Wireless Development CHAPTER

IN THIS CHAPTER

¢ Evolution of Development—How Did We Get
Here? 1116

e Mobile Wireless Devices 1118
¢ Radio Technologies 1119

e Server-Based Wireless Data
Technologies 1121

¢ Wireless User Experience 1136

1116

Internet Development
PART VI

Without a doubt, two technologies in the past 10 years have touched our lives more than any
others: the Internet and mobile devices. Despite the ups and downs of Internet-based busi-
nesses, the Internet—and the Web in particular—has permanently changed our lives. It has
affected the way we communicate, shop, work, and play. What’s more, many of us now shud-
der at the thought of being caught somewhere without our trusty mobile phone or Personal
Digital Assistant (PDA). Given their importance in our lives, it seems natural that these two
technologies are now in a state of convergence, with mobile devices becoming wireless tenta-
cles reaching out from the wired Internet to provide us with the services and information to
which we’ve become so addicted.

With mobile information devices becoming more necessity than novelty in today’s business
and social climate, we developers are faced with the challenge of leveraging this hardware and
infrastructure in order to fulfill the ever-growing demand to push data and applications out to
mobile devices. With a dizzying array of mobile devices, networks, and technologies on the
market, the key questions for developers become: Which of the wireless platforms should you
target? What is the most efficient way to target them? What technologies can I leverage to
mobilize my data and applications? What are the trade-offs between all these platforms and
technologies?

This chapter is by no means intended to serve as an exhaustive how-to, describing how to
implement all the various mobile technologies. That would require volumes. We will, however,
have done our job if you get two things from this chapter. First, you will hopefully be able to
use this chapter as a cheat sheet in understanding the role many of the various types of hard-
ware, software, and technologies play in mobile computing from a developer’s perspective.
Second, you should understand how some of these mobile technologies can be implemented
using Delphi.

Evolution of Development—How Did We
Get Here?

Before discussing how you might build the applications to harness these emerging trends in
information technology, it’s important to look back at what brought us here. Here is a rather
simplified snapshot of recent trends in information technology.

Pre-1980s: Here There Be Dragons

Before the PC revolution of the 1980s brought information technology to the masses, develop-
ment for these systems was a jumble of mainframes, terminals, and proprietary systems.
Developer tools were generally rudimentary, making application development an expensive and
time-consuming process reserved for true bit-heads.

Wireless Development

CHAPTER 24

Late 1980s: Desktop Database Applications

After the PC revolution took hold, folks began to leverage the new found power residing on
their desktops using desktop database applications such as dBASE, FoxPro, and Paradox.
General application development tools also became more mature, making application develop-
ment a relatively straightforward task using third generation languages such as C, Pascal, and
BASIC. DOS was king of the desktop, providing applications with a common platform upon
which to build. Local area networks were becoming practical for businesses of all sizes, which
provided for centralized storage of data on file servers.

Early 1990s: Client/Server

Corporate networks were now taken for granted; most everyone in the office was connected.
The question now was how to bridge the gap between the aging mainframe systems and the
non-scalable desktop databases that were both important to business. The answer was client/
server systems, the notion of powerful databases from companies such as Oracle, Sybase, and
Informix connected to user-interfaces running on PCs. This enabled systems to leverage the
power on every desktop while enabling database servers to perform their specialized tasks.
Fourth generation development tools such as Visual Basic and Delphi made development easier
than ever before, and database support was built in as a first class citizen of the tools.

Late 1990s: Multitier and Internet-Based Transactions

The primary problem with the client/server model is the notion of where the business logic
should reside—place it on the database server and you limit scalability; place it on the client
and you have a maintenance nightmare. Multitier systems solved this problem by placing the
business logic on one or more additional tiers logically and/or physically separate from the
client and server. This enabled properly written systems to scale to a nearly unlimited extent
and paved the way for complex transactions to be served to thousands or millions of clients via
the Internet. Development tools extended into the multitier world with technologies such as
CORBA, EJB, and COM. Businesses were quick to leverage the Internet to offer information
and services to employees, clients, and partners, and industries grew up around the ability to
manage, publish, and exchange data between machines over the Internet.

Early 2000s: Application Infrastructure Extends to
Wireless Mobile Devices

So, what is the net result of the vast information availability provided by the Internet? The
answer is two words: information addiction. The availability of information and services via
the Internet has made us dependent on the same in ever increasing aspects of our lives. PDAs

1117

N
S

1N3IINdO13AIQg

SSTTIMIAN

1118

Internet Development
PART VI

and mobile phones have served to scratch that itch, feeding our information addiction while
away from our desks. Application servers and development tools are growing in scope to man-
age the push of functionality to these types of devices. The potential market for applications on
mobile devices is mind boggling in size because the projected number of these devices coming
into the market over the next few years dwarfs the numbers for PCs.

