
CHAPTER

23
Building WebSnap Applications
by Nick Hodges

IN THIS CHAPTER
• WebSnap Features 1078

• Building a WebSnap Application 1080

• Advanced Topics 1107

30 chpt_23.qxd 11/19/01 12:14 PM Page 1077

Delphi 6 introduces a new Web application framework called WebSnap that brings the
strengths of Rapid Application Development (RAD) to Web development. Building on
WebBroker and InternetExpress, WebSnap is a big leap forward for Delphi developers who
want to use their favorite tool to build Web applications. It provides all the standard nuts and
bolts for Web applications, including session management, user login, user preference tracking,
and scripting. Naturally, Delphi 6 brings RAD to Web site development, making building
robust, dynamic, database-driven Web applications easy and fast.

WebSnap Features
WebSnap isn’t a totally new technology, and it doesn’t leave behind your WebBroker and
InternetExpress applications. WebSnap is compatible with these two older technologies, and it
is a relatively straightforward process to integrate your existing code into a new WebSnap
application. WebSnap provides several features listed in the following sections.

Multiple Webmodules
In Delphi’s previous versions, WebBroker and InternetExpress applications had to do all their
work in a single Web module. Multiple webmodules weren’t allowed. To add datamodules,
they had to be created manually at runtime, rather than automatically. WebSnap eliminates this
restriction and allows any number of webmodules and datamodules to be part of a Web appli-
cation. WebSnap is based on multiple modules, and each module represents a single Web page.
This allows different developers to work on different portions of the application without having
to worry about modifying each other’s code.

Server-side Scripting
WebSnap seamlessly integrates server-side scripting into your applications, and allows you to
very easily build powerful scriptable objects that you can use to build and customize your
applications and HTML. The TAdapter component and all of its descendents are scriptable
components, meaning that they can be called by your server-side script and produce HTML
and client-side JavaScript for your applications.

TAdapter Components
TAdapter components define an interface between an application and the server-side scripting.
Server-side script only has access to your application via adapters, ensuring that the script
doesn’t inadvertently change the data in an application or expose functions that aren’t intended
for public consumption. You can build custom TAdapter descendents that manage content for
your specific needs, and that content can even be visible and configurable at design time.
TAdapters can hold data and execute actions. For instance, the TDataSetAdapter can display

Internet Development

PART VI
1078

30 chpt_23.qxd 11/19/01 12:14 PM Page 1078

records from a dataset as well as take the normal actions on a dataset such as scroll, add,
update, and delete.

Multiple Dispatching Methods
WebSnap provides a number of ways to manage HTTP requests. You can access your Web
content by page name, by TAdapter actions, or by simple Web action requests as WebBroker
does. This gives you the power and flexibility to display your Web pages based on any number
of different kinds of inputs. You might want to display a page in response to a submit button,
or you might want to build a set of links into a menu based on the collection of pages in your
site.

Page Producer Components
WebBroker introduced TPageProducer, a component for managing HTML and inserting and
updating content based on custom tags. InternetExpress advanced this notion with TMidasPage
Producers. WebSnap advances the notion of PageProducers even further, adding a number of
new and powerful controls that can access TAdapter content, as well as XSL/XML data. The
most powerful of these new TPageProducer descendents is TAdapterPageProducer, which
knows how to produce HTML based on the actions and fields of TAdapter components.

Session Management
WebSnap applications contain automatic, built-in session management; now you can keep
track of user’s actions across multiple HTTP requests. Because HTTP is a stateless protocol,
your Web applications must keep track of users by leaving something on the client that identi-
fies each user. Normally this is done with cookies, URL references, or hidden field controls.
WebSnap provides seamless session support that makes tracking users very easy. WebSnap
does this via its SessionsService component. The SessionsService component seamlessly
maintains a session identification value for each user, making it a simple task to keep track of
each user as she makes individual requests. This is normally a difficult service to manage, but
WebSnap handles all the details and makes the session information available both in server-
side script and the Web application code itself.

Login Services
Your Web applications will likely need security to be implemented, requiring users to log in
to the given application. WebSnap automates this process by providing a specialized login
adapter component. This component contains the functions needed to properly query and
authenticate users according to the application’s chosen security model. It gathers login infor-
mation, and in conjunction with WebSnap’s session management, provides current login

Building WebSnap Applications

CHAPTER 23

23

B
U

ILD
IN

G
W

EBS
N

A
P

A
PPLIC

A
TIO

N
S

1079

30 chpt_23.qxd 11/19/01 12:14 PM Page 1079

credentials for each request. The login components also automate login validation and login
expiration. Throughout your application, users who try to access unauthorized pages can be
automatically referred to the login page.

User Tracking
The most common function that session tracking provides is the ability to keep track of your
users and their preferences for your application. WebSnap provides components that allow you
to easily track user information and display it on your site. You can store user login informa-
tion, and then retrieve user information based on that. You can maintain user access rights and
site preferences, as well as things such as shopping cart information.

HTML Management
Often in a dynamic Web application, keeping track of and managing HTML can be difficult.
HTML content can reside in any number of places such as files and resources, or they can be
dynamically generated. WebSnap provides a means for you to manage this process with its file
location services.

File Uploading Services
Managing the uploading of files usually requires a lot of custom code. WebSnap provides a
simple adapter solution that manages the multipart forms needed to upload files. You can pro-
vide file upload capability in your WebSnap application quickly and easily using the built-in
functionality of the TAdapter component.

Building a WebSnap Application
As always, the best way to learn about the new technology in Delphi is to try it out. We’ll start
by building the “Hello World” version of a WebSnap application.

Designing the Application
First, you’ll want to add the WebSnap toolbar to the IDE, so right-click on the speedbutton
area of the IDE title bar, and select the Internet toolbar (see Figure 23.1). This adds a toolbar to
the IDE main window that makes creating WebSnap applications and adding forms and web-
modules easy.

Next, click the speedbutton with the hand holding the globe, and you will see dialog box
shown in Figure 23.2.

Internet Development

PART VI
1080

30 chpt_23.qxd 11/19/01 12:14 PM Page 1080

FIGURE 23.1
Internet toolbar.

Building WebSnap Applications

CHAPTER 23

23

B
U

ILD
IN

G
W

EBS
N

A
P

A
PPLIC

A
TIO

N
S

1081

FIGURE 23.2
The New WebSnap Application dialog box.

The dialog box in Figure 23.2 gives you a number of options for setting up your WebSnap
application. The first is the type of server that your application is going to run on. You are
given five choices:

• ISAPI/NSAPI Dynamic Link Library—This option produces a project that runs under
IIS (or under Netscape servers with the appropriate ISAPI adapter installed). The project
produces a DLL when compiled, and runs in the same memory space as the Web server.
The most common Web server to run ISAPI applications is Microsoft’s Internet
Information Server, although other Web servers can run ISAPI DLLs.

• CGI Standalone executable—This option creates a project that produces a console exe-
cutable that reads and writes from the standard input and output ports. It conforms to the
CGI specification. Almost all Web servers support CGI.

• Win-CGI Standalone executable—This option produces a Win-CGI project that commu-
nicates with a Web server via text-based INI files. Win-CGI is very uncommon and not
recommended.

30 chpt_23.qxd 11/19/01 12:14 PM Page 1081

• Apache Shared Module (DLL)—This option produces a project that will run in the
Apache Web server. For more information about Apache, see http://www.apache.org.

• Web App Debugger Executable—If you select this option, you get an application that
will be run by Delphi’s Web App Debugger (see Figure 23.3). Your Web application will
be an out-of-process COM server, and the Web App Debugger will control and run the
application. This type of Web application will allow you to use the full power of Delphi’s
debugger when debugging it. This means no more hassling with Web servers, turning
them on and off in order to load and unload your applications. Instead, debugging your
application will be fast and easy.

Internet Development

PART VI
1082

FIGURE 23.3
The Web App Debugger application greatly simplifies debugging your Web applications.

