
CHAPTERCHAPTER

5
Multithreaded Techniques

IN THIS CHAPTER
• Threads Explained 174

• The TThread Object 176

• Managing Multiple Threads 192

• A Sample Multithreaded Application 210

• Multithreading BDE Access 227

• Multithreaded Graphics 233

• Fibers 237

08 chpt_05.qxd 11/19/01 12:14 PM Page 173

The Win32 operating system provides you with the capability to have multiple threads of exe-
cution in your applications. Arguably the single most important benefit Win32 has over 16-bit
Windows, this feature provides the means for performing different types of processing simulta-
neously in your application. This is one of the primary reasons for upgrading to a 32-bit ver-
sion of Delphi, and this chapter gives you all the details on how to get the most out of threads
in your applications.

Threads Explained
A thread is an operating system object that represents a path of code execution within a partic-
ular process. Every Win32 application has at least one thread—often called the primary thread
or default thread—but applications are free to create other threads to perform other tasks.

Threads provide a means for running many distinct code routines simultaneously. Of course,
unless you have more than one CPU in your computer, two threads can’t truly run simultane-
ously. However, each thread is scheduled fractions of seconds of time by the operating system
in such a way as to give the feeling that many threads are running simultaneously.

Advanced Techniques

PART II
174

Threads aren’t and never will be supported under 16-bit Windows. This means that
any 32-bit Delphi code you write using threads will never be backward compatible to
Delphi 1. Keep this in mind if you still need to develop 16-bit compatible applications.

TIP

Types of Multitasking
The notion of threads is much different from the style of multitasking supported under 16-bit
Windows platforms. You might hear people talk about Win32 as a preemptive multitasking
operating system, whereas Windows 3.1 is a cooperative multitasking environment.

The key difference here is that under a preemptive multitasking environment, the operating
system is responsible for managing which thread executes when. When execution of thread one
is stopped in order for thread two to receive some CPU cycles, thread one is said to have been
preempted. If the code that one thread is executing happens to put itself into an infinite loop,
it’s usually not a tragic situation because the operating system will continue to schedule time
for all the other threads.

Under Windows 3.1, the application developer is responsible for giving control back to
Windows at points during application execution. Failure of an application to do so causes the
operating environment to appear locked up, and we all know what a painful experience that can
be. If you take a moment to think about it, it’s slightly amusing that the very foundation of 16-

08 chpt_05.qxd 11/19/01 3:08 PM Page 174

bit Windows depends on all applications behaving themselves and not putting themselves into
infinite loops, recursion, or any other unneighborly situation. Because all applications must
cooperate for Windows to work correctly, this type of multitasking is referred to as
cooperative.

Using Multiple Threads in Delphi Applications
It’s no secret that threads represent a serious boon for Windows programmers. You can create
secondary threads in your applications anywhere that it’s appropriate to do some sort of back-
ground processing. Calculating cells in a spreadsheet or spooling a word processing document
to the printer are examples of situations in which a thread would commonly be used. The goal
of the developer will most often be to perform necessary background processing while still
providing the best possible response time for the user interface.

Most of VCL has a built-in assumption that it’s being accessed by only one thread at any given
time. Although this limitation is especially apparent in the user interface portions of VCL, it’s
important to note that even many non-UI portions of VCL are not thread-safe.

Non-UI VCL
Actually, very few areas of VCL are guaranteed to be thread-safe. Perhaps the most notable
among these thread-safe areas is VCL’s property streaming mechanism, which ensures that
component streams can be effectively read and written by multiple threads. Remember that
even very basic classes in VCL, such as TList, are not designed to be manipulated from multi-
ple simultaneous threads. In some cases, VCL provides thread-safe alternatives that you can
use in cases where you need them. For example, use a TThreadList in place of a TList when
the list will be subject to manipulation by multiple threads.

UI VCL
VCL requires that all user interface control happens within the context of an application’s pri-
mary thread (the exception is the thread-safe TCanvas, which is explained later in this chapter).
Of course, techniques are available to update the user interface from a secondary thread (which
we discuss later), but this limitation essentially forces you to use threads a bit more judiciously
than you might do otherwise. The examples given in this chapter show some ideal uses for
multiple threads in Delphi applications.

Misuse of Threads
Too much of a good thing can be bad, and that’s definitely true in the case of threads. Even
though threads can help to solve some of the problems you might have from an application
design standpoint, they do introduce a whole new set of problems. For example, suppose that
you’re writing an integrated development environment, and you want the compiler to execute

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

175

08 chpt_05.qxd 11/19/01 3:08 PM Page 175

in its own thread so the programmer will be free to continue work on the application while the
program compiles. The problem here is this: What if the programmer changes a file that the
compiler is in the middle of compiling? There are a number of solutions to this problem, such
as making a temporary copy of the file while the compile continues or preventing the user from
editing not-yet-compiled files. The point is simply that threads aren’t a panacea; although they
solve some development problems, they invariably introduce others. What’s more, bugs
because of threading problems are also much, much harder to debug because threading prob-
lems are often time sensitive. Designing and implementing thread-safe code is also more diffi-
cult because you have a lot more factors to consider.

The TThread Object
Delphi encapsulates the API thread object into an Object Pascal object called TThread.
Although TThread encapsulates almost all the commonly used thread API functions into one
discrete object, there are some points—particularly those dealing with thread synchroniza-
tion—in which you have to use the API. In this section, you learn how the TThread object
works and how to use it in your applications.

TThread Basics
The TThread object is found in the Classes unit and is defined as follows:

TThread = class
private
FHandle: THandle;

{$IFDEF MSWINDOWS}
FThreadID: THandle;

{$ENDIF}
{$IFDEF LINUX}

// ** FThreadID is not THandle in Linux **
FThreadID: Cardinal;
FCreateSuspendedSem: TSemaphore;
FInitialSuspendDone: Boolean;

{$ENDIF}
FCreateSuspended: Boolean;
FTerminated: Boolean;
FSuspended: Boolean;
FFreeOnTerminate: Boolean;
FFinished: Boolean;
FReturnValue: Integer;
FOnTerminate: TNotifyEvent;
FMethod: TThreadMethod;
FSynchronizeException: TObject;
FFatalException: TObject;

Advanced Techniques

PART II
176

08 chpt_05.qxd 11/19/01 12:14 PM Page 176

procedure CheckThreadError(ErrCode: Integer); overload;
procedure CheckThreadError(Success: Boolean); overload;
procedure CallOnTerminate;

{$IFDEF MSWINDOWS}
function GetPriority: TThreadPriority;
procedure SetPriority(Value: TThreadPriority);
procedure SetSuspended(Value: Boolean);

{$ENDIF}
{$IFDEF LINUX}

// ** Priority is an Integer value in Linux
function GetPriority: Integer;
procedure SetPriority(Value: Integer);
function GetPolicy: Integer;
procedure SetPolicy(Value: Integer);
procedure SetSuspended(Value: Boolean);

{$ENDIF}
protected
procedure DoTerminate; virtual;
procedure Execute; virtual; abstract;
procedure Synchronize(Method: TThreadMethod);
property ReturnValue: Integer read FReturnValue write FReturnValue;
property Terminated: Boolean read FTerminated;

public
constructor Create(CreateSuspended: Boolean);
destructor Destroy; override;
procedure AfterConstruction; override;
procedure Resume;
procedure Suspend;
procedure Terminate;
function WaitFor: LongWord;
property FatalException: TObject read FFatalException;
property FreeOnTerminate: Boolean read FFreeOnTerminate
write FFreeOnTerminate;

property Handle: THandle read FHandle;
{$IFDEF MSWINDOWS}

property Priority: TThreadPriority read GetPriority write SetPriority;
{$ENDIF}
{$IFDEF LINUX}

// ** Priority is an Integer **
property Priority: Integer read GetPriority write SetPriority;
property Policy: Integer read GetPolicy write SetPolicy;

{$ENDIF}
property Suspended: Boolean read FSuspended write SetSuspended;

{$IFDEF MSWINDOWS}
property ThreadID: THandle read FThreadID;

{$ENDIF}

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

177

08 chpt_05.qxd 11/19/01 12:14 PM Page 177

{$IFDEF LINUX}
// ** ThreadId is Cardinal **
property ThreadID: Cardinal read FThreadID;

{$ENDIF}
property OnTerminate: TNotifyEvent read FOnTerminate write FOnTerminate;

end;

As you can tell from the declaration, TThread is a direct descendant of TObject and therefore
isn’t a component. Looking at all the IFDEFs in the code, you can also tell that TThread is
designed to be fairly compatible between Delphi and Kylix, albeit with a few differences. You
might further notice that the TThread.Execute() method is abstract. This means that the
TThread class itself is abstract, so you will never create an instance of TThread itself. You will
only create instances of TThread descendants. Speaking of which, the most straightforward
way to create a TThread descendant is to select Thread Object from the New Items dialog box
provided by the File, New Menu option. The New Items dialog box is shown in Figure 5.1.

Advanced Techniques

PART II
178

FIGURE 5.1
The Thread Object item in the New Items dialog box.

After choosing Thread Object from the New Items dialog box, you’ll be presented with a dia-
log box that prompts you to enter a name for the new object. You could enter TTestThread, for
example. Delphi will then create a new unit that contains your object. Your object will initially
be defined as follows:

type
TTestThread = class(TThread)
private
{ Private declarations }

protected
procedure Execute; override;

end;

08 chpt_05.qxd 11/19/01 12:14 PM Page 178

As you can see, the only method that you must override in order to create a functional descen-
dant of TThread is the Execute() method. Suppose, for example, that you want to perform a
complex calculation within TTestThread. In that case, you could define its Execute() method
as follows:

procedure TTestThread.Execute;
var
i, Answer: integer;

begin
Answer := 0;
for i := 1 to 2000000 do
inc(Answer, Round(Abs(Sin(Sqrt(i)))));

end;

Admittedly, the equation is contrived, but it still illustrates the point in this case because the
sole purpose of this equation is to take a relatively long time to execute.

You can now execute this sample thread by calling its Create() constructor. For now, you can
do this from a button click in the main form, as shown in the following code (remember to
include the unit containing TTestThread in the uses clause of the unit containing TForm1 to
avoid a compiler error):

procedure TForm1.Button1Click(Sender: TObject);
var
NewThread: TTestThread;

begin
NewThread := TTestThread.Create(False);

end;

If you run the application and click the button, you’ll notice that you can still manipulate the
form by moving it or resizing it while the calculation goes on in the background.

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

179

The single Boolean parameter passed to TThread’s Create() constructor is called
CreateSuspended, and it indicates whether to start the thread in a suspended state. If
this parameter is False, the object’s Execute() method will automatically be called fol-
lowing Create(). If this parameter is True, you must call TThread’s Resume() method at
some point to actually start the thread running. This will cause the Execute() method
to be invoked at that time. You would set CreateSuspended to True if you needed to
set additional properties on your thread object before allowing it to run. Setting the
properties after the thread is running would be asking for trouble.

To go a little deeper, the constructor of Create() calls the BeginThread() Delphi
Runtime Library (RTL) function, which calls the CreateThread() API function in order
to create the new thread. The value of the CreateSuspended parameter indicates
whether to pass the CREATE_SUSPENDED flag to CreateThread().

NOTE

08 chpt_05.qxd 11/19/01 12:14 PM Page 179

Thread Instances
Going back to the Execute() method for the TTestThread object, notice that it contains a local
variable called i. Consider what might happen to i if you create two instances of TTestThread.
Does the value for one thread overwrite the value for the other? Does the first thread take
precedence? Does it blow up? The answers are no, no, and no. Win32 maintains a separate
stack for each thread executing in the system. This means that as you create multiple instances
of the TTestThread object, each one keeps its own copy of i on its own stack. Therefore, all
the threads will operate independently of one another in that respect.

An important distinction to make, however, is that this notion of the same variable operating
independently in each thread doesn’t carry over to global variables. This topic is explored in
detail in the “Thread-Local Storage” and “Thread Synchronization” sections, later in this
chapter.

Thread Termination
A TThread is considered terminated when the Execute() method has finished executing. At
that point, the EndThread() Delphi standard procedure is called, which in turn calls the
ExitThread() API procedure. ExitThread() properly disposes of the thread’s stack and deal-
locates the API thread object. This cleans up the thread as far as the API is concerned.

You also need to ensure that the Object Pascal object is destroyed when you’re finished using a
TThread object. This will ensure that all memory occupied by that object has been properly
disposed of. Although this will automatically happen when your process terminates, you might
want to dispose of the object earlier so that your application doesn’t leak memory as it runs.
The easiest way to ensure that the TThread object is disposed of is to set its FreeOnTerminate
property to True. This can be done any time before the Execute() method finishes executing.
For example, you could do this for the TTestThread object by setting the property in the
Execute() method as follows:

procedure TTestThread.Execute;
var
i: integer;

begin
FreeOnTerminate := True;
for i := 1 to 2000000 do
inc(Answer, Round(Abs(Sin(Sqrt(i)))));

end;

The TThread object also has an OnTerminate event that’s called when the thread terminates.
It’s also acceptable to free the TThread object from within a handler for this event.

