
CHAPTER

6
Dynamic Link Libraries

IN THIS CHAPTER
• What Exactly Is a DLL? 248

• Static Linking Versus Dynamic Linking 250

• Why Use DLLs? 252

• Creating and Using DLLs 253

• Displaying Modeless Forms from DLLs 259

• Using DLLs in Your Delphi Applications 261

• Loading DLLs Explicitly 263

• The Dynamically Linked Library Entry/Exit
Function 266

• Exceptions in DLLs 271

• Callback Functions 273

• Calling Callback Functions from Your
DLLs 277

• Sharing DLL Data Across Different
Processes 279

• Exporting Objects from DLLs 287

09 chpt_06.qxd 11/19/01 12:09 PM Page 247

This chapter discusses Win32 dynamic link libraries, otherwise known as DLLs. DLLs are a
key component to writing any Windows application. This chapter discusses several aspects of
using and creating DLLs. It gives you an overview of how DLLs work and discusses how to
create and use DLLs. You learn different methods of loading DLLs and linking to the proce-
dures and functions they export. This chapter also covers the use of callback functions and
illustrates how to share DLL data among different calling processes.

What Exactly Is a DLL?
Dynamic link libraries are program modules that contain code, data, or resources that can be
shared among many Windows applications. One of the primary uses of DLLs is to enable
applications to load code to execute at runtime instead of linking that code to the application at
compile time. Therefore, multiple applications can simultaneously use the same code provided
by the DLL. In fact, the files Kernel32.dll, User32.dll, and GDI32.dll are three DLLs on
which Win32 relies heavily. Kernel32.dll is responsible for memory, process, and thread
management. User32.dll contains routines for the user interface that deal with the creation of
windows and the handling of Win32 messages. GDI32.dll deals with graphics. You’ll also hear
of other system DLLs, such as AdvAPI32.dll and ComDlg32.dll, which deal with object secu-
rity/Registry manipulation and common dialog boxes, respectively.

Another advantage to using DLLs is that your applications become modular. This simplifies
updating your applications because you need to replace only DLLs instead of replacing the
entire application. The Windows environment presents a typical example of this type of modu-
larity. Each time you install a new device, you also install a device driver DLL to enable that
device to communicate with Windows. The advantage to modularity becomes obvious when
you imagine having to reinstall Windows each time you install a new device to your system.

On disk, a DLL is basically the same as a Windows EXE file. One major difference is that a
DLL isn’t an independently executable file, although it might contain executable code. The
most common DLL file extension is .dll. Other file extensions are .drv for device drivers,
.sys for system files, and .fon for font resources, which contain no executable code.

Advanced Techniques

PART II
248

Delphi introduces a special-purpose DLL known as a package, which is used in the
Delphi and C++Builder environments. We’ll go into greater depth on packages in
Chapter 14, “Packages to the Max.”

NOTE

DLLs share their code with other applications through a process called dynamic linking, which
is discussed later in this chapter. In general, when an application uses a DLL, the Win32

09 chpt_06.qxd 11/19/01 12:09 PM Page 248

system ensures that only one copy of that DLL resides in memory. It does this by using
memory-mapped files. The DLL is first loaded into the Win32 system’s global heap. It’s then
mapped into the address space of the calling process. In the Win32 system, each process is
given its own 32-bit linear address space. When the DLL is loaded by multiple processes, each
process receives its own image of the DLL. Therefore, processes don’t share the same physical
code, data, or resources, as was the case in 16-bit Windows. In Win32, the DLL appears as
though it’s actually code belonging to the calling process. For more information on Win32 con-
structs, you can refer to Chapter 3 of Delphi 5 Developer’s Guide, “The Win32 API,” on this
book’s CD-ROM.

This doesn’t mean that when multiple processes load a DLL, the physical memory is con-
sumed by each usage of the DLL. The DLL image is placed into each process’s address space
by mapping its image from the system’s global heap to the address space of each process that
uses the DLL, at least in the ideal scenario (see the following sidebar).

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
249

Setting a DLL’s Preferred Base Address
DLL code is only shared between processes if the DLL can be loaded into the process
address space of all interested clients at the DLL’s preferred base address. If the pre-
ferred base address and range of the DLL overlaps with something already allocated
in a process, the Win32 loader has to relocate the entire DLL image to some other
base address. When that happens, none of the relocated DLL image is shared with
any other process in the system—each relocated DLL instance consumes its own chunk
of physical memory and swap file space.

It’s critical that you set the base address of every DLL you produce to a value that
doesn’t conflict with or overlap other address ranges used by your application by
using the $IMAGEBASE directive.

If your DLL will be used by multiple applications, choose a unique base address that’s
unlikely to collide with application addresses at the low end of the process virtual
address range or common DLLs (such as VCL packages) at the high end of the address
range. The default base address for all executable files (EXEs and DLLs) is $400000,
which means that unless you change your DLL base address, it will always collide with
the base address of its host EXE and therefore never be shared between processes.

There’s another side benefit to base address loading. Because the DLL doesn’t require
relocation or fixes (which is usually the case) and because it’s stored on a local disk
drive, the DLL’s memory pages are mapped directly onto the DLL file on disk. The DLL
code doesn’t consume any space in the system’s page file (called a swap file). This is
why the system’s total committed page count and size statistics can be much larger
than the system swap file plus RAM.

You’ll find detailed information on using the $IMAGEBASE directive by looking up
“Image Base Address” in the Delphi 6 online help.

09 chpt_06.qxd 11/19/01 12:09 PM Page 249

Following are some terms you’ll need to know in regard to DLLs:

• Application—A Windows program residing in an .exe file.

• Executable—A file containing executable code. Executable files include .dll and .exe
files.

• Instance—When referring to applications and DLLs, an instance is the occurrence of an
executable. Each instance can be referred to by an instance handle, which is assigned by
the Win32 system. When an application is run twice, for example, there are two instances
of that application and, therefore, two instance handles. When a DLL is loaded, there’s
an instance of that DLL as well as a corresponding instance handle. The term instance,
as used here, shouldn’t be confused with the instance of a class.

• Module—In 32-bit Windows, module and instance can be used synonymously. This dif-
fers from 16-bit Windows, in which the system maintains a database to manage modules
and provides a module handle for each module. In Win32, each instance of an applica-
tion gets its own address space; therefore, there’s no need for a separate module identi-
fier. However, Microsoft still uses the term in its own documentation. Just be aware that
module and instance are one and the same.

• Task—Windows is a multitasking (or task-switching) environment. It must be able to
allocate system resources and time to the various instances running under it. It does this
by maintaining a task database that maintains instance handles and other necessary infor-
mation to enable it to perform its task-switching functions. The task is the element to
which Windows grants resources and time blocks.

Static Linking Versus Dynamic Linking
Static linking refers to the method by which the Delphi compiler resolves a function or proce-
dure call to its executable code. The function’s code can exist in the application’s .dpr file or
in a unit. When linking your applications, these functions and procedures become part of the
final executable file. In other words, on disk, each function will reside at a specific location in
the program’s .exe file.

A function’s location also is predetermined at a location relative to where the program is
loaded in memory. Any calls to that function cause program execution to jump to where the
function resides, execute the function, and then return to the location from which it was called.
The relative address of the function is resolved during the linking process.

This is a loose description of a more complex process that the Delphi compiler uses to perform
static linking. However, for the purpose of this book, you don’t need to understand the underly-
ing operations that the compiler performs to use DLLs effectively in your applications.

Advanced Techniques

PART II
250

09 chpt_06.qxd 11/19/01 12:09 PM Page 250

Suppose you have two applications that use the same function that resides in a unit. Both
applications, of course, would have to include the unit in their uses statements. If you ran both
applications simultaneously in Windows, the function would exist twice in memory. If you had
a third application, there would be a third instance of the function in memory, and you would
be using up three times its memory space. This small example illustrates one of the primary
reasons for dynamic linking. Through dynamic linking, this function resides in a DLL. Then,
when an application loads the function into memory, all other applications that need to refer-
ence it can share its code by mapping the image of the DLL into their own process memory
space. The end result is that the DLL’s function exists only once in memory—theoretically.

With dynamic linking, the link between a function call and its executable code is resolved at
runtime by using an external reference to the DLL’s function. These references can be declared
in the application, but usually they’re placed in a separate import unit. The import unit
declares the imported functions and procedures and defines the various types required by DLL
functions.

For example, suppose you have a DLL named MaxLib.dll that contains a function:

function Max(i1, I2: integer): integer;

This function returns the higher of the two integers passed to it. A typical import unit would
look like this:

unit MaxUnit;
interface
function Max(I1, I2: integer): integer;
implementation
function Max; external ‘MAXLIB’;
end.

You’ll notice that although this looks somewhat like a typical unit, it doesn’t define the func-
tion Max(). The keyword external simply says that the function resides in the DLL of the
name that follows it. To use this unit, an application would simply place MaxUnit in its uses
statement. When the application runs, the DLL is loaded into memory automatically, and any
calls to Max() are linked to the Max() function in the DLL.

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
251

Delphi implements a smart linker that automatically removes functions, procedures,
variables, and typed constants that never get referenced in the final project. Therefore,
functions residing in large units that never get used don’t become a part of your EXE
file.

NOTE

09 chpt_06.qxd 11/19/01 12:09 PM Page 251

This illustrates one of two ways to load a DLL; it’s called implicit loading, which causes
Windows to automatically load the DLL when the application loads. Another method is to
explicitly load the DLL; this is discussed later in this chapter.