Mobile Wireless Devices

Between mobile phones, PDAs, and smart pagers, there is no shortage of devices from which
to choose should you want to remain connected while away from your desk. Those of us who
have trouble choosing sometimes carry all three on belts that cause us to resemble Batman
more and more everyday. We are also seeing a convergence of these devices into single, multi-
functional devices. Recent examples of this include the mobile phone Springboard module for
Handspring handhelds, the Kyocera Smartphone running PalmOS, and Microsoft’s Stinger
Windows CE-powered mobile phone. In this section, we will call out a few of the leaders in
this area.

Mobile Phones

Mobile phones are by far the most pervasive variety of mobile wireless device. Mobile phones
have moved beyond the realm of pure voice communication systems into the realm of data
communications. Most notably, the majority of new phones coming into the market support
text messaging using Short Message Service (SMS) and Web-like browsing using Wireless
Application Protocol (WAP). Current data rates are rather paltry at 9.6-14.4k, but new tech-
nologies promise to deliver speeds of up to 2Mbits within 2-3 years.

PalmOS Devices

Devices running the Palm Computing’s PalmOS operating system have been the market share
leader in the PDA space for several years. Some PalmOS devices have wireless capability built
in (such as the Palm VII series or the Kyocera Smartphone), and wireless can be added to oth-
ers through the use of a wireless modem (such as those made by Novatel) or a mobile phone
connector available from Palm. A wide range of companies have licensed PalmOS from Palm,
Inc. for inclusion in their own devices, including Handspring, Sony, Kyocera, Symbol, Nokia,
Samsung, and TRG. Advantages of PalmOS includes the fact that they own the overwhelming
share of the market for PDAs, and there is strong developer community with an active third-
party market.

Wireless Development

CHAPTER 24

Pocket PC

Compagq, HP, Casio, and other manufacturers produce PDAs based on Microsoft’s Pocket PC
(formerly Windows CE) operating system. To date, none of these devices have built-in wireless
capability, but they do support wireless modems in a manner similar to PalmOS devices. Even
more, Pocket PC devices tend to be a bit more powerful than their PalmOS counterpart, with
some having the capability of accepting standard PC Cards (PCMCIA). This potentially allows
an even greater range of expansion to higher-bandwidth wireless networks.

RIM BlackBerry

The BlackBerry provides PDA-type functionality in a pager-sized form factor. With an internal
wireless modem and type-with-your-thumbs keyboard, the BlackBerry is especially well suited
to mobile e-mail tasks. However, the BlackBerry also supports web browsing via a third-party
browser. I have found the BlackBerry to be an outstanding platform for corporate e-mail,
thanks to built-in integration with MS Exchange or Lotus Domino, but the device is wanting as
a Web appliance because of its screen size and navigation capabilities.

Radio Technologies

Radio technologies provide the connection between mobile devices and the Internet or corpo-
rate LAN.

GSM, CDMA, and TDMA

These are the primary technologies used as the transport for mobile phones, and they are often
referred to as 2G because they embody the second generation of mobile communications net-
works (/G being analog service). Most networks in the United States are based on CDMA or
TDMA, whereas most of the rest of the world relies on GSM. The details of these technologies
are relatively unimportant from a software developer’s point of view, except to know that the
very existence of these competing standards makes it difficult to create applications that func-
tion across the spectrum of phones and networks. Generally, data speeds on these types of net-
works top out at 9.6-14.4k.

CDPD

Cellular Digital Packet Data (CDPD) is a technology that enables packet-based data transfer
over wireless networks, offering increase in bandwidth and “always on” functionality. CDPD is
common with aftermarket PDA wireless service in the United States, such as that provided by
GoAmerica or OmniSky, and speeds reach about 19.2k.

1119

N
S

1N3IINdO13AIQg

SSTTIMIAN

1120

Internet Development
PART VI

3G

3G, or third generation, mobile networks are designed from the ground up to handle a variety of
different types of media streams and boast bandwidth estimated to be somewhere in the range of
384k-2M. The most likely candidates to be the 3G standard bearers are technologies known as
EDGE and UMTS. However, although the technology exists and several carriers own enough
spectrum to implement 3G networks, no carrier seems to want to be the first to make the multi-
billion dollar investment in network upgrades in order to move forward with 3G.

GPRS

General Packet Radio Service (GPRS) is considered the migration path from 2G to 3G, and is
often therefore referred to as 2.5G. GPRS enables packet-based traffic over existing 2G infra-
structure with only relatively minor upgrades. Realized throughput on GPRS networks will
likely be in the 20-30k range.

Bluetooth

Devices incorporating Bluetooth radio technology are just now beginning to come available in
the market. Bluetooth is an important emerging technology because it permits short range, ad-
hoc networking among different types of devices. Because Bluetooth radio modules are very
small, have low power, and are relatively inexpensive, they will be embedded in all manner of
mobile devices, including phones, PDAs, laptops, and so on. Most Bluetooth radios will have a
range of about 10 meters and enjoy about 700k of bandwidth. Potential applications for
Bluetooth include synchronizing data between PDA and computer when they come into prox-
imity with one another or providing a laptop with Internet connectivity via a mobile phone in
one’s pocket. A new term, personal area network (PAN), is used to describe this notion of a
small wireless network where all of our personal mobile devices regularly communicate with
one another.

