
CHAPTER

9
Database Development with
dbGo for ADO

IN THIS CHAPTER
• Introduction to dbGo 364

• Overview of Microsoft’s Universal Data Access
Strategy 364

• Overview of OLE DB, ADO, and ODBC 364

• Using dbGo for ADO 365

• dbGo for ADO Components 367

• Transaction Processing 375

13 chpt_09.qxd 11/19/01 12:06 PM Page 363

Introduction to dbGo
This chapter will get you programming using Microsoft’s ActiveX Data Objects (ADO), which
are encapsulated by Delphi’s dbGo for ADO components.

dbGo for ADO is represented by those components residing on the ADO tab of the Component
Palette and provide data access through the ADO framework.

Overview of Microsoft’s Universal Data Access
Strategy
Microsoft’s strategy for Universal Data Access is to provide access to a wide range of data
through a single access model. This data might consist of both relational and non-relational
data. Microsoft accomplishes this through the Microsoft Data Access Components (MDAC),
which comes installed in all Windows 2000 systems or can be downloaded from
http://www.microsoft.com/data/.

MDAC is comprised of three elements: OLE DB, Microsoft ActiveX Data Objects (ADO), and
Open Database Connectivity (ODBC).

Overview of OLE DB, ADO, and ODBC
OLE DB is a system level interface that uses COM to provide access to many sorts of data
including relational and non-relational formats. It is possible to write code that directly inter-
faces with the OLE DB layer; although with ADO, it’s much more complex and in most cases,
unnecessary.

Many OLE DB providers are implementations of the OLE DB interfaces for providing access
to specific vendor data. For instance, some OLE DB providers give access to data from Paradox,
Oracle, Microsoft SQL Server, the Microsoft Jet Engine, and ODBC just to name a few.

ADO is the application level interface that developers use to access data. Whereas OLE DB
consists of many (more than 60) different interfaces, ADO only consists of few with which
developers must concern themselves. ADO actually uses OLE DB as the underlying technol-
ogy for accessing data.

ODBC was the precursor to OLE DB and is still a very useful mechanism by which developers
can gain access to relational, and some non-relational, data. In fact, one of the OLE DB
providers goes through the ODBC layer.

Database Development

PART III
364

13 chpt_09.qxd 11/19/01 12:06 PM Page 364

Using dbGo for ADO
dbGo for ADO is made up of the set of Delphi components that encapsulate the ADO inter-
faces and adapt them to the abstract way of doing database development that is common in
Delphi.

The following sections will show you how to use these components. For this chapter, we will
primarily use a Microsoft Access database through an ODBC provider.

Establishing an OLE DB Provider for ODBC
To establish a connection to the database, you must create an ODBC Data Source Name
(DSN). DSNs are similar to BDE aliases in that they allow you to provide system-level connec-
tion points with connection information for databases centrally accessible on your system. To
create DSNs you must use the ODBC Administrator that ships with Windows. On Windows
2000, this is accessed via Control Panel under the Administrative Tools subdirectory. When
launching this application, you’ll get the dialog box shown in Figure 9.1.

Database Development with dbGo for ADO

CHAPTER 9

9

D
A

TA
B

A
SE

D
EV

ELO
PM

EN
T

365

FIGURE 9.1
ODBC Administrator.

There are three types of DSNs:

• User DSN—User data sources are local to a computer and are accessible only when
logged in as the current user.

• System DSN—System data sources are local to a computer and are accessible to any
user. These are available systemwide to all users with appropriate privileges.

• File DSN—File data sources are available to all users who have the appropriate file dri-
vers installed.

13 chpt_09.qxd 11/19/01 12:06 PM Page 365

For this example, you will create a System DSN. First, launch the ODBC Administrator. Then,
select the System DSN tab and click the Add button. This launches the Create New Data
Source dialog box shown in Figure 9.2.

Database Development

PART III
366

FIGURE 9.2
The Create New Data Source dialog box.

In this dialog box, you are presented a list of available drivers. The driver you need is the
Microsoft Access Driver (*.mdb). When you click Finish, you will be shown the ODBC
Microsoft Access Setup dialog box (see Figure 9.3).