Why Use DLLs?
There are several reasons for using DLLs, some of which were mentioned earlier. In general,
you use DLLs to share code or system resources, to hide your code implementation or low-
level system routines, or to design custom controls. We discuss these topics in the following
sections.

Sharing Code, Resources, and Data with
Multiple Applications
Earlier in this chapter, you learned that the most common reason for creating a DLL is to share
code. Unlike units, which enable you to share code with different Delphi applications, DLLs
enable you to share code with any Windows application that can call functions from DLLs.

Additionally, DLLs provide a way for you to share resources such as bitmaps, fonts, icons, and
so on that you normally would put into a resource file and link directly into your application. If
you place these resources into a DLL, many applications can make use of them without using
up the memory required to load them more often.

Back in 16-bit Windows, DLLs had their own data segment, so all applications that used a
DLL could access the same data—global and static variables. In the Win32 system, this is a
different story. Because the DLL image is mapped to each process’s address space, all data in
the DLL belongs to that process. One thing worth mentioning here is that although the DLL’s
data isn’t shared between different processes, it’s shared by multiple threads within the same
process. Because threads execute independently of one another, you must take precautions not
to cause conflicts when accessing a DLL’s global data.

This doesn’t mean that there aren’t ways to make multiple processes share data made accessi-
ble through a DLL. One technique would be to create a shared memory area (using a memory-
mapped file) from within the DLL. Each application using that DLL would be able to read the
data stored in the shared memory area. This technique is shown later in the chapter.

Hiding Implementation
In some cases, you might want to hide the details of the routines that you make available from
a DLL. Regardless of your reason for deciding to hide your code’s implementation, a DLL pro-
vides a way for you to make your functions available to the public and not give away your
source code in doing so. All you need to do is provide an interface unit to enable others to

Advanced Techniques

PART II
252

09 chpt_06.qxd 11/19/01 12:09 PM Page 252

access your DLL. If you’re thinking that this is already possible with Delphi compiled units
(DCUs), consider that DCUs apply only to other Delphi applications that are created with the
same version of Delphi. DLLs are language independent, so you can create a DLL that can be
used by C++, VB, or any other language that supports DLLs.

The Windows unit is the interface unit to the Win32 DLLs. The Win32 API unit source files are
included with Delphi 6. One of the files you get is Windows.pas, the source to the Windows
unit. In Windows.pas, you find function definitions such as the following in the interface sec-
tion:

function ClientToScreen(Hwnd: HWND; var lpPoint: TPoint): BOOL; stdcall;

The corresponding link to the DLL is in the implementation section, as in the following
example:

function ClientToScreen; external user32 name ‘ClientToScreen’;

This basically says that the procedure ClientToScreen() exists in the dynamic link library
User32.dll, and its name is ClientToScreen.

Creating and Using DLLs
The following sections take you through the process of actually creating a DLL with Delphi.
You’ll see how to create an interface unit so that you can make your DLLs available to other
programs. You’ll also learn how to incorporate Delphi forms into DLLs before going on to
using DLLs in Delphi.

Counting Your Pennies (A Simple DLL)
The following DLL example illustrates placing a routine that’s a favorite of many computer
science professors into a DLL. The routine converts a monetary amount in pennies to the mini-
mum number of nickels, dimes, or quarters needed to match the total number of pennies.

A Basic DLL
The library contains the PenniesToCoins() method. Listing 6.1 shows the complete DLL
project.

LISTING 6.1 PenniesLib.dpr—A DLL to Convert Pennies to Other Coins

library PenniesLib;
{$DEFINE PENNIESLIB}
uses
SysUtils,
Classes,
PenniesInt;

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
253

09 chpt_06.qxd 11/19/01 12:09 PM Page 253

LISTING 6.1 Continued

function PenniesToCoins(TotPennies: word;
CoinsRec: PCoinsRec): word; StdCall;

begin
Result := TotPennies; // Assign value to Result
{ Calculate the values for quarters, dimes, nickels, pennies }
with CoinsRec^ do
begin
Quarters := TotPennies div 25;
TotPennies := TotPennies - Quarters * 25;
Dimes := TotPennies div 10;
TotPennies := TotPennies - Dimes * 10;
Nickels := TotPennies div 5;
TotPennies := TotPennies - Nickels * 5;
Pennies := TotPennies;

end;
end;

{ Export the function by name }
exports
PenniesToCoins;

end.

Notice that this library uses the unit PenniesInt. We’ll discuss this in more detail momentarily.

The exports clause specifies which functions or procedures in the DLL get exported and made
available to calling applications.

Defining an Interface Unit
Interface units enable users of your DLL to statically import your DLL’s routines into their
applications by just placing the import unit’s name in their module’s uses statement. Interface
units also allow the DLL writer to define common structures used by both the library and the
calling application. We demonstrate that here with the interface unit. Listing 6.2 shows the
source code to PenniesInt.pas.

LISTING 6.2 PenniesInt.pas—The interface Unit for PenniesLib.Dll

unit PenniesInt;
{ Interface routine for PENNIES.DLL }

interface
type

Advanced Techniques

PART II
254

09 chpt_06.qxd 11/19/01 12:09 PM Page 254

LISTING 6.2 Continued

{ This record will hold the denominations after the conversions have
been made }

PCoinsRec = ^TCoinsRec;
TCoinsRec = record
Quarters,
Dimes,
Nickels,
Pennies: word;

end;

{$IFNDEF PENNIESLIB}
{ Declare function with export keyword }

function PenniesToCoins(TotPennies: word;
CoinsRec: PCoinsRec): word; StdCall;

{$ENDIF}

implementation

{$IFNDEF PENNIESLIB}
{ Define the imported function }
function PenniesToCoins; external ‘PENNIESLIB.DLL’ name ‘PenniesToCoins’;
{$ENDIF}

end.

In the type section of this project, you declare the record TCoinsRec as well as a pointer to this
record. This record will hold the denominations that will make up the penny amount passed
into the PenniesToCoins() function. The function takes two parameters—the total amount of
money in pennies and a pointer to a TCoinsRec variable. The result of the function is the
amount of pennies passed in.

PenniesInt.pas declares the function that the PenniesLib.dll exports in its interface
section. The definition of the PenniesToCoins() function is placed in the implementation
section. This definition specifies that the function is an external function existing in the DLL
file PenniesLib.dll. It links to the DLL function by the name of the function. Notice that
you used a compiler directive PENNIESLIB to conditionally compile the declaration of the
PenniesToCoins() function. You do this because it’s not necessary to link this declaration
when compiling the interface unit for the library. This allows you to share the interface unit’s
type definitions with both the library and any applications that intend to use the library. Any
changes to the structures used by both only have to be made in the interface unit.

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
255

09 chpt_06.qxd 11/19/01 12:09 PM Page 255

If this were an actual DLL that you planned to deploy, you would provide both
PenniesLib.dll and PenniesInt.pas to your users. This would enable them to use the DLL
by defining the types and functions in PenniesInt.pas that PenniesLib.dll requires.
Additionally, programmers using different languages, such as C++, could convert
PenniesInt.pas to their languages, thus enabling them to use your DLL in their development
environments. You’ll find a sample project that uses PenniesLib.dll on the CD that accompa-
nies this book.

Displaying Modal Forms from DLLs
This section shows you how to make modal forms available from a DLL. Placing commonly
used forms in a DLL is beneficial because it enables you to extend your forms for use with any
Windows application or development environment, such as C++ and Visual Basic.

Advanced Techniques

PART II
256

To define an application-wide conditional directive, specify the conditional in the
Directories/Conditionals page of the Project, Options dialog box. Note that you must
rebuild your project for changes to conditional defines to take effect because Make
logic doesn’t reevaluate conditional defines.

TIP

The following definition shows one of two ways to import a DLL function:

function PenniesToCoins; external ‘PENNIESLIB.DLL’ index 1;

This method is called importing by ordinal. The other method by which you can
import DLL functions is by name:

function PenniesToCoins; external ‘PENNIESLIB.DLL’ name ‘PenniesToCoins’;

The by-name method uses the name specified after the name keyword to determine
which function to link to in the DLL.

The by-ordinal method reduces the DLL’s load time because it doesn’t have to look up
the function name in the DLL’s name table. However, this isn’t the preferred method
in Win32. Importing by name is the preferred technique so that applications won’t be
hypersensitive to relocation of DLL entry points as DLLs get updated over time. When
you import by ordinal, you are binding to a place in the DLL. When you import by
name, you’re binding to the function name, regardless of where it happens to be
placed in the DLL.

NOTE

09 chpt_06.qxd 11/19/01 12:09 PM Page 256

To do this, remove your DLL-based form from the list of autocreated forms.

We’ve created such a form that contains a TCalendar component on the main form. The call-
ing application will call a DLL function that will invoke this form. When the user selects a day
on the calendar, the date will be returned to the calling application.

Listing 6.3 shows the source for CalendarLib.dpr, the DLL project file. Listing 6.4, in the
section, “Displaying Modeless Forms from DLLs,” shows the source code for DllFrm.pas, the
DLL form’s unit, which illustrates how to encapsulate the form into a DLL.