It’s more accurate to think of Bluetooth as a replacement for serial, USB, or IEEE 1394 cables
than as a Ethernet-type networking technology. The current iteration of Bluetooth supports
only one master device controlling a maximum of seven simultaneous slave devices.

802.11

Although Bluetooth technology is designed as a short-range personal networking technology,
802.11 is intended to be used for LANs. The current generation of this technology, 802.11b or
WiFi, provides up to 11Mb of bandwidth, with a 45Mb version known as 802.11a on the hori-
zon. 802.11 has a range of about 30 meters, with greater ranges possible using special anten-
nas. 802.11°s power requirements are greater than that of Bluetooth, and the devices are larger
in size; the radio device can fit inside a standard PC Card, which is great for laptops, but not
convenient for phones or most PDAs.

Wireless Development

CHAPTER 24

One important note to keep in mind is that Bluetooth and 802.11 share the same 2.4 GHz spec-
trum, so it is possible that the two might interfere with one another when occupying the same
space. Although it’s unlikely that they would completely freeze each other out because of the fact
that both use spread spectrum technology to hop frequencies many times per second, it’s feasible
that performance could suffer on either or both connections because of mutual interference.

Server-Based Wireless Data Technologies

Wireless data technologies ride on top of the radio technology in order to provide data and ser-
vices to mobile devices. These technologies involve servers generating content, which is sent
wirelessly to clients and interpreted by built-in software residing on the client.

SMS

Short Message Service (SMS) technology is used to send short (generally 100 to 160 character
maximum) text messages to mobile phones. Aside from the limited message length, SMS tech-
nology is limited due to issues of interoperability between network operators and varying SMS
protocols employed by operators. However, SMS has become very popular—particularly in
Europe—because of its ease-of-use and wide availability.

Because each carrier might employ slight variations on the SMS theme, techniques for devel-
oping applications that support SMS can vary depending on the carrier you are targeting.
Although GSM has an advantage over other mobile phone networks in that the support for
SMS is built into the GSM standard, from an application developer’s standpoint, it can still be
challenging to send SMS messages from a server connected to the Internet to a mobile client.
This is because you have to work with SMS servers on the carrier side, which might involve a
varying support of standards and even licensing fees.

We recommend one of two avenues for incorporating SMS support into servers. The first
option is to simply use e-mail; most carriers support the sending of an SMS message by send-
ing an e-mail message to a specific e-mail address that contains the number of the recipient’s
phone. Although this is a relatively simple approach from a technical standpoint, the disadvan-
tage is that support isn’t universal and it adds another layer of potential failure. The second
option is to purchase any one of many third-party tools that handle the sending of SMS mes-
sages on a variety of networks. This is the preferred technique, although it will involve some
up-front costs and/or licensing fees.

WAP

Wireless Application Protocol (WAP) was established as a standard means for accessing infor-
mation from the Internet via a mobile device. The general acceptance of WAP in the market
has been mixed. On the one hand, WAP has been well received by network operators and

1121

N
S

1N3IINdO13AIQg

SSTTIMIAN

1122

Internet Development
PART VI

phone manufacturers because it was designed from the beginning to work over any wireless
service and network standard on practically any device. However, the user experience with
WAP hasn’t been positive overall because of limitation in display, data entry capabilities, and
wireless bandwidth. Additionally, because WAP sites have little way to generate revenue based
on usage, there is not a strong business incentive for developing high-quality WAP sites.
Content for WAP systems is developed in an XML-based language known as Wireless Markup

Language (WML).

The typical WAP application architecture is illustrated in Figure 24.1.

WAP
Device
WAP Target
Gateway Host
URL _[E URL
CowMe == wae |[=2
(Compiled) \ { HTML
HTML
Filter

FIGURE 24.1

WAP application architecture.

The mobile device, typically a phone, has a piece of resident software known as a micro-
browser. As the name implies, this piece of software is similar to a Web browser but designed
for devices such as mobile phones with limited memory and processing power. Most mobile
phones on the market today use OpenWave’s (formerly Phone.com) microbrowser. Addition-
ally, the microbrowser is usually designed to render the WML or HDML languages rather than
HTML, as described in the next section.

Because the current generation of mobile phones do not inherently know how to communicate
with resources on the Internet, the WAP gateway acts as an intermediary between the mobile
device and the public Internet. Most WAP gateways are managed by the wireless service
provider, and run software created by companies such as OpenWave, Nokia, or SAS.

