
CHAPTER

8
Database Development with
dbExpress

IN THIS CHAPTER
• Using dbExpress 350

• dbExpress Components 351

• Designing Editable dbExpress
Applications 359

• Deploying dbExpress Applications 360

12 chpt_08.qxd 11/19/01 12:08 PM Page 349

dbExpress is Borland’s new technology that provides lightweight database development to
Delphi 6 developers.

dbExpress is important for three reasons. First, it is much lighter from a deployment standpoint
than its predecessor, the BDE. Second, it is the cross-platform technology that you should use
if developing applications intended for the Linux platform using Kylix. Third, it is extensible.
To develop dbExpress drivers, one simply implements the required interfaces and provides the
resulting database access library.

dbExpress’s underlying architecture consists of drivers for supported databases, each of which
implement a set of interfaces enabling access to server specific data. These drivers interact with
applications through DataCLX connection components in much the same way a TDatabase
component interacts with the BDE—minus the extra overhead.

Using dbExpress
dbExpress is designed to efficiently access data and to carry little overhead. To accomplish
this, dbExpress uses unidirectional datasets.

Unidirectional, Read-Only Datasets
The nature of unidirectional datasets means that they don’t buffer records for navigation or
modification. This is where the efficiency is gained against the bi-directional BDE datasets that
do buffer data in memory. Some limitations that result are

• Unidirectional datasets only support the First() and Next() navigational methods.
Attempts to call other methods—such as Last() or Prior()—will result in an exception.

• Unidirectional dataset records aren’t editable because there is no buffer support for edit-
ing. Note, however, that you would use other components (TClientDataset,
TSQLClientDataset) for editing, which we’ll discuss later.

• Unidirectional datasets don’t support filtering because this is a multirecord feature and
unidirectional datasets don’t buffer multiple records.

• Unidirectional datasets don’t support lookup fields.

dbExpress Versus the Borland Database Engine (BDE)
dbExpress offers several advantages over the BDE, which we’ll briefly go over.

Unlike the BDE, dbExpress doesn’t consume server resources with metadata queries or other
extraneous requests when user-defined queries are executed against the database server.

Database Development

PART III
350

12 chpt_08.qxd 11/19/01 12:08 PM Page 350

dbExpress doesn’t consume as many client resources as the BDE. Because of the unidirec-
tional cursor, no caching is done. dbExpress doesn’t cache metadata on the client either.
Metadata definition is handled through the data-access interface DLLs.

Unlike the BDE, dbExpress doesn’t generate internal queries for things like navigation and
BLOB retrieval. This makes dbExpress much more efficient at runtime in that only those
queries specified by the user are executed against the database server. dbExpress is far simpler
than the BDE.

dbExpress for Cross-Platform Development
A key advantage to dbExpress is that it is cross-platform between Windows (using Delphi 6)
and Linux (using Kylix). By using the CLX components for dbExpress, you can compile your
application with Kylix and have the same application running in Linux. In fact, dbExpress can
use a cross-platform database such as MySQL or InterBase.

Database Development with dbExpress

CHAPTER 8

8

D
A

TA
B

A
SE

D
EV

ELO
PM

EN
T

W
ITH

D
BE

X
PR

ESS

351

At the time of this writing, support for the latest version of mySQL was limited to an
earlier version (3.22). However, Delphi 6 can work with the latest version of the data-
base (3.23) by using the shipping version of the dbExpress DLL. Borland is working on
an update of the library.

NOTE

dbExpress Components
All the dbExpress components appear on the dbExpress tab of the Component Palette.

TSQLConnection
For those who have done BDE development, the TSQLConnection will appear very similar to the
TDatabase component. In fact, the purpose is the same in that they both encapsulate the database
connection. It is through the TSQLConnection that dbExpress datasets access server data.

TSQLConnection relies on two configuration files, dbxdrivers.ini and dbxconnections.ini.
These files are installed to the “\Program Files\Common Files\Borland Shared\DbExpress”
directory. dbxdrivers.ini contains a listing of all dbExpress supported drivers and driver spe-
cific settings. Dbxconnections.ini contains a listing of “named connections”—which can be
considered similar in nature to a BDE alias—and any specific settings for these connections. It
is possible not to use the default dbxconnections.ini file at runtime by setting the
TSQLConnection.LoadParamsOnConnect property to true. We’ll show an example of doing
this momentarily.

12 chpt_08.qxd 11/19/01 12:08 PM Page 351

A TSQLConnection component must use a dbExpress driver specific to the type of database
that you are using. This driver is specified in the dbxdrivers.ini file.

