassigned;
EnableControls(False);

end;

procedure TControlForm.ColorBtnClick(Sender: TObject);
var
NewColor: TColor;

begin
if ColorDialog.Execute then

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
695

20 chpt_15.qxd 11/19/01 12:13 PM Page 695

LISTING 15.8 Continued

begin
NewColor := ColorDialog.Color;
case CallViaRG.ItemIndex of
0: FIntf.ShapeColor := NewColor;
1: FDispintf.ShapeColor := NewColor;
2: FVar.ShapeColor := NewColor;

end;
ColorShape.Brush.Color := NewColor;

end;
end;

procedure TControlForm.ExitBtnClick(Sender: TObject);
begin
Close;

end;

procedure TControlForm.TextBtnClick(Sender: TObject);
begin
case CallViaRG.ItemIndex of
0: FIntf.EditText := Edit.Text;
1: FDispintf.EditText := Edit.Text;
2: FVar.EditText := Edit.Text;

end;
end;

procedure TControlForm.InfoBtnClick(Sender: TObject);
begin
case CallViaRG.ItemIndex of
0: FIntf.ShowInfo;
1: FDispintf.ShowInfo;
2: FVar.ShowInfo;

end;
end;

procedure TControlForm.ShapeTypeRGClick(Sender: TObject);
begin
case CallViaRG.ItemIndex of
0: FIntf.ShapeType := ShapeTypeRG.ItemIndex;
1: FDispintf.ShapeType := ShapeTypeRG.ItemIndex;
2: FVar.ShapeType := ShapeTypeRG.ItemIndex;

end;
end;

end.

Component-Based Development

PART IV
696

20 chpt_15.qxd 11/19/01 12:13 PM Page 696

Another interesting thing this code illustrates is how easy it is to disconnect from an
Automation server: Interfaces and dispinterfaces can be set to nil, and variants can be set to
Unassigned. Of course, the Automation server will also be released when the Control applica-
tion is closed, as a part of the normal finalization of these lifetime-managed types.

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
697

Interfaces will almost always perform better than dispinterfaces and variants, so you
should always use interfaces to control Automation servers when available.

Variants rank last in terms of performance because, at runtime, an Automation call
through a variant must call GetIDsOfNames() to convert a method name into a dis-
patch ID before it can execute the method with a call to Invoke().

The performance of dispinterfaces is in between that of an interface and that of a
variant. “But why,” you might ask, “is the performance different if variants and
dispinterfaces both use late binding?” The reason for this is that dispinterfaces take
advantage of an optimization called ID binding, which means that the dispatch IDs of
methods are known at compile time, so the compiler doesn’t need to generate a run-
time call to GetIDsOfName() prior to calling Invoke(). Another, perhaps more obvi-
ous, advantage of dispinterfaces over variants is that dispinterfaces allow for the use
of CodeInsight for easier coding, whereas this is not possible using variants.

TIP

Figure 15.9 shows the Control application controlling the Srv server.

FIGURE 15.9
Automation controller and server.

20 chpt_15.qxd 11/19/01 12:13 PM Page 697

Controlling In-Process Servers
The technique for controlling an in-process server is no different from that for controlling its
out-of-process counterpart. Just keep in mind that the Automation controller is now executing
within your own process space. This means that performance will be a bit better than with out-
of-process servers, but it also means that a crash in the Automation server can take down your
application.

Now you’ll look at a controller application for the in-process Automation server created earlier
in this chapter. In this case, we’ll use only the interface for controlling the server. This is a
pretty simple application, and Figure 15.10 shows the main form for the IPCtrl project. The
code in Listing 15.9 is IPCMain.pas, the main unit for the IPCtrl project.

Component-Based Development

PART IV
698

FIGURE 15.10
The IPCtrl project’s main form.

LISTING 15.9 IPCMain.pas—The Main Unit for the Controller Project for the In-Process
Server Project

unit IPCMain;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls, IPS_TLB;

type
TIPCForm = class(TForm)
ExitBtn: TButton;
Panel1: TPanel;
ConBtn: TButton;
DisBtn: TButton;
Edit: TEdit;
SetBtn: TButton;
ShowBtn: TButton;
procedure ConBtnClick(Sender: TObject);

20 chpt_15.qxd 11/19/01 12:13 PM Page 698

LISTING 15.9 Continued

procedure DisBtnClick(Sender: TObject);
procedure SetBtnClick(Sender: TObject);
procedure ShowBtnClick(Sender: TObject);
procedure ExitBtnClick(Sender: TObject);

private
{ Private declarations }
IPTest: IIPTest;
procedure EnableControls(DoEnable: Boolean);

public
{ Public declarations }

end;

var
IPCForm: TIPCForm;

implementation

uses ComObj;

{$R *.DFM}

procedure TIPCForm.EnableControls(DoEnable: Boolean);
begin
DisBtn.Enabled := DoEnable;
Edit.Enabled := DoEnable;
SetBtn.Enabled := DoEnable;
ShowBtn.Enabled := DoEnable;

end;

procedure TIPCForm.ConBtnClick(Sender: TObject);
begin
IPTest := CreateComObject(CLASS_IPTest) as IIPTest;
EnableControls(True);

end;

procedure TIPCForm.DisBtnClick(Sender: TObject);
begin
IPTest := nil;
EnableControls(False);

end;

procedure TIPCForm.SetBtnClick(Sender: TObject);
begin
IPTest.MessageStr := Edit.Text;

end;

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
699

20 chpt_15.qxd 11/19/01 12:13 PM Page 699

LISTING 15.9 Continued

procedure TIPCForm.ShowBtnClick(Sender: TObject);
begin
IPTest.ShowMessageStr;

end;

procedure TIPCForm.ExitBtnClick(Sender: TObject);
begin
Close;

end;

end.

Remember to ensure that the server has been registered prior to attempting to run IPCtrl. You
can do this in several ways: Using Run, Register ActiveX Server from the main menu while the
IPS project is loaded, using the Windows RegSvr32.exe utility, and using the TRegSvr.exe
tool that comes with Delphi. Figure 15.11 shows this project in action controlling the IPS
server.

Component-Based Development

PART IV
700

FIGURE 15.11
IPCtrl controlling the IPS server.

Advanced Automation Techniques
In this section, our goal is to get you up to speed on some of the more advanced features of
Automation that the wizards never told you about. Topics such as Automation events, collec-
tions, type library gotchas, and low-level language support for COM are all covered. Rather
than devote more time to talking about this stuff, let’s jump right in and do it!

Automation Events
We Delphi programmers have long taken events for granted. You drop a button, you double-
click OnClick in the Object Inspector, and you write some code. It’s no big deal. Even from
the control writer’s point of view, events are a snap. You create a new method type, add a field

20 chpt_15.qxd 11/19/01 12:13 PM Page 700

and published property to your control, and you’re good to go. For Delphi COM developers,
however, events can be scary. Many Delphi COM developers avoid events altogether simply
because they “don’t have time to learn all that mumbo jumbo.” If you fall into that group,
you’ll be happy to know that working with events actually isn’t very difficult thanks to
some nice built-in support provided by Delphi. Although all the new terms associated with
Automation events can add an air of complexity, in this section I hope to demystify events to
the point where you think, “Oh, is that all they are?”

What Are Events?
Put simply, events provide a means for a server to call back into a client to provide some infor-
mation. Under a traditional client/server model, the client calls the server to perform an action
or obtain some data, the server executes the action or obtains the data, and control returns to
the client. This model works fine for most things, but it breaks down when the event in which
the client is interested is asynchronous in nature or is driven by a user interface entry. For
example, if the client sends the server a request to download a file, the client probably doesn’t
want to sit around and wait for the thing to download before it can continue processing (espe-
cially over a high-latency connection such as a modem). A better model would be for the client
to issue the instruction to the server and continue to go about its business until the server noti-
fies the client about the completion of the file download. Similarly, a user interface entry, such
as a button click, is a good example of when the server needs to notify the client using an
event mechanism. The client obviously can’t call a method on the server that waits around
until some button is clicked.

Generally speaking, the server is responsible for defining and firing events, whereas the client
is normally responsible for connecting itself to and implementing events. Of course, given such
a loose definition, there’s room to haggle, and consequently Delphi and Automation provide
two very different approaches to the idea of events. Drilling down into each of these models
will help put things into perspective.

Events in Delphi
Delphi follows the KISS (keep it simple, stupid!) methodology when it comes to events.
Events are implemented as method pointers—these pointers can be assigned to some method
in the application and are executed when such a method is called via the method pointer. As an
illustration, consider the everyday application-development scenario of an application that
needs to handle an event on a component. If you look at the situation abstractly, the “server” in
this case would be a component, which defines and fires the event. The “client” is the applica-
tion that employs the component because it connects to the event by assigning some specific
method name to the event method pointer.

Although this simple event model is one of the things that makes Delphi elegant and easy to
use, it definitely sacrifices some power for the sake of usability. For example, there’s no built-in

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
701

20 chpt_15.qxd 11/19/01 12:13 PM Page 701

way to allow multiple clients to listen for the same event (this is called multicasting). Also,
there’s no way to dynamically obtain a type description for an event without writing some
RTTI code (which you probably shouldn’t be using in a application anyway because of its ver-
sion-specific nature).

Events in Automation
Whereas the Delphi event model is simple yet limited, the Automation event model is powerful
but more complex. As a COM programmer, you might have guessed that events are imple-
mented in Automation using interfaces. Rather than existing on a per-method basis, events
exist only as part of an interface. This interface is often called an events interface or an outgo-
ing interface. It’s called outgoing because it’s not implemented by the server like other inter-
faces but is instead implemented by clients of the server, and methods of the interface will be
called outward from the server to the client. Like all interfaces, event interfaces have associated
with them corresponding interface identifications (IIDs) that uniquely identify them. Also, the
description of the events interface is found in the type library of an Automation object, tied to
the Automation object’s coclass like other interfaces.

Servers needing to surface event interfaces to clients must implement the IConnectionPoint
Container interface. This interface is defined in the ActiveX unit as follows:

type
IConnectionPointContainer = interface
[‘{B196B284-BAB4-101A-B69C-00AA00341D07}’]
function EnumConnectionPoints(out Enum: IEnumConnectionPoints):
HResult; stdcall;

function FindConnectionPoint(const iid: TIID;
out cp: IConnectionPoint): HResult; stdcall;

end;

In COM parlance, a connection point describes the entity that provides programmatic access to
an outgoing interface. If a client needs to determine whether a server supports events, all it has
to do is QueryInterface for the IConnectionPointContainer interface. If this interface is
present, the server is capable of surfacing events. The EnumConnectionPoints() method of
IConnectionPointContainer enables clients to iterate over all the outgoing interfaces sup-
ported by the server. Clients can use the FindConnectionPoint() method to obtain a specific
outgoing interface.

You’ll notice that FindConnectionPoint() provides an IConnectionPoint that represents an
outbound interface. IConnectionPoint is also defined in the ActiveX unit, and it looks like
this:

type
IConnectionPoint = interface
[‘{B196B286-BAB4-101A-B69C-00AA00341D07}’]

Component-Based Development

PART IV
702

20 chpt_15.qxd 11/19/01 12:13 PM Page 702

function GetConnectionInterface(out iid: TIID): HResult; stdcall;
function GetConnectionPointContainer(
out cpc: IConnectionPointContainer): HResult; stdcall;

function Advise(const unkSink: IUnknown; out dwCookie: Longint):
HResult; stdcall;

function Unadvise(dwCookie: Longint): HResult; stdcall;
function EnumConnections(out Enum: IEnumConnections): HResult;
stdcall;

end;

The GetConnectionInterface() method of IConnectionPoint provides the IID of the outgo-
ing interface supported by this connection point. The GetConnectionPointContainer()
method provides the IConnectionPointContainer (described earlier), which manages this
connection point. The Advise method is the interesting one. Advise() is the method that actu-
ally does the magic of hooking up the outgoing events on the server to the events interface
implemented by the client. The first parameter to this method is the client’s implementation of
the events interface, and the second parameter will receive a cookie that identifies this particu-
lar connection. Unadvise() simply disconnects the client/server relationship established by
Advise(). EnumConnections enables the client to iterate over all currently active connections
(that is, all connections that have called Advise()).

Because of the obvious confusion that can arise if we describe the participants in this relation-
ship as simply client and server, Automation defines some different nomenclature that enables
us to unambiguously describe who is who. The implementation of the outgoing interface con-
tained within the client is called a sink, and the server object that fires events to the client is
referred to as the source.

What is hopefully clear in all this is that Automation events have a couple of advantages over
Delphi events. Namely, they can be multicast because IConnectionPoint.Advise() can be
called more than once. Also, Automation events are self-describing (via the type library and
the enumeration methods), so they can be manipulated dynamically.

Automation Events in Delphi
Okay, all this technical stuff is well and good, but how do we actually make Automation events
work in Delphi? I’m glad you asked. At this point, we’ll create an Automation server applica-
tion that exposes an outgoing interface and a client that implements a sink for the interface.
Bear in mind, too, that you don’t need to be an expert in connection points, sinks, sources, and
whatnot in order to get Delphi to do what you want. However, it does help you in the long run
when you understand what goes on behind the wizard’s curtain.

The Server
The first step in creating the server is to create a new application. For purposes of this demo,
we’ll create a new application containing one form with a client-aligned TMemo, as shown in
Figure 15.12.

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
703

20 chpt_15.qxd 11/19/01 12:13 PM Page 703

FIGURE 15.12
Automation Server with the Events main form.

Next, we’ll add an Automation object to this application by selecting File, New, ActiveX,
Automation Object from the main menu. This invokes the Automation Object Wizard (refer to
Figure 15.4).

Note the Generate Event Support Code option on the Automation Object Wizard. This box
must be selected because it will generate the code necessary to expose an outgoing interface on
the Automation object. It will also create the outgoing interface in the type library. After select-
ing OK in this dialog box, we’re presented with the Type Library Editor window. Both the
Automation interface and the outgoing interface are already present in the type library (named
IServerWithEvents and IServerWithEventsEvents, respectively). AddText() and Clear()
methods have been added to the IServerWithEvents interface, and OnTextChanged() and
OnClear() methods have been added to the IServerWithEventsEvents interface.

As you might guess, Clear() will clear the contents of the memo, and AddText() will add
another line of text to the memo. The OnTextChanged() event will fire when the contents of
the memo change, and the OnClear() event will fire when the memo is cleared. Notice also
that AddText() and OnTextChanged() each have one parameter of type WideString.

The first thing to do is implement the AddText() and Clear() methods. The implementation
for these methods is shown here:

procedure TServerWithEvents.AddText(const NewText: WideString);
begin
MainForm.Memo.Lines.Add(NewText);

end;

procedure TServerWithEvents.Clear;
begin
MainForm.Memo.Lines.Clear;
if FEvents <> nil then FEvents.OnClear;

end;

Component-Based Development

PART IV
704

20 chpt_15.qxd 11/19/01 12:13 PM Page 704

You should be familiar with all this code except perhaps the last line of Clear(). This code
ensures that there’s a client sink advised on the event by checking for nil; then it first fires the
event simply by calling OnClear().

To set up the OnTextChanged() event, we first have to handle the OnChange event of the memo.
We’ll do this by inserting a line of code into the Initialized() method of
TServerWithEvents that points the event to the method in TServerWithEvents:

MainForm.Memo.OnChange := MemoChange;

The MemoChange() method is implemented as follows:

procedure TServerWithEvents.MemoChange(Sender: TObject);
begin
if FEvents <> nil then FEvents.OnTextChanged((Sender as TMemo).Text);

end;

This code also checks to ensure that a client is listening; then it fires the event, passing the
memo’s text as the parameter.

Believe it or not, that sums the implementation of the server! Now we’ll move on to the client.

The Client
The client is an application with one form that contains a TEdit, TMemo, and three TButton
components, as shown in Figure 15.13.

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
705

FIGURE 15.13
The Automation Client main form.

In the main unit for the client application, the Server_TLB unit has been added to the uses
clause so that we have access to the types and methods contained within that unit. The main
form object, TMainForm, of the client application will contain a field that references the server
called FServer of type IServerWithEvents. We’ll create an instance of the server in
TMainForm’s constructor using the helper class found in Server_TLB, like this:

FServer := CoServerWithEvents.Create;

20 chpt_15.qxd 11/19/01 12:13 PM Page 705

The next step is to implement the event sink class. Because this class will be called by the
server via Automation, it must implement IDispatch (and therefore IUnknown). The type dec-
laration for this class is shown here:

type
TEventSink = class(TObject, IUnknown, IDispatch)
private
FController: TMainForm;
{ IUnknown }
function QueryInterface(const IID: TGUID; out Obj): HResult; stdcall;
function _AddRef: Integer; stdcall;
function _Release: Integer; stdcall;
{ IDispatch }
function GetTypeInfoCount(out Count: Integer): HResult; stdcall;
function GetTypeInfo(Index, LocaleID: Integer; out TypeInfo):
HResult; stdcall;

function GetIDsOfNames(const IID: TGUID; Names: Pointer;
NameCount, LocaleID: Integer; DispIDs: Pointer): HResult; stdcall;

function Invoke(DispID: Integer; const IID: TGUID; LocaleID: Integer;
Flags: Word; var Params; VarResult, ExcepInfo, ArgErr: Pointer):
HResult; stdcall;

public
constructor Create(Controller: TMainForm);

end;

Most of the methods of IUnknown and IDispatch aren’t implemented, with the notable excep-
tions of IUnknown.QueryInterface() and IDispatch.Invoke(). These will be discussed in
turn.

The QueryInterface() method for TEventSink is implemented as shown here:

function TEventSink.QueryInterface(const IID: TGUID; out Obj): HResult;
begin
// First look for my own implementation of an interface
// (I implement IUnknown and IDispatch).
if GetInterface(IID, Obj) then
Result := S_OK

// Next, if they are looking for outgoing interface, recurse to return
// our IDispatch pointer.
else if IsEqualIID(IID, IServerWithEventsEvents) then
Result := QueryInterface(IDispatch, Obj)

// For everything else, return an error.
else
Result := E_NOINTERFACE;

end;

Component-Based Development

PART IV
706

20 chpt_15.qxd 11/19/01 12:13 PM Page 706

Essentially, this method returns an instance only when the requested interface is IUnknown,
IDispatch, or IServerWithEventsEvents.

Here’s the Invoke method for TEventSink:

function TEventSink.Invoke(DispID: Integer; const IID: TGUID;
LocaleID: Integer; Flags: Word; var Params; VarResult, ExcepInfo,
ArgErr: Pointer): HResult;

var
V: OleVariant;

begin
Result := S_OK;
case DispID of
1:
begin
// First parameter is new string
V := OleVariant(TDispParams(Params).rgvarg^[0]);
FController.OnServerMemoChanged(V);

end;
2: FController.OnClear;

end;
end;

TEventSink.Invoke() is hard-coded for methods having DispID 1 or DispID 2, which happen
to be the DispIDs chosen for OnTextChanged() and OnClear(), respectively, in the server
application. OnClear() has the most straightforward implementation: It simply calls the client
main form’s OnClear() method in response to the event. The OnTextChanged() event is a little
trickier: This code pulls the parameter out of the Params.rgvarg array, which is passed in as a
parameter to this method, and passes it through to the client main form’s OnServerMemoChanged()
method. Note that because the number and type of parameters is known, we’re able to make
simplifying assumptions in the source code. If you’re clever, it’s possible to implement
Invoke() in a generic manner such that it figures out the number and types of parameters and
pushes them onto the stack and/or into registers prior to calling the appropriate function. If
you’d like to see an example of this, take a look at the TOleControl.InvokeEvent() method in
the OleCtrls unit. This method represents the event-sinking logic for the ActiveX control con-
tainer.

The implementation for OnClear() and OnServerMemoChanged() manipulate the contents of
the client’s memo. They’re shown here:

procedure TMainForm.OnServerMemoChanged(const NewText: string);
begin
Memo.Text := NewText;

end;

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
707

20 chpt_15.qxd 11/19/01 12:13 PM Page 707

procedure TMainForm.OnClear;
begin
Memo.Clear;

end;

The final piece of the puzzle is to connect the event sink to the server’s source interface. This
is easily accomplished using the InterfaceConnect() function found in the ComObj unit,
which we’ll call from the main form’s constructor, like so:

InterfaceConnect(FServer, IServerWithEventsEvents, FEventSink, FCookie);

The first parameter to this function is a reference to the source object. The second parameter is
the IID of the outgoing interface. The third parameter holds the event sink interface. The fourth
and final parameter is the cookie, and it’s a reference parameter that will be filled in by the
callee.

To be a good citizen, you should also clean up properly by calling InterfaceDisconnect()
when you’re finished playing with events. This is done in the main form’s destructor:

InterfaceDisconnect(FEventSink, IServerWithEventsEvents, FCookie);

The Demo
Now that the client and server are written, we can see them in action. Be sure to run and close
the server once (or run it with the /regserver switch) to ensure that it’s registered before
attempting to run the client. Figure 15.14 shows the interactions between client, server, source,
and sink.

Component-Based Development

PART IV
708

FIGURE 15.14
The Automation client manipulating the server and receiving events.

Events with Multiple Sinks
Although the technique just described works great for firing events back to a single client, it
doesn’t work so well when multiple clients are involved. You’ll often find yourself in situations
where multiple clients are connecting to your server, and you need to fire events back to all
clients. Fortunately, you need just a little bit more code to add this type of functionality. In

20 chpt_15.qxd 11/19/01 12:13 PM Page 708

order to fire events back to multiple clients, you must write code that enumerates over each
advised connection and calls the appropriate method on the sink. This can be done by making
several modifications to the previous example.

First things first. In order to support multiple client connections on a connection point, we
must pass ckMulti in the Kind parameter of TConnectionPoints.CreateConnectionPoint().
This method is called from the Automation object’s Initialize() method, as shown here:

FConnectionPoints.CreateConnectionPoint(AutoFactory.EventIID, ckMulti,
EventConnect);

Before connections can be enumerated, we need to obtain a reference to IConnection
PointContainer. From IConnectionPointContainer, we can obtain the IConnectionPoint
representing the outgoing interface, and using the IConnectionPoint.EnumConnections()
method, we can obtain an IEnumConnections interface that can be used to enumerate the con-
nections. All this logic is encapsulated into the following method:

function TServerWithEvents.GetConnectionEnumerator: IEnumConnections;
var
Container: IConnectionPointContainer;
CP: IConnectionPoint;

begin
Result := nil;
OleCheck(QueryInterface(IConnectionPointContainer, Container));
OleCheck(Container.FindConnectionPoint(AutoFactory.EventIID, CP));
CP.EnumConnections(Result);

end;

After the enumerator interface has been obtained, calling the sink for each client is just a mat-
ter of iterating over each connection. This logic is demonstrated in the following code, which
fires the OnTextChanged() event:

procedure TServerWithEvents.MemoChange(Sender: TObject);
var
EC: IEnumConnections;
ConnectData: TConnectData;
Fetched: Cardinal;

begin
EC := GetConnectionEnumerator;
if EC <> nil then
begin
while EC.Next(1, ConnectData, @Fetched) = S_OK do
if ConnectData.pUnk <> nil then
(ConnectData.pUnk as IServerWithEventsEvents).OnTextChanged(

➥(Sender as TMemo).Text);
end;

end;

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
709

20 chpt_15.qxd 11/19/01 12:13 PM Page 709

Finally, in order to enable clients to connect to a single active instance of the Automation
object, we must call the RegisterActiveObject() COM API function. This function accepts
as parameters an IUnknown for the object, the CLSID of the object, a flag indicating whether
the registration is strong (the server should be AddRef-ed) or weak (do not AddRef the server),
and a handle that’s returned by reference:

RegisterActiveObject(Self as IUnknown, Class_ServerWithEvents,
ACTIVEOBJECT_WEAK, FObjRegHandle);

Listing 15.10 shows the complete source code for the ServAuto unit, which ties all these tidbits
together.

LISTING 15.10 ServAuto.pas

unit ServAuto;

interface

uses
ComObj, ActiveX, AxCtrls, Server_TLB;

type
TServerWithEvents = class(TAutoObject, IConnectionPointContainer,
IServerWithEvents)

private
{ Private declarations }
FConnectionPoints: TConnectionPoints;
FObjRegHandle: Integer;
procedure MemoChange(Sender: TObject);

protected
{ Protected declarations }
procedure AddText(const NewText: WideString); safecall;
procedure Clear; safecall;
function GetConnectionEnumerator: IEnumConnections;
property ConnectionPoints: TConnectionPoints read FConnectionPoints
implements IConnectionPointContainer;

public
destructor Destroy; override;
procedure Initialize; override;

end;

implementation

uses Windows, ComServ, ServMain, SysUtils, StdCtrls;

destructor TServerWithEvents.Destroy;

Component-Based Development

PART IV
710

20 chpt_15.qxd 11/19/01 12:13 PM Page 710

LISTING 15.10 Continued

begin
inherited Destroy;
RevokeActiveObject(FObjRegHandle, nil); // Make sure I’m removed from ROT

end;

procedure TServerWithEvents.Initialize;
begin
inherited Initialize;
FConnectionPoints := TConnectionPoints.Create(Self);
if AutoFactory.EventTypeInfo <> nil then
FConnectionPoints.CreateConnectionPoint(AutoFactory.EventIID, ckMulti,
EventConnect);

// Route main form memo’s OnChange event to MemoChange method:
MainForm.Memo.OnChange := MemoChange;
// Register this object with COM’s Running Object Table (ROT) so other
// clients can connect to this instance.
RegisterActiveObject(Self as IUnknown, Class_ServerWithEvents,
ACTIVEOBJECT_WEAK, FObjRegHandle);

end;

procedure TServerWithEvents.Clear;
var
EC: IEnumConnections;
ConnectData: TConnectData;
Fetched: Cardinal;

begin
MainForm.Memo.Lines.Clear;
EC := GetConnectionEnumerator;
if EC <> nil then
begin
while EC.Next(1, ConnectData, @Fetched) = S_OK do
if ConnectData.pUnk <> nil then
(ConnectData.pUnk as IServerWithEventsEvents).OnClear;

end;
end;

procedure TServerWithEvents.AddText(const NewText: WideString);
begin
MainForm.Memo.Lines.Add(NewText);

end;

procedure TServerWithEvents.MemoChange(Sender: TObject);
var
EC: IEnumConnections;

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
711

20 chpt_15.qxd 11/19/01 12:13 PM Page 711

LISTING 15.10 Continued

ConnectData: TConnectData;
Fetched: Cardinal;

begin
EC := GetConnectionEnumerator;
if EC <> nil then
begin
while EC.Next(1, ConnectData, @Fetched) = S_OK do
if ConnectData.pUnk <> nil then
(ConnectData.pUnk as IServerWithEventsEvents).OnTextChanged(

(➥(Sender as TMemo).Text);
end;

end;

function TServerWithEvents.GetConnectionEnumerator: IEnumConnections;
var
Container: IConnectionPointContainer;
CP: IConnectionPoint;

begin
Result := nil;
OleCheck(QueryInterface(IConnectionPointContainer, Container));
OleCheck(Container.FindConnectionPoint(AutoFactory.EventIID, CP));
CP.EnumConnections(Result);

end;

initialization
TAutoObjectFactory.Create(ComServer, TServerWithEvents,
Class_ServerWithEvents, ciMultiInstance, tmApartment);

end.

On the client side, a small adjustment needs to be made in order to enable clients to connect to
an active instance if it’s already running. This is accomplished using the GetActiveObject
COM API function, as shown here:

procedure TMainForm.FormCreate(Sender: TObject);
var
ActiveObj: IUnknown;

begin
// Get active object if it’s available, or create anew if not
GetActiveObject(Class_ServerWithEvents, nil, ActiveObj);
if ActiveObj <> nil then FServer := ActiveObj as IServerWithEvents
else FServer := CoServerWithEvents.Create;
FEventSink := TEventSink.Create(Self);
InterfaceConnect(FServer, IServerWithEventsEvents, FEventSink, FCookie);

end;

Component-Based Development

PART IV
712

20 chpt_15.qxd 11/19/01 12:13 PM Page 712

Figure 15.15 shows several clients receiving events from a single server.

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
713

FIGURE 15.15
Several clients manipulating the same server and receiving events.

Automation Collections
Let’s face it: We programmers are obsessed with bits of software code that serve as containers
for other bits of software code. Think about it—whether it’s an array, a TList, a TCollection,
a template container class for you C++ folks, or a Java vector, it seems that we’re always in
search of the proverbial better mousetrap for software objects that hold other software objects.
If you consider the time invested over the years in this pursuit for the perfect container class,
it’s clear that this is an important problem in the minds of developers. And why not? This logi-
cal separation of container and contained entities helps us better organize our algorithms and
maps to the real world rather nicely (a basket can contain eggs, a pocket can contain coins, a
parking lot can contain autos, and so on). Whenever you learn a new language or development
model, you have to learn “their way” of managing groups of entities. This leads to my point:
Like any other software development model, COM also has its ways for managing these kinds
of groups of entities, and to be an effective COM developer, we must learn how to master these
things.

When we work with the IDispatch interface, COM specifies two primary methods by which
we represent the notion of containership: arrays and collections. If you’ve done a bit of
Automation or ActiveX control work in Delphi, you’ll probably already be familiar with

20 chpt_15.qxd 11/19/01 12:13 PM Page 713

arrays. You can easily create automation arrays in Delphi by adding an array property to your
IDispatch descendant interface or dispinterface, as shown in the following example:

type
IMyDisp = interface(IDispatch)
function GetProp(Index: Integer): Integer; safecall;
procedure SetProp(Index, Value: Integer); safecall;
property Prop[Index: Integer]: Integer read GetProp write SetProp;

end;

Arrays are useful in many circumstances, but they pose some limitations. For example, arrays
make sense when you have data that can be accessed in a logical, fixed-index manner, such as
the strings in an IStrings. However, if the nature of the data is such that individual items are
frequently deleted, added, or moved, an array is a poor container solution. The classic example
is a group of active windows. Because windows are constantly being created, destroyed, and
changing z-order, there’s no solid criteria for determining the order in which the windows
should appear in the array.

Collections are designed to solve this problem by allowing you to manipulate a series of ele-
ments in a manner that doesn’t imply any particular order or number of items. Collections are
unusual because there isn’t really a collection object or interface, but a collection is instead
represented as a custom IDispatch that follows a number of rules and guidelines. The follow-
ing rules must be adhered to in order for an IDispatch to qualify as a collection:

• Collections must contain a _NewEnum property that returns the IUnknown for an object
that supports the IEnumVARIANT interface, which will be used to enumerate the items in
the collection. Note that the name of this property must be preceded with an underscore,
and this property must be marked as restricted in the type library. The DispID for the
_NewEnum property must be DISPID_NEWENUM (-4), and it will be defined as follows in the
Delphi type library editor:

function _NewEnum: IUnknown [propget, dispid $FFFFFFFC, restricted];

safecall;

• Languages that support the For Each construct, such as Visual Basic, will use this
method to obtain the IEnumVARIANT interface needed to enumerate collection items. More
on this is discussed later.

• Collections must contain an Item() method that returns an element from the collection
based on the index. The DispID for this method must be 0, and it should be marked with
the default collection element flag. If we were to implement a collection of IFoo inter-
face pointers, the definition for this method in the type library editor might look some-
thing like this:

function Item(Index: Integer): IFoo [propget, dispid $00000000,
defaultcollelem]; safecall;

Component-Based Development

PART IV
714

20 chpt_15.qxd 11/19/01 12:13 PM Page 714

Note that it’s also acceptable for the Index parameter to be an OleVariant so that an
Integer, WideString, or some other type of value can index the item in question.

• Collections must contain a Count property that contain returns the number of items in the
collection. This method would typically be defined in the type library editor as this:

function Count: Integer [propget, dispid $00000001]; safecall;

In addition to the aforementioned rules, you should also follow these guidelines when creating
your own collection contain objects:

• The property or method that returns a collection should be named with the plural of the
name of the items in the collection. For example, if you had a property that returned a
collection of listview items, the property name would probably be Items, whereas the
name of the item in the collection would be Item. Likewise, an item called Foot would
be contained in a collection property called Feet. In the rare case that the plural and sin-
gular of a word are the same (a collection of fish or deer, for example), the collection
property name should be the name of the item with Collection tacked on the end
(FishCollection or DeerCollection).

• Collections that support the addition of items should do so using a method called Add().
The parameters for this method vary depending on the implementation, but you might
want to pass parameters that indicate the initial position of the new item within the collec-
tion. The Add() method normally returns a reference to the item added to the collection.

• Collections that support the deletion of items should do so using a method called
Remove(). This method should take one parameter that identifies the index of the item
being deleted, and this index should behave semantically in the same manner as the
Item() method.

A Delphi Implementation
If you’ve ever created ActiveX controls in Delphi, you might have noticed that fewer controls
are listed in the combo box in the ActiveX Control Wizard than there are on the IDE’s
Component Palette. This is because Borland prevents some controls showing in the list using
the RegisterNonActiveX() function. One such control that’s available on the palette but not in
the wizard is the TListView control found on the Win32 page of the palette. The TListView
control isn’t shown in the wizard because the wizard doesn’t know what to do with its Items
property, which is of type TListItems. Because the wizard doesn’t know how to wrap this
property type in an ActiveX control, the control is simply excluded from the wizard’s list
rather than allowing the user to create an utterly useless ActiveX control wrapper of a control.

However, in the case of TListView, RegisterNonActiveX() is called with the axrComponentOnly
flag, which means that a descendent of TListView will show up in the ActiveX Control
Wizard’s list. By taking the minor detour of creating a do-nothing descendent of TListView

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
715

20 chpt_15.qxd 11/19/01 12:13 PM Page 715

called TListView2 and adding it to the palette, we can then create an ActiveX control that
encapsulates the listview control. Of course, then we’re faced with the same problem of the
wizard not generating wrappers for the Items property and having a useless ActiveX control.
Fortunately, ActiveX control writing doesn’t have to stop at the wizard-generated code, and
we’re free to wrap the Items property ourselves at this point in order to make the control use-
ful. As you might be beginning to suspect, a collection is the perfect way to encapsulate the
Items property of the TListView.

In order to implement this collection of listview items, we must create new objects represent-
ing the item and the collection and add a new property to the ActiveX control default interface
that returns a collection. We’ll begin by defining the object representing an item, which we’ll
call ListItem. The first step to creating the ListItem object is to create a new Automation
object using the icon found on the ActiveX page of the New Items dialog box. After creating
the object, we can fill out the properties and methods for this object in the type library editor.
For the purposes of this demonstration, we’ll add properties for the Caption, Index, Checked,
and SubItems properties of a listview item. Similarly, we’ll create yet another new Automation
object for the collection itself. This Automation object is called ListItems, and it’s provided
with the _NewEnum, Item(), Count(), Add(), and Remove() methods mentioned earlier. Finally,
we’ll add a new property to the default interface of the ActiveX control called Items that
returns a collection.

After the interfaces for IListItem and IListItems are completely defined in the type library
editor, there’s a little manual tweaking to be done in the implementation files generated for
these objects. Specifically, the default parent class for a new automation object is TAutoObject;
however, these objects will only be created internally (that is, not from a factory), so we’ll
manually change the ancestor to TAutoInfObject, which is more appropriate for internally cre-
ated automation objects. Also, because these objects won’t be created from a factory, we’ll
remove from the units the initialization code that creates the factories because it’s not needed.

Now that the entire infrastructure is properly set up, it’s time to implement the ListItem and
ListItems objects. The ListItem object is the most straightforward because it’s a pretty sim-
ple wrapper around a listview item. The code for the unit containing this object is shown in
Listing 15.11.

LISTING 15.11 The Listview Item Wrapper

unit LVItem;

interface

uses
ComObj, ActiveX, ComCtrls, LVCtrl_TLB, StdVcl, AxCtrls;

Component-Based Development

PART IV
716

20 chpt_15.qxd 11/19/01 12:13 PM Page 716

LISTING 15.11 Continued

type
TListItem = class(TAutoIntfObject, IListItem)
private
FListItem: ComCtrls.TListItem;

protected
function Get_Caption: WideString; safecall;
function Get_Index: Integer; safecall;
function Get_SubItems: IStrings; safecall;
procedure Set_Caption(const Value: WideString); safecall;
procedure Set_SubItems(const Value: IStrings); safecall;
function Get_Checked: WordBool; safecall;
procedure Set_Checked(Value: WordBool); safecall;

public
constructor Create(AOwner: ComCtrls.TListItem);

end;

implementation

uses ComServ;

constructor TListItem.Create(AOwner: ComCtrls.TListItem);
begin
inherited Create(ComServer.TypeLib, IListItem);
FListItem := AOwner;

end;

function TListItem.Get_Caption: WideString;
begin
Result := FListItem.Caption;

end;

function TListItem.Get_Index: Integer;
begin
Result := FListItem.Index;

end;

function TListItem.Get_SubItems: IStrings;
begin
GetOleStrings(FListItem.SubItems, Result);

end;

procedure TListItem.Set_Caption(const Value: WideString);
begin
FListItem.Caption := Value;

end;

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
717

20 chpt_15.qxd 11/19/01 12:13 PM Page 717

LISTING 15.11 Continued

procedure TListItem.Set_SubItems(const Value: IStrings);
begin
SetOleStrings(FListItem.SubItems, Value);

end;

function TListItem.Get_Checked: WordBool;
begin
Result := FListItem.Checked;

end;

procedure TListItem.Set_Checked(Value: WordBool);
begin
FListItem.Checked := Value;

end;

end.

Note that ComCtrls.TListItem() is being passed into the constructor to serve as the listview
item to be manipulated by this Automation object.

The implementation for the ListItems collection object is just a bit more complex. First,
because the object must be able to provide an object supporting IEnumVARIANT in order to
implement the _NewEnum property, IEnumVARIANT is supported directly in this object. Therefore,
the TListItems class supports both IListItems and IEnumVARIANT. IEnumVARIANT contains
four methods, which are described in Table 15.1.

TABLE 15.1 IEnumVARIANT Methods

Method Purpose

Next Retrieves the next n number of items in the collection

Skip Skips over n items in the collection

Reset Resets current item back to the first item in the collection

Clone Creates a copy of this IEnumVARIANT

The source code for the unit containing the ListItems object is shown in Listing 15.12.

LISTING 15.12 The Listview Items Wrapper

unit LVItems;

interface

Component-Based Development

PART IV
718

20 chpt_15.qxd 11/19/01 12:13 PM Page 718

LISTING 15.12 Continued

uses
ComObj, Windows, ActiveX, ComCtrls, LVCtrl_TLB;

type
TListItems = class(TAutoIntfObject, IListItems, IEnumVARIANT)
private
FListItems: ComCtrls.TListItems;
FEnumPos: Integer;

protected
{ IListItems methods }
function Add: IListItem; safecall;
function Get_Count: Integer; safecall;
function Get_Item(Index: Integer): IListItem; safecall;
procedure Remove(Index: Integer); safecall;
function Get__NewEnum: IUnknown; safecall;
{ IEnumVariant methods }
function Next(celt: Longint; out elt; pceltFetched: PLongint): HResult;
stdcall;

function Skip(celt: Longint): HResult; stdcall;
function Reset: HResult; stdcall;
function Clone(out Enum: IEnumVariant): HResult; stdcall;

public
constructor Create(AOwner: ComCtrls.TListItems);

end;

implementation

uses ComServ, LVItem;

{ TListItems }

constructor TListItems.Create(AOwner: ComCtrls.TListItems);
begin
inherited Create(ComServer.TypeLib, IListItems);
FListItems := AOwner;

end;

{ TListItems.IListItems }

function TListItems.Add: IListItem;
begin
Result := LVItem.TListItem.Create(FListItems.Add);

end;

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
719

20 chpt_15.qxd 11/19/01 12:13 PM Page 719

LISTING 15.12 Continued

function TListItems.Get__NewEnum: IUnknown;
begin
Result := Self;

end;

function TListItems.Get_Count: Integer;
begin
Result := FListItems.Count;

end;

function TListItems.Get_Item(Index: Integer): IListItem;
begin
Result := LVItem.TListItem.Create(FListItems[Index]);

end;

procedure TListItems.Remove(Index: Integer);
begin
FListItems.Delete(Index);

end;

{ TListItems.IEnumVariant }

function TListItems.Clone(out Enum: IEnumVariant): HResult;
begin
Enum := nil;
Result := S_OK;
try
Enum := TListItems.Create(FListItems);

except
Result := E_OUTOFMEMORY;

end;
end;

function TListItems.Next(celt: Integer; out elt; pceltFetched: PLongint):
HResult;

var
V: OleVariant;
I: Integer;

begin
Result := S_FALSE;
try
if pceltFetched <> nil then pceltFetched^ := 0;
for I := 0 to celt - 1 do
begin
if FEnumPos >= FListItems.Count then Exit;

Component-Based Development

PART IV
720

20 chpt_15.qxd 11/19/01 12:13 PM Page 720

LISTING 15.12 Continued

V := Get_Item(FEnumPos);
TVariantArgList(elt)[I] := TVariantArg(V);
// trick to prevent variant from being garbage collected, since it needs
// to stay alive because it is party of the elt array
TVarData(V).VType := varEmpty;
TVarData(V).VInteger := 0;
Inc(FEnumPos);
if pceltFetched <> nil then Inc(pceltFetched^);

end;
except
end;
if (pceltFetched = nil) or ((pceltFetched <> nil) and
(pceltFetched^ = celt)) then
Result := S_OK;

end;

function TListItems.Reset: HResult;
begin
FEnumPos := 0;
Result := S_OK;

end;

function TListItems.Skip(celt: Integer): HResult;
begin
Inc(FEnumPos, celt);
Result := S_OK;

end;

end.

The only method in this unit with a nontrivial implementation is the Next() method. The celt
parameter of the Next() method indicates how many items should be retrieved. The elt para-
meter contains an array of TVarArgs with at least elt elements. Upon return, pceltFetched (if
not nil) should hold the actual number of items fetched. This method returns S_OK when the
number of items returned is the same as the number requested; it returns S_FALSE otherwise.
The logic for this method iterates over the array in elt and assigns a TVarArg representing a
collection item to an element of the array. Note the little trick we’re performing to clear out the
OleVariant after assigning it to the array. This ensures that the array won’t be garbage col-
lected. Were we not to do this, the contents of elt could potentially become stale if the objects
referenced by V are freed when the OleVariant is finalized.

Similar to TListItem, the constructor for TListItems takes ComCtrls.TListItems as a para-
meter and manipulates that object in the implementation of its methods.

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
721

20 chpt_15.qxd 11/19/01 12:13 PM Page 721

Finally, we complete the implementation of the ActiveX control by adding the logic to manage
the Items property. First, we must add a field to the object to hold the collection:

type
TListViewX = class(TActiveXControl, IListViewX)
private
...
FItems: IListItems;
...

end;

Next, we assign FItems to a new TListItems instance in the InitializeControl() method:

FItems := LVItems.TListItems.Create(FDelphiControl.Items);

Last, the Get_Items() method can be implemented to simply return FItems:

function TListViewX.Get_Items: IListItems;
begin
Result := FItems;

end;

The real test to see whether this collection works is to load the control in Visual Basic 6 and
try to use the For Each construct with the collection. Figure 15.16 shows a simple VB test
application running.

Component-Based Development

PART IV
722

FIGURE 15.16
A Visual Basic application to test our collection.

Of the two command buttons you see in Figure 15.16, Command1 adds items to the listview,
whereas Command2 iterates over all the items in the listview using For Each and adds exclama-
tion points to each caption. The code for these methods is shown here:

Private Sub Command1_Click()
ListViewX1.Items.Add.Caption = “Delphi”

End Sub

20 chpt_15.qxd 11/19/01 12:13 PM Page 722

Private Sub Command2_Click()
Dim Item As ListItem
Set Items = ListViewX1.Items
For Each Item In Items
Item.Caption = Item.Caption + “ Rules!!”
Next

End Sub

Despite the feelings that some of the Delphi faithful have toward VB, we must remember that
VB is the primary consumer of ActiveX controls, and it’s very important to ensure that our
controls function properly in that environment.

Collections provide powerful functionality that can enable your controls and Automation
servers to function more smoothly in the world of COM. Because collections are terribly diffi-
cult to implement, it’s worth your while to get in the habit of using them when appropriate.
Unfortunately, once you become comfortable with collections, it’s very likely that someone
will soon come along and create yet a newer and better container object for COM.

New Interface Types in the Type Library
As every well-behaved Delphi developer should, we’ve used the type library editor to define
new interfaces for our Automation objects. However, it’s not unusual to occasionally run into a
situation whereby one of the methods for a new interface includes a parameter of a COM inter-
face type that isn’t supported by default in the type library editor. Because the type library edi-
tor doesn’t let you work with types that it doesn’t know about, how do you complete such a
method definition?

Before this is explained, it’s important that you understand why the type library editor behaves
the way it does. If you create a new method in the type library editor and take a look at the
types available in the Type column of the Parameters page, you’ll see a number of interfaces,
including IDataBroker, IDispatch, IEnumVARIANT, IFont, IPicture, IProvider, IStrings,
and IUnknown. Why are these the only interfaces available? What makes them so special?
They’re not special, really—they just happen to be types defined in type libraries that are used
by this type library. By default, a Delphi type library automatically uses the Borland Standard
VCL type library and the OLE Automation type library. You can configure which type libraries
are used by your type library by selecting the root node in the tree view in the left pane of the
type library editor and choosing the Uses tab in the page control in the right pane. The types
contained in the type libraries used by your type library will automatically become available in
the drop-down list shown in the type library editor.

Armed with this knowledge, you’ve probably already figured out that if the interface you want
to use as the method parameter in question is defined in a type library, you can simply use that
type library, and the problem is solved. But what if the interface isn’t defined in a type library?

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
723

20 chpt_15.qxd 11/19/01 12:13 PM Page 723

There are certainly quite a few COM interfaces that are defined only by SDK in header or IDL
files and aren’t found in type libraries. If this is the case, the best course is to define the method
parameter as being of type IUnknown. This IUnknown can be QueryInterfaced in your method
implementation for the specific interface type you want to work with. You should also be sure
to document this method parameter as an IUnknown that must support the appropriate interface.
The following code shows an example of how such a method could be implemented:

procedure TSomeClass.SomeMethod(SomeParam: IUnknown);
var
Intf: ISomeComInterface;

begin
Intf := SomeParam as ISomeComInterface;
// remainder of method implementation

end;

You should also be aware of the fact that the interface to which you cast the IUnknown must be
an interface that COM knows how to marshal. This means that it must either be defined in a
type library somewhere, must be a type compatible with the standard Automation marshaler,
or the COM server in question must provide a proxy/stub DLL capable of marshaling the
interface.

Exchanging Binary Data
Occasionally you might want to exchange a block of binary data between an Automation client
and server. Because COM doesn’t support the exchange of raw pointers, you can’t simply pass
pointers around. However, the solution isn’t much more difficult than that. The easiest way to
exchange binary data between Automation clients and servers is to use safearrays of bytes.
Delphi encapsulates safearrays nicely in OleVariants. The admittedly contrived example
shown in Listings 15.13 and 15.14 depicts client and server units that use memo text to demon-
strate how to transfer binary data using safearrays of bytes.

LISTING 15.13 The Server Unit

unit ServObj;

interface

uses
ComObj, ActiveX, Server_TLB;

type
TBinaryData = class(TAutoObject, IBinaryData)
protected
function Get_Data: OleVariant; safecall;

Component-Based Development

PART IV
724

20 chpt_15.qxd 11/19/01 12:13 PM Page 724

LISTING 15.13 Continued

procedure Set_Data(Value: OleVariant); safecall;
end;

implementation

uses ComServ, ServMain;

function TBinaryData.Get_Data: OleVariant;
var
P: Pointer;
L: Integer;

begin
// Move data from memo into array
L := Length(MainForm.Memo.Text);
Result := VarArrayCreate([0, L - 1], varByte);
P := VarArrayLock(Result);
try
Move(MainForm.Memo.Text[1], P^, L);

finally
VarArrayUnlock(Result);

end;
end;

procedure TBinaryData.Set_Data(Value: OleVariant);
var
P: Pointer;
L: Integer;
S: string;

begin
// Move data from array into memo
L := VarArrayHighBound(Value, 1) - VarArrayLowBound(Value, 1) + 1;
SetLength(S, L);
P := VarArrayLock(Value);
try
Move(P^, S[1], L);

finally
VarArrayUnlock(Value);

end;
MainForm.Memo.Text := S;

end;

initialization
TAutoObjectFactory.Create(ComServer, TBinaryData, Class_BinaryData,
ciSingleInstance, tmApartment);

end.

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
725

20 chpt_15.qxd 11/19/01 12:13 PM Page 725

LISTING 15.14 The Client Unit

unit CliMain;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls, Server_TLB;

type
TMainForm = class(TForm)
Memo: TMemo;
Panel1: TPanel;
SetButton: TButton;
GetButton: TButton;
OpenButton: TButton;
OpenDialog: TOpenDialog;
procedure OpenButtonClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure SetButtonClick(Sender: TObject);
procedure GetButtonClick(Sender: TObject);

private
FServer: IBinaryData;

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.FormCreate(Sender: TObject);
begin
FServer := CoBinaryData.Create;

end;

procedure TMainForm.OpenButtonClick(Sender: TObject);
begin
if OpenDialog.Execute then
Memo.Lines.LoadFromFile(OpenDialog.FileName);

end;

procedure TMainForm.SetButtonClick(Sender: TObject);
var
P: Pointer;

Component-Based Development

PART IV
726

20 chpt_15.qxd 11/19/01 12:13 PM Page 726

LISTING 15.14 Continued

L: Integer;
V: OleVariant;

begin
// Send memo data to server
L := Length(Memo.Text);
V := VarArrayCreate([0, L - 1], varByte);
P := VarArrayLock(V);
try
Move(Memo.Text[1], P^, L);

finally
VarArrayUnlock(V);

end;
FServer.Data := V;

end;

procedure TMainForm.GetButtonClick(Sender: TObject);
var
P: Pointer;
L: Integer;
S: string;
V: OleVariant;

begin
// Get server’s memo data
V := FServer.Data;
L := VarArrayHighBound(V, 1) - VarArrayLowBound(V, 1) + 1;
SetLength(S, L);
P := VarArrayLock(V);
try
Move(P^, S[1], L);

finally
VarArrayUnlock(V);

end;
Memo.Text := S;

end;

end.

Behind the Scenes: Language Support for COM
One thing often heard when folks talk about COM development in Delphi is what great lan-
guage support Object Pascal provides for COM. (You won’t get any static from us on that
point.) With features such as interfaces, variants, and wide strings built right into the language,
it’s hardly a point to be argued. However, what does it mean to have these things built into the

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
727

20 chpt_15.qxd 11/19/01 12:13 PM Page 727

language? How do these features work, and what’s the nature of their dependence on the COM
APIs? In this section, we’ll take a low-level look at how all the pieces fit together to form
Object Pascal’s COM support and dig into some of the implementation details of the language
features.

As I mentioned, Object Pascal’s COM language features can basically be summed up into
three categories:

• Variant and OleVariant, which encapsulate COM’s variant record, safearrays, and late-
bound Automation.

• WideString, which encapsulates COM’s BSTR.

• Interface and dispinterface, which encapsulate COM interfaces and early- and
ID-bound Automation.

You crusty old OLE developers from the Delphi 2 days might have noticed the automated
reserved word, although which late-bound Automation servers could be created is conveniently
ignored. Because this feature was superceded by the “real” Automation support first introduced
in Delphi 3 and remains only for backward compatibility, it won’t be discussed here.

Variants
Variants are the oldest form of COM support in Delphi, dating back to Delphi 2. As you likely
already know, a Variant is really just a big record that’s used to pass around some bit of data
that can be any one of a number of types. If you’re interested in what this record looks like, it’s
defined in the System unit as TVarData:

type
PVarData = ^TVarData;
TVarData = record
VType: Word;
Reserved1, Reserved2, Reserved3: Word;
case Integer of
varSmallint: (VSmallint: Smallint);
varInteger: (VInteger: Integer);
varSingle: (VSingle: Single);
varDouble: (VDouble: Double);
varCurrency: (VCurrency: Currency);
varDate: (VDate: Double);
varOleStr: (VOleStr: PWideChar);
varDispatch: (VDispatch: Pointer);
varError: (VError: LongWord);
varBoolean: (VBoolean: WordBool);
varUnknown: (VUnknown: Pointer);
varByte: (VByte: Byte);
varString: (VString: Pointer);

Component-Based Development

PART IV
728

20 chpt_15.qxd 11/19/01 12:13 PM Page 728

varAny: (VAny: Pointer);
varArray: (VArray: PVarArray);
varByRef: (VPointer: Pointer);

end;

The value of the VType field of this record indicates the type of data contained in the Variant,
and it can be any of the variant type codes found at the top of the System unit and listed in
the variant portion of this record (within the case statement). The only difference between
Variant and OleVariant is that Variant supports all the type codes, whereas OleVariant
only supports those types compatible in Automation. For example, an attempt to assign a
Pascal string (varString) to a Variant is an acceptable practice, but assigning the same
string to an OleVariant will cause it to be converted to an Automation-compatible WideString
(varOleStr).

When you work with the Variant and OleVariant types, what the compiler is really manipu-
lating and passing around is instances of this TVarData record. In fact, you can safely typecast
a Variant or OleVariant to a TVarData if you for some reason need to manipulate the innards
of the record (although we don’t recommend this practice unless you really know what you’re
doing).

In the harsh world of COM programming in C and C++ (without a class framework such as
Microsoft’s Active Template Library), variants are represented with the VARIANT struct defined
in oaidl.h. When working with variants in this environment, you have to manually initialize
and manage them using VariantXXX() API functions found in oleaut32.dll, such as
VariantInit(), VariantCopy(), VariantClear(), and so on. This makes working with vari-
ants in straight C and C++ a high-maintenance task.

With support for variants built into Object Pascal, the compiler generates the necessary calls to
the API’s variant-support routines automatically as you use instances of the Variant and
OleVariant types. This nicety in the language does saddle you with one bit of baggage you
should know about, however. If you inspect the import table of a “do-nothing” Delphi EXE
using a tool such as Borland’s TDUMP.EXE or Microsoft’s DUMPBIN.EXE, you’ll notice a few sus-
picious imports from oleaut32.dll: VariantChangeTypeEx(), VariantCopyInd(),
VariantCopy(), VariantClear(), and VariantInit(). What this means is that even in an
application in which you do not explicitly employ Variant or OleVariant types, your Delphi
EXE still has a dependence on these COM API functions in oleaut32.dll.

Variant Arrays
Variant arrays in Delphi are designed to encapsulate COM safearrays, which are a type of
record used to encapsulate an array of data in Automation. They’re called safe because they’re
self-describing; in addition to array data, the record contains information regarding the number
of dimensions, the size of an element, and the number of elements in the array. Variant arrays

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
729

20 chpt_15.qxd 11/19/01 12:13 PM Page 729

are created and managed in Delphi using the VarArrayXXX() functions and procedures found
in the System unit and documented in the online help. These functions and procedures are
essentially wrappers around the API’s SafeArrayXXX() functions. Once a Variant contains a
variant array, standard array subscript syntax is used to access array elements. Once again,
comparing this to manually coding safearrays as you would in C and C++, Object Pascal’s lan-
guage encapsulation is clean and much less cumbersome and error prone.

Late-Binding Automation
As you learned earlier in this chapter, Variant and OleVariant types enable you to write late-
binding Automation clients. (Late-binding means that functions are called at runtime using the
Invoke method of the IDispatch interface.) That’s all pretty easy to take at face value, but
the question is “Where’s the magic connection between calling a method of an Automation
server from a Variant and IDispatch.Invoke() somehow getting called with the right para-
meters?” The answer is more low tech than you might expect.

When a method call is made on a Variant or OleVariant containing an IDispatch, the com-
piler simply generates a call to the _DispInvoke helper function declared in the System unit,
which jumps to a function pointer called VarDispProc. By default, the VarDispProc pointer is
assigned to a method that simply returns an error when it’s called. However, if you include the
ComObj unit in your uses clause, the initialization section for the ComObj unit redirects
VarDispProc to another method with a line of code that looks like this:

VarDispProc := @VarDispInvoke;

VarDispInvoke is a procedure in the ComObj unit with the following declaration:

procedure VarDispInvoke(Result: PVariant; const Instance: Variant;
CallDesc: PCallDesc; Params: Pointer); cdecl;

The implementation of the procedure handles the complexity of calling
IDispatch.GetIDsOfNames() to obtain a DispID from the method name, setting up the para-
meters correctly, and making the call to IDispatch.Invoke(). What’s interesting about this is
that the compiler in this instance doesn’t have any inherent knowledge of IDispatch or how
the Invoke() call is made; it simply passes a bunch of stuff through a function pointer. Also
interesting is the fact that because of this architecture, you could reroute this function pointer
to your own procedure if you wanted to handle all Automation calls through Variant and
OleVariant types yourself. You would only have to ensure that your function declaration
matched that of VarDispInvoke. Certainly, this would be a task reserved for experts, but it’s
interesting to know that the flexibility is there when you need it.

WideString
The WideString data type was added in Delphi 3 to serve the dual purpose of providing a
native double-byte, Unicode character string and a character string compatible with the COM
BSTR string. The WideString type differs from its cousin AnsiString in a few keys respects:

Component-Based Development

PART IV
730

20 chpt_15.qxd 11/19/01 12:13 PM Page 730

• The characters comprising a WideString string are all two bytes in size.

• WideString types are always allocated using SysAllocStringLen() and therefore are
fully compatible with BSTRs.

• WideString types are never reference-counted and therefore are always copied on
assignment.

Like variants, BSTRs can be cumbersome to work with using standard API functions, so the
native Object Pascal support via WideString is certainly a welcome language addition.
However, because they consume twice the memory and aren’t reference-counted, they are much
more inefficient than AnsiStrings, and you should therefore be judicious about their use.

Like the Pascal Variant, WideString causes a number of functions to be imported from
oleaut32.dll. Inspecting the import table of a Delphi application that employs WideStrings
reveals that functions such as SysStringLen(), SysFreeString(), SysReAllocStringLen(),
and SysAllocStringLen() are all pulled in by the Delphi RTL in order to provide WideString

support.

Interfaces
Perhaps the most important big-ticket COM feature in the Object Pascal language is the
native support for interfaces. Somewhat ironically, although arguably smaller features such as
Variants and WideStrings pull in functions from the COM API for implementation, Object
Pascal’s implementation of interfaces doesn’t require COM at all. That is, Object Pascal pro-
vides a completely self-contained implementation of interfaces that adheres to the COM speci-
fication, but it doesn’t necessarily require any COM API functions.

As a part of adhering to the COM spec, all interfaces in Delphi implicitly descend from
IUnknown. As you might know, IUnknown provides the identity and reference-counting support
that’s the root of COM. This means that knowledge of IUnknown is built into the compiler, and
IUnknown is defined in the System unit. By making IUnknown a first-class citizen in the lan-
guage, Delphi is able to provide the automatic reference counting by having the compiler gen-
erate the calls to IUnknown.AddRef() and IUnknown.Release() at the appropriate times.
Additionally, the as operator can be used as a shortcut for interface identity normally obtained
via QueryInterface(). The root support for IUnknown, however, is almost incidental when you
consider the low-level support that the language and compiler provide for interfaces in general.

Figure 15.17 shows a simplified diagram of how classes internally support interfaces. A Delphi
object is really a reference that points to the physical instance. The first four bytes of an object
instance are a pointer to the object’s virtual method table (VMT). At a positive offset from the
VMT are all the object’s virtual methods. At a negative offset are pointers to methods and data
that are important to the internal function of the object. In particular, offset -72 from the VMT

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
731

20 chpt_15.qxd 11/19/01 3:30 PM Page 731

contains a pointer to the object’s interface table. The interface table is a list of
PInterfaceEntry records (defined in the System unit) that essentially contain the IID and
information on where to find the vtable pointer for that IID.

Component-Based Development

PART IV
732

Object

VMT

Instance
Data

Object
Instance

Interface
Table

GUID

GUID

GUID

GUID

GUID

VTable

VTable

VTable

VTable

VTable

Intf Table

Virtual
Methods

Internal
Methods
and Data

Virtual
Method
Table

0

–72

Via
implements

Gets
VTable
from

Method
or Field

VTable

FIGURE 15.17
How interfaces are supported internally in Object Pascal.

After you have a moment to reflect on the diagram in Figure 15.17 and understand how things
are put together, the details surrounding the implementation of interfaces just kind of fall into
place. For example, QueryInterface() is normally implemented on Object Pascal objects by
calling TObject.GetInterface(). GetInterface() walks the interface table looking for the IID
in question and returns the vtable pointer for that interface. This also illustrates why new inter-
face types must be defined with a GUID; otherwise, there would be no way for GetInterface()
to walk the interface table, and therefore there would be no identity via QueryInterface().
Typecasting of interfaces using the as operator simply generates a call to QueryInterface(), so
the same rules apply there.

The last entry in the interface table in Figure 15.17 illustrates how an interface is implemented
internally using the implements directive. Rather than providing a direct pointer for the vtable,
the interface table entry provides the address of a little compiler-generated getter function that
gets the interface vtable from the property upon which the implements directive was used.

Dispinterfaces
A dispinterface provides an encapsulation of a non–dual IDispatch. That is, an IDispatch in
which methods can be called via Invoke() but not via a vtable. In this respect, a dispinterface
is similar to Automation with variants. However, dispinterfaces are slightly more efficient than
variants because dispinterface declarations contain the DispID for each of the properties or
methods supported. This means that IDispatch.Invoke() can be called directly without first

20 chpt_15.qxd 11/19/01 3:30 PM Page 732

calling IDispatch.GetIDsOfNames(), as must be done with a variant. The mechanism behind
dispinterfaces is similar to that of variants: When you call a method via a dispinterface, the
compiler generates a call to _IntfDispCall in the System unit. This method jumps through the
DispCallByIDProc pointer, which by default only returns an error. However, when the ComObj
unit is included, DispCallByIDProc is routed to the DispCallByID() procedure, which is
declared in ComObj as follows:

procedure DispCallByID(Result: Pointer; const Dispatch: IDispatch;
DispDesc: PDispDesc; Params: Pointer); cdecl;

TOleContainer
Now that you have some ActiveX OLE background under your belt, take a look at Delphi’s
TOleContainer class. TOleContainer is located in the OleCntrs unit, and it encapsulates the
complexities of an OLE Document and ActiveX Document container into an easily digestible
VCL component.

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
733

If you were familiar with using Delphi 1.0’s TOleContainer component, you can pretty
much throw that knowledge out the window. The 32-bit version of this component
was redesigned from the ground up (as they say in the car commercials), so any
knowledge you have of the 16-bit version of this component might not be applicable
to the 32-bit version. Don’t let that scare you, though; the 32-bit version of this com-
ponent is of a much cleaner design, and you’ll find that the code you must write to
support the object is perhaps a quarter of what it used to be.

NOTE

A Small Sample Application
Now let’s jump right in and create an OLE container application. Create a new project and
drop a TOleContainer object (found on the System page of the Component Palette) on the
form. Right-click the object in the Form Designer and select Insert Object from the local menu.
This invokes the Insert Object dialog box, as shown in Figure 15.18.

Embedding a New OLE Object
By default, the Insert Object dialog box contains the names of OLE server applications regis-
tered with Windows. To embed a new OLE object, you can select a server application from
the Object Type list box. This causes the OLE server to execute in order to create a new
OLE object to be inserted into TOleContainer. When you close the server application, the
TOleContainer object is updated with the embedded object. For this example, we’ll create a
new MS Word 2000 document, as shown in Figure 15.19.

20 chpt_15.qxd 11/19/01 12:13 PM Page 733

FIGURE 15.18
The Insert Object dialog box.

Component-Based Development

PART IV
734

FIGURE 15.19
An embedded MS Word 2000 document.

An OLE object won’t activate in place at design time. You’ll only be able to take
advantage of the in-place activation capability of TOleContainer at runtime.

NOTE

If you want to invoke the Insert Object dialog box at runtime, you can call the
InsertObjectDialog() method of TOleContainer, which is defined as follows:

function InsertObjectDialog: Boolean;

This function returns True if a new type of OLE object was successfully chosen from the dia-
log box.

20 chpt_15.qxd 11/19/01 12:13 PM Page 734

Embedding or Linking an Existing OLE File
To embed an existing OLE file into the TOleContainer, select the Create From File radio but-
ton on the Insert Object dialog box. This enables you to pick an existing file, as shown in
Figure 15.20. After you choose the file, it behaves much the same as a new OLE object.

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
735

FIGURE 15.20
Inserting an object from a file.

To embed a file at runtime, call the CreateObjectFromFile() method of TOleContainer,
which is defined as follows:

procedure CreateObjectFromFile(const FileName: string; Iconic: Boolean);

To link (rather than embed) the OLE object, simply check the Link check box in the Insert
Object dialog box shown in Figure 15.20. As described earlier, this creates a link from your
application to the OLE file so that you can edit and view the same linked object from multiple
applications.

To link to a file at runtime, call the CreateLinkToFile() method of TOleContainer, which is
defined as follows:

procedure CreateLinkToFile(const FileName: string; Iconic: Boolean);

A Bigger Sample Application
Now that you have the basics of OLE and the TOleContainer class behind you, we’ll create a
more sizable application that truly reflects the usage of OLE in realistic applications.

Start by creating a new project based on the MDI application template. The main form makes
only a few modifications to the standard MDI template, and it’s shown in Figure 15.21.

The MDI child form is shown in Figure 15.22. It’s simply an fsMDIChild-style form with a
TOleContainer component aligned to alClient.

20 chpt_15.qxd 11/19/01 12:13 PM Page 735

FIGURE 15.21
The MDI OLE Demo main window.

Component-Based Development

PART IV
736

FIGURE 15.22
The MDI OLE Demo child window.

Listing 15.15 shows ChildWin.pas, the source code unit for the MDI child form. Note that this
unit is fairly standard except for the addition of the OLEFileName property and the associated
method and private instance variable. This property stores the path and filename of the OLE
file, and the property accessor sets the child form’s caption to the filename.

LISTING 15.15 The Source Code for ChildWin.pas

unit Childwin;

interface

uses WinTypes, WinProcs, Classes, Graphics, Forms, Controls, OleCtnrs;

type
TMDIChild = class(TForm)
OleContainer: TOleContainer;
procedure FormClose(Sender: TObject; var Action: TCloseAction);

private
FOLEFilename: String;
procedure SetOLEFileName(const Value: String);

20 chpt_15.qxd 11/19/01 12:13 PM Page 736

LISTING 15.15 Continued

public
property OLEFileName: String read FOLEFileName write SetOLEFileName;

end;

implementation

{$R *.DFM}

uses Main, SysUtils;

procedure TMDIChild.SetOLEFileName(const Value: String);
begin
if Value <> FOLEFileName then begin
FOLEFileName := Value;
Caption := ExtractFileName(FOLEFileName);

end;
end;

procedure TMDIChild.FormClose(Sender: TObject; var Action: TCloseAction);
begin
Action := caFree;

end;

end.

Creating a Child Form
When a new MDI child form is created from the File, New menu of the MDI OLE Demo
application, the Insert Object dialog box is invoked using the InsertObjectDialog() method
mentioned earlier. Additionally, a caption is assigned to the MDI child form using a global
variable called NumChildren to provide a unique number. The following code shows the main
form’s CreateMDIChild() method:

procedure TMainForm.FileNewItemClick(Sender: TObject);
begin
inc(NumChildren);
{ create a new MDI child window }
with TMDIChild.Create(Application) do
begin
Caption := ‘Untitled’ + IntToStr(NumChildren);
{ bring up insert OLE object dialog and insert into child }
OleContainer.InsertObjectDialog;

end;
end;

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
737

20 chpt_15.qxd 11/19/01 12:13 PM Page 737

Saving to and Reading from Files
As discussed earlier in this chapter, OLE objects lend themselves to the capability of being
written to and read from streams and, therefore, files. The TOleContainer component has the
methods SaveToStream(), LoadFromStream(), SaveToFile(), and LoadFromFile(), which
make saving an OLE object out to a file or stream very easy.

The MDIOLE application’s main form contains methods for saving and opening OLE object
files. The following code shows the FileOpenItemClick() method, which is called in response
to choosing File, Open from the main form. In addition to loading a saved OLE object from a
file specified by OpenDialog, this method also assigns the OleFileName field of the TMDIChild
instance to the filename provided by OpenDialog. If an error occurs loading the file, the form
instance is freed. Here’s the code:

procedure TMainForm.FileOpenItemClick(Sender: TObject);
begin
if OpenDialog.Execute then
with TMDIChild.Create(Application) do
begin
try
OleFileName := OpenDialog.FileName;
OleContainer.LoadFromFile(OleFileName);
Show;

except
Release; // free form on error
raise; // reraise exception

end;
end;

end;

The following code handles the File, Save As and File, Save menu items. Note that the
FileSaveItemClick() method invokes FileSaveAsItemClick() when the active MDI child
doesn’t have a name specified. Here’s the code:

procedure TMainForm.FileSaveAsItemClick(Sender: TObject);
begin
if (ActiveMDIChild <> Nil) and (SaveDialog.Execute) then
with TMDIChild(ActiveMDIChild) do
begin
OleFileName := SaveDialog.FileName;
OleContainer.SaveToFile(OleFileName);

end;
end;

procedure TMainForm.FileSaveItemClick(Sender: TObject);
begin
if ActiveMDIChild <> Nil then

Component-Based Development

PART IV
738

20 chpt_15.qxd 11/19/01 12:13 PM Page 738

{ if no name is assigned, then do a “save as” }
if TMDIChild(ActiveMDIChild).OLEFileName = ‘’ then
FileSaveAsItemClick(Sender)

else
{ otherwise save under current name }
with TMDIChild(ActiveMDIChild) do
OleContainer.SaveToFile(OLEFileName);

end;

Using the Clipboard to Copy and Paste
Thanks to the universal data-transfer mechanism described earlier, it’s also possible to use the
Windows Clipboard to transfer OLE objects. Again, the TOleContainer component automates
these tasks to a great degree.

Copying an OLE object from a TOleContainer to the Clipboard, in particular, is a trivial task.
Simply call the Copy() method:

procedure TMainForm.CopyItemClick(Sender: TObject);
begin
if ActiveMDIChild <> Nil then
TMDIChild(ActiveMDIChild).OleContainer.Copy;

end;

After you think you have an OLE object on the Clipboard, only one additional step is required
to properly read it out into a TOleContainer component. Prior to attempting to paste the con-
tents of the Clipboard into a TOleContainer, you should first check the value of the CanPaste
property to ensure that the data on the Clipboard is a suitable OLE object. After that, you can
invoke the Paste Special dialog box to paste the object into the TOleContainer by calling its
PasteSpecialDialog() method, as shown in the following code (the Paste Special dialog box
is shown in Figure 15.23):

procedure TMainForm.PasteItemClick(Sender: TObject);
begin
if ActiveMDIChild <> nil then
with TMDIChild(ActiveMDIChild).OleContainer do
{ Before invoking dialog, check to be sure that there }
{ are valid OLE objects on the clipboard. }
if CanPaste then PasteSpecialDialog;

end;

When the application is run, the server controlling the OLE object in the active MDI child
merges with or takes control of the application’s menu and toolbar. Figures 15.24 and 15.25
show OLE’s in-place activation feature—the MDI OLE application is controlled by two differ-
ent OLE servers.

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
739

20 chpt_15.qxd 11/19/01 12:13 PM Page 739

FIGURE 15.23
The Paste Special dialog box.

Component-Based Development

PART IV
740

FIGURE 15.24
Editing an embedded Word 2000 document.

FIGURE 15.25
Editing an embedded Paint graphic.

20 chpt_15.qxd 11/19/01 12:13 PM Page 740

The complete listing for Main.pas, the MDI OLE application’s main unit, is shown in
Listing 15.16.

LISTING 15.16 The Source Code for Main.pas

unit Main;

interface

uses WinTypes, WinProcs, SysUtils, Classes, Graphics, Forms, Controls, Menus,
StdCtrls, Dialogs, Buttons, Messages, ExtCtrls, ChildWin, ComCtrls,
ToolWin;

type
TMainForm = class(TForm)
MainMenu1: TMainMenu;
File1: TMenuItem;
FileNewItem: TMenuItem;
FileOpenItem: TMenuItem;
FileCloseItem: TMenuItem;
Window1: TMenuItem;
Help1: TMenuItem;
N1: TMenuItem;
FileExitItem: TMenuItem;
WindowCascadeItem: TMenuItem;
WindowTileItem: TMenuItem;
WindowArrangeItem: TMenuItem;
HelpAboutItem: TMenuItem;
OpenDialog: TOpenDialog;
FileSaveItem: TMenuItem;
FileSaveAsItem: TMenuItem;
Edit1: TMenuItem;
PasteItem: TMenuItem;
WindowMinimizeItem: TMenuItem;
SaveDialog: TSaveDialog;
CopyItem: TMenuItem;
CloseAll1: TMenuItem;
StatusBar: TStatusBar;
CoolBar1: TCoolBar;
ToolBar1: TToolBar;
OpenBtn: TToolButton;
SaveBtn: TToolButton;
ToolButton3: TToolButton;
CopyBtn: TToolButton;
PasteBtn: TToolButton;
ToolButton6: TToolButton;

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
741

20 chpt_15.qxd 11/19/01 12:13 PM Page 741

LISTING 15.16 Continued

ExitBtn: TToolButton;
ImageList1: TImageList;
procedure FormCreate(Sender: TObject);
procedure FileNewItemClick(Sender: TObject);
procedure WindowCascadeItemClick(Sender: TObject);
procedure UpdateMenuItems(Sender: TObject);
procedure WindowTileItemClick(Sender: TObject);
procedure WindowArrangeItemClick(Sender: TObject);
procedure FileCloseItemClick(Sender: TObject);
procedure FileOpenItemClick(Sender: TObject);
procedure FileExitItemClick(Sender: TObject);
procedure FileSaveItemClick(Sender: TObject);
procedure FileSaveAsItemClick(Sender: TObject);
procedure PasteItemClick(Sender: TObject);
procedure WindowMinimizeItemClick(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure HelpAboutItemClick(Sender: TObject);
procedure CopyItemClick(Sender: TObject);
procedure CloseAll1Click(Sender: TObject);

private
procedure ShowHint(Sender: TObject);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

uses About;

var
NumChildren: Cardinal = 0;

procedure TMainForm.FormCreate(Sender: TObject);
begin
Application.OnHint := ShowHint;
Screen.OnActiveFormChange := UpdateMenuItems;

end;

procedure TMainForm.ShowHint(Sender: TObject);
begin
{ Show hints on status bar }

Component-Based Development

PART IV
742

20 chpt_15.qxd 11/19/01 12:13 PM Page 742

LISTING 15.16 Continued

StatusBar.Panels[0].Text := Application.Hint;
end;

procedure TMainForm.FileNewItemClick(Sender: TObject);
begin
inc(NumChildren);
{ create a new MDI child window }
with TMDIChild.Create(Application) do
begin
Caption := ‘Untitled’ + IntToStr(NumChildren);
{ bring up insert OLE object dialog and insert into child }
OleContainer.InsertObjectDialog;

end;
end;

procedure TMainForm.FileOpenItemClick(Sender: TObject);
begin
if OpenDialog.Execute then
with TMDIChild.Create(Application) do
begin
try
OleFileName := OpenDialog.FileName;
OleContainer.LoadFromFile(OleFileName);
Show;

except
Release; // free form on error
raise; // reraise exception

end;
end;

end;

procedure TMainForm.FileCloseItemClick(Sender: TObject);
begin
if ActiveMDIChild <> nil then
ActiveMDIChild.Close;

end;

procedure TMainForm.FileSaveAsItemClick(Sender: TObject);
begin
if (ActiveMDIChild <> nil) and (SaveDialog.Execute) then
with TMDIChild(ActiveMDIChild) do
begin
OleFileName := SaveDialog.FileName;
OleContainer.SaveToFile(OleFileName);

end;
end;

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
743

20 chpt_15.qxd 11/19/01 12:13 PM Page 743

LISTING 15.16 Continued

procedure TMainForm.FileSaveItemClick(Sender: TObject);
begin
if ActiveMDIChild <> nil then
{ if no name is assigned, then do a “save as” }
if TMDIChild(ActiveMDIChild).OLEFileName = ‘’ then
FileSaveAsItemClick(Sender)

else
{ otherwise save under current name }
with TMDIChild(ActiveMDIChild) do
OleContainer.SaveToFile(OLEFileName);

end;

procedure TMainForm.FileExitItemClick(Sender: TObject);
begin
Close;

end;

procedure TMainForm.PasteItemClick(Sender: TObject);
begin
if ActiveMDIChild <> nil then
with TMDIChild(ActiveMDIChild).OleContainer do
{ Before invoking dialog, check to be sure that there }
{ are valid OLE objects on the clipboard. }
if CanPaste then PasteSpecialDialog;

end;

procedure TMainForm.WindowCascadeItemClick(Sender: TObject);
begin
Cascade;

end;

procedure TMainForm.WindowTileItemClick(Sender: TObject);
begin
Tile;

end;

procedure TMainForm.WindowArrangeItemClick(Sender: TObject);
begin
ArrangeIcons;

end;

procedure TMainForm.WindowMinimizeItemClick(Sender: TObject);
var
I: Integer;

Component-Based Development

PART IV
744

20 chpt_15.qxd 11/19/01 12:13 PM Page 744

LISTING 15.16 Continued

begin
{ Must be done backwards through the MDIChildren array }
for I := MDIChildCount - 1 downto 0 do
MDIChildren[I].WindowState := wsMinimized;

end;

procedure TMainForm.UpdateMenuItems(Sender: TObject);
var
DoIt: Boolean;

begin
DoIt := MDIChildCount > 0;
{ only enable options if there are active children }
FileCloseItem.Enabled := DoIt;
FileSaveItem.Enabled := DoIt;
CloseAll1.Enabled := DoIt;
FileSaveAsItem.Enabled := DoIt;
CopyItem.Enabled := DoIt;
PasteItem.Enabled := DoIt;
CopyBtn.Enabled := DoIt;
SaveBtn.Enabled := DoIt;
PasteBtn.Enabled := DoIt;
WindowCascadeItem.Enabled := DoIt;
WindowTileItem.Enabled := DoIt;
WindowArrangeItem.Enabled := DoIt;
WindowMinimizeItem.Enabled := DoIt;

end;

procedure TMainForm.FormDestroy(Sender: TObject);
begin
Screen.OnActiveFormChange := nil;

end;

procedure TMainForm.HelpAboutItemClick(Sender: TObject);
begin
with TAboutBox.Create(Self) do
begin
ShowModal;
Free;

end;
end;

procedure TMainForm.CopyItemClick(Sender: TObject);
begin
if ActiveMDIChild <> nil then

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
745

20 chpt_15.qxd 11/19/01 12:13 PM Page 745

LISTING 15.16 Continued

TMDIChild(ActiveMDIChild).OleContainer.Copy;
end;

procedure TMainForm.CloseAll1Click(Sender: TObject);
begin
while ActiveMDIChild <> nil do
begin
ActiveMDIChild.Release; // use Release, not Free!
Application.ProcessMessages; // let Windows take care of business

end;
end;

end.

Summary
That wraps up this chapter on COM, OLE, and ActiveX. This chapter covers an enormous
amount of information! First, you received a solid foundation in COM-based technologies,
which should help you understand what goes on behind the scenes. Next, you got some insight
and information on various types of COM clients and servers. Following that, you were
immersed in various advanced techniques for Automation in Delphi. In addition to in-depth
coverage of COM and Automation, you should now be familiar with the workings of VCL’s
TOleContainer component.

If you’d like to know more about COM, you’ll find what you’re looking for in several other
areas of this book. Chapter 16 shows real-world examples of COM server creation, and
Chapter 18 discusses development with some of the more enterprise-targeted features of
COM+ in Delphi.

Component-Based Development

PART IV
746

20 chpt_15.qxd 11/19/01 12:13 PM Page 746

CHAPTER

16
Windows Shell Programming

IN THIS CHAPTER
• A Tray-Notification Icon Component 748

• Application Desktop Toolbars 764

• Shell Links 779

• Shell Extensions 799

21 chpt_16.qxd 11/19/01 12:09 PM Page 747

First introduced in Windows 95, the Windows shell is also supported on all subsequent
Windows versions (NT 3.51 and higher, 98, 2000, Me, and XP). A far cry from the old Program
Manger, the Windows shell includes some great features for extending the shell to meet your
needs. The problem is, many of these nifty extensible features are some of the most poorly doc-
umented subjects of Win32 development. This chapter is intended to give you the information
and examples you need to tap into shell features such as tray-notification icons, application
desktop toolbars, shell links, and shell extensions.

A Tray-Notification Icon Component
This section illustrates a technique for encapsulating the Windows shell tray-notification icon
cleanly into a Delphi component. As you build the component—called TTrayNotifyIcon—
you’ll learn about the API requirements for creating a tray-notification icon as well as how to
tackle some of the hairy problems you’ll come across as you work to embed all the icon’s
functionality within the component. If you’re unfamiliar with what a tray-notification icon is,
it’s one of those little icons that appear in the bottom-right corner of the Windows system
taskbar (assuming that your taskbar is aligned to the bottom of your screen), as shown in
Figure 16.1.

Component-Based Development

PART IV
748

Tray-notification icons

FIGURE 16.1
Tray-notification icons.

The API
Believe it or not, only one API call is involved in creating, modifying, and removing tray-noti-
fication icons from the notification tray. The function is called Shell_NotifyIcon().This and
other functions dealing with the Windows shell are contained in the ShellAPI unit.
Shell_NotifyIcon() is defined as follows:

function Shell_NotifyIcon(dwMessage: DWORD; lpData:
PNotifyIconData): BOOL; stdcall;

The dwMessage parameter describes the action to be taken for the icon. This can be any one of
the values shown in Table 16.1.

21 chpt_16.qxd 11/19/01 12:09 PM Page 748

TABLE 16.1 Values for the dwMessage Parameter

Constant Value Meaning

NIM_ADD 0 Adds an icon to the notification tray

NIM_MODIFY 1 Modifies the properties of an existing icon

NIM_DELETE 2 Removes an icon from the notification tray

The lpData parameter is a pointer to a TNotifyIconData record. This record is defined as
follows:

type
TNotifyIconData = record
cbSize: DWORD;
Wnd: HWND;
uID: UINT;
uFlags: UINT;
uCallbackMessage: UINT;
hIcon: HICON;
szTip: array [0..63] of AnsiChar;

end;

The cbSize field holds the size of the record, and it should be initialized to
SizeOf(TNotifyIconData).

Wnd is the handle of the window to which tray-notification “callback” messages should be sent.
(Callback is in quotes here because it’s not really a callback in the strict sense; however, the
Win32 documentation uses this terminology for messages sent to a window on behalf of a tray-
notification icon.)

uID is a programmer-defined unique ID number. If you have an application with several icons,
you’ll need to identify each one by a placing a different number in this field.

uFlags describes which of the fields of the TNotifyIconData record should be considered live
by the Shell_NotifyIcon() function, and, therefore, which of the icon properties are to be
affected by the action specified by the dwMessage parameter. This parameter can be any combi-
nation of the flags (using or to join them) shown in Table 16.2.

TABLE 16.2 Possible Flags to Be Included in uFlags

Constant Value Meaning

NIF_MESSAGE 0 The uCallbackMessage field is live.

NIF_ICON 2 The hIcon field is live.

NIF_TIP 4 The szTip field is live.

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
749

21 chpt_16.qxd 11/19/01 12:09 PM Page 749

uCallbackMessage contains the value of the Windows message to be sent to the window
identified by the Wnd field. Generally, the value of this field is obtained by calling
RegisterWindowMessage() or by using an offset from WM_USER. The lParam of this message
will be the same value as the uID field, and the wParam will hold the mouse message generated
over the notification icon.

hIcon identifies the handle to the icon that will be placed in the notification tray.

szTip holds a null-terminated string that will appear in the hint window displayed when the
mouse pointer is held above the notification icon.

The TTrayNotifyIcon component encapsulates the Shell_NotifyIcon() into a method called
SendTrayMessage(), which is shown here:

procedure TTrayNotifyIcon.SendTrayMessage(Msg: DWORD; Flags: UINT);
{ This method wraps up the call to the API’s Shell_NotifyIcon }
begin
{ Fill up record with appropriate values }
with Tnd do
begin
cbSize := SizeOf(Tnd);
StrPLCopy(szTip, PChar(FHint), SizeOf(szTip));
uFlags := Flags;
uID := UINT(Self);
Wnd := IconMgr.HWindow;
uCallbackMessage := Tray_Callback;
hIcon := ActiveIconHandle;

end;
Shell_NotifyIcon(Msg, @Tnd);

end;

In this method, szTip is copied from a private string field called FHint.

uID is used to hold a reference to Self. Because this data will be included in subsequent notifi-
cation tray messages, correlating notification tray messages for multiple icons to individual
components will be easy.

Wnd is assigned the value of IconMgr.HWindow. IconMgr is a global variable of type TIconMgr.
You’ll see the implementation of this object in a moment, but for now you only need know that
it’s through this component that all notification tray messages will be sent.

uCallbackMessage is assigned from DDGM_TRAYICON. DDGM_TRAYICON obtains its value from the
RegisterWindowMessage() API function. This ensures that DDGM_TRAYICON is a systemwide
unique message ID. The following code accomplishes this task:

const
{ String to identify registered window message }

Component-Based Development

PART IV
750

21 chpt_16.qxd 11/19/01 12:09 PM Page 750

TrayMsgStr = ‘DDG.TrayNotifyIconMsg’;

initialization
{ Get a unique windows message ID for tray callback }
DDGM_TRAYICON := RegisterWindowMessage(TrayMsgStr);

hIcon takes on the return value provided by the ActiveIconHandle() method. This method
returns the handle for the icon currently selected in the component’s Icon property.

Handling Messages
We mentioned earlier that all notification tray messages are sent to a window maintained by
the global IconMgr object. This object is constructed and freed in the initialization and
finalization sections of the component’s unit, as shown here:

initialization
{ Get a unique windows message ID for tray callback }
DDGM_TRAYICON := RegisterWindowMessage(TrayMsgStr);
IconMgr := TIconManager.Create;

finalization
IconMgr.Free;

This object is fairly small. Here’s its definition:

type
TIconManager = class
private
FHWindow: HWnd;
procedure TrayWndProc(var Message: TMessage);

public
constructor Create;
destructor Destroy; override;
property HWindow: HWnd read FHWindow write FHWindow;

end;

The window to which notification tray messages will be sent is created in the constructor for
this object using the AllocateHWnd() function:

constructor TIconManager.Create;
begin
FHWindow := AllocateHWnd(TrayWndProc);

end;

The TrayWndProc() method serves as the window procedure for the window created in the
constructor. More about this method will be discussed in a moment.

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
751

21 chpt_16.qxd 11/19/01 12:09 PM Page 751

Icons and Hints
The most straightforward way to surface icons and hints for the component’s end user is
through properties. Additionally, creating an Icon property of type TIcon means that it can
automatically take advantage of Delphi’s property editor for icons, which is a nice touch.
Because the tray icon is visible even at design time, you need to ensure that the icon and tip
can change dynamically. Doing this really isn’t a lot of extra work; it’s just a matter of making
sure that the SendTrayMessage() method is called (using the NIM_MODIFY message) in the
write method of the Hint and Icon properties.

Here are the write methods for those properties:

procedure TTrayNotifyIcon.SetIcon(Value: TIcon);
{ Write method for Icon property. }
begin
FIcon.Assign(Value); // set new icon
if FIconVisible then
{ Change icon on notification tray }
SendTrayMessage(NIM_MODIFY, NIF_ICON);

end;

procedure TTrayNotifyIcon.SetHint(Value: String);
{ Set method for Hint property }
begin
if FHint <> Value then
begin
FHint := Value;
if FIconVisible then
{ Change hint on icon on notification tray }
SendTrayMessage(NIM_MODIFY, NIF_TIP);

end;
end;

Mouse Clicks
One of the most challenging parts of this component is ensuring that the mouse clicks are han-
dled properly. You might have noticed that many tray-notification icons perform three different
actions because of mouse clicks:

• Brings up a window on a single-click

• Brings up a different window (usually a properties sheet) on a double-click

• Invokes a local menu with a right-click

The challenge comes in creating an event that represents the double-click without also firing
the single-click event.

Component-Based Development

PART IV
752

21 chpt_16.qxd 11/19/01 12:09 PM Page 752

In Windows message terms, when the user double-clicks with the left mouse button, the win-
dow with focus will receive both the WM_LBUTTONDOWN message and the WM_LBUTTONDBLCLK
message. In order to allow a double-click message to be processed independently of a single-
click, some mechanism is required to delay the handling of the single-click message long
enough to ensure that a double-click message isn’t forthcoming.

The amount of time to wait before you can be sure that a WM_LBUTTONDBLCLK message isn’t fol-
lowing a WM_LBUTTONDOWN message is actually pretty easy to determine. The API function
GetDoubleClickTime(), which takes no parameters, returns the maximum amount of time (in
milliseconds) that the Control Panel will allow between the two clicks of a double-click. The
obvious choice for a mechanism to allow you to wait the number of milliseconds specified by
GetDoubleClickTime() to ensure that a double-click isn’t following a click is the TTimer com-
ponent. Therefore, a TTimer component is created and initialized in the TTrayNotifyIcon
component’s constructor with the following code:

FTimer := TTimer.Create(Self);
with FTimer do
begin
Enabled := False;
Interval := GetDoubleClickTime;
OnTimer := OnButtonTimer;

end;

OnButtonTimer() is a method that will be called when the timer interval expires. We’ll show
you this method in just a moment.

Earlier, we mentioned that notification tray messages are filtered through the TrayWndProc()
method of the IconMgr. Now it’s time to spring this method on you, so here it is:

procedure TIconManager.TrayWndProc(var Message: TMessage);
{ This allows us to handle all tray callback messages }
{ from within the context of the component. }
var
Pt: TPoint;
TheIcon: TTrayNotifyIcon;

begin
with Message do
begin
{ if it’s the tray callback message }
if (Msg = DDGM_TRAYICON) then
begin
TheIcon := TTrayNotifyIcon(WParam);
case lParam of
{ enable timer on first mouse down. }
{ OnClick will be fired by OnTimer method, provided }

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
753

21 chpt_16.qxd 11/19/01 12:09 PM Page 753

{ double click has not occurred. }
WM_LBUTTONDOWN: TheIcon.FTimer.Enabled := True;
{ Set no click flag on double click. This will suppress }
{ the single click. }
WM_LBUTTONDBLCLK:
begin
TheIcon.FNoShowClick := True;
if Assigned(TheIcon.FOnDblClick) then TheIcon.FOnDblClick(Self);

end;
WM_RBUTTONDOWN:
begin
if Assigned(TheIcon.FPopupMenu) then
begin
{ Call to SetForegroundWindow is required by API }
SetForegroundWindow(IconMgr.HWindow);
{ Popup local menu at the cursor position. }
GetCursorPos(Pt);
TheIcon.FPopupMenu.Popup(Pt.X, Pt.Y);
{ Message post required by API to force task switch }
PostMessage(IconMgr.HWindow, WM_USER, 0, 0);

end;
end;

end;
end
else
{ If it isn’t a tray callback message, then call DefWindowProc }
Result := DefWindowProc(FHWindow, Msg, wParam, lParam);

end;
end;

What makes this all work is that the single-click message merely enables the timer, whereas
the double-click message sets a flag to indicate that the double-click has occurred before firing
its OnDblClick event. The right-click, incidentally, invokes the pop-up menu given by the com-
ponent’s PopupMenu property. Now take a look at the OnButtonTimer method:

procedure TTrayNotifyIcon.OnButtonTimer(Sender: TObject);
begin
{ Disable timer because we only want it to fire once. }
FTimer.Enabled := False;
{ if double click has not occurred, then fire single click. }
if (not FNoShowClick) and Assigned(FOnClick) then
FOnClick(Self);

FNoShowClick := False; // reset flag
end;

Component-Based Development

PART IV
754

21 chpt_16.qxd 11/19/01 12:09 PM Page 754

This method first disables the timer to ensure that the event fires only once per mouse click.
The method then checks the status of the FNoShowClick flag. Remember that this flag will be
set by the double-click message in the OwnerWndProc() method. Therefore, the OnClick event
will be fired only when OnDblClk isn’t.

Hiding the Application
Another aspect of tray-notification applications is that they don’t appear as buttons in the
system taskbar. To provide this functionality, the TTrayNotifyIcon component surfaces a
HideTask property that allows the user to decide whether the application should be visible in
the taskbar. The write method for this property is shown in the following code. The line of
code that does the work is the call to the ShowWindow() API procedure, which passes the
Handle property of Application and a constant to indicate whether the application is to be
shown normally or hidden. Here’s the code:

procedure TTrayNotifyIcon.SetHideTask(Value: Boolean);
{ Write method for HideTask property }
const
{ Flags to show application normally or hide it }
ShowArray: array[Boolean] of integer = (sw_ShowNormal, sw_Hide);

begin
if FHideTask <> Value then begin
FHideTask := Value;
{ Don’t do anything in design mode }
if not (csDesigning in ComponentState) then
ShowWindow(Application.Handle, ShowArray[FHideTask]);

end;
end;

Listing 16.1 shows the TrayIcon.pas unit, which contains the complete source code for the
TTrayNotifyIcon component.

LISTING 16.1 TrayIcon.pas—Source Code for the TTrayNotifyIcon Component

unit TrayIcon;

interface

uses Windows, SysUtils, Messages, ShellAPI, Classes, Graphics, Forms, Menus,
StdCtrls, ExtCtrls;

type
ENotifyIconError = class(Exception);

TTrayNotifyIcon = class(TComponent)

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
755

21 chpt_16.qxd 11/19/01 12:09 PM Page 755

LISTING 16.1 Continued

private
FDefaultIcon: THandle;
FIcon: TIcon;
FHideTask: Boolean;
FHint: string;
FIconVisible: Boolean;
FPopupMenu: TPopupMenu;
FOnClick: TNotifyEvent;
FOnDblClick: TNotifyEvent;
FNoShowClick: Boolean;
FTimer: TTimer;
Tnd: TNotifyIconData;
procedure SetIcon(Value: TIcon);
procedure SetHideTask(Value: Boolean);
procedure SetHint(Value: string);
procedure SetIconVisible(Value: Boolean);
procedure SetPopupMenu(Value: TPopupMenu);
procedure SendTrayMessage(Msg: DWORD; Flags: UINT);
function ActiveIconHandle: THandle;
procedure OnButtonTimer(Sender: TObject);

protected
procedure Loaded; override;
procedure LoadDefaultIcon; virtual;
procedure Notification(AComponent: TComponent;
Operation: TOperation); override;

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

published
property Icon: TIcon read FIcon write SetIcon;
property HideTask: Boolean read FHideTask write SetHideTask default False;
property Hint: String read FHint write SetHint;
property IconVisible: Boolean read FIconVisible write SetIconVisible
default False;

property PopupMenu: TPopupMenu read FPopupMenu write SetPopupMenu;
property OnClick: TNotifyEvent read FOnClick write FOnClick;
property OnDblClick: TNotifyEvent read FOnDblClick write FOnDblClick;

end;

implementation

{ TIconManager }
{ This class creates a hidden window which handles and routes }
{ tray icon messages }

Component-Based Development

PART IV
756

21 chpt_16.qxd 11/19/01 12:09 PM Page 756

LISTING 16.1 Continued

type
TIconManager = class
private
FHWindow: HWnd;
procedure TrayWndProc(var Message: TMessage);

public
constructor Create;
destructor Destroy; override;
property HWindow: HWnd read FHWindow write FHWindow;

end;

var
IconMgr: TIconManager;
DDGM_TRAYICON: Integer;

constructor TIconManager.Create;
begin
FHWindow := AllocateHWnd(TrayWndProc);

end;

destructor TIconManager.Destroy;
begin
if FHWindow <> 0 then DeallocateHWnd(FHWindow);
inherited Destroy;

end;

procedure TIconManager.TrayWndProc(var Message: TMessage);
{ This allows us to handle all tray callback messages }
{ from within the context of the component. }
var
Pt: TPoint;
TheIcon: TTrayNotifyIcon;

begin
with Message do
begin
{ if it’s the tray callback message }
if (Msg = DDGM_TRAYICON) then
begin
TheIcon := TTrayNotifyIcon(WParam);
case lParam of
{ enable timer on first mouse down. }
{ OnClick will be fired by OnTimer method, provided }
{ double click has not occurred. }
WM_LBUTTONDOWN: TheIcon.FTimer.Enabled := True;

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
757

21 chpt_16.qxd 11/19/01 12:09 PM Page 757

LISTING 16.1 Continued

{ Set no click flag on double click. This will suppress }
{ the single click. }
WM_LBUTTONDBLCLK:
begin
TheIcon.FNoShowClick := True;
if Assigned(TheIcon.FOnDblClick) then TheIcon.FOnDblClick(Self);

end;
WM_RBUTTONDOWN:
begin
if Assigned(TheIcon.FPopupMenu) then
begin
{ Call to SetForegroundWindow is required by API }
SetForegroundWindow(IconMgr.HWindow);
{ Popup local menu at the cursor position. }
GetCursorPos(Pt);
TheIcon.FPopupMenu.Popup(Pt.X, Pt.Y);
{ Message post required by API to force task switch }
PostMessage(IconMgr.HWindow, WM_USER, 0, 0);

end;
end;

end;
end
else
{ If it isn’t a tray callback message, then call DefWindowProc }
Result := DefWindowProc(FHWindow, Msg, wParam, lParam);

end;
end;

{ TTrayNotifyIcon }

constructor TTrayNotifyIcon.Create(AOwner: TComponent);
begin
inherited Create(AOwner);
FIcon := TIcon.Create;
FTimer := TTimer.Create(Self);
with FTimer do
begin
Enabled := False;
Interval := GetDoubleClickTime;
OnTimer := OnButtonTimer;

end;
{ Keep default windows icon handy... }
LoadDefaultIcon;

end;

Component-Based Development

PART IV
758

21 chpt_16.qxd 11/19/01 12:09 PM Page 758

LISTING 16.1 Continued

destructor TTrayNotifyIcon.Destroy;
begin
if FIconVisible then SetIconVisible(False); // destroy icon
FIcon.Free; // free stuff
FTimer.Free;
inherited Destroy;

end;

function TTrayNotifyIcon.ActiveIconHandle: THandle;
{ Returns handle of active icon }
begin
{ If no icon is loaded, then return default icon }
if (FIcon.Handle <> 0) then
Result := FIcon.Handle

else
Result := FDefaultIcon;

end;

procedure TTrayNotifyIcon.LoadDefaultIcon;
{ Loads default window icon to keep it handy. }
{ This will allow the component to use the windows logo }
{ icon as the default when no icon is selected in the }
{ Icon property. }
begin
FDefaultIcon := LoadIcon(0, IDI_WINLOGO);

end;

procedure TTrayNotifyIcon.Loaded;
{ Called after component is loaded from stream }
begin
inherited Loaded;
{ if icon is supposed to be visible, create it. }
if FIconVisible then
SendTrayMessage(NIM_ADD, NIF_MESSAGE or NIF_ICON or NIF_TIP);

end;

procedure TTrayNotifyIcon.Notification(AComponent: TComponent;
Operation: TOperation);

begin
inherited Notification(AComponent, Operation);
if (Operation = opRemove) and (AComponent = PopupMenu) then
PopupMenu := nil;

end;

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
759

21 chpt_16.qxd 11/19/01 12:09 PM Page 759

LISTING 16.1 Continued

procedure TTrayNotifyIcon.OnButtonTimer(Sender: TObject);
{ Timer used to keep track of time between two clicks of a }
{ double click. This delays the first click long enough to }
{ ensure that a double click hasn’t occurred. The whole }
{ point of these gymnastics is to allow the component to }
{ receive OnClicks and OnDblClicks independently. }
begin
{ Disable timer because we only want it to fire once. }
FTimer.Enabled := False;
{ if double click has not occurred, then fire single click. }
if (not FNoShowClick) and Assigned(FOnClick) then
FOnClick(Self);

FNoShowClick := False; // reset flag
end;

procedure TTrayNotifyIcon.SendTrayMessage(Msg: DWORD; Flags: UINT);
{ This method wraps up the call to the API’s Shell_NotifyIcon }
begin
{ Fill up record with appropriate values }
with Tnd do
begin
cbSize := SizeOf(Tnd);
StrPLCopy(szTip, PChar(FHint), SizeOf(szTip));
uFlags := Flags;
uID := UINT(Self);
Wnd := IconMgr.HWindow;
uCallbackMessage := DDGM_TRAYICON;
hIcon := ActiveIconHandle;

end;
Shell_NotifyIcon(Msg, @Tnd);

end;

procedure TTrayNotifyIcon.SetHideTask(Value: Boolean);
{ Write method for HideTask property }
const
{ Flags to show application normally or hide it }
ShowArray: array[Boolean] of integer = (sw_ShowNormal, sw_Hide);

begin
if FHideTask <> Value then
begin
FHideTask := Value;
{ Don’t do anything in design mode }
if not (csDesigning in ComponentState) then
ShowWindow(Application.Handle, ShowArray[FHideTask]);

end;
end;

Component-Based Development

PART IV
760

21 chpt_16.qxd 11/19/01 12:09 PM Page 760

LISTING 16.1 Continued

procedure TTrayNotifyIcon.SetHint(Value: string);
{ Set method for Hint property }
begin
if FHint <> Value then
begin
FHint := Value;
if FIconVisible then
{ Change hint on icon on notification tray }
SendTrayMessage(NIM_MODIFY, NIF_TIP);

end;
end;

procedure TTrayNotifyIcon.SetIcon(Value: TIcon);
{ Write method for Icon property. }
begin
FIcon.Assign(Value); // set new icon
{ Change icon on notification tray }
if FIconVisible then SendTrayMessage(NIM_MODIFY, NIF_ICON);

end;

procedure TTrayNotifyIcon.SetIconVisible(Value: Boolean);
{ Write method for IconVisible property }
const
{ Flags to add or delete a tray-notification icon }
MsgArray: array[Boolean] of DWORD = (NIM_DELETE, NIM_ADD);

begin
if FIconVisible <> Value then
begin
FIconVisible := Value;
{ Set icon as appropriate }
SendTrayMessage(MsgArray[Value], NIF_MESSAGE or NIF_ICON or NIF_TIP);

end;
end;

procedure TTrayNotifyIcon.SetPopupMenu(Value: TPopupMenu);
{ Write method for PopupMenu property }
begin
FPopupMenu := Value;
if Value <> nil then Value.FreeNotification(Self);

end;

const
{ String to identify registered window message }
TrayMsgStr = ‘DDG.TrayNotifyIconMsg’;

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
761

21 chpt_16.qxd 11/19/01 12:09 PM Page 761

LISTING 16.1 Continued

initialization
{ Get a unique windows message ID for tray callback }
DDGM_TRAYICON := RegisterWindowMessage(TrayMsgStr);
IconMgr := TIconManager.Create;

finalization
IconMgr.Free;

end.