The target host is generally just a plain old Web server that simply returns content properly for-
matted for WAP. Proper formatting means that the content is described using WML or, less
optimally, by employing a filter to dynamically convert HTML content to WML.

The chief benefit of WAP is its wide support across pretty much all mobile and wireless
devices. What’s more, the available functionality in WAP is essentially the lowest common
denominator of mobile devices, meaning wider compatibility at the expense of powerful func-
tionality. In addition, between the application server, Web server, WAP gateway, microbrowser,

Wireless Development

CHAPTER 24

and client device, WAP developers have a lot to worry about in their efforts to create applica-
tions that function properly for the greatest number of end users.

The chief drawbacks of WAP include the limited screen size and processing capabilities of the
devices, the typical lack of a full keyboard for data entry, the slow download speeds, and the
fact that wireless airtime for WAP applications can still be expensive.

WNML: The Language of WAP

As we mentioned earlier, information is exchanged in WAP using wireless markup language
(WML). WML is in some ways modeled after HTML, but WML has two things going for it
when compared to HTML. First, it is made up of a relatively small set of tags and attributes,
making it compact enough to be used efficiently with machines with little memory and proces-
sor muscle. Second, it is based on Extensible Markup Language (XML), so content is well
formed and not as open to browser interpretation as is HTML. This chapter is not intended to
present a primer on WAP, but we would like to turn you on to some of the basics.

You probably know that HTML is based on a page metaphor, with each .html file served to a
browser generally representing one page of information. WML, on the other hand, is based on
a card deck metaphor, with one .wml file representing a deck containing some number of
cards. Each card represents one screen of information. In this way, the functionality of an
entire WML deck can be sent to a client with only one client-to-server round trip, as opposed
to the round-trip-per-page system that is the norm on the Web. A typical .wm1l file, then, might
look something like this:

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.WAPforum.org/DTD/wml_1.1.xml">
<wml>
<card>
<do type="accept">
<go href="#hello"/>
</do>
<p>Punch the Button</p>
</card>
<card id="hello">
<p>Hello from WAP!</p>
</card>
</wml>

If you know just a little about HTML and XML, you can probably figure out this code with
relative ease. The document prologue, which makes up the first few lines, is standard XML
and describes the XML version of this document and the location of the DTD used to describe
the tags and attributes contained within. After that, the code goes on to create a deck with two
cards, one with an OK button, and one with a greeting.

1123

N
S

1N3IINdO13AIQg

SSTTIMIAN

1124

Internet Development
PART VI

WML syntax additionally supports things such as events, timers, field sets, lists, and images
(although not all devices support images). Some of the later versions of WAP browsers even
support a scripting language called WMLScript. We cannot cover the entirety of the WML
language here, but if you’re interested, you can view the details of the WML spec at
http://www.WAPforum.org.

If you want to try your hand at developing some WML content, the easiest way to start

is to obtain an emulator. You can obtain the emulator from the microbrowser developer at
http://www.openwave.com, or two other popular emulators come directly from the

mobile communications leaders Nokia and Ericsson; visit http://forum.nokia.com or
http://www.ericsson.com/developerszone. It’s always a good idea to get things working
on the emulators first before moving on to real hardware because the emulators offer much
quicker write-run-debug turnaround time. It’s also a good idea to test your final product on as
many devices as possible prior to release because each device’s unique characteristics can
cause your deck to behave or display differently from how you intend.

WAP Security

The WAP specification calls for a wireless encryption stack known as Wireless Transport Layer
Security (WTLS) to be used for secure connections. Because SSL is too resource intensive to
be used with the current generation of mobile devices, WTLS was created to provide encryp-
tion and authentication services between the device and the WAP gateway. The gateway is then
able to communicate with Internet hosts via the standard SSL protocol. Despite the fact that
both WTLS and SSL are quite secure in themselves, the potential for security breaches exists
at the WAP gateway at the point where the WTLS data stream is decrypted and re-encrypted
with SSL. WTLS architecture is illustrated in Figure 24.2.

Mobile
Phone WAP
Gateway

% Web Server
WTLS encrypted &
communication —
SSL encrypted
communication
WTSL/SSL

conversion

FIGURE 24.2
WAP’s Wireless Transport Layer Security.

Wireless Development
CHAPTER 24

A Simple WAP Application

Creating a WAP application in Delphi is little different from creating a regular Web application
in Delphi. WAP is perhaps even easier to target because the limitations inherent in WAP and the
target devices tend to beget simpler applications on the server side than traditional browser-
based applications. The opposite side of this coin, however, is that it is more challenging for
developers to develop applications that are engaging to useful to end users given these limitations.

For this example, start by creating a normal WebBroker application as you learned in Chapter 23,
“Building WebSnap Applications.” This application has a single Web module with a single
action. This action is marked as default as shown in Figure 24.3.

¢ Editing WebMadule1.Actions x|
K+ ¥
Name Pathinfo Enabled | Default|_Producer

FIGURE 24.3
A simple WebBroker WAP application.