The WebApp Debugger can be accessed via the Tools menu in the IDE. In order to
work properly, you need to register the application found in the <Delphi Dir>\bin
directory called serverinfo.exe. All you need to do to register it is run it once, and it
will register itself. The Web App Debugger is a COM-based application that acts as a
Web server to your testing applications. When you create a Web App Debugger
Application, your new project will contain a form and a Web module. The form acts
as a placeholder for the COM server, and running the application once will register it.
After that, the Web App Debugger will control it via the Web browser, and will serve
your application in the browser. Because the application is a Delphi executable and
not a Web server extension, you can set a breakpoint in it and run it in the Delphi
IDE. Then, when you access it through the browser, Delphi’s debugger will take over
when your breakpoints are reached, and you can debug the application normally.

NOTE

continues

30 chpt_23.qxd 11/19/01 12:14 PM Page 1082

For the sample application that you will build here, select the Web App Debugger option. This
will allow you to debug the application as you build it.

The next option in the wizard allows you to select the type of module you want and the differ-
ent components that will be included. If you choose the Page Module option, you will get a
Web module that represents a page in your application. If you choose the Data Module option,
you will get a datamodule that can be used in a WebSnap application. It can perform the same
function as datamodules do in traditional client/server applications. For this application, select
the Page Module option.

Next, click on the Components button, and you’ll see the dialog box shown in Figure 23.4.

Building WebSnap Applications

CHAPTER 23

23

B
U

ILD
IN

G
W

EBS
N

A
P

A
PPLIC

A
TIO

N
S

1083

To access your application via the browser, run the Web App Debugger, and click on
the hyperlink labeled Default URL. This will bring up a Web application that lists all
the applications registered with the server. You can then select your application and
run it. The View Details option will allow you to see more information about the dif-
ferent applications, and to clean them out of the registry when they are no longer
needed. Be careful, though, not to delete the ServerInfo application; otherwise,
you’ll have to go back and register it again.

FIGURE 23.4
The Web App Components dialog box allows you to select the components that will be included in your new module.

You have the choice of the following components listed:

• Application Adapter—This component manages the fields and actions available through
the Application server-side scripting object. The most common property you’ll use in this
component is the Title property.

30 chpt_23.qxd 11/19/01 12:14 PM Page 1083

• End User Adapter—This component manages the information about the current user of
the application such as the session ID, username, user rights, and other customized user
information. It also will manage the user’s login and logout actions.

• Page Dispatcher—This component manages and dispatches HTTP requests made by
page name. You can create HREF links or actions that call specific pages, and the Page
Dispatcher will retrieve the proper response.

• Adapter Dispatcher—The Adapter Dispatcher handles all requests that come as a result
of adapter actions. These are generally the result of an HTML form submission.

• Dispatcher Actions—This option adds a TWebDispatcher to your applications. Users of
WebBroker will remember this component. It handles requests from the application
based on URLs, just as WebBroker applications did. You can use this component to add
your own custom actions to your application in the same way you did with WebBroker.

• Locate File Service—The events of this component are called whenever a Web module
requires HTML input. You can add event handlers that allow you to bypass the default
HTML finding mechanism and get HTML from almost any source. This component is
used most often for grabbing page content and templates for building standard pages.

• SessionsService—This component manages sessions for users, allowing you to maintain
state for individual users between HTTP requests. The SessionsService can store infor-
mation about users and automatically expire their sessions after a certain period of inac-
tivity. You can add any session-specific information you want to the Session.Values
property, a string indexed array of variants. By default, the sessions are managed using
cookies on the user’s machine, although you could build a class to handle them some
other way, such as with fat URLs or hidden fields.

• User List Service—This component maintains a list of users who are authorized to log in
to the application and information about them.

Internet Development

PART VI
1084

These options each have drop-down boxes that allow you to choose the component
that will fulfill each of the preceding roles. You can create your own components that
will fulfill these roles and register them with WebSnap. They will then appear as
choices in this dialog box. You could, for instance, create a session component that
maintains session information in a fat URL rather than with cookies.

NOTE

For this example, select all the check boxes. Then, for the End User Adapter component, drop
down the combo box and select TEndUserSessionAdapter. This component will automatically
associate a session ID with an end user. Then click OK.

30 chpt_23.qxd 11/19/01 12:14 PM Page 1084

The next option in the wizard is the name of the page. Name this main page Home, and then
click Page Options. You’ll see dialog box shown in Figure 23.5.

Building WebSnap Applications

CHAPTER 23

23

B
U

ILD
IN

G
W

EBS
N

A
P

A
PPLIC

A
TIO

N
S

1085

FIGURE 23.5
The Application Module Page Options dialog box allows you to select the options for the page in your Web module.

This dialog box allows you to customize the PageProducer component of your Web module
and the HTML associated with it. It presents a number of options. The first is the type of page
producer. WebSnap includes a number of standard PageProducers that can produce and manage
HTML in different ways. To start with, select the default option, a plain PageProducer. You can
also select the type of server-side scripting you want to use. Out of the box, Delphi supports
JScript and VBScript (as well as XML/XSL, which will be discussed later.) Leave the default
value of JScript here.

Each module has an HTML page associated with it. The next option allows you to select what
type of HTML you want. By default, Delphi provides a Standard page with a simple scripted
navigation menu on it. You can create your own HTML templates, register them with
WebSnap, and then select them here. We’ll look at how to do that later in this chapter. For now,
leave the default value of Standard here.

Name the page Home (the Title is automatically filled in the same). Make sure Published is
checked, and leave Login Required unchecked. A published page will show up in the list of
pages in the application and can be referenced by the Pages scripting object. This is needed to
create page-based menus in script using the Pages scripting object.

After you have done this, click OK, and then click OK on the main wizard. The wizard will
then create your application for you, and the new Web module will look something similar to
that shown in Figure 23.6.

30 chpt_23.qxd 11/19/01 12:14 PM Page 1085

FIGURE 23.6
The Web module for the demo application as created by the WebSnap Wizard.

We haven’t yet discussed the TWebAppComponents control. This control is the central clearing
house for all the other components. Because many of the components in a WebSnap applica-
tion work together, the WebAppComponents component is the one that ties them together and
allows them to communicate and refer to each other. Its properties consist merely of other
components that fill the specific roles discussed previously.

At this point, you should save the project. To keep consistent with the rest of the chapter, name
the Web module (unit2) wmHome, name the form (Unit1) ServerForm, and name the project
itself DDG6Demo.

By examining the Code Editor, you should see some new, unfamiliar features. First, notice the
tabs along the bottom. Each Webmodule—because it represents a page in a Web application—
has an associated HTML file that can contain server-side script. The second tab on the bottom
shows this page (see Figure 23.7). Because you selected the Standard HTML page template in
the wizard, the HTML contains server-side script that will greet the user if she is logged in,
and will provide a basic navigation menu that will be automatically built based on all the pub-
lished pages in the application. As pages get added to this demo application, this menu will
grow larger and will allow users to navigate to each of the pages. The default HTML code is
shown in Listing 23.1.

Internet Development

PART VI
1086

30 chpt_23.qxd 11/19/01 12:14 PM Page 1086

FIGURE 23.7
The HTML page associated with the Web module.