Figure 16.2 shows a picture of the icon generated by TTrayNotifyIcon in the notification tray.

Component-Based Development

PART IV
762

FIGURE 16.2
The TTrayNotifyIcon component in action.

By the way, because the tray icon is initialized inside the component’s constructor and because
constructors are executed at design time, this component displays the tray-notification icon
even at design time!

Sample Tray Application
In order to provide you with a better overall feel for how the TTrayNotifyIcon component
works within the context of an application, Figure 16.3 shows the main window of this applica-
tion, and Listing 16.2 shows the fairly minimal code for the main unit for this application.

FIGURE 16.3
Notification icon application.

LISTING 16.2 Main.pas—the Main Unit for the Notification Icon Demo Application

unit main;

interface

uses

21 chpt_16.qxd 11/19/01 12:09 PM Page 762

LISTING 16.2 Continued

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ShellAPI, TrayIcon, Menus, ComCtrls;

type
TMainForm = class(TForm)
pmiPopup: TPopupMenu;
pgclPageCtl: TPageControl;
TabSheet1: TTabSheet;
btnClose: TButton;
btnTerm: TButton;
Terminate1: TMenuItem;
Label1: TLabel;
N1: TMenuItem;
Propeties1: TMenuItem;
TrayNotifyIcon1: TTrayNotifyIcon;
procedure NotifyIcon1Click(Sender: TObject);
procedure NotifyIcon1DblClick(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure btnTermClick(Sender: TObject);
procedure btnCloseClick(Sender: TObject);
procedure FormCreate(Sender: TObject);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.NotifyIcon1Click(Sender: TObject);
begin
ShowMessage(‘Single click’);

end;

procedure TMainForm.NotifyIcon1DblClick(Sender: TObject);
begin
Show;

end;

procedure TMainForm.FormClose(Sender: TObject; var Action: TCloseAction);
begin
Action := caNone;
Hide;

end;

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
763

21 chpt_16.qxd 11/19/01 12:09 PM Page 763

LISTING 16.2 Continued

procedure TMainForm.btnTermClick(Sender: TObject);
begin
Application.Terminate;

end;

procedure TMainForm.btnCloseClick(Sender: TObject);
begin
Hide;

end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
TrayNotifyIcon1.IconVisible := True;

end;

end.

Application Desktop Toolbars
Application desktop toolbars, also known as AppBars, are windows that can dock to one of the
edges of your screen. You’re already familiar with AppBars, even though you might not know
it; the shell’s taskbar, which you probably work with every day, is an example of an AppBar.
As shown in Figure 16.4, the taskbar is really little more than an AppBar window containing a
Start button, notification tray, and other controls.

Component-Based Development

PART IV
764

FIGURE 16.4
The shell’s taskbar.

Apart from docking to screen edges, AppBars can, optionally, employ taskbar-like features,
such as auto-hide and drag-and-drop functionality. What you might find surprising, however, is
how small the API is (just one function). As its small size might imply, the API doesn’t provide
a whole lot. The role of the API is more advisory than functional. That is, rather than control-
ling the AppBar with “do this, do that” command types, you interrogate the AppBar with “can
I do this, can I do that?” command types.

The API
Just like tray-notification icons, AppBars have only one API function that you’ll work with—
SHAppBarMessage(), in this case. Here’s how SHAppBarMessage() is defined in the ShellAPI
unit:

21 chpt_16.qxd 11/19/01 12:09 PM Page 764

function SHAppBarMessage(dwMessage: DWORD; var pData: TAppBarData): UINT;
stdcall;

The first parameter to this function, dwMessage, can contain any one of the values described in
Table 16.3.

TABLE 16.3 AppBar Messages

Constant Value Meaning

ABM_NEW $0 Registers a new AppBar and specifies a new
callback message

ABM_REMOVE $1 Unregisters an existing AppBar

ABM_QUERYPOS $2 Requests a new position and size for an
AppBar

ABM_SETPOS $3 Sets a new position and size of an AppBar

ABM_GETSTATE $4 Gets the auto-hide and always-on-top states
of the shell taskbar

ABM_GETTASKBARPOS $5 Gets the position of the shell taskbar

ABM_ACTIVATE $6 Notifies the shell that a new AppBar has been
created

ABM_GETAUTOHIDEBAR $7 Gets the handle of an auto-hide AppBar
docked to a particular edge of the screen

ABM_SETAUTOHIDEBAR $8 Registers an auto-hide AppBar for a particu-
lar screen edge

ABM_WINDOWPOSCHANGED $9 Notifies the shell that the position of an
AppBar has changed

The pData parameter of SHAppBarMessage() is a record of type TAppBarData, which is defined
in ShellAPI as follows:

type
PAppBarData = ^TAppBarData;
TAppBarData = record
cbSize: DWORD;
hWnd: HWND;
uCallbackMessage: UINT;
uEdge: UINT;
rc: TRect;
lParam: LPARAM; { message specific }

end;

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
765

21 chpt_16.qxd 11/19/01 12:09 PM Page 765

In this record, the cbSize field holds the size of the record, the hWnd field holds the window
handle of the specified AppBar, uCallbackMessage holds the message value that will be sent to
the AppBar window along with notification messages, rc holds the bounding rectangle of the
AppBar in question, and lParam holds some additional message-specific information.

Component-Based Development

PART IV
766

You’ll find more information on the SHAppBarMessage() API function and the
TAppBarData type in the Win32 online help.

TIP

TAppBar: The AppBar Form
Given this fairly small API, it’s not terribly difficult to encapsulate an AppBar in a VCL form.
This section explains the techniques used to wrap the AppBar API into a control descending
from TCustomForm. Because TCustomForm is a form, you’ll interact with the control as a top-
level form in the Form Designer rather than as a component on a form.

Most of the work in an AppBar is done by sending a TAppBarData record to the shell using the
SHAppBarMessage() API function. The TAppBar component maintains an internal TAppBarData
record called FABD. FABD is set up for the call to SendAppBarMsg() in the constructor and the
CreateWnd() methods in order to create the AppBar. In particular, the cbSize field is initial-
ized, the uCallbackMessage field is set to a value obtained from the RegisterWindowMessage()
API function, and the hWnd field is set to the current window handle of the form.
SendAppBarMessage() is a simple wrapper for SHAppBarMessage() and is defined as
follows:

function TAppBar.SendAppBarMsg(Msg: DWORD): UINT;
begin
Result := SHAppBarMessage(Msg, FABD);

end;

If the AppBar is created successfully, the SetAppBarEdge() method is called to set the AppBar
to its initial position. This method, in turn, calls the SetAppBarPos() method, passing the
appropriate API-defined flag that indicates the requested screen edge. As you would expect, the
ABE_TOP, ABE_BOTTOM, ABE_LEFT, and ABE_RIGHT flags represent each of the screen edges. This
is shown in the following code snippet:

procedure TAppBar.SetAppBarPos(Edge: UINT);
begin
if csDesigning in ComponentState then Exit;
FABD.uEdge := Edge; // set edge
with FABD.rc do

21 chpt_16.qxd 11/19/01 12:09 PM Page 766

begin
// set coordinates to full-screen
Top := 0;
Left := 0;
Right := Screen.Width;
Bottom := Screen.Height;
// Send ABM_QUERYPOS to obtain proper rect on edge
SendAppBarMsg(ABM_QUERYPOS);
// re-adjust rect based on that modified by ABM_QUERYPOS
case Edge of
ABE_LEFT: Right := Left + FDockedWidth;
ABE_RIGHT: Left := Right - FDockedWidth;
ABE_TOP: Bottom := Top + FDockedHeight;
ABE_BOTTOM: Top := Bottom - FDockedHeight;

end;
// Set the app bar position.
SendAppBarMsg(ABM_SETPOS);

end;
// Set the BoundsRect property so that it conforms to the
// bounding rectangle passed to the system.
BoundsRect := FABD.rc;

end;

This method first sets the uEdge field of FABD to the value passed via the Edge parameter. It
then sets the rc field to the full-screen coordinates and sends the ABM_QUERYPOS message. This
message resets the rc field so that it contains the correct bounding rectangle for the edge indi-
cated by uEdge. Once the proper bounding rectangle has been obtained, rc is again adjusted so
that it’s a reasonable height or width. At this point, rc holds the final bounding rectangle for
the AppBar. The ABM_SETPOS message is then sent to inform the shell of the new rectangle, and
the rectangle is set using the control’s BoundsRect property.

We mentioned earlier that AppBar notification messages will be sent to the window indicated
by FABD.hWnd using the message identifier held in FABD.uCallbackMessage. These notification
messages are handled in the WndProc() method shown here:

procedure TAppBar.WndProc(var M: TMessage);
var
State: UINT;
WndPos: HWnd;

begin
if M.Msg = AppBarMsg then
begin
case M.WParam of
// Sent when always on top or auto-hide state has changed.
ABN_STATECHANGE:

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
767

21 chpt_16.qxd 11/19/01 12:09 PM Page 767

begin
// Check to see whether the access bar is still ABS_ALWAYSONTOP.
State := SendAppBarMsg(ABM_GETSTATE);
if ABS_ALWAYSONTOP and State = 0 then
SetTopMost(False)

else
SetTopMost(True);

end;
// A full screen application has started, or the last
// full-screen application has closed.
ABN_FULLSCREENAPP:
begin
// Set the access bar’s z-order appropriately.
State := SendAppBarMsg(ABM_GETSTATE);
if M.lParam <> 0 then begin
if ABS_ALWAYSONTOP and State = 0 then
SetTopMost(False)

else
SetTopMost(True);

end
else
if State and ABS_ALWAYSONTOP <> 0 then
SetTopMost(True);

end;
// Sent when something happened which may effect the AppBar position.
ABN_POSCHANGED:
begin
// The taskbar or another access bar
// has changed its size or position.
SetAppBarPos(FABD.uEdge);

end;
end;

end
else
inherited WndProc(M);

end;

This method handles some notification messages that permit the AppBar to respond to changes
that might occur in the shell while the application is running. The remainder of the AppBar
component code is shown in Listing 16.3.

LISTING 16.3 AppBars.pas—Unit Containing Base Class for AppBar Support

unit AppBars;

interface

Component-Based Development

PART IV
768

21 chpt_16.qxd 11/19/01 12:09 PM Page 768

LISTING 16.3 Continued

uses Windows, Messages, SysUtils, Forms, ShellAPI, Classes, Controls;

type
TAppBarEdge = (abeTop, abeBottom, abeLeft, abeRight);

EAppBarError = class(Exception);

TAppBar = class(TCustomForm)
private
FABD: TAppBarData;
FDockedHeight: Integer;
FDockedWidth: Integer;
FEdge: TAppBarEdge;
FOnEdgeChanged: TNotifyEvent;
FTopMost: Boolean;
procedure WMActivate(var M: TMessage); message WM_ACTIVATE;
procedure WMWindowPosChanged(var M: TMessage); message WM_WINDOWPOSCHANGED;
function SendAppBarMsg(Msg: DWORD): UINT;
procedure SetAppBarEdge(Value: TAppBarEdge);
procedure SetAppBarPos(Edge: UINT);
procedure SetTopMost(Value: Boolean);
procedure SetDockedHeight(const Value: Integer);
procedure SetDockedWidth(const Value: Integer);

protected
procedure CreateParams(var Params: TCreateParams); override;
procedure CreateWnd; override;
procedure DestroyWnd; override;
procedure WndProc(var M: TMessage); override;

public
constructor CreateNew(AOwner: TComponent; Dummy: Integer = 0); override;
property DockManager;

published
property Action;
property ActiveControl;
property AutoScroll;
property AutoSize;
property BiDiMode;
property BorderWidth;
property Color;
property Ctl3D;
property DockedHeight: Integer read FDockedHeight write SetDockedHeight
default 35;

property DockedWidth: Integer read FDockedWidth write SetDockedWidth
default 40;

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
769

21 chpt_16.qxd 11/19/01 12:09 PM Page 769

LISTING 16.3 Continued

property UseDockManager;
property DockSite;
property DragKind;
property DragMode;
property Edge: TAppBarEdge read FEdge write SetAppBarEdge default abeTop;
property Enabled;
property ParentFont default False;
property Font;
property HelpFile;
property HorzScrollBar;
property Icon;
property KeyPreview;
property ObjectMenuItem;
property ParentBiDiMode;
property PixelsPerInch;
property PopupMenu;
property PrintScale;
property Scaled;
property ShowHint;
property TopMost: Boolean read FTopMost write SetTopMost default False;
property VertScrollBar;
property Visible;
property OnActivate;
property OnCanResize;
property OnClick;
property OnClose;
property OnCloseQuery;
property OnConstrainedResize;
property OnCreate;
property OnDblClick;
property OnDestroy;
property OnDeactivate;
property OnDockDrop;
property OnDockOver;
property OnDragDrop;
property OnDragOver;
property OnEdgeChanged: TNotifyEvent read FOnEdgeChanged
write FOnEdgeChanged;

property OnEndDock;
property OnGetSiteInfo;
property OnHide;
property OnHelp;
property OnKeyDown;
property OnKeyPress;

Component-Based Development

PART IV
770

21 chpt_16.qxd 11/19/01 12:09 PM Page 770

LISTING 16.3 Continued

property OnKeyUp;
property OnMouseDown;
property OnMouseMove;
property OnMouseUp;
property OnMouseWheel;
property OnMouseWheelDown;
property OnMouseWheelUp;
property OnPaint;
property OnResize;
property OnShortCut;
property OnShow;
property OnStartDock;
property OnUnDock;

end;

implementation

var
AppBarMsg: UINT;

constructor TAppBar.CreateNew(AOwner: TComponent; Dummy: Integer);
begin
FDockedHeight := 35;
FDockedWidth := 40;
inherited CreateNew(AOwner, Dummy);
ClientHeight := 35;
Width := 100;
BorderStyle := bsNone;
BorderIcons := [];
// set up the TAppBarData record
FABD.cbSize := SizeOf(FABD);
FABD.uCallbackMessage := AppBarMsg;

end;

procedure TAppBar.WMWindowPosChanged(var M: TMessage);
begin
inherited;
// Must inform shell that the AppBar position has changed
SendAppBarMsg(ABM_WINDOWPOSCHANGED);

end;

procedure TAppBar.WMActivate(var M: TMessage);
begin
inherited;

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
771

21 chpt_16.qxd 11/19/01 12:09 PM Page 771

LISTING 16.3 Continued

// Must inform shell that the AppBar window was activated
SendAppBarMsg(ABM_ACTIVATE);

end;

procedure TAppBar.WndProc(var M: TMessage);
var
State: UINT;

begin
if M.Msg = AppBarMsg then
begin
case M.WParam of
// Sent when always on top or auto-hide state has changed.
ABN_STATECHANGE:
begin
// Check to see whether the access bar is still ABS_ALWAYSONTOP.
State := SendAppBarMsg(ABM_GETSTATE);
if ABS_ALWAYSONTOP and State = 0 then
SetTopMost(False)

else
SetTopMost(True);

end;
// A full screen application has started, or the last
// full-screen application has closed.
ABN_FULLSCREENAPP:
begin
// Set the access bar’s z-order appropriately.
State := SendAppBarMsg(ABM_GETSTATE);
if M.lParam <> 0 then begin
if ABS_ALWAYSONTOP and State = 0 then
SetTopMost(False)

else
SetTopMost(True);

end
else
if State and ABS_ALWAYSONTOP <> 0 then
SetTopMost(True);

end;
// Sent when something happened which may effect the AppBar position.
ABN_POSCHANGED:
// The taskbar or another access bar
// has changed its size or position.
SetAppBarPos(FABD.uEdge);

end;
end

Component-Based Development

PART IV
772

21 chpt_16.qxd 11/19/01 12:09 PM Page 772

LISTING 16.3 Continued

else
inherited WndProc(M);

end;

function TAppBar.SendAppBarMsg(Msg: DWORD): UINT;
begin
// Don’t do AppBar stuff at design time... too funky
if csDesigning in ComponentState then Result := 0
else Result := SHAppBarMessage(Msg, FABD);

end;

procedure TAppBar.SetAppBarPos(Edge: UINT);
begin
if csDesigning in ComponentState then Exit;
FABD.uEdge := Edge; // set edge
with FABD.rc do
begin
// set coordinates to full-screen
Top := 0;
Left := 0;
Right := Screen.Width;
Bottom := Screen.Height;
// Send ABM_QUERYPOS to obtain proper rect on edge
SendAppBarMsg(ABM_QUERYPOS);
// re-adjust rect based on that modified by ABM_QUERYPOS
case Edge of
ABE_LEFT: Right := Left + FDockedWidth;
ABE_RIGHT: Left := Right - FDockedWidth;
ABE_TOP: Bottom := Top + FDockedHeight;
ABE_BOTTOM: Top := Bottom - FDockedHeight;

end;
// Set the app bar position.
SendAppBarMsg(ABM_SETPOS);

end;
// Set the BoundsRect property so that it conforms to the
// bounding rectangle passed to the system.
BoundsRect := FABD.rc;

end;

procedure TAppBar.SetTopMost(Value: Boolean);
const
WndPosArray: array[Boolean] of HWND = (HWND_BOTTOM, HWND_TOPMOST);

begin
if FTopMost <> Value then

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
773

21 chpt_16.qxd 11/19/01 12:09 PM Page 773

LISTING 16.3 Continued

begin
FTopMost := Value;
if not (csDesigning in ComponentState) then
SetWindowPos(Handle, WndPosArray[Value], 0, 0, 0, 0, SWP_NOMOVE or
SWP_NOSIZE or SWP_NOACTIVATE);

end;
end;

procedure TAppBar.CreateParams(var Params: TCreateParams);
begin
inherited CreateParams(Params);
if not (csDesigning in ComponentState) then
begin
Params.ExStyle := Params.ExStyle or WS_EX_TOPMOST or WS_EX_WINDOWEDGE;
Params.Style := Params.Style or WS_DLGFRAME;

end;
end;

procedure TAppBar.CreateWnd;
begin
inherited CreateWnd;
FABD.hWnd := Handle;
if not (csDesigning in ComponentState) then
begin
if SendAppBarMsg(ABM_NEW) = 0 then
raise EAppBarError.Create(‘Failed to create AppBar’);

// Initialize the position
SetAppBarEdge(FEdge);

end;
end;

procedure TAppBar.DestroyWnd;
begin
// Must inform shell that the AppBar is going away
SendAppBarMsg(ABM_REMOVE);
inherited DestroyWnd;

end;

procedure TAppBar.SetAppBarEdge(Value: TAppBarEdge);
const
EdgeArray: array[TAppBarEdge] of UINT =
(ABE_TOP, ABE_BOTTOM, ABE_LEFT, ABE_RIGHT);

begin
SetAppBarPos(EdgeArray[Value]);

Component-Based Development

PART IV
774

21 chpt_16.qxd 11/19/01 12:09 PM Page 774

LISTING 16.3 Continued

FEdge := Value;
if Assigned(FOnEdgeChanged) then FOnEdgeChanged(Self);

end;

procedure TAppBar.SetDockedHeight(const Value: Integer);
begin
if FDockedHeight <> Value then
begin
FDockedHeight := Value;
SetAppBarEdge(FEdge);

end;
end;

procedure TAppBar.SetDockedWidth(const Value: Integer);
begin
if FDockedWidth <> Value then
begin
FDockedWidth := Value;
SetAppBarEdge(FEdge);

end;
end;

initialization
AppBarMsg := RegisterWindowMessage(‘DDG AppBar Message’);

end.

Using TAppBar
If you installed the software found on the CD-ROM accompanying this book, using a TAppBar
should be a snap: just select the AppBar option from the DDG page of the File, New dialog
box. This invokes a wizard that will generate a unit containing a TAppBar component.

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
775

Chapter 17, “Using the Open Tools API,” demonstrates how to create a wizard that
automatically generates a TAppBar. For the purposes of this chapter, you can ignore
the wizard implementation for the time being. Just understand that some work is
being done behind the scenes to generate the AppBar’s form and unit for you.

NOTE

21 chpt_16.qxd 11/19/01 12:09 PM Page 775

In this small sample application, TAppBaris used to create an application toolbar that contains
buttons for various editing commands: Open, Save, Cut, Copy, and Paste. The buttons will
manipulate a TMemo component found on the main form. The source code for this unit is shown
in Listing 16.4, and Figure 16.5 shows the application in action with the AppBar control
docked at the bottom of the screen.

LISTING 16.4 ApBarFrm.pas—Main Unit for AppBar Demo Application

unit ApBarFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
AppBars, Menus, Buttons;

type
TAppBarForm = class(TAppBar)
sbOpen: TSpeedButton;
sbSave: TSpeedButton;
sbCut: TSpeedButton;
sbCopy: TSpeedButton;
sbPaste: TSpeedButton;
OpenDialog: TOpenDialog;
pmPopup: TPopupMenu;
Top1: TMenuItem;
Bottom1: TMenuItem;
Left1: TMenuItem;
Right1: TMenuItem;
N1: TMenuItem;
Exit1: TMenuItem;
procedure Right1Click(Sender: TObject);
procedure sbOpenClick(Sender: TObject);
procedure sbSaveClick(Sender: TObject);
procedure sbCutClick(Sender: TObject);
procedure sbCopyClick(Sender: TObject);
procedure sbPasteClick(Sender: TObject);
procedure Exit1Click(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure FormEdgeChanged(Sender: TObject);

private
FLastChecked: TMenuItem;
procedure MoveButtons;

end;

Component-Based Development

PART IV
776

21 chpt_16.qxd 11/19/01 12:09 PM Page 776

LISTING 16.4 Continued

var
AppBarForm: TAppBarForm;

implementation

uses Main;

{$R *.DFM}

{ TAppBarForm }

procedure TAppBarForm.MoveButtons;
// This method looks complicated, but it really just arranges the buttons
// properly depending on what side the AppBar is docked.
var
DeltaCenter, NewPos: Integer;

begin
if Edge in [abeTop, abeBottom] then
begin
DeltaCenter := (ClientHeight - sbOpen.Height) div 2;
sbOpen.SetBounds(10, DeltaCenter, sbOpen.Width, sbOpen.Height);
NewPos := sbOpen.Width + 20;
sbSave.SetBounds(NewPos, DeltaCenter, sbOpen.Width, sbOpen.Height);
NewPos := NewPos + sbOpen.Width + 10;
sbCut.SetBounds(NewPos, DeltaCenter, sbOpen.Width, sbOpen.Height);
NewPos := NewPos + sbOpen.Width + 10;
sbCopy.SetBounds(NewPos, DeltaCenter, sbOpen.Width, sbOpen.Height);
NewPos := NewPos + sbOpen.Width + 10;
sbPaste.SetBounds(NewPos, DeltaCenter, sbOpen.Width, sbOpen.Height);

end
else
begin
DeltaCenter := (ClientWidth - sbOpen.Width) div 2;
sbOpen.SetBounds(DeltaCenter, 10, sbOpen.Width, sbOpen.Height);
NewPos := sbOpen.Height + 20;
sbSave.SetBounds(DeltaCenter, NewPos, sbOpen.Width, sbOpen.Height);
NewPos := NewPos + sbOpen.Height + 10;
sbCut.SetBounds(DeltaCenter, NewPos, sbOpen.Width, sbOpen.Height);
NewPos := NewPos + sbOpen.Height + 10;
sbCopy.SetBounds(DeltaCenter, NewPos, sbOpen.Width, sbOpen.Height);
NewPos := NewPos + sbOpen.Height + 10;
sbPaste.SetBounds(DeltaCenter, NewPos, sbOpen.Width, sbOpen.Height);

end;
end;

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
777

21 chpt_16.qxd 11/19/01 12:09 PM Page 777

LISTING 16.4 Continued

procedure TAppBarForm.Right1Click(Sender: TObject);
begin
FLastChecked.Checked := False;
(Sender as TMenuItem).Checked := True;
case TMenuItem(Sender).Caption[2] of
‘T’: Edge := abeTop;
‘B’: Edge := abeBottom;
‘L’: Edge := abeLeft;
‘R’: Edge := abeRight;

end;
FLastChecked := TMenuItem(Sender);

end;

procedure TAppBarForm.sbOpenClick(Sender: TObject);
begin
if OpenDialog.Execute then
MainForm.FileName := OpenDialog.FileName;

end;

procedure TAppBarForm.sbSaveClick(Sender: TObject);
begin
MainForm.memEditor.Lines.SaveToFile(MainForm.FileName);

end;

procedure TAppBarForm.sbCutClick(Sender: TObject);
begin
MainForm.memEditor.CutToClipboard;

end;

procedure TAppBarForm.sbCopyClick(Sender: TObject);
begin
MainForm.memEditor.CopyToClipboard;

end;

procedure TAppBarForm.sbPasteClick(Sender: TObject);
begin
MainForm.memEditor.PasteFromClipboard;

end;

procedure TAppBarForm.Exit1Click(Sender: TObject);
begin
Application.Terminate;

end;

Component-Based Development

PART IV
778

21 chpt_16.qxd 11/19/01 12:09 PM Page 778

LISTING 16.4 Continued

procedure TAppBarForm.FormCreate(Sender: TObject);
begin
FLastChecked := Top1;

end;

procedure TAppBarForm.FormEdgeChanged(Sender: TObject);
begin
MoveButtons;

end;

end.

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
779

FIGURE 16.5
TAppBar in action.

Shell Links
The Windows shell exposes a series of interfaces that can be employed to manipulate different
aspects of the shell. These interfaces are defined in the ShlObj unit. Discussing in depth all the
objects in that unit could take a book in its own right, so for now we’ll focus on one of the
most useful (and most used) interfaces: IShellLink.

21 chpt_16.qxd 11/19/01 12:09 PM Page 779

IShellLink is an interface that permits the creating and manipulating of shell links in your
applications. In case you’re unsure, most of the icons on your desktop are probably shell links.
Additionally, each item in the shell’s local Send To menu or the Documents menu (off of the
Start menu) are all shell links. The IShellLink interface is defined as follows:

const

type
IShellLink = interface(IUnknown)
[‘{000214EE-0000-0000-C000-000000000046}’]
function GetPath(pszFile: PAnsiChar; cchMaxPath: Integer;
var pfd: TWin32FindData; fFlags: DWORD): HResult; stdcall;

function GetIDList(var ppidl: PItemIDList): HResult; stdcall;
function SetIDList(pidl: PItemIDList): HResult; stdcall;
function GetDescription(pszName: PAnsiChar; cchMaxName: Integer): HResult;
stdcall;

function SetDescription(pszName: PAnsiChar): HResult; stdcall;
function GetWorkingDirectory(pszDir: PAnsiChar; cchMaxPath: Integer):
HResult;
stdcall;

function SetWorkingDirectory(pszDir: PAnsiChar): HResult; stdcall;
function GetArguments(pszArgs: PAnsiChar; cchMaxPath: Integer): HResult;
stdcall;

function SetArguments(pszArgs: PAnsiChar): HResult; stdcall;
function GetHotkey(var pwHotkey: Word): HResult; stdcall;
function SetHotkey(wHotkey: Word): HResult; stdcall;
function GetShowCmd(out piShowCmd: Integer): HResult; stdcall;
function SetShowCmd(iShowCmd: Integer): HResult; stdcall;
function GetIconLocation(pszIconPath: PAnsiChar; cchIconPath: Integer;
out piIcon: Integer): HResult; stdcall;

function SetIconLocation(pszIconPath: PAnsiChar; iIcon: Integer): HResult;
stdcall;

function SetRelativePath(pszPathRel: PAnsiChar; dwReserved: DWORD):
HResult;
stdcall;

function Resolve(Wnd: HWND; fFlags: DWORD): HResult; stdcall;
function SetPath(pszFile: PAnsiChar): HResult; stdcall;

end;

Component-Based Development

PART IV
780

IShellLink and all its methods are described in detail in the Win32 online help, so
we won’t cover them here.

NOTE

21 chpt_16.qxd 11/19/01 12:09 PM Page 780

Obtaining an IShellLink Instance
Unlike working with shell extensions, which you’ll learn about later in this chapter, you don’t
implement the IShellLink interface. Instead, this interface is implemented by the Windows
shell, and you use the CoCreateInstance() COM function to create an instance. Here’s an
example:

var
SL: IShellLink;

begin
OleCheck(CoCreateInstance(CLSID_ShellLink, nil, CLSCTX_INPROC_SERVER,
IShellLink, SL));

// use SL here
end;

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
781

Don’t forget that before you can use any OLE functions, you must initialize the COM
library using the CoInitialize() function. When you’re through using COM,
you must clean up by calling CoUninitialize(). These functions will be called
for you by Delphi in an application that uses ComObj and contains a call to
Application.Initialize(). Otherwise, you’ll have to call these functions yourself.

NOTE

Using IShellLink
Shell links seem kind of magical: you right-click on the desktop, create a new shortcut, and
something happens that causes an icon to appear on the desktop. That something is actually a
pretty mundane occurrence once you know what’s going on. A shell link is actually just a file
with an .LNK extension that lives in some particular directory. When Windows starts up, it
looks in certain directories for LNK files, which represent links residing in different shell fold-
ers. These shell folders, or special folders, include items such as Network Neighborhood, Send
To, Startup, the Desktop, and so on. The shell stores the link/folder correspondence in the
System Registry—they’re found mostly under the following key if you’re interested in looking:

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer
➥\Shell Folders

Creating a shell link in a special folder, then, is just a matter of placing a link file in a particu-
lar directory. Rather than spelunking through the Registry, you can use the
SHGetSpecialFolderPath() to obtain the directory path for the various special folders. This
method is defined as follows:

function SHGetSpecialFolderPath(hwndOwner: HWND; lpszPath: PChar;
nFolder: Integer; fCreate: BOOL): BOOL; stdcall;

21 chpt_16.qxd 11/19/01 12:09 PM Page 781

hwndOwner contains the handle of a window that will serve as the owner to any dialogs the
function might invoke.

lpszPath is a pointer to a buffer to receive the path. This buffer must be at least MAX_PATH
characters in length.

nFolder identifies the special folder for which you want to obtain the path. Table 16.4 shows
the possible values for this parameter and a description for each.

fCreate indicates whether a folder should be created if it doesn’t exist.

TABLE 16.4 Possible Values for nFolder

Flag Description

CSIDL_ALTSTARTUP The directory that corresponds to the user’s non-
localized Startup program group.

CSIDL_APPDATA The directory that serves as a common reposi-
tory for application-specific data.

CSIDL_BITBUCKET The directory containing file objects in the user’s
Recycle Bin. The location of this directory isn’t
in the Registry; it’s marked with the hidden and
system attributes to prevent the user from mov-
ing or deleting it.

CSIDL_COMMON_ALTSTARTUP The directory that corresponds to the nonlocal-
ized Startup program group for all users.

CSIDL_COMMON_DESKTOPDIRECTORY The directory that contains files and folders that
appear on the desktop for all users.

CSIDL_COMMON_FAVORITES The directory that serves as a common reposi-
tory for all users’ favorite items.

CSIDL_COMMON_PROGRAMS The directory that contains the directories for the
common program groups that appear on the Start
menu for all users.

CSIDL_COMMON_STARTMENU The directory that contains the programs and
folders that appear on the Start menu for all
users.

CSIDL_COMMON_STARTUP The directory that contains the programs that
appear in the Startup folder for all users.

CSIDL_CONTROLS A virtual folder containing icons for the Control
Panel applications.

CSIDL_COOKIES The directory that serves as a common reposi-
tory for Internet cookies.

Component-Based Development

PART IV
782

21 chpt_16.qxd 11/19/01 12:09 PM Page 782

TABLE 16.4 Continued

Flag Description

CSIDL_DESKTOP The Windows Desktop virtual folder at the root
of the namespace.

CSIDL_DESKTOPDIRECTORY The directory used to physically store file
objects on the desktop (not to be confused with
the Desktop folder, itself).

CSIDL_DRIVES The My Computer virtual folder containing
everything on the local computer: storage
devices, printers, and the Control Panel. The
folder might also contain mapped network
drives.

CSIDL_FAVORITES The directory that serves as a common reposi-
tory for the user’s favorite items.

CSIDL_FONTS A virtual folder containing fonts.

CSIDL_HISTORY The directory that serves as a common reposi-
tory for Internet history items.

CSIDL_INTERNET A virtual folder representing the Internet.

CSIDL_INTERNET_CACHE The directory that serves as a common reposi-
tory for temporary Internet files.

CSIDL_NETHOOD The directory that contains objects that appear in
the Network Neighborhood.

CSIDL_NETWORK The Network Neighborhood virtual folder repre-
senting the top level of the network hierarchy.

CSIDL_PERSONAL The directory that serves as a common reposi-
tory for documents.

CSIDL_PRINTERS A virtual folder containing installed printers.

CSIDL_PRINTHOOD The directory that serves as a common reposi-
tory for printer links.

CSIDL_PROGRAMS The directory that contains the user’s program
groups (which are also directories).

CSIDL_RECENT The directory that contains the user’s most
recently used documents.

CSIDL_SENDTO The directory that contains Send To menu items.

CSIDL_STARTMENU The directory that contains Start menu items.

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
783

21 chpt_16.qxd 11/19/01 12:09 PM Page 783

TABLE 16.4 Continued

Flag Description

CSIDL_STARTUP The directory that corresponds to the user’s
Startup program group. The system starts these
programs whenever any user logs onto Windows
NT or starts Windows 95 or 98.

CSIDL_TEMPLATES The directory that serves as a common reposi-
tory for document templates.

Creating a Shell Link
The IShellLink interface is an encapsulation of a shell link object, but it has no concept of
how to read or write itself to a file on disk. However, implementers of the IShellLink inter-
face are also required to support the IPersistFile interface in order to provide file access.
IPersistFile is an interface that provides methods for reading and writing to and from disk,
and it’s defined as follows:

type
IPersistFile = interface(IPersist)
[‘{0000010B-0000-0000-C000-000000000046}’]
function IsDirty: HResult; stdcall;
function Load(pszFileName: POleStr; dwMode: Longint): HResult;
stdcall;

function Save(pszFileName: POleStr; fRemember: BOOL): HResult;
stdcall;

function SaveCompleted(pszFileName: POleStr): HResult;
stdcall;

function GetCurFile(out pszFileName: POleStr): HResult;
stdcall;

end;

Component-Based Development

PART IV
784

You’ll find a complete description of IPersistFile and its methods in the Win32
online help.

NOTE

Because the class that implements IShellLink is also required to implement IPeristFile, you
can QueryInterface the IShellLink instance for an IPersistFile instance using the as oper-
ator, as shown here:

var
SL: IShellLink;
PF: IPersistFile;

21 chpt_16.qxd 11/19/01 12:09 PM Page 784

begin
OleCheck(CoCreateInstance(CLSID_ShellLink, nil, CLSCTX_INPROC_SERVER,
IShellLink, SL));

PF := SL as IPersistFile;
// use PF and SL

end;

As mentioned earlier, using COM interface objects works the same as using normal Object
Pascal objects. The following code, for example, creates a desktop shell link to the Notepad
application:

procedure MakeNotepad;
const
// NOTE: Assumed location for Notepad:
AppName = ‘c:\windows\notepad.exe’;

var
SL: IShellLink;
PF: IPersistFile;
LnkName: WideString;

begin
OleCheck(CoCreateInstance(CLSID_ShellLink, nil, CLSCTX_INPROC_SERVER,
IShellLink, SL));

{ IShellLink implementers are required to implement IPersistFile }
PF := SL as IPersistFile;
OleCheck(SL.SetPath(PChar(AppName))); // set link path to proper file
{ create a path location and filename for link file }
LnkName := GetFolderLocation(‘Desktop’) + ‘\’ +
ChangeFileExt(ExtractFileName(AppName), ‘.lnk’);

PF.Save(PWideChar(LnkName), True); // save link file
end;

In this procedure, the SetPath() method of IShellLink is used to point the link to an exe-
cutable file or document (Notepad in this case). Then, a path and filename for the link is created
using the path returned by GetFolderLocation(‘Desktop’) (described earlier in this section)
and by using the ChangeFileExt() function to change the extension of Notepad from .EXE to
.LNK. This new filename is stored in LnkName. After that, the Save() method saves the link to a
disk file. As you’ve learned, when the procedure terminates and the SL and PF interface
instances fall out of scope, their respective references will be released.

Getting and Setting Link Information
As you can see from the definition of the IShellLink interface, it contains a number of
GetXXX() and SetXXX() methods that allow you to get and set different aspects of the shell
link. Consider the following record declaration, which contains fields for each of the possible
values that can be set or retrieved:

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
785

21 chpt_16.qxd 11/19/01 12:09 PM Page 785

type
TShellLinkInfo = record
PathName: string;
Arguments: string;
Description: string;
WorkingDirectory: string;
IconLocation: string;
IconIndex: Integer;
ShowCmd: Integer;
HotKey: Word;

end;

Given this record, you can create functions that retrieve the settings of a given shell link to the
record or that set a link’s values to those indicated by the record’s contents. Such functions
are shown in Listing 16.5; WinShell.pas is a unit that contains the complete source for these
functions.

LISTING 16.5 WinShell.pas—Unit Containing Functions That Operate on Shell Links

unit WinShell;

interface

uses SysUtils, Windows, Registry, ActiveX, ShlObj;

type
EShellOleError = class(Exception);

TShellLinkInfo = record
PathName: string;
Arguments: string;
Description: string;
WorkingDirectory: string;
IconLocation: string;
IconIndex: integer;
ShowCmd: integer;
HotKey: word;

end;

TSpecialFolderInfo = record
Name: string;
ID: Integer;

end;

const
SpecialFolders: array[0..29] of TSpecialFolderInfo = (

Component-Based Development

PART IV
786

21 chpt_16.qxd 11/19/01 12:09 PM Page 786

LISTING 16.5 Continued

(Name: ‘Alt Startup’; ID: CSIDL_ALTSTARTUP),
(Name: ‘Application Data’; ID: CSIDL_APPDATA),
(Name: ‘Recycle Bin’; ID: CSIDL_BITBUCKET),
(Name: ‘Common Alt Startup’; ID: CSIDL_COMMON_ALTSTARTUP),
(Name: ‘Common Desktop’; ID: CSIDL_COMMON_DESKTOPDIRECTORY),
(Name: ‘Common Favorites’; ID: CSIDL_COMMON_FAVORITES),
(Name: ‘Common Programs’; ID: CSIDL_COMMON_PROGRAMS),
(Name: ‘Common Start Menu’; ID: CSIDL_COMMON_STARTMENU),
(Name: ‘Common Startup’; ID: CSIDL_COMMON_STARTUP),
(Name: ‘Controls’; ID: CSIDL_CONTROLS),
(Name: ‘Cookies’; ID: CSIDL_COOKIES),
(Name: ‘Desktop’; ID: CSIDL_DESKTOP),
(Name: ‘Desktop Directory’; ID: CSIDL_DESKTOPDIRECTORY),
(Name: ‘Drives’; ID: CSIDL_DRIVES),
(Name: ‘Favorites’; ID: CSIDL_FAVORITES),
(Name: ‘Fonts’; ID: CSIDL_FONTS),
(Name: ‘History’; ID: CSIDL_HISTORY),
(Name: ‘Internet’; ID: CSIDL_INTERNET),
(Name: ‘Internet Cache’; ID: CSIDL_INTERNET_CACHE),
(Name: ‘Network Neighborhood’; ID: CSIDL_NETHOOD),
(Name: ‘Network Top’; ID: CSIDL_NETWORK),
(Name: ‘Personal’; ID: CSIDL_PERSONAL),
(Name: ‘Printers’; ID: CSIDL_PRINTERS),
(Name: ‘Printer Links’; ID: CSIDL_PRINTHOOD),
(Name: ‘Programs’; ID: CSIDL_PROGRAMS),
(Name: ‘Recent Documents’; ID: CSIDL_RECENT),
(Name: ‘Send To’; ID: CSIDL_SENDTO),
(Name: ‘Start Menu’; ID: CSIDL_STARTMENU),
(Name: ‘Startup’; ID: CSIDL_STARTUP),
(Name: ‘Templates’; ID: CSIDL_TEMPLATES));

function CreateShellLink(const AppName, Desc: string; Dest: Integer): string;
function GetSpecialFolderPath(Folder: Integer; CanCreate: Boolean): string;
procedure GetShellLinkInfo(const LinkFile: WideString;
var SLI: TShellLinkInfo);

procedure SetShellLinkInfo(const LinkFile: WideString;
const SLI: TShellLinkInfo);

implementation

uses ComObj;

function GetSpecialFolderPath(Folder: Integer; CanCreate: Boolean): string;
var
FilePath: array[0..MAX_PATH] of char;

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
787

21 chpt_16.qxd 11/19/01 12:09 PM Page 787

LISTING 16.5 Continued

begin
{ Get path of selected location }
SHGetSpecialFolderPathW(0, FilePath, Folder, CanCreate);
Result := FilePath;

end;

function CreateShellLink(const AppName, Desc: string; Dest: Integer): string;
{ Creates a shell link for application or document specified in }
{ AppName with description Desc. Link will be located in folder }
{ specified by Dest, which is one of the string constants shown }
{ at the top of this unit. Returns the full path name of the }
{ link file. }
var
SL: IShellLink;
PF: IPersistFile;
LnkName: WideString;

begin
OleCheck(CoCreateInstance(CLSID_ShellLink, nil, CLSCTX_INPROC_SERVER,
IShellLink, SL));

{ The IShellLink implementer must also support the IPersistFile }
{ interface. Get an interface pointer to it. }
PF := SL as IPersistFile;
OleCheck(SL.SetPath(PChar(AppName))); // set link path to proper file
if Desc <> ‘’ then
OleCheck(SL.SetDescription(PChar(Desc))); // set description

{ create a path location and filename for link file }
LnkName := GetSpecialFolderPath(Dest, True) + ‘\’ +

ChangeFileExt(AppName, ‘lnk’);
PF.Save(PWideChar(LnkName), True); // save link file
Result := LnkName;

end;

procedure GetShellLinkInfo(const LinkFile: WideString;
var SLI: TShellLinkInfo);

{ Retrieves information on an existing shell link }
var
SL: IShellLink;
PF: IPersistFile;
FindData: TWin32FindData;
AStr: array[0..MAX_PATH] of char;

begin
OleCheck(CoCreateInstance(CLSID_ShellLink, nil, CLSCTX_INPROC_SERVER,
IShellLink, SL));

{ The IShellLink implementer must also support the IPersistFile }

Component-Based Development

PART IV
788

21 chpt_16.qxd 11/19/01 12:09 PM Page 788

LISTING 16.5 Continued

{ interface. Get an interface pointer to it. }
PF := SL as IPersistFile;
{ Load file into IPersistFile object }
OleCheck(PF.Load(PWideChar(LinkFile), STGM_READ));
{ Resolve the link by calling the Resolve interface function. }
OleCheck(SL.Resolve(0, SLR_ANY_MATCH or SLR_NO_UI));
{ Get all the info! }
with SLI do
begin
OleCheck(SL.GetPath(AStr, MAX_PATH, FindData, SLGP_SHORTPATH));
PathName := AStr;
OleCheck(SL.GetArguments(AStr, MAX_PATH));
Arguments := AStr;
OleCheck(SL.GetDescription(AStr, MAX_PATH));
Description := AStr;
OleCheck(SL.GetWorkingDirectory(AStr, MAX_PATH));
WorkingDirectory := AStr;
OleCheck(SL.GetIconLocation(AStr, MAX_PATH, IconIndex));
IconLocation := AStr;
OleCheck(SL.GetShowCmd(ShowCmd));
OleCheck(SL.GetHotKey(HotKey));

end;
end;

procedure SetShellLinkInfo(const LinkFile: WideString;
const SLI: TShellLinkInfo);

{ Sets information for an existing shell link }
var
SL: IShellLink;
PF: IPersistFile;

begin
OleCheck(CoCreateInstance(CLSID_ShellLink, nil, CLSCTX_INPROC_SERVER,
IShellLink, SL));

{ The IShellLink implementer must also support the IPersistFile }
{ interface. Get an interface pointer to it. }
PF := SL as IPersistFile;
{ Load file into IPersistFile object }
OleCheck(PF.Load(PWideChar(LinkFile), STGM_SHARE_DENY_WRITE));
{ Resolve the link by calling the Resolve interface function. }
OleCheck(SL.Resolve(0, SLR_ANY_MATCH or SLR_UPDATE or SLR_NO_UI));
{ Set all the info! }
with SLI, SL do
begin
OleCheck(SetPath(PChar(PathName)));

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
789

21 chpt_16.qxd 11/19/01 12:09 PM Page 789

LISTING 16.5 Continued

OleCheck(SetArguments(PChar(Arguments)));
OleCheck(SetDescription(PChar(Description)));
OleCheck(SetWorkingDirectory(PChar(WorkingDirectory)));
OleCheck(SetIconLocation(PChar(IconLocation), IconIndex));
OleCheck(SetShowCmd(ShowCmd));
OleCheck(SetHotKey(HotKey));

end;
PF.Save(PWideChar(LinkFile), True); // save file

end;

end.

One method of IShellLink that has yet to be explained is the Resolve() method. Resolve()
should be called after the IPersistFile interface of IShellLink is used to load a link file.
This searches the specified link file and fills the IShellLink object with values specified in
the file.

Component-Based Development

PART IV
790

In the GetShellLinkInfo() function shown in Listing 16.5, notice the use of the AStr
local array into which values are retrieved. This technique is used rather than using
the SetLength() to allocate space for the strings—using SetLength() on so many
strings would cause fragmentation of the application’s heap. Using AStr as an inter-
mediate prevents this from occurring. Additionally, because the length of the strings
needs to be set only once, using AStr ends up being slightly faster.

TIP

A Sample Application
These functions and interfaces might be fun and all, but they’re nothing without a nifty appli-
cation in which to show them off. The Shell Link project allows you to do just that. The main
form of this project is shown in Figure 16.6.

Listing 16.6 shows the main unit for this project, Main.pas. Listings 16.7 and 16.8 show
NewLinkU.pas and PickU.pas, two supporting units for the project.

21 chpt_16.qxd 11/19/01 12:09 PM Page 790

FIGURE 16.6
The Shell Link main form, showing one of the desktop links.

LISTING 16.6 Main.pas—Main for Shell Link Project

unit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ComCtrls, ExtCtrls, Spin, WinShell, Menus;

type
TMainForm = class(TForm)
Panel1: TPanel;
btnOpen: TButton;
edLink: TEdit;
btnNew: TButton;
btnSave: TButton;
Label3: TLabel;
Panel2: TPanel;
Label1: TLabel;
Label2: TLabel;
Label4: TLabel;
Label5: TLabel;
Label6: TLabel;
Label7: TLabel;
Label8: TLabel;
Label9: TLabel;
edIcon: TEdit;
edDesc: TEdit;
edWorkDir: TEdit;
edArg: TEdit;

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
791

21 chpt_16.qxd 11/19/01 12:09 PM Page 791

LISTING 16.6 Continued

cbShowCmd: TComboBox;
hkHotKey: THotKey;
speIcnIdx: TSpinEdit;
pnlIconPanel: TPanel;
imgIconImage: TImage;
btnExit: TButton;
MainMenu1: TMainMenu;
File1: TMenuItem;
Open1: TMenuItem;
Save1: TMenuItem;
NewLInk1: TMenuItem;
N1: TMenuItem;
Exit1: TMenuItem;
Help1: TMenuItem;
About1: TMenuItem;
edPath: TEdit;
procedure btnOpenClick(Sender: TObject);
procedure btnNewClick(Sender: TObject);
procedure edIconChange(Sender: TObject);
procedure btnSaveClick(Sender: TObject);
procedure btnExitClick(Sender: TObject);
procedure About1Click(Sender: TObject);

private
procedure GetControls(var SLI: TShellLinkInfo);
procedure SetControls(const SLI: TShellLinkInfo);
procedure ShowIcon;
procedure OpenLinkFile(const LinkFileName: String);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

uses PickU, NewLinkU, AboutU, CommCtrl, ShellAPI;

type
THotKeyRec = record
Char, ModCode: Byte;

end;

procedure TMainForm.SetControls(const SLI: TShellLinkInfo);

Component-Based Development

PART IV
792

21 chpt_16.qxd 11/19/01 12:09 PM Page 792

LISTING 16.6 Continued

{ Sets values of UI controls based on contents of SLI }
var
Mods: THKModifiers;

begin
with SLI do
begin
edPath.Text := PathName;
edIcon.Text := IconLocation;
{ if icon name is blank and link is to exe, use exe name for icon }
{ path. This is done because the icon index is ignored if the }
{ icon path is blank, but an exe may contain more than one icon. }
if (IconLocation = ‘’) and
(CompareText(ExtractFileExt(PathName), ‘EXE’) = 0) then
edIcon.Text := PathName;

edWorkDir.Text := WorkingDirectory;
edArg.Text := Arguments;
speIcnIdx.Value := IconIndex;
edDesc.Text := Description;
{ SW_* constants start at 1 }
cbShowCmd.ItemIndex := ShowCmd - 1;
{ Hot key char in low byte }
hkHotKey.HotKey := Lo(HotKey);
{ Figure out which modifier flags are in high byte }
Mods := [];
if (HOTKEYF_ALT and Hi(HotKey)) <> 0 then include(Mods, hkAlt);
if (HOTKEYF_CONTROL and Hi(HotKey)) <> 0 then include(Mods, hkCtrl);
if (HOTKEYF_EXT and Hi(HotKey)) <> 0 then include(Mods, hkExt);
if (HOTKEYF_SHIFT and Hi(HotKey)) <> 0 then include(Mods, hkShift);
{ Set modifiers set }
hkHotKey.Modifiers := Mods;

end;
ShowIcon;

end;

procedure TMainForm.GetControls(var SLI: TShellLinkInfo);
{ Gets values of UI controls and uses them to set values of SLI }
var
CtlMods: THKModifiers;
HR: THotKeyRec;

begin
with SLI do
begin
PathName := edPath.Text;
IconLocation := edIcon.Text;

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
793

21 chpt_16.qxd 11/19/01 12:09 PM Page 793

LISTING 16.6 Continued

WorkingDirectory := edWorkDir.Text;
Arguments := edArg.Text;
IconIndex := speIcnIdx.Value;
Description := edDesc.Text;
{ SW_* constants start at 1 }
ShowCmd := cbShowCmd.ItemIndex + 1;
{ Get hot key character }
word(HR) := hkHotKey.HotKey;
{ Figure out which modifier keys are being used }
CtlMods := hkHotKey.Modifiers;
with HR do begin
ModCode := 0;
if (hkAlt in CtlMods) then ModCode := ModCode or HOTKEYF_ALT;
if (hkCtrl in CtlMods) then ModCode := ModCode or HOTKEYF_CONTROL;
if (hkExt in CtlMods) then ModCode := ModCode or HOTKEYF_EXT;
if (hkShift in CtlMods) then ModCode := ModCode or HOTKEYF_SHIFT;

end;
HotKey := word(HR);

end;
end;

procedure TMainForm.ShowIcon;
{ Retrieves icon from appropriate file and shows in IconImage }
var
HI: THandle;
IcnFile: string;
IconIndex: word;

begin
{ Get name of icon file }
IcnFile := edIcon.Text;
{ If blank, use the exe name }
if IcnFile = ‘’ then
IcnFile := edPath.Text;

{ Make sure file exists }
if FileExists(IcnFile) then
begin
IconIndex := speIcnIdx.Value;
{ Extract icon from file }
HI := ExtractAssociatedIcon(hInstance, PChar(IcnFile), IconIndex);
{ Assign icon handle to IconImage }
imgIconImage.Picture.Icon.Handle := HI;

end;
end;

Component-Based Development

PART IV
794

21 chpt_16.qxd 11/19/01 12:09 PM Page 794

LISTING 16.6 Continued

procedure TMainForm.OpenLinkFile(const LinkFileName: string);
{ Opens a link file, get info, and displays info in UI }
var
SLI: TShellLinkInfo;

begin
edLink.Text := LinkFileName;
try
GetShellLinkInfo(LinkFileName, SLI);

except
on EShellOleError do
MessageDlg(‘Error occurred while opening link’, mtError, [mbOk], 0);

end;
SetControls(SLI);

end;

procedure TMainForm.btnOpenClick(Sender: TObject);
{ OnClick handler for OpenBtn }
var
LinkFile: String;

begin
if GetLinkFile(LinkFile) then
OpenLinkFile(LinkFile);

end;

procedure TMainForm.btnNewClick(Sender: TObject);
{ OnClick handler for NewBtn }
var
FileName: string;
Dest: Integer;

begin
if GetNewLinkName(FileName, Dest) then
OpenLinkFile(CreateShellLink(FileName, ‘’, Dest));

end;

procedure TMainForm.edIconChange(Sender: TObject);
{ OnChange handler for IconEd and IcnIdxEd }
begin
ShowIcon;

end;

procedure TMainForm.btnSaveClick(Sender: TObject);
{ OnClick handler for SaveBtn }
var
SLI: TShellLinkInfo;

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
795

21 chpt_16.qxd 11/19/01 12:09 PM Page 795

LISTING 16.6 Continued

begin
GetControls(SLI);
try
SetShellLinkInfo(edLink.Text, SLI);

except
on EShellOleError do
MessageDlg(‘Error occurred while setting info’, mtError, [mbOk], 0);

end;
end;

procedure TMainForm.btnExitClick(Sender: TObject);
{ OnClick handler for ExitBtn }
begin
Close;

end;

procedure TMainForm.About1Click(Sender: TObject);
{ OnClick handler for Help|About menu item }
begin
AboutBox;

end;

end.

LISTING 16.7 NewLinkU.pas—Unit with Form That Helps Create New Link

unit NewLinkU;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
Buttons, StdCtrls;

type
TNewLinkForm = class(TForm)
Label1: TLabel;
Label2: TLabel;
edLinkTo: TEdit;
btnOk: TButton;
btnCancel: TButton;
cbLocation: TComboBox;
sbOpen: TSpeedButton;
OpenDialog: TOpenDialog;

Component-Based Development

PART IV
796

21 chpt_16.qxd 11/19/01 12:09 PM Page 796

LISTING 16.7 Continued

procedure sbOpenClick(Sender: TObject);
procedure FormCreate(Sender: TObject);

end;

function GetNewLinkName(var LinkTo: string; var Dest: Integer): Boolean;

implementation

uses WinShell;

{$R *.DFM}

function GetNewLinkName(var LinkTo: string; var Dest: Integer): Boolean;
{ Gets file name and destination folder for a new shell link. }
{ Only modifies params if Result = True. }
begin
with TNewLinkForm.Create(Application) do
try
cbLocation.ItemIndex := 0;
Result := ShowModal = mrOk;
if Result then
begin
LinkTo := edLinkTo.Text;
Dest := cbLocation.ItemIndex;

end;
finally
Free;

end;
end;

procedure TNewLinkForm.sbOpenClick(Sender: TObject);
begin
if OpenDialog.Execute then
edLinkTo.Text := OpenDialog.FileName;

end;

procedure TNewLinkForm.FormCreate(Sender: TObject);
var
I: Integer;

begin
for I := Low(SpecialFolders) to High(SpecialFolders) do
cbLocation.Items.Add(SpecialFolders[I].Name);

end;

end.

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
797

21 chpt_16.qxd 11/19/01 12:09 PM Page 797

LISTING 16.8 PickU.pas—Unit with Form that Enables User to Choose Link Location

unit PickU;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, FileCtrl;

type
TLinkForm = class(TForm)
lbLinkFiles: TFileListBox;
btnOk: TButton;
btnCancel: TButton;
cbLocation: TComboBox;
Label1: TLabel;
procedure lbLinkFilesDblClick(Sender: TObject);
procedure cbLocationChange(Sender: TObject);
procedure FormCreate(Sender: TObject);

end;

function GetLinkFile(var S: String): Boolean;

implementation

{$R *.DFM}

uses WinShell, ShlObj;

function GetLinkFile(var S: String): Boolean;
{ Returns link file name in S. }
{ Only modifies S when Result is True. }
begin
with TLinkForm.Create(Application) do
try
{ Make sure location is selected }
cbLocation.ItemIndex := 0;
{ Get path of selected location }
cbLocationChange(nil);
Result := ShowModal = mrOk;
{ Return full pathname for link file }
if Result then
S := lbLinkFiles.Directory + ‘\’ +
lbLinkFiles.Items[lbLinkFiles.ItemIndex];

finally

Component-Based Development

PART IV
798

21 chpt_16.qxd 11/19/01 12:09 PM Page 798

LISTING 16.8 Continued

Free;
end;

end;

procedure TLinkForm.lbLinkFilesDblClick(Sender: TObject);
begin
ModalResult := mrOk;

end;

procedure TLinkForm.cbLocationChange(Sender: TObject);
var
Folder: Integer;

begin
{ Get path of selected location }
Folder := SpecialFolders[cbLocation.ItemIndex].ID;
lbLinkFiles.Directory := GetSpecialFolderPath(Folder, False);

end;

procedure TLinkForm.FormCreate(Sender: TObject);
var
I: Integer;

begin
for I := Low(SpecialFolders) to High(SpecialFolders) do
cbLocation.Items.Add(SpecialFolders[I].Name);

end;

end.

Shell Extensions
For the ultimate in extensibility, the Windows shell provides a means for you to develop code
that executes from within the shell’s own process and namespace. Shell extensions are imple-
mented as in-process COM servers that are created and used by the shell.

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
799

Because shell extensions are COM servers at heart, understanding them requires a
basic understand of COM. If your COM knowledge needs brushing up, Chapter 15,
“COM Development,” provides this foundation.

NOTE

21 chpt_16.qxd 11/19/01 12:09 PM Page 799

Several types of shell extensions are available to deal with a variety of the shell’s aspects. Also
known as a handler, a shell extension must implement one or more COM interfaces. The shell
supports the following types of shell extensions:

• Copy hook handlers implement the ICopyHook interface. These shell extensions allow
you to receive notifications whenever a folder is copied, deleted, moved, or renamed and
to optionally prevent the operation from occurring.

• Context menu handlers implement the IContextMenu and IShellExtInit interfaces.
These shell extensions enable you to add items to the context menu of a particular file
object in the shell.

• Drag-and-drop handlers also implement the IContextMenu and IShellExtInit inter-
faces. These shell extensions are almost identical in implementation to context menu
handlers, except that they’re invoked when a user drags an object and drops it to a new
location.

• Icon handlers implement the IExtractIcon and IPersistFile interfaces. Icon handlers
allow you to provide different icons for multiple instances of the same type of file object.

• Property sheet handlers implement the IShellPropSheetExt and IShellExtInit inter-
faces, and they allow you to add pages to the properties dialog associated with a file type.

• Drop target handlers implement the IDropTarget and IPersistFile interfaces. These
shell extensions allow you to control what happens when you drop one shell object on
another.

• Data object handlers implement the IDataObject and IPersistFile interfaces, and they
supply the data object used when files are being dragged and dropped or copied and
pasted.

Component-Based Development

PART IV
800

Debugging Shell Extensions
Before we get into the subject of actually writing shell extensions, consider the ques-
tion of debugging shell extensions. Because shell extensions execute from within the
shell’s own process, how is it possible to “hook into” the shell in order to debug your
shell extension?

The solution to the problem is based on the fact that the shell is an executable (not
very different from any other application) called explorer.exe. Explorer.exe has a
property, however, that is kind of unique: The first instance of explorer.exe will
invoke the shell. Subsequent instances will simply invoke additional “Explorer” win-
dows in the shell.

21 chpt_16.qxd 11/19/01 12:09 PM Page 800

The remainder of this chapter is dedicated to showing a cross section of the shell extensions
just described. You’ll learn about copy hook handlers, context menu handlers, and icon
handlers.

The COM Object Wizard
Before discussing each of the shell extension DLLs, we should first mention a bit about how
they’re created. Because shell extensions are in-process COM servers, you can let the Delphi
IDE do most of the grunt work in creating the source code for you. Work begins for all the
shell extensions with the same two steps:

1. Select ActiveX Library from the ActiveX page of the New Items dialog box. This will
create a new COM server DLL into which you can insert COM objects.

2. Select COM Object from the ActiveX page of the New Items dialog boxes. This will
invoke the COM Server Wizard. In the wizard’s dialog box, enter a name and description
for your shell extension and select the Apartment threading model. Click OK, and a new
unit containing the code for your COM object will be generated.

Copy Hook Handlers
As mentioned earlier, copy hook shell extensions allow you to install a handler that receives
notifications whenever a folder is copied, deleted, moved, or renamed. After receiving this
notification, the handler can optionally prevent the operation from occurring. Note that the
handler is only called for folder and printer objects; it’s not called for files and other objects.

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
801

Using a little-known trick in the shell, it’s possible to close the shell without closing
Windows. Follow these steps to debug your shell extensions in Delphi:

1. Make explorer.exe the host application for your shell extension in the Run,
Parameters dialog box. Be sure to include the full path (that is, c:\windows\
explorer.exe).

2. From the shell’s Start menu, select Shut Down. This will invoke the Shut Down
Windows dialog box.

3. In the Shut Down Windows dialog box, hold down Ctrl+Alt+Shift and click the
No button. This will close the shell without closing Windows.

4. Using Alt+Tab, switch back to Delphi and run the shell extension. This will invoke
a new copy of the shell running under the Delphi debugger. You can now set
breakpoints in your code and debug as usual.

5. When you’re ready to close Windows, you can still do so properly without the
use of the shell: Use Ctrl+Esc to invoke the Tasks window and then select
Windows, Shutdown Windows to close Windows.

21 chpt_16.qxd 11/19/01 12:09 PM Page 801

The first step in creating a copy hook handler is to create an object that descends from
TComObject and implements the ICopyHook interface. This interface is defined in the ShlObj
unit as follows:

type
ICopyHook = interface(IUnknown)
[‘{000214EF-0000-0000-C000-000000000046}’]
function CopyCallback(Wnd: HWND; wFunc, wFlags: UINT;
pszSrcFile: PAnsiChar; dwSrcAttribs: DWORD; pszDestFile: PAnsiChar;
dwDestAttribs: DWORD): UINT; stdcall;

end;

The CopyCallback() Method
As you can see, ICopyHook is a pretty simple interface, and it implements only one function:
CopyCallback(). This function will be called whenever a shell folder is manipulated. The fol-
lowing paragraphs describe the parameters for this function.

Wnd is the handle of the window the copy hook handler should use as the parent for any win-
dows it displays. wFunc indicates the operation being performed. This can be any one of the
values shown in Table 16.5.

TABLE 16.5 The wFunc Values for CopyCallback()

Constant Value Meaning

FO_COPY $2 Copies the file specified by pszSrcFile to the
location specified by pszDestFile.

FO_DELETE $3 Deletes the file specified by pszSrcFile.

FO_MOVE $1 Moves the file specified by pszSrcFile to the
location specified by pszDestFile.

FO_RENAME $4 Renames the file specified by pszSrcFile.

PO_DELETE $13 Deletes the printer specified by pszSrcFile.

PO_PORTCHANGE $20 Changes the printer port. The pszSrcFile and
pszDestFile parameters contain double null-
terminated lists of strings. Each list contains
the printer name followed by the port name.
The port name in pszSrcFile is the current
printer port, and the port name in pszDestFile
is the new printer port.

PO_RENAME $14 Renames the printer specified by pszSrcFile.

PO_REN_PORT $34 A combination of PO_RENAME and
PO_PORTCHANGE.

Component-Based Development

PART IV
802

21 chpt_16.qxd 11/19/01 12:09 PM Page 802

wFlags holds the flags that control the operation. This parameter can be a combination of the
values shown in Table 16.6.

TABLE 16.6 The wFlags Values for CopyCallback()

Constant Value Meaning

FOF_ALLOWUNDO $40 Preserves undo information (when
possible).

FOF_MULTIDESTFILES $1 The SHFileOperation() function specifies
multiple destination files (one for each
source file) rather than one directory where
all the source files are to be deposited. A
copy hook handler typically ignores this
value.

FOF_NOCONFIRMATION $10 Responds with “Yes to All” for any dialog
box that’s displayed.

FOF_NOCONFIRMMKDIR $200 Does not confirm the creation of any
needed directories if the operation requires
a new directory to be created.

FOF_RENAMEONCOLLISION $8 Gives the file being operated on a new
name (such as “Copy #1 of. . .”) in a copy,
move, or rename operation when a file with
the target name already exists.

FOF_SILENT $4 Does not display a progress dialog box.

FOF_SIMPLEPROGRESS $100 Displays a progress dialog box, but the dia-
log box doesn’t show the names of the files.

pszSourceFile is the name of the source folder, dwSrcAttribs holds the attributes of the
source folder, pszDestFile is the name of the destination folder, and dwDestAttribs holds the
attributes of the destination folder.

Unlike most methods, this interface doesn’t return an OLE result code. Instead, it must return
one of the values listed in Table 16.7, as defined in the Windows unit.

TABLE 16.7 The wFlags Values for CopyCallback()

Constant Value Meaning

IDYES 6 Allows the operation

IDNO 7 Prevents the operation on this file but continues with any
other operations (for example, a batch copy operation)

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
803

21 chpt_16.qxd 11/19/01 12:09 PM Page 803

TABLE 16.7 Continued

Constant Value Meaning

IDCANCEL 2 Prevents the current operation and cancels any pending
operations

TCopyHook Implementation
Being an object that implements one interface with one method, there isn’t much to
TCopyHook:

type
TCopyHook = class(TComObject, ICopyHook)
protected
function CopyCallback(Wnd: HWND; wFunc, wFlags: UINT;
pszSrcFile: PAnsiChar;
dwSrcAttribs: DWORD; pszDestFile: PAnsiChar; dwDestAttribs: DWORD): UINT;
stdcall;

end;

The implementation of the CopyCallback() method is also small. The MessageBox() API
function is called to confirm whatever operation is being attempted. Conveniently, the return
value for MessageBox() will be the same as the return value for this method:

function TCopyHook.CopyCallback(Wnd: HWND; wFunc, wFlags: UINT;
pszSrcFile: PAnsiChar; dwSrcAttribs: DWORD; pszDestFile: PAnsiChar;
dwDestAttribs: DWORD): UINT;

const
MyMessage: string = ‘Are you sure you want to mess with “%s”?’;

begin
// confirm operation
Result := MessageBox(Wnd, PChar(Format(MyMessage, [pszSrcFile])),
‘DDG Shell Extension’, MB_YESNO);

end;

Component-Based Development

PART IV
804

You might wonder why the MessageBox() API function is used to display a message
rather than using a Delphi function such as MessageDlg() or ShowMessage(). The rea-
son is simple: size and efficiency. Calling any function out of the Dialogs or Forms
unit would cause a great deal of VCL to be linked into the DLL. By keeping these
units out of the uses clause, the shell extension DLL weighs in at a svelte 70KB.

TIP

21 chpt_16.qxd 11/19/01 12:09 PM Page 804

Believe it or not, that’s all there is to the TCopyHook object itself. However, there’s still one
major detail to work through before calling it a day: The shell extension must be registered
with the System Registry before it will function.

Registration
In addition to the normal registration required of any COM server, a copy hook handler must
have an additional Registry entry under

HKEY_CLASSES_ROOT\directory\shellex\CopyHookHandlers

Furthermore, Windows NT requires that all shell extensions be registered as approved shell
extensions under

HKEY_LOCAL_MACHINE\ SOFTWARE\Microsoft\Windows\CurrentVersion
➥\Shell Extensions\Approved

You can take several approaches to registering shell extensions: They can be registered via a
REG file or through an installation program. The shell extension DLL, itself, can be self-regis-
tering. Although it might be just a bit more work, the best solution is to make each shell exten-
sion DLL self-registering. This is cleaner because it makes your shell extension a one-file,
self-contained package.

As you learned in Chapter 15, COM objects are always created from class factories. Within the
VCL framework, class factory objects are also responsible for registering the COM object they
will create. If a COM object requires custom Registry entries (as is the case with a shell exten-
sion), setting up these entries is just a matter of overriding the class factory’s
UpdateRegistry() method. Listing 16.9 shows the completed CopyMain unit, which includes a
specialized class factory used to perform custom registration.

LISTING 16.9 CopyMain.pas—Main Unit for Copy Hook Implementation

unit CopyMain;

interface

uses Windows, ComObj, ShlObj;

type
TCopyHook = class(TComObject, ICopyHook)
protected
function CopyCallback(Wnd: HWND; wFunc, wFlags: UINT;
pszSrcFile: PAnsiChar; dwSrcAttribs: DWORD;
pszDestFile: PAnsiChar; dwDestAttribs: DWORD): UINT; stdcall;

end;

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
805

21 chpt_16.qxd 11/19/01 12:09 PM Page 805

LISTING 16.9 Continued

TCopyHookFactory = class(TComObjectFactory)
protected
function GetProgID: string; override;
procedure ApproveShellExtension(Register: Boolean; const ClsID: string);
virtual;

public
procedure UpdateRegistry(Register: Boolean); override;

end;

implementation

uses ComServ, SysUtils, Registry;

{ TCopyHook }

// This is the method which is called by the shell for folder operations
function TCopyHook.CopyCallback(Wnd: HWND; wFunc, wFlags: UINT;
pszSrcFile: PAnsiChar; dwSrcAttribs: DWORD; pszDestFile: PAnsiChar;
dwDestAttribs: DWORD): UINT;

const
MyMessage: string = ‘Are you sure you want to mess with “%s”?’;

begin
// confirm operation
Result := MessageBox(Wnd, PChar(Format(MyMessage, [pszSrcFile])),
‘DDG Shell Extension’, MB_YESNO);

end;

{ TCopyHookFactory }

function TCopyHookFactory.GetProgID: string;
begin
// ProgID not needed for shell extension
Result := ‘’;

end;

procedure TCopyHookFactory.UpdateRegistry(Register: Boolean);
var
ClsID: string;

begin
ClsID := GUIDToString(ClassID);
inherited UpdateRegistry(Register);
ApproveShellExtension(Register, ClsID);
if Register then
// add shell extension clsid to CopyHookHandlers Reg entry
CreateRegKey(‘directory\shellex\CopyHookHandlers\’ + ClassName, ‘’,
ClsID)

Component-Based Development

PART IV
806

21 chpt_16.qxd 11/19/01 12:09 PM Page 806

LISTING 16.9 Continued

else
DeleteRegKey(‘directory\shellex\CopyHookHandlers\’ + ClassName);

end;

procedure TCopyHookFactory.ApproveShellExtension(Register: Boolean;
const ClsID: string);

// This registry entry is required in order for the extension to
// operate correctly under Windows NT.
const
SApproveKey = ‘SOFTWARE\Microsoft\Windows\CurrentVersion\Shell

➥Extensions\Approved’;

begin
with TRegistry.Create do
try
RootKey := HKEY_LOCAL_MACHINE;
if not OpenKey(SApproveKey, True) then Exit;
if Register then WriteString(ClsID, Description)
else DeleteValue(ClsID);

finally
Free;

end;
end;

const
CLSID_CopyHook: TGUID = ‘{66CD5F60-A044-11D0-A9BF-00A016E3867F}’;

initialization
TCopyHookFactory.Create(ComServer, TCopyHook, CLSID_CopyHook,
‘DDG_CopyHook’, ‘DDG Copy Hook Shell Extension Example’,
ciMultiInstance, tmApartment);

end.

What makes the TCopyHookFactory class factory work is the fact that an instance of it, rather
than the usual TComObjectFactory, is being created in the initialization part of the unit.
Figure 16.7 shows what happens when you try to rename a folder in the shell after the copy
hook shell extension DLL is installed.

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
807

FIGURE 16.7
The copy hook handler in action.

21 chpt_16.qxd 11/19/01 12:09 PM Page 807

Context Menu Handlers
Context menu handlers enable you to add items to the local menu that are associated with file
objects in the shell. A sample local menu for an EXE file is shown in Figure 16.8.

Component-Based Development

PART IV
808

FIGURE 16.8
The shell local menu for an EXE file.

Context menu shell extensions work by implementing the IShellExtInit and IContextMenu
interfaces. In this case, we’ll implement these interfaces to create a context menu handler for
Borland Package Library (BPL) files; the local menu for package files in the shell will provide
an option for obtaining package information. This context menu handler object will be called
TContextMenu, and, like the copy hook handler, TContextMenu will descend from TComObject.

IShellExtInit
The IShellExtInit interface is used to initialize a shell extension. This interface is defined in
the ShlObj unit as follows:

type
IShellExtInit = interface(IUnknown)
[‘{000214E8-0000-0000-C000-000000000046}’]
function Initialize(pidlFolder: PItemIDList; lpdobj: IDataObject;
hKeyProgID: HKEY): HResult; stdcall;

end;

Initialize(), being the only method of this interface, is called to initialize the context menu
handler. The following paragraphs describe the parameters for this method.

pidlFolder is a pointer to a PItemIDList (item identifier list) structure for the folder that con-
tains the item whose context menu is being displayed. lpdobj holds the IDataObject interface

21 chpt_16.qxd 11/19/01 12:09 PM Page 808

object used to retrieve the objects being acted upon. hkeyProgID contains the Registry key for
the file object or folder type.

The implementation for this method is shown in the following code. Upon first glance, the
code might look complex, but it really boils down to three things: a call to lpobj.GetData()
to obtain data from IDataObject and two calls to DragQueryFile() (one call to obtain the
number of files and the other to obtain the filename). The filename is stored in the object’s
FFileName field. Here’s the code:

function TContextMenu.Initialize(pidlFolder: PItemIDList; lpdobj: IDataObject;
hKeyProgID: HKEY): HResult;

var
Medium: TStgMedium;
FE: TFormatEtc;

begin
try
// Fail the call if lpdobj is nil.
if lpdobj = nil then
begin
Result := E_FAIL;
Exit;

end;
with FE do
begin
cfFormat := CF_HDROP;
ptd := nil;
dwAspect := DVASPECT_CONTENT;
lindex := -1;
tymed := TYMED_HGLOBAL;

end;
// Render the data referenced by the IDataObject pointer to an HGLOBAL
// storage medium in CF_HDROP format.
Result := lpdobj.GetData(FE, Medium);
if Failed(Result) then Exit;
try
// If only one file is selected, retrieve the file name and store it in
// szFile. Otherwise fail the call.
if DragQueryFile(Medium.hGlobal, $FFFFFFFF, nil, 0) = 1 then
begin
DragQueryFile(Medium.hGlobal, 0, FFileName, SizeOf(FFileName));
Result := NOERROR;

end
else
Result := E_FAIL;

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
809

21 chpt_16.qxd 11/19/01 12:09 PM Page 809

finally
ReleaseStgMedium(medium);

end;
except
Result := E_UNEXPECTED;

end;
end;

IContextMenu
The IContextMenu interface is used to manipulate the pop-up menu associated with a file in
the shell. This interface is defined in the ShlObj unit as follows:

type
IContextMenu = interface(IUnknown)
[‘{000214E4-0000-0000-C000-000000000046}’]
function QueryContextMenu(Menu: HMENU;
indexMenu, idCmdFirst, idCmdLast, uFlags: UINT): HResult; stdcall;

function InvokeCommand(var lpici: TCMInvokeCommandInfo): HResult; stdcall;
function GetCommandString(idCmd, uType: UINT; pwReserved: PUINT;
pszName: LPSTR; cchMax: UINT): HResult; stdcall;

end;

After the handler has been initialized through the IShellExtInit interface, the next method to
be called is IContextMenu.QueryContextMenu(). The parameters passed to this method include
a menu handle, the index at which to insert the first menu item, the minimum and maximum
values for menu item IDs, and flags that indicate menu attributes. The following TContextMenu
implementation of this method adds a menu item with the text “Package Info. . .” to the menu
handle passed in the Menu parameter (note that the return value for QueryContextMenu() is the
index of the last menu item inserted plus one):

function TContextMenu.QueryContextMenu(Menu: HMENU; indexMenu, idCmdFirst,
idCmdLast, uFlags: UINT): HResult;

begin
FMenuIdx := indexMenu;
// Add one menu item to context menu
InsertMenu (Menu, FMenuIdx, MF_STRING or MF_BYPOSITION, idCmdFirst,
‘Package Info...’);

// Return index of last inserted item + 1
Result := FMenuIdx + 1;

end;

The next method called by the shell is GetCommandString(). This method is intended to
retrieve the language-independent command string or help string for a particular menu item.
The parameters for this method include the menu item offset, flags indicating the type of infor-
mation to receive, a reserved parameter, and a string buffer and buffer size. The following
TContextMenu implementation of this method only needs to deal with providing the help string
for the menu item:

Component-Based Development

PART IV
810

21 chpt_16.qxd 11/19/01 12:09 PM Page 810

function TContextMenu.GetCommandString(idCmd, uType: UINT; pwReserved: PUINT;
pszName: LPSTR; cchMax: UINT): HRESULT;

begin
Result := S_OK;
try
// make sure menu index is correct, and shell is asking for help string
if (idCmd = FMenuIdx) and ((uType and GCS_HELPTEXT) <> 0) then
// return help string for menu item
StrLCopy(pszName, ‘Get information for the selected package.’, cchMax)

else
Result := E_INVALIDARG;

except
Result := E_UNEXPECTED;

end;
end;

When you click the new item in the context menu, the shell will call the InvokeCommand()
method. The method accepts a TCMInvokeCommandInfo record as a parameter. This record is
defined in the ShlObj unit as follows:

type
PCMInvokeCommandInfo = ^TCMInvokeCommandInfo;
TCMInvokeCommandInfo = packed record
cbSize: DWORD; { must be SizeOf(TCMInvokeCommandInfo) }
fMask: DWORD; { any combination of CMIC_MASK_* }
hwnd: HWND; { might be NULL (indicating no owner window) }
lpVerb: LPCSTR; { either a string of MAKEINTRESOURCE(idOffset) }
lpParameters: LPCSTR; { might be NULL (indicating no parameter) }
lpDirectory: LPCSTR; { might be NULL (indicating no specific directory) }
nShow: Integer; { one of SW_ values for ShowWindow() API }
dwHotKey: DWORD;
hIcon: THandle;

end;

The low word or the lpVerb field will contain the index of the menu item selected. Here’s the
implementation of this method:

function TContextMenu.InvokeCommand(var lpici: TCMInvokeCommandInfo): HResult;
begin
Result := S_OK;
try
// Make sure we are not being called by an application
if HiWord(Integer(lpici.lpVerb)) <> 0 then
begin
Result := E_FAIL;
Exit;

end;
// Execute the command specified by lpici.lpVerb.
// Return E_INVALIDARG if we are passed an invalid argument number.

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
811

21 chpt_16.qxd 11/19/01 12:09 PM Page 811

if LoWord(lpici.lpVerb) = FMenuIdx then
ExecutePackInfoApp(FFileName, lpici.hwnd)

else
Result := E_INVALIDARG;

except
MessageBox(lpici.hwnd, ‘Error obtaining package information.’, ‘Error’,
MB_OK or MB_ICONERROR);

Result := E_FAIL;
end;

end;

If all goes well, the ExecutePackInfoApp() function is called to invoke the PackInfo.exe
application, which displays various information about a package. We won’t go into the particu-
lars of that application right now; however, it’s discussed in detail on the electronic version of
Delphi 5 Developer’s Guide on the CD accompanying this book in Chapter 13, “Hard-Core
Techniques.”

Registration
Context menu handlers must be registered under

HKEY_CLASSES_ROOT\<file type>\shellex\ContextMenuHandlers

in the System Registry. Following the model of the copy hook extension, registration capability
is added to the DLL by creating a specialized TComObject descendant. The object is shown in
Listing 16.10 along with the complete source code for the unit containing TContextMenu.
Figure 16.9 shows the local menu for the BPL file with the new item, and Figure 16.10 shows
the PackInfo.exe window as invoked by the context menu handler.

Component-Based Development

PART IV
812

FIGURE 16.9
The context menu handler in action.

21 chpt_16.qxd 11/19/01 12:09 PM Page 812

FIGURE 16.10
Obtaining package information from the context menu handler.

LISTING 16.10 ContMain.pas—Main Unit for Context Menu Handler Implementation

unit ContMain;

interface

uses Windows, ComObj, ShlObj, ActiveX;

type
TContextMenu = class(TComObject, IContextMenu, IShellExtInit)
private
FFileName: array[0..MAX_PATH] of char;
FMenuIdx: UINT;

protected
// IContextMenu methods
function QueryContextMenu(Menu: HMENU; indexMenu, idCmdFirst, idCmdLast,
uFlags: UINT): HResult; stdcall;

function InvokeCommand(var lpici: TCMInvokeCommandInfo): HResult; stdcall;
function GetCommandString(idCmd, uType: UINT; pwReserved: PUINT;
pszName: LPSTR; cchMax: UINT): HResult; stdcall;

// IShellExtInit method
function Initialize(pidlFolder: PItemIDList; lpdobj: IDataObject;

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
813

21 chpt_16.qxd 11/19/01 12:09 PM Page 813

LISTING 16.10 Continued

hKeyProgID: HKEY): HResult; reintroduce; stdcall;
end;

TContextMenuFactory = class(TComObjectFactory)
protected
function GetProgID: string; override;
procedure ApproveShellExtension(Register: Boolean; const ClsID: string);
virtual;

public
procedure UpdateRegistry(Register: Boolean); override;

end;

implementation

uses ComServ, SysUtils, ShellAPI, Registry;

procedure ExecutePackInfoApp(const FileName: string; ParentWnd: HWND);
const
SPackInfoApp = ‘%sPackInfo.exe’;
SCmdLine = ‘“%s” %s’;
SErrorStr = ‘Failed to execute PackInfo:’#13#10#13#10;

var
PI: TProcessInformation;
SI: TStartupInfo;
ExeName, ExeCmdLine: string;
Buffer: array[0..MAX_PATH] of char;

begin
// Get directory of this DLL. Assume EXE being executed is in same dir.
GetModuleFileName(HInstance, Buffer, SizeOf(Buffer));
ExeName := Format(SPackInfoApp, [ExtractFilePath(Buffer)]);
ExeCmdLine := Format(SCmdLine, [ExeName, FileName]);
FillChar(SI, SizeOf(SI), 0);
SI.cb := SizeOf(SI);
if not CreateProcess(PChar(ExeName), PChar(ExeCmdLine), nil, nil, False,
0, nil, nil, SI, PI) then
MessageBox(ParentWnd, PChar(SErrorStr + SysErrorMessage(GetLastError)),
‘Error’, MB_OK or MB_ICONERROR);

end;

{ TContextMenu }

{ TContextMenu.IContextMenu }

function TContextMenu.QueryContextMenu(Menu: HMENU; indexMenu, idCmdFirst,
idCmdLast, uFlags: UINT): HResult;

Component-Based Development

PART IV
814

21 chpt_16.qxd 11/19/01 12:09 PM Page 814

LISTING 16.10 Continued

begin
FMenuIdx := indexMenu;
// Add one menu item to context menu
InsertMenu (Menu, FMenuIdx, MF_STRING or MF_BYPOSITION, idCmdFirst,
‘Package Info...’);

// Return index of last inserted item + 1
Result := FMenuIdx + 1;

end;

function TContextMenu.InvokeCommand(var lpici: TCMInvokeCommandInfo): HResult;
begin
Result := S_OK;
try
// Make sure we are not being called by an application
if HiWord(Integer(lpici.lpVerb)) <> 0 then
begin
Result := E_FAIL;
Exit;

end;
// Execute the command specified by lpici.lpVerb.
// Return E_INVALIDARG if we are passed an invalid argument number.
if LoWord(lpici.lpVerb) = FMenuIdx then
ExecutePackInfoApp(FFileName, lpici.hwnd)

else
Result := E_INVALIDARG;

except
MessageBox(lpici.hwnd, ‘Error obtaining package information.’, ‘Error’,
MB_OK or MB_ICONERROR);

Result := E_FAIL;
end;

end;

function TContextMenu.GetCommandString(idCmd, uType: UINT; pwReserved: PUINT;
pszName: LPSTR; cchMax: UINT): HRESULT;

begin
Result := S_OK;
try
// make sure menu index is correct, and shell is asking for help string
if (idCmd = FMenuIdx) and ((uType and GCS_HELPTEXT) <> 0) then
// return help string for menu item
StrLCopy(pszName, ‘Get information for the selected package.’, cchMax)

else
Result := E_INVALIDARG;

except

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
815

21 chpt_16.qxd 11/19/01 12:09 PM Page 815

LISTING 16.10 Continued

Result := E_UNEXPECTED;
end;

end;

{ TContextMenu.IShellExtInit }

function TContextMenu.Initialize(pidlFolder: PItemIDList; lpdobj: IDataObject;
hKeyProgID: HKEY): HResult;

var
Medium: TStgMedium;
FE: TFormatEtc;

begin
try
// Fail the call if lpdobj is nil.
if lpdobj = nil then
begin
Result := E_FAIL;
Exit;

end;
with FE do
begin
cfFormat := CF_HDROP;
ptd := nil;
dwAspect := DVASPECT_CONTENT;
lindex := -1;
tymed := TYMED_HGLOBAL;

end;
// Render the data referenced by the IDataObject pointer to an HGLOBAL
// storage medium in CF_HDROP format.
Result := lpdobj.GetData(FE, Medium);
if Failed(Result) then Exit;
try
// If only one file is selected, retrieve the file name and store it in
// szFile. Otherwise fail the call.
if DragQueryFile(Medium.hGlobal, $FFFFFFFF, nil, 0) = 1 then
begin
DragQueryFile(Medium.hGlobal, 0, FFileName, SizeOf(FFileName));
Result := NOERROR;

end
else
Result := E_FAIL;

finally
ReleaseStgMedium(medium);

end;

Component-Based Development

PART IV
816

21 chpt_16.qxd 11/19/01 12:09 PM Page 816

LISTING 16.10 Continued

except
Result := E_UNEXPECTED;

end;
end;

{ TContextMenuFactory }

function TContextMenuFactory.GetProgID: string;
begin
// ProgID not required for context menu shell extension
Result := ‘’;

end;

procedure TContextMenuFactory.UpdateRegistry(Register: Boolean);
var
ClsID: string;

begin
ClsID := GUIDToString(ClassID);
inherited UpdateRegistry(Register);
ApproveShellExtension(Register, ClsID);
if Register then
begin
// must register .bpl as a file type
CreateRegKey(‘.bpl’, ‘’, ‘DelphiPackageLibrary’);
// register this DLL as a context menu handler for .bpl files
CreateRegKey(‘BorlandPackageLibrary\shellex\ContextMenuHandlers\’ +
ClassName, ‘’, ClsID);

end
else begin
DeleteRegKey(‘.bpl’);
DeleteRegKey(‘BorlandPackageLibrary\shellex\ContextMenuHandlers\’ +
ClassName);

end;
end;

procedure TContextMenuFactory.ApproveShellExtension(Register: Boolean;
const ClsID: string);

// This registry entry is required in order for the extension to
// operate correctly under Windows NT.
const
SApproveKey = ‘SOFTWARE\Microsoft\Windows\CurrentVersion\

➥Shell Extensions\Approved’;

begin
with TRegistry.Create do

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
817

21 chpt_16.qxd 11/19/01 12:09 PM Page 817

LISTING 16.10 Continued

try
RootKey := HKEY_LOCAL_MACHINE;
if not OpenKey(SApproveKey, True) then Exit;
if Register then WriteString(ClsID, Description)
else DeleteValue(ClsID);

finally
Free;

end;
end;

const
CLSID_CopyHook: TGUID = ‘{7C5E74A0-D5E0-11D0-A9BF-E886A83B9BE5}’;

initialization
TContextMenuFactory.Create(ComServer, TContextMenu, CLSID_CopyHook,
‘DDG_ContextMenu’, ‘DDG Context Menu Shell Extension Example’,
ciMultiInstance, tmApartment);

end.

Icon Handlers
Icon handlers enable you to cause different icons to be used for multiple instances of the same
type of file. In this example, the TIconHandler icon handler object provides different icons for
different types of Borland Package (BPL) files. Depending on whether a package is runtime,
design time, both, or none, a different icon will be displayed in a shell folder.

Package Flags
Before getting into the implementations of the interfaces necessary for this shell extension,
take a moment to examine the method that determines the type of a particular package file. The
method returns TPackType, which is defined as follows:

TPackType = (ptDesign, ptDesignRun, ptNone, ptRun);

Now here’s the method:

function TIconHandler.GetPackageType: TPackType;
var
PackMod: HMODULE;
PackFlags: Integer;

begin
// Since we only need to get into the package’s resources,
// LoadLibraryEx with LOAD_LIBRARY_AS_DATAFILE provides a speed-
// efficient means for loading the package.

Component-Based Development

PART IV
818

21 chpt_16.qxd 11/19/01 12:09 PM Page 818

PackMod := LoadLibraryEx(PChar(FFileName), 0, LOAD_LIBRARY_AS_DATAFILE);
if PackMod = 0 then
begin
Result := ptNone;
Exit;

end;
try
GetPackageInfo(PackMod, nil, PackFlags, PackInfoProc);

finally
FreeLibrary(PackMod);

end;
// mask off all but design and run flags, and return result
case PackFlags and (pfDesignOnly or pfRunOnly) of
pfDesignOnly: Result := ptDesign;
pfRunOnly: Result := ptRun;
pfDesignOnly or pfRunOnly: Result := ptDesignRun;

else
Result := ptNone;

end;
end;

This method works by calling the GetPackageInfo() method from the SysUtils unit to obtain
the package flags. An interesting point to note concerning performance optimization is that the
LoadLibraryEx() API function is called rather than Delphi’s LoadPackage() procedure to load
the package library. Internally, the LoadPackage() procedure calls the LoadLibrary() API to
load the BPL and then calls InitializePackage() to execute the initialization code for each
of the units in the package. Because all we want to do is get the package flags and they reside
in a resource linked to the BPL, we can safely load the package with LoadLibraryEx() using
the LOAD_LIBRARY_AS_DATAFILE flag.

Icon Handler Interfaces
As mentioned earlier, icon handlers must support both the IExtractIcon (defined in ShlObj)
and IPersistFile (defined in the ActiveX unit) interfaces. These interfaces are shown here:

type
IExtractIcon = interface(IUnknown)
[‘{000214EB-0000-0000-C000-000000000046}’]
function GetIconLocation(uFlags: UINT; szIconFile: PAnsiChar; cchMax: UINT;
out piIndex: Integer; out pwFlags: UINT): HResult; stdcall;

function Extract(pszFile: PAnsiChar; nIconIndex: UINT;
out phiconLarge, phiconSmall: HICON; nIconSize: UINT): HResult; stdcall;

end;

IPersistFile = interface(IPersist)
[‘{0000010B-0000-0000-C000-000000000046}’]

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
819

21 chpt_16.qxd 11/19/01 12:09 PM Page 819

function IsDirty: HResult; stdcall;
function Load(pszFileName: POleStr; dwMode: Longint): HResult; stdcall;
function Save(pszFileName: POleStr; fRemember: BOOL): HResult; stdcall;
function SaveCompleted(pszFileName: POleStr): HResult; stdcall;
function GetCurFile(out pszFileName: POleStr): HResult; stdcall;

end;

Although this might look like a lot of work, it’s really not; only two of these methods actually
have to be implemented. The first file that must be implemented is IPersistFile.Load(). This
is the method that’s called to initialize the shell extension, and in it, you must save the filename
passed via the pszFileName parameter. Here’s the TExtractIcon implementation of this
method:

function TIconHandler.Load(pszFileName: POleStr; dwMode: Longint): HResult;
begin
// this method is called to initialized the icon handler shell
// extension. We must save the file name which is passed in pszFileName
FFileName := pszFileName;
Result := S_OK;

end;

The other method that must be implemented is IExtractIcon.GetIconLocation(). The para-
meters for this method are discussed in the following paragraphs.

uFlags indicates the type of icon to be displayed. This parameter can be 0, GIL_FORSHELL, or
GIL_OPENICON. GIL_FORSHELL means that the icon is to be displayed in a shell folder.
GIL_OPENICON means that the icon should be in the “open” state if images for both the open
and closed states are available. If this flag isn’t specified, the icon should be in the normal, or
“closed,” state. This flag is typically used for folder objects.

szIconFile is the buffer to receive the icon location, and cchMax is the size of the buffer.
piIndex is an integer that receives the icon index, which further describes the icon location.
pwFlags receives zero or more of the values shown in Table 16.8.

TABLE 16.8 The pwFlags Values for GetIconLocation()

Flag Meaning

GIL_DONTCACHE The physical image bits for this icon shouldn’t be cached by the
caller. This distinction is important to consider because a
GIL_DONTCACHELOCATION flag might be introduced in future ver-
sions of the shell.

GIL_NOTFILENAME The location isn’t a filename/index pair. Callers that decide to
extract the icon from the location must call this object’s
IExtractIcon.Extract() method to obtain the desired icon
images.

Component-Based Development

PART IV
820

21 chpt_16.qxd 11/19/01 12:09 PM Page 820

TABLE 16.8 Continued

Flag Meaning

GIL_PERCLASS All objects of this class have the same icon. This flag is used
internally by the shell. Typical implementations of IExtractIcon
don’t require this flag because it implies that an icon handler is
not required to resolve the icon on a per-object basis. The recom-
mended method for implementing per-class icons is to register a
default icon for the class.

GIL_PERINSTANCE Each object of this class has its own icon. This flag is used inter-
nally by the shell to handle cases such as setup.exe, where more
than one object with identical names might be known to the shell
and use different icons. Typical implementations of
IExtractIcon don’t require this flag.

GIL_SIMULATEDOC The caller should create a document icon using the specified
icon.

The TIconHandler implementation of GetIconLocation() is shown here:

function TIconHandler.GetIconLocation(uFlags: UINT; szIconFile: PAnsiChar;
cchMax: UINT; out piIndex: Integer; out pwFlags: UINT): HResult;

begin
Result := S_OK;
try
// return this DLL for name of module to find icon
GetModuleFileName(HInstance, szIconFile, cchMax);
// tell shell not to cache image bits, in case icon changes
// and that each instance may have its own icon
pwFlags := GIL_DONTCACHE or GIL_PERINSTANCE;
// icon index coincides with TPackType
piIndex := Ord(GetPackageType);

except
// if there’s an error, use the default package icon
piIndex := Ord(ptNone);

end;
end;

The icons are linked into the shell extension DLL as a resource file, so the name of the current
file, as returned by GetModuleFileName(), is written to the szIconFile buffer. Also, the icons
are arranged in such a way that the index of an icon for a package type corresponds to the
package type’s index into the TPackType enumeration, so the return value of
GetPackageType() is assigned to piIndex.

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
821

21 chpt_16.qxd 11/19/01 12:09 PM Page 821

Registration
Icon handlers must be registered under the

HKEY_CLASSES_ROOT\<file type>\shellex\IconHandler

key in the Registry. Again, a descendant of TComObjectFactory is created to deal with the reg-
istration of this shell extension. This is shown in Listing 16.11 along with the rest of the source
code for the icon handler.

Figure 16.11 shows a shell folder containing packages of different types. Notice the different
icons for different types of packages.

Component-Based Development

PART IV
822

FIGURE 16.11
The result of using the icon handler.