Listing 24.1 shows the source code for the main unit of this application, including the
OnAction event handler for the Web module’s default action.

LisTING 24.1 Main.pas—The Main Unit for the SimpWap Project

unit Main;
interface

uses
SysUtils, Classes, HTTPApp;

type

TWebModule1 = class(TWebModule)

procedure WebModuleiWebActionItem1Action(Sender: TObject;

Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

private

{ Private declarations }
public

{ Public declarations }
end;

1125

N
S

1N3IINdO13AIQg

SSTTIMIAN

1126

Internet Development
PART VI

LisTING 24.1 Continued

var
WebModule1: TWebModulet;

implementation
{$R *.DFM}

const

SWMLContent = 'text/vnd.wap.wml';

SWMLDeck =
'<?xml version="1.0"?>'#13#10 +
'<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"'#13#10 +
""http://www.WAPforum.org/DTD/wml_1.1.xml">"'#13#10 +
'<wml>'#13#10 +
' <card>'#13#10 +
! <do type="accept">'#13#10 +
! <go href="#hello"/>'#13#10 +
' </do>'#13#10 +
! <p>Punch the Button</p>'#13#10 +
' </card>'#13#10 +
' <card id="hello">'#13#10 +
! <p>Hello from WAP!</p>'#13#10 +
' </card>'#13#10 +
'</wml>'#13#10;

procedure TWebModulel.WebModuleiWebActionItemiAction(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);
begin
Response.ContentType := SWMLContent;
Response.Content := SWMLDeck;
end;

end.

When the action is invoked, the event handler responds by setting the ContentType and Content
properties of the Response object. ContentType is set to the WML content type string, and the
content returned is the same simple WAP deck that was explained earlier in this chapter.

Wireless Development
CHAPTER 24

NoTEe

Remember to set the ContentType of the Response object to the string containing the
MIME type of the variety of content you are returning. This sets the content type
information in the HTTP header. If you return the incorrect content type, your con-
tent will likely be misinterpreted on the target device. Some notable WAP content
types include

e text/vnd.wap.wml for WML code
e text/vnd.wap.wmlscript for WML script code

e image/vnd.wap.wbmp for wireless bitmap images

Figure 24.4 shows this simple Delphi WAP application in action.

o

FIGURE 24.4
Delphi WAP application in action.

Error Reporting

The default exception handler for WebSnap applications sends an HTML message to the client
with information on the error. Of course, most WAP devices will not be able to understand an
HTML error, so it’s important to ensure that any errors that might occur in your WAP applica-
tion are surfaced as WML messages to the client rather than HTML. This can be done by
wrapping each OnAction event handler with a try..except block that calls out to an error
message formatting routine. This is shown in Listing 24.2.

1127

N
S

1N3IINdO13AIQg

SSTTIMIAN

Internet Development
PART VI

1128

Wireless Bitmaps

Although WAP doesn’t yet support the fancy JPEG and GIF graphics common on the Web,
most WAP devices support monochrome images in the form of wireless bitmaps (wbmp).
Listing 24.2 adds a new action to the Web module to support the generation of a wbmp. This
action generates an official-looking but quite random graph for display on the target device.
Although we won’t delve into the binary format of wbmp files in this text, you can see that it
isn’t a great deal of work to generate wbmps manually in your WAP applications. Figure 24.5
shows what a WBMP will look like on a phone display.

NoOTE

Not all WAP browsers, devices, and emulators support wbmp images. Be sure to test
before assuming support.

LISTING 24.2 Main.pas—Once More with Feeling

unit Main;
interface

uses
SysUtils, Classes, HTTPApp;

type
TWebModule1 = class(TWebModule)
procedure WebModuleiWebActionItem1Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);
procedure WebModuleiGraphActionAction(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);
private
procedure CreateWirelessBitmap(MemStrm: TMemoryStream);
procedure HandleException(e: Exception; Response: TWebResponse);
end;

var
WebModulel: TWebModulel;

implementation

{$R *.DFM}

Wireless Development

CHAPTER 24

LisTING 24.2 Continued

const

SWMLContent = 'text/vnd.wap.wml';

SWBMPContent = 'image/vnd.wap.wbmp';

SWMLDeck =
'<?xml version="1.0"?>"'#13#10 +
'<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"'#13#10 +
""http://www.WAPforum.org/DTD/wml_1.1.xml">"#13#10 +
'<wml>'#13#10 +
' <card>'#13#10 +
! <do type="accept">'#13#10 +
! <go href="#hello"/>'#13#10 +
' </do>'#13#10 +
! <p>Punch the Button</p>'#13#10 +
' </card>'#13#10 +
' <card id="hello">'#13#10 +
! <p>Hello from WAP!</p>'#13#10 +
' </card>'#13#10 +
'</wml>'#13#10;

