
CHAPTER

7
Delphi Database Architecture

IN THIS CHAPTER
• Types of Databases 298

• Database Architecture 299

• Connecting to Database Servers 299

• Working with Datasets 300

• Working with Fields 315

11 chpt_07.qxd 11/19/01 12:12 PM Page 297

In this chapter, you’ll learn the art and science of accessing external database files from your
Delphi applications. If you’re new to database programming, we do assume a bit of database
knowledge, but this chapter will get you started on the road to creating high-quality database
applications. If database applications are “old hat” to you, you’ll benefit from the chapter’s
demonstration of Delphi’s spin on database programming. Delphi 6 offers several mechanisms
for accessing data, which we will cover in this chapter, and then in more detail in chapters to
follow. This chapter discusses the architecture upon which all data access mechanisms in
Delphi 6 are built.

Types of Databases
The following list is taken from Delphi’s online help under “Using Databases.” The references
mentioned in the list are also found in the online help. We’ll refer to this information here
because we felt that Borland described the types of database supported by Delphi’s architecture
best:

• The BDE page of the Component Palette contains components that use the Borland
Database Engine (BDE). The BDE defines a large API for interacting with databases. Of
all the data access mechanisms, the BDE supports the broadest range of functions and
comes with the most supporting utilities. It is the best way to work with data in Paradox
or dBASE tables. However, it is also the most complicated mechanism to deploy. For
more information about using the BDE components, see “Using the Borland Database
Engine.”

• The ADO page of the Component Palette contains components that use ActiveX Data
Objects (ADO) to access database information through OLEDB. ADO is a Microsoft
Standard. A broad range of ADO drivers is available for connecting to different database
servers. Using ADO-based components lets you integrate your application into an ADO-
based environment (for example, making use of ADO-based application servers). For
more information about using the ADO components, see “Working with ADO
Components.”

• The dbExpress page of the Component Palette contains components that use dbExpress
to access database information. dbExpress is a lightweight set of drivers that provide the
fastest access to database information. In addition, dbExpress components support cross-
platform development because they are also available on Linux. However, dbExpress
database components also support the narrowest range of data manipulation functions.
For more information about using the dbExpress components, see “Using Unidirectional
Datasets.”

• The InterBase page of the Component Palette contains components that access InterBase
databases directly, without going through a separate engine layer. For more information
about using the InterBase components, see “Getting Started with InterBase Express.”

Database Development

PART III
298

11 chpt_07.qxd 11/19/01 12:12 PM Page 298

Database Architecture
Delphi’s database architecture is made up of components that represent and properly encapsu-
late database information. Figure 7.1 represents this relationship as defined by Delphi 6’s
online help under “Database Architecture.”

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

299

Dataset

Data module

UI
Connection

to data
Data source

FIGURE 7.1
Delphi database architecture.

Figure 7.1 shows the database architecture in its simplest form. That is, a user interface inter-
acts with data through a data source, which connects to the dataset that encapsulates the data.
In the prior section, we discussed different types of databases with which Delphi can work.
These different data repositories require different types of datasets. The dataset shown in
Figure 7.1 represents an abstract dataset from which others will descend to provide access to
different types of data.

Connecting to Database Servers
Okay, so you want to be a database developer. Naturally, the first thing you’ll want to do is
learn how to make a connection from Delphi to the database of your choice. In this section,
you’ll learn a number of ways Delphi enables you to make connections to servers.

Overview of Database Connectivity
Datasets must connect to database servers. This is typically done through a connection compo-
nent. Connection components encapsulate the connectivity to a database server and serve as a
single connection point for all datasets in the application.

Connection components are encapsulated in the TCustomConnection component.
TCustomConnection is descended from to create components to encapsulate specific
data repository types. Among the different types of data access components are the following
for each type of data repository:

• TDatabase is the connection component for BDE based datasets. Such datasets are TTable,
TQuery, and TStoreproc. BDE database connectivity is covered in Chapter 28 in the CD
copy of Delphi 5 Developer’s Guide.

11 chpt_07.qxd 11/19/01 12:12 PM Page 299

• TADOConnection is the connection component for ADO databases such as Microsoft
Access and Microsoft SQL. Such datasets are TADODataset, TADOTable, TADOQuery,
and TADOStoredProc. ADO database connectivity is covered in Chapter 9, “Database
Development with dbGo for ADO.”

• TSQLConnection is the connection component for dbExpress based datasets. DbExpress
datasets are special lightweight unidirectional datasets. These are TSQLDataset, TSQLTable,
TSQLQuery and TSQLStoredProc. DbExpress is covered in Chapter 8, “Database
Development with dbExpress.”

• TIBDatabase is the connection component for Interbase Express datasets. The datasets
are TIBDataSet, TIBTable, TIBQuery, and TIBStoredProc. Interbase Express isn’t
covered in this book because much of the functionality mimics the other connection
methods.

Each of these datasets provides the common functionality contained in the TCustomConnection
component. This common functionality includes methods, properties, and events related to

• Connecting and disconnecting to the data repository

• Login and support for establishing secure connections

• Dataset management

Establishing a Database Connection
Although each connection component surfaces many of the same methods for database connec-
tivity, there are some differences. The reason for this is that each connection component pro-
vides the connection functionality of its underlying data repository. Therefore, the
TADOConnection might function slightly differently from the TDatabase connection. The con-
nection methods for TSQLConnection and TADOConnection are covered in their respective
chapters (Chapters 8 and 9). Connecting to a BDE based dataset is covered in Chapter 28 in
the CD copy of Delphi 5 Developer’s Guide.

Working with Datasets
A dataset is a collection of rows and columns of data. Each column is of some homogeneous
data type, and each row is made up of a collection of data of each column data type. Additionally,
a column is also known as a field, and a row is sometimes called a record. VCL encapsulates a
dataset into an abstract component called TDataSet. TDataSet introduces many of the proper-
ties and methods necessary for manipulating and navigating a dataset and serves as the compo-
nent from which special types of different datasets descend.

Database Development

PART III
300

11 chpt_07.qxd 11/19/01 12:12 PM Page 300

To help keep the nomenclature clear and to cover some of the basics, the following list explains
some of the common database terms that are used in this and other database-oriented chapters:

• A dataset is a collection of discrete data records. Each record is made up of multiple
fields. Each field can contain a different type of data (integer number, string, decimal
number, graphic, and so on).

• A table is a special type of dataset. A table is generally a file containing records that are
physically stored on a disk somewhere. TTable, TADOTable, TSQLTable, and TIBTable
components encapsulate this functionality.

• A query is also a special type of dataset. Think of queries as commands that are executed
against a database server. Such commands might result in resultsets (memory tables).
These resultsets are the special datasets that are encapsulated by TQuery, TADOQuery,
TSQLQuery, and TIBQuery components.

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

301

We mentioned earlier that this chapter assumes a bit of database knowledge. This
chapter isn’t intended to be a primer on database programming, and we expect that
you’re already familiar with the items in this list. If terms such as database, table, and
index sound foreign to you, you might want to obtain an introductory text on data-
base concepts.

NOTE

Opening and Closing Datasets
Before you can do anything with a dataset, you must first open it. To open a dataset, simply
call its Open() method, as shown in this example:

Table1.Open;

This is equivalent, by the way, to setting a dataset’s Active property to True:

Table1.Active := True;

There’s slightly less overhead in the latter method because the Open() method ends up setting
the Active property to True. However, the overhead is so minimal that it’s not worth worrying
about.

Once the dataset has been opened, you’re free to manipulate it, as you’ll see in just a moment.
When you finish using the dataset, you should close it by calling its Close() method, like this:

Table1.Close;

Alternatively, you could close it by setting its Active property to False, like this:

Table1.Active := False;

11 chpt_07.qxd 11/19/01 12:12 PM Page 301

To illustrate how similar it is to open and close the different type of datasets, we’ve provide the
example shown in Listing 7.1.

LISTING 7.1 Opening and Closing Datasets

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, FMTBcd, DBXpress, IBDatabase, ADODB, DBTables, DB, SqlExpr,
IBCustomDataSet, IBQuery, IBTable, StdCtrls;

type
TForm1 = class(TForm)
SQLDataSet1: TSQLDataSet;
SQLTable1: TSQLTable;
SQLQuery1: TSQLQuery;

ADOTable1: TADOTable;
ADODataSet1: TADODataSet;
ADOQuery1: TADOQuery;

IBTable1: TIBTable;
IBQuery1: TIBQuery;
IBDataSet1: TIBDataSet;

Table1: TTable;
Query1: TQuery;

SQLConnection1: TSQLConnection;
Database1: TDatabase;
ADOConnection1: TADOConnection;

Database Development

PART III
302

When you’re communicating with SQL servers, a connection to the database must be
established when you first open a dataset in that database. When you close the last
dataset in a database, your connection is terminated. Opening and closing these con-
nections involves a certain amount of overhead. Therefore, if you find that you open
and close the connection to the database often, use a TDatabase component instead
to maintain a connection to a SQL server’s database throughout many open and close
operations. The TDatabase component is explained in more detail in the next chapter.