The TSQLConnection’s methods and properties are adequately covered in the online help. As
always, we direct you to the online help for detailed information. In this book, we will walk
you through establishing a database connection and in creating a new connection.

Establishing a Database Connection
To establish a connection with an existing database, simply drop a TSQLConnection on a form
and specify a ConnectionName by selecting one from the drop-down list in the Object
Inspector. When doing so, you should see at least four different connections: IBLocal,
DB2Connection, MSConnection, and Oracle. If you didn’t install a version of InterBase when
you installed Delphi, do so now. You’ll need one for this example. Once you have one
installed, select the IBLocal connection because Local InterBase should have been installed
with your Delphi 6 installation.

Upon selecting a ConnectionName, you’ll see that other properties such as DriverName,
GetDriverFunc, LibraryName, and VendorLib are automatically filled in. These default values
are specified in the dbxdrivers.ini file. You can examine and modify other driver specific
properties from the Params property’s editor, shown in Figure 8.1.

Database Development

PART III
352

FIGURE 8.1
TSQLConnection.Params property editor.

The default value in the “Database” key in the Params property editor is simply
“database.gdb”. This refers to an nonexistent database. You can change this value to
the “Employee.gdb” example database that should exist in a subdirectory of your
InterBase installation. On our machine, this is “...\Program Files\Borland\
InterBase6\examples\Database\Employee.gdb”.

NOTE

12 chpt_08.qxd 11/19/01 12:08 PM Page 352

Once you have the TSQLConnection component referring to a valid database, you can change
the Connected property value to True. You’ll be prompted for a username and password, which
are “sysdba” and “masterkey”, respectively. This should connect you to the database. It would
be a good idea to refer to the help files for each of the TSQLConnection properties at this point.

Creating a New Database Connection
You can create additional “named” connections that refer to databases that you specify. For
instance, this would be helpful if you were creating an application that used two separate data-
bases such as a live and a test database. To create a new connection, simply double-click on the
TSQLConnection component to bring up the Connection Editor (see Figure 8.2). You can also
right-click and select “Edit Connection Properties” from the TSQLConnection local menu to
invoke this editor.

Database Development with dbExpress

CHAPTER 8

8

D
A

TA
B

A
SE

D
EV

ELO
PM

EN
T

W
ITH

D
BE

X
PR

ESS

353

FIGURE 8.2
The TSQLConnection Connection Editor.

You’ll see that there are five speed buttons on this editor. We’ll examine the “Add” button now.
When pressed, you are asked to provide a Driver Name and a Connection Name. The Driver
Name drop-down will be one of the four supported database drivers. You can select InterBase
in this example. You can specify any name for the Connection Name such as
“MyIBConnection”. When you select “OK”, you’ll see the Connection Settings grid display the
driver settings for your specific connection. These are the same as the TSQLConnection.Params
property values. Again, you’ll need to change the “Database” setting to a valid InterBase data-
base. At this point, you should be able to close the editor and set the Connected property to
True by specifying the proper username and password.

Bypassing/Replacing the Login Prompt
Bypassing the login prompt is easy. Simply set the LoginPrompt property to False. You’ll have
to make sure that the UserName and Password settings in the Params property have a valid user
name and password, respectively.

12 chpt_08.qxd 11/19/01 12:08 PM Page 353

To replace the login prompt with your own login dialog, the LoginPrompt property must be set
to True. Then, you must add an event handler to the OnLogin event. For instance, the following
code illustrates how this might look:

procedure TMainForm.SQLConnection1Login(Database: TSQLConnection;
LoginParams: TStrings);

var
UserName: String;
Password: String;

begin
if InputQuery(‘Get UserName’, ‘Enter UserName’, UserName) then
if InputQuery(‘Get Password’, ‘Enter Password’, Password) then
begin
LoginParams.Values[‘UserName’] := UserName;
LoginParams.Values[‘Password’] := Password;

end;
end;

In this example, we’re using a call to the InputQuery() function to retrieve the values needed.
You would be able to use your own dialog for the same purpose. You’ll find this example on
the CD that also demonstrates the use of the AfterConnect and AfterDisconnect events.

Loading Connection Settings at Runtime
The connection settings that you see from the Connection Editor or the Params property editor
are defaults that get loaded at design time from the dbxconnections.ini file. It is possible for
you to load these at runtime. You might do this, for example, if you needed to provide a sepa-
rate dbxconnections.ini file than that provided with Delphi. Of course, you must remember
to deploy this new file with your application installation.