SWMLError =
'<?xml version="1.0"?>'#13#10 +
'<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"'#13#10 +
""http://www.wapforum.org/DTD/wml_1.1.xml">"#13#10 +
"<wml>'#13#10 +
' <card id="error" title="SimpWAP">'#13#10 +
! <p>Error: %s'#13#10 +
! <do type="prev" label="Back">'#13#10 +
! <prev/>'#13#10 +
' </do>'#13#10 +
! </p>'#13#10 +
' </card>'#13#10 +
'</wml>'#13#10;

procedure TWebModulel.HandleException(e: Exception; Response: TWebResponse);

begin
Response.ContentType := SWMLContent;
Response.Content := Format(SWMLError, [e.Messagel]);
end;

procedure TWebModulel.WebModuleiWebActionItemi1Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

1129

N
S

1N3IINdO13AIQg

SSTTIMIAN

1130

Internet Development
PART VI

LisTING 24.2 Continued

begin
try
Response.ContentType := SWMLContent;
Response.Content := SWMLDeck;
except
on e: Exception do
HandleException(e, Response);
end;
end;

procedure TWebModulel.WebModuleiGraphActionAction(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);
var
MemStream: TMemoryStream;

begin
try
MemStream := TMemoryStream.Create;
try
CreateWirelessBitmap (MemStream);
MemStream.Position := 0;
with Response do
begin
ContentType := SWBMPContent;
ContentStream := MemStream;
SendResponse;
end;
finally
MemStream.Free;
end;
except

on e: Exception do
HandleException(e, Response);
end;
end;

procedure TWebModulei.CreateWirelessBitmap (MemStrm: TMemoryStream);
const
Header : Array[0..3] of Char = #0#0#104#20;

var

Bmp: array[1..104,1..20] of Boolean;
X, Y, Dir, Bit: Integer;
B: Byte;

Wireless Development 1131

CHAPTER 24

LisTING 24.2 Continued

begin
{ clear the bitmap out }
FillChar(Bmp,SizeOf (Bmp),0);
{ draw X and Y axis }
for X := 1 to 104 do Bmp[X, 20] := True;
for Y := 1 to 20 do Bmp[1, Y] := True;
{ draw random data }
Y := Random(20) + 1;
Dir := Random(10);
for X =1 to 104 do
begin
Bmp[X,Y] := True;
if (Dir > 4) then Y := Y+Random(2)+1
else Y := Y - Random(2) - 1;
if (Y > 20) then Y := 20;
if (Y < 1) then Y := 1;
Dir := Random(10);
end;
{ create WBMP data }
MemStrm.Write (Header, SizeOf (Header));
Bit := 7;
B := 0;
for Y :=1 to 20 do
begin
for X =1 to 104 do
begin
if Bmp[X,Y] = True then
B := B or (1 shl Bit);
Dec(Bit);
if (Bit < 0) then begin
B := not B;
MemStrm.Write (B, SizeOf(B));
Bit := 7;
B := 0;
end;
end;
end;
end;

N
S

1N3IINdO13AIQg

initialization
Randomize;
end.

SSTTIMIAN

1132

Internet Development
PART VI

,-,@ Nokia Mobile Browsi

FIGURE 24.5
Viewing the WBMP in the Nokia emulator.

I-mode

I-mode is a proprietary technology for Internet content on mobile phones developed by NTT
DoCoMo, Japan’s telecommunications behemoth. I-mode is very successful in Japan, with over
20 million subscribers and growing. In many ways, i-mode is everything WAP isn’t: It supports
rich 256-color graphics, color phone displays, and uses an “always-on” TCP/IP connection.
Additionally, DoCoMo has developed a revenue sharing model that enables i-mode sites to get
a slice of the financial pie based on usage. However, i-mode is hampered by the “P”” word (pro-
prietary) and availability outside Japan is scarce; i-mode services will be rolling out in the
United States, United Kingdom, and continental Europe beginning this year.

From a developer’s standpoint, targeting i-mode phones isn’t much more difficult than generat-
ing content for the Web because i-mode content is developed using a subset of HTML known
as Compact HTML (cHTML). Supported cHTML tags and rules are available from DoCoMo
at http://www.nttdocomo.com/i/tagindex.html. Note that in addition to using only
cHTML-supported tags, i-mode sites must also ensure that the S-JIS character set is used,
images are in GIF format, and pages have no script or Java content.

PQA

Palm Query Applications (PQA) are essentially normal HTML pages stripped of add-ons such
as scripting and images that are designed for display on the screen of a wireless PalmOS
device. Wireless PalmOS devices, such as Palm VIIx devices or those equipped with Novatel
modems, are currently limited to North America. Like i-mode, PQAs are developed using a
subset of HTML, except Palm has added a few proprietary extensions. Developers interested in

Wireless Development

CHAPTER 24

creating PQAs should download the Web Clipping Developer’s Guide from Palm at
http://www.palmos.com/dev/tech/docs/.