Advanced Techniques

PART II
180

08 chpt_05.qxd 11/19/01 12:14 PM Page 180

It’s also important to note that your thread’s Execute() method is responsible for checking the
status of the Terminated property to determine the need to make an earlier exit. Although this
means one more thing you must worry about when working with threads, the flip side is that
this type of architecture ensures that the rug isn’t pulled out from under you, and that you’ll be
able to perform any necessary cleanup on thread termination. To add this code to the Execute()
method of TTestThread is rather simple, and the addition is shown here:

procedure TTestThread.Execute;
var
i: integer;

begin
FreeOnTerminate := True;
for i := 1 to 2000000 do begin
if Terminated then Break;
inc(Answer, Round(Abs(Sin(Sqrt(i)))));

end;
end;

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

181

The OnTerminate event of TThread is called from the context of your application’s
main thread. This means that you can feel free to access VCL properties and methods
from within a handler for this event without using the Synchronize() method, as
described in the following section.

NOTE

In case of emergency, you can also use the Win32 API TerminateThread() function to
terminate an executing thread. You should do this only when no other options exist,
such as when a thread gets caught in an endless loop and stops responding. This
function is defined as follows:

function TerminateThread(hThread: THandle; dwExitCode: DWORD);

The Handle property of TThread provides the API thread handle, so you could call this
function with syntax similar to that shown here:

TerminateThread(MyHosedThread.Handle, 0);

If you choose to use this function, you should be wary of the negative side effects it
will cause. First, this function behaves differently under Windows NT/2000 and
Windows 95/98. Under Windows 95/98, TerminateThread() disposes of the stack

CAUTION

continues

08 chpt_05.qxd 11/19/01 12:14 PM Page 181

Synchronizing with VCL
As mentioned several times earlier in this chapter, you should only access VCL properties or
methods from the application’s primary thread. This means that any code that accesses or
updates your application’s user interface should be executed from the context of the primary
thread. The disadvantages of this architecture are obvious, and this requirement might seem
rather limiting on the surface, but it actually has some redeeming advantages that you should
know about.

Advantages of a Single-Threaded User Interface
First, it greatly reduces the complexity of your application to have only one thread accessing
the user interface. Win32 requires that each thread that creates a window have its own message
loop using the GetMessage() function. As you might imagine, having messages coming into
your application from a variety of sources can make it extremely difficult to debug. Because an
application’s message queue provides a means for serializing input—fully processing one con-
dition before moving on to the next—you can depend in most cases on certain messages com-
ing before or after others. Adding another message loop throws this serialization of input out
the door, thereby opening you up to potential synchronization problems and possibly introduc-
ing a need for complex synchronization code.

Additionally, because VCL can depend on the fact that it will be accessed by only one thread
at any given time, the need for code to synchronize multiple threads inside VCL is obviated.
The net result of this is better overall performance of your application due to a more stream-
lined architecture.

The Synchronize() Method
TThread provides a method called Synchronize() that allows for some of its own methods to
be executed from the application’s primary thread. Synchronize() is defined as follows:

procedure Synchronize(Method: TThreadMethod);

Advanced Techniques

PART II
182

associated with the thread; under Windows NT/2000, the stack sticks around until the
process is terminated. Second, on all Win32 operating systems, TerminateThread()
simply halts execution, wherever it might be, and doesn’t allow try..finally blocks
to clean up resources. This means that files opened by the thread wouldn’t be closed,
memory allocated by the thread wouldn’t be freed, and so forth. Also, DLLs loaded
by your process won’t be notified when a thread destroyed with TerminateThread()
goes away, and this might cause problems when the DLL closes. See Chapter 6,
“Dynamic Link Libraries,” for more information on thread notifications in DLLs.

08 chpt_05.qxd 11/19/01 12:14 PM Page 182

Its Method parameter is of type TThreadMethod (which means a procedural method that takes
no parameter), which is defined as follows:

type
TThreadMethod = procedure of object;

The method you pass as the Method parameter is the one that’s then executed from the applica-
tion’s primary thread. Going back to the TTestThread example, suppose you want to display
the result in an edit control on the main form. You could do this by introducing to TTestThread
a method that makes the necessary change to the edit control’s Text property and calling that
method by using Synchronize().

In this case, suppose this method is called GiveAnswer(). Listing 5.1 shows the complete
source code for this unit, called ThrdU, which includes the code to update the edit control on
the main form.

LISTING 5.1 The ThrdU.PAS Unit

unit ThrdU;

interface

uses
Classes;

type
TTestThread = class(TThread)
private
Answer: integer;

protected
procedure GiveAnswer;
procedure Execute; override;

end;

implementation

uses SysUtils, Main;

{ TTestThread }

procedure TTestThread.GiveAnswer;
begin
MainForm.Edit1.Text := InttoStr(Answer);

end;

procedure TTestThread.Execute;

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

183

08 chpt_05.qxd 11/19/01 12:14 PM Page 183

LISTING 5.1 Continued

var
I: Integer;

begin
FreeOnTerminate := True;
for I := 1 to 2000000 do
begin
if Terminated then Break;
Inc(Answer, Round(Abs(Sin(Sqrt(I)))));
Synchronize(GiveAnswer);

end;
end;

end.

You already know that the Synchronize() method enables you to execute methods from the
context of the primary thread, but up to this point you’ve treated Synchronize() as sort of a
mysterious black box. You don’t know how it works—you only know that it does. If you’d like
to take a peek at the man behind the curtain, read on.

The first time you create a secondary thread in your application, VCL creates and maintains a
hidden thread window from the context of its primary thread. The sole purpose of this window
is to serialize procedure calls made through the Synchronize() method.

The Synchronize() method stores the method specified in its Method parameter in a private
field called FMethod and sends a VCL-defined CM_EXECPROC message to the thread window,
passing Self (Self being the TThread object in this case) as the lParam of the message. When
the thread window’s window procedure receives this CM_EXECPROC message, it calls the method
specified in FMethod through the TThread object instance passed in the lParam. Remember,
because the thread window was created from the context of the primary thread, the window
procedure for the thread window is also executed by the primary thread. Therefore, the method
specified in the FMethod field is also executed by the primary thread.

To see a more visual illustration of what goes on inside Synchronize(), look at Figure 5.2.

Using Messages for Synchronization
As an alternative to the TThread.Synchronize() method, another technique for thread syn-
chronization is to use messages to communicate between threads. You can use the
SendMessage() or PostMessage() API function to send or post messages to windows operat-
ing in the context of another thread. For example, the following code could be used to set the
text in an edit control residing in another thread:

Advanced Techniques

PART II
184

08 chpt_05.qxd 11/19/01 12:14 PM Page 184

var
S: string;

begin
S := ‘hello from threadland’;
SendMessage(SomeEdit.Handle, WM_SETTEXT, 0, Integer(PChar(S)));

end;

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

185

Secondary Thread Primary Thread

Synchronize(Foo);

Sets FMethod to Foo.
Sends CM_EXECPROC
message to thread
window, passing Self as
IParam.

CM_EXECPROC

Hidden thread window

Message is processed by
window procedure of
thread window. IParam is
typecasted to TThread,
and call is made to
FMethod.

FIGURE 5.2
A road map of the Synchronize() method.

A Demo Application
To fully illustrate how multithreading in Delphi works, you can save the current project as
EZThrd. Then you can also put a memo control on the main form so that it resembles what’s
shown in Figure 5.3.

FIGURE 5.3
The main form of the EZThrd demo.

The source code for the main unit is shown in Listing 5.2.

08 chpt_05.qxd 11/19/01 12:14 PM Page 185

LISTING 5.2 The MAIN.PAS Unit for the EZThrd Demo

unit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, ThrdU;

type
TMainForm = class(TForm)
Edit1: TEdit;
Button1: TButton;
Memo1: TMemo;
Label1: TLabel;
Label2: TLabel;
procedure Button1Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.Button1Click(Sender: TObject);
var
NewThread: TTestThread;

begin
NewThread := TTestThread.Create(False);

end;

end.

Notice that after you click the button to invoke the secondary thread, you can still type in the
memo control as if the secondary thread doesn’t exist. When the calculation is completed, the
result will be displayed in the edit control.

Advanced Techniques

PART II
186

08 chpt_05.qxd 11/19/01 12:14 PM Page 186

Priorities and Scheduling
As mentioned earlier, the operating system is in charge of scheduling each thread some CPU
cycles in which it might execute. The amount of time scheduled for a particular thread depends
on the priority assigned to the thread. An individual thread’s overall priority is determined by a
combination of the priority of the process that created the thread—called the priority class—
and the priority of the thread itself—called the relative priority.

Process Priority Class
The process priority class describes the priority of a particular process running on the system.
Win32 supports four distinct priority classes: Idle, Normal, High, and Realtime. The default
priority class for any process, of course, is Normal. Each of these priority classes has a
corresponding flag defined in the Windows unit. You can or any of these flags with the
dwCreationFlags parameter of CreateProcess() in order to spawn a process with a specific
priority. Additionally, you can use these flags to dynamically adjust the priority class of a given
process, as shown in a moment. Furthermore, each priority class can also be represented by a
numeric priority level, which is a value between 4 and 24 (inclusive).

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

187

Modifying a process’s priority class requires special process privileges under Windows
NT/2000. The default settings allow processes to set their priority classes, but these
can be turned off by system administrators, particularly on high-load Windows
NT/2000 servers.

NOTE

Table 5.1 shows each priority class and its corresponding flag and numeric value.

TABLE 5.1 Process Priority Classes

Class Flag Value

Idle IDLE_PRIORITY_CLASS $40

Below Normal* BELOW_NORMAL_PRIORITY_CLASS $4000

Normal NORMAL_PRIORITY_CLASS $20

Above Normal* ABOVE_NORMAL_PRIORITY_CLASS $8000

High HIGH_PRIORITY_CLASS $80

Realtime REALTIME_PRIORITY_CLASS $100

*Available only on Windows 2000 and higher, and flag constant is not present in Delphi 6 version of
Windows.pas.

08 chpt_05.qxd 11/19/01 12:14 PM Page 187

To get and set the priority class of a given process dynamically, Win32 provides the
GetPriorityClass() and SetPriorityClass() functions, respectively. These functions are
defined as follows:

function GetPriorityClass(hProcess: THandle): DWORD; stdcall;

function SetPriorityClass(hProcess: THandle; dwPriorityClass: DWORD): BOOL;
stdcall;

The hProcess parameter in both cases represents a handle to a process. In most cases, you’ll
be calling these functions in order to access the priority class of your own process. In that
case, you can use the GetCurrentProcess() API function. This function is defined as follows:

function GetCurrentProcess: THandle; stdcall;

The return value of these functions is a pseudo-handle for the current process. We say pseudo
because the function doesn’t create a new handle, and the return value doesn’t have to be
closed with CloseHandle(). It merely provides a handle that can be used to reference an exist-
ing handle.

To set the priority class of your application to High, use code similar to the following:

if not SetPriorityClass(GetCurrentProcess, HIGH_PRIORITY_CLASS) then
ShowMessage(‘Error setting priority class.’);

Advanced Techniques

PART II
188

In almost all cases, you should avoid setting the priority class of any process to
Realtime. Because most of the operating system threads run in a priority class lower
than Realtime, your thread will receive more CPU time than the OS itself, and that
could cause some unexpected problems.

Even bumping the priority class of the process to High can cause problems if the
threads of the process don’t spend most of their time idle or waiting for external
events (such as file I/O). One high-priority thread is likely to drain all CPU time away
from lower-priority threads and processes until it blocks on an event, goes idle, or
processes messages. Preemptive multitasking can easily be defeated by abusing sched-
uler priorities.

CAUTION

Relative Priority
The other thing that goes into determining the overall priority of a thread is the relative priority
of a particular thread. The important distinction to make is that the priority class is associated
with a process and the relative priority is associated with individual threads within a process. A
thread can have any one of seven possible relative priorities: Idle, Lowest, Below Normal,
Normal, Above Normal, Highest, or Time Critical.

08 chpt_05.qxd 11/19/01 12:14 PM Page 188

TThread exposes a Priority property of an enumerated type TThreadPriority. There’s an
enumeration in this type for each relative priority:

type
TThreadPriority = (tpIdle, tpLowest, tpLower, tpNormal, tpHigher,
tpHighest, tpTimeCritical);

You can get and set the priority of any TThread object simply by reading from or writing to its
Priority property. The following code sets the priority of a TThread descendant instance
called MyThread to Highest:

MyThread.Priority := tpHighest.

Like priority classes, each relative priority is associated with a numeric value. The difference is
that relative priority is a signed value that, when added to a process’s class priority, is used to
determine the overall priority of a thread within the system. For this reason, relative priority is
sometimes called delta priority. The overall priority of a thread can be any value from 1 to 31
(1 being the lowest). Constants are defined in the Windows unit that represent the signed value
for each priority. Table 5.2 shows how each enumeration in TThreadPriority maps to an API
constant.