TIP

11 chpt_07.qxd 11/19/01 12:12 PM Page 302

LISTING 7.1 Continued

IBDatabase1: TIBDatabase;
Button1: TButton;
Label1: TLabel;
Button2: TButton;
IBTransaction1: TIBTransaction;
procedure FormCreate(Sender: TObject);
procedure Button1Click(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure Button2Click(Sender: TObject);

private
{ Private declarations }
procedure OpenDatasets;
procedure CloseDatasets;

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

{$R *.dfm}

procedure TForm1.FormCreate(Sender: TObject);
begin
IBDatabase1.Connected := True;
ADOConnection1.Connected := True;
Database1.Connected := True;
SQLConnection1.Connected := True;

end;

procedure TForm1.Button1Click(Sender: TObject);
begin
OpenDatasets;

end;

procedure TForm1.FormClose(Sender: TObject; var Action: TCloseAction);
begin
CloseDatasets;
IBDatabase1.Connected := false;
ADOConnection1.Connected := false;
Database1.Connected := false;
SQLConnection1.Connected := false;

end;

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

303

11 chpt_07.qxd 11/19/01 12:12 PM Page 303

LISTING 7.1 Continued

procedure TForm1.CloseDatasets;
begin

// Disconnect from dbExpress datasets
SQLDataSet1.Close; // or .Active := false;
SQLTable1.Close; // or .Active := false;
SQLQuery1.Close; // or .Active := false;

// Disconnect from ADO datasets
ADOTable1.Close; // or .Active := false;
ADODataSet1.Close; // or .Active := false;
ADOQuery1.Close; // or .Active := false;

// Disconnect from Interbase Express datasets
IBTable1.Close; // or .Active := false;
IBQuery1.Close; // or .Active := false;
IBDataSet1.Close; // or .Active := false;

// Disconnect from BDE datasets
Table1.Close; // or .Active := false;
Query1.Close; // or .Active := false;

Label1.Caption := ‘Datasets are closed.’
end;

procedure TForm1.OpenDatasets;
begin

// Connect to dbExpress datasets
SQLDataSet1.Open; // or .Active := true;
SQLTable1.Open; // or .Active := true;
SQLQuery1.Open; // or .Active := true;

// Connect to ADO datasets
ADOTable1.Open; // or .Active := true;
ADODataSet1.Open; // or .Active := true;
ADOQuery1.Open; // or .Active := true;

// Connect to Interbase Express datasets
IBTable1.Open; // or .Active := true;
IBQuery1.Open; // or .Active := true;
IBDataSet1.Open; // or .Active := true;

// Connect to BDE datasets
Table1.Open; // or .Active := true;

Database Development

PART III
304

11 chpt_07.qxd 11/19/01 12:12 PM Page 304

LISTING 7.1 Continued

Query1.Open; // or .Active := true;

Label1.Caption := ‘Datasets are open.’;
end;

procedure TForm1.Button2Click(Sender: TObject);
begin
CloseDatasets;

end;

end.

This example is provided on the CD. You might have some problems setting up the database
connections because the example was created on our development machine. You’ll have to set
up connections based on your machine. Nevertheless, the purpose of showing you this example
was to illustrate the similarities of the different datasets.

Navigating Datasets
TDataSet provides some simple methods for basic record navigation. The First() and Last()
methods move you to the first and last records in the dataset, respectively, and the Next() and
Prior() methods move you either one record forward or back in the dataset. Additionally, the
MoveBy() method, which accepts an Integer parameter, moves you a specified number of
records forward or back.

BOF, EOF, and Looping
BOF and EOF are Boolean properties of TDataSet that reveal whether the current record is the
first or last record in the dataset. For example, you might need to iterate through each record in
a dataset until reaching the last record. The easiest way to do so would be to employ a while
loop to keep iterating over records until the EOF property returns True, as shown here:

Table1.First; // go to beginning of data set
while not Table1.EOF do // iterate over table
begin
// do some stuff with current record
Table1.Next; // move to next record

end;

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

305

Be sure to call the Next() method inside your while-not-EOF loop; otherwise, your
application will get caught in an endless loop.

CAUTION

11 chpt_07.qxd 11/19/01 12:12 PM Page 305

Avoid using a repeat..until loop to perform actions on a dataset. The following code might
look okay on the surface, but bad things might happen if you try to use it on an empty dataset
because the DoSomeStuff() procedure will always execute at least once, regardless of whether
the dataset contains records:

repeat
DoSomeStuff;
Table1.Next;

until Table1.EOF;

Because the while-not-EOF loop performs the check up front, you won’t encounter such a
problem with this construct.

To illustrate how similar it is to navigate among the different type of datasets, we’ve provided
the example shown in Listing 7.2.

LISTING 7.2 Navigation with the Different Datasets

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, FMTBcd, DBXpress, IBDatabase, ADODB, DBTables, DB, SqlExpr,
IBCustomDataSet, IBQuery, IBTable, StdCtrls, Grids, DBGrids, ExtCtrls;

type
TForm1 = class(TForm)
SQLTable1: TSQLTable;
ADOTable1: TADOTable;
IBTable1: TIBTable;
Table1: TTable;

SQLConnection1: TSQLConnection;
Database1: TDatabase;
ADOConnection1: TADOConnection;
IBDatabase1: TIBDatabase;
Button1: TButton;
Label1: TLabel;
Button2: TButton;
IBTransaction1: TIBTransaction;
DBGrid1: TDBGrid;
DataSource1: TDataSource;
RadioGroup1: TRadioGroup;
btnFirst: TButton;

Database Development

PART III
306

11 chpt_07.qxd 11/19/01 12:12 PM Page 306

LISTING 7.2 Continued

btnLast: TButton;
btnNext: TButton;
btnPrior: TButton;
procedure FormCreate(Sender: TObject);
procedure Button1Click(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure Button2Click(Sender: TObject);
procedure RadioGroup1Click(Sender: TObject);
procedure btnFirstClick(Sender: TObject);
procedure btnLastClick(Sender: TObject);
procedure btnNextClick(Sender: TObject);
procedure btnPriorClick(Sender: TObject);
procedure DataSource1DataChange(Sender: TObject; Field: TField);

private
{ Private declarations }
procedure OpenDatasets;
procedure CloseDatasets;

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

{$R *.dfm}

procedure TForm1.FormCreate(Sender: TObject);
begin
IBDatabase1.Connected := True;
ADOConnection1.Connected := True;
Database1.Connected := True;
SQLConnection1.Connected := True;

Datasource1.DataSet := IBTable1;
OpenDatasets;

end;

procedure TForm1.Button1Click(Sender: TObject);
begin
OpenDatasets;

end;

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

307

11 chpt_07.qxd 11/19/01 12:12 PM Page 307

LISTING 7.2 Continued

procedure TForm1.FormClose(Sender: TObject; var Action: TCloseAction);
begin
CloseDatasets;
IBDatabase1.Connected := false;
ADOConnection1.Connected := false;
Database1.Connected := false;
SQLConnection1.Connected := false;

end;

procedure TForm1.CloseDatasets;
begin

// Disconnect from dbExpress dataset
SQLTable1.Close; // or .Active := false;

// Disconnect from ADO dataset
ADOTable1.Close; // or .Active := false;

// Disconnect from Interbase Express dataset
IBTable1.Close; // or .Active := false;

// Disconnect from BDE datasets
Table1.Close; // or .Active := false;

Label1.Caption := ‘Datasets are closed.’
end;

procedure TForm1.OpenDatasets;
begin

// Connect to dbExpress dataset
SQLTable1.Open; // or .Active := true;

// Connect to ADO dataset
ADOTable1.Open; // or .Active := true;

// Connect to Interbase Express dataset
IBTable1.Open; // or .Active := true;

// Connect to BDE dataset
Table1.Open; // or .Active := true;

Label1.Caption := ‘Datasets are open.’;
end;

Database Development

PART III
308

11 chpt_07.qxd 11/19/01 12:12 PM Page 308

LISTING 7.2 Continued

procedure TForm1.Button2Click(Sender: TObject);
begin
CloseDatasets;

end;

procedure TForm1.RadioGroup1Click(Sender: TObject);
begin
case RadioGroup1.ItemIndex of
0: Datasource1.DataSet := IBTable1;
1: Datasource1.DataSet := Table1;
2: Datasource1.DataSet := ADOTable1;

end; // case
end;

procedure TForm1.btnFirstClick(Sender: TObject);
begin
DataSource1.DataSet.First;

end;

procedure TForm1.btnLastClick(Sender: TObject);
begin
DataSource1.DataSet.Last;

end;

procedure TForm1.btnNextClick(Sender: TObject);
begin
DataSource1.DataSet.Next;

end;

procedure TForm1.btnPriorClick(Sender: TObject);
begin
DataSource1.DataSet.Prior;

end;

procedure TForm1.DataSource1DataChange(Sender: TObject; Field: TField);
begin
btnLast.Enabled := not DataSource1.DataSet.Eof;
btnNext.Enabled := not DataSource1.DataSet.Eof;
btnFirst.Enabled := not DataSource1.DataSet.Bof;
btnPrior.Enabled := not DataSource1.DataSet.Bof;

end;

end.

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

309

11 chpt_07.qxd 11/19/01 12:12 PM Page 309

In this example, a TRadioGroup is used to allow the user to select from three of the database
types. Additionally, the OnDataChange event handler shows how to evaluate the BOF and EOF
properties to properly enable or disable the buttons when one of the two are true. You should
notice that the same methods are invoked to navigate through the dataset regardless of which
dataset is selected.

Database Development

PART III
310

You’ll notice that we did not include the dbExpress component as part of this exam-
ple. This is because dbExpress datasets are unidirectional datasets. That is, they can
only navigate in one direction and are treated as read-only. In fact, if you attempt to
connect a navigable component such as a TDBGrid to a dbExpress dataset, you will
get an error. Navigating through unidirectional datasets requires some specific setup,
which is discussed in Chapter 8.