LISTING 23.1 Default HTML Code

<html>
<head>
<title>
<%= Page.Title %>
</title>
</head>
<body>
<h1><%= Application.Title %></h1>

<% if (EndUser.Logout != null) { %>
<% if (EndUser.DisplayName != ‘’) { %>
<h1>Welcome <%=EndUser.DisplayName %></h1>

<% } %>
<% if (EndUser.Logout.Enabled) { %>
<a href=”<%=EndUser.Logout.AsHREF%>”>Logout

<% } %>
<% if (EndUser.LoginForm.Enabled) { %>
<a href=<%=EndUser.LoginForm.AsHREF%>>Login

<% } %>
<% } %>

Building WebSnap Applications

CHAPTER 23

23

B
U

ILD
IN

G
W

EBS
N

A
P

A
PPLIC

A
TIO

N
S

1087

30 chpt_23.qxd 11/19/01 12:14 PM Page 1087

LISTING 23.1 Continued

<h2><%= Page.Title %></h2>

<table cellspacing=”0” cellpadding=”0”>
<td>
<% e = new Enumerator(Pages)

s = ‘’
c = 0
for (; !e.atEnd(); e.moveNext())
{
if (e.item().Published)
{
if (c>0) s += ‘ | ’
if (Page.Name != e.item().Name)
s += ‘’ + e.item().Title + ‘’

else
s += e.item().Title

c++
}

}
if (c>1) Response.Write(s)

%>
</td>
</table>

</body>
</html>

This code contains both normal HTML tags as well as server-side JScript.

You should also note that the HTML is syntax-highlighted in the IDE. (You can set the colors
to be used in Tools, Editor Options, Color property page.) In addition, you can set your own
external HTML editor such as HomeSite and access it via the IDE as well. Set the HTML
Editor in Tools, Environment Options, Internet. Select HTML in the listview, and then click
Edit. From there, select the appropriate edit action to use your external editor. Then, when you
right-click on the HTML page in the Code Editor, you can select the HTML Editor option and
call up your editor.

In addition to the HTML viewing tab, the next tab shows the HTML that results from the script
being run. The following tab shows a preview of the HTML in an Internet Explorer window.
Do note that not all the script will execute and display in this view because some of the code
relies on runtime values. However, you can at least get an idea what the page will look like
without having to run it in the browser.

Internet Development

PART VI
1088

30 chpt_23.qxd 11/19/01 12:14 PM Page 1088

Adding Functionality to the Application
Now let’s add a little code and make the application do something. First, go to the Home Web
module and select the Application adapter. Set the ApplicationTitle property to Delphi
Developers Guide 6 WebSnap Demo Application. Note that this will immediately show up in
the preview tab because the HTML contains the following server-side script as the first thing in
the <BODY> section:

<h1><%= Application.Title %></h1>

This causes the Application scripting object to display the value for ApplicationTitle in the
HTML.

Next, go to the Code Editor, and select the HTML page for the Home Module. Then move the
cursor down below the </table> tag near the bottom and add a pithy description of the page,
which welcomes the user. The code on the CD-ROM has such an entry, adding the following:

<P>
Welcome to the Delphi 6 Developers Guide WebSnap
➥ Demonstration Application!
<P>
This application will demonstrate many of the new features in Delphi 6 and
➥WebSnap. Feel free to browse around and look at the code involved. There is
➥a lot of power, and thus a lot to learn, in WebSnap, so take your time and
don’t try to absorb it all at once.
<P>

This new code of course immediately shows up in the HTML Preview panel as well.

Next, just to prove that you are actually building a browser application, run the project. The
first thing you will see is a blank form. This is the COM server. You can shut it down once it
runs, and then start up the Web App Debugger from the Tools menu. After you have done that,
click on the Default URL hyperlink (it will be called DDG6DemoApp.DDG6TestApp), find the
application in the list box in your browser, and click the Go button. Your browser should show
your page as illustrated in Figure 23.8.

As you can see, it really is a Web application!

Navigation Menu Bar
Now, you’ll add another page that demonstrates the navigation menu. Go to the IDE’s main
menu bar, and select the second toolbutton on the Internet menu, the one with the little globe
and the sheet of paper. This will bring up the New WebSnap Page Module Wizard, which is
similar to the dialog box you saw as part of the main wizard. Leave all the options with the
default values, except for the Name edit box. Name the page Simple. The result is a Web mod-
ule with a single PageProducer in it. Note that an HTML page is associated with this page, and
it has the same code as the first page you saw. Save the unit as wmSimple.pas.

Building WebSnap Applications

CHAPTER 23

23

B
U

ILD
IN

G
W

EBS
N

A
P

A
PPLIC

A
TIO

N
S

1089

30 chpt_23.qxd 11/19/01 12:14 PM Page 1089

FIGURE 23.8
Results of the first page added to the demo application.

Internet Development

PART VI
1090

Setting Threading and Caching Options
The New WebSnap Page Module Wizard has two options at the bottom that deter-
mine how instances of each Web module are to be handled. The first is the Creation
option. Web modules can be created either On Demand or Always. Web modules cre-
ated On Demand are only instantiated when a request comes in for them. Choose this
option for pages that are less frequently used. Choose Always for pages that are cre-
ated immediately upon application startup. The second option is the Caching Option,
and this determines what happens to a Web module when it has finished servicing its
request. If Cache Instance is chosen, each Web module created is cached when it is
finished providing a request, and it remains in a pool of cached instances, ready to be
used again. It is important to note that when it is used again, the field data will be in
the same state it was in when it finished its last request. Choose Destroy Instance if
you want each instance of the Web module to be destroyed upon completion instead
of being cached.

Next, add some simple message in the HTML page in the same spot below the table in the
standard page. Then, compile and run the application via the Web App Debugger as you did

30 chpt_23.qxd 11/19/01 12:14 PM Page 1090

before. If the page was there from the last time you checked it, all you need to do is click the
Refresh button on your browser.

This time when you run the application, you should note that the navigation menu now
appears. That menu is a result of the following server-side script:

<% e = new Enumerator(Pages)
s = ‘’
c = 0
for (; !e.atEnd(); e.moveNext())
{
if (e.item().Published)
{
if (c>0) s += ‘ | ’
if (Page.Name != e.item().Name)
s += ‘’ + e.item().Title + ‘’

else
s += e.item().Title

c++
}

}
if (c>1) Response.Write(s)

%>

This code simply iterates over the Pages scripting object, building a menu of page names. The
code makes a link if the page found isn’t the current page. Thus, the current page isn’t a link,
and all the other page names are, no matter what the current page is. This is a rather simple
menu, and of course you could write your own more sophisticated menus for your custom
application.

Building WebSnap Applications

CHAPTER 23

23

B
U

ILD
IN

G
W

EBS
N

A
P

A
PPLIC

A
TIO

N
S

1091

If you toggle between the two pages, you might notice that the application’s form
flashes in the background each time a request is made. That is because the Web App
Debugger is calling the application as a COM object for each request, running the
application, getting the HTTP response back, and shutting down the application.

NOTE

Next, you can make part of the application restricted only to users who are logged in. First, add
a page that requires a user to be logged in to see it. Click the New WebSnap Page button on the
Internet toolbar, and name the page “LoggedIn.” Then, select the LoginRequired check box.
Click OK to create a Web page that can only be viewed by a user who is logged in. Save the
page as wmLoggedIn.pas. Then, add some HTML code to the HTML page letting the user

30 chpt_23.qxd 11/19/01 12:14 PM Page 1091

know that only logged in users can view the page. The application on the CD-ROM includes
the following:

<P>
Congratulations!

You are successfully logged in! Only logged in users are granted access
➥to this page. All others are sent back to the Login page.
<P>

The only difference between the LoggedIn page and the Simple page is a parameter in the code
that registers the page with the application manager. Every WebSnap page has an initialization
section that looks something like this:

initialization
if WebRequestHandler <> nil then
WebRequestHandler.AddWebModuleFactory(TWebPageModuleFactory.Create(TLoggedIn,

TWebPageInfo.Create([wpPublished, wpLoginRequired], ‘.html’),
➥crOnDemand, caCache));

This code registers the page with the WebRequestHandler object, which manages all the pages
and provides their HTML content when needed. WebRequestHandler knows how to create,
cache, and destroy instances of webmodules as needed. The preceding code is the code for the
LoggedIn page, and it has the wpLoginRequired parameter, telling the page that only logged in
users can access it. By default, the New Page Wizard adds this value, but comments it out. If
you want the page to become password protected later, you can simply uncomment the para-
meter and recompile the application.