LISTING 6.3 Library Project Source—CalendarLib.dpr

unit DLLFrm;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, Grids, Calendar;

type

TDLLForm = class(TForm)
calDllCalendar: TCalendar;
procedure calDllCalendarDblClick(Sender: TObject);

end;

{ Declare the export function }
function ShowCalendar(AHandle: THandle; ACaption: String):
TDateTime; StdCall;

implementation
{$R *.DFM}

function ShowCalendar(AHandle: THandle; ACaption: String): TDateTime;
var
DLLForm: TDllForm;

begin
// Copy application handle to DLL’s TApplication object
Application.Handle := AHandle;
DLLForm := TDLLForm.Create(Application);
try
DLLForm.Caption := ACaption;
DLLForm.ShowModal;
// Pass the date back in Result
Result := DLLForm.calDLLCalendar.CalendarDate;

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
257

09 chpt_06.qxd 11/19/01 12:09 PM Page 257

LISTING 6.3 Continued

finally
DLLForm.Free;

end;
end;

procedure TDLLForm.calDllCalendarDblClick(Sender: TObject);
begin
Close;

end;

end.

The main form in this DLL is incorporated into the exported function. Notice that the DLLForm
declaration was removed from the interface section and declared inside the function instead.

The first thing that the DLL function does is to assign the AHandle parameter to the
Application.Handle property. Delphi projects, including library projects, contain a global
Application object. In a DLL, this object is separate from the Application object that exists
in the calling application. For the form in the DLL to truly act as a modal form for the calling
application, you must assign the handle of the calling application to the DLL’s
Application.Handle property, as has been illustrated. Not doing so will result in erratic
behavior, especially when you start minimizing the DLL’s form. Also, as shown, you must
make sure not to pass nil as the owner of the DLL’s form.

After the form is created, you assign the ACaption string to the Caption of the DLL form. It’s
then displayed modally. When the form closes, the date selected by the user in the TCalendar
component is passed back to the calling function. The form closes after the user double-clicks
the TCalendar component.

Advanced Techniques

PART II
258

ShareMem must be the first unit in your library’s uses clause and your project’s (select
View, Project Source) uses clause if your DLL exports any procedures or functions that
pass strings or dynamic arrays as parameters or function results. This applies to all
strings passed to and from your DLL—even those nested in records and classes.
ShareMem is the interface unit to the Borlndmm.dll shared memory manager, which
must be deployed along with your DLL. To avoid using Borlndmm.dll, pass string
information using PChar or ShortString parameters.

ShareMem is only required when heap-allocated strings or dynamic arrays are passed
between modules, and such transfers also assign ownership of that string memory.

CAUTION

continues

09 chpt_06.qxd 11/19/01 12:09 PM Page 258

This is all that’s required when encapsulating a modal form into a DLL. In the next section,
we’ll discuss displaying a modeless form in a DLL.

Displaying Modeless Forms from DLLs
To illustrate placing modeless forms in a DLL, we’ll use the same calendar form as the previ-
ous section.

When displaying modeless forms from a DLL, the DLL must provide two routines. The first
routine must take care of creating and displaying the form. A second routine is required to free
the form. Listing 6.4 displays the source code for the illustration of a modeless form in a DLL.

LISTING 6.4 A Modeless Form in a DLL

unit DLLFrm;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, Grids, Calendar;

type

TDLLForm = class(TForm)
calDllCalendar: TCalendar;

end;

{ Declare the export function }
function ShowCalendar(AHandle: THandle; ACaption: String):
Longint; stdCall;

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
259

Typecasting an internal string to a PChar and passing it to another module as a PChar
doesn’t transfer ownership of the string memory to the calling module, so ShareMem
isn’t required.

Note that this ShareMem issue applies only to Delphi/C++Builder DLLs that pass strings
or dynamic arrays to other Delphi/BCB DLLs or EXEs. You should never expose Delphi
strings or dynamic arrays (as parameters or function results of DLL exported func-
tions) to non-Delphi DLLs or host apps. They won’t know how to dispose of the
Delphi items correctly.

Also, ShareMem is never required between modules built with packages. The memory
allocator is implicitly shared between packaged modules.

09 chpt_06.qxd 11/19/01 12:09 PM Page 259

LISTING 6.4 Continued

procedure CloseCalendar(AFormRef: Longint); stdcall;

implementation
{$R *.DFM}

function ShowCalendar(AHandle: THandle; ACaption: String): Longint;
var
DLLForm: TDllForm;

begin
// Copy application handle to DLL’s TApplication object
Application.Handle := AHandle;
DLLForm := TDLLForm.Create(Application);
Result := Longint(DLLForm);
DLLForm.Caption := ACaption;
DLLForm.Show;

end;

procedure CloseCalendar(AFormRef: Longint);
begin
if AFormRef > 0 then
TDLLForm(AFormRef).Release;

end;

end.

This listing displays the routines ShowCalendar() and CloseCalendar(). ShowCalendar() is
similar to the same function in the modal form example in that it makes the assignment of the
calling application’s application handle to the DLL’s application handle and creates the form.
Instead of calling ShowModal(), however, this routine calls Show(). Notice that it doesn’t free
the form. Also, the function returns a longint value to which you assign the DLLForm instance
because a reference of the created form must be maintained, and it’s best to have the calling
application maintain this instance. This would take care of any issues regarding other applica-
tions calling this DLL and creating another instance of the form.

In the CloseCalendar() procedure, you simply check for a valid reference to the form and
invoke its Release() method. Here, the calling application should pass back the same refer-
ence that was returned to it from ShowCalendar().

When using such a technique, you must be careful that your DLL never frees the form inde-
pendently of the host. If it does (for example, returning caFree in CanClose()), the call to
CloseCalendar() will crash.

Demos of both the model and modeless forms are on the CD that accompanies this book.

Advanced Techniques

PART II
260

09 chpt_06.qxd 11/19/01 12:09 PM Page 260

Using DLLs in Your Delphi Applications
Earlier in this chapter, you learned that there are two ways to load or import DLLs: implicitly
and explicitly. Both techniques are illustrated in this section with the DLLs just created.

The first DLL created in this chapter included an interface unit. You’ll use this interface
unit in the following example to illustrate implicit linking of a DLL. The sample project’s main
form has a TMaskEdit, TButton, and nine TLabel components.

In this application, the user enters an amount of pennies. Then, when the user clicks the button,
the labels will show the breakdown of denominations of change adding up to that amount. This
information is obtained from the PenniesLib.dll exported function PenniesToCoins().

The main form is defined in the unit MainFrm.pas shown in Listing 6.5.

LISTING 6.5 Main Form for the Pennies Demo

unit MainFrm;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, Mask;

type

TMainForm = class(TForm)
lblTotal: TLabel;
lblQlbl: TLabel;
lblDlbl: TLabel;
lblNlbl: TLabel;
lblPlbl: TLabel;
lblQuarters: TLabel;
lblDimes: TLabel;
lblNickels: TLabel;
lblPennies: TLabel;
btnMakeChange: TButton;
meTotalPennies: TMaskEdit;
procedure btnMakeChangeClick(Sender: TObject);

end;

var
MainForm: TMainForm;

implementation

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
261

09 chpt_06.qxd 11/19/01 12:09 PM Page 261

LISTING 6.5 Continued

uses PenniesInt; // Use an interface unit

{$R *.DFM}

procedure TMainForm.btnMakeChangeClick(Sender: TObject);
var
CoinsRec: TCoinsRec;
TotPennies: word;

begin
{ Call the DLL function to determine the minimum coins required
for the amount of pennies specified. }

TotPennies := PenniesToCoins(StrToInt(meTotalPennies.Text), @CoinsRec);
with CoinsRec do
begin
{ Now display the coin information }
lblQuarters.Caption := IntToStr(Quarters);
lblDimes.Caption := IntToStr(Dimes);
lblNickels.Caption := IntToStr(Nickels);
lblPennies.Caption := IntToStr(Pennies);

end
end;

end.

Notice that MainFrm.pas uses the unit PenniesInt. Recall that PenniesInt.pas includes the
external declarations to the functions existing in PenniesLib.dpr. When this application runs,
the Win32 system automatically loads PenniesLib.dll and maps it to the process address
space for the calling application.

Usage of an import unit is optional. You can remove PenniesInt from the uses statement and
place the external declaration to PenniesToCoins() in the implementation section of
MainFrm.pas, as in the following code:

implementation

function PenniesToCoins(TotPennies: word; ChangeRec: PChangeRec): word;
➥StdCall external ‘PENNIESLIB.DLL’;

You also would have to define PChangeRec and TChangeRec again in MainFrm.pas, or you can
compile your application using the compiler directive PENNIESLIB. This technique is fine in the
case where you only need access to a few routines from a DLL. In many cases, you’ll find that
you require not only the external declarations to the DLL’s routines but also access to the types
defined in the interface unit.

Advanced Techniques

PART II
262

09 chpt_06.qxd 11/19/01 12:09 PM Page 262

You’ll find this demo on the accompanying CD.

Loading DLLs Explicitly
Although loading DLLs implicitly is convenient, it isn’t always the most desired method.
Suppose you have a DLL that contains many routines. If it’s likely that your application will
never call any of the DLL’s routines, it would be a waste of memory to load the DLL every
time your application runs. This is especially true when using multiple DLLs with one applica-
tion. Another example is when using DLLs as large objects: a standard list of functions that are
implemented by multiple DLLs but do slightly different things, such as printer drivers and file
format readers. In this situation, it would be beneficial to load the DLL when specifically
requested to do so by the application. This is referred to as explicitly loading a DLL.

To illustrate explicitly loading a DLL, we return to the sample DLL with a modal form. Listing
6.6 shows the code for the main form of the application that demonstrates explicitly loading
this DLL. The project file for this application is on the accompanying CD.

