
CHAPTER

21
DataSnap Development
By Dan Miser

IN THIS CHAPTER
• Mechanics of Creating a Multitier

Application 998

• Benefits of the Multitier Architecture 999

• Typical DataSnap Architecture 1001

• Using DataSnap to Create an
Application 1007

• More Options to Make Your Application
Robust 1015

• Real-World Examples 1027

• More Client Dataset Features 1039

• Classic Mistakes 1041

• Deploying DataSnap Applications 1041

27 chpt_21.qxd 11/19/01 12:16 PM Page 997

Multitier applications are being talked about as much as any topic in computer programming
today. This is happening for good reason. Multitier applications hold many advantages over the
more traditional client/server applications. Borland’s DataSnap is one way to help you create and
deliver a multitier application using Delphi, building on techniques and skills you’ve accumulated
when using Delphi. This chapter walks you through some general information about multitier
application design and shows you how to apply those principles to create solid DataSnap applica-
tions.

Mechanics of Creating a Multitier Application
Because we’ll be talking about a multitier application, it might be helpful to first provide a frame
of reference to what a tier really is. A tier, in this sense, is a layer of an application that provides
some specific set of functionality. Here are the three basic tiers used in database applications:

• Data—The data tier is responsible for storing your data. Typically, this will be an
RDBMS such as Microsoft SQL Server, Oracle, or InterBase.

• Business—The business tier is responsible for retrieving data from the data tier in a for-
mat appropriate for the application and performing final validation of the data (also
known as enforcing business rules). This is also the application server layer.

• Presentation—Also known as the GUI tier, this tier is responsible for displaying the data
in an appropriate format in the client application. The presentation tier always talks to
the business tier. It never talks directly to the data tier.

In traditional client/server applications, you have an architecture similar to that shown in
Figure 21.1. Notice that the client libraries for data access must be located on every single
client machine. This has historically been a trouble spot when deploying client/server applica-
tions due to incompatible versions of DLLs and costly configuration management. Also,
because most of the business tier is located on each client, you need to update all the clients
every single time you need to update a business rule.

Enterprise Development

PART V
998

Client

BDE, ADO, et al.

DBMS

FIGURE 21.1
The traditional client/server architecture.

27 chpt_21.qxd 11/19/01 12:16 PM Page 998

In multitier applications, the architecture more closely resembles that shown in Figure 21.2
Using this architecture, you’ll find many benefits over the equivalent client/server application.

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

999

Client

IAppServer

MIDAS.DLL

Server

IAppServer

DBMS

B
D

E
, A

D
O

, et al.

MIDAS.DLL

FIGURE 21.2
Multitier architecture.

Benefits of the Multitier Architecture
We list the major benefits of the multitier architecture in the next few sections.

Centralized Business Logic
In most client/server applications, each client application is required to keep track of the individ-
ual business rules for a business solution. Not only does this increase the size of the executable,
but it also poses a challenge to the software developer to keep strict control over version mainte-
nance. If user A has an older version of the application than user B, the business rules might not
be performed consistently, thus resulting in logical data errors. Placing the business rules on the
application server requires only one copy of the business rules to be created and maintained.
Therefore, everyone using that application server will use the same copy of those business rules.
In client/server applications, the RDBMS could address some of the concerns, but not all
RDBMS systems provide the same set of features. Also, writing stored procedures makes your
application less portable. Using a multitier approach, your business rules are hosted independent
of your RDBMS, thus making database independence easier, while still providing some degree of
rule enforcement for your data.

27 chpt_21.qxd 11/19/01 12:16 PM Page 999

Thin-Client Architecture
In addition to the business rules mentioned, the typical client/server application also bears the
burden of the majority of the data-access layer. This produces a more sizable executable, more
commonly known as a fat client. For a Delphi database application accessing a SQL server
database, you would need to install the BDE, SQL Links, and/or ODBC to access the database,
along with the client libraries necessary to talk to the SQL server. After installing these files,
you would then need to configure each piece appropriately. This increases the install footprint
considerably. Using DataSnap, the data access is controlled by the application server, whereas
the data is presented to the user by the client application. This means that you only need to dis-
tribute the client application and one DLL to help your client talk to your server. This is clearly
a thin-client architecture.

Automatic Error Reconciliation
Delphi comes with a built-in mechanism to help with error reconciliation. Error reconciliation
is necessary in a multitier application for the same reasons it would be necessary with cached
updates. The data is copied to the client machine, where changes are made. Multiple clients
can be working on the same record. Error reconciliation helps the user determine what to do
with records that have changed since the user last downloaded the record. In the true Delphi
spirit, if this dialog doesn’t suit your needs, you can remove it and create one that does.

Briefcase Model
The briefcase model is based on the metaphor of a physical briefcase. You place your impor-
tant papers in your briefcase and transport them back and forth, unpacking them when needed.
Delphi provides a way to pack up all your data and take it with you on the road without requir-
ing a live connection to the application server or the database server.

Fault Tolerance
If your server machine becomes unavailable due to unforeseen circumstances, it would be nice
to dynamically change to a backup server without recompiling your client or server applica-
tions. Delphi provides functionality for this out of the box.

Load Balancing
As you deploy your client application to more people, you’ll inevitably start to saturate your
server’s bandwidth. There are two ways to attempt to balance the network traffic: static and
dynamic load balancing. For static load balancing, you would add another server machine and
have one half of your clients use server A, and the other half would access server B. However,
what if the clients who use server A put a greater strain on the server than those who use server

Enterprise Development

PART V
1000

27 chpt_21.qxd 11/19/01 12:16 PM Page 1000

B? Using dynamic load balancing, you could address this issue by telling each client applica-
tion which server to access. Many different dynamic load-balancing algorithms are available,
such as random, sequential, round robin, and least network traffic. Delphi 4 and above address
this by providing you with a component to implement sequential load balancing.

Typical DataSnap Architecture
Figure 21.3 shows how a typical DataSnap application looks after it’s created. At the heart of
this diagram is a Data Module constructed for this task. Several varieties are available. For
simplicity, we’ll use a COM-based one in this chapter, called the Remote Data Module (RDM).
The RDM is a descendant of the classic data module available since Delphi 2. This data mod-
ule is a special container that only allows non-visual components to be placed on it. The RDM
is no different in this respect. In addition, the RDM is actually a COM object—or to be more
precise, an Automation object. Services that you export from this RDM will be available for
use on client machines.

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1001

Form / DataModule Remote DataModule (RDM)

Client Server

TClientDataset

TDispatchConnection

TDatasetProvider TDataset

FIGURE 21.3
A typical DataSnap application.

Let’s look at some of the options available to you when creating an RDM. Figure 21.4 shows
the dialog box that Delphi presents when you select File, New, Remote Data Module.

Server
Now that you’ve seen how a typical DataSnap application is put together, we will show you
how to make that happen in Delphi. We’ll begin with a look at some of the choices available
when setting up the server.

27 chpt_21.qxd 11/19/01 12:16 PM Page 1001

FIGURE 21.4
The New Remote Data Module dialog box.

Instancing Choices
Specifying an instancing choice affects how many copies of the server process that will be
launched. Figure 21.5 shows how the choices made here control how your server behaves.

Enterprise Development

PART V
1002

Client1 Server1

Client2 Server2

Client3

Single instance Multi instance

Apartment Threading

Server3

Client1

Client2

Client3

Server

Client1

Client2

Client3

Thread1

Thread2

Thread3

Server

FIGURE 21.5
Server behavior based on instancing options.

Here are the different instancing choices available to a COM server:

• ciMultiInstance—Each client that accesses the COM server will use the same server
instance. By default, this implies that one client must wait for another before being
allowed to operate on the COM server. See the next section, “Threading Choices,” for
more detailed information on how the value specified for the Threading Model also
affects this behavior. This is equivalent to serial access for the clients. All clients must

27 chpt_21.qxd 11/19/01 12:16 PM Page 1002

share one database connection; therefore, the TDatabase.HandleShared property must
be True.

• ciSingleInstance—Each client that accesses the COM server will use a separate
instance. This implies that each client will consume server resources for each server
instance to be loaded. This is equivalent to parallel access for the clients. If you decide to
go with this choice, beware of BDE limits that could make this choice less attractive.
Specifically, BDE 5.01 has a 48-process limit per machine. Because each client spawns a
new server process, you can only have 48 clients connected at one time.

• ciInternal—The COM server cannot be created from external applications. This is use-
ful when you want to control access to a COM object through a proxy layer. One exam-
ple of using this instancing choice can be found in the <DELPHI>\DEMOS\MIDAS\POOLER
example.

Also note that the configuration of the DCOM object has a direct effect on the object instanc-
ing mode. See the “Deploying DataSnap Applications” section for more information on this
topic.

Threading Choices
The threading support in Delphi 5 saw a drastic change for the better. In Delphi 4, selecting the
threading model for an EXE server was meaningless. The flag merely marked the Registry to
tell COM that a DLL was capable of running under the selected threading model. With Delphi
5 and 6, the threading model choice now applies to EXE servers by allowing COM to thread
the connections without using any external code. The following is a summary of the threading
choices available for an RDM:

• Single—Selecting Single means that the server is only capable of handling one request at
a time. When using Single, you need not worry about threading issues because the server
runs in one thread and COM handles the details of synchronizing the messages for you.
However, this is the worst selection you can make if you plan on having a multiuser sys-
tem because client B would then need to wait for client A to finish processing before
client B could even start working. This obviously isn’t a good situation because client
A could be doing an end-of-day summary report or some other similar time-intensive
operation.