Logging In
You need to create a page that lets the user log in. First, however, there is some housekeeping
to do on the Home page.

First, create a new page and give it the name Login. Then, select TAdapterPageProducer for
the page producer type. This time, however, don’t publish it by deselecting the Publish check
box, and obviously don’t require a user to be logged in to view the login page! Deselecting the
Publish option will make the page available for use, but it won’t be part of the Pages scripting
object, and thus it won’t show up on the navigation menu. Save it as wmLogin. This time, go
to the WebSnap page of the Component Palette and drop a TLoginAdapter component on the
module.

The TAdapterPageProducer is a specialized PageProducer that knows how to display and han-
dle the appropriate HTML fields and controls for a TAdapter. In the case of the Demo applica-
tion, this TAdapterPageProducer is going to display the Username and Password edit boxes
that the user will need to use to log in. When you begin to understand WebSnap better, you’ll

Internet Development

PART VI
1092

30 chpt_23.qxd 11/19/01 12:14 PM Page 1092

quickly want to use TAdapterPageProducers in all your pages because they make it very easy
to display TAdapter information, execute TAdapter actions, and build HTML forms based on
TAdapter fields.

Because the TLoginFormAdapter has all the fields needed for this, creating the login page will
be very easy, and done with no code at all—that’s right, no code. You’ll be able to add users,
create a login page, and enforce the login on pages you specify, all without a single line of
code.

First, to manage logins, you’ll need to create some users. Go to the Home Web module and
double-click on the WebUserList component. This component manages users and passwords.
You can easily add users and their passwords. Click on the New button and add two different
users. Add whatever passwords you want for each user. The two users on the demo application
on the CD-ROM are ddg6 and user. Their passwords are the same as their usernames, as
shown in Figure 23.9.

Building WebSnap Applications

CHAPTER 23

23

B
U

ILD
IN

G
W

EBS
N

A
P

A
PPLIC

A
TIO

N
S

1093

FIGURE 23.9
The component editor for the WebUserList component with two users added.

Select the EndUserSessionAdapter and set the LoginPage property to Login, that is, the name
of the page that has the controls to log in users. Next, go back to the Login Web module and
double-click on the TAdapterPageProducer component. This will bring up the Web Surface
designer, shown in Figure 23.10.

Select the AdapterPageProducer in the upper right, and click the New Component button.
Select AdapterForm and click OK. Then, select the AdapterForm1, and click the New
Component button again. Select AdapterErrorList. Do the same for AdapterFieldGroup and
AdapterCommandGroup. Then set the Adapter property for these three components to
LoginFormAdapter1. Then, select the AdapterFieldGroup and add two AdapterDisplayField
objects. Set the FieldName property on the first one to UserName, and the second one to
Password. Select the AdapterCommandGroup, and set its DisplayComponent property to
AdapterFieldGroup1. You should then have a form that looks like Figure 23.10. If you close
this form, and then go to the Code Editor, you can see that the form now has the login controls
in it.

30 chpt_23.qxd 11/19/01 12:14 PM Page 1093

FIGURE 23.10
The TAdapterPageProducer Web Surface Designer with the LoginFormAdapter components on it.

That’s all you need to do. Run the application and leave it running. Now, because you are rely-
ing on session information about the user, you need to leave the application in memory for it to
remember that you are logged in. Run the application in the browser, and then try to navigate
to the page that requires you to be logged in. It should take you to the Login page. Enter a
valid username and password, click the login button, and you will be taken to the page asking
you to log in. From now on, any page that you specify as requiring a valid login will only dis-
play if you are properly logged in. Otherwise it will send you to the login page. All that hap-
pens without writing a single line of Pascal code.

Try this as well: Log out by selecting the Logout link, and then try to login with an invalid
username or password. Note that an error message is displayed. That is the AdapterErrorList
component at work. It automatically collects login errors and displays them for you.

When you are logged in to the application and navigating around the pages in the application,
you will notice that it remembers who you are and displays your login name in the heading for
each page. This is a result of the following server-side script in the HTML file for the web-
modules:

<% if (EndUser.Logout != null) { %>
<% if (EndUser.DisplayName != ‘’) { %>
<h1>Welcome <%=EndUser.DisplayName %></h1>

<% } %>

Internet Development

PART VI
1094

30 chpt_23.qxd 11/19/01 12:14 PM Page 1094

Managing User Preference Data
The next thing you might want to do is to maintain some user preference information. Most
dynamic, user-based applications will want to display all different types of user information
ranging from items in a shopping cart to a user’s color preferences. Of course, WebSnap makes
this very easy. But this time, you’ll actually have to write a few lines of code.

First, add another page to the application. Give it a TAdapterPageProducer and require the
user to be logged in to view it. (By now, you should be able to do this using the toolbar and the
resulting wizard.) Save the file as wmPreferenceInput. Add a TAdapter to the Webmodule.
Rename the Adapter from Adapter1 to PrefAdapter, as shown in Figure 23.11.

Building WebSnap Applications

CHAPTER 23

23

B
U

ILD
IN

G
W

EBS
N

A
P

A
PPLIC

A
TIO

N
S

1095

FIGURE 23.11
The PreferenceInput Web module that will gather up the user’s preferences.

First, double-click on the PrefAdapter component, and then add two AdapterFields and one
AdapterBooleanField. Name the two AdapterFields FavoriteMovie and PasswordHint. Name
the AdapterBooleanField LikesChocolate. (Notice that when you rename these components,
the DisplayLabel and FieldName values change as well.) You can also change the
DisplayLabel values that make more sense in your HTML.

The PrefAdapter component will hold the values for these preferences, and they can be
accessed from other pages. TAdapters are scriptable components that can hold, manage, and
manipulate information for you, but doing that will require some code. Each of the three
AdapterFields you created need to be able to retrieve their values when asked for them in
script, so each has an OnGetValue event that does just that. Because you want this information
to be persistent across requests, you’ll store the information in the Session.Values property.
The Session.Values variable is a string-indexed array of variants, so you can store almost
anything in it, and it will maintain that information as long as the current session is active.

The TAdapter class also allows you to take actions on its data. Most commonly, this will take
the form of a Submit button on your HTML form. Select the PrefAdapter component, go to
the Object Inspector, and double-click on the Actions property. Add a single action and name it
SubmitAction. Change its DisplayLabel property to Submit Information. Then, go to the
Events page in the Object Inspector and add this code to the action’s OnExecute event as
shown in Listing 23.2.

30 chpt_23.qxd 11/19/01 12:14 PM Page 1095

LISTING 23.2 OnExecute Handler

procedure TPreferenceInput.SubmitActionExecute(Sender: TObject;
Params: TStrings);

var
Value: IActionFieldValue;

begin

Value := FavoriteMovieField.ActionValue;
if Value.ValueCount > 0 then
begin
Session.Values[sFavoriteMovie] := Value.Values[0];

end;

Value := PasswordHintField.ActionValue;
if Value.ValueCount > 0 then
begin
Session.Values[sPasswordHint] := Value.Values[0];

end;

Value := LikesChocolateField.ActionValue;
if Value <> nil then
begin
if Value.ValueCount > 0 then
begin
Session.Values[sLikesChocolate] := Value.Values[0];

end;
end else
begin
Session.Values[sLikesChocolate] := ‘false’;

end;;
end;

This code retrieves the values from the input fields in your HTML when the user clicks the
Submit button, and puts the values in the session variable for later retrieval by the
AdapterFields.

Of course, you need to be able to retrieve those values once they are set, so each field of the
adapter will get its value back from the SessionsService object. For each field in the adapter,
make the OnGetValue event handlers resemble the code in Listing 23.3.