LISTING 6.6 Main Form for Calendar DLL Demo Application

unit MainFfm;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls;

type
{ First, define a procedural data type, this should reflect the
procedure that is exported from the DLL. }

TShowCalendar = function (AHandle: THandle; ACaption: String):
TDateTime; StdCall;

{ Create a new exception class to reflect a failed DLL load }
EDLLLoadError = class(Exception);

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
263

Many times, when using another vendor’s DLL, you won’t have a Pascal interface
unit; instead, you’ll have a C/C++ import library. In this case, you have to translate the
library to a Pascal equivalent interface unit.

NOTE

09 chpt_06.qxd 11/19/01 12:09 PM Page 263

LISTING 6.6 Continued

TMainForm = class(TForm)
lblDate: TLabel;
btnGetCalendar: TButton;
procedure btnGetCalendarClick(Sender: TObject);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.btnGetCalendarClick(Sender: TObject);
var
LibHandle : THandle;
ShowCalendar: TShowCalendar;

begin

{ Attempt to load the DLL }
LibHandle := LoadLibrary(‘CALENDARLIB.DLL’);
try
{ If the load failed, LibHandle will be zero.
If this occurs, raise an exception. }

if LibHandle = 0 then
raise EDLLLoadError.Create(‘Unable to Load DLL’);

{ If the code makes it here, the DLL loaded successfully, now obtain
the link to the DLL’s exported function so that it can be called. }

@ShowCalendar := GetProcAddress(LibHandle, ‘ShowCalendar’);
{ If the function is imported successfully, then set
lblDate.Caption to reflect the returned date from
the function. Otherwise, show the return raise an exception. }

if not (@ShowCalendar = nil) then
lblDate.Caption := DateToStr(ShowCalendar(Application.Handle, Caption))

else
RaiseLastWin32Error;

finally
FreeLibrary(LibHandle); // Unload the DLL.

end;
end;

end.

Advanced Techniques

PART II
264

09 chpt_06.qxd 11/19/01 12:09 PM Page 264

This unit first defines a procedural data type, TShowCalendar, that reflects the definition of the
function it will be using from CalendarLib.dll. It then defines a special exception, which is
raised when there’s a problem loading the DLL. In the btnGetCalendarClick() event handler,
you’ll notice the use of three Win32 API functions: LoadLibrary(), FreeLibrary(), and
GetProcAddress().

LoadLibrary() is defined this way:

function LoadLibrary(lpLibFileName: PChar): HMODULE; stdcall;

This function loads the DLL module specified by lpLibFileName and maps it into the address
space of the calling process. If this function succeeds, it returns a handle to the module. If it
fails, it returns the value 0, and an exception is raised. You can look up LoadLibrary() in the
online help for detailed information on its functionality and possible return error values.

FreeLibrary() is defined like this:

function FreeLibrary(hLibModule: HMODULE): BOOL; stdcall;

FreeLibrary() decrements the instance count of the library specified by LibModule. It
removes the library from memory when the library’s instance count is zero. The instance count
keeps track of the number of tasks using the DLL.

Here’s how GetProcAddress() is defined:

function GetProcAddress(hModule: HMODULE; lpProcName: LPCSTR):
FARPROC; stdcall

GetProcAddress() returns the address of a function within the module specified in its first
parameter, hModule. hModule is the THandle returned from a call to LoadLibrary(). If
GetProcAddress() fails, it returns nil. You must call GetLastError() for extended error
information.

In Button1’s OnClick event handler, LoadLibrary() is called to load CALDLL. If it fails to load,
an exception is raised. If the call is successful, a call to the window’s GetProcAddress() is
made to get the address of the function ShowCalendar(). Prepending the procedural data type
variable ShowCalendar with the address of operator (@) character prevents the compiler from
issuing a type mismatch error due to its strict type-checking. After obtaining the address of
ShowCalendar(), you can use it as defined by TShowCalendar. Finally, FreeLibrary() is
called within the finally block to ensure that the library is freed from memory when no
longer required.

You can see that the library is loaded and freed each time this function is called. If this func-
tion was called only once during the run of an application, it becomes apparent how explicit

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
265

09 chpt_06.qxd 11/19/01 12:09 PM Page 265

loading can save much-needed and often limited memory resources. On the other hand, if this
function were called frequently, the DLL loading and unloading would add a lot of overhead.

The Dynamically Linked Library Entry/Exit
Function
You can provide optional entry and exit code for your DLLs when required under various ini-
tialization and shutdown operations. These operations can occur during process or thread
initialization/termination.

Process/Thread Initialization and Termination Routines
Typical initialization operations include registering Windows classes, initializing global vari-
ables, and initializing an entry/exit function. This occurs during the method of entry for the
DLL, which is referred to as the DLLEntryPoint function. This function is actually represented
by the begin..end block of the DLL project file. This is the location where you would set up
an entry/exit procedure. This procedure must take a single parameter of the type DWord.

The global DLLProc variable is a procedural pointer to which you can assign the entry/exit pro-
cedure. This variable is initially nil unless you set up your own procedure. By setting up an
entry/exit procedure, you can respond to the events listed in Table 6.1.

TABLE 6.1 DLL Entry/Exit Events

Event Purpose

DLL_PROCESS_ATTACH The DLL is attaching to the address space of the current process
when the process starts up or when a call to LoadLibrary() is
made. DLLs initialize any instance data during this event.

DLL_PROCESS_DETACH The DLL is detaching from the address space of the calling
process. This occurs during a clean process exit or when a call to
FreeLibrary() is made. The DLL can uninitialize any instance
data during this event.

DLL_THREAD_ATTACH This event occurs when the current process creates a new thread.
When this occurs, the system calls the entry-point function of
any DLLs attached to the process. This call is made in the con-
text of the new thread and can be used to allocate any thread-spe-
cific data.

DLL_THREAD_DETACH This event occurs when the thread is exiting. During this event,
the DLL can free any thread-specific initialized data.

Advanced Techniques

PART II
266

09 chpt_06.qxd 11/19/01 12:09 PM Page 266

DLL Entry/Exit Example
Listing 6.7 illustrates how you would install an entry/exit procedure to the DLL’s DLLProc
variable.

LISTING 6.7 The Source Code for DllEntry.dpr

library DllEntry;
uses
SysUtils,
Windows,
Dialogs,
Classes;

procedure DLLEntryPoint(dwReason: DWord);
begin
case dwReason of
DLL_PROCESS_ATTACH: ShowMessage(‘Attaching to process’);
DLL_PROCESS_DETACH: ShowMessage(‘Detaching from process’);
DLL_THREAD_ATTACH: MessageBeep(0);
DLL_THREAD_DETACH: MessageBeep(0);

end;
end;
begin
{ First, assign the procedure to the DLLProc variable }
DllProc := @DLLEntryPoint;
{ Now invoke the procedure to reflect that the DLL is attaching to the
process }

DLLEntryPoint(DLL_PROCESS_ATTACH);
end.

The entry/exit procedure is assigned to the DLL’s DLLProc variable in the begin..end block of
the DLL project file. This procedure, DLLEntryPoint(), evaluates its word parameter to deter-
mine which event is being called. These events correspond to the events listed in Table 6.1. For
illustration purposes, we have each event display a message box when the DLL is being loaded
or destroyed. When a thread in the calling application is being created or destroyed, a message
beep occurs.

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
267

Threads terminated abnormally—by calling TerminateThread()—are not guaranteed
to call DLL_THREAD_DETACH.

NOTE

09 chpt_06.qxd 11/19/01 12:09 PM Page 267

To illustrate the use of this DLL, examine the code shown in Listing 6.8.

LISTING 6.8 Sample Code for DLL Entry/Exit Demo

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ComCtrls, Gauges;

type

{ Define a TThread descendant }

TTestThread = class(TThread)
procedure Execute; override;
procedure SetCaptionData;

end;

TMainForm = class(TForm)
btnLoadLib: TButton;
btnFreeLib: TButton;
btnCreateThread: TButton;
btnFreeThread: TButton;
lblCount: TLabel;
procedure btnLoadLibClick(Sender: TObject);
procedure btnFreeLibClick(Sender: TObject);
procedure btnCreateThreadClick(Sender: TObject);
procedure btnFreeThreadClick(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
LibHandle : THandle;
TestThread : TTestThread;
Counter : Integer;
GoThread : Boolean;

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

Advanced Techniques

PART II
268

09 chpt_06.qxd 11/19/01 12:09 PM Page 268

LISTING 6.8 Continued

procedure TTestThread.Execute;
begin
while MainForm.GoThread do
begin
Synchronize(SetCaptionData);
Inc(MainForm.Counter);

end;
end;

procedure TTestThread.SetCaptionData;
begin
MainForm.lblCount.Caption := IntToStr(MainForm.Counter);

end;

procedure TMainForm.btnLoadLibClick(Sender: TObject);
{ This procedure loads the library DllEntryLib.DLL }
begin
if LibHandle = 0 then
begin
LibHandle := LoadLibrary(‘DLLENTRYLIB.DLL’);
if LibHandle = 0 then
raise Exception.Create(‘Unable to Load DLL’);

end
else
MessageDlg(‘Library already loaded’, mtWarning, [mbok], 0);

end;

procedure TMainForm.btnFreeLibClick(Sender: TObject);
{ This procedure frees the library }
begin
if not (LibHandle = 0) then
begin
FreeLibrary(LibHandle);
LibHandle := 0;

end;
end;

procedure TMainForm.btnCreateThreadClick(Sender: TObject);
{ This procedure creates the TThread instance. If the DLL is loaded a
message beep will occur. }

begin
if TestThread = nil then
begin
GoThread := True;

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
269

09 chpt_06.qxd 11/19/01 12:09 PM Page 269

LISTING 6.8 Continued

TestThread := TTestThread.Create(False);
end;

end;

procedure TMainForm.btnFreeThreadClick(Sender: TObject);
{ In freeing the TThread a message beep will occur if the DLL is loaded. }
begin
if not (TestThread = nil) then
begin
GoThread := False;
TestThread.Free;
TestThread := nil;
Counter := 0;

end;

end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
LibHandle := 0;
TestThread := nil;

end;

end.