FIGURE 9.3
The ODBC Microsoft Access Setup dialog box.

Here, you must provide a DSN that will be referenced from within your Delphi application.
Again, this is similar to a BDE alias. You may also provide a description if you like. Next, you
must select a database by clicking Select. This will launch a File Open dialog box from which
you must select a valid *.mdb file. The file that you’ll use is ddgADO.mdb and should be
installed in the ..\Delphi Developer’s Guide\Data directory where you installed the files
from this book. When you click OK, your DSN will appear in the list of available System Data
Sources. You can now click OK to finish working with the ODBC Administrator.

13 chpt_09.qxd 11/19/01 12:06 PM Page 366

The Access Database
The database for which you just created a DSN is shown in Figure 9.4.

Database Development with dbGo for ADO

CHAPTER 9

9

D
A

TA
B

A
SE

D
EV

ELO
PM

EN
T

367

Customer

CustomerOrder

EmployeeOrder

OrderOrderItem

PartOrderItem

Custno:li

Company:txt(50)
Address1:txt(50)
Address2:txt(50)

Order

Orderno:li

Custno:li [customer]
Empno:li [employee]
Date:dt

Employee

Empno:li

Lastname:txt(20)
Firstname:txt(20)
Phoneext:txt(5)
Hiredate:dt

Part

Partno:txt(10)

Description:txt(30)
Onhand:li
Onorder:li
Cost:cur
Listprice:cur

Orderitem

Orderno:li [order]
Partno:txt(10) [part]

FIGURE 9.4
The sample database.

This is a simple order entry database that you’ll use for the purpose of this chapter. There’s
nothing complicated about this database and frankly, it’s not really complete. We simply put a
few tables together with some meaningful relationships to show you how to use the dbGo for
ADO components.

dbGo for ADO Components
All the dbGo for ADO components appear on the ADO tab of the Component Palette.

13 chpt_09.qxd 11/19/01 12:06 PM Page 367

TADOConnection
TADOConnection encapsulates the ADO connection object. You use this component to connect
to ADO provided data and through which other components hook to ADO data sources. This
component is similar to the TDatabase component for BDE database connections. Similar to
TDatabase, it handles functionality such as login and transactions.

Establishing a Database Connection
You can create a new application if you want or just read on to learn how to establish a data-
base connection. You’ll start with a form containing a TADOConnection component. You must
modify the TADOConnection.ConnectionString property by clicking the ellipsis button on this
property, which launches the ConnectionString Property Editor (see Figure 9.5).

Database Development

PART III
368

FIGURE 9.5
The TADOConnection.ConnectionString Property Editor.

The ConnectionString contains one or more arguments that ADO requires to establish a con-
nection with the database. The arguments required depend on the type of OLE DB Provider
that you are using.

The ConnectionString Property Editor asks for the connection source from either a Data Link
File (file containing the connection string) or by building the connection string, which you can
later save to a file. You’ve already created a DSN, so you’ll build a connection string that refer-
ences your DSN. Click the Build button to launch the Data Link Properties dialog box (see
Figure 9.6).

The first page in this dialog box allows you to select an OLE DB provider. In this case, you’ll
select Microsoft OLE DB Provider For ODBC Drivers as shown in Figure 9.6. Clicking the
Next button takes you to the Connection Page from which you can select our DSN in the drop-
down list for a Data Source Name (see Figure 9.7).

You didn’t provide any security for your database, so you should be able to click Text
Connection to obtain a successful connection to your database. Click OK twice to return to the
main form. The connection string that results is shown here:

Provider=MSDASQL.1;Persist Security Info=False;Data Source=DdgADOOrders

13 chpt_09.qxd 11/19/01 12:06 PM Page 368

FIGURE 9.6
The Data Link Properties dialog box.

Database Development with dbGo for ADO

CHAPTER 9

9

D
A

TA
B

A
SE

D
EV

ELO
PM

EN
T

369

FIGURE 9.7
Selecting a data source name.