• Apartment—Selecting the Apartment threading model gives you the best of all possible
worlds when combined with ciMultiInstance instancing. In this scenario, all the clients
share one server process because of ciMultiInstance, but the work done on the server
from one client doesn’t block another client from doing work due to the Apartment
threading choice. When using apartment threading, you’re guaranteed that the instance
data of your RDM is safe, but you need to protect access to global variables using some

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1003

27 chpt_21.qxd 11/19/01 12:16 PM Page 1003

thread synchronization technique, such as PostMessage(), critical sections, mutexes,
semaphores, or the Delphi wrapper class TMultiReadExclusiveWriteSynchronizer.
This is the preferred threading model for BDE datasets. Note that if you do use this
threading model with BDE datasets, you need to place a TSession component on your
RDM and set the AutoSessionName property to True to help the BDE conform to its
internal requirements for threading.

• Free—This model provides even more flexibility in server processing by allowing multi-
ple calls to be made from the client to the server simultaneously. However, along with
that power comes responsibility. You must take care to protect all data from thread con-
flicts—both instance data and global variables. This is the preferred threading model
when using ADO.

• Both—This setting is effectively the same as the Free setting, with one exception—call-
backs are serialized automatically.

Data-Access Choices
Delphi 6 Enterprise comes with many different data-access choices. The BDE continues to be
supported, thus allowing you to use TDBDataset components, such as TTable, TQuery, and
TStoredProc. However, DBExpress provides a more flexible architecture for data access. In
addition, you also have the choice of supporting ADO and having direct InterBase access
through new TDataset components.

Advertising Services
The RDM is responsible for communicating which services will be available to clients. If the
RDM is going to make a TQuery available for use on the client, you need to place the TQuery
on the RDM along with a TDatasetProvider. The TDatasetProvider component is then tied
to the TQuery via the TDatasetProvider.Dataset property. Later, when a client comes along
and wants to use the data from the TQuery, it can do so by binding to the TDatasetProvider
you just created. You can control which providers are visible to the client by setting the
TDatasetProvider.Exported property to True or False.

If, on the other hand, you don’t need an entire dataset exposed from the server and just have a
need for the client to make a method call to the server, you can do that, too. While the RDM
has focus, select the Edit, Add To Interface menu option and fill in the dialog box with a stan-
dard method prototype (which is simply a declaration matching a method you’ll create in your
implementation). You can then specify the implementation of this method in code as you
always have, keeping in mind the implications of your threading model.

Client
After building the server, you need to create a client to use the services provided by the server.
Let’s take a look at some of the options available when building your DataSnap client.

Enterprise Development

PART V
1004

27 chpt_21.qxd 11/19/01 12:16 PM Page 1004

Connection Choices
Delphi’s architecture for connecting the client to the server starts with the TDispatchConnection.
This base object is the parent of all the connection types listed later. When the connection type
is irrelevant for a specific section, TDispatchConnection will be used to denote that fact.

TDCOMConnection provides core security and authentication by using the standard Windows
implementation of these services. This connection type is especially useful if you’re using this
application in an intranet/extranet setup (that is, where the people using your application are
known from the domain’s perspective). You can use early binding when using DCOM, and you
can use callbacks and ConnectionPoints easily. (You can use callbacks when using sockets,
too, but you’re limited to using late binding to do so.) The drawbacks of using this connection
are as follows:

• Difficult configuration in many cases

• Not a firewall-friendly connection type

• Requires installation of DCOM95 for Windows 95 machines

TSocketConnection is the easiest connection to configure. In addition, it only uses one port for
DataSnap traffic, so your firewall administrators will be happier than if they had to make
DCOM work through the firewall. You must be running ScktSrvr (found in the <DELPHI>\BIN
directory) to make this setup work, so there’s one extra file to deploy and run on the server.
Delphi 4 required you to have WinSock2 installed when using this connection type, which
meant another installation for Windows 9x clients. However, if you’re not using callbacks, you
might want to consider setting TSocketConnection.SupportCallbacks to False. This allows
you to stick with WinSock 1 on the client machines.

You can also use TCORBAConnection if you want to use CORBA as your transport protocol.
CORBA can be thought of as the open-standard equivalent of DCOM, and it includes many
features for autodiscovery, failover, and load-balancing automatically performed for your appli-
cation. You’ll want to look at CORBA as you migrate your DataSnap applications to allow for
cross-platform and cross-language connections.

The TWebConnection component is also available to you. This connection component allows
traffic to be transported over HTTP or HTTPS. When using this connection type, some limita-
tions are as follows:

• Callbacks of any type aren’t supported.

• The client must have WININET.DLL installed.

• The server machine must be running MS Internet Information Server (IIS) 4.0 or
Netscape 3.6 or greater.

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1005

27 chpt_21.qxd 11/19/01 12:16 PM Page 1005

However, these limitations seem well worth it when you have to deliver an application across
the Internet or through a firewall that’s not under your control.

Delphi 6 introduced a new type of connection: the TSOAPConnection. This connection behaves
similarly to the WebConnection, but connects to a DataSnap Web service. Unlike when
using other DataSnap connection components, you can’t use the AppServer property of
TSoapConnection to call methods of the application server’s interface that aren’t IAppServer
methods. Instead, to communicate with a SOAP data module on the application interface, use a
separate THTTPRIO object.

Note that all these transports assume a valid installation of TCP/IP. The one exception to this is
if you’re using two Windows NT machines to communicate via DCOM. In that case, you can
specify which protocol DCOM will use by running DCOMCNFG and moving the desired pro-
tocol to the top of the list on the Default Protocols tab. DCOM for Windows 9x only supports
TCP/IP.

Connecting the Components
From the diagram in Figure 21.3, you can see how the DataSnap application communicates
across tiers. This section points out the key properties and components that give the client the
ability to communicate with the server.

To communicate from the client to the server, you need to use one of the TDispatchConnection
components listed previously. Each component has properties specific only to that connection
type, but all of them allow you to specify where to find the application server. The
TDispatchConnection is analogous to the TDatabase component when used in client/server
applications because it defines the link to the external system and serves as the conduit for
other components when communicating with elements from that system.

Once you have a connection to the server, you need a way to use the services you exposed on
the server. This can be accomplished by dropping a TClientDataset on your client and hook-
ing it up to the TDispatchConnection via the RemoteServer property. Once this connection is
made, you can view a list of the exported providers on the server by dropping down the list in
the ProviderName property. You’ll see a list of exported providers that exist on the server. In
this way, the TClientDataset component is similar to a TTable in client/server applications.

You also have the ability to call custom methods that exist on the server by using the
TDispatchConnection.AppServer property. For example, the following line of code will call
the Login function on the server, passing two string parameters and returning a Boolean value:

LoginSucceeded := DCOMConnection1.AppServer.Login(UserName, Password);

Enterprise Development

PART V
1006

27 chpt_21.qxd 11/19/01 12:16 PM Page 1006

Using DataSnap to Create an Application
Now that we’ve covered many of the options available when building DataSnap applications,
let’s use DataSnap to actually create an application to put that theory into practice.

Setting Up the Server
Let’s focus on the mechanics of building the application server first. After you have created the
server, we will explore how to build the client.

Remote Data Module
The Remote Data Module (RDM) is central to creating an application server. To create an
RDM for a new application, select the Remote Data Module icon from the Multitier tab of the
Object Repository (available by selecting File, New). A dialog box will be displayed to allow
for initial customization of some options that pertain to the RDM.

The name for the RDM is important because the ProgID for this application server will be
built using the project name and RDM name. For example, if the project (DPR) is named
AppServer and the RDM name is MyRDM, the ProgID will be AppServer.MyRDM. Be sure to
select the appropriate instancing and threading options based on the preceding explanations
and the behavior desired for this application server.

Both TSocketConnection and TWebConnection bypass Windows’ default authentication pro-
cessing, so it is imperative to make sure that the only objects that run on the server are the
ones that you specify. This is accomplished by marking the registry with certain values to let
DataSnap know that you intended to allow these objects to run. Fortunately, all that is required
to do this is to override the UpdateRegistry class method. See Listing 21.1 for the implemen-
tation provided by Delphi automatically when you create a new Remote DataModule.

LISTING 21.1 UpdateRegistry Class Method from a Remote DataModule

class procedure TDDGSimple.UpdateRegistry(Register: Boolean;
const ClassID, ProgID: string);
begin
if Register then
begin
inherited UpdateRegistry(Register, ClassID, ProgID);
EnableSocketTransport(ClassID);
EnableWebTransport(ClassID);

end else
begin
DisableSocketTransport(ClassID);
DisableWebTransport(ClassID);

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1007

27 chpt_21.qxd 11/19/01 12:16 PM Page 1007

LISTING 21.1 Continued

inherited UpdateRegistry(Register, ClassID, ProgID);
end;

end;

This method gets called whenever the server gets registered or unregistered. In addition to the
COM-specific registry entries that get created in the inherited UpdateRegistry call, you can
call the EnableXXXTransport() and DisableXXXTransport() methods to mark this object as
secure.

Enterprise Development

PART V
1008

TSocketConnection will only show registered, secure objects in the ServerName prop-
erty. If you don’t want to enforce security at all, uncheck the Connections, Registered
Objects Only menu option in the SCKTSRVR.

NOTE

Providers
The application server will be responsible for providing data to the client, so you must find a
way to serve data from the server in a format that’s useable on the client. Fortunately,
DataSnap provides a TDatasetProvider component to make this step easy.