This project consists of a main form with four TButton components. BtnLoadLib loads the
DLL DllEntryLib.dll. BtnFreeLib frees the library from the process. BtnCreateThread cre-
ates a TThread descendant object, which in turn creates a thread. BtnFreeThread destroys the
TThread object. The lblCount is used just to show the thread execution.

The btnLoadLibClick() event handler calls LoadLibrary() to load DllEntryLib.dll. This
causes the DLL to load and be mapped to the process’s address space. Additionally, the initial-
ization code in the DLL gets executed. Again, this is the code that appears in the begin..end
block of the DLL, which performs the following to set up an entry/exit procedure for the DLL:

begin
{ First, assign the procedure to the DLLProc variable }
DllProc := @DLLEntryPoint;
{ Now invoke the procedure to reflect that the DLL is attaching to the
process }

DLLEntryPoint(DLL_PROCESS_ATTACH);
end.

Advanced Techniques

PART II
270

09 chpt_06.qxd 11/19/01 12:09 PM Page 270

This initialization section will only be called once per process. If another process loads this
DLL, this section will be called again, except in the context of the separate process—processes
don’t share DLL instances.

The btnFreeLibClick() event handler unloads the DLL by calling FreeLibrary(). When this
happens, the procedure to which the DLLProc points, DLLEntryProc(), gets called with the
value of DLL_PROCESS_DETACH passed as the parameter.

The btnCreateThreadClick() event handler creates the TThread descendant object. This
causes the DLLEntryProc() to get called, and the DLL_THREAD_ATTACH value is passed as the
parameter. The btnFreeThreadClick() event handler invokes DLLEntryProc again but passes
DLL_THREAD_DETACH as the value to the procedure.

Although you invoke only a message box when the events occur, you’ll use these events to per-
form any process or thread initialization or cleanup that might be necessary for your applica-
tion. Later, you’ll see an example of using this technique to set up sharable DLL global data.
You can look at the demo of this DLL in the project DLLEntryTest.dpr on the CD.

Exceptions in DLLs
This section discusses issues regarding DLLs and Win32 exceptions.

Capturing Exceptions in 16-Bit Delphi
Back in the 16-bit days with Delphi 1, Delphi exceptions were language specific. Therefore, if
exceptions were raised in a DLL, you were required to capture the exception before it escaped
from the DLL so that it wouldn’t creep up the calling modules stack, causing it to crash. You
had to wrap every DLL entry point with an exception handler, like this:

procedure SomeDLLProc;
begin
try
{ Do your stuff }

except
on Exception do

{ Don’t let it get away, handle it and don’t re-raise it }
end;

end;

This is no longer the case as of Delphi 2. Delphi 6 exceptions map themselves to Win32
exceptions. Exceptions raised in DLLs are no longer a compiler/language feature of Delphi
but rather a feature of the Win32 system.

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
271

09 chpt_06.qxd 11/19/01 12:09 PM Page 271

For this to work, however, you must make sure that SysUtils is included in the DLL’s uses
clause. Not including SysUtils disables Delphi’s exception support inside the DLL.

Advanced Techniques

PART II
272

Most Win32 applications aren’t designed to handle exceptions, so even though
Delphi language exceptions get turned into Win32 exceptions, exceptions that you let
escape from a DLL into the host application are likely to shut down the application.

If the host application is built with Delphi or C++Builder, this shouldn’t be much of an
issue, but there’s still a lot of raw C and C++ code out there that doesn’t like exceptions.

Therefore, to make your DLLs bulletproof, you might still consider using the 16-bit
method of protecting DLL entry points with try..except blocks to capture exceptions
raised in your DLLs.

CAUTION

Exceptions and the Safecall Directive
Safecall functions are used for COM and exception handling. They guarantee that any excep-
tion will propagate to the caller of the function. A Safecall function converts an exception
into an HResult return value. Safecall also implies the StdCall calling convention. Therefore,
a Safecall function declared as

function Foo(i: integer): string; Safecall;

really looks like this according to the compiler:

function Foo(i: integer): string; HResult; StdCall;

The compiler then inserts an implicit try..except block that wraps the entire function con-
tents and catches any exceptions raised. The except block invokes a call to
SafecallExceptionHandler() to convert the exception into an HResult. This is somewhat
similar to the 16-bit method of capturing exceptions and passing back error values.

When a non-Delphi application uses a DLL written in Delphi, it won’t be able to utilize
the Delphi language-specific exception classes. However, it can be handled as a Win32
system exception given the exception code of $0EEDFACE. The exception address will
be the first entry in the ExceptionInformation array of the Win32 system EXCEPTION_
RECORD. The second entry contains a reference to the Delphi exception object. Look up
EXCEPTION_RECORD in the Delphi online help for additional information.

NOTE

09 chpt_06.qxd 11/19/01 12:09 PM Page 272

Callback Functions
A callback function is a function in your application called by Win32 DLLs or other DLLs.
Basically, Windows has several API functions that require a callback function. When calling
these functions, you pass in an address of a function defined by your application that Windows
can call. If you’re wondering how this all relates to DLLs, remember that the Win32 API is
really several routines exported from system DLLs. Essentially, when you pass a callback
function to a Win32 function, you’re passing this function to a DLL.

One such function is the EnumWindows() API function, which enumerates through all top-level
windows. This function passes the handle of each window in the enumeration to your applica-
tion-defined callback function. You’re required to define and pass the callback function’s
address to the EnumWindows() function. The callback function that you must provide to
EnumWindows() is defined this way:

function EnumWindowsProc(Hw: HWnd; lp: lParam): Boolean; stdcall;

We illustrate the use of the EnumWindows() function in the CallBack.dpr project on the CD
and shown in Listing 6.9.

LISTING 6.9 MainForm.pas—Source to Callback Example

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ComCtrls;

type

{ Define a record/class to hold the window name and class name for
each window. Instances of this class will get added to ListBox1 }

TWindowInfo = class
WindowName, // The window name
WindowClass: String; // The window’s class name

end;

TMainForm = class(TForm)
lbWinInfo: TListBox;
btnGetWinInfo: TButton;
hdWinInfo: THeaderControl;
procedure btnGetWinInfoClick(Sender: TObject);

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
273

09 chpt_06.qxd 11/19/01 12:09 PM Page 273

LISTING 6.9 Continued

procedure FormDestroy(Sender: TObject);
procedure lbWinInfoDrawItem(Control: TWinControl; Index: Integer;
Rect: TRect; State: TOwnerDrawState);

procedure hdWinInfoSectionResize(HeaderControl: THeaderControl;
Section: THeaderSection);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}
function EnumWindowsProc(Hw: HWnd; AMainForm: TMainForm):

Boolean; stdcall;
{ This procedure is called by the User32.DLL library as it enumerates
through windows active in the system. }

var
WinName, CName: array[0..144] of char;
WindowInfo: TWindowInfo;

begin
{ Return true by default which indicates not to stop enumerating
through the windows }

Result := True;
GetWindowText(Hw, WinName, 144); // Obtain the current window text
GetClassName(Hw, CName, 144); // Obtain the class name of the window
{ Create a TWindowInfo instance and set its fields with the values of
the window name and window class name. Then add this object to
ListBox1’s Objects array. These values will be displayed later by
the listbox }

WindowInfo := TWindowInfo.Create;
with WindowInfo do
begin
SetLength(WindowName, strlen(WinName));
SetLength(WindowClass, StrLen(CName));
WindowName := StrPas(WinName);
WindowClass := StrPas(CName);

end;
// Add to Objects array
MainForm.lbWinInfo.Items.AddObject(‘’, WindowInfo); end;

procedure TMainForm.btnGetWinInfoClick(Sender: TObject);

Advanced Techniques

PART II
274

09 chpt_06.qxd 11/19/01 12:09 PM Page 274

LISTING 6.9 Continued

begin
{ Enumerate through all top-level windows being displayed. Pass in the
call back function EnumWindowsProc which will be called for each
window }

EnumWindows(@EnumWindowsProc, 0);
end;

procedure TMainForm.FormDestroy(Sender: TObject);
var
i: integer;

begin
{ Free all instances of TWindowInfo }
for i := 0 to lbWinInfo.Items.Count - 1 do
TWindowInfo(lbWinInfo.Items.Objects[i]).Free

end;

procedure TMainForm.lbWinInfoDrawItem(Control: TWinControl;
Index: Integer;Rect: TRect; State: TOwnerDrawState);

begin
{ First, clear the rectangle to which drawing will be performed }
lbWinInfo.Canvas.FillRect(Rect);
{ Now draw the strings of the TWindowInfo record stored at the
Index’th position of the listbox. The sections of HeaderControl
will give positions to which to draw each string }

with TWindowInfo(lbWinInfo.Items.Objects[Index]) do
begin
DrawText(lbWinInfo.Canvas.Handle, PChar(WindowName),
Length(WindowName), Rect,dt_Left or dt_VCenter);

{ Shift the drawing rectangle over by using the size
HeaderControl1’s sections to determine where to draw the next
string }

Rect.Left := Rect.Left + hdWinInfo.Sections[0].Width;
DrawText(lbWinInfo.Canvas.Handle, PChar(WindowClass),
Length(WindowClass), Rect, dt_Left or dt_VCenter);

end;
end;

procedure TMainForm.hdWinInfoSectionResize(HeaderControl:
THeaderControl; Section: THeaderSection);

begin
lbWinInfo.Invalidate; // Force ListBox1 to redraw itself.

end;

end.