NOTE

Manipulating Datasets
A database application isn’t really a database application unless you can manipulate its data.
Fortunately, datasets provide methods that allow you to do this. With datasets, you are able to
add, edit, and delete records from the underlying table. The methods to do this are appropri-
ately named Insert(), Edit(), and Delete().

Listing 7.3 shows a simple application illustrating how to use these methods.

LISTING 7.3 MainFrm.pas—Showing Simple Data Manipulation

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Mask, DBCtrls, DB, Grids, DBGrids, ADODB;

type
TMainForm = class(TForm)
ADOConnection1: TADOConnection;
adodsCustomer: TADODataSet;
dtsrcCustomer: TDataSource;
DBGrid1: TDBGrid;
adodsCustomerCustNo: TAutoIncField;
adodsCustomerCompany: TWideStringField;
adodsCustomerAddress1: TWideStringField;

11 chpt_07.qxd 11/19/01 12:12 PM Page 310

LISTING 7.3 Continued

adodsCustomerAddress2: TWideStringField;
adodsCustomerCity: TWideStringField;
adodsCustomerStateAbbr: TWideStringField;
adodsCustomerZip: TWideStringField;
adodsCustomerCountry: TWideStringField;
adodsCustomerPhone: TWideStringField;
adodsCustomerFax: TWideStringField;
adodsCustomerContact: TWideStringField;
Label1: TLabel;
dbedtCompany: TDBEdit;
Label2: TLabel;
dbedtAddress1: TDBEdit;
Label3: TLabel;
dbedtAddress2: TDBEdit;
Label4: TLabel;
dbedtCity: TDBEdit;
Label5: TLabel;
dbedtState: TDBEdit;
Label6: TLabel;
dbedtZip: TDBEdit;
Label7: TLabel;
dbedtPhone: TDBEdit;
Label8: TLabel;
dbedtFax: TDBEdit;
Label9: TLabel;
dbedtContact: TDBEdit;
btnAdd: TButton;
btnEdit: TButton;
btnSave: TButton;
btnCancel: TButton;
Label10: TLabel;
dbedtCountry: TDBEdit;
btnDelete: TButton;
procedure btnAddClick(Sender: TObject);
procedure btnEditClick(Sender: TObject);
procedure btnSaveClick(Sender: TObject);
procedure btnCancelClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure btnDeleteClick(Sender: TObject);

private
{ Private declarations }
procedure SetButtons;

public

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

311

11 chpt_07.qxd 11/19/01 12:12 PM Page 311

LISTING 7.3 Continued

{ Public declarations }
end;

var
MainForm: TMainForm;

implementation

{$R *.dfm}

procedure TMainForm.btnAddClick(Sender: TObject);
begin
adodsCustomer.Insert;
SetButtons;

end;

procedure TMainForm.btnEditClick(Sender: TObject);
begin
adodsCustomer.Edit;
SetButtons;

end;

procedure TMainForm.btnSaveClick(Sender: TObject);
begin
adodsCustomer.Post;
SetButtons;

end;

procedure TMainForm.btnCancelClick(Sender: TObject);
begin
adodsCustomer.Cancel;
SetButtons;

end;

procedure TMainForm.SetButtons;
begin
btnAdd.Enabled := adodsCustomer.State = dsBrowse;
btnEdit.Enabled := adodsCustomer.State = dsBrowse;
btnSave.Enabled := (adodsCustomer.State = dsInsert) or
(adodsCustomer.State = dsEdit);

btnCancel.Enabled := (adodsCustomer.State = dsInsert) or
(adodsCustomer.State = dsEdit);

btnDelete.Enabled := adodsCustomer.State = dsBrowse;
end;

Database Development

PART III
312

11 chpt_07.qxd 11/19/01 12:12 PM Page 312

LISTING 7.3 Continued

procedure TMainForm.FormCreate(Sender: TObject);
begin
adodsCustomer.Open;
SetButtons;

end;

procedure TMainForm.FormClose(Sender: TObject; var Action: TCloseAction);
begin
adodsCustomer.Close;
ADOConnection1.Connected := False;

end;

procedure TMainForm.btnDeleteClick(Sender: TObject);
begin
adodsCustomer.Delete;

end;

end.

Figure 7.2 illustrates a simple data manipulation application.

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

313

FIGURE 7.2
Main form for the data manipulation application.

11 chpt_07.qxd 11/19/01 12:12 PM Page 313

This application manipulates data in the simplest form. You’ll see the use of the manipulation
methods listed as follows:

• Insert() allows the user to insert a new record.

• Edit() allows the user to modify the active record.

• Post() saves changes to a new or existing record to the table.

• Cancel() cancels any changes made to the record.

• Delete() deletes the active record from the table.

Dataset States
Listing 7.3 also shows how we referred to the TDataSet.State property to examine the
dataset’s state so that we could enable or disable our buttons appropriately. This allows us to
do things such as disable our Add button when the dataset is already in Insert or Edit mode.
Other states are shown in Table 7.1.

TABLE 7.1 Values for TDataset.State

Value Meaning

dsBrowse The dataset is in Browse (normal) mode.

dsCalcFields The OnCalcFields event has been called, and a record value cal-
culation is in progress.

dsEdit The dataset is in Edit mode. This means that the Edit() method
has been called, but the edited record hasn’t yet been posted.

dsInactive The dataset is closed.

dsInsert The dataset is in Insert mode. This typically means that Insert()
has been called but changes haven’t been posted.

dsSetKey The dataset is in SetKey mode, meaning that SetKey() has been
called but GotoKey() hasn’t yet been called.

dsNewValue The dataset is in a temporary state where the NewValue property is
being accessed.

dsOldValue The dataset is in a temporary state where the OldValue property is
being accessed.

dsCurValue The dataset is in a temporary state where the OldValue property is
being accessed.

dsFilter The dataset is currently processing a record filter, lookup, or some
other operation that requires a filter.

dsBlockRead Data is being buffered en masse, so data-aware controls are not
updated and events are not triggered when the cursor moves while
this member is set.

Database Development

PART III
314

11 chpt_07.qxd 11/19/01 12:12 PM Page 314

TABLE 7.1 Continued

Value Meaning

dsInternalCalc A field value is currently being calculated for a field that has a
FieldKind of fkInternalCalc.

dsOpening The dataSet is in the process of opening but has not finished. This
state occurs when the dataset is opened for asynchronous fetching.

Working with Fields
Delphi enables you to access the fields of any dataset through the TField object and its
descendants. Not only can you get and set the value of a given field of the current record of
a dataset, but you can also change the behavior of a field by modifying its properties. You can
also modify the dataset, itself, by changing the visual order of fields, removing fields, or even
creating new calculated or lookup fields.

Field Values
It’s very easy to access field values from Delphi. TDataSet provides a default array property
called FieldValues[] that returns the value of a particular field as a Variant. Because
FieldValues[] is the default array property, you don’t need to specify the property name to
access the array. For example, the following piece of code assigns the value of Table1’s
CustName field to String S:

S := Table1[‘CustName’];

You could just as easily store the value of an integer field called CustNo in an integer variable
called I:

I := Table1[‘CustNo’];

A powerful corollary to this is the capability to store the values of several fields into a Variant
array. The only catches are that the Variant array index must be zero based and the Variant
array contents should be varVariant. The following code demonstrates this capability:

const
AStr = ‘The %s is of the %s category and its length is %f in.’;

var
VarArr: Variant;
F: Double;

begin
VarArr := VarArrayCreate([0, 2], varVariant);
{ Assume Table1 is attached to Biolife table }

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

315

11 chpt_07.qxd 11/19/01 12:12 PM Page 315

VarArr := Table1[‘Common_Name;Category;Length_In’];
F := VarArr[2];
ShowMessage(Format(AStr, [VarArr[0], VarArr[1], F]));

end;

You can also use the TDataset.Fields[] array property or FieldsByName() function to access
individual TField objects associated with the dataset. The TField component provides infor-
mation about a specific field.

Fields[] is a zero-based array of TField objects, so Fields[0] returns a TField representing
the first logical field in the record. FieldsByName() accepts a string parameter that corresponds
to a given field name in the table; therefore, FieldsByName(‘OrderNo’) would return a TField
component representing the OrderNo field in the current record of the dataset.

Given a TField object, you can retrieve or assign the field’s value using one of the TField
properties shown in Table 7.2.

TABLE 7.2 Properties to Access TField Values

Property Return Type

AsBoolean Boolean

AsFloat Double

AsInteger Longint

AsString String

AsDateTime TDateTime

Value Variant

If the first field in the current dataset is a string, you can store its value in the String variable
S, like this:

S := Table1.Fields[0].AsString;

The following code sets the integral variable I to contain the value of the ‘OrderNo’ field in
the current record of the table:

I := Table1.FieldsByName(‘OrderNo’).AsInteger;

Field Data Types
If you want to know the type of a field, look at TField’s DataType property, which indicates
the data type with respect to the database table (irrespective of a corresponding Object Pascal
type). The DataType property is of TFieldType, and TFieldType is defined as follows:

Database Development

PART III
316

11 chpt_07.qxd 11/19/01 12:12 PM Page 316

type
TFieldType = (ftUnknown, ftString, ftSmallint, ftInteger, ftWord,
ftBoolean, ftFloat, ftCurrency, ftBCD, ftDate, ftTime, ftDateTime,
ftBytes, ftVarBytes, ftAutoInc, ftBlob, ftMemo, ftGraphic, ftFmtMemo,
ftParadoxOle, ftDBaseOle, ftTypedBinary, ftCursor, ftFixedChar,
ftWideString, ftLargeint, ftADT, ftArray, ftReference, ftDataSet,
ftOraBlob, ftOraClob, ftVariant, ftInterface, ftIDispatch, ftGuid);

Descendants of TField are designed to work specifically with many of the preceding data
types. These are covered a bit later in this chapter.