LISTING 23.3 OnGetValue Event Handlers

...
const
sFavoriteMovie = ‘FavoriteMovie’;
sPasswordHint = ‘PasswordHint’;

Internet Development

PART VI
1096

30 chpt_23.qxd 11/19/01 12:14 PM Page 1096

LISTING 23.3 Continued

sLikesChocolate = ‘LikesChocolate’;
sIniFileName = ‘DDG6Demo.ini’;

...

procedure TPreferenceInput.LikesChocolateFieldGetValue(Sender: TObject;
var Value: Boolean);

var
S: string;

begin
S := Session.Values[sLikesChocolate];
Value := S = ‘true’;

end;

procedure TPreferenceInput.FavoriteMovieFieldGetValue(Sender: TObject;
var Value: Variant);

begin
Value := Session.Values[sFavoriteMovie];

end;

procedure TPreferenceInput.PasswordHintFieldGetValue(Sender: TObject;
var Value: Variant);

begin
Value := Session.Values[sPasswordHint];

end;

Next, you need to be able to display controls that will actually get the data from the user.
You’ll do that via the TAdapterPageProducer, just as you did with the Login page. First, dou-
ble-click on the TAdapterPageProducer, and you will get the Web Surface designer again.
Create a new AdapterForm, and then add an AdapterFieldGroup, as well as an
AdapterCommandGroup. Set the Adapter property of the AdapterFieldGroup to PrefAdaper,
and set the DisplayComponent of the AdapterCommandGroup to AdapterFieldGroup. Then,
right-click on the AdapterFieldGroup and select Add All Fields from the menu. For each of
the resulting fields, use the Object Inspector to set the FieldName property to the appropriate
values. You can also change the Caption properties to more friendly values than the default.
Then select the AdapterCommandGroup, right-click on it, and select Add All Commands from
the menu. Set the ActionName property of the resulting AdapterActionButton to
SubmitAction. Finally, set the AdapterActionButton.PageName property to PreferencesPage.
(This is the page that the action will go to once it is done processing the action. You’ll create
that page in a minute.)

If something isn’t hooked up correctly in the Web Surface Designer, you will see an error mes-
sage in the Browser tab. The message will instruct you on the properties that need to be set for
everything to be connected properly and for the HTML to be rendered properly.

Building WebSnap Applications

CHAPTER 23

23

B
U

ILD
IN

G
W

EBS
N

A
P

A
PPLIC

A
TIO

N
S

1097

30 chpt_23.qxd 11/19/01 12:14 PM Page 1097

After you have done all this, and the HTML looks right, the page is done. Now, if you run the
application, you’ll see an additional page on the menu. If you log in, you can see the input
controls to enter your preference data. Don’t click the Submit button just yet because there is
no place to go.

Next, create a page to display the user preferences by using the toolbar, and then name it
PreferencesPage. Publish the page and require users to be logged in to view it. (Again, the wiz-
ard can do all this for you as before.) Save the new unit as wmPreferences.

Then, go the HTML for the page, and in the area just below the table that holds the navigation
menu, add the following script:

<P>
Favorite Movie: <%= Modules.PreferenceInput.PrefAdapter.FavoriteMovieField.
➥Value %>

Password Hint: <%= Modules.PreferenceInput.PrefAdapter.PasswordHintField.
➥Value %>

<% s = ‘’
if (Modules.PreferenceInput.PrefAdapter.LikesChocolateField.Value)

s = ‘You like Chocolate’
else
s = ‘You do not like chocolate’

Response.Write(s);
%>

Now, when you compile and run the application, you can enter your preferences and click the
Submit button—the application will remember and display your preferences in the Preferences
page. You can access those values in the script for any other page as well once they are set. The
values are maintained between HTTP requests by the Session object and retrieved from the
Adapter component via script.

Internet Development

PART VI
1098

Each of the pages in a WebSnap application has an associated HTML file, as you have
seen. Because these files exist outside of the application, you can edit them, save the
changes, refresh the page in your browser, and see the results without recompiling
your application. This means that you can update the page itself without having to
take down your Web server. You can also easily experiment with your server-side
script during development without having to recompile your application. Later in the
chapter, you’ll look at alternative ways to store and retrieve your HTML.

NOTE

30 chpt_23.qxd 11/19/01 12:14 PM Page 1098

Persisting Preference Data Between Sessions
There’s only one problem now—the user’s selections aren’t persistent between sessions. The
preferences are lost if the user logs out. You can make these values persist even between ses-
sions by storing them each time the session ends and grabbing them each time a user logs in.
The demo application reads any stored data in the LoginFormAdapter.OnLogin event, and then
writes out any data in the SessionService.OnEndSession event. The code for those two
events is shown in Listing 23.4.

LISTING 23.4 OnLogin and OnEndSession Events

procedure TLogin.LoginFormAdapter1Login(Sender: TObject; UserID: Variant);
var
IniFile: TIniFile;
TempName: string;

begin
// Grab session data here
TempName := Home.WebUserList.UserItems.FindUserID(UserId).UserName;

➥ //WebContext.EndUser.DisplayName;
Home.CurrentUserName := TempName;

Lock.BeginRead;
try
IniFile := TIniFile.Create(IniFileName);
try
Session.Values[sFavoriteMovie] := IniFile.ReadString(TempName,
➥sFavoriteMovie, ‘’);
Session.Values[sPasswordHint] := IniFile.ReadString(TempName,
➥sPasswordHint, ‘’);
Session.Values[sLikesChocolate] := IniFile.ReadString(TempName,
➥sLikesChocolate, ‘false’);

finally
IniFile.Free;

end;
finally
Lock.EndRead;

end;
end;

procedure THome.SessionsServiceEndSession(ASender: TObject;
ASession: TAbstractWebSession; AReason: TEndSessionReason);

var
IniFile: TIniFile;

begin
//Save out the preferences here

Building WebSnap Applications

CHAPTER 23

23

B
U

ILD
IN

G
W

EBS
N

A
P

A
PPLIC

A
TIO

N
S

1099

30 chpt_23.qxd 11/19/01 12:14 PM Page 1099

LISTING 23.4 Continued

Lock.BeginWrite;
if FCurrentUserName <> ‘’ then
begin
try
IniFile := TIniFile.Create(IniFileName);
try
IniFile.WriteString(FCurrentUserName, sFavoriteMovie,
➥ASession.Values[sFavoriteMovie]);
IniFile.WriteString(FCurrentUserName, sPassWordHint,
➥ASession.Values[sPasswordHint]);
IniFile.WriteString(FCurrentUserName, sLikesChocolate,
➥ASession.Values[sLikesChocolate]);

finally
IniFile.Free;

end;
finally
Lock.EndWrite

end;
end;

end;

These event handlers store the data in an INI file, but there is no reason that you couldn’t store
the data in a database or any other persistent storage method.

The Lock variable is a global variable of type TMultiReadExclusiveWriteSynchronizer, and
it is created in the Home page’s initialization section. Because multiple sessions could be read-
ing and writing to the INI file, this component makes reading and writing to the INI file
thread-safe. Add the following declaration to the interface portion of your wmHome unit:

var
Lock: TMultiReadExclusiveWriteSynchronizer;

And then add this to the initialization and finalization sections for the same unit:

Initialization
...
Lock := TMultiReadExclusiveWriteSynchronizer.Create;

finalization
Lock.Free;

This code also uses a function called IniFileName that is declared as follows:

const
sIniFileName = ‘DDG6Demo.ini’;

...

Internet Development

PART VI
1100

30 chpt_23.qxd 11/19/01 12:14 PM Page 1100

function IniFileName: string;
begin
Result := ExtractFilePath(GetModuleName(HInstance)) + sIniFileName;

end;

Add this to your wmHome unit, and you should have a fully functioning Web application that
logs in users and tracks their preferences, even between sessions.

Image Handling
Practically every Web application displays graphics. Graphics can enhance your application’s
appeal and functionality. Naturally, WebSnap makes including images and graphics in your
applications as easy as, well, everything else WebSnap does. As you might expect, WebSnap
will enable you to use graphics and images from any source you prefer—files, resources, data-
base streams, and so on. If your image data can be put into a stream, it can be used in a
WebSnap application.