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
275

09 chpt_06.qxd 11/19/01 12:09 PM Page 275

This application uses the EnumWindows() function to extract the window name and classname
of all top-level windows and adds them to the owner-draw list box on the main form. The main
form uses an owner-draw list box to make both the window name and window classname
appear in a columnar fashion. First we’ll explain the use of the callback function. Then we’ll
explain how we created the columnar list box.

Using the Callback Function
You saw in Listing 6.9 that we defined a procedure, EnumWindowsProc(), that takes a window
handle as its first parameter. The second parameter is user-defined data, so you can pass what-
ever data you deem necessary as long as its size is the equivalent to an integer data type.

EnumWindowsProc() is the callback procedure that you’ll pass to the EnumWindows() Win32
API function. It must be declared with the StdCall directive to specify that it uses the Win32
calling convention. When passing this procedure to EnumWindows(), it will get called for each
top-level window whose window handle gets passed as the first parameter. You use this win-
dow handle to obtain both the window name and classname of each window. You then create
an instance of the TWindowInfo class and set its fields with this information. The TWindowInfo
class instance is then added to the lbWinInfo.Objects array. The data in this list box will be
used when the list box is drawn to show this data in a columnar fashion.

Notice that, in the main form’s OnDestroy event handler, you make sure to clean up any allo-
cated instances of the TWindowInfo class.

The btnGetWinInfoClick()event handler calls the EnumWindows() procedure and passes
EnumWindowsProc() as its first parameter.

When you run the application and click the button, you’ll see that the information is obtained
from each window and is shown in the list box.

Drawing an Owner-Draw List Box
The window names and classnames of top-level windows are drawn in a columnar fashion in
lbWinInfo from the previous project. This was done by using a TListBox with its Style prop-
erty set to lbOwnerDraw. When this style is set as such, the TListBox.OnDrawItem event is
called each time the TListBox is to draw one of its items. You’re responsible for drawing the
items as illustrated in the example.

In Listing 6.9, the event handler lbWinInfoDrawItem() contains the code that performs the
drawing of list box items. Here, you draw the strings contained in the TWindowInfo class
instances, which are stored in the lbWinInfo.Objects array. These values are obtained from
the callback function EnumWindowsProc(). You can refer to the code commentary to determine
what this event handler does.

Advanced Techniques

PART II
276

09 chpt_06.qxd 11/19/01 12:09 PM Page 276

Calling Callback Functions from Your DLLs
Just as you can pass callback functions to DLLs, you can also have your DLLs call callback
functions. This section illustrates how you can create a DLL whose exported function takes a
callback procedure as a parameter. Then, based on whether the user passes in a callback proce-
dure, the procedure gets called. Listing 6.10 contains the source code to this DLL.

LISTING 6.10 Calling a Callback Demo—Source Code for StrSrchLib.dll

library StrSrchLib;

uses
Wintypes,
WinProcs,
SysUtils,
Dialogs;

type
{ declare the callback function type }
TFoundStrProc = procedure(StrPos: PChar); StdCall;

function SearchStr(ASrcStr, ASearchStr: PChar; AProc: TFarProc):
Integer; StdCall;

{ This function looks for ASearchStr in ASrcStr. When founc ASearchStr,
the callback procedure referred to by AProc is called if one has been
passed in. The user may pass nil as this parameter. }

var
FindStr: PChar;

begin
FindStr := ASrcStr;
FindStr := StrPos(FindStr, ASearchStr);
while FindStr <> nil do
begin
if AProc <> nil then
TFoundStrProc(AProc)(FindStr);

FindStr := FindStr + 1;
FindStr := StrPos(FindStr, ASearchStr);

end;
end;

exports
SearchStr;

begin

end.

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
277

09 chpt_06.qxd 11/19/01 12:09 PM Page 277

The DLL also defines a procedural type, TFoundStrProc, for the callback function, which will
be used to typecast the callback function when it’s called.

The exported procedure SearchStr() is where the callback function is called. The commentary
in the listing explains what this procedure does.

An example of this DLL’s usage is given in the project CallBackDemo.dpr in the \DLLCallBack
directory on the CD. The source for the main form of this demo is shown in Listing 6.11.

LISTING 6.11 The Main Form for the DLL Callback Demo

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls;

type
TMainForm = class(TForm)
btnCallDLLFunc: TButton;
edtSearchStr: TEdit;
lblSrchWrd: TLabel;
memStr: TMemo;
procedure btnCallDLLFuncClick(Sender: TObject);

end;

var
MainForm: TMainForm;
Count: Integer;

implementation

{$R *.DFM}

{ Define the DLL’s exported procedure }
function SearchStr(ASrcStr, ASearchStr: PChar; AProc: TFarProc):

Integer; StdCall external
‘STRSRCHLIB.DLL’;

{ Define the callback procedure, make sure to use the StdCall directive }
procedure StrPosProc(AStrPsn: PChar); StdCall;
begin
inc(Count); // Increment the Count variable.

end;

Advanced Techniques

PART II
278

09 chpt_06.qxd 11/19/01 12:09 PM Page 278

LISTING 6.11 Continued

procedure TMainForm.btnCallDLLFuncClick(Sender: TObject);
var
S: String;
S2: String;

begin
Count := 0; // Initialize Count to zero.
{ Retrieve the length of the text on which to search. }
SetLength(S, memStr.GetTextLen);
{ Now copy the text to the variable S }
memStr.GetTextBuf(PChar(S), memStr.GetTextLen);
{ Copy Edit1’s Text to a string variable so that it can be passed to
the DLL function }

S2 := edtSearchStr.Text;
{ Call the DLL function }
SearchStr(PChar(S), PChar(S2), @StrPosProc);
{ Show how many times the word occurs in the string. This has been
stored in the Count variable which is used by the callback function }

ShowMessage(Format(‘%s %s %d %s’, [edtSearchStr.Text,
‘occurs’, Count, ‘times.’]));

end;

end.

This application contains a TMemo control. EdtSearchStr.Text contains a string that will be
searched for in memStr’s contents. memStr’s contents are passed as the source string to the DLL
function SearchStr(), and edtSearchStr.Text is passed as the search string.

The function StrPosProc() is the actual callback function. This function increments the value
of the global variable Count, which you use to hold the number of times the search string
occurs in memStr’s text.

Sharing DLL Data Across Different Processes
Back in the world of 16-bit Windows, DLL memory was handled differently than it is in the
32-bit world of Win32. One often-used trait of 16-bit DLLs is that they share global memory
among different applications. In other words, if you declare a global variable in a 16-bit DLL,
any application using that DLL will have access to that variable, and changes made to that
variable by an application will be seen by other applications.

In some ways, this behavior can be dangerous because one application can overwrite data on
which another application is dependent. In other ways, developers have made use of this
characteristic.

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
279

09 chpt_06.qxd 11/19/01 12:09 PM Page 279

In Win32, this sharing of DLL global data no longer exists. Because each application process
maps the DLL to its own address space, the DLL’s data also gets mapped to that same address
space. This results in each application getting its own instance of DLL data. Changes made to
the DLL global data by one application won’t be seen from another application.

If you’re planning on porting a 16-bit application that relies on the sharable behavior of DLL
global data, you can still provide a means for applications to share data in a DLL with other
applications. The process isn’t automatic, and it requires the use of memory-mapped files to
store the shared data. Memory-mapped files are covered in Chapter 12 of Delphi 5 Developer’s
Guide, “Working with Files,” on the CD. We’ll use them here to illustrate this method.

Creating a DLL with Shared Memory
Listing 6.12 shows a DLL project file that contains the code to allow applications using this
DLL to share its global data. This global data is stored in the variable appropriately named
GlobalData.