13 chpt_09.qxd 11/19/01 12:06 PM Page 369

Had you used a different OLE DB provider, the connection string would have been completely
different. For instance, had you used the Microsoft Jet 4.0 OLE DB Provider, your connection
string would be the following:

Provider=Microsoft.Jet.OLEDB.4.0;Data Source=”C:\Program Files\Delphi ‘
➥Developer’s Guide\Data\ddgADO.mdb”;Persist Security Info=False

At this point, you should be able to connect to our database by setting the TADO
Connection.Connected property to True. You’ll be presented with a Login prompt;
simply click OK to connect without entering any login information. The next section
will show you how to bypass this login dialog, or to replace it with your own. The example
shown here is on the CD-ROM under the ADOConnect directory.

Bypassing/Replacing the Login Prompt
To bypass the Login prompt, you simply have to set the TADOConnection.LoginPrompt prop-
erty to False. If there are no login settings, nothing else needs to be done. However, if a user-
name and password are required, you’ll need to do some extra work.

Database Development

PART III
370

You can test this by adding a password to the database. You can use Microsoft Access
to do this; however, to add a password, you must open the database exclusively,
which is a setting in the Tools, Options, Advanced Page in Microsoft Access. Otherwise,
you can simply use the ddgADOPW.mdb file provided on the CD-ROM. The password for
this database is ddg—go figure.

TIP

For this exercise, we’ve created a new DSN, DdgADOOrdersSecure, which refers to our data-
base, ddgADOPW.mdb. If you’d like to try this example, you must create this DSN.

To bypass the login prompt on a secure database, you must provide a valid username and
password in the ConnectionString. This can be done manually or by invoking the
ConnectionString property editor, adding the correct username and password, and
checking the Allow Saving Password check box (see Figure 9.8).

Now the ConnectionString appears as follows:

Provider=MSDASQL.1;Password=ddg;Persist Security Info=True;
➥User ID=Admin;Data Source=DdgADOOrdersSecure

Note the presence of the password and username (ID). Now, you should be able to set the
Connected property to True while the LoginPrompt property is False.

13 chpt_09.qxd 11/19/01 12:06 PM Page 370

FIGURE 9.8
Adding a username and password to the ConnectionString.

Suppose, however, that you want to provide another login dialog. In this case, you’ll want to
remove the password from the ConnectionString property and create an event handler for the
TADOConnection.OnWillConnect event such as that shown in Listing 9.1.

LISTING 9.1 OnWillConnect Event Handler

procedure TForm1.ADOConnection1WillConnect(Connection: TADOConnection;
var ConnectionString, UserID, Password: WideString;
var ConnectOptions: TConnectOption; var EventStatus: TEventStatus);

var
vUserID,
vPassword: String;

begin
if InputQuery(‘Provide User name’, ‘Enter User name’, vUserID) then
if InputQuery(‘Provide Password’, ‘Enter Password’, vPassword) then
begin
UserID := vUserID;
Password := vPassword;

end;
end;

Database Development with dbGo for ADO

CHAPTER 9

9

D
A

TA
B

A
SE

D
EV

ELO
PM

EN
T

371

13 chpt_09.qxd 11/19/01 12:06 PM Page 371

This simplified exchange represents the hand off of the username and password. A production
application will likely be slightly more complex.

Database Development

PART III
372

It might seem that the TADOConnection.OnLogin event is where you would provide
a username and password to stay with the TDatabase paradigm. However, the
TADOConnection.OnWillConnnect event wraps the standard ADO event for this pur-
pose. OnLogin is provided to be used by the TDispatchConnection class, which has to
do with providing multitier support.

NOTE

TADOCommand
The TADOCommand component encapsulates the ADO Command object. This component is used
for executing statements that don’t return resultsets such as Data Definition Language (DDL)
or SQL statements. You would use this component for executing SQL statements such as
INSERT, DELETE, or UPDATE. For instance, you’ll find an example on the CD-ROM under the
directory ADOCommand. This is a simple example that illustrates how to insert and delete a
record from the employee table by using the INSERT and DELETE SQL statements. In the exam-
ple, the TADOCommand.CommandText for the component to insert a record contains the SQL
statement:

DELETE FROM EMPLOYEE WHERE
FirstName=’Rob’ AND LastName=’Smith

The CommandText for the inserting TADOCommand component contains the SQL statement:

INSERT INTO EMPLOYEE (
LastName,
FirstName,
PhoneExt,
HireDate)

VALUES
(
‘Smith’,
‘Rob’,
‘123’,
‘12/28/1998’)

To run the SQL statement, you would invoke the TADOCommand.Execute() method.