TABLE 5.2 Relative Priorities for Threads

TThreadPriority Constant Value

tpIdle THREAD_PRIORITY_IDLE -15*

tpLowest THREAD_PRIORITY_LOWEST -2

tpBelow Normal THREAD_PRIORITY_BELOW_NORMAL -1

tpNormal THREAD_PRIORITY_NORMAL 0

tpAbove Normal THREAD_PRIORITY_ABOVE_NORMAL 1

tpHighest THREAD_PRIORITY_HIGHEST 2

tpTimeCritical THREAD_PRIORITY_TIME_CRITICAL 15*

The reason the values for the tpIdle and tpTimeCritical priorities are marked with asterisks
is that, unlike the others, these relative priority values are not truly added to the class priority
to determine overall thread priority. Any thread that has the tpIdle relative priority, regardless
of its priority class, has an overall priority of 1. The exception to this rule is the Realtime pri-
ority class, which, when combined with the tpIdle relative priority, has an overall value of 16.
Any thread that has a priority of tpTimeCritical, regardless of its priority class, has an over-
all priority of 15. The exception to this rule is the Realtime priority class, which, when com-
bined with the tpTimeCritical relative priority, has an overall value of 31.

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

189

08 chpt_05.qxd 11/19/01 12:14 PM Page 189

Suspending and Resuming Threads
Recall when you learned about TThread’s Create() constructor earlier in this chapter. At the
time, you discovered that a thread could be created in a suspended state, and that you must call
its Resume() method in order for the thread to begin execution. As you might guess, a thread
can also be suspended and resumed dynamically. You accomplish this using the Suspend()
method in conjunction with the Resume() method.

Timing a Thread
Back in the 16-bit days when we programmed under Windows 3.x, it was pretty common to
wrap some portion of code with calls to GetTickCount() or timeGetTime() to determine how
much time a particular calculation would take (something like the following, for example):

var
StartTime, Total: Longint;

begin
StartTime := GetTickCount;
{ Do some calculation here }
Total := GetTickCount - StartTime;

In a multithreaded environment, this is much more difficult to do because your application
might be preempted by the operating system in the middle of the calculation in order to pro-
vide CPU cycles to other processes. Therefore, any timing you do that relies on the system
time can’t provide a true measure of how long it spends crunching the calculation in your
thread.

To avoid such problems, Win32 under Windows NT/2000 provides a function called
GetThreadTimes(), which provides quite detailed information on thread timing. This function
is declared as follows:

function GetThreadTimes(hThread: THandle; var lpCreationTime, lpExitTime,
lpKernelTime, lpUserTime: TFileTime): BOOL; stdcall;

The hThread parameter is the handle to the thread for which you want to obtain timing infor-
mation. The other parameters for this function are passed by reference and are filled in by the
function. Here’s an explanation of each:

• lpCreationTime—The time when the thread was created.

• lpExitTime—The time when the thread was exited. If the thread is still running, this
value is undefined.

• lpKernelTime—The amount of time the thread has spent executing operating system
code.

• lpUserTime—The amount of time the thread has spent executing application code.

Advanced Techniques

PART II
190

08 chpt_05.qxd 11/19/01 12:14 PM Page 190

Each of the last four parameters is of type TFileTime, which is defined in the Windows unit as
follows:

type
TFileTime = record
dwLowDateTime: DWORD;
dwHighDateTime: DWORD;

end;

The definition of this type is a bit unusual, but it’s a part of the Win32 API, so here goes:
dwLowDateTime and dwHighDateTime are combined into a quad word (64-bit) value that repre-
sents the number of 100-nanosecond intervals that have passed since January 1, 1601. This
means, of course, that if you wanted to write a simulation of English fleet movements as they
defeated the Spanish Armada in 1588, the TFileTime type would be a wholly inappropriate
way to keep track of time. . . but we digress.

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

191

Because the TFileTime type is 64 bits in size, you can typecast a TFileTime to an
Int64 type in order to perform arithmetic on TFileTime values. The following code
demonstrates how to quickly tell whether one TFileTime is greater than another:

if Int64(UserTime) > Int64(KernelTime) then Beep;

TIP

In order to help you work with TFileTime values in a manner more native to Delphi, the fol-
lowing functions allow you to convert back and forth between TFileTime and TDateTime
types:

function FileTimeToDateTime(FileTime: TFileTime): TDateTime;
var
SysTime: TSystemTime;

begin
if not FileTimeToSystemTime(FileTime, SysTime) then
raise EConvertError.CreateFmt(‘FileTimeToSystemTime failed. ‘ +
‘Error code %d’, [GetLastError]);

with SysTime do
Result := EncodeDate(wYear, wMonth, wDay) +
EncodeTime(wHour, wMinute, wSecond, wMilliseconds)

end;

function DateTimeToFileTime(DateTime: TDateTime): TFileTime;
var
SysTime: TSystemTime;

08 chpt_05.qxd 11/19/01 12:14 PM Page 191

begin
with SysTime do
begin
DecodeDate(DateTime, wYear, wMonth, wDay);
DecodeTime(DateTime, wHour, wMinute, wSecond, wMilliseconds);
wDayOfWeek := DayOfWeek(DateTime);

end;
if not SystemTimeToFileTime(SysTime, Result) then
raise EConvertError.CreateFmt(‘SystemTimeToFileTime failed. ‘ +
+ ‘Error code %d’, [GetLastError]);

end;

Advanced Techniques

PART II
192

Remember that the GetThreadTimes() function is implemented only under Windows
NT/2000. The function always returns False when called under Windows 95 or 98.
Unfortunately, Windows 95/98 doesn’t provide any mechanism for retrieving thread-
timing information.

CAUTION

Managing Multiple Threads
As indicated earlier, although threads can solve a variety of programming problems, they’re
also likely to introduce new types of problems that you must deal with in your applications.
Most commonly, these problems revolve around multiple threads accessing global resources,
such as global variables or handles. Additionally, problems can arise when you need to ensure
that some event in one thread always occurs before or after some other event in another thread.
In this section, you learn how to tackle these problems by using the facilities provided by
Delphi for thread-local storage and those provided by the API for thread synchronization.

Thread-Local Storage
Because each thread represents a separate and distinct path of execution within a process, it
logically follows that you will at some point want to have a means for storing data associated
with each thread. There are three techniques for storing data unique to each thread: the first
and most straightforward involves local (stack-based) variables. Because each thread gets its
own stack, each thread executing within a single procedure or function will have its own copy
of local variables. The second technique is to store local information in your TThread descen-
dant object. Finally, you can also use Object Pascal’s threadvar reserved word to take advan-
tage of operating-system–level thread-local storage.

08 chpt_05.qxd 11/19/01 12:14 PM Page 192

TThread Storage
Storing pertinent data in the TThread descendant object should be your technique of choice for
thread-local storage. It’s both more straightforward and more efficient than using threadvar
(described later). To declare thread-local data in this manner, simply add it to the definition of
your TThread descendant, as shown here:

type
TMyThread = class(TThread)
private
FLocalInt: Integer;
FLocalStr: String;
.
.
.

end;

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

193

It’s about 10 times faster to access a field of an object than to access a threadvar vari-
able, so you should store your thread-specific data in your TThread descendant, if pos-
sible. Data that doesn’t need to exist for more than the lifetime of a particular
procedure or function should be stored in local variables because those are faster still
than the fields of a TThread object.

TIP

threadvar: API Thread-Local Storage
Earlier we mentioned that each thread is provided with its own stack for storing local variables,
whereas global data has to be shared by all threads within an application. For example, say you
have a procedure that sets or displays the value of a global variable. When you call the proce-
dure passing a text string, the global variable is set, and when you call the procedure passing
an empty string, the global variable is displayed. Such a procedure might look like this:

var
GlobalStr: String;

procedure SetShowStr(const S: String);
begin
if S = ‘’ then
MessageBox(0, PChar(GlobalStr), ‘The string is...’, MB_OK)

else
GlobalStr := S;

end;

08 chpt_05.qxd 11/19/01 12:14 PM Page 193

If this procedure is called from within the context of one thread only, there wouldn’t be any
problems. You’d call the procedure once to set the value of GlobalStr and call it again to dis-
play the value. However, consider what can happen if two or more threads call this procedure
at any given time. In such a case, it’s possible that one thread could call the procedure to set
the string and then get preempted by another thread that might also call the function to set the
string. By the time the operating system gives CPU time back to the first thread, the value of
GlobalStr for that thread will be hopelessly lost.

For situations such as these, Win32 provides a facility known as thread-local storage that
enables you to create separate copies of global variables for each running thread. Delphi nicely
encapsulates this functionality with the threadvar clause. Just declare any global variables you
want to exist separately for each thread within a threadvar (as opposed to var) clause, and the
work is done. A redeclaration of the GlobalStr variable is as simple as this:

threadvar
GlobalStr: String;

The unit shown in Listing 5.3 illustrates this very problem. It represents the main unit to a
Delphi application that contains only a button on a form. When the button is clicked, the proce-
dure is called to set and then to show GlobalStr. Next, another thread is created, and the value
internal to the thread is set and shown again. After the thread creation, the primary thread again
calls SetShowStr to display GlobalStr.

Try running this application with GlobalStr declared as a var and then as a threadvar. You’ll
see a difference in the output.

LISTING 5.3 The MAIN.PAS Unit for Thread-Local Storage Demo

unit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;

type
TMainForm = class(TForm)
Button1: TButton;
procedure Button1Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

Advanced Techniques

PART II
194

08 chpt_05.qxd 11/19/01 12:14 PM Page 194

LISTING 5.3 Continued

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

{ NOTE: Change GlobalStr from var to threadvar to see difference }
var
//threadvar
GlobalStr: string;

type
TTLSThread = class(TThread)
private
FNewStr: String;

protected
procedure Execute; override;

public
constructor Create(const ANewStr: String);

end;

procedure SetShowStr(const S: String);
begin
if S = ‘’ then
MessageBox(0, PChar(GlobalStr), ‘The string is...’, MB_OK)

else
GlobalStr := S;

end;

constructor TTLSThread.Create(const ANewStr: String);
begin
FNewStr := ANewStr;
inherited Create(False);

end;

procedure TTLSThread.Execute;
begin
FreeOnTerminate := True;
SetShowStr(FNewStr);
SetShowStr(‘’);

end;

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

195

08 chpt_05.qxd 11/19/01 12:14 PM Page 195

LISTING 5.3 Continued

procedure TMainForm.Button1Click(Sender: TObject);
begin
SetShowStr(‘Hello world’);
SetShowStr(‘’);
TTLSThread.Create(‘Dilbert’);
Sleep(100);
SetShowStr(‘’);

end;

end.

Advanced Techniques

PART II
196

The demo program calls the Win32 API Sleep() procedure after creating the thread.
Sleep() is declared as follows:

procedure Sleep(dwMilliseconds: DWORD); stdcall;

The Sleep() procedure tells the operating system that the current thread doesn’t
need any more CPU cycles for another dwMilliseconds milliseconds. Inserting this call
into the code has the effect of simulating system conditions where more multitasking
is occurring and introducing a bit more “randomness” into the application as to
which threads will be executing when.

It’s often acceptable to pass zero in the dwMilliseconds parameter. Although that
doesn’t prevent the current thread from executing for any specific amount of time, it
does cause the operating system to give CPU cycles to any waiting threads of equal or
greater priority.

Be careful of using Sleep() to work around mysterious timing problems. Sleep()
might work around a particular problem on your machine, but timing problems that
aren’t solved conclusively will pop up again on somebody else’s machine, especially
when the machine is significantly faster or slower or has a different number of
processors than your machine.

NOTE

Thread Synchronization
When working with multiple threads, you’ll often need to synchronize the access of threads to
some particular piece of data or resource. For example, suppose you have an application that
uses one thread to read a file into memory and another thread to count the number of charac-
ters in the file. It goes without saying that you can’t count all the characters in the file until the
entire file has been loaded into memory. However, because each operation occurs in its own

08 chpt_05.qxd 11/19/01 12:14 PM Page 196

thread, the operating system would like to treat them as two completely unrelated tasks. To fix
this problem, you must synchronize the two threads so that the counting thread doesn’t execute
until the loading thread finishes.

These are the types of problems that thread synchronization addresses, and Win32 provides a
variety of ways to synchronize threads. In this section, you’ll see examples of thread synchro-
nization techniques using critical sections, mutexes, semaphores, and events.

In order to examine these techniques, first take a look at a problem involving threads that need
to be synchronized. For the purpose of illustration, suppose you have an array of integers that
needs to be initialized with ascending values. You want to first go through the array and set the
values from 1 to 128 and then reinitialize the array with values from 128 to 255. You’ll then
display the final thread in a list box. An approach to this might be to perform the initializations
in two separate threads. Consider the code in Listing 5.4 for a unit that attempts to perform this
task.