Start by dropping a TQuery on the RDM. If you’re using a RDBMS, you’ll inevitably need
a TDatabase component set up, too. For now, you’ll tie the TQuery to the TDatabase and spec-
ify a simple query in the SQL property, such as select * from customer. Last, drop a
TDatasetProvider component onto the RDM and tie it to the TQuery via the Dataset prop-
erty. The Exported property on the DatasetProvider determines whether this provider will be
visible to clients. This property provides the ability to easily control which providers are visi-
ble at runtime, as well.

Although the discussion in this section focuses on using the BDE-based TDBDataset,
the same principles apply if you want to use any other TDataset descendant for your
data access. Several possibilities exist out of the box, such as DBExpress, ADO, and
InterBase Express, and several third-party components are available to access specific
databases.

NOTE

27 chpt_21.qxd 11/19/01 12:16 PM Page 1008

Registering the Server
Once the application server is built, it needs to be registered with COM to make it available for
the client applications that will connect with it. The Registry entries discussed in Chapter 15,
“COM Development” are also used for DataSnap servers. You just need to run the server appli-
cation, and the Registry setting will be added. However, before registering the server,
be sure to save the project first. This ensures that the ProgID will be correct from this point
forward.

If you would rather not run the application, you can pass the parameter /regserver on the
command line when running the application. This will just perform the registration process and
immediately terminate the application. To remove the Registry entries associated with this
application, you can use the /unregserver parameter.

Creating the Client
Now that you have a working application server, let’s look at how to perform some basic tasks
with the client. We will discuss how to retrieve the data, how to edit the data, how to update
the database with changes made on the client, and how to handle errors during the database
update process.

Retrieving Data
Throughout the course of a database application, it’s necessary to bring data from the server to
the client to edit that data. By bringing the data to a local cache, you can reduce network traffic
and minimize transaction times. In previous versions of Delphi, you would use cached updates
to perform this task. However, the same general steps still apply to DataSnap applications.

The client talks to the server via a TDispatchConnection component. Providing the
TDispatchConnection the name of the computer where the application server lives accom-
plishes this task easily. If you use TDCOMConnection, you can specify the fully qualified
domain name (FQDN; for example, nt.dmiser.com), the numeric IP address of the computer
(for example, 192.168.0.2), or the NetBIOS name of the computer (for example, nt). However,
because of a bug in DCOM, you cannot use the name localhost, or even some IP addresses,
reliably in all cases. If you use TSocketConnection, you specify numeric IP addresses in the
Address property or the FQDN in the Host property. We’ll take a look at the options for
TWebConnection a little later.

Once you specify where the application server resides, you need to give the TDispatch
Connection a way to identify that application server. This is done via the ServerName property.
Assigning the ServerName property fills in the ServerGUID property for you. The ServerGUID
property is the most important part. As a matter of fact, if you want to deploy your client appli-
cation in the most generic manner possible, be sure to delete the ServerName property and just
use the ServerGUID.

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1009

27 chpt_21.qxd 11/19/01 12:16 PM Page 1009

At this point, setting TDispatchConnection.Connected to True will connect you to the appli-
cation server.

Now that you have the client talking to the server, you need a way to use the provider you cre-
ated on the server. Do this by using the TClientDataset component. A TClientDataSet is
used to link to a provider (and, thus, the TQuery that is linked to the provider) on the server.

First, you must tie the TClientDataSet to the TDispatchConnection by assigning the
RemoteServer property of the TClientDataSet. Once you’ve done that, you can get a list of
the available providers on that server by looking at the list in the ProviderName property.

At this point, everything is now set up properly to open a ClientDataset.

Because the TClientDataSet is a virtual TDataset descendant, you can build on many of the
techniques that you’ve already learned using the TDBDataset components in client/server appli-
cations. For example, setting Active to True opens the TClientDataSet and displays the data.
The difference between this and setting TTable.Active to True is that the TClientDataSet is
actually getting its data from the application server.

Editing Data on the Client
All the records passed from the server to the TClientDataSet are stored in the Data property
of the TClientDataSet. This property is a variant representation of the DataSnap data packet.
The TClientDataset knows how to decode this data packet into a more useful format. The
reason the property is defined as a variant is because of the limited types available to the COM
subsystem when using type library marshaling.

As you manipulate the records in the TClientDataset, a copy of the inserted, modified, or
deleted records gets placed in the Delta property. This allows DataSnap to be extremely effi-
cient when it comes to applying updates back to the application server, and eventually the data-
base. Only the changed records need to be sent back to the application server.

The format of the Delta property is also very efficient. It stores one record for every insert or
delete, and it stores two records for every update. The updated records are stored in an efficient
manner, as well. The unmodified record is provided in the first record, whereas the correspond-
ing modified record is stored next. However, only the changed fields are stored in the modified
record to save on storage.

Enterprise Development

PART V
1010

If you use TDCOMConnection, the ServerName list will only display the list of servers
that are registered on the current machine. However, TSocketConnection is smart
enough to display the list of application servers registered on the remote machine.

NOTE

27 chpt_21.qxd 11/19/01 12:16 PM Page 1010

One interesting aspect of the Delta property is that it’s compatible with the Data property. In
other words, it can be assigned directly to another ClientDataset component’s Data property.
This will allow you to investigate the current contents of the Delta property at any given time.

Several methods are available to deal with the editing of data on the TClientDataset. We’ll
refer to these methods as change control methods. The change control methods allow you to
modify the changes made to the TClientDataset in a variety of ways.

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1011

TClientDataset has proven useful in more ways than originally intended. It also
serves as an excellent method for storing in-memory tables, which has nothing to do
with DataSnap specifically. Additionally, because of the way it exposes data through
the Data and Delta properties, it has proven useful in a variety of OOP pattern
implementations. It is beyond the scope of the chapter to discuss these techniques.
However, you will find white papers on these topics at http://www.xapware.com or
http://www.xapware.com/ddg.

NOTE

Undoing Changes
Most users have used a word-processing application that permits the Undo operation. This
operation takes your most previous action and rolls it back to the state right before you started.
Using TClientDataset, you can call cdsCustomer.UndoLastChange() to simulate that behav-
ior. The undo stack is unlimited, allowing the user to continue to back up all the way to the
beginning of the editing session if so desired. The parameter you pass to this method specifies
whether the cursor is positioned to the record being affected.

If the user wanted to get rid of all her updates at once, there’s an easier way than calling
UndoLastChange() repeatedly. You can simply call cdsCustomer.CancelUpdates() to cancel
all changes that have been made in a single editing session.

Reverting to the Original Version
Another possibility is to allow the user to restore a specific record back to the state it was in
when the record was first retrieved. Do this by calling cdsCustomer.RevertRecord() while the
TClientDataset is positioned on the record you intend to restore.

Client-Side Transactions: SavePoint
The ClientDataset.SavePoint property provides the ability to use client-side transactions.
This property is ideal for developing what-if scenarios for the user. The act of retrieving the
value of the SavePoint property stores a snapshot of the data at that point in time. The user
can continue to edit as long as needed. If, at some point, the user decides that the baseline set

27 chpt_21.qxd 11/19/01 12:16 PM Page 1011

of data is actually what she wanted, that saved variable can be assigned back to SavePoint and
the TClientDataset is returned back to the same state it was in at the time when the initial
snapshot was taken. It’s worth noting that you can have multiple, nested levels of SavePoint
for a complex scenario as well.

Enterprise Development

PART V
1012

A word of caution about SavePoint is in order: You can invalidate a SavePoint by
calling UndoLastChange() past the point that’s currently saved. For example, assume
that the user edits two records and issues a SavePoint. At this point, the user edits
another record. However, she uses UndoLastChange() to revert changes twice in a
row. Because the TClientDataset state is now in a state prior to the SavePoint, the
SavePoint is in an undefined state.

CAUTION

Reconciling Data
After you’ve finished making changes to the local copy of data in the TClientDataset, you’ll
need to signal your intent to apply these changes back to the database. This is done by calling
cdsCustomer.ApplyUpdates(). At this point, DataSnap will take the Delta from cdsCustomer
and pass it to the application server, where DataSnap will apply these changes to the database
server using the reconciliation mechanism that you chose for this dataset. All updates are per-
formed inside the context of a transaction. We’ll cover how errors are handled during this
process shortly.

The parameter you pass into ApplyUpdates() specifies the number of errors the update process
will allow before considering the update to be bad, and subsequently, roll back all the changes
that have been made. The word errors here refers to key violation errors, referential integrity
errors, or any other business logic or database errors. If you specify zero for this parameter,
you’re telling DataSnap that you won’t tolerate any errors. Therefore, if an error does occur, all
the changes you made will not be committed to the database. This is the setting that you’ll use
most often because it most closely matches solid database guidelines and principles.

However, if you want, you can specify that a certain number of errors can occur, while still
committing all the records that were successful. The ultimate extension of this concept is to
pass -1 as the parameter to ApplyUpdates(). This tells DataSnap that it should commit every
single record that it can, regardless of the number of errors encountered along the way. In other
words, the transaction will always commit when using this parameter.

If you want to take ultimate control over the update process—including changing the SQL that
will execute for an insert, update, or delete—you can do so in the TDatasetProvider.Before
UpdateRecord() event. For example, when a user wants to delete a record, you might not want

27 chpt_21.qxd 11/19/01 12:16 PM Page 1012

to actually perform a delete operation on the database. Instead, a flag is set to tell applications
that this record isn’t available. Later, an administrator can review these deletions and commit
the physical delete operation. The following example shows how to do this:

procedure TDataModule1.Provider1BeforeUpdateRecord(Sender: TObject;
SourceDS: TDataset; DeltaDS: TClientDataset; UpdateKind: TUpdateKind;
var Applied: Boolean);

begin
if UpdateKind=ukDelete then
begin
Query1.SQL.Text:=’update CUSTOMER set STATUS=”DEL” where ID=:ID’;
Query1.Params[0].Value:=DeltaDS.FieldByName(‘ID’).OldValue;
Query1.ExecSQL;
Applied:=true;

end;
end;

You can create as many queries as you want, controlling the flow and content of the update
process based on different factors, such as UpdateKind and values in the Dataset. When
inspecting or modifying records of the DeltaDS, be sure to use the OldValue and NewValue
properties of the appropriate TField. Using the TField.AsXXX properties will yield unpre-
dictable results.