To enable your application to load these settings at runtime, you must set the LoadParamsOn
Connect property to True. When your application launches, the TSQLConnection component
will look to the registry for the “Connection Registry File” key in “HKEY_CURRENT_USER\
Software\Borland\DBExpress”. You must modify this value to point to the location of your
own dbxconnections.ini file. This is something that you would probably do in the installa-
tion of your application.

TSQLDataset
TSQLDataset is the unidirectional dataset used for retrieving data from a dbExpress supported
server. This dataset can be used to represent data in a database table, a selection query, or the
results of a stored procedure. It can also execute a stored procedure.

Database Development

PART III
354

12 chpt_08.qxd 11/19/01 12:08 PM Page 354

TSQLDataset’s key properties are CommandType and CommandText. The value selected for
CommandType determines how the content of CommandText will be used. Possible values for
CommandType are listed in Table 8.1 and in the Delphi help file.

TABLE 8.1 CommandType Values (from Delphi Online Help)

CommandType Corresponding CommandText

ctQuery An SQL statement that the dataset executes.

ctStoredProc The name of a stored procedure.

ctTable The name of a table on the database server. The SQL dataset automati-
cally generates a SELECT statement to fetch all the records of all the
fields in this table.

When the CommandType property contains the ctQuery value, CommandText is an SQL state-
ment. This statement might be a SELECT statement that returns a resultset such as the following
SQL statement: “SELECT * FROM CUSTOMER”.

If CommandType is ctTable, CommandText refers to a table name on the database server. The
CommandText property will change to a drop down. If this is an SQL database, any SQL state-
ments needed to retrieve data are automatically generated.

If CommandType has the value ctStoredProc, CommentText will then contain the name of a
stored procedure to execute. This would be executed by calling the TSQLDataSet.ExecSQL()
method rather then by setting the Active property to True. Note, that ExecSQL() should be
used if CommandType is ctQuery and the SQL statement doesn’t result in a resultset.

Retrieving Table Data
To extract table data using the TSQLDataset, you simply set the TSQLDataSet.CommandType
property to ctTable. The CommandText property will change to a drop down from which you
can select the table name. You can look at an example on the CD in the “TableData” directory.

Displaying Query Results
To extract data from a query select statement, simply set the TSQLDataSet.CommandType prop-
erty to ctQuery. In the CommandText property, you can enter a query select statement such as
“Select * from Country”. This is demonstrated in the example on the CD under the
“QueryData” directory.

Database Development with dbExpress

CHAPTER 8

8

D
A

TA
B

A
SE

D
EV

ELO
PM

EN
T

W
ITH

D
BE

X
PR

ESS

355

12 chpt_08.qxd 11/19/01 12:08 PM Page 355

Displaying Stored Procedure Results
Given a stored procedure that returns a resultset such as the InterBase procedure that follows,
you can extract the resultset using a TSQLDataset component:

CREATE PROCEDURE SELECT_COUNTRIES RETURNS (
RCOUNTRY VARCHAR(15),
RCURRENCY VARCHAR(10)

) AS
BEGIN
FOR SELECT
COUNTRY, CURRENCY FROM COUNTRY

INTO
:rCOUNTRY, :rCURRENCY

DO
SUSPEND;

END

To do this, set the TSQLDataset.CommandType property to ctQuery and add the following to its
CommandText property: Select * from SELECT_COUNTRIES. Note that we use the stored proce-
dure name as though it were a table.

Executing a Stored Procedure
Using the TSQLDataset component, you can execute a stored procedure that does not return a
resultset. To do this, set the TSQLDataSet.CommandType property to ctStoredProc. The
TSQLDataset.CommandText property will become a drop down that displays a list of stored
procedures on the database. You must select one of the stored procedures that doesn’t return a
resultset. For example, the example on the CD under the directory “ExecSProc” executes the
following stored procedure:

CREATE PROCEDURE ADD_COUNTRY (
ICOUNTRY VARCHAR(15),
ICURRENCY VARCHAR(10)

) AS
BEGIN
INSERT INTO COUNTRY(COUNTRY, CURRENCY)
VALUES (:iCOUNTRY, :iCURRENCY);
SUSPEND;

END

This procedure is a simple insert statement into the country table. To execute the procedure,
you must call the TSQLDataset.ExecSQL() method as shown in the following code:

procedure TForm1.btnAddCurrencyClick(Sender: TObject);
begin
sqlDSAddCountry.ParamByName(‘ICountry’).AsString := edtCountry.Text;

Database Development

PART III
356

12 chpt_08.qxd 11/19/01 12:08 PM Page 356

sqlDSAddCountry.ParamByName(‘ICURRENCY’).AsString := edtCurrency.Text;
sqlDSAddCountry.ExecSQL(False);

end;

The first thing you must do is to set the parameter values. Then, by calling ExecSQL(), the
specified procedure will be executed with the values you’ve added. Note that ExecSQL() takes
a Boolean parameter. This parameter is used to determine whether any parameters need to be
prepared. By default, this parameter should be true.