Use the Internet toolbar to add another page to your application. Use a
TAdapterPageProducer, publish the page, and require users to log in to gain access to it. Next
name the page Images, and save the resulting unit as wmImages. After this is done, go to the
Images Web module, add a TAdapter to the module, and give it the name ImageAdapter.
Finally, double-click on ImageAdapter, and add two fields of type TAdapterImageField. Each
of these will show a different way to display images.

First, you can display an image based on a URL. Highlight the first AdaperImageField, and
set the HREF property to a fully qualified URL that points to an image on your system or any-
where on the Internet for that matter. For instance, if you want to look at the one-year history
of Borland’s stock price, set the HREF property to http://chart.yahoo.com/c/1y/b/borl.gif.

Double-click on the TAdapterPageProducer in the Images Web module, add an AdapterForm,
and then to that add an AdapterFieldGroup. Set the adapter property of this new
AdapterFieldGroup to the ImageAdapter. Then right-click again on the AdapterFieldGroup
and select Add All Fields. Next, set the ReadOnly field of the AdapterImageField to True. If
this property is True, it will display the image on your page. If it is set to False, it will give
you an edit box and a button to look up a filename. Obviously, to see images, you should set
this property to True. When you first look at the image, you will notice that the image has a
pesky little caption. Most often you won’t want that, so to get rid of it, set the Caption prop-
erty to a single space. (Note that it won’t accept a blank caption.) You should then see the chart
appear in the Web Surface Designer as shown in Figure 23.12.

Building WebSnap Applications

CHAPTER 23

23

B
U

ILD
IN

G
W

EBS
N

A
P

A
PPLIC

A
TIO

N
S

1101

30 chpt_23.qxd 11/19/01 12:14 PM Page 1101

FIGURE 23.12
The Web Surface Designer with a graphic in it from the ImageAdapterField.

Internet Development

PART VI
1102

If you want images referenced by relative links to show up at design time, you must
add the directory where they reside to the Search Path on the Options page of the
Web App Debugger.

NOTE

Now you can display images based on a URL. At other times, however, you might want to get
an image from a stream. The AdapterImageField component provides support for that as well.
Select the second AdapterImageField from your ImageAdapter and open the Object Inspector.
Go to the events page, and double-click on the OnGetImage. Put a JPG image in the same
directory as application (the demo on the CD-ROM uses athena.jpg), and make your event
handler resemble the following:

procedure TImages.AdapterImageField2GetImage(Sender: TObject;
Params: TStrings; var MimeType: String; var Image: TStream;
var Owned: Boolean);

begin
MimeType := ‘image\jpg’;
Image := TFileStream.Create(‘athena.jpg’, fmOpenRead);

end;

30 chpt_23.qxd 11/19/01 12:14 PM Page 1102

This code is quite simple—Image is a stream variable that you create and fill with an image.
Of course, the application needs to know what type of image it is getting, so you can return
that information in the MimeType parameter. A TFileStream is a simple solution, but you could
get the image from any source, such as a BlobStream from a database, or build the image on-
the-fly and return it in a memory stream. Now when you run the application, you should see
the JPG you chose right below the stock graphic.

Displaying Data
Of course, you want your application to do more than the simple things it does so far. You’ll
certainly want to be able to display data from a database, both in tabular form and record by
record. Naturally, WebSnap makes this easy, and you can build powerful database applications
with only a modicum of code. By using the TDatasetAdapter and its built-in fields and
actions, you can easily display data, as well as make additions, updates, and deletions to any
database.

Actually displaying a dataset on a form is very easy. Add a new unit to your demo app—but
this time make it a WebDataModule, using the third button on the Internet toolbar. This wizard
is a simple one, so just accept the defaults. Then add a TDatasetAdapter from the WebSnap
tab on the Component Palette, and a TTable from the BDE tab. Point the TTable to the
DBDemos database, and then to the BioLife table. Then set the Dataset property of
DatasetAdapter1 to Table1. Finally, set Table1.Active to True to open the table. Name the
Webdatamodule BioLife data, and save the unit as wdmBioLife.

Building WebSnap Applications

CHAPTER 23

23

B
U

ILD
IN

G
W

EBS
N

A
P

A
PPLIC

A
TIO

N
S

1103

Your application is using a simple BDE-based Paradox table, but the TDatasetAdapter
component will display data from any TDataset descendent. Note, too, that it isn’t
really a good idea to use a TTable in a Web application without explicit session sup-
port. The demo app does this just for ease of use, and to keep attention on the
WebSnap features and not the data.

NOTE

Then, for a change of pace, use the Object Treeview to set the properties of the components. If
the Object Treeview isn’t visible, select View, Object Treeview from the main menu. Select the
DatasetAdapter, right-click on the Actions node, and select Add All Actions. Then, hook the
TTable to the TAdapterDataset via its Dataset property. Select the Fields node and right-
click, selecting Add All Fields. Do the same for the TTable, adding all the fields in the dataset
to the WebDatamodule. Then, because WebSnap builds stateless servers for database opera-
tions, you must indicate a primary key for the dataset to enable client-requested navigation
and data manipulation. WebSnap will do this all for you automatically after you specify the

30 chpt_23.qxd 11/19/01 12:14 PM Page 1103

primary key. Do this by selecting the Species_No Field in the Object Treeview and adding the
pfInKey value to its ProviderFlags property.

Next, add a regular page to the application. Make it a Login Required page, give it a TAdapter
PageProducer, and name the page Biolife. Save the unit as wmBioLife. Because you want to
display the data in this new page, add the wdmBioLife unit name to the uses clause of your
wmBioLife unit. Then, give the BioLife Web module the focus, and right-click on the Adapter
PageProducer component. Right-click on the WebPageItems node just below it, select New
Component, and select an AdapterForm. Select the AdapterForm, right-click it, and add an
AdapterErrorList. Then add an AdapterGrid. Set the Adapter property of both components to
the DatasetAdapter. Right-click on the AdapterGrid and select Add All Columns. Then select
the Actions node under the DatasetAdapter, right-click it, and select Add All Actions. Next,
select the Fields node, right-click, and add all the fields as well. You should now have all the
properties properly set to display data.

Go to the BioLife Web module and double-click on the AdaperPageProducer. You should see
the Web Surface Designer, with live data in it. If not, check to make sure that you have opened
the table and hooked up all the Adapter properties for the components within the
DatasetAdapter. The Notes field makes the table too long, so select the AdapterGrid in the
upper left and the ColNotes component in the panel in the upper right, and then delete it. Now
you should have something similar to that shown in Figure 23.13.

Internet Development

PART VI
1104

FIGURE 23.13
The BioLife table in the Web Surface designer of a TAdapterPageProducer; the HTML table is produced by the
TDatasetAdapter component.

30 chpt_23.qxd 11/19/01 12:14 PM Page 1104

The graphics don’t display at design time, but they will at runtime. Indeed, you can now com-
pile and run the application, and you can view all the data on the BioLife page—all without
writing a single line of code.

Of course, simply looking at the data isn’t very useful. You’ll likely want to manipulate indi-
vidual records. Naturally, this is easy to do in WebSnap. Go to the Web Surface Designer and
select the AdapterGrid. Right-click on it and add an AdapterCommandColumn. Then right-click
on this and select the DeleteRow, EditRow, BrowseRow, and NewRow commands, as shown in
Figure 23.14.

Building WebSnap Applications

CHAPTER 23

23

B
U

ILD
IN

G
W

EBS
N

A
P

A
PPLIC

A
TIO

N
S

1105

FIGURE 23.14
Use the Add Commands dialog box to select the actions you want to take on individual rows of the dataset.

Click OK. Then, vertically stack the buttons by setting the DisplayColumns property of the
AdapterCommandColumn component to 1. After you do that, you should see a collection of com-
mand buttons in the Web Designer (see Figure 23.15).