LISTING 16.11 IconMain.pas—Main Unit for Icon Handler Implementation

unit IconMain;

interface

uses Windows, ActiveX, ComObj, ShlObj;

type
TPackType = (ptDesign, ptDesignRun, ptNone, ptRun);

TIconHandler = class(TComObject, IExtractIcon, IPersistFile)
private
FFileName: string;
function GetPackageType: TPackType;

21 chpt_16.qxd 11/19/01 12:09 PM Page 822

LISTING 16.11 Continued

protected
// IExtractIcon methods
function GetIconLocation(uFlags: UINT; szIconFile: PAnsiChar; cchMax: UINT;
out piIndex: Integer; out pwFlags: UINT): HResult; stdcall;

function Extract(pszFile: PAnsiChar; nIconIndex: UINT;
out phiconLarge, phiconSmall: HICON; nIconSize: UINT): HResult; stdcall;

// IPersist method
function GetClassID(out classID: TCLSID): HResult; stdcall;
// IPersistFile methods
function IsDirty: HResult; stdcall;
function Load(pszFileName: POleStr; dwMode: Longint): HResult; stdcall;
function Save(pszFileName: POleStr; fRemember: BOOL): HResult; stdcall;
function SaveCompleted(pszFileName: POleStr): HResult; stdcall;
function GetCurFile(out pszFileName: POleStr): HResult; stdcall;

end;

TIconHandlerFactory = class(TComObjectFactory)
protected
function GetProgID: string; override;
procedure ApproveShellExtension(Register: Boolean; const ClsID: string);
virtual;

public
procedure UpdateRegistry(Register: Boolean); override;

end;

implementation

uses SysUtils, ComServ, Registry;

{ TIconHandler }

procedure PackInfoProc(const Name: string; NameType: TNameType; Flags: Byte;
Param: Pointer);

begin
// we don’t need to implement this procedure because we are only
// interested in package flags, not contained units and required pkgs.

end;

function TIconHandler.GetPackageType: TPackType;
var
PackMod: HMODULE;
PackFlags: Integer;

begin
// Since we only need to get into the package’s resources,

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
823

21 chpt_16.qxd 11/19/01 12:09 PM Page 823

LISTING 16.11 Continued

// LoadLibraryEx with LOAD_LIBRARY_AS_DATAFILE provides a speed-
// efficient means for loading the package.
PackMod := LoadLibraryEx(PChar(FFileName), 0, LOAD_LIBRARY_AS_DATAFILE);
if PackMod = 0 then
begin
Result := ptNone;
Exit;

end;
try
GetPackageInfo(PackMod, nil, PackFlags, PackInfoProc);

finally
FreeLibrary(PackMod);

end;
// mask off all but design and run flags, and return result
case PackFlags and (pfDesignOnly or pfRunOnly) of
pfDesignOnly: Result := ptDesign;
pfRunOnly: Result := ptRun;
pfDesignOnly or pfRunOnly: Result := ptDesignRun;

else
Result := ptNone;

end;
end;

{ TIconHandler.IExtractIcon }

function TIconHandler.GetIconLocation(uFlags: UINT; szIconFile: PAnsiChar;
cchMax: UINT; out piIndex: Integer; out pwFlags: UINT): HResult;

begin
Result := S_OK;
try
// return this DLL for name of module to find icon
GetModuleFileName(HInstance, szIconFile, cchMax);
// tell shell not to cache image bits, in case icon changes
// and that each instance may have its own icon
pwFlags := GIL_DONTCACHE or GIL_PERINSTANCE;
// icon index coincides with TPackType
piIndex := Ord(GetPackageType);

except
// if there’s an error, use the default package icon
piIndex := Ord(ptNone);

end;
end;

function TIconHandler.Extract(pszFile: PAnsiChar; nIconIndex: UINT;
out phiconLarge, phiconSmall: HICON; nIconSize: UINT): HResult;

Component-Based Development

PART IV
824

21 chpt_16.qxd 11/19/01 12:09 PM Page 824

LISTING 16.11 Continued

begin
// This method only needs to be implemented if the icon is stored in
// some type of user-defined data format. Since our icon is in a
// plain old DLL, we just return S_FALSE.
Result := S_FALSE;

end;

{ TIconHandler.IPersist }

function TIconHandler.GetClassID(out classID: TCLSID): HResult;
begin
// this method is not called for icon handlers
Result := E_NOTIMPL;

end;

{ TIconHandler.IPersistFile }

function TIconHandler.IsDirty: HResult;
begin
// this method is not called for icon handlers
Result := S_FALSE;

end;

function TIconHandler.Load(pszFileName: POleStr; dwMode: Longint): HResult;
begin
// this method is called to initialized the icon handler shell
// extension. We must save the file name which is passed in pszFileName
FFileName := pszFileName;
Result := S_OK;

end;

function TIconHandler.Save(pszFileName: POleStr; fRemember: BOOL): HResult;
begin
// this method is not called for icon handlers
Result := E_NOTIMPL;

end;

function TIconHandler.SaveCompleted(pszFileName: POleStr): HResult;
begin
// this method is not called for icon handlers
Result := E_NOTIMPL;

end;

function TIconHandler.GetCurFile(out pszFileName: POleStr): HResult;

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
825

21 chpt_16.qxd 11/19/01 12:09 PM Page 825

LISTING 16.11 Continued

begin
// this method is not called for icon handlers
Result := E_NOTIMPL;

end;

{ TIconHandlerFactory }

function TIconHandlerFactory.GetProgID: string;
begin
// ProgID not required for context menu shell extension
Result := ‘’;

end;

procedure TIconHandlerFactory.UpdateRegistry(Register: Boolean);
var
ClsID: string;

begin
ClsID := GUIDToString(ClassID);
inherited UpdateRegistry(Register);
ApproveShellExtension(Register, ClsID);
if Register then
begin
// must register .bpl as a file type
CreateRegKey(‘.bpl’, ‘’, ‘BorlandPackageLibrary’);
// register this DLL as an icon handler for .bpl files
CreateRegKey(‘BorlandPackageLibrary\shellex\IconHandler’, ‘’, ClsID);

end
else begin
DeleteRegKey(‘.bpl’);
DeleteRegKey(‘BorlandPackageLibrary\shellex\IconHandler’);

end;
end;

procedure TIconHandlerFactory.ApproveShellExtension(Register: Boolean;
const ClsID: string);

// This registry entry is required in order for the extension to
// operate correctly under Windows NT.
const
SApproveKey = ‘SOFTWARE\Microsoft\Windows\CurrentVersion\

➥Shell Extensions\Approved’;

begin
with TRegistry.Create do
try
RootKey := HKEY_LOCAL_MACHINE;

Component-Based Development

PART IV
826

21 chpt_16.qxd 11/19/01 12:09 PM Page 826

LISTING 16.11 Continued

if not OpenKey(SApproveKey, True) then Exit;
if Register then WriteString(ClsID, Description)
else DeleteValue(ClsID);

finally
Free;

end;
end;

const
CLSID_IconHandler: TGUID = ‘{ED6D2F60-DA7C-11D0-A9BF-90D146FC32B3}’;

initialization
TIconHandlerFactory.Create(ComServer, TIconHandler, CLSID_IconHandler,
‘DDG_IconHandler’, ‘DDG Icon Handler Shell Extension Example’,
ciMultiInstance, tmApartment);

end.

InfoTip Handlers
Introduced in the Windows 2000 shell, InfoTip handlers provide the ability to create custom
pop-up InfoTips (also called ToolTips in Delphi) when the mouse is placed over the icon repre-
senting a file in the shell. The default InfoTip displayed by the shell contains the name of the
file, the type of file (as determined based on its extension), and the file size. InfoTip handlers
are handy when you want to display more than this rather limited and generic bit of file infor-
mation to the user at a glance.

For Delphi developers, a great case in point is package files. Although we all know that pack-
age files are composed of one or more units, it’s impossible to know at a glance exactly which
units are contained within. Earlier in this chapter, you saw a context menu handler that pro-
vides this information by choosing an option from a local menu, causing an external applica-
tion to be launched. Now you’ll see how to get this information even more easily, without the
use of an external program.

InfoTip Handler Interfaces
InfoTip handlers must implement the IQueryInfo and IPersistFile interfaces. You already
learned about IPersistFile in the discussions on shell links and icon handlers earlier in this
chapter, and it is used in this case to obtain the name of the file in question. IQueryInfo is a
relatively simple interface containing two methods, and it is defined in the ShlObj unit as
shown here:

type
IQueryInfo = interface(IUnknown)

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
827

21 chpt_16.qxd 11/19/01 12:09 PM Page 827

[SID_IQueryInfo]
function GetInfoTip(dwFlags: DWORD; var ppwszTip: PWideChar): HResult;
stdcall;

function GetInfoFlags(out pdwFlags: DWORD): HResult; stdcall;
end;

The GetInfoTip() method is called by the shell to retrieve the InfoTip for a given file. The
dwFlags parameter is currently unused. The InfoTip string is returned in the ppwszTip parameter.

Component-Based Development

PART IV
828

The ppwszTip parameter points to a wide character string. Memory for this string
must be allocated within the InfoTip handler using the shell’s memory allocator. The
shell is responsible for freeing this memory.

NOTE

Implementation
Like the other shell extensions, the InfoTip handler is implemented as a simple COM server
DLL. The COM object contained within implements the IQueryInfo and IPersistFile meth-
ods. Listing 16.12 shows the contents of InfoMain.pas, the main unit for the DDGInfoTip pro-
ject, which contains the Delphi implementation of an InfoTip handler.

LISTING 16.12 InfoMain.pas—Main Unit for InfoTip Handler

unit InfoMain;

{$WARN SYMBOL_PLATFORM OFF}

interface

uses
Windows, ActiveX, Classes, ComObj, ShlObj;

type
TInfoTipHandler = class(TComObject, IQueryInfo, IPersistFile)
private
FFileName: string;
FMalloc: IMalloc;

protected
{ IQUeryInfo }
function GetInfoTip(dwFlags: DWORD; var ppwszTip: PWideChar): HResult;
stdcall;

function GetInfoFlags(out pdwFlags: DWORD): HResult; stdcall;
{IPersist}
function GetClassID(out classID: TCLSID): HResult; stdcall;

21 chpt_16.qxd 11/19/01 12:09 PM Page 828

LISTING 16.12 Continued

{ IPersistFile }
function IsDirty: HResult; stdcall;
function Load(pszFileName: POleStr; dwMode: Longint): HResult; stdcall;
function Save(pszFileName: POleStr; fRemember: BOOL): HResult; stdcall;
function SaveCompleted(pszFileName: POleStr): HResult; stdcall;
function GetCurFile(out pszFileName: POleStr): HResult; stdcall;

public
procedure Initialize; override;

end;

TInfoTipFactory = class(TComObjectFactory)
protected
function GetProgID: string; override;
procedure ApproveShellExtension(Register: Boolean; const ClsID: string);
virtual;

public
procedure UpdateRegistry(Register: Boolean); override;

end;

const
Class_InfoTipHandler: TGUID = ‘{5E08F28D-A5B1-4996-BDF1-5D32108DB5E5}’;

implementation

uses ComServ, SysUtils, Registry;

const
TipBufLen = 1024;

procedure PackageInfoCallback(const Name: string; NameType: TNameType;
Flags: Byte; Param: Pointer);

var
S: string;

begin
// if we are being passed the name of a contained unit, then
// concatenate it to the list of units, which is passed in Param.
if NameType = ntContainsUnit then
begin
S := Name;
if PChar(Param)^ <> #0 then
S := ‘, ‘ + S;

StrLCat(PChar(Param), PChar(S), TipBufLen);
end;

end;

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
829

21 chpt_16.qxd 11/19/01 12:09 PM Page 829

LISTING 16.12 Continued

function TInfoTipHandler.GetClassID(out classID: TCLSID): HResult;
begin
classID := Class_InfoTipHandler;
Result := S_OK;

end;

function TInfoTipHandler.GetCurFile(out pszFileName: POleStr): HResult;
begin
Result := E_NOTIMPL;

end;

function TInfoTipHandler.GetInfoFlags(out pdwFlags: DWORD): HResult;
begin
Result := E_NOTIMPL;

end;

function TInfoTipHandler.GetInfoTip(dwFlags: DWORD;
var ppwszTip: PWideChar): HResult;

var
PackMod: HModule;
TipStr: PChar;
Size, Flags, TipStrLen: Integer;

begin
Result := S_OK;
if (CompareText(ExtractFileExt(FFileName), ‘.bpl’) = 0) and
Assigned(FMalloc) then

begin
// Since we only need to get into the package’s resources,
// LoadLibraryEx with LOAD_LIBRARY_AS_DATAFILE provides a speed-
// efficient means for loading the package.
PackMod := LoadLibraryEx(PChar(FFileName), 0, LOAD_LIBRARY_AS_DATAFILE);
if PackMod <> 0 then
try
TipStr := StrAlloc(TipBufLen);
try
FillChar(TipStr^, TipBufLen, 0); // zero out string memory
// Fill up TipStr with contained units
GetPackageInfo(PackMod, TipStr, Flags, PackageInfoCallback);
TipStrLen := StrLen(TipStr);
Size := (TipStrLen + 1) * SizeOf(WideChar);
ppwszTip := FMalloc.Alloc(Size); // use shell’s allocator
// copy PAnsiChar to PWideChar
MultiByteToWideChar(0, 0, TipStr, TipStrLen, ppwszTip, Size);

finally

Component-Based Development

PART IV
830

21 chpt_16.qxd 11/19/01 12:09 PM Page 830

LISTING 16.12 Continued

StrDispose(TipStr);
end;

finally
FreeLibrary(PackMod);

end;
end;

end;

procedure TInfoTipHandler.Initialize;
begin
inherited;
// shells shell’s memory allocator and save it away
SHGetMalloc(FMalloc);

end;

function TInfoTipHandler.IsDirty: HResult;
begin
Result := E_NOTIMPL;

end;

function TInfoTipHandler.Load(pszFileName: POleStr;
dwMode: Integer): HResult;

begin
// This is the only important IPersistFile method -- we need to save
// away the file name
FFileName := pszFileName;
Result := S_OK;

end;

function TInfoTipHandler.Save(pszFileName: POleStr;
fRemember: BOOL): HResult;

begin
Result := E_NOTIMPL;

end;

function TInfoTipHandler.SaveCompleted(pszFileName: POleStr): HResult;
begin
Result := E_NOTIMPL;

end;

{ TInfoTipFactory }

function TInfoTipFactory.GetProgID: string;
begin
// ProgID not required for IntoTip handler shell extension

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
831

21 chpt_16.qxd 11/19/01 12:09 PM Page 831

LISTING 16.12 Continued

Result := ‘’;
end;

procedure TInfoTipFactory.UpdateRegistry(Register: Boolean);
var
ClsID: string;

begin
ClsID := GUIDToString(ClassID);
inherited UpdateRegistry(Register);
ApproveShellExtension(Register, ClsID);
if Register then
begin
// register this DLL as the InfoTip handler for .bpl files
CreateRegKey(‘.bpl\shellex\{00021500-0000-0000-C000-000000000046}’,
‘’, ClsID);

end
else begin
DeleteRegKey(‘.bpl\shellex\{00021500-0000-0000-C000-000000000046}’);

end;
end;

procedure TInfoTipFactory.ApproveShellExtension(Register: Boolean;
const ClsID: string);

// This registry entry is required in order for the extension to
// operate correctly under Windows NT.
const
SApproveKey = ‘SOFTWARE\Microsoft\Windows\CurrentVersion\’ +
‘Shell Extensions\Approved’;

begin
with TRegistry.Create do
try
RootKey := HKEY_LOCAL_MACHINE;
if not OpenKey(SApproveKey, True) then Exit;
if Register then WriteString(ClsID, Description)
else DeleteValue(ClsID);

finally
Free;

end;
end;

initialization
TInfoTipFactory.Create(ComServer, TInfoTipHandler, Class_InfoTipHandler,
‘InfoTipHandler’, ‘DDG sample InfoTip handler’, ciMultiInstance,
tmApartment);

end.

Component-Based Development

PART IV
832

21 chpt_16.qxd 11/19/01 12:09 PM Page 832

There are a couple of interesting points in this implementation. Notice that the shell’s memory
allocator is retrieved and stored in the Initialize() method. The allocator is later used to
allocate memory for the InfoTip string in the GetInfoTip() method. The name of the file in
question is passed to the handler in the Load() method. The work is done in the GetInfoTip()
method, which gets package information using the GetPackageInfo() function that you
learned about earlier in this chapter. As the PackageInfoCallback() callback function is
called repeatedly from within GetPackageInfo(), the IntoTip string is concatenated together
file-by-file.

Registration
The technique used for registration of the COM server DLL is almost identical to that of the
other shell extensions in this chapter, as you can see in Listing 16.12. The key difference
is the key under which InfoTip handlers are registered; these are always registered under
HKEY_CLASSES_ROOT\<file extension>\shellex\{00021500-0000-0000-C000-000000000046},
where <file extension> is the file extension name, including the preceding dot.

Figure 16.12 shows this InfoTip handler in action.

Windows Shell Programming

CHAPTER 16

16

W
IN

D
O

W
S

S
H

ELL
P

R
O

G
R

A
M

M
IN

G
833

The Delphi InfoTip handler shell extension.

Summary
This chapter covers all the different aspects of extending the Windows shell: tray-notification
icons, AppBars, shell links, and a variety of shell extensions. It builds upon some of the knowl-
edge you obtained in the last chapter when working with COM. In Chapter 17, you’ll learn
more about component-based development using interfaces.

21 chpt_16.qxd 11/19/01 12:09 PM Page 833

21 chpt_16.qxd 11/19/01 12:09 PM Page 834

CHAPTER

17
Using the Open Tools API

IN THIS CHAPTER
• Open Tools Interfaces 836

• Using the Open Tools API 839

• Form Wizards 868

22 chpt_17.qxd 11/19/01 12:06 PM Page 835

Have you ever thought to yourself, “Delphi is great, but why doesn’t the IDE perform this little
task that I’d like it to?” If you have, the Open Tools API is for you. The Delphi Open Tools
API provides you with the capability of integrating your own tools that work closely with
Delphi’s IDE. In this chapter, you’ll learn about the different interfaces that make up the Open
Tools API, how to use the interfaces, and also how to leverage your newly found expertise to
write a fully featured wizard.

Open Tools Interfaces
The Open Tools API is composed of 14 units, each containing one or more objects that provide
interfaces to a variety of facilities in the IDE. Using these interfaces enables you to write your
own Delphi wizards, version control managers, and component and property editors. You’ll
also gain a window into Delphi’s IDE and editor through any of these add-ons.

With the exception of the interfaces designed for component and property editors, the Open
Tools interface objects provide an all-virtual interface to the outside world—meaning that
using these interface objects involves working only with the objects’ virtual functions. You
can’t access the objects’ data fields, properties, or static functions. Because of this, the Open
Tools interface objects follow the COM standard (see Chapter 15, “COM Development”). With
a little work on your part, these interfaces can be used in any programming language that sup-
ports COM interfaces. In this chapter, you’ll work only with Delphi, but you should know that
the capacity for using other languages is available (in case you just can’t get enough of C++).

Component-Based Development

PART IV
836

The complete Open Tools API is available only with Delphi Professional and
Enterprise. Delphi Personal has the capability to use add-ons created with the Open
Tools API, but it cannot create add-ons because it contains only the units for creating
component and property editors. You can find the source code for the Open Tools
interfaces in the \Delphi 6\Source\ToolsAPI subdirectory.

NOTE

Table 17.1 shows the units that make up the Open Tools API and the classes and interfaces
they provide. Table 17.2 lists obsolete Open Tools API units that remain only for backward
compatibility with experts written in Delphi 4 or earlier. Because the obsolete units pre-date
the native interface type, they employ regular Delphi classes with virtual abstract methods as
a substitute for true interfaces. The use of true interfaces has been phased into the Open Tools
API over the past few versions of Delphi, and the current incarnation of the Open Tools API is
primarily interface-based.

22 chpt_17.qxd 11/19/01 12:06 PM Page 836

TABLE 17.1 Units in the Open Tools API

Unit Name Purpose

ToolsAPI Contains the latest interface-based Open Tools API elements. The
contents of this unit essentially supersede the pre-Delphi 5 Open
Tools API units that use abstract classes to manipulate menus, noti-
fications, the filesystem, the editor, and wizard add-ins. It also
contains new interfaces for manipulating the debugger, IDE key
mappings, projects, project groups, packages, and the To Do list.

VCSIntf Defines the TIVCSClient class, which enables the Delphi IDE to
communicate with version-control software.

DesignConst Contains strings used by the Open Tools API.

DesignEditors Provides property editor support.

DesignIntf This unit replaces the DsgnIntf unit from previous versions
and provides core support for design-time IDE interfaces. The
IProperty interface is used by the IDE to edit properties.
IDesignerSelections is used to manipulate the form designer’s
selected objects list (replaces TDesignerSelectionList used
in previous Delphi versions). IDesigner is one of the primary
interfaces used by wizards for general IDE services.
IDesignNotification provides notification of designer events
such as items being inserted, deleted, or modified. The
IComponentEditor interface is implemented by component editors
to provide design time component editing, and ISelectionEditor
provides the same functionality for a group of selected compo-
nents. The TBaseComponentEditor class is the class from which all
component editors should be derived. ICustomModule and
TBaseCustomModule are provided in order to install modules that
can be edited in the IDE’s form designer.

DesignMenus Contains the IMenuItems, IMenuItem, and related interfaces for
design-time manipulation of the IDE’s menus.

DesignWindows Declares the TDesignWindow class, which would serve as the base
class for any new design windows one might want to add to
the IDE.

PropertyCategories Contains the classes to support the categorization of custom com-
ponent properties. Used by the Object Inspector’s category view.

TreeIntf Provides TSprig and related classes and interfaces to support cus-
tom sprigs, or nodes in the IDE’s Object TreeView.

VCLSprigs Sprig implementations for VCL components.

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
837

22 chpt_17.qxd 11/19/01 12:06 PM Page 837

TABLE 17.1 Continued

Unit Name Purpose

VCLEditors Declares base ICustomPropertyDrawing and
ICustomPropertyListDrawing to handle custom drawing of
properties and property lists in the IDE’s Object Inspector. Also
declares custom property drawing objects for common VCL
properties.

ClxDesignWindows Declares the TClxDesignWindow class, which is the CLX equivalent
of the TDesignWindow class.

ClxEditors CLX equivalent of the VCLEditors unit, which includes property
editors for CLX components.

ClxSprigs Sprig implementations for CLX components.

TABLE 17.2 Obsolete Open Tools API units

Unit Name Purpose

FileIntf Defines the TIVirtualFileSystem class, which the Delphi IDE
uses for filing. Wizards, version-control managers, and property
and component editors can use this interface to hook into Delphi’s
own file system to perform special file operations.

EditIntf Defines classes necessary for manipulating the Delphi Code Editor
and Form Designer. The TIEditReader class provides read access
to an editor buffer. TIEditWriter provides write access to the
same. TIEditView is defined as an individual view of an edit
buffer. TIEditInterface is the base interface to the editor, which
can be used to obtain the previously mentioned editor interfaces.
The TIComponentInterface class is an interface to an individual
component sitting on a form at design time. TIFormInterface is
the base interface to a design-time form or data module.
TIResourceEntry is an interface for the raw data in a project’s
resource (*.res) file. TIResourceFile is a higher-level interface to
the project resource file. TIModuleNotifier is a class that provides
notifications when various events occur for a particular module.
Finally, TIModuleInterface is the interface for any file or module
open in the IDE.

ExptIntf Defines the abstract TIExpert class from which all experts
descend.

Component-Based Development

PART IV
838

22 chpt_17.qxd 11/19/01 12:06 PM Page 838

TABLE 17.2 Continued

Unit Name Purpose

VirtIntf Defines the base TInterface class from which other interfaces are
derived. This unit also defines TIStream class, which is a wrapper
around a VCL TStream.

IStreams Defines TIMemoryStream, TIFileStream, and TIVirtualStream
classes, which are descendants of TIStream. These interfaces can
be used to hook into the IDE’s own streaming mechanism.

ToolIntf Defines TIMenuItemIntf and TIMainMenuIntf classes, which
enable the Open Tools developer to create and modify menus in the
Delphi IDE. This unit also defines the TIAddInNotifier class,
which allows add-in tools to be notified of certain events within the
IDE. Most importantly, this unit defines the TIToolServices class,
which provides an interface into various portions of the Delphi IDE
(such as the editor, component library, Code Editor, Form
Designer, and filesystem).

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
839

You might wonder where all this wizard stuff is documented in Delphi. We assure you
that it is documented, but the documentation isn’t easy to find. Each of these units
contains complete documentation for the interface, classes, methods, and procedures
declared within. We won’t regurgitate the same information that these units contain,
so we urge you to take a look at the units for complete documentation.

NOTE

Using the Open Tools API
Now that you know what’s what, it’s time to get your hands dirty and look at some actual code.
This section focuses primarily on writing wizards by using the Open Tools API. We won’t dis-
cuss the building of version-control systems because the interest for such a topic is arguably
limited. For examples of component and property editors, you should look at Chapter 11, “VCL
Component Building,” and Chapter 12, “Advanced VCL Component Building.”

A Dumb Wizard
To start out, you’ll create a very simple wizard appropriately dubbed the Dumb Wizard. The
minimum requirement to create a wizard is to create a class that implements the IOTAWizard
interface. For reference, IOTAWizard is defined in the ToolsAPI unit as follows:

type
IOTAWizard = interface(IOTANotifier)

22 chpt_17.qxd 11/19/01 12:06 PM Page 839

[‘{B75C0CE0-EEA6-11D1-9504-00608CCBF153}’]
{ Expert UI strings }
function GetIDString: string;
function GetName: string;
function GetState: TWizardState;
{ Launch the AddIn }
procedure Execute;

end;

This interface consists mainly of some GetXXX() functions that are designed to be overridden
by the descendant classes in order to provide specific information for each wizard. The
Execute() method is the business end of IOTAWizard. Execute() is called by the IDE when
the user selects your wizard from the main menu or the New Items menu, and it’s in this
method that the wizard should be created and invoked.

If you’ve got a keen eye, you might have noticed that IOTAWizard descends from another inter-
face, called IOTANotifier. IOTANotifier is an interface defined in the ToolsAPI unit that con-
tains methods that can be called by the IDE to notify a wizard of various goings on. This
interface is defined as

type
IOTANotifier = interface(IUnknown)
[‘{F17A7BCF-E07D-11D1-AB0B-00C04FB16FB3}’]
{ This procedure is called immediately after the item is successfully
saved. This is not called for IOTAWizards }

procedure AfterSave;
{ This function is called immediately before the item is saved. This is not
called for IOTAWizard }

procedure BeforeSave;
{ The associated item is being destroyed so all references should be
dropped. Exceptions are ignored. }

procedure Destroyed;
{ This associated item was modified in some way. This is not called for
IOTAWizards }

procedure Modified;
end;

As the comments in the source code indicate, most of these methods aren’t called for simple
IOTAWizard wizards. Because of this, ToolsAPI provides a class called TNotifierObject that
provides empty implementations for IOTANotifier methods. You might choose to descend
your wizards from this class to take advantage of the convenience of having the IOTANotifier
methods implemented for you.

Component-Based Development

PART IV
840

22 chpt_17.qxd 11/19/01 12:06 PM Page 840

Wizards are not much use without a means to invoke them, and one of the simplest ways to do
that is through a menu pick. If you want to place your wizard on Delphi’s main menu, you
need only implement the IOTAMenuWizard interface, which is defined in all its complexity in
ToolsAPI as

type
IOTAMenuWizard = interface(IOTAWizard)
[‘{B75C0CE2-EEA6-11D1-9504-00608CCBF153}’]
function GetMenuText: string;

end;

As you can see, this interface descends from IOTAWizard and adds only one additional method
to return the menu text string.

To jump right in and pull together your knowledge thus far, Listing 17.1 shows the
DumbWiz.pas unit, which contains the source code for TDumbWizard.

LISTING 17.1 DumbWiz.pas—a Simple Wizard Implementation

unit DumbWiz;

interface

uses
ShareMem, SysUtils, Windows, ToolsAPI;

type
TDumbWizard = class(TNotifierObject, IOTAWizard, IOTAMenuWizard)
// IOTAWizard methods
function GetIDString: string;
function GetName: string;
function GetState: TWizardState;
procedure Execute;
// IOTAMenuWizard method
function GetMenuText: string;

end;

implementation

uses Dialogs;

function TDumbWizard.GetName: string;
begin
Result := ‘Dumb Wizard’;

end;

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
841

22 chpt_17.qxd 11/19/01 12:06 PM Page 841

LISTING 17.1 Continued

function TDumbWizard.GetState: TWizardState;
begin
Result := [wsEnabled];

end;

function TDumbWizard.GetIDString: String;
begin
Result := ‘DDG.DumbWizard’;

end;

procedure TDumbWizard.Execute;
begin
MessageDlg(‘This is a dumb wizard.’, mtInformation, [mbOk], 0);

end;

function TDumbWizard.GetMenuText: string;
begin
Result := ‘Dumb Wizard’;

end;

end.

The IOTAWizard.GetName() function should return a unique name for this wizard.

IOTAWizard.GetState() returns the state of an wsStandard wizard on the main menu. The
return value of this function is a set that can contain wsEnabled and/or wsChecked, depending
on how you want the menu item to appear in the IDE. This function is called every time the
wizard is shown in order to determine how to paint the menu.

IOTAWizard.GetIDString() should return a globally unique string identifier for the wizard.
Convention dictates that the return value of this string should be in the following format:

CompanyName.WizardName

IOTAWizard.Execute() invokes the wizard. As Listing 17.1 shows, the Execute() method for
TDumbWizard doesn’t do much. However, later in this chapter you’ll see some wizards that
actually do perform stuff.

IOTAMenuWizard.GetMenuText() returns the text that should appear on the main menu. This
function is called every time the user pulls down the Help menu, so it’s possible to dynami-
cally change the value of the menu text as your wizard runs.

Take a look at the call to RegisterPackageWizard() inside the Register() procedure. You
might notice that this is very similar to the syntax used for registering components, component
editors, and property editors for inclusion in the component library, as described in Chapters 11

Component-Based Development

PART IV
842

22 chpt_17.qxd 11/19/01 12:06 PM Page 842

and 12. The reason for this similarity is that this type of wizard is stored in a package that’s
part of the component library, along with components and the like. You can also store wizards
in a standalone DLL, as you’ll see in the next example.

This wizard is installed just like a component: Select the Components, Install Component
option from the main menu and add the unit to a new or existing package. Once this is
installed, the menu choice to invoke the wizard appears under the Help menu, as shown in
Figure 17.1. You can see the outstanding output of this wizard in Figure 17.2.

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
843

FIGURE 17.1
The Dumb Wizard on the main menu.

FIGURE 17.2
The Dumb Wizard in action.

The Wizard Wizard
There’s just a little bit more work involved in creating a DLL-based wizard (as opposed to a
component-library–based wizard). In addition to demonstrating the creation of a DLL-based
wizard, the Wizard Wizard example has a couple of ulterior motives, including illustrating how
DLL wizards relate to the Registry and how to maintain one source code base that targets
either an EXE or a DLL wizard.

If you’re unfamiliar with the ins and outs of Windows DLLs, take a look at Chapter 9,
“Dynamic Link Libraries,” in the electronic version of Delphi 5 Developer’s Guide on
the CD accompanying this book.

NOTE

22 chpt_17.qxd 11/19/01 12:06 PM Page 843

For Delphi to recognize a DLL wizard, it must have an entry in the system Registry under the
following key:

HKEY_CURRENT_USER\Software\Borland\Delphi\5.0\Experts

Figure 17.3 shows sample entries using the Windows RegEdit application.

Component-Based Development

PART IV
844

There’s no hard-and-fast rule that dictates whether a wizard should reside in a pack-
age in the component library or a DLL. From a user’s perspective, the primary differ-
ence between the two is that component library wizards require a simple package
installation to be rebuilt, whereas DLL wizards require a Registry entry, and Delphi
must be exited and restarted for changes to take effect. However, as a developer,
you’ll find package wizards a bit easier to deal with for a number of reasons. Namely,
exceptions propagate between your wizard and the IDE automatically, you don’t
have to use sharemem.dll for memory management, you don’t have to do anything
special to initialize the DLL’s application variable, and pop-up hints and mouse
enter/exit messages will work properly.

With this in mind, you should consider using a DLL wizard when you want the wizard
to install with a minimum amount of work on the part of the end user.

TIP

FIGURE 17.3
Delphi wizard entries viewed with RegEdit.

Wizard Interface
The purpose of the Wizard Wizard is to provide an interface to add, modify, and delete DLL
wizard entries from the Registry without having to use the cumbersome RegEdit application.
First, let’s examine InitWiz.pas, the unit containing the wizard class (see Listing 17.2).

22 chpt_17.qxd 11/19/01 12:06 PM Page 844

LISTING 17.2 InitWiz.pas—Unit Containing DLL Wizard Class

unit InitWiz;

interface

uses Windows, ToolsAPI;

type
TWizardWizard = class(TNotifierObject, IOTAWizard, IOTAMenuWizard)
// IOTAWizard methods
function GetIDString: string;
function GetName: string;
function GetState: TWizardState;
procedure Execute;
// IOTAMenuWizard method
function GetMenuText: string;

end;

function InitWizard(const BorlandIDEServices: IBorlandIDEServices;
RegisterProc: TWizardRegisterProc;
var Terminate: TWizardTerminateProc): Boolean stdcall;

var
{ Registry key where Delphi 6 wizards are kept. EXE version uses default, }
{ whereas DLL version gets key from ToolServices.GetBaseRegistryKey }
SDelphiKey: string = ‘\Software\Borland\Delphi\6.0\Experts’;

implementation

uses SysUtils, Forms, Controls, Main;
function TWizardWizard.GetName: string;
{ Return name of expert }
begin
Result := ‘WizardWizard’;

end;

function TWizardWizard.GetState: TWizardState;
{ This expert is always enabled }
begin
Result := [wsEnabled];

end;

function TWizardWizard.GetIDString: String;
{ “Vendor.AppName” ID string for expert }

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
845

22 chpt_17.qxd 11/19/01 12:06 PM Page 845

LISTING 17.2 Continued

begin
Result := ‘DDG.WizardWizard’;

end;

function TWizardWizard.GetMenuText: string;
{ Menu text for expert }
begin
Result := ‘Wizard Wizard’;

end;

procedure TWizardWizard.Execute;
{ Called when expert is chosen from the main menu. }
{ This procedure creates, shows, and frees the main form. }
begin
MainForm := TMainForm.Create(Application);
try
MainForm.ShowModal;

finally
MainForm.Free;

end;
end;

function InitWizard(const BorlandIDEServices: IBorlandIDEServices;
RegisterProc: TWizardRegisterProc;
var Terminate: TWizardTerminateProc): Boolean stdcall;

var
Svcs: IOTAServices;

begin
Result := BorlandIDEServices <> nil;
if Result then
begin
Svcs := BorlandIDEServices as IOTAServices;
ToolsAPI.BorlandIDEServices := BorlandIDEServices;
Application.Handle := Svcs.GetParentHandle;
SDelphiKey := Svcs.GetBaseRegistryKey + ‘\Experts’;
RegisterProc(TWizardWizard.Create);

end;
end;

end.

Component-Based Development

PART IV
846

22 chpt_17.qxd 11/19/01 12:06 PM Page 846

You should notice a couple of differences between this unit and the one used to create the
Dumb Wizard. Most importantly, an initialization function of type TWizardInitProc is
required as an entry point for the IDE into the wizard DLL. In this case, that function is called
InitWizard(). This function performs a number of wizard initialization tasks, including the
following:

• Obtaining a IOTAServices interface from the BorlandIDEServices parameter.

• Saving the BorlandIDEServices interface pointer for use at a later time.

• Setting the handle of the DLL’s Application variable to the value returned by
IOTAServices.GetParentHandle(). GetParentHandle() returns the window handle of
the window that must serve as the parent to all top-level windows created by the wizard.

• Passing the newly created instance of the wizard to the RegisterProc() procedure in
order to register the wizard with the IDE. RegisterProc() will be called once for each
wizard instance the DLL registers with the IDE.

• Optionally, InitWizard() can also assign a procedure of type TWizardTerminateProc to
the Terminate parameter to serve as an exit procedure for the wizard. This procedure
will be called immediately before the wizard is unloaded by the IDE, and in it you can
perform any necessary cleanup. This parameter is initially nil, so if you don’t need to
perform any special cleanup, leave its value as nil.

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
847

The wizard initialization method must use the stdcall calling convention.

CAUTION

The Wizard User Interface
The Execute() method is a bit more complex this time around. It creates an instance of the
wizard’s MainForm, shows it modally, and then frees the instances. Figure 17.4 shows this
form, and Listing 17.3 shows the Main.pas unit in which MainForm exists.

Any DLL wizards calling Open Tools API functions that have string parameters must
have the ShareMem unit in their uses clause; otherwise, Delphi will raise an access
violation when the wizard instance is freed.

CAUTION

22 chpt_17.qxd 11/19/01 12:06 PM Page 847

FIGURE 17.4
MainForm in the Wizard Wizard.

LISTING 17.3 Main.pas—Main Unit of Wizard Wizard

unit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls, Registry, AddModU, ComCtrls, Menus;

type
TMainForm = class(TForm)
TopPanel: TPanel;
Label1: TLabel;
BottomPanel: TPanel;
WizList: TListView;
PopupMenu1: TPopupMenu;
Add1: TMenuItem;
Remove1: TMenuItem;
Modify1: TMenuItem;
AddBtn: TButton;
RemoveBtn: TButton;
ModifyBtn: TButton;
CloseBtn: TButton;
procedure RemoveBtnClick(Sender: TObject);
procedure CloseBtnClick(Sender: TObject);
procedure AddBtnClick(Sender: TObject);
procedure ModifyBtnClick(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
procedure DoAddMod(Action: TAddModAction);

Component-Based Development

PART IV
848

22 chpt_17.qxd 11/19/01 12:06 PM Page 848

LISTING 17.3 Continued

procedure RefreshReg;
end;

var
MainForm: TMainForm;

implementation

uses InitWiz;

{$R *.DFM}

var
DelReg: TRegistry;

procedure TMainForm.RemoveBtnClick(Sender: TObject);
{ Handler for Remove button click. Removes selected item from registry. }
var
Item: TListItem;

begin
Item := WizList.Selected;
if Item <> nil then
begin
if MessageDlg(Format(‘Remove item “%s”’, [Item.Caption]), mtConfirmation,
[mbYes, mbNo], 0) = mrYes then
DelReg.DeleteValue(Item.Caption);

RefreshReg;
end;

end;

procedure TMainForm.CloseBtnClick(Sender: TObject);
{ Handler for Close button click. Closes app. }
begin
Close;

end;

procedure TMainForm.DoAddMod(Action: TAddModAction);
{ Adds a new expert item to registry or modifies existing one. }
var
OrigName, ExpName, ExpPath: String;
Item: TListItem;

begin
if Action = amaModify then // if modify...
begin
Item := WizList.Selected;

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
849

22 chpt_17.qxd 11/19/01 12:06 PM Page 849

LISTING 17.3 Continued

if Item = nil then Exit; // make sure item is selected
ExpName := Item.Caption; // init variables
if Item.SubItems.Count > 0 then
ExpPath := Item.SubItems[0];

OrigName := ExpName; // save original name
end;
{ Invoke dialog which allows user to add or modify entry }
if AddModWiz(Action, ExpName, ExpPath) then
begin
{ if action is Modify, and the name was changed, handle it }
if (Action = amaModify) and (OrigName <> ExpName) then
DelReg.RenameValue(OrigName, ExpName);

DelReg.WriteString(ExpName, ExpPath); // write new value
end;
RefreshReg; // update listbox

end;

procedure TMainForm.AddBtnClick(Sender: TObject);
{ Handler for Add button click }
begin
DoAddMod(amaAdd);

end;

procedure TMainForm.ModifyBtnClick(Sender: TObject);
{ Handler for Modify button click }
begin
DoAddMod(amaModify);

end;

procedure TMainForm.RefreshReg;
{ Refreshes listbox with contents of registry }
var
i: integer;
TempList: TStringList;
Item: TListItem;

begin
WizList.Items.Clear;
TempList := TStringList.Create;
try
{ Get expert names from registry }
DelReg.GetValueNames(TempList);
{ Get path strings for each expert name }
for i := 0 to TempList.Count - 1 do
begin
Item := WizList.Items.Add;

Component-Based Development

PART IV
850

22 chpt_17.qxd 11/19/01 12:06 PM Page 850

LISTING 17.3 Continued

Item.Caption := TempList[i];
Item.SubItems.Add(DelReg.ReadString(TempList[i]));

end;
finally
TempList.Free;

end;
end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
RefreshReg;

end;

initialization
DelReg := TRegistry.Create; // create registry object
DelReg.RootKey := HKEY_CURRENT_USER; // set root key
DelReg.OpenKey(SDelphiKey, True); // open/create Delphi expert key

finalization
Delreg.Free; // free registry object

end.

This is the unit responsible for providing the user interface for adding, removing, and modifying
DLL wizard entries in the Registry. In the initialization section of this unit, a TRegistry
object called DelReg is created. The RootKey property of DelReg is set to HKEY_CURRENT_USER,
and it opens the \Software\Borland\Delphi\6.0\Experts key—the key used to keep track of
DLL wizards—using its OpenKey() method.

When the wizard first comes up, a TListView component called ExptList is filled with the
items and values from the previously mentioned Registry key. This is accomplished by first
calling DelReg.GetValueNames() to retrieve the names of the items into a TStringList. A
TListItem component is added to ExptList for each element in the string list, and the
DelReg.ReadString() method is used to read the value for each item, which is placed in the
SubItems list of TListItem.

The Registry work is done in the RemoveBtnClick() and DoAddMod() methods.
RemoveBtnClick() is in charge of removing the currently selected wizard item from the
Registry. It first checks to ensure that an item is highlighted; then it throws up a confirmation
dialog box. Finally, it does the deed by calling the DelReg.DeleteValue() method and passing
CurrentItem as the parameter.

DoAddMod() accepts a parameter of type TAddModAction. This type is defined as follows:

type
TAddModAction = (amaAdd, amaModify);

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
851

22 chpt_17.qxd 11/19/01 12:06 PM Page 851

As the values of the type imply, this variable indicates whether a new item is to be added or an
existing item modified. This function first checks to see that there’s a currently selected item
or, if there isn’t, that the Action parameter holds the value amaAdd. After that, if Action is
amaModify, the existing wizard item and value are copied to the local variables ExpName and
ExpPath. These values are then passed to a function called AddModExpert(), which is defined
in the AddModU unit shown in Listing 17.4. This function invokes a dialog box in which the user
can enter new or modified name or path information for a wizard (see Figure 17.5). It returns
True when the user exits the dialog with the OK button. At that point, an existing item is modi-
fied using DelReg.RenameValue(), and a new or modified value is written with
DelReg.WriteString().

Component-Based Development

PART IV
852

FIGURE 17.5
AddModForm in the Wizard Wizard.

LISTING 17.4 AddModU.pas—Unit That Adds and Modifies Wizard Entries in the Registry

unit AddModU;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls;

type
TAddModAction = (amaAdd, amaModify);

TAddModForm = class(TForm)
OkBtn: TButton;
CancelBtn: TButton;
OpenDialog: TOpenDialog;
Panel1: TPanel;
Label1: TLabel;
Label2: TLabel;
PathEd: TEdit;
NameEd: TEdit;
BrowseBtn: TButton;
procedure BrowseBtnClick(Sender: TObject);

private

22 chpt_17.qxd 11/19/01 12:06 PM Page 852

LISTING 17.4 Continued

{ Private declarations }
public
{ Public declarations }

end;

function AddModWiz(AAction: TAddModAction; var WizName,
WizPath: String): Boolean;

implementation

{$R *.DFM}

function AddModWiz(AAction: TAddModAction; var WizName,
WizPath: String): Boolean;

{ called to invoke dialog to add and modify registry entries }
const
CaptionArray: array[TAddModAction] of string[31] =
(‘Add new expert’, ‘Modify expert’);

begin
with TAddModForm.Create(Application) do // create dialog
begin
Caption := CaptionArray[AAction]; // set caption
if AAction = amaModify then // if modify...
begin
NameEd.Text := WizName; // init name and
PathEd.Text := WizPath; // path

end;
Result := ShowModal = mrOk; // show dialog
if Result then // if Ok...
begin
WizName := NameEd.Text; // set name and
WizPath := PathEd.Text; // path

end;
Free;

end;
end;

procedure TAddModForm.BrowseBtnClick(Sender: TObject);
begin
if OpenDialog.Execute then
PathEd.Text := OpenDialog.FileName;

end;

end.

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
853

22 chpt_17.qxd 11/19/01 12:06 PM Page 853

Dual Targets: EXE and DLL
As mentioned earlier, it’s possible to maintain one set of source code modules that target both
a DLL wizard and a standalone executable. This is possible through the use of compiler direc-
tives in the project file. Listing 17.5 shows WizWiz.dpr, the project file source code for this
project.

LISTING 17.5 WizWiz.dpr—Main Project File for the WizWiz Project

{$ifdef BUILD_EXE}
program WizWiz; // Build as EXE
{$else}
library WizWiz; // Build as DLL
{$endif}

uses
{$ifndef BUILD_EXE}
ShareMem, // ShareMem required for DLL
InitWiz in ‘InitWiz.pas’, // Wizard stuff

{$endif}
ToolsAPI,
Forms,
Main in ‘Main.pas’ {MainForm},
AddModU in ‘AddModU.pas’ {AddModForm};

{$ifdef BUILD_EXE}
{$R *.RES} // required for EXE
{$else}
exports // required for DLL
InitWizard name WizardEntryPoint; // required entry point

{$endif}

begin
{$ifdef BUILD_EXE} // required for EXE...
Application.Initialize;
Application.CreateForm(TMainForm, MainForm);
Application.Run;

{$endif}
end.

As the code shows, this project will build an executable if the BUILD_EXE conditional is
defined. Otherwise, it will build a DLL-based wizard. You can define a conditional under
Conditional Defines in the Directories/Conditionals page of the Project Options dialog box,
which is shown in Figure 17.6.

Component-Based Development

PART IV
854

22 chpt_17.qxd 11/19/01 12:06 PM Page 854

FIGURE 17.6
The Project Options dialog box.

One final note concerning this project: Notice that the InitWizard() function from the
InitWiz unit is being exported in the exports clause of the project file. You must export this
function with the name WizardEntryPoint, which is defined in the ToolsAPI unit.

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
855

Borland doesn’t provide a ToolsAPI.dcu file, meaning that EXEs or DLLs containing a
reference to ToolsAPI in a uses clause can only be built with packages. It isn’t cur-
rently possible to build wizards without packages.

CAUTION

DDG Search
Remember the nifty little Delphi Search program you developed back in Chapter 5, “ Multithreaded
Techniques”? In this section, you’ll learn how you can turn that useful application into an even
more useful Delphi wizard with just a little bit of code. This wizard is called DDG Search.

First, the unit that interfaces DDG Search to the IDE, InitWiz.pas, is shown in Listing 17.6.
You’ll notice that this unit is very similar to the unit of the same name in the previous example.
That’s on purpose. This unit is just a copy of the previous one with some necessary changes
involving the name of the wizard and the Execute() method. Copying and pasting is what we
call “old-fashioned inheritance.” After all, why do more typing than you have to?

LISTING 17.6 InitWiz.pas—Unit Containing Wizard Logic for the DDGSrch Wizard

unit InitWiz;

interface

22 chpt_17.qxd 11/19/01 12:06 PM Page 855

LISTING 17.6 Continued

uses
Windows, ToolsAPI;

type
TSearchWizard = class(TNotifierObject, IOTAWizard, IOTAMenuWizard)
// IOTAWizard methods
function GetIDString: string;
function GetName: string;
function GetState: TWizardState;
procedure Execute;
// IOTAMenuWizard method
function GetMenuText: string;

end;

function InitWizard(const BorlandIDEServices: IBorlandIDEServices;
RegisterProc: TWizardRegisterProc;
var Terminate: TWizardTerminateProc): Boolean stdcall;

var
ActionSvc: IOTAActionServices;

implementation

uses SysUtils, Dialogs, Forms, Controls, Main, PriU;

function TSearchWizard.GetName: string;
{ Return name of expert }
begin
Result := ‘DDG Search’;

end;

function TSearchWizard.GetState: TWizardState;
{ This expert is always enabled on the menu }
begin
Result := [wsEnabled];

end;

function TSearchWizard.GetIDString: String;
{ Return the unique Vendor.Product name of expert }
begin
Result := ‘DDG.DDGSearch’;

end;

function TSearchWizard.GetMenuText: string;
{ Return text for Help menu }

Component-Based Development

PART IV
856

22 chpt_17.qxd 11/19/01 12:06 PM Page 856

LISTING 17.6 Continued

begin
Result := ‘DDG Search Expert’;

end;

procedure TSearchWizard.Execute;
{ Called when expert name is selected from Help menu of IDE. }
{ This function invokes the expert }
begin
// if not created, created it and show it
if MainForm = nil then
begin
MainForm := TMainForm.Create(Application);
ThreadPriWin := TThreadPriWin.Create(Application);
MainForm.Show;

end
else
// if created then restore window and show it
with MainForm do
begin
if not Visible then Show;
if WindowState = wsMinimized then WindowState := wsNormal;
SetFocus;

end;
end;

function InitWizard(const BorlandIDEServices: IBorlandIDEServices;
RegisterProc: TWizardRegisterProc;
var Terminate: TWizardTerminateProc): Boolean stdcall;

var
Svcs: IOTAServices;

begin
Result := BorlandIDEServices <> nil;
if Result then
begin
Svcs := BorlandIDEServices as IOTAServices;
ActionSvc := BorlandIDEServices as IOTAActionServices;
ToolsAPI.BorlandIDEServices := BorlandIDEServices;
Application.Handle := Svcs.GetParentHandle;
RegisterProc(TSearchWizard.Create);

end;
end;

end.

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
857

22 chpt_17.qxd 11/19/01 12:06 PM Page 857

The Execute() function of this wizard shows you something a bit different from what you’ve
seen so far: The wizard’s main form, MainForm, is being shown modelessly rather than modally.
Of course, this requires a bit of extra housekeeping because you have to know when a form is
created and when the form variable is invalid. This can be accomplished by making sure that
the MainForm variable is set to nil when the wizard is inactive. More on this is discussed a
bit later.

One other aspect of this project that has changed significantly since Chapter 5 is that the pro-
ject file is now called DDGSrch.dpr. This file is shown in Listing 17.7.

LISTING 17.7 DDGSrch.dpr—Project File for the DDGSrch Project

{$IFDEF BUILD_EXE}
program DDGSrch;
{$ELSE}
library DDGSrch;
{$ENDIF}

uses
{$IFDEF BUILD_EXE}
Forms,

{$ELSE}
ShareMem,
ToolsAPI,
InitWiz in ‘InitWiz.pas’,

{$ENDIF}
Main in ‘MAIN.PAS’ {MainForm},
SrchIni in ‘SrchIni.pas’,
SrchU in ‘SrchU.pas’,
PriU in ‘PriU.pas’ {ThreadPriWin},
MemMap in ‘..\..\Utils\MemMap.pas’,
DDGStrUtils in ‘..\..\Utils\DDGStrUtils.pas’;

{$R *.RES}

{$IFNDEF BUILD_EXE}
exports
{ Entry point which is called by Delphi IDE }
InitWizard name WizardEntryPoint;

{$ENDIF}

begin
{$IFDEF BUILD_EXE}
Application.Initialize;

Component-Based Development

PART IV
858

22 chpt_17.qxd 11/19/01 12:06 PM Page 858

LISTING 17.7 Continued

Application.CreateForm(TMainForm, MainForm);
Application.Run;

{$ENDIF}
end.

Once again, you can see that this project is designed to be compiled as a standalone EXE or a
DLL-based wizard. When compiled as a wizard, it uses the library header to indicate that it’s
a DLL, and it exports the InitWiz() function for initialization by the Delphi IDE.

We made only a couple of changes to the Main unit in this project. As mentioned earlier, the
MainForm variable must be set to nil when the wizard isn’t active. As you learned in Chapter 2,
“The Object Pascal Language,” the MainForm instance variable will automatically have the
value nil upon application startup. Also, in the OnClose event handler for the form, the form
instance is released and the MainForm global is reset to nil. Here’s the method:

procedure TMainForm.FormClose(Sender: TObject; var Action: TCloseAction);
begin
Action := caFree;
Application.OnShowHint := FOldShowHint;
MainForm := nil;

end;

The finishing touch for this wizard is to bring up files in the IDE’s Code Editor when
they’re double-clicked in the list box in the main form. This logic is handled by a new
FileLBDblClick() method, as follows:

procedure TMainForm.FileLBDblClick(Sender: TObject);
{ Called when user double-clicks in listbox. Loads file into IDE }
var
FileName: string;
Len: Integer;

begin
{ make sure user clicked on a file... }
if Integer(FileLB.Items.Objects[FileLB.ItemIndex]) > 0 then
begin
FileName := FileLB.Items[FileLB.ItemIndex];
{ Trim “File “ and “:” from string }
FileName := Copy(FileName, 6, Length(FileName));
Len := Length(FileName);
if FileName[Len] = ‘:’ then SetLength(FileName, Len - 1);
{ Open the project or file }

{$IFNDEF BUILD_EXE}
if CompareText(ExtractFileExt(FileName), ‘.DPR’) = 0 then
ActionSvc.OpenProject(FileName, True)

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
859

22 chpt_17.qxd 11/19/01 12:06 PM Page 859

else
ActionSvc.OpenFile(FileName);

{$ELSE}
ShellExecute(0, ‘open’, PChar(FileName), nil, nil, SW_SHOWNORMAL);

{$ENDIF}
end;

end;

When compiled as a wizard, this method employs the OpenFile() and OpenProject() meth-
ods of the IOTAActionServices in order to open a particular file. As a standalone EXE, this
method calls the ShellExecute() API function to open the file using the default application
associated with the file extension.

Listing 17.8 shows the complete source code for the Main unit in the DDGSrch project, and
Figure 17.7 shows the DDG Search Wizard doing its thing inside the IDE.

LISTING 17.8 Main.pas—the Main Unit for the DDGSrch Project

unit Main;

interface

{$WARN UNIT_PLATFORM OFF}

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, Buttons, ExtCtrls, Menus, SrchIni,
SrchU, ComCtrls;

type
TMainForm = class(TForm)
FileLB: TListBox;
PopupMenu1: TPopupMenu;
Font1: TMenuItem;
N1: TMenuItem;
Exit1: TMenuItem;
FontDialog1: TFontDialog;
StatusBar: TStatusBar;
AlignPanel: TPanel;
ControlPanel: TPanel;
ParamsGB: TGroupBox;
LFileSpec: TLabel;
LToken: TLabel;
lPathName: TLabel;
EFileSpec: TEdit;
EToken: TEdit;

Component-Based Development

PART IV
860

22 chpt_17.qxd 11/19/01 12:06 PM Page 860

LISTING 17.8 Continued

PathButton: TButton;
OptionsGB: TGroupBox;
cbCaseSensitive: TCheckBox;
cbFileNamesOnly: TCheckBox;
cbRecurse: TCheckBox;
SearchButton: TBitBtn;
CloseButton: TBitBtn;
PrintButton: TBitBtn;
PriorityButton: TBitBtn;
View1: TMenuItem;
EPathName: TEdit;
procedure SearchButtonClick(Sender: TObject);
procedure PathButtonClick(Sender: TObject);
procedure FileLBDrawItem(Control: TWinControl; Index: Integer;
Rect: TRect; State: TOwnerDrawState);

procedure Font1Click(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure PrintButtonClick(Sender: TObject);
procedure CloseButtonClick(Sender: TObject);
procedure FileLBDblClick(Sender: TObject);
procedure FormResize(Sender: TObject);
procedure PriorityButtonClick(Sender: TObject);
procedure ETokenChange(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);

private
FOldShowHint: TShowHintEvent;
procedure ReadIni;
procedure WriteIni;
procedure DoShowHint(var HintStr: string; var CanShow: Boolean;
var HintInfo: THintInfo);

protected
procedure WndProc(var Message: TMessage); override;

public
Running: Boolean;
SearchPri: integer;
SearchThread: TSearchThread;
procedure EnableSearchControls(Enable: Boolean);

end;

var
MainForm: TMainForm;

implementation

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
861

22 chpt_17.qxd 11/19/01 12:06 PM Page 861

LISTING 17.8 Continued

{$R *.DFM}

uses Printers, ShellAPI, MemMap, FileCtrl, PriU;

procedure PrintStrings(Strings: TStrings);
{ This procedure prints all of the string in the Strings parameter }
var
Prn: TextFile;
i: word;

begin
if Strings.Count = 0 then // Are there strings?
begin
MessageDlg(‘No text to print!’, mtInformation, [mbOk], 0);
Exit;

end;
AssignPrn(Prn); // assign Prn to printer
try
Rewrite(Prn); // open printer
try
for i := 0 to Strings.Count - 1 do // iterate over all strings
WriteLn(Prn, Strings.Strings[i]); // write to printer

finally
CloseFile(Prn); // close printer

end;
except
on EInOutError do
MessageDlg(‘Error Printing text.’, mtError, [mbOk], 0);

end;
end;

procedure TMainForm.EnableSearchControls(Enable: Boolean);
{ Enables or disables certain controls so options can’t be modified }
{ while search is executing. }
begin
SearchButton.Enabled := Enable; // enabled/disable proper controls
cbRecurse.Enabled := Enable;
cbFileNamesOnly.Enabled := Enable;
cbCaseSensitive.Enabled := Enable;
PathButton.Enabled := Enable;
EPathName.Enabled := Enable;
EFileSpec.Enabled := Enable;
EToken.Enabled := Enable;
Running := not Enable; // set Running flag
ETokenChange(nil);

Component-Based Development

PART IV
862

22 chpt_17.qxd 11/19/01 12:06 PM Page 862

LISTING 17.8 Continued

with CloseButton do
begin
if Enable then
begin // set props of Close/Stop button
Caption := ‘&Close’;
Hint := ‘Close Application’;

end
else begin
Caption := ‘&Stop’;
Hint := ‘Stop Searching’;

end;
end;

end;

procedure TMainForm.SearchButtonClick(Sender: TObject);
{ Called when Search button is clicked. Invokes search thread. }
begin
EnableSearchControls(False); // disable controls
FileLB.Clear; // clear listbox
{ start thread }
SearchThread := TSearchThread.Create(cbCaseSensitive.Checked,
cbFileNamesOnly.Checked, cbRecurse.Checked, EToken.Text,
EPathName.Text, EFileSpec.Text, Handle);

end;

procedure TMainForm.ETokenChange(Sender: TObject);
begin
SearchButton.Enabled := not Running and (EToken.Text <> ‘’);

end;

procedure TMainForm.PathButtonClick(Sender: TObject);
{ Called when Path button is clicked. Allows user to choose new path. }
var
ShowDir: string;

begin
ShowDir := EPathName.Text;
if SelectDirectory(ShowDir, [], 0) then
EPathName.Text := ShowDir;

end;

procedure TMainForm.FileLBDblClick(Sender: TObject);
{ Called when user double-clicks in listbox. Loads file into IDE }
var
FileName: string;
Len: Integer;

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
863

22 chpt_17.qxd 11/19/01 12:06 PM Page 863

LISTING 17.8 Continued

begin
{ make sure user clicked on a file... }
if Integer(FileLB.Items.Objects[FileLB.ItemIndex]) > 0 then
begin
FileName := FileLB.Items[FileLB.ItemIndex];
{ Trim “File “ and “:” from string }
FileName := Copy(FileName, 6, Length(FileName));
Len := Length(FileName);
if FileName[Len] = ‘:’ then SetLength(FileName, Len - 1);
{ Open the project or file }

{$IFNDEF BUILD_EXE}
if CompareText(ExtractFileExt(FileName), ‘.DPR’) = 0 then
ActionSvc.OpenProject(FileName, True)

else
ActionSvc.OpenFile(FileName);

{$ELSE}
ShellExecute(0, ‘open’, PChar(FileName), nil, nil, SW_SHOWNORMAL);

{$ENDIF}
end;

end;

procedure TMainForm.FileLBDrawItem(Control: TWinControl;
Index: Integer; Rect: TRect; State: TOwnerDrawState);

{ Called in order to owner draw listbox. }
var
CurStr: string;

begin
with FileLB do
begin
CurStr := Items.Strings[Index];
Canvas.FillRect(Rect); // clear out rect
if not cbFileNamesOnly.Checked then // if not filename only...
begin
{ if current line is file name... }
if Integer(Items.Objects[Index]) > 0 then
Canvas.Font.Style := [fsBold]; // bold font

end
else
Rect.Left := Rect.Left + 15; // otherwise, indent

DrawText(Canvas.Handle, PChar(CurStr), Length(CurStr), Rect,
dt_SingleLine);
end;

end;

Component-Based Development

PART IV
864

22 chpt_17.qxd 11/19/01 12:06 PM Page 864

LISTING 17.8 Continued

procedure TMainForm.Font1Click(Sender: TObject);
{ Allows user to pick new font for listbox }
begin
{ Pick new listbox font }
if FontDialog1.Execute then
FileLB.Font := FontDialog1.Font;

end;

procedure TMainForm.FormDestroy(Sender: TObject);
{ OnDestroy event handler for form }
begin
WriteIni;

end;

procedure TMainForm.FormCreate(Sender: TObject);
{ OnCreate event handler for form }
begin
Application.HintPause := 0; // don’t wait to show hints
FOldShowHint := Application.OnShowHint; // set up hints
Application.OnShowHint := DoShowHint;
ReadIni; // read reg INI file

end;

procedure TMainForm.DoShowHint(var HintStr: string; var CanShow: Boolean;
var HintInfo: THintInfo);

{ OnHint event handler for Application }
begin
{ Display application hints on status bar }
StatusBar.Panels[0].Text := HintStr;
{ Don’t show tool tip if we’re over our own controls }
if (HintInfo.HintControl <> nil) and
(HintInfo.HintControl.Parent <> nil) and
((HintInfo.HintControl.Parent = ParamsGB) or
(HintInfo.HintControl.Parent = OptionsGB) or
(HintInfo.HintControl.Parent = ControlPanel)) then
CanShow := False;

if Assigned(FOldShowHint) then
FOldShowHint(HintStr, CanSHow, HintInfo);

end;

procedure TMainForm.PrintButtonClick(Sender: TObject);
{ Called when Print button is clicked. }
begin
if MessageDlg(‘Send search results to printer?’, mtConfirmation,

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
865

22 chpt_17.qxd 11/19/01 12:06 PM Page 865

LISTING 17.8 Continued

[mbYes, mbNo], 0) = mrYes then
PrintStrings(FileLB.Items);

end;

procedure TMainForm.CloseButtonClick(Sender: TObject);
{ Called to stop thread or close application }
begin
// if thread is running then terminate thread
if Running then SearchThread.Terminate
// otherwise close app
else Close;

end;

procedure TMainForm.FormResize(Sender: TObject);
{ OnResize event handler. Centers controls in form. }
begin
{ divide status bar into two panels with a 1/3 - 2/3 split }
with StatusBar do
begin
Panels[0].Width := Width div 3;
Panels[1].Width := Width * 2 div 3;

end;
{ center controls in the middle of the form }
ControlPanel.Left := (AlignPanel.Width div 2) - (ControlPanel.Width div 2);

end;

procedure TMainForm.PriorityButtonClick(Sender: TObject);
{ Show thread priority form }
begin
ThreadPriWin.Show;

end;

procedure TMainForm.ReadIni;
{ Reads default values from Registry }
begin
with SrchIniFile do
begin
EPathName.Text := ReadString(‘Defaults’, ‘LastPath’, ‘C:\’);
EFileSpec.Text := ReadString(‘Defaults’, ‘LastFileSpec’, ‘*.*’);
EToken.Text := ReadString(‘Defaults’, ‘LastToken’, ‘’);
cbFileNamesOnly.Checked := ReadBool(‘Defaults’, ‘FNamesOnly’, False);
cbCaseSensitive.Checked := ReadBool(‘Defaults’, ‘CaseSens’, False);
cbRecurse.Checked := ReadBool(‘Defaults’, ‘Recurse’, False);

Component-Based Development

PART IV
866

22 chpt_17.qxd 11/19/01 12:06 PM Page 866

LISTING 17.8 Continued

Left := ReadInteger(‘Position’, ‘Left’, 100);
Top := ReadInteger(‘Position’, ‘Top’, 50);
Width := ReadInteger(‘Position’, ‘Width’, 510);
Height := ReadInteger(‘Position’, ‘Height’, 370);

end;
end;

procedure TMainForm.WriteIni;
{ writes current settings back to Registry }
begin
with SrchIniFile do
begin
WriteString(‘Defaults’, ‘LastPath’, EPathName.Text);
WriteString(‘Defaults’, ‘LastFileSpec’, EFileSpec.Text);
WriteString(‘Defaults’, ‘LastToken’, EToken.Text);
WriteBool(‘Defaults’, ‘CaseSens’, cbCaseSensitive.Checked);
WriteBool(‘Defaults’, ‘FNamesOnly’, cbFileNamesOnly.Checked);
WriteBool(‘Defaults’, ‘Recurse’, cbRecurse.Checked);
WriteInteger(‘Position’, ‘Left’, Left);
WriteInteger(‘Position’, ‘Top’, Top);
WriteInteger(‘Position’, ‘Width’, Width);
WriteInteger(‘Position’, ‘Height’, Height);

end;
end;

procedure TMainForm.FormClose(Sender: TObject; var Action: TCloseAction);
begin
Action := caFree;
Application.OnShowHint := FOldShowHint;
MainForm := nil;

end;

procedure TMainForm.WndProc(var Message: TMessage);
begin
if Message.Msg = DDGM_ADDSTR then
begin
FileLB.Items.AddObject(PChar(Message.WParam), TObject(Message.LParam));
StrDispose(PChar(Message.WParam));

end
else
inherited WndProc(Message);

end;

end.

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
867

22 chpt_17.qxd 11/19/01 12:06 PM Page 867

FIGURE 17.7
The DDG Search wizard in action.

Form Wizards
Yet another type of wizard supported by the Open Tools API is the form wizard. Once installed,
form wizards are accessed from the New Items dialog box; they generate new forms and units
for the user. Chapter 16, “Windows Shell Programming,” employs this type of wizard to gener-
ate new AppBar forms; however, you didn’t get to see the code that made the wizard tick.

Creating a form wizard is fairly straightforward, although there a good number of interface
methods that you must implement. Creation of a form wizard can be boiled down to five basic
steps:

1. Create a class that descends from TCustomForm, TDataModule, or any TWinControl that
will be used as the base form class. This class will typically reside in a separate unit
from the wizard. In this case, TAppBar will serve as the base class.

2. Create a TNotifierObject descendent that implements the following interfaces:
IOTAWizard, IOTARepositoryWizard, IOTAFormWizard, IOTACreator, and
IOTAModuleCreator.

Component-Based Development

PART IV
868

Note the following line from Listing 17.8:

{$WARN UNIT_PLATFORM OFF}

This compiler directive is used to silence the compile-time warning that is generated
because Main.pas uses the FileCtrl unit, which is a Windows platform specific unit.
FileCtrl is marked as such using the platform directive.

TIP

22 chpt_17.qxd 11/19/01 12:06 PM Page 868

3. In your IOTAWizard.Execute() method, you will typically call IOTAModule
Services.GetNewModuleAndClassName() to obtain a new unit and classname for your
wizard and IOTAModuleServices.CreateModule() to instruct the IDE to begin creation
of the new module.

4. Many of the method implementations for the aforementioned interfaces are one-liners.
The non-trivial ones include IOTAModuleCreator’s NewFormFile() and NewImplFile()
methods, which will return the code for the form and unit, respectively. The
IOTACreator.GetOwner() method can also be a little tricky, but the example that follows
gives you a good technique for adding the unit to the current project (if any).

5. Complete the Register() procedure for the wizard by registering a handler for your new
form class using the RegisterCustomModule() procedure in the DsgnIntf unit and creat-
ing your wizard by calling the RegisterPackageWizard() procedure in the ToolsAPI
unit.

Listing 17.9 shows the source code for ABWizard.pas, which is the AppBar wizard.

LISTING 17.9 ABWizard.pas—The Unit Containing the Implementation of the
AppBar Wizard

unit ABWizard;

interface

uses Windows, Classes, ToolsAPI;

type
TAppBarWizard = class(TNotifierObject, IOTAWizard, IOTARepositoryWizard,
IOTAFormWizard, IOTACreator, IOTAModuleCreator)

private
FUnitIdent: string;
FClassName: string;
FFileName: string;

protected
// IOTAWizard methods
function GetIDString: string;
function GetName: string;
function GetState: TWizardState;
procedure Execute;
// IOTARepositoryWizard / IOTAFormWizard methods
function GetAuthor: string;
function GetComment: string;
function GetPage: string;
function GetGlyph: HICON;

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
869

22 chpt_17.qxd 11/19/01 12:06 PM Page 869

LISTING 17.9 Continued

// IOTACreator methods
function GetCreatorType: string;
function GetExisting: Boolean;
function GetFileSystem: string;
function GetOwner: IOTAModule;
function GetUnnamed: Boolean;
// IOTAModuleCreator methods
function GetAncestorName: string;
function GetImplFileName: string;
function GetIntfFileName: string;
function GetFormName: string;
function GetMainForm: Boolean;
function GetShowForm: Boolean;
function GetShowSource: Boolean;
function NewFormFile(const FormIdent, AncestorIdent: string): IOTAFile;
function NewImplSource(const ModuleIdent, FormIdent,
AncestorIdent: string): IOTAFile;

function NewIntfSource(const ModuleIdent, FormIdent,
AncestorIdent: string): IOTAFile;

procedure FormCreated(const FormEditor: IOTAFormEditor);
end;

implementation

uses Forms, AppBars, SysUtils, DsgnIntf;

{$R CodeGen.res}

type
TBaseFile = class(TInterfacedObject)
private
FModuleName: string;
FFormName: string;
FAncestorName: string;

public
constructor Create(const ModuleName, FormName, AncestorName: string);

end;

TUnitFile = class(TBaseFile, IOTAFile)
protected
function GetSource: string;
function GetAge: TDateTime;

end;

Component-Based Development

PART IV
870

22 chpt_17.qxd 11/19/01 12:06 PM Page 870

LISTING 17.9 Continued

TFormFile = class(TBaseFile, IOTAFile)
protected
function GetSource: string;
function GetAge: TDateTime;

end;

{ TBaseFile }

constructor TBaseFile.Create(const ModuleName, FormName,
AncestorName: string);

begin
inherited Create;
FModuleName := ModuleName;
FFormName := FormName;
FAncestorName := AncestorName;

end;

{ TUnitFile }

function TUnitFile.GetSource: string;
var
Text: string;
ResInstance: THandle;
HRes: HRSRC;

begin
ResInstance := FindResourceHInstance(HInstance);
HRes := FindResource(ResInstance, ‘CODEGEN’, RT_RCDATA);
Text := PChar(LockResource(LoadResource(ResInstance, HRes)));
SetLength(Text, SizeOfResource(ResInstance, HRes));
Result := Format(Text, [FModuleName, FFormName, FAncestorName]);

end;

function TUnitFile.GetAge: TDateTime;
begin
Result := -1;

end;

{ TFormFile }

function TFormFile.GetSource: string;
const
FormText =
‘object %0:s: T%0:s’#13#10’end’;

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
871

22 chpt_17.qxd 11/19/01 12:06 PM Page 871

LISTING 17.9 Continued

begin
Result := Format(FormText, [FFormName]);

end;

function TFormFile.GetAge: TDateTime;
begin
Result := -1;

end;

{ TAppBarWizard }

{ TAppBarWizard.IOTAWizard }

function TAppBarWizard.GetIDString: string;
begin
Result := ‘DDG.AppBarWizard’;

end;

function TAppBarWizard.GetName: string;
begin
Result := ‘DDG AppBar Wizard’;

end;

function TAppBarWizard.GetState: TWizardState;
begin
Result := [wsEnabled];

end;

procedure TAppBarWizard.Execute;
begin
(BorlandIDEServices as IOTAModuleServices).GetNewModuleAndClassName(
‘AppBar’, FUnitIdent, FClassName, FFileName);

(BorlandIDEServices as IOTAModuleServices).CreateModule(Self);
end;

{ TAppBarWizard.IOTARepositoryWizard / TAppBarWizard.IOTAFormWizard }

function TAppBarWizard.GetGlyph: HICON;
begin
Result := 0; // use standard icon

end;

function TAppBarWizard.GetPage: string;

Component-Based Development

PART IV
872

22 chpt_17.qxd 11/19/01 12:06 PM Page 872

LISTING 17.9 Continued

begin
Result := ‘DDG’;

end;

function TAppBarWizard.GetAuthor: string;
begin
Result := ‘Delphi 5 Developer’’s Guide’;

end;

function TAppBarWizard.GetComment: string;
begin
Result := ‘Creates a new AppBar form.’

end;

{ TAppBarWizard.IOTACreator }

function TAppBarWizard.GetCreatorType: string;
begin
Result := ‘’;

end;

function TAppBarWizard.GetExisting: Boolean;
begin
Result := False;

end;

function TAppBarWizard.GetFileSystem: string;
begin
Result := ‘’;

end;

function TAppBarWizard.GetOwner: IOTAModule;
var
I: Integer;
ModServ: IOTAModuleServices;
Module: IOTAModule;
ProjGrp: IOTAProjectGroup;

begin
Result := nil;
ModServ := BorlandIDEServices as IOTAModuleServices;
for I := 0 to ModServ.ModuleCount - 1 do
begin
Module := ModSErv.Modules[I];
// find current project group

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
873

22 chpt_17.qxd 11/19/01 12:07 PM Page 873

LISTING 17.9 Continued

if CompareText(ExtractFileExt(Module.FileName), ‘.bpg’) = 0 then
if Module.QueryInterface(IOTAProjectGroup, ProjGrp) = S_OK then
begin
// return active project of group
Result := ProjGrp.GetActiveProject;
Exit;

end;
end;

end;

function TAppBarWizard.GetUnnamed: Boolean;
begin
Result := True;

end;

{ TAppBarWizard.IOTAModuleCreator }

function TAppBarWizard.GetAncestorName: string;
begin
Result := ‘TAppBar’;

end;

function TAppBarWizard.GetImplFileName: string;
var
CurrDir: array[0..MAX_PATH] of char;

begin
// Note: full path name required!
GetCurrentDirectory(SizeOf(CurrDir), CurrDir);
Result := Format(‘%s\%s.pas’, [CurrDir, FUnitIdent, ‘.pas’]);

end;

function TAppBarWizard.GetIntfFileName: string;
begin
Result := ‘’;

end;

function TAppBarWizard.GetFormName: string;
begin
Result := FClassName;

end;

function TAppBarWizard.GetMainForm: Boolean;
begin
Result := False;

end;

Component-Based Development

PART IV
874

22 chpt_17.qxd 11/19/01 12:07 PM Page 874

LISTING 17.9 Continued

function TAppBarWizard.GetShowForm: Boolean;
begin
Result := True;

end;

function TAppBarWizard.GetShowSource: Boolean;
begin
Result := True;

end;

function TAppBarWizard.NewFormFile(const FormIdent,
AncestorIdent: string): IOTAFile;

begin
Result := TFormFile.Create(‘’, FormIdent, AncestorIdent);

end;

function TAppBarWizard.NewImplSource(const ModuleIdent, FormIdent,
AncestorIdent: string): IOTAFile;

begin
Result := TUnitFile.Create(ModuleIdent, FormIdent, AncestorIdent);

end;

function TAppBarWizard.NewIntfSource(const ModuleIdent, FormIdent,
AncestorIdent: string): IOTAFile;

begin
Result := nil;

end;

procedure TAppBarWizard.FormCreated(const FormEditor: IOTAFormEditor);
begin
// do nothing

end;

end.

This unit employs an interesting trick for source code generation: The unformatted source code is
stored in an RES file that’s linked in with the $R directive. This is a very flexible way to store a
wizard’s source code so that it can be readily modified. The RES file is built by including a text
file and RCDATA resource in an RC file and then compiling that RC file with BRCC32. Listings 17.10
and 17.11 show the contents of CodeGen.txt and CodeGen.rc.

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
875

22 chpt_17.qxd 11/19/01 12:07 PM Page 875

LISTING 17.10 CodeGen.txt—the Resource Template for the AppBar Wizard

unit %0:s;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, AppBars;

type
T%1:s = class(%2:s)
private
{ Private declarations }

public
{ Public declarations }

end;

var
%1:s: T%1:s;

implementation

{$R *.DFM}

end.

LISTING 17.11 CODEGEN.RC

CODEGEN RCDATA CODEGEN.TXT

Registration of the custom module and wizard occurs inside of a Register() procedure in the
design package containing the wizard using the following two lines:

RegisterCustomModule(TAppBar, TCustomModule);
RegisterPackageWizard(TAppBarWizard.Create);

Summary
After reading this chapter, you should have a greater understanding of the various units and
interfaces involved in the Delphi Open Tools API. In particular, you should know and under-
stand the issues involved in creating wizards that plug into the IDE. This chapter completes the
“Component-Based Development” section of the book. In the next section, “Enterprise
Development,” you will learn techniques for building enterprise-grade applications, starting
with those based on COM+ and MTS.

Component-Based Development

PART IV
876

22 chpt_17.qxd 11/19/01 12:07 PM Page 876

IN THIS PART
18 Transactional Development with

COM+/MTS 879

19 CORBA Development 937

20 BizSnap Development: Writing SOAP-Based
Web Services 983

21 DataSnap Development 997

Enterprise Development
PART

V

23 part_05.qxd 11/19/01 12:06 PM Page 877

23 part_05.qxd 11/19/01 12:06 PM Page 878

CHAPTER

18
Transactional Development
with COM+/MTS

IN THIS CHAPTER
• What Is COM+? 880

• Why COM? 880

• Services 881

• Runtime 906

• Creating COM+ Applications 908

• COM+ in Delphi 912

24 chpt_18.qxd 11/19/01 12:12 PM Page 879

The release of Windows 2000 brought with it perhaps the largest single step forward for COM
since its inception as the underpinnings of OLE 2.0: COM+. COM+ is the latest iteration of
COM, and it ships as a standard part of Windows 2000 and Windows XP. This chapter is
intended to bring you up to speed on all the various aspects of COM+ and how you can lever-
age its power in your Delphi applications.

What Is COM+?
Before we progress any further into describing COM+, allow us to set your mind at ease by
saying this: Almost everything you know about COM still applies. After all, COM definitely
takes no small degree of dedication to learn well, and it would be very disheartening to have to
ride the same learning curve once again. The interesting thing about COM+ is that it isn’t this
strange, new monster, but merely some nice evolutionary changes to COM exist combined with
the integration of some of Microsoft’s COM-based services that you might already be familiar
with. In plain English, COM+ can be boiled down to this: COM with a few new features, inte-
grated with Microsoft Transaction Server (MTS) and Microsoft Message Queue (MSMQ).

Because COM+ is based on and fully backward compatible with COM, you have no worries
from a Delphi perspective. Delphi works just as great with COM+ as it does with COM. To
build optimized COM+ components, there are certainly a few fundamental additions you’ll
need to know about, particularly with regard to a new type of components called configured
that we’ll discuss later. But, it’s important for you to know that the entire world of COM+ is
available to you as a Delphi developer.

Why COM?
Why did Microsoft choose to base COM+ on COM, rather than moving it to some completely
different direction? This is a fair question, especially in light of some of the negative comments
we all might hear about COM in its skirmishes with competing technologies such as CORBA
and Enterprise Java Beans (EJB) in the battlefields of the industry tabloids. Not only is COM
a good foundation to build on technologically, but also a business case around COM is very
compelling when you consider that

• COM is programming language independent.

• COM is supported by every major Windows development tool.

• Every 32-bit Windows user is already running COM, which puts the installed base at
somewhere around 150 million users (according to Microsoft).

• The Giga Information Group recently reported that COM is a $670 million market (not
including Microsoft).

Enterprise Development

PART V
880

24 chpt_18.qxd 11/19/01 12:12 PM Page 880

Probably the biggest drawback of COM is its reputation for being difficult to scale to large
numbers of users involved in large numbers of transactions. In Microsoft fashion, a major
intent of COM+ is to leverage the assets s, while attempting to eliminate the liabilities.

We can classify COM+ features into three distinct categories: administration, services, and
runtime. Administration is primarily handled in the Component Services administration tool,
which is discussed throughout this chapter. We will tackle the discussion of services and run-
time in turn. Because services make up the bulk of the new features in COM+, we’ll discuss
those first.

Services
COM+ services are the things that we today consider to be add-ons to COM. Technology cur-
rently found in MTS and MSMQ, for example, make up some of the services found in COM+.
Think of services as systems built by Microsoft on top of COM+ designed to somehow add
value to component-based development. As we mentioned, some services, such as transactions
and queued components, are present thanks to off-the-shelf technology. Consequently, if you
have experience with these technologies already, you’ll have an advantage as you begin to
write COM+ applications. Other services, however, such as object pooling and late-bound-
events are probably new to you and might take some getting used to.

Transactions
As the “T” in MTS, it should be no surprise to find transactions playing a major role in
COM+. COM+ implements the MTS model for transactions, which is described in greater
detail later in this chapter. Without transaction support, there is no way that collection objects
would be able to support a complicated business application. For example, a transaction
involving an online purchase of some item might involve the participation of several objects
communicating with one or more databases to receive the request, check inventory, debit the
credit card, update the accounting ledger, and issue a ship order. All these things needs to hap-
pen in concert; if something goes wrong in any of these processes, the state of all objects and
data needs to be rolled back to the state they were in before the entire transaction began. As
you can imagine, this process of managing transactions is even more complicated when the
objects involved are spread across multiple machines.

Transactions are controlled centrally by the MS Distributed Transaction Coordinator (DTC).
When a COM+ application calls for transactions, the DTC will enlist the assistance of and
coordinate other software elements, including transaction managers, resource managers, and
resource dispensers. Each computer participating in a transaction has a transaction manager
that tracks transaction activity on that specific machine. Transaction managers, however, are
ignorant of data because persistent information such as database data or message queue

Transactional Development with COM+/MTS

CHAPTER 18

18

T
R

A
N

SA
C

TIO
N

A
L

D
EV

ELO
PM

EN
T

881

24 chpt_18.qxd 11/19/01 12:12 PM Page 881

messages are managed by a resource manager. A resource dispenser manages non-persistent
state information, such as database connections. Each of these specialized elements managed
by the DTC knows how to commit and recover its specific resource.

Security
As the introduction of one new technology quickly follows another in today’s insanely paced
world of software development, we occasionally reflect with fond remembrance on the olden
days of PC software development, when applications consisted of a .EXE or a .COM file and a
network was a place to share data files with your co-workers. Business applications today often
consist of multiple types of user interfaces (Windows, Web-based, Java, and so on) communi-
cating with software components distributed across a network, which in turn communicates
with one or more database servers on the network. Our success as developers is now linked not
only to our ability to tie disparate application elements together, but also to provide a means by
which they can communicate in privacy. This means building security into distributed applica-
tions that enables components to authenticate one another, determine what services they should
offer one another, and provide a means for private communication between one another.

The notion of security has become common sense at this point. We all understand that most
data needs to be protected; for example, human resources data shouldn’t be accessible to all
employees, sales data shouldn’t be accessible to your competitors, and so on. Equally, compo-
nent functionality also needs to be secure; perhaps only administrators should have the right to
use certain objects or only department managers should have access to a particular business
rules engine. In practice, however, building this type of security into distributed applications
can be a time-consuming process, and security features naturally take a backseat to core func-
tionality in project schedules.

COM+ provides a well-constructed set of security features that addresses many of these issues.
COM+ makes security more of an administrative issue than a programmatic one, and therefore
helps you to spend your time developing application logic and less time writing security code.
Configuring COM+ application security in the Component Services administration tool is a
one-time process, and your application can remain free of security-specific code. At the same
time, COM+ does provide APIs for accessing security information for cases in which you do
need to go beyond the provided functionality. My goal here is to provide you with an overview
of security architecture for COM+ server applications and how to use security in your COM+
applications.

Role-Based Security
COM+’s security architecture is often referred to as role-based. Rather than managing accounts
for individual users, COM+ applications rely on categories or groups of users referred to as

Enterprise Development

PART V
882

24 chpt_18.qxd 11/19/01 3:32 PM Page 882

roles. Roles work hand-in-hand with the operating system-based security because the members
of roles are the user accounts on the Windows 2000 server or domain. Roles can be created on
an application-by-application basis using the Component Services administration tool, and the
process is rather straightforward. This is done by right-clicking on the Roles node of the
COM+ application in the treeview on the left in the Component Services administration tool.
After a role has been added, another right-click can add users to the role. Figure 18.1 illus-
trates the process of adding users to a role.

Transactional Development with COM+/MTS

CHAPTER 18

18

T
R

A
N

SA
C

TIO
N

A
L

D
EV

ELO
PM

EN
T

883

FIGURE 18.1
Using the Component Services administration tools to configure roles.

You can see from Figure 18.1 that in this example, the COM+ application has three roles:
Junior, Normal, and Hero. These are simply names made up to indicate three different groups
of users we plan to provide differing functionality for in our COM+ application. Noteworthy is
the fact that the actual authentication is handled automatically by the OS, and COM+ builds on
top of those services.

Role-Based Security Configuration
Arguably the slickest aspect of COM+’s role-based security system is that security can be
established at the application, component, interface, or even method level! This means that you
can control which roles have access to which methods without writing a line of code.

The first step to configuring COM+ application security is to enable security at the application
level. This is done by editing the properties of the application in the Component Services
administration tool and switching to the Security tab, which is shown in Figure 18.2.

Application security is enabled when the Enforce Access Checks For This Application check
box is checked. This dialog also enables selection of the security level, which can be set to per-
form security checking at the process level only or at the process and component level.

24 chpt_18.qxd 11/19/01 3:32 PM Page 883

FIGURE 18.2
Configuring COM+ application security.

Enabling security only at the process level has the effect of locking the front door to the
COM+ application, where all members of roles assigned to the application have the key to that
door. When this option is selected, no security checking will be performed on the component,
interface, or method level, and security context information will not be maintained for objects
running in the application. This type of security is useful when you don’t need granular secu-
rity control, but simply want to limit overall access to the COM+ application to a specific
group of users. This type of security also has the advantage in increased performance because
security checks don’t need to be made by COM+ during execution of the application.

Enabling security at the process and component level ensures that role-based security checks
will be made at the component, interface, and method level and security context information
will be available to objects in the application. Although this provides maximum control and
flexibility, note that a performance of your COM+ application will suffer slightly because of
the increased level of management that COM+ will need to perform during execution.

The security properties dialog box shown in the Figure 18.2 also provides for configuration of
the authentication level of the COM+ application. The authentication level determines the
degree to which authentication is performed on client calls into the application. Each succes-
sive authentication level option provides for a greater level of security, and the options are
shown in Table 18.1.

Enterprise Development

PART V
884

24 chpt_18.qxd 11/19/01 12:12 PM Page 884

TABLE 18.1 COM+ Authentication Levels

Level Description

None No authentication occurs.

Connect Authenticates credentials only when the connection is made.

Call Authenticates credentials at the beginning of every call.

Packet Authenticates credentials and verifies that all call data is received.
This is the default setting for COM+ server applications.

Packet Integrity Authenticates credentials and verifies that no call data has been
modified in transit.

Packet Privacy Authenticates credentials and encrypts the packet, including the
data and the sender’s identity and signature.

Note that authentication requires the participation of the client as well as the server. COM+
will examine the client and the server preference for authentication and will use the maximum
of the two. The client authentication preference can be set using any one of the following
techniques:

• The machine-wide setting specified in the Component Services administration tool (or
DCOMCNFG on non-Windows 2000/XP machines)

• The application-level setting specified in the Component Services administration tool (or
DCOMCNFG on non-Windows 2000/XP machines)

• The process-level setting specified programmatically using the CoInitializeSecurity()
COM API call

• An on-the-fly setting that can be specified programmatically using the CoSetProxyBlanket()
API

Finally, the properties security dialog box shown in Figure 18.2 allows configuration of the
application impersonation level. The impersonation level setting dictates to what degree the
server application might impersonate its client in order to access other resources on behalf of
clients. Table 18.2 explains the options for impersonation level.

TABLE 18.2 COM+ Impersonation Levels

Level Description

Anonymous The client is anonymous to the server.

Identify The server can obtain the client’s identity, and can impersonate the
client only to perform Access Control checking.

Transactional Development with COM+/MTS

CHAPTER 18

18

T
R

A
N

SA
C

TIO
N

A
L

D
EV

ELO
PM

EN
T

885

24 chpt_18.qxd 11/19/01 12:12 PM Page 885

TABLE 18.2 Continued

Level Description

Impersonate The server can impersonate the client while acting on its behalf,
although with restrictions. The server can access resources on the
same computer as the client. If the server is on the same computer
as the client, it can access network resources as the client. If the
server is on a computer different from the client, it can only access
resources that are on the same computer as the server. This is the
default setting for COM+ server applications.

Delegate The server can impersonate the client while acting on its behalf,
whether or not on the same computer as the client. During imper-
sonation, the client’s credentials can be passed to any number of
machines. This is the broadest permission that can be granted.

Like authentication, impersonation can also only be accomplished with the consent of the
client. The client’s consent and preferences can be established exactly the same as
authentication, using Component Services administration tool, DCOMCNFG, or the
CoInitializeSecurity() and CoSetProxyBlanket() APIs.

After application security has been configured, security can then be configured for compo-
nents, interfaces, and methods of the application. This is done in a similar manner by editing
the properties of the item in the tree and choosing the Security tab. This will invoke a dialog
box with a page similar to that shown in Figure 18.3.

Enterprise Development

PART V
886

FIGURE 18.3
Configuring COM+ component security.

24 chpt_18.qxd 11/19/01 12:12 PM Page 886

The dialog box shown in Figure 18.3 is fairly straightforward; it enables you to specify
whether security checks should be enabled for the item and which roles are to be allowed
access to the item.

Multitier Performance
When designing multitier applications that employ COM+ security, there are a number of per-
formance considerations you should weigh. First and foremost, always bear in mind that one of
the primary goals of a multitier system is to improve overall system scalability. One mistake
that often compromises scalability and performance is over securing an application by imple-
menting security at multiple tiers. A better solution would be to leverage COM+ services by
implementing security only or mostly at the middle tier. For example, rather than impersonat-
ing the client in order to gain access to a database, it is more efficient to access the database
using a common connection that can be pooled among multiple clients.

Programmatic Security
Up until now, we’ve focused primarily on declarative (or administration-driven) security; how-
ever we did mention that it is also possible to program security into COM+ applications. The
most common thing you might want to do is determine whether the caller of a particular
method belongs to a specific role. This enables you to control not only method access, but also
method behavior, based on the role of the client. To serve this purpose, COM+ provides not
one but two means for making this determination. There is a method of IObjectContext called
IsCallerInRole(), which is defined as

function IsCallerInRole(const bstrRole: WideString): Bool; safecall;

This function is used by passing the name of the role in the bstrRole parameter, and it will
return a Boolean value indicating whether the current caller belongs to the specified role. A
reference to the current object context can be found by calling the GetObjectContext() API,
which is defined as

function GetObjectContext: IObjectContext;

The following code checks to see if the caller is in the Hero role prior to performing a task:

var
Ctx: IObjectContext;

begin
Ctx := GetObjectContext;
if (Ctx <> nil) and (Ctx.IsCallerInRole(‘Hero’)) then
begin
// do something interesting

end;
end;

Transactional Development with COM+/MTS

CHAPTER 18

18

T
R

A
N

SA
C

TIO
N

A
L

D
EV

ELO
PM

EN
T

887

24 chpt_18.qxd 11/19/01 12:12 PM Page 887

Similarly, an IsCallerInRole() method is also found on the ISecurityCallContext inter-
face, a reference that can be obtained using the CoGetCallContext() API. This version of the
method is actually preferred, simply because ISecurityCallContext makes handy a lot of
other security information, such as the caller and its authentication and impersonation level.

Just-In-Time Activation
Just-In-Time (JIT) activation refers to functionality already present in COM+ that enables an
object to be transparently destroyed and re-created without the knowledge of the client applica-
tion. JIT activation potentially enables a server to handle a higher volume of clients because
resources used by an object can be reclaimed by the system when it is deactivated.

The object developers has full control over when an object is deactivated, and objects should
only be deactivated when they have no state to maintain. An object can be deactivated using
the SetComplete() or SetAbort() methods of IObjectContext or the
SetDeactivateOnReturn() method of IContextState.

Queued Components
Delphi developers normally don’t have to be lectured on the benefits of briefcase model appli-
cations. When MIDAS was introduced in Delphi 3, the barrier of entry was forever lowered for
creating applications having the capability to operate even when the client is disconnected from
the server. Delphi developers quickly realized the power of enabling their users to work with
their data in a disconnected, briefcase model, and embraced MIDAS as well as other technolo-
gies that provide this capability. Rather than having to write complicated code to, for example,
enable a salesman to edit his customer database on his laptop while on the road and synchro-
nize when he gets back into the office, this functionality is now easily accessible simply by
dropping a few components and writing a few lines of code.

This is all really great if you happen to be data, but what to do if you’re an object? As object
remoting technologies such as DCOM, MTS/COM+, and CORBA become easier to implement
in our tools, our reliance on such technologies increases as we build solutions for our compa-
nies and clients. Consequently, this reliance increases as we employ object remoting technolo-
gies to build ever-more-complex distributed applications. As a result of all this, distributed
component applications—like data applications—also have the need to function when discon-
nected from servers.

Queued Components: The Object Briefcase
COM+ queued components answer this need. Based on MSMQ (Microsoft Message Queue)
technology, queued components provide a means for COM+ clients to asynchronously invoke
methods of COM+ server components. In essence, this means that clients can create instances

Enterprise Development

PART V
888

24 chpt_18.qxd 11/19/01 12:12 PM Page 888

of server objects and invoke their methods without regard to whether the server is actually
accessible to the client. COM+ manages this by storing the method invocations in a queue and
executing the methods at a later time when the server is accessible. What’s more, the server
objects likewise have little reason to know or care whether their methods are being invoked
directly or via a COM+ queue. Our goal here is to cover the essential elements of working
with COM+ queued components.

Figure 18.4 illustrates how queued components are internally implemented. When the client
makes a method call on a queued component, that method call is captured by the recorder,
which packages up the call and parameters and places it into a queue. Because the client has
no knowledge that it isn’t actually communicating with the server, you can see that the
recorder server as a sort of a proxy for the server. The recorder knows how to behave because
it obtains information on the server from its type library and its configuration or registration
information. The listener removes the message, which contains the call information, from the
queue and passes it on to the player. Finally, the player unpackages the call information (along
with related information, such as the client’s security context) and executes the method call on
the server.

Transactional Development with COM+/MTS

CHAPTER 18

18

T
R

A
N

SA
C

TIO
N

A
L

D
EV

ELO
PM

EN
T

889

Recorder Queue

Listener

Player

Client

Server

FIGURE 18.4
COM+ queued component architecture.

“All this sounds cool,” you might be saying to yourself, “but I’ll bet implementing it requires a
degree in some new variety of non-Newtonian physics.” If you did say that to yourself, you’re
only half right; it is cool, but it’s also very easy to do, as you will soon see.

Why Queued Components?
Before jumping into implementation, however, we’d like to address some of the specific rea-
sons for using queued components.

24 chpt_18.qxd 11/19/01 12:12 PM Page 889

• System scalability—In a non-queued system, there will be a finite number of server
objects capable of handling requests from clients at any given time. When all these
objects become tied up handling client calls, other incoming client calls will be blocked
until an object finishes and again becomes available. In a system having a large number
of simultaneous transactions, this can seriously limit the number of concurrent clients
that can be serviced. Using queues, the call always returns immediately to the client after
being queued and played back to servers in the servers’ own time. This enables the sys-
tem to handle a greater number of concurrent transactions.

Scalability is also increased on the back end because the client doesn’t manage the life-
time of the server. Rather than being active while the client carries on with its processing
and various method calls, a queued server only needs to be active while calls are being
played back by the recorder. Reducing the amount of time a server needs to remain in
memory means that a greater number of servers can be activated over a given period of
time with a given amount of RAM.

• Briefcase model—As we mentioned, COM+ enables queued components to behave in a
disconnected manner in much the same way MIDAS does for data. This enables clients
to work without being connected to their network and method calls to be played back to
the server when the client connects to the network at a later time.

• Fail-safety—If you are creating a mission-critical application that requires a high degree
of availability, such as an e-commerce storefront, the last thing you want to happen is for
the system to go down because your front end is having trouble communicating with
server objects. Queued components provide an ideal safety net to prevent this problem
because they will queue method calls intended for servers if the servers become unavail-
able and play them back when the server again comes online.

• Load scheduling—Rather than having your servers work like rented mules during their
peak hours of activity and sit nearly dormant during the other hours of the day, using
queued components you can spread processing throughout the day to even the workflow
and place less demand on your servers at any specific time.

Creating a Server
There’s little difference between creating a queued component and a creating normal
COM/COM+ component. The biggest adjustment you will need to make is that all methods on
queued interfaces must accept only in parameters and must not make use of return values. Of
course, these limitations make perfect sense when you consider the fact that the client won’t be
sitting around waiting for the server to return any values or out parameters. Also, you will need
to perform a few extra steps as far as component configuration at install time.

To illustrate, we will create a Delphi server that contains one COM+ class with one interface
with one method. To make life easier, we’ll get started using the Automation Object Wizard

Enterprise Development

PART V
890

24 chpt_18.qxd 11/19/01 12:12 PM Page 890

accessible via the File, New Main menu item. We call this object QTest, and the wizard auto-
matically names the primary interface IQTest. (Don’t worry, it’s easier than it sounds.) To the
IQTest interface we add one method, which is defined in the type library editor as follows:

procedure SendText(Value: WideString; Time: TDateTime) [dispid $00000001];
safecall;

The idea is that this method takes two parameters: the first a string message and the second the
time on the client when the method was called. Our implementation of this method simply
writes this information, in addition to the time the message was processed by the server, to a
log file we create called c:\queue.txt. The implementation file for this Automation object is
shown Listing 18.1.

LISTING 18.1 TestImpl.pas—Implementation of Queued Object

unit TestImpl;

interface

uses
Windows, ComObj, ActiveX, Srv_TLB, StdVcl;

type
TQTest = class(TAutoObject, IQTest)
protected
procedure SendText(const Value: WideString; Time: TDateTime); safecall;

end;

implementation

uses ComServ, SysUtils;

procedure TQTest.SendText(const Value: WideString; Time: TDateTime);
const
SFileName = ‘c:\queue.txt’;
SEntryFormat = ‘Send time: %s’#13#10’Write time: %s’#13#10 +
‘Message: %s’#13#10#13#10;

var
F: THandle;
WriteStr: string;

begin
F := CreateFile(SFileName, GENERIC_WRITE, FILE_SHARE_READ, nil, OPEN_ALWAYS,
FILE_ATTRIBUTE_NORMAL, 0);

if F = INVALID_HANDLE_VALUE then RaiseLastWin32Error;
try

Transactional Development with COM+/MTS

CHAPTER 18

18

T
R

A
N

SA
C

TIO
N

A
L

D
EV

ELO
PM

EN
T

891

24 chpt_18.qxd 11/19/01 12:12 PM Page 891

LISTING 18.1 Continued

FileSeek(F, 0, 2); // go to EOF
WriteStr := Format(SEntryFormat, [DateTimeToStr(Time),
DateTimeToStr(Now), Value]);

FileWrite(F, WriteStr[1], Length(WriteStr));
finally
CloseHandle(F);

end;
end;

initialization
TAutoObjectFactory.Create(ComServer, TQTest, Class_QTest,
ciMultiInstance, tmApartment);

end.

After the server has been created, it needs to be installed into a new COM+ application using
either the Component Services management tool or the COM+ Administration Library API.
Using the Component Services tool, the first step is to create a new empty application by
selecting that option from the local menu of the COM+ Applications node in the tree and fol-
lowing the prompts. Once the application has been created, the next step is to edit the applica-
tion’s properties to mark the application as queued, as shown in Figure 18.5. We also chose to
enable queue listening on this application so that it would immediately play any incoming mes-
sages on its queue when it is active. The configuration is shown in Figure 18.5.

Enterprise Development

PART V
892

FIGURE 18.5
Configuring a queued COM+ application.

24 chpt_18.qxd 11/19/01 12:12 PM Page 892

To install the server into the COM+ application, select New, Component from the local menu
of the Component node of the application in the tree. This invokes the COM Component
Install Wizard, which can install a new component using the defaults and select the name of
the COM+ server DLL created earlier. After installation into the application, edit the properties
of the IQTest interface on this object to support queuing as shown in Figure 18.6.

Transactional Development with COM+/MTS

CHAPTER 18

18

T
R

A
N

SA
C

TIO
N

A
L

D
EV

ELO
PM

EN
T

893

FIGURE 18.6
Specifying an interface as queued.