LISTING 5.4 A Unit That Attempts to Initialize an Array in Threads

unit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;

type
TMainForm = class(TForm)
Button1: TButton;
ListBox1: TListBox;
procedure Button1Click(Sender: TObject);

private
procedure ThreadsDone(Sender: TObject);

end;

TFooThread = class(TThread)
protected
procedure Execute; override;

end;

var
MainForm: TMainForm;

implementation

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

197

08 chpt_05.qxd 11/19/01 12:14 PM Page 197

LISTING 5.4 Continued

{$R *.DFM}

const
MaxSize = 128;

var
NextNumber: Integer = 0;
DoneFlags: Integer = 0;
GlobalArray: array[1..MaxSize] of Integer;

function GetNextNumber: Integer;
begin
Result := NextNumber; // return global var
Inc(NextNumber); // inc global var

end;

procedure TFooThread.Execute;
var
i: Integer;

begin
OnTerminate := MainForm.ThreadsDone;
for i := 1 to MaxSize do
begin
GlobalArray[i] := GetNextNumber; // set array element
Sleep(5); // let thread intertwine

end;
end;

procedure TMainForm.ThreadsDone(Sender: TObject);
var
i: Integer;

begin
Inc(DoneFlags);
if DoneFlags = 2 then // make sure both threads finished
for i := 1 to MaxSize do
{ fill listbox with array contents }
Listbox1.Items.Add(IntToStr(GlobalArray[i]));

end;

procedure TMainForm.Button1Click(Sender: TObject);
begin
TFooThread.Create(False); // create threads
TFooThread.Create(False);

end;

end.

Advanced Techniques

PART II
198

08 chpt_05.qxd 11/19/01 12:14 PM Page 198

Because both threads will execute simultaneously, what happens is that the contents of the
array are corrupted as it’s initialized. As proof, take a look at the output of this code, as shown
in Figure 5.4.

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

199

FIGURE 5.4
Output from unsynchronized array initialization.

The solution to this problem is to synchronize the two threads as they access the global array
so that they don’t both dive in at the same time. You can take any of a number of valid
approaches to this problem.

Critical Sections
Critical sections provide one of the most straightforward ways to synchronize threads. A criti-
cal section is some section of code that allows for only one thread to execute through it at a
time. If you wrap the code used to initialize the array in a critical section, other threads will be
blocked from entering the code section until the first finishes.

Prior to using a critical section, you must initialize it using the InitializeCriticalSection()
API procedure, which is declared as follows:

procedure InitializeCriticalSection(var lpCriticalSection:
TRTLCriticalSection); stdcall;

lpCriticalSection is a TRTLCriticalSection record that’s passed by reference. The exact
definition of TRTLCriticalSection is unimportant because you’ll rarely (if ever) actually look
at the contents of one. You’ll pass an uninitialized record in the lpCriticalSection parameter,
and the record will be filled by the procedure.

08 chpt_05.qxd 11/19/01 12:14 PM Page 199

When the record is filled, you can create a critical section in your application by wrapping
some block of code with calls to EnterCriticalSection() and LeaveCriticalSection().
These procedures are declared as follows:

procedure EnterCriticalSection(var lpCriticalSection:
TRTLCriticalSection); stdcall;

procedure LeaveCriticalSection(var lpCriticalSection:
TRTLCriticalSection); stdcall;

As you might guess, the lpCriticalSection parameter you pass these guys is the same one
that’s filled in by the InitializeCriticalSection() procedure.

When you’re finished with the TRTLCriticalSection record, you should clean up by calling
the DeleteCriticalSection() procedure, which is declared as follows:

procedure DeleteCriticalSection(var lpCriticalSection:
TRTLCriticalSection); stdcall;

Listing 5.5 demonstrates the technique for synchronizing the array-initialization threads with
critical sections.

LISTING 5.5 Using Critical Sections

unit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;

type
TMainForm = class(TForm)
Button1: TButton;

Advanced Techniques

PART II
200

Microsoft deliberately obscures the structure of the TRTLCriticalSection record
because the contents vary from one hardware platform to another and tinkering
with the contents of this structure can potentially wreak havoc on your process. On
Intel-based systems, the critical section structure contains a counter, a field containing
the current thread handle, and (potentially) a handle of a system event. On Alpha
hardware, the counter is replaced with an Alpha-CPU data structure called a spinlock,
which is more efficient than the Intel solution.

NOTE

08 chpt_05.qxd 11/19/01 12:14 PM Page 200

LISTING 5.5 Continued

ListBox1: TListBox;
procedure Button1Click(Sender: TObject);

private
procedure ThreadsDone(Sender: TObject);

end;

TFooThread = class(TThread)
protected
procedure Execute; override;

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

const
MaxSize = 128;

var
NextNumber: Integer = 0;
DoneFlags: Integer = 0;
GlobalArray: array[1..MaxSize] of Integer;
CS: TRTLCriticalSection;

function GetNextNumber: Integer;
begin
Result := NextNumber; // return global var
inc(NextNumber); // inc global var

end;

procedure TFooThread.Execute;
var
i: Integer;

begin
OnTerminate := MainForm.ThreadsDone;
EnterCriticalSection(CS); // CS begins here
for i := 1 to MaxSize do
begin
GlobalArray[i] := GetNextNumber; // set array element
Sleep(5); // let thread intertwine

end;
LeaveCriticalSection(CS); // CS ends here

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

201

08 chpt_05.qxd 11/19/01 12:14 PM Page 201

LISTING 5.5 Continued

end;

procedure TMainForm.ThreadsDone(Sender: TObject);
var
i: Integer;

begin
inc(DoneFlags);
if DoneFlags = 2 then
begin // make sure both threads finished
for i := 1 to MaxSize do
{ fill listbox with array contents }
Listbox1.Items.Add(IntToStr(GlobalArray[i]));

DeleteCriticalSection(CS);
end;

end;

procedure TMainForm.Button1Click(Sender: TObject);
begin
InitializeCriticalSection(CS);
TFooThread.Create(False); // create threads
TFooThread.Create(False);

end;

end.

After the first thread passes through the call to EnterCriticalSection(), all other threads are
prevented from entering that block of code. The next thread that comes along to that line of
code is put to sleep until the first thread calls LeaveCriticalSection(). At that point, the sec-
ond thread is awakened and allowed to take control of the critical section. Figure 5.5 shows
the output of this application when the threads are synchronized.

Mutexes
Mutexes work very much like critical sections except for two key differences: First, mutexes
can be used to synchronize threads across process boundaries. Second, mutexes can be given a
string name, and additional handles to existing mutex objects can be created by referencing
that name.

Advanced Techniques

PART II
202

08 chpt_05.qxd 11/19/01 12:14 PM Page 202

FIGURE 5.5
Output from synchronized array initialization.

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

203

Semantics aside, the biggest difference between critical sections and event objects
such as mutexes is performance: Critical sections are very lightweight—as few as
10–15 clock cycles to enter or leave the critical section when there are no thread colli-
sions. As soon as there is a thread collision for that critical section, the system creates
an event object (a mutex, probably). The cost of using event objects such as mutexes
is that it requires a roundtrip into the kernel, which requires a process context switch
and a change of ring levels, which piles up to 400 to 600 clock cycles each way. All
this overhead is incurred even if your app doesn’t currently have multiple threads, or
if no other threads are contending for the resource you’re protecting.

TIP

The function used to create a mutex is appropriately called CreateMutex(). This function is
declared as follows:

function CreateMutex(lpMutexAttributes: PSecurityAttributes;
bInitialOwner: BOOL; lpName: PChar): THandle; stdcall;

lpMutexAttributes is a pointer to a TSecurityAttributes record. It’s common to pass nil in
this parameter, in which case the default security attributes will be used.

bInitialOwner indicates whether the thread creating the mutex should be considered the
owner of the mutex when it’s created. If this parameter is False, the mutex is unowned.

lpName is the name of the mutex. This parameter can be nil if you don’t want to name the
mutex. If this parameter is non-nil, the function will search the system for an existing mutex

08 chpt_05.qxd 11/19/01 12:14 PM Page 203

with the same name. If an existing mutex is found, a handle to the existing mutex is returned.
Otherwise, a handle to a new mutex is returned.

When you’re finished using a mutex, you should close it using the CloseHandle() API
function.

Listing 5.6 again demonstrates the technique for synchronizing the array-initialization threads,
except this time it uses mutexes.

LISTING 5.6 Using Mutexes for Synchronization

unit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;

type
TMainForm = class(TForm)
Button1: TButton;
ListBox1: TListBox;
procedure Button1Click(Sender: TObject);

private
procedure ThreadsDone(Sender: TObject);

end;

TFooThread = class(TThread)
protected
procedure Execute; override;

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

const
MaxSize = 128;

var
NextNumber: Integer = 0;
DoneFlags: Integer = 0;

Advanced Techniques

PART II
204

08 chpt_05.qxd 11/19/01 12:14 PM Page 204

LISTING 5.6 Continued

GlobalArray: array[1..MaxSize] of Integer;
hMutex: THandle = 0;

function GetNextNumber: Integer;
begin
Result := NextNumber; // return global var
Inc(NextNumber); // inc global var

end;

procedure TFooThread.Execute;
var
i: Integer;

begin
FreeOnTerminate := True;
OnTerminate := MainForm.ThreadsDone;
if WaitForSingleObject(hMutex, INFINITE) = WAIT_OBJECT_0 then
begin
for i := 1 to MaxSize do
begin
GlobalArray[i] := GetNextNumber; // set array element
Sleep(5); // let thread intertwine

end;
end;
ReleaseMutex(hMutex);

end;

procedure TMainForm.ThreadsDone(Sender: TObject);
var
i: Integer;

begin
Inc(DoneFlags);
if DoneFlags = 2 then // make sure both threads finished
begin
for i := 1 to MaxSize do
{ fill listbox with array contents }
Listbox1.Items.Add(IntToStr(GlobalArray[i]));

CloseHandle(hMutex);
end;

end;

procedure TMainForm.Button1Click(Sender: TObject);
begin
hMutex := CreateMutex(nil, False, nil);
TFooThread.Create(False); // create threads

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

205

08 chpt_05.qxd 11/19/01 12:14 PM Page 205

LISTING 5.6 Continued

TFooThread.Create(False);
end;

end.

You’ll notice that in this case the WaitForSingleObject() function is used to control thread
entry into the synchronized block of code. This function is declared as follows:

function WaitForSingleObject(hHandle: THandle; dwMilliseconds: DWORD):
DWORD; stdcall;

The purpose of this function is to sleep the current thread up to dwMilliseconds milliseconds
until the API object specified in the hHandle parameter becomes signaled. Signaled means dif-
ferent things for different objects. A mutex becomes signaled when it’s not owned by a thread,
whereas a process, for example, becomes signaled when it terminates. Apart from an actual
period of time, the dwMilliseconds parameter can also have the value 0, which means to
check the status of the object and return immediately, or INFINITE, which means to wait for-
ever for the object to become signaled. The return value of this function can be any one of the
values shown in Table 5.3.

TABLE 5.3 WAIT Constants Used by WaitForSingleObject() API Function

Value Meaning

WAIT_ABANDONED The specified object is a mutex object, and the thread owning the
mutex was exited before it freed the mutex. This circumstance is
referred to as an abandoned mutex; in such a case, ownership of the
mutex object is granted to the calling thread, and the mutex is set to
nonsignaled.

WAIT_OBJECT_0 The state of the specified object is signaled.

WAIT_TIMEOUT The timeout interval elapsed, and the object’s state is nonsignaled.

Again, when a mutex isn’t owned by a thread, it’s in the signaled state. The first thread to call
WaitForSingleObject() on this mutex is given ownership of the mutex, and the state of the
mutex object is set to nonsignaled. The thread’s ownership of the mutex is severed when the
thread calls the ReleaseMutex() function, passing the mutex handle as the parameter. At that
point, the state of the mutex again becomes signaled.

Advanced Techniques

PART II
206

08 chpt_05.qxd 11/19/01 12:14 PM Page 206

Semaphores
Another technique for thread synchronization involves using semaphore API objects. Semaphores
build on the functionality of mutexes while adding one important feature: They offer the capa-
bility of resource counting so that a predetermined number of threads can enter synchronized
pieces of code at one time. The function used to create a semaphore is CreateSemaphore(),
and it’s declared as follows:

function CreateSemaphore(lpSemaphoreAttributes: PSecurityAttributes;
lInitialCount, lMaximumCount: Longint; lpName: PChar): THandle;stdcall;

Like CreateMutex(), the first parameter to CreateSemaphore() is a pointer to a
TSecurityAttributes record to which you can pass Nil for the defaults.

lInitialCount is the initial count of the semaphore object. This is a number between 0 and
lMaximumCount. A semaphore is signaled as long as this parameter is greater than zero. The
count of a semaphore is decremented whenever WaitForSingleObject() (or one of the other
wait functions) releases a thread. A semaphore’s count is increased by using the
ReleaseSemaphore() function.

lMaximumCount specifies the maximum count value of the semaphore object. If the semaphore
is used to count some resources, this number should represent the total number of resources
available.

lpName is the name of the semaphore. This parameter behaves the same as the parameter of the
same name in CreateMutex().

Listing 5.7 demonstrates using semaphores to perform synchronization of the array-initializa-
tion problem.

LISTING 5.7 Using Semaphores for Synchronization

unit Main;

interface

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

207

In addition to WaitForSingleObject(), the Win32 API also has functions called
WaitForMultipleObjects() and MsgWaitForMultipleObjects(), which enable you to
wait for the state of one or more objects to become signaled. These functions are
documented in the Win32 API online help.