Currently, those buttons need to do something, and they’ll need a page to display the individual
record. Add another page to the project with a TAdapterPageProducer and require the user
login to see the page. Name the page BioLifeEdit, and save the unit as wmBioLifeEdit. Add
wdmBioLife to the uses clause so that you can access the data.

Double-click on the TAdapterPageProducer in the new Web module and add an AdapterForm.
Then add an AdapterErrorList, an AdapterFieldGroup, and an AdapterCommandGroup.
Right-click on the AdapterFieldGroup and add all the fields and then all the commands to the
AdapterCommandGroup. The Web Surface Designer resembles what is shown in Figure 23.16.

30 chpt_23.qxd 11/19/01 12:14 PM Page 1105

FIGURE 23.15
The Demo application displaying the action buttons.

Internet Development

PART VI
1106

FIGURE 23.16
The BioLifeEdit page with all the fields and actions added to the Web Surface Designer.

Now, in order to use this page to edit a single record, go back to the wmBioLife unit where
the grid is, and use the Object TreeView and the shift key to select all four buttons in the

30 chpt_23.qxd 11/19/01 12:14 PM Page 1106

AdapterCommandColumn. Set their page property to EditBioLife—the name of the page that
will display a single record. Now, when you click the button in the grid, the EditBioLife page
will be displayed. If you ask to browse the record, the data will be displayed as simple text.
But if you ask to edit the record, the data will be displayed in edit boxes. The graphic field will
even allow you to add a new graphic to the database by browsing for a new file. You can navi-
gate through the dataset using the command buttons. And again, all this was accomplished
without writing a single line of code—or script for that matter.

Building WebSnap Applications

CHAPTER 23

23

B
U

ILD
IN

G
W

EBS
N

A
P

A
PPLIC

A
TIO

N
S

1107

You might want to tweak the presentation of the Notes field a little bit. By default,
the TextArea control used when the page is in edit mode is quite small and doesn’t
wrap the text. You can select the FldNotes component and adjust the TextAreaWrap,
DisplayRows, and DisplayWidth properties to get better results.

NOTE

Converting the Application to an ISAPI DLL
Your application has so far been run under the Web App Debugger, making it easy to debug
and test. However, you certainly don’t want to deploy the application that way. Instead, you’ll
likely want to make the application an ISAPI DLL so that it will always reside in memory and
maintain all the session information needed to keep things in order.

Converting your application from a Web App Debugger based server to an ISAPI server is very
straightforward. Simply create a new, blank ISAPI-based project, and remove all the units from
it. Then, add in all units from the Web App version except the form. Then compile and run. It’s
that simple. In fact, you can maintain two projects that use the very same webmodules—one
project for testing and another for deploying. Most of the demo applications in the WebSnap
directory do this, and the demo application on the CD-ROM has both Web App Server and
ISAPI projects. When deploying the new ISAPI DLL, be sure to include any HTML files that
will need to be in the same directory as the DLL.

Advanced Topics
So far, you have seen what can be considered the basics. You’ve created a WebSnap application
that manages users, session information about those users, as well as manages and manipulates
data. WebSnap does a lot more than that, however, and gives you more control over what your
application can do. The next section covers some advanced topics that will allow you to more
finely tune your WebSnap applications.

30 chpt_23.qxd 11/19/01 12:14 PM Page 1107

LocateFileServices
The development of WebSnap Web applications usually requires the coordination of differing
resources. HTML, server-side script, Delphi code, database access, and graphics all need to be
properly tied together into a single application. Most often, many of these resources lie embed-
ded in and are managed via an HTML file. WebSnap provides support for separating HTML
from the implementation of a dynamic Web page, meaning that you can edit the HTML files
separately from the Web application’s binary file. However, by default, that HTML must reside
in files in the same location as the binary file does. This isn’t always convenient or possible,
and there might be times when you want HTML to reside in locations away from your binary.
Or it might be that you want to get HTML content from sources other than files, say a database.

WebSnap provides you the ability to get HTML from any source that you want. The
LocateFileService component allows you to get HTML from any file location, include files,
or any TStream descendant. Being able to access HTML from a TStream means that you can
get the HTML from any source as long as it can be placed in a TStream.

For example, HTML can be streamed from a RES file embedded in your application’s binary
file. The demo application can show how this is done. Naturally, you’ll need some HTML to
embed. Using a text editor or your favorite HTML editor, take the wmLogin.html file as a tem-
plate and save it in your demo application’s directory as embed.html. Then, add some text to
the file to note that the file is embedded in the RES file. That way, you’ll know for sure that
you have the right file when it is displayed.

Then, of course, you need to embed this HTML into your application. Delphi easily manages
this via RC files, automatically compiling them and adding them to an application. Therefore,
use Notepad or some text-handling tool to create a text file, and call it HTML.RC. Save it in the
same directory as your demo application and add it to your project. Then, add this text to the
RC file:

#define HTML 23 // HTML resource identifier
EMBEDDEDHTML HTML embed.html

When included in a Delphi project, Delphi will compile the RC file into a RES file and include
it in your application.

When the HTML is in your app, create a new page with a TPageProducer and call it
Embedded. Save the file as wmEmbedded. Then, go to the Home page and select the
LocateFileServices component. Go to the Object Inspector Events page and double-click on
the OnFindStream event. You’ll get an event handler similar to this one:

procedure THome.LocateFileServiceFindStream(ASender: TObject;
AComponent: TComponent; const AFileName: String;
var AFoundStream: TStream; var AOwned, AHandled: Boolean);

Internet Development

PART VI
1108

30 chpt_23.qxd 11/19/01 12:14 PM Page 1108

begin

end;

The key parameters here are the AFileName and AFoundStream parameters. You’ll use them to
get the HTML from the embedded resources. Make your event handler resemble the following:

procedure THome.LocateFileServiceFindStream(ASender: TObject;
AComponent: TComponent; const AFileName: String;
var AFoundStream: TStream; var AOwned, AHandled: Boolean);

begin
// we are hunting up the Embedded file
if Pos(‘EMBEDDED’, UpperCase(AFileName)) > 0 then begin
AFoundStream := TResourceStream.Create(hInstance, ‘EMBEDDED’, ‘HTML’);
AHandled := True; // no need to look further

end;
end;

AFileName will be the unqualified name of the HTML file that Delphi would use as a default.
You can use that name to determine which resource to look up. AFoundStream will be nil
when passed into event handler, so it is up to you to create a stream using the variable. In this
case, AFoundStream becomes a TResourceStream, which grabs the HTML from the resources
in the executable. Setting AHandled to True ensures that the LocateFileServices makes no fur-
ther effort to find the HTML content.

Run the application, and you will see your HTML show up when you display the Embedded
page.

File Uploading
In the past, one of the more challenging tasks for a Web application developer is uploading
files from the client to the server. It often involved dealing with the very arcane features of the
HTTP specification and counting every byte passed very carefully. As you would expect,
WebSnap makes this previously difficult task easy. WebSnap provides all the functionality for
uploading a file inside a TAdapter, and your part isn’t much more difficult than placing a file
in a stream.

As usual, create another page in your application that will upload files to the server from the
client. Name the page Upload and give it a TAdapterPageProducer. Then save the file as
wmUpload. Then, drop a TAdapter on the form. Give the TAdapter a new AdapterFileField.
This field will manage all the uploading of the files selected on the client. In addition, give the
Adapter a single action and call it UploadAction.

Next, give the AdapterPageProducer an AdapterForm with an AdapterErrorList, an
AdapterFieldGroup, and an AdapterCommandGroup. Connect the first two to Adapter1, and the

Building WebSnap Applications

CHAPTER 23

23

B
U

ILD
IN

G
W

EBS
N

A
P

A
PPLIC

A
TIO

N
S

1109

30 chpt_23.qxd 11/19/01 12:14 PM Page 1109

AdapterCommandGroup to the AdapterFieldGroup. Then add all the fields to the
AdapterFieldGroup and all the actions to the AdapterCommandGroup. Change the caption on
the button to Upload File. Figure 23.17 shows what you should see in the Surface Designer.