Field Names and Numbers
To find the name of a specified field, use the TField.FieldName property. For example, the
following code places the name of the first field in the current table in the String variable S:

var
S: String;

begin
S := Table1.Fields[0].FieldName;

end;

Likewise, you can obtain the number of a field you know only by name by using the FieldNo
property. The following code stores the number of the OrderNo field in the Integer variable I:

var
I: integer;

begin
I := Table1.FieldsByName(‘OrderNo’).FieldNo;

end;

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

317

To determine how many fields a dataset contains, use TDataset’s FieldList property.
FieldList represents a flattened view of all the nested fields in a table containing
fields that are abstract data types.

For backward compatibility, the FieldCount property still works, but it will skip over
any ADT fields.

NOTE

Manipulating Field Data
Here’s a three-step process for editing one or more fields in the current record:

1. Call the dataset’s Edit() method to put the dataset into Edit mode.

2. Assign new values to the fields of your choice.

11 chpt_07.qxd 11/19/01 12:12 PM Page 317

3. Post the changes to the dataset either by calling the Post() method or by moving to a
new record, which will automatically post the edit.

For instance, a typical record edit looks like this:

Table1.Edit;
Table1[‘Age’] := 23;
Table1.Post;

Database Development

PART III
318

Sometimes you work with datasets that contain read-only data. Examples of this
would include a table located on a CD-ROM drive or a query with a non-live resultset.
Before attempting to edit data, you can determine whether the dataset contains
read-only data before you try to modify it by checking the value of the CanModify
property. If CanModify is True, you have the green light to edit the dataset.

TIP

The Fields Editor
Delphi gives you a great degree of control and flexibility when working with dataset fields
through the Fields Editor. You can view the Fields Editor for a particular dataset in the Form
Designer, either by double-clicking the TTable, TQuery, or TStoredProc or by selecting Fields
Editor from the dataset’s local menu. The Fields Editor window enables you to determine
which of a dataset’s fields you want to work with and create new calculated or lookup fields.
You can use a local menu to accomplish these tasks. The Fields Editor window with its local
menu deployed is shown in Figure 7.3.

FIGURE 7.3
The Fields Editor’s local menu.

11 chpt_07.qxd 11/19/01 12:12 PM Page 318

To demonstrate the usage of the Fields Editor, open a new project and drop a TTable compo-
nent onto the main form. Set the Table1.DatabaseName property to DBDEMOS (this is the alias
that points to the Delphi sample tables) and set the TableName property to ORDERS.DB. To pro-
vide some visual feedback, also drop a TDataSource and TDBGrid component on the form.
Hook DataSource1 to Table1 and then hook DBGrid1 to DataSource1. Now set Table1’s
Active property to True, and you’ll see Table1’s data in the grid.

Adding Fields
Invoke the Fields Editor by double-clicking Table1, and you’ll see the Fields Editor window,
as shown in Figure 7.3. Let’s say that you want to limit your view of the table to only a few
fields. Select Add Fields from the Fields Editor local menu. This will invoke the Add Fields
dialog box. Highlight the OrderNo, CustNo, and ItemsTotal fields in this dialog box and click
OK. The three selected fields will now be visible in the Fields Editor and in the grid.

Delphi creates TField descendant objects, which map to the dataset fields you select in the
Fields Editor. For example, for the three fields mentioned in the preceding paragraph, Delphi
adds the following declarations of TField descendants to the source code for your form:

Table1OrderNo: TFloatField;
Table1CustNo: TFloatField;
Table1ItemsTotal: TCurrencyField;

Notice that the name of the field object is the concatenation of the TTable name and the field
name. Because these fields are created in code, you can also access TField descendant proper-
ties and methods in your code rather than solely at design time.

TField Descendants
There are one or more different TField descendant objects for each field type. (Field types are
described in the “Field Data Types” section, earlier in this chapter.) Many of these field types
also map to Object Pascal data types. Table 7.3 shows the various classes in the TField hierar-
chy, their ancestor classes, their field types, and the Object Pascal types to which they equate.

TABLE 7.3 TField Descendants and Their Field Types

Field Class Ancestor Field Type Object Pascal Type

TStringField TField ftString String

TWideStringField TStringField ftWideString WideString

TGuidField TStringField ftGuid TGUID

TNumericField TField * *

TIntegerField TNumericField ftInteger Integer

TSmallIntField TIntegerField ftSmallInt SmallInt

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

319

11 chpt_07.qxd 11/19/01 12:12 PM Page 319

TABLE 7.3 Continued

Field Class Ancestor Field Type Object Pascal Type

TLargeintField TNumericField ftLargeint Int64

TWordField TIntegerField ftWord Word

TAutoIncField TIntegerField ftAutoInc Integer

TFloatField TNumericField ftFloat Double

TCurrencyField TFloatField ftCurrency Currency

TBCDField TNumericField ftBCD Double

TBooleanField TField ftBoolean Boolean

TDateTimeField TField ftDateTime TDateTime

TDateField TDateTimeField ftDate TDateTime

TTimeField TDateTimeField ftTime TDateTime

TBinaryField TField * *

TBytesField TBinaryField ftBytes none

TVarBytesField TBytesField ftVarBytes none

TBlobField TField ftBlob none

TMemoField TBlobField ftMemo none

TGraphicField TBlobField ftGraphic none

TObjectField TField * *

TADTField TObjectField ftADT none

TArrayField TObjectField ftArray none

TDataSetField TObjectField ftDataSet TDataSet

TReferenceField TDataSetField ftReference

TVariantField TField ftVariant OleVariant

TInterfaceField TField ftInterface IUnknown

TIDispatchField TInterfaceField ftIDispatch IDispatch

TAggregateField TField none none
*Denotes an abstract base class in the TField hierarchy

As Table 7.3 shows, BLOB and Object field types are special in that they don’t map directly to
native Object Pascal types. BLOB fields are discussed in more detail later in this chapter.

Database Development

PART III
320

11 chpt_07.qxd 11/19/01 12:12 PM Page 320

Fields and the Object Inspector
When you select a field in the Fields Editor, you can access the properties and events associ-
ated with that TField descendant object in the Object Inspector. This feature enables you to
modify field properties such as minimum and maximum values, display formats, and whether
the field is required as well as whether it’s read-only. Some of these properties, such as
ReadOnly, are obvious in their purpose, but some aren’t quite as intuitive.

Switch to the Events page of the Object Inspector, and you’ll see that there are also events
associated with field objects. The events OnChange, OnGetText, OnSetText, and OnValidate
are all well-documented in the online help. Simply click to the left of the event in the Object
Inspector and press F1. Of these, OnChange is probably the most common to use. It enables
you to perform some action whenever the contents of the field change (moving to another
record or adding a record, for example).

Calculated Fields
You can also add calculated fields to a dataset using the Fields Editor. Let’s say, for example,
that you wanted to add a field that figures the wholesale total for each entry in the ORDERS
table, and the wholesale total was 32% of the normal total. Select New Field from the Fields
Editor local menu, and you’ll be presented with the New Field dialog box, as shown in Figure
7.4. Enter the name, WholesaleTotal, for the new field in the Name edit control. The type of
this field is Currency, so enter that in the Type edit control. Make sure that the Calculated radio
button is selected in the Field Type group; then press OK. Now the new field will show up in
the grid, but it won’t yet contain any data.

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

321

FIGURE 7.4
Adding a calculated field with the New Field dialog box.

To cause the new field to become populated with data, you must assign a method to the
Table1.OnCalcFields event. The code for this event simply assigns the value of the
WholesaleTotal field to be 32% of the value of the existing SalesTotal field. This method,
which handles Table1.OnCalcFields, is shown here:

11 chpt_07.qxd 11/19/01 12:12 PM Page 321

procedure TForm1.Table1CalcFields(DataSet: TDataSet);
begin
DataSet[‘WholesaleTotal’] := DataSet[‘ItemsTotal’] * 0.68;

end;

Figure 7.5 shows that the WholesaleTotal field in the grid now contains the correct data.

Database Development

PART III
322

FIGURE 7.5
The calculated field has been added to the table.

Lookup Fields
Lookup fields enable you to create fields in a dataset that actually look up their values from
another dataset. To illustrate this, you’ll add a lookup field to the current project. The CustNo
field of the ORDERS table doesn’t mean anything to someone who doesn’t have all the customer
numbers memorized. You can add a lookup field to Table1 that looks into the CUSTOMER table
and then, based on the customer number, retrieves the name of the current customer.

First, you should drop in a second TTable object, setting its DatabaseName property to DBDEMOS
and its TableName property to CUSTOMER. This is Table2. Then you once again select New Field
from the Fields Editor local menu to invoke the New Field dialog box. This time, you’ll call
the field CustName, and the field type will be a String. The size of the string is 15 characters.
Don’t forget to select the Lookup button in the Field Type radio group. The Dataset control in
this dialog box should be set to Table2—the dataset you want to look into. The Key Fields and
Lookup Keys controls should be set to CustNo—this is the common field upon which the
lookup will be performed. Finally, the Result field should be set to Contact—this is the field
you want displayed. Figure 7.6 shows the New Field dialog box for the new lookup field. The
new field will now display the correct data, as shown in the completed project in Figure 7.7.