In addition, you can enforce business rules here or avoid posting a record to the database alto-
gether. Any exception you raise here will wind its way through DataSnap’s error-handling
mechanism, which we’ll cover next.

After the transaction is finished, you get an opportunity to deal with errors. The error stops at
events on both the server and the client, giving you a chance to take corrective action, log the
error, or do anything else you want to with it.

The first stop for the error is the DatasetProvider.OnUpdateError event. This is a great place
to deal with errors that you’re expecting or can resolve without further intervention from the
client.

The final destination for the error is back on the client, where you can deal with the error by
letting the user help determine what to do with the record. You do this by assigning an event
handler to the TClientDataset.OnReconcileError event.

This is especially useful because DataSnap is based on an optimistic record-locking strategy.
This strategy allows multiple users to work on the same record at the same time. In general,
this causes conflicts when DataSnap tries to reconcile the data back to the database because the
record has been modified since it was retrieved.

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1013

27 chpt_21.qxd 11/19/01 12:16 PM Page 1013

Using Borland’s Error Reconciliation Dialog Box
Fortunately, Borland provides a standard error reconciliation dialog box that you can use to
display the error to the user. Figure 21.6 shows this dialog box. The source code is also pro-
vided for this unit, so you can modify it if it doesn’t suit your needs. To use this dialog box,
select File, New in Delphi’s main menu and then select Reconcile Error Dialog from the
Dialogs page. Remember to remove this unit from the Autocreate Forms list; otherwise, you’ll
receive compile errors.

Enterprise Development

PART V
1014

FIGURE 21.6
Reconcile Error dialog box in action.

The main functionality of this unit is wrapped up in the function HandleReconcileError().
A high degree of correlation exists between the OnReconcileError event and the
HandleReconcileError function. As a matter of fact, the typical course of action in the
OnReconcileError event is to call the HandleReconcileError function. By doing this, the
application allows the end user on the client machine to interact with the error reconciliation
process on the server machine and specify how these errors should be handled. Here’s the code:

procedure TMyForm.CDSReconcileError(Dataset: TCustomClientDataset;
E: EReconcileError; UpdateKind: TUpdateKind;
var Action: TReconcileAction);

begin
Action:=HandleReconcileError(Dataset, UpdateKind, E);

end;

The value of the Action parameter determines what DataSnap will do with this record. We’ll
touch on some other factors that affect which actions are valid at this point a little later. The
following list shows the valid actions:

• raSkip—Do not update this specific database record. Leave the changed record in the
client cache.

27 chpt_21.qxd 11/19/01 12:16 PM Page 1014

• raMerge—Merge the fields from this record into the database record. This record won’t
apply to records that were inserted.

• raCorrect—Update the database record with the values you specify. When selecting this
action in the Reconcile Error dialog box, you can edit the values in the grid. You cannot
use this method if another user changed the database record.

• raCancel—Don’t update the database record. Remove the record from the client cache.

• raRefresh—Update the record in the client cache with the current record in the database.

• raAbort—Abort the entire update operation.

Not all these options make sense (and therefore won’t be displayed) in all cases. One
requirement to have the raMerge and raRefresh actions available is that DataSnap can
identify the record via the primary key of the database. This is done by setting the
TField.ProviderFlags.pfInKey property to True on the TDataset component of the RDM
for all fields in your primary key.

More Options to Make Your Application Robust
Once you master these basics, the inevitable question is “What next?” This section is provided
to give you some more insight into DataSnap and how you can use these features to make your
applications act as you want them to act.

Client Optimization Techniques
The model of retrieving data is fairly elegant. However, because the TClientDataset stores
all its records in memory, you need to be very careful about the resultsets you return to the
TClientDataSet. The cleanest approach is to ensure that the application server is well
designed and only returns the records the user is interested in. Because the real world seldom
follows the utopian solution, you can use the following technique to help throttle the number
of records you retrieve at one time to the client.

Limiting the Data Packet
When opening a TClientDataSet, the server retrieves the number of records specified in the
TClientDataSet.PacketRecords property at one time. However, DataSnap will retrieve
enough records to fill all available visual controls with data. For example, if you have a TDBGrid
on a form that can display 10 records at once, and you specify a value of 5 for PacketRecords,
the initial fetch of data will contain 10 records. After that, the data packet will contain just
5 records per fetch. If you specify -1 for this property (the default), all records will be trans-
ferred. If you specify a value greater than zero for PacketRecords, this introduces state to your
application. This is because of the requirement that the app server must keep track of each
client’s cursor position so the app server can return the appropriate packet of records to the

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1015

27 chpt_21.qxd 11/19/01 12:16 PM Page 1015

client requesting a packet. However, you can keep track of the state on the client, passing the
last record position to the server, as appropriate. For a simple example, look at this code, which
does exactly that:

Server RDM:
procedure TStateless.DataSetProvider1BeforeGetRecords(Sender: TObject;
var OwnerData: OleVariant);

begin
with Sender as TDataSetProvider do
begin
DataSet.Open;
if VarIsEmpty(OwnerData) then
DataSet.First

else
begin
while not DataSet.Eof do
begin
if DataSet.FieldByName(‘au_id’).Value = OwnerData then
break;

end;
end;

end;
end;

procedure TStateless.DataSetProvider1AfterGetRecords(Sender: TObject;
var OwnerData: OleVariant);

begin
with Sender as TDataSetProvider do
begin
OwnerData := Dataset.FieldValues[‘au_id’];
DataSet.Close;

end;
end;

Client:
procedure TForm1.ClientDataSet1BeforeGetRecords(Sender: TObject;
var OwnerData: OleVariant);

begin
// KeyValue is a private OleVariant variable
if not (Sender as TClientDataSet).Active then
KeyValue := Unassigned;

OwnerData := KeyValue;
end;

procedure TForm1.ClientDataSet1AfterGetRecords(Sender: TObject;
var OwnerData: OleVariant);

Enterprise Development

PART V
1016

27 chpt_21.qxd 11/19/01 12:16 PM Page 1016

begin
KeyValue := OwnerData;

end;

One last point when using partial fetching is that executing TClientDataSet.Last() retrieves
the rest of the records left in the resultset. This can be done innocently by pressing Ctrl+End in
the TDBGrid. To work around this problem, you should set TClientDataSet.FetchOnDemand to
False. This property controls whether a data packet will be retrieved automatically when the
user has read through all the existing records on the client. To emulate that behavior in code,
you can use the GetNextPacket() method, which will return the next data packet for you.

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1017

Note that the previous code sample walks through the dataset until it finds the
proper record. This is done so that unidirectional datasets such as DBExpress can use
this same code without modification. Of course, there are many ways to find the
proper record, such as modifying an SQL statement or parameterizing a query, but
this sample concentrates on the mechanics of passing around the key between client
and server.

NOTE

Using the Briefcase Model
Another optimization to reduce network traffic is to use the briefcase model support offered
with DataSnap. Do this by assigning a filename to the TClientDataset.Filename property. If
the file specified in this property exists, the TClientDataSet will open up the local copy of the
file as opposed to reading the data directly from the application server. In addition to allowing
users to work with files while disconnected from the network, this is tremendously useful for
items that rarely change, such as lookup tables.

If you specify a TClientDataset.Filename that has an .XML extension, the data
packet will be stored in XML format, enabling you to use any number of XML tools
available to work on the briefcase file.

TIP

Sending Dynamic SQL to the Server
Some applications require modification to the underlying TDataset’s core properties, such as
the SQL property of the TQuery, from the client. As long as solid multitier principles are fol-
lowed, this can actually be a very efficient and elegant solution. Delphi makes this task trivial
to accomplish.

27 chpt_21.qxd 11/19/01 12:16 PM Page 1017

Two steps are required to allow for ad hoc queries. First, you simply assign the query statement
to the TClientDataset.CommandText property. Second, you must also include the
poAllowCommandText option in the DatasetProvider.Options property. When you open the
TClientDataSet or call TClientDataSet.Execute(), the CommandText is passed across to the
server. This same technique also works if you want to change the table or stored procedure
name on the server.

Application Server Techniques
DataSnap now has many different events for you to customize the behavior of your application.
BeforeXXX and AfterXXX events exist for just about every method on the IAppServer interface.
These two events in particular will be useful as you migrate your application server to be com-
pletely stateless.

Resolving Record Contention
The preceding discussion of the resolving mechanism included a brief mention that two users
working on the same record would cause an error when the second user tried to apply the
record back to the database. Fortunately, you have full control over detecting this collision.

The TDatasetProvider.UpdateMode property is used to generate the SQL statement that will
be used to check whether the record has changed since it was last retrieved. Consider the sce-
nario in which two users edit the same record. Here’s how DatasetProvider.UpdateMode
affects what happens to the record for each user:

• upWhereAll—This setting is the most restrictive setting but provides the greatest deal of
assurance that the record is the same one the user retrieved initially. If two users edit the
same record, the first user will be able to update the record, whereas the second user will
receive the infamous Another user changed the record. error message. If you want
to further refine which fields are used to perform this check, you can remove the
pfInWhere element from the corresponding TField.ProviderFlags property.