In general, the PQA flavor of HTML includes everything in HTML 3.2 with the exception of
applets, JavaScript, nested tables, image maps, and the VSPACE, SUB, SUP, LINK, and ISINDEX
tags. PQAs also include several interesting additions to HTML. Most notable among these are
the palmcomputingplatform meta tag and %zipcode and %deviceid tags. When an HTML
document contains the palmcomputingplatform meta tag, this serves as an indicator to Palm
Computing’s Palm.net proxy (which acts as the intermediary between a Web server and Palm
device, not unlike a WAP gateway) that the document is optimized for display on a PalmOS
handheld and doesn’t require parsing to be stripped of invalid content. When the %zipcode tag
appears in a requested posted by the client, the Palm.net proxy will replace the tag with the
ZIP Code where the device is located (based on radio tower information). The %deviceid tag
similarly sends the PalmOS’s device’s unique ID to the server. This is particularly handy
because PQA HTML does not support cookies, but a similar means of state management can
be crafted using the %deviceid tag.

With Web clipping, Palm has taken a different approach than most other players in this space.
Rather than use a browser-like entity to navigate to a site and pull down content, PQAs exist
locally on the PalmOS device. PQAs are built by running a standard .HTML file through a
special compiler that links the HTML with referenced graphic files and other dependencies.
Users install PQAs like normal PalmOS PRC applications. PQAs gain efficiency by including
portions of the application local and only going out to the network for “results” pages.

PQA Client

The first step toward developing a PQA application is to create the piece that will physically
reside on the client device. This is done by creating an HTML document and compiling it
using Palm Computing’s PQA Builder tool. A sample PQA HTML document is shown in
Listing 24.3.

LisTING 24.3 An HTML Document for a PQA

<html>

<head>

<title>DDG PQA Test</title>

<meta name="palmcomputingplatform" content="true">

</head>

<body>

<p>This is a sample PQA for DDG</p>

<form method="post" action="http://128.64.162.164/scripts/pgatest.dll">
<input type="hidden" value="%zipcode" name="zip">

1133

N
S

1N3IINdO13AIQg

SSTTIMIAN

Internet Development
PART VI

1134

LisTING 24.3 Continued

<input type="hidden" value="%deviceid" name="id">
<input type="submit">

</form>

</body>

You can see that this simple HTML document contains a reference to an image, some text, a
form with a submit button, and hidden fields used to pass the ZIP Code and device ID to the
server.

Figure 24.6 shows this document being compiled in PQA Builder.

Savejn [(J PAATest = - @k E =
(9] paatest.paa
Cancel
Jcons

Large &

Small *

Reset lcons
File pame: [paatest pad
POA Version: 1.0 = g”;gg:gepm [2bitGay =]
HTML Encoding. ~ [Westem [ep1252) |
PDST Encoding [Same o HTML encoding |
I Installto User: [Steve Teinera =1

A

FIGURE 24.6
Compiling with PQA Builder.

Once compiled, a file with a .pga extension is generated. This file contains the HTML docu-
ment as well as any referenced images. This file can be installed onto the PalmOS device the
same as any other PalmOS application.

PQA Server

The server-side portion, like WAP, is a WebSnap application that handles the page requests from
clients and returns pages. Unlike WAP with its WML, however, PQAs communicate using the
HTML variant described previously. Listing 24.4 shows the main unit of a WebBroker applica-
tion designed to fulfill the server role for the PQA client described previously.

LisTING 24.4 Main.pas—the Main Unit for the PQATest Application

unit Main;

interface

Wireless Development

CHAPTER 24

LisTING 24.4 Continued

uses
SysUtils, Classes, HTTPApp;

type

TWebModule1 = class(TWebModule)

procedure WebModuleiWebActionItem1Action(Sender: TObject;

Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

private

{ Private declarations }
public

{ Public declarations }
end;

var
WebModulel: TWebModulet;

implementation
{$R *.DFM}

const
SPQAResp =
'<html><head><meta name="palmcomputingplatform" content="true"></head>"'+
#13#10 +
'<body>Hello from a Delphi server
Your zipcode is: %s
'#13#10 +
‘Your device ID is: %s
</body>"'+
'</html>";

procedure TWebModulel.WebModuleiWebActionItem1Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);
begin
Response.Content := Format(SPQAResp, [Request.ContentFields.Values['zip'],
Request.ContentFields.Values['id']]);
end;

end.

The server responds to the client by sending the client’s ZIP Code and device ID. An interesting
technique in the HTML code returned by the server is that it references the same image that was
compiled into the .pqga on the client side using the file:<pganame> syntax. This allows you to
build rich graphics into your PQAs by compiling them into the client side and referencing them
on the server, thereby obviating the need to download any graphics over the wireless modem.
Figures 24.7 and 24.8 show this application in action, before and after the submit button is
pressed. Note that the ZIP Code and device ID are null values in the emulator.