11 chpt_07.qxd 11/19/01 12:12 PM Page 322

FIGURE 7.6
Adding a lookup field with the New Field dialog box.

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

323

FIGURE 7.7
Viewing the table containing a lookup field.

Drag-and-Drop Fields
Another less obvious feature of the Fields Editor is that it enables you to drag fields from its
Fields list box and drop them onto your forms. We can easily demonstrate this feature by start-
ing a new project that contains only a TTable on the main form. Assign Table1.DatabaseName
to DBDEMOS and assign Table1.TableName to BIOLIFE.DB. Invoke the Fields Editor for this
table and add all the fields in the table to the Fields Editor list box. You can now drag one or
more of the fields at a time from the Fields Editor window and drop them on your main form.

You’ll notice a couple of cool things happening here: First, Delphi senses what kind of field
you’re dropping onto your form and creates the appropriate data-aware control to display the
data (that is, a TDBEdit is created for a string field, whereas a TDBImage is created for a graphic
field). Second, Delphi checks to see if you have a TDataSource object connected to the dataset;
it hooks to an existing one if available or creates one if needed. Figure 7.8 shows the result of
dragging and dropping the fields of the BIOLIFE table onto a form.

11 chpt_07.qxd 11/19/01 12:12 PM Page 323

FIGURE 7.8
Dragging and dropping fields on a form.

Working with BLOB Fields
A BLOB (Binary Large Object) field is a field that’s designed to contain an indeterminate
amount of data. A BLOB field in one record of a dataset might contain three bytes of data,
whereas the same field in another record of that dataset might contain 3KB. Blobs are most
useful for holding large amounts of text, graphic images, or raw data streams such as OLE
objects.

TBlobField and Field Types
As discussed earlier, VCL includes a TField descendant called TBlobField, which encapsu-
lates a BLOB field. TBlobField has a BlobType property of type TBlobType, which indicates
what type of data is stored in the BLOB field. TBlobType is defined in the DB unit as follows:

TBlobType = ftBlob..ftOraClob;

All these field types and the type of data associated with these field types are listed in Table 7.4.

TABLE 7.4 TBlobField Field Types

Field Type Type of Data

ftBlob Untyped or user-defined data

ftMemo Text

ftGraphic Windows bitmap

ftFmtMemo Paradox formatted memo

ftParadoxOle Paradox OLE object

ftDBaseOLE dBASE OLE object

Database Development

PART III
324

11 chpt_07.qxd 11/19/01 12:12 PM Page 324

TABLE 7.4 Continued

Field Type Type of Data

ftTypedBinary Raw data representation of an existing type

ftCursor..ftDataSet Not valid BLOB types

ftOraBlob BLOB fields in Oracle8 tables

ftOraClob CLOB fields in Oracle8 tables

You’ll find that most of the work you need to do in getting data in and out of TBlobField com-
ponents can be accomplished by loading or saving the BLOB to a file or by using a
TBlobStream. TBlobStream is a specialized descendant of TStream that uses the BLOB field
inside the physical table as the stream location. To demonstrate these techniques for interacting
with TBlobField components, you’ll create a sample application.

BLOB Field Example
This project creates an application that enables the user to store WAV files in a database table
and play them directly from the table. Start the project by creating a main form with the com-
ponents shown in Figure 7.9. The TTable component can map to the Wavez table in the
DDGData alias or your own table of the same structure. The structure of the table is as follows:

Field Name Field Type Size

WaveTitle Character 25

FileName Character 25

Wave BLOB

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

325

FIGURE 7.9
Main form for Wavez, the BLOB field example.

The Add button is used to load a WAV file from disk and add it to the table. The method
assigned to the OnClick event of the Add button is shown here:

procedure TMainForm.sbAddClick(Sender: TObject);
begin
if OpenDialog.Execute then
begin
tblSounds.Append;

11 chpt_07.qxd 11/19/01 12:12 PM Page 325

tblSounds[‘FileName’] := ExtractFileName(OpenDialog.FileName);
tblSoundsWave.LoadFromFile(OpenDialog.FileName);
edTitle.SetFocus;

end;
end;

The code first attempts to execute OpenDialog. If it’s successful, tblSounds is put into Append
mode, the FileName field is assigned a value, and the Wave BLOB field is loaded from the file
specified by OpenDialog. Notice that TBlobField’s LoadFromFile method is very handy here,
and the code is very clean for loading a file into a BLOB field.

Similarly, the Save button saves the current WAV sound found in the Wave field to an external
file. The code for this button is as follows:

procedure TMainForm.sbSaveClick(Sender: TObject);
begin
with SaveDialog do
begin
FileName := tblSounds[‘FileName’]; // initialize file name
if Execute then // execute dialog
tblSoundsWave.SaveToFile(FileName); // save blob to file

end;
end;

There’s even less code here. SaveDialog is initialized with the value of the FileName field. If
SaveDialog’s execution is successful, the tblSoundsWave.SaveToFile() method is called to
save the contents of the BLOB field to the file.

The handler for the Play button does the work of reading the WAV data from the BLOB field
and passing it to the PlaySound() API function to be played. The code for this handler, shown
next, is a bit more complex than the code shown thus far:

procedure TMainForm.sbPlayClick(Sender: TObject);
var
B: TBlobStream;
M: TMemoryStream;

begin
B := TBlobStream.Create(tblSoundsWave, bmRead); // create blob stream
Screen.Cursor := crHourGlass; // wait hourglass
try
M := TMemoryStream.Create; // create memory stream
try
M.CopyFrom(B, B.Size); // copy from blob to memory stream
// Attempt to play sound. Raise exception if something goes wrong
Win32Check(PlaySound(M.Memory, 0, SND_SYNC or SND_MEMORY));

Database Development

PART III
326

11 chpt_07.qxd 11/19/01 12:12 PM Page 326

finally
M.Free;

end;
finally
Screen.Cursor := crDefault;
B.Free; // clean up

end;
end;

The first thing this method does is to create an instance of TBlobStream, B, using the
tblSoundsWave BLOB field. The first parameter passed to TBlobStream.Create() is the
BLOB field object, and the second parameter indicates how you want to open the stream.
Typically, you’ll use bmRead for read-only access to the BLOB stream or bmReadWrite for
read/write access.

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

327

The dataset must be in Edit, Insert, or Append mode to open a TBlobStream with
bmReadWrite privilege.

TIP

An instance of TMemoryStream, M, is then created. At this point, the cursor shape is changed to
an hourglass to let the user know that the operation may take a couple of seconds. The stream B
is then copied to the stream M. The function used to play a WAV sound, PlaySound(), requires a
filename or a memory pointer as its first parameter. TBlobStream doesn’t provide pointer access
to the stream data, but TMemoryStream does through its Memory property. Given that, you can
successfully call PlaySound() to play the data pointed at by M.Memory. Once the function is
called, it cleans up by freeing the streams and restoring the cursor. The complete code for the
main unit of this project is shown in Listing 7.4.

LISTING 7.4 The Main Unit for the Wavez Project

unit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
ExtCtrls, DBCtrls, DB, DBTables, StdCtrls, Mask, Buttons, ComCtrls;

type
TMainForm = class(TForm)
tblSounds: TTable;
dsSounds: TDataSource;

11 chpt_07.qxd 11/19/01 12:12 PM Page 327

LISTING 7.4 Continued

tblSoundsWaveTitle: TStringField;
tblSoundsWave: TBlobField;
edTitle: TDBEdit;
edFileName: TDBEdit;
Label1: TLabel;
Label2: TLabel;
OpenDialog: TOpenDialog;
tblSoundsFileName: TStringField;
SaveDialog: TSaveDialog;
pnlToobar: TPanel;
sbPlay: TSpeedButton;
sbAdd: TSpeedButton;
sbSave: TSpeedButton;
sbExit: TSpeedButton;
Bevel1: TBevel;
dbnNavigator: TDBNavigator;
stbStatus: TStatusBar;
procedure sbPlayClick(Sender: TObject);
procedure sbAddClick(Sender: TObject);
procedure sbSaveClick(Sender: TObject);
procedure sbExitClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);

private
procedure OnAppHint(Sender: TObject);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

uses MMSystem;

procedure TMainForm.sbPlayClick(Sender: TObject);
var
B: TBlobStream;
M: TMemoryStream;

begin
B := TBlobStream.Create(tblSoundsWave, bmRead); // create blob stream
Screen.Cursor := crHourGlass; // wait hourglass
try

Database Development

PART III
328

11 chpt_07.qxd 11/19/01 12:12 PM Page 328

LISTING 7.4 Continued

M := TMemoryStream.Create; // create memory stream
try
M.CopyFrom(B, B.Size); // copy from blob to memory stream
// Attempt to play sound. Raise exception if something goes wrong
Win32Check(PlaySound(M.Memory, 0, SND_SYNC or SND_MEMORY));

finally
M.Free;

end;
finally
Screen.Cursor := crDefault;
B.Free; // clean up

end;
end;

procedure TMainForm.sbAddClick(Sender: TObject);
begin
if OpenDialog.Execute then
begin
tblSounds.Append;
tblSounds[‘FileName’] := ExtractFileName(OpenDialog.FileName);
tblSoundsWave.LoadFromFile(OpenDialog.FileName);
edTitle.SetFocus;

end;
end;

procedure TMainForm.sbSaveClick(Sender: TObject);
begin
with SaveDialog do
begin
FileName := tblSounds[‘FileName’]; // initialize file name
if Execute then // execute dialog
tblSoundsWave.SaveToFile(FileName); // save blob to file

end;
end;

procedure TMainForm.sbExitClick(Sender: TObject);
begin
Close;

end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
Application.OnHint := OnAppHint;
tblSounds.Open;

end;

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

329

11 chpt_07.qxd 11/19/01 12:12 PM Page 329

LISTING 7.4 Continued

procedure TMainForm.OnAppHint(Sender: TObject);
begin
stbStatus.SimpleText := Application.Hint;

end;

procedure TMainForm.FormClose(Sender: TObject; var Action: TCloseAction);
begin
tblSounds.Close;

end;

end.