• upWhereChanged—This setting allows the two users to actually edit the same record at
the same time; as long as both users edit different fields in the same record, there will be
no collision detection. For example, if user A modifies the Address field and updates the
record, user B can still modify the BirthDate field and update the record successfully.

• upWhereKeyOnly—This setting is the most forgiving of all. As long as the record exists
on the database, every user’s change will be accepted. This will always overwrite the
existing record in the database, so it can be viewed as a way to provide “last one in
wins” functionality.

Enterprise Development

PART V
1018

27 chpt_21.qxd 11/19/01 12:16 PM Page 1018

Miscellaneous Server Options
Quite a few more options are available in the TDatasetProvider.Options property to control
how the DataSnap data packet behaves. For example, adding poReadOnly will make the dataset
read-only on the client. Specifying poDisableInserts, poDisableDeletes, or poDisableEdits
prevents the client from performing that operation and triggers the corresponding OnEditError
or OnDeleteError event to be fired on the client.

When using nested datasets, you can have updates or deletes cascade from the master
record to the detail records if you add poCascadeUpdates or poCascadeDeletes to the
DatasetProvider.Options property. Using this property requires your back-end database
to support cascading referential integrity.

One shortcoming in previous versions of DataSnap was the inability to easily merge changes
made on the server into your TClientDataset on the client. The user had to resort to using
RefreshRecord (or possibly Refresh to repopulate the entire dataset in some cases) to
achieve this.

By setting DatasetProvider.Options to include poPropogateChanges, all the changes made to
your data on the application server (for example, in the DatasetProvider.BeforeUpdateRecord
event to enforce a business rule) are now automatically brought back into the TClientDataSet.
Furthermore, setting TDatasetProvider.Options to include poAutoRefresh will automatically
merge AutoIncrement and default values back into the TClientDataSet.

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1019

The poAutoRefresh option is non-functional in Delphi 5 and 6. poAutoRefresh will
only work with a later version of Delphi that includes the fix for this bug. The
workaround in the meantime is to either call Refresh() for your TClientDatasets or
take control of the entire process of applying updates yourself.

CAUTION

The entire discussion of the reconciliation process thus far has revolved around the default
SQL-based reconciliation. This means that all the events on the underlying TDataset will
not be used during the reconciliation process. The TDatasetProvider.ResolveToDataset
property was created to use these events during reconciliation. For example, if
TDatasetProvider.ResolveToDataset is true, most of the events on the TDataset will be trig-
gered. Be aware that the events used are only called when applying updates back to the server.
In other words, if you have a TQuery.BeforeInsert event defined on the server, it will only
fire on the server once you call TClientDataSet.ApplyUpdates. The events don’t integrate
into the corresponding events of the TClientDataSet.

27 chpt_21.qxd 11/19/01 12:16 PM Page 1019

Dealing with Master/Detail Relationships
No discussion of database applications would be complete without at least a mention of mas-
ter/detail relationships. With DataSnap, you have two choices for dealing with master/detail.

Nested Datasets
One option for master/detail relationships is nested datasets. Nested datasets allow a master
table to actually contain detail datasets. In addition to updating master and detail records in one
transaction, they allow for storage of all master and detail records to be stored in one briefcase
file, and you can use the enhancements to DBGrid to pop up detail datasets in their own win-
dows. A word of caution if you do decide to use nested datasets: All the detail records will be
retrieved and brought over to the client when selecting a master record. This will become a
possible performance bottleneck if you nest several levels of detail datasets. For example, if
you retrieve just one master record that has 10 detail records, and each detail record has three
detail records linked to the first level detail, you would retrieve 41 records initially. When
using client-side linking, you would only retrieve 14 records initially and obtain the other
grandchild records as you scrolled through the detail TClientDataSet.

In order to set up a nested dataset relationship, you need to define the master/detail relationship
on the application server. This is done using the same technique you’ve been using in client/
server applications—namely, defining the SQL statement for the detail TQuery, including the
link parameter. Here’s an example:

“select * orders where custno=:custno”

You then assign the TQuery.Datasource for the detail TQuery to point to a TDatasource com-
ponent that’s tied to the master TDataset. Once this relationship is set up, you only need to
export the TDatasetProvider that’s tied to the master dataset. DataSnap is smart enough
to understand that the master dataset has detail datasets linked to it and will therefore send the
detail datasets across to the client as a TDatasetField.

On the client, you assign the master TClientDataset.ProviderName property to the master
provider. Then, you add persistent fields to the TClientDataset. Notice the last field in the
Fields Editor. It contains a field named the same as the detail dataset on the server and is
declared as a TDatasetField type. At this point, you have enough information to use the
nested dataset in code. However, to make things really easy, you can add a detail
TClientDataset and assign its DatasetField property to the appropriate TDatasetField
from the master. It’s important to note here that you didn’t set any other properties on the detail
TClientDataset, such as RemoteServer, ProviderName, MasterSource, MasterFields, or
PacketRecords. The only property you set was the DatasetField property. At this point, you
can bind data-aware controls to the detail TClientDataset as well.

Enterprise Development

PART V
1020

27 chpt_21.qxd 11/19/01 12:16 PM Page 1020

After you’ve finished working with the data in the nested dataset, you need to apply the
updates back to the database. This is done by calling the master TClientDataset’s
ApplyUpdates() method. DataSnap will apply all the changes in the master TClientDataset,
which includes the detail datasets, back to the server inside the context of one transaction.

You’ll find an example on the book’s CD-ROM in the directory for this chapter under
\NestCDS.

Client-Side Linking
Recall that some cautions were mentioned earlier regarding using nested datasets. The alterna-
tive to using nested datasets is to create the master/detail relationship on the client side. In
order to create a master/detail link using this method, you simply create a TDataset and
TDatasetProvider for the master and the detail on the server.

On the client, you bind two TClientDataset components to the datasets that you exported
on the server. Then, you create the master/detail relationship by assigning the detail
TClientDataset.MasterSource property to the TDatasource component that points to the
master TClientDataset.

Setting MasterSource on a TClientDataset sets the PacketRecords property to zero. When
PacketRecords equals zero, it means that DataSnap should just return the metadata informa-
tion for this TClientDataset. However, when PacketRecords equals zero in the context of a
master/detail relationship, the meaning changes. DataSnap will now retrieve the records for the
detail dataset for each master record. In summary, leave the PacketRecords property set to
the default value.

In order to reconcile the master/detail data back to the database in one transaction, you need to
write your own ApplyUpdates logic. This isn’t as simple as most tasks in Delphi, but it does
give you full flexible control over the update process.

Applying updates to a single table is usually triggered by a call to TClientDataset.Apply
Updates. This method sends the changed records from the ClientDataset to its provider on
the middle tier, where the provider will then write the changes to the database. All this is done
within the scope of a transaction and is accomplished without any intervention from the pro-
grammer. To do the same thing for master/detail tables, you must understand what Delphi is
doing for you when you make that call to TClientDataset.ApplyUpdates.

Any changes you make to a TClientDataset are stored in the Delta property. The Delta
property contains all the information that will eventually be written to the database. The fol-
lowing code illustrates the update process for applying Delta properties back to the database.
Listings 21.2 and 21.3 show the relevant sections of the client and server for applying updates
to a master/detail setup.

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1021

27 chpt_21.qxd 11/19/01 12:16 PM Page 1021

LISTING 21.2 Client Updates to Master/Detail

procedure TClientDM.ApplyUpdates;
var
MasterVar, DetailVar: OleVariant;

begin
Master.CheckBrowseMode;
Detail_Proj.CheckBrowseMode;
if Master.ChangeCount > 0 then
MasterVar := Master.Delta else
MasterVar := NULL;

if Detail.ChangeCount > 0 then
DetailVar := Detail.Delta else
DetailVar := NULL;

RemoteServer.AppServer.ApplyUpdates(DetailVar, MasterVar);
{ Reconcile the error datapackets. Since we allow 0 errors, only one error
packet can contain errors. If neither packet contains errors then we
refresh the data.}

if not VarIsNull(DetailVar) then
Detail.Reconcile(DetailVar) else

if not VarIsNull(MasterVar) then
Master.Reconcile(MasterVar) else

begin
Detail.Reconcile(DetailVar);
Master.Reconcile(MasterVar);
Detail.Refresh;
Master.Refresh;

end;
end;

LISTING 21.3 Server Updates to Master/Detail

procedure TServerRDM.ApplyUpdates(var DetailVar, MasterVar: OleVariant);
var
ErrCount: Integer;

begin
Database.StartTransaction;
try
if not VarIsNull(MasterVar) then
begin
MasterVar := cdsMaster.Provider.ApplyUpdates(MasterVar, 0, ErrCount);
if ErrCount > 0 then
SysUtils.Abort; // This will cause Rollback

end;
if not VarIsNull(DetailVar) then

Enterprise Development

PART V
1022

27 chpt_21.qxd 11/19/01 12:16 PM Page 1022

LISTING 21.3 Continued

begin
DetailVar := cdsDetail.Provider.ApplyUpdates(DetailVar, 0, ErrCount);
if ErrCount > 0 then
SysUtils.Abort; // This will cause Rollback

end;
Database.Commit;

except
Database.Rollback

end;
end;

Although this method works quite well, it really doesn’t provide for opportunities for code
reuse. This would be a good time to extend Delphi and provide easy reuse. Here are the main
steps required to abstract the update process:

1. Place the deltas for each CDS in a variant array.

2. Place the providers for each CDS in a variant array.

3. Apply all the deltas in one transaction.

4. Reconcile the error datapackets returned in the previous step and refresh the data.

The result of this abstraction is provided in the utility unit shown in Listing 21.4.