LISTING 6.12 ShareLib—A DLL That Illustrates Sharing Global Data

library ShareLib;

uses
ShareMem,
Windows,
SysUtils,
Classes;

const

cMMFileName: PChar = ‘SharedMapData’;

{$I DLLDATA.INC}

var
GlobalData : PGlobalDLLData;
MapHandle : THandle;

{ GetDLLData will be the exported DLL function }
procedure GetDLLData(var AGlobalData: PGlobalDLLData); StdCall;
begin
{ Point AGlobalData to the same memory address referred to by GlobalData. }
AGlobalData := GlobalData;

end;

procedure OpenSharedData;

Advanced Techniques

PART II
280

09 chpt_06.qxd 11/19/01 12:09 PM Page 280

LISTING 6.12 Continued

var
Size: Integer;

begin
{ Get the size of the data to be mapped. }
Size := SizeOf(TGlobalDLLData);

{ Now get a memory-mapped file object. Note the first parameter passes
the value $FFFFFFFF or DWord(-1) so that space is allocated from
the system’s
paging file. This requires that a name for the memory-mapped
object get passed as the last parameter. }

MapHandle := CreateFileMapping(DWord(-1), nil, PAGE_READWRITE, 0,
Size, cMMFileName);

if MapHandle = 0 then
RaiseLastWin32Error;

{ Now map the data to the calling process’s address space and get a
pointer to the beginning of this address }

GlobalData := MapViewOfFile(MapHandle, FILE_MAP_ALL_ACCESS, 0, 0, Size);
{ Initialize this data }
GlobalData^.S := ‘ShareLib’;
GlobalData^.I := 1;
if GlobalData = nil then
begin
CloseHandle(MapHandle);
RaiseLastWin32Error;

end;
end;

procedure CloseSharedData;
{ This procedure un-maps the memory-mapped file and releases the memory-mapped
file handle }

begin
UnmapViewOfFile(GlobalData);
CloseHandle(MapHandle);

end;

procedure DLLEntryPoint(dwReason: DWord);
begin
case dwReason of
DLL_PROCESS_ATTACH: OpenSharedData;
DLL_PROCESS_DETACH: CloseSharedData;

end;

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
281

09 chpt_06.qxd 11/19/01 12:09 PM Page 281

LISTING 6.12 Continued

end;

exports
GetDLLData;

begin
{ First, assign the procedure to the DLLProc variable }
DllProc := @DLLEntryPoint;
{ Now invoke the procedure to reflect that the DLL is attaching
to the process }

DLLEntryPoint(DLL_PROCESS_ATTACH);
end.

GlobalData is of the type PGlobalDLLData, which is defined in the include file DllData.inc.
This include file contains the following type definition (note that the include file is linked by
using the include directive $I):

type

PGlobalDLLData = ^TGlobalDLLData;
TGlobalDLLData = record
S: String[50];
I: Integer;

end;

In this DLL, you use the same process discussed earlier in the chapter to add entry and exit code
to the DLL in the form of an entry/exit procedure. This procedure is called DLLEntryPoint(), as
shown in the listing. When a process loads the DLL, the OpenSharedData() method gets called.
When a process detaches from the DLL, the CloseSharedData() method is called.

Memory-mapped files provide a means for you to reserve a region of address space in the
Win32 system to which physical storage gets committed. This is similar to allocating memory
and referring to that memory with a pointer. With memory-mapped files, however, you can
map a disk file to this address space and refer to the space within the file as though you were
just referencing an area of memory with a pointer.

With memory-mapped files, you must first get a handle to an existing file on disk to which a
memory-mapped object will be mapped. You then map the memory-mapping object to that file.
At the beginning of the chapter, we told you how the system shares DLLs with multiple appli-
cations by first loading the DLL into memory and then giving each application its own image
of the DLL so that it appears that each application has loaded a separate instance of the DLL.

Advanced Techniques

PART II
282

09 chpt_06.qxd 11/19/01 12:09 PM Page 282

In reality, however, the DLL exists in memory only once. This is done by using memory-
mapped files. You can use the same process to give access to data files. You just make neces-
sary Win32 API calls that deal with creating and accessing memory-mapped files.

Now, consider this scenario: Suppose an application, which we’ll call App1, creates a memory-
mapped file that gets mapped to a file on disk, MyFile.dat. App1 can now read and write data
in that file. If, while App1 is running, App2 also maps to that same file, changes made to the file
by App1 will be seen by App2. Actually, it’s a bit more complex; certain flags must be set so
that changes to the file are immediately set and so forth. For this discussion, it suffices to say
that changes will be realized by both applications because this is possible.

One of the ways in which memory-mapped files can be used is to create a file mapping from
the Win32 paging file rather than an existing file. This means that instead of mapping to an
existing file on disk, you can reserve an area of memory to which you can refer as though it
were a disk file. This prevents you from having to create and destroy a temporary file if all you
want to do is to create an address space that can be accessed by multiple processes. The Win32
system manages its paging file, so when memory is no longer required of the paging file, this
memory gets released.

In the preceding paragraphs, we presented a scenario that illustrated how two applications can
access the same file data by using a memory-mapped file. The same can be done between an
application and a DLL. In fact, if the DLL creates the memory-mapped file when it’s loaded
by an application, it will use the same memory-mapped file when loaded by another applica-
tion. There will be two images of the DLL, one for each calling application, both of which use
the same memory-mapped file instance. The DLL can make the data referred to by the file
mapping available to its calling application. When one application makes changes to this data,
the second application will see these changes because they’re referring to the same data,
mapped by two different memory-mapped object instances. We use this technique in the
example.

In Listing 6.12, OpenSharedData() is responsible for creating the memory-mapped file. It uses
the CreateFileMapping() function to first create the file-mapping object, which it then passes
to the MapViewOfFile() function. The MapViewOfFile() function maps a view of the file into
the address space of the calling process. The return value of this function is the beginning of
that address space. Now remember, this is the address space of the calling process. For two dif-
ferent applications using this DLL, this address location might be different, although the data
to which they refer will be the same.

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
283

09 chpt_06.qxd 11/19/01 12:09 PM Page 283

After the call to MapViewOfFile(), the variable GlobalData refers to the address space for the
memory-mapped file. The exported function GetDLLData() assigns that memory to which
GlobalData refers to the AGlobalData parameter. AGlobalData is passed in from the calling
application; therefore, the calling application has read/write access to this data.

The CloseSharedData() procedure is responsible for unmapping the view of the file from the
calling process and releasing the file-mapping object. This doesn’t affect other file-mapping
objects or file mappings from other applications.

Using a DLL with Shared Memory
To illustrate the use of the shared memory DLL, we’ve created two applications that make use
of it. The first application, App1.dpr, allows you to modify the DLL’s data. The second appli-
cation, App2.dpr, also refers to the DLL’s data and continually updates a couple of TLabel
components by using a TTimer component. When you run both applications, you’ll be able to
see the sharable access to the DLL data—App2 will reflect changes made by App1.

Listing 6.13 shows the source code for the App1 project.

LISTING 6.13 The Main Form for App1.dpr

unit MainFrmA1;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ExtCtrls, Mask;

{$I DLLDATA.INC}

type

Advanced Techniques

PART II
284

The first parameter to CreateFileMapping() is a handle to a file to which the mem-
ory-mapped file gets mapped. However, if you’re mapping to an address space of the
system paging file, pass the value $FFFFFFFF (which is the same as DWord(-1)) as this
parameter value. You must also supply a name for the file-mapping object as the last
parameter to CreateFileMapping(). This is the name that the system uses to refer to
this file mapping. If multiple processes create a memory-mapped file using the same
name, the mapping objects will refer to the same system memory.

NOTE

09 chpt_06.qxd 11/19/01 12:09 PM Page 284

LISTING 6.13 Continued

TMainForm = class(TForm)
edtGlobDataStr: TEdit;
btnGetDllData: TButton;
meGlobDataInt: TMaskEdit;
procedure btnGetDllDataClick(Sender: TObject);
procedure edtGlobDataStrChange(Sender: TObject);
procedure meGlobDataIntChange(Sender: TObject);
procedure FormCreate(Sender: TObject);

public
GlobalData: PGlobalDLLData;

end;

var
MainForm: TMainForm;

{ Define the DLL’s exported procedure }
procedure GetDLLData(var AGlobalData: PGlobalDLLData);
StdCall External ‘SHARELIB.DLL’;

implementation

{$R *.DFM}

procedure TMainForm.btnGetDllDataClick(Sender: TObject);
begin
{ Get a pointer to the DLL’s data }
GetDLLData(GlobalData);
{ Now update the controls to reflect GlobalData’s field values }
edtGlobDataStr.Text := GlobalData^.S;
meGlobDataInt.Text := IntToStr(GlobalData^.I);

end;

procedure TMainForm.edtGlobDataStrChange(Sender: TObject);
begin
{ Update the DLL data with the changes }
GlobalData^.S := edtGlobDataStr.Text;

end;

procedure TMainForm.meGlobDataIntChange(Sender: TObject);
begin
{ Update the DLL data with the changes }
if meGlobDataInt.Text = EmptyStr then
meGlobDataInt.Text := ‘0’;

GlobalData^.I := StrToInt(meGlobDataInt.Text);
end;

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
285

09 chpt_06.qxd 11/19/01 12:09 PM Page 285

LISTING 6.13 Continued

procedure TMainForm.FormCreate(Sender: TObject);
begin
btnGetDllDataClick(nil);

end;

end.

This application also links in the include file DllData.inc, which defines the TGlobalDLLData
data type and its pointer. The btnGetDllDataClick() event handler gets a pointer to the DLL’s
data, which is accessed by a memory-mapped file in the DLL. It does this by calling the DLL’s
GetDLLData() function. It then updates its controls with the value of this pointer, GlobalData.
The OnChange event handlers for the edit controls change the values of GlobalData. Because
GlobalData refers to the DLL’s data, it modifies the data referred to by the DLL’s memory-
mapped file.

Listing 6.14 shows the source code for the main form for App2.dpr.