Note that COM+ requires that queuing be enabled on both the COM+ application and the
interface level.

Creating a Client
The workflow for creating a queued component client is identical to creating a client of any
old Automation client. In this case, create an application with a main form as shown in
Figure 18.7.

FIGURE 18.7
A client application for a queued component.

When the Send button is clicked, the contents of the edit is sent to the server via its SendText()
method. The code for this unit corresponding to this form is shown in Listing 18.2.

24 chpt_18.qxd 11/19/01 12:12 PM Page 893

LISTING 18.2 Ctrl.pas—The Main Unit for a Queued Component Client

unit Ctrl;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ColorGrd, ExtCtrls, Srv_TLB, Buttons;

type
TControlForm = class(TForm)
BtnExit: TButton;
Edit: TEdit;
BtnSend: TButton;
procedure BtnExitClick(Sender: TObject);
procedure BtnSendClick(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
FIntf: IQTest;

end;

var
ControlForm: TControlForm;

implementation

{$R *.DFM}

uses ComObj, ActiveX;

// Need to import CoGetObject because import in the ActiveX unit is incorrect:
function MyCoGetObject(pszName: PWideChar; pBindOptions: PBindOpts;
const iid: TIID; out ppv): HResult; stdcall;
external ‘ole32.dll’ name ‘CoGetObject’;

procedure TControlForm.BtnExitClick(Sender: TObject);
begin
Close;

end;

procedure TControlForm.BtnSendClick(Sender: TObject);
begin
FIntf.SendText(Edit.Text, Now);
Edit.Clear;

end;

Enterprise Development

PART V
894

24 chpt_18.qxd 11/19/01 12:12 PM Page 894

LISTING 18.2 Continued

procedure TControlForm.FormCreate(Sender: TObject);
const
SMoniker: PWideChar = ‘queue:/new:{64C576F0-C9A7-420A-9EAB-0BE98264BC9D}’;

begin
// Create object using a moniker that specifies queued creation
OleCheck(MyCoGetObject(SMoniker, nil, IQTest, FIntf));

end;

end.

The only element in this unit that sets it apart from a standard Automation controller is the
means by which it creates the server object instance. Rather than using, for example, the
CoCreateInstance() COM API function, this client uses the CoGetObject() API.
CoGetObject() enables an object to be created via a moniker, and COM+ allows a special
string moniker syntax that can be used to invoke components in a queued manner. The general
syntax of this moniker is queue:/new: followed by the CLSID or program ID of the server
object. The following are all examples of properly formatted queue monikers:

queue:/new:Srv.IQTest
queue:/new:{64C576F0-C9A7-420A-9EAB-0BE98264BC9D}
queue:/new:64C576F0-C9A7-420A-9EAB-0BE98264BC9D

There are also a number of queue moniker parameters that you can incorporate into the string
to modify the destination queue or queue behavior. The following list describes these moniker
parameters:

• ComputerName—The parameter’s value is the string name of the computer containing the
queue. Specifies the computer name portion of a queue pathname. If not specified, the
computer name associated with the configured application is used.

• QueueName—The parameter’s value is the string name of the queue on the target server
machine. Specifies the queue name. If not specified, the queue name associated with the
configured application is used.

• PathName—The queue pathname must be formatted as ComputerName\QueueName.
Specifies the complete queue pathname. If not specified, the queue pathname associated
with the configured application is used.

• FormatName—The parameter’s value is the format name of queue, for example,
DIRECT=9CA3600F-7E8F-11D2-88C5-00A0C90AB40E. Specifies the queue format name.

• AppSpecific—For example, AppSpecific=8675309. An unsigned integer design for
application-specific use.

Transactional Development with COM+/MTS

CHAPTER 18

18

T
R

A
N

SA
C

TIO
N

A
L

D
EV

ELO
PM

EN
T

895

24 chpt_18.qxd 11/19/01 12:12 PM Page 895

• AuthLevel—MQMSG_AUTH_LEVEL_NONE (0) or MQMSG_AUTH_LEVEL_ALWAYS (1). Specifies
the message authentication level. An authenticated message is digitally signed and
requires a certificate for the user sending the message.

• Delivery—MQMSG_DELIVERY_EXPRESS (0) or MQMSG_DELIVERY_RECOVERABLE (1).
Specifies the message delivery option. Ignored for transacted queues.

• EncryptAlgorithm—CALG_RC2, CALG_RC4, or other integer value recognized by COM+
as an identifier representing an acceptable encryption algorithm. Specifies the encryption
algorithm to be used by COM+ to encrypt and decrypt the message.

• HashAlgorithm—CALG_MD2, CALG_MD4, CALG_MD5, CALG_SHA, CALG_SHA1, CALG_MAC,
CALG_SSL3_SHAMD5, CALG_HMAC, CALG_TLS1PRF, or other integer value recognized by
COM+ as acceptable. Specifies a cryptographic hash function.

• Journal—MQMSG_JOURNAL_NONE (0), MQMSG_DEADLETTER (1), or MQMSG_JOURNAL (2).
Specifies the COM+ queue message journal option.

• Label—Any string. Specifies a message label string up to MQ_MAX_MSG_LABEL_LEN
characters.

• MaxTimeToReachQueue—INFINITE, LONG_LIVED, or an integer value indicating a specific
number of seconds. Specifies a maximum time, in seconds, for the message to reach the
queue.

• MaxTimeToReceive—INFINITE, LONG_LIVED, or an integer value indicating a specific
number of seconds. Specifies a maximum time, in seconds, for the message to be
received by the target application.

• Priority—MQ_MIN_PRIORITY (0), Q_MAX_PRIORITY (7), MQ_DEFAULT_PRIORITY (3), or
any integer between 0 and 7. Specifies a message priority level, within the MSMQ values
permitted.

• PrivLevel—MQMSG_PRIV_LEVEL_NONE, NONE, MQMSG_PRIV_LEVEL_BODY, BODY,
MQMSG_PRIV_LEVEL_BODY_BASE, BODY_BASE, MQMSG_PRIV_LEVEL_BODY_ENHANCED, or
BODY_ENHANCED. Specifies the privacy level that is used to encrypt messages.

• Trace—MQMSG_TRACE_NONE (0) or QMSG_SEND_ROUTE_TO_REPORT_QUEUE (1). Specifies
trace options, used in tracing COM+ queue routing.

Using some of these options, other valid queue monikers might be

queue:Priority=6,ComputerName=foo/new:{64C576F0-C9A7-420A-9EAB-0BE98264BC9D}
queue:PathName=drevil\myqueue/new:{64C576F0-C9A7-420A-9EAB-0BE98264BC9D}

Running the Server
After invoking the client and typing a few strings into the edit, you can check for yourself on
your hard disk, and you will see that the file c:\queue.txt isn’t present on your hard disk.

Enterprise Development

PART V
896

24 chpt_18.qxd 11/19/01 12:12 PM Page 896

That is because the server application needs to start running before queued messages will be
played back. Three ways to start the server are as follows:

1. Manually—Using the Component Services tool. This can be done simply by selecting
Start from the local menu of the application node in the tree.

2. Programmatically—Using the COM+ Administration Library API.

3. Scheduled—Using scripting. This can be done using a script similar to the following in
the task scheduler:

dim cat
set cat = CreateObject(“COMAdmin.COMAdminCatalog”);
cat.StartApplication(“YourApplication”);

After starting the application, you will see the c:\queue.txt file present on your hard disk. Its
contents will look something like this:

Send time: 7/6/2001 7:15:08 AM
Write time: 7/6/2001 7:15:18 AM
Message: this is a test

Send time: 7/6/2001 7:15:10 AM
Write time: 7/6/2001 7:15:18 AM
Message: this is another

Object Pooling
You might remember that wacky CanBePooled() method of IObjectControl that MTS simply
ignored. The good news is that CanBePooled() is no longer ignored, and COM+ does support
object pooling. Object pooling provides the ability to keep a pool of some particular number of
instances of a particular object, and have the objects in this pool used by multiple clients.
Similar to JIT activation, the goal is to increase overall throughput of the system. However, JIT
activation carries the assumption that objects aren’t expensive to create or destroy (because it is
done frequently). If an object is expensive to create or destroy, it makes more sense to keep
instances around after their creation by pooling them.

A number of limitations are imposed on objects that want to support pooling. These include

• The object must be stateless so that it maintains no instance-specific data between
method calls.

• The object must have no thread affinity. That is, they shouldn’t be bound to any particu-
lar thread and they shouldn’t use thread local storage (TLS, or “threadvar” variables in
the Delphi world).

• The object must be aggregatable.

Transactional Development with COM+/MTS

CHAPTER 18

18

T
R

A
N

SA
C

TIO
N

A
L

D
EV

ELO
PM

EN
T

897

24 chpt_18.qxd 11/19/01 12:12 PM Page 897

• Resources must be manually enlisted in transactions. The resource manager cannot auto-
matically enlist resources on the object’s behalf.

• The object must implement IObjectControl.

Events
Delphi developers don’t need to be sold on the importance of events. How else would we know
when a button was clicked or a record posted? However, although COM developers have also
been aware of the importance of events, they often avoided them because of the complexity of
implementation. COM+ introduces a new event model, which—thank heavens—isn’t tied to
the Byzantine connection points model that has been common in COM to this point.

The typical picture we imagine when we think about the relationship between COM client and
server objects is fairly linear; clients invoke methods on servers and servers do useful things in
response to the client call and optionally provide some data back to the client in the form of a
return value and out parameters. It’s probably true that this relationship is an accurate represen-
tation of probably more than 90% of COM client/server interactions, but you don’t have to be a
COM guru to realize that this model is limited, particularly with regard to clients having the
ability to be quickly updated when some server data changes.

The simplest way to obtain such a notification would be for clients to poll servers on a periodic
basis in order to check whether the information in which they’re interested changes. However,
the disadvantages of polling are pretty self-evident; clients waste a lot of cycles sending polls,
servers likewise waste a lot of clocks responding to polls, extraneous network traffic can be
generated, and the overall scalability of the system is diminished to the sum of all this
increased load on client, server, and wire.

More desirable, but still low tech, is a system whereby clients can pass servers one or more
predefined interfaces to call back on when the information in question changes. However, this
system essentially has to be re-invented for every different interface you want to use, and it is
incumbent upon the server to write specialized code to track multiple client connections.

Traditional COM provides a more efficient and structured solution to this problem, called
events. This solution involves the use of the connection points, which provide servers with the
capability to track clients that want to be notified of information changes as well as the means
for servers to call client methods to make the notifications. Connection points are an example
of what is known as a tightly coupled event (TCE) system. In a TCE system, clients and servers
are mutually aware of the other’s identity. Additionally, TCE systems require that clients and
servers be running simultaneously, and they provide no means for filtering of events. The con-
nection point system also has the inherent disadvantages because it is rather complex to imple-
ment and use, and clients are forced to implement entire event interfaces, even if they are only
interested in a single method of the interface.

Enterprise Development

PART V
898

24 chpt_18.qxd 11/19/01 12:12 PM Page 898

COM+ contains a new event system that solves some of these problems and adds some nice
additional features. The COM+ event model is known as a Loosely Coupled Event (LCE) sys-
tem. It is referred to as such because there is no hard connection between servers (known as
event publishers) and clients (known as event subscribers). Instead, publishers register with the
COM+ catalog the events they want to publish, and subscribers separately register with the
COM+ catalog the events in which they are interested. When a publisher fires an event, the
COM+ runtime reviews its database to determine which clients should receive an event notifi-
cation and sends the notification to those clients. What’s more, clients don’t even have to be
running when the event is fired; COM will activate clients upon invocation of the event.
Additionally, the event registration model supports method-level granularity. This means that
subscribers aren’t forced to implement methods for events for which they have no interest.
Figure 18.8 provides an illustration of the COM+ event system.

Transactional Development with COM+/MTS

CHAPTER 18

18

T
R

A
N

SA
C

TIO
N

A
L

D
EV

ELO
PM

EN
T

899

Administration

Event Class Subscription
Invocation

COM+ Event System

Event Publisher Event Subscriber

Registration

Creation

Registration

Invocation

Invocation

FIGURE 18.8
The COM+ event system architecture.

As Figure 18.8 shows, the process begins when the publisher registers a new event
class. This can be done using the Component Services administration tool or using the
ICOMAdminCatalog.InstallEventClass() method. Once registered, the object that imple-
ments the event class will reside in the COM+ runtime. The publisher or another object can
then call the CoCreateInstance() COM API call to create an instance of this object and call
methods on this object to fire events.

On the subscriber side, the subscriber can register for an event class permanently, using the
Component Services administration tool, or in a transient manner using the COM admin cata-
log API. Permanent subscription means that the subscribing component doesn’t need to be
active when the event fires; the COM+ runtime will automatically create the component before
invoking the event. Transient subscriptions are intended for already active components that
want to receive event notifications only temporarily. When the publisher fires an event, COM+
will iterate over all the registered subscribers, invoking the event on each. Note that it isn’t
possible to determine the order in which COM+ will iterate over the clients when invoking an

24 chpt_18.qxd 11/19/01 12:12 PM Page 899

event. However, it is possible to gain some control over the firing of events using event filters,
which we describe in more detail later.

Speaking practically, creating a COM+ event can be boiled down to a five-step process:

1. Creating an event class server

2. Registering and configuring the event class server

3. Creating a subscriber server

4. Registering and configuring the subscriber servers

5. Publishing of events

We’ll take these steps one at a time to demonstrate a Delphi implementation of COM+ events.

Creating an Event Class Server
The first step to creating an event class server is to create an in-process COM server to which
you will add a COM object. The important distinction to bear in mind between creating an
event class server and creating a regular COM server is that an event class server carries with it
no implementation—it only serves as a vehicle for definition of the event class.

You create an event class server in Delphi by using the ActiveX Library wizard to create a new
COM server DLL and the Automation Object wizard to generate the event class and interface.
Call this object EventObj. The wizards leave you off in the Type Library Editor in order to
complete the definition of the server, where you add a method called MyEvent to the IEventObj
interface that will serve as the event method. The implementation file produced for this type
library is shown in Listing 18.3.

LISTING 18.3 PubMain.pas—The Main Unit for an Event Class Server

unit PubMain;

interface

uses
ComObj, ActiveX, Publisher_TLB, StdVcl;

type
TEventObj = class(TAutoObject, IEventObj)
protected
function MyEvent(const EventParam: WideString): HResult; safecall;

end;

implementation

Enterprise Development

PART V
900

24 chpt_18.qxd 11/19/01 12:12 PM Page 900

LISTING 18.3 Continued

uses ComServ;

function TEventObj.MyEvent(const EventParam: WideString): HResult;
begin

end;

initialization
TAutoObjectFactory.Create(ComServer, TEventObj, Class_EventObj,
ciMultiInstance, tmApartment);

end.

That’s all there is to creating the event class server. Note that it’s not necessary to register this
server. Registration is handled specially, and we discuss it in the next step.

Registration and Configuration of the Event Class Server
In this phase, we will again make use of the Component Services administration tool. You’ll
use this tool often as you develop COM+ applications. You’ll find this tool in the
Administrative Tools group of the Programs section of the Start menu. The first thing you’ll
need to do in the Component Services administration tool is create a new COM+ application.
You can do this by selecting New, Application from the local menu of the COM+ Applications
node in the tree view on the left. This will invoke the COM+ Application Install Wizard as
shown in Figure 18.9. In this wizard, I choose to create a new application from scratch and call
it Delphi Event Demo.

Transactional Development with COM+/MTS

CHAPTER 18

18

T
R

A
N

SA
C

TIO
N

A
L

D
EV

ELO
PM

EN
T

901

FIGURE 18.9
Using the Component Services tool to add a COM+ application.

24 chpt_18.qxd 11/19/01 12:12 PM Page 901

After the COM+ application has been installed, you can install the event class server into the
application. This is done by selecting New, Component from the local menu of the
Components node under the new application in the tree. This invokes the COM Component
Install Wizard, a frame of which is shown in Figure 18.10.

Enterprise Development

PART V
902

FIGURE 18.10
Using the Component Services tool to add a COM+ component.

In this wizard, install a new event class, and select the filename of the event class server that
was just created. With that done, it’s time to move on to the creation of the subscriber server.

Creation of a Subscriber Server
A subscriber server is essentially a standard Delphi Automation server. The only catch is that
you need to implement the event interface that you defined when creating the event class
server. We accomplish this by using the type library from the event class server in the subscriber
server and adding the IEventObj interface to the implements list of the co-class. Figure 18.11
shows the SubObj coclass, containing both ISubObj and IEventObj, and the implementation
file for this type library is shown in Listing 18.4.

LISTING 18.4 SubMain.pas—The Implementation Unit for the Event Server

unit SubMain;

interface

uses
ComObj, ActiveX, Subscriber_TLB, StdVcl, Publisher_TLB;

type
TSubObj = class(TAutoObject, ISubObj, IEventObj)
protected

24 chpt_18.qxd 11/19/01 12:12 PM Page 902

LISTING 18.4 Continued

function MyEvent(const EventParam: WideString): HResult; safecall;
{ Protected declarations }

end;

implementation

uses ComServ, Windows;

function TSubObj.MyEvent(const EventParam: WideString): HResult;
begin
MessageBox(0, PChar(string(EventParam)), ‘COM+ Event!’, MB_OK);
Result := S_OK;

end;

initialization
TAutoObjectFactory.Create(ComServer, TSubObj, Class_SubObj,
ciMultiInstance, tmApartment);

end.

Transactional Development with COM+/MTS

CHAPTER 18

18

T
R

A
N

SA
C

TIO
N

A
L

D
EV

ELO
PM

EN
T

903

FIGURE 18.11
The IEventObj interface in the type library editor.

You can see that the implementation of the event is quite earth shattering; a message box is
displayed showing a real, live text string! Again, there is no need to register this server as you
would a standard COM server. That housekeeping is handled in the next step.

Registration and Configuration of the Subscriber Servers
To register the subscriber server, reopen the Component Services administration tool, and
choose New, Component from the local menu just as you did for the event class server. The

24 chpt_18.qxd 11/19/01 12:12 PM Page 903

difference is that this time you should choose to install a new component in the COM
Component Install Wizard and select the subscriber DLL.

After the subscriber server is installed, you can create a new subscription for the subscriber
server by selecting New, Subscription from the Subscriptions node under your new subscriber
server. This brings up the New Subscription Wizard, which allows you to define the correlation
between the publisher and subscriber interfaces or methods. In this case, select IEventObj for
the subscriber method(s) and Publisher.EventObj for the event class. Enter Subscription of
Doom as the name of this subscription and choose to enable the server immediately, as shown in
Figure 18.12.

Enterprise Development

PART V
904

FIGURE 18.12
Subscription wizard in the Component Services tool.

Figure 18.13 shows the complete COM+ application definition as shown in the Component
Services administration tool.

Publishing of Events
The setup is now complete, so all that is left is to publish the event by creating an instance of
the EventObj class and calling the IEventObj.MyEvent method. The simplest way to do this is
in a simple test application, as shown in Listing 18.5.

LISTING 18.5 TestU.pas—Unit to Fire the Loosely Coupled Event

unit TestU;

interface

24 chpt_18.qxd 11/19/01 12:12 PM Page 904

LISTING 18.5 Continued

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
Publisher_TLB, StdCtrls;

type
TForm1 = class(TForm)
Button1: TButton;
procedure Button1Click(Sender: TObject);

private
FEvent: IEventObj;

end;

var
Form1: TForm1;

implementation

uses ComObj, ActiveX;

{$R *.DFM}

procedure TForm1.Button1Click(Sender: TObject);
begin
OleCheck(CoCreateInstance(CLASS_EventObj, nil, CLSCTX_ALL, IEventObj,
FEvent));

FEvent.MyEvent(‘This is a clever string’);
end;

end.

Figure 18.14 shows the result of pushing the magic button. Note that the event subscriber is
created automatically by COM+ and the event handler code is executed.

You might notice that COM+ takes a few moments to invoke the event the first time through.
This is because of the fairly substantial amount of internal infrastructure that needs to be
loaded in order to fire COM+ events. The bottom line here is that you shouldn’t depend on
events being fired back to subscribers in real time. They’ll get there soon, but not instantly.

Transactional Development with COM+/MTS

CHAPTER 18

18

T
R

A
N

SA
C

TIO
N

A
L

D
EV

ELO
PM

EN
T

905

24 chpt_18.qxd 11/19/01 12:12 PM Page 905

FIGURE 18.13
Event demo application in the Component Services tool.

Enterprise Development

PART V
906

FIGURE 18.14
Event demo application in action.

Beyond the Basics
Although this information provides a solid grounding in the fundamentals of the COM+ event
model, there are a couple of powerful features that a we’d like to mention. The first is queued
events. Queued events are the synthesis of COM+ events and queued components (MSMQ
components in pre-COM+ days). Essentially, this functionality provides the capability to fire
events to disconnected components, and those events can be played back at a later time. The
other advanced topic worthy of mention is event filters, which come in two flavors: publisher
filters and parameter filters. Publisher filters provide a means for publishers to control the
order and firing of an event method by an event class. Parameter filters enable the publisher to
intercept events based on the value of the parameters of that event.

Runtime
You can think of the COM+ runtime a as essentially the COM you already know and love. The
COM+ runtime is comprised of all the various COM API functions (you know, all those func-
tions that start with Co...) and the underlying code that makes those functions go. The runtime
handles things like object creation and lifetime, marshaling, proxies, memory management,

24 chpt_18.qxd 11/19/01 12:12 PM Page 906

and all the other low-level things that make up the foundation of COM+. In order to support
many of the nifty services you just learned about, Microsoft has added a number of new fea-
tures to the COM+ runtime, including configured components, a registration database, the pro-
motion of the contexts concept, and a new neutral threading model.

Registration Database (RegDB)
In COM, the attributes of a particular COM object are generally kept in two places: the system
registry and a type library. COM+ now introduces the concept of a registration database that
will be used to hold attribute information for COM+ object. Type libraries will continue to be
used, but the system registry has distinctly fallen out of favor as the place to store object attrib-
utes, and use of the registry for this purpose is supported only for the sake of backward com-
patibility. Common attributes stored in the RegDB include the transaction level supported by
an object and whether it supports JIT activation.

Configured Components
Components that store attributes in RegDB are referred to as configured components, whereas
components that don’t are called non-configured. The best example of a non-configured com-
ponent is a COM or MTS component that you are using unchanged in the COM+ environment.
In order to participate in most of the services we mentioned earlier, your components will need
to be configured.

Contexts
Contexts is a term originally introduced in MTS that described the state of the current execu-
tion environment of a given component. Not only has this term moved forward in COM+, but
also it has been promoted. In COM, an apartment is the most granular description of the run-
time context of a given object, referring to an execution context bounded by a thread or
process. In COM+ that honor goes to a context, which runs within some particular apartment.
A context implies a description on a more granular level than an apartment, such as transaction
and activation state.

Neutral Threading
COM+ introduces a new threading model, known as Thread Neutral Apartment (TNA). TNA is
designed to provide the performance and scalability benefits of a free threaded object without
the programming problems of dealing with interlocking access to shared data and resources
within the server. TNA is the preferred threading model for COM+ components that don’t sur-
face UI elements. Components containing UI should continue to use apartment threading
because window handles are tied to a specific thread. There is a limitation of one TNA per
process.

Transactional Development with COM+/MTS

CHAPTER 18

18

T
R

A
N

SA
C

TIO
N

A
L

D
EV

ELO
PM

EN
T

907

24 chpt_18.qxd 11/19/01 12:12 PM Page 907

Creating COM+ Applications
With all the knowledge of individual COM+ features under your belt, now is a good time to
learn more about creating applications that leverage COM+ features such as transactions, life-
time management, and shared resources.

The Goal: Scale
The magic word of system design these days is scalability. With the hyper-growth of the
Internet (intranets, extranet, and all other things net), the consolidation of corporate data into
centrally-located data stores, and the need for everyone and their cousin to get at the data, it’s
absolutely crucial that systems be able to scale to ever larger numbers of concurrent users. It’s
definitely a challenge, especially considering the rather unforgiving limitations we must deal
with, such as finite database connections, network bandwidth, server load, and so on. In the
good old days of the early 90s, client/server computing was all the rage and considered “The
Way” to write scalable applications. However, as databases were bogged down with triggers
and stored procedures and clients were complicated with various bits of code here and there in
an effort to implement business rules, it shortly became obvious that such systems would never
scale to a large number of users. The multitier architecture soon became popular as a way to
scale a system to a greater number of users. By placing application logic and sharing database
connections in the middle tier, database and client logic could be simplified and resource usage
optimized for an overall higher-bandwidth system.

Enterprise Development

PART V
908

The added infrastructure introduced in a multitier environment tends to increase
latency as it increases bandwidth. In other words, you might very well need to sacri-
fice the performance of the system in order to improve scalability!

NOTE

Execution Context
It’s important to bear in mind that because COM+ object don’t run directly within the context
of a client like other COM objects, clients never really obtain interface pointers directly to an
object instance. Instead, COM+ inserts a proxy between the client and the COM+ object such
that the proxy is identical to the object from the client’s point of view. However, because
COM+ has complete control over the proxy, it can control access to interface methods of the
object for purposes such as lifetime management and security, as you will soon learn.

24 chpt_18.qxd 11/19/01 12:12 PM Page 908

Stateful Versus Stateless
The number one topic of conversation among folks looking at, playing with, and working on
COM+ technology seems to be the discussion of stateful versus stateless objects. Although
COM itself doesn’t give a whit as to the state of an object, in practice most traditional COM
objects are stateful. That is, they continuously maintain state information from the time that
they’re created, while they’re being used, and up until the time that they’re destroyed. The
problem with stateful objects is that they aren’t particularly scalable because state information
would have to be maintained for every object being accessed by every client. A stateless object
is one that generally doesn’t maintain state information between method calls. COM+ prefers
stateless objects because they enable COM+ to play some optimization tricks. If an object
doesn’t maintain any state between method calls, COM+ could theoretically make the object
go away between calls without causing any harm. Furthermore because the client maintains
pointers only to COM+’s internal proxy for the object, COM+ could do so without the client
being any the wiser. It’s more than a theory; this is actually how COM+ works. COM+ will
destroy the instances of the object between calls in order to free up resources associated with
the object. When the client makes another call to that object, the COM+ proxy will intercept it
and a new instance of the object will be created automatically. This helps the system scale to a
larger number of users because there will likely be comparatively few active instances of a
class at any given time.

Writing interfaces to behave in a stateless manner will probably require a slight departure from
your usual way of thinking for interface design. For example, consider the following classic
COM-style interface:

ICheckbook = interface
[‘{2CCF0409-EE29-11D2-AF31-0000861EF0BB}’]
procedure SetAccount(AccountNum: WideString); safecall;
procedure AddActivity(Amount: Integer); safecall;

end;

As you might imagine, you would use this interface in a manner something like this:

var
CB: ICheckbook;

begin
CB := SomehowGetInstance;
CB.SetAccount(‘12345ABCDE’); // open my checking account
CB.AddActivity(-100); // add a debit for $100
...

end;

The problem with this style is that the object isn’t stateless between method calls because state
information regarding the account number must be maintained across the call. A better

Transactional Development with COM+/MTS

CHAPTER 18

18

T
R

A
N

SA
C

TIO
N

A
L

D
EV

ELO
PM

EN
T

909

24 chpt_18.qxd 11/19/01 12:12 PM Page 909

approach to this interface for use in COM+ would be to pass all the necessary information to
the AddActivity() method so that the object could behave in a stateless manner:

procedure AddActivity(AccountNum: WideString; Amount: Integer); safecall;

The particular state of an active object is also referred to as a context. COM+ maintains a con-
text for each active object that tracks things like security and transaction information for the
object. An object can at any time call GetObjectContext() to obtain an IObjectContext inter-
face pointer for the object’s context. IObjectContext is defined in the Mtx unit as

IObjectContext = interface(IUnknown)
[‘{51372AE0-CAE7-11CF-BE81-00AA00A2FA25}’]
function CreateInstance(const cid, rid: TGUID; out pv): HResult; stdcall;
procedure SetComplete; safecall;
procedure SetAbort; safecall;
procedure EnableCommit; safecall;
procedure DisableCommit; safecall;
function IsInTransaction: Bool; stdcall;
function IsSecurityEnabled: Bool; stdcall;
function IsCallerInRole(const bstrRole: WideString): Bool; safecall;

end;

The two most important methods in this interface are SetComplete() and SetAbort(). If either
of these methods are called, the object is telling COM+ that it no longer has any state to main-
tain. COM+ will therefore destroy the object (unbeknown to the client, of course), thereby
freeing up resources for other instances. If the object is participating in a transaction,
SetComplete() and SetAbort() also have effect of a commit or rollback for the transaction,
respectively.

Lifetime Management
From the time we were tiny COM programmers, we were taught to hold on to interface point-
ers only for as long as necessary and to release them as soon as they are unneeded. In tradi-
tional COM, this makes a lot of sense because we don’t want to occupy the system with
maintaining resources that aren’t being used. However, because COM+ will automatically free
up stateless objects after they call SetComplete() or SetAbort(), there is no expense associ-
ated with holding a reference to such an object indefinitely. Furthermore, because the client
never knows that the object instance might have been deleted under the sheets, clients don’t
have to be rewritten to take advantage of this feature.

COM+ Application Organization
Remember that a collection of COM+ components that share common configuration and attrib-
utes are referred to in the Component Services tools as an application. Prior to COM+ MTS,

Enterprise Development

PART V
910

24 chpt_18.qxd 11/19/01 12:12 PM Page 910

used the word package to refer to what we now call applications, but we are happy with the
change in terminology—the term package was already overloaded enough, with Delphi pack-
ages, C++Builder packages, Oracle packages, and holiday gifts all coming to mind as exam-
ples of the overuse of this word.

By default, COM+ will run all components within a package in the same process. This enables
you to configure well behaved and error-free packages that are insulated from the potential
problems that could be caused by faults or errors in other packages. It is also interesting to
note that the physical location of components has no bearing on eligibility for package inclu-
sion; a single COM+ server can contain several COM+ objects, each in a separate package.

Applications can be created and manipulated using either the Run, Install COM+ Objects
menu in Delphi or the Component Services tool.

Thinking About Transactions
And of course, COM+ also does transactions. You might be thinking to yourself, “big deal, my
database server already supports transactions. Why do I need my components to support them
as well?” A fair question, and luckily we’re equipped with good answers. Transaction support
in COM+ can enable you to perform transactions across multiple databases or can even make a
single atomic action out of some set of operations having nothing to do with databases. In
order to support transactions on your COM+ objects, you must either set the correct transac-
tion flag on your object’s coclass in the type library during development (this is what the
Delphi Transactional Object wizard does) or after deployment in the Transaction Server
Explorer.

When should you use transactions in your objects? That’s easy: you should use transactions
whenever you have a process involving multiple steps that you want to make into a single,
atomic transaction. In doing so, the entire process can be either committed or rolled back, but
you will never leave your logic or data in an incorrect or indeterminate state somewhere in
between. For example, if you are writing software for a bank and you want to handle the case
in which a client bounces a check, there would likely be several steps involved in handling
that, including

• debiting the account for amount of check

• debiting the account for bounced check service charge

• sending a letter to the client

In order to properly process the bounced check, each of these things must happen. Therefore,
wrapping them in a single transaction would ensure that all will occur if no errors are encoun-
tered. All will roll back to their original pre-transaction state if an error occurs.

Transactional Development with COM+/MTS

CHAPTER 18

18

T
R

A
N

SA
C

TIO
N

A
L

D
EV

ELO
PM

EN
T

911

24 chpt_18.qxd 11/19/01 12:12 PM Page 911

Resources
With objects being created and destroyed all the time and transactions happening everywhere,
it’s important for COM+ to provide a means for sharing certain finite or expensive resources
(such as database connections) across multiple objects. COM+ does this using resource man-
agers and resource dispensers. A resource manager is a service that manages some type of
durable data, such as account balance or inventory. Microsoft provides a resource manager in
MS SQL Server. A resource dispenser manages non-durable resources, such as database con-
nections. Microsoft provides a resource dispenser for ODBC database connections, and
Borland provides a resource dispenser for BDE database connections.

When a transaction makes use of some type of resource, it enlists the resource to become a
part of the transaction so that all changes made to the resource during the transaction will par-
ticipate in the commit or rollback of the transaction.

COM+ in Delphi
Now that you’ve got the “what” and “why” down, it’s time to talk about the “how.” In particu-
lar we intend to focus on Delphi’s support of COM+ and how to build COM+ solutions in
Delphi. Before we jump right in, however, you should first know that COM+ support is built
only into the Client/Server version of Delphi. Although it’s technically possible to create
COM+ components using the facilities available in the Standard and Professional versions, we
wouldn’t consider it the most productive use of your time, so we intend to help you leverage
the features of Delphi to build COM+ applications.

COM+ Wizards
Delphi provides two wizards for building COM+ components: the Transactional Data Module
Wizard found on the Multitier tab of the New Items dialog box and the Transactional Object
Wizard found on the ActiveX tab. The Transactional Data Module Wizard enables you to build
MIDAS servers that operate in the COM+ environment. The Transactional Object Wizard will
serve as the starting point for your COM+ transactional objects, and it is this wizard upon
which I will focus my discussion. Upon invoking this wizard, you will be presented with the
dialog box shown in Figure 18.15.

This dialog box is similar to the Automation Object Wizard with which you are probably
already familiar based on your previous COM development experience in Delphi. The obvious
difference is the facility provided by this wizard to select the transaction model supported by
your COM+ component. The available transaction models are as follows:

• Requires a Transaction—The component will always be created within the context of a
transaction. It will inherit the transaction of its creator if one exists, or it will otherwise
create a new one.

Enterprise Development

PART V
912

24 chpt_18.qxd 11/19/01 12:12 PM Page 912

• Requires a New Transaction—A new transaction will always be created for the compo-
nent to execute within.

• Supports Transactions—The component will inherit the transaction of its creator if one
exists, or it will execute without a transaction otherwise.

• Does Not Support Transactions—The component will never be created within a transac-
tion.

• Ignores Transactions—The component doesn’t care about the transaction context.

The transaction model information is stored along with the component’s co-class in the type
library.

Transactional Development with COM+/MTS

CHAPTER 18

18

T
R

A
N

SA
C

TIO
N

A
L

D
EV

ELO
PM

EN
T

913

FIGURE 18.15
COM+ Transactional Object Wizard.

After you click OK to dismiss the dialog box, the wizard will generate an empty definition for a
class that descends from TMtsAutoObject and it will present the Type Library Editor in order to
define your COM+ components by adding properties, methods, interfaces, and so on. This should
be familiar territory because the workflow is identical at this point to developing automation
objects in Delphi. It’s interesting to note that, although the Delphi wizard-created COM+ objects
are automation objects (that is, COM objects that implement IDispatch), COM+ doesn’t techni-
cally require this. However, because COM inherently knows how to marshal IDispatch inter-
faces accompanied by type libraries, employing this type of object in COM+ enables you to
concentrate more on your components’ functionality and less on how they integrate with COM+.
You should also be aware that COM+ components must reside in in-process COM servers
(.DLLs); COM+ components aren’t supported in out-of-process servers (.EXEs).

COM+ Framework
The aforementioned TMtsAutoObject class, which is the base class for all Delphi wizard-
created COM+ objects, is defined in the MtsObj unit. TMtsAutoObject is a relatively straight-
forward class that is defined as follows:

24 chpt_18.qxd 11/19/01 12:12 PM Page 913

type
TMtsAutoObject = class(TAutoObject, IObjectControl)
private
FObjectContext: IObjectContext;

protected
{ IObjectControl }
procedure Activate; safecall;
procedure Deactivate; stdcall;
function CanBePooled: Bool; stdcall;

procedure OnActivate; virtual;
procedure OnDeactivate; virtual;
property ObjectContext: IObjectContext read FObjectContext;

public
procedure SetComplete;
procedure SetAbort;
procedure EnableCommit;
procedure DisableCommit;
function IsInTransaction: Bool;
function IsSecurityEnabled: Bool;
function IsCallerInRole(const Role: WideString): Bool;

end;

TMtsAutoObject is essentially a TAutoObject that adds functionality to manage initialization,
cleanup, and context.

TMtsAutoObject implements the IObjectControl interface, which manages initialization and
cleanup of COM+ components. The methods of this interface are as follows:

Activate()—Allows an object to perform context-specific initialization when activated.
This method will be called by COM+ prior to any custom methods on your COM+ com-
ponent.

Deactivate()—Enables you to perform context-specific cleanup when an object is deac-
tivated.

CanBePooled()—Was unused in MTS, but is supported in COM+, as described earlier in
this chapter.

TMtsAutoObject provides virtual OnActivate() and OnDeactivate() methods, which are fired
from the private Activate() and Deactivate() methods. Simply override these to create spe-
cial context-specific activation or deactivation logic.

TMtsAutoObject also maintains a pointer to COM+’s IObjectContext interface in the form of
the ObjectContext property. As a shortcut for users of this class, TMtsAutoObject also sur-
faces each of IObjectContext’s methods, which are implemented to simply call into

Enterprise Development

PART V
914

24 chpt_18.qxd 11/19/01 12:12 PM Page 914

ObjectContext. For example, the implementation of TMtsAutoObject’s SetComplete()
method simply checks FObjectContext for nil and then calls
FObjectContext.SetComplete().

The following is a list of IObjectContext’s methods and a brief explanation of each:

CreateInstance()—Creates an instance of another COM+ object. You can think of this
method as performing the same task for COM+ objects as
IClassFactory.CreateInstance() does for normal COM objects.

SetComplete()—Signals to COM+ that the component has completed whatever work it
needs to do and no longer has any internal state to maintain. If the component is transac-
tional, it also indicates that the current transactions can be committed. After the method
calling this function returns, COM+ might deactivate the object, thereby freeing up
resources for greater scalability.

SetAbort()—Similar to SetComplete(), this method signals to COM+ that the compo-
nent has completed work and no longer has state information to maintain. However, call-
ing this method also means that the component is in an error or indeterminate state and
any pending transactions must be aborted.

EnableCommit()—Indicates that the component is in a “committable” state, such that
transactions can be committed when the component calls SetComplete(). This is the
default state of a component.

DisableCommit()—Indicates that the component is in an inconsistent state, and further
method invocations are necessary before the component will be prepared to commit
transactions.

IsInTransaction()—Enables the component to determine whether it is executing
within the context of a transaction.

IsSecurityEnabled()—Allows a component to determine whether COM+ security is
enabled. This method always returns True unless the component is executing in the
client’s process space.

IsCallerInRole()—Provides a means by which a component can determine whether
the user serving as the client for the component is a member of a specific COM+ role.
This method is the heart of COM+’s easy-to-use, role-based security system. We’ll speak
more on roles later.

The Mtx unit contains the core COM+ support. It is the Pascal translation of the mtx.h header
file, and it contains the types (such as IObjectControl and IObjectContext) and functions
that make up the COM+ API.

Transactional Development with COM+/MTS

CHAPTER 18

18

T
R

A
N

SA
C

TIO
N

A
L

D
EV

ELO
PM

EN
T

915

24 chpt_18.qxd 11/19/01 12:12 PM Page 915

Tic-Tac-Toe: A Sample Application
That’s enough theory. Now it’s time to write some code and see how all this COM+ stuff per-
forms on the open road. COM+ ships with a sample tic-tac-toe application that’s a bit on the
ugly side, so it inspired me to implement the classic game from the ground up in Delphi. To
start, you use the Transactional Object Wizard to create a new object called GameServer. Using
the Type Library Editor, add to the default interface for this object, IGameServer, three meth-
ods, NewGame(), ComputerMove(), and PlayerMove(). Additionally, add two new enums,
SkillLevels and GameResults, that are used by these methods. Figure 18.16 shows all these
items displayed in the Type Library Editor.

Enterprise Development

PART V
916

FIGURE 18.16
Tic-Tac-Toe server in the Type Library Editor.

The logic behind the three methods of this interface is simple, and they make up the require-
ments to support a game of human versus computer tic-tac-toe. NewGame initializes a new game
for the client. ComputerMove analyzes the available moves and makes a move for the computer.
PlayerMove enables the client to let the computer know how he has chosen to move. Earlier,
we mentioned that COM+ component development requires a frame of mind different from the
development of standard COM components. This component offers a nice opportunity to illus-
trate this fact.

If this were your average, everyday, run-of-the-mill COM component, you might approach the
design of the object by initializing some data structure to maintain game state in the NewGame()
method. That data structure would probably be an instance field of the object, which the other
methods would access and manipulate throughout the life of the object.

24 chpt_18.qxd 11/19/01 12:12 PM Page 916

What’s the problem with this approach for a COM+ component? One word: state. As you
learned earlier, object must be stateless in order to realize the full benefit of COM+. However,
a component architecture that depends on instance data to be maintained across method calls is
far from stateless. A better design for COM+ would be to return a handle identifying a game
from the NewGame() method and using that handle to maintain per-game data structures in
some type of shared resource facility. This shared resource facility would need to be maintained
outside the context of a specific object instance because COM+ might activate and deactivate
object instances with each method call. Each of the other methods of the component could
accept this handle as a parameter, enabling it to retrieve game data from the shared resource
facility. This is a stateless design because it doesn’t require the object to remain activated
between method calls and because each method is a self-contained operation that gets all the
data it needs from parameters and a shared data facility.

This shared data facility is known as a resource dispenser in COM+. Specifically, the
Shared Property Manager is the COM+ resource dispenser used to maintain component-
defined, process-wide shared data. The Shared Property Manager is represented by the
ISharedPropertyGroupManager interface. The Shared Property Manager is the top level
of a hierarchical storage system, maintaining any number of shared property groups, which
are represented by the ISharedPropertyGroup interface. In turn, each shared property group
can contain any number of shared properties, represented by the ISharedProperty interface.
Shared properties are convenient because they exist within COM+, outside the context of any
specific object instance, and access to them is controlled by locks and semaphores managed by
the Shared Property Manager.

With all that in mind, the implementation of the NewGame() method is shown in the following
listing:

procedure TGameServer.NewGame(out GameID: Integer);
var
SPG: ISharedPropertyGroup;
SProp: ISharedProperty;
Exists: WordBool;
GameData: OleVariant;

begin
// Use caller’s role to validate security
CheckCallerSecurity;
// Get shared property group for this object
SPG := GetSharedPropertyGroup;
// Create or retrieve NextGameID shared property
SProp := SPG.CreateProperty(‘NextGameID’, Exists);
if Exists then GameID := SProp.Value
else GameID := 0;
// Increment and store NextGameID shared property

Transactional Development with COM+/MTS

CHAPTER 18

18

T
R

A
N

SA
C

TIO
N

A
L

D
EV

ELO
PM

EN
T

917

24 chpt_18.qxd 11/19/01 12:12 PM Page 917

SProp.Value := GameID + 1;
// Create game data array
GameData := VarArrayCreate([1, 3, 1, 3], varByte);
SProp := SPG.CreateProperty(Format(GameDataStr, [GameID]), Exists);
SProp.Value := GameData;
SetComplete;

end;

This method first checks to ensure that the caller is in the proper role to invoke this method
(more on this in a moment). It then uses a shared property to obtain an ID number for the next
game. Next, this method creates a variant array into which to store game data and saves that
data as a shared property. Finally, this method calls SetComplete() so that COM+ knows it’s
okay to deactivate this instance after the method returns.

This leads us to the number one rule of COM+ development: call SetComplete() or SetAbort()
as often as possible. Ideally, you will call SetComplete() or SetAbort() in every method so
that COM+ can reclaim resources previously consumed by your component instance after the
method returns. A corollary to this rule is that object activation and deactivation shouldn’t be
expensive because that code is likely to be called quite frequently.

The implementation of the CheckCallerSecurity() method illustrates how easy it is to take
advantage of role-based security in COM+:

procedure TGameServer.CheckCallerSecurity;
begin
// Just for fun, only allow those in the “TTT” role to play the game.
if IsSecurityEnabled and not IsCallerInRole(‘TTT’) then
raise Exception.Create(‘Only those in the TTT role can play tic-tac-toe’);

end;

This code raises the obvious question, “how does one establish the TTT role and determine
what users belong to that role?” Although it’s possible to define roles programmatically, the
most straightforward way to add and configure roles is using the Transaction Server Explorer.
After the component is installed (you’ll learn how to install the component shortly), you can
set up roles using the Roles node found under each package node in the Explorer. It’s impor-
tant to note that roles-based security is supported only for components running on Windows
NT. For components running on Windows 9x/Me, IsCallerInRole() will always return True.

The ComputerMove() and PlayerMove() methods are shown here:

procedure TGameServer.ComputerMove(GameID: Integer;
SkillLevel: SkillLevels; out X, Y: Integer; out GameRez: GameResults);

var
Exists: WordBool;
PropVal: OleVariant;

Enterprise Development

PART V
918

24 chpt_18.qxd 11/19/01 12:12 PM Page 918

GameData: PGameData;
SProp: ISharedProperty;

begin
// Get game data shared property
SProp := GetSharedPropertyGroup.CreateProperty(Format(GameDataStr, [GameID]),
Exists);

// Get game data array and lock it for more efficient access
PropVal := SProp.Value;
GameData := PGameData(VarArrayLock(PropVal));
try
// If game isn’t over, then let computer make a move
GameRez := CalcGameStatus(GameData);
if GameRez = grInProgress then
begin
CalcComputerMove(GameData, SkillLevel, X, Y);
// Save away new game data array
SProp.Value := PropVal;
// Check for end of game
GameRez := CalcGameStatus(GameData);

end;
finally
VarArrayUnlock(PropVal);

end;
SetComplete;

end;

procedure TGameServer.PlayerMove(GameID, X, Y: Integer;
out GameRez: GameResults);

var
Exists: WordBool;
PropVal: OleVariant;
GameData: PGameData;
SProp: ISharedProperty;

begin
// Get game data shared property
SProp := GetSharedPropertyGroup.CreateProperty(Format(GameDataStr, [GameID]),
Exists);

// Get game data array and lock it for more efficient access
PropVal := SProp.Value;
GameData := PGameData(VarArrayLock(PropVal));
try
// Make sure game isn’t over
GameRez := CalcGameStatus(GameData);
if GameRez = grInProgress then
begin
// If spot isn’t empty, raise exception

Transactional Development with COM+/MTS

CHAPTER 18

18

T
R

A
N

SA
C

TIO
N

A
L

D
EV

ELO
PM

EN
T

919

24 chpt_18.qxd 11/19/01 12:12 PM Page 919

if GameData[X, Y] <> EmptySpot then
raise Exception.Create(‘Spot is occupied!’);

// Allow move
GameData[X, Y] := PlayerSpot;
// Save away new game data array
SProp.Value := PropVal;
// Check for end of game
GameRez := CalcGameStatus(GameData);

end;
finally
VarArrayUnlock(PropVal);

end;
SetComplete;

end;

These methods are similar in that they both obtain the game data from the shared property
based on the GameID parameter, manipulate the data to reflect the current move, save the data
away again, and check to see if the game is over. The ComputerMove() method also calls
CalcComputerMove() to analyze the game and make a move. If you’re interested in seeing this
and the other logic of this COM+ component, take a look at Listing 18.6, which contains the
entire source code for the ServMain unit.

LISTING 18.6 ServMain.pas—Containing TGameServer

unit ServMain;

interface

uses
ActiveX, MtsObj, Mtx, ComObj, TTTServer_TLB;

type
PGameData = ^TGameData;
TGameData = array[1..3, 1..3] of Byte;

TGameServer = class(TMtsAutoObject, IGameServer)
private
procedure CalcComputerMove(GameData: PGameData; Skill: SkillLevels;
var X, Y: Integer);

function CalcGameStatus(GameData: PGameData): GameResults;
function GetSharedPropertyGroup: ISharedPropertyGroup;
procedure CheckCallerSecurity;

protected
procedure NewGame(out GameID: Integer); safecall;

Enterprise Development

PART V
920

24 chpt_18.qxd 11/19/01 12:12 PM Page 920

LISTING 18.6 Continued

procedure ComputerMove(GameID: Integer; SkillLevel: SkillLevels; out X,
Y: Integer; out GameRez: GameResults); safecall;

procedure PlayerMove(GameID, X, Y: Integer; out GameRez: GameResults);
safecall;

end;

implementation

uses ComServ, Windows, SysUtils;

const
GameDataStr = ‘TTTGameData%d’;
EmptySpot = 0;
PlayerSpot = $1;
ComputerSpot = $2;

function TGameServer.GetSharedPropertyGroup: ISharedPropertyGroup;
var
SPGMgr: ISharedPropertyGroupManager;
LockMode, RelMode: Integer;
Exists: WordBool;

begin
if ObjectContext = nil then
raise Exception.Create(‘Failed to obtain object context’);

// Create shared property group for this object
OleCheck(ObjectContext.CreateInstance(CLASS_SharedPropertyGroupManager,
ISharedPropertyGroupManager, SPGMgr));

LockMode := LockSetGet;
RelMode := Process;
Result := SPGMgr.CreatePropertyGroup(‘DelphiTTT’, LockMode, RelMode, Exists);
if Result = nil then
raise Exception.Create(‘Failed to obtain property group’);

end;

procedure TGameServer.NewGame(out GameID: Integer);
var
SPG: ISharedPropertyGroup;
SProp: ISharedProperty;
Exists: WordBool;
GameData: OleVariant;

begin
// Use caller’s role to validate security
CheckCallerSecurity;

Transactional Development with COM+/MTS

CHAPTER 18

18

T
R

A
N

SA
C

TIO
N

A
L

D
EV

ELO
PM

EN
T

921

24 chpt_18.qxd 11/19/01 12:12 PM Page 921

LISTING 18.6 Continued

// Get shared property group for this object
SPG := GetSharedPropertyGroup;
// Create or retrieve NextGameID shared property
SProp := SPG.CreateProperty(‘NextGameID’, Exists);
if Exists then GameID := SProp.Value
else GameID := 0;
// Increment and store NextGameID shared property
SProp.Value := GameID + 1;
// Create game data array
GameData := VarArrayCreate([1, 3, 1, 3], varByte);
SProp := SPG.CreateProperty(Format(GameDataStr, [GameID]), Exists);
SProp.Value := GameData;
SetComplete;

end;

procedure TGameServer.ComputerMove(GameID: Integer;
SkillLevel: SkillLevels; out X, Y: Integer; out GameRez: GameResults);

var
Exists: WordBool;
PropVal: OleVariant;
GameData: PGameData;
SProp: ISharedProperty;

begin
// Get game data shared property
SProp := GetSharedPropertyGroup.CreateProperty(Format(GameDataStr, [GameID]),
Exists);

// Get game data array and lock it for more efficient access
PropVal := SProp.Value;
GameData := PGameData(VarArrayLock(PropVal));
try
// If game isn’t over, then let computer make a move
GameRez := CalcGameStatus(GameData);
if GameRez = grInProgress then
begin
CalcComputerMove(GameData, SkillLevel, X, Y);
// Save away new game data array
SProp.Value := PropVal;
// Check for end of game
GameRez := CalcGameStatus(GameData);

end;
finally
VarArrayUnlock(PropVal);

end;
SetComplete;

end;

Enterprise Development

PART V
922

24 chpt_18.qxd 11/19/01 12:12 PM Page 922

LISTING 18.6 Continued

procedure TGameServer.PlayerMove(GameID, X, Y: Integer;
out GameRez: GameResults);

var
Exists: WordBool;
PropVal: OleVariant;
GameData: PGameData;
SProp: ISharedProperty;

begin
// Get game data shared property
SProp := GetSharedPropertyGroup.CreateProperty(Format(GameDataStr, [GameID]),
Exists);

// Get game data array and lock it for more efficient access
PropVal := SProp.Value;
GameData := PGameData(VarArrayLock(PropVal));
try
// Make sure game isn’t over
GameRez := CalcGameStatus(GameData);
if GameRez = grInProgress then
begin
// If spot isn’t empty, raise exception
if GameData[X, Y] <> EmptySpot then
raise Exception.Create(‘Spot is occupied!’);

// Allow move
GameData[X, Y] := PlayerSpot;
// Save away new game data array
SProp.Value := PropVal;
// Check for end of game
GameRez := CalcGameStatus(GameData);

end;
finally
VarArrayUnlock(PropVal);

end;
SetComplete;

end;

function TGameServer.CalcGameStatus(GameData: PGameData): GameResults;
var
I, J: Integer;

begin
// First check for a winner
if GameData[1, 1] <> EmptySpot then
begin
// Check top row, left column, and top left to bottom right diagonal for win

Transactional Development with COM+/MTS

CHAPTER 18

18

T
R

A
N

SA
C

TIO
N

A
L

D
EV

ELO
PM

EN
T

923

24 chpt_18.qxd 11/19/01 12:12 PM Page 923

LISTING 18.6 Continued

if ((GameData[1, 1] = GameData[1, 2]) and
(GameData[1, 1] = GameData[1, 3])) or
((GameData[1, 1] = GameData[2, 1]) and
(GameData[1, 1] = GameData[3, 1])) or
((GameData[1, 1] = GameData[2, 2]) and
(GameData[1, 1] = GameData[3, 3])) then

begin
Result := GameData[1, 1] + 1; // Game result is spot ID + 1
Exit;

end;
end;
if GameData[3, 3] <> EmptySpot then
begin
// Check bottom row and right column for win
if ((GameData[3, 3] = GameData[3, 2]) and
(GameData[3, 3] = GameData[3, 1])) or
((GameData[3, 3] = GameData[2, 3]) and
(GameData[3, 3] = GameData[1, 3])) then

begin
Result := GameData[3, 3] + 1; // Game result is spot ID + 1
Exit;

end;
end;
if GameData[2, 2] <> EmptySpot then
begin
// Check middle row, middle column, and bottom left to top right
// diagonal for win
if ((GameData[2, 2] = GameData[2, 1]) and
(GameData[2, 2] = GameData[2, 3])) or
((GameData[2, 2] = GameData[1, 2]) and
(GameData[2, 2] = GameData[3, 2])) or
((GameData[2, 2] = GameData[3, 1]) and
(GameData[2, 2] = GameData[1, 3])) then

begin
Result := GameData[2, 2] + 1; // Game result is spot ID + 1
Exit;

end;
end;
// Finally, check for game still in progress
for I := 1 to 3 do
for J := 1 to 3 do
if GameData[I, J] = 0 then
begin
Result := grInProgress;
Exit;

end;

Enterprise Development

PART V
924

24 chpt_18.qxd 11/19/01 12:12 PM Page 924

LISTING 18.6 Continued

// If we get here, then we’ve tied
Result := grTie;

end;

procedure TGameServer.CalcComputerMove(GameData: PGameData;
Skill: SkillLevels; var X, Y: Integer);

type
// Used to scan for possible moves by either row, column, or diagonal line
TCalcType = (ctRow, ctColumn, ctDiagonal);
// mtWin = one move away from win, mtBlock = opponent is one move away from
// win, mtOne = I occupy one other spot in this line, mtNew = I occupy no
// spots on this line
TMoveType = (mtWin, mtBlock, mtOne, mtNew);

var
CurrentMoveType: TMoveType;

function DoCalcMove(CalcType: TCalcType; Position: Integer): Boolean;
var
RowData, I, J, CheckTotal: Integer;
PosVal, Mask: Byte;

begin
Result := False;
RowData := 0;
X := 0;
Y := 0;
if CalcType = ctRow then
begin
I := Position;
J := 1;

end
else if CalcType = ctColumn then
begin
I := 1;
J := Position;

end
else begin
I := 1;
case Position of
1: J := 1; // scanning from top left to bottom right
2: J := 3; // scanning from top right to bottom left

else
Exit; // bail; only 2 diagonal scans

end;
end;

Transactional Development with COM+/MTS

CHAPTER 18

18

T
R

A
N

SA
C

TIO
N

A
L

D
EV

ELO
PM

EN
T

925

24 chpt_18.qxd 11/19/01 12:12 PM Page 925

LISTING 18.6 Continued

// Mask masks off Player or Computer bit, depending on whether we’re
//thinking
// offensively or defensively. Checktotal determines whether that is a row
// we need to move into.
case CurrentMoveType of
mtWin:
begin
Mask := PlayerSpot;
CheckTotal := 4;

end;
mtNew:
begin
Mask := PlayerSpot;
CheckTotal := 0;

end;
mtBlock:
begin
Mask := ComputerSpot;
CheckTotal := 2;

end;
else
begin
Mask := 0;
CheckTotal := 2;

end;
end;
// loop through all lines in current CalcType
repeat
// Get status of current spot (X, O, or empty)
PosVal := GameData[I, J];
// Save away last empty spot in case we decide to move here
if PosVal = 0 then
begin
X := I;
Y := J;

end
else
// If spot isn’t empty, then add masked value to RowData
Inc(RowData, (PosVal and not Mask));

if (CalcType = ctDiagonal) and (Position = 2) then
begin
Inc(I);
Dec(J);

end

Enterprise Development

PART V
926

24 chpt_18.qxd 11/19/01 12:12 PM Page 926

LISTING 18.6 Continued

else begin
if CalcType in [ctRow, ctDiagonal] then Inc(J);
if CalcType in [ctColumn, ctDiagonal] then Inc(I);

end;
until (I > 3) or (J > 3);
// If RowData adds up, then we must block or win, depending on whether
// we’re thinking offensively or defensively.
Result := (X <> 0) and (RowData = CheckTotal);
if Result then
begin
GameData[X, Y] := ComputerSpot;
Exit;

end;
end;

var
A, B, C: Integer;

begin
if Skill = slAwake then
begin
// First look to win the game, next look to block a win
for A := Ord(mtWin) to Ord(mtBlock) do
begin
CurrentMoveType := TMoveType(A);
for B := Ord(ctRow) to Ord(ctDiagonal) do
for C := 1 to 3 do
if DoCalcMove(TCalcType(B), C) then Exit;

end;
// Next look to take the center of the board
if GameData[2, 2] = 0 then
begin
GameData[2, 2] := ComputerSpot;
X := 2;
Y := 2;
Exit;

end;
// Next look for the most advantageous position on a line
for A := Ord(mtOne) to Ord(mtNew) do
begin
CurrentMoveType := TMoveType(A);
for B := Ord(ctRow) to Ord(ctDiagonal) do
for C := 1 to 3 do

Transactional Development with COM+/MTS

CHAPTER 18

18

T
R

A
N

SA
C

TIO
N

A
L

D
EV

ELO
PM

EN
T

927

24 chpt_18.qxd 11/19/01 12:12 PM Page 927

LISTING 18.6 Continued

if DoCalcMove(TCalcType(B), C) then Exit;
end;

end;
// Finally (or if skill level is unconscious), just find the first open place
for A := 1 to 3 do
for B := 1 to 3 do
if GameData[A, B] = 0 then
begin
GameData[A, B] := ComputerSpot;
X := A;
Y := B;
Exit;

end;
end;

procedure TGameServer.CheckCallerSecurity;
begin
// Just for fun, only allow those in the “TTT” role to play the game.
if IsSecurityEnabled and not IsCallerInRole(‘TTT’) then
raise Exception.Create(‘Only those in the TTT role can play tic-tac-toe’);

end;

initialization
TAutoObjectFactory.Create(ComServer, TGameServer, Class_GameServer,
ciMultiInstance, tmApartment);

end.

Installing the Server
Once the server has been written, and you’re ready to install it into COM+, Delphi makes your
life very easy. Simple select Run, Install COM+ Objects from the main menu, and you will
invoke the Install COM+ Objects dialog box. This dialog box enables you to install your
object(s) into a new or existing package, and it is shown in Figure 18.17.

Enterprise Development

PART V
928

FIGURE 18.17
Installing a COM+ object via the Delphi IDE.

24 chpt_18.qxd 11/19/01 12:12 PM Page 928

Select the component(s) to be installed, specify whether the package is new or existing, click
OK, and that’s it; the component is installed. Alternatively, you can also install COM+ compo-
nents via the Transaction Server Explorer application. Note that this installation procedure is
markedly different from that of standard COM objects, which typically involves using the
RegSvr32 tool from the command line to register a COM server. Transaction Server Explorer
also make it similarly easy to set up COM+ components on remote machines, providing a wel-
come alternative to the configuration hell experienced by many of those trying to configure
DCOM connectivity.

The Client Application
Listing 18.7 shows the source code for the client application for this COM+ component. Its
purpose is to essentially map the engine provided by the COM+ component to a Tic-Tac-
Toe–looking user interface.

LISTING 18.7 UiMain.pas—The Main Unit for the Client Application

unit UiMain;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
Buttons, ExtCtrls, Menus, TTTServer_TLB, ComCtrls;

type
TRecord = record
Wins, Loses, Ties: Integer;

end;

TFrmMain = class(TForm)
SbTL: TSpeedButton;
SbTM: TSpeedButton;
SbTR: TSpeedButton;
SbMM: TSpeedButton;
SbBL: TSpeedButton;
SbBR: TSpeedButton;
SbMR: TSpeedButton;
SbBM: TSpeedButton;
SbML: TSpeedButton;
Bevel1: TBevel;
Bevel2: TBevel;
Bevel3: TBevel;
Bevel4: TBevel;
MainMenu1: TMainMenu;

Transactional Development with COM+/MTS

CHAPTER 18

18

T
R

A
N

SA
C

TIO
N

A
L

D
EV

ELO
PM

EN
T

929

24 chpt_18.qxd 11/19/01 12:12 PM Page 929

LISTING 18.7 Continued

FileItem: TMenuItem;
HelpItem: TMenuItem;
ExitItem: TMenuItem;
AboutItem: TMenuItem;
SkillItem: TMenuItem;
UnconItem: TMenuItem;
AwakeItem: TMenuItem;
NewGameItem: TMenuItem;
N1: TMenuItem;
StatusBar: TStatusBar;
procedure FormCreate(Sender: TObject);
procedure ExitItemClick(Sender: TObject);
procedure SkillItemClick(Sender: TObject);
procedure AboutItemClick(Sender: TObject);
procedure SBClick(Sender: TObject);
procedure NewGameItemClick(Sender: TObject);

private
FXImage: TBitmap;
FOImage: TBitmap;
FCurrentSkill: Integer;
FGameID: Integer;
FGameServer: IGameServer;
FRec: TRecord;
procedure TagToCoord(ATag: Integer; var Coords: TPoint);
function CoordToCtl(const Coords: TPoint): TSpeedButton;
procedure DoGameResult(GameRez: GameResults);

end;

var
FrmMain: TFrmMain;

implementation

uses UiAbout;

{$R *.DFM}

{$R xo.res}

const
RecStr = ‘Wins: %d, Loses: %d, Ties: %d’;

procedure TFrmMain.FormCreate(Sender: TObject);
begin

Enterprise Development

PART V
930

24 chpt_18.qxd 11/19/01 12:12 PM Page 930

LISTING 18.7 Continued

// load “X” and “O” images from resource into TBitmaps
FXImage := TBitmap.Create;
FXImage.LoadFromResourceName(MainInstance, ‘x_img’);
FOImage := TBitmap.Create;
FOImage.LoadFromResourceName(MainInstance, ‘o_img’);
// set default skill
FCurrentSkill := slAwake;
// init record UI
with FRec do
StatusBar.SimpleText := Format(RecStr, [Wins, Loses, Ties]);
// Get server instance
FGameServer := CoGameServer.Create;
// Start a new game
FGameServer.NewGame(FGameID);

end;

procedure TFrmMain.ExitItemClick(Sender: TObject);
begin
Close;

end;

procedure TFrmMain.SkillItemClick(Sender: TObject);
begin
with Sender as TMenuItem do
begin
Checked := True;
FCurrentSkill := Tag;

end;
end;

procedure TFrmMain.AboutItemClick(Sender: TObject);
begin
// Show About box
with TFrmAbout.Create(Application) do
try
ShowModal;

finally
Free;

end;
end;

procedure TFrmMain.TagToCoord(ATag: Integer; var Coords: TPoint);
begin
case ATag of

Transactional Development with COM+/MTS

CHAPTER 18

18

T
R

A
N

SA
C

TIO
N

A
L

D
EV

ELO
PM

EN
T

931

24 chpt_18.qxd 11/19/01 12:12 PM Page 931

LISTING 18.7 Continued

0: Coords := Point(1, 1);
1: Coords := Point(1, 2);
2: Coords := Point(1, 3);
3: Coords := Point(2, 1);
4: Coords := Point(2, 2);
5: Coords := Point(2, 3);
6: Coords := Point(3, 1);
7: Coords := Point(3, 2);

else
Coords := Point(3, 3);

end;
end;

function TFrmMain.CoordToCtl(const Coords: TPoint): TSpeedButton;
begin
Result := nil;
with Coords do
case X of
1:
case Y of
1: Result := SbTL;
2: Result := SbTM;
3: Result := SbTR;

end;
2:
case Y of
1: Result := SbML;
2: Result := SbMM;
3: Result := SbMR;

end;
3:
case Y of
1: Result := SbBL;
2: Result := SbBM;
3: Result := SbBR;

end;
end;

end;

procedure TFrmMain.SBClick(Sender: TObject);
var
Coords: TPoint;
GameRez: GameResults;
SB: TSpeedButton;

Enterprise Development

PART V
932

24 chpt_18.qxd 11/19/01 12:12 PM Page 932

LISTING 18.7 Continued

begin
if Sender is TSpeedButton then
begin
SB := TSpeedButton(Sender);
if SB.Glyph.Empty then
begin
with SB do
begin
TagToCoord(Tag, Coords);
FGameServer.PlayerMove(FGameID, Coords.X, Coords.Y, GameRez);
Glyph.Assign(FXImage);

end;
if GameRez = grInProgress then
begin
FGameServer.ComputerMove(FGameID, FCurrentSkill, Coords.X, Coords.Y,
GameRez);

CoordToCtl(Coords).Glyph.Assign(FOImage);
end;
DoGameResult(GameRez);

end;
end;

end;

procedure TFrmMain.NewGameItemClick(Sender: TObject);
var
I: Integer;

begin
FGameServer.NewGame(FGameID);
for I := 0 to ControlCount - 1 do
if Controls[I] is TSpeedButton then
TSpeedButton(Controls[I]).Glyph := nil;

end;

procedure TFrmMain.DoGameResult(GameRez: GameResults);
const
EndMsg: array[grTie..grComputerWin] of string = (
‘Tie game’, ‘You win’, ‘Computer wins’);

begin
if GameRez <> grInProgress then
begin
case GameRez of
grComputerWin: Inc(FRec.Loses);
grPlayerWin: Inc(FRec.Wins);
grTie: Inc(FRec.Ties);

end;

Transactional Development with COM+/MTS

CHAPTER 18

18

T
R

A
N

SA
C

TIO
N

A
L

D
EV

ELO
PM

EN
T

933

24 chpt_18.qxd 11/19/01 12:12 PM Page 933

LISTING 18.7 Continued

with FRec do
StatusBar.SimpleText := Format(RecStr, [Wins, Loses, Ties]);
if MessageDlg(Format(‘%s! Play again?’, [EndMsg[GameRez]]), mtConfirmation,
[mbYes, mbNo], 0) = mrYes then
NewGameItemClick(nil);

end;
end;

end.

Figure 18.18 shows this application in action. Human is X and computer is O.

Enterprise Development

PART V
934

FIGURE 18.18
Playing tic-tac-toe.

Debugging COM+ Applications
Because COM+ components run within COM+’s process space rather than the client’s, you
might think that they would be difficult to debug. However, COM+ provides a side door for
debugging purposes that makes debugging a snap. Just load the server project, and use the Run
Parameters dialog box to specify mtx.exe as the host application. As a parameter to mtx.exe,
you must pass /p:{package guid}, where package guid is the GUID of the package as shown in
the Component Services tool. This dialog box is shown in Figure 18.19. Next, set your desired
breakpoints and run the application. You won’t see anything happen initially because the client
application isn’t yet running. Now you can run the client from Windows Explorer or a com-
mand prompt, and you will be off and debugging.

24 chpt_18.qxd 11/19/01 12:12 PM Page 934

FIGURE 18.19
The Run Parameters dialog box.

Summary
COM+ is a powerful addition to the COM family of technologies. By adding services such as
lifetime management, transaction support, security, and transactions to COM objects without
requiring significant changes to existing source code, Microsoft has leveraged COM into a
more scalable technology, suitable for large-scale distributed development. This chapter took
you through a tour of the basics of COM+ and on to the specifics of Delphi’s support for
COM+ and how to create COM+ applications in Delphi. What’s more, you’ve hopefully
caught a few tips and tricks along the way for developing optimized and well-behaved COM+
components. COM+ packs a wallop out of the box by providing services such as lifetime man-
agement, transaction support, security, all in a familiar framework. COM+ and Delphi combine
to provide you with a great way to leverage your COM experience into creating scalable multi-
tier applications. Just don’t forget those differences in design nuances between normal COM
components and COM+ components!

Transactional Development with COM+/MTS

CHAPTER 18

18

T
R

A
N

SA
C

TIO
N

A
L

D
EV

ELO
PM

EN
T

935

24 chpt_18.qxd 11/19/01 12:12 PM Page 935

24 chpt_18.qxd 11/19/01 12:12 PM Page 936

CHAPTER

19
CORBA Development
by David Sampson

IN THIS CHAPTER
• CORBA Features 938

• CORBA Architecture 939

• Interface Definition Language 942

• The Bank Example 946

• Complex Data Types 958

• Delphi, CORBA, and EJBs 965

• CORBA and Web Services 975

25 chpt_19.qxd 11/19/01 12:08 PM Page 937

CORBA stands for Common Object Request Broker Architecture. Its purpose is to facilitate
distributed object computing. Unlike a proprietary approach such as DCOM, CORBA is an
open standard that isn’t under the control of any single company. An organization called the
Object Management Group (OMG), which is made up of more than 800 industry representa-
tives, controls the CORBA specification. The OMG meets periodically to issue updates or
amendments to the standard and to resolve any outstanding issues.

The OMG specifies what CORBA will do and to a certain degree, how it will do it. Beyond
that, each CORBA vendor is free to come up with its own implementation and method of com-
plying with the CORBA specification. This freedom has a price. For example, the OMG does-
n’t specify how different CORBA implementations locate objects when using two different
ORBs (Object Request Brokers). So in the past, it has been a struggle to get applications to
bootstrap together when they were written with different vendor’s products. This is one area
that has received a lot of attention and is continuing to improve as the CORBA specification
evolves.

More information on the OMG is available at its Web site (www.omg.org). You’ll find a wealth
of information about CORBA, including the latest specifications, tutorials, Web links to ven-
dors, and so on.

One thing you’ll discover is that many free CORBA implementations are available on the inter-
net. This chapter deals with the Borland CORBA implementation bundled with Delphi 6
Enterprise edition. The CORBA product is called VisiBroker, and is arguably the most widely
used ORB in the world. Delphi 6 contains all the runtime library files needed to use CORBA.
In addition, wizards are integrated into the IDE that make application development relatively
straightforward.

CORBA Features
CORBA has several features that make it beneficial for use in distributed enterprise environments:

• CORBA is an object-oriented approach. Each CORBA server publishes an interface that
lists the methods and data types it supports. The implementation details are hidden from
the caller.

• Location Transparency. The real power in CORBA is that objects can be located any-
where. When a CORBA client application calls a server object, it doesn’t know where
the server resides. In fact, CORBA presents the client application with an image of the
server application. The client then operates as if the server object is running locally in its
own process space. This will be discussed in more detail in the CORBA Architecture
section.

Enterprise Development

PART V
938

25 chpt_19.qxd 11/19/01 12:08 PM Page 938

• Programming Language Independence. A major benefit is that objects can be written in a
variety of different languages. Java and C++ are the leaders, but Delphi is gaining much
wider acceptance because of all the features available in the product. To make sure that
these languages can interoperate, CORBA objects interact with each other through their
published interfaces. Each server object must comply with its interface definition.
Because of the differences in programming languages, clients cannot know about or com-
pensate for any of the implementation details on the server side. Strict object-oriented
design is enforced in the CORBA world.

• Multi Platform/Multi Operating Systems. CORBA implementations exist for different
platforms and operating systems. It isn’t unusual for a deployment to use Java on the
back-end mainframe computer and Delphi on the middle tier or client side. Developers
can write powerful applications that tap into legacy systems and present information to
end users with feature-rich clients built in Delphi.

CORBA Architecture
Figure 19.1 shows a block diagram of the CORBA architecture. The common piece to both the
client and the server is the ORB. The ORB handles all communications between objects. It
does this using the Internet Inter-ORB Protocol (IIOP) that is layered on TCP/IP. This guaran-
tees reliable end-to-end message delivery and usage anywhere TCP/IP is deployed. In addition
to handling all message traffic, the ORB also corrects for platform variations.

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
939

Client

Stub

ORB

Server

Skeleton

BOA

ORB

Impl

FIGURE 19.1
The CORBA Architecture.

For example, if the number 123 is originated on an Intel based machine and is sent to a Sun
workstation, the number won’t be processed correctly without some sort of intervention. This
is because the two processors use different layouts for their registers.

25 chpt_19.qxd 11/19/01 12:08 PM Page 939

This is referred to as the Big-Endian/Little-Endian problem. Because the ORB knows what
platform it is running on, it will set a flag in the CORBA message to indicate whether it origi-
nated on a big-endian or little-endian machine. The receiving side will read this flag and auto-
matically process the data correctly. This ensures that the number 123 is processed correctly on
both ends.

Enterprise Development

PART V
940

According to Rhu, Herron, and Klinker in IIOP Complete (Addison Wesley), p.65, “The
terms little endian and big endian are an analogy drawn by Cohen from Gulliver’s
Travels, in which the islands of Lilliput and Blefescua feuded over which end of an
egg to crack, the little end or the big end.”

NOTE

The client side consists of two additional layers. The client block is the application that is writ-
ten by the developer. The more interesting piece is the stub. The stub is a file that is automati-
cally generated by a tool that is included in the Delphi Enterprise edition. This tool is called
the IDL2Pas compiler. Its purpose is to take files that describe the server interfaces and gener-
ate Delphi Pascal that can interact with the CORBA ORB. The IDL2Pas compiler is docu-
mented in a set of HTML files on the Delphi 6 CD-ROM (Delphi6\Doc\Corba).

The stub file contains one or more classes that “mirror” the CORBA server. The classes con-
tain the same published interfaces and data types that are exposed by the server. The client
calls the stub classes in order to communicate with the server. The stub classes act as a proxy
for the server objects. The symbol in the stub block represents a connection to the server. The
connection is established through a bind call that is issued by the client. The stub is said to
have an object reference to the server (represented by the symbol). Once the connection is
made to the server, the client invokes a method call on the stub class. The stub packs the
request and any required method arguments into a buffer for transmission to the server. This is
referred to as marshaling the data. The stub invokes the call through its server object reference
via the ORB. When the server responds, the stub class receives the message from the ORB and
hands the response back to the client.

The client can also call some utility type functions directly in the ORB. The block diagram
shows this logical connection.

The server side contains an ORB interface called the Basic Object Adaptor (BOA). The BOA is
responsible for routing messages from the ORB to the skeleton interface (described next). In
the future, Delphi will also provide a Portable Object Adaptor (POA), which will offer more
flexibility and customization of the server interface.

25 chpt_19.qxd 11/19/01 12:08 PM Page 940

The skeleton is a class that is generated by the IDL2Pas compiler, just like the stub. The skele-
ton contains one or more classes that publish the server side CORBA interfaces. In the Delphi
CORBA implementation, the skeleton doesn’t contain any implementation details of the server-
side interfaces. Instead, there is another file (also generated by IDL2Pas) that contains the
classes which represent the functional details of the server. This is referred to as the IMPL file
(short for Implementation).

The classes in the Impl file aren’t tied to CORBA. The same implementation classes can be
used to provide interfaces for CORBA, COM, or anything else.

When a message arrives on the server side, the ORB passes a message buffer to the BOA,
which in turn, passes the buffer to the skeleton class. The skeleton un-marshals the data from
the buffer and determines which method should be called in the IMPL file. After the IMPL file
class method is called, the skeleton takes any return results and parameter values and marshals
them into a buffer for transmission back to the client. The response buffer is handed back to
the BOA and ORB, and is sent back to the client-side ORB.

OSAgent
CORBA objects need a way of locating one another. The OMG provides a solution for this
with the Naming Service that is described in the CORBA specification. The Naming Service is
a program that runs somewhere on the network. Server-side objects register with the Naming
Service so that client applications have a method of locating specific objects. The Naming
Service requires additional code on both the client and server sides. The location of the
Naming Service process has to be known in advance before a client application can request a
connection to a server object.

This is a fairly complicated way of letting clients and servers connect. VisiBroker has a utility
that makes object location much easier than using the Naming Service. This program is called
OSAgent. It isn’t part of the CORBA specification. OSAgent is a proprietary utility that is only
available with the Borland ORB. As long as the VisiBroker ORB is used within a CORBA
implementation, the OSAgent is the preferred method of locating and binding to objects.

Before running CORBA applications created with VisiBroker, start OSAgent. When the server
application starts, it will register itself with the agent. The client application will connect to the
server by first contacting the OSAgent, requesting the address of the server, and then connect-
ing directly to the server process.

Interfaces
All CORBA objects are described by their interfaces. This is pure object-oriented design. A
server application will publish specific type declarations, interfaces, and methods that any

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
941

25 chpt_19.qxd 11/19/01 12:08 PM Page 941

client might call. Once these interfaces are published, they are immutable. That is, they should
never change. To add additional features to an object, the best approach is to derive a new
server from the old one and enhance the new object. That way, a new interface can be pub-
lished without creating backward compatibility problems for deployed applications.

To describe interfaces, the OMG has published an Interface Definition Language (IDL). IDL is
programming language independent, but looks like C or Java. Each ORB vendor supplies an
IDL compiler to translate IDL files into code for a specific language. The term IDL compiler is
a misnomer. It doesn’t actually compile the IDL file into an executable file. It is more of a
code generator because the output is a set of source code files in the target language.

The OMG has specified language mappings for some languages like C++ and Java. A C++
ORB will have an IDL2CPP compiler. Java ORBs have an IDL2Java compiler.

The files generated by the IDL2 whatever compilers are the stub and skeleton class files that
were discussed in the CORBA Architecture section. Delphi contains an IDL2Pas compiler that
can be executed from the command line or launched through the IDE CORBA wizards.

Interface Definition Language (IDL)
IDL is an extensive subject. The Delphi 6 Enterprise CD-ROM contains a PDF document
(Delphi6\Doc\CORBA) that describes the Object Pascal mapping for IDL. This document con-
tains all the details about each data type, modules, inheritance, and user-defined types. This
section highlights some of the notable aspects of IDL; however, to gain more insight into the
details, refer to the mapping document.

There are a few rules that an IDL file must follow. The first is that an IDL file must have .idl
as the file extension. This can be upper- or lowercase. Other file extensions won’t be accepted.

The contents of an IDL file are relatively free flowing but do follow a certain structure. The
interface descriptions are case sensitive. In C++ and Java, two interfaces named Foo and foo
are considered different. However, in Delphi, they will create a problem because it will appear
that the same interface has been created twice.

Comments in an IDL file are the same as C and C++. These are valid comments:

// This is a single line comment.
/* This is an example of a block comment

that can be spread
over several lines */

All IDL keywords must be written in lowercase, or the IDL2Pas compiler will reject them.
Avoid using Delphi keywords if possible. The Delphi mapping specification states that all
Delphi keywords will be prepended with the underscore (_) character. It is a good practice to
avoid the use of Delphi reserved words.

Enterprise Development

PART V
942

25 chpt_19.qxd 11/19/01 12:08 PM Page 942

An IDL file can include another IDL file with the #include pragma statement. This facilitates
organizing large IDL files into smaller groups.

Basic Types
IDL has a number of basic types that can be used in interface descriptions. Table 19.1 shows a
list of the basic types and shows how they are mapped to Object Pascal.

TABLE 19.1 Basic IDL Types

IDL Type Pascal Type

boolean Boolean

Char Char

wchar Wchar

octet Byte

string AnsiString

wstring WideString

short SmallInt

unsigned short Word

long Integer

unsigned long Cardinal

long long Int64

unsigned long long Int64

float Single

double Double

long double Extended

fixed not implemented—no corresponding type

IDL doesn’t have a type called int. Instead, the short, long, unsigned short, and unsigned long
are used to specify the integer type. Characters correspond to the ISO Latin-1 type, which is
equivalent to the ASCII table. The only exception is the NUL character (#0). C and C++ pro-
grammers asked the OMG to make that an illegal character because it represents the termina-
tion character in a string in those languages.

The implementation of Booleans is vendor specific. The Boolean mapping corresponds to a
Boolean type in Delphi. The Any type is mapped to a Variant in Delphi.

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
943

25 chpt_19.qxd 11/19/01 12:08 PM Page 943

User-Defined Types
You can define your own types in IDL. The syntax is similar to the way data structures are
specified in C. Common user-defined types include aliases, enumerations, structures, arrays,
and sequences.

Aliases
Aliases are used to give data types more meaningful names. For example, a year type can be
created like this:

typedef short YearType;

Enumerations
IDL enumerations are mapped to an enumeration type in Delphi. An enumeration of some
color values would look like this:

enum Color(red, white, blue, green, black);

Structures
Structures are similar to records in Pascal. Here’s an example of a structure that represents a
time value:

struct TimeOfDay {
short hour;
short minute;
short seconds;

};

Arrays
Arrays can be single or multi dimensional. Specify an array with a typedef. Here are some
examples:

typedef Color ColorArray[4]; // single dimensional array of the Color enum
typedef string StringArray[10][20]; //10 strings of max length 20

Sequences
Sequences are used heavily in IDL. They map to a variable length array in Delphi. Sequences
can be bounded or unbounded.

typedef sequence<Color> Colors;
typedef sequence<long, 1000> NumSeq;

Enterprise Development

PART V
944

25 chpt_19.qxd 11/19/01 12:08 PM Page 944

The first argument in the sequence specification is the base type of the variable array. The sec-
ond argument is optional and specifies the length in a bounded sequence.

The most common use of sequences in CORBA programming is to pass database records
between servers and clients. When the client application receives a sequence, it has to loop
through it to extract all the fields in a record. Then it populates the user interface database con-
trols with the information. MIDAS and CORBA can be used together to provide a friendlier
approach.

Method Arguments
All arguments that are specified in a method have to be declared with one of three attributes.
These attributes are in, out, or inout.

A parameter declared as an in type has its values set by the client. This is mapped as a const
parameter in Delphi.

An out parameter has its value set by the server. It is mapped as a var parameter.

An inout parameter has its initial value set by the client. The server receives the data and
changes it before returning the variable to the client. An inout parameter is mapped as a var’
parameter in Delphi.

Modules
The keyword module is used to group interfaces and types. The module name will be used by
IDL2Pas to name the Delphi unit. Interfaces and types defined within a module are local in
scope. A module named Foo that contained an interface named Bar would be referenced out-
side the module with the module name and the interface name like this: Foo::Bar.

IDL doesn’t support the idea of private or protected types and methods. All interfaces and
methods are considered public. This makes sense when you consider that the IDL file repre-
sents the interfaces that the server exposes to the world. It wouldn’t make sense to hide or pro-
tect something in this context.

One of the best ways to learn how to write IDL is to look at examples other people have writ-
ten. The VisiBroker directory (c:\Inprise, by default) has a subdirectory called IDL that con-
tains the IDL files for the various CORBA interfaces such as the ORB and the various services.
These files are a good starting point and are full of examples of type declarations and interface
definitions. These files contain examples of nested modules and references to outer scoped
types.

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
945

25 chpt_19.qxd 11/19/01 12:08 PM Page 945

With this basic understanding of IDL, several CORBA examples can be developed to demon-
strate the power of distributed object computing. The remainder of the chapter covers the
development of several CORBA servers and clients.

The Bank Example
CORBA has a traditional example that is the equivalent of “Hello, world” in C. It’s known as
the Bank Example and consists of a simple method call that returns a bank balance. We’re
going to add some additional capabilities such as a deposit and withdraw method. It would
also be a good idea to prohibit overdrafts on the account, so an exception will be used to block
drawing out more than the account contents. The IDL for this example is in Listing 19.1.

LISTING 19.1 Bank.idl

module Bank {
exception WithdrawError {

float current_balance;
};

interface Account {
void deposit(in float amount);
void withdraw(in float amount) raises (WithdrawError);
float balance();

};
};

The exception is declared with one data member. If the client attempts to withdraw more
money than the account contains, the exception will be raised with the current account balance
stored in the data member. Client applications can trap the exception and display a message to
the user. In this case, a warning will be displayed along with the current balance.

The deposit and withdraw methods are equivalent to procedures, so they have a return type of
void. Each takes one argument: the amount to add to or subtract from the account. The amount
is a floating point number that will be mapped to a single in Delphi. Notice that the arguments
for deposit and withdraw are declared as in parameters because the methods are passing the
value from the client to the server. The balance method is a function that returns a floating
point value that contains the current balance of the account.

The Delphi 6 IDE contains a set of wizards that make creating CORBA clients and servers
pretty easy. We’ll start by creating the server side of our application. To bring up the wizard,
go to File, New, Other and select the CORBA tab in the dialog box. Then double-click on the
CORBA server icon. The main wizard screen will appear as shown in Figure 19.2.

Enterprise Development

PART V
946

25 chpt_19.qxd 11/19/01 12:08 PM Page 946

FIGURE 19.2
The CORBA Wizard in Delphi 6.

This window contains a list of all the IDL files that will be processed to generate the applica-
tion. Initially, it is empty. To add one or more files, click the Add’ button. This brings up a
standard file open dialog. Change to the directory where the Bank.idl file is located, select
that file, and then click OK. The Bank.idl file will be added to the list of files that will be
processed by the IDL2Pas compiler. Because this is the only IDL file in the application, click
on Generate to create the server application.

The IDL2Pas compiler will process the IDL file, and the wizard will create an application with
the generated files. For server applications, four files are generated:

• Bank_I.pas—This file contains all the interfaces and type definitions.

• Bank_C.pas—This contains any user-defined types, exceptions, and client stub classes.
In addition, all user-defined types and stub classes will have a helper class. The helper
class assists in reading and writing data to the CORBA buffers.

• Bank_S.pas—This has the server-side skeleton class definitions.

• Bank_Impl.pas—This has a general class definition for an implementation on the server
side. You can add code to the methods to perform the actions you want the server to
complete. You don’t have to use this file, but it’s a handy starting point.

From this list of files, you can see that the client-side stub shown in the CORBA architecture is
in the Bank_C.pas file, whereas the server-side skeleton is in Bank_S.pas. A sample imple-
mentation for the server side is stored in the Bank_Impl.pas file.

Listing 19.2 shows the interface definitions for the application. There is only one interface
named Account, and it contains the three methods that were declared in the IDL file.

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
947

25 chpt_19.qxd 11/19/01 12:08 PM Page 947

LISTING 19.2 Bank_I.pas

unit Bank_i;
interface

uses
CORBA;

type
Account = interface;

Account = interface
[‘{99FCA96D-77B2-4A99-7677-E1E0C32F8C67}’]
procedure deposit (const amount : Single);
procedure withdraw (const amount : Single);
function balance : Single;

end;

implementation

initialization

end.

Listing 19.3 shows the source for the Bank_C.pas file. This file contains the declaration of the
Overdrawn exception. It is derived from a class called UserException that is also defined in
that file.

LISTING 19.3 The Bank_C.pas File

unit Bank_c;

interface

uses
CORBA, Bank_i;

type
EWithdrawError = class;
TAccountHelper = class;
TAccountStub = class;

EWithdrawError = class(UserException)
private
Fcurrent_balance : Single;

Enterprise Development

PART V
948

25 chpt_19.qxd 11/19/01 12:08 PM Page 948

LISTING 19.3 Continued

protected
function _get_current_balance : Single; virtual;

public
property current_balance : Single read _get_current_balance;
constructor Create; overload;
constructor Create(const current_balance : Single); overload;
procedure Copy(const _Input : InputStream); override;
procedure WriteExceptionInfo(var _Output : OutputStream); override;

end;

TAccountHelper = class
class procedure Insert (var _A: CORBA.Any; const _Value : Bank_i.Account);
class function Extract(var _A: CORBA.Any) : Bank_i.Account;
class function TypeCode : CORBA.TypeCode;
class function RepositoryId : string;
class function Read (const _Input : CORBA.InputStream) : Bank_i.Account;
class procedure Write(const _Output : CORBA.OutputStream;

➥ const _Value : Bank_i.Account);
class function Narrow(const _Obj : CORBA.CORBAObject; _

➥ IsA : Boolean = False) : Bank_i.Account;
class function Bind(const _InstanceName : string = ‘’; _

➥ HostName : string = ‘’) : Bank_i.Account; overload;
class function Bind(_Options : BindOptions;

➥ const _InstanceName : string = ‘’; _HostName: string = ‘’) :
➥ Bank_i.Account; overload;
end;

TAccountStub = class(CORBA.TCORBAObject, Bank_i.Account)
public
procedure deposit (const amount : Single); virtual;
procedure withdraw (const amount : Single); virtual;
function balance : Single; virtual;

end;

implementation

var

WithdrawErrorDesc : PExceptionDescription;

function EWithdrawError._get_current_balance : Single;
begin
Result := Fcurrent_balance;

end;

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
949

25 chpt_19.qxd 11/19/01 12:08 PM Page 949

LISTING 19.3 Continued

constructor EWithdrawError.Create;
begin
inherited Create;

end;

constructor EWithdrawError.Create(const current_balance : Single);
begin
inherited Create;
Fcurrent_balance := current_balance;

end;

procedure EWithdrawError.Copy(const _Input: InputStream);
begin
_Input.ReadFloat(Fcurrent_balance);

end;

procedure EWithdrawError.WriteExceptionInfo(var _Output : OutputStream);
begin
_Output.WriteString(‘IDL:Bank/WithdrawError:1.0’);
_Output.WriteFloat(Fcurrent_balance);

end;

function WithdrawError_Factory: PExceptionProxy; cdecl;
begin
with Bank_c.EWithdrawError.Create() do Result := Proxy;

end;

class procedure TAccountHelper.Insert(var _A : CORBA.Any;
➥ const _Value : Bank_i.Account);
begin
_A := Orb.MakeObjectRef(TAccountHelper.TypeCode, _

➥ Value as CORBA.CORBAObject);
end;

class function TAccountHelper.Extract(var _A : CORBA.Any): Bank_i.Account;
var
_obj : Corba.CorbaObject;

begin
_obj := Orb.GetObjectRef(_A);
Result := TAccountHelper.Narrow(_obj, True);

end;

class function TAccountHelper.TypeCode : CORBA.TypeCode;

Enterprise Development

PART V
950

25 chpt_19.qxd 11/19/01 12:08 PM Page 950

LISTING 19.3 Continued

begin
Result := ORB.CreateInterfaceTC(RepositoryId, ‘Account’);

end;

class function TAccountHelper.RepositoryId : string;
begin
Result := ‘IDL:Bank/Account:1.0’;

end;

class function TAccountHelper.Read(const _Input : CORBA.InputStream)
➥ : Bank_i.Account;
var
_Obj : CORBA.CORBAObject;

begin
_Input.ReadObject(_Obj);
Result := Narrow(_Obj, True)

end;

class procedure TAccountHelper.Write(const _Output : CORBA.OutputStream;
➥ const _Value : Bank_i.Account);
begin
_Output.WriteObject(_Value as CORBA.CORBAObject);

end;

class function TAccountHelper.Narrow(const _Obj : CORBA.CORBAObject; _
➥ IsA : Boolean) : Bank_i.Account;
begin
Result := nil;
if (_Obj = nil) or (_Obj.QueryInterface(Bank_i.Account, Result) = 0) then
exit;

if _IsA and _Obj._IsA(RepositoryId) then
Result := TAccountStub.Create(_Obj);

end;

class function TAccountHelper.Bind(const _InstanceName : string = ‘’; _
➥ HostName: string = ‘’) : Bank_i.Account;
begin
Result := Narrow(ORB.bind(RepositoryId, _InstanceName, _HostName), True);

end;

class function TAccountHelper.Bind(_Options : BindOptions;
➥ const_InstanceName : string = ‘’; HostName : string = ‘’) :
➥ Bank_i.Account;

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
951

25 chpt_19.qxd 11/19/01 12:08 PM Page 951

LISTING 19.3 Continued

begin
Result := Narrow(ORB.bind(RepositoryId, _Options, _InstanceName, _

➥ HostName), True);
end;

procedure TAccountStub.deposit (const amount : Single);
var
_Output: CORBA.OutputStream;
_Input : CORBA.InputStream;

begin
inherited _CreateRequest(‘deposit’,True, _Output);
_Output.WriteFloat(amount);
inherited _Invoke(_Output, _Input);

end;

procedure TAccountStub.withdraw (const amount : Single);
var
_Output: CORBA.OutputStream;
_Input : CORBA.InputStream;

begin
inherited _CreateRequest(‘withdraw’,True, _Output);
_Output.WriteFloat(amount);
inherited _Invoke(_Output, _Input);

end;

function TAccountStub.balance : Single;
var
_Output: CORBA.OutputStream;
_Input : CORBA.InputStream;

begin
inherited _CreateRequest(‘balance’,True, _Output);
inherited _Invoke(_Output, _Input);
_Input.ReadFloat(Result);

end;

initialization

Bank_c.WithdrawErrorDesc := RegisterUserException(‘WithdrawError’,
➥ ‘IDL:Bank/WithdrawError:1.0’, @Bank_c.WithdrawError_Factory);

finalization

UnRegisterUserException(Bank_c.WithdrawErrorDesc);

end.

Enterprise Development

PART V
952

25 chpt_19.qxd 11/19/01 12:08 PM Page 952

Listing 19.4 shows the definition for the Account implementation class. This class isn’t tied to
CORBA, so it can be reused for other applications or interfaces. The Account class contains
the methods that were declared in the Bank.idl file. Code has been added to the TAccount
methods to implement the full server.

LISTING 19.4 The Implementation Class for the Bank Server

unit Bank_impl;

interface

uses
SysUtils, CORBA, Bank_i, Bank_c;

type
TAccount = class;

unit Bank_impl;

interface

uses
SysUtils, CORBA, Bank_i, Bank_c;

type

TAccount = class(TInterfacedObject, Bank_i.Account)
protected
_balance : Single;

public
constructor Create;
procedure deposit (const amount : Single);
procedure withdraw (const amount : Single);
function balance : Single;

end;

implementation

constructor TAccount.Create;
begin
inherited;
_balance := random(10000);

end;

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
953

25 chpt_19.qxd 11/19/01 12:08 PM Page 953

LISTING 19.4 Continued

procedure TAccount.deposit(const amount : Single);
begin
if amount > 0 then
_balance := _balance + amount;

end;

procedure TAccount.withdraw(const amount : Single);
begin
if amount < _balance then
_balance := _balance - amount

else
raise EWithdrawError.Create(_balance);

end;

function TAccount.balance : Single;
begin
result := _balance;

end;

initialization
randomize;

end.

The TAccount object is derived from TInterfacedObject, so it will be reference counted auto-
matically. It implements the Account interface that was contained in the Bank_I.pas file. The
deposit method does a simple check to make sure that the user hasn’t passed a negative number
to the application. The withdraw method performs a check on the amount passed by the client.
If it is less than the balance, the exception is raised with the current account balance as the
exception argument. The client can process the exception to display information to the end
user. The balance method returns the current balance on the server.

Listing 19.5 shows the stub class that is used as the proxy object for the client application.
Like the server skeleton, it has the three methods defined in the Account interface in the IDL
file.

LISTING 19.5 Client-Side Stub Class

TAccountStub = class(CORBA.TCORBAObject, Bank_i.Account) public

public

public

Enterprise Development

PART V
954

25 chpt_19.qxd 11/19/01 12:08 PM Page 954

LISTING 19.5 Continued

procedure deposit (const amount : Single); virtual;
procedure withdraw (const amount : Single); virtual;
function balance : Single; virtual;

end;

Listing 19.6 shows the deposit() method in detail. Two CORBA buffer streams are declared
as local variables. The CreateRequest() method is a call into the ORB that asks for a valid
output buffer so that information can be written into it. The stub passes the name of the
method that will be called on the server side and specifies whether to wait for the server to
complete its task before continuing. This is referred to as a one-way call or a two-way call.

LISTING 19.6 The Stub Class Deposit Method

procedure TAccountStub.deposit(const amount : Single);
var
_Output: CORBA.OutputStream;
_Input : CORBA.InputStream;

begin
inherited _CreateRequest(‘deposit’, True, Output);
_Output.WriteFloat(amount);
inherited _Invoke(Output, Input);

end;

The next step is to write any data values that need to be passed to the server into the output
buffer. In this case, the amount to deposit is stored in the buffer. The final call is the Invoke
method. This is another call to the ORB that sends the request and output buffer to the server
side. After the server has finished processing, execution continues on the client side. In situa-
tions where the method call is a function (such as the balance method), the input buffer con-
tains the returned result. IDL2Pas would have generated the code to read the values from the
input buffer. However, in this case it was a call to a procedure, so no return value is present.

All of the stub code is generated automatically by IDL2Pas, so you should never have to edit it
yourself. However, it is helpful to understand what this generated code does.

The final part of the code for the application is in the client GUI. The client will contain three
push buttons, two edit controls, and one label control as shown in Figure 19.3. All CORBA
interface variables are declared as interface types. In this case, the Account interface is declared
as type Account. This establishes a variable from the type defined in the Bank_i.pas file that
has the three methods defined in the Bank.idl file. The other benefit to having interface type
variables is the automatic reference counting that takes place behind the scenes. All the
CORBA objects should be reference counted. The IDL2Pas compiler automatically generates
the code to facilitate this.

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
955

25 chpt_19.qxd 11/19/01 12:08 PM Page 955

FIGURE 19.3
The CORBA Client Application.

The most interesting part of the code is the Withdraw OnClick event. Listing 19.7 contains the
client-side source. The call to the Withdraw() method checks to make sure that the client isn’t
attempting to take more than the account holds. If this is the case, an exception is raised. Notice
that raising an exception in CORBA is identical to raising an exception in Delphi. The Delphi
exception gets translated to a CORBA exception automatically.

LISTING 19.7 The Client Source

unit ClientMain;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
Corba, Bank_c, Bank_i, StdCtrls;

type
TForm1 = class(TForm)
btnDeposit: TButton;
btnWithdraw: TButton;
btnBalance: TButton;
Edit1: TEdit;
Edit2: TEdit;
Label1: TLabel;
procedure btnDepositClick(Sender: TObject);
procedure btnWithdrawClick(Sender: TObject);
procedure btnBalanceClick(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
{ private declarations }
protected
Acct : Account;
procedure InitCorba;

{ protected declarations }

Enterprise Development

PART V
956

25 chpt_19.qxd 11/19/01 12:08 PM Page 956

LISTING 19.7 Continued

public
{ public declarations }
end;

var
Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.InitCorba;
begin
CorbaInitialize;
// Bind to the Corba server
Acct := TAccountHelper.bind;

end;

procedure TForm1.btnDepositClick(Sender: TObject);
begin
Acct.deposit(StrToFloat(Edit1.text));

end;

procedure TForm1.btnWithdrawClick(Sender: TObject);
begin
try
Acct.withdraw(StrToFloat(Edit2.Text));

except
on e: EWithdrawError do
ShowMessage(‘Withdraw Error. The balance = ‘ +
FormatFloat(‘$##,##0.00’, E.current_balance));

end;
end;

procedure TForm1.btnBalanceClick(Sender: TObject);
begin
label1.caption := FormatFloat(‘Balance = $##,##0.00’, acct.balance);

end;

procedure TForm1.FormCreate(Sender: TObject);
begin
InitCorba;
end;

end.