LISTING 21.4 A Unit Providing Utility Routines and Abstraction

unit CDSUtil;

interface

uses
DbClient, DbTables;

function RetrieveDeltas(const cdsArray : array of TClientDataset): Variant;
function RetrieveProviders(const cdsArray : array of TClientDataset): Variant;
procedure ReconcileDeltas(const cdsArray : array of TClientDataset;

vDeltaArray: OleVariant);

procedure CDSApplyUpdates(ADatabase : TDatabase; var vDeltaArray: OleVariant;
const vProviderArray: OleVariant);

implementation

uses
SysUtils, Provider, Midas, Variants;

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1023

27 chpt_21.qxd 11/19/01 12:16 PM Page 1023

LISTING 21.4 Continued

type
PArrayData = ^TArrayData;
TArrayData = array[0..1000] of Olevariant;

{Delta is the CDS.Delta on input. On return, Delta will contain a data packet}
{containing all of the records that could not be applied to the database.}
{Remember Delphi needs the provider name, so it is passed in the first}
{element of the AProvider variant.}
procedure ApplyDelta(AProvider: OleVariant; var Delta : OleVariant);
var
ErrCount : integer;
OwnerData: OleVariant;

begin
if not VarIsNull(Delta) then
begin
// ScktSrvr does not support early-binding
Delta := (IDispatch(AProvider[0]) as IAppServer).AS_ApplyUpdates(

AProvider[1], Delta, 0, ErrCount, OwnerData);
if ErrCount > 0 then
SysUtils.Abort; // This will cause Rollback in the calling procedure

end;
end;

{Server call}
procedure CDSApplyUpdates(ADatabase : TDatabase; var vDeltaArray: OleVariant;
const vProviderArray: OleVariant);

var
i : integer;
LowArr, HighArr: integer;
P: PArrayData;

begin
{Wrap the updates in a transaction. If any step results in an error, raise}
{an exception, which will Rollback the transaction.}
ADatabase.Connected:=true;
ADatabase.StartTransaction;
try
LowArr:=VarArrayLowBound(vDeltaArray,1);
HighArr:=VarArrayHighBound(vDeltaArray,1);
P:=VarArrayLock(vDeltaArray);
try
for i:=LowArr to HighArr do
ApplyDelta(vProviderArray[i], P^[i]);

finally
VarArrayUnlock(vDeltaArray);

end;

Enterprise Development

PART V
1024

27 chpt_21.qxd 11/19/01 12:16 PM Page 1024

LISTING 21.4 Continued

ADatabase.Commit;
except
ADatabase.Rollback;

end;
end;

{Client side calls}
function RetrieveDeltas(const cdsArray : array of TClientDataset): Variant;
var
i : integer;
LowCDS, HighCDS : integer;

begin
Result:=NULL;
LowCDS:=Low(cdsArray);
HighCDS:=High(cdsArray);
for i:=LowCDS to HighCDS do
cdsArray[i].CheckBrowseMode;

Result:=VarArrayCreate([LowCDS, HighCDS], varVariant);
{Setup the variant with the changes (or NULL if there are none)}
for i:=LowCDS to HighCDS do
begin
if cdsArray[i].ChangeCount>0 then
Result[i]:=cdsArray[i].Delta else
Result[i]:=NULL;

end;
end;

{If we’re using Delphi 5 or greater, then we need to return the provider name
AND the AppServer from this function. We will use ProviderName to call
AS_ApplyUpdates in the CDSApplyUpdates function later.}
function RetrieveProviders(const cdsArray : array of TClientDataset): Variant;
var
i: integer;
LowCDS, HighCDS: integer;

begin
Result:=NULL;
LowCDS:=Low(cdsArray);
HighCDS:=High(cdsArray);

Result:=VarArrayCreate([LowCDS, HighCDS], varVariant);
for i:=LowCDS to HighCDS do
Result[i]:=VarArrayOf([cdsArray[i].AppServer, cdsArray[i].ProviderName]);

end;

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1025

27 chpt_21.qxd 11/19/01 12:16 PM Page 1025

LISTING 21.4 Continued

procedure ReconcileDeltas(const cdsArray : array of TClientDataset;
vDeltaArray: OleVariant);

var
bReconcile : boolean;
i: integer;
LowCDS, HighCDS : integer;

begin
LowCDS:=Low(cdsArray);
HighCDS:=High(cdsArray);

{If the previous step resulted in errors, Reconcile the error datapackets.}
bReconcile:=false;
for i:=LowCDS to HighCDS do
if not VarIsNull(vDeltaArray[i]) then begin
cdsArray[i].Reconcile(vDeltaArray[i]);
bReconcile:=true;
break;

end;

{Refresh the Datasets if needed}
if not bReconcile then
for i:=HighCDS downto LowCDS do begin
cdsArray[i].Reconcile(vDeltaArray[i]);
cdsArray[i].Refresh;

end;
end;

end.

Listing 21.5 shows a reworking of the previous example using the CDSUtil unit.

LISTING 21.5 A Rework of the Previous Example Using CDSUtil.pas

procedure TForm1.btnApplyClick(Sender: TObject);
var
vDelta: OleVariant;
vProvider: OleVariant;
arrCDS: array[0..1] of TClientDataset;

begin
arrCDS[0]:=cdsMaster; // Set up ClientDataset array
arrCDS[1]:=cdsDetail;

vDelta:=RetrieveDeltas(arrCDS); // Step 1
vProvider:=RetrieveProviders(arrCDS); // Step 2

Enterprise Development

PART V
1026

27 chpt_21.qxd 11/19/01 12:16 PM Page 1026

LISTING 21.5 Continued

DCOMConnection1.ApplyUpdates(vDelta, vProvider); // Step 3
ReconcileDeltas(arrCDS, vDelta); // Step 4

end;

procedure TServerRDM.ApplyUpdates(var vDelta, vProvider: OleVariant);
begin
CDSApplyUpdates(Database1, vDelta, vProvider); // Step 3

end;

You can use this unit in either two-tier or three-tier applications. To move from a two-tier to a
three-tier approach, you would export a function on the server that calls CDSApplyUpdates
instead of calling CDSApplyUpdates on the client. Everything else on the client remains the
same.

You’ll find an example on the book’s CD-ROM in the directory for this chapter under \MDCDS.

Real-World Examples
Now that we have the basics out of the way, let’s look at how DataSnap can help you by
exploring several real-world examples.

Joins
Writing a relational database application depends heavily on walking the relationships between
tables. Often, you’ll find it convenient to represent your highly normalized data in a view that’s
more flattened than the underlying data structure. However, updating the data from these joins
takes some extra care on your end.

One-Table Update
Applying updates to a joined query is a special case in database programming, and DataSnap
is no exception. The problem lies in the join query itself. Although some join queries will pro-
duce data that could be automatically updated, others will never conform to rules that will
allow automatic retrieval, editing, and updating of the underlying data. To that end, Delphi
currently forces you to resolve updates to join queries yourself.

For joins that require only one table to be updated, Delphi can handle most of the updating
details for you. Here are the steps required in order to write one table back to the database:

1. Add persistent fields to the joined TQuery.

2. Set TQuery.TField.ProviderFlags=[] for every field of the table that you won’t be
updating.

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1027

27 chpt_21.qxd 11/19/01 12:16 PM Page 1027

3. Write the following code in the DatasetProvider.OnGetTableName event to tell
DataSnap which table you want to update. Keep in mind that this event makes it easier to
specify the table name, although you could do the same thing in previous versions of
Delphi by using the DatasetProvider.OnGetDatasetProperties event:

procedure TJoin1Server.prvJoinGetTableName(Sender: TObject;
DataSet: TDataSet; var TableName: String);

begin
TableName := ‘Emp’;

end;

By doing this, you’re telling the ClientDataset to keep track of the table name for you. Now
when you call ClientDataset1.ApplyUpdates(), DataSnap knows to try and resolve to the
table name that you specified, as opposed to letting DataSnap try and figure out what the table
name might be.

An alternative approach would be to use a TUpdateSQL component that only updates the table
of interest. This allows the TQuery.UpdateObject to be used during the reconciliation process
and more closely matches the process used in traditional client/server applications.

Enterprise Development

PART V
1028

Not all TDatasets have an UpdateObject property. However, you can still use the
same approach because of the rework done to TUpdateSQL. Simply define your SQL
for each action (delete, insert, modify) and use code similar to the following:

procedure TForm1.DataSetProvider1BeforeUpdateRecord(Sender: TObject;
SourceDS: TDataSet; DeltaDS: TCustomClientDataSet;
UpdateKind: TUpdateKind; var Applied: Boolean);

begin
UpdateSQL1.DataSet := DeltaDS;
UpdateSQL1.SetParams(UpdateKind);
ADOCommand1.CommandText := UpdateSQL1.SQL[UpdateKind].Text;
ADOCommand1.Parameters.Assign(UpdateSQL1.Query[UpdateKind].Params);
ADOCommand1.Execute;
Applied := true;

end;

NOTE

You’ll find an example on the book’s CD-ROM in the directory for this chapter under \Join1.

Multitable Update
For more complex scenarios, such as allowing the editing and updating of multiple tables, you
need to write some code yourself. There are two approaches to solving this problem:

27 chpt_21.qxd 11/19/01 12:16 PM Page 1028

• The older method of using DatasetProvider.BeforeUpdateRecord() to break the data
packet apart and apply the updates to the underlying tables

• The newer method of applying updates by using the UpdateObject property

When using cached updates with a multitable join, you need to configure one TUpdateSQL
component for each table that will be updated. Because the UpdateObject property can only
be assigned to one TUpdateSQL component, you needed to link all the TUpdateSQL.Dataset
properties to the joined dataset programmatically in TQuery.OnUpdateRecord and call
TUpdateSQL.Apply to bind the parameters and execute the underlying SQL statement. In this
case, the dataset you’re interested in is the Delta dataset. This dataset is passed as a parameter
into the TQuery.OnUpdateRecord event.