NOTE

08 chpt_05.qxd 11/19/01 12:14 PM Page 207

LISTING 5.7 Continued

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;

type
TMainForm = class(TForm)
Button1: TButton;
ListBox1: TListBox;
procedure Button1Click(Sender: TObject);

private
procedure ThreadsDone(Sender: TObject);

end;

TFooThread = class(TThread)
protected
procedure Execute; override;

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

const
MaxSize = 128;

var
NextNumber: Integer = 0;
DoneFlags: Integer = 0;
GlobalArray: array[1..MaxSize] of Integer;
hSem: THandle = 0;

function GetNextNumber: Integer;
begin
Result := NextNumber; // return global var
Inc(NextNumber); // inc global var

end;

procedure TFooThread.Execute;

Advanced Techniques

PART II
208

08 chpt_05.qxd 11/19/01 12:14 PM Page 208

LISTING 5.7 Continued

var
i: Integer;
WaitReturn: DWORD;

begin
OnTerminate := MainForm.ThreadsDone;
WaitReturn := WaitForSingleObject(hSem, INFINITE);
if WaitReturn = WAIT_OBJECT_0 then
begin
for i := 1 to MaxSize do
begin
GlobalArray[i] := GetNextNumber; // set array element
Sleep(5); // let thread intertwine

end;
end;
ReleaseSemaphore(hSem, 1, nil);

end;

procedure TMainForm.ThreadsDone(Sender: TObject);
var
i: Integer;

begin
Inc(DoneFlags);
if DoneFlags = 2 then // make sure both threads finished
begin
for i := 1 to MaxSize do
{ fill listbox with array contents }
Listbox1.Items.Add(IntToStr(GlobalArray[i]));

CloseHandle(hSem);
end;

end;

procedure TMainForm.Button1Click(Sender: TObject);
begin
hSem := CreateSemaphore(nil, 1, 1, nil);
TFooThread.Create(False); // create threads
TFooThread.Create(False);

end;

end.

Because you allow only one thread to enter the synchronized portion of code, the maximum
count for the semaphore is 1 in this case.

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

209

08 chpt_05.qxd 11/19/01 12:14 PM Page 209

The ReleaseSemaphore() function is used to increase the count for the semaphore. Notice that
this function is a bit more involved than its cousin, ReleaseMutex(). The declaration for
ReleaseSemaphore() is as follows:

function ReleaseSemaphore(hSemaphore: THandle; lReleaseCount: Longint;
lpPreviousCount: Pointer): BOOL; stdcall;

The lReleaseCount parameter enables you to specify the number by which the count of the
semaphore will be increased. The old count will be stored in the longint pointed to by the
lpPreviousCount parameter if its value is not Nil. A subtle implication of this capability is
that a semaphore is never really owned by any thread in particular. For example, suppose that
the maximum count of a semaphore is 10, and 10 threads call WaitForSingleObject() to set
the count of the thread to 0 and put the thread in a nonsignaled state. All it takes is one of those
threads to call ReleaseSemaphore() with 10 as the lReleaseCount parameter in order not only
to make the thread signaled again, but also to increase the count back to 10. This powerful
capability can introduce some hard-to-track-down bugs into your applications, so you should
use it with care.

Be sure to use the CloseHandle() function to free the semaphore handle allocated with
CreateSemaphore().

A Sample Multithreaded Application
To demonstrate the usage of TThread objects within the context of a real-world application,
this section focuses on creating a file-search application that performs its searches in a special-
ized thread. The project is called DelSrch, which stands for Delphi Search, and the main form
for this utility is shown in Figure 5.6.

Advanced Techniques

PART II
210

FIGURE 5.6
The Main form for the DelSrch project.

08 chpt_05.qxd 11/19/01 12:14 PM Page 210

The application works like this. The user chooses a path through which to search and provides
a file specification to indicate the types of files to be searched. The user also enters a token to
search for in the appropriate edit control. Some option check boxes on one side of the form
enable the user to tailor the application to suit his needs for a particular search. When the user
clicks the Search button, a search thread is created and the appropriate search information—
such as token, path, and file specification—is passed to the TThread descendant object. When
the search thread finds the search token in certain files, information is appended to the list box.
Finally, if the user double-clicks a file in the list box, he can browse it with a text editor or
view it from its desktop association.

Although this is a fairly full-featured application, we’ll focus mainly on explaining the applica-
tion’s key search features and how they relate to multithreading.

The User Interface
The main unit for the application is called Main.pas. Shown in Listing 5.8, this unit is respon-
sible for managing the main form and the overall user interface. In particular, this unit contains
the logic for owner-drawing the list box, invoking a viewer for files in the list box, invoking
the search thread, printing the list box contents, and reading and writing UI settings to an INI
file.

LISTING 5.8 The Main.pas Unit for the DelSrch Project

unit Main;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, Buttons, ExtCtrls, Menus, SrchIni,
SrchU, ComCtrls, AppEvnts;

type
TMainForm = class(TForm)
lbFiles: TListBox;
StatusBar: TStatusBar;
pnlControls: TPanel;
PopupMenu: TPopupMenu;
FontDialog: TFontDialog;
pnlOptions: TPanel;
gbParams: TGroupBox;
LFileSpec: TLabel;
LToken: TLabel;
lPathName: TLabel;

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

211

08 chpt_05.qxd 11/19/01 12:14 PM Page 211

LISTING 5.8 Continued

edtFileSpec: TEdit;
edtToken: TEdit;
btnPath: TButton;
edtPathName: TEdit;
gbOptions: TGroupBox;
cbCaseSensitive: TCheckBox;
cbFileNamesOnly: TCheckBox;
cbRecurse: TCheckBox;
cbRunFromAss: TCheckBox;
pnlButtons: TPanel;
btnSearch: TBitBtn;
btnClose: TBitBtn;
btnPrint: TBitBtn;
btnPriority: TBitBtn;
Font1: TMenuItem;
Clear1: TMenuItem;
Print1: TMenuItem;
N1: TMenuItem;
Exit1: TMenuItem;
ApplicationEvents: TApplicationEvents;
procedure btnSearchClick(Sender: TObject);
procedure btnPathClick(Sender: TObject);
procedure lbFilesDrawItem(Control: TWinControl; Index: Integer;
Rect: TRect; State: TOwnerDrawState);
procedure Font1Click(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure btnPrintClick(Sender: TObject);
procedure btnCloseClick(Sender: TObject);
procedure lbFilesDblClick(Sender: TObject);
procedure FormResize(Sender: TObject);
procedure btnPriorityClick(Sender: TObject);
procedure edtTokenChange(Sender: TObject);
procedure Clear1Click(Sender: TObject);
procedure ApplicationEventsHint(Sender: TObject);

private
procedure ReadIni;
procedure WriteIni;

public
Running: Boolean;
SearchPri: Integer;
SearchThread: TSearchThread;
procedure EnableSearchControls(Enable: Boolean);

end;

Advanced Techniques

PART II
212

08 chpt_05.qxd 11/19/01 12:14 PM Page 212

LISTING 5.8 Continued

var
MainForm: TMainForm;

implementation

{$R *.DFM}

uses Printers, ShellAPI, StrUtils, FileCtrl, PriU;

procedure PrintStrings(Strings: TStrings);
{ This procedure prints all of the strings in the Strings parameter }
var
Prn: TextFile;
I: Integer;

begin
if Strings.Count = 0 then // Are there strings?
raise Exception.Create(‘No text to print!’);

AssignPrn(Prn); // assign Prn to printer
try
Rewrite(Prn); // open printer
try
for I := 0 to Strings.Count - 1 do // iterate over all strings
WriteLn(Prn, Strings.Strings[I]); // write to printer

finally
CloseFile(Prn); // close printer

end;
except
on EInOutError do
MessageDlg(‘Error Printing text.’, mtError, [mbOk], 0);

end;
end;

procedure TMainForm.EnableSearchControls(Enable: Boolean);
{ Enables or disables certain controls so options can’t be modified }
{ while search is executing. }
begin
btnSearch.Enabled := Enable; // enable/disable proper controls
cbRecurse.Enabled := Enable;
cbFileNamesOnly.Enabled := Enable;
cbCaseSensitive.Enabled := Enable;
btnPath.Enabled := Enable;
edtPathName.Enabled := Enable;
edtFileSpec.Enabled := Enable;
edtToken.Enabled := Enable;

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

213

08 chpt_05.qxd 11/19/01 12:14 PM Page 213

LISTING 5.8 Continued

Running := not Enable; // set Running flag
edtTokenChange(nil);
with btnClose do
begin
if Enable then
begin // set props of Close/Stop button
Caption := ‘&Close’;
Hint := ‘Close Application’;

end
else begin
Caption := ‘&Stop’;
Hint := ‘Stop Searching’;

end;
end;

end;

procedure TMainForm.btnSearchClick(Sender: TObject);
{ Called when Search button is clicked. Invokes search thread. }
begin
EnableSearchControls(False); // disable controls
lbFiles.Clear; // clear listbox
{ start thread }
SearchThread := TSearchThread.Create(cbCaseSensitive.Checked,

cbFileNamesOnly.Checked, cbRecurse.Checked, edtToken.Text,
edtPathName.Text, edtFileSpec.Text);

end;

procedure TMainForm.edtTokenChange(Sender: TObject);
begin
btnSearch.Enabled := not Running and (edtToken.Text <> ‘’);

end;

procedure TMainForm.btnPathClick(Sender: TObject);
{ Called when Path button is clicked. Allows user to choose new path. }
var
ShowDir: string;

begin
ShowDir := edtPathName.Text;
if SelectDirectory(‘Choose a search path...’, ‘’, ShowDir) then
edtPathName.Text := ShowDir;

end;

procedure TMainForm.lbFilesDrawItem(Control: TWinControl;
Index: Integer; Rect: TRect; State: TOwnerDrawState);

Advanced Techniques

PART II
214

08 chpt_05.qxd 11/19/01 12:14 PM Page 214

LISTING 5.8 Continued

{ Called in order to owner draw listbox. }
var
CurStr: string;

begin
with lbFiles do
begin
CurStr := Items.Strings[Index];
Canvas.FillRect(Rect); // clear out rect
if not cbFileNamesOnly.Checked then // if not filename only...
{ if current line is filename... }
if (Pos(‘File ‘, CurStr) = 1) and
(CurStr[Length(CurStr)] = ‘:’) then
with Canvas.Font do
begin
Style := [fsUnderline]; // underline font
Color := clRed; // paint red

end
else
Rect.Left := Rect.Left + 15; // otherwise, indent

DrawText(Canvas.Handle, PChar(CurStr), Length(CurStr), Rect,
DT_SINGLELINE);

end;
end;

procedure TMainForm.Font1Click(Sender: TObject);
{ Allows user to pick new font for listbox }
begin
{ Pick new listbox font }
if FontDialog.Execute then
lbFiles.Font := FontDialog.Font;

end;

procedure TMainForm.FormDestroy(Sender: TObject);
{ OnDestroy event handler for form }
begin
WriteIni;

end;

procedure TMainForm.FormCreate(Sender: TObject);
{ OnCreate event handler for form }
begin
ReadIni; // read INI file

end;

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

215

08 chpt_05.qxd 11/19/01 12:14 PM Page 215

LISTING 5.8 Continued

procedure TMainForm.btnPrintClick(Sender: TObject);
{ Called when Print button is clicked. }
begin
if MessageDlg(‘Send search results to printer?’, mtConfirmation,
[mbYes, mbNo], 0) = mrYes then
PrintStrings(lbFiles.Items);

end;

procedure TMainForm.btnCloseClick(Sender: TObject);
{ Called to stop thread or close application }
begin
// if thread is running then terminate thread
if Running then SearchThread.Terminate
// otherwise close app
else Close;

end;

procedure TMainForm.lbFilesDblClick(Sender: TObject);
{ Called when user double-clicks in listbox. Invokes viewer for }
{ highlighted file. }
var
ProgramStr, FileStr: string;
RetVal: THandle;

begin
{ if user clicked on a file.. }
if (Pos(‘File ‘, lbFiles.Items[lbFiles.ItemIndex]) = 1) then
begin
{ load text editor from INI file. Notepad is default. }
ProgramStr := SrchIniFile.ReadString(‘Defaults’, ‘Editor’, ‘notepad’);
FileStr := lbFiles.Items[lbFiles.ItemIndex]; // Get selected file
FileStr := Copy(FileStr, 6, Length(FileStr) - 5); // Remove prefix
if FileStr[Length(FileStr)] = ‘:’ then // Remove “:”
DecStrLen(FileStr, 1);

if cbRunFromAss.Checked then
{ Run file from shell association }
RetVal := ShellExecute(Handle, ‘open’, PChar(FileStr), nil, nil,
SW_SHOWNORMAL)

else
{ View file using text editor }
RetVal := ShellExecute(Handle, ‘open’, PChar(ProgramStr),
PChar(FileStr), nil, SW_SHOWNORMAL);

{ Check for error }
if RetVal < 32 then RaiseLastWin32Error;

end;
end;