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
957

25 chpt_19.qxd 11/19/01 12:08 PM Page 957

After the client and server applications are compiled, OSAgent needs to be started. On a
Windows NT machine, the VisiBroker OSAgent can be installed as a service. On other operat-
ing systems, it has to be started manually. To start OSAgent manually on any MS Windows
platform, choose the Start, Run menu and type OSAgent –C. This starts OSAgent in console
mode. The agent will appear as an icon on the taskbar.

The server application is started next, followed by the client. The client GUI is shown in
Figure 19.3. It has three buttons, two edit boxes, and a label control to display the balance.
Click the Balance button to get the initial value from the server. Then add some money. Click
Balance again to refresh the value on the client side. (Balance can also be called as part of the
deposit and withdraw methods to automatically update the client.) After trying a few values,
try to withdraw more than the balance. You should see the exception message.

Complex Data Types
This next example won’t do much as a practical application. However, it illustrates how to use
some of the complex data types that are available in CORBA IDL. Listing 19.8 shows the IDL
for the Advanced Data Types (ADTs).

LISTING 19.8 ADT.idl

// ADT IDL file
//
// Demonstrates various data structures in IDL
//

// use an alias for string types

typedef string Identifier;

enum EnumType
{
first,
second,
third

};

struct StructType
{
short s;
long l;
Identifier i;

};

Enterprise Development

PART V
958

25 chpt_19.qxd 11/19/01 12:08 PM Page 958

LISTING 19.8 Continued

const unsigned long ArraySize = 3;

typedef StructType StructArray[ArraySize];

typedef sequence<StructType> StructSequence;

interface ADT
{

void Test1(in Identifier st, in EnumType myEnum, inout StructType myStruct);

void Test2(out StructType myStruct, in StructArray myStructArray,
➥ out StructSequence myStructSeq);

};

The first data type shows the use of an alias to remap the string type. All strings in this exam-
ple will be of type Identifier. The EnumType consists of three values: first, second, and
third.

The StructType is similar to a record in Pascal. This data structure consists of a short, a long,
and a string (mapped to the Identifier alias). The ArraySize is mapped as a constant.

The next two items in the IDL file declare types based on the previous definitions. The
StructArray is declared as an array of three elements maximum (zero based). A sequence is a
dynamic array. The last typedef declares a sequence of StructTypes.

Finally, the ADT interface is defined with two methods: Test1 and Test2. The arguments to
these methods are designed to show the different directions data can take. In parameters are
created and initialized on the client side. Out parameters are created and initialized on the
server side. InOut parameters are created and initialized on the client side, but typically are
modified on the server side and returned to the client with new values in the data members.

Listing 19.9 shows the ADT_I.pas interface file. Notice that the typedefs are defined in this
file. Also an interface is created for the StructType. All complex types are mapped to objects
in Object Pascal with the appropriate get and set methods and a Helper class to facilitate mar-
shaling the data in a CORBA buffer.

LISTING 19.9 The ADT_I.pas File

unit adt_i;

interface

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
959

25 chpt_19.qxd 11/19/01 12:08 PM Page 959

LISTING 19.9 Continued

uses
CORBA;

type

EnumType = (first, second, third);

const
{ (Do not edit the values assigned to these constants.) }

ArraySize : Cardinal = 3;

type
StructType = interface;
ADT = interface;

Identifier = AnsiString;

StructArray = array[0..2] of adt_i.StructType;

StructSequence = array of adt_i.StructType;

StructType = interface
[‘{B4A1845D-4DB0-9B2E-A2E3-001F2D6B8C81}’]
function _get_s : SmallInt;
procedure _set_s (const s : SmallInt);
function _get_l : Integer;
procedure _set_l (const l : Integer);
function _get_i : adt_i.Identifier;
procedure _set_i (const i : adt_i.Identifier);
property s : SmallInt read _get_s write _set_s;
property l : Integer read _get_l write _set_l;
property i : adt_i.Identifier read _get_i write _set_i;

end;

ADT = interface
[‘{203B9E07-735F-2980-CB02-353A7C6A5B68}’]
procedure Test1 (const st : adt_i.Identifier;

const myEnum : adt_i.EnumType;
var myStruct : adt_i.StructType);

procedure Test2 (out myStruct : adt_i.StructType;
const myStructArray : adt_i.StructArray;
out myStructSeq : adt_i.StructSequence);

end;

Enterprise Development

PART V
960

25 chpt_19.qxd 11/19/01 12:08 PM Page 960

LISTING 19.9 Continued

implementation

initialization

end.

Listing 19.10 shows the implementation of the server side. When you read the method parame-
ter lists in IDL, the direction is applicable to the server, or receiving side. So an out parameter
means that it is out relative to the server. An in parameter is in relative to the server, and so on.

All the out parameters on the server side need to have their data structures created and initial-
ized before the data can be passed back to the client. Any parameter defined as a const or var
parameter will have an existing data structure associated with it.

LISTING 19.10 The ADT Implementation File for the Server

unit adt_impl;

interface

uses
SysUtils, CORBA, adt_i, adt_c;

type
TADT = class;

TADT = class(TInterfacedObject, adt_i.ADT)
public
constructor Create;
procedure Test1 (const st : adt_i.Identifier;

const myEnum : adt_i.EnumType;
var myStruct : adt_i.StructType);

procedure Test2 (out myStruct : adt_i.StructType;
const myStructArray : adt_i.StructArray;
out myStructSeq : adt_i.StructSequence);

end;

implementation

uses ServerMain;

constructor TADT.Create;

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
961

25 chpt_19.qxd 11/19/01 12:08 PM Page 961

LISTING 19.10 Continued

begin
inherited;

end;

procedure TADT.Test1 (const st : adt_i.Identifier;
const myEnum : adt_i.EnumType;
var myStruct : adt_i.StructType);

begin
Form1.Memo1.Lines.Add(‘String from Client : ‘ + st);

case myEnum of
first : Form1.Memo1.Lines.Add(‘Enum value is “first”’);
second: Form1.Memo1.Lines.Add(‘Enum value is “second”’);
third: Form1.Memo1.Lines.Add(‘Enum value is “third”’);

end;

Form1.Memo1.Lines.Add(Format(‘myStruct.s = %d’, [myStruct.s]));
Form1.Memo1.Lines.Add(Format(‘myStruct.l = %d’, [myStruct.l]));
Form1.Memo1.Lines.Add(Format(‘myStruct.i = %s’, [myStruct.i]));

myStruct.s := 10;
myStruct.l := 1000;
myStruct.i := ‘This is the return string from the Server’;

end;

procedure TADT.Test2 (out myStruct : adt_i.StructType;
const myStructArray : adt_i.StructArray;
out myStructSeq : adt_i.StructSequence);

var
k : integer;
tempSeq : StructSequence;

begin
myStruct := TStructType.Create(20, 2000,

➥ ‘Hello from the server structType Test 2’);

for k := 0 to ArraySize - 1 do
With Form1.Memo1.Lines do
begin
Add(Format(‘myStructArray[%d].s = %d’, [k, myStructArray[k].s]));
Add(Format(‘myStructArray[%d].l = %d’, [k, myStructArray[k].l]));
Add(Format(‘myStructArray[%d].i = %s’, [k, myStructArray[k].i]));

end;

SetLength(tempSeq, 2);

Enterprise Development

PART V
962

25 chpt_19.qxd 11/19/01 12:08 PM Page 962

LISTING 19.10 Continued

for k := 0 to 1 do
tempSeq[k] := TStructType.Create(k + 100, k + 1000, Format(‘k = %d’, [k]));

myStructSeq := tempSeq;
end;

initialization

end.

The client application user interface has two buttons and a memo control. Each button is
mapped to one of the ADT test methods. The results of the calls are written to the memo con-
trol. Listing 19.11 shows the client file.

LISTING 19.11 The ADT Client Side

unit ClientMain;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
Corba, adt_c, adt_i, StdCtrls;

type
TForm1 = class(TForm)
Button1: TButton;
Button2: TButton;
Memo1: TMemo;
procedure FormCreate(Sender: TObject);
procedure Button1Click(Sender: TObject);
procedure Button2Click(Sender: TObject);

private
{ private declarations }
protected
myADT : ADT;
procedure InitCorba;

{ protected declarations }
public
{ public declarations }
end;

var
Form1: TForm1;

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
963

25 chpt_19.qxd 11/19/01 12:08 PM Page 963

LISTING 19.11 Continued

implementation

{$R *.DFM}

procedure TForm1.InitCorba;
begin
CorbaInitialize;
myADT := TADTHelper.bind;

end;

procedure TForm1.FormCreate(Sender: TObject);
begin
initCorba;

end;

procedure TForm1.Button1Click(Sender: TObject);
var
temp : StructType;

begin
temp := TStructType.Create(50, 500, ‘This is the client struct in Test 1’);
myADT.Test1(‘Hello from the Test1 Client’, first, temp);

with Memo1.Lines do
begin
Add(‘Response from server inout struc var:’);
Add(Format(‘myStruct.s = %d’, [temp.s]));
Add(Format(‘myStruct.l = %d’, [temp.l]));
Add(Format(‘myStruct.i = %s’, [temp.i]));

end;
end;

procedure TForm1.Button2Click(Sender: TObject);
var
I: Integer;
temp : StructType;
tempSeq : StructSequence;
tempArray : StructArray;

begin
temp := TStructType.Create(0,0,’test’);
SetLength(tempSeq, 2);

for I := 0 to ArraySize -1 do
tempArray[I] := TStructType.Create(200 + I, 2000 + I,

➥ Format(‘Stuct %d in Array’, [I]));

Enterprise Development

PART V
964

25 chpt_19.qxd 11/19/01 12:08 PM Page 964

LISTING 19.11 Continued

myADT.Test2(temp, tempArray, tempSeq);

with Memo1.Lines do
begin
Add(Format(‘struct.s = %d’, [temp.s]));
Add(Format(‘struct.l = %d’, [temp.l]));
Add(Format(‘struct.i = %s’, [temp.i]));

end;

for I := 0 to 1 do
with Memo1.Lines do
begin
Add(Format(‘tempSeq[%d].s = %d’, [I, tempSeq[I].s]));
Add(Format(‘tempSeq[%d].l = %d’, [I, tempSeq[I].l]));
Add(Format(‘tempSeq[%d].i = %s’, [I, tempSeq[I].i]));

end;
end;

end.

To run this example, compile the code and make sure that the OSAgent is running. When you
click on either of the test buttons on the data, structures are exchanged between the client and
server. The data that is received on each side is written to the respective memo control in the
application’s window.

Delphi, CORBA, and Enterprise Java Beans (EJBs)
This section shows you how to make a Delphi CORBA application connect to EJBs that
are deployed under the Borland Application Server. To construct and deploy the EJB for
this demo, you’ll need Borland JBuilder 5 and Borland Application Server 4.51. Both of
these products are available as a free trial download edition from the Borland Web site
(www.borland.com).

A Crash Course in EJBs for Delphi Programmers
Several years ago, Sun Microsystems came out with their J2EE platform. This was an enhance-
ment to the Java environment to add enterprise level distributed object computing. The specifi-
cation for J2EE is fairly complex, but from an application developer’s point of view, it can be
broken down into a few straightforward concepts.

One key piece of the J2EE platform is an Enterprise Java Bean (EJB). An EJB is (usually) a
small, portable and scaleable object that is designed to do a specific job. The idea is that many

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
965

25 chpt_19.qxd 11/19/01 12:08 PM Page 965

EJBs can be scattered around the enterprise to perform various functions. At some central
point, an application is deployed that will contact an EJB only when it needs the functionality
that EJB provides.

An EJB Is a Specialized Component
In terms of Delphi, think of an EJB as a component. One example of an EJB would be a com-
ponent that connects to a database and provides records to any application that requests them.
Another EJB might perform a calculation based on information supplied to it, such as calculat-
ing sales tax for a purchase.

EJBs Live Within a Container
In Delphi, components are put into a package and are installed into the IDE. The IDE manages
the components on the palette. The hooks are there to create the component when you drop
one on a form. If you delete the component from the form, it is destroyed within the IDE.

A similar approach is taken for EJBs only not through the Delphi IDE. The J2EE specification
describes an entity known as the EJB container. The container is the host for all EJBs. This is
a similar concept to the way the IDE manages components within Delphi. The container man-
ages the process of creating and destroying EJBs.

EJBs Have Predefined APIs
Borland AppServer has an EJB container embedded within itself. Just like the Delphi IDE and
its components, the EJB container and all EJBs must have a predefined set of APIs that let the
EJB live within the container. The EJB developer adds additional methods to the EJB to give it
specific functionality. However, the predefined APIs must be there for the EJB to be managed
correctly by the container.

In addition to creating and destroying the EJB, there are specific APIs for message routing and
callbacks to an EJB. The container also performs numerous other features described in the
specification, but those details are beyond the scope of this book.

The Home and Remote Interfaces
As part of the predefined API set, all EJBs must have two interfaces. One is called the Home
interface, and the other is the Remote interface. The Home interface is the initial method that an
application calls to get an instance of the EJB. The Home interface is a factory that creates
instances of the Remote interface and hands them back to the calling application.

The Remote interface has all the methods that the calling program wants to use. These are
equivalent to the interfaces declared in an IDL file. So the process is that a client application

Enterprise Development

PART V
966

25 chpt_19.qxd 11/19/01 12:08 PM Page 966

will call the EJB Home interface to get an instance of the Remote interface. Once it has the
Remote interface, the client can call any method published by that interface.

Types of EJBs
All EJBs can be divided into one of two groups:

• Session beans

• Entity beans

A session bean is (typically) a stateless EJB. Stateless means that between calls, the session
bean doesn’t store any information about the calling application. It is said to be nonpersistent.
It doesn’t keep track of where the client might be in a calling sequence, so it doesn’t have the
equivalent of a state machine. It is possible to have a stateful session bean, but the developer
has to write all the logic to implement that.

An entity bean generally wraps a database record. This type of bean is said to have state
because the information it processes (the database record) is stored between calls.

There is another key difference between a session and entity bean. When a client connects to a
session bean, one instance of the session bean is created specifically for the calling client. If
another client calls the session bean, another instance is created. So each client will get its own
instance of a session bean.

When a client calls an entity bean, one instance of the entity bean is created. If another client
calls the entity bean, it will share the same entity bean instance. Each entity bean is managed
by the container in a connection pool.

Configuring JBuilder 5 for EJB Development
The easiest way to create EJBs is with Borland’s JBuilder 5. To connect Delphi to an EJB, the
EJB needs to be deployed with Borland’s Application Server (version 4.51 or higher). Both
JBuilder 5 and Borland AppServer are available on the Borland Web site as trial edition down-
loads. Typically, AppServer should be installed, followed by JBuilder.

Before starting JBuilder, it is a good idea to set up a projects directory for all your JBuilder
applications. Typically, this will be something similar to c:\MyProjects.

When you start JBuilder 5 and try to create an EJB using the wizards built into the IDE, you
might see them grayed out. If this is the case, it is because JBuilder needs to be configured to
point to the AppServer. This is a configuration setting in a JBuilder dialog box.

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
967

25 chpt_19.qxd 11/19/01 12:08 PM Page 967

To configure JBuilder 5 for EJB support,

1. Start JBuilder 5, go to the Tools menu, and select Enterprise Setup. This opens a dialog
box to set the CORBA configuration.

2. On the CORBA tab, select VisiBroker. JBuilder ships with VisiBroker for Java.

3. Click on the Edit button. The Edit Configuration dialog box appears. Enter the path to
the ORB. This is where IDL2Java resides (typically, c:\Borland\AppServer\bin).

4. Select that Application server tab. This is used to tell JBuilder which Application Server
to use. Select BAS 4.5 and make sure that it is pointing to the AppServer directory (that
is, c:\Borland\AppServer).

5. Under Projects, Default Project Proprieties, select the Servers tab. Then make sure that
the Borland Application Server is selected. If not, click on the ellipse button and add it to
the configuration.

That should configure JBuilder for EJBs. Now we can create our first EJB.

Building a Simple “Hello, world” EJB
Borrowing from the C world, the EJB application we’ll build is one that returns the string
“Hello, world”. This example guides you through the process of making an EJB. More com-
plex EJBs can be developed by following the same process and adding more methods to the
Remote interface.

First start Borland AppServer, and then JBuilder. When you become more proficient in Java
and JBuilder, you can eventually develop and test your EJBs totally within the JBuilder envi-
ronment. In this section, we’ll develop the EJB and deploy it to the Borland AppServer. Then
we’ll make a Delphi client that will connect to the EJB. This is a more realistic scenario for
real-world development and deployment.

To build the “Hello, world” EJB,

1. Close down all projects within JBuilder. Then choose File, New Project. Give this project
the name “HelloWorld”. This will also be the name of the project file when JBuilder
saves it to disk.

2. Next we need to add an EJB Group. Choose File, New, Enterprise and select the Empty
EJB Group icon. When prompted for a name, give it HelloGroup. Notice that there is an
edit control that specifies the name of the jar file that this application will be built into. A
jar file is similar to a zip file. You archive all the Java byte code files into a jar file so that
you only have one file to deploy. In this case, rename the jar file to HelloWorld.jar.

3. Next add a new EJB by selecting File, New, Enterprise and select Enterprise Java Bean.
When prompted for a name, enter HelloBean. JBuilder 5 will automatically create the
bean and all the required interfaces.

Enterprise Development

PART V
968

25 chpt_19.qxd 11/19/01 12:08 PM Page 968

4. Select the HelloBean.java file in the project window and click on the Source tab. Make
sure that your source code resembles Listing 19.12.

LISTING 19.12 The JavaBean Source

package helloworld;
import java.rmi.*;
import javax.ejb.*;
import java.lang.String;
public class HelloBean implements SessionBean
{

private SessionContext sessionContext;
public void ejbCreate()
{
}
public void ejbRemove() throws RemoteException
{
}
public void ejbActivate() throws RemoteException
{
}
public void ejbPassivate() throws RemoteException
{
}
public void setSessionContext(SessionContext sessionContext) throws
RemoteException
{

this.sessionContext = sessionContext;
}
public String sayHello() {

return “Hello, world”;
}

}

5. You need to enter the last method in the code block (sayHello()). This method returns a
string, so it must include the java.lang.String package as shown near the top of the
file.

6. Now we need to expose the sayHello() method through the Remote interface. To do
that, select the Bean tab at the bottom of the code window. Then select the Methods tab
at the bottom of the Bean tab window. You’ll see the sayHello() method listed with an
unchecked check box next to it. Check the box. That exposes the method through the
Remote interface. To verify this, double-click on the Hello.java file in the project win-
dow. This brings up the source for the Remote interface. Notice that sayHello() is there
now.

7. Save your work and build the project. You should have no errors.

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
969

25 chpt_19.qxd 11/19/01 12:08 PM Page 969

Building a Client Test Application in JBuilder
JBuilder lets you build a client-side Java application to test your EJB. To do this,

1. Choose File, New, Enterprise and select EJB Test Client. Name this
HelloTestClient1.java.

2. JBuilder will automatically create the file. Go to the bottom of it, and you will see a
main program. Make yours resemble Listing 19.13.

LISTING 19.13 EJB Java Test Client Application

public static void main(String[] args) {
HelloTestClient1 client = new HelloTestClient1();
client.create(); //add these two lines
client.sayHello();
// Use the client object to call one of the Home interface wrappers
// above, to create a Remote interface reference to the bean.
// If the return value is of the Remote interface type, you can use it
// to access the remote interface methods. You can also just use the
// client object to call the Remote interface wrappers.

}

You add the create() and sayHello() methods to the main program.

Building the Client and Testing the EJB
Now build the test client. Follow these steps:

1. Run the EJB by selecting the HelloGroup entity in the project window and right-clicking
on it. Then choose Run. Soon you should see messages in the JBuilder message pane
indicating that the EJB is running. This might take 20 or 30 seconds depending on the
speed and memory of your machine. Remember, Java is a resource hog.

2. Select the client application and right-click on it. Choose Run from the menu. You’ll see
it start up and eventually print “Hello, world” to the message window. This means that
our EJB works correctly.

3. You can stop the EJB group by clicking on the red Stop button at the bottom of the mes-
sage window.

Deploying the EJB to AppServer
To deploy the EJB to AppServer, follow these steps:

1. Select Tools, EJB Deployment. Follow the wizard, and it will deploy the EJB.

2. Once the EJB is deployed, AppServer will automatically start it. Click on the Next button
until you reach step 4.

Enterprise Development

PART V
970

25 chpt_19.qxd 11/19/01 12:08 PM Page 970

3. In step 4 of the wizard, you must select an EJB container. Make sure that Borland
AppServer is running. Then click on the Add EJB Container button, and you’ll see the
AppServer container. Select it and click OK. Then continue with the wizard until it
completes.

Generating the SIDL File
Borland has developed a proprietary technique to remap EJBs to an AppServer interface called
Simplified IDL (SIDL). This remapping makes sure that older CORBA applications can call
EJBs by using the CORBA 2.1 standard (or higher). There is a tool that ships with AppServer
called the SIDL compiler that can take a Remote interface and generate conventional IDL files.

Borland provides a free plug-in for JBuilder that facilitates converting the EJB interfaces to
IDL with the SIDL compiler. The plug-in can be found on the CD-ROM in the same directory
as the source code for this chapter. The plug-in is a Java jar file called otSIDL.jar. Copy it to
the c:\ JBuilder5\lib\ext directory (or the equivalent path where you installed JBuilder).
You’ll have to restart JBuilder to activate the tool.

When the JBuilder IDE comes up, choose Tools, IDE Options, and you’ll see a dialog box
with a tab for SIDL. Select the SIDL tab and specify an output directory. In this case, enter
c:\MyProjects\HelloWorld (or where ever you stored the HelloWorld project).

This tool adds a pop-up menu to the EJB Remote interface.

Select the HelloHome.java file from the project list and right-click on it. You’ll see a menu
item called Generate Simplified IDL. Choose that, and it will run the SIDL compiler. The out-
put will be in the classes directory for the project.

Developing the EJB Client in Delphi
Now that we have a complete EJB, we can take the IDL file generated by the SIDL compiler
and create a Delphi CORBA client to talk to the EJB. If you look under the EJB project’s
classes directory, you’ll see a file called HelloHome.idl. You will need this and a copy of the
sidl.idl file that is found on the Delphi6\Demos\Corba\Idl2pas\EJB\EuroConverter direc-
tory. Put those two files in a new directory. Then, follow these steps:

1. Start Delphi and choose File, New, Other, CORBA, CORBA Client Application.

2. Add the HelloHome.idl file to the list of files that will be processed. You don’t need to
add the sidl.idl file because it is included automatically in HelloHome.idl via the
include pragma.

3. The wizard will create a new CORBA client. Save the project and call it HelloClient.
Many file windows will be displayed after the wizard runs. Other than the Unit1.pas
file, the only two that need to be displayed are HelloHome_HelloWorld_i.pas and
HelloHome_HelloWorld_c.pas. All the rest can be closed.

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
971

25 chpt_19.qxd 11/19/01 12:08 PM Page 971

4. On the main form, drop a button and label control. Make your application resemble
Figure 19.4.

Enterprise Development

PART V
972

FIGURE 19.4
The EJB Delphi Client.

5. In the form’s OnCreate() method, enter initCorba.

6. Modify the initCorba() method to resemble the code block shown in Listing 19.14.
You’ll have to add two variables to the class definition. One is for the Home interface, and
the other one is for the Remote interface. The Home interface is a factory that creates
Remote interfaces. Once you have an instance of the Remote interface, you can call the
methods on the EJB. So the initCorba() method will contain the code that binds to the
Home interface and generates a Remote interface object.

7. Add a button OnClick event and make it resemble the button OnClick code block shown
in Listing 19.14.

8. Build the client application. See the note if you get errors.

LISTING 19.14 The EJB Client Main Application File

unit ClientMain;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
Corba, HelloHome_c, HelloHome_helloworld_c, HelloHome_helloworld_i,
HelloHome_i, HelloHome_sidl_javax_ejb_c, HelloHome_sidl_javax_ejb_i,
HelloHome_sidl_java_lang_c, HelloHome_sidl_java_lang_i,
HelloHome_sidl_java_math_c, HelloHome_sidl_java_math_i,
HelloHome_sidl_java_sql_c, HelloHome_sidl_java_sql_i,
HelloHome_sidl_java_util_c, HelloHome_sidl_java_util_i,
StdCtrls;

type
TForm1 = class(TForm)

25 chpt_19.qxd 11/19/01 12:08 PM Page 972

LISTING 19.14 Continued

Button1: TButton;
Label1: TLabel;
procedure FormCreate(Sender: TObject);
procedure Button1Click(Sender: TObject);

private
{ private declarations }
protected
myHome : HelloHome;
myRemote : Hello;
procedure InitCorba;

{ protected declarations }
public
{ public declarations }
end;

var
Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.InitCorba;
begin

CorbaInitialize;

myHome := THelloHomeHelper.Bind;
myRemote := myHome._create;

end;

procedure TForm1.FormCreate(Sender: TObject);
begin

initCorba;
end;

procedure TForm1.Button1Click(Sender: TObject);
begin

Label1.Caption := myRemote.sayHello;
end;

end.

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
973

25 chpt_19.qxd 11/19/01 12:08 PM Page 973

Running the Application
To run the application, follow these steps:

1. Start the OSAgent.

2. Make sure that Borland AppServer has started.

3. Start the HelloClient. Click on the button, and you should see the label text change to
“Hello, world”.

More complex EJBs can be developed by following a similar development process. In Java,
you just add more method interfaces to increase the capabilities of the EJB. The client-side
process will essentially remain the same as this example. Delphi CORBA clients will be built
by gathering the SIDL produced IDL files and processing them through the Delphi CORBA
IDE wizard.

Enterprise Development

PART V
974

You’ll encounter two possible errors with the original Delphi 6 distribution. These
errors were fixed in the Service Pack 1 update. The first error is that the compiler will
complain about a unit not being included. It will point you to the particular unit
name. When it does, just add the unit name to the uses clause in the file with the
error.

The second error occurs at runtime. This is related to the Home interface create()
method. Create was originally on the reserved word list for IDL2Pas. So when it
encounters that word, it puts an underscore in front of it. When the EJB gets a
request for a method called _create(), it generates an exception because it doesn’t
publish that method. It publishes a method called create().

To fix this, go to the THelloHomeStub._create() method in HelloHome_helloworld_c.pas
(the code snippet follows). The first argument in the _CreateRequest() method tells
the CORBA server which method will be called. If you see _create as the first argu-
ment, change it to create:

function THelloHomeStub._create : HelloHome_helloworld_i.Hello;
var
_Output: CORBA.OutputStream;
_Input : CORBA.InputStream;

begin
inherited _CreateRequest(‘create’, True, _Output);
inherited _Invoke(_Output, _Input);
Result := HelloHome_helloworld_c.THelloHelper.Read(_Input);

end;

Both of these errors were fixed in the Delphi 6 update 1, so you should upgrade to
that to get around these errors.

NOTE

25 chpt_19.qxd 11/19/01 12:08 PM Page 974

CORBA and Web Services
It is fairly straightforward to extend a CORBA application through the Web Services architec-
ture. The SOAP specification doesn’t allow object references to be passed between applica-
tions, so a little work needs to be done on the middle-tier level to isolate SOAP clients from
the details of CORBA applications.

This next example will publish the EJB that was created in the last section so that it can be
used by SOAP clients. Figure 19.5 shows the architecture of the application.

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
975

BorlandAppServer Web Service

EJB Container

Remote Intf
SayHello()

Home Intf
Create()

SOAP
ClientC

O
R
B
A

S
O
A
P

CORBA SOAP

FIGURE 19.5
The CORBA/Web Services example architecture.

The EJB is deployed under the Borland AppServer. It has a published CORBA interface that
any CORBA client can call. The Web Service application is both a SOAP server and a CORBA
client. The SOAP server portion of the application will wrap the calls the SOAP client makes
around the CORBA client interface.

By using this technique, you can harness the power of EJBs and publish the results as SOAP
interfaces to clients that only have that capability. This means that a SOAP enabled application
can access applications that manipulate EJBs. This brings an enormous capability to the client
desktop and gets rid of CORBA ORB deployment issues on the client side as well.

In this example, the EJB will remain exactly as it was in the last section. No modifications to
its interface or functionally have to be made. That portion of the application is complete.

Creating the Web Service
To create the Web Service, you need the IDL files from the last section. IDL2Pas can be run in
a command window to generate the client-side files. Create a directory for the project and copy
the SIDL.idl and HelloHome.idl files into the new directory. Then open a command window
and type the following:

IDL2Pas HelloHome.idl

25 chpt_19.qxd 11/19/01 12:08 PM Page 975

The IDL2Pas compiler will generate the files for the application. We only need the
HelloHome_I.pas and HelloHome_C.pas files for the CORBA client side.

In order to build this project, you need to install the Invokamatic Wizard, which lets you create
a SOAP application in a couple of minutes. When you register Delphi 6, you get access to the
Delphi 6 Registered Users’ Web site, which contains the Delphi eXtreme Toys downloads. This
contains additional tools and freebies for Delphi 6, including the Invokamatic Wizard.
Download this wizard from the Borland Web site and install it into the IDE.

Now, to create the Web Service application, follow these steps:

1. Close down all projects in Delphi and select File, New, Other, Web Services. Then
choose the Soap Server Application icon.

2. Choose the Web App Debugger Executable for the target application Web server and give
it a name such as coHelloWorld for the coClass name. Make sure that you use a unique
name every time you repeat this exercise, or clean the registry by unregistering your
application when you are done with it.

3. The wizard will generate a bare bones application. Save it to the project directory that
contains the IDL files. Name the module file ServerMod.pas, the main form file
ServerMain.pas, and the application Server.dpr.

4. Now select the Files, New, Other, Web Services and choose the Invokamatic Wizard.

5. The dialog box prompts you for a name to use. Name it HelloWorldSoap. This automati-
cally names the interface and files. In the Invokable Class drop-down box, choose
TInvokable Class. When you select OK, it creates two new units in your project. One is
an interface unit, and the other is an implementation unit.

6. Select the interface unit and add the following method to the IHelloWorldSoapIntf
interface:

function sayHello: string; stdcall;

The stdcall call tag is required so that the correct calling convention is established.

7. Now copy this method declaration to the implementation unit THelloWorldSoapIntf
class and make it a public method.

8. Put the cursor anywhere on the method line and press Shift+Control+C to activate the
class completion. Just for test purposes, we’ll have this method return a hard-wired string
to test the client. So type

result := ‘Hello, world’;

9. Save the program, compile it, and run it. Running it registers the method interface. Make
sure you start the Web App Debugger from the Delphi Tools menu. You can start the
server and check the interfaces it knows about by clicking on the URL in the Web App
Debugger UI.

Enterprise Development

PART V
976

25 chpt_19.qxd 11/19/01 12:08 PM Page 976

Creating the SOAP Client Application
To create a SOAP client application,

1. Close down the project and choose File, New, Application.

2. Add one label and one edit control to the main form. Also add the interface files
SoapHTTPClient and HelloWorldSoapIntf to the uses clause.

3. Declare a variable called mySoap to be of type IHelloWorldSoap.

4. On the button OnClick method, make the code resemble Listing 19.15.

5. Save the program and compile the files.

6. Run the application and click on the Say Hello button. After a small delay while the
server application is loaded, you should see “Hello, world” in the label caption.

This is a preliminary test to show that the SOAP client and server work together. Now we can
add the CORBA client to the server project to complete the full application.

LISTING 19.15 SOAP Client Main Form Class

unit ClientMain;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, SoapHTTPClient, HelloWorldSoapIntf;

type
TForm1 = class(TForm)
Button1: TButton;
Label1: TLabel;
procedure Button1Click(Sender: TObject);

private
{ Private declarations }
mySoap : IHelloWorldSoap;

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

{$R *.dfm}

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
977

25 chpt_19.qxd 11/19/01 12:08 PM Page 977

LISTING 19.15 Continued

procedure TForm1.Button1Click(Sender: TObject);
var x : THTTPRio;
begin

x := THTTPRio.Create(nil);
x.URL := ‘http://localhost:1024/Server.exe/SOAP/’;
mySoap := x as IHelloWorldSoap;
Label1.Caption := mySoap.sayHello;

end;

end.

Adding the CORBA Client Code to the Web Service
To add the CORBA client files to the Web Server project,

1. Copy the *_i.pas and *_c.pas files from the EJB client application developed in the last
section. The interface file is shown in Listing 19.16.

LISTING 19.16 SOAP Interface File

{ Invokable interface declaration unit for IHelloWorldSoap }

unit HelloWorldSoapIntf;

interface

uses
Types, XSBuiltIns;

type
IHelloWorldSoap = interface(IInvokable)
[‘{CA738F7B-B111-4F12-BEBD-C2ADDD80C3E2}’]
// Declare your invokable logic here using standard Object Pascal code
// Remember to include a calling convention! (usually stdcall)
// For example:
// function Add(const First, Second: double): double; stdcall;
// function Subtract(const First, Second: double): double; stdcall;
// function Multiply(const First, Second: double): double; stdcall;
// function Divide(const First, Second: double): double; stdcall;
function sayHello : String; stdcall;

end;

implementation

Enterprise Development

PART V
978

25 chpt_19.qxd 11/19/01 12:08 PM Page 978

LISTING 19.16 Continued

uses
InvokeRegistry;

initialization
InvRegistry.RegisterInterface(TypeInfo(IHelloWorldSoap), ‘’, ‘’);

end.

2. Add two public variables to the Form1 class as shown in Listing 19.17. The variables will
be public so that they are exposed to other units in the application.

3. Add an OnCreate() method to the main form and make it look like the one in Listing 19.17.

4. Finally, change the HelloWorldSoapImpl.pas file sayHello() method to look like
Listing 19.18.

5. Now save the project and compile the server.

6. Make sure OSAgent, and Borland AppServer are running, then run the client. When you
click on the Say Hello button you should see “Hello, world”.

This was not a difficult example. However, you can now see the process of exposing EJBs to
SOAP clients. This opens up new possibilities for bringing J2EE applications to the desktop
and other Delphi application types.

LISTING 19.17 SOAP Server Main Form Class

unit ServerMain;

interface

uses
SysUtils, Classes, Graphics, Controls, Forms, Dialogs, Corba,
HelloHome_helloworld_i, HelloHome_helloworld_c;

type
TForm1 = class(TForm)
procedure FormCreate(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }
myHome : HelloHome;
myRemote : Hello;

end;

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
979

25 chpt_19.qxd 11/19/01 12:08 PM Page 979

LISTING 19.17 Continued

var
Form1: TForm1;

implementation

uses ComApp;

{$R *.DFM}

const
CLASS_ComWebApp: TGUID = ‘{63859D3A-005F-43BB-8E64-85A466D9C364}’;

procedure TForm1.FormCreate(Sender: TObject);
begin
CorbaInitialize;
myHome := THelloHomeHelper.bind;
myRemote := myHome._create;

end;

initialization
TWebAppAutoObjectFactory.Create(Class_ComWebApp,
‘coHelloWorld’, ‘coHelloWorld Object’);

end.

LISTING 19.18 SOAP Server Implementation Class

{ Invokable implementation declaration unit for THelloWorldSoap,
which implements IHelloWorldSoap }

unit HelloWorldSoapImpl;

interface

uses
HelloWorldSoapIntf, InvokeRegistry, ServerMain;

type
THelloWorldSoap = class(TInvokableClass, IHelloWorldSoap)
// Make sure you have your invokable logic implemented in IHelloWorldSoap
// first, save the file, then use CodeInsight(tm) to fill in this
// implementation section by pressing Ctrl+Space, marking all the interface
// declarations for IHelloWorldSoap, and pressing Enter.

Enterprise Development

PART V
980

25 chpt_19.qxd 11/19/01 12:08 PM Page 980

LISTING 19.18 Continued

// Once the declarations are inserted here, use ClassCompletion(tm)
// to write the implementation stubs by pressing Ctrl+Shift+C
function sayHello : String; stdcall;

end;

implementation

{ THelloWorldSoap }

function THelloWorldSoap.sayHello: String;
begin
// result := ‘Hello, world’; //test for soap client
result := ServerMain.Form1.myRemote.sayHello;

end;

initialization
InvRegistry.RegisterInvokableClass(THelloWorldSoap);

end.

Summary
This chapter provides an introduction to developing CORBA applications in Delphi. We started
with the basics of the CORBA architecture and developed a fairly simple Bank application.
From there, we looked at more complex data structures.

Then we got into an area that is generating a lot of interest from enterprise developers. We
learned how to develop an EJB in JBuilder 5, deploy it to the Borland AppServer, and connect
a Delphi CORBA client to the EJB.

From there, we extended the EJB through a combination of CORBA and Web Services using
the SOAP protocol. Using this approach, you can now take any EJB, connect it to a Web
Service, and expose it to any client that can use the SOAP protocol. The client doesn’t have to
be aware that CORBA is deployed on the back end. This opens up new possibilities for extend-
ing corporate legacy applications.

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
981

25 chpt_19.qxd 11/19/01 12:08 PM Page 981

25 chpt_19.qxd 11/19/01 12:08 PM Page 982

CHAPTER

20
BizSnap Development: Writing
SOAP-Based Web Services

IN THIS CHAPTER
• What Are Web Services? 984

• What Is SOAP? 984

• Writing a Web Service 985

• Invoking a Web Service from a Client 991

26 chpt_20.qxd 11/19/01 12:07 PM Page 983

Developing eBusiness solutions rapidly is key to the success of many organizations. Fortunately,
Borland has made this rapid development possible through the use of a new Delphi 6 feature
called BizSnap. BizSnap is a technology that integrates XML and Web Services using the
SOAP protocol into Delphi 6.

What Are Web Services?
Borland describes Web Services as follows:

Using the Internet and Web infrastructure as the platform, Web Services seamlessly
connect applications, business processes, customers, and suppliers—anywhere in the
world—with standardized language and machine-independent Internet protocols.

Distributed applications generally consist of servers and clients—servers that provide some
functionality to the clients. Any distributed application might contain many servers, and those
servers might themselves be clients. Web Services are a new type of server component for
applications with a distributed architecture. Web Services are applications that use common
Internet protocols to deliver their functionality.

Because Web Services communicate using open standards, they offer the opportunity for many
different platforms to interoperate. For instance, from the perspective of a client application, a
Web service deployed on a Sun Solaris machine will look (for all intents and purposes) identi-
cal to the same service deployed on a Windows NT machine. Prior to Web Services, this type
of integration was extremely time-consuming, expensive, and generally proprietary.

This open nature and the ability to use existing network hardware and software position Web
Services to be powerful tools for both internal and business-to-business transactions.

What Is SOAP?
SOAP is the acronym for Simple Object Access Protocol. SOAP is a lightweight protocol used
for exchanging data in a distributed environment, similar to portions of CORBA and DCOM,
but with less functionality and resulting overhead. SOAP exchanges data using XML docu-
ments, using HTTP (or HTTPS) for its communications. A specification on SOAP is available
for reference on the Internet at http://www.w3.org/TR/SOAP/.

Web Services also use a form of XML to instruct users about themselves, called WSDL.
WSDL is short for Web Services Description Language. WSDL is used by client applications
to identify what a Web service can do, where it can be found, and how to call it.

The wonderful thing about BizSnap is that you don’t have to learn all the specifics of SOAP,
XML, or WSDL in order to create Web Service applications.

In this chapter, we will show you how simple it is to create a Web Service, and then we’ll show
you how to access this service from a client application.

Enterprise Development

PART V
984

26 chpt_20.qxd 11/19/01 12:07 PM Page 984

Writing a Web Service
To demonstrate how to create a Web Service, we’ll show you how to create the ever-popular
Fahrenheit Celsius converter as a Web Service.

A Web service written in Delphi consists of three main things. The first is a WebModule with a
few SOAP components (described in a moment). The module is automatically created for you
when you execute the SOAP Server Wizard. The second two components you must build your-
self. One of those is a class implementation, which is simply the code that describes what your
Web service will actually do. The second thing to create is an interface to that class. The inter-
face will expose only those pieces of the class that you want to offer to the rest of the world
through your Web service.

Delphi provides a Web Service Wizard in the WebServices tab of the Object Repository. You
will see three items in this tab. At this point, we’ll concern ourselves with only the Soap Server
Application Wizard. When you click this, you’ll be shown the New Soap Server Application
dialog box (see Figure 20.1). This dialog box should look familiar if you’ve done any Web
Server development. In fact, Web Services are really Web Servers that handle the specific
SOAP response.

BizSnap Development: Writing SOAP-Based Web Services

CHAPTER 20

20

W
R

ITIN
G

SO
A

P-
B

A
SED

W
EB

S
ER

V
IC

ES

985

FIGURE 20.1
The New Soap Server Application dialog box.

In our example, we chose a CGI Stand-alone Executable. Click OK, and the wizard will gener-
ate a TWebModule as shown in Figure 20.2.

A Look at the TWebModule
Three components exist on the TWebModule. The purpose of these components is as follows:

• THTTPSoapDispatcher receives SOAP messages and dispatches them to the appropriate
Invoker as specified by its Dispatcher property.

26 chpt_20.qxd 11/19/01 12:07 PM Page 985

• THTTPSoapPascalInvoker is the component referred to by the THTTPSoap
Dispatcher.Dispatcher property. This component receives the SOAP message,
interprets it, and then invokes the invokable interface being called by the message.

• TWSDLHTMLPublish is used to publish the list of WSDL documents that contain the infor-
mation on available invokable interfaces. This allows clients other than Delphi to identify
and use the methods made available through a given Web Service.

There is nothing that you have to do with the Web Module at this point. However, you must
define and implement an invokable interface.

Enterprise Development

PART V
986

FIGURE 20.2
The Web Module generated from the wizard.

Defining an Invokable Interface
You must create a new unit in which you’ll place your interface definition. Listing 20.1 shows
the source code for the unit that we’ve created for our demonstration application, which you’ll
find on the CD. We’ve named this unit TempConverterIntf.pas.

LISTING 20.1 TempConverter.pas—Invokable Interface Definition

unit TempConverterIntf;

interface

type
ITempConverter = Interface(IInvokable)
[‘{6D239CB5-6E74-445B-B101-F76F5C0F6E42}’]
function FahrenheitToCelsius(AFValue: double): double; stdcall;
function CelsiusToFahrenheit(ACValue: double): double; stdcall;

26 chpt_20.qxd 11/19/01 12:07 PM Page 986

LISTING 20.1 Continued

function Purpose: String; stdcall;
end;

implementation
uses InvokeRegistry;
initialization
InvRegistry.RegisterInterface(TypeInfo(ITempConverter));

end.

This small unit contains only an interface that defines the methods that we intend to publish as
part of our Web Service. You’ll note that our interface descends from IInvokable. IInvokable
is a simple interface compiled with the {M+} compiler option to ensure that RTTI is compiled
into all of its descendants. This is necessary to allow the Web Services and Clients to translate
code and symbolic information passed to each other.

In our example, we’ve defined two methods for converting temperatures and a Purpose() method
that returns a string. Also, note that we provided a GUID for this interface to give it unique identi-
fication (to create a GUID in your own code, simply press Ctrl+Shift+G in the editor).

BizSnap Development: Writing SOAP-Based Web Services

CHAPTER 20

20

W
R

ITIN
G

SO
A

P-
B

A
SED

W
EB

S
ER

V
IC

ES

987

Note that each method defined in the invokable interface is defined using the std-
call calling convention. This convention must be used, or the invokable interface will
not work.

CAUTION

Finally, the last items to note are the user of the InvokeRegistry unit and the call to
InvRegistry.RegisterInterface(). The THTTPSoapPascalInvoker component must be able
to identify the invokable interface when it is passed a SOAP message. The RegisterInterface()
method call registers the interface with the invocation registry. When we discuss the client
code later, you’ll see that the RegisterInterface() call is also made on the client. The server
requires the registration so that it can identify the interface implementation to execute on an
interface call. On the client, the method is used to allow components to look up information on
invokable interfaces and how to call them. By placing the RegisterInterface() call in the
initialization block, we ensure that the method is called when the service is run.

Implementing an Invokable Interface
Implementing an invokable interface is no different from implementing any interface. Listing 20.2
shows the source for our temperature conversion interface.

26 chpt_20.qxd 11/19/01 12:07 PM Page 987

LISTING 20.2 TempConverterImpl.pas—Invokable Interface Implementation

unit TempConverterImpl;

interface
uses InvokeRegistry, TempConverterIntf;
type

TTempConverter = class(TInvokableClass, ITempConverter)
public
function FahrenheitToCelsius(AFValue: double): double; stdcall;
function CelsiusToFahrenheit(ACValue: double): double; stdcall;
function Purpose: String; stdcall;

end;

implementation

{ TTempConverter }

function TTempConverter.CelsiusToFahrenheit(ACValue: double): double;
begin
// Tf = (9/5)*Tc+32
Result := (9/5)*ACValue+32;

end;

function TTempConverter.FahrenheitToCelsius(AFValue: double): double;
begin
// Tc = (5/9)*(Tf-32)

Result := (5/9)*(AFValue-32);
end;

function TTempConverter.Purpose: String;
begin
Result := ‘Temperature converstions’;

end;

initialization
InvRegistry.RegisterInvokableClass(TTempConverter);

end.

First, note that our interface implementation is a descendant of the TInvokableClass object.
There are two primary reasons for doing this. The following reasons are take from the Delphi 6
online help:

Enterprise Development

PART V
988

26 chpt_20.qxd 11/19/01 12:07 PM Page 988

• The invocation registry (InvRegistry) knows how to create instances of TInvokableClass
and (because it has a virtual constructor) its descendants. This allows the registry to sup-
ply an invoker in a Web Service application with an instance of the invokable class that
can handle an incoming request.

• TInvokableClass is an interfaced object that frees itself when the reference count on its
interface drops to zero. Invoker components do not know when to free the implementa-
tion classes of the interfaces they call. Because TInvokableClass knows when to free
itself, you do not need to supply your own lifetime management for this object.

Additionally, you’ll see that our TTempConverter class implements the ITempConverter inter-
face. The implementation methods for performing temperature conversions are self-explanatory.

In the initialization section, the call to RegisterInvokableClass() registers the
TTempConverter class with the invocation registry. This is required only on the server
so that the Web Service will be able to invoke the appropriate interface implementation.

That is really all there is to creating a simple Web Service. At this point, you can compile the
Web Service and place it into an executable directory of a Web Server such as IIS or Apache.
Typically, this would be a \Scripts or \cgi-bin directory.

Testing the Web Service
The URL http://127.0.0.1/cgi-bin/TempConvWS.exe/wsdl/ITempConverter was used to
view the WSDL document generated from our Web Service. This service is hosted on an
Apache server. To get a list of all the service interfaces available from a Delphi-generated Web
service, the URL can be ended at wsdl. To see the specific WSDL document for a service,
append the interface name desired—in this case ItempConverter. The resulting WSDL docu-
ment is shown in Listing 20.3.

LISTING 20.3 Resulting WSDL Document from Web Service

<?xml version=”1.0” ?>
- <definitions xmlns=”http://schemas.xmlsoap.org/wsdl/”
➥xmlns:xs=”http://www.w3.org/2001/XMLSchema” name=”ITempConverterservice”
targetNamespace=”http://www.borland.com/soapServices/”
➥xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap”
xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”>
- <message name=”FahrenheitToCelsiusRequest”>
<part name=”AFValue” type=”xs:double” />
</message>

- <message name=”FahrenheitToCelsiusResponse”>
<part name=”return” type=”xs:double” />
</message>

BizSnap Development: Writing SOAP-Based Web Services

CHAPTER 20

20

W
R

ITIN
G

SO
A

P-
B

A
SED

W
EB

S
ER

V
IC

ES

989

26 chpt_20.qxd 11/19/01 12:07 PM Page 989

LISTING 20.3 Continued

- <message name=”CelsiusToFahrenheitRequest”>
<part name=”ACValue” type=”xs:double” />
</message>

- <message name=”CelsiusToFahrenheitResponse”>
<part name=”return” type=”xs:double” />
</message>
<message name=”PurposeRequest” />

- <message name=”PurposeResponse”>
<part name=”return” type=”xs:string” />
</message>

- <portType name=”ITempConverter”>
- <operation name=”FahrenheitToCelsius”>

<input message=”FahrenheitToCelsiusRequest” />
<output message=”FahrenheitToCelsiusResponse” />
</operation>

- <operation name=”CelsiusToFahrenheit”>
<input message=”CelsiusToFahrenheitRequest” />
<output message=”CelsiusToFahrenheitResponse” />
</operation>

- <operation name=”Purpose”>
<input message=”PurposeRequest” />
<output message=”PurposeResponse” />
</operation>
</portType>

- <binding name=”ITempConverterbinding” type=”ITempConverter”>
<soap:binding style=”rpc” transport=”http://schemas.xmlsoap.org/soap/http” />

- <operation name=”FahrenheitToCelsius”>
<soap:operation soapAction=”urn:TempConverterIntf-

➥ITempConverter#FahrenheitToCelsius” />
- <input>

<soap:body use=”encoded” encodingStyle=”http:
➥//schemas.xmlsoap.org/soap/encoding/”
namespace=”urn:TempConverterIntf-ITempConverter” />

</input>
- <output>

<soap:body use=”encoded” encodingStyle=
➥”http://schemas.xmlsoap.org/soap/encoding/”
namespace=”urn:TempConverterIntf-ITempConverter” />

</output>
</operation>

- <operation name=”CelsiusToFahrenheit”>
<soap:operation soapAction=”urn:TempConverterIntf-

➥ITempConverter#CelsiusToFahrenheit” />
- <input>

Enterprise Development

PART V
990

26 chpt_20.qxd 11/19/01 12:07 PM Page 990

LISTING 20.3 Continued

<soap:body use=”encoded” encodingStyle=”http:
➥//schemas.xmlsoap.org/soap/encoding/”
namespace=”urn:TempConverterIntf-ITempConverter” />

</input>
- <output>

<soap:body use=”encoded” encodingStyle=
➥”http://schemas.xmlsoap.org/soap/encoding/”
namespace=”urn:TempConverterIntf-ITempConverter” />

</output>
</operation>

- <operation name=”Purpose”>
<soap:operation soapAction=”urn:TempConverterIntf-ITempConverter#Purpose” />

- <input>
<soap:body use=”encoded” encodingStyle=

➥”http://schemas.xmlsoap.org/soap/encoding/”
namespace=”urn:TempConverterIntf-ITempConverter” />

</input>
- <output>

<soap:body use=”encoded” encodingStyle=
➥”http://schemas.xmlsoap.org/soap/encoding/”
namespace=”urn:TempConverterIntf-ITempConverter” />

</output>
</operation>
</binding>

- <service name=”ITempConverterservice”>
- <port name=”ITempConverterPort” binding=”ITempConverterbinding”>

<soap:address location=”http://127.0.0.1/cgi-bin/TempConvWS.exe
➥/soap/ITempConverter” />

</port>
</service>
</definitions>

Now we’ll show you how simple it is to invoke a Web Service.

Invoking a Web Service from a Client
To invoke the Web Service, you must know the URL used to retrieve the WSDL document.
This is the same URL we used earlier.

To demonstrate this, we used a simple application with single, main form (see Figure 20.3).

This application is straightforward: The user enters a temperature in the edit control, presses
the desired conversion button, and the converted value is displayed in the Temperature label.
The source for this application is shown in Listing 20.4.

BizSnap Development: Writing SOAP-Based Web Services

CHAPTER 20

20

W
R

ITIN
G

SO
A

P-
B

A
SED

W
EB

S
ER

V
IC

ES

991

26 chpt_20.qxd 11/19/01 12:07 PM Page 991

FIGURE 20.3
The Main Form to the Web Service Client Application.

LISTING 20.4 Web Service Client

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Rio, SoapHTTPClient;

type
TMainForm = class(TForm)
btnFah2Cel: TButton;
btnCel2Fah: TButton;
edtArguement: TEdit;
lblTemperature: TLabel;
lblResultValue: TLabel;
lblResult: TLabel;
HTTPRIO1: THTTPRIO;

private
{ Private declarations }

public
{ Public declarations }

end;

var
MainForm: TMainForm;

implementation

uses TempConvImport;

{$R *.dfm}

end.

Enterprise Development

PART V
992

26 chpt_20.qxd 11/19/01 12:07 PM Page 992

On the main form, we’ve placed a THTTPRIO component. A THTTPRIO represents a remotely
invokable object, and acts as a local proxy for a Web service that very likely resides on a
remote machine somewhere. The two TButton event handlers perform the code to invoke the
remove object from our Web Service. Note that we must cast the THTTPRIO component as
ITempConverter to refer to it. Then, we are able to invoke its method call.

Before any of this code will run, we must prepare the THTTPRIO component, which requires a
few steps.

Generating an Import Unit for the Remote Invokable
Object
Before we are able to use the THTTPRIO component, we need to create an import unit for our
invokable object. Fortunately, Borland made this easy by providing a wizard to handle this.
This wizard is available on the WebServices page of the Object Repository. When launched,
you’ll see the dialog box shown in Figure 20.4.

BizSnap Development: Writing SOAP-Based Web Services

CHAPTER 20

20

W
R

ITIN
G

SO
A

P-
B

A
SED

W
EB

S
ER

V
IC

ES

993

FIGURE 20.4
The Web Services Import Wizard.

In order to import a Web service into a client application, you put the WSDL path (the URL
specified earlier) in the Schema Location and then press the Generate button to create the
import unit. The import unit for our Web Service is shown in Listing 20.5 and looks almost
exactly like our original interface definition unit.

LISTING 20.5 Web Service Import Unit

Unit TempConvImport;

interface

uses Types, XSBuiltIns;

26 chpt_20.qxd 11/19/01 12:07 PM Page 993

LISTING 20.5 Continued

type

ITempConverter = interface(IInvokable)
[‘{684379FC-7D4B-4037-8784-B58C63A0280D}’]
function FahrenheitToCelsius(const AFValue: Double): Double; stdcall;
function CelsiusToFahrenheit(const ACValue: Double): Double; stdcall;
function Purpose: WideString; stdcall;

end;

implementation

uses InvokeRegistry;

initialization
InvRegistry.RegisterInterface(TypeInfo(ITempConverter),

➥ ‘urn:TempConverterIntf-ITempConverter’, ‘’);

end.

Once it has been generated, return to the main form of the client application and use the newly-
generated import unit. This will make the main form aware of the new interface.

Using the THTTPRIO Component
Three properties must be set for the THTTPRIO component. The first, WSDLLocation, needs
to contain, once again, the path to the WSDL document. Once set, you can drop down the
Service property to select the only available option. Then, do the same for the Port property.
At this point, you will be able to run the client.

Putting the Web Service to Work
Now that all the pieces are in place, create an event handler for the button’s OnClick event by
double-clicking on it. The event should look like Listing 20.6.

LISTING 20.6 OnClick Event Handler

procedure TMainForm.btnFah2CelClick(Sender: TObject);
var
TempConverter: ITempConverter;
FloatVal: Double;

begin
TempConverter := HTTPRIO1 as ITempConverter;
FloatVal := TempConverter.FahrenheitToCelsius(StrToFloat(edtArguement.Text));

Enterprise Development

PART V
994

26 chpt_20.qxd 11/19/01 12:07 PM Page 994

LISTING 20.6 Continued

lblResultValue.Caption := FloatToStr(FloatVal);
end;

procedure TMainForm.btnCel2FahClick(Sender: TObject);
var
TempConverter: ITempConverter;
FloatVal: Double;

begin
TempConverter := HTTPRIO1 as ITempConverter;
FloatVal := TempConverter.CelsiusToFahrenheit(StrToFloat(edtArguement.Text));
lblResultValue.Caption := FloatToStr(FloatVal);

end;

While entering this code, notice that Delphi’s CodeInsight is available for the Web service
itself. This is because Delphi has adapted the Web service into your application as a native
object. The implications here are very broad-ranging: any Web service brought into a Delphi
application, regardless of whether that service is deployed on Solaris, Windows, Linux, a main-
frame, and independent of what language the service is written in, will benefit from this. In
addition to CodeInsight, an application written to use a Web service will also gain compiler
typechecking and other debugging features because of this tight integration.

Summary
Web Services are a powerful new tool in distributed computing, using open standards and
existing infrastructure to enable interoperation within and between different platforms.

In this chapter, we showed you how to create a simple Web Service and the Client to use this
service. We demonstrated the steps required to deploy this server and to set up the client’s
THTTPRIO component properly. At this point, you should be familiar enough with developing
Web Services in greater complexity. You can examine many more examples of Web Services
on Borland’s community site. One that we highly recommend is “Managing Sessions with
Delphi 6 Web Services.” This article was written by Daniel Polistchuck (Article ID: 27575)
and can be read at http://community.borland.com/article/0,1410,27575,00.html.

BizSnap Development: Writing SOAP-Based Web Services

CHAPTER 20

20

W
R

ITIN
G

SO
A

P-
B

A
SED

W
EB

S
ER

V
IC

ES

995

26 chpt_20.qxd 11/19/01 12:07 PM Page 995

26 chpt_20.qxd 11/19/01 12:07 PM Page 996

CHAPTER

21
DataSnap Development
By Dan Miser

IN THIS CHAPTER
• Mechanics of Creating a Multitier

Application 998

• Benefits of the Multitier Architecture 999

• Typical DataSnap Architecture 1001

• Using DataSnap to Create an
Application 1007

• More Options to Make Your Application
Robust 1015

• Real-World Examples 1027

• More Client Dataset Features 1039

• Classic Mistakes 1041

• Deploying DataSnap Applications 1041

27 chpt_21.qxd 11/19/01 12:16 PM Page 997

Multitier applications are being talked about as much as any topic in computer programming
today. This is happening for good reason. Multitier applications hold many advantages over the
more traditional client/server applications. Borland’s DataSnap is one way to help you create and
deliver a multitier application using Delphi, building on techniques and skills you’ve accumulated
when using Delphi. This chapter walks you through some general information about multitier
application design and shows you how to apply those principles to create solid DataSnap applica-
tions.

Mechanics of Creating a Multitier Application
Because we’ll be talking about a multitier application, it might be helpful to first provide a frame
of reference to what a tier really is. A tier, in this sense, is a layer of an application that provides
some specific set of functionality. Here are the three basic tiers used in database applications:

• Data—The data tier is responsible for storing your data. Typically, this will be an
RDBMS such as Microsoft SQL Server, Oracle, or InterBase.

• Business—The business tier is responsible for retrieving data from the data tier in a for-
mat appropriate for the application and performing final validation of the data (also
known as enforcing business rules). This is also the application server layer.

• Presentation—Also known as the GUI tier, this tier is responsible for displaying the data
in an appropriate format in the client application. The presentation tier always talks to
the business tier. It never talks directly to the data tier.

In traditional client/server applications, you have an architecture similar to that shown in
Figure 21.1. Notice that the client libraries for data access must be located on every single
client machine. This has historically been a trouble spot when deploying client/server applica-
tions due to incompatible versions of DLLs and costly configuration management. Also,
because most of the business tier is located on each client, you need to update all the clients
every single time you need to update a business rule.

Enterprise Development

PART V
998

Client

BDE, ADO, et al.

DBMS

FIGURE 21.1
The traditional client/server architecture.

27 chpt_21.qxd 11/19/01 12:16 PM Page 998

In multitier applications, the architecture more closely resembles that shown in Figure 21.2
Using this architecture, you’ll find many benefits over the equivalent client/server application.

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

999

Client

IAppServer

MIDAS.DLL

Server

IAppServer

DBMS

B
D

E
, A

D
O

, et al.

MIDAS.DLL

FIGURE 21.2
Multitier architecture.

Benefits of the Multitier Architecture
We list the major benefits of the multitier architecture in the next few sections.

Centralized Business Logic
In most client/server applications, each client application is required to keep track of the individ-
ual business rules for a business solution. Not only does this increase the size of the executable,
but it also poses a challenge to the software developer to keep strict control over version mainte-
nance. If user A has an older version of the application than user B, the business rules might not
be performed consistently, thus resulting in logical data errors. Placing the business rules on the
application server requires only one copy of the business rules to be created and maintained.
Therefore, everyone using that application server will use the same copy of those business rules.
In client/server applications, the RDBMS could address some of the concerns, but not all
RDBMS systems provide the same set of features. Also, writing stored procedures makes your
application less portable. Using a multitier approach, your business rules are hosted independent
of your RDBMS, thus making database independence easier, while still providing some degree of
rule enforcement for your data.

27 chpt_21.qxd 11/19/01 12:16 PM Page 999

Thin-Client Architecture
In addition to the business rules mentioned, the typical client/server application also bears the
burden of the majority of the data-access layer. This produces a more sizable executable, more
commonly known as a fat client. For a Delphi database application accessing a SQL server
database, you would need to install the BDE, SQL Links, and/or ODBC to access the database,
along with the client libraries necessary to talk to the SQL server. After installing these files,
you would then need to configure each piece appropriately. This increases the install footprint
considerably. Using DataSnap, the data access is controlled by the application server, whereas
the data is presented to the user by the client application. This means that you only need to dis-
tribute the client application and one DLL to help your client talk to your server. This is clearly
a thin-client architecture.

Automatic Error Reconciliation
Delphi comes with a built-in mechanism to help with error reconciliation. Error reconciliation
is necessary in a multitier application for the same reasons it would be necessary with cached
updates. The data is copied to the client machine, where changes are made. Multiple clients
can be working on the same record. Error reconciliation helps the user determine what to do
with records that have changed since the user last downloaded the record. In the true Delphi
spirit, if this dialog doesn’t suit your needs, you can remove it and create one that does.

Briefcase Model
The briefcase model is based on the metaphor of a physical briefcase. You place your impor-
tant papers in your briefcase and transport them back and forth, unpacking them when needed.
Delphi provides a way to pack up all your data and take it with you on the road without requir-
ing a live connection to the application server or the database server.

Fault Tolerance
If your server machine becomes unavailable due to unforeseen circumstances, it would be nice
to dynamically change to a backup server without recompiling your client or server applica-
tions. Delphi provides functionality for this out of the box.

Load Balancing
As you deploy your client application to more people, you’ll inevitably start to saturate your
server’s bandwidth. There are two ways to attempt to balance the network traffic: static and
dynamic load balancing. For static load balancing, you would add another server machine and
have one half of your clients use server A, and the other half would access server B. However,
what if the clients who use server A put a greater strain on the server than those who use server

Enterprise Development

PART V
1000

27 chpt_21.qxd 11/19/01 12:16 PM Page 1000

B? Using dynamic load balancing, you could address this issue by telling each client applica-
tion which server to access. Many different dynamic load-balancing algorithms are available,
such as random, sequential, round robin, and least network traffic. Delphi 4 and above address
this by providing you with a component to implement sequential load balancing.

Typical DataSnap Architecture
Figure 21.3 shows how a typical DataSnap application looks after it’s created. At the heart of
this diagram is a Data Module constructed for this task. Several varieties are available. For
simplicity, we’ll use a COM-based one in this chapter, called the Remote Data Module (RDM).
The RDM is a descendant of the classic data module available since Delphi 2. This data mod-
ule is a special container that only allows non-visual components to be placed on it. The RDM
is no different in this respect. In addition, the RDM is actually a COM object—or to be more
precise, an Automation object. Services that you export from this RDM will be available for
use on client machines.

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1001

Form / DataModule Remote DataModule (RDM)

Client Server

TClientDataset

TDispatchConnection

TDatasetProvider TDataset

FIGURE 21.3
A typical DataSnap application.

Let’s look at some of the options available to you when creating an RDM. Figure 21.4 shows
the dialog box that Delphi presents when you select File, New, Remote Data Module.

Server
Now that you’ve seen how a typical DataSnap application is put together, we will show you
how to make that happen in Delphi. We’ll begin with a look at some of the choices available
when setting up the server.

27 chpt_21.qxd 11/19/01 12:16 PM Page 1001

FIGURE 21.4
The New Remote Data Module dialog box.

Instancing Choices
Specifying an instancing choice affects how many copies of the server process that will be
launched. Figure 21.5 shows how the choices made here control how your server behaves.

Enterprise Development

PART V
1002

Client1 Server1

Client2 Server2

Client3

Single instance Multi instance

Apartment Threading

Server3

Client1

Client2

Client3

Server

Client1

Client2

Client3

Thread1

Thread2

Thread3

Server

FIGURE 21.5
Server behavior based on instancing options.

Here are the different instancing choices available to a COM server:

• ciMultiInstance—Each client that accesses the COM server will use the same server
instance. By default, this implies that one client must wait for another before being
allowed to operate on the COM server. See the next section, “Threading Choices,” for
more detailed information on how the value specified for the Threading Model also
affects this behavior. This is equivalent to serial access for the clients. All clients must

27 chpt_21.qxd 11/19/01 12:16 PM Page 1002

share one database connection; therefore, the TDatabase.HandleShared property must
be True.

• ciSingleInstance—Each client that accesses the COM server will use a separate
instance. This implies that each client will consume server resources for each server
instance to be loaded. This is equivalent to parallel access for the clients. If you decide to
go with this choice, beware of BDE limits that could make this choice less attractive.
Specifically, BDE 5.01 has a 48-process limit per machine. Because each client spawns a
new server process, you can only have 48 clients connected at one time.

• ciInternal—The COM server cannot be created from external applications. This is use-
ful when you want to control access to a COM object through a proxy layer. One exam-
ple of using this instancing choice can be found in the <DELPHI>\DEMOS\MIDAS\POOLER
example.

Also note that the configuration of the DCOM object has a direct effect on the object instanc-
ing mode. See the “Deploying DataSnap Applications” section for more information on this
topic.

Threading Choices
The threading support in Delphi 5 saw a drastic change for the better. In Delphi 4, selecting the
threading model for an EXE server was meaningless. The flag merely marked the Registry to
tell COM that a DLL was capable of running under the selected threading model. With Delphi
5 and 6, the threading model choice now applies to EXE servers by allowing COM to thread
the connections without using any external code. The following is a summary of the threading
choices available for an RDM:

• Single—Selecting Single means that the server is only capable of handling one request at
a time. When using Single, you need not worry about threading issues because the server
runs in one thread and COM handles the details of synchronizing the messages for you.
However, this is the worst selection you can make if you plan on having a multiuser sys-
tem because client B would then need to wait for client A to finish processing before
client B could even start working. This obviously isn’t a good situation because client
A could be doing an end-of-day summary report or some other similar time-intensive
operation.

• Apartment—Selecting the Apartment threading model gives you the best of all possible
worlds when combined with ciMultiInstance instancing. In this scenario, all the clients
share one server process because of ciMultiInstance, but the work done on the server
from one client doesn’t block another client from doing work due to the Apartment
threading choice. When using apartment threading, you’re guaranteed that the instance
data of your RDM is safe, but you need to protect access to global variables using some

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1003

27 chpt_21.qxd 11/19/01 12:16 PM Page 1003

thread synchronization technique, such as PostMessage(), critical sections, mutexes,
semaphores, or the Delphi wrapper class TMultiReadExclusiveWriteSynchronizer.
This is the preferred threading model for BDE datasets. Note that if you do use this
threading model with BDE datasets, you need to place a TSession component on your
RDM and set the AutoSessionName property to True to help the BDE conform to its
internal requirements for threading.

• Free—This model provides even more flexibility in server processing by allowing multi-
ple calls to be made from the client to the server simultaneously. However, along with
that power comes responsibility. You must take care to protect all data from thread con-
flicts—both instance data and global variables. This is the preferred threading model
when using ADO.

• Both—This setting is effectively the same as the Free setting, with one exception—call-
backs are serialized automatically.

Data-Access Choices
Delphi 6 Enterprise comes with many different data-access choices. The BDE continues to be
supported, thus allowing you to use TDBDataset components, such as TTable, TQuery, and
TStoredProc. However, DBExpress provides a more flexible architecture for data access. In
addition, you also have the choice of supporting ADO and having direct InterBase access
through new TDataset components.

Advertising Services
The RDM is responsible for communicating which services will be available to clients. If the
RDM is going to make a TQuery available for use on the client, you need to place the TQuery
on the RDM along with a TDatasetProvider. The TDatasetProvider component is then tied
to the TQuery via the TDatasetProvider.Dataset property. Later, when a client comes along
and wants to use the data from the TQuery, it can do so by binding to the TDatasetProvider
you just created. You can control which providers are visible to the client by setting the
TDatasetProvider.Exported property to True or False.

If, on the other hand, you don’t need an entire dataset exposed from the server and just have a
need for the client to make a method call to the server, you can do that, too. While the RDM
has focus, select the Edit, Add To Interface menu option and fill in the dialog box with a stan-
dard method prototype (which is simply a declaration matching a method you’ll create in your
implementation). You can then specify the implementation of this method in code as you
always have, keeping in mind the implications of your threading model.

Client
After building the server, you need to create a client to use the services provided by the server.
Let’s take a look at some of the options available when building your DataSnap client.

Enterprise Development

PART V
1004

27 chpt_21.qxd 11/19/01 12:16 PM Page 1004

Connection Choices
Delphi’s architecture for connecting the client to the server starts with the TDispatchConnection.
This base object is the parent of all the connection types listed later. When the connection type
is irrelevant for a specific section, TDispatchConnection will be used to denote that fact.

TDCOMConnection provides core security and authentication by using the standard Windows
implementation of these services. This connection type is especially useful if you’re using this
application in an intranet/extranet setup (that is, where the people using your application are
known from the domain’s perspective). You can use early binding when using DCOM, and you
can use callbacks and ConnectionPoints easily. (You can use callbacks when using sockets,
too, but you’re limited to using late binding to do so.) The drawbacks of using this connection
are as follows:

• Difficult configuration in many cases

• Not a firewall-friendly connection type

• Requires installation of DCOM95 for Windows 95 machines

TSocketConnection is the easiest connection to configure. In addition, it only uses one port for
DataSnap traffic, so your firewall administrators will be happier than if they had to make
DCOM work through the firewall. You must be running ScktSrvr (found in the <DELPHI>\BIN
directory) to make this setup work, so there’s one extra file to deploy and run on the server.
Delphi 4 required you to have WinSock2 installed when using this connection type, which
meant another installation for Windows 9x clients. However, if you’re not using callbacks, you
might want to consider setting TSocketConnection.SupportCallbacks to False. This allows
you to stick with WinSock 1 on the client machines.

You can also use TCORBAConnection if you want to use CORBA as your transport protocol.
CORBA can be thought of as the open-standard equivalent of DCOM, and it includes many
features for autodiscovery, failover, and load-balancing automatically performed for your appli-
cation. You’ll want to look at CORBA as you migrate your DataSnap applications to allow for
cross-platform and cross-language connections.

The TWebConnection component is also available to you. This connection component allows
traffic to be transported over HTTP or HTTPS. When using this connection type, some limita-
tions are as follows:

• Callbacks of any type aren’t supported.

• The client must have WININET.DLL installed.

• The server machine must be running MS Internet Information Server (IIS) 4.0 or
Netscape 3.6 or greater.

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1005

27 chpt_21.qxd 11/19/01 12:16 PM Page 1005

However, these limitations seem well worth it when you have to deliver an application across
the Internet or through a firewall that’s not under your control.

Delphi 6 introduced a new type of connection: the TSOAPConnection. This connection behaves
similarly to the WebConnection, but connects to a DataSnap Web service. Unlike when
using other DataSnap connection components, you can’t use the AppServer property of
TSoapConnection to call methods of the application server’s interface that aren’t IAppServer
methods. Instead, to communicate with a SOAP data module on the application interface, use a
separate THTTPRIO object.

Note that all these transports assume a valid installation of TCP/IP. The one exception to this is
if you’re using two Windows NT machines to communicate via DCOM. In that case, you can
specify which protocol DCOM will use by running DCOMCNFG and moving the desired pro-
tocol to the top of the list on the Default Protocols tab. DCOM for Windows 9x only supports
TCP/IP.

Connecting the Components
From the diagram in Figure 21.3, you can see how the DataSnap application communicates
across tiers. This section points out the key properties and components that give the client the
ability to communicate with the server.

To communicate from the client to the server, you need to use one of the TDispatchConnection
components listed previously. Each component has properties specific only to that connection
type, but all of them allow you to specify where to find the application server. The
TDispatchConnection is analogous to the TDatabase component when used in client/server
applications because it defines the link to the external system and serves as the conduit for
other components when communicating with elements from that system.

Once you have a connection to the server, you need a way to use the services you exposed on
the server. This can be accomplished by dropping a TClientDataset on your client and hook-
ing it up to the TDispatchConnection via the RemoteServer property. Once this connection is
made, you can view a list of the exported providers on the server by dropping down the list in
the ProviderName property. You’ll see a list of exported providers that exist on the server. In
this way, the TClientDataset component is similar to a TTable in client/server applications.

You also have the ability to call custom methods that exist on the server by using the
TDispatchConnection.AppServer property. For example, the following line of code will call
the Login function on the server, passing two string parameters and returning a Boolean value:

LoginSucceeded := DCOMConnection1.AppServer.Login(UserName, Password);

Enterprise Development

PART V
1006

27 chpt_21.qxd 11/19/01 12:16 PM Page 1006

Using DataSnap to Create an Application
Now that we’ve covered many of the options available when building DataSnap applications,
let’s use DataSnap to actually create an application to put that theory into practice.

Setting Up the Server
Let’s focus on the mechanics of building the application server first. After you have created the
server, we will explore how to build the client.

Remote Data Module
The Remote Data Module (RDM) is central to creating an application server. To create an
RDM for a new application, select the Remote Data Module icon from the Multitier tab of the
Object Repository (available by selecting File, New). A dialog box will be displayed to allow
for initial customization of some options that pertain to the RDM.

The name for the RDM is important because the ProgID for this application server will be
built using the project name and RDM name. For example, if the project (DPR) is named
AppServer and the RDM name is MyRDM, the ProgID will be AppServer.MyRDM. Be sure to
select the appropriate instancing and threading options based on the preceding explanations
and the behavior desired for this application server.

Both TSocketConnection and TWebConnection bypass Windows’ default authentication pro-
cessing, so it is imperative to make sure that the only objects that run on the server are the
ones that you specify. This is accomplished by marking the registry with certain values to let
DataSnap know that you intended to allow these objects to run. Fortunately, all that is required
to do this is to override the UpdateRegistry class method. See Listing 21.1 for the implemen-
tation provided by Delphi automatically when you create a new Remote DataModule.

LISTING 21.1 UpdateRegistry Class Method from a Remote DataModule

class procedure TDDGSimple.UpdateRegistry(Register: Boolean;
const ClassID, ProgID: string);
begin
if Register then
begin
inherited UpdateRegistry(Register, ClassID, ProgID);
EnableSocketTransport(ClassID);
EnableWebTransport(ClassID);

end else
begin
DisableSocketTransport(ClassID);
DisableWebTransport(ClassID);

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1007

27 chpt_21.qxd 11/19/01 12:16 PM Page 1007

LISTING 21.1 Continued

inherited UpdateRegistry(Register, ClassID, ProgID);
end;

end;

This method gets called whenever the server gets registered or unregistered. In addition to the
COM-specific registry entries that get created in the inherited UpdateRegistry call, you can
call the EnableXXXTransport() and DisableXXXTransport() methods to mark this object as
secure.

Enterprise Development

PART V
1008

TSocketConnection will only show registered, secure objects in the ServerName prop-
erty. If you don’t want to enforce security at all, uncheck the Connections, Registered
Objects Only menu option in the SCKTSRVR.

NOTE

Providers
The application server will be responsible for providing data to the client, so you must find a
way to serve data from the server in a format that’s useable on the client. Fortunately,
DataSnap provides a TDatasetProvider component to make this step easy.

Start by dropping a TQuery on the RDM. If you’re using a RDBMS, you’ll inevitably need
a TDatabase component set up, too. For now, you’ll tie the TQuery to the TDatabase and spec-
ify a simple query in the SQL property, such as select * from customer. Last, drop a
TDatasetProvider component onto the RDM and tie it to the TQuery via the Dataset prop-
erty. The Exported property on the DatasetProvider determines whether this provider will be
visible to clients. This property provides the ability to easily control which providers are visi-
ble at runtime, as well.

Although the discussion in this section focuses on using the BDE-based TDBDataset,
the same principles apply if you want to use any other TDataset descendant for your
data access. Several possibilities exist out of the box, such as DBExpress, ADO, and
InterBase Express, and several third-party components are available to access specific
databases.

NOTE

27 chpt_21.qxd 11/19/01 12:16 PM Page 1008

Registering the Server
Once the application server is built, it needs to be registered with COM to make it available for
the client applications that will connect with it. The Registry entries discussed in Chapter 15,
“COM Development” are also used for DataSnap servers. You just need to run the server appli-
cation, and the Registry setting will be added. However, before registering the server,
be sure to save the project first. This ensures that the ProgID will be correct from this point
forward.

If you would rather not run the application, you can pass the parameter /regserver on the
command line when running the application. This will just perform the registration process and
immediately terminate the application. To remove the Registry entries associated with this
application, you can use the /unregserver parameter.

Creating the Client
Now that you have a working application server, let’s look at how to perform some basic tasks
with the client. We will discuss how to retrieve the data, how to edit the data, how to update
the database with changes made on the client, and how to handle errors during the database
update process.

Retrieving Data
Throughout the course of a database application, it’s necessary to bring data from the server to
the client to edit that data. By bringing the data to a local cache, you can reduce network traffic
and minimize transaction times. In previous versions of Delphi, you would use cached updates
to perform this task. However, the same general steps still apply to DataSnap applications.

The client talks to the server via a TDispatchConnection component. Providing the
TDispatchConnection the name of the computer where the application server lives accom-
plishes this task easily. If you use TDCOMConnection, you can specify the fully qualified
domain name (FQDN; for example, nt.dmiser.com), the numeric IP address of the computer
(for example, 192.168.0.2), or the NetBIOS name of the computer (for example, nt). However,
because of a bug in DCOM, you cannot use the name localhost, or even some IP addresses,
reliably in all cases. If you use TSocketConnection, you specify numeric IP addresses in the
Address property or the FQDN in the Host property. We’ll take a look at the options for
TWebConnection a little later.

Once you specify where the application server resides, you need to give the TDispatch
Connection a way to identify that application server. This is done via the ServerName property.
Assigning the ServerName property fills in the ServerGUID property for you. The ServerGUID
property is the most important part. As a matter of fact, if you want to deploy your client appli-
cation in the most generic manner possible, be sure to delete the ServerName property and just
use the ServerGUID.

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1009

27 chpt_21.qxd 11/19/01 12:16 PM Page 1009

At this point, setting TDispatchConnection.Connected to True will connect you to the appli-
cation server.

Now that you have the client talking to the server, you need a way to use the provider you cre-
ated on the server. Do this by using the TClientDataset component. A TClientDataSet is
used to link to a provider (and, thus, the TQuery that is linked to the provider) on the server.

First, you must tie the TClientDataSet to the TDispatchConnection by assigning the
RemoteServer property of the TClientDataSet. Once you’ve done that, you can get a list of
the available providers on that server by looking at the list in the ProviderName property.

At this point, everything is now set up properly to open a ClientDataset.

Because the TClientDataSet is a virtual TDataset descendant, you can build on many of the
techniques that you’ve already learned using the TDBDataset components in client/server appli-
cations. For example, setting Active to True opens the TClientDataSet and displays the data.
The difference between this and setting TTable.Active to True is that the TClientDataSet is
actually getting its data from the application server.

Editing Data on the Client
All the records passed from the server to the TClientDataSet are stored in the Data property
of the TClientDataSet. This property is a variant representation of the DataSnap data packet.
The TClientDataset knows how to decode this data packet into a more useful format. The
reason the property is defined as a variant is because of the limited types available to the COM
subsystem when using type library marshaling.

As you manipulate the records in the TClientDataset, a copy of the inserted, modified, or
deleted records gets placed in the Delta property. This allows DataSnap to be extremely effi-
cient when it comes to applying updates back to the application server, and eventually the data-
base. Only the changed records need to be sent back to the application server.

The format of the Delta property is also very efficient. It stores one record for every insert or
delete, and it stores two records for every update. The updated records are stored in an efficient
manner, as well. The unmodified record is provided in the first record, whereas the correspond-
ing modified record is stored next. However, only the changed fields are stored in the modified
record to save on storage.

Enterprise Development

PART V
1010

If you use TDCOMConnection, the ServerName list will only display the list of servers
that are registered on the current machine. However, TSocketConnection is smart
enough to display the list of application servers registered on the remote machine.

NOTE

27 chpt_21.qxd 11/19/01 12:16 PM Page 1010

One interesting aspect of the Delta property is that it’s compatible with the Data property. In
other words, it can be assigned directly to another ClientDataset component’s Data property.
This will allow you to investigate the current contents of the Delta property at any given time.

Several methods are available to deal with the editing of data on the TClientDataset. We’ll
refer to these methods as change control methods. The change control methods allow you to
modify the changes made to the TClientDataset in a variety of ways.

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1011

TClientDataset has proven useful in more ways than originally intended. It also
serves as an excellent method for storing in-memory tables, which has nothing to do
with DataSnap specifically. Additionally, because of the way it exposes data through
the Data and Delta properties, it has proven useful in a variety of OOP pattern
implementations. It is beyond the scope of the chapter to discuss these techniques.
However, you will find white papers on these topics at http://www.xapware.com or
http://www.xapware.com/ddg.

NOTE

Undoing Changes
Most users have used a word-processing application that permits the Undo operation. This
operation takes your most previous action and rolls it back to the state right before you started.
Using TClientDataset, you can call cdsCustomer.UndoLastChange() to simulate that behav-
ior. The undo stack is unlimited, allowing the user to continue to back up all the way to the
beginning of the editing session if so desired. The parameter you pass to this method specifies
whether the cursor is positioned to the record being affected.

If the user wanted to get rid of all her updates at once, there’s an easier way than calling
UndoLastChange() repeatedly. You can simply call cdsCustomer.CancelUpdates() to cancel
all changes that have been made in a single editing session.

Reverting to the Original Version
Another possibility is to allow the user to restore a specific record back to the state it was in
when the record was first retrieved. Do this by calling cdsCustomer.RevertRecord() while the
TClientDataset is positioned on the record you intend to restore.

Client-Side Transactions: SavePoint
The ClientDataset.SavePoint property provides the ability to use client-side transactions.
This property is ideal for developing what-if scenarios for the user. The act of retrieving the
value of the SavePoint property stores a snapshot of the data at that point in time. The user
can continue to edit as long as needed. If, at some point, the user decides that the baseline set

27 chpt_21.qxd 11/19/01 12:16 PM Page 1011

of data is actually what she wanted, that saved variable can be assigned back to SavePoint and
the TClientDataset is returned back to the same state it was in at the time when the initial
snapshot was taken. It’s worth noting that you can have multiple, nested levels of SavePoint
for a complex scenario as well.

Enterprise Development

PART V
1012

A word of caution about SavePoint is in order: You can invalidate a SavePoint by
calling UndoLastChange() past the point that’s currently saved. For example, assume
that the user edits two records and issues a SavePoint. At this point, the user edits
another record. However, she uses UndoLastChange() to revert changes twice in a
row. Because the TClientDataset state is now in a state prior to the SavePoint, the
SavePoint is in an undefined state.

CAUTION

Reconciling Data
After you’ve finished making changes to the local copy of data in the TClientDataset, you’ll
need to signal your intent to apply these changes back to the database. This is done by calling
cdsCustomer.ApplyUpdates(). At this point, DataSnap will take the Delta from cdsCustomer
and pass it to the application server, where DataSnap will apply these changes to the database
server using the reconciliation mechanism that you chose for this dataset. All updates are per-
formed inside the context of a transaction. We’ll cover how errors are handled during this
process shortly.

The parameter you pass into ApplyUpdates() specifies the number of errors the update process
will allow before considering the update to be bad, and subsequently, roll back all the changes
that have been made. The word errors here refers to key violation errors, referential integrity
errors, or any other business logic or database errors. If you specify zero for this parameter,
you’re telling DataSnap that you won’t tolerate any errors. Therefore, if an error does occur, all
the changes you made will not be committed to the database. This is the setting that you’ll use
most often because it most closely matches solid database guidelines and principles.

However, if you want, you can specify that a certain number of errors can occur, while still
committing all the records that were successful. The ultimate extension of this concept is to
pass -1 as the parameter to ApplyUpdates(). This tells DataSnap that it should commit every
single record that it can, regardless of the number of errors encountered along the way. In other
words, the transaction will always commit when using this parameter.

If you want to take ultimate control over the update process—including changing the SQL that
will execute for an insert, update, or delete—you can do so in the TDatasetProvider.Before
UpdateRecord() event. For example, when a user wants to delete a record, you might not want

27 chpt_21.qxd 11/19/01 12:16 PM Page 1012

to actually perform a delete operation on the database. Instead, a flag is set to tell applications
that this record isn’t available. Later, an administrator can review these deletions and commit
the physical delete operation. The following example shows how to do this:

procedure TDataModule1.Provider1BeforeUpdateRecord(Sender: TObject;
SourceDS: TDataset; DeltaDS: TClientDataset; UpdateKind: TUpdateKind;
var Applied: Boolean);

begin
if UpdateKind=ukDelete then
begin
Query1.SQL.Text:=’update CUSTOMER set STATUS=”DEL” where ID=:ID’;
Query1.Params[0].Value:=DeltaDS.FieldByName(‘ID’).OldValue;
Query1.ExecSQL;
Applied:=true;

end;
end;

You can create as many queries as you want, controlling the flow and content of the update
process based on different factors, such as UpdateKind and values in the Dataset. When
inspecting or modifying records of the DeltaDS, be sure to use the OldValue and NewValue
properties of the appropriate TField. Using the TField.AsXXX properties will yield unpre-
dictable results.

In addition, you can enforce business rules here or avoid posting a record to the database alto-
gether. Any exception you raise here will wind its way through DataSnap’s error-handling
mechanism, which we’ll cover next.

After the transaction is finished, you get an opportunity to deal with errors. The error stops at
events on both the server and the client, giving you a chance to take corrective action, log the
error, or do anything else you want to with it.

The first stop for the error is the DatasetProvider.OnUpdateError event. This is a great place
to deal with errors that you’re expecting or can resolve without further intervention from the
client.

The final destination for the error is back on the client, where you can deal with the error by
letting the user help determine what to do with the record. You do this by assigning an event
handler to the TClientDataset.OnReconcileError event.

This is especially useful because DataSnap is based on an optimistic record-locking strategy.
This strategy allows multiple users to work on the same record at the same time. In general,
this causes conflicts when DataSnap tries to reconcile the data back to the database because the
record has been modified since it was retrieved.

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1013

27 chpt_21.qxd 11/19/01 12:16 PM Page 1013

Using Borland’s Error Reconciliation Dialog Box
Fortunately, Borland provides a standard error reconciliation dialog box that you can use to
display the error to the user. Figure 21.6 shows this dialog box. The source code is also pro-
vided for this unit, so you can modify it if it doesn’t suit your needs. To use this dialog box,
select File, New in Delphi’s main menu and then select Reconcile Error Dialog from the
Dialogs page. Remember to remove this unit from the Autocreate Forms list; otherwise, you’ll
receive compile errors.

Enterprise Development

PART V
1014

FIGURE 21.6
Reconcile Error dialog box in action.

The main functionality of this unit is wrapped up in the function HandleReconcileError().
A high degree of correlation exists between the OnReconcileError event and the
HandleReconcileError function. As a matter of fact, the typical course of action in the
OnReconcileError event is to call the HandleReconcileError function. By doing this, the
application allows the end user on the client machine to interact with the error reconciliation
process on the server machine and specify how these errors should be handled. Here’s the code:

procedure TMyForm.CDSReconcileError(Dataset: TCustomClientDataset;
E: EReconcileError; UpdateKind: TUpdateKind;
var Action: TReconcileAction);

begin
Action:=HandleReconcileError(Dataset, UpdateKind, E);

end;

The value of the Action parameter determines what DataSnap will do with this record. We’ll
touch on some other factors that affect which actions are valid at this point a little later. The
following list shows the valid actions:

• raSkip—Do not update this specific database record. Leave the changed record in the
client cache.

27 chpt_21.qxd 11/19/01 12:16 PM Page 1014

• raMerge—Merge the fields from this record into the database record. This record won’t
apply to records that were inserted.

• raCorrect—Update the database record with the values you specify. When selecting this
action in the Reconcile Error dialog box, you can edit the values in the grid. You cannot
use this method if another user changed the database record.

• raCancel—Don’t update the database record. Remove the record from the client cache.

• raRefresh—Update the record in the client cache with the current record in the database.

• raAbort—Abort the entire update operation.

Not all these options make sense (and therefore won’t be displayed) in all cases. One
requirement to have the raMerge and raRefresh actions available is that DataSnap can
identify the record via the primary key of the database. This is done by setting the
TField.ProviderFlags.pfInKey property to True on the TDataset component of the RDM
for all fields in your primary key.

More Options to Make Your Application Robust
Once you master these basics, the inevitable question is “What next?” This section is provided
to give you some more insight into DataSnap and how you can use these features to make your
applications act as you want them to act.

Client Optimization Techniques
The model of retrieving data is fairly elegant. However, because the TClientDataset stores
all its records in memory, you need to be very careful about the resultsets you return to the
TClientDataSet. The cleanest approach is to ensure that the application server is well
designed and only returns the records the user is interested in. Because the real world seldom
follows the utopian solution, you can use the following technique to help throttle the number
of records you retrieve at one time to the client.

Limiting the Data Packet
When opening a TClientDataSet, the server retrieves the number of records specified in the
TClientDataSet.PacketRecords property at one time. However, DataSnap will retrieve
enough records to fill all available visual controls with data. For example, if you have a TDBGrid
on a form that can display 10 records at once, and you specify a value of 5 for PacketRecords,
the initial fetch of data will contain 10 records. After that, the data packet will contain just
5 records per fetch. If you specify -1 for this property (the default), all records will be trans-
ferred. If you specify a value greater than zero for PacketRecords, this introduces state to your
application. This is because of the requirement that the app server must keep track of each
client’s cursor position so the app server can return the appropriate packet of records to the

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1015

27 chpt_21.qxd 11/19/01 12:16 PM Page 1015

client requesting a packet. However, you can keep track of the state on the client, passing the
last record position to the server, as appropriate. For a simple example, look at this code, which
does exactly that:

Server RDM:
procedure TStateless.DataSetProvider1BeforeGetRecords(Sender: TObject;
var OwnerData: OleVariant);

begin
with Sender as TDataSetProvider do
begin
DataSet.Open;
if VarIsEmpty(OwnerData) then
DataSet.First

else
begin
while not DataSet.Eof do
begin
if DataSet.FieldByName(‘au_id’).Value = OwnerData then
break;

end;
end;

end;
end;

procedure TStateless.DataSetProvider1AfterGetRecords(Sender: TObject;
var OwnerData: OleVariant);

begin
with Sender as TDataSetProvider do
begin
OwnerData := Dataset.FieldValues[‘au_id’];
DataSet.Close;

end;
end;

Client:
procedure TForm1.ClientDataSet1BeforeGetRecords(Sender: TObject;
var OwnerData: OleVariant);

begin
// KeyValue is a private OleVariant variable
if not (Sender as TClientDataSet).Active then
KeyValue := Unassigned;

OwnerData := KeyValue;
end;

procedure TForm1.ClientDataSet1AfterGetRecords(Sender: TObject;
var OwnerData: OleVariant);

Enterprise Development

PART V
1016

27 chpt_21.qxd 11/19/01 12:16 PM Page 1016

begin
KeyValue := OwnerData;

end;

One last point when using partial fetching is that executing TClientDataSet.Last() retrieves
the rest of the records left in the resultset. This can be done innocently by pressing Ctrl+End in
the TDBGrid. To work around this problem, you should set TClientDataSet.FetchOnDemand to
False. This property controls whether a data packet will be retrieved automatically when the
user has read through all the existing records on the client. To emulate that behavior in code,
you can use the GetNextPacket() method, which will return the next data packet for you.

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1017

Note that the previous code sample walks through the dataset until it finds the
proper record. This is done so that unidirectional datasets such as DBExpress can use
this same code without modification. Of course, there are many ways to find the
proper record, such as modifying an SQL statement or parameterizing a query, but
this sample concentrates on the mechanics of passing around the key between client
and server.

NOTE

Using the Briefcase Model
Another optimization to reduce network traffic is to use the briefcase model support offered
with DataSnap. Do this by assigning a filename to the TClientDataset.Filename property. If
the file specified in this property exists, the TClientDataSet will open up the local copy of the
file as opposed to reading the data directly from the application server. In addition to allowing
users to work with files while disconnected from the network, this is tremendously useful for
items that rarely change, such as lookup tables.

If you specify a TClientDataset.Filename that has an .XML extension, the data
packet will be stored in XML format, enabling you to use any number of XML tools
available to work on the briefcase file.

TIP

Sending Dynamic SQL to the Server
Some applications require modification to the underlying TDataset’s core properties, such as
the SQL property of the TQuery, from the client. As long as solid multitier principles are fol-
lowed, this can actually be a very efficient and elegant solution. Delphi makes this task trivial
to accomplish.

27 chpt_21.qxd 11/19/01 12:16 PM Page 1017

Two steps are required to allow for ad hoc queries. First, you simply assign the query statement
to the TClientDataset.CommandText property. Second, you must also include the
poAllowCommandText option in the DatasetProvider.Options property. When you open the
TClientDataSet or call TClientDataSet.Execute(), the CommandText is passed across to the
server. This same technique also works if you want to change the table or stored procedure
name on the server.

Application Server Techniques
DataSnap now has many different events for you to customize the behavior of your application.
BeforeXXX and AfterXXX events exist for just about every method on the IAppServer interface.
These two events in particular will be useful as you migrate your application server to be com-
pletely stateless.

Resolving Record Contention
The preceding discussion of the resolving mechanism included a brief mention that two users
working on the same record would cause an error when the second user tried to apply the
record back to the database. Fortunately, you have full control over detecting this collision.

The TDatasetProvider.UpdateMode property is used to generate the SQL statement that will
be used to check whether the record has changed since it was last retrieved. Consider the sce-
nario in which two users edit the same record. Here’s how DatasetProvider.UpdateMode
affects what happens to the record for each user:

• upWhereAll—This setting is the most restrictive setting but provides the greatest deal of
assurance that the record is the same one the user retrieved initially. If two users edit the
same record, the first user will be able to update the record, whereas the second user will
receive the infamous Another user changed the record. error message. If you want
to further refine which fields are used to perform this check, you can remove the
pfInWhere element from the corresponding TField.ProviderFlags property.

• upWhereChanged—This setting allows the two users to actually edit the same record at
the same time; as long as both users edit different fields in the same record, there will be
no collision detection. For example, if user A modifies the Address field and updates the
record, user B can still modify the BirthDate field and update the record successfully.

• upWhereKeyOnly—This setting is the most forgiving of all. As long as the record exists
on the database, every user’s change will be accepted. This will always overwrite the
existing record in the database, so it can be viewed as a way to provide “last one in
wins” functionality.

Enterprise Development

PART V
1018

27 chpt_21.qxd 11/19/01 12:16 PM Page 1018

Miscellaneous Server Options
Quite a few more options are available in the TDatasetProvider.Options property to control
how the DataSnap data packet behaves. For example, adding poReadOnly will make the dataset
read-only on the client. Specifying poDisableInserts, poDisableDeletes, or poDisableEdits
prevents the client from performing that operation and triggers the corresponding OnEditError
or OnDeleteError event to be fired on the client.

When using nested datasets, you can have updates or deletes cascade from the master
record to the detail records if you add poCascadeUpdates or poCascadeDeletes to the
DatasetProvider.Options property. Using this property requires your back-end database
to support cascading referential integrity.

One shortcoming in previous versions of DataSnap was the inability to easily merge changes
made on the server into your TClientDataset on the client. The user had to resort to using
RefreshRecord (or possibly Refresh to repopulate the entire dataset in some cases) to
achieve this.

By setting DatasetProvider.Options to include poPropogateChanges, all the changes made to
your data on the application server (for example, in the DatasetProvider.BeforeUpdateRecord
event to enforce a business rule) are now automatically brought back into the TClientDataSet.
Furthermore, setting TDatasetProvider.Options to include poAutoRefresh will automatically
merge AutoIncrement and default values back into the TClientDataSet.

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1019

The poAutoRefresh option is non-functional in Delphi 5 and 6. poAutoRefresh will
only work with a later version of Delphi that includes the fix for this bug. The
workaround in the meantime is to either call Refresh() for your TClientDatasets or
take control of the entire process of applying updates yourself.

CAUTION

The entire discussion of the reconciliation process thus far has revolved around the default
SQL-based reconciliation. This means that all the events on the underlying TDataset will
not be used during the reconciliation process. The TDatasetProvider.ResolveToDataset
property was created to use these events during reconciliation. For example, if
TDatasetProvider.ResolveToDataset is true, most of the events on the TDataset will be trig-
gered. Be aware that the events used are only called when applying updates back to the server.
In other words, if you have a TQuery.BeforeInsert event defined on the server, it will only
fire on the server once you call TClientDataSet.ApplyUpdates. The events don’t integrate
into the corresponding events of the TClientDataSet.

27 chpt_21.qxd 11/19/01 12:16 PM Page 1019

Dealing with Master/Detail Relationships
No discussion of database applications would be complete without at least a mention of mas-
ter/detail relationships. With DataSnap, you have two choices for dealing with master/detail.

Nested Datasets
One option for master/detail relationships is nested datasets. Nested datasets allow a master
table to actually contain detail datasets. In addition to updating master and detail records in one
transaction, they allow for storage of all master and detail records to be stored in one briefcase
file, and you can use the enhancements to DBGrid to pop up detail datasets in their own win-
dows. A word of caution if you do decide to use nested datasets: All the detail records will be
retrieved and brought over to the client when selecting a master record. This will become a
possible performance bottleneck if you nest several levels of detail datasets. For example, if
you retrieve just one master record that has 10 detail records, and each detail record has three
detail records linked to the first level detail, you would retrieve 41 records initially. When
using client-side linking, you would only retrieve 14 records initially and obtain the other
grandchild records as you scrolled through the detail TClientDataSet.

In order to set up a nested dataset relationship, you need to define the master/detail relationship
on the application server. This is done using the same technique you’ve been using in client/
server applications—namely, defining the SQL statement for the detail TQuery, including the
link parameter. Here’s an example:

“select * orders where custno=:custno”

You then assign the TQuery.Datasource for the detail TQuery to point to a TDatasource com-
ponent that’s tied to the master TDataset. Once this relationship is set up, you only need to
export the TDatasetProvider that’s tied to the master dataset. DataSnap is smart enough
to understand that the master dataset has detail datasets linked to it and will therefore send the
detail datasets across to the client as a TDatasetField.

On the client, you assign the master TClientDataset.ProviderName property to the master
provider. Then, you add persistent fields to the TClientDataset. Notice the last field in the
Fields Editor. It contains a field named the same as the detail dataset on the server and is
declared as a TDatasetField type. At this point, you have enough information to use the
nested dataset in code. However, to make things really easy, you can add a detail
TClientDataset and assign its DatasetField property to the appropriate TDatasetField
from the master. It’s important to note here that you didn’t set any other properties on the detail
TClientDataset, such as RemoteServer, ProviderName, MasterSource, MasterFields, or
PacketRecords. The only property you set was the DatasetField property. At this point, you
can bind data-aware controls to the detail TClientDataset as well.

Enterprise Development

PART V
1020

27 chpt_21.qxd 11/19/01 12:16 PM Page 1020

After you’ve finished working with the data in the nested dataset, you need to apply the
updates back to the database. This is done by calling the master TClientDataset’s
ApplyUpdates() method. DataSnap will apply all the changes in the master TClientDataset,
which includes the detail datasets, back to the server inside the context of one transaction.

You’ll find an example on the book’s CD-ROM in the directory for this chapter under
\NestCDS.

Client-Side Linking
Recall that some cautions were mentioned earlier regarding using nested datasets. The alterna-
tive to using nested datasets is to create the master/detail relationship on the client side. In
order to create a master/detail link using this method, you simply create a TDataset and
TDatasetProvider for the master and the detail on the server.