All you need to do is assign the SessionName and DatabaseName properties to allow the update
to occur in the same context as other transactions and tie the Dataset property to the Delta that
is passed to the event. The resulting code for the TQuery.OnUpdateRecord event is shown in
Listing 21.6.

LISTING 21.6 Join Using a TUpdateSQL

procedure TJoin2Server.JoinQueryUpdateRecord(DataSet: TDataSet;
UpdateKind: TUpdateKind; var UpdateAction: TUpdateAction);

begin
usqlEmp.SessionName := JoinQuery.SessionName;
usqlEmp.DatabaseName := JoinQuery.DatabaseName;
usqlEmp.Dataset := Dataset;
usqlEmp.Apply(UpdateKind);

usqlFTEmp.SessionName := JoinQuery.SessionName;
usqlFTEmp.DatabaseName := JoinQuery.DatabaseName;
usqlFTEmp.Dataset := Dataset;
usqlFTEmp.Apply(UpdateKind);

UpdateAction := uaApplied;
end;

Because you’ve complied with the rules of updating data within the DataSnap architecture,
the whole update process is seamlessly triggered as it always is in DataSnap, with a call to
ClientDataset1.ApplyUpdates(0);.

You’ll find an example on the book’s CD-ROM in the directory for this chapter under \Join2.

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1029

27 chpt_21.qxd 11/19/01 12:16 PM Page 1029

DataSnap on the Web
Even with the introduction of Kylix, Delphi is tied to the Windows platform (or Linux); there-
fore, any clients you write must run on that type of machine. This isn’t always desirable. For
example, you might want to provide easy access to the data that exists on your database to any-
one who has an Internet connection. Because you’ve already written an application server that
acts as a broker for your data—in addition to housing business rules for that data—it would be
desirable to reuse the application server as opposed to rewriting the entire data-access and busi-
ness rule tier in another environment.

Straight HTML
This section focuses on how to leverage your application server while providing a new presen-
tation tier that will use straight HTML. This section assumes that you’re familiar with the
material covered in Chapter 31, “Internet-Enabling Your Applications with WebBroker” of
Delphi 5 Developer’s Guide, which is on this book’s CD-ROM. Using this method, you’re
introducing another layer into your architecture. WebBroker acts as the client to the application
server and repackages this data into HTML that will be displayed on the browser. You also lose
some of the benefits of working with the Delphi IDE, such as the lack of data-aware controls.
However, this is a very viable option for allowing access to your data in a simple HTML
format.

After creating a WebBroker Application and a WebModule, you simply place a TDispatch
Connection and TClientDataset on the WebModule. Once the properties are filled in, you can
use a number of different methods to translate this data into HTML that will eventually be seen
by the client.

One valid technique would be to add a TDatasetTableProducer linked to the TClientDataset
of interest. From there, the user can click a link and go to an edit page, where she can edit the
data and apply the updates. See Listings 21.7 and 21.8 for a sample implementation of this
technique.

LISTING 21.7 HTML for Editing and Applying Updates

<form action=”<#SCRIPTNAME>/updaterecord” method=”post”>
EmpNo: <#EMPNO>
<input type=”hidden” name=”EmpNo” value=<#EMPNO>>
<table cellspacing=”2” cellpadding=”2” border=”0”>
<tr>
<td>Last Name:</td>
<td><input type=”text” name=”LastName” value=<#LASTNAME>></td>

</tr>
<tr>
<td>First Name:</td>
<td><input type=”text” name=”FirstName” value=<#FIRSTNAME>></td>

Enterprise Development

PART V
1030

27 chpt_21.qxd 11/19/01 12:16 PM Page 1030

LISTING 21.7 Continued

</tr>
<tr>
<td>Hire Date:</td>
<td><input type=”text” name=”HireDate” size=”8” value=<#HIREDATE>></td>

</tr>
<tr>
<td>Salary:</td>
<td><input type=”text” name=”Salary” size=”8” value=<#SALARY>></td>

</tr>
<tr>
<td>Vacation:</td>
<td><input type=”text” name=”Vacation” size=”4” value=<#VACATION>></td>

</tr>
</table>
<input type=”submit” name=”Submit” value=”Apply Updates”>
<input type=”Reset”>
</form>

LISTING 21.8 Code for Editing and Applying Updates

unit WebMain;

interface

uses
Windows, Messages, SysUtils, Classes, HTTPApp, DBWeb, Db, DBClient,
MConnect, DSProd;

type
TWebModule1 = class(TWebModule)
dcJoin: TDCOMConnection;
cdsJoin: TClientDataSet;
dstpJoin: TDataSetTableProducer;
dsppJoin: TDataSetPageProducer;
ppSuccess: TPageProducer;
ppError: TPageProducer;
procedure WebModuleBeforeDispatch(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

procedure WebModule1waListAction(Sender: TObject; Request: TWebRequest;
Response: TWebResponse; var Handled: Boolean);

procedure dstpJoinFormatCell(Sender: TObject; CellRow,
CellColumn: Integer; var BgColor: THTMLBgColor;
var Align: THTMLAlign; var VAlign: THTMLVAlign; var CustomAttrs,
CellData: String);

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1031

27 chpt_21.qxd 11/19/01 12:16 PM Page 1031

LISTING 21.8 Continued

procedure WebModule1waEditAction(Sender: TObject; Request: TWebRequest;
Response: TWebResponse; var Handled: Boolean);

procedure dsppJoinHTMLTag(Sender: TObject; Tag: TTag;
const TagString: String; TagParams: TStrings;
var ReplaceText: String);

procedure WebModule1waUpdateAction(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

private
{ Private declarations }
DataFields : TStrings;

public
{ Public declarations }

end;

var
WebModule1: TWebModule1;

implementation

{$R *.DFM}

procedure TWebModule1.WebModuleBeforeDispatch(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin
with Request do
case MethodType of
mtPost: DataFields:=ContentFields;
mtGet: DataFields:=QueryFields;

end;
end;

function LocalServerPath(sFile : string = ‘’) : string;
var
FN: array[0..MAX_PATH- 1] of char;
sPath : shortstring;

begin
SetString(sPath, FN, GetModuleFileName(hInstance, FN, SizeOf(FN)));
Result := ExtractFilePath(sPath) + ExtractFileName(sFile);

end;

procedure TWebModule1.WebModule1waListAction(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin
cdsJoin.Open;
Response.Content := dstpJoin.Content;

end;

Enterprise Development

PART V
1032

27 chpt_21.qxd 11/19/01 12:16 PM Page 1032

LISTING 21.8 Continued

procedure TWebModule1.dstpJoinFormatCell(Sender: TObject; CellRow,
CellColumn: Integer; var BgColor: THTMLBgColor; var Align: THTMLAlign;
var VAlign: THTMLVAlign; var CustomAttrs, CellData: String);

begin
if (CellRow > 0) and (CellColumn = 0) then
CellData := Format(‘%s’,
[Request.ScriptName, CellData, CellData]);

end;

procedure TWebModule1.WebModule1waEditAction(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin
dsppJoin.HTMLFile := LocalServerPath(‘join.htm’);
cdsJoin.Filter := ‘EmpNo = ‘ + DataFields.Values[‘empno’];
cdsJoin.Filtered := true;
Response.Content := dsppJoin.Content;

end;

procedure TWebModule1.dsppJoinHTMLTag(Sender: TObject; Tag: TTag;
const TagString: String; TagParams: TStrings; var ReplaceText: String);

begin
if CompareText(TagString, ‘SCRIPTNAME’)=0 then
ReplaceText:=Request.ScriptName;

end;

procedure TWebModule1.WebModule1waUpdateAction(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

var
EmpNo, LastName, FirstName, HireDate, Salary, Vacation: string;

begin
EmpNo:=DataFields.Values[‘EmpNo’];
LastName:=DataFields.Values[‘LastName’];
FirstName:=DataFields.Values[‘FirstName’];
HireDate:=DataFields.Values[‘HireDate’];
Salary:=DataFields.Values[‘Salary’];
Vacation:=DataFields.Values[‘Vacation’];

cdsJoin.Open;
if cdsJoin.Locate(‘EMPNO’, EmpNo, []) then
begin
cdsJoin.Edit;
cdsJoin.FieldByName(‘LastName’).AsString:=LastName;
cdsJoin.FieldByName(‘FirstName’).AsString:=FirstName;
cdsJoin.FieldByName(‘HireDate’).AsString:=HireDate;

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1033

27 chpt_21.qxd 11/19/01 12:16 PM Page 1033

LISTING 21.8 Continued

cdsJoin.FieldByName(‘Salary’).AsString:=Salary;
cdsJoin.FieldByName(‘Vacation’).AsString:=Vacation;
if cdsJoin.ApplyUpdates(0)=0 then
Response.Content:=ppSuccess.Content else
Response.Content:=pPError.Content;

end;
end;

end.

Note that this method requires much custom code to be written, and the full feature set of
DataSnap isn’t implemented in this example—specifically error reconciliation. You can con-
tinue to enhance this example to be more robust if you use this technique extensively.

Enterprise Development

PART V
1034

It’s imperative that you consider the concept of state when writing your WebModule
and application server. Because HTTP is a stateless protocol, you cannot rely on the
values of properties to be the same as you left them when the call was over.