LISTING 6.14 The Source Code for Main Form for App2.dpr

unit MainFrmA2;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
ExtCtrls, StdCtrls;

{$I DLLDATA.INC}

type

TMainForm = class(TForm)
lblGlobDataStr: TLabel;
tmTimer: TTimer;
lblGlobDataInt: TLabel;
procedure tmTimerTimer(Sender: TObject);

public
GlobalData: PGlobalDLLData;

end;

{ Define the DLL’s exported procedure }
procedure GetDLLData(var AGlobalData: PGlobalDLLData);
StdCall External ‘SHARELIB.DLL’;

Advanced Techniques

PART II
286

09 chpt_06.qxd 11/19/01 12:09 PM Page 286

LISTING 6.14 Continued

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.tmTimerTimer(Sender: TObject);
begin
GetDllData(GlobalData); // Get access to the data
{ Show the contents of GlobalData’s fields.}
lblGlobDataStr.Caption := GlobalData^.S;
lblGlobDataInt.Caption := IntToStr(GlobalData^.I);

end;

end.

This form contains two TLabel components, which get updated during the tmTimer’s OnTimer
event. When the user changes the values of the DLL’s data from App1, App2 will reflect these
changes.

You can run both applications to experiment with them. You’ll find them on this book’s CD.

Exporting Objects from DLLs
It’s possible to access an object and its methods even if that object is contained within a DLL.
There are some requirements, however, to how that object is defined within the DLL as well as
some limitations as to how the object can be used. The technique we illustrate here is useful in
very specific situations. Typically, you can achieve the same functionality by using packages or
interfaces.

The following list summarizes the conditions and limitations to exporting an object from a
DLL:

• The calling application can only use methods of the object that have been declared as
virtual.

• The object instances must be created only within the DLL.

• The object must be defined in both the DLL and calling application with methods
defined in the same order.

• You cannot create a descendant object from the object contained within the DLL.

Some additional limitations might exist, but the ones listed are the primary limitations.

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
287

09 chpt_06.qxd 11/19/01 12:09 PM Page 287

To illustrate this technique, we’ve created a simple, yet illustrative example of an object that
we export. This object contains a function that returns the uppercase or lowercase value of a
string based on the value of a parameter indicating either uppercase or lowercase. This object
is defined in Listing 6.15.

LISTING 6.15 Object to Be Exported from a DLL

type

TConvertType = (ctUpper, ctLower);

TStringConvert = class(TObject)
{$IFDEF STRINGCONVERTLIB}
private
FPrepend: String;
FAppend : String;

{$ENDIF}
public
function ConvertString(AConvertType: TConvertType; AString: String):

String;
virtual; stdcall; {$IFNDEF STRINGCONVERTLIB} abstract; {$ENDIF}

{$IFDEF STRINGCONVERTLIB}
constructor Create(APrepend, AAppend: String);
destructor Destroy; override;

{$ENDIF}
end;

{ For any application using this class, STRINGCONVERTLIB is not defined and
therefore, the class definition will be equivalent to:

TStringConvert = class(TObject)
public
function ConvertString(AConvertType: TConvertType; AString: String):

String;
virtual; stdcall; abstract;

end;
}

Listing 6.15 is actually an include file named StrConvert.inc. This object is placed in an
include file to meet the third requirement in the preceding list—that the object be equally
defined in both the DLL and in the calling application. By placing the object in an include file,
both the calling application and DLL can include this file. If changes are made to the object,
you only have to compile both projects instead of typing the changes twice—once in the call-
ing application and once in the DLL, which is error prone.

Advanced Techniques

PART II
288

09 chpt_06.qxd 11/19/01 12:09 PM Page 288

Observe the following definition of the ConvertSring() method:

function ConvertString(AConvertType: TConvertType; AString: String):
➥String; virtual; stdcall;

The reason you declare this method as virtual isn’t so that one can create a descendant object
that can then override the ConvertString() method. Instead, it’s declared as virtual so that an
entry to the ConvertString() method is made in the Virtual Method Table (VMT). Think of
the VMT as a block of memory that holds pointers to virtual methods of an object. Because of
the VMT, the calling application can obtain a pointer to the method of the object. Without
declaring the method as virtual, the VMT wouldn’t have an entry for the method, and the call-
ing application would have no way of obtaining the pointer to the method. So really, what you
have in the calling application is a pointer to the function. Because you’ve based this pointer
on a method type defined in an object, Delphi automatically handles any fix-ups, such as pass-
ing the implicit self parameter to the method.

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
289

The Virtual Method Table is covered in greater detail in Chapter 13 of Delphi 5
Developer’s Guide, “Hard Core Techniques,” on the CD.

NOTE

Note the conditional define STRINGCONVERTLIB. When you’re exporting the object, the only
methods that need redefinition in the calling application are the methods to be accessed exter-
nally from the DLL. Also, these methods can be defined as abstract methods to avoid generat-
ing a compile-time error. This is valid because at runtime, these methods will be implemented
in the DLL code. The source code comments show what the TStringConvert object looks like
on the application side.

Listing 6.16 shows the implementation of the TStringConvert object.

LISTING 6.16 Implementation of the TStringConvert Object

unit StringConvertImp;
{$DEFINE STRINGCONVERTLIB}S
interface
uses SysUtils;
{$I StrConvert.inc}

function InitStrConvert(APrepend, AAppend: String): TStringConvert; stdcall;

implementation

09 chpt_06.qxd 11/19/01 12:09 PM Page 289

LISTING 6.16 Continued

constructor TStringConvert.Create(APrepend, AAppend: String);
begin
inherited Create;
FPrepend := APrepend;
FAppend := AAppend;

end;

destructor TStringConvert.Destroy;
begin
inherited Destroy;

end;

function TStringConvert.ConvertString(AConvertType:
TConvertType; AString: String): String;

begin
case AConvertType of
ctUpper: Result := Format(‘%s%s%s’, [FPrepend, UpperCase(AString),
FAppend]);
ctLower: Result := Format(‘%s%s%s’, [FPrepend, LowerCase(AString),
FAppend]);

end;
end;

function InitStrConvert(APrepend, AAppend: String): TStringConvert;
begin
Result := TStringConvert.Create(APrepend, AAppend);

end;

end.

As stated in the conditions, the object must be created in the DLL. This is done in a standard
DLL exported function InitStrConvert(), which takes two parameters that are passed to the
constructor. We added this to illustrate how you would pass information to an object’s con-
structor through an interface function.

Also, notice that in this unit you declare the conditional directive STRINGCONVERTLIB. The rest
of this unit is self-explanatory. Listing 6.17 shows the DLL’s project file.

LISTING 6.17 The Project File for StringConvertLib.dll

library StringConvertLib;
uses
ShareMem,
SysUtils,

Advanced Techniques

PART II
290

09 chpt_06.qxd 11/19/01 12:09 PM Page 290

LISTING 6.17 Continued

Classes,
StringConvertImp in ‘StringConvertImp.pas’;

exports
InitStrConvert;

end.

Generally, this library doesn’t contain anything we haven’t already covered. Do note, however,
that you used the ShareMem unit. This unit must be the first unit declared in the library project
file as well as in the calling application’s project file. This is an extremely important thing to
remember.

Listing 6.18 shows an example of how to use the exported object to convert a string to both
uppercase and lowercase. You’ll find this demo project on the CD as StrConvertTest.dpr.

LISTING 6.18 The Demo Project for the String Conversion Object

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls;

{$I strconvert.inc}

type

TMainForm = class(TForm)
btnUpper: TButton;
edtConvertStr: TEdit;
btnLower: TButton;
procedure btnUpperClick(Sender: TObject);
procedure btnLowerClick(Sender: TObject);

private
public
end;

var
MainForm: TMainForm;

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
291

09 chpt_06.qxd 11/19/01 12:09 PM Page 291

LISTING 6.18 Continued

function InitStrConvert(APrepend, AAppend: String): TStringConvert; stdcall;
external ‘STRINGCONVERTLIB.DLL’;

implementation

{$R *.DFM}

procedure TMainForm.btnUpperClick(Sender: TObject);
var
ConvStr: String;
FStrConvert: TStringConvert;

begin
FStrConvert := InitStrConvert(‘Upper ‘, ‘ end’);
try

ConvStr := edtConvertStr.Text;
if ConvStr <> EmptyStr then
edtConvertStr.Text := FStrConvert.ConvertString(ctUpper, ConvStr);

finally
FStrConvert.Free;

end;
end;

procedure TMainForm.btnLowerClick(Sender: TObject);
var
ConvStr: String;
FStrConvert: TStringConvert;

begin
FStrConvert := InitStrConvert(‘Lower ‘, ‘ end’);
try

ConvStr := edtConvertStr.Text;
if ConvStr <> EmptyStr then
edtConvertStr.Text := FStrConvert.ConvertString(ctLower, ConvStr);

finally
FStrConvert.Free;

end;
end;

end.

Advanced Techniques

PART II
292

09 chpt_06.qxd 11/19/01 12:09 PM Page 292

Summary
DLLs are an essential part of creating Windows applications while focusing in on code
reusability. This chapter covered the reasons for creating or using DLLs. The chapter illus-
trated how to create and use DLLs in your Delphi applications and showed different methods
of loading DLLs. The chapter discussed some of the special considerations you must take
when using DLLs with Delphi and showed you how to make DLL data sharable with different
applications.

With this knowledge under your belt, you should be able to create DLLs with Delphi and use
them in your Delphi applications with ease.

Dynamic Link Libraries

CHAPTER 6

6

D
Y

N
A

M
IC

L
IN

K
L

IB
R

A
R

IES
293

09 chpt_06.qxd 11/19/01 12:09 PM Page 293

09 chpt_06.qxd 11/19/01 12:09 PM Page 294