Advanced Techniques

PART II
216

08 chpt_05.qxd 11/19/01 12:14 PM Page 216

LISTING 5.8 Continued

procedure TMainForm.FormResize(Sender: TObject);
{ OnResize event handler. Centers controls in form. }
begin
{ divide status bar into two panels with a 1/3 - 2/3 split }
with StatusBar do
begin
Panels[0].Width := Width div 3;
Panels[1].Width := Width * 2 div 3;

end;
end;

procedure TMainForm.btnPriorityClick(Sender: TObject);
{ Show thread priority form }
begin
ThreadPriWin.Show;

end;

procedure TMainForm.ReadIni;
{ Reads default values from Registry }
begin
with SrchIniFile do
begin
edtPathName.Text := ReadString(‘Defaults’, ‘LastPath’, ‘C:\’);
edtFileSpec.Text := ReadString(‘Defaults’, ‘LastFileSpec’, ‘*.*’);
edtToken.Text := ReadString(‘Defaults’, ‘LastToken’, ‘’);
cbFileNamesOnly.Checked := ReadBool(‘Defaults’, ‘FNamesOnly’, False);
cbCaseSensitive.Checked := ReadBool(‘Defaults’, ‘CaseSens’, False);
cbRecurse.Checked := ReadBool(‘Defaults’, ‘Recurse’, False);
cbRunFromAss.Checked := ReadBool(‘Defaults’, ‘RunFromAss’, False);
Left := ReadInteger(‘Position’, ‘Left’, Left);
Top := ReadInteger(‘Position’, ‘Top’, Top);
Width := ReadInteger(‘Position’, ‘Width’, Width);
Height := ReadInteger(‘Position’, ‘Height’, Height);

end;
end;

procedure TMainForm.WriteIni;
{ writes current settings back to Registry }
begin
with SrchIniFile do
begin
WriteString(‘Defaults’, ‘LastPath’, edtPathName.Text);
WriteString(‘Defaults’, ‘LastFileSpec’, edtFileSpec.Text);

x’Defaults’, ‘LastToken’, edtToken.Text);

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

217

08 chpt_05.qxd 11/19/01 12:14 PM Page 217

LISTING 5.8 Continued

WriteBool(‘Defaults’, ‘CaseSens’, cbCaseSensitive.Checked);
WriteBool(‘Defaults’, ‘FNamesOnly’, cbFileNamesOnly.Checked);
WriteBool(‘Defaults’, ‘Recurse’, cbRecurse.Checked);
WriteBool(‘Defaults’, ‘RunFromAss’, cbRunFromAss.Checked);
WriteInteger(‘Position’, ‘Left’, Left);
WriteInteger(‘Position’, ‘Top’, Top);
WriteInteger(‘Position’, ‘Width’, Width);
WriteInteger(‘Position’, ‘Height’, Height);

end;
end;

procedure TMainForm.Clear1Click(Sender: TObject);
begin
lbFiles.Items.Clear;

end;

procedure TMainForm.ApplicationEventsHint(Sender: TObject);
{ OnHint event handler for Application }
begin
{ Display application hints on status bar }
StatusBar.Panels[0].Text := Application.Hint;

end;

end.

Several things worth mentioning happen in this unit. First, you’ll notice the fairly small
PrintStrings() procedure that’s used to send the contents of TStrings to the printer. To
accomplish this, the procedure takes advantage of Delphi’s AssignPrn() standard procedure,
which assigns a TextFile variable to the printer. That way, any text written to the TextFile is
automatically written to the printer. When you’re finished writing to the printer, be sure to use
the CloseFile() procedure to close the connection to the printer.

Also of interest is the use of the ShellExecute() Win32 API procedure to launch a viewer for
a file that will be shown in the list box. ShellExecute() not only enables you to invoke exe-
cutable programs but also to invoke associations for registered file extensions. For example, if
you try to invoke a file with a .pas extension using ShellExecute(), it will automatically load
Delphi to view the file.

Advanced Techniques

PART II
218

08 chpt_05.qxd 11/19/01 12:14 PM Page 218

The Search Thread
The searching engine is contained within a unit called SrchU.pas, which is shown in Listing
5.9. This unit does a number of interesting things, including copying an entire file into a string,
recursing subdirectories, and communicating information back to the main form.

LISTING 5.9 The SrchU.pas Unit

unit SrchU;

interface

uses Classes, StdCtrls;

type
TSearchThread = class(TThread)
private
LB: TListbox;
CaseSens: Boolean;
FileNames: Boolean;
Recurse: Boolean;
SearchStr: string;
SearchPath: string;
FileSpec: string;
AddStr: string;
FSearchFile: string;
procedure AddToList;
procedure DoSearch(const Path: string);
procedure FindAllFiles(const Path: string);
procedure FixControls;

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

219

If ShellExecute() returns a value indicating an error, the application calls
RaiseLastWin32Error(). This procedure, located in the SysUtils unit, calls the
GetLastError() API function and Delphi’s SysErrorMessage() in order to obtain
more detailed information about the error and to format that information into a
string. You can use RaiseLastWin32Error() in this manner in your own applications if
you want your users to obtain detailed error messages on API failures.

TIP

08 chpt_05.qxd 11/19/01 12:14 PM Page 219

LISTING 5.9 Continued

procedure ScanForStr(const FName: string; var FileStr: string);
procedure SearchFile(const FName: string);
procedure SetSearchFile;

protected
procedure Execute; override;

public
constructor Create(CaseS, FName, Rec: Boolean; const Str, SPath,
FSpec: string);

destructor Destroy; override;
end;

implementation

uses SysUtils, StrUtils, Windows, Forms, Main;

constructor TSearchThread.Create(CaseS, FName, Rec: Boolean; const Str,
SPath, FSpec: string);

begin
CaseSens := CaseS;
FileNames := FName;
Recurse := Rec;
SearchStr := Str;
SearchPath := AddBackSlash(SPath);
FileSpec := FSpec;
inherited Create(False);

end;

destructor TSearchThread.Destroy;
begin
FSearchFile := ‘’;
Synchronize(SetSearchFile);
Synchronize(FixControls);
inherited Destroy;

end;

procedure TSearchThread.Execute;
begin
FreeOnTerminate := True; // set up all the fields
LB := MainForm.lbFiles;
Priority := TThreadPriority(MainForm.SearchPri);
if not CaseSens then SearchStr := UpperCase(SearchStr);
FindAllFiles(SearchPath); // process current directory
if Recurse then // if subdirs, then...
DoSearch(SearchPath); // recurse, otherwise...

end;

Advanced Techniques

PART II
220

08 chpt_05.qxd 11/19/01 12:14 PM Page 220

LISTING 5.9 Continued

procedure TSearchThread.FixControls;
{ Enables controls in main form. Must be called through Synchronize }
begin
MainForm.EnableSearchControls(True);

end;

procedure TSearchThread.SetSearchFile;
{ Updates status bar with filename. Must be called through Synchronize }
begin
MainForm.StatusBar.Panels[1].Text := FSearchFile;

end;

procedure TSearchThread.AddToList;
{ Adds string to main listbox. Must be called through Synchronize }
begin
LB.Items.Add(AddStr);

end;

procedure TSearchThread.ScanForStr(const FName: string;
var FileStr: string);

{ Scans a FileStr of file FName for SearchStr }
var
Marker: string[1];
FoundOnce: Boolean;
FindPos: integer;

begin
FindPos := Pos(SearchStr, FileStr);
FoundOnce := False;
while (FindPos <> 0) and not Terminated do
begin
if not FoundOnce then
begin
{ use “:” only if user doesn’t choose “filename only” }
if FileNames then
Marker := ‘’

else
Marker := ‘:’;

{ add file to listbox }
AddStr := Format(‘File %s%s’, [FName, Marker]);
Synchronize(AddToList);
FoundOnce := True;

end;
{ don’t search for same string in same file if filenames only }
if FileNames then Exit;

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

221

08 chpt_05.qxd 11/19/01 12:14 PM Page 221

LISTING 5.9 Continued

{ Add line if not filename only }
AddStr := GetCurLine(FileStr, FindPos);
Synchronize(AddToList);
FileStr := Copy(FileStr, FindPos + Length(SearchStr),
Length(FileStr));

FindPos := Pos(SearchStr, FileStr);
end;

end;

procedure TSearchThread.SearchFile(const FName: string);
{ Searches file FName for SearchStr }
var
DataFile: THandle;
FileSize: Integer;
SearchString: string;

begin
FSearchFile := FName;
Synchronize(SetSearchFile);
try
DataFile := FileOpen(FName, fmOpenRead or fmShareDenyWrite);
if DataFile = 0 then raise Exception.Create(‘’);
try
{ set length of search string }
FileSize := GetFileSize(DataFile, nil);
SetLength(SearchString, FileSize);
{ Copy file data to string }
FileRead(DataFile, Pointer(SearchString)^, FileSize);

finally
CloseHandle(DataFile);

end;
if not CaseSens then SearchString := UpperCase(SearchString);
ScanForStr(FName, SearchString);

except
on Exception do
begin
AddStr := Format(‘Error reading file: %s’, [FName]);
Synchronize(AddToList);

end;
end;

end;

procedure TSearchThread.FindAllFiles(const Path: string);
{ procedure searches Path subdir for files matching filespec }
var
SR: TSearchRec;

Advanced Techniques

PART II
222

08 chpt_05.qxd 11/19/01 12:14 PM Page 222

LISTING 5.9 Continued

begin
{ find first file matching spec }
if FindFirst(Path + FileSpec, faArchive, SR) = 0 then
try
repeat
SearchFile(Path + SR.Name); // process file

until (FindNext(SR) <> 0) or Terminated; // find next file
finally
SysUtils.FindClose(SR); // clean up

end;
end;

procedure TSearchThread.DoSearch(const Path: string);
{ procedure recurses through a subdirectory tree starting at Path }
var
SR: TSearchRec;

begin
{ look for directories }
if FindFirst(Path + ‘*.*’, faDirectory, SR) = 0 then
try
repeat
{ if it’s a directory and not ‘.’ or ‘..’ then... }
if ((SR.Attr and faDirectory) <> 0) and (SR.Name[1] <> ‘.’) and
not Terminated then

begin
FindAllFiles(Path + SR.Name + ‘\’); // process directory
DoSearch(Path + SR.Name + ‘\’); // recurse

end;
until (FindNext(SR) <> 0) or Terminated; // find next directory

finally
SysUtils.FindClose(SR); // clean up

end;
end;

end.

When created, this thread first calls its FindAllFiles() method. This method uses
FindFirst() and FindNext() to search for all files in the current directory matching the file
specification indicated by the user. If the user has chosen to recurse subdirectories, the
DoSearch() method is then called in order to traverse down a directory tree. This method again
makes use of FindFirst() and FindNext() to find directories, but the twist is that it calls
itself recursively in order to traverse the tree. As each directory is found, FindAllFiles() is
called to process all matching files in the directory.

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

223

08 chpt_05.qxd 11/19/01 12:14 PM Page 223

To process each file, you’ll notice that the algorithm for searching for a token within a file
involves using the TMemMapFile object, which encapsulates a Win32 memory-mapped file. This
object is discussed in detail in the electronic version of Delphi 5 Developer’s Guide in Chapter
12, “Working with Files,” which is on this book’s CD-ROM, but for now you can just assume
that this provides an easy way to map the contents of a file into memory. The entire algorithm
works like this:

1. When a file matching the file spec is found by the FindAllFiles() method, the
SearchFile() method is called and the file contents are copied into a string.

2. The ScanForStr() method is called for each file-string. ScanForStr() searches for
occurrences of the search token within each string.

3. When an occurrence is found, the filename and/or the line of text is added to the list box.
The line of text is added only when the user unchecks the File Names Only check box.

Note that all the methods in the TSearchThread object periodically check the status of the
StopIt flag (which is tripped when the thread is told to stop) and the Terminated flag (which
is tripped when the TThread object is to terminate).

Advanced Techniques

PART II
224

The recursion algorithm used by the DoSearch() method is a standard technique for
traversing a directory tree. Because recursive algorithms are notoriously difficult to
debug, the smart programmer will make use of ones that are already known to work.
It’s a good idea to save this method so that you can use it with other applications in
the future.

TIP

Remember that any methods within a TThread object that modify the application’s
user interface in any way must be called through the Synchronize() method, or the
user interface must be modified by sending messages.

CAUTION

Adjusting the Priority
Just to add yet another feature, DelSrch enables the user to adjust the priority of the search
thread dynamically. The form used for this purpose is shown in Figure 5.7, and the unit for this
form, PRIU.PAS, is shown in Listing 5.10.

08 chpt_05.qxd 11/19/01 12:14 PM Page 224

FIGURE 5.7
The thread priority form for the DelSrch project.