Metadata Representation
You can retrieve information about a database using the TSQLDataset component. To do this,
you use the TSQLDataset.SetSchemaInfo() procedure to specify the type of schema informa-
tion you desire. SetSchemaInfo is defined as

procedure SetSchemaInfo(SchemaType: TSchemaType;
➥SchemaObjectName, SchemaPattern: string);

The SchemaType parameter specifies the type of schema information that you are requesting.
SchemaObjectName holds the name of a table or procedure in the case of a request for parame-
ter, column, or index information. SchemaPattern is an SQL pattern mask used for filtering the
resultset.

Table 8.2 is taken from the Delphi online help for the SetSchemaInfo() procedure and
describes the types of schema information that you can retrieve.

TABLE 8.2 SchemaType Values (from Delphi Online Help)

SchemaType Value Description

stNoSchema No schema information. The SQL dataset is populated with the
results of its query or stored procedure rather than metadata from
the server.

stables Information about all the data tables on the database server that
match the criteria specified by the SQL connection’s TableScope
property.

stSysTables Information about all the system tables on the database server. Not
all servers use system tables to store metadata. Requesting a list of
system tables from a server that doesn’t use them results in an
empty dataset.

stProcedures Information about all the stored procedures on the database server.

stColumns Information about all the columns (fields) in a specified table.

stProcedureParams Information about all the parameters of a specified stored procedure.

stIndexes Information about all the indexes defined for a specified table.

Database Development with dbExpress

CHAPTER 8

8

D
A

TA
B

A
SE

D
EV

ELO
PM

EN
T

W
ITH

D
BE

X
PR

ESS

357

12 chpt_08.qxd 11/19/01 12:08 PM Page 357

We’ve provided an example of using the SetSchemaInfo() procedure on the CD under the
directory “SchemaInfo”. Listing 8.1 shows some of the code for this procedure from this
example.

LISTING 8.1 Example of TSQLDataset.SetSchemaInfo()

procedure TMainForm.Button1Click(Sender: TObject);
begin
sqldsSchemaInfo.Close;
cdsSchemaInfo.Close;

case RadioGroup1.ItemIndex of
0: sqldsSchemaInfo.SetSchemaInfo(stSysTables, ‘’, ‘’);
1: sqldsSchemaInfo.SetSchemaInfo(stTables, ‘’, ‘’);
2: sqldsSchemaInfo.SetSchemaInfo(stProcedures, ‘’, ‘’);
3: sqldsSchemaInfo.SetSchemaInfo(stColumns, ‘COUNTRY’, ‘’);
4: sqldsSchemaInfo.SetSchemaInfo(stProcedureParams, ‘ADD_COUNTRY’, ‘’);
5: sqldsSchemaInfo.SetSchemaInfo(stIndexes, ‘COUNTRY’, ‘’);
end; // case

sqldsSchemaInfo.Open;
cdsSchemaInfo.Open;

end;

In the example, we use the selection in TRadioGroup component to determine which type of
schema information we want. We then call the SetSchemaInfo() procedure using the proper
SchemaType parameter before opening the dataset. The values are stored in a TDBGrid in the
example.

Backward Compatibility Components
You’ll find three components on the dbExpress tab in the Component Palette that are synony-
mous with the BDE dataset components. These are TSQLTable, TSQLQuery, and
TSQLStoredProc. These components are used very much in the same manner as their BDE
counterparts except that they cannot be used in a bidirectional manner. For the most part, you
will be using the TSQLDataset components.

TSQLMonitor
The TSQLMonitor component is useful for debugging SQL applications. TSQLMonitor logs the
SQL commands being communicated through a TSQLConnection component. To use this, you
simply set the TSQLMonitor.SQLConnection parameter to a valid TSQLConnection component.

Database Development

PART III
358

12 chpt_08.qxd 11/19/01 12:08 PM Page 358

The TSQLMonitor.Tracelist property will then log the commands being passed between the
client and the database server. TraceList is a simple TStrings descendant, so you can save
this information to a file or add it to a memo component for viewing the information.