On the client, you bind two TClientDataset components to the datasets that you exported
on the server. Then, you create the master/detail relationship by assigning the detail
TClientDataset.MasterSource property to the TDatasource component that points to the
master TClientDataset.

Setting MasterSource on a TClientDataset sets the PacketRecords property to zero. When
PacketRecords equals zero, it means that DataSnap should just return the metadata informa-
tion for this TClientDataset. However, when PacketRecords equals zero in the context of a
master/detail relationship, the meaning changes. DataSnap will now retrieve the records for the
detail dataset for each master record. In summary, leave the PacketRecords property set to
the default value.

In order to reconcile the master/detail data back to the database in one transaction, you need to
write your own ApplyUpdates logic. This isn’t as simple as most tasks in Delphi, but it does
give you full flexible control over the update process.

Applying updates to a single table is usually triggered by a call to TClientDataset.Apply
Updates. This method sends the changed records from the ClientDataset to its provider on
the middle tier, where the provider will then write the changes to the database. All this is done
within the scope of a transaction and is accomplished without any intervention from the pro-
grammer. To do the same thing for master/detail tables, you must understand what Delphi is
doing for you when you make that call to TClientDataset.ApplyUpdates.

Any changes you make to a TClientDataset are stored in the Delta property. The Delta
property contains all the information that will eventually be written to the database. The fol-
lowing code illustrates the update process for applying Delta properties back to the database.
Listings 21.2 and 21.3 show the relevant sections of the client and server for applying updates
to a master/detail setup.

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1021

27 chpt_21.qxd 11/19/01 12:16 PM Page 1021

LISTING 21.2 Client Updates to Master/Detail

procedure TClientDM.ApplyUpdates;
var
MasterVar, DetailVar: OleVariant;

begin
Master.CheckBrowseMode;
Detail_Proj.CheckBrowseMode;
if Master.ChangeCount > 0 then
MasterVar := Master.Delta else
MasterVar := NULL;

if Detail.ChangeCount > 0 then
DetailVar := Detail.Delta else
DetailVar := NULL;

RemoteServer.AppServer.ApplyUpdates(DetailVar, MasterVar);
{ Reconcile the error datapackets. Since we allow 0 errors, only one error
packet can contain errors. If neither packet contains errors then we
refresh the data.}

if not VarIsNull(DetailVar) then
Detail.Reconcile(DetailVar) else

if not VarIsNull(MasterVar) then
Master.Reconcile(MasterVar) else

begin
Detail.Reconcile(DetailVar);
Master.Reconcile(MasterVar);
Detail.Refresh;
Master.Refresh;

end;
end;

LISTING 21.3 Server Updates to Master/Detail

procedure TServerRDM.ApplyUpdates(var DetailVar, MasterVar: OleVariant);
var
ErrCount: Integer;

begin
Database.StartTransaction;
try
if not VarIsNull(MasterVar) then
begin
MasterVar := cdsMaster.Provider.ApplyUpdates(MasterVar, 0, ErrCount);
if ErrCount > 0 then
SysUtils.Abort; // This will cause Rollback

end;
if not VarIsNull(DetailVar) then

Enterprise Development

PART V
1022

27 chpt_21.qxd 11/19/01 12:16 PM Page 1022

LISTING 21.3 Continued

begin
DetailVar := cdsDetail.Provider.ApplyUpdates(DetailVar, 0, ErrCount);
if ErrCount > 0 then
SysUtils.Abort; // This will cause Rollback

end;
Database.Commit;

except
Database.Rollback

end;
end;

Although this method works quite well, it really doesn’t provide for opportunities for code
reuse. This would be a good time to extend Delphi and provide easy reuse. Here are the main
steps required to abstract the update process:

1. Place the deltas for each CDS in a variant array.

2. Place the providers for each CDS in a variant array.

3. Apply all the deltas in one transaction.

4. Reconcile the error datapackets returned in the previous step and refresh the data.

The result of this abstraction is provided in the utility unit shown in Listing 21.4.

LISTING 21.4 A Unit Providing Utility Routines and Abstraction

unit CDSUtil;

interface

uses
DbClient, DbTables;

function RetrieveDeltas(const cdsArray : array of TClientDataset): Variant;
function RetrieveProviders(const cdsArray : array of TClientDataset): Variant;
procedure ReconcileDeltas(const cdsArray : array of TClientDataset;

vDeltaArray: OleVariant);

procedure CDSApplyUpdates(ADatabase : TDatabase; var vDeltaArray: OleVariant;
const vProviderArray: OleVariant);

implementation

uses
SysUtils, Provider, Midas, Variants;

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1023

27 chpt_21.qxd 11/19/01 12:16 PM Page 1023

LISTING 21.4 Continued

type
PArrayData = ^TArrayData;
TArrayData = array[0..1000] of Olevariant;

{Delta is the CDS.Delta on input. On return, Delta will contain a data packet}
{containing all of the records that could not be applied to the database.}
{Remember Delphi needs the provider name, so it is passed in the first}
{element of the AProvider variant.}
procedure ApplyDelta(AProvider: OleVariant; var Delta : OleVariant);
var
ErrCount : integer;
OwnerData: OleVariant;

begin
if not VarIsNull(Delta) then
begin
// ScktSrvr does not support early-binding
Delta := (IDispatch(AProvider[0]) as IAppServer).AS_ApplyUpdates(

AProvider[1], Delta, 0, ErrCount, OwnerData);
if ErrCount > 0 then
SysUtils.Abort; // This will cause Rollback in the calling procedure

end;
end;

{Server call}
procedure CDSApplyUpdates(ADatabase : TDatabase; var vDeltaArray: OleVariant;
const vProviderArray: OleVariant);

var
i : integer;
LowArr, HighArr: integer;
P: PArrayData;

begin
{Wrap the updates in a transaction. If any step results in an error, raise}
{an exception, which will Rollback the transaction.}
ADatabase.Connected:=true;
ADatabase.StartTransaction;
try
LowArr:=VarArrayLowBound(vDeltaArray,1);
HighArr:=VarArrayHighBound(vDeltaArray,1);
P:=VarArrayLock(vDeltaArray);
try
for i:=LowArr to HighArr do
ApplyDelta(vProviderArray[i], P^[i]);

finally
VarArrayUnlock(vDeltaArray);

end;

Enterprise Development

PART V
1024

27 chpt_21.qxd 11/19/01 12:16 PM Page 1024

LISTING 21.4 Continued

ADatabase.Commit;
except
ADatabase.Rollback;

end;
end;

{Client side calls}
function RetrieveDeltas(const cdsArray : array of TClientDataset): Variant;
var
i : integer;
LowCDS, HighCDS : integer;

begin
Result:=NULL;
LowCDS:=Low(cdsArray);
HighCDS:=High(cdsArray);
for i:=LowCDS to HighCDS do
cdsArray[i].CheckBrowseMode;

Result:=VarArrayCreate([LowCDS, HighCDS], varVariant);
{Setup the variant with the changes (or NULL if there are none)}
for i:=LowCDS to HighCDS do
begin
if cdsArray[i].ChangeCount>0 then
Result[i]:=cdsArray[i].Delta else
Result[i]:=NULL;

end;
end;

{If we’re using Delphi 5 or greater, then we need to return the provider name
AND the AppServer from this function. We will use ProviderName to call
AS_ApplyUpdates in the CDSApplyUpdates function later.}
function RetrieveProviders(const cdsArray : array of TClientDataset): Variant;
var
i: integer;
LowCDS, HighCDS: integer;

begin
Result:=NULL;
LowCDS:=Low(cdsArray);
HighCDS:=High(cdsArray);

Result:=VarArrayCreate([LowCDS, HighCDS], varVariant);
for i:=LowCDS to HighCDS do
Result[i]:=VarArrayOf([cdsArray[i].AppServer, cdsArray[i].ProviderName]);

end;

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1025

27 chpt_21.qxd 11/19/01 12:16 PM Page 1025

LISTING 21.4 Continued

procedure ReconcileDeltas(const cdsArray : array of TClientDataset;
vDeltaArray: OleVariant);

var
bReconcile : boolean;
i: integer;
LowCDS, HighCDS : integer;

begin
LowCDS:=Low(cdsArray);
HighCDS:=High(cdsArray);

{If the previous step resulted in errors, Reconcile the error datapackets.}
bReconcile:=false;
for i:=LowCDS to HighCDS do
if not VarIsNull(vDeltaArray[i]) then begin
cdsArray[i].Reconcile(vDeltaArray[i]);
bReconcile:=true;
break;

end;

{Refresh the Datasets if needed}
if not bReconcile then
for i:=HighCDS downto LowCDS do begin
cdsArray[i].Reconcile(vDeltaArray[i]);
cdsArray[i].Refresh;

end;
end;

end.

Listing 21.5 shows a reworking of the previous example using the CDSUtil unit.

LISTING 21.5 A Rework of the Previous Example Using CDSUtil.pas

procedure TForm1.btnApplyClick(Sender: TObject);
var
vDelta: OleVariant;
vProvider: OleVariant;
arrCDS: array[0..1] of TClientDataset;

begin
arrCDS[0]:=cdsMaster; // Set up ClientDataset array
arrCDS[1]:=cdsDetail;

vDelta:=RetrieveDeltas(arrCDS); // Step 1
vProvider:=RetrieveProviders(arrCDS); // Step 2

Enterprise Development

PART V
1026

27 chpt_21.qxd 11/19/01 12:16 PM Page 1026

LISTING 21.5 Continued

DCOMConnection1.ApplyUpdates(vDelta, vProvider); // Step 3
ReconcileDeltas(arrCDS, vDelta); // Step 4

end;

procedure TServerRDM.ApplyUpdates(var vDelta, vProvider: OleVariant);
begin
CDSApplyUpdates(Database1, vDelta, vProvider); // Step 3

end;

You can use this unit in either two-tier or three-tier applications. To move from a two-tier to a
three-tier approach, you would export a function on the server that calls CDSApplyUpdates
instead of calling CDSApplyUpdates on the client. Everything else on the client remains the
same.

You’ll find an example on the book’s CD-ROM in the directory for this chapter under \MDCDS.

Real-World Examples
Now that we have the basics out of the way, let’s look at how DataSnap can help you by
exploring several real-world examples.

Joins
Writing a relational database application depends heavily on walking the relationships between
tables. Often, you’ll find it convenient to represent your highly normalized data in a view that’s
more flattened than the underlying data structure. However, updating the data from these joins
takes some extra care on your end.

One-Table Update
Applying updates to a joined query is a special case in database programming, and DataSnap
is no exception. The problem lies in the join query itself. Although some join queries will pro-
duce data that could be automatically updated, others will never conform to rules that will
allow automatic retrieval, editing, and updating of the underlying data. To that end, Delphi
currently forces you to resolve updates to join queries yourself.

For joins that require only one table to be updated, Delphi can handle most of the updating
details for you. Here are the steps required in order to write one table back to the database:

1. Add persistent fields to the joined TQuery.

2. Set TQuery.TField.ProviderFlags=[] for every field of the table that you won’t be
updating.

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1027

27 chpt_21.qxd 11/19/01 12:16 PM Page 1027

3. Write the following code in the DatasetProvider.OnGetTableName event to tell
DataSnap which table you want to update. Keep in mind that this event makes it easier to
specify the table name, although you could do the same thing in previous versions of
Delphi by using the DatasetProvider.OnGetDatasetProperties event:

procedure TJoin1Server.prvJoinGetTableName(Sender: TObject;
DataSet: TDataSet; var TableName: String);

begin
TableName := ‘Emp’;

end;

By doing this, you’re telling the ClientDataset to keep track of the table name for you. Now
when you call ClientDataset1.ApplyUpdates(), DataSnap knows to try and resolve to the
table name that you specified, as opposed to letting DataSnap try and figure out what the table
name might be.

An alternative approach would be to use a TUpdateSQL component that only updates the table
of interest. This allows the TQuery.UpdateObject to be used during the reconciliation process
and more closely matches the process used in traditional client/server applications.

Enterprise Development

PART V
1028

Not all TDatasets have an UpdateObject property. However, you can still use the
same approach because of the rework done to TUpdateSQL. Simply define your SQL
for each action (delete, insert, modify) and use code similar to the following:

procedure TForm1.DataSetProvider1BeforeUpdateRecord(Sender: TObject;
SourceDS: TDataSet; DeltaDS: TCustomClientDataSet;
UpdateKind: TUpdateKind; var Applied: Boolean);

begin
UpdateSQL1.DataSet := DeltaDS;
UpdateSQL1.SetParams(UpdateKind);
ADOCommand1.CommandText := UpdateSQL1.SQL[UpdateKind].Text;
ADOCommand1.Parameters.Assign(UpdateSQL1.Query[UpdateKind].Params);
ADOCommand1.Execute;
Applied := true;

end;

NOTE

You’ll find an example on the book’s CD-ROM in the directory for this chapter under \Join1.

Multitable Update
For more complex scenarios, such as allowing the editing and updating of multiple tables, you
need to write some code yourself. There are two approaches to solving this problem:

27 chpt_21.qxd 11/19/01 12:16 PM Page 1028

• The older method of using DatasetProvider.BeforeUpdateRecord() to break the data
packet apart and apply the updates to the underlying tables

• The newer method of applying updates by using the UpdateObject property

When using cached updates with a multitable join, you need to configure one TUpdateSQL
component for each table that will be updated. Because the UpdateObject property can only
be assigned to one TUpdateSQL component, you needed to link all the TUpdateSQL.Dataset
properties to the joined dataset programmatically in TQuery.OnUpdateRecord and call
TUpdateSQL.Apply to bind the parameters and execute the underlying SQL statement. In this
case, the dataset you’re interested in is the Delta dataset. This dataset is passed as a parameter
into the TQuery.OnUpdateRecord event.

All you need to do is assign the SessionName and DatabaseName properties to allow the update
to occur in the same context as other transactions and tie the Dataset property to the Delta that
is passed to the event. The resulting code for the TQuery.OnUpdateRecord event is shown in
Listing 21.6.

LISTING 21.6 Join Using a TUpdateSQL

procedure TJoin2Server.JoinQueryUpdateRecord(DataSet: TDataSet;
UpdateKind: TUpdateKind; var UpdateAction: TUpdateAction);

begin
usqlEmp.SessionName := JoinQuery.SessionName;
usqlEmp.DatabaseName := JoinQuery.DatabaseName;
usqlEmp.Dataset := Dataset;
usqlEmp.Apply(UpdateKind);

usqlFTEmp.SessionName := JoinQuery.SessionName;
usqlFTEmp.DatabaseName := JoinQuery.DatabaseName;
usqlFTEmp.Dataset := Dataset;
usqlFTEmp.Apply(UpdateKind);

UpdateAction := uaApplied;
end;

Because you’ve complied with the rules of updating data within the DataSnap architecture,
the whole update process is seamlessly triggered as it always is in DataSnap, with a call to
ClientDataset1.ApplyUpdates(0);.

You’ll find an example on the book’s CD-ROM in the directory for this chapter under \Join2.

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1029

27 chpt_21.qxd 11/19/01 12:16 PM Page 1029

DataSnap on the Web
Even with the introduction of Kylix, Delphi is tied to the Windows platform (or Linux); there-
fore, any clients you write must run on that type of machine. This isn’t always desirable. For
example, you might want to provide easy access to the data that exists on your database to any-
one who has an Internet connection. Because you’ve already written an application server that
acts as a broker for your data—in addition to housing business rules for that data—it would be
desirable to reuse the application server as opposed to rewriting the entire data-access and busi-
ness rule tier in another environment.

Straight HTML
This section focuses on how to leverage your application server while providing a new presen-
tation tier that will use straight HTML. This section assumes that you’re familiar with the
material covered in Chapter 31, “Internet-Enabling Your Applications with WebBroker” of
Delphi 5 Developer’s Guide, which is on this book’s CD-ROM. Using this method, you’re
introducing another layer into your architecture. WebBroker acts as the client to the application
server and repackages this data into HTML that will be displayed on the browser. You also lose
some of the benefits of working with the Delphi IDE, such as the lack of data-aware controls.
However, this is a very viable option for allowing access to your data in a simple HTML
format.

After creating a WebBroker Application and a WebModule, you simply place a TDispatch
Connection and TClientDataset on the WebModule. Once the properties are filled in, you can
use a number of different methods to translate this data into HTML that will eventually be seen
by the client.

One valid technique would be to add a TDatasetTableProducer linked to the TClientDataset
of interest. From there, the user can click a link and go to an edit page, where she can edit the
data and apply the updates. See Listings 21.7 and 21.8 for a sample implementation of this
technique.

LISTING 21.7 HTML for Editing and Applying Updates

<form action=”<#SCRIPTNAME>/updaterecord” method=”post”>
EmpNo: <#EMPNO>
<input type=”hidden” name=”EmpNo” value=<#EMPNO>>
<table cellspacing=”2” cellpadding=”2” border=”0”>
<tr>
<td>Last Name:</td>
<td><input type=”text” name=”LastName” value=<#LASTNAME>></td>

</tr>
<tr>
<td>First Name:</td>
<td><input type=”text” name=”FirstName” value=<#FIRSTNAME>></td>

Enterprise Development

PART V
1030

27 chpt_21.qxd 11/19/01 12:16 PM Page 1030

LISTING 21.7 Continued

</tr>
<tr>
<td>Hire Date:</td>
<td><input type=”text” name=”HireDate” size=”8” value=<#HIREDATE>></td>

</tr>
<tr>
<td>Salary:</td>
<td><input type=”text” name=”Salary” size=”8” value=<#SALARY>></td>

</tr>
<tr>
<td>Vacation:</td>
<td><input type=”text” name=”Vacation” size=”4” value=<#VACATION>></td>

</tr>
</table>
<input type=”submit” name=”Submit” value=”Apply Updates”>
<input type=”Reset”>
</form>

LISTING 21.8 Code for Editing and Applying Updates

unit WebMain;

interface

uses
Windows, Messages, SysUtils, Classes, HTTPApp, DBWeb, Db, DBClient,
MConnect, DSProd;

type
TWebModule1 = class(TWebModule)
dcJoin: TDCOMConnection;
cdsJoin: TClientDataSet;
dstpJoin: TDataSetTableProducer;
dsppJoin: TDataSetPageProducer;
ppSuccess: TPageProducer;
ppError: TPageProducer;
procedure WebModuleBeforeDispatch(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

procedure WebModule1waListAction(Sender: TObject; Request: TWebRequest;
Response: TWebResponse; var Handled: Boolean);

procedure dstpJoinFormatCell(Sender: TObject; CellRow,
CellColumn: Integer; var BgColor: THTMLBgColor;
var Align: THTMLAlign; var VAlign: THTMLVAlign; var CustomAttrs,
CellData: String);

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1031

27 chpt_21.qxd 11/19/01 12:16 PM Page 1031

LISTING 21.8 Continued

procedure WebModule1waEditAction(Sender: TObject; Request: TWebRequest;
Response: TWebResponse; var Handled: Boolean);

procedure dsppJoinHTMLTag(Sender: TObject; Tag: TTag;
const TagString: String; TagParams: TStrings;
var ReplaceText: String);

procedure WebModule1waUpdateAction(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

private
{ Private declarations }
DataFields : TStrings;

public
{ Public declarations }

end;

var
WebModule1: TWebModule1;

implementation

{$R *.DFM}

procedure TWebModule1.WebModuleBeforeDispatch(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin
with Request do
case MethodType of
mtPost: DataFields:=ContentFields;
mtGet: DataFields:=QueryFields;

end;
end;

function LocalServerPath(sFile : string = ‘’) : string;
var
FN: array[0..MAX_PATH- 1] of char;
sPath : shortstring;

begin
SetString(sPath, FN, GetModuleFileName(hInstance, FN, SizeOf(FN)));
Result := ExtractFilePath(sPath) + ExtractFileName(sFile);

end;

procedure TWebModule1.WebModule1waListAction(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin
cdsJoin.Open;
Response.Content := dstpJoin.Content;

end;

Enterprise Development

PART V
1032

27 chpt_21.qxd 11/19/01 12:16 PM Page 1032

LISTING 21.8 Continued

procedure TWebModule1.dstpJoinFormatCell(Sender: TObject; CellRow,
CellColumn: Integer; var BgColor: THTMLBgColor; var Align: THTMLAlign;
var VAlign: THTMLVAlign; var CustomAttrs, CellData: String);

begin
if (CellRow > 0) and (CellColumn = 0) then
CellData := Format(‘%s’,
[Request.ScriptName, CellData, CellData]);

end;

procedure TWebModule1.WebModule1waEditAction(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin
dsppJoin.HTMLFile := LocalServerPath(‘join.htm’);
cdsJoin.Filter := ‘EmpNo = ‘ + DataFields.Values[‘empno’];
cdsJoin.Filtered := true;
Response.Content := dsppJoin.Content;

end;

procedure TWebModule1.dsppJoinHTMLTag(Sender: TObject; Tag: TTag;
const TagString: String; TagParams: TStrings; var ReplaceText: String);

begin
if CompareText(TagString, ‘SCRIPTNAME’)=0 then
ReplaceText:=Request.ScriptName;

end;

procedure TWebModule1.WebModule1waUpdateAction(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

var
EmpNo, LastName, FirstName, HireDate, Salary, Vacation: string;

begin
EmpNo:=DataFields.Values[‘EmpNo’];
LastName:=DataFields.Values[‘LastName’];
FirstName:=DataFields.Values[‘FirstName’];
HireDate:=DataFields.Values[‘HireDate’];
Salary:=DataFields.Values[‘Salary’];
Vacation:=DataFields.Values[‘Vacation’];

cdsJoin.Open;
if cdsJoin.Locate(‘EMPNO’, EmpNo, []) then
begin
cdsJoin.Edit;
cdsJoin.FieldByName(‘LastName’).AsString:=LastName;
cdsJoin.FieldByName(‘FirstName’).AsString:=FirstName;
cdsJoin.FieldByName(‘HireDate’).AsString:=HireDate;

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1033

27 chpt_21.qxd 11/19/01 12:16 PM Page 1033

LISTING 21.8 Continued

cdsJoin.FieldByName(‘Salary’).AsString:=Salary;
cdsJoin.FieldByName(‘Vacation’).AsString:=Vacation;
if cdsJoin.ApplyUpdates(0)=0 then
Response.Content:=ppSuccess.Content else
Response.Content:=pPError.Content;

end;
end;

end.

Note that this method requires much custom code to be written, and the full feature set of
DataSnap isn’t implemented in this example—specifically error reconciliation. You can con-
tinue to enhance this example to be more robust if you use this technique extensively.

Enterprise Development

PART V
1034

It’s imperative that you consider the concept of state when writing your WebModule
and application server. Because HTTP is a stateless protocol, you cannot rely on the
values of properties to be the same as you left them when the call was over.

CAUTION

WebBroker is one way to get your data to Web browsers. Using WebSnap, you can
extend the capabilities of your application even further by using the new features
WebSnap offers, such as scripting and session support.

TIP

To run this sample, be sure to compile and register the Join2 sample application. Next, compile
the Web application (either the CGI or ISAPI version), and place the executable in a script-
capable directory for your Web server. The code also expects to find the file join.htm in the
scripts directory, so copy that too. Then, just point your browser to http://localhost/
scripts/WebJoin.exe and see the results of this sample.

You’ll find an example on the book’s CD-ROM in the directory for this chapter under \WebBrok.

InternetExpress
With InternetExpress, you can enhance the functionality of a straight WebModule approach to
allow for a richer experience on the client. This is possible due to the use of open standards
such as XML and JavaScript in InternetExpress. Using InternetExpress, you can create a

27 chpt_21.qxd 11/19/01 12:16 PM Page 1034

browser-only front end to your DataSnap application server: no ActiveX controls to download;
zero client-side install and configuration requirements; nothing but a Web browser hitting a
Web server.

In order to use InternetExpress, you will need to have some code running on a Web server. For
this example, we will use an ISAPI application, but you could also use CGI or ASP. The pur-
pose of the Web broker is to take requests from the browser and pass those requests on to the
app server. Placing InternetExpress components in the Web broker application makes this task
very easy.

This example will use a standard DataSnap app server that has Customers, Orders, and
Employees. Customers and Orders are linked in a nested dataset relationship (for more infor-
mation on nested datasets, see the next section), whereas the Employees dataset will serve as a
lookup table. See the accompanying source code for the app server definition. After the app
server has been built and registered, you can focus on building the Web broker application that
will communicate with the app server.

Create a new ISAPI application by selecting File, New, Web Server Application from the
Object Repository. Place a TDCOMConnection component on the WebModule. This will act as the
link to the app server, so fill in the ServerName property with the ProgID of the app server.

Next, you will place a TXMLBroker component from the InternetExpress page of the
Component Palette on the WebModule and set the RemoteServer and ProviderName properties
to the CustomerProvider. The TXMLBroker component acts in a manner similar to the
TClientDataset. It is responsible for retrieving data packets from the app server and passing
those data packets to the browser. The main difference between the data packet in a TXMLBroker
and a TClientDataset is that the TXMLBroker translates the DataSnap data packets into XML.
You will also add a TClientDataset to the WebModule and tie it to the Employees provider on
the app server. You will use this as a lookup datasource later.

The TXMLBroker component is responsible for communication to the application server and
also the navigation of HTML pages. Many properties are available to customize how your
InternetExpress application will behave. For example, you can limit the number of records that
will be transmitted to the client or specify the number of errors allowed during an update.

You now need a way to move this data to the browser. Using the TInetXPageProducer compo-
nent, you can use the WebBroker technology in Delphi to serve an HTML page up to the
browser. However, the TInetXPageProducer also allows for visual creation of the Web page
via the Web Page Editor.

Double-click on the TInetXPageProducer to bring up the Web Page Editor. This visual editor
helps you customize what elements are present on a given Web page. One of the most interest-
ing things about InternetExpress is that it is completely extensible. You can create your own

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1035

27 chpt_21.qxd 11/19/01 12:16 PM Page 1035

components that can be used in the Web Page Editor by following some well-defined rules.
For examples of custom InternetExpress components, see the <DELPHI>\DEMOS\MIDAS\
INTERNETEXPRESS\INETXCUSTOM directory.

Enterprise Development

PART V
1036

TInetXPageProducer has a property named IncludePathURL. It is essential to set this
property properly, or your InternetExpress application won’t work. Set the value to
the virtual directory that contains the InternetExpress JavaScript files. For example, if
you place the files in c:\inetpub\wwwroot\jscript, the value for this property will be
/jscript/.

CAUTION

With the Web Page Editor active, click the Insert tool button to display the Add Web
Component dialog box (see Figure 21.7). This dialog box contains a list of Web components
that can be added to the HTML page. This list is based on which parent component (the sec-
tion in the upper left) is currently selected. For example, add a DataForm Web component to
the root node to allow end users to display and edit database information in a form-like layout.

FIGURE 21.7
The Add Web Component dialog box from the Web Page Editor.

If you then select the DataForm node in the Web Page Editor, you can click the Insert button
again. Notice that the list of components available at this point is different from the list dis-
played from the previous step. After selecting the FieldGroup component, you will see a warn-
ing in the preview pane, telling you that the TXMLBroker property for the FieldGroup isn’t
assigned. By assigning the XMLBroker in the Object Inspector, you will immediately notice
the layout of the HTML in the preview pane of the Web Page Editor. As you continue to mod-
ify properties or add components, the state of the HTML page will be constantly updated (see
Figure 21.8).

27 chpt_21.qxd 11/19/01 12:16 PM Page 1036

FIGURE 21.8
The Web Page Editor after designing an HTML page.

The level of customization available with the standard Web components is practically limitless.
Properties make it easy to change field captions, alignment, colors; add straight custom HTML
code; and even use style sheets. Furthermore, if the component doesn’t suit your needs exactly,
you can always create a descendant component and use that in its place. The framework is
truly as extensible as your imagination allows.

In order to call the ISAPI DLL, you need to place it in a virtual directory capable of executing
script. You also need to move the JavaScript files found in <DELPHI>\SOURCE\WEBMIDAS to a
valid location on your Web server and modify the TInetXPageProducer.IncludePathURL
property to point to the URI of the JavaScript files. After that, the page is ready to be viewed.

To access the page, all you need is a JavaScript-capable browser. Simply point the browser to
http://localhost/inetx/inetxisapi.dll, and the data will display in the browser. Figure 21.9
shows a screenshot of the application in action.

You can detect reconciliation errors during the ApplyUpdates process as you are already used to
doing in a standalone DataSnap application. This capability is made possible when you assign
the TXMLBroker.ReconcileProducer property to a TPageProducer. Whenever an error occurs,
the Content of the TPageProducer assigned to this property will be returned to the end user.

A specialized TPageProducer, TReconcilePageProducer, is available by installing the
InetXCustom.dpk package found in <DELPHI>\DEMOS\MIDAS\INTERNETEXPRESS\INETXCUSTOM.
This PageProducer generates HTML that acts much like the standard DataSnap Reconciliation
Error dialog box (see Figure 21.10).

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1037

27 chpt_21.qxd 11/19/01 12:16 PM Page 1037

FIGURE 21.9
Internet Explorer accessing the InternetExpress Web page.

Enterprise Development

PART V
1038

FIGURE 21.10
View of the HTML page generated by TReconcilePageProducer.

You’ll find an example on the book’s CD-ROM in the directory for this chapter under \InetX.

27 chpt_21.qxd 11/19/01 12:16 PM Page 1038

More Client Dataset Features
Many options are available to control the TClientDataset component. In this section, we will
look at ways to use the TClientDataset to make coding easier in complex applications.

Two-Tier Applications
You’ve seen how to assign the provider—and therefore the data—to the ClientDataset in a
three-tier application. However, many times a simple two-tier application is all that’s needed.
So, how do you use DataSnap in a two-tier application? There are four possibilities:

• Runtime assignment of data

• Design-time assignment of data

• Runtime assignment of a provider

• Design-time assignment of a provider

The two basic choices when using ClientDataset are assigning the AppServer property
and assigning the data. If you choose to assign the AppServer, you have a link between the
TDatasetProvider and the ClientDataset that will allow you to have communication
between the ClientDataset and TDatasetProvider as needed. If, on the other hand, you
choose to assign the data, you have effectively created a local storage mechanism for your data
and the ClientDataset will not communicate with the TDatasetProvider component for
more information or data.

In order to assign the data directly from a TDataset to a TClientDataset at runtime, use the
code in Listing 21.9.

LISTING 21.9 Code to Assign Data Directly from a TDataSet

function GetData(ADataset: TDataset): OleVariant;
begin
with TDatasetProvider.Create(nil) do
try
Dataset:=ADataset;
Result:=Data;

finally
Free;

end;
end;
procedure TForm1.Button1Click(Sender: TObject);
begin
ClientDataset1.Data:=GetData(ADOTable1);

end;

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1039

27 chpt_21.qxd 11/19/01 12:16 PM Page 1039

This method takes more code and effort than previous versions of Delphi, where you would
simply assign the Table1.Provider.Data property to the ClientDataset1.Data property.
However, this function will help make the additional code less noticeable.

You can also use the TClientDataset component to retrieve the data from a TDataset at
design time by selecting the Assign Local Data command from the context menu of the
TClientDataset component. Then, you specify the TDataset component that contains the data
you want, and the data is brought to the TClientDataset and stored in the Data property.

Enterprise Development

PART V
1040

If you were to save the file in this state and compare the size of the DFM file to the
size before executing this command, you would notice an increase in the DFM size.
This is because Delphi has stored all the metadata and records associated with the
TDataset in the DFM. Delphi will only stream this data to the DFM if the
TClientDataset is Active. You can also trim this space by executing the Clear Data
command on the TClientDataset context menu.

CAUTION

If you want the full flexibility that a provider assignment allows, you need to assign the
AppServer property. At runtime, you can assign the AppServer property in code. This can be
as simple as the following statement, found in FormCreate:

ClientDataset1.AppServer:=TLocalAppServer.Create(Table1);
ClientDataset1.Open;

You can assign the AppServer property at design time. If you leave the RemoteServer property
blank on a TClientDataset, you can assign a TDatasetProvider component to the
TClientDataset.ProviderName property.

One major drawback to using the TClientDataset.ProviderName property is that it can’t be
assigned to providers that reside on another form or DataModule at design time. This is why
Delphi 6 introduced the TLocalConnection component. TLocalConnection will autodiscover
and expose any TDatasetProviders that it finds with the same owner. To use this method
of assigning providers, assign the ClientDataset.RemoteServer property to be the
LocalConnection component on the external form or DataModule. After doing this, you
will have the list of providers for that LocalConnection in the ClientDataset.ProviderName
property.

The major difference between using TDataset components and ClientDataset is that when
you’re using ClientDataset, you’re using the IAppServer interface to broker your requests for
data to the underlying TDataset component. This means that you’ll be manipulating the prop-
erties, methods, events, and fields of the TClientDataset component, not the TDataset com-

27 chpt_21.qxd 11/19/01 12:16 PM Page 1040

ponent. Think of the TDataset component as if it were in a separate application and therefore
can’t be manipulated directly by you in code. Place all your server components on a separate
DataModule. Placing the TDatabase, TDataset, and TLocalConnection components on a sepa-
rate DataModule effectively prepares your application for an easier transition to a multitier
deployment later on. Another benefit of doing this is that it might help you think of the
DataModule as something that the client cannot touch easily. Again, this is good preparation
for your application, and your own mindset, when it comes time to port this application to a
multitier deployment.

Classic Mistakes
The most common mistake in creating a multitier application is introducing unnecessary
knowledge of the data tier into the presentation tier. Some validation is more suitable in the
presentation tier, but it’s how that validation is performed that determines its suitability in a
multitier application.

For example, if you’re passing dynamic SQL statements from the client to the server, this
introduces a dependency for the client application to always be synchronized with the data tier.
Doing things this way introduces more moving parts that need to be coordinated in the overall
multitier application. If you change one of the tables’ structures on the data tier, you must
update all the client applications that send dynamic SQL so that they can now send the proper
SQL statement. This clearly limits the benefit that a properly developed thin-client application
holds.

Another example of a classic mistake is when the client application attempts to control the
transaction lifetime, as opposed to allowing the business tier to take care of this on the client’s
behalf. Most of the time, this is implemented by exposing three methods of the TDataBase
instance on the server—BeginTransaction(), Commit(), and Rollback()—and calling those
methods from the client. Doing things in this manner makes the client code much more com-
plicated to maintain and violates the principle that the presentation tier should be the only tier
responsible for communication to the data tier. The presentation tier should never have to rely
on such an approach. Instead, you should send your updates to the business tier and let that tier
deal with updating the data in a transaction.

Deploying DataSnap Applications
After you’ve built a complete DataSnap application, the last hurdle left to clear is deploying
that application. This section outlines what needs to be done in order to make your DataSnap
application deployment painless.

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1041

27 chpt_21.qxd 11/19/01 12:16 PM Page 1041

Licensing Issues
Licensing has been a tough subject for many people ever since DataSnap was first introduced
in Delphi 3. The myriad of options for deploying this technology has contributed to this confu-
sion. This section details the overall requirements of when you need to purchase a DataSnap
license. However, the only legally binding document for licensing is in DEPLOY.TXT, located in
the Delphi 6 directory. Finally, for the ultimate authority to answer this question for a specific
situation, you must contact your local Borland sales office. More guidelines and examples are
available at

http://www.borland.com/midas/papers/licensing/

or our Web site at

http://www.xapware.com/ddg

The information from this document was prepared to answer some of the more common
scenarios in which DataSnap is used. Pricing information and options are also included in
the document.

The key criteria to determine the necessity of a DataSnap license for your application is whether
the DataSnap data packet crosses a machine boundary. If it does, and you use the DataSnap
components on both machines, you need to purchase a license. If it doesn’t (as in the one- and
two-tier examples presented earlier), you’re using DataSnap technology, but there’s no need to
purchase a license to use DataSnap in this manner.

DCOM Configuration
DCOM configuration appears to be as much art as it is science. There are many aspects to a
complete and secure DCOM configuration, but this section will help you understand some of
the basics of this black art.

After registering your application server, your server object is now available for customization
in the Microsoft utility DCOMCNFG. This utility is included with NT systems automatically
but is a separate download for Win9x machines. As a side note, there are plenty of bugs in
DCOMCNFG; the most notable being DCOMCNFG can only be run on Win9x machines that
have User-level share enabled. This, of course, requires a domain. This isn’t always possible or
desirable in a peer-to-peer network, such as two Windows 9x machines. This has led many peo-
ple to incorrectly assume that an NT machine is required to run DCOM.

If you can run DCOMCNFG, you can select the registered application server and click the
Properties button to reveal information about your server. The Identity page is a good place to
start in our brief tour of DCOMCNFG. The default setting for a registered server object is
Launching User. Microsoft couldn’t have made a worse decision for the default if it tried.

Enterprise Development

PART V
1042

27 chpt_21.qxd 11/19/01 12:16 PM Page 1042

When DCOM creates the server, it uses the security context of the user specified on the
Identity page. The launching user will spawn one new process of the server object for each and
every distinct user login. Many people look at the fact that they selected the ciMultiple
instancing mode and wonder why multiple copies of their server are being created. For exam-
ple, if user A connects to the server and then user B connects, DCOM will spawn an entirely
new process for user B. Additionally, you won’t see the GUI portion of the server for users
who log in under an account different from that currently in use on the server machine. This is
because of the NT concept known as Windows stations. The only Windows station capable of
writing to the screen is the Interactive User, which is the user who is currently logged in on the
server machine. Furthermore, windows stations are a scarce resource, and you might not be
able to run many server processes if you use this setting. In summary, never use the Launching
User option as your identity for your server.

The next interesting option on this page is the Interactive User, which means that every single
client that creates a server will do so under the context of the user who is logged in to the
server at that point in time. This will also allow you to have visual interaction with your appli-
cation server. Unfortunately, most system administrators don’t allow an open login to just sit
there idle on an NT machine. In addition, if the logged-in user decides to log out, the applica-
tion server will no longer work as desired.

For this discussion, this only leaves the last enabled option on the Identity page: This User.
Using this setting, all clients will create one application server and use the login credentials
and context of the user specified on the Identity page. This also means that the NT machine
doesn’t require a user to be logged in to use the application server. The one downside to this
approach is that there will be no GUI display of the server when using this option. However, it
is by far the best of all available options to put your application server in production.

After the server object is configured properly with the right identity, you need to turn your
attention to the Security tab. Make sure that the user who will be running this object has the
appropriate privileges assigned. Also be sure to grant the SYSTEM user access to the server;
otherwise, you’ll encounter errors along the way.

Many subtle nuances are strewn throughout the DCOM configuration process. For the latest on
DCOM configuration issues, especially as they pertain to Windows 9x, Delphi, and DataSnap,
visit the DCOM page of our Web site at

http://www.DistribuCon.com/dcom95.htm

Files to Deploy
The requirements for deploying a DataSnap application have changed with each new release of
Delphi. Delphi 6 makes deployment easier than any other version.

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1043

27 chpt_21.qxd 11/19/01 12:16 PM Page 1043

With Delphi 6, the minimum files needed for deployment of your DataSnap application is
shown in the following lists.

Here are the steps for the server (these steps assume a COM server; they will differ slightly for
other varieties):

1. Copy the application server to a directory with sufficient NTFS privileges or share level
privileges set properly if on a Win9x machine.

2. Install your data access layer to allow the application server to act as a client to the
RDBMS (for example, BDE, MDAC, specific client-side database libraries, and so on).

3. Copy MIDAS.DLL to the %SYSTEM% directory. By default, this would be C:\Winnt\
System32 for NT machines and C:\Windows\System for 9x machines.

4. Run the application server once to register it with COM.

Here are the steps for the client:

1. Copy the client to a directory, along with any other external dependency files used by
your client (for example, runtime packages, DLLs, ActiveX controls, and so on).

2. Copy MIDAS.DLL to the %SYSTEM% directory. Note that Delphi 6 can statically link
MIDAS.DLL into your application, thus making this step unnecessary. To do this, simply
add the unit MidasLib to your uses clause and rebuild your application. You will see an
increase in the size of the EXE due to the static linking.

3. Optional: If you specify the ServerName property in your TDispatchConnection or if
you employ early binding in your client, you need to register the server’s type library
(TLB) file. This can be done by using a utility such as <DELPHI>\BIN\TREGSVR.EXE
(or programmatically if you so choose).

Internet Deployment Considerations (Firewalls)
When deploying your application over a LAN, there’s nothing to get in your way. You can
choose whatever connection type best suits your application’s needs. However, if you need to
rely on the Internet as your backbone, many things can go wrong—namely, firewalls.

DCOM isn’t the most firewall-friendly protocol. It requires opening multiple ports on a fire-
wall. Most system administrators are wary of opening an entire range of ports (particularly
those commonly recognized as DCOM ports) because it invites hackers to come knocking on
the door. Using TSocketConnection, the story improves somewhat. The firewall only needs
one open port. However, the occasional system administrator will even refuse to do that on the
grounds that this is a security breach.

TWebConnection is similar to TSocketConnection in that it permits DataSnap traffic to be bun-
dled up into valid HTTP traffic, and then uses the most open port in the world—the HTTP port

Enterprise Development

PART V
1044

27 chpt_21.qxd 11/19/01 12:16 PM Page 1044

(default port 80). Actually, the component even supports SSL, so you can have secure commu-
nications. By doing this, all firewall issues are completely eliminated. After all, if a corporation
doesn’t allow HTTP traffic in or out, nothing can be done to communicate with them anyway.

This bit of magic is accomplished by using the Borland-provided ISAPI extension that trans-
lates HTTP traffic into DataSnap traffic, and vice versa. In this regard, the ISAPI DLL does
the same work that ScktSrvr does for socket connections. The ISAPI extension httpsrvr.dll
needs to be placed in a directory capable of executing code. For example, with IIS, the default
location for this file would be in C:\Inetpub\Scripts.

One more benefit of using TWebConnection is that it supports object pooling. Object pooling is
used to spare the server the overhead of object creation every time a client connects to the
server. Furthermore, the pooling mechanism in DataSnap allows for a maximum number of
objects to be created. After this maximum has been reached, an error will be sent to the client
saying that the server is too busy to process this request. This is more flexible and scalable
than just creating an arbitrary number of threads for every single client that wants to connect to
the server.

To take this a step further, building your RDM as a Web Service using a SOAP Data Module
will not only provide the benefits of a TwebConnection, but will also permit clients using
industry-standard SOAP protocols to be constructed. This platform enables your application
server for use by .Net, Sun ONE, and other industry-compliant SOAP systems.

In order to tell DataSnap that this RDM will be pooled, you need to call RegisterPooled and
UnregisterPooled in the UpdateRegistry method of the RDM. (See Listing 21.1 for a sample
implementation of UpdateRegistry.) The following is a sample call to the RegisterPooled
method:

RegisterPooled(ClassID, 16, 30);

This call tells DataSnap that 16 objects will be available in the pool, and that DataSnap can
free any instances of objects that have been created if there has been no activity for 30 min-
utes. If you never want to free the objects, then you can pass 0 as the timeout parameter.

The client doesn’t change that drastically. Simply use a TWebConnection as the
TDispatchConnection for the client and fill in the appropriate properties, and the client will be
communicating to the application server over HTTP. The one major difference when using
TWebConnection is the need to specify the complete URL to the httpsrvr.dll, as opposed to
just identifying the server computer by name or address. Figure 21.11 shows a screenshot of a
typical setup using TWebConnection.

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1045

27 chpt_21.qxd 11/19/01 12:16 PM Page 1045

FIGURE 21.11
TWebConnection setup at design time.

Another benefit of using HTTP for your transport is that an OS such as NT Enterprise allows
you to cluster servers. This provides automated load balancing and fault tolerance for your
application server. For more information about clustering, see http://www.microsoft.com/
ntserver/ntserverenterprise/exec/overview/clustering.

The limitations of using TWebConnection are fairly trivial, and they’re well worth any conces-
sion in order to have more clients capable of reaching your application server. The limitations
are that you must install wininet.dll on the client, and no callbacks are available when using
TWebConnection.

Summary
This chapter provides quite a bit of information on DataSnap. Still, it only scratches the surface
of what can be done with this technology—something far beyond the scope of a single chapter.
Even after you explore all the nooks and crannies of DataSnap, you can still add to your
knowledge and capabilities by using DataSnap with C++Builder and JBuilder. Using JBuilder,
you can achieve the nirvana of cross-platform access to an application server while using the
same technology and concepts you learned here.

DataSnap is a fast-evolving technology that brings the promise of multitier applications to
every programmer. Once you experience the true power of creating an application with
DataSnap, you might never return to database application development as you know it today.

Enterprise Development

PART V
1046

27 chpt_21.qxd 11/19/01 12:16 PM Page 1046

IN THIS PART
22 ASP Development 1049

23 Building WebSnap Applications 1077

24 Wireless Development 1115

Internet Development
PART

VI

28 Part_06.qxd 11/19/01 12:11 PM Page 1047

28 Part_06.qxd 11/19/01 12:11 PM Page 1048

CHAPTER

22
ASP Development
by Bob Swart

IN THIS CHAPTER
• Understanding Active Server Objects 1050

• The Active Server Object Wizard 1052

• ASP Session, Server, and Application
Objects 1065

• Active Server Objects and Databases 1066

• ASP Objects and NetCLX Support 1069

• Debugging Active Server Objects 1071

29 chpt_22.qxd 11/19/01 12:10 PM Page 1049

In this chapter, you will learn what Active Server Pages and Active Server Objects are, and
how Delphi 6 can support you when creating and deploying Active Server Objects.

Understanding Active Server Objects
Like CGI (common gateway interface) and ISAPI/NSAPI (Internet Server API/Netscape Server
API) extensions, as supported by WebBroker, ASP (Active Server Pages) is a server-side Web
application solution. This means that you can put Active Server Pages and Active Server
Objects on a Web server to let clients connect to the Web server and load the pages and
objects. This chapter focuses mainly on Active Server Objects written in Delphi 6 but created
and used within Active Server Pages.

Delphi 5 introduced a new wizard that enables you to create Active Server Objects. These
Active Server Objects can be used in ASP to dynamically generate HTML code every time the
server loads the page. This chapter explains what Active Server Page Objects are, how they are
related to CGI, ISAPI, and COM, and how they can be used in the context of Active Server
Pages. Further, we will focus on different aspects that are important when creating Active
Server Objects. Active Server Objects are server-side components, and differences between
operating systems (like Windows NT version 4 and Windows 2000) as well as differences
between Internet Information (Web) Servers (IIS 3 and 4 compared to IIS 5) will also affect the
way we deal with Active Server Objects.

As an example, we will generate a simple Active Server Object and a template script and then
adjust the object and the script for our own needs by adding some methods. Then we will
install and register the object on the Web server. Finally, we will examine how to deploy new
versions of Active Server Objects and how to test and debug them.

Active Server Pages
Before we start creating our own Active Server Objects, I want to give you an introduction into
the technology and syntax of Active Server Pages, which will be the operating environment for
our Active Server Objects. Active Server Pages enable you to use a scripting language that is
interpreted by the Web server—and not the Web browser. This means that you must have a
Web server installed to be able to test the source code listings and examples in this chapter.
We’ve used Microsoft Internet Information Server (IIS) version 4 on Windows NT 4 as well as
IIS 5 on Windows 2000, but Personal Web Server (PWS) on Windows 95 or 98 works just as
well. Whereas normal HTML pages have the .htm or .html extension, ASP pages have an .asp
extension. In order for the Web server to execute ASP pages, you must place them in a direc-
tory that has scripting rights enabled. In your default installation of any of the Microsoft Web
servers, you’ll have a Scripts directory. But even if you don’t have Scripts, it’s easy to create a
new virtual directory with scripting rights. On Windows NT, start the Internet Service Manager

Internet Development

PART VI
1050

29 chpt_22.qxd 11/19/01 12:10 PM Page 1050

(Microsoft Management Console), go to your Web service, add a new virtual directory—for
example a directory called Scripts or cgi-bin—and make sure that the Scripting option is
enabled.

You can change the server-side scripts without having to compile them or restart the Web
server. The scripting statements are written between <% and %> tags, and the Active Scripting
language is based on JavaScript and VBScript, which isn’t hard to learn or understand.

As special support, Active Server Pages get a number of built-in objects that they can use to
communicate with the browser and server environment.

The two most useful objects are as follows:

• Request—Implemented for user input. The Request object can access form input vari-
ables and check their values.

• Response—Used to generate user output. The Response object has a write method that
can be used to generate HTML output.

As a little ASP scripting example, the following script will check the HTML input variable
Name, and if the entered value is Bob, Response will write “Hello, Bob!”; otherwise Response
will simply write “Hello, User!”:

<%
if Request(“Name”) = “Bob” then
Response.Write(“Hello, Bob!”)

else
Response.Write(“Hello, User!”)

end if
%>

If this ASP code is contained in a page called test.asp, the following HTML form can be
used to trigger it:

<FORM ACTION=”test.asp” METHOD=POST>
Name: <INPUT TYPE=text NAME=Name>
<P>
<INPUT TYPE=submit>
</FORM>

ASP Development

CHAPTER 22

22

A
SP

D
EV

ELO
PM

EN
T

1051

The input variable called Name can be queried using the ASP Request variable.

NOTE

29 chpt_22.qxd 11/19/01 12:10 PM Page 1051

Remember that Active Server Pages can only be executed (interpreted) by the Web server if
they are actually served by the Web server. This means that the URL used to view them must
activate the Web server. So a file test.asp in the \cgi-bin directory shouldn’t be activated as
file:///d:/www/cgi-bin/test.asp because that won’t involve the Web server and will just
show the file itself with the ASP source intact. However, the URL http://localhost/cgi-
bin/test.asp will activate the Web server (for a local machine), and the result will be the exe-
cuted output from the Active Server Page.

On the surface, this might seem simple and easy to use. As a Delphi developer however, you
wouldn’t want to write your entire Internet Web application using server-side ASP scripting.
Consider the performance issue when it comes to interpreting ASP scripts that aren’t compiled.
ASP counts among its advantages the capacity to change its scripts on-the-fly as opposed to
recompiling and redeploying them. However, because sites have grown larger and more com-
plex, this advantage is far outweighed by the performance deficits introduced by the use of an
interpreter. Fortunately, using the ASP scripting language, you can create and use special
Active Server COM Objects that reside on the server. These objects are compiled binaries;
therefore, they are faster and more efficient. This is where Delphi comes in, of course because
we can make these special Active Server Objects using Delphi 6 Enterprise.

The Active Server Object Wizard
Delphi 6 Enterprise contains wizards that accelerate the creation of Active Server Objects. You
can still write Active Server Objects using Delphi 6 Professional, but you’ll have to do a lot of
the work manually—users would be well-advised to consider moving to the Enterprise edition
if development time is at a premium.

The Object Repository of Delphi 6 Enterprise contains a wizard to create new Active Server
Objects on the ActiveX tab. To create a new Active Server Object (referred to as ASP Object
from now on), you must close all projects (if any are open), and start a new ActiveX Library to
contain our ASP Object. This can be done using the following steps:

1. Start Delphi 6 and close the default project.

2. From the menu, choose File, New, Other and select the ActiveX Library icon from the
ActiveX tab in the Delphi 6 Object Repository (see Figure 22.1).

3. Save your ActiveX Library project as D6ASP.dpr.

Internet Development

PART VI
1052

29 chpt_22.qxd 11/19/01 12:10 PM Page 1052

FIGURE 22.1
The ActiveX Library icon on the ActiveX tab.

ASP Development

CHAPTER 22

22

A
SP

D
EV

ELO
PM

EN
T

1053

If, like me, you grow tired of having to close down the default project every time you
start Delphi, you will be happy to learn that there is an easy way to have Delphi start
up with no project loaded, using a -np command line option. You have to go to the
program group that contains your Delphi 6 shortcut and change the way Delphi 6 is
started.

To do so, right-click on the taskbar and select the Properties pop-up menu. Go to
Start Menu Programs, and click on the Advanced button. You are now exploring the
Start Menu items. Go to the Program group of All Users, which will contain the
Borland Delphi 6 group. Select the Delphi 6 item, and right-click to get a pop-up
menu in which you can select the Properties option. Click on the tab that says
Shortcut, and add the -np text right after the current value specified in the Target
editbox. For example, a default would look like the following:

“C:\Program Files\Borland\Delphi6\Bin\delphi32.exe “ -np

This is also a good place to consider the Start In editbox because you might want
Delphi 6 to start in a specific default directory.

TIP

When you have saved the ActiveX Library you’ve just created (as D6ASP.dpr), you can add an
Active Server Object to it by selecting the Active Server Object icon from the ActiveX tab of
the Delphi 6 Object Repository that you also see in Figure 22.1.

29 chpt_22.qxd 11/19/01 12:10 PM Page 1053

This will produce the Delphi 6 New Active Server Object dialog box, shown in Figure 22.2,
which needs some explanation if you’re seeing it for the first time (especially if you have no or
little previous experience with COM or ASP Objects).

Internet Development

PART VI
1054

FIGURE 22.2
The New Active Server Object dialog box.

The CoClass Name is the internal name of your COM Object. Normally, you can enter any-
thing here. For the example in this chapter, use DrBob42 as the CoClass Name. This will result
in the classname TDrBob42, which derives from TASPObject and implements the IDrBob42
interface. The Threading Model is set to Apartment by default, and Instancing is set to
Multiple Instance. These are fine for most purposes because you shouldn’t have to change
these settings generally.

The five Threading Model choices are as follows:

• Single—All client requests are handled in a single thread. This isn’t a good idea because
others have to wait until the first client is finished.

• Apartment—Every client request runs in its own thread, separated from the others. (No
thread can access the state of another.) Class instance data is safe, but we must guard
against threading issues when using global variables and the like. This is the preferred
threading model that I always use.

• Free—A class instance can be accessed by multiple threads at the same time. Class
instance data is no longer thread-safe, so you must take care to avoid multiuser issues here.

• Both—A combination of Apartment and Free because it follows the Free threading
model with the exception that callbacks are executed in the same thread. (So parameters
in callback functions are safe from multithreading problems.)

29 chpt_22.qxd 11/19/01 12:10 PM Page 1054

• Neutral—COM+ specific, and it defaults to Apartment for COM. Client requests can
access object instances on different threads, but COM ensures that the calls won’t con-
flict. Still, you’ll have to watch threading issues (see the chapter on multi-threading) with
global variables as well as instance data in between method calls.

The Instancing option offers three choices. Note that it doesn’t matter what you select, if
you’re registering the Active Server Object as an in-process server (we’ll cover in-process and
out-of-process later), but it’s good to know what the choices are:

• Internal Instance—This COM object is only instantiated within its own DLL.

• Single Instance—The application can have one client instance.

• Multiple Instance—A single application (ActiveX Library) can instantiate more than one
instance of the COM object.

Also found in this dialog box are the Active Server Type options. These are dependent on the
version of the IIS installed on your machine. For IIS 3 and IIS 4, the page-level event methods
with OnStartPage and OnEndPage are used, whereas IIS 4 and IIS 5 can also use the Object
Context method; that is, using Microsoft Transaction Server (MTS) or COM+ to manage
instance data of the Active Server Object.

Delphi 6 will encapsulate most of the differences, so for this example, select the default Page-
Level Event Methods. You can do the same with Active Server Objects if you select the Object
Context option. Remember that you need to select an option that’s right for (or at least sup-
ported by) your Web server.

The last option on the New Active Server Object dialog box is used to generate a very simple
HTML test script for this Active Server Object. If you don’t know ASP or the ASP scripting
language, this is a good way to begin learning. It consists of only two lines, but the template
shows you how to call methods of your Active Server Object using script.

Apart from assigning the CoClass Name, you generally don’t have to do anything with this
dialog box.

Type Library Editor
The Active Server Object has been created, including a type library for it. You end up in the
Delphi 6 Type Library Editor for the DrBob42 Active Server Object shown in Figure 22.3.

ASP Development

CHAPTER 22

22

A
SP

D
EV

ELO
PM

EN
T

1055

29 chpt_22.qxd 11/19/01 12:10 PM Page 1055

FIGURE 22.3
The Type Library Editor for IDrBob42.

Save the project files again (File, Save All), which first prompts you for a name for Unit1 (the
unit containing the Active Server Object itself). I’ve named this unit DrBob42ASP.pas. Next,
you’re asked to save the file DrBob42.asp, which contains the ASP HTML template file. This
file initially has the following content:

<HTML>
<BODY>
<TITLE> Testing Delphi ASP </TITLE>
<CENTER>
<H3> You should see the results of your Delphi Active Server method below </H3>
</CENTER>
<HR>
<% Set DelphiASPObj = Server.CreateObject(“D6ASP.DrBob42”)

DelphiASPObj.{Insert Method name here}
%>
<HR>
</BODY>
</HTML>

As we’ve seen earlier in this chapter, ASP tags use % to distinguish themselves from regular
HTML tags. In the single ASP tag, you’ll see a two-line script. The first line creates an
instance of the DrBob42 object from the D6ASP ActiveX Library, and the second line calls an
unnamed method.

The second thing that you might have noticed in Figure 22.3 is that you already see the
OnStartPage and OnEndPage methods for your IDrBob42 interface. This is a consequence of
selecting the Page-Level Event Methods option in the New Active Server Object dialog box.

Internet Development

PART VI
1056

29 chpt_22.qxd 11/19/01 12:10 PM Page 1056

(You wouldn’t have seen them when selecting the Object Context, as you can see in Listing
22.2.) You can see their implementation in the generated DrBob42ASP unit that contains the
source code, shown in Listing 22.1, for your Active Server Object.

LISTING 22.1 DrBob42ASP—Active Server Object Source Code

unit DrBob42ASP;

{$WARN SYMBOL_PLATFORM OFF}

interface
uses
ComObj, ActiveX, AspTlb, D6ASP_TLB, StdVcl;

type
TDrBob42 = class(TASPObject, IDrBob42)
protected
procedure OnEndPage; safecall;
procedure OnStartPage(const AScriptingContext: IUnknown); safecall;

end;

implementation

uses ComServ;

procedure TDrBob42.OnEndPage;
begin
inherited OnEndPage;

end;

procedure TDrBob42.OnStartPage(const AScriptingContext: IUnknown);
begin
inherited OnStartPage(AScriptingContext);

end;

initialization
TAutoObjectFactory.Create(ComServer, TDrBob42, Class_DrBob42,
ciMultiInstance, tmApartment);

end.

Before you start adding more methods, let’s see what an Active Server Object generated with
the Object Context would look like. Fortunately, you can add more than one Active Server
Object to a single ActiveX Library, so start the New Active Server Object dialog box again—
this time specifying Micha42 as CoClass Name and selecting the Object Context option. Save
the resulting source code in Micha42ASP.pas and the corresponding ASP file in Micha42.asp.

ASP Development

CHAPTER 22

22

A
SP

D
EV

ELO
PM

EN
T

1057

29 chpt_22.qxd 11/19/01 12:10 PM Page 1057

The source code listing can be seen in Listing 22.2. The differences are minor. (You only lack
the OnEndPage and OnStartPage events. More importantly, TDrBob42 is derived from
TASPObject whereas TMicha42 is derived from TASPMTSObject.) This is one of the major bene-
fits of creating ASP objects with Delphi: the implementation details, while available, aren’t
necessary for the creation of robust, fast objects. From now on, you can add the same function-
ality to DrBob42ASP or Micha42ASP, and they will behave identically while using very different
technology behind the scenes.

LISTING 22.2 Micha42ASP—Active Server Object Source Code

unit Micha42ASP;

{$WARN SYMBOL_PLATFORM OFF}

interface
uses
ComObj, ActiveX, AspTlb, D6ASP_TLB, StdVcl;

type
TMicha42 = class(TASPMTSObject, IMicha42)
end;

implementation

uses ComServ;

initialization
TAutoObjectFactory.Create(ComServer, TMicha42, Class_Micha42,
ciMultiInstance, tmApartment);

end.

New Methods
It’s now time to add a new method to the IDrBob42 (or IMicha42) interface that can be invoked
by the outside world (typically from the .asp Web page).

Apart from the OnEndPage and OnStartPage methods (in the TDrBob42 object), you can also
specify one or more custom methods. For example, using the type library, you can add a
method called Welcome to the IDrBob42 interface. (Right-click on the IDrBob42 node and select
New, Method from the pop-up menu.)

This method can be used to display a dynamic welcome message. After you’ve added the
method and refreshed the implementation, you can write the code for the TDrBob42.Welcome

Internet Development

PART VI
1058

29 chpt_22.qxd 11/19/01 12:10 PM Page 1058

method. To do this, you should know a little bit about the ASP internal objects and functional-
ity made available by Delphi 6. Like ASP scripting, Delphi ASP Objects have access to special
Request and Response objects.

ASP Response Object
The ASP Response object is an internal object that is available within methods of your Active
Server Object. You should use Response whenever you want to generate dynamic output.
Response has a number of properties and methods to set the content of the response. The most
important one by far is the Write method. This method takes an OleVariant as argument (as
you can see from the Code Insight hint in figure 22.4) and makes sure that the argument is
written to the dynamic output at the exact location in the ASP script where the call appeared
inside the <% and %> tags.

ASP Development

CHAPTER 22

22

A
SP

D
EV

ELO
PM

EN
T

1059

FIGURE 22.4
The Code Editor.

To write a welcome message, insert the code in Listing 22.3 within the TDrBob42.Welcome
method.

LISTING 22.3 Implementation of the Welcome Method

procedure TDrBob42.Welcome;
begin
Response.Write(‘Hello, Visitor!’);
Response.Write(‘<P>’);
Response.Write(‘Welcome to Delphi 6 and ASP Objects’);

end;

29 chpt_22.qxd 11/19/01 12:10 PM Page 1059

The DrBob42.ASP file needs only a single change inside the ASP tags (the method now has a
name: Welcome). The new ASP tags are as follows:

<% Set DelphiASPObj = Server.CreateObject(“D6ASP.DrBob42”)
DelphiASPObj.Welcome

%>

Note that the ASP script doesn’t need to destroy or free the DelphiASPObj variable: this will
automatically be taken care of when the object gets out-of-scope. Apart from the call to
Welcome, you can add more methods to the IDrBob42 interface and call these additional meth-
ods also from the ASP script as listed earlier. But let’s first take the Active Server Object for a
test run and worry about extending it later.

First Run
This is all it takes to prepare for the first operational test of the Active Server Object inside an
Active Server Page. All you need to do now is register the D6ASP.dll Active Server Object and
place DrBob42.asp in the correct directory (with ASP scripting rights).

We mentioned earlier in-process and out-of-process options for running the ASP objects. In-
process means that your ASP object will be loaded and run alongside your Web server, and
only unloaded when the Web server shuts down. Out-of-process means that your ASP object
will be loaded and unloaded as clients request it from the server. In-process objects generally
perform better, whereas out-of-process objects are more easily debugged. You can register
Active Server Objects in two ways: either as in-process or as out-of-process servers.

To register D6ASP.dll as an in-process server containing the Active Server Object(s), choose
Run, Register ActiveX Server from the Delphi 6 menu.

To unregister the same server, choose Run, Unregister ActiveX Server.

Figure 22.5 shows the confirmation message after you’ve registered the D6ASP ActiveX
Server.

Internet Development

PART VI
1060

FIGURE 22.5
Registered ActiveX Server.

We’ll get back to registering the ActiveX Server as an out-of-process server later in this chap-
ter. But first, let’s finish the test run.

29 chpt_22.qxd 11/19/01 12:10 PM Page 1060

After the D6ASP.dll ActiveX Server has been registered on your development machine, you
have to move the DrBob42.asp file to a location that has ASP Scripting rights, such as the
WWWRoot/Scripts directory.

The requesting URL will be http://localhost/scripts/DrBob42.asp; the result is shown in
Figure 22.6.

ASP Development

CHAPTER 22

22

A
SP

D
EV

ELO
PM

EN
T

1061

FIGURE 22.6
Running Active Server Object.

Using the Response.Write method, you can put any dynamic text at the location where the
Welcome method was called inside the DrBob42.asp Web page.

ASP Request Object
Before we continue, let’s consider another very important internal ASP object: Request. Like
Response, Request is available within your Active Server Object (interface) methods. Request
can be used to obtain all input. There are three different ways in which input can be given: by
form variables using the POST method, by “fat” URL variables using the GET method, and using
cookies. Each of these possesses a property called Items, which is a stringlist for holding the
content of the Response or Request.

A modified Welcome method that obtains the Name value from the input form used to start the
ASP script is shown in Listing 22.4.

LISTING 22.4 Definition of the Modified Welcome Method

procedure TDrBob42.Welcome;
var
Str: String;

begin

29 chpt_22.qxd 11/19/01 12:10 PM Page 1061

LISTING 22.4 Continued

Str := Request.Form.Item[‘Name’];
Response.Write(‘Hello, ‘+Str+’!’);
Response.Write(‘<P>’);
Response.Write(‘Welcome to Delphi 6 and ASP Objects’);

end;

The same technique can be used for the QueryString and Cookies objects.

Recompiling Active Server Objects
If you went on and tried to recompile the D6ASP project again, you probably received this
Delphi error message: Could not create output file D6ASP.dll.. You received the error
because the Active Server Object DrBob42 inside D6ASP.dll has been used and is still cached
by the Web server. So, when you try to recompile your Active Server Object, the linker will
give an error message: The file is still in use.. You can try to shut down IIS, but that
won’t help. Shutting down the World Wide Web Publishing Service won’t help either. You
actually have to shut down the entire IIS Admin Service before the ASP.DLL and all Active
Server Objects are released from memory so that you can recompile any of them. Note that
shutting down IIS Admin Service from the dialog box shown in Figure 22.7 means that all
dependent services (WWW, FTP, and so on) will shut down as well. This isn’t something you
want to do on a live Web server, of course.

Internet Development

PART VI
1062

FIGURE 22.7
IIS Admin Service.

If you try to shut down the IIS Admin Service, you will see the Stopping dialog box shown in
Figure 22.8, telling you which sub-services depend on the IIS Admin Service and will also
have to shut down first.

29 chpt_22.qxd 11/19/01 12:10 PM Page 1062

FIGURE 22.8
Stopping World Wide Web Publishing Service.

To simplify the process of shutting down and starting up the required NT services, the follow-
ing simple batch file, RESTART.BAT, can be used when you want to recompile and redeploy an
Active Server Object:

net stop “World Wide Web Publishing Service”
net stop “IIS Admin Service”
net start “World Wide Web Publishing Service”

ASP Development

CHAPTER 22

22

A
SP

D
EV

ELO
PM

EN
T

1063

On a machine that will be used for development only, you can specify that your
Active Server Object should explicitly not be cached by your web server. Obviously,
this should never be used on production machines because it effectively turns Active
Server Objects into even slower CGI applications: loading them for each client
request. This is equivalent to having an out-of-process Active Server Object that is
generally never used, except in this particular development situation.

TIP

Running Active Server Pages Again
Although you can load an Active Server Page by itself, it’s often more effective if you run it in
response to an HTML input form. For this example, you can use the small HTML page that
follows:

<HTML>
<HEAD>
<TITLE>Dr.Bob’s ASP Example</TITLE>
</HEAD>

29 chpt_22.qxd 11/19/01 12:10 PM Page 1063

<BODY BGCOLOR=FFFFCC>

<FORM ACTION=”drbob42.asp” METHOD=POST>
Name: <INPUT TYPE=text NAME=Name>
<P>
<INPUT TYPE=submit>
</FORM>
</BODY>
</HTML>

Loaded inside Internet Explorer as page http://localhost/cgi-bin/drbob42.htm, this gives
the output shown in Figure 22.9. I’ve already typed a name in the edit box, and am now ready
to click the Submit Query button.

Internet Development

PART VI
1064

FIGURE 22.9
Internet Explorer with DrBob42.htm.

After you fill your name in the edit box and click Submit Query, the Active Server Page is
loaded. It will create an instance of the DrBob42 Active Server Object and call the Welcome
method as specified in the ASP script. This will result in the dynamic output shown in
Figure 22.10.

This was yet another simple ASP example, using only Request and Response, but you get the
idea. We’ll now continue with some more ASP internal objects such as Session, Server, and
Application, and then we will return to Delphi specific Web server application support—such
as WebBroker components—most of which also can be used in combination with Active Server
Objects.

29 chpt_22.qxd 11/19/01 12:10 PM Page 1064

FIGURE 22.10
Internet Explorer with DrBob42.asp output.

ASP Session, Server, and Application Objects
Apart from the Request and Response objects, ASP also has access to Session, Server, and
Application objects. This is actually one of the benefits of ASP over CGI and ISAPI: An
Active Server Object can access session and application information without any further effort
on your part (by using cookies, hidden fields, or fat URLs).

Recall from the previous example that your TDrBob42 class was derived from the TASPObject
class. In addition to the Request and Response properties, this class introduces the
TASPObject.Session, Server, and Application properties. These properties provide direct
access to the underlying ASP Session, Server, and Application objects, respectively. You can
also use these properties from within your TDrBob42 methods to store the names of each visitor
to your Web site, for example. In ASP HTML, this could be done as follows (note the second
line):

<% Set DelphiASPObj = Server.CreateObject(“D6ASP.DrBob42”)
Session.Value(“Name”) = “Bob Swart”
DelphiASPObj.Welcome
%>

To obtain this persistent value (persistent among other Active Server Pages that are visited by
the same user in the same session), you can use the Session object in your Active Server
Object, just like using the Form, QueryString, or Cookies object (see Listing 22.5).

ASP Development

CHAPTER 22

22

A
SP

D
EV

ELO
PM

EN
T

1065

29 chpt_22.qxd 11/19/01 12:10 PM Page 1065

LISTING 22.5 DrBob42ASP—Active Server Object Source Code

procedure TDrBob42.Welcome;
var
Str: String;

begin
Str := Session.Value[‘Name’];
Response.Write(‘Hello, ‘+Str+’!’);
Response.Write(‘<P>’);
Response.Write(‘Welcome back to Delphi 6 and ASP Objects’);

end;

The Session object maintains its state using cookies, so make sure that your Web server has
cookies enabled.

Active Server Objects and Databases
Now, let’s make the example a bit more useful and introduce a database or table in it, so we
can demonstrate how to perform a query or open a table on the server and show the results
inside an Active Server Page. In order to add this functionality, you should first add a new data
module, using File, New, Data Module.

Give the Name property of the data module a new value, say DataModuleASP, and save this new
unit in file DataMod.pas. Also choose File, Save All to save the entire project so that your main
project file D6ASP.dpr will contain the data module in its uses clause. Inside this data module,
you will use a TClientDataSet component from the Data Access tab because this will be the
simplest way of providing a dataset, and also the most flexible way. You can replace it with
another dataset component later if you want to extend this example.

Drop a TClientDataSet component on the data module. In order to supply it with data, click
on the ellipsis button next to the FileName property. Go to the C:\Program Files\Common
Files\Borland Shared\Data directory and you’ll see all the well-known tables from
DBDEMOS in MyBase XML as well as binary ClientDataSet format. Select the biolife.xml
file for this example.

Having the data module, you should still worry about sharing it in a multithreading environ-
ment! The best way is to create the data module inside your Active Server Object when you
need it, either in the BeginPage and EndPage events, or—even more clearly—inside the
Welcome method itself.

But you need to add the DataMod unit to the uses clause of the DrBob42ASP unit, so you can
actually use it. Then, write the code from Listing 22.6 inside the Welcome method to create,
use, and safely destroy the data module.

Internet Development

PART VI
1066

29 chpt_22.qxd 11/19/01 12:10 PM Page 1066

LISTING 22.6 DrBob42ASP—Active Server Object Source Code

procedure TDrBob42.Welcome;
var
Str: String;
DM: TDataModuleASP;

begin
Str := Request.Form.Item[‘Name’];
Response.Write(‘Hello, ‘+Str+’!’);
Response.Write(‘<P>’);
Response.Write(‘Welcome to Delphi 6 and ASP Objects’);
try
DM := TDataModuleASP.Create(nil);
// use DM...

finally
DM.Free

end
end;

In order to present the information from the dataset to the browser, let’s walk through the data
inside the ClientDataSet and produce a grid-like HTML table that shows the common names,
Common_Name, and description, Notes, of the fish listed in the biolife dataset. This only takes a
few lines of additional code producing dynamic HTML (see Listing 22.7).

LISTING 22.7 DrBob42ASP—Active Server Object Source Code

procedure TDrBob42.Welcome;
var
Str: String;
DM: TDataModuleASP;

begin
Str := Request.Form.Item[‘Name’];
Response.Write(‘Hello, ‘+Str+’!’);
Response.Write(‘<P>’);
Response.Write(‘Welcome to Delphi 6 and ASP Objects’);
try
Response.Write(‘<P>’);
DM := TDataModuleASP.Create(nil);
with DM.ClientDataSet1 do
try
Open;
First;
Response.Write(‘<TABLE BORDER=1><TR><TD>Common_Name</TD>’);
Response.Write(‘<TD>Notes</TD></TR>’);

ASP Development

CHAPTER 22

22

A
SP

D
EV

ELO
PM

EN
T

1067

29 chpt_22.qxd 11/19/01 12:10 PM Page 1067

LISTING 22.7 Continued

while not Eof do
begin
Response.Write(‘<TR><TD>’);
Response.Write(FieldByName(‘Common_Name’).AsString);
Response.Write(‘</TD><TD>’);
Response.Write(FieldByName(‘Notes’).AsString);
Response.Write(‘</TD></TR>’);
Next

end;
Close;

finally
Response.Write(‘</TABLE>’)

end;
finally
DM.Free

end
end;

The output can be seen in Figure 22.11.

Internet Development

PART VI
1068

FIGURE 22.11
Dynamic HTML output from Active Server Object.

Delphi already contains a lot of helpful components and techniques to produce dynamic and
well-formatted HTML in the NetCLX HTML-producing components called PageProducers.
Rather than spend a lot of time learning HTML, using PageProducers will generate the HTML
needed dynamically.

29 chpt_22.qxd 11/19/01 12:10 PM Page 1068

Active Server Objects and NetCLX Support
If you compare Active Server Objects with the NetCLX architecture, you should notice a lot of
similarities. Both use Request and Response objects as the primary means to communicate
with the client. From a developer point of view, however, there is much more support for
NetCLX with the PageProducer and TableProducer components that were especially written
for use inside Web modules. Fortunately, these HTML-producing components aren’t limited to
use inside Web modules; they can be used anywhere, and you’re free to dynamically create a
TDataSetTableProducer, assign it to a dataset, and write the resulting HTML back using the
Response.Write method. You can drop a TDataSetTableProducer component on the data
module you just created and even customize it at design-time!

In fact, it isn’t very hard to use the same HTML-producing components, originally written for
NetCLX, inside your Active Server Object. The only exceptions are the TQueryTableProducer
and TSQLQueryTableProducer components, which rely on input passed on by the NetCLX
Request object, not the ASP Request object. All other PageProducers can be used as they are,
as the next example will demonstrate.

Drop a TDataSetTableProducer component on the data module, and assign its DataSet prop-
erty to the ClientDataSet you used in the previous example. In order to customize the settings
of the DataSetTableProducer, make sure that the ClientDataSet actually contains data. So,
temporarily set the Active property of the ClientDataSet component to True (set it back to
False afterward), and then click on the ellipsis next to the Columns property of the
DataSetTableProducer (or right-click on the DataSetTableProducer component and select
Response Editor). This will give you the Columns property editor shown in Figure 22.12.

ASP Development

CHAPTER 22

22

A
SP

D
EV

ELO
PM

EN
T

1069

FIGURE 22.12
DataSetTableProducer Response Editor.

29 chpt_22.qxd 11/19/01 12:10 PM Page 1069

Back in the Welcome method, call the DataSetTableProducer.Content method as shown in
Listing 22.8 to get the dynamic produced HTML output you need (a lot smaller than you had
to write yourself, and much easier to customize as well).

LISTING 22.8 DrBob42ASP—Active Server Object Source Code

procedure TDrBob42.Welcome;
var
Str: String;
DM: TDataModuleASP;

begin
Str := Request.Form.Item[‘Name’];
Response.Write(‘Hello, ‘+Str+’!’);
Response.Write(‘<P>’);
Response.Write(‘Welcome to Delphi 6 and ASP Objects’);
try
Response.Write(‘<P>’);
DM := TDataModuleASP.Create(nil);
Response.Write(DM.DataSetTableProducer1.Content);

finally
DM.Free

end
end;

After you’ve recompiled your Active Server Object, you can reload the DrBob42.htm file to
start the Active Server Page, resulting in the output shown in Figure 22.13.

Internet Development

PART VI
1070

FIGURE 22.13
Internet Explorer with DrBob42.asp NetCLX output.

29 chpt_22.qxd 11/19/01 12:10 PM Page 1070

Debugging Active Server Objects
As you saw in the previous section, Active Server Objects are like ISAPI DLLs: After they are
loaded, you need to bring down the entire Web server to unload them because Active Server
Objects are loaded by the ASP.DLL, which is an ISAPI DLL in itself. However, the advantage
of ASP is the fact that for the Active Server Pages themselves, you can update the scripts as
much as you want, without having to change, unload, or reload the Active Server Objects
themselves. As long as the functionality inside the Active Server Object doesn’t change, you
need only to update the scripts. Of course, making sure that the Active Server Objects work
correctly is another task, which at times requires the capability to debug Active Server Objects.

When it comes to debugging Active Server Objects, a few things can be done right away, such
as showing a simple message box or using a debug window to show strings sent from the
Active Server Object. In order to get any of these messages, however, you must first specify
that the owner of the Active Server Object is indeed qualified to interact with the desktop.
Specifically, for the IIS Admin Service, set the Interact with Desktop option in the Services
applet (dialog box) of the Control Panel Services dialog box, as shown in Figure 22.14.

ASP Development

CHAPTER 22

22

A
SP

D
EV

ELO
PM

EN
T

1071

FIGURE 22.14
Allow Service to interact with Desktop.

After you’ve specified that option, you can use almost any means to have your Active Server
Objects interact with the desktop. This is still a bit crude, but it can be effective enough at
times.

Debugging Active Server Objects with MTS
There is an easier way to manage your Active Server Objects, which also greatly improves
your abilities to actually debug Active Server Objects written in Delphi (or C++Builder for that
matter). The solution, as the title of this section indicates, involves MTS as host for your
Active Server Object.

29 chpt_22.qxd 11/19/01 12:10 PM Page 1071

The first step involves unregistering the Active Server Object you’ve written in this chapter.
This can be done by choosing Run, Unregister ActiveX Server from the Delphi 6 menu.

After the Active Server Object has been successfully unregistered, you can register it again, but
this time as an MTS Object. To do this, choose Run, Install MTS Objects. (On Windows 2000,
this menu option will be called Install COM+ Object.) The resulting dialog box appears in
Figure 22.15.

Internet Development

PART VI
1072

FIGURE 22.15
Install MTS (or COM+) Objects.

In this Install MTS Objects dialog box, select your DrBob42 object by clicking on the check
box. This will result in the pop-up dialog box shown in Figure 22.16, which asks for a package
name to install the DrBob42 object into. You can either select an existing package, or specify a
new package such as DelphiDebugPackage: The COM+ dialog box works in a similar way on
Windows 2000.

FIGURE 22.16
Install Object DelphiDebugPackage.

Now, click OK in the Install Object dialog box and click OK again in the Install MTS Objects
dialog box.

After having installed the DrBob42 object as an MTS object, you can debug the Active Server
Object from within the Delphi IDE itself. For this, you need a host application in order to load
the Active Server Object. The steps you must take from this point on differ in Windows NT

29 chpt_22.qxd 11/19/01 12:10 PM Page 1072

and Windows 2000. First, I’ll show you the steps for Windows NT, followed by the steps for
Windows 2000.

Debugging Using Windows NT 4
For Windows NT with the Option Pack installed, you need to specify MTS as the Host
Application. MTS will already be running, so you must shut it down first.

ASP Development

CHAPTER 22

22

A
SP

D
EV

ELO
PM

EN
T

1073

As a consequence, you should never try to do this on a real production machine. Only
use a development machine in which you can afford to shut down MTS from time to
time (when debugging your Active Server Objects that are hosted inside MTS).

CAUTION

In order to shut down MTS, you must start the Internet Service Manager application, which is
part of the Windows NT 4 Option Pack. Open the Microsoft Transaction Server node in the
treeview until you see Packages Installed under My Computer (which includes the
DelphiDebugPackage you just installed).

If you right-click on the My Computer icon, you can shut down all server processes (see
Figure 22.17). This won’t give you any feedback. You can verify the shutdown by looking at
the Processes list of the Windows NT Task Manager. It shouldn’t list mtx.exe anymore.

FIGURE 22.17
Shutdown server processes.

29 chpt_22.qxd 11/19/01 12:10 PM Page 1073

Now all you have to do is specify MTS as the Host Application inside the Delphi 6 Run
Parameters dialog box, so you can use MTS as host for your DrBob42 Active Server Object. On
my NT 4 machine, that’s c:\winnt\system32\mtx.exe. You must also specify the package that
contains your DrBob42 object using the /p:”DelphiDebugPackage” parameter. In this case, the
DrBob42 object is DelphiDebugPackage. Specifying the package brings up a dialog box similar
to that shown in Figure 22.18.

Internet Development

PART VI
1074

FIGURE 22.18
Run Parameters dialog box.

Now, set a breakpoint in your code by clicking in the left-side gutter or pressing F5 while your
cursor is on a line of code and press F9 to run and debug your DrBob42 Active Server Object as
hosted inside MTS. Nothing will happen because MTS is running, but your Active Server
Object has not been invoked by a browser call yet. You must now restart Internet Explorer (or
another browser) and load the DrBob42.asp Web page that will load the Active Server Object.

This will trigger the breakpoint: At which time, you’re able to use the Delphi integrated debug-
ger on your Active Server Object.

In order to end the Delphi debug session, you have to shut down MTS again (just as you did
when you started to debug using MTS).

Debugging Using Windows 2000
Using Windows 2000, you can no longer use mtx.exe simply because under Windows 2000,
MTS is integrated into the operating system. However, you can use dllhost.exe to load the
ProcessID of your Active Server Object. This technique will also work on Windows NT. but, it
is slightly more complex, which is why I first showed you how to debug using MTS as the
Host Application under Windows NT.

You should now use dllhost.exe as the Host Application, which can be specified in the Run,
Parameters dialog box. The parameter should be the ProcessID of the DelphiDebugPackage
containing your DrBob42 Active Server Object. You can obtain this information using the

29 chpt_22.qxd 11/19/01 12:10 PM Page 1074

Internet Service Manager (Microsoft Management Console) on Windows NT or the
Component Services on Windows 2000.

The Package ID of the DelphiDebugPackage in this example is {50AE66A2-349B-11D5-
A9F0-005056995CC9}. This ID can be copied from the text label of the Run Properties dialog
box shown in Figure 22.19. This is the most convenient way to copy it because you probably
don’t want to type it in yourself. Figure 22.20 shows the Run Parameters dialog box with the
ID pasted into the Parameters text box.

ASP Development

CHAPTER 22

22

A
SP

D
EV

ELO
PM

EN
T

1075

FIGURE 22.19
DelphiDebugPackage Package ID.

FIGURE 22.20
Run Parameters with ID inserted.

Now, make sure to set a breakpoint and press F9 to run (and debug) your DrBob42 Active
Server Object. Similar to the previous example, nothing will happen until the ASP object is
invoked through a browser. You must restart Internet Explorer (or another browser) and load

29 chpt_22.qxd 11/19/01 12:10 PM Page 1075

the DrBob42.asp Web page that will in turn load the Active Server Object. This will trigger the
breakpoint; at which time, you’re able to use the Delphi integrated debugger on your Active
Server Object.

Note that in order to end the Delphi debug session, you have to shut down DelphiDebug
Package inside MTS again (just as you did when you started to debug using MTS).

Summary
In this chapter, you have learned what Active Server Pages are, what role Active Server Objects
play in them, and how Delphi 6 can be used to write these Active Server Objects. You’ve also
seen how you can use internal objects (like Request and Response), how you can add database
processing to your Active Server Objects, how you can combine Active Server Objects and
NetCLX components, and finally how to debug Active Server Objects with Delphi 6 under
Windows NT or Windows 2000.

Internet Development

PART VI
1076

29 chpt_22.qxd 11/19/01 12:10 PM Page 1076

CHAPTER

23
Building WebSnap Applications
by Nick Hodges

IN THIS CHAPTER
• WebSnap Features 1078

• Building a WebSnap Application 1080

• Advanced Topics 1107

30 chpt_23.qxd 11/19/01 12:14 PM Page 1077

Delphi 6 introduces a new Web application framework called WebSnap that brings the
strengths of Rapid Application Development (RAD) to Web development. Building on
WebBroker and InternetExpress, WebSnap is a big leap forward for Delphi developers who
want to use their favorite tool to build Web applications. It provides all the standard nuts and
bolts for Web applications, including session management, user login, user preference tracking,
and scripting. Naturally, Delphi 6 brings RAD to Web site development, making building
robust, dynamic, database-driven Web applications easy and fast.

WebSnap Features
WebSnap isn’t a totally new technology, and it doesn’t leave behind your WebBroker and
InternetExpress applications. WebSnap is compatible with these two older technologies, and it
is a relatively straightforward process to integrate your existing code into a new WebSnap
application. WebSnap provides several features listed in the following sections.

Multiple Webmodules
In Delphi’s previous versions, WebBroker and InternetExpress applications had to do all their
work in a single Web module. Multiple webmodules weren’t allowed. To add datamodules,
they had to be created manually at runtime, rather than automatically. WebSnap eliminates this
restriction and allows any number of webmodules and datamodules to be part of a Web appli-
cation. WebSnap is based on multiple modules, and each module represents a single Web page.
This allows different developers to work on different portions of the application without having
to worry about modifying each other’s code.

Server-side Scripting
WebSnap seamlessly integrates server-side scripting into your applications, and allows you to
very easily build powerful scriptable objects that you can use to build and customize your
applications and HTML. The TAdapter component and all of its descendents are scriptable
components, meaning that they can be called by your server-side script and produce HTML
and client-side JavaScript for your applications.

TAdapter Components
TAdapter components define an interface between an application and the server-side scripting.
Server-side script only has access to your application via adapters, ensuring that the script
doesn’t inadvertently change the data in an application or expose functions that aren’t intended
for public consumption. You can build custom TAdapter descendents that manage content for
your specific needs, and that content can even be visible and configurable at design time.
TAdapters can hold data and execute actions. For instance, the TDataSetAdapter can display

Internet Development

PART VI
1078

30 chpt_23.qxd 11/19/01 12:14 PM Page 1078

records from a dataset as well as take the normal actions on a dataset such as scroll, add,
update, and delete.

Multiple Dispatching Methods
WebSnap provides a number of ways to manage HTTP requests. You can access your Web
content by page name, by TAdapter actions, or by simple Web action requests as WebBroker
does. This gives you the power and flexibility to display your Web pages based on any number
of different kinds of inputs. You might want to display a page in response to a submit button,
or you might want to build a set of links into a menu based on the collection of pages in your
site.

Page Producer Components
WebBroker introduced TPageProducer, a component for managing HTML and inserting and
updating content based on custom tags. InternetExpress advanced this notion with TMidasPage
Producers. WebSnap advances the notion of PageProducers even further, adding a number of
new and powerful controls that can access TAdapter content, as well as XSL/XML data. The
most powerful of these new TPageProducer descendents is TAdapterPageProducer, which
knows how to produce HTML based on the actions and fields of TAdapter components.

Session Management
WebSnap applications contain automatic, built-in session management; now you can keep
track of user’s actions across multiple HTTP requests. Because HTTP is a stateless protocol,
your Web applications must keep track of users by leaving something on the client that identi-
fies each user. Normally this is done with cookies, URL references, or hidden field controls.
WebSnap provides seamless session support that makes tracking users very easy. WebSnap
does this via its SessionsService component. The SessionsService component seamlessly
maintains a session identification value for each user, making it a simple task to keep track of
each user as she makes individual requests. This is normally a difficult service to manage, but
WebSnap handles all the details and makes the session information available both in server-
side script and the Web application code itself.

Login Services
Your Web applications will likely need security to be implemented, requiring users to log in
to the given application. WebSnap automates this process by providing a specialized login
adapter component. This component contains the functions needed to properly query and
authenticate users according to the application’s chosen security model. It gathers login infor-
mation, and in conjunction with WebSnap’s session management, provides current login

Building WebSnap Applications

CHAPTER 23

23

B
U

ILD
IN

G
W

EBS
N

A
P

A
PPLIC

A
TIO

N
S

1079

30 chpt_23.qxd 11/19/01 12:14 PM Page 1079

credentials for each request. The login components also automate login validation and login
expiration. Throughout your application, users who try to access unauthorized pages can be
automatically referred to the login page.

User Tracking
The most common function that session tracking provides is the ability to keep track of your
users and their preferences for your application. WebSnap provides components that allow you
to easily track user information and display it on your site. You can store user login informa-
tion, and then retrieve user information based on that. You can maintain user access rights and
site preferences, as well as things such as shopping cart information.

HTML Management
Often in a dynamic Web application, keeping track of and managing HTML can be difficult.
HTML content can reside in any number of places such as files and resources, or they can be
dynamically generated. WebSnap provides a means for you to manage this process with its file
location services.

File Uploading Services
Managing the uploading of files usually requires a lot of custom code. WebSnap provides a
simple adapter solution that manages the multipart forms needed to upload files. You can pro-
vide file upload capability in your WebSnap application quickly and easily using the built-in
functionality of the TAdapter component.

Building a WebSnap Application
As always, the best way to learn about the new technology in Delphi is to try it out. We’ll start
by building the “Hello World” version of a WebSnap application.

Designing the Application
First, you’ll want to add the WebSnap toolbar to the IDE, so right-click on the speedbutton
area of the IDE title bar, and select the Internet toolbar (see Figure 23.1). This adds a toolbar to
the IDE main window that makes creating WebSnap applications and adding forms and web-
modules easy.

Next, click the speedbutton with the hand holding the globe, and you will see dialog box
shown in Figure 23.2.

Internet Development

PART VI
1080

30 chpt_23.qxd 11/19/01 12:14 PM Page 1080

FIGURE 23.1
Internet toolbar.

Building WebSnap Applications

CHAPTER 23

23

B
U

ILD
IN

G
W

EBS
N

A
P

A
PPLIC

A
TIO

N
S

1081

FIGURE 23.2
The New WebSnap Application dialog box.

The dialog box in Figure 23.2 gives you a number of options for setting up your WebSnap
application. The first is the type of server that your application is going to run on. You are
given five choices:

• ISAPI/NSAPI Dynamic Link Library—This option produces a project that runs under
IIS (or under Netscape servers with the appropriate ISAPI adapter installed). The project
produces a DLL when compiled, and runs in the same memory space as the Web server.
The most common Web server to run ISAPI applications is Microsoft’s Internet
Information Server, although other Web servers can run ISAPI DLLs.

• CGI Standalone executable—This option creates a project that produces a console exe-
cutable that reads and writes from the standard input and output ports. It conforms to the
CGI specification. Almost all Web servers support CGI.

• Win-CGI Standalone executable—This option produces a Win-CGI project that commu-
nicates with a Web server via text-based INI files. Win-CGI is very uncommon and not
recommended.

30 chpt_23.qxd 11/19/01 12:14 PM Page 1081

• Apache Shared Module (DLL)—This option produces a project that will run in the
Apache Web server. For more information about Apache, see http://www.apache.org.

• Web App Debugger Executable—If you select this option, you get an application that
will be run by Delphi’s Web App Debugger (see Figure 23.3). Your Web application will
be an out-of-process COM server, and the Web App Debugger will control and run the
application. This type of Web application will allow you to use the full power of Delphi’s
debugger when debugging it. This means no more hassling with Web servers, turning
them on and off in order to load and unload your applications. Instead, debugging your
application will be fast and easy.

Internet Development

PART VI
1082

FIGURE 23.3
The Web App Debugger application greatly simplifies debugging your Web applications.

The WebApp Debugger can be accessed via the Tools menu in the IDE. In order to
work properly, you need to register the application found in the <Delphi Dir>\bin
directory called serverinfo.exe. All you need to do to register it is run it once, and it
will register itself. The Web App Debugger is a COM-based application that acts as a
Web server to your testing applications. When you create a Web App Debugger
Application, your new project will contain a form and a Web module. The form acts
as a placeholder for the COM server, and running the application once will register it.
After that, the Web App Debugger will control it via the Web browser, and will serve
your application in the browser. Because the application is a Delphi executable and
not a Web server extension, you can set a breakpoint in it and run it in the Delphi
IDE. Then, when you access it through the browser, Delphi’s debugger will take over
when your breakpoints are reached, and you can debug the application normally.

NOTE

continues

30 chpt_23.qxd 11/19/01 12:14 PM Page 1082

For the sample application that you will build here, select the Web App Debugger option. This
will allow you to debug the application as you build it.

The next option in the wizard allows you to select the type of module you want and the differ-
ent components that will be included. If you choose the Page Module option, you will get a
Web module that represents a page in your application. If you choose the Data Module option,
you will get a datamodule that can be used in a WebSnap application. It can perform the same
function as datamodules do in traditional client/server applications. For this application, select
the Page Module option.

Next, click on the Components button, and you’ll see the dialog box shown in Figure 23.4.

Building WebSnap Applications

CHAPTER 23

23

B
U

ILD
IN

G
W

EBS
N

A
P

A
PPLIC

A
TIO

N
S

1083

To access your application via the browser, run the Web App Debugger, and click on
the hyperlink labeled Default URL. This will bring up a Web application that lists all
the applications registered with the server. You can then select your application and
run it. The View Details option will allow you to see more information about the dif-
ferent applications, and to clean them out of the registry when they are no longer
needed. Be careful, though, not to delete the ServerInfo application; otherwise,
you’ll have to go back and register it again.

FIGURE 23.4
The Web App Components dialog box allows you to select the components that will be included in your new module.

You have the choice of the following components listed:

• Application Adapter—This component manages the fields and actions available through
the Application server-side scripting object. The most common property you’ll use in this
component is the Title property.

30 chpt_23.qxd 11/19/01 12:14 PM Page 1083

• End User Adapter—This component manages the information about the current user of
the application such as the session ID, username, user rights, and other customized user
information. It also will manage the user’s login and logout actions.

• Page Dispatcher—This component manages and dispatches HTTP requests made by
page name. You can create HREF links or actions that call specific pages, and the Page
Dispatcher will retrieve the proper response.

• Adapter Dispatcher—The Adapter Dispatcher handles all requests that come as a result
of adapter actions. These are generally the result of an HTML form submission.

• Dispatcher Actions—This option adds a TWebDispatcher to your applications. Users of
WebBroker will remember this component. It handles requests from the application
based on URLs, just as WebBroker applications did. You can use this component to add
your own custom actions to your application in the same way you did with WebBroker.

• Locate File Service—The events of this component are called whenever a Web module
requires HTML input. You can add event handlers that allow you to bypass the default
HTML finding mechanism and get HTML from almost any source. This component is
used most often for grabbing page content and templates for building standard pages.

• SessionsService—This component manages sessions for users, allowing you to maintain
state for individual users between HTTP requests. The SessionsService can store infor-
mation about users and automatically expire their sessions after a certain period of inac-
tivity. You can add any session-specific information you want to the Session.Values
property, a string indexed array of variants. By default, the sessions are managed using
cookies on the user’s machine, although you could build a class to handle them some
other way, such as with fat URLs or hidden fields.

• User List Service—This component maintains a list of users who are authorized to log in
to the application and information about them.

Internet Development

PART VI
1084

These options each have drop-down boxes that allow you to choose the component
that will fulfill each of the preceding roles. You can create your own components that
will fulfill these roles and register them with WebSnap. They will then appear as
choices in this dialog box. You could, for instance, create a session component that
maintains session information in a fat URL rather than with cookies.

NOTE

For this example, select all the check boxes. Then, for the End User Adapter component, drop
down the combo box and select TEndUserSessionAdapter. This component will automatically
associate a session ID with an end user. Then click OK.

30 chpt_23.qxd 11/19/01 12:14 PM Page 1084

The next option in the wizard is the name of the page. Name this main page Home, and then
click Page Options. You’ll see dialog box shown in Figure 23.5.

Building WebSnap Applications

CHAPTER 23

23

B
U

ILD
IN

G
W

EBS
N

A
P

A
PPLIC

A
TIO

N
S

1085

FIGURE 23.5
The Application Module Page Options dialog box allows you to select the options for the page in your Web module.

This dialog box allows you to customize the PageProducer component of your Web module
and the HTML associated with it. It presents a number of options. The first is the type of page
producer. WebSnap includes a number of standard PageProducers that can produce and manage
HTML in different ways. To start with, select the default option, a plain PageProducer. You can
also select the type of server-side scripting you want to use. Out of the box, Delphi supports
JScript and VBScript (as well as XML/XSL, which will be discussed later.) Leave the default
value of JScript here.

Each module has an HTML page associated with it. The next option allows you to select what
type of HTML you want. By default, Delphi provides a Standard page with a simple scripted
navigation menu on it. You can create your own HTML templates, register them with
WebSnap, and then select them here. We’ll look at how to do that later in this chapter. For now,
leave the default value of Standard here.

Name the page Home (the Title is automatically filled in the same). Make sure Published is
checked, and leave Login Required unchecked. A published page will show up in the list of
pages in the application and can be referenced by the Pages scripting object. This is needed to
create page-based menus in script using the Pages scripting object.

After you have done this, click OK, and then click OK on the main wizard. The wizard will
then create your application for you, and the new Web module will look something similar to
that shown in Figure 23.6.

30 chpt_23.qxd 11/19/01 12:14 PM Page 1085

FIGURE 23.6
The Web module for the demo application as created by the WebSnap Wizard.

We haven’t yet discussed the TWebAppComponents control. This control is the central clearing
house for all the other components. Because many of the components in a WebSnap applica-
tion work together, the WebAppComponents component is the one that ties them together and
allows them to communicate and refer to each other. Its properties consist merely of other
components that fill the specific roles discussed previously.

At this point, you should save the project. To keep consistent with the rest of the chapter, name
the Web module (unit2) wmHome, name the form (Unit1) ServerForm, and name the project
itself DDG6Demo.

By examining the Code Editor, you should see some new, unfamiliar features. First, notice the
tabs along the bottom. Each Webmodule—because it represents a page in a Web application—
has an associated HTML file that can contain server-side script. The second tab on the bottom
shows this page (see Figure 23.7). Because you selected the Standard HTML page template in
the wizard, the HTML contains server-side script that will greet the user if she is logged in,
and will provide a basic navigation menu that will be automatically built based on all the pub-
lished pages in the application. As pages get added to this demo application, this menu will
grow larger and will allow users to navigate to each of the pages. The default HTML code is
shown in Listing 23.1.

Internet Development

PART VI
1086

30 chpt_23.qxd 11/19/01 12:14 PM Page 1086

FIGURE 23.7
The HTML page associated with the Web module.

LISTING 23.1 Default HTML Code

<html>
<head>
<title>
<%= Page.Title %>
</title>
</head>
<body>
<h1><%= Application.Title %></h1>

<% if (EndUser.Logout != null) { %>
<% if (EndUser.DisplayName != ‘’) { %>
<h1>Welcome <%=EndUser.DisplayName %></h1>

<% } %>
<% if (EndUser.Logout.Enabled) { %>
<a href=”<%=EndUser.Logout.AsHREF%>”>Logout

<% } %>
<% if (EndUser.LoginForm.Enabled) { %>
<a href=<%=EndUser.LoginForm.AsHREF%>>Login

<% } %>
<% } %>

Building WebSnap Applications

CHAPTER 23

23

B
U

ILD
IN

G
W

EBS
N

A
P

A
PPLIC

A
TIO

N
S

1087

30 chpt_23.qxd 11/19/01 12:14 PM Page 1087

LISTING 23.1 Continued

<h2><%= Page.Title %></h2>

<table cellspacing=”0” cellpadding=”0”>
<td>
<% e = new Enumerator(Pages)

s = ‘’
c = 0
for (; !e.atEnd(); e.moveNext())
{
if (e.item().Published)
{
if (c>0) s += ‘ | ’
if (Page.Name != e.item().Name)
s += ‘’ + e.item().Title + ‘’

else
s += e.item().Title

c++
}

}
if (c>1) Response.Write(s)

%>
</td>
</table>

</body>
</html>

This code contains both normal HTML tags as well as server-side JScript.