LISTING 5.10 The PriU.pas Unit

unit PriU;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, ComCtrls, Buttons, ExtCtrls;

type
TThreadPriWin = class(TForm)
tbrPriTrackBar: TTrackBar;
Label1: TLabel;
Label2: TLabel;
Label3: TLabel;
btnOK: TBitBtn;
btnRevert: TBitBtn;
Panel1: TPanel;
procedure tbrPriTrackBarChange(Sender: TObject);
procedure btnRevertClick(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure FormShow(Sender: TObject);
procedure btnOKClick(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
{ Private declarations }
OldPriVal: Integer;

public
{ Public declarations }

end;

var
ThreadPriWin: TThreadPriWin;

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

225

08 chpt_05.qxd 11/19/01 12:14 PM Page 225

LISTING 5.10 Continued

implementation

{$R *.DFM}

uses Main, SrchU;

procedure TThreadPriWin.tbrPriTrackBarChange(Sender: TObject);
begin
with MainForm do
begin
SearchPri := tbrPriTrackBar.Position;
if Running then
SearchThread.Priority := TThreadPriority(tbrPriTrackBar.Position);

end;
end;

procedure TThreadPriWin.btnRevertClick(Sender: TObject);
begin
tbrPriTrackBar.Position := OldPriVal;

end;

procedure TThreadPriWin.FormClose(Sender: TObject;
var Action: TCloseAction);

begin
Action := caHide;

end;

procedure TThreadPriWin.FormShow(Sender: TObject);
begin
OldPriVal := tbrPriTrackBar.Position;

end;

procedure TThreadPriWin.btnOKClick(Sender: TObject);
begin
Close;

end;

procedure TThreadPriWin.FormCreate(Sender: TObject);
begin
tbrPriTrackBarChange(Sender); // initialize thread priority

end;

end.

Advanced Techniques

PART II
226

08 chpt_05.qxd 11/19/01 12:14 PM Page 226

The code for this unit is fairly straightforward. All it does is set the value of the SearchPri
variable in the main form to match that of the track bar position. If the thread is running, it
also sets the priority of the thread. Because TThreadPriority is an enumerated type, a straight
typecast maps the values 1 to 5 in the track bar to enumerations in TThreadPriority.

Multithreading BDE Access
Although database programming isn’t really discussed until later in the book, this section is
intended to give you some tips on how to use multiple threads in the context of BDE database
development. If you’re unfamiliar with database programming under Delphi, you might want
to look through the later database chapters prior to reading on in this section.

The most common request for database applications developers in Win32 is for the capability
to perform complex queries or stored procedures in a background thread. Thankfully, this type
of thing is supported by the 32-bit Borland Database Engine (BDE) and is fairly easy to do in
Delphi.

There are really only two requirements for running a background query through, for example,
a TQuery component:

• Each threaded query must reside within its own session. You can provide a TQuery with
its own session by placing a TSession component on your form and assigning its name
to the TQuery’s SessionName property. This also implies that, if your TQuery uses a
TDatabase component, a unique TDatabase must also be used for each session.

• The TQuery must not be attached to any TDataSource components at the time the query
is opened from the secondary thread. When the query is attached to a TDataSource, it
must be done through the context of the primary thread. TDataSource is only used to
connect datasets to user interface controls, and user interface manipulation must be per-
formed in the main thread.

To illustrate the techniques for background queries, Figure 5.8 shows the main form for a
demo project called BDEThrd. This form enables you to specify a BDE alias, username, and
password for a particular database and to enter a query against the database. When the Go!
button is clicked, a secondary thread is spawned to process the query and the results are dis-
played in a child form.

The child form, TQueryForm, is shown in Figure 5.9. Notice that this form contains one each of
a TQuery, TDatabase, TSession, TDataSource, and TDBGrid component. Therefore, each
instance of TQueryForm has its own instances of these components.

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

227

08 chpt_05.qxd 11/19/01 12:14 PM Page 227

FIGURE 5.8
The main form for the BDEThrd demo.

Advanced Techniques

PART II
228

FIGURE 5.9
The child query form for the BDEThrd demo.

Listing 5.11 shows Main.pas, the application’s main unit.

LISTING 5.11 The Main.pas Unit for the BDEThrd Demo

unit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, Grids, StdCtrls, ExtCtrls;

type
TMainForm = class(TForm)
pnlBottom: TPanel;

08 chpt_05.qxd 11/19/01 12:14 PM Page 228

LISTING 5.11 Continued

pnlButtons: TPanel;
GoButton: TButton;
Button1: TButton;
memQuery: TMemo;
pnlTop: TPanel;
Label1: TLabel;
AliasCombo: TComboBox;
Label3: TLabel;
UserNameEd: TEdit;
Label4: TLabel;
PasswordEd: TEdit;
Label2: TLabel;
procedure Button1Click(Sender: TObject);
procedure GoButtonClick(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

uses QryU, DB, DBTables;

var
FQueryNum: Integer = 0;

procedure TMainForm.Button1Click(Sender: TObject);
begin
Close;

end;

procedure TMainForm.GoButtonClick(Sender: TObject);
begin
Inc(FQueryNum); // keep querynum unique
{ invoke new query }
NewQuery(FQueryNum, memQuery.Lines, AliasCombo.Text, UserNameEd.Text,
PasswordEd.Text);

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

229

08 chpt_05.qxd 11/19/01 12:14 PM Page 229

LISTING 5.11 Continued

end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
{ fill drop-down list with BDE Aliases }
Session.GetAliasNames(AliasCombo.Items);

end;

end.

As you can see, there’s not much to this unit. The AliasCombo combobox is filled with BDE
aliases in the OnCreate handler for the main form using TSession’s GetAliasNames() method.
The handler for the Go! button OnClick event is in charge of invoking a new query by calling
the NewQuery() procedure that lives in a second unit, QryU.pas. Notice that it passes a new
unique number, FQueryNum, to the NewQuery() procedure with every button click. This number
is used to create a unique session and database name for each query thread.

Listing 5.12 shows the code for the QryU unit.

LISTING 5.12 The QryU.pas Unit

unit QryU;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Grids,
DBGrids, DB, DBTables, StdCtrls;

type
TQueryForm = class(TForm)
Query: TQuery;
DataSource: TDataSource;
Session: TSession;
Database: TDatabase;
dbgQueryGrid: TDBGrid;
memSQL: TMemo;
procedure FormClose(Sender: TObject; var Action: TCloseAction);

private
{ Private declarations }

public
{ Public declarations }

end;

Advanced Techniques

PART II
230

08 chpt_05.qxd 11/19/01 12:14 PM Page 230

LISTING 5.12 Continued

procedure NewQuery(QryNum: integer; Qry: TStrings; const Alias, UserName,
Password: string);

implementation

{$R *.DFM}

type
TDBQueryThread = class(TThread)
private
FQuery: TQuery;
FDataSource: TDataSource;
FQueryException: Exception;
procedure HookUpUI;
procedure QueryError;

protected
procedure Execute; override;

public
constructor Create(Q: TQuery; D: TDataSource); virtual;

end;

constructor TDBQueryThread.Create(Q: TQuery; D: TDataSource);
begin
inherited Create(True); // create suspended thread
FQuery := Q; // set parameters
FDataSource := D;
FreeOnTerminate := True;
Resume; // thread that puppy!

end;

procedure TDBQueryThread.Execute;
begin
try
FQuery.Open; // open the query
Synchronize(HookUpUI); // update UI from main thread

except
FQueryException := ExceptObject as Exception;
Synchronize(QueryError); // show exception from main thread

end;
end;

procedure TDBQueryThread.HookUpUI;
begin
FDataSource.DataSet := FQuery;

end;

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

231

08 chpt_05.qxd 11/19/01 12:14 PM Page 231

LISTING 5.12 Continued

procedure TDBQueryThread.QueryError;
begin
Application.ShowException(FQueryException);

end;

procedure NewQuery(QryNum: integer; Qry: TStrings; const Alias, UserName,
Password: string);

begin
{ Create a new Query form to show query results }
with TQueryForm.Create(Application) do
begin
{ Set a unique session name }
Session.SessionName := Format(‘Sess%d’, [QryNum]);
with Database do
begin
{ set a unique database name }
DatabaseName := Format(‘DB%d’, [QryNum]);
{ set alias parameter }
AliasName := Alias;
{ hook database to session }
SessionName := Session.SessionName;
{ user-defined username and password }
Params.Values[‘USER NAME’] := UserName;
Params.Values[‘PASSWORD’] := Password;

end;
with Query do
begin
{ hook query to database and session }
DatabaseName := Database.DatabaseName;
SessionName := Session.SessionName;
{ set up the query strings }
SQL.Assign(Qry);

end;
{ display query strings in SQL Memo }
memSQL.Lines.Assign(Qry);
{ show query form }
Show;
{ open query in its own thread }
TDBQueryThread.Create(Query, DataSource);

end;
end;

procedure TQueryForm.FormClose(Sender: TObject; var Action: TCloseAction);
begin

Advanced Techniques

PART II
232

08 chpt_05.qxd 11/19/01 12:14 PM Page 232

LISTING 5.12 Continued

Action := caFree;
end;

end.

The NewQuery() procedure creates a new instance of the child form TQueryForm, sets up the
properties for each of its data-access components, and creates unique names for its TDatabase
and TSession components. The query’s SQL property is filled from the TStrings passed in the
Qry parameter, and the query thread is then spawned.

The code inside the TDBQueryThread itself is rather sparse. The constructor merely sets up
some instance variables, and the Execute() method opens the query and calls the HookupUI()
method through Synchronize() to attach the query to the data source. You should also take
note of the try..except block inside the Execute() procedure, which uses Synchronize() to
show exception messages from the context of the primary thread.

Multithreaded Graphics
We mentioned earlier that VCL isn’t designed to be manipulated simultaneously by multiple
threads, but this statement isn’t entirely accurate. VCL has the capability to have multiple
threads manipulate individual graphics objects. Thanks to new Lock() and Unlock() methods
introduced in TCanvas, the entire Graphics unit has been made thread-safe. This includes the
TCanvas, TPen, TBrush, TFont, TBitmap, TMetafile, TPicture, and TIcon classes.

The code for these Lock() methods is similar in that it uses a critical section and the
EnterCriticalSection() API function (described earlier in this chapter) to guard access to
the canvas or graphics object. After a particular thread calls a Lock() method, that thread is
free to exclusively manipulate the canvas or graphics object. Other threads waiting to enter the
portion of code following the call to Lock() will be put to sleep until the thread owning the
critical section calls Unlock(), which calls LeaveCriticalSection() to release the critical
section and lets the next waiting thread (if any) into the protected portion of code. The follow-
ing portion of code shows how these methods can be used to control access to a canvas object:

Form.Canvas.Lock;
// code which manipulates canvas goes here
Form.Canvas.Unlock;

To further illustrate this point, Listing 5.13 shows the unit Main of the MTGraph project—an
application that demonstrates multiple threads accessing a form’s canvas.

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

233

08 chpt_05.qxd 11/19/01 12:14 PM Page 233

LISTING 5.13 The Main.pas Unit of the MTGraph Project

unit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Menus;

type
TMainForm = class(TForm)
MainMenu1: TMainMenu;
Options1: TMenuItem;
AddThread: TMenuItem;
RemoveThread: TMenuItem;
ColorDialog1: TColorDialog;
Add10: TMenuItem;
RemoveAll: TMenuItem;
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure AddThreadClick(Sender: TObject);
procedure RemoveThreadClick(Sender: TObject);
procedure Add10Click(Sender: TObject);
procedure RemoveAllClick(Sender: TObject);

private
ThreadList: TList;

public
{ Public declarations }

end;

TDrawThread = class(TThread)
private
FColor: TColor;
FForm: TForm;

public
constructor Create(AForm: TForm; AColor: TColor);
procedure Execute; override;

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

Advanced Techniques

PART II
234

08 chpt_05.qxd 11/19/01 12:14 PM Page 234

LISTING 5.13 Continued

{ TDrawThread }

constructor TDrawThread.Create(AForm: TForm; AColor: TColor);
begin
FColor := AColor;
FForm := AForm;
inherited Create(False);

end;

procedure TDrawThread.Execute;
var
P1, P2: TPoint;

procedure GetRandCoords;
var
MaxX, MaxY: Integer;

begin
// initialize P1 and P2 to random points within Form bounds
MaxX := FForm.ClientWidth;
MaxY := FForm.ClientHeight;
P1.x := Random(MaxX);
P2.x := Random(MaxX);
P1.y := Random(MaxY);
P2.y := Random(MaxY);

end;

begin
FreeOnTerminate := True;
// thread runs until it or the application is terminated
while not (Terminated or Application.Terminated) do
begin
GetRandCoords; // initialize P1 and P2
with FForm.Canvas do
begin
Lock; // lock canvas
// only one thread at a time can execute the following code:
Pen.Color := FColor; // set pen color
MoveTo(P1.X, P1.Y); // move to canvas position P1
LineTo(P2.X, P2.Y); // draw a line to position P2
// after the next line executes, another thread will be allowed
// to enter the above code block
Unlock; // unlock canvas

end;
end;

end;

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

235

08 chpt_05.qxd 11/19/01 12:14 PM Page 235

LISTING 5.13 Continued

{ TMainForm }

procedure TMainForm.FormCreate(Sender: TObject);
begin
ThreadList := TList.Create;

end;

procedure TMainForm.FormDestroy(Sender: TObject);
begin
RemoveAllClick(nil);
ThreadList.Free;

end;

procedure TMainForm.AddThreadClick(Sender: TObject);
begin
// add a new thread to the list... allow user to choose color
if ColorDialog1.Execute then
ThreadList.Add(TDrawThread.Create(Self, ColorDialog1.Color));

end;

procedure TMainForm.RemoveThreadClick(Sender: TObject);
begin
// terminate the last thread in the list and remove it from list
TDrawThread(ThreadList[ThreadList.Count - 1]).Terminate;
ThreadList.Delete(ThreadList.Count - 1);

end;

procedure TMainForm.Add10Click(Sender: TObject);
var
i: Integer;

begin
// create 10 threads, each with a random color
for i := 1 to 10 do
ThreadList.Add(TDrawThread.Create(Self, Random(MaxInt)));

end;

procedure TMainForm.RemoveAllClick(Sender: TObject);
var
i: Integer;

begin
Cursor := crHourGlass;
try

Advanced Techniques

PART II
236

08 chpt_05.qxd 11/19/01 12:14 PM Page 236

LISTING 5.13 Continued

for i := ThreadList.Count - 1 downto 0 do
begin
TDrawThread(ThreadList[i]).Terminate; // terminate thread
TDrawThread(ThreadList[i]).WaitFor; // make sure thread terminates

end;
ThreadList.Clear;

finally
Cursor:= crDefault;

end;
end;

initialization
Randomize; // seed random number generator

end.