Database Development with dbExpress

CHAPTER 8

8

D
A

TA
B

A
SE

D
EV

ELO
PM

EN
T

W
ITH

D
BE

X
PR

ESS

359

You can use the FileName and AutoSave properties to automatically store the
TraceList contents.

NOTE

The example code provided on the CD in the SQLMon directory shows how to add the contents
of the TraceList to a memo control. The resulting SQL tracelist is shown in Figure 8.3.

FIGURE 8.3
Results of the TSQLMonitor component.

Designing Editable dbExpress Applications
Up to now, we have discussed dbExpress in the context of unidirectional/read-only datasets.
The only exception is the example using a TSQLDataset component to execute a stored proce-
dure that adds data to a table. Another method to make datasets editable as with a bidirectional
dataset is to use cached updates. To do so, this requires the use of another component,
TSQLClientDataset.

TSQLClientDataset
TSQLClientDataset is a component that contains an internal TSQLDataset and TProvider
component. The internal TSQLDataset gives the TSQLClientDataset the fast data access bene-
fits of dbExpress. The internal TSQLProvider gives the TSQLClientDataset the bidirectional
navigation and ability to edit data.

Using the TSQLClientDataset is very much the same as using the standard TClientDataset.
This information is covered in Chapter 21, “DataSnap Development.”

12 chpt_08.qxd 11/19/01 12:08 PM Page 359

Setting up an application using TSQLClientDataset is relatively simple. You’ll need a
TSQLConnection, a TSQLClientDataset, and a TDatasource component if you intend to dis-
play the data. An example is provided on the CD under the directory “Editable”.

The TSQLClientDataset.DBConnection property must be set to the TSQLConnection compo-
nent. Use the CommandType and CommandText properties as previously discussed for the
TSQLDataset component.

Now, when running this application, you will note that it is navigable in both directions and it is
possible to add, edit, and delete records from the dataset. However, when you close the dataset,
none of your changes will persist because you are actually editing the in-memory buffer held by
the TSQLClientDataset component. Any changes you make are cached in memory. To save
your changes to the database server, you must call the TSQLClientDataset.ApplyUpdates()
method. In the sample provided on the CD, we’ve added the ApplyUpdates() call to the
AfterDelete and AfterPost events of the TSQLClientDataset component. This gives us a row-
by-row update of server data. For further information on using TSQLClientDataset, refer to
Chapter 21, or Chapters 32 and 34 in Delphi 5 Developer’s Guide, which is provided on the CD.

Database Development

PART III
360

The TSQLClientDataset contains a TSQLDataSet and TProvider component. However,
it doesn’t expose all the properties and events of these two components. If access to
these events are needed, you can use the regular TClientDataset and
TDatasetProvider components in lieu of the TSQLClientDataset component.

NOTE

Deploying dbExpress Applications
You can deploy dbExpress applications as a standalone executable or by providing the required
dbExpress driver DLLs. To compile as a standalone, you’ll need to add the units listed in Table
8.3 to the uses clause of your application as described in the Delphi online help.

TABLE 8.3 Units Required for dbExpress Standalone Application

Database unit When to Include

dbExpInt Applications connecting to InterBase databases

dbExpOra Applications connecting to Oracle databases

dbExpDb2 Applications connecting to DB2 databases

dbExpMy Applications connecting to MySQL databases

Crtl, MidasLib Required by dbExpress executables that use client datasets such as
TSQLClientDataSet

12 chpt_08.qxd 11/19/01 12:08 PM Page 360

If you want to deploy the DLLs along with your application, you will have to deploy the DLLs
specified in Table 8.4.

TABLE 8.4 DLLs to Deploy with a dbExpress Application

Database DLL When to Deploy

dbexpint.dll Applications connecting to InterBase databases

dbexpora.dll Applications connecting to Oracle databases

dbexpdb2.dll Applications connecting to DB2 databases

dbexpmy.dll Applications connecting to MySQL databases

Midas.dll Required by database applications that use client datasets

Summary
With dbExpress, it will be possible to develop robust and lightweight applications not otherwise
possible using the BDE. Combined with the caching mechanisms built into TSQLClientDataset
and TClientDataset, developers can develop complete cross-platform database applications.

Database Development with dbExpress

CHAPTER 8

8

D
A

TA
B

A
SE

D
EV

ELO
PM

EN
T

W
ITH

D
BE

X
PR

ESS

361

12 chpt_08.qxd 11/19/01 12:08 PM Page 361

12 chpt_08.qxd 11/19/01 12:08 PM Page 362