You should also note that the HTML is syntax-highlighted in the IDE. (You can set the colors
to be used in Tools, Editor Options, Color property page.) In addition, you can set your own
external HTML editor such as HomeSite and access it via the IDE as well. Set the HTML
Editor in Tools, Environment Options, Internet. Select HTML in the listview, and then click
Edit. From there, select the appropriate edit action to use your external editor. Then, when you
right-click on the HTML page in the Code Editor, you can select the HTML Editor option and
call up your editor.

In addition to the HTML viewing tab, the next tab shows the HTML that results from the script
being run. The following tab shows a preview of the HTML in an Internet Explorer window.
Do note that not all the script will execute and display in this view because some of the code
relies on runtime values. However, you can at least get an idea what the page will look like
without having to run it in the browser.

Internet Development

PART VI
1088

30 chpt_23.qxd 11/19/01 12:14 PM Page 1088

Adding Functionality to the Application
Now let’s add a little code and make the application do something. First, go to the Home Web
module and select the Application adapter. Set the ApplicationTitle property to Delphi
Developers Guide 6 WebSnap Demo Application. Note that this will immediately show up in
the preview tab because the HTML contains the following server-side script as the first thing in
the <BODY> section:

<h1><%= Application.Title %></h1>

This causes the Application scripting object to display the value for ApplicationTitle in the
HTML.

Next, go to the Code Editor, and select the HTML page for the Home Module. Then move the
cursor down below the </table> tag near the bottom and add a pithy description of the page,
which welcomes the user. The code on the CD-ROM has such an entry, adding the following:

<P>
Welcome to the Delphi 6 Developers Guide WebSnap
➥ Demonstration Application!
<P>
This application will demonstrate many of the new features in Delphi 6 and
➥WebSnap. Feel free to browse around and look at the code involved. There is
➥a lot of power, and thus a lot to learn, in WebSnap, so take your time and
don’t try to absorb it all at once.
<P>

This new code of course immediately shows up in the HTML Preview panel as well.

Next, just to prove that you are actually building a browser application, run the project. The
first thing you will see is a blank form. This is the COM server. You can shut it down once it
runs, and then start up the Web App Debugger from the Tools menu. After you have done that,
click on the Default URL hyperlink (it will be called DDG6DemoApp.DDG6TestApp), find the
application in the list box in your browser, and click the Go button. Your browser should show
your page as illustrated in Figure 23.8.

As you can see, it really is a Web application!

Navigation Menu Bar
Now, you’ll add another page that demonstrates the navigation menu. Go to the IDE’s main
menu bar, and select the second toolbutton on the Internet menu, the one with the little globe
and the sheet of paper. This will bring up the New WebSnap Page Module Wizard, which is
similar to the dialog box you saw as part of the main wizard. Leave all the options with the
default values, except for the Name edit box. Name the page Simple. The result is a Web mod-
ule with a single PageProducer in it. Note that an HTML page is associated with this page, and
it has the same code as the first page you saw. Save the unit as wmSimple.pas.

Building WebSnap Applications

CHAPTER 23

23

B
U

ILD
IN

G
W

EBS
N

A
P

A
PPLIC

A
TIO

N
S

1089

30 chpt_23.qxd 11/19/01 12:14 PM Page 1089

FIGURE 23.8
Results of the first page added to the demo application.

Internet Development

PART VI
1090

Setting Threading and Caching Options
The New WebSnap Page Module Wizard has two options at the bottom that deter-
mine how instances of each Web module are to be handled. The first is the Creation
option. Web modules can be created either On Demand or Always. Web modules cre-
ated On Demand are only instantiated when a request comes in for them. Choose this
option for pages that are less frequently used. Choose Always for pages that are cre-
ated immediately upon application startup. The second option is the Caching Option,
and this determines what happens to a Web module when it has finished servicing its
request. If Cache Instance is chosen, each Web module created is cached when it is
finished providing a request, and it remains in a pool of cached instances, ready to be
used again. It is important to note that when it is used again, the field data will be in
the same state it was in when it finished its last request. Choose Destroy Instance if
you want each instance of the Web module to be destroyed upon completion instead
of being cached.

Next, add some simple message in the HTML page in the same spot below the table in the
standard page. Then, compile and run the application via the Web App Debugger as you did

30 chpt_23.qxd 11/19/01 12:14 PM Page 1090

before. If the page was there from the last time you checked it, all you need to do is click the
Refresh button on your browser.

This time when you run the application, you should note that the navigation menu now
appears. That menu is a result of the following server-side script:

<% e = new Enumerator(Pages)
s = ‘’
c = 0
for (; !e.atEnd(); e.moveNext())
{
if (e.item().Published)
{
if (c>0) s += ‘ | ’
if (Page.Name != e.item().Name)
s += ‘’ + e.item().Title + ‘’

else
s += e.item().Title

c++
}

}
if (c>1) Response.Write(s)

%>

This code simply iterates over the Pages scripting object, building a menu of page names. The
code makes a link if the page found isn’t the current page. Thus, the current page isn’t a link,
and all the other page names are, no matter what the current page is. This is a rather simple
menu, and of course you could write your own more sophisticated menus for your custom
application.

Building WebSnap Applications

CHAPTER 23

23

B
U

ILD
IN

G
W

EBS
N

A
P

A
PPLIC

A
TIO

N
S

1091

If you toggle between the two pages, you might notice that the application’s form
flashes in the background each time a request is made. That is because the Web App
Debugger is calling the application as a COM object for each request, running the
application, getting the HTTP response back, and shutting down the application.

NOTE

Next, you can make part of the application restricted only to users who are logged in. First, add
a page that requires a user to be logged in to see it. Click the New WebSnap Page button on the
Internet toolbar, and name the page “LoggedIn.” Then, select the LoginRequired check box.
Click OK to create a Web page that can only be viewed by a user who is logged in. Save the
page as wmLoggedIn.pas. Then, add some HTML code to the HTML page letting the user

30 chpt_23.qxd 11/19/01 12:14 PM Page 1091

know that only logged in users can view the page. The application on the CD-ROM includes
the following:

<P>
Congratulations!

You are successfully logged in! Only logged in users are granted access
➥to this page. All others are sent back to the Login page.
<P>

The only difference between the LoggedIn page and the Simple page is a parameter in the code
that registers the page with the application manager. Every WebSnap page has an initialization
section that looks something like this:

initialization
if WebRequestHandler <> nil then
WebRequestHandler.AddWebModuleFactory(TWebPageModuleFactory.Create(TLoggedIn,

TWebPageInfo.Create([wpPublished, wpLoginRequired], ‘.html’),
➥crOnDemand, caCache));

This code registers the page with the WebRequestHandler object, which manages all the pages
and provides their HTML content when needed. WebRequestHandler knows how to create,
cache, and destroy instances of webmodules as needed. The preceding code is the code for the
LoggedIn page, and it has the wpLoginRequired parameter, telling the page that only logged in
users can access it. By default, the New Page Wizard adds this value, but comments it out. If
you want the page to become password protected later, you can simply uncomment the para-
meter and recompile the application.

Logging In
You need to create a page that lets the user log in. First, however, there is some housekeeping
to do on the Home page.

First, create a new page and give it the name Login. Then, select TAdapterPageProducer for
the page producer type. This time, however, don’t publish it by deselecting the Publish check
box, and obviously don’t require a user to be logged in to view the login page! Deselecting the
Publish option will make the page available for use, but it won’t be part of the Pages scripting
object, and thus it won’t show up on the navigation menu. Save it as wmLogin. This time, go
to the WebSnap page of the Component Palette and drop a TLoginAdapter component on the
module.

The TAdapterPageProducer is a specialized PageProducer that knows how to display and han-
dle the appropriate HTML fields and controls for a TAdapter. In the case of the Demo applica-
tion, this TAdapterPageProducer is going to display the Username and Password edit boxes
that the user will need to use to log in. When you begin to understand WebSnap better, you’ll

Internet Development

PART VI
1092

30 chpt_23.qxd 11/19/01 12:14 PM Page 1092

quickly want to use TAdapterPageProducers in all your pages because they make it very easy
to display TAdapter information, execute TAdapter actions, and build HTML forms based on
TAdapter fields.

Because the TLoginFormAdapter has all the fields needed for this, creating the login page will
be very easy, and done with no code at all—that’s right, no code. You’ll be able to add users,
create a login page, and enforce the login on pages you specify, all without a single line of
code.

First, to manage logins, you’ll need to create some users. Go to the Home Web module and
double-click on the WebUserList component. This component manages users and passwords.
You can easily add users and their passwords. Click on the New button and add two different
users. Add whatever passwords you want for each user. The two users on the demo application
on the CD-ROM are ddg6 and user. Their passwords are the same as their usernames, as
shown in Figure 23.9.

Building WebSnap Applications

CHAPTER 23

23

B
U

ILD
IN

G
W

EBS
N

A
P

A
PPLIC

A
TIO

N
S

1093

FIGURE 23.9
The component editor for the WebUserList component with two users added.

Select the EndUserSessionAdapter and set the LoginPage property to Login, that is, the name
of the page that has the controls to log in users. Next, go back to the Login Web module and
double-click on the TAdapterPageProducer component. This will bring up the Web Surface
designer, shown in Figure 23.10.

Select the AdapterPageProducer in the upper right, and click the New Component button.
Select AdapterForm and click OK. Then, select the AdapterForm1, and click the New
Component button again. Select AdapterErrorList. Do the same for AdapterFieldGroup and
AdapterCommandGroup. Then set the Adapter property for these three components to
LoginFormAdapter1. Then, select the AdapterFieldGroup and add two AdapterDisplayField
objects. Set the FieldName property on the first one to UserName, and the second one to
Password. Select the AdapterCommandGroup, and set its DisplayComponent property to
AdapterFieldGroup1. You should then have a form that looks like Figure 23.10. If you close
this form, and then go to the Code Editor, you can see that the form now has the login controls
in it.

30 chpt_23.qxd 11/19/01 12:14 PM Page 1093

FIGURE 23.10
The TAdapterPageProducer Web Surface Designer with the LoginFormAdapter components on it.

That’s all you need to do. Run the application and leave it running. Now, because you are rely-
ing on session information about the user, you need to leave the application in memory for it to
remember that you are logged in. Run the application in the browser, and then try to navigate
to the page that requires you to be logged in. It should take you to the Login page. Enter a
valid username and password, click the login button, and you will be taken to the page asking
you to log in. From now on, any page that you specify as requiring a valid login will only dis-
play if you are properly logged in. Otherwise it will send you to the login page. All that hap-
pens without writing a single line of Pascal code.

Try this as well: Log out by selecting the Logout link, and then try to login with an invalid
username or password. Note that an error message is displayed. That is the AdapterErrorList
component at work. It automatically collects login errors and displays them for you.

When you are logged in to the application and navigating around the pages in the application,
you will notice that it remembers who you are and displays your login name in the heading for
each page. This is a result of the following server-side script in the HTML file for the web-
modules:

<% if (EndUser.Logout != null) { %>
<% if (EndUser.DisplayName != ‘’) { %>
<h1>Welcome <%=EndUser.DisplayName %></h1>

<% } %>

Internet Development

PART VI
1094

30 chpt_23.qxd 11/19/01 12:14 PM Page 1094

Managing User Preference Data
The next thing you might want to do is to maintain some user preference information. Most
dynamic, user-based applications will want to display all different types of user information
ranging from items in a shopping cart to a user’s color preferences. Of course, WebSnap makes
this very easy. But this time, you’ll actually have to write a few lines of code.

First, add another page to the application. Give it a TAdapterPageProducer and require the
user to be logged in to view it. (By now, you should be able to do this using the toolbar and the
resulting wizard.) Save the file as wmPreferenceInput. Add a TAdapter to the Webmodule.
Rename the Adapter from Adapter1 to PrefAdapter, as shown in Figure 23.11.

Building WebSnap Applications

CHAPTER 23

23

B
U

ILD
IN

G
W

EBS
N

A
P

A
PPLIC

A
TIO

N
S

1095

FIGURE 23.11
The PreferenceInput Web module that will gather up the user’s preferences.

First, double-click on the PrefAdapter component, and then add two AdapterFields and one
AdapterBooleanField. Name the two AdapterFields FavoriteMovie and PasswordHint. Name
the AdapterBooleanField LikesChocolate. (Notice that when you rename these components,
the DisplayLabel and FieldName values change as well.) You can also change the
DisplayLabel values that make more sense in your HTML.

The PrefAdapter component will hold the values for these preferences, and they can be
accessed from other pages. TAdapters are scriptable components that can hold, manage, and
manipulate information for you, but doing that will require some code. Each of the three
AdapterFields you created need to be able to retrieve their values when asked for them in
script, so each has an OnGetValue event that does just that. Because you want this information
to be persistent across requests, you’ll store the information in the Session.Values property.
The Session.Values variable is a string-indexed array of variants, so you can store almost
anything in it, and it will maintain that information as long as the current session is active.

The TAdapter class also allows you to take actions on its data. Most commonly, this will take
the form of a Submit button on your HTML form. Select the PrefAdapter component, go to
the Object Inspector, and double-click on the Actions property. Add a single action and name it
SubmitAction. Change its DisplayLabel property to Submit Information. Then, go to the
Events page in the Object Inspector and add this code to the action’s OnExecute event as
shown in Listing 23.2.

30 chpt_23.qxd 11/19/01 12:14 PM Page 1095

LISTING 23.2 OnExecute Handler

procedure TPreferenceInput.SubmitActionExecute(Sender: TObject;
Params: TStrings);

var
Value: IActionFieldValue;

begin

Value := FavoriteMovieField.ActionValue;
if Value.ValueCount > 0 then
begin
Session.Values[sFavoriteMovie] := Value.Values[0];

end;

Value := PasswordHintField.ActionValue;
if Value.ValueCount > 0 then
begin
Session.Values[sPasswordHint] := Value.Values[0];

end;

Value := LikesChocolateField.ActionValue;
if Value <> nil then
begin
if Value.ValueCount > 0 then
begin
Session.Values[sLikesChocolate] := Value.Values[0];

end;
end else
begin
Session.Values[sLikesChocolate] := ‘false’;

end;;
end;

This code retrieves the values from the input fields in your HTML when the user clicks the
Submit button, and puts the values in the session variable for later retrieval by the
AdapterFields.

Of course, you need to be able to retrieve those values once they are set, so each field of the
adapter will get its value back from the SessionsService object. For each field in the adapter,
make the OnGetValue event handlers resemble the code in Listing 23.3.

LISTING 23.3 OnGetValue Event Handlers

...
const
sFavoriteMovie = ‘FavoriteMovie’;
sPasswordHint = ‘PasswordHint’;

Internet Development

PART VI
1096

30 chpt_23.qxd 11/19/01 12:14 PM Page 1096

LISTING 23.3 Continued

sLikesChocolate = ‘LikesChocolate’;
sIniFileName = ‘DDG6Demo.ini’;

...

procedure TPreferenceInput.LikesChocolateFieldGetValue(Sender: TObject;
var Value: Boolean);

var
S: string;

begin
S := Session.Values[sLikesChocolate];
Value := S = ‘true’;

end;

procedure TPreferenceInput.FavoriteMovieFieldGetValue(Sender: TObject;
var Value: Variant);

begin
Value := Session.Values[sFavoriteMovie];

end;

procedure TPreferenceInput.PasswordHintFieldGetValue(Sender: TObject;
var Value: Variant);

begin
Value := Session.Values[sPasswordHint];

end;

Next, you need to be able to display controls that will actually get the data from the user.
You’ll do that via the TAdapterPageProducer, just as you did with the Login page. First, dou-
ble-click on the TAdapterPageProducer, and you will get the Web Surface designer again.
Create a new AdapterForm, and then add an AdapterFieldGroup, as well as an
AdapterCommandGroup. Set the Adapter property of the AdapterFieldGroup to PrefAdaper,
and set the DisplayComponent of the AdapterCommandGroup to AdapterFieldGroup. Then,
right-click on the AdapterFieldGroup and select Add All Fields from the menu. For each of
the resulting fields, use the Object Inspector to set the FieldName property to the appropriate
values. You can also change the Caption properties to more friendly values than the default.
Then select the AdapterCommandGroup, right-click on it, and select Add All Commands from
the menu. Set the ActionName property of the resulting AdapterActionButton to
SubmitAction. Finally, set the AdapterActionButton.PageName property to PreferencesPage.
(This is the page that the action will go to once it is done processing the action. You’ll create
that page in a minute.)

If something isn’t hooked up correctly in the Web Surface Designer, you will see an error mes-
sage in the Browser tab. The message will instruct you on the properties that need to be set for
everything to be connected properly and for the HTML to be rendered properly.

Building WebSnap Applications

CHAPTER 23

23

B
U

ILD
IN

G
W

EBS
N

A
P

A
PPLIC

A
TIO

N
S

1097

30 chpt_23.qxd 11/19/01 12:14 PM Page 1097

After you have done all this, and the HTML looks right, the page is done. Now, if you run the
application, you’ll see an additional page on the menu. If you log in, you can see the input
controls to enter your preference data. Don’t click the Submit button just yet because there is
no place to go.

Next, create a page to display the user preferences by using the toolbar, and then name it
PreferencesPage. Publish the page and require users to be logged in to view it. (Again, the wiz-
ard can do all this for you as before.) Save the new unit as wmPreferences.

Then, go the HTML for the page, and in the area just below the table that holds the navigation
menu, add the following script:

<P>
Favorite Movie: <%= Modules.PreferenceInput.PrefAdapter.FavoriteMovieField.
➥Value %>

Password Hint: <%= Modules.PreferenceInput.PrefAdapter.PasswordHintField.
➥Value %>

<% s = ‘’
if (Modules.PreferenceInput.PrefAdapter.LikesChocolateField.Value)

s = ‘You like Chocolate’
else
s = ‘You do not like chocolate’

Response.Write(s);
%>

Now, when you compile and run the application, you can enter your preferences and click the
Submit button—the application will remember and display your preferences in the Preferences
page. You can access those values in the script for any other page as well once they are set. The
values are maintained between HTTP requests by the Session object and retrieved from the
Adapter component via script.

Internet Development

PART VI
1098

Each of the pages in a WebSnap application has an associated HTML file, as you have
seen. Because these files exist outside of the application, you can edit them, save the
changes, refresh the page in your browser, and see the results without recompiling
your application. This means that you can update the page itself without having to
take down your Web server. You can also easily experiment with your server-side
script during development without having to recompile your application. Later in the
chapter, you’ll look at alternative ways to store and retrieve your HTML.

NOTE

30 chpt_23.qxd 11/19/01 12:14 PM Page 1098

Persisting Preference Data Between Sessions
There’s only one problem now—the user’s selections aren’t persistent between sessions. The
preferences are lost if the user logs out. You can make these values persist even between ses-
sions by storing them each time the session ends and grabbing them each time a user logs in.
The demo application reads any stored data in the LoginFormAdapter.OnLogin event, and then
writes out any data in the SessionService.OnEndSession event. The code for those two
events is shown in Listing 23.4.

LISTING 23.4 OnLogin and OnEndSession Events

procedure TLogin.LoginFormAdapter1Login(Sender: TObject; UserID: Variant);
var
IniFile: TIniFile;
TempName: string;

begin
// Grab session data here
TempName := Home.WebUserList.UserItems.FindUserID(UserId).UserName;

➥ //WebContext.EndUser.DisplayName;
Home.CurrentUserName := TempName;

Lock.BeginRead;
try
IniFile := TIniFile.Create(IniFileName);
try
Session.Values[sFavoriteMovie] := IniFile.ReadString(TempName,
➥sFavoriteMovie, ‘’);
Session.Values[sPasswordHint] := IniFile.ReadString(TempName,
➥sPasswordHint, ‘’);
Session.Values[sLikesChocolate] := IniFile.ReadString(TempName,
➥sLikesChocolate, ‘false’);

finally
IniFile.Free;

end;
finally
Lock.EndRead;

end;
end;

procedure THome.SessionsServiceEndSession(ASender: TObject;
ASession: TAbstractWebSession; AReason: TEndSessionReason);

var
IniFile: TIniFile;

begin
//Save out the preferences here

Building WebSnap Applications

CHAPTER 23

23

B
U

ILD
IN

G
W

EBS
N

A
P

A
PPLIC

A
TIO

N
S

1099

30 chpt_23.qxd 11/19/01 12:14 PM Page 1099

LISTING 23.4 Continued

Lock.BeginWrite;
if FCurrentUserName <> ‘’ then
begin
try
IniFile := TIniFile.Create(IniFileName);
try
IniFile.WriteString(FCurrentUserName, sFavoriteMovie,
➥ASession.Values[sFavoriteMovie]);
IniFile.WriteString(FCurrentUserName, sPassWordHint,
➥ASession.Values[sPasswordHint]);
IniFile.WriteString(FCurrentUserName, sLikesChocolate,
➥ASession.Values[sLikesChocolate]);

finally
IniFile.Free;

end;
finally
Lock.EndWrite

end;
end;

end;

These event handlers store the data in an INI file, but there is no reason that you couldn’t store
the data in a database or any other persistent storage method.

The Lock variable is a global variable of type TMultiReadExclusiveWriteSynchronizer, and
it is created in the Home page’s initialization section. Because multiple sessions could be read-
ing and writing to the INI file, this component makes reading and writing to the INI file
thread-safe. Add the following declaration to the interface portion of your wmHome unit:

var
Lock: TMultiReadExclusiveWriteSynchronizer;

And then add this to the initialization and finalization sections for the same unit:

Initialization
...
Lock := TMultiReadExclusiveWriteSynchronizer.Create;

finalization
Lock.Free;

This code also uses a function called IniFileName that is declared as follows:

const
sIniFileName = ‘DDG6Demo.ini’;

...

Internet Development

PART VI
1100

30 chpt_23.qxd 11/19/01 12:14 PM Page 1100

function IniFileName: string;
begin
Result := ExtractFilePath(GetModuleName(HInstance)) + sIniFileName;

end;

Add this to your wmHome unit, and you should have a fully functioning Web application that
logs in users and tracks their preferences, even between sessions.

Image Handling
Practically every Web application displays graphics. Graphics can enhance your application’s
appeal and functionality. Naturally, WebSnap makes including images and graphics in your
applications as easy as, well, everything else WebSnap does. As you might expect, WebSnap
will enable you to use graphics and images from any source you prefer—files, resources, data-
base streams, and so on. If your image data can be put into a stream, it can be used in a
WebSnap application.

Use the Internet toolbar to add another page to your application. Use a
TAdapterPageProducer, publish the page, and require users to log in to gain access to it. Next
name the page Images, and save the resulting unit as wmImages. After this is done, go to the
Images Web module, add a TAdapter to the module, and give it the name ImageAdapter.
Finally, double-click on ImageAdapter, and add two fields of type TAdapterImageField. Each
of these will show a different way to display images.

First, you can display an image based on a URL. Highlight the first AdaperImageField, and
set the HREF property to a fully qualified URL that points to an image on your system or any-
where on the Internet for that matter. For instance, if you want to look at the one-year history
of Borland’s stock price, set the HREF property to http://chart.yahoo.com/c/1y/b/borl.gif.

Double-click on the TAdapterPageProducer in the Images Web module, add an AdapterForm,
and then to that add an AdapterFieldGroup. Set the adapter property of this new
AdapterFieldGroup to the ImageAdapter. Then right-click again on the AdapterFieldGroup
and select Add All Fields. Next, set the ReadOnly field of the AdapterImageField to True. If
this property is True, it will display the image on your page. If it is set to False, it will give
you an edit box and a button to look up a filename. Obviously, to see images, you should set
this property to True. When you first look at the image, you will notice that the image has a
pesky little caption. Most often you won’t want that, so to get rid of it, set the Caption prop-
erty to a single space. (Note that it won’t accept a blank caption.) You should then see the chart
appear in the Web Surface Designer as shown in Figure 23.12.

Building WebSnap Applications

CHAPTER 23

23

B
U

ILD
IN

G
W

EBS
N

A
P

A
PPLIC

A
TIO

N
S

1101

30 chpt_23.qxd 11/19/01 12:14 PM Page 1101

FIGURE 23.12
The Web Surface Designer with a graphic in it from the ImageAdapterField.

Internet Development

PART VI
1102

If you want images referenced by relative links to show up at design time, you must
add the directory where they reside to the Search Path on the Options page of the
Web App Debugger.

NOTE

Now you can display images based on a URL. At other times, however, you might want to get
an image from a stream. The AdapterImageField component provides support for that as well.
Select the second AdapterImageField from your ImageAdapter and open the Object Inspector.
Go to the events page, and double-click on the OnGetImage. Put a JPG image in the same
directory as application (the demo on the CD-ROM uses athena.jpg), and make your event
handler resemble the following:

procedure TImages.AdapterImageField2GetImage(Sender: TObject;
Params: TStrings; var MimeType: String; var Image: TStream;
var Owned: Boolean);

begin
MimeType := ‘image\jpg’;
Image := TFileStream.Create(‘athena.jpg’, fmOpenRead);

end;

30 chpt_23.qxd 11/19/01 12:14 PM Page 1102

This code is quite simple—Image is a stream variable that you create and fill with an image.
Of course, the application needs to know what type of image it is getting, so you can return
that information in the MimeType parameter. A TFileStream is a simple solution, but you could
get the image from any source, such as a BlobStream from a database, or build the image on-
the-fly and return it in a memory stream. Now when you run the application, you should see
the JPG you chose right below the stock graphic.

Displaying Data
Of course, you want your application to do more than the simple things it does so far. You’ll
certainly want to be able to display data from a database, both in tabular form and record by
record. Naturally, WebSnap makes this easy, and you can build powerful database applications
with only a modicum of code. By using the TDatasetAdapter and its built-in fields and
actions, you can easily display data, as well as make additions, updates, and deletions to any
database.

Actually displaying a dataset on a form is very easy. Add a new unit to your demo app—but
this time make it a WebDataModule, using the third button on the Internet toolbar. This wizard
is a simple one, so just accept the defaults. Then add a TDatasetAdapter from the WebSnap
tab on the Component Palette, and a TTable from the BDE tab. Point the TTable to the
DBDemos database, and then to the BioLife table. Then set the Dataset property of
DatasetAdapter1 to Table1. Finally, set Table1.Active to True to open the table. Name the
Webdatamodule BioLife data, and save the unit as wdmBioLife.

Building WebSnap Applications

CHAPTER 23

23

B
U

ILD
IN

G
W

EBS
N

A
P

A
PPLIC

A
TIO

N
S

1103

Your application is using a simple BDE-based Paradox table, but the TDatasetAdapter
component will display data from any TDataset descendent. Note, too, that it isn’t
really a good idea to use a TTable in a Web application without explicit session sup-
port. The demo app does this just for ease of use, and to keep attention on the
WebSnap features and not the data.

NOTE

Then, for a change of pace, use the Object Treeview to set the properties of the components. If
the Object Treeview isn’t visible, select View, Object Treeview from the main menu. Select the
DatasetAdapter, right-click on the Actions node, and select Add All Actions. Then, hook the
TTable to the TAdapterDataset via its Dataset property. Select the Fields node and right-
click, selecting Add All Fields. Do the same for the TTable, adding all the fields in the dataset
to the WebDatamodule. Then, because WebSnap builds stateless servers for database opera-
tions, you must indicate a primary key for the dataset to enable client-requested navigation
and data manipulation. WebSnap will do this all for you automatically after you specify the

30 chpt_23.qxd 11/19/01 12:14 PM Page 1103

primary key. Do this by selecting the Species_No Field in the Object Treeview and adding the
pfInKey value to its ProviderFlags property.

Next, add a regular page to the application. Make it a Login Required page, give it a TAdapter
PageProducer, and name the page Biolife. Save the unit as wmBioLife. Because you want to
display the data in this new page, add the wdmBioLife unit name to the uses clause of your
wmBioLife unit. Then, give the BioLife Web module the focus, and right-click on the Adapter
PageProducer component. Right-click on the WebPageItems node just below it, select New
Component, and select an AdapterForm. Select the AdapterForm, right-click it, and add an
AdapterErrorList. Then add an AdapterGrid. Set the Adapter property of both components to
the DatasetAdapter. Right-click on the AdapterGrid and select Add All Columns. Then select
the Actions node under the DatasetAdapter, right-click it, and select Add All Actions. Next,
select the Fields node, right-click, and add all the fields as well. You should now have all the
properties properly set to display data.

Go to the BioLife Web module and double-click on the AdaperPageProducer. You should see
the Web Surface Designer, with live data in it. If not, check to make sure that you have opened
the table and hooked up all the Adapter properties for the components within the
DatasetAdapter. The Notes field makes the table too long, so select the AdapterGrid in the
upper left and the ColNotes component in the panel in the upper right, and then delete it. Now
you should have something similar to that shown in Figure 23.13.

Internet Development

PART VI
1104

FIGURE 23.13
The BioLife table in the Web Surface designer of a TAdapterPageProducer; the HTML table is produced by the
TDatasetAdapter component.

30 chpt_23.qxd 11/19/01 12:14 PM Page 1104

The graphics don’t display at design time, but they will at runtime. Indeed, you can now com-
pile and run the application, and you can view all the data on the BioLife page—all without
writing a single line of code.

Of course, simply looking at the data isn’t very useful. You’ll likely want to manipulate indi-
vidual records. Naturally, this is easy to do in WebSnap. Go to the Web Surface Designer and
select the AdapterGrid. Right-click on it and add an AdapterCommandColumn. Then right-click
on this and select the DeleteRow, EditRow, BrowseRow, and NewRow commands, as shown in
Figure 23.14.

Building WebSnap Applications

CHAPTER 23

23

B
U

ILD
IN

G
W

EBS
N

A
P

A
PPLIC

A
TIO

N
S

1105

FIGURE 23.14
Use the Add Commands dialog box to select the actions you want to take on individual rows of the dataset.

Click OK. Then, vertically stack the buttons by setting the DisplayColumns property of the
AdapterCommandColumn component to 1. After you do that, you should see a collection of com-
mand buttons in the Web Designer (see Figure 23.15).

Currently, those buttons need to do something, and they’ll need a page to display the individual
record. Add another page to the project with a TAdapterPageProducer and require the user
login to see the page. Name the page BioLifeEdit, and save the unit as wmBioLifeEdit. Add
wdmBioLife to the uses clause so that you can access the data.

Double-click on the TAdapterPageProducer in the new Web module and add an AdapterForm.
Then add an AdapterErrorList, an AdapterFieldGroup, and an AdapterCommandGroup.
Right-click on the AdapterFieldGroup and add all the fields and then all the commands to the
AdapterCommandGroup. The Web Surface Designer resembles what is shown in Figure 23.16.

30 chpt_23.qxd 11/19/01 12:14 PM Page 1105

FIGURE 23.15
The Demo application displaying the action buttons.

Internet Development

PART VI
1106

FIGURE 23.16
The BioLifeEdit page with all the fields and actions added to the Web Surface Designer.

Now, in order to use this page to edit a single record, go back to the wmBioLife unit where
the grid is, and use the Object TreeView and the shift key to select all four buttons in the

30 chpt_23.qxd 11/19/01 12:14 PM Page 1106

AdapterCommandColumn. Set their page property to EditBioLife—the name of the page that
will display a single record. Now, when you click the button in the grid, the EditBioLife page
will be displayed. If you ask to browse the record, the data will be displayed as simple text.
But if you ask to edit the record, the data will be displayed in edit boxes. The graphic field will
even allow you to add a new graphic to the database by browsing for a new file. You can navi-
gate through the dataset using the command buttons. And again, all this was accomplished
without writing a single line of code—or script for that matter.

Building WebSnap Applications

CHAPTER 23

23

B
U

ILD
IN

G
W

EBS
N

A
P

A
PPLIC

A
TIO

N
S

1107

You might want to tweak the presentation of the Notes field a little bit. By default,
the TextArea control used when the page is in edit mode is quite small and doesn’t
wrap the text. You can select the FldNotes component and adjust the TextAreaWrap,
DisplayRows, and DisplayWidth properties to get better results.

NOTE

Converting the Application to an ISAPI DLL
Your application has so far been run under the Web App Debugger, making it easy to debug
and test. However, you certainly don’t want to deploy the application that way. Instead, you’ll
likely want to make the application an ISAPI DLL so that it will always reside in memory and
maintain all the session information needed to keep things in order.

Converting your application from a Web App Debugger based server to an ISAPI server is very
straightforward. Simply create a new, blank ISAPI-based project, and remove all the units from
it. Then, add in all units from the Web App version except the form. Then compile and run. It’s
that simple. In fact, you can maintain two projects that use the very same webmodules—one
project for testing and another for deploying. Most of the demo applications in the WebSnap
directory do this, and the demo application on the CD-ROM has both Web App Server and
ISAPI projects. When deploying the new ISAPI DLL, be sure to include any HTML files that
will need to be in the same directory as the DLL.

Advanced Topics
So far, you have seen what can be considered the basics. You’ve created a WebSnap application
that manages users, session information about those users, as well as manages and manipulates
data. WebSnap does a lot more than that, however, and gives you more control over what your
application can do. The next section covers some advanced topics that will allow you to more
finely tune your WebSnap applications.

30 chpt_23.qxd 11/19/01 12:14 PM Page 1107

LocateFileServices
The development of WebSnap Web applications usually requires the coordination of differing
resources. HTML, server-side script, Delphi code, database access, and graphics all need to be
properly tied together into a single application. Most often, many of these resources lie embed-
ded in and are managed via an HTML file. WebSnap provides support for separating HTML
from the implementation of a dynamic Web page, meaning that you can edit the HTML files
separately from the Web application’s binary file. However, by default, that HTML must reside
in files in the same location as the binary file does. This isn’t always convenient or possible,
and there might be times when you want HTML to reside in locations away from your binary.
Or it might be that you want to get HTML content from sources other than files, say a database.

WebSnap provides you the ability to get HTML from any source that you want. The
LocateFileService component allows you to get HTML from any file location, include files,
or any TStream descendant. Being able to access HTML from a TStream means that you can
get the HTML from any source as long as it can be placed in a TStream.

For example, HTML can be streamed from a RES file embedded in your application’s binary
file. The demo application can show how this is done. Naturally, you’ll need some HTML to
embed. Using a text editor or your favorite HTML editor, take the wmLogin.html file as a tem-
plate and save it in your demo application’s directory as embed.html. Then, add some text to
the file to note that the file is embedded in the RES file. That way, you’ll know for sure that
you have the right file when it is displayed.

Then, of course, you need to embed this HTML into your application. Delphi easily manages
this via RC files, automatically compiling them and adding them to an application. Therefore,
use Notepad or some text-handling tool to create a text file, and call it HTML.RC. Save it in the
same directory as your demo application and add it to your project. Then, add this text to the
RC file:

#define HTML 23 // HTML resource identifier
EMBEDDEDHTML HTML embed.html

When included in a Delphi project, Delphi will compile the RC file into a RES file and include
it in your application.

When the HTML is in your app, create a new page with a TPageProducer and call it
Embedded. Save the file as wmEmbedded. Then, go to the Home page and select the
LocateFileServices component. Go to the Object Inspector Events page and double-click on
the OnFindStream event. You’ll get an event handler similar to this one:

procedure THome.LocateFileServiceFindStream(ASender: TObject;
AComponent: TComponent; const AFileName: String;
var AFoundStream: TStream; var AOwned, AHandled: Boolean);

Internet Development

PART VI
1108

30 chpt_23.qxd 11/19/01 12:14 PM Page 1108

begin

end;

The key parameters here are the AFileName and AFoundStream parameters. You’ll use them to
get the HTML from the embedded resources. Make your event handler resemble the following:

procedure THome.LocateFileServiceFindStream(ASender: TObject;
AComponent: TComponent; const AFileName: String;
var AFoundStream: TStream; var AOwned, AHandled: Boolean);

begin
// we are hunting up the Embedded file
if Pos(‘EMBEDDED’, UpperCase(AFileName)) > 0 then begin
AFoundStream := TResourceStream.Create(hInstance, ‘EMBEDDED’, ‘HTML’);
AHandled := True; // no need to look further

end;
end;

AFileName will be the unqualified name of the HTML file that Delphi would use as a default.
You can use that name to determine which resource to look up. AFoundStream will be nil
when passed into event handler, so it is up to you to create a stream using the variable. In this
case, AFoundStream becomes a TResourceStream, which grabs the HTML from the resources
in the executable. Setting AHandled to True ensures that the LocateFileServices makes no fur-
ther effort to find the HTML content.

Run the application, and you will see your HTML show up when you display the Embedded
page.

File Uploading
In the past, one of the more challenging tasks for a Web application developer is uploading
files from the client to the server. It often involved dealing with the very arcane features of the
HTTP specification and counting every byte passed very carefully. As you would expect,
WebSnap makes this previously difficult task easy. WebSnap provides all the functionality for
uploading a file inside a TAdapter, and your part isn’t much more difficult than placing a file
in a stream.

As usual, create another page in your application that will upload files to the server from the
client. Name the page Upload and give it a TAdapterPageProducer. Then save the file as
wmUpload. Then, drop a TAdapter on the form. Give the TAdapter a new AdapterFileField.
This field will manage all the uploading of the files selected on the client. In addition, give the
Adapter a single action and call it UploadAction.

Next, give the AdapterPageProducer an AdapterForm with an AdapterErrorList, an
AdapterFieldGroup, and an AdapterCommandGroup. Connect the first two to Adapter1, and the

Building WebSnap Applications

CHAPTER 23

23

B
U

ILD
IN

G
W

EBS
N

A
P

A
PPLIC

A
TIO

N
S

1109

30 chpt_23.qxd 11/19/01 12:14 PM Page 1109

AdapterCommandGroup to the AdapterFieldGroup. Then add all the fields to the
AdapterFieldGroup and all the actions to the AdapterCommandGroup. Change the caption on
the button to Upload File. Figure 23.17 shows what you should see in the Surface Designer.

Internet Development

PART VI
1110

FIGURE 23.17
The Web Surface Designer for the Upload page, with the Browse button automatically added.

Code can be added in two places. The first place is to the Adapter1.AdapterFileField
OnFileUpload event handler. The code there should resemble that in Listing 23.5.

LISTING 23.5 OnFileUpload Event Handler

procedure TUpload.AdapterFileField1UploadFiles(Sender: TObject;
Files: TUpdateFileList);

var
i: integer;
CurrentDir: string;
Filename: string;
FS: TFileStream;

begin
// Upload file here
if Files.Count <= 0 then
begin
raise Exception.Create(‘You have not selected any files to be uploaded’);

end;
for i := 0 to Files.Count - 1 do
begin
// Make sure that the file is a .jpg or .jpeg
if (CompareText(ExtractFileExt(Files.Files[I].FileName), ‘.jpg’) <> 0)

30 chpt_23.qxd 11/19/01 12:14 PM Page 1110

LISTING 23.5 Continued

and (CompareText(ExtractFileExt(Files.Files[I].FileName), ‘.jpeg’)
➥<> 0) then

begin
Adapter1.Errors.AddError(‘You must select a JPG or JPEG file to upload’);

end else
begin
CurrentDir := ExtractFilePath(GetModuleName(HInstance)) + ‘JPEGFiles’;
ForceDirectories(CurrentDir);
FileName := CurrentDir + ‘\’ + ExtractFileName(Files.Files[I].FileName);
FS := TFileStream.Create(Filename, fmCreate or fmShareDenyWrite);
try
FS.CopyFrom(Files.Files[I].Stream, 0); // 0 = copy all from start

finally
FS.Free;

end;
end;

end;
end;

This code first checks to make sure that you have selected a file, and then it makes sure that
you have selected a JPEG file. After it determines that you have done that, it takes the file-
name, ensures that the receiving directory exists, and puts the file into a TFileStream. The real
work here is done behind the scenes by the TUpdateFileList class that manages all the HTTP
esoterica and multi-part form handling needed to upload a file from the client to the server.

The second place to add code is in the OnExecute handler for the UploadAction in Adapter1.
It is as follows:

procedure TUpload.UploadActionExecute(Sender: TObject; Params: TStrings);
begin
Adapter1.UpdateRecords;

end;

which simply tells the Adapter to update its records and get the files that have been requested.

Including Custom Templates
One thing you have likely noticed is that when you create a new page with the New Page
Wizard, you only have two choices for the HTML in your application—the standard template
or a blank template. The standard template is nice for things such as the demo application in
this chapter, but when you start developing more sophisticated sites, you’ll want to be able to
automatically include your own HTML templates when adding pages to your applications.
WebSnap allows you to do that.

Building WebSnap Applications

CHAPTER 23

23

B
U

ILD
IN

G
W

EBS
N

A
P

A
PPLIC

A
TIO

N
S

1111

30 chpt_23.qxd 11/19/01 12:14 PM Page 1111

You can add new templates to the selections in the New Page Wizard by creating and register-
ing a descendent of TProducerTemplatesList in a design-time package. There is a demo pack-
age that does this in the <Delphi>\Demos\WebSnap\Producer Template directory. You can
look at that package and add your own HTML/script templates to the RC file included in the
package. Note that for this package to compile, you must first have compiled the package
<Delphi>\Demos\WebSnap\Util\TemplateRes.dpk. After you compile and install these pack-
ages, you will have more templates to choose from in the New Page Wizard.

Custom Components in TAdapterPageProducer
Much of the work of displaying HTML throughout this chapter has been done by TAdapter
PageProducer components, and the components that are embedded within it. However, you
certainly will want to customize the HTML therein beyond the standard code you have seen so
far. WebSnap allows you to do this by creating your own components that plug in to the
TAdapterPageProducer, allowing you to add your own custom HTML to the mix.

Your custom TAdapterPageProducer components must descend from
TWebContainedComponent and implement the IWebContent interface. Because all the compo-
nents must do this, it is a perfect opportunity to use an abstract class as in Listing 23.6.

LISTING 23.6 Abstract Descendent Class of TWebContainedComponent

type

Tddg6BaseWebSnapComponent = class(TWebContainedComponent, IWebContent)
protected
{ IWebContent }
function Content(Options: TWebContentOptions; ParentLayout: TLayout):
➥string;
function GetHTML: string; virtual; abstract;

end;

This class is implemented like so:

function Tddg6BaseWebSnapComponent.Content(Options: TWebContentOptions;
ParentLayout: TLayout): string;

var
Intf: ILayoutWebContent;

begin
if Supports(ParentLayout, ILayoutWebContent, Intf) then
Result := Intf.LayoutField(GetHTML, nil)

else
Result := GetHTML;

end;

Internet Development

PART VI
1112

30 chpt_23.qxd 11/19/01 12:14 PM Page 1112

The abstract class implements the Content function only because the GetHTML function is
declared as abstract. The Content function basically checks to see whether the containing com-
ponent is a LayoutGroup. If it is LayoutGroup, the Content function places its content inside
the LayoutGroup. Otherwise, Content simply returns the results of GetHTML. Descendent com-
ponents, therefore, need only implement the GetHTML function, returning the appropriate
HTML code, and they can be registered to work inside a TAdapterPageProducer.

The code on the CD-ROM implements two components that allow you to add HTML content
to a TAdapterPageProducer, either as a string or as a file. The code for the Tddg6HTMLCode
component is as shown in Listing 23.7.

LISTING 23.7 Tddg6HTMLCode Component

Tddg6HTMLCode = class(Tddg6BaseWebSnapComponent)
private
FHTML: TStrings;
procedure SetHTML(const Value: TStrings);

protected
function GetHTML: string; override;

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

published
property HTML: TStrings read FHTML write SetHTML;

end;

constructor Tddg6HTMLCode.Create(AOwner: TComponent);
begin
inherited;
FHTML := TStringList.Create;

end;

destructor Tddg6HTMLCode.Destroy;
begin
FHTML.Free;
inherited;

end;

function Tddg6HTMLCode.GetHTML: string;
begin
Result := FHTML.Text;

end;

procedure Tddg6HTMLCode.SetHTML(const Value: TStrings);

Building WebSnap Applications

CHAPTER 23

23

B
U

ILD
IN

G
W

EBS
N

A
P

A
PPLIC

A
TIO

N
S

1113

30 chpt_23.qxd 11/19/01 12:14 PM Page 1113

LISTING 23.7 Continued

begin
FHTML.Assign(Value);

end;

This is a pretty simple class. It merely provides a published property of type TStrings that will
take any HTML code and then put it in the TAdapterPageProducer as is. The GetHTML func-
tion simply returns the HTML in string form. You can build components to return any HTML
code you want to include—images, links, files, and other content. All descendent components
have to do is to provide their HTML content in an overridden GetHTML() method. Note that
there are supporting registration functions in the unit where the components are implemented.
When creating components, be sure to register them in your unit similar to those on the CD-
ROM. To use these components, merely install them in a design-time package, and the compo-
nents will appear in the TAdapterPageProducer’s Web Surface Designer (see Figure 23.18).

Internet Development

PART VI
1114

FIGURE 23.18
TAdapterPageProducer components in the Web Surface Designer.

Summary
That’s a quick overview of the power of WebSnap. This chapter barely scratched the surface of
what WebSnap can do. Be sure to check out the numerous demo applications in the <Delphi>\
Demos\WebSnap directory. Many of the demos add functionality to the standard slate of
WebSnap components.

Clearly, WebSnap is a powerful technology, but it does take some effort to understand.
However, once you get over the initial learning curve, you will soon be building powerful,
database driven, dynamic Web sites with ease.

30 chpt_23.qxd 11/19/01 12:14 PM Page 1114

CHAPTERCHAPTER

24
Wireless Development

IN THIS CHAPTER
• Evolution of Development—How Did We Get

Here? 1116

• Mobile Wireless Devices 1118

• Radio Technologies 1119

• Server-Based Wireless Data
Technologies 1121

• Wireless User Experience 1136

31 chpt_24.qxd 11/19/01 12:09 PM Page 1115

Without a doubt, two technologies in the past 10 years have touched our lives more than any
others: the Internet and mobile devices. Despite the ups and downs of Internet-based busi-
nesses, the Internet—and the Web in particular—has permanently changed our lives. It has
affected the way we communicate, shop, work, and play. What’s more, many of us now shud-
der at the thought of being caught somewhere without our trusty mobile phone or Personal
Digital Assistant (PDA). Given their importance in our lives, it seems natural that these two
technologies are now in a state of convergence, with mobile devices becoming wireless tenta-
cles reaching out from the wired Internet to provide us with the services and information to
which we’ve become so addicted.

With mobile information devices becoming more necessity than novelty in today’s business
and social climate, we developers are faced with the challenge of leveraging this hardware and
infrastructure in order to fulfill the ever-growing demand to push data and applications out to
mobile devices. With a dizzying array of mobile devices, networks, and technologies on the
market, the key questions for developers become: Which of the wireless platforms should you
target? What is the most efficient way to target them? What technologies can I leverage to
mobilize my data and applications? What are the trade-offs between all these platforms and
technologies?

This chapter is by no means intended to serve as an exhaustive how-to, describing how to
implement all the various mobile technologies. That would require volumes. We will, however,
have done our job if you get two things from this chapter. First, you will hopefully be able to
use this chapter as a cheat sheet in understanding the role many of the various types of hard-
ware, software, and technologies play in mobile computing from a developer’s perspective.
Second, you should understand how some of these mobile technologies can be implemented
using Delphi.

Evolution of Development—How Did We
Get Here?
Before discussing how you might build the applications to harness these emerging trends in
information technology, it’s important to look back at what brought us here. Here is a rather
simplified snapshot of recent trends in information technology.

Pre-1980s: Here There Be Dragons
Before the PC revolution of the 1980s brought information technology to the masses, develop-
ment for these systems was a jumble of mainframes, terminals, and proprietary systems.
Developer tools were generally rudimentary, making application development an expensive and
time-consuming process reserved for true bit-heads.

Internet Development

PART VI
1116

31 chpt_24.qxd 11/19/01 12:09 PM Page 1116

Late 1980s: Desktop Database Applications
After the PC revolution took hold, folks began to leverage the new found power residing on
their desktops using desktop database applications such as dBASE, FoxPro, and Paradox.
General application development tools also became more mature, making application develop-
ment a relatively straightforward task using third generation languages such as C, Pascal, and
BASIC. DOS was king of the desktop, providing applications with a common platform upon
which to build. Local area networks were becoming practical for businesses of all sizes, which
provided for centralized storage of data on file servers.

Early 1990s: Client/Server
Corporate networks were now taken for granted; most everyone in the office was connected.
The question now was how to bridge the gap between the aging mainframe systems and the
non-scalable desktop databases that were both important to business. The answer was client/
server systems, the notion of powerful databases from companies such as Oracle, Sybase, and
Informix connected to user-interfaces running on PCs. This enabled systems to leverage the
power on every desktop while enabling database servers to perform their specialized tasks.
Fourth generation development tools such as Visual Basic and Delphi made development easier
than ever before, and database support was built in as a first class citizen of the tools.

Late 1990s: Multitier and Internet-Based Transactions
The primary problem with the client/server model is the notion of where the business logic
should reside—place it on the database server and you limit scalability; place it on the client
and you have a maintenance nightmare. Multitier systems solved this problem by placing the
business logic on one or more additional tiers logically and/or physically separate from the
client and server. This enabled properly written systems to scale to a nearly unlimited extent
and paved the way for complex transactions to be served to thousands or millions of clients via
the Internet. Development tools extended into the multitier world with technologies such as
CORBA, EJB, and COM. Businesses were quick to leverage the Internet to offer information
and services to employees, clients, and partners, and industries grew up around the ability to
manage, publish, and exchange data between machines over the Internet.

Early 2000s: Application Infrastructure Extends to
Wireless Mobile Devices
So, what is the net result of the vast information availability provided by the Internet? The
answer is two words: information addiction. The availability of information and services via
the Internet has made us dependent on the same in ever increasing aspects of our lives. PDAs

Wireless Development

CHAPTER 24

24

W
IR

ELESS
D

EV
ELO

PM
EN

T
1117

31 chpt_24.qxd 11/19/01 12:09 PM Page 1117

and mobile phones have served to scratch that itch, feeding our information addiction while
away from our desks. Application servers and development tools are growing in scope to man-
age the push of functionality to these types of devices. The potential market for applications on
mobile devices is mind boggling in size because the projected number of these devices coming
into the market over the next few years dwarfs the numbers for PCs.

Mobile Wireless Devices
Between mobile phones, PDAs, and smart pagers, there is no shortage of devices from which
to choose should you want to remain connected while away from your desk. Those of us who
have trouble choosing sometimes carry all three on belts that cause us to resemble Batman
more and more everyday. We are also seeing a convergence of these devices into single, multi-
functional devices. Recent examples of this include the mobile phone Springboard module for
Handspring handhelds, the Kyocera Smartphone running PalmOS, and Microsoft’s Stinger
Windows CE-powered mobile phone. In this section, we will call out a few of the leaders in
this area.

Mobile Phones
Mobile phones are by far the most pervasive variety of mobile wireless device. Mobile phones
have moved beyond the realm of pure voice communication systems into the realm of data
communications. Most notably, the majority of new phones coming into the market support
text messaging using Short Message Service (SMS) and Web-like browsing using Wireless
Application Protocol (WAP). Current data rates are rather paltry at 9.6-14.4k, but new tech-
nologies promise to deliver speeds of up to 2Mbits within 2-3 years.

PalmOS Devices
Devices running the Palm Computing’s PalmOS operating system have been the market share
leader in the PDA space for several years. Some PalmOS devices have wireless capability built
in (such as the Palm VII series or the Kyocera Smartphone), and wireless can be added to oth-
ers through the use of a wireless modem (such as those made by Novatel) or a mobile phone
connector available from Palm. A wide range of companies have licensed PalmOS from Palm,
Inc. for inclusion in their own devices, including Handspring, Sony, Kyocera, Symbol, Nokia,
Samsung, and TRG. Advantages of PalmOS includes the fact that they own the overwhelming
share of the market for PDAs, and there is strong developer community with an active third-
party market.

Internet Development

PART VI
1118

31 chpt_24.qxd 11/19/01 12:09 PM Page 1118

Pocket PC
Compaq, HP, Casio, and other manufacturers produce PDAs based on Microsoft’s Pocket PC
(formerly Windows CE) operating system. To date, none of these devices have built-in wireless
capability, but they do support wireless modems in a manner similar to PalmOS devices. Even
more, Pocket PC devices tend to be a bit more powerful than their PalmOS counterpart, with
some having the capability of accepting standard PC Cards (PCMCIA). This potentially allows
an even greater range of expansion to higher-bandwidth wireless networks.

RIM BlackBerry
The BlackBerry provides PDA-type functionality in a pager-sized form factor. With an internal
wireless modem and type-with-your-thumbs keyboard, the BlackBerry is especially well suited
to mobile e-mail tasks. However, the BlackBerry also supports web browsing via a third-party
browser. I have found the BlackBerry to be an outstanding platform for corporate e-mail,
thanks to built-in integration with MS Exchange or Lotus Domino, but the device is wanting as
a Web appliance because of its screen size and navigation capabilities.

Radio Technologies
Radio technologies provide the connection between mobile devices and the Internet or corpo-
rate LAN.

GSM, CDMA, and TDMA
These are the primary technologies used as the transport for mobile phones, and they are often
referred to as 2G because they embody the second generation of mobile communications net-
works (1G being analog service). Most networks in the United States are based on CDMA or
TDMA, whereas most of the rest of the world relies on GSM. The details of these technologies
are relatively unimportant from a software developer’s point of view, except to know that the
very existence of these competing standards makes it difficult to create applications that func-
tion across the spectrum of phones and networks. Generally, data speeds on these types of net-
works top out at 9.6-14.4k.

CDPD
Cellular Digital Packet Data (CDPD) is a technology that enables packet-based data transfer
over wireless networks, offering increase in bandwidth and “always on” functionality. CDPD is
common with aftermarket PDA wireless service in the United States, such as that provided by
GoAmerica or OmniSky, and speeds reach about 19.2k.

Wireless Development

CHAPTER 24

24

W
IR

ELESS
D

EV
ELO

PM
EN

T
1119

31 chpt_24.qxd 11/19/01 12:09 PM Page 1119

3G
3G, or third generation, mobile networks are designed from the ground up to handle a variety of
different types of media streams and boast bandwidth estimated to be somewhere in the range of
384k-2M. The most likely candidates to be the 3G standard bearers are technologies known as
EDGE and UMTS. However, although the technology exists and several carriers own enough
spectrum to implement 3G networks, no carrier seems to want to be the first to make the multi-
billion dollar investment in network upgrades in order to move forward with 3G.

GPRS
General Packet Radio Service (GPRS) is considered the migration path from 2G to 3G, and is
often therefore referred to as 2.5G. GPRS enables packet-based traffic over existing 2G infra-
structure with only relatively minor upgrades. Realized throughput on GPRS networks will
likely be in the 20-30k range.

Bluetooth
Devices incorporating Bluetooth radio technology are just now beginning to come available in
the market. Bluetooth is an important emerging technology because it permits short range, ad-
hoc networking among different types of devices. Because Bluetooth radio modules are very
small, have low power, and are relatively inexpensive, they will be embedded in all manner of
mobile devices, including phones, PDAs, laptops, and so on. Most Bluetooth radios will have a
range of about 10 meters and enjoy about 700k of bandwidth. Potential applications for
Bluetooth include synchronizing data between PDA and computer when they come into prox-
imity with one another or providing a laptop with Internet connectivity via a mobile phone in
one’s pocket. A new term, personal area network (PAN), is used to describe this notion of a
small wireless network where all of our personal mobile devices regularly communicate with
one another.

It’s more accurate to think of Bluetooth as a replacement for serial, USB, or IEEE 1394 cables
than as a Ethernet-type networking technology. The current iteration of Bluetooth supports
only one master device controlling a maximum of seven simultaneous slave devices.

802.11
Although Bluetooth technology is designed as a short-range personal networking technology,
802.11 is intended to be used for LANs. The current generation of this technology, 802.11b or
WiFi, provides up to 11Mb of bandwidth, with a 45Mb version known as 802.11a on the hori-
zon. 802.11 has a range of about 30 meters, with greater ranges possible using special anten-
nas. 802.11’s power requirements are greater than that of Bluetooth, and the devices are larger
in size; the radio device can fit inside a standard PC Card, which is great for laptops, but not
convenient for phones or most PDAs.

Internet Development

PART VI
1120

31 chpt_24.qxd 11/19/01 12:09 PM Page 1120

One important note to keep in mind is that Bluetooth and 802.11 share the same 2.4 GHz spec-
trum, so it is possible that the two might interfere with one another when occupying the same
space. Although it’s unlikely that they would completely freeze each other out because of the fact
that both use spread spectrum technology to hop frequencies many times per second, it’s feasible
that performance could suffer on either or both connections because of mutual interference.

Server-Based Wireless Data Technologies
Wireless data technologies ride on top of the radio technology in order to provide data and ser-
vices to mobile devices. These technologies involve servers generating content, which is sent
wirelessly to clients and interpreted by built-in software residing on the client.

SMS
Short Message Service (SMS) technology is used to send short (generally 100 to 160 character
maximum) text messages to mobile phones. Aside from the limited message length, SMS tech-
nology is limited due to issues of interoperability between network operators and varying SMS
protocols employed by operators. However, SMS has become very popular—particularly in
Europe—because of its ease-of-use and wide availability.

Because each carrier might employ slight variations on the SMS theme, techniques for devel-
oping applications that support SMS can vary depending on the carrier you are targeting.
Although GSM has an advantage over other mobile phone networks in that the support for
SMS is built into the GSM standard, from an application developer’s standpoint, it can still be
challenging to send SMS messages from a server connected to the Internet to a mobile client.
This is because you have to work with SMS servers on the carrier side, which might involve a
varying support of standards and even licensing fees.

We recommend one of two avenues for incorporating SMS support into servers. The first
option is to simply use e-mail; most carriers support the sending of an SMS message by send-
ing an e-mail message to a specific e-mail address that contains the number of the recipient’s
phone. Although this is a relatively simple approach from a technical standpoint, the disadvan-
tage is that support isn’t universal and it adds another layer of potential failure. The second
option is to purchase any one of many third-party tools that handle the sending of SMS mes-
sages on a variety of networks. This is the preferred technique, although it will involve some
up-front costs and/or licensing fees.

WAP
Wireless Application Protocol (WAP) was established as a standard means for accessing infor-
mation from the Internet via a mobile device. The general acceptance of WAP in the market
has been mixed. On the one hand, WAP has been well received by network operators and

Wireless Development

CHAPTER 24

24

W
IR

ELESS
D

EV
ELO

PM
EN

T
1121

31 chpt_24.qxd 11/19/01 12:09 PM Page 1121

phone manufacturers because it was designed from the beginning to work over any wireless
service and network standard on practically any device. However, the user experience with
WAP hasn’t been positive overall because of limitation in display, data entry capabilities, and
wireless bandwidth. Additionally, because WAP sites have little way to generate revenue based
on usage, there is not a strong business incentive for developing high-quality WAP sites.
Content for WAP systems is developed in an XML-based language known as Wireless Markup
Language (WML).

The typical WAP application architecture is illustrated in Figure 24.1.

Internet Development

PART VI
1122

WAP
Device

URL

WML

URL

WML

WAP
Gateway

Target
Host

HTML(Compiled)

HTML
Filter

FIGURE 24.1
WAP application architecture.

The mobile device, typically a phone, has a piece of resident software known as a micro-
browser. As the name implies, this piece of software is similar to a Web browser but designed
for devices such as mobile phones with limited memory and processing power. Most mobile
phones on the market today use OpenWave’s (formerly Phone.com) microbrowser. Addition-
ally, the microbrowser is usually designed to render the WML or HDML languages rather than
HTML, as described in the next section.

Because the current generation of mobile phones do not inherently know how to communicate
with resources on the Internet, the WAP gateway acts as an intermediary between the mobile
device and the public Internet. Most WAP gateways are managed by the wireless service
provider, and run software created by companies such as OpenWave, Nokia, or SAS.

The target host is generally just a plain old Web server that simply returns content properly for-
matted for WAP. Proper formatting means that the content is described using WML or, less
optimally, by employing a filter to dynamically convert HTML content to WML.

The chief benefit of WAP is its wide support across pretty much all mobile and wireless
devices. What’s more, the available functionality in WAP is essentially the lowest common
denominator of mobile devices, meaning wider compatibility at the expense of powerful func-
tionality. In addition, between the application server, Web server, WAP gateway, microbrowser,

31 chpt_24.qxd 11/19/01 12:09 PM Page 1122

and client device, WAP developers have a lot to worry about in their efforts to create applica-
tions that function properly for the greatest number of end users.

The chief drawbacks of WAP include the limited screen size and processing capabilities of the
devices, the typical lack of a full keyboard for data entry, the slow download speeds, and the
fact that wireless airtime for WAP applications can still be expensive.

WML: The Language of WAP
As we mentioned earlier, information is exchanged in WAP using wireless markup language
(WML). WML is in some ways modeled after HTML, but WML has two things going for it
when compared to HTML. First, it is made up of a relatively small set of tags and attributes,
making it compact enough to be used efficiently with machines with little memory and proces-
sor muscle. Second, it is based on Extensible Markup Language (XML), so content is well
formed and not as open to browser interpretation as is HTML. This chapter is not intended to
present a primer on WAP, but we would like to turn you on to some of the basics.

You probably know that HTML is based on a page metaphor, with each .html file served to a
browser generally representing one page of information. WML, on the other hand, is based on
a card deck metaphor, with one .wml file representing a deck containing some number of
cards. Each card represents one screen of information. In this way, the functionality of an
entire WML deck can be sent to a client with only one client-to-server round trip, as opposed
to the round-trip-per-page system that is the norm on the Web. A typical .wml file, then, might
look something like this:

<?xml version=”1.0”?>
<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.1//EN”
“http://www.WAPforum.org/DTD/wml_1.1.xml”>
<wml>
<card>
<do type=”accept”>
<go href=”#hello”/>

</do>
<p>Punch the Button</p>

</card>
<card id=”hello”>
<p>Hello from WAP!</p>

</card>
</wml>

If you know just a little about HTML and XML, you can probably figure out this code with
relative ease. The document prologue, which makes up the first few lines, is standard XML
and describes the XML version of this document and the location of the DTD used to describe
the tags and attributes contained within. After that, the code goes on to create a deck with two
cards, one with an OK button, and one with a greeting.

Wireless Development

CHAPTER 24

24

W
IR

ELESS
D

EV
ELO

PM
EN

T
1123

31 chpt_24.qxd 11/19/01 12:09 PM Page 1123

WML syntax additionally supports things such as events, timers, field sets, lists, and images
(although not all devices support images). Some of the later versions of WAP browsers even
support a scripting language called WMLScript. We cannot cover the entirety of the WML
language here, but if you’re interested, you can view the details of the WML spec at
http://www.WAPforum.org.

If you want to try your hand at developing some WML content, the easiest way to start
is to obtain an emulator. You can obtain the emulator from the microbrowser developer at
http://www.openwave.com, or two other popular emulators come directly from the
mobile communications leaders Nokia and Ericsson; visit http://forum.nokia.com or
http://www.ericsson.com/developerszone. It’s always a good idea to get things working
on the emulators first before moving on to real hardware because the emulators offer much
quicker write-run-debug turnaround time. It’s also a good idea to test your final product on as
many devices as possible prior to release because each device’s unique characteristics can
cause your deck to behave or display differently from how you intend.

WAP Security
The WAP specification calls for a wireless encryption stack known as Wireless Transport Layer
Security (WTLS) to be used for secure connections. Because SSL is too resource intensive to
be used with the current generation of mobile devices, WTLS was created to provide encryp-
tion and authentication services between the device and the WAP gateway. The gateway is then
able to communicate with Internet hosts via the standard SSL protocol. Despite the fact that
both WTLS and SSL are quite secure in themselves, the potential for security breaches exists
at the WAP gateway at the point where the WTLS data stream is decrypted and re-encrypted
with SSL. WTLS architecture is illustrated in Figure 24.2.

Internet Development

PART VI
1124

Mobile
Phone

SSL encrypted
communication

WAP
Gateway

WTLS encrypted
communication

WTSL/SSL
conversion

Web Server

FIGURE 24.2
WAP’s Wireless Transport Layer Security.

31 chpt_24.qxd 11/19/01 12:09 PM Page 1124

A Simple WAP Application
Creating a WAP application in Delphi is little different from creating a regular Web application
in Delphi. WAP is perhaps even easier to target because the limitations inherent in WAP and the
target devices tend to beget simpler applications on the server side than traditional browser-
based applications. The opposite side of this coin, however, is that it is more challenging for
developers to develop applications that are engaging to useful to end users given these limitations.

For this example, start by creating a normal WebBroker application as you learned in Chapter 23,
“Building WebSnap Applications.” This application has a single Web module with a single
action. This action is marked as default as shown in Figure 24.3.

Wireless Development

CHAPTER 24

24

W
IR

ELESS
D

EV
ELO

PM
EN

T
1125

FIGURE 24.3
A simple WebBroker WAP application.

Listing 24.1 shows the source code for the main unit of this application, including the
OnAction event handler for the Web module’s default action.

LISTING 24.1 Main.pas—The Main Unit for the SimpWap Project

unit Main;

interface

uses
SysUtils, Classes, HTTPApp;

type
TWebModule1 = class(TWebModule)
procedure WebModule1WebActionItem1Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

private
{ Private declarations }

public
{ Public declarations }

end;

31 chpt_24.qxd 11/19/01 12:09 PM Page 1125

LISTING 24.1 Continued

var
WebModule1: TWebModule1;

implementation

{$R *.DFM}

const
SWMLContent = ‘text/vnd.wap.wml’;
SWMLDeck =
‘<?xml version=”1.0”?>’#13#10 +
‘<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.1//EN”’#13#10 +
‘“http://www.WAPforum.org/DTD/wml_1.1.xml”>’#13#10 +
‘<wml>’#13#10 +
‘ <card>’#13#10 +
‘ <do type=”accept”>’#13#10 +
‘ <go href=”#hello”/>’#13#10 +
‘ </do>’#13#10 +
‘ <p>Punch the Button</p>’#13#10 +
‘ </card>’#13#10 +
‘ <card id=”hello”>’#13#10 +
‘ <p>Hello from WAP!</p>’#13#10 +
‘ </card>’#13#10 +
‘</wml>’#13#10;

procedure TWebModule1.WebModule1WebActionItem1Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin
Response.ContentType := SWMLContent;
Response.Content := SWMLDeck;

end;

end.

When the action is invoked, the event handler responds by setting the ContentType and Content
properties of the Response object. ContentType is set to the WML content type string, and the
content returned is the same simple WAP deck that was explained earlier in this chapter.

Internet Development

PART VI
1126

31 chpt_24.qxd 11/19/01 12:09 PM Page 1126

Figure 24.4 shows this simple Delphi WAP application in action.

Wireless Development

CHAPTER 24

24

W
IR

ELESS
D

EV
ELO

PM
EN

T
1127

Remember to set the ContentType of the Response object to the string containing the
MIME type of the variety of content you are returning. This sets the content type
information in the HTTP header. If you return the incorrect content type, your con-
tent will likely be misinterpreted on the target device. Some notable WAP content
types include

• text/vnd.wap.wml for WML code

• text/vnd.wap.wmlscript for WML script code

• image/vnd.wap.wbmp for wireless bitmap images

NOTE

FIGURE 24.4
Delphi WAP application in action.

Error Reporting
The default exception handler for WebSnap applications sends an HTML message to the client
with information on the error. Of course, most WAP devices will not be able to understand an
HTML error, so it’s important to ensure that any errors that might occur in your WAP applica-
tion are surfaced as WML messages to the client rather than HTML. This can be done by
wrapping each OnAction event handler with a try..except block that calls out to an error
message formatting routine. This is shown in Listing 24.2.

31 chpt_24.qxd 11/19/01 12:09 PM Page 1127

Wireless Bitmaps
Although WAP doesn’t yet support the fancy JPEG and GIF graphics common on the Web,
most WAP devices support monochrome images in the form of wireless bitmaps (wbmp).
Listing 24.2 adds a new action to the Web module to support the generation of a wbmp. This
action generates an official-looking but quite random graph for display on the target device.
Although we won’t delve into the binary format of wbmp files in this text, you can see that it
isn’t a great deal of work to generate wbmps manually in your WAP applications. Figure 24.5
shows what a WBMP will look like on a phone display.

Internet Development

PART VI
1128

Not all WAP browsers, devices, and emulators support wbmp images. Be sure to test
before assuming support.

NOTE

LISTING 24.2 Main.pas—Once More with Feeling

unit Main;

interface

uses
SysUtils, Classes, HTTPApp;

type
TWebModule1 = class(TWebModule)
procedure WebModule1WebActionItem1Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

procedure WebModule1GraphActionAction(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

private
procedure CreateWirelessBitmap(MemStrm: TMemoryStream);
procedure HandleException(e: Exception; Response: TWebResponse);

end;

var
WebModule1: TWebModule1;

implementation

{$R *.DFM}

31 chpt_24.qxd 11/19/01 12:09 PM Page 1128

LISTING 24.2 Continued

const
SWMLContent = ‘text/vnd.wap.wml’;
SWBMPContent = ‘image/vnd.wap.wbmp’;
SWMLDeck =
‘<?xml version=”1.0”?>’#13#10 +
‘<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.1//EN”’#13#10 +
‘“http://www.WAPforum.org/DTD/wml_1.1.xml”>’#13#10 +
‘<wml>’#13#10 +
‘ <card>’#13#10 +
‘ <do type=”accept”>’#13#10 +
‘ <go href=”#hello”/>’#13#10 +
‘ </do>’#13#10 +
‘ <p>Punch the Button</p>’#13#10 +
‘ </card>’#13#10 +
‘ <card id=”hello”>’#13#10 +
‘ <p>Hello from WAP!</p>’#13#10 +
‘ </card>’#13#10 +
‘</wml>’#13#10;

SWMLError =
‘<?xml version=”1.0”?>’#13#10 +
‘<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.1//EN”’#13#10 +
‘“http://www.wapforum.org/DTD/wml_1.1.xml”>’#13#10 +
‘<wml>’#13#10 +
‘ <card id=”error” title=”SimpWAP”>’#13#10 +
‘ <p>Error: %s’#13#10 +
‘ <do type=”prev” label=”Back”>’#13#10 +
‘ <prev/>’#13#10 +
‘ </do>’#13#10 +
‘ </p>’#13#10 +
‘ </card>’#13#10 +
‘</wml>’#13#10;

procedure TWebModule1.HandleException(e: Exception; Response: TWebResponse);
begin
Response.ContentType := SWMLContent;
Response.Content := Format(SWMLError, [e.Message]);

end;

procedure TWebModule1.WebModule1WebActionItem1Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

Wireless Development

CHAPTER 24

24

W
IR

ELESS
D

EV
ELO

PM
EN

T
1129

31 chpt_24.qxd 11/19/01 12:09 PM Page 1129

LISTING 24.2 Continued

begin
try
Response.ContentType := SWMLContent;
Response.Content := SWMLDeck;

except
on e: Exception do
HandleException(e, Response);

end;
end;

procedure TWebModule1.WebModule1GraphActionAction(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

var
MemStream: TMemoryStream;

begin
try
MemStream := TMemoryStream.Create;
try
CreateWirelessBitmap(MemStream);
MemStream.Position := 0;
with Response do
begin
ContentType := SWBMPContent;
ContentStream := MemStream;
SendResponse;

end;
finally
MemStream.Free;

end;
except
on e: Exception do
HandleException(e, Response);

end;
end;

procedure TWebModule1.CreateWirelessBitmap(MemStrm: TMemoryStream);
const
Header : Array[0..3] of Char = #0#0#104#20;

var
Bmp: array[1..104,1..20] of Boolean;
X, Y, Dir, Bit: Integer;
B: Byte;

Internet Development

PART VI
1130

31 chpt_24.qxd 11/19/01 12:09 PM Page 1130

LISTING 24.2 Continued

begin
{ clear the bitmap out }
FillChar(Bmp,SizeOf(Bmp),0);
{ draw X and Y axis }
for X := 1 to 104 do Bmp[X, 20] := True;
for Y := 1 to 20 do Bmp[1, Y] := True;
{ draw random data }
Y := Random(20) + 1;
Dir := Random(10);
for X := 1 to 104 do
begin
Bmp[X,Y] := True;
if (Dir > 4) then Y := Y+Random(2)+1
else Y := Y - Random(2) - 1;
if (Y > 20) then Y := 20;
if (Y < 1) then Y := 1;
Dir := Random(10);

end;
{ create WBMP data }
MemStrm.Write(Header, SizeOf(Header));
Bit := 7;
B := 0;
for Y := 1 to 20 do
begin
for X := 1 to 104 do
begin
if Bmp[X,Y] = True then
B := B or (1 shl Bit);

Dec(Bit);
if (Bit < 0) then begin
B := not B;
MemStrm.Write(B, SizeOf(B));
Bit := 7;
B := 0;

end;
end;

end;
end;

initialization
Randomize;

end.

Wireless Development

CHAPTER 24

24

W
IR

ELESS
D

EV
ELO

PM
EN

T
1131

31 chpt_24.qxd 11/19/01 12:09 PM Page 1131

FIGURE 24.5
Viewing the WBMP in the Nokia emulator.

I-mode
I-mode is a proprietary technology for Internet content on mobile phones developed by NTT
DoCoMo, Japan’s telecommunications behemoth. I-mode is very successful in Japan, with over
20 million subscribers and growing. In many ways, i-mode is everything WAP isn’t: It supports
rich 256-color graphics, color phone displays, and uses an “always-on” TCP/IP connection.
Additionally, DoCoMo has developed a revenue sharing model that enables i-mode sites to get
a slice of the financial pie based on usage. However, i-mode is hampered by the “P” word (pro-
prietary) and availability outside Japan is scarce; i-mode services will be rolling out in the
United States, United Kingdom, and continental Europe beginning this year.

From a developer’s standpoint, targeting i-mode phones isn’t much more difficult than generat-
ing content for the Web because i-mode content is developed using a subset of HTML known
as Compact HTML (cHTML). Supported cHTML tags and rules are available from DoCoMo
at http://www.nttdocomo.com/i/tagindex.html. Note that in addition to using only
cHTML-supported tags, i-mode sites must also ensure that the S-JIS character set is used,
images are in GIF format, and pages have no script or Java content.

PQA
Palm Query Applications (PQA) are essentially normal HTML pages stripped of add-ons such
as scripting and images that are designed for display on the screen of a wireless PalmOS
device. Wireless PalmOS devices, such as Palm VIIx devices or those equipped with Novatel
modems, are currently limited to North America. Like i-mode, PQAs are developed using a
subset of HTML, except Palm has added a few proprietary extensions. Developers interested in

Internet Development

PART VI
1132

31 chpt_24.qxd 11/19/01 12:09 PM Page 1132

creating PQAs should download the Web Clipping Developer’s Guide from Palm at
http://www.palmos.com/dev/tech/docs/.

In general, the PQA flavor of HTML includes everything in HTML 3.2 with the exception of
applets, JavaScript, nested tables, image maps, and the VSPACE, SUB, SUP, LINK, and ISINDEX
tags. PQAs also include several interesting additions to HTML. Most notable among these are
the palmcomputingplatform meta tag and %zipcode and %deviceid tags. When an HTML
document contains the palmcomputingplatform meta tag, this serves as an indicator to Palm
Computing’s Palm.net proxy (which acts as the intermediary between a Web server and Palm
device, not unlike a WAP gateway) that the document is optimized for display on a PalmOS
handheld and doesn’t require parsing to be stripped of invalid content. When the %zipcode tag
appears in a requested posted by the client, the Palm.net proxy will replace the tag with the
ZIP Code where the device is located (based on radio tower information). The %deviceid tag
similarly sends the PalmOS’s device’s unique ID to the server. This is particularly handy
because PQA HTML does not support cookies, but a similar means of state management can
be crafted using the %deviceid tag.

With Web clipping, Palm has taken a different approach than most other players in this space.
Rather than use a browser-like entity to navigate to a site and pull down content, PQAs exist
locally on the PalmOS device. PQAs are built by running a standard .HTML file through a
special compiler that links the HTML with referenced graphic files and other dependencies.
Users install PQAs like normal PalmOS PRC applications. PQAs gain efficiency by including
portions of the application local and only going out to the network for “results” pages.

PQA Client
The first step toward developing a PQA application is to create the piece that will physically
reside on the client device. This is done by creating an HTML document and compiling it
using Palm Computing’s PQA Builder tool. A sample PQA HTML document is shown in
Listing 24.3.

LISTING 24.3 An HTML Document for a PQA

<html>
<head>
<title>DDG PQA Test</title>
<meta name=”palmcomputingplatform” content=”true”>
</head>
<body>
<p>This is a sample PQA for DDG</p>

<form method=”post” action=”http://128.64.162.164/scripts/pqatest.dll”>
<input type=”hidden” value=”%zipcode” name=”zip”>

Wireless Development

CHAPTER 24

24

W
IR

ELESS
D

EV
ELO

PM
EN

T
1133

31 chpt_24.qxd 11/19/01 12:09 PM Page 1133

LISTING 24.3 Continued

<input type=”hidden” value=”%deviceid” name=”id”>
<input type=”submit”>
</form>
</body>

You can see that this simple HTML document contains a reference to an image, some text, a
form with a submit button, and hidden fields used to pass the ZIP Code and device ID to the
server.

Figure 24.6 shows this document being compiled in PQA Builder.

Internet Development

PART VI
1134

FIGURE 24.6
Compiling with PQA Builder.

Once compiled, a file with a .pqa extension is generated. This file contains the HTML docu-
ment as well as any referenced images. This file can be installed onto the PalmOS device the
same as any other PalmOS application.

PQA Server
The server-side portion, like WAP, is a WebSnap application that handles the page requests from
clients and returns pages. Unlike WAP with its WML, however, PQAs communicate using the
HTML variant described previously. Listing 24.4 shows the main unit of a WebBroker applica-
tion designed to fulfill the server role for the PQA client described previously.

LISTING 24.4 Main.pas—the Main Unit for the PQATest Application

unit Main;

interface

31 chpt_24.qxd 11/19/01 12:09 PM Page 1134

LISTING 24.4 Continued

uses
SysUtils, Classes, HTTPApp;

type
TWebModule1 = class(TWebModule)
procedure WebModule1WebActionItem1Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

private
{ Private declarations }

public
{ Public declarations }

end;

var
WebModule1: TWebModule1;

implementation

{$R *.DFM}

const
SPQAResp =
‘<html><head><meta name=”palmcomputingplatform” content=”true”></head>’+
#13#10 +
‘<body>Hello from a Delphi server
Your zipcode is: %s
’#13#10 +
‘Your device ID is: %s
</body>’+
‘</html>’;

procedure TWebModule1.WebModule1WebActionItem1Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin
Response.Content := Format(SPQAResp, [Request.ContentFields.Values[‘zip’],
Request.ContentFields.Values[‘id’]]);

end;

end.

The server responds to the client by sending the client’s ZIP Code and device ID. An interesting
technique in the HTML code returned by the server is that it references the same image that was
compiled into the .pqa on the client side using the file:<pqaname> syntax. This allows you to
build rich graphics into your PQAs by compiling them into the client side and referencing them
on the server, thereby obviating the need to download any graphics over the wireless modem.
Figures 24.7 and 24.8 show this application in action, before and after the submit button is
pressed. Note that the ZIP Code and device ID are null values in the emulator.

Wireless Development

CHAPTER 24

24

W
IR

ELESS
D

EV
ELO

PM
EN

T
1135

31 chpt_24.qxd 11/19/01 12:09 PM Page 1135

FIGURE 24.7
PQATest in the PalmOS emulator.

Internet Development

PART VI
1136

FIGURE 24.8
PQATest in the PalmOS emulator after pressing Submit.

Wireless User Experience
User experience is by far the most important factor in determining whether a mobile system
will ultimately prove useful to individuals. However, user experience is all-too-often given
short shrift in favor of gratuitous features or technology. Because of inherent limitations in the
mobile world—particularly connectivity and device size—there is little room for error in a
developer’s attempt to provide users with the functionality they need when they need it. The
trick is to focus on the user: Determine what information or service the users need and
endeavor to get it to them as efficiently as possible.

31 chpt_24.qxd 11/19/01 12:09 PM Page 1136

Circuit-Switched Versus Packet-Switched Networks
When considering the mobile phone as a client platform, one issue that can have a dramatic
impact on usability is whether the mobile phone network is circuit-switched or packet-
switched. Circuit-switched networks operate like a modem on a conventional phone: you must
dial-in to establish a direct connection with the host, and that connection must be maintained
while data exchange is taking place. Packet-switched networks behave more like a fixed
Ethernet connection: The connection is always active, and data packets can be sent and
received out over the connection at any time.

The overhead required to establish connections in circuit-switched networks can often be a
major impediment to user satisfaction—particularly if the user is performing a task that should
only take a few seconds. After all, who wants to wait up to 20 seconds to connect in order to
interact with an application for 3 seconds? Most mobile networks today are still circuit-
switched, but notable example of networks utilizing packet-switched technology include NTT
DoCoMo’s i-mode, Nextel’s iDEN, and AT&T’s CDPD networks.

Wireless Is Not the Web
A common misconception among purveyors of mobile devices and wireless networks is that
people desire to surf the Web on these devices. With their tiny screens and limited bandwidth,
mobile devices are an exceedingly inconvenient vehicle for Web surfing. Each page of infor-
mation can take several seconds to fetch due to network constraints, and entering data can be
downright painful—particularly on a mobile phone. Instead, mobile applications need to be
optimized to deliver specific information and services with minimal data entry required on the
part of the user and as few client-to-server roundtrips as feasible.

The Importance of Form Factor
When designing mobile applications, you must always remain sensitive to the available amount
of screen real estate. Whether creating a WAP-based application bound to a microbrowser or a
custom user interface in J2ME, application developers have to balance the issues of communi-
cating a sufficient quantity of information in each screen against maintaining a readable and
navigable user interface.

Data Entry and Navigation Techniques
Related to form factor is the issue of data entry. Different types of devices rely on different
mechanisms for data entry. PalmOS and Pocket PC devices use a combination of a stylus and
handwriting recognition (with optional portable keyboards); RIM BlackBerry devices use

Wireless Development

CHAPTER 24

24

W
IR

ELESS
D

EV
ELO

PM
EN

T
1137

31 chpt_24.qxd 11/19/01 12:09 PM Page 1137

thumb-size keyboards; mobile phones generally have only a numeric keypad and a few extra
buttons. This means that applications designed for one mobile platform might be difficult to
use on another. For example, a PDA stylus is great for tapping random areas of the screen,
whereas a BlackBerry is better suited toward text data entry, and a phone is best suited for as
little data entry as possible!

M-Commerce
Just as e-commerce has come to refer to commercial transactions performed over the Web,
m-commerce refers to commercial transactions over mobile devices. Developers of mobile
commerce sites must understand that m-commerce is fundamentally different from e-commerce.
Most conspicuously, it’s not feasible for mobile customers to browse for items. In the case of a
mobile phone, for instance, it’s too time-consuming to enter keystrokes—images either don’t
exist or are of poor quality, and there isn’t enough screen real estate to describe items.

Instead, m-commerce systems should be designed with the notion in mind that the users know
what they want; just make it easy for them to give you their money. Remember: if the user
wants to buy a television or book, there’s little reason why he wouldn’t simply wait until he get
to his home or office to make the purchase on a full-sized computer. The fact that the user is
even willing to engage in m-commerce implies that there is some sense of immediacy or
urgency in making the purchase, and winning m-commerce merchants will be the ones who
recognize and take advantage of this fact.

For example, one eastern European country allows motorists to pay parking meter tolls using
their mobile phone. This seems like a relatively simple application on the surface, but the value
proposition for both parties is very compelling. The motorist doesn’t have to worry about
whether he has enough coins to feed the meters, and the meter operator isn’t burdened with
collecting coins from dozens or hundreds or thousands of meters and trucking the coins to the
bank. Police monitoring the meters can use a mobile device tied to the same system to know at
an instance how much time is left for a given space.

Summary
The world of mobile computing has grown dramatically in recent years, and it can be difficult
to keep track of emerging trends. Our hope is that at this point, you are now armed with
enough information to make some strategic decisions and move forward with a mobility pro-
ject. In addition, you have seen that Delphi is a very capable tool when it comes to building
this next generation of wireless applications.

Internet Development

PART VI
1138

31 chpt_24.qxd 11/19/01 12:09 PM Page 1138

INDEX
SYMBOLS

_ (underscore character), 942
16-bit Delphi, capturing exceptions in, 271-272
32-bit integers, 166-167
3G (third generation) mobile networks, 1120
64-bit integers, 168
802.11 technology, 1120-1121

A
abstraction, example code, 1023-1026
access methods

GetMaxLength() method, 388
SendMessage() method, 389
SetMaxLength() method, 388

accessing
field values, 314-315
Project Manager, 32
WebApp Debugger, 1082
WinHelp, 22

accessories properties, 105
actions

raAbort, 1015
raCancel, 1015
raCorrect, 1015
raMerge, 1015
raRefresh, 1015
raSkip, 1014

Active property, 301
Active Server Objects

ASP (Active Server Pages), 1050
in-process, 1060-1061
out-of-process, 1060-1061
overview, 1050-1051
Request object, 1051, 1061-1062
Response object, 1051-1052, 1059-1060
running in response to HTML input, 1063-1064

creating, 1052
CoClass Name, 1055
Instancing options, 1054-1055
New Active Server Object dialog box, 1054
Object Context option, 1055
Start In edit box, 1053
Threading Model choices, 1054-1055

debugging, 1071
using Windows 2000, 1074-1076
using Windows NT 4, 1073-1074
with MTS, 1071-1073

32 Index.qxd 11/19/01 12:11 PM Page 1139

Active Server Objects
1140

NetCLX support and,
1069-1070

overview, 1050
Page-Level Event Methods

option, 1056
recompiling, 1062-1063
Type Library Editor, 1055-1059

Active Server Pages. See ASP
ActiveIconHandle() method,

751
ActiveX, 655-656
ActiveX Data Objects.

See ADO
Adapter Dispatcher

component, 1084
Add Web Component, 1036
Add() method, 403
AddActivity() method, 910
adding fields, Fields Editor,

319
AddInts() method, 38
AddObject() method, 403
AddRef() method, 661-665
AddText() method, 704
ADO (ActiveX Data Objects),

298, 364
datasets, 300
dbGo for ADO, 364, 367

OLE DB provider for
ODBC, establishing,
365-366

TADOCommand component,
372

TADOConnection
component, 368, 370,
375-376

Login prompt, bypassing, 370,
372

TADODataset component,
373

TADOQuery component,
375

TADOStoredProc
component, 375

TADOTable component,
373-375

ADTs (advanced data types),
958

ADT client side listing, 963-965
ADT I.pas file listing, 959-961
ADT.idl listing, 958-959
implementation file for servers

listing, 961-963
advertising services, server

setup, 1004
Advise() method, 703
Aggregation, 672-673
aliases

IDL, 944
Object Pascal, 86

Align property, 436
AlignControls() method, 399
AllocateHWnd() function, 751
Alpha CPU data structure,

spinlock, 200
animated components,

marquee components,
494-495

animating, 498-510
destructor, 500
scrolling control, 501-502
writing, 495-497

AnsiString type, 51
migrating from Delphi 1, 57
Object Pascal, 52-56

apartment option (Threading
Model option), 1054

Apartment threading choice,
1003

API, tray notification icon,
748-750

AppBars (application desktop
toolbars), 764-766

component code, example
code, 768-775

TAppBar, 776-779
VCL form encapsulation,

766-775
AppBrowser navigation, 30-31
Application Adapter

component, 1083
application desktop toolbars.

See AppBars
Application Module Page

Options dialog box, 1085
Application Partitioning

scenario, package creation,
635

application servers
building, 1007-1009
techniques, 1018

Application.Initialize()
method, 672

Application.ProcessMessage()
method, 147

applications
back end, 29
client/server, 998
COM+, 908

debugging, 934
execution context, 908
lifetime management, 910
organization, 910-911
resources, 912
stateful versus stateless,

909-910
system design, 908
transactions, 911

developers, 382
DLLs and, 250

multitier, 998-999
benefits, 999-1000
DataSnap, 1007-1046
DataSnap architecture,

1001-1006
standalone

DLLs to deploy with, 361
units required for, 360

WebSnap, designing, 1078
ApplicationTitle property,

1089
component choices,

1083-1084
converting to ISAPI DLL,

1107
custom components,

1112-1114
custom templates,

1111-1112
data, displaying, 1103-1107
dispatching methods, 1079
file uploading, 1109-1111
file uploading services, 1080
HTML management, 1080
image handling, 1101-1103
LocateFileServices,

1108-1109
logging in, 1092-1094
login services, 1079-1080
naming, 1085-1088
navigation menu bar,

1089-1092
page producer components,

1079
preference data between

sessions, 1099-1101
server choices, 1081-1083
server-side scripting, 1078
session management, 1079
Tadapter components,

1078-1079
toolbar, adding to IDE

window, 1080
user preference data,

managing, 1095-1098
user tracking, 1080
Web App Debugger option,

1083
Web modules, multiple,

1078
ApplyRange() method, 336
AppSpecific moniker

parameter, 895
AProc() method, 666
architecture

CLX, 565-568
COM+ event system, 899
CORBA, 939-941

interfaces, 941-942
OSAGent, 941

32 Index.qxd 11/19/01 12:11 PM Page 1140

callback function
1141

database architecture, 14-15
dbExpress, 350

arguments, method arguments,
945

arithmetic operators, Object
Pascal, 45-46

arrays
collections and, 714
dynamic, Object Pascal, 77-78
IDL, 944
multidimensional, 77
properties, 390, 441-443
variable type creation, 76-77
variant arrays, 729-730
Variant type, 71

initializing, 73
support functions, 73-75
VarArrayCreate(), 72
VarArrayOf(), 72

as operator, 404
ASP (Active Server Pages), 1050

in process, 1060-1061
out-of process, 1060-1061
overview, 1050-1051
Request object, 1051, 1061-1062
Response object, 1051-1052

welcome message example,
1059-1060

Write object, 1059
running in response to HTML

input, 1063-1064
Assign() method, 395

TSomeObject property, 440
TStrings class and, 403

assignment operators, Object
Pascal, 43

AssignPrn() standard
procedure, 218

AssignTo() method, 395
attribute specification, property

editors, 521-522
authentication levels, role-base

security configuration, 885
AuthLevel moniker parameter,

896
Automation

binary data, exchanging, 724-727
collections

arrays, 714
creation requirements, 715
Delphi implementation of,

715-723
overview, 713
rules of, 714-715

early binding, 676
events, 700-701

client events, 705-708
events interface, 702-703
method pointers, 701

multicasting, 702
overview, 701
server events, 703-705
with sinks, multiple,

708-712
IDispatch interface, 674-675
in-process server

controlling, 698-700
creating, 687-692

language support (COM),
727-728

interfaces, 731-732
late binding, 730
variant arrays, 728-730
WideString data type,

730-731
late binding, 676
out-of-process server

controlling, 692-697
creating, 677-687

overview, 673-674
registration, 676
servers, 170
type libraries, new interface

types, 723-724
Automation Object Wizard,

912-913
Automation Object Wizard

dialog box
Class Name field, 678
Instancing combo box, 678

B
back end, 29
Bank Example (CORBA)

balance method, 946
Bank C.pas file, 948-952
Bank I.pas, 948
bank server, implementation

class for, 953-954
Bank.idl, 946-947
client source listing, 956-958
client-side stub class, 955
deposit method, 946
stub class deposit method, 955
withdraw, 946

base class hierarchy, CLX,
565-568

BaseCLX, 564
portable code compatibility

and, 161
Basic Object Adaptor. See

BOA
BDE (Borland Database

Engine), 298
datasets, 299
dbExpress versus, 350-351

multithreaded graphics, 233-238
multithreading access, 227-233

binary data, exchanging,
724-727

Binary Large Object fields.
See BLOB fields

bitmaps
component, CLX, 622
wireless, 1128-1131

bitwise operators, Object
Pascal, 46

BLOB (Binary Large Object)
fields, 324

sample application building,
325-329

TBlobField descendant,
324-325

Bluetooth radio technology,
1120

BOA (Basic Object Adaptor),
940

BOF property, 305-306
Bookmark property, 347
Borland Database Engine.