Filtering Data
Filters enable you to do simple dataset searching or filtering using only Object Pascal code.
The primary advantage of using filters is that they don’t require an index or any other prepara-
tion on the datasets with which they’re used. In many cases, filters can be a bit slower than
index-based searching (which is covered later in this chapter), but they’re still very usable in
almost any type of application.

Using TDataset’s Filtering Capabilities
One of the more common uses of Delphi’s filtering mechanism is to limit a view of a dataset to
some specific records only. This is a simple two-step process:

1. Assign a procedure to the dataset’s OnFilterRecord event. Inside of this procedure, you
should write code that accepts records based on the values of one or more fields.

2. Set the dataset’s Filtered property to True.

As an example, Figure 7.10 shows a form containing TDBGrid, which displays an unfiltered
view of Delphi’s CUSTOMER table.

In step 1, you write a handler for the table’s OnFilterRecord event. In this case, we’ll accept only
records whose Company field starts with the letter S. The code for this procedure is shown here:

procedure TForm1.Table1FilterRecord(DataSet: TDataSet;
var Accept: Boolean);

var
FieldVal: String;

begin
FieldVal := DataSet[‘Company’]; // Get the value of the Company field
Accept := FieldVal[1] = ‘S’; // Accept record if field starts with ‘S’

end;

Database Development

PART III
330

11 chpt_07.qxd 11/19/01 12:12 PM Page 330

FIGURE 7.10
An unfiltered view of the CUSTOMER table.

After following step 2 and setting the table’s Filtered property to True, you can see in
Figure 7.11 that the grid displays only those records that meet the filter criteria.

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

331

FIGURE 7.11
A filtered view of the CUSTOMER table.

The OnFilterRecord event should only be used in cases where the filter cannot be
expressed in the Filter property. The reason for this is that it can provide significant
performance benefits. On SQL databases, for example, the TTable component will
pass the contents of the FILTER property in a WHERE clause to the database, which is
generally much faster than the record-by-record search performed in OnFilterRecord.

NOTE

11 chpt_07.qxd 11/19/01 12:12 PM Page 331

Searching Datasets
Datasets provide variations on how to search through datasets. The coverage here shows only
the non-SQL type searching techniques. SQL based techniques are covered in Chapter 29 on
the CD copy of Delphi 5 Developer’s Guide.

FindFirst() and FindNext()
TDataSet also provides methods called FindFirst(), FindNext(), FindPrior(), and FindLast()
that employ filters to find records that match a particular search criteria. All these functions
work on unfiltered datasets by calling that dataset’s OnFilterRecord event handler. Based on
the search criteria in the event handler, these functions will find the first, next, previous, or last
match, respectively. Each of these functions accepts no parameters and returns a Boolean,
which indicates whether a match was found.

Locating a Record Using the Locate() Method
Not only are filters useful for defining a subset view of a particular dataset, but they can also
be used to search for records within a dataset based on the value of one or more fields. For this
purpose, TDataSet provides a method called Locate(). Once again, because Locate() employs
filters to do the searching, it will work irrespective of any index applied to the dataset. The
Locate() method is defined as follows:

function Locate(const KeyFields: string; const KeyValues: Variant;
Options: TLocateOptions): Boolean;

The first parameter, KeyFields, contains the name of the field(s) on which you want to search.
The second parameter, KeyValues, holds the field value(s) you want to locate. The third and
last parameter, Options, allows you to customize the type of search you want to perform. This
parameter is of type TLocateOptions, which is a set type defined in the DB unit as follows:

type
TLocateOption = (loCaseInsensitive, loPartialKey);
TLocateOptions = set of TLocateOption;

If the set includes the loCaseInsensitive member, a not case sensitive search of the data will
be performed. If the set includes the loPartialKey member, the values contained in KeyValues
will match even if they’re substrings of the field value.

Locate() will return True if it finds a match. For example, to search for the first occurrence of
the value 1356 in the CustNo field of Table1, use the following syntax:

Table1.Locate(‘CustNo’, 1356, []);

Database Development

PART III
332

11 chpt_07.qxd 11/19/01 12:12 PM Page 332

Table Key Searching
This section describes the common properties and methods of the TTable component and how
to use them. In particular, you learn how to search for records, filter records using ranges, and
create tables. This section also contains a discussion of TTable events.

TTable Record Searching
When you need to search for records in a table, VCL provides several methods to help you out.
When you’re working with dBASE and Paradox tables, Delphi assumes that the fields on
which you search are indexed. For SQL tables, the performance of your search will suffer if
you search on non-indexed fields.

Say, for example, you have a table that’s keyed on field 1, which is numeric, and on field 2,
which is alphanumeric. You can search for a specific record based on those two criteria in one
of two ways: using the FindKey() technique or the SetKey()..GotoKey() technique.

FindKey()

TTable’s FindKey() method enables you to search for a record matching one or more keyed
fields in one function call. FindKey() accepts an array of const (the search criteria) as a
parameter and returns True when it’s successful. For example, the following code causes the
dataset to move to the record where the first field in the index has the value 123 and the second
field in the index contains the string Hello:

if not Table1.FindKey([123, ‘Hello’]) then MessageBeep(0);

If a match isn’t found, FindKey() returns False and the computer beeps.

SetKey()..GotoKey()

Calling TTable’s SetKey() method puts the table in a mode that prepares its fields to be loaded
with values representing search criteria. Once the search criteria have been established, use the

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

333

You should use Locate() whenever possible to search for records because it will
always attempt to use the fastest method possible to find the item, switching indexes
temporarily if necessary. This makes your code independent of indexes. Also, if you
determine that you no longer need an index on a particular field or if adding one
will make your program faster, you can make that change on the data without hav-
ing to recode the application.

TIP

11 chpt_07.qxd 11/19/01 12:12 PM Page 333

GotoKey() method to do a top-down search for a matching record. The previous example can
be rewritten with SetKey()..GotoKey(), as follows:

with Table1 do begin
SetKey;
Fields[0].AsInteger := 123;
Fields[1].AsString := ‘Hello’;
if not GotoKey then MessageBeep(0);

end;

The Closest Match
Similarly, you can use FindNearest() or the SetKey..GotoNearest methods to search for a
value in the table that’s the closest match to the search criteria. To search for the first record in
which the value of the first indexed field is closest to (greater than or equal to) 123, use the fol-
lowing code:

Table1.FindNearest([123]);

Once again, FindNearest() accepts an array of const as a parameter that contains the field
values for which you want to search.

To search using the longhand technique provided by SetKey()..GotoNearest(), you can use
this code:

with Table1 do begin
SetKey;
Fields[0].AsInteger := 123;
GotoNearest;

end;

If the search is successful and the table’s KeyExclusive property is set to False, the record
pointer will be on the first matching record. If KeyExclusive is True, the current record will be
the one immediately following the match.

Database Development

PART III
334

If you want to search on the indexed fields of a table, use FindKey() and
FindNearest()—rather than SetKey()..GotoX()—whenever possible because you
type less code and leave less room for human error.

TIP

11 chpt_07.qxd 11/19/01 12:12 PM Page 334

Which Index?
All these searching methods assume that you’re searching under the table’s primary index. If
you want to search using a secondary index, you need to set the table’s IndexName parameter
to the desired index. For instance, if your table had a secondary index on the Company field
called ByCompany, the following code would enable you to search for the company “Unisco”:

with Table1 do begin
IndexName := ‘ByCompany’;
SetKey;
FieldValues[‘Company’] := ‘Unisco’;
GotoKey;

end;

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

335

Keep in mind that some overhead is involved in switching indexes while a table is
opened. You should expect a delay of a second or more when you set the IndexName
property to a new value.

NOTE

Ranges enable you to filter a table so that it contains only records with field values that fall
within a certain scope you define. Ranges work similarly to key searches, and as with searches,
there are several ways to apply a range to a given table—either using the SetRange() method
or the manual SetRangeStart(), SetRangeEnd(), and ApplyRange() methods.

If you are working with dBASE or Paradox tables, ranges only work with indexed
fields. If you’re working with SQL data, performance will suffer greatly if you don’t
have an index on the ranged field.

CAUTION

SetRange()
Like FindKey() and FindNearest(), SetRange() enables you to perform a fairly complex
action on a table with one function call. SetRange() accepts two array of const variables as
parameters: The first represents the field values for the start of the range, and the second repre-
sents the field values for the end of the range. As an example, the following code filters through
only those records where the value of the first field is greater than or equal to 10 but less than
or equal to 15:

Table1.SetRange([10], [15]);

11 chpt_07.qxd 11/19/01 12:12 PM Page 335

ApplyRange()

To use the ApplyRange() method of setting a range, follow these steps:

1. Call the SetRangeStart() method and then modify the Fields[] array property of the
table to establish the starting value of the keyed field(s).