Internet Development

PART VI
1110

FIGURE 23.17
The Web Surface Designer for the Upload page, with the Browse button automatically added.

Code can be added in two places. The first place is to the Adapter1.AdapterFileField
OnFileUpload event handler. The code there should resemble that in Listing 23.5.

LISTING 23.5 OnFileUpload Event Handler

procedure TUpload.AdapterFileField1UploadFiles(Sender: TObject;
Files: TUpdateFileList);

var
i: integer;
CurrentDir: string;
Filename: string;
FS: TFileStream;

begin
// Upload file here
if Files.Count <= 0 then
begin
raise Exception.Create(‘You have not selected any files to be uploaded’);

end;
for i := 0 to Files.Count - 1 do
begin
// Make sure that the file is a .jpg or .jpeg
if (CompareText(ExtractFileExt(Files.Files[I].FileName), ‘.jpg’) <> 0)

30 chpt_23.qxd 11/19/01 12:14 PM Page 1110

LISTING 23.5 Continued

and (CompareText(ExtractFileExt(Files.Files[I].FileName), ‘.jpeg’)
➥<> 0) then

begin
Adapter1.Errors.AddError(‘You must select a JPG or JPEG file to upload’);

end else
begin
CurrentDir := ExtractFilePath(GetModuleName(HInstance)) + ‘JPEGFiles’;
ForceDirectories(CurrentDir);
FileName := CurrentDir + ‘\’ + ExtractFileName(Files.Files[I].FileName);
FS := TFileStream.Create(Filename, fmCreate or fmShareDenyWrite);
try
FS.CopyFrom(Files.Files[I].Stream, 0); // 0 = copy all from start

finally
FS.Free;

end;
end;

end;
end;

This code first checks to make sure that you have selected a file, and then it makes sure that
you have selected a JPEG file. After it determines that you have done that, it takes the file-
name, ensures that the receiving directory exists, and puts the file into a TFileStream. The real
work here is done behind the scenes by the TUpdateFileList class that manages all the HTTP
esoterica and multi-part form handling needed to upload a file from the client to the server.

The second place to add code is in the OnExecute handler for the UploadAction in Adapter1.
It is as follows:

procedure TUpload.UploadActionExecute(Sender: TObject; Params: TStrings);
begin
Adapter1.UpdateRecords;

end;

which simply tells the Adapter to update its records and get the files that have been requested.

Including Custom Templates
One thing you have likely noticed is that when you create a new page with the New Page
Wizard, you only have two choices for the HTML in your application—the standard template
or a blank template. The standard template is nice for things such as the demo application in
this chapter, but when you start developing more sophisticated sites, you’ll want to be able to
automatically include your own HTML templates when adding pages to your applications.
WebSnap allows you to do that.

Building WebSnap Applications

CHAPTER 23

23

B
U

ILD
IN

G
W

EBS
N

A
P

A
PPLIC

A
TIO

N
S

1111

30 chpt_23.qxd 11/19/01 12:14 PM Page 1111

You can add new templates to the selections in the New Page Wizard by creating and register-
ing a descendent of TProducerTemplatesList in a design-time package. There is a demo pack-
age that does this in the <Delphi>\Demos\WebSnap\Producer Template directory. You can
look at that package and add your own HTML/script templates to the RC file included in the
package. Note that for this package to compile, you must first have compiled the package
<Delphi>\Demos\WebSnap\Util\TemplateRes.dpk. After you compile and install these pack-
ages, you will have more templates to choose from in the New Page Wizard.

Custom Components in TAdapterPageProducer
Much of the work of displaying HTML throughout this chapter has been done by TAdapter
PageProducer components, and the components that are embedded within it. However, you
certainly will want to customize the HTML therein beyond the standard code you have seen so
far. WebSnap allows you to do this by creating your own components that plug in to the
TAdapterPageProducer, allowing you to add your own custom HTML to the mix.

Your custom TAdapterPageProducer components must descend from
TWebContainedComponent and implement the IWebContent interface. Because all the compo-
nents must do this, it is a perfect opportunity to use an abstract class as in Listing 23.6.

LISTING 23.6 Abstract Descendent Class of TWebContainedComponent

type

Tddg6BaseWebSnapComponent = class(TWebContainedComponent, IWebContent)
protected
{ IWebContent }
function Content(Options: TWebContentOptions; ParentLayout: TLayout):
➥string;
function GetHTML: string; virtual; abstract;

end;

This class is implemented like so:

function Tddg6BaseWebSnapComponent.Content(Options: TWebContentOptions;
ParentLayout: TLayout): string;

var
Intf: ILayoutWebContent;

begin
if Supports(ParentLayout, ILayoutWebContent, Intf) then
Result := Intf.LayoutField(GetHTML, nil)

else
Result := GetHTML;

end;

Internet Development

PART VI
1112

30 chpt_23.qxd 11/19/01 12:14 PM Page 1112

The abstract class implements the Content function only because the GetHTML function is
declared as abstract. The Content function basically checks to see whether the containing com-
ponent is a LayoutGroup. If it is LayoutGroup, the Content function places its content inside
the LayoutGroup. Otherwise, Content simply returns the results of GetHTML. Descendent com-
ponents, therefore, need only implement the GetHTML function, returning the appropriate
HTML code, and they can be registered to work inside a TAdapterPageProducer.

The code on the CD-ROM implements two components that allow you to add HTML content
to a TAdapterPageProducer, either as a string or as a file. The code for the Tddg6HTMLCode
component is as shown in Listing 23.7.

LISTING 23.7 Tddg6HTMLCode Component

Tddg6HTMLCode = class(Tddg6BaseWebSnapComponent)
private
FHTML: TStrings;
procedure SetHTML(const Value: TStrings);

protected
function GetHTML: string; override;

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

published
property HTML: TStrings read FHTML write SetHTML;

end;

constructor Tddg6HTMLCode.Create(AOwner: TComponent);
begin
inherited;
FHTML := TStringList.Create;

end;

destructor Tddg6HTMLCode.Destroy;
begin
FHTML.Free;
inherited;

end;

function Tddg6HTMLCode.GetHTML: string;
begin
Result := FHTML.Text;

end;

procedure Tddg6HTMLCode.SetHTML(const Value: TStrings);

Building WebSnap Applications

CHAPTER 23

23

B
U

ILD
IN

G
W

EBS
N

A
P

A
PPLIC

A
TIO

N
S

1113

30 chpt_23.qxd 11/19/01 12:14 PM Page 1113

LISTING 23.7 Continued

begin
FHTML.Assign(Value);

end;

This is a pretty simple class. It merely provides a published property of type TStrings that will
take any HTML code and then put it in the TAdapterPageProducer as is. The GetHTML func-
tion simply returns the HTML in string form. You can build components to return any HTML
code you want to include—images, links, files, and other content. All descendent components
have to do is to provide their HTML content in an overridden GetHTML() method. Note that
there are supporting registration functions in the unit where the components are implemented.
When creating components, be sure to register them in your unit similar to those on the CD-
ROM. To use these components, merely install them in a design-time package, and the compo-
nents will appear in the TAdapterPageProducer’s Web Surface Designer (see Figure 23.18).

Internet Development

PART VI
1114

FIGURE 23.18
TAdapterPageProducer components in the Web Surface Designer.

Summary
That’s a quick overview of the power of WebSnap. This chapter barely scratched the surface of
what WebSnap can do. Be sure to check out the numerous demo applications in the <Delphi>\
Demos\WebSnap directory. Many of the demos add functionality to the standard slate of
WebSnap components.

Clearly, WebSnap is a powerful technology, but it does take some effort to understand.
However, once you get over the initial learning curve, you will soon be building powerful,
database driven, dynamic Web sites with ease.

30 chpt_23.qxd 11/19/01 12:14 PM Page 1114