13 chpt_09.qxd 11/19/01 12:06 PM Page 372

TADODataset
The TADODataset component retrieves data from one or more tables in a database. This com-
ponent can also run SQL statements that don’t return resultsets and can run user-defined stored
procedures.

Much like the TADOCommand component, TADODataset can execute statements such as INSERT,
DELETE, and UPDATE. However, TADODataset can also retrieve resultsets by issuing the SELECT
statement. The example on the CD-ROM named ADODataset illustrates the use of the
TADODataSet component. This example performs the following SELECT statement against the
database:

SELECT * FROM Customer

This statement returns the entire resultset from the Customer table. You can also use SQL fil-
tering schemes such as the WHERE clause if you need to.

In the example, we’ve connected a TDBNavigator component to the TADODataSet component
to illustrate the ability to edit and navigate the component.

Later in this chapter, we’ll further illustrate the use of TADODataSet in a sample order entry
application.

BDE-Like Dataset Components
The ADO tab in the Component Palette contains three components that have been included to
make transitioning from BDE applications to ADO applications easier. These components are
TADOTable, TADOQuery, and TADOStoredProc. There’s no reason that you can’t use only the
TADODataSet component when developing ADO applications. However, if it makes it easier,
you can use these alternative components that are very similar to their BDE counterparts:
TTable, TQuery, and TStoredProc.

TADOTable
TADOTable is a direct descendant of TCustomADODataSet. TADOTable allows you to work on a
single table in the database. It operates very similar to the BDE TTable component. In fact,
TADOTable adds a drop-down TableName property. Some advantages to a table type of dataset
is that they support indexes. Indexes allow for sorting and quick searching. This is particularly
true with non-SQL databases such as Microsoft Access. However, when using an SQL type of
database, it is best to sort, filter, and so on through the SQL language. To find out more about
table-type datasets, look up “Overview of ADO components” in the Delphi online help.

Database Development with dbGo for ADO

CHAPTER 9

9

D
A

TA
B

A
SE

D
EV

ELO
PM

EN
T

373

13 chpt_09.qxd 11/19/01 12:06 PM Page 373

The example on the CD-ROM, ADOTableIndex, illustrates the use of the TADOTable component
with an index. Additionally, it illustrates how to perform a search on the table using the
TADOTable.Locate() function. Listing 9.2 shows partial source for this demo.

LISTING 9.2 Using the TADOTable Component

procedure TForm1.FormCreate(Sender: TObject);
var
i: integer;

begin
adotblCustomer.Open;
for i := 0 to adotblCustomer.FieldCount - 1 do
ListBox1.Items.Add(adotblCustomer.Fields[i].FieldName);

end;

procedure TForm1.ListBox1Click(Sender: TObject);
begin
adotblCustomer.IndexFieldNames := ListBox1.Items[ListBox1.ItemIndex];

end;

procedure TForm1.Button1Click(Sender: TObject);
begin
adotblCustomer.Locate(‘Company’, Edit1.Text, [loPartialKey]);

end;

In the FormCreate() event handler, you open the table and populate a TListBox control
with all the table’s field names. Then, in the TListBox.OnClick event handler, you set the
TADOTable.IndexFieldName property to the field name on which we want to sort out table.

Database Development

PART III
374

According to the Delphi online help, one of the advantages for using table-
type datasets is the ease in emptying tables. The example given uses the
TCustomADODataSet.DeleteRecords() method as the means to do this. However,
a problem exists in the ADO RecordSet object that prevents this from working.
In fact, a call to

TCustomADODataSet.Supports([coDelete])

will return True, yet the DeleteRecords() call will still fail with an exception.
Therefore, to empty a table, you must use a DELETE FROM TableName statement, or
you must loop through each record and delete it individually.

CAUTION

13 chpt_09.qxd 11/19/01 12:06 PM Page 374

Finally, the Button1Click() event illustrates performing a search on the table using the
Locate() method.