2. Call the SetRangeEnd() method and modify the Fields[] array property once again to
establish the ending value of the keyed field(s).

3. Call ApplyRange() to establish the new range filter.

The preceding range example could be rewritten using this technique:

with Table1 do begin
SetRangeStart;
Fields[0].AsInteger := 10; // range starts at 10
SetRangeEnd;
Fields[0].AsInteger := 15; // range ends at 15
ApplyRange;

end;

Database Development

PART III
336

Use SetRange() whenever possible to filter records—your code will be less prone to
error when doing so.

TIP

To remove a range filter from a table and restore the table to the state it was in before you
called ApplyRange() or SetRange(), just call TTable’s CancelRange() method.

Table1.CancelRange;

Using Data Modules
Data modules enable you to keep all your database rules and relationships in one central location
to be shared across projects, groups, or enterprises. Data modules are encapsulated by VCL’s
TDataModule component. Think of TDataModule as an invisible form on which you can drop data-
access components to be used throughout a project. Creating a TDataModule instance is simple:
Select File, New from the main menu and then select Data Module from the Object Repository.

The simple justification for using TDataModule over just putting data-access components on a
form is that it’s easier to share the same data across multiple forms and units in your project. In
a more complex situation, you would have an arrangement of multiple TTable, TQuery, and/or
TStoredProc components. You might have relationships defined between the components and
perhaps rules enforced on the field level, such as minimum/maximum values or display formats.
Perhaps this assortment of data-access components models the business rules of your enterprise.

11 chpt_07.qxd 11/19/01 12:12 PM Page 336

After taking great pains to set up something so impressive, you wouldn’t want to have to do it
again for another application, would you? Of course you wouldn’t. In such cases, you would
want to save your data module to the Object Repository for later use. If you work in a team
environment, you might even want to keep the Object Repository on a shared network drive for
the use of all the developers on your team.

In the example that follows, you’ll create a simple instance of a data module so that many
forms have access to the same data. In the database applications shown in several of the later
chapters, you’ll build more complex relationships into data modules.

The Search, Range, Filter Demo
Now it’s time to create a sample application to help drive home some of the key concepts that
were covered in this chapter. In particular, this application will demonstrate the proper use of
filters, key searches, and range filters in your applications. This project, called SRF, contains
multiple forms. The main form consists mainly of a grid for browsing a table, and other forms
demonstrate the different concepts mentioned earlier. Each of these forms will be explained in
turn.

The Data Module
Although we’re starting a bit out of order, the data module for this project will be covered first.
This data module, called DM, contains only a TTable and a TDataSource component.
The TTable, called Table1, is hooked to the CUSTOMERS.DB table in the DBDEMOS alias. The
TDataSource, DataSource1, is wired to Table1. All the data-aware controls in this project
will use DataSource1 as their DataSource. DM is contained in a unit called DataMod.

The Main Form
The main form for SRF, appropriately called MainForm, is shown in Figure 7.12. This form is
contained in a unit called Main. As you can see, it contains a TDBGrid control, DBGrid1, for
browsing a table, and it contains a radio button that enables you to switch between different
indexes on the table. DBGrid1, as explained earlier, is hooked to DM.DataSource1 as its data
source.

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

337

In order for DBGrid1 to be able to hook to DM.DataSource1 at design time, the
DataMod unit must be in the uses clause of the Main unit. The easiest way to do this is
to bring up the Main unit in the Code Editor and select File, Use Unit from the main
menu. You’ll then be presented with a list of units in your project from which you can
select DataMod. You must do this for each of the units from which you want to access
the data contained within DM.

NOTE

11 chpt_07.qxd 11/19/01 12:12 PM Page 337

FIGURE 7.12
MainForm in the SRF project.

The radio group, called RGKeyField, is used to determine which of the table’s two indexes is
currently active. The code attached to the OnClick event for RGKeyField is shown here:

procedure TMainForm.RGKeyFieldClick(Sender: TObject);
begin
case RGKeyField.ItemIndex of
0: DM.Table1.IndexName := ‘’; // primary index
1: DM.Table1.IndexName := ‘ByCompany’; // secondary, by company

end;
end;

MainForm also contains a TMainMenu component, MainMenu1, which enables you to open and
close each of the other forms. The items on this menu are Key Search, Range, Filter, and Exit.
The Main unit, in its entirety, is shown in Listing 7.5.

Database Development

PART III
338

In order for DBGrid1 to be able to hook to DM.DataSource1 at design time, the
DataMod unit must be in the uses clause of the Main unit. The easiest way to do this is
to bring up the Main unit in the Code Editor and select File, Use Unit from the main
menu. You’ll then be presented with a list of units in your project from which you can
select DataMod. You must do this for each of the units from which you want to access
the data contained within DM.

NOTE

The radio group, called RGKeyField, is used to determine which of the table’s two indexes is
currently active. The code attached to the OnClick event for RGKeyField is shown here:

11 chpt_07.qxd 11/19/01 12:12 PM Page 338

procedure TMainForm.RGKeyFieldClick(Sender: TObject);
begin
case RGKeyField.ItemIndex of
0: DM.Table1.IndexName := ‘’; // primary index
1: DM.Table1.IndexName := ‘ByCompany’; // secondary, by company

end;
end;

MainForm also contains a TMainMenu component, MainMenu1, which enables you to open and
close each of the other forms. The items on this menu are Key Search, Range, Filter, and Exit.
The Main unit, in its entirety, is shown in Listing 7.5.

LISTING 7.5 Main.pas—Demonstrating Dataset Ranges

unit Main;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ExtCtrls, Grids, DBGrids, DB, DBTables,
Buttons, Mask, DBCtrls, Menus, KeySrch, Rng, Fltr;

type
TMainForm = class(TForm)
DBGrid1: TDBGrid;
RGKeyField: TRadioGroup;
MainMenu1: TMainMenu;
Forms1: TMenuItem;
KeySearch1: TMenuItem;
Range1: TMenuItem;
Filter1: TMenuItem;
N1: TMenuItem;
Exit1: TMenuItem;
procedure RGKeyFieldClick(Sender: TObject);
procedure KeySearch1Click(Sender: TObject);
procedure Range1Click(Sender: TObject);
procedure Filter1Click(Sender: TObject);
procedure Exit1Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

339

11 chpt_07.qxd 11/19/01 12:12 PM Page 339

LISTING 7.5 Continued

var
MainForm: TMainForm;

implementation

uses DataMod;

{$R *.DFM}

procedure TMainForm.RGKeyFieldClick(Sender: TObject);
begin
case RGKeyField.ItemIndex of
0: DM.Table1.IndexName := ‘’; // primary index
1: DM.Table1.IndexName := ‘ByCompany’; // secondary, by company

end;
end;

procedure TMainForm.KeySearch1Click(Sender: TObject);
begin
KeySearch1.Checked := not KeySearch1.Checked;
KeySearchForm.Visible := KeySearch1.Checked;

end;

procedure TMainForm.Range1Click(Sender: TObject);
begin
Range1.Checked := not Range1.Checked;
RangeForm.Visible := Range1.Checked;

end;

procedure TMainForm.Filter1Click(Sender: TObject);
begin
Filter1.Checked := not Filter1.Checked;
FilterForm.Visible := Filter1.Checked;

end;

procedure TMainForm.Exit1Click(Sender: TObject);
begin
Close;

end;

end.

Database Development

PART III
340

11 chpt_07.qxd 11/19/01 12:12 PM Page 340

The Key Search Form
KeySearchForm, contained in the KeySrch unit, provides a means for the user of the application
to search for a particular key value in the table. The form enables the user to search for a value
in one of two ways. First, when the Normal radio button is selected, the user can search by
typing text into the Search For edit control and pressing the Exact or Nearest button to find an
exact match or closest match in the table. Second, when the Incremental radio button is selected,
the user can perform an incremental search on the table every time he or she changes the text
in the Search For edit control. The code for the KeySrch unit is shown in Listing 7.6.

LISTING 7.6 The Source Code for KeySrch.PAS

unit KeySrch;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls;

type
TKeySearchForm = class(TForm)
Panel1: TPanel;
Label3: TLabel;
SearchEdit: TEdit;
RBNormal: TRadioButton;
Incremental: TRadioButton;
Label6: TLabel;
ExactButton: TButton;
NearestButton: TButton;
procedure ExactButtonClick(Sender: TObject);

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

341

Pay close attention to the following line of code from the Rng unit:

DM.Table1.SetRange([StartEdit.Text], [EndEdit.Text]);

You might find it strange that although the keyed field can be of either a Numeric
type or Text type, you’re always passing strings to the SetRange() method. Delphi
allows this because SetRange(), FindKey(), and FindNearest() will perform the con-
version from String to Integer, and vice versa, automatically.

What this means to you is that you shouldn’t bother calling IntToStr() or StrToInt()
in these situations—it will be taken care of for you.