1135

N
S

1N3IINdO13AIQg

SSTTIMIAN

1136 Internet Development

PART VI

FIGURE 24.7
PQATest in the PalmOS emulator.

FIGURE 24.8
PQATest in the PalmOS emulator after pressing Submit.

Wireless User Experience

User experience is by far the most important factor in determining whether a mobile system
will ultimately prove useful to individuals. However, user experience is all-too-often given
short shrift in favor of gratuitous features or technology. Because of inherent limitations in the
mobile world—particularly connectivity and device size—there is little room for error in a
developer’s attempt to provide users with the functionality they need when they need it. The
trick is to focus on the user: Determine what information or service the users need and
endeavor to get it to them as efficiently as possible.

Wireless Development

CHAPTER 24

Circuit-Switched Versus Packet-Switched Networks

When considering the mobile phone as a client platform, one issue that can have a dramatic
impact on usability is whether the mobile phone network is circuit-switched or packet-
switched. Circuit-switched networks operate like a modem on a conventional phone: you must
dial-in to establish a direct connection with the host, and that connection must be maintained
while data exchange is taking place. Packet-switched networks behave more like a fixed
Ethernet connection: The connection is always active, and data packets can be sent and
received out over the connection at any time.

The overhead required to establish connections in circuit-switched networks can often be a
major impediment to user satisfaction—particularly if the user is performing a task that should
only take a few seconds. After all, who wants to wait up to 20 seconds to connect in order to
interact with an application for 3 seconds? Most mobile networks today are still circuit-
switched, but notable example of networks utilizing packet-switched technology include NTT
DoCoMo’s i-mode, Nextel’s iDEN, and AT&T’s CDPD networks.

Wireless Is Not the Web

A common misconception among purveyors of mobile devices and wireless networks is that
people desire to surf the Web on these devices. With their tiny screens and limited bandwidth,
mobile devices are an exceedingly inconvenient vehicle for Web surfing. Each page of infor-
mation can take several seconds to fetch due to network constraints, and entering data can be
downright painful—particularly on a mobile phone. Instead, mobile applications need to be
optimized to deliver specific information and services with minimal data entry required on the
part of the user and as few client-to-server roundtrips as feasible.

The Importance of Form Factor

When designing mobile applications, you must always remain sensitive to the available amount
of screen real estate. Whether creating a WAP-based application bound to a microbrowser or a
custom user interface in J2ME, application developers have to balance the issues of communi-
cating a sufficient quantity of information in each screen against maintaining a readable and
navigable user interface.

Data Entry and Navigation Techniques

Related to form factor is the issue of data entry. Different types of devices rely on different
mechanisms for data entry. PalmOS and Pocket PC devices use a combination of a stylus and
handwriting recognition (with optional portable keyboards); RIM BlackBerry devices use

1137

N
S

1N3IINdO13AIQg

SSTTIMIAN

1138

Internet Development

PART VI

thumb-size keyboards; mobile phones generally have only a numeric keypad and a few extra
buttons. This means that applications designed for one mobile platform might be difficult to
use on another. For example, a PDA stylus is great for tapping random areas of the screen,
whereas a BlackBerry is better suited toward text data entry, and a phone is best suited for as
little data entry as possible!

M-Commerce

Just as e-commerce has come to refer to commercial transactions performed over the Web,
m-commerce refers to commercial transactions over mobile devices. Developers of mobile
commerce sites must understand that m-commerce is fundamentally different from e-commerce.
Most conspicuously, it’s not feasible for mobile customers to browse for items. In the case of a
mobile phone, for instance, it’s too time-consuming to enter keystrokes—images either don’t
exist or are of poor quality, and there isn’t enough screen real estate to describe items.

Instead, m-commerce systems should be designed with the notion in mind that the users know
what they want; just make it easy for them to give you their money. Remember: if the user
wants to buy a television or book, there’s little reason why he wouldn’t simply wait until he get
to his home or office to make the purchase on a full-sized computer. The fact that the user is
even willing to engage in m-commerce implies that there is some sense of immediacy or
urgency in making the purchase, and winning m-commerce merchants will be the ones who
recognize and take advantage of this fact.

For example, one eastern European country allows motorists to pay parking meter tolls using
their mobile phone. This seems like a relatively simple application on the surface, but the value
proposition for both parties is very compelling. The motorist doesn’t have to worry about
whether he has enough coins to feed the meters, and the meter operator isn’t burdened with
collecting coins from dozens or hundreds or thousands of meters and trucking the coins to the
bank. Police monitoring the meters can use a mobile device tied to the same system to know at
an instance how much time is left for a given space.

Summary

The world of mobile computing has grown dramatically in recent years, and it can be difficult
to keep track of emerging trends. Our hope is that at this point, you are now armed with
enough information to make some strategic decisions and move forward with a mobility pro-
ject. In addition, you have seen that Delphi is a very capable tool when it comes to building
this next generation of wireless applications.