See BDE
Borland Web site, 965
both option (Threading Model

option), 1054
Both threading choice, 1004
Break procedure, Object

Pascal, 92
briefcase model, client opti-

mization techniques, 1017
Broadcast() method, 146
btnFreeLibClick() method, 271
btnLoadLibClick() method, 270
building application servers,

DataSnap applications
providers, 1008
registering, 1009

business tier, 998
button notification messages,

142
buttons

adding to forms, sample
application, 26-27

MyOnClickEvent() method, 391
TMouseEvent, 392
toolbar buttons, 20-21

C
calculated fields, Fields Editor,

321-322
callback function, 273

calling from, 277-279
defined, 132
EnumWindows() API method,

273-275

32 Index.qxd 11/19/01 12:11 PM Page 1141

callback function
1142

TlistBox event, 276
TWindowInfo() class, 276

CanBePooled() method,
897-898

Cancel() method, dataset
manipulation, 314

CancelRange() method, 336
CanFocus() method, 399
CanModify property, 318
canvas-locking rules, 238
Canvas.Start() method, 584
Canvas.Stop() method, 584
case sensitivity

CLX components, porting, 569
Object Pascal, 39

case statement, Object Pascal,
89-90

categories, property, 538
classes, 539-540
custom, 540-543
registering, 538

CDMA technology, 1119
CDPD (Cellular Digital Packet

Data), 1119
cellular phones. See mobile

phones
CGI (common gateway

interface), 1050
change control methods, 1011
character types, Object Pascal,

50
ciInternal instancing choice,

1003
ciMultiInstance instancing

choices, 1002
circular unit reference, 101
ciSingleInstance instancing

choice, 1003
class completion feature, 30
class factories

aggregation, 672-673
CreateInstance() method, 667
defined, 667
in-process COM servers, 669

creating an instance of,
670-671

DllCanUnloadNow()
function, 670

DllGetClassObject()
function, 670

DllRegisterServer()
function, 669

DllUnregsterServer()
function, 669

out-of-process COM servers,
672

creating instances of, 672
registration, 672

TComObject, 667-668
TComObjectFactory, 667-668

class ID (CLSID), 660
class libraries, Qt, 565
Class Name field (Automation

Object Wizard dialog box),
678

class reference, 644
classes

process priority, 187-188
property categories, 539-540
TCanvas, 568
TCollection, 544-546
TCollectionItem, 544-545

defining, 546
editing components, 555-561

TForm1, 27
TFrameControl, 565
TWidgetControl, 565
TWinControl, 566
TWindowInfo, 276
versus components, 387

ClassInfo() method, 405
ClassName() method, 405
ClassParent() method, 405
ClassType() method, 405
Clear() method, 403, 704
client application, COM+,

929-934
client connecting choices

TCORBAConnection, 1005
TDCOMConnection, 1005
TdispatchConnection, 1005
TSOAPConnection, 1006
TSocketConnection, 1005
TWebConnection, 1005

client dataset features
DataSnap applications, 1039
two-tier applications, 1039-1041

client events, 705-708
client optimization techniques,

1015
briefcase model, 1017
limiting data packet, 1015-1017
sending dynamic SQL to

server, 1017
client setup DataSnap appli-

cations, 1004
connection choices, 1005-1006
server connection, 1006

client tasks, DataSnap
applications, 1009

client-side transactions,
1011-1012

editing data, 1010-1011
Error Reconciliation dialog

box, 1014-1015
reconciling data, 1012-1013

retrieving data, 1009-1010
reverting to original version,

1011
undoing changes, 1011

client-side linking, 1021-1026
client-side transactions,

1011-1012
client/server applications, 998
clients

fat, 1000
queued components, 893-896

ClientToScreen() method, 253
Close method(), 301
CloseSharedData() method,

282, 284
closing

datasets, 301
mutexes, 204

CLX (Component Library for
Cross-Platform)

architecture, 565-568
component bitmaps, 622
components

creating, 569
identifying on the

Component Palette, 622
porting, 568-569

DataCLX, 383
design editors, 608

TddgDefaultEditor
component editor, 611-612

TddgRadioGroupEditor
custom component editor,
608-610

hierarchy, 384
NetCLX, 383
overview, 382, 564

BaseCLX, 564
DataCLX, 564
NetCLX, 564
VisualCLX, 564-565

packages, 613
design-time, 618-620
Linux packages, 614
runtime, 615-617
Windows packages, 613-614

registration units, 621
RTL, 383
VisualCLX, 383

ClxDesignWindows unit, 838
ClxEditors unit, 838
ClxSprigs unit, 838
CM (component messages),

143-144
CM MOUSEENTER message,

143
CM MOUSELEAVE message,

143

32 Index.qxd 11/19/01 12:11 PM Page 1142

CommandType property
1143

CN (component notification),
143-144

Coclass, 655
CoCreateGUID() API function,

660
CoCreateInstance(), 671
CoCreateInstanceEx() COM API

function, 673
code base, 635
Code Editor

overview, 22
windows, viewing multiple, 23

Code Explorer, 23
Code Insight, 33
code reduction, 626
code sharing, 252
CodeInsight technologies, 11
CoGetClassObject() function,

672
CoGetObject() method, 895
CoInitialize() function, 671
CoInitializeSecurity() method,

886
collections, Automation

arrays, 714
creation requirements, 715
Delphi implementation of,

715-723
overview, 713
rules of, 714-715

columns, dataset, 300
COM (Component Object

Model) development, 654
ActiveX, 656
Automation

binary data, exchanging,
724-727

collections, 713-723
early binding, 676
events, 700-712
IDispath interface, 674-675
in-process servers, control-

ling, 698-700
in-process servers, creating,

687-692
language support, 727-732
late binding, 676
out-of-process servers,

controlling, 692-697
out-of-process servers,

creating, 677-687
overview, 673-674
registration, 676
type libraries, new interface

types, 723-724
basic concepts, 654-655

Component Object Model,
654

marshaling, 655
terminologies, 655-656

class factories
aggregation, 672-673
CreateInstance() method,

667
defined, 667
in-process COM servers,

669-671
out-of-process COM

servers, 672
TComObject, 667-668
TComObjectFactory,

667-668
COM+, goal of, 658
DCOM (Distributed COM),

security features, 673
Object Pascal Language and,

658
HResult return type, 666
interfaces, 658-666

OLE 1 versus OLE 2, 657
overview, 654
threading models, list of,

657-658
ToleContainer class, sample

application, 733-746
COM library, initializing, 781
COM object wizard, 801
COM+

advantages, 880-881
applications, creating, 908

execution context, 908
lifetime management, 910
organization, 910-911
resources, 912
stateful versus stateless,

909-910
system design, 908
transactions, 911

applications, debugging, 934
Automation Object Wizard,

912-913
client application, 929-934
defined, 880
DTC (Distributed Transaction

Coordinator), 881-882
events, 898

creating, 900
event class servers, creating,

900-901
event class servers,

registering, 901-902
event publishers, 899
event subscribers, 899
LCE (loosely coupled

events), 899
parameter filters, 906
publisher filters, 906
publishing, 904-905
subscriber servers, creating,

902-903

subscriber servers,
registering, 903-904

system architecture, 899
TCE (tightly coupled

events), 898
framework, 913-914

IObjectContext methods, 915
OnActivate() method, 914
OnDeactivate() method, 914

goal of, 658
JIT (Just-In-Time), 888
object pooling, 897-898
queued components, 888

advantages, 889-890
clients, creating, 893-896
MSMQ technology, 888-889
servers, creating, 890-893
servers, running, 896-897

runtime, 906-907
components, configured, 907
contexts, 907
neutral threading, 907
registration database, 907

security, 882
multitier performance, 887
programmatic, 887-888
role-based configuration,

882-887
servers, installing, 928-929
services, list of, 881
tic-tac-toe sample application,

916-928
Transactional Data Module

Wizard, 912
combo box notification

messages, 142-143
ComCt132.dll, 564
commands

File menu
New, 1052
New Application, 24
New Project, 968

Run menu
Install MTS Objects, 1072
Register ActiveX server,

692
Tools menu

EJB Deployment, 970
Enterprise Setup, 968
IDE Options, 971

View menu
New Edit Window, 23
Object Treeview, 1103
Project Manager, 32
To Do List, 32

CommandText property
ctQuery value, 355
result sets, extracting, 356

CommandType property, 355

32 Index.qxd 11/19/01 12:11 PM Page 1143

comments supported
1144

comments supported, Object
Pascal, 36-37

common gateway interface.
See CGI

Common Object Request
Broker Architecture.
See CORBA

comparison operators, Object
Pascal, 43-44

compatibility issues, portable
code, 158

components, 160
conditional defines, 158-159
Delphi-Kylix compatibility,

161-163
IDE issues, 160-161
packages, 160
units, 160

compilation, Active Server
Objects, 1062-1063

compilation speed, 12-13
Compiled unit package file

type, 628
compiler directives, packages,

635-637
compilers

Delphi 6, new features, 163
$IF directives, 164
binary DFM incompatibil-

ity, 164
enumeration values, 163
variants, 163

portable codes
compatibility issues,

158-159
components, 160
Delphi-Kylix compatibility,

161-163
IDE issues, 160-161
packages, 160
units, 160

component bitmaps, 622
component class, 655
component editors, 522

example code, 525
methods,

Edit(), 523
ExecuteVerb(), 524
GetVerb(), 524
GetVerbCount(), 524
Paste(), 524

registering, 526-527
TComponentEditor, 523
TDefaultEditor, 524
TddgDefaultEditor, 611-612

Component Library for
Cross-Platform. See CLX

Component Object Model. See
COM development

Component Palette, 298
adding a marquee component,

510
overview, 21

component security, 634
ComponentCount property,

396
ComponentIndex property,

396
components

ancestor classes, 432-433
animated, marquee, 494-510
building

overview, 430
writing decisions, 430-431
writing steps, 431-432

CLX (Component Library for
Cross Platform)

creating, 569
DataCLX, 383
hierarchy, 384
NetCLX, 383
overview, 382
registering, 621
RTL, 383
VisualCLX, 383

complexity of, 383
connection, 299-300
constructors

Component State values,
453

design-time behavior, 453
overriding, 452

defined, 383
destructors, overriding, 454
events and, 390

assigning at runtime,
391-392

event handler, 445
event property, 445
event-dispatching method,

445-446
OnChange, 390
OnClick, 390-391
OnDblClick, 390
properties, defining,

446-450
extensible, 29-30
graphical controls, 387
icons, 458-459
lists, 543
methods and, 390, 451
nonvisual, 385
OWL (Object Windows

Library), 382
ownership, 393-394
Parent property, 394

portable code compatibility
issues, 160

porting, 268-269
ProcessExecute() method,

475-476
properties, 388

access methods, 388-389
array, 390
enumerated, 390
object, 390
set, 390
simple, 390

properties, adding, 435
array properties, 441-443
default array properties,

445
default values, 444-445
enumerated properties, 436
object properties, 438-441
set properties, 437
simple properties, 435

pseudo-visual, extending hints,
490-494

registering, 454-455
RTTI (Runtime Type

Information), 382
SetCommandLine() method,

476-477
streaming, 392
TADOQuery, 301
TADOTable, 301
TAppBar, 766-776
TCanvas class, 403
TclientDataset, control options,

1039
Tcomponent class, 395

methods, 396-397
properties, list of, 396

TControl, 397
TCustom class, 400
TCustomConnection, 299
TDatabase, 302
TDataModule, 336-337
TDataSet, 300, 305, 315
TddgButtonEdit container

design decisions, 477-478
forms, adding, 485-488
surfacing event, 478
TddgDigitalCloc, 481-485
Text property, 478
TSpeedButton control,

478-481
TddgButtonEdit container , 477
TddgRunButton example,

470-475
TddgWaveFile, 530-537
TDispatchConnection, 1009
testing, 456-458
TgraphicControl class, 399-400

32 Index.qxd 11/19/01 12:11 PM Page 1144

CreateInstance() method
1145

TIBQuery, 301
TIBTable, 301
TListBox example, 463-470
TMemo example, 459-463
TObject class, 394

Create() method, 394
Destroy() method, 394
TPersistent class, 395

TQuery, 301
TSQLQuery, 301
TSQLTable, 301
TStrings class, 400-403
TTable, 301
TTimer, 498
TwidgetControl class, 398-399
TwinControl class, 398

events, keyboard interaction,
399

methods, types of, 399
properties, types of, 398-399

units, creating, 433-435
VCL (Visual Component

Library)
hierarchies, 384
overview, 382

versus classes, 387
versus controls, 386
visual, 385-386

TGraphicControl, 387
TWidgetControl, 386-387
TWinControl, 386-387

writers, 382
ComponentState property,

396, 453
ComponentStyle property, 396
compound document, 656
ComputerName moniker

parameter, 895
Concat() function, 54-55
conditional defines, for

compilers, 158-159
configuring

JBuilder, 967-968
security, role-based, 883-887
authentication levels, 885

Connected property, 353
connection components

TADOConnection connection
component, 300

TDatabase connection
component, 299

TIBDatabase connection
component, 300

TSQLConnection connection
component, 300

ConnectionName property,
352-353

connections
Connection Editor, 353
TSQLConnection component

Connected property, 353
ConnectionName

component, 352-353
dbxconnections.ini

configuration file, 351-352
dbxdrivers.ini configuration

file, 351-352
LoginPrompt property,

353-354
Params property, 354

ConnectionString Property
Editor, 368

Microsoft OLE DB Provider
For ODBC Drivers, 368

Text Connection, 368, 370
constant parameters, 95
constants

declaration, Object Pascal, 43
Object Pascal, 41-43
space allocation, Object Pascal,

41
constructors

Component State values, 453
design-time behavior, 453
objects, 105
overriding, 452, 501

containers. See collections
context menu handlers, 800,

808-811
registering, 812-818

contexts, runtime, 907
Continue() procedure, 92
contract-free programming,

28-29
controls

graphical, 387
versus components, 386

converting WebSnap
applications, 1107

ConvertString() method, 289
copy hook handlers, 800-807
Copy() method, 739
CopyCallback() method,

802-804
CORBA (Common Object

Request Broker
Architecture)

architecture, 939-941
interfaces, 941-942
OSAgent, 941

bank example
balance method, 946
Bank C.pas file, 948-952
Bank I.pas, 948
bank server, implementation

class for, 953-954

Bank.idl, 946-947
client source listing,

956-958
client-side stub class, 955
deposit method, 946
stub class deposit method,

955
withdraw method, 946

EJB connection
APIs, predefined, 966
components and, 966
EJB containers, 966
entity beans, 967
Hello, world example,

968-973
Home interfaces, 966-967
Jbuilder, configuring,

967-968
overview, 965-966
Remote interfaces, 966-967
session beans, 967

features of, 938-939
IDL (Interface Definition

Language), 942-943
ADTs (advanced data

types), 958-965
aliases, 944
arrays, 944
enumerations, 944
method arguments, 945
modules, 945-946
sequences, 944-945
structures, 944
types of, mapped to Object

Pascal, 943
user defined types, 944

overview, 938
Web services

CORBA client code,
adding, 978-981

creating, 975-976
example architecture, 975
SOAP client application,

creating, 977-978
CoSetProxyBlanket() method,

885-886
Create New Data Source

dialog box, 366
Create() method, 499

example code, 500
Owner property, 393
TObject class and, 394

CreateComObject() method,
671

CreateFileMapping() method,
284

CreateInstance() method
class factories and, 667
IObjectContext, 915

32 Index.qxd 11/19/01 12:11 PM Page 1145

CreateLinkToFile() method
1146

CreateLinkToFile() method, 735
CreateMDIChild() method, 737
creating

DataSnap applications, 1007
application server building,

1007-1009
client tasks, 1009-1015

descendant property editor
object, 511-513

IShellLink instance, 781
mutexes, 204
object instance, 105
packages, 630

Package Editor, 630-631
scenarios to consider,

631-635
shell links, 784-785
THintWindow descendant,

490-492
critical sections, 199-200

example code, 200-202
versus mutexes, 203

cross-platform development,
351

csDesigning state behavior,
453

ctQuery value, 355
ctStoredProc value, 356-357
ctTable value, 355
Currency type, Object Pascal,

75
CurrToFMTBCD() function, 166
custom component editors,

CLX, 608-610

D
data

displaying, WebSnap application
design, 1103-1107

editing DataSnap applications,
1010-1011

Data Link Properties dialog
box

Microsoft OLE DB Provider
For ODBC Drivers, 368

Text Connection, 368, 370
data modules

datasets, 336
sample application building,

337-347
TDataModule component,

336-337
filter form

example code, 345-347
sample application building,

343-344

key search form
example code, 341-343
sample application building,

341
data object handlers, 800
data reconciliation, 1012-1013
data sharing, 252

across processes, 279-280
CloseSharedData()

method, 282, 284
CreateFileMapping()

method, 284
GlobalData property,

280-282
MapViewOfFile() method,

283
OpenSharedData() method,

282
Data Source Name. See DSN
data structure, Variant type,

64-67
data tier, 998
data-access choices, 1004
database architecture,

Delphi 6
database connectivity

datasets, 300-347
overview, 299-300

database types supported,
298-299

database connectivity,
datasets, 300-301

bookmarks, 347
closing, 301-305
data modules, 336-347
field values, accessing, 315-316
field values, determining type,

316
field values, editing, 317-329
field values, names, 317
field values, numbers, 317
filtering, 330-331
manipulating, 310-314
navigating, 305-310
opening, 301-305
searching, 332-336
states, 314
overview, 299-300

databases, supported types
by Delphi 6, 298-299

DataCLX, 564
defined, 383
portable code compatibility

and, 161
datasets, 300-301

bookmarks, 347
closing, 301-305

data modules, 336
sample application build-

ing, 337-347
TDataModule component,

336-337
defined, 301
field values

accessing, 315-316
determining type, 316
editing, 317-329
names, 317
numbers, 317

filtering, 330-331
manipulating, 310

example code, 310-313
methods, 314

navigating, 305-310
opening, 301-305
ranges, 335-340
searching, 332-336
states, 314
types, 301
unidirectional, limitations, 350

DataSnap applications
architecture, 1001
connection choices, 1005-1006
creating, 1007-1015
deploying, 1041

DCOM configuration,
1042-1043

files to deploy, 1043-1044
internet considerations,

1044-1046
licensing issues, 1042

examples, 1027
client dataset features,

1039-1041
joins, 1027-1028
multitable updates,

1028-1029
Web, 1030-1037

master/detail relationships,
1020-1026

mistakes, 1041
options, 1015

application server
techniques, 1018

client optimization
techniques, 1015-1017

server, miscellaneous, 1019
DataSnap Reconciliation Error

dialog box, 1037
DataType property, 316
dBase tables, 298

record searching, 333
dbExpress, 298

applications, standalone
DLLs to deploy with, 361
units required for, 360

32 Index.qxd 11/19/01 12:11 PM Page 1146

Delphi 6 Developer’s Guide
1147

architecture, 350
cross-platform development, 351
datasets, 300
DBE (Borland Database

Engine) versus, 350-351
overview, 350
TSQL Monitor component,

358-359
TSQLClientDataset component,

359-360
TSQLConnection component,

351
Connected property, 353
ConnectionName, 352-353
dbxconnections.ini

configuration file, 351-352
dbxdrivers.ini configuration

file, 351-352
LoginPrompt property,

353-354
Params property, 354

TSQLDataset component, 354
CommandText property,

355-356
CommandType property,

355
ctSToredProc value, 356-357
SetSchemaInfo procedure,

357-358
TSQLQuery, 358
TSQLTable component, 358
TSWLStoredProc component,

358
unidirectional datasets,

limitations, 350
dbGo for ADO, 364-365, 367

OLE DB provider for ODBC,
establishing, 365-366

TADOCommand component,
372

TADOConnection component,
368

ConnectionString Property
Editor, 368, 370

Login prompt, bypassing,
370, 372

transaction processing,
375-376

TADODataset component, 373
TADOQuery component, 375
TADOStoredProc component,

375
TADOTable component,

373-375
dbxconnections.ini

configuration file, 351-352
dbxdrivers.ini configuration

file, 351-352

DCOM (Distributed COM), 655
configuration, 1042-1043
security features, 673

DCOM page Web site, 1043
DCOMCNFG utility, 1042
DCUs (Delphi compiled units),

253
debugging

Active Server Objects, 1071
using Windows 2000,

1074-1076
using Windows NT 4,

1073-1074
with MTS, 1071-1073

COM+ application, 934
shell extensions, 800-801

declaration objects, 105-107
default thread, 174
default value parameters,

Object Pascal, 38
Default() method, message

routing process, 147
DefineBinaryProperty(),

530-537
DefineProperties() method, 395
DefineProperty() function,

example code, 529-530
DefineProperty() method, 528
defining interfaces, 114-115
Delete() method

dataset manipulation, 314
TStrings class and, 403

Delivery moniker parameter,
896

Delphi
contract-free programming,

28-29
developing EJB client in,

971-973
history, 15

Delphi 1, 16
Delphi 2, 16-17
Delphi 3, 17-18
Delphi 4, 18
Delphi 5, 18-19
Delphi 6, 19

IDE, 19-20
AppBrowser navigation,

30-31
class completion feature, 30
Code Editor, 22-23
Code Explorer, 23
Code Insight, 33
Component Palette, 21
docking bays, 31
FormDesigner, 22
interface/implementation

navigation, 31

main menu, 20
Object Browser, 31
Object Inspector, 22
Object TreeView, 23-24
Project Manager, 32
syntax highlighting, 32
To Do List, 32
toolbars, 20-21

productivity, 10-11
compilation speed, 12-13
database architecture, 14-15
language features, 13-14
software design, 15
visual development

environment, 11-12
products, 8

Delphi 6 Enterprise, 10
Delphi 6 Personal, 8-9
Delphi 6 Professional, 9

prototyping, 29
Delphi 1

migration from, 171
porting from, 50, 57

Delphi 2, migration from, 168
automation servers, 170
Boolean types, changes to,

168-169
GetChildren() method, 170
ResourceStrings, 169
RTL changes, 169
TCustomForm property,

169-170
Delphi 3, migration from

64-bit integers, 168
Real type command, 168
unsigned 32-bit integers,

166-167
Delphi 4, migration from, 165

database issues, 166
Internet development issues,

165-166
RTL issues, 165
VCL issues, 165

Delphi 5, migration from, 164
cardinal unary negation, 164-165
writable types constants, 164

Delphi 6
database architecture

database connectivity,
299-300

database types supported,
298-299

datasets, 300-347
Object Browser, 567

Delphi 6 Developer’s Guide
introduction to, 1-3
Web site, 2

32 Index.qxd 11/19/01 12:11 PM Page 1147

Delphi applications
1148

Delphi applications, threads
fibers, 238-244
misuse of, 175-176
multiple, 175, 192-238
multithreading, 185-186
priorities, 187-189
resuming dynamically, 190
single-threaded user interface,

advantages of, 182
suspending dynamically, 190
timing, 190-192
TThread object, 176-184

Delphi complied units.
See DCUs

Delphi online help, Using
Databases, 298

DEPLOY.TXT document, 1042
deploying

DataSnap applications, 1041
DCOM configuration,

1042-1043
files, 1043-1044
internet considerations,

1044-1046
licensing issues, 1042
THintWindow descendant, 494

descendant property editor
object, creating, 511-513

descendants, TBlobStream,
325

Design and Runtime Packages
for Components scenario,
package creation, 631-634

design editors, CLX, 608
TddgDefaultEditor component

editor, 611-612
TddgRadioGroupEditor custom

component editor, 608-610
Design Features Only (No

Components) IDE
Enhancements scenario, 635

Design Package Only for
Components scenario, 634

design package type, 628
design-time packages

CLX, 618-620
data-aware, 619-620
nondata-aware, 618-619

DesignConst unit, Open Tools
API, 837

DesignEditors unit, Open
Tools API, 837

designide packages, CLX, 618
DesignInfo property, 396
DesignIntf unit, Open Tools

API, 837
DesignMenus unit, Open

Tools API, 837
DesignWindows unit, Open

Tools API, 837

Destroy() method, 106
example code, 500
TObject class and, 394

destruction objects, 106-107
destructor method, 106
destructors, overriding, 454
determining type, field values,

316
dialog boxes

Thread object item in New
Items dialog box, 178

Active Server Objects, 1056
Add Web Component, using

Web Page Editor, 1036
Application Module Page

Options, 1085
Automation Object Wizard, 678
Create New Data Source, 366
Customize toolbar, 20-21
Data Link Properties, 368

Microsoft OLE DB
Provider For ODBC
Drivers, 368

Text Connection, 368, 370
DataSnap Reconciliation Error,

1037
Edit Configuration, 968
Environment Options, 23
Error Reconciliation, 1014-1015
Insert Object, 733
Install COM+ Objects, 928
New Active Server Object, 1054
New Field, 321-322
New Items, 677
New Remote Data Module,

1001
New WebSnap Application

Data Module option, 1083
Page Module option, 1083
server choices, 1081-1083
Web App Debugger option,

1083
Project Options, 854
Run Parameters, 935, 1074
Thread object item in New

Items dialog box, 178
Web App Components

1083-1084
dialog property editor, editing,

555-561
difference set, 81
DisableAlign() method, 399
Dispatch() method, sending

messages, 141
Dispatcher Actions component,

1084
dispatching methods, 1079
DispatchMessage() method,

message routing process, 147

Distributed COM. See DCOM
Distributed Transaction

Coordinator. See DTC
DllCanUnloadNow() function,

670
DllRegisterServer() function,

669-670
DLLs (Dynamic Linked

Libraries)
advantages of, 248
applications, 250
callback function, 273

calling from, 277-279
EnumWindows() API

method, 273-275
TListBox event, 276
TWindowInfo class, 276

ClientTo Screen() method, 253
code sharing, 252
data sharing, 252
data sharing across processes,

279-280
CloseSharedData() method,

282, 284
CreateFileMapping()

method, 284
GlobalData property,

280-282
MapViewOfFile() method,

283
OpenSharedData() method,

282
dynamic linking, 248
entry/exit events, 266

sample code, 268-270
source code, 267

exceptions
capturing in 16-bit Delphi,

271-272
Safecall directive and, 272

executable code, 250
explicitly loading, 263-264

FreeLibrary() method, 265
GetProcAddress() method,

265-266
LoadLibrary() method, 265

exporting objects from, 287
ConvertString() method, 289
example code, 288
limitations, 287
STRINGCONVERTLIB

directive, 290-292
TStringConvert object,

289-290
FreeLibrary() method, 271
hiding implementation, 252
instance, 250
linking, dynamic versus static,

250-252

32 Index.qxd 11/19/01 12:11 PM Page 1148

events
1149

LoadLibrary() method, 270
memory-mapped files, 249, 282

CloseSharedData() method,
284

CreateFileMapping()
method, 284

MapViewOfFile() method,
283

modal forms, displaying,
256-258

AHandle parameter, 258
ShareMem property,

258-259
modeless forms, displaying,

259-260
modules, 250
overview, 248-249
packages, 248
PenniesToCoins() method

example, 253-254
exports clause, 254
functions, importing, 256
interface units, defining,

254-255
TcoinsRec variable, 255

preferred base address, 249
related terms, list of, 250
resource sharing, 252
shared memory and,

example code, 284-286
source code, 286-287

tasks, 250
TButton component, 261-262
TLabel component, 261-262
TMaskEdit component, 261-262
versus packages, 627
when to deploy, 361

DllUnrefsterServer() function,
669

do-and-assign operators,
Object Pascal, 47

docking bays, 31
DoCoMo Web site, 1132
documentation, wizards, 839
documents

ActiveX, 656
compound, 656
DEPLOY.TXT, 1042

DoHalfMinute() method, 450
DoSearch() method, 224
DoTimerOnTimer method,

example code, 498
drag-and-drop fields, Fields

Editor, 323
drag-and-drop handlers, 800
drawing offscreen bitmap,

495-496
drop target handlers, 800

DSN (Data Source Name), 365
Create New Data Source dialog

box, 366
File DSN, 365
System DSN, 365
User DSN, 365

DTC (Distributed Transaction
Coordinator), 881-882

dual interface, 676
dynamic arrays, 77-78
dynamic link libraries. See DLLs
dynamic linking, 248-252
Dynamic Method Table

(DMT), 109
dynamic methods, 108
dynamic SQL, sending to the

server, 1017

E
early binding, 676
Edit Configuration dialog

box, 968
edit notification messages, 143
Edit() method, 523

dataset manipulation, 314
editing

field values, datasets, 317-329
property as text, 513-517
TcollectionItem components,

555
editing with dialog, property

editors, 519-521
Editor, Fields, 318

adding fields, 319
calculated fields, 321-322
drag-and-drop fields, 323
lookup fields, 322
Object Inspector, 321
TField object descendants,

319-320
editors

component, 522
example code, 525
methods, 523-524
registering, 526
TComponentEditor, 523
TDefaultEditor, 524

dialog property,
TcollectionItem components,
555-561

property, 510-522
EJB (Enterprise Java Bean), 880

APIs, predefined, 966
components and, 966
EJB containers, 966
entity beans, 967

Hello, world example, 968-969
AppServer, deploying,

970-971
client, building, 970
EJB client, developing in

Delphi, 971-973
JBuilder, client test

application in, 969-970
SIDL file, generating, 971

Home interfaces, 966-967
JBuilder, configuring, 967-968
overview, 965-966
Remote interfaces, 966-967
session beans, 967

elliptical hint creation, 490-493
EnableAlign() method, 399
EnableCommit() method, 915
encapsulation, 103
EncryptAlgorithm moniker

parameter, 896
End User Adapter component,

1084
Enterprise Java Bean. See EJB
Enterprise Setup command

(Tools menu), 968
entity beans, 967
entry/exit events, 266

sample code, 268-270
source code, 267

EnumConnectionPoints()
method, 702

enumerated properties, 390
adding to components, 436

enumerated types, obtaining
RTTI on, 422-423

enumeration values, compiler
issues, 163

enumerations, IDL, 944
EnumWindows() API method,

273-275
Environment Options dialog

box, 23
environments, object-based,

105
EOF property, TDataSet

component, 305-306
error handling, Object Pascal,

118-121
Error Reconciliation dialog

box, 1014-1015
error reporting, WAP

(Wireless Application
Protocol) sample application,
1127

events
assigning values, rules, 498
Automation, 700-701

client events, 705-708
events interface, 702-703

32 Index.qxd 11/19/01 12:11 PM Page 1149

events
1150

method pointers, 701
multicasting, 702
overview, 701
server events, 703-705
with sinks, multiple,

708-712
COM+, 898

creating, 900
event class servers, creating,

900-901
event class servers,

registering, 901-902
event publishers, 899
event subscribers, 899
LCE (loosely coupled

events), 899
parameter filters, 906
publisher filters, 906
publishing, 904-905
subscriber servers, creating,

902-903
subscriber servers,

registering, 903-904
system architecture, 899
TCE (tightly coupled

events), 898
component structure and, 390

assigning at runtime,
391-392

OnChange, 390
OnClick, 390-391
OnDblClick, 390

contract-free programming,
28-29

DoHalfMinute method, 450
event handler, 445
event property, 445
event-dispatching method,

445-446
exit/entry, 266

sample code, 268-270
source code, 267

IEventObj.MyEvent() method,
904

messaging relationships, 154
OnClick, 445
OnFilterRecord, 331
OnHalfMinute, 447
OnKeyDown, 28
OnMouseDown, 28
overview, 22, 28
properties, defining, 446-450
TListBox, 276
TNotifyEvent property, 446
TwinControl, keyboard

interaction, 399

example codes
Active Server Objects

NetCLX support and, 1070
Response object, 1051
running in response to

HTML input, 1063-1064
source code, 1057-1058

ADTs (advanced data types)
ADT client side listing,

963-965
ADT I.pas file listing,

959-961
ADT implementation file

for servers listing,
961-963

ADT.idl listing, 958-959
AppBars

component code, 768-775
TAppBar, 776-779

Bank Example (CORBA)
Bank C.pas file, 948-952
Bank I.pas, 948
bank server, implementation

class for, 953-954
Bank.idl, 946
client source listing,

956-957
client-side stub class, 955
stub class deposit method,

955
BLOB (Binary Large Object)

fields, 327-329
client updates to master/detail,

1022
CLX

custom spinner, 571-583
custom spinner, displaying

images, 592-598
custom spinner, handling

mouse events, 585-591
design-time packages,

data-aware, 619-620
design-time packages,

nondata-aware, 618-619
registration units, nondata-

aware components, 621
runtime packages, data-

aware, 616-617
runtime packages, nondata-

aware, 615
COM+

applications, stateful ver-
sus stateless, 909-910

client application, 929-934
event class servers, creating,

900-901
events, publishing, 904-905
framework, 914

subscriber servers,
implementation unit,
902-903

tic-tac-toe sample
application, 916-928

component editors, 525
registering, 526-527
TcomponentEditor, 523

components
creating, 434-435
registering, 454-455
TddgRunButton, 470-475
testing, 456-458
TListBox, 463-470
TMemo, 459-463

context menu handlers, 813-818
constructors, overriding, 452
copy hook handlers, 805-807
Create() method, 500
critical sections, 200-202
data modules

filter form, 345-347
key search form, 341-343

data reconciling, 1013
datasets

manipulating, 310-313
navigating, 306-310
opening and closing,

302-305
ranges, 339-340

DefineProperty() function,
529-530

Destroy() method, 500
DLLs

data sharing across
processes, 280-282

displaying modal forms
from, 257-258

displaying modeless forms
from, 259-260

explicitly loading, 263-264
exporting objects from, 288
shared memory and,

284-286
TButton component,

261-262
TLabel component, 261-262
TMaskEdit component,

261-262
DoTimerOnTimer() method, 498
EJB (Enterprise Java Bean)

EJB ClientMain
Application file listing,
972-973

Hello, world example,
969-971

32 Index.qxd 11/19/01 12:11 PM Page 1150

example codes
1151

events
MyOnClickEvent() method,

391
OnClick event, 391
properties, defining,

447-450
TMouseEvent, 392

exception classes, 121-122
exceptions, execution flow,

124-125
exporting functions from

packages, 644-645
fiber creation, 241-244
fiber unit, 240
functions and procedures, 93-94
generating add-in forms,

638-643
GetValue() method

implementation, 513
HTML, DataSnap applications,

1030-1034
icon handlers, 822-827
implementing multiple

interfaces, 116
IncLine() method, 499
InfoTip handlers, implementing,

828-832
in-process server, Automation

controlling, 698-700
creating, 687-692

invoking functions from
packages, 646-648

IShellLink interface, 780
joins, DataSnap applications,

1028
marquee components, 502-508

painting, 497
PaintLine() method, 496
testing, 508-510

messaging
CatchIt message, 148-149
CIMain.PAS, source code,

149-153
CM MOUSE LEAVE, 143
CM MOUSEENTER, 143
GetMess message handling

example, 137
mouse button click example,

130
OnMessage event, 140
user-defined, Broadcast()

method, 146
user-defined, within

applications, 144-145
using Messages unit,

134-135
WM CTLCOLOR message,

139
WM PAINT message,

135-136

multitable update, 1029
multithreaded BDE access, part

1, 228-230
multithreaded BDE access, part

2, 230-233
multithreaded graphics, 234-237
multithreading, 186
mutexes, 204-206
OnButtonTimer() method, 754
overloading methods, 109
PQA (Palm Query

Applications)
client sample document,

1133-1134
server application sample,

1134-1135
property categories, custom,

540-543
property editors, 515-516

editing with dialog, 520
registering, 518

queued components
clients, creating, 893-896
servers, creating, 891-893
servers, running, 896-897

reintroducing method names,
110

Remote DataModule creation,
1007

RTTI
obtaining for enumerated

types, 422-423
obtaining for integers,

420-421
obtaining for methods,

416-420
obtaining for set types,

423-425
obtaining on objects,

407-411
TTypeData Structure

example, 406-407
scope, 98
search thread, multithreaded

application, 219-223
search thread, priority

adjustment, 225-227
security

GetObjectContext()
method, 887

IsCallerInRole() method,
887

semaphores, 207-209
server updates to master/detail,

1022
SetActive() method, 501-502
SetValue() method

implementation, 514
shell extensions, initializing, 809

shell links
creating, 785
information, getting and

setting, 786-789
sample application, main

unit, 791-796
sample application,

supporting unit 1, 796-797
sample application,

supporting unit 2, 798-799
ShowWindow() procedure, 755
Synchronize() method,

ThrdU.PAS Unit, 183-184
TADOTable component, 374
TddgDefaultEditor component

editor, 611-612
TddgRadioGroupEditor custom

component editor, 609-610
TddgWaveFile component

DefineProperties() method,
531

LoadFromStream() method,
532

ReadData() method, 531
SaveToStream() method, 532
WriteData() method, 531

TDefaultEditor, 524
thread-local storage, 194-196
TObject, 113
tray notification icon, 762-764
TrayWndProc() method,

753-754
try..except Exception Handling

Block, 120
try..except..else Exception

Handling Block, 120
TThread object, 176-177
TTimer component, initializing,

498
TTrayNotifyIcon component,

755-762
two-tier applications, 1039
Type Library Editor, 1056
unit providing utility routines

and abstraction, 1023-1026
user interface, multithreaded

application, 211-218
WAP (Wireless Application

Protocol)
phone display example,

1128-1131
sample application,

1125-1127
Wave File component, 533-537
Web Services, creating

invokable interface, defining,
986-987, 989

invokable interface,
implementing, 988

testing, 989-991

32 Index.qxd 11/19/01 12:11 PM Page 1151

example codes
1152

WndProc() method, 767-768
writing DDG Search wizards

main form, bringing up
files in the IDE Code
Editor, 859-860

main form, complete,
860-867

exception classes
execution flow, 123-125
Object Pascal, 121-123

exceptions
DLLs

capturing in 16-bit Delphi,
271-272

Safecall directive and, 272
invalid variant type conversion,

70
executable code, DLLs and, 250
Execute() method, 181
ExecuteVerb method, 524
exit/entry events, 266

sample code, 268-270
source code, 267

experts, 30
explicitly loading, DLLs, 263-264

FreeLibrary() method, 265
GetProcAddress() method,

265-266
LoadLibrary() method, 265

Explorer tab (Environment
Options dialog box), 23

exporting
functions from packages,

644-648
objects from DLLs, 287

ConvertString() method, 289
example code, 288
limitations, 287
STRINGCONVERTLIB

directive, 290-292
TStringConvert object,

289-290
expressions, Variant type, 69-70
extending hints, 490-494
extensible applications,

generating add-in forms,
637-644

extensible components, 29-30

F
fat client, 1000
fault tolerance, 1000
features, Object Pascal

constants, 41-43
default value parameters, 38
error handling, 118-121

functions, 93-103, 107-110,
114-115

interfaces, 114-118
objects, 110-113, 121-127
OOP, 103-107
operators, 43-47
overloading, 37-38
parentheses, 37
procedures, 93-103, 107-110,

114
types, 48-92
variables, 39-41

fiber creation, example code,
241-244

fiber unit, example code, 240
fibers, 238-244
field definitions. See fields
FieldCount property, 317
FieldList property, 317
FieldNo property, 317
fields

accessing, 105
BLOB (Binary Large Object)

fields, 324
sample application build-

ing, 325-329
TBlobField descendant,

324-325
calculated, Fields Editor,

321-322
drag-and-drop, Fields Editor,

323
lookup, Fields Editor, 322
objects, 104

Fields Editor, 318
adding fields, 319
calculated fields, 321-322
drag-and-drop fields, 323
lookup fields, 322
Object Inspector, 321
TField object descendants,

319-320
FieldValues() property, 315
File DSN, 365
file locations, package types,

629-630
File menu commands

New, 1052
New Application, 24
New Project, 968

file uploading
services, 1109-1111
WebSnap applications,

1109-1111
files

deploying, 1043-1044

memory-mapped, 282-283
CloseSharedData() method,

284
CreateFileMapping()

method, 284
MapViewOfFile() method,

283
FileSaveAsItemClick() method,

738
Filtered property, 330
filtering datasets, 330-331
filters, 906
FindAllFiles() method, 223
FindConnectionPoint()

method, 702
FindFirst() method, 332
FindKey() method, 333
FindLast() method, 332
FindNearest() method, 334
FindNext() method, 332
FindPrior() method, 332
Finterger property, 444
firewalls, 1044-1046
First() method

TDataSet component, 305
unidirectional datasets and, 350

flags, TPropertyAttribute,
521-522

FMTBCDToCurr() function, 166
Focused() method, 399
folders, 781
for loop, 90-91
Form Designer, 22
form wizards, 868-869
Format moniker parameter, 895
forms

adding buttons to, sample
application, 26-27

adding to Component Palette,
485-488

empty, source code, 24-26
modal forms, displaying from

DLLs, 256-259
modeless forms, displaying

from DLLs, 259-260
framework, COM+, 913-914

IobjectContext methods, 915
OnActivate() method, 914
OnDeactivate() method, 914

free option (Threading Model
option), 1054

Free threading choice, 1004
Free() method, 106
FreeBookmark() property, 348
FreeLibrary() method, 265,

271
FSomeObject property, 440

32 Index.qxd 11/19/01 12:11 PM Page 1152

IDE
1153

functions
AllocateHWnd(), 751
Concat(), 55
DLLs, importing, 256
example code, 93-94
exporting from packages,

644-648
GetDoubleClickTime, 753
GetTextMetrics, 495
GetThreadTimes(), 190, 192
HandleReconcileError(), 1014
InitWizard(), 855
invoking from packages,

example code, 646-648
Object Pascal, 93-94

methods, 107-110
RegisterPropertyInCategory(),

538
Result local variable, 94
SHAppBarMessage(), 764-766
Shell NotifyIcon(), 748-750
VarArrayCreate(), 72
VarArrayLock(), 74
VarArrayOf(), 72
VarAsType(), 75
VarFromDateTime(), 75
VarIsEmpty(), 75
VarIsNull(), 75
VarToDateTime(), 75
VarToStr(), 75
VarType(), 75

G
General Packet Radio Service

(GPRS), 1120
generating add-in forms,

637-643
GetBaseClassInfo() method, 412
GetBookmark() property, 348
GetChildren() method, 170
GetClassAncestry() method, 413
GetClassProperties() method,

413-414
GetCommandString() method,

810
GetConnectionInterface()

method, 703
GetDoubleClickTime() function,

753
GetIDsOfName() method, 675
GetInfoTip() method, 828
GetMaxLength() access

method, 388
GetObjectContext() method,

887, 910
GetPackageInfo() method, 819

GetProcAddress() method,
265-266

GetPropInfos() method, 414
GetText() method, 478
GetTextMetrics function, 495
GetThreadTimes() function,

190, 192
GetTypeData() method, 412
GetValue() method, 513-514,

517
GetVerb method, 524
GetVerbCount method, 524
GlobalData property, 280-282
globally unique identifiers.

See GUID
GotoBookmark() property, 348
GotoKey() method, 334
GPRS (General Packet Radio

Service), 1120
graphical controls, 387
GSM technology, 1119
GUID (globally unique

identifiers)
CLSID (class ID), 660
CoCreateGUID() API function,

660
generating new, 660
IID (interface ID), 660
overview, 659-660

H
Handle property, 386-387
HandleReconcileError()

function, 1014
handlers

context menu, 800, 808-818
copy hook, 800-807
data object, 800
drag-and-drop, 800
drop object, 800
drop target, 800
icons, 800, 818

interfaces, 819-821
package flags, 818-819
registering, 822-827

InfoTip, 827-832
interfaces, 827-828
registration, 833

property sheet, 800
handling messages

inherited procedure, 138
OnMessage event, 139-140
procedure requirements, 135

GetMess message handling
example, 137

MessageBeep() method,
137-138

naming, 136
WM PAINT message

example, 136
result values, 139
WM KILLFOCUS message

example, 138
WM SYSCOMMAND, 139

HashAlgorithm moniker
parameter, 896

help system, WinHelp, 22
hiding applications, tray

notification icon, 755-762
hiding implementation, 252
highlighting, syntax

highlighting, 32
Hint property, 752
hints, surfacing, 752
Home interfaces, 966-967
HResult return type, 666
HTML, DataSnap applications,

1030-1034
hwnd field, messaging system

and, 131

I
I-mode, 1132
IAmAMessage method, 109
IAmDynamic method, 108
IAmStatic method, 108
IAmVirtual method, 108
IAutoTestDisp automation

object, 686
IClassFactory interface, 667
icon handlers, 800, 818

interfaces, 819-821
package flags, 818-819
registering, example code,

822-827
Icon property, write method,

752
icons

components, 458-459
surfacing, tray notification

icon, 752
tray notification, 748

API, 748-750
message handling, 751

IContextMenu interface,
810-811

IContextMenu.QueryContext
Menu() method, 810

IDE, 19
AppBrowser navigation, 30-31
class completion feature, 30
Code Editor

overview, 22
windows, viewing multiple,

23

32 Index.qxd 11/19/01 12:11 PM Page 1153

IDE
1154

Code Explorer, 23
Code Insight, 33
Component Palette, 21
docking bays, 31
Form Designer, 22
interface/implementation

navigation, 31
main window,

main menu, 20
toolbars, 20-21

Object Browser, 31
Object Inspector, 22
ObjectTreeView, 23-24
Options command (Tools

menu), 971
Project Manager, accessing, 32
syntax highlighting, 32
To Do List, 32

IDispatch
collections and, 714-715
interface, 674-675

IDL (Interface Definition
Language), 942

ADTs (advanced data types),
958

ADT client side listing,
963-965

ADT I.pas file listing,
959-961

ADT implementation file
for servers listing,
961-963

ADT.idl listing, 958-959
aliases, 944
arrays, 944
bank example, 946

Bank C.pas file, 948-952
Bank I.pas, 948
bank server, implementation

class for, 953-954
Bank.idl, 946-947

balance method, 946
deposit method, 946
enumerations, 944
method arguments, 945
modules, 945-946
overview, 942-943
sequences, 944-945
structures, 944
types of, mapped to Object

Pascal, 943
user defined types, 944
withdraw method, 946

client source listing,
956-958

client-side stub class, 955
stub class deposit method,

955

IEnumVARIANT methods, list
of, 718

IExtractIcon.GetIconLocation()
method, 820-821

if statement, 88-89
IID (interface ID),

defined, 660
interfaces and, 665

IIOP (Internet Inter-ORB
Protocol), 939

IIS (Internet Information
Server), 1050

image handling, WebSnap
application design,
1101-1103

impersonation levels, role-
base security configuration,
885-887

implementing
context menu handlers, example

code, 813-818
icon handlers, example code,

822-827
InfoTip handlers, example

code, 828-832
interfaces, example code,

115-116
implements directive, 116-117
in-place activation, 657
in-process COM servers, 669

creating of instance of, 670-671
DllCanUnloadNow() function,

670
DllGetClassObject() function,

670
DllRegisterServer() function,

669
DllUnregsterServer() function,

669
IncLine() method, 499
increment and decrement

procedures operators,
Object Pascal, 46-47

IndexName property, switching
indexes, 335

IndexOf() method, Exchange
class and, 403

InfoTip handlers, 827
Implementing, example code,

828-832
interfaces, 827-828
registering, 833

inheritance, 103-104
inherited function, messaging

system and, 138
InheritsFrom() method, RTTI

and, 405
initialization/finalization

code, 100

Initialize() method, 808, 833
InitializeControl() method, 722
initializing

arrays, variant, 73
COM library, 781
shell extensions, 808-811

InitWizard() function, 855
Inprise, 18
InputQuery() method, 354
Insert Object dialog box, 733
Insert() method

dataset manipulation, 314
Exchange class and, 403

InsertObjectDialog() method,
737

Install COM+ Objects dialog
box, 928

Install MTS Objects command
(Run menu), 1072

installing
COM+ server, 928-929
packages into Delphi IDE ,

629-630
instance, DLLS and, 250
InstanceSize() method, 405
instancing choices

ciInternal, 1003
ciMultiInstance, 1002
ciSingleInstance, 1003
server setup, DataSnap

applications, 1002-1003
Instancing combo box

(Automation Object Wizard
dialog box), 678

Instancing option, Active
Server Object creation, 1055

Instantiation, 106
Integers, obtaining RTTI on,

420-421
InterBase Express, 298-300
interface ID. See IID
interface objects, Open Tools

API, 836
interface units, 254-255
interface/implementation

navigation, 31
InterfaceConnect() method, 708
interfaces

Corba architecture and, 941-942
defining, 114-115
dual interface, 676
Home, 966-967
IClassFactory, 667
icon handlers, 819-821
IContextmenu, 810-811
IIDs and, 665
Implementing, 115-117
InfoTip handlers, 827-828
IPersistFile, 784-785

32 Index.qxd 11/19/01 12:11 PM Page 1154

memory
1155

IShellExtInit, 808-809
IShellLink, 780, 784-790

example code, 780
instance creation, 781
using, 781-783

IUnknown, 659
AddRef() method, 661
declarations, 661

language support, 731-732
method aliasing, 665-666
Object Pascal, 114
overview, 658-659
Remote, 966-967
rules for using, 117-118
VMTs (virtual method tables),

658
vtables, 658

IntergerProp property, 444
Internal Instance option, 1055
internet considerations,

deploying, 1044-1046
Internet Information Server.

See IIS
Internet Inter-ORB Protocol.

See IIOP
Internet Server API/Netscape

Server API. See ISAPI/NSAPI
InternetExpress, 1034-1037
intersection calculation sets,

82
invalid variant type conversion

exception, Variant types, 70
Invoke() method, 674, 955
InvokeCommand() method, 811
IobjectContext methods, 915
IPersistFile interface, 784-785
IPersistFile.Load() method, 820
is operator, 404
ISAPI/NSAPI (Internet Server

API/Netscape Server API),
1050

IsCallerInRole() method, 887
IObjectContext, 915

IsExecutableFile() method, 475
IShellExtInit interface, 808-809
IShellLink interface, 780,

784-790
example code, 780
instance creation, 781
using, 781-783

IsInTransaction() method, 915
IsSecurityEnabled() method,

915
Item() method, 715
IUnknown, 659

AddRef() method, 661
declaration, 661
QueryInterface() method, 666

J–K
JBuilder

client test application, building,
969-970

configuring, 967-968
JIT (Just-In-Time), 888
joins, DataSnap applications,

1027-1028
Journal moniker parameter,

896
Just-In-Time. See JIT, 888

KDE Window Manager, 565
keyboard events, 399
Kylix, portable code

compatibility, 161-162
calling conventions, 163
linux conditional language, 162
PIC format, 162-163
platform issues, 163

L
language features, 13-14
language support for COM,

727-728
interfaces, 731-732
late binding, 730
variant arrays, 729-730
variants, 728-729
WideString data type, 730-731

Last() method, 305
late binding, 676, 730
LCE (loosely coupled events),

899
licensing issues, 1042
lifetime-managed types, 53-54
Linux packages, CLX, 614
list box notification messages,

143
listings. See example codes
ListItem object, 716
Lists, components, 543

TCollection class, 544-555
TCollectionItem class, 544-546,

555-561
load balancing, 1000
load scheduling, 890
Loaded() method, 458
LoadFromFile() method, 403,

738
LoadFromStream() method, 738
LoadLibrary() method, 265, 270
Local File Service component,

1084
Locate() method, 332-333
LocateFileServices compo-

nent, 1108-1109

LockServer() method, 667
Logic, range checking, 59
logical operators, Object

Pascal, 44
login services, 1079-1080
LoginPrompt property, 370,

372
TSQL Connection component,

353-354
lookup fields, Fields Editor,

322
loops, Object Pascal, 90

Break procedure, 92
Continue() procedure, 92
for loop, 90-91
repeat..until loop, 92
while loop, 91-92

loosely coupled events.
See LCE

lParam field, messaging
systems and, 131

M
m-commerce systems, 1138
main window (IDE), 20-21
MainWndProc() method, 147
manipulating

datasets, 310-313
methods, 314

MapViewOfFile() method, 283
marquee components, 494-495

example code, 502-508
painting, example code, 497
PaintLine() method, 496
testing, example code, 508-510
writing, 495

animating, 498-508
Component Palette addition,

510
offscreen bitmap, drawing,

495-496
painting, 497
testing, 508-510

marshaling, 655, 940
master/detail relationships

client updates, example code,
1022

client-side linking, 1021-1026
nested datasets, 1020-1021
server updates, example code,

1022
MDAC (Microsoft Data Access

Components), 364
membership set, 81
memory

allocation, 62-68
shared memory, DLLs and,

284-287

32 Index.qxd 11/19/01 12:11 PM Page 1155

memory-mapped files
1156

memory-mapped files, 249,
282-283

CloseSharedData() method, 284
CreateFileMapping() method,

284
MapViewOfFile() method, 283

message cracking, 28
message handling

methods, 109
tray notification icon, 751

MessageBeep() procedure,
137-138

messaging, 130
callback function, 132
CatchIt message example

codes, 148-149
CIMain.PAS source code

example, 149-153
CLX components, porting, 569
CM (component messages),

143-144
CN (component notification),

143-144
event relationships, 154
hwnd field, 131
lParam field, 131
message field, 131
Message loop component, 132
Message queue component,

132
message specific records,

134-135
Messages unit, 134-135
mouse button click example,

130
notification messages, 142

button notification, 142
combo box notification,

142-143
edit notification, 143
list box notification, 143

process procedure requirements,
136

processing, 133
GetMess message handling

example, 137
inherited elements, 138
MessageBeep() method,

137-138
OnMessage event, 139-140
procedure requirements,

135-136
result values, 139
WM SYSCOMMAND, 139

routing process, 147
sending, 140

Dispatch() method, 141
Perform() method, 140-141
Post() method, 141
SendMessage() method, 141

system overview, 130
TMessage record, 133-134
TMsg record, 133-134
user-defined, 144

Broadcast() method, 146
messages between

applications, 145-146
messages within

applications, 144-145
Window procedure component,

132
Windows Message, types of,

131-132
WM KILLFOCUS message

example, 138
wParam field, 131

metadata representation,
357-358

method aliasing, 665-666
method arguments, 945
method pointers, 701
methods

ActiveIconHandle(), 751
Add(), 403
AddActivity(), 910
AddInts(), 38
AddObject(), 403
AddRef(), 661-665
AddText(), 704
Advise(), 703
AlignControls(), 399
Application.Initialize, 672
Application.ProcessMessage,

147
ApplyRange(), 336
AProc, 666
Assign(), 395

TSomeObject property, 440
TStrings class and, 403

AssignTo(), 395
Broadcast(), 146
CanBePooled(), 897-898
Cancel(), 314
CancelRange(), 336
CanFocus(), 399
Canvas.Start(), 584
Canvas.Stop(), 584
change control, 1011
ClassInfo(), 405
ClassName(), 405
ClassParent(), 405
ClassType(), 405
Clear(), 704
ClientToScreen(), 253
Close(), 301
CloseSharedData(), 282, 284
CoCreateInstance(), 671
CoGetClassObject(), 672
CoGetObject(), 895

CoInitialize(), 671
CoInitializeSecurity(), 885
component editors,

Edit(), 523
ExecuteVerb(), 524
GetVerb(), 524
GetVerbCount(), 524
Paste(), 524

component structure and, 390
ConvertString(), 289
Copy(), 739
CopyCallback(), 802-804
CoSetProxyBlanket(), 885-886
Create(), 499

Owner property, 393
TObject class and, 394

CreateComObject(), 671
CreateFileMapping(), 284
CreateInstance()

class factories and, 667
IObjectContext, 915

CreateLinkToFile, 735
CreateMDIChild(), 737
creating, 107
DefaultHandler(), 147
defined, 107
DefineProperties(), 395
Delete()

dataset manipulation, 314
TStrings class and, 403

Destroy(), 106, 394
DisableAlign(), 399
DisableCommit(), 915
Dispatch(), 141
DispatchMessage(), 147
DllCanUnloadNow(), 670
DllGetClassObject(), 670
DllRegisterServer(), 669
DllUnregsterServer(), 669
DoHalfMinute(), 450
DoSearch(), 224
Edit(), 314
EnableAlign(), 399
EnableCommit(), 915
EnumConnectionPoints(), 702
EnumWindows() API, 273-275
event-dispatching, 445-446
example code, creating a

method, 107
Exchange(), 403
Execute(), 181
FindAllFiles, 223
FindConnectionPoint(), 702
FindFirst(), 332
FindKey(), 333
FindLast(), 332
FindNearest(), 334
FindNext(), 332
FindPrior(), 332

32 Index.qxd 11/19/01 12:11 PM Page 1156

migration
1157

First()
TDataSet component, 305
unidirectional datasets and,

350
Focused(), 399
Free(), 106
FreeLibrary(), 265, 271
GetBaseClassInfo(), 412
GetChildren(), 170
GetClassAncestry(), 413
GetClassProperties(), 413-414
GetCommandString(), 810
GetConnectionInterface, 703
GetIDsOfName(), 675
GetInfoTip(), 828
GetMaxLength(), 388
GetObjectContext, 910
GetObjectContext(), 887
GetPackageInfo(), 819
GetProcAddress(), 265-266
GetPropInfos(), 414
getter methods, 426
GetText(), 478
GetTypeData(), 412
GetValue(), 514, 517
GotoKey(), 334
IAmAMessage, 109
IAmDynamic, 108
IAmStatic, 108
IAmVirtual, 108
IContextMenu.QueryContextM

enu(), 810
IEventObj.MyEvent() method,

904
IExtractIcon.GetIconLocation(),

820-821
IncLine(), 499
IndexOf(), 403
InheritsFrom(), 405
Initialize(), 808, 833
InitializeControl(), 722
InputQuery, 354
Insert()

dataset manipulation, 314
TStrings class and, 403

InsertObjectDialog(), 737
InstanceSize(), 405
interdependencies, 451
InterfaceConnect(), 708
Invoke(), 674, 955
InvokeCommand(), 811
IPersistFile.Load(), 820
IsCallerInRole(), 887, 915
IsExecutableFile(), 475
IsInTransaction(), 915
IsSecurityEnabled(), 915
Item(), 715
Last(), 305
Loaded(), 458

LoadFromFile(), 403, 738
LoadFromStream(), 738
LoadLibrary(), 265, 270
Locate(), 332-333
LockServer(), 667
MainWndProc(), 147
MapViewOfFile(), 283
Move(), 403
MoveBy(), 305
MyOnClickEvent(), 391
Next(), 721

TDataSet component, 305
unidirectional datasets

and, 350
objects, 104
obtaining RTTI on, 416-420
OnActivate(), 914
OnClear(), 707
OnDeactivate(), 914
OnEndPage, 1056
OnServerMemoChanged(), 707
OnStartPage, 1056
Open(), 301
OpenSharedData(), 282
overloading, 109
overriding, 109
Paint(), 238, 497, 584
PasteSpecialDialog(), 739
Perform(), 140-141
Post()

dataset manipulation, 314
sending messages, 141

Prior(), 305
private exposure, 451
ProcessExecute(), 470, 475-476
ProcessMessage(), 147
protected exposure, 451
public, 451
published exposure, 451
QueryInterface(), 666
ReAlign(), 399
Register(), 454-455
RegisterActiveObject(), 710
RegisterInterface(), 987
RegisterNonActive(), 715
RegisterWindowMessage(), 147
reintroducing names, 110
Release(), 661-665
Remove(), 715
Resolve(), 790
SaveToFile(), 403, 738
SaveToStream(), 738
SearchStr, 278
Self variable, 110
SendMessage(), 141, 389
SendText(), 893
SendTrayMessage(), 750

SetAbort()
applications,creating, 910
IObjectContext, 915
object deactivation, 888

SetAppBarEdge, 766
SetAppBarPos, 766
SetCommandLine(), 475-477
SetComplete()

applications, creating, 910
IObjectContext, 915
object deactivation, 888

SetKey(), 333
SetKey..GotoNearest(), 334
SetMaxLength(), 388
SetRange(), 335-336
SetRangeEnd(), 336
SetRangeStart(), 336
SetSomeProp(), 441
setter methods, 426
SetText, 478
SetValue(), 514, 517
ShellExecute(), 470
SHGetSpecialFolderPath(),

781-783
ShowModal, 260
StrPosProc(), 279
Synchronize(), 182-184
Tcomponent class, types of,

396-397
TControl.Click(), 446
TerminateThread(), 267
TrayWndProc(), 751, 753
TSQLDataSet.ExecSQL(), 355
TwinControl, 399
types, 108

dynamic, 108
message-handling, 109
static, 108
virtual, 108

wizard initialization, 847
WndProc(), 767-768
Write, 1059

Microsoft OLE DB Provider For
ODBC Drivers (Data Link
Properties dialog box), 368

Microsoft Transaction Server.
See MTS

migration
from Delphi 1, 171
from Delphi 2, 168

automation servers, 170
Boolean types, changes to,

168-169
GetChildren() method, 170
ResourceStrings, 169
RTL changes, 169
TCustomForm property,

169-170

32 Index.qxd 11/19/01 12:11 PM Page 1157

migration
1158

from Delphi 3
64-bit integers, 168
Real type command, 168
unsigned 32-bit integers,

166-167
from Delphi 4, 165

database issues, 166
Internet development

issues, 165-166
RTL issues, 165
VCL issues, 165

from Delphi 5, 164
cardinal unary negation,

164-165
writable types constants,

164
mistakes, DataSnap

applications, 1041
mobile phones, 1118
mobile wireless devices, 1118

mobile phones, 1118
PalmOS devices, 1118
Pocket PCs, 1119
RIM BlackBerry, 1119

modal forms, from DLLs,
displaying, 256-258

AHandle parameter, 258
ShareMem property, 258-259

modeless forms, from DLLs,
displaying, 259-260

models, briefcase, 1017
modules

DLLs and, 250
IDL, 945-946

mouse
clicks, 752-754
TMouseEvent procedure, 392

Move() method, 403
MoveBy() method, 305
MSMQ (Microsoft Message

Queue), 880
queued components, 888-889

advantages, 889-890
clients, creating, 893-896
servers, creating, 890-893
servers, running, 896-897

MTA (multithreaded apart-
ment), 658

MTS (Microsoft Transaction
Server), 880, 1071-1073

multicasting, 702
multidimensional arrays, 77-78
multiple inheritance, 103-104
Multiple Instance option, 1055
multiple threads, 175

BDE access, 227-233
graphics, 233-238

managing, 192
storage, thread-local,

192-196
synchronization, 196-210

non-UI VCL, 175
sample application, 210-211
search thread

priority adjustment, 224-227
sample application, 219-224

UI VCL, 175
user interface, sample

application, 211-218
multithreaded apartment.

See MTA
multithreaded BDE access

example code, part 1, 228-230
example code, part 2, 230-233

multithreaded graphics,
233-238

multithreading, 185-186
multithreading BDE access,

227-233
multitier applications, 998-999

benefits, 999-1000
creating, 1007-1015
DataSnap architecture, 1001

client setup, 1004-1006
RDM, 1001
server setup, 1001-1004

deploying, 1041-1046
mistakes, 1041
options, 1015-1026

multitier performance security,
887

mutexes, 202, 206
closing, 204
creating, 203-204
example code, 204-206
signaled, 206
versus critical sections, 203

MyOnClickEvent() method, 391

N
Name property, 396
names, field values, 317
naming conventions, 637
navigation

AppBrowser, 30-31
datasets, 305-306
interface/implementation, 31

neither runtime and design
package type, 628

nested datasets, 1020-1021
NetCLX, 564

Active Server Objects and,
1069-1070

defined, 383
portable code compatibility

and, 161
neutral option (Threading

Model option), 1055
neutral threading, 907
New Active Server Object

dialog box, 1054
New Application command

(File menu), 24
New command (File menu),

1052
New Edit Window command

(View menu), 23
New Field dialog box, 321-322
New Items dialog box, 677
New Project command (File

menu), 968
New Remote Data Module

dialog box, 1001
New WebSnap Application

dialog box
Data Module option, 1083
Page Module option, 1083
server choices, 1081-1083
Web App Debugger option,

1083
Next() method, 721

TDataSet component, 305
unidirectional datasets and, 350

non-UI VCL, 175
nonvisual components, 385
notification messages

button notification, 142
combo box notification, 142-143
edit notification, 143
list box notification, 143

null-terminated string types,
61-63

numbers, field values, 317

O
Object Browser, 31, 567
Object Inspector

categories, viewing, 22
contents, arranging, 22
Fields Editor, 321
help system, 22
overview, 22

object linking and embedding.
See OLE

Object Management Group.
See OMG

object oriented programming.
See OOP

32 Index.qxd 11/19/01 12:11 PM Page 1158

operators
1159

Object Pascal, 330
case sensitivity, 39
comments supported, 36-37
constants,

declaration, 43
space allocation, 41

features
constants, 41-43
default value parameters, 38
error handling, 118-121
functions, 93-103, 107-110,

114
interfaces, 114-118
objects, 110-113, 121-127
OOP, 103-107
operators, 43-47
overloading, 37-38
parentheses, 37
procedures, 93-103, 107-110,

114
types, 48-92
variables, 39-41

language, COM development
and, 658-666

operators
arithmetic, 45-46
assignment, 43
bitwise, 46
comparison, 43-44
do-and-assign, 47
gets, 43
increment and decrement

procedures, 46-47
logical, 44

variables, declaration, 40-41
object pooling, 897-898
object properties, 390

adding to components, 438-441
object reference, 940
Object Repository, 337
Object Request Brokers.

See ORBs
Object TreeView

commands (View menu), 1103
overview, 23-24

Object Windows Library.
See OWL

object-based environments,
105

object-oriented techniques, 15
objects

Active Server Objects, creating,
1052

CoClass Name, 1055
Instancing options,

1054-1055
New Active Server Object

dialog box, 1054

-np command line option,
1053

Object Context option, 1055
Start In editbox, 1053
Threading Model choices,

1054-1055
automation, 1001
exporting from DLLs, 287

ConvertString() method, 289
example code, 288
limitations, 287
STRINGCONVERTLIB

directive, 290-292
TstringConvert object,

289-290
FSomeObject property, 440
Object Pascal, 82-83

friends, 112
properties, 110-111
TObject, 113
visibility specifiers, 111-112

obtaining RTTI on, 407-415
OOP, 103-105
SetSomeObject property, 439
SetSomeProp() method, 441
signaled, 206-207
SomeObject property, 440
TCopyHook, 804
TsomeObject property, 438-439

obtaining information about
a package, 648-651

ODBC
DSN (Data Source Name),

365-366
overview, 364

OLE (object linking and
embedding), 655

OLE 1 versus OLE 2, 657
OLE containers, 655
OLE DB, 364
OLE objects, 655
OleVariant type, 75
OMG (Object Management

Group), 938
OnActivate() method, 914
OnButtonTimer() method, 754
OnChange event, 390
OnClear() method, 707
OnClick event, 390-391, 445
OnDblClick event, 390
OnDeactivate() method, 914
OnEndPage method, 1056
OnFilterRecord event, 331
OnHalfMinute event, 447
OnKeyDown event, 28
online help, Delphi, 298
OnMessage event, 139-140,

147

OnMouseDown event, 28
OnServerMemoChanged()

method, 707
OnStartPage method, 1056
OOP (object oriented

programming),
encapsulation, 103
inheritance, 103-104
objects

creating an instance, 105
declaration, 105-107
destruction, 106-107
field access, 105
fields, 104
instantiation, 106
methods, 104
properties, 104-105

open array parameters, 95-98
Open Tools API,

Delphi supported versions, 836
interface objects, 836
sample application building

writing DDG Search
wizards, 855-867

writing DLL-based wizards,
843-854

writing form wizards,
868-876

writing simple wizards,
839-843

units, 836
ClxDesignWindows, 838
ClxEditors, 838
ClxSprigs, 838
DesignConst, 837
DesignEditors, 837
DesignIntf, 837
Designmenus, 837
DesignWindows, 837
obsolete, 838-839
PropertyCategories, 837
ToolsAPI, 837
TreeIntf, 837
VCLEditors, 838
VCLSprigs, 837
VCSIntf, 837

Open() method, 301
OpenSharedData() method,

282
operators

arithmetic, 45-46
assignment, 43
bitwise, 46
comparison, 43-44
gets, 43
increment and decrement

procedures, 46-47
logical, 44
Object Pascal, 43
sets, 81-82

32 Index.qxd 11/19/01 12:11 PM Page 1159

ORBs
1160

ORBs (Object Request
Brokers), 938-940

OSAgent, 941
out-of-process COM servers,

672
out-of-process server, 692-697
overloading methods, 109
overloading, Object Pascal,

37-38
overriding

constructors, 501
methods, 109

OWL (Objects Windows
Library), 382

Owner property
Create() method, 393
TComponent class, 396

ownership, component
structure and, 393-394

P
Package Editor, 630-631
package files

Compiled unit, 628
Runtime/Design, 629
Runtime/Design package

symbol files, 628
Types, package source, 628

package flags, 818-819
package source package file

type, 628
package syntax, 102-103
packages

CLX, 613
design-time, 618-620
designide, 618
Linux packages, 614
runtime, 615-617
Windows packages, 613-614

compiler directives, 635
{$WEAKPACKAGEUNIT},

636-637
{$DESIGNONLY ON}, 636
{$G}, 636
{$IMPLICITBUILD OFF},

636
{$RUNONLY ON}, 636
{IMPORTEDDATA OFF},

636
creating

Package Editor, 630-631
scenarios to consider,

631-635
DLLs, 248
exporting functions, 644-648
extensible applications using

runtime (add-in), 637-644
naming conventions, 637

obtaining information about,
648-651

overview, 626
package files

Compiled unit type, 628
package source type, 628
Runtime/Design package

symbol type, 628
Runtime/Design type, 629

portable code compatibility
issues, 160

reasons for using
code reduction, 626
distribution size, 626
partitioning, 627
third-party component

distribution, 627
reasons not to use, 627
types, 628
versioning, 635
versus DLLs, 627
units, 101-103

paDialog attribute, 522
page producer components,

1079
Page-Level Event Methods

option (New Active Server
Object dialog box), 1056

Paint() method, 238, 497, 584
painting, 497
Palm Query Applications.

See PQA
PalmOS devices, 1118
PAnsiChar string type, 51
Paradox tables, 298, 333
parameter filters, 906
parameters

constant, 95
open array, 95-98
reference, 95
Value, 94
variable, 95

Params property, 354
Parent property, 394
parentheses, Object Pascal, 37
partitioning packages, 627
passing parameters to

functions and procedures,
94-98

Paste method, 524
PasteSpecialDialog() method,

739
PathName moniker parameter,

895
PChar null-terminated string

type, 61-63
PChar string type, 51
Perform() method, 140-141

Personal Web Server. See PWS
phones. See mobile phones
PIC (Position Independent

Code), 162
platforms, cross platform

development, 351
POA (Portable Object

Adaptor), 940
Pocket PCs, 1119
pointers, 83-85
polymorphism, 103
portable code

Delphi 6, new features, 163
$IF directives, 164
Binary DFM incompatibility,

164
enumeration values, 163
variants, 163

writing, 158-161
Portable Object Adaptor.

See POA
porting from Delphi 1, 50
Position Independent Code

(PIC), 162
positioning methods, 399
Post() method

dataset manipulation, 314
sending messages, 141

PQA (Palm Query
Applications)

client sample document,
1133-1134

overview, 1132-1133
server application sample,

1134-1135
preemptive multitasking, 174
preferred base address, 249
presentation tier, 998
primary thread, 174
Prior() method, 305
priority class, 187-188
Priority moniker parameter, 896
priority, relative, 187-189
PrivLevel moniker parameter,

896
procedures

Break, 92
Continue(), 92
example code, 93-94
Object Pascal, 93-94

methods, 107-110
passing parameters, 94-98
scope, 98-99
units, 99-103

Register(), 569
SetLength(), 55-56
ShellExecute(), 218-219
ShowWindow(), 755
SizeOf(), 50

32 Index.qxd 11/19/01 12:11 PM Page 1160

Register() procedure
1161

VarArrayUnlock(), 74
VarCast(), 75
VarClear(), 75
VarCopy(), 75

ProcessExecute() method, 470,
475-476

ProcessMessage() method, 147
productivity, Delphi, 10-11

compilation speed, 12-13
database architecture, 14-15
language features, 13-14
software design, 15
visual development environment,

11-12
programmatic security, 887-888
programming, contract-free,

28-29
Project Manager, accessing, 32
project Options dialog box, 854
properties

Active, 301
adding to components, 435

array properties, 441-443
default array properties, 445
default values, 444-445
enumerated properties, 436
object properties, 438-441
set properties, 437
simple properties, 435

assigning values through RTTI,
426-428

BOF, 305-306
Bookmark, 347
CanModify, 318
component structure and, 388

access methods, 388-389
array, 390
enumerated, 390
object, 390
set, 390
simple, 390

ComponentState, 453
default value assignment, 508
defined, 22
EOF, 305-306
FieldCount 317
FieldList, 317
FieldNo, 317
FieldValues, 315
Filtered, 330
FreeBookmark, 348
GetBookmark, 348
GotoBookmark, 348
Hint, 752
Icon 752
IncludePathURL, 1036
IndexName, 335
objects, 104-105, 110-111

TCanvas.Handle, 568
TDataSet.State, 314
TField object, 316
TField.FieldName, 317

property categories, 538
classes, 539-540
custom, example code, 540-543
registering, 538

property definition, streaming
nonpublished component
data, 528-537

property editors, 510, 513
editing with dialog, example

code, 520
example code, 515-516
registering, example code, 518
writing, 511

attribute specification, 5
21-522

descendant property editor
object, 511-513

editing the property as text,
513-517

editing with dialog, 519-521
registering, 517-519, 522

property sheet handlers, 800
PropertyCategories unit,

Open Tools API, 837
prototyping, 29
providers, 1008
pseudo-visual components,

490-494
publishing events

example code, 904-905
IEventObj.MyEvent() method,

904
parameter filters, 906
publisher filters, 906

PWideChar string type, 51
PWS (Personal Web Server),

1050

Q-R
Qt class library, 565
Query, 301
QueryInterface() method, 666
queued components

advantages, 889-890
clients, creating, 893-896
MSMQ technology, 888-889
servers, creating, 890-893
servers, running, 896-897

QueueName moniker
parameter, 895

raAbort action, 1015
raCancel action, 1015
raCorrect action, 1015
RAD (Rapid Application

Development)
components, 11
overview, 1078

radio technologies
3G (third generation), 1120
802.11, 1120-1121
Bluetooth, 1120
CDMA, 1119
CDPD (Cellular Digital Packet

Data), 1119
GPRS (General Packet Radio

Service), 1120
GSM, 1119
TDMA, 1119

raMerge action, 1015
range checking logic, 59
ranges, TTable component,

335-336
raRefresh action, 1015
raSkip action, 1014
RDM (Remote Data Model)

building application servers,
1007-1008

creating, 1001
ReAlign() method, 399
reconciling data

DataSnap applications,
1012-1013

example code, 1013
record contention, resolving,

1018
record searching, TTable

component
FindKey() method, 333
FindNearest() method, 334
GotoKey() method, 334
indexes, secondary, 335
ranges, 335-336
SetKey() method, 333
SetKey..GotoNearest() method,

334
records

Object Pascal, 78-80
variant, 66

recursion algorithm, 224
Red Dispatcher component,

1084
reference class, 644
reference parameters, 95
region, 493
Register ActiveX server

command (Run menu), 692
Register() method, 454-455
Register() procedure, 569

32 Index.qxd 11/19/01 12:11 PM Page 1161

RegisterActiveObject () COM
1162

RegisterActiveObject() COM
API function, 710

registering
building application servers,

1009
component editors, 526-527
context menu handlers, 812-818
copy hook handlers, 805-807
icon handlers, 822-827
InfoTip handlers, 833
property categories, 538
property editors, 517-519, 522

RegisterInterface() method, 987
RegisterNonActiveX() function,

715
RegisterPropertyInCategory()

function, 538
RegisterWindowMessage()

API function, 145-147
registration

Automation objects, 676
out-of-process servers, 672

registration database, 907
registration unit for Delphi 6

Developers Guide
components, 633

reintroducing method names,
110

relative priority, 187-189
Release() method, 661-665
Remote Data Model. See RDM
Remote DataModule creation,

1007
Remote interfaces, 966-967
Remove() method, 715
repeat..until loop, 92
Repository, Object, 337
Request object, 1051,

1061-1062
Requires folder, 631
Resolve() method, 790
resource sharing, 252
resources, application creation,

912
Response object, 1051-1052

Response.Write method, 1061
welcome message example,

1059-1060
Write method, 1059

Result local variable, functions,
94

result sets, extracting, 356
result values, messaging

handling, 139
retrieving data, 1009-1010
reverting to original version,

1011

RIM BlackBerry, 1119
role-based security, 882-883

authentication levels, 885
impersonation levels, 885-887

rows, dataset, 300
RTL (runtime library)

CLX, components, porting, 568
defined, 383

RTTI (Runtime Type
Information), 14, 126-127,
382, 451

as operator and, 404
assigning values to properties

through, 426-428
is operator and, 404
obtaining

ancestry for objects, 413
existence of object

properties, 414-415
for enumerated types,

422-423
for integers, 420-421
for object properties,

413-414
for objects, 412-413
for set types, 423-425
on method pointers, 416-420
on objects, 407-411

overview, 403
TObject class, 405
TTypeData structure example,

406-407
typesafe programming, 404

rules
canvas-locking, 238
interfaces, 117-118
placing packages on Requires

folder, 631
placing units into Contains

folder, 630-631
Run menu commands

Register ActiveX server, 692
Install MTS Objects, 1072

Run Parameters dialog box,
935, 1074

runtime
COM+, 906-907

components, configured,
907

contexts, 907
neutral threading, 907
registration database, 907

design package type and, 628
runtime packages

CLX, 615-617
data-aware, example code,

616-617
nondata-aware, example code,

615

Runtime Type Information.
See RTTI

Runtime/Design package file
type, 628-629

S
Safecall

calling convention, 163
defined, 686
directives, DLLs and, 272

SavePoint, client-side
transactions, 1011-1012

SaveToFile() method, 403, 738
SaveToStream() method, 738
Scalability, 890
scope, 98-99
scrolling control, 501-502
search thread, multithreaded

application, example code,
219-224

search thread, priority
adjustment, example code,
225-227

searching datasets, 332-336
SearchStr() method, 278
security

CoInitializeSecurity() method,
885-886

COM+, 882
multitier, 887
programmatic, 887-888
role-based, 882-883

configuration, 883-887
component, 634
CoSetProxyBlanket, 886
CoSetProxyBlanket() method,

885
DCOM features, 673
GetObjectContext() method, 887
IsCallerInRole() method, 887
WTLS (Wireless Transport

Layer Security), 1124
Self variable methods, 110
semaphores

example code, 207-209
thread synchronization, 207

sending messages, 133, 140
Dispatch() method, 141
Perform() method, 140-141
Post() method, 141
SendMessage() method, 141

SendMessage() access
method, 389

SendMessage() method, 141
SendText() method, 893
SendTrayMessage() method,

750

32 Index.qxd 11/19/01 12:11 PM Page 1162

ShowWindow() procedure
1163

server connection, client
setup, 1006

server events, 703-705
server setup

advertising services, 1004
data-access choices, 1004
DataSnap applications, 1001
instancing choices, 1002-1003
threading choices, 1003-1004

server-based wireless data
technologies, 1121

I-mode, 1132
PQA (Palm Query

Applications)
client sample document,

1133-1134
overview, 1132-1133
server application sample,

1134-1135
SMS (Short Message Service),

1121
WAP (Wireless Application

Protocol)
advantages of, 1122-1123
architecture, 1121-1122
bitmaps, 1128-1131
error-reporting, 1127
sample application,

1125-1127
WML (wireless markup

language), 1123-1124
WTLS (Wireless Transport

Layer Security), 1124
WTLS (Wireless Transport

Security), 1124
server-side scripting, 1078
servers

application, building, 1007-1009
automation, 170
COM+, installing, 928-929
event class, 900-902
in-process, 669
miscellaneous options, 1019
object reference, 940
queued components, 890-893,

896-897
SendText() method, 893
subscriber

creating, 902-903
registering, 903-904

session beans, 967
session management, 1079
SessionsService component,

1084
set properties, 390

adding to components, 437
set types, obtaining RTTI on,

423-425

Set8087CW() function, 165
SetAbort() method

applications, creating, 910
IObjectContext, 915
object deactivation, 888

SetActive() method, example
code, 501-502

SetAppBarEdge() method, 766
SetAppBarPos() method, 766
SetCommandLine() method,

475-477
SetComplete() method

applications, creating, 910
IObjectContext, 915
object deactivation, 888

SetKey() method, 333
SetKey..GotoNearest()

method, 334
SetLength() procedure, 55-56
SetMaxLength() access

method, 388
SetRange() method, 335-336
SetRangeEnd() method, 336
SetRangeStart() method, 336
sets, Object Pascal

operators, 81-82
overview, 80
using, 80

SetSchemaInfo() method, 3
57-358

SetSomeObject property, 439
SetSomeProp() method, 441
setter methods, 426
SetText() method, 478
SetValue() method, 514, 517
ShapeType property, 680
shared memory, DLLs and,

284, 286
example code, 284-286
source code, 286-287

ShareMem property, 258-259
sharing data across processes,

279-280
CloseSharedData() method,

282, 284
CreateFileMapping() method,

284
GlobalData property, 280-282
MapViewOfFile() method, 283
OpenSharedData() method, 282

shell extensions, 799
COM object wizard, 801
debugging, 800-801
handlers, 800

context menu, 800, 808-818
copy hook, 800-807
drag-and-drop, 800
drop target, 800

icon, 800, 818-827
InfoTip, 827-833
property sheet, 800

types, 800-833
shell folders, 781
shell links

creating, 784-785
information, getting and setting,

785-790
IShellLink interface, 780,

784-790
example code, 780
instance creation, 781
using, 781-783

sample application, 790
main unit, 791-796
supporting unit 1, 796-797
supporting unit 2, 798-799

Shell NotifyIcon() function,
748-750

shell programming
AppBars, 764

API, 764-766
TAppBar, 776-779
VCL form encapsulation,

766-775
shell extensions, 799

COM object wizard, 801
debugging, 800-801
handlers, 800-833
initializing, 808-811
types, 800-833

shell links
creating, 784-785
information, getting and

setting, 785-790
IShellLink interface, 780-790
sample application, 790-799

tray notification icon, 748,
762-764

API, 748-750
hiding the application,

755-762
hints surfacing, 752
icon surfacing, 752
message handling, 751
mouse clicks, 752-754

ShellExecute() method, 470
ShellExecute() procedure,

218-219
SHGetSpecialFolderPath()

method, 781-783
Short Message Service (SMS),

1118, 1121
ShortString string type, 51
ShowModal() method, 260
ShowWindow() procedure, 755

32 Index.qxd 11/19/01 12:11 PM Page 1163

SIDL
1164

SIDL (simplified IDL) file,
generating, 971

signaled objects, 206-207
Simple Object Access Protocol.

See SOAP
simple properties, 390, 435
simplified IDL. See SIDL
Single Instance option, 1055
single option (Threading

Model option), 1054
single thread, 657
Single threading choice, 1003
single-threaded apartment.

See STA
single-threaded user interface,

advantages, 182
sinks, multiple, events with,

708-712
SizeOf() procedure, 50
smart linker, 251
SMS (Short Message Service),

1118, 1121
SOAP (Simple Object Access

Protocol), 984
software design, 15
space allocation constants, 41
special folders, 781
speed, compilation speed,

12-13
spinlock, Alpha-CPU data

structure, 200
SQL tables, 333
STA (singe-threaded

apartment), 658
standard procedures, 218
states, datasets, 314
static linking, 250-252
static methods, 108
stdcall calling convention, 163
stored procedures

executing, 356-357
results, displaying, 356

streaming, component
structure and, 392

streaming nonpublished
component data, 527-530

string operations, 54-55
string resources, 88
string types, Object Pascal, 51

AnsiString, 52-57
null-terminated, 61-63
operations, 54-55
ShortString, 58-59

WideString, 60-61
Win32 compatibility, 56-57

STRINGCONVERTLIB directive,
290-292

StrPosProc() method, 279

structured exception handling
(SEH), 118-121

structured storage, 657
subscriber servers

creating, 902-903
registering, 903-904

support
COM, 727-728

interfaces, 731-732
late binding, 730
variant arrays, 729-730
variants, 728-729
WideString data type,

730-731
functions, arrays, variant, 73-75

synchronization
message usage threads, 184
multiple threads, 196-199

critical sections, 199-203
mutexes, 202-206
semaphores, 207-210

threads, 182-184
VCL, 182

Synchronize() method, 182-184
syntax, packages, 102-103
syntax highlighting, 32
System DSN, 365
system scalability, 890

T
table data, retrieving, 355
tables, 301
Tadapter components,

1078-1079
TAdapterPageProducer

component, 1112-1114
TADOCommand component,

372
TADOConnection component,

368
ConnectionString Property

Editor, 368, 370
Login prompt, bypassing, 370,

372
transaction processing, 375-376

TADOConnection connection
component, 300

TADODataset component, 373
TADOQuery component, 301,

375
TADOSorted component, 375
TADOTable component, 301,

373-375
Tag property, 396
TAppBar component, 250,

766-779
TAutoTest class, 679

TBevel control, 387
TBlobField descendant, 324-325
TBlobStream descendant,

325-327
TButton component, 261-262
TCanvas class, 403, 568
TCanvas.Handle property, 568
TCE (tightly coupled events),

898
TClientDataset component,

1039
TCollection class, 544-545
TCollectionItem class, 544-545

defining, 546
editing components, 555

TComObject, 667-668
TComObjectFactory, 667-668
Tcomponent class, 395-397
TComponentEditor

component editor, 523
TControl class, 397
TControl.Click() method, 446
TCopyHook object, 804
TCORBAConnection client

connection choice, 1005
TCustom class, 400
TCustomConnection

component, 299
TCustomControl property, 433
TCustomForm property,

169-170
TDatabase component, 302
TDataSet component, 300,

305, 315
TDataSet.State property, 314
TDCOMConnection client

connecting choice, 1005
TddgButtonEdit container

components
design decisions, 477-478
forms, adding, 485-488
surfacing events, 478
TddgDigitalClock, 481-485
Text property, 478
TSpeedButton control, 478-481

TddgDefaultEditor component
editor, 611-612

TddgRadioGroupEditor custom
component editor, 608-610

TddgRunButton component
example, 470-475

TddgWaveFile component,
531-532

TddGWorthless component,
adding properties to, 435

array properties, 441-443
default array properties, 445
default values, 444-445

32 Index.qxd 11/19/01 12:11 PM Page 1164

TSQLClientDataset component
1165

enumerated properties, 436
object properties, 438-441
set properties, 437
simple properties, 435

TddWaveFile component, 530
TDefaultEditor, 524
TDispatchConnection

component, 1005, 1009
TDMA technology, 1119
templates, adding to

WebSnap applications,
1111-1112

TerminateThread() method, 267
termination, TThread object,

180-182
testing

components, 456-458
marquee components, 508-510
Web Services, 989-991

testing conditions, 88-90
Text Connection (Data Link

Properties dialog box), 368,
370

Text property, 478
TField object, 319-320
TField.FieldName property, 317
TForm1 class, 27
TFrameControl class, 565
TGraphicControl class, 399-400
TgraphicControl component,

387
THintWindow descendant

creation, 490-492
deploying, 494
enabling, 494

thread instances, 180
Thread Model, 1054-1055
Thread Neutral Apartment.

See TNA
Thread object item in New

Items dialog box, 178
thread-local storage, 192

example code, 194-196
TThread storage, 193

threading choices
Apartment, 1003
Both, 1004
Free, 1004
server setup, 1003-1004
Single, 1003

threading models, list of,
657-658

threads
explained, 174-176
fibers, 238-244
misuse of, 175-176
multiple, 175

BDE access, 227-233
graphics, 233-238

managing, 192-210
non-UI VCL, 175
sample application, 210-227
UI VCL, 175

relative priority, 187
resuming dynamically, 190
suspending dynamically, 190
synchronization, 182-184
TerminateThread() method, 267
timing, 190-192
TThread object, 176-192

threadvar clause, 193-196
THTTPRIO component, 993-995
THTTPSoapDispatcher

component, 985
THTTPSoapPascalInvoker

component, 986
TIBDatabase connection

component, 300
TIBQuery component, 301
TIBTable component, 301
tiers, 998
tightly coupled events. See TCE
TImage control, 387
timing threads, 190-192
TinetXPageProducer, 1036
TInvokableClass instance, 989
Tlabel component, 261-262
TListBox component example,

463-470
TListBox event, 276
TMask component, 261-262
TMemo component example,

459-463
TMessage record, 133-134
TMouseEvent, 392
TMsg record, 133-134
TNA (Thread Neutral

Apartment), 907
TnotifyEvent property, 446
To Do List, viewing, 32
TObject class, 113, 394

Create() method, 394
Destroy() method, 394
RTTI and, 405
TPersistent class, 395

TOleContainer class, sample
application, 733-737

child form, creating, 737
Clipboard, using to copy and

paste, 739, 741-746
files, saving to and reading

from, 738
OLE file, embedding or linking,

735
OLE object, embedding new,

733-734

toolbars
buttons, 20-21
Customize toolbar dialog box,

20-21
tooltips, 20

Tools menu commands
Enterprise Setup, 968
IDE Options, 971

ToolsAPI unit, Open Tools API,
837

tooltips, 20, 827
Topendialog component, 385
TPaintBox control, 387
TPersistent class, 395
TPropertyAttribute flags,

521-522
TpropertyEditor, 514
Tprovider component, 359-360
TQuery component, 301
Trace moniker parameter, 896
Tracelist property, 358-359
transaction processing,

375-376
Transactional Data Module

Wizard, 912
transactions, application

creation, 911
tray notification icon, 748

API, 748-750
demo application, 762-764
hiding the application, 755-762
hints surfacing, 752
icon surfacing, 752
message handling, 751
mouse clicks, 752-754

TrayWndProc() method,
751-754

TreeIntf unit, Open Tools API,
837

Troll Tech, 565
try..except Exception Handling

Block, 120
try..except..else Exception

Handling Block, 120
TsetPropOptions property, 437
TShape control, 387
TSOAPConnection client

connection choice, 1006
TSocketConnection, 1005,

1008
TSomeObject property, 438-440
TSQL Monitor component,

358-359
TSQLClientDataset compo-

nent, 359-360

32 Index.qxd 11/19/01 12:11 PM Page 1165

TSQLConnection component
1166

TSQLConnection component,
351

Connected property, 353
ConnectionName, 352-353
dbxconnections.ini configuration

file, 351-352
dbxdrivers.ini configuration

file, 351-352
LoginPrompt property, 353-354
Params property, 354

TSQLConnection connection
component, 300

TSQLDataset component, 354
CommandText property, 355

ctQuery value, 355
result sets, extracting, 356
table data, retrieving, 355

CommandType property, 355
ctQuery value, 355
ctTable value, 355

ctStoredProc value, 356-357
SetSchemaInfo procedure,

357-358
TSQLDataSet.ExecSQL()

method, 355
TSQLQuery component, 301,

358
TSQLStoredProc component,

358
TSQLTable component, 301,

358
TStringConvert object, 289-290
TStrings Class, 400-403
TStringsList class, 402
TTable component, 301, 385

record searching, 333
FindKey() method, 333
FindNearest() method, 334
GotoKey() method, 334
indexes, secondary, 335
ranges, 335-336
SetKey() method, 333
SetKey..GotoNearest()

method, 334
TThread object, 176

basic concepts, 178-179
instances, 180
termination, 180-182

example code, 176-177
synchronization, 184
Synchronize() method, 182-184

TThread storage, 193
TTimer component, 385, 498
TTimer object, 450
TTrayNotifyIcon component,

755-762
TwebAppComponents control,

1086

TWebConnection client
connection choice, 1005

TwebModule, 985
TWidgetControl class, 398-399,

565
TwinControl class, 398, 566

events, keyboard interaction,
399

methods, types of, 399
properties, types of, 398-399

TWindowInfo class, 276
two-tier applications,

1039-1041
TWSDLHTMLPublish

component, 986
TWwidgetControl component,

386-387
type libraries, 675, 723-724
Type Library Editor, 1055-1059
typecasting, 87
typecasting expressions, 68-69
types

Object Pascal, 48-50
aliases, 86
AnsiChar, 50
arrays, 76-78
case statement, 89-90
Char, 50
Currency, 75
if statement, 88-89
lifetime-managed, 53-54
loops, 90-92
null-terminated strings,

61-63
objects, 82-83
OleVariant, 75
pointers, 83-85
records, 78-80
sets, 80-82
ShortString, 58-59
string resources, 88
strings, 51-57
typecasting, 87
user-defined, 75
Variant, 63-75
WideChar, 50
WideString, 60-61

packages
design package, 628
neither runtime and design

package, 628
runtime package, 628

typesafe programming, 404

U
UDT (uniform data transfer),

657
UI (user interface), 29
UI VCL, 175
underscore character, 942
unidirectional datasets, 350
uniform data transfer. See

UDT
union set, 81
unit source files, Win32 API,

253
units, 99-100

circular unit reference, 101
initialization/finalization code,

100
Open Tools API, 836

ClxDesignWindows, 838
ClxEditors, 838
ClxSprigs, 838
DesignConst, 837
DesignEditors, 837
DesignIntf, 837
DesignMenus, 837
DesignWindows, 837
obsolete, 838-839
PropertyCategories, 837
ToolsAPI, 837
TreeIntf, 837
VCLEditors, 838
VCLSprigs, 837
VCSIntf, 837

packages, 101-103
portable code compatibility

issues, 160
uses clause, 100-101

untyped pointers, 83
updates, multitable, 1028-1029
uploading

files, 1009-1011
services, 1080

upWhereAll setting, 1018
upWhereChanged setting, 1018
upWhereKeyOnly setting, 1018
user defined types, 944
User DSN, 365
User List Service component,

1084
user tracking, 1080
user-defined messaging, 144

between applications, 145-146
Broadcast() method, 146
within applications, 144-145

user-defined types, 75
User32.dll, 564
uses clause, 100-101
utilities, DCOMCNFG, 1042

32 Index.qxd 11/19/01 12:11 PM Page 1166

Web Services
1167

V
Value parameter, 94
values, assigning to proper-

ties through RTTI, 426-428
VarArrayCreate() function, 72
VarArrayLock() function, 74
VarArrayOf() function, 72
VarArrayUnlock() procedure, 74
VarAsType() function, 75
VarCast() procedure, 75
VarClear() procedure, 75
VarCopy() procedure, 75
VarFromDateTime() function, 75
variable parameters, 95
variables, declaration, 39-41
variant arrays, 729-730

initializing, 73
support functions, 73-75

variant records, 66
Variant type, Object Pascal, 63

arrays, 71-75
changing, 64
data structure, 64-67
expressions, using in, 69-70
memory allocation, 67-68
typecasting expressions, 68-69
VType values, 70-71

variants, 163, 728-729
VarIsEmpty() function, 75
VarIsNull() function, 75
VarToDateTime() function, 75
VarToStr() function, 75
VarType() function, 75
VCL (Visual Component

Library) component building
Component Expert, 433
component units, 433-435
components

icons, 458-459
ProcessExecute() method,

475-476
registering, 454-455
SetCommandLine() method,

476-477
TddgButtonEdit container

component, 477-488
TddgRunButton component

example, 470-475
testing, 456-458
TListBox component

example, 463-470
TMemo component

example, 459-463
constructors

Component State values, 453
design-time behavior, 453
overriding, 452

custom control, writing
custom controls, types of,

432-433
decisions regarding, 430-431
writing steps, 431-432

destructors, overriding, 454
events

event handler, 445
event property, 445
event-dispatching method,

445-446
properties, defined, 446-450

hierarchies, 384
methods, 451
overview, 430
properties, adding, 435

array properties, 441-443
default array properties,

445
default values, 444-445
enumerated properties, 436
object properties, 438-441
set properties, 437
simple properties, 435

TCustomControl property, 433
VCL synchronization, 182
VCLEditors unit, Open Tools

API, 838
VCLSprigs unit, Open Tools

API, 837
VCSIntf unit, Open Tools API,

837
versioning packages, 635
VFI (visual form inheritance), 12
View menu commands

New Edit Window, 23
Object Treeview, 1103
Project Manager, 32
To Do List, 32

Virtual Method Table. See VMT
virtual methods, 108
visibility specifiers, 111-112
Visual Component Library.

See VCL
visual components, 385-386

TGraphicControl, 387
TWidgetControl,

characteristics, 386
Handle property, 386-387

TwinControl
characteristics of, 386
Handle property, 386-387

visual development
environment, 11-12

visual editing, 657
visual form inheritance. See

VFI

VisualCLX, 564-565
defined, 383
portable code compatibility

and, 161
VMT (Virtual Method Table)

ConvertString() method, 289
overview, 658

vtables, 658
VType values, Variant type,

70-71

W–Z
WAP (Wireless Application

Protocol), 1118
advantages of, 1122
architecture, 1121-1122
bitmaps, 1128-1131
disadvantages of, 1123
error reporting, 1127
sample application, 1125-1127
WML (wireless markup

language, 1123-1124
WTLS (Wireless Transport

Layer Security), 1124
Wave File component, 533-537
Web App Components dialog

box, 1083-1084
Web Debugger, accessing, 1082
Web Services

CORBA and
CORBA client code,

adding, 978-981
creating, 975-976
example architecture, 975
SOAP client, creating,

977-978
invoking from client, 991-993

import unit, generating for
remote invokable object,
993-994

using THTTPRIO
component, 994-995

overview, 984
SOAP (Simple Object Access

Protocol), 984
writing, 985

invokable interface, defining,
986-987

invokable interface,
implementing, 987-989

testing, 989-991
TWebModule, 985-986

WSDL (Web Services
Description Language), 984

32 Index.qxd 11/19/01 12:11 PM Page 1167

Web sites
1168

Web sites
Borland, 965
DCOM page, 1043
DoCoMo, 1132
OMG (Object Management

Group), 938
WebAppComponents

component, 1086
WebBroker technology, 564,

1034
WebSnap applications, 1034,

1078
designing

ApplicationTitle property,
1089

component choices,
1083-1084

converting to ISAPI DLL,
1107

custom components,
1112-1114

custom templates,
1111-1112

data, displaying,
1103-1105, 1107

file uploading, 1109-1111
image handling, 1101-1103
LocateFileServices,

1108-1109
logging in, 1092-1094
naming, 1085-1088
navigation menu bar,

1089-1092
preference data between

sessions, 1099-1101
server choices, 1081-1083
user preference data,

managing, 1095-1098
Web App Debugger option,

1083
WebSnap toolbar, adding to

IDE window, 1080
features

dispatching methods, 1079
file uploading services, 1080
HTML management, 1080
login services, 1079-1080
page producer components,

1079
server-side scripting, 1078
session management, 1079
Tadapter components,

1078-1079
user tracking, 1080
Web modules, multiple, 1078

while loop, 91-92
WideString data type, 730-731
WideString string type, 51,

60-61
widgets, user interface, 565
Win32

API, unit source files, 253
compatibility, 56-57
handles, 387
preemptive multitasking, 174

Windows, shell programming
AppBars, 764-779
shell extensions, 799-833
shell links, 780-799
tray notification icon, 748-764

Windows 2000, Active Server
Objects, debugging,
1074-1076

Windows Messages. See WM
Windows NT 4, Active Server

Objects, debugging,
1073-1074

Windows packages, CLX,
613-614

WinHelp, accessing, 22
Wireless Application Protocol

(WAP), 1118
advantages of, 1122
architecture, 1121-1122
bitmaps, 1128-1131
disadvantages of, 1123
error reporting, 1127
sample application, 1125-1127
WML (wireless markup

language), 1123-1124
WTLS (Wireless Transport

Layer Security), 1124
wireless development, 1116

history of
1980s-late, 1117
1980s-pre, 1116
1990s-early, 1117
1990s-late, 1117
2000s, 1117

mobile wireless devices,
mobile phones, 1118
PalmOs devices, 1118
Pocket PCs, 1119
RIM BlackBerry, 1119

overview, 1116
radio technologies

3G (third generation), 1120
802.11, 1120-1121
Bluetooth, 1120
CDMA, 1119

CDPD (Cellular Digital
Packet Data, 1119

GPRS (General Packet
Radio Service), 1120

GSM, 1119
TDMA, 1119

server-based, 1121
I-mode, 1132
PQA (Palm Query

Applications), 1132-1135
SMS (Short Message

Service), 1121
WAP (Wireless Application

Protocol), 1121-1131
user experience, 1136

circuit switched versus
packet switched networks,
1137

form factors, 1137
m-commerce, 1138
misconceptions, 1137
navigation techniques,

1137
wireless markup language

(WML), 1123-1124
wizard initialization method,

847
wizards

Automation Object, 912-913
COM object, 801
form, steps to create, 868-869
Transactional Data Module,

912
writing DDG Search

main form, bringing up
files in the IDE Code
Editor, 859,860

main form, complete,
860-867

Open Tools API, 855-867
project file, 858-859
wizard logic, 855-857

writing DLL-based
adding and modifying

wizard entries in registry,
852-853

main project file, 854
main unit, 848-852
Open Tools API, 843-854
wizard class, 845-847

writing simple, 839-842
writing without packages, 855

WM (Windows Message),
131-132
WM CTLCOLOR message, 139
WM KILLFOCUS message, 138

32 Index.qxd 11/19/01 12:11 PM Page 1168

WTLS
1169

WM SYSCOMMAND, 139
WML (wireless markup

language), 1123-1124
WndProc() method, 767-768
wParam field, 131
Write method, 1059
writing

components
Component Expert, 433
component units, 433
custom controls, types of,

432-433
decisions regarding,

430-431
writing steps, 431-432

property editors, 511
attribute specification,

521-522
descendant property editor

object creation, 511-513
editing the property as text,

513-517
editing with dialog, 519-521
registering, 517-519
registering, 522

Web Services, 985
invokable interface, defining,

986-987
invokable interface,

implementing, 987-989
testing, 989-991
TWebModule, 985-986

WTLS (Wireless Transport
Layer Security), 1124

32 Index.qxd 11/19/01 12:11 PM Page 1169

C++Builder™ 5 Developer’s Guide
Jarrod Hollingworth, Dan Butterfield, Bob Swart, Jamie Allsop

0-672-31972-1
$59.99 US/$89.95 CAN

C++Builder5 Developer’s Guide is your key to unlocking the full potential
C ++Builder. The text provides comprehensive coverage of all major
C++Builder5 features, including InternetExpress™, ADOExpress,
InterBase®, TeamSource™, CodeGuard™, and more. In addition, you’ll
discover how to take advantage of enhanced support for MIDAS™,
CORBA™, and COM+.

Kylix™ Developer’s Guide
Charlie and Marjorie Calvert, John Kaster, Bob Swart

0-672-32060-6
$59.99 US/$89.95 CAN

The Kylix™ Developer’s Guide introduces programmers to the new
Borland® Delphi compiler for Linux. The book provides comprehensive
coverage of CLX, a VCL-like visual programming library that runs on
both Windows and Linux. You’ll learn the Linux system environment,
development of databases with CLX, and Web development with Kylix.

Pure CORBA®

Fintan Bolton

0-672-31812-1
$49.99 US/$74.95 CAN

Pure CORBA® is a practical guide to writing CORBA-compliant applica-
tions in C++ and Java™. This book focuses on the CORBA standard itself
rather than on any particular ORB. Equal priority for C++ and Java is
ensured by presenting code fragments and examples in both languages
throughout. The book is self-contained and requires no previous knowl-
edge of distributed systems or of CORBA application development. Pure
CORBA® is for experienced C++ and Java programmers.

115-7 Ad 11/19/01 12:08 PM Page 1

What’s on the CD-ROM
The companion CD-ROM contains all the code for the examples developed in the book and
related software.

Windows Installation Instructions
1. Insert the disc into your CD-ROM drive.

2. From the Windows desktop, double-click the My Computer icon.

3. Double-click the icon representing your CD-ROM drive.

4. Double-click the icon titled start.exe to run the installation program.

5. Follow the onscreen prompts to finish the installation.

If you have the AutoPlay feature enabled, the start.exe program starts automati-
cally whenever you insert the disc into your CD-ROM drive.

NOTE

34 0672321157 install 11/19/01 12:08 PM Page 2

Read This Before Opening the Software
By opening this package, you are also agreeing to be bound by the following agreement:

You may not copy or redistribute the entire CD-ROM as a whole. Copying and redistribution of
individual software programs on the CD-ROM is governed by terms set by individual copyright
holders.

The installer and code from the author(s) are copyrighted by the publisher and the author(s).
Individual programs and other items on the CD-ROM are copyrighted or are under an Open
Source license by their various authors or other copyright holders.

This software is sold as-is without warranty of any kind, either expressed or implied, including
but not limited to the implied warranties of merchantability and fitness for a particular purpose.
Neither the publisher nor its dealers or distributors assumes any liability for any alleged or
actual damages arising from the use of this program. (Some states do not allow for the exclu-
sion of implied warranties, so the exclusion may not apply to you.)

Please note that this CD-ROM uses long and mixed-case filenames, requiring the use
of a protected-mode CD-ROM Driver.

NOTE

35 0672321157 license 11/19/01 12:08 PM Page 2

	Borland ® Delphi ™ 6 Developer ’s Guide
	Copyright © 2002 by Sams Publishing
	Table of Contents

	Introduction
	Part I Development Essentials
	CHAPTER 1 Programming in Delphi
	CHAPTER 2 The Object Pascal Language
	CHAPTER 3 Adventures in Messaging

	Part II Advanced Techniques
	CHAPTER 4 Writing Portable Code
	CHAPTER 5 Multithreaded Techniques
	CHAPTER 6 Dynamic Link Libraries

	Part III Database Development
	CHAPTER 7 Delphi Database Architecture
	CHAPTER 8 Database Development with dbExpress
	CHAPTER 9 Database Development with dbGo for ADO

	Part IV Component-Based Development
	CHAPTER 10 Component Architecture: VCL and CLX
	CHAPTER 11 VCL Component Building
	CHAPTER 12 Advanced VCL Component Building
	CHAPTER 13 CLX Component Development
	CHAPTER 14 Packages to the Max
	CHAPTER 15 COM Development
	CHAPTER 16 Windows Shell Programming
	CHAPTER 17 Using the Open Tools API

	Part V Enterprise Development
	CHAPTER 18 Transactional Development with COM+/MTS
	CHAPTER 19 CORBA Development
	CHAPTER 20 BizSnap Development: Writing SOAP-Based Web Services
	CHAPTER 21 DataSnap Development

	Part VI Internet Development
	CHAPTER 22 ASP Development
	CHAPTER 23 Building WebSnap Applications
	CHAPTER 24 Wireless Development

	INDEX