NOTE

11 chpt_07.qxd 11/19/01 12:12 PM Page 341

LISTING 7.6 Continued

procedure NearestButtonClick(Sender: TObject);
procedure RBNormalClick(Sender: TObject);
procedure IncrementalClick(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);

private
procedure NewSearch(Sender: TObject);

end;

var
KeySearchForm: TKeySearchForm;

implementation

uses DataMod, Main;

{$R *.DFM}

procedure TKeySearchForm.ExactButtonClick(Sender: TObject);
begin
{ Try to find record where key field matches SearchEdit’s Text value. }
{ Notice that Delphi handles the type conversion from the string }
{ edit control to the numeric key field value. }
if not DM.Table1.FindKey([SearchEdit.Text]) then
MessageDlg(Format(‘Match for “%s” not found.’, [SearchEdit.Text]),

mtInformation, [mbOk], 0);
end;

procedure TKeySearchForm.NearestButtonClick(Sender: TObject);
begin
{ Find closest match to SearchEdit’s Text value. Note again the }
{ implicit type conversion. }
DM.Table1.FindNearest([SearchEdit.Text]);

end;

procedure TKeySearchForm.NewSearch(Sender: TObject);
{ This is the method which is wired to the SearchEdit’s OnChange }
{ event whenever the Incremental radio is selected. }
begin
DM.Table1.FindNearest([SearchEdit.Text]); // search for text

end;

procedure TKeySearchForm.RBNormalClick(Sender: TObject);
begin

Database Development

PART III
342

11 chpt_07.qxd 11/19/01 12:12 PM Page 342

LISTING 7.6 Continued

ExactButton.Enabled := True; // enable search buttons
NearestButton.Enabled := True;
SearchEdit.OnChange := Nil; // unhook the OnChange event

end;

procedure TKeySearchForm.IncrementalClick(Sender: TObject);
begin
ExactButton.Enabled := False; // disable search buttons
NearestButton.Enabled := False;
SearchEdit.OnChange := NewSearch; // hook the OnChange event
NewSearch(Sender); // search current text

end;

procedure TKeySearchForm.FormClose(Sender: TObject;
var Action: TCloseAction);

begin
Action := caHide;
MainForm.KeySearch1.Checked := False;

end;

end.

The code for the KeySrch unit should be fairly straightforward to you. You might notice that,
once again, we can safely pass text strings to the FindKey() and FindNearest() methods with
the knowledge that they will do the right thing with regard to type conversion. You might also
appreciate the small trick that’s employed to switch to and from incremental searching on-the-
fly. This is accomplished by either assigning a method to or assigning Nil to the OnChange
event of the SearchEdit edit control. When assigned a handler method, the OnChange event
will fire whenever the text in the control is modified. By calling FindNearest() inside that
handler, an incremental search can be performed as the user types.

The Filter Form
The purpose of FilterForm, found in the Fltr unit, is two-fold. First, it enables the user to
filter the view of the table to a set where the value of the State field matches that of the cur-
rent record. Second, this form enables the user to search for a record where the value of any
field in the table is equal to some value she has specified.

The record-filtering functionality actually involves very little code. First, the state of the
check box labeled Filter on This State (called cbFiltered) determines the setting of

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

343

11 chpt_07.qxd 11/19/01 12:12 PM Page 343

DM.Table1’s Filtered property. This is accomplished with the following line of code
attached to cbFiltered.OnClick:

DM.Table1.Filtered := cbFiltered.Checked;

When DM.Table1.Filtered is True, Table1 filters records using the following
OnFilterRecord method, which is actually located in the DataMod unit:

procedure TDM.Table1FilterRecord(DataSet: TDataSet;
var Accept: Boolean);

begin
{ Accept record as a part of the filter if the value of the State }
{ field is the same as that of DBEdit1.Text. }
Accept := Table1State.Value = FilterForm.DBEdit1.Text;

end;

To perform the filter-based search, the Locate() method of TTable is employed:

DM.Table1.Locate(CBField.Text, EValue.Text, LO);

The field name is taken from a combo box called CBField. The contents of this combo box are
generated in the OnCreate event of this form using the following code to iterate through the
fields of Table1:

procedure TFilterForm.FormCreate(Sender: TObject);
var
i: integer;

begin
with DM.Table1 do begin
for i := 0 to FieldCount - 1 do
CBField.Items.Add(Fields[i].FieldName);

end;
end;

Database Development

PART III
344

The preceding code will only work when DM is created prior to this form. Otherwise,
any attempts to access DM before it’s created will probably result in an Access
Violation error. To make sure that the data module, DM, is created prior to any of the
child forms, we manually adjusted the creation order of the forms in the Autocreate
Forms list on the Forms page of the Project Options dialog (found under Options,
Project on the main menu).

The main form must, of course, be the first one created, but other than that, this
little trick ensures that the data module gets created prior to any other form in the
application.

TIP

11 chpt_07.qxd 11/19/01 12:12 PM Page 344

The complete code for the Fltr unit is shown in Listing 7.7.

LISTING 7.7 The Source Code for Fltr.pas

unit Fltr;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, Buttons, Mask, DBCtrls, ExtCtrls;

type
TFilterForm = class(TForm)
Panel1: TPanel;
Label4: TLabel;
DBEdit1: TDBEdit;
cbFiltered: TCheckBox;
Label5: TLabel;
SpeedButton1: TSpeedButton;
SpeedButton2: TSpeedButton;
SpeedButton3: TSpeedButton;
SpeedButton4: TSpeedButton;
Panel2: TPanel;
EValue: TEdit;
LocateBtn: TButton;
Label1: TLabel;
Label2: TLabel;
CBField: TComboBox;
MatchGB: TGroupBox;
RBExact: TRadioButton;
RBClosest: TRadioButton;
CBCaseSens: TCheckBox;
procedure cbFilteredClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure LocateBtnClick(Sender: TObject);
procedure SpeedButton1Click(Sender: TObject);
procedure SpeedButton2Click(Sender: TObject);
procedure SpeedButton3Click(Sender: TObject);
procedure SpeedButton4Click(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);

end;

var
FilterForm: TFilterForm;

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

345

11 chpt_07.qxd 11/19/01 12:12 PM Page 345

LISTING 7.7 Continued

implementation

uses DB, DataMod, Main;

{$R *.DFM}

procedure TFilterForm.cbFilteredClick(Sender: TObject);
begin
{ Filter table if checkbox is checked }
DM.Table1.Filtered := cbFiltered.Checked;

end;

procedure TFilterForm.FormCreate(Sender: TObject);
var
i: integer;

begin
with DM.Table1 do begin
for i := 0 to FieldCount - 1 do
CBField.Items.Add(Fields[i].FieldName);

end;
end;

procedure TFilterForm.LocateBtnClick(Sender: TObject);
var
LO: TLocateOptions;

begin
LO := [];
if not CBCaseSens.Checked then Include(LO, loCaseInsensitive);
if RBClosest.Checked then Include(LO, loPartialKey);
if not DM.Table1.Locate(CBField.Text, EValue.Text, LO) then
MessageDlg(‘Unable to locate match’, mtInformation, [mbOk], 0);

end;

procedure TFilterForm.SpeedButton1Click(Sender: TObject);
begin
DM.Table1.FindFirst;

end;

procedure TFilterForm.SpeedButton2Click(Sender: TObject);
begin
DM.Table1.FindNext;

end;

procedure TFilterForm.SpeedButton3Click(Sender: TObject);

Database Development

PART III
346

11 chpt_07.qxd 11/19/01 12:12 PM Page 346

LISTING 7.7 Continued

begin
DM.Table1.FindPrior;

end;

procedure TFilterForm.SpeedButton4Click(Sender: TObject);
begin
DM.Table1.FindLast;

end;

procedure TFilterForm.FormClose(Sender: TObject; var Action: TCloseAction);
begin
Action := caHide;
MainForm.Filter1.Checked := False;

end;

end.

Bookmarks
Bookmarks enable you to save your place in a dataset so that you can come back to the same
spot at a later time. Bookmarks are very easy to use in Delphi because you only have one
property to remember.

Delphi represents a bookmark as type TBookmarkStr. TTable has a property of this type called
Bookmark. When you read from this property, you obtain a bookmark, and when you write to
this property, you go to a bookmark. When you find a particularly interesting place in a dataset
that you’d like to be able to get back to easily, here’s the syntax to use:

var
BM: TBookmarkStr;

begin
BM := Table1.Bookmark;

When you want to return to the place in the dataset you marked, just do the reverse—set the
Bookmark property to the value you obtained earlier by reading the Bookmark property:

Table1.Bookmark := BM;

TBookmarkStr is defined as an AnsiString, so memory is automatically managed for book-
marks (you never have to free them). If you’d like to clear an existing bookmark, just set it to
an empty string:

BM := ‘’;

Delphi Database Architecture

CHAPTER 7

7

D
ELPH

ID
A

TA
B

A
SE

A
R

C
H

ITEC
TU

R
E

347

11 chpt_07.qxd 11/19/01 12:12 PM Page 347

Note that TBookmarkStr is an AnsiString for storage convenience. You should consider it an
opaque data type and not depend on the implementation because the bookmark data is com-
pletely determined by BDE and the underlying data layers.

Database Development

PART III
348

Although 32-bit Delphi still supports GetBookmark(), GotoBookmark(), and
FreeBookmark() from Delphi 1.0, because the 32-bit Delphi technique is a bit cleaner
and less prone to error, you should use this newer technique unless you have to main-
tain compatibility with 16-bit projects.

NOTE

You’ll find an example of using bookmarks with an ADO dataset on the CD in the \Bookmark
subdirectory for this chapter.

Summary
After reading this chapter, you should be ready for just about any type of database program-
ming with Delphi. You learned the ins and outs of Delphi’s TDataSet component, which is the
ancestor of the different types of datasets. You also learned techniques for manipulating
datasets, how to manage fields, and how to work with text tables.

In the following chapters, you will learn about dbExpress, Delphi’s lightweight database devel-
opment technology and about dbGo, Delphi’s connectivity to ADO data in greater depth.

11 chpt_07.qxd 11/19/01 12:12 PM Page 348