This application has a main menu containing four items, as shown in Figure 5.10. The first
item, Add Thread, creates a new TDrawThread instance, which paints random lines on the main
form. This option can be selected repeatedly in order to throw more and more threads into the
mix of threads accessing the main form. The next item, Remove Thread, removes the last
thread added. The third item, Add 10, creates 10 new TDrawThread instances. Finally, the
fourth item, Remove All, terminates and destroys all TDrawThread instances. Figure 5.10
also shows the results of 10 threads simultaneously drawing to the form’s canvas.

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

237

FIGURE 5.10
The MTGraph main form.

08 chpt_05.qxd 11/19/01 12:14 PM Page 237

Canvas-locking rules dictate that as long as every user of a canvas locks it before drawing and
unlocks it afterwards, multiple threads using that canvas won’t interfere with each other. Note
that all OnPaint events and Paint() method calls initiated by VCL automatically lock and
unlock the canvas for you; therefore, existing, normal Delphi code can coexist with new back-
ground thread graphics operations.

Using this application as an example, examine the consequences or symptoms of thread colli-
sions if you fail to properly perform canvas locking. If thread 1 sets a canvas’s pen color to
red and then draws a line, and thread 2 sets the pen color to blue and draws a circle, and these
threads don’t lock the canvas before starting these operations, the following thread collision
scenario is possible: Thread 1 sets the pen color to red. The OS scheduler switches execution
to thread 2. Thread 2 sets the pen color to blue and draws a circle. Execution switches to thread
1. Thread 1 draws a line. However, the line isn’t red, it is blue because thread 2 had the oppor-
tunity to slip in between the operations of thread 1.

Note also that it only takes one errant thread to cause problems. If thread 1 locks the canvas
and thread 2 doesn’t, the scenario just described is unchanged. Both threads must lock the can-
vas around their canvas operations to prevent that thread collision scenario.

Fibers
Fibers are a sort of schedule-your-own thread. Like threads, fibers provide state information
and execution context in the form their own stack and CPU registers. Unlike threads, however,
fibers aren’t preemptively scheduled by the operating system. Instead, it is the developer’s
responsibility to switch between multiple fibers of execution. From an application design point
of view, there are probably few occasions when you will elect to use fibers instead of a multi-
threaded architecture, except in the infrequent case in which you want to receive the context
benefits of multiple stack and CPU register states without having to worry about thread syn-
chronization issues.

Advanced Techniques

PART II
238

Fibers are available on Windows NT 3.51 SP3 and higher, Windows 2000, Windows XP,
Windows 98, and Windows ME.

NOTE

Fibers are designed to run within the context of a thread, so one thread might host multiple
fibers. Before you can begin using fibers within a thread, the thread itself must be converted to
as fiber using the ConvertThreadToFiber() API function. This function is defined in the
Windows unit as

function ConvertThreadToFiber(lpParameter: Pointer): BOOL; stdcall;

08 chpt_05.qxd 11/19/01 12:14 PM Page 238

The lone parameter, lpParameter, enables you to pass 32-bits of fiber-specific data, in much
the same manner you would pass data to a thread in the BeginThread() or CreateThread()
functions. The return value definition is defined incorrectly in the Windows unit. Although
listed as a BOOL, the return value is actually a pointer to the fiber object. As you will see, you
will need to typecast the return value to use it.

Once a thread has been converted to a fiber, you will be able to create other fibers and begin
scheduling between the fibers. You can create additional fibers using the CreateFiber() API
function, which is defined in the Windows unit as

function CreateFiber(dwStackSize: DWORD; lpStartAddress: TFNFiberStartRoutine;
lpParameter: Pointer): BOOL; stdcall;

The dwStackSize parameter specifies the initial size (in bytes) of the fiber’s stack, or you can
pass 0 to set it to the default stack size. The lpStartAddress specifies the address of the pro-
cedure the fiber should begin executing when execution begins. lpParameter specifies any
32-bits of fiber-specific data you might want to pass. The return value for this function, like
ConvertThreadToFiber(), is also incorrect as defined; it is really a pointer to the created fiber
object and will need to be typecast to be used (more on this later).

After creating the fibers, you can switch between them using the SwitchToFiber() API func-
tion. This function is defined in the Windows unit as

function SwitchToFiber(lpFiber: Pointer): BOOL; stdcall;

Calling this method with a fiber object pointer in the lpFiber parameter is all you need to do
to jump from one fiber’s execution context to another. The operating system handles the inter-
nal details associated with the context switch, such as modifying the stack pointer and CPU
registers. The return value for this function, defined as a BOOL, is again incorrect; this should be
defined as a procedure with no return value. You therefore shouldn’t expect a valid return value
from this function.

When you’re ready to do away with a particular fiber, just pass the fiber object pointer to the
DeleteFiber API function:

function DeleteFiber(lpFiber: Pointer): BOOL; stdcall;

By the way, like SwitchToFiber(), the return value for this function is defined incorrectly as
well; it should also be a procedure returning no value, so don’t expect a valid return value.

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

239

Calling DeleteFiber() on the currently executing fiber will result in a call to
ExitThread(), which will terminate the entire thread. Unless you mean to terminate
the thread, you should only call DeleteFiber() on fibers other than the one currently
executing.

CAUTION

08 chpt_05.qxd 11/19/01 12:14 PM Page 239

Most of the work you’ll need to do with fibers can be accomplished with the four preceding
functions. The Win32 header files additionally define a couple of additional helper functions
and types not present in Delphi, but we have provided them for your convenience in the fol-
lowing. Listing 5.14 contains the Fiber unit, which provides additional definitions not present
in the Windows unit.

LISTING 5.14 The Fiber.pas Unit

unit Fibers;

interface

uses Windows;

// type defn for fiber start routine from winbase.h:
type
PFIBER_START_ROUTINE = procedure (lpFiberParameter: Pointer); stdcall;
LPFIBER_START_ROUTINE = PFIBER_START_ROUTINE;
TFiberFunc = PFIBER_START_ROUTINE;

function GetCurrentFiber: Pointer;
function GetFiberData: Pointer;

implementation

// x86-specific fiber inline routines from winnt.h:

function GetCurrentFiber: Pointer;
asm
mov eax, fs:[$10]

end;

function GetFiberData: Pointer;
asm
mov eax, fs:[$10]
mov eax, [eax]

end;

end.

To provide an example of fibers in action, we will create a test program that creates a handful
of fibers and switches between them to do what we’ll pretend is useful work. The main form
for this application is shown in Figure 5.11.

Advanced Techniques

PART II
240

08 chpt_05.qxd 11/19/01 12:14 PM Page 240

FIGURE 5.11
The FibTest main form.

The main unit for this form is shown in Listing 5.15.

LISTING 5.15 FibMain.pas—the Main Unit for FibTest

unit FibMain;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, AppEvnts;

type
TForm1 = class(TForm)
BtnWee: TButton;
BtnStop: TButton;
Label1: TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
AppEvents: TApplicationEvents;
procedure BtnWeeClick(Sender: TObject);
procedure AppEventsMessage(var Msg: tagMSG;
var Handled: Boolean);

procedure BtnStopClick(Sender: TObject);
private
{ Private declarations }
FThreadID: LongWord;
FThreadHandle: Integer;

public
{ Public declarations }

end;

var
Form1: TForm1;

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

241

08 chpt_05.qxd 11/19/01 12:14 PM Page 241

LISTING 5.15 Continued

implementation

uses Fibers;

{$R *.dfm}

const
DDG_THREADMSG = WM_USER;

var
FFibers: array[0..3] of Pointer;
StopIt: Boolean;

procedure FiberFunc(Param: Pointer); stdcall;
var
J, FibNum, NextNum: Integer;
I: Cardinal;
Fiber: Pointer;

begin
try
I := 0;
FibNum := 1; // suppress compiler warning
Fiber := GetCurrentFiber; // save away our fiber ptr for later
// figure out where current fiber is in the array and save for later
for J := Low(FFibers) to High(FFibers) do
if FFibers[J] = Fiber then
begin
FibNum := J;
Break;

end;
// HIGH TECH: count from zero to really, really high
while not StopIt do
begin
// send the number to the main thread for display every 100
if I mod 100 = 0 then
PostMessage(Application.Handle, DDG_THREADMSG,
Integer(GetFiberData), I);

// switch fibers every 1000
if I mod 1000 = 0 then
begin
if FibNum = High(FFibers) then NextNum := Low(FFibers)
else NextNum := FibNum + 1;
SwitchToFiber(FFibers[NextNum]);

end;

Advanced Techniques

PART II
242

08 chpt_05.qxd 11/19/01 12:14 PM Page 242

LISTING 5.15 Continued

Inc(I);
end;

except
// stifle all unhandled exceptions

end;
end;

function ThreadFunc(Param: Pointer): Integer;
var
I: Integer;

begin
Result := 0;
// convert this thread to a fiber
FFibers[0] := Pointer(ConvertThreadToFiber(Pointer(1)));
// create the other fibers
FFibers[1] := Pointer(CreateFiber(0, @FiberFunc, Pointer(2)));
FFibers[2] := Pointer(CreateFiber(0, @FiberFunc, Pointer(3)));
FFibers[3] := Pointer(CreateFiber(0, @FiberFunc, Pointer(4)));
// join in the fun
FiberFunc(Pointer(1));
// when done, kill all the fibers
// killing the current fiber calls ExitThread
for I := High(FFibers) downto Low(FFibers) do
DeleteFiber(FFibers[I]);

end;

procedure TForm1.BtnWeeClick(Sender: TObject);
begin
BtnWee.Enabled := False; // pressing the button twice will cause grief
FThreadHandle := BeginThread(nil, 0, @ThreadFunc, nil, 0, FThreadID);

end;

procedure TForm1.AppEventsMessage(var Msg: tagMSG;
var Handled: Boolean);

begin
if Msg.message = DDG_THREADMSG then
begin
// The wParam tells us which fiber is sending the message,
// and therefore which label to update
case Msg.wParam of
1: Label1.Caption := IntToStr(Msg.lParam);
2: Label2.Caption := IntToStr(Msg.lParam);
3: Label3.Caption := IntToStr(Msg.lParam);
4: Label4.Caption := IntToStr(Msg.lParam);

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

243

08 chpt_05.qxd 11/19/01 12:14 PM Page 243

LISTING 5.15 Continued

end;
Handled := True;

end;
end;

procedure TForm1.BtnStopClick(Sender: TObject);
begin
StopIt := True;

end;

end.

The most interesting work in this example is done in ThreadFunc(), which is the thread
function for secondary thread created in response to the button click. This function calls
ConvertThreadToFiber() to fiber-ize the thread and then calls CreateFiber() multiple times
to create three additional fibers. All the fibers are then prepared to execute FiberFunc(), which
simply counts up from 0 to infinity and sends a message every 100 counts to display the value
in the UI and switches to the next fiber every 1000 counts.

The application uses the simple and reliable technique of communicating with the main thread
by posting a message to the Application window handle. Each fiber holds a value between 1
and 4 because its fiber data and the message handler in the main thread uses this to determine
which fiber sent the message.

Figure 5.12 shows the FibTest application in action. The fact that the number in each of the
labels is very close in value illustrates that each of the fibers are executing using their own
stack.

Advanced Techniques

PART II
244

FIGURE 5.12
FibTest in action.

Summary
By now you’ve had a thorough introduction to threads and how to use them properly in the
Delphi environment. You’ve learned several techniques for synchronizing multiple threads, and

08 chpt_05.qxd 11/19/01 12:14 PM Page 244

you’ve learned how to communicate between secondary threads and a Delphi application’s
primary thread. Additionally, you’ve seen examples of using threads within the context of a
real-world file-search application, you’ve gotten the lowdown on how to leverage threads in
database applications, and you’ve learned about drawing to a TCanvas with multiple threads.
Finally, you’ve learned about the nifty fiber, which provide bring-your-own-scheduler function-
ality. In Chapter 6, “Dynamic Link Libraries,” you’ll learn everything you need to know about
creating and using DLLs in Delphi.

Multithreaded Techniques

CHAPTER 5

5

M
U

LTITH
R

EA
D

ED
T

EC
H

N
IQ

U
ES

245

08 chpt_05.qxd 11/19/01 12:14 PM Page 245

08 chpt_05.qxd 11/19/01 12:14 PM Page 246