TADOTable is useful for those accustomed to using a TTable component. However, when using
SQL databases, it is more efficient to use either the TADODataSet or TADOQuery components.

TADOQuery
TADOQuery, also a descendant of TCustomADODataSet, is very similar to TADODataSet. TADOQuery
has a SQL property into which you would place your SQL statement. On the TADODataSet
component, this would go in the CommandText property as long as TADODataSet.CommandType
is set to cmdText.

We won’t cover this component in great depth because most everything that applies to the
TADODataSet component also applies to TADOQuery.

TADOStoredProc
The TADOStoredProc component allows you to use a stored procedure that exists on a database
server. This is no different from using the TADOCommand component with its CommandType prop-
erty set to cmdStoredProc. Its use is pretty much the same as TStoredProc discussed in
Chapter 29, “Developing Client/Server Applications” of Delphi 5 Developer’s Guide, which
you’ll find on the CD-ROM.

Transaction Processing
ADO supports transaction processing, and this is handled through the TADOConnection compo-
nent. As an example, the code in Listing 9.3 is taken from our simple order entry application.

LISTING 9.3 Transaction Processing with TADOConnection

procedure TMainForm.Button1Click(Sender: TObject);
begin
if TNewOrderForm.Execute then
begin
ADOConnection1.BeginTrans;
try
// First Create an Orders Record
adodsOrders.Insert;
adodsOrders.FieldByName(‘CustNo’).Value :=
adodsCustomer.FieldByName(‘CustNo’).Value;

adodsOrders.FieldByName(‘EmpNo’).Value :=
adodsEmployee.FieldByName(‘EmpNo’).Value;

adodsOrders.FieldByName(‘Date’).Value := Date;

Database Development with dbGo for ADO

CHAPTER 9

9

D
A

TA
B

A
SE

D
EV

ELO
PM

EN
T

375

13 chpt_09.qxd 11/19/01 12:06 PM Page 375

LISTING 9.3 Continued

ShowMessage(IntToStr(adodsOrders.FieldByName(‘OrderNo’).AsInteger));
adodsOrders.Post;

// Now create the Order Line Items.

cdsPartList.First;
while not cdsPartList.Eof do
begin
adocmdInsertOrderItem.Parameters.ParamByName(‘iOrderNo’).Value :=
adodsOrders.FieldByName(‘OrderNo’).Value;

adocmdInsertOrderItem.Parameters.ParamByName(‘iPartNo’).Value :=
cdsPartListPartNo.Value;

adocmdInsertOrderItem.Execute;
cdsPartList.Next;

end;
adodsOrderItemList.Requery([]);
ADOConnection1.CommitTrans;
cdsPartList.EmptyDataSet;

except
ADOConnection1.RollbackTrans;
raise;

end;
end;

end;

The method in Listing 9.3 is responsible for creating a customer order. There are two parts to
this transaction. First, the order record must be created in the Order table. Second, the order
line items must be added to the OrderItem table. Because there are two table updates, it makes
sense to place this into a single transaction.

Here is a skeleton of our transaction:

begin
ADOConnection1.BeginTrans;
try
// First Create an Orders Record
// Now create the Order Line Items.
ADOConnection1.CommitTrans;

except
ADOConnection1.RollbackTrans;
raise;

end;
end;

end;

Database Development

PART III
376

13 chpt_09.qxd 11/19/01 12:06 PM Page 376

You’ll see that we encapsulate our transaction inside of a try...except block. ADO
Connection1.BeginTrans() method starts the transaction. The ADOConnection1.Commit
Trans() method commits the transaction. If there are any failures, an exception occurs and the
ADOConnection1.RollbackTrans() method will roll back any changes that were made to any
tables.

Summary
This chapter got you started working with Borland’s dbGo for ADO components. These com-
ponents give you the ability to use Microsoft’s ADO technology for accessing both relational
and non-relational data.

Database Development with dbGo for ADO

CHAPTER 9

9

D
A

TA
B

A
SE

D
EV

ELO
PM

EN
T

377

13 chpt_09.qxd 11/19/01 12:06 PM Page 377

13 chpt_09.qxd 11/19/01 12:06 PM Page 378