CAUTION

WebBroker is one way to get your data to Web browsers. Using WebSnap, you can
extend the capabilities of your application even further by using the new features
WebSnap offers, such as scripting and session support.

TIP

To run this sample, be sure to compile and register the Join2 sample application. Next, compile
the Web application (either the CGI or ISAPI version), and place the executable in a script-
capable directory for your Web server. The code also expects to find the file join.htm in the
scripts directory, so copy that too. Then, just point your browser to http://localhost/
scripts/WebJoin.exe and see the results of this sample.

You’ll find an example on the book’s CD-ROM in the directory for this chapter under \WebBrok.

InternetExpress
With InternetExpress, you can enhance the functionality of a straight WebModule approach to
allow for a richer experience on the client. This is possible due to the use of open standards
such as XML and JavaScript in InternetExpress. Using InternetExpress, you can create a

27 chpt_21.qxd 11/19/01 12:16 PM Page 1034

browser-only front end to your DataSnap application server: no ActiveX controls to download;
zero client-side install and configuration requirements; nothing but a Web browser hitting a
Web server.

In order to use InternetExpress, you will need to have some code running on a Web server. For
this example, we will use an ISAPI application, but you could also use CGI or ASP. The pur-
pose of the Web broker is to take requests from the browser and pass those requests on to the
app server. Placing InternetExpress components in the Web broker application makes this task
very easy.

This example will use a standard DataSnap app server that has Customers, Orders, and
Employees. Customers and Orders are linked in a nested dataset relationship (for more infor-
mation on nested datasets, see the next section), whereas the Employees dataset will serve as a
lookup table. See the accompanying source code for the app server definition. After the app
server has been built and registered, you can focus on building the Web broker application that
will communicate with the app server.

Create a new ISAPI application by selecting File, New, Web Server Application from the
Object Repository. Place a TDCOMConnection component on the WebModule. This will act as the
link to the app server, so fill in the ServerName property with the ProgID of the app server.

Next, you will place a TXMLBroker component from the InternetExpress page of the
Component Palette on the WebModule and set the RemoteServer and ProviderName properties
to the CustomerProvider. The TXMLBroker component acts in a manner similar to the
TClientDataset. It is responsible for retrieving data packets from the app server and passing
those data packets to the browser. The main difference between the data packet in a TXMLBroker
and a TClientDataset is that the TXMLBroker translates the DataSnap data packets into XML.
You will also add a TClientDataset to the WebModule and tie it to the Employees provider on
the app server. You will use this as a lookup datasource later.

The TXMLBroker component is responsible for communication to the application server and
also the navigation of HTML pages. Many properties are available to customize how your
InternetExpress application will behave. For example, you can limit the number of records that
will be transmitted to the client or specify the number of errors allowed during an update.

You now need a way to move this data to the browser. Using the TInetXPageProducer compo-
nent, you can use the WebBroker technology in Delphi to serve an HTML page up to the
browser. However, the TInetXPageProducer also allows for visual creation of the Web page
via the Web Page Editor.

Double-click on the TInetXPageProducer to bring up the Web Page Editor. This visual editor
helps you customize what elements are present on a given Web page. One of the most interest-
ing things about InternetExpress is that it is completely extensible. You can create your own

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1035

27 chpt_21.qxd 11/19/01 12:16 PM Page 1035

components that can be used in the Web Page Editor by following some well-defined rules.
For examples of custom InternetExpress components, see the <DELPHI>\DEMOS\MIDAS\
INTERNETEXPRESS\INETXCUSTOM directory.

Enterprise Development

PART V
1036

TInetXPageProducer has a property named IncludePathURL. It is essential to set this
property properly, or your InternetExpress application won’t work. Set the value to
the virtual directory that contains the InternetExpress JavaScript files. For example, if
you place the files in c:\inetpub\wwwroot\jscript, the value for this property will be
/jscript/.

CAUTION

With the Web Page Editor active, click the Insert tool button to display the Add Web
Component dialog box (see Figure 21.7). This dialog box contains a list of Web components
that can be added to the HTML page. This list is based on which parent component (the sec-
tion in the upper left) is currently selected. For example, add a DataForm Web component to
the root node to allow end users to display and edit database information in a form-like layout.

FIGURE 21.7
The Add Web Component dialog box from the Web Page Editor.

If you then select the DataForm node in the Web Page Editor, you can click the Insert button
again. Notice that the list of components available at this point is different from the list dis-
played from the previous step. After selecting the FieldGroup component, you will see a warn-
ing in the preview pane, telling you that the TXMLBroker property for the FieldGroup isn’t
assigned. By assigning the XMLBroker in the Object Inspector, you will immediately notice
the layout of the HTML in the preview pane of the Web Page Editor. As you continue to mod-
ify properties or add components, the state of the HTML page will be constantly updated (see
Figure 21.8).

27 chpt_21.qxd 11/19/01 12:16 PM Page 1036

FIGURE 21.8
The Web Page Editor after designing an HTML page.

The level of customization available with the standard Web components is practically limitless.
Properties make it easy to change field captions, alignment, colors; add straight custom HTML
code; and even use style sheets. Furthermore, if the component doesn’t suit your needs exactly,
you can always create a descendant component and use that in its place. The framework is
truly as extensible as your imagination allows.

In order to call the ISAPI DLL, you need to place it in a virtual directory capable of executing
script. You also need to move the JavaScript files found in <DELPHI>\SOURCE\WEBMIDAS to a
valid location on your Web server and modify the TInetXPageProducer.IncludePathURL
property to point to the URI of the JavaScript files. After that, the page is ready to be viewed.

To access the page, all you need is a JavaScript-capable browser. Simply point the browser to
http://localhost/inetx/inetxisapi.dll, and the data will display in the browser. Figure 21.9
shows a screenshot of the application in action.

You can detect reconciliation errors during the ApplyUpdates process as you are already used to
doing in a standalone DataSnap application. This capability is made possible when you assign
the TXMLBroker.ReconcileProducer property to a TPageProducer. Whenever an error occurs,
the Content of the TPageProducer assigned to this property will be returned to the end user.

A specialized TPageProducer, TReconcilePageProducer, is available by installing the
InetXCustom.dpk package found in <DELPHI>\DEMOS\MIDAS\INTERNETEXPRESS\INETXCUSTOM.
This PageProducer generates HTML that acts much like the standard DataSnap Reconciliation
Error dialog box (see Figure 21.10).

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1037

27 chpt_21.qxd 11/19/01 12:16 PM Page 1037

FIGURE 21.9
Internet Explorer accessing the InternetExpress Web page.

Enterprise Development

PART V
1038

FIGURE 21.10
View of the HTML page generated by TReconcilePageProducer.

You’ll find an example on the book’s CD-ROM in the directory for this chapter under \InetX.

27 chpt_21.qxd 11/19/01 12:16 PM Page 1038

More Client Dataset Features
Many options are available to control the TClientDataset component. In this section, we will
look at ways to use the TClientDataset to make coding easier in complex applications.

Two-Tier Applications
You’ve seen how to assign the provider—and therefore the data—to the ClientDataset in a
three-tier application. However, many times a simple two-tier application is all that’s needed.
So, how do you use DataSnap in a two-tier application? There are four possibilities:

• Runtime assignment of data

• Design-time assignment of data

• Runtime assignment of a provider

• Design-time assignment of a provider

The two basic choices when using ClientDataset are assigning the AppServer property
and assigning the data. If you choose to assign the AppServer, you have a link between the
TDatasetProvider and the ClientDataset that will allow you to have communication
between the ClientDataset and TDatasetProvider as needed. If, on the other hand, you
choose to assign the data, you have effectively created a local storage mechanism for your data
and the ClientDataset will not communicate with the TDatasetProvider component for
more information or data.

In order to assign the data directly from a TDataset to a TClientDataset at runtime, use the
code in Listing 21.9.

LISTING 21.9 Code to Assign Data Directly from a TDataSet

function GetData(ADataset: TDataset): OleVariant;
begin
with TDatasetProvider.Create(nil) do
try
Dataset:=ADataset;
Result:=Data;

finally
Free;

end;
end;
procedure TForm1.Button1Click(Sender: TObject);
begin
ClientDataset1.Data:=GetData(ADOTable1);

end;

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1039

27 chpt_21.qxd 11/19/01 12:16 PM Page 1039

This method takes more code and effort than previous versions of Delphi, where you would
simply assign the Table1.Provider.Data property to the ClientDataset1.Data property.
However, this function will help make the additional code less noticeable.

You can also use the TClientDataset component to retrieve the data from a TDataset at
design time by selecting the Assign Local Data command from the context menu of the
TClientDataset component. Then, you specify the TDataset component that contains the data
you want, and the data is brought to the TClientDataset and stored in the Data property.

Enterprise Development

PART V
1040

If you were to save the file in this state and compare the size of the DFM file to the
size before executing this command, you would notice an increase in the DFM size.
This is because Delphi has stored all the metadata and records associated with the
TDataset in the DFM. Delphi will only stream this data to the DFM if the
TClientDataset is Active. You can also trim this space by executing the Clear Data
command on the TClientDataset context menu.

CAUTION

If you want the full flexibility that a provider assignment allows, you need to assign the
AppServer property. At runtime, you can assign the AppServer property in code. This can be
as simple as the following statement, found in FormCreate:

ClientDataset1.AppServer:=TLocalAppServer.Create(Table1);
ClientDataset1.Open;

You can assign the AppServer property at design time. If you leave the RemoteServer property
blank on a TClientDataset, you can assign a TDatasetProvider component to the
TClientDataset.ProviderName property.

One major drawback to using the TClientDataset.ProviderName property is that it can’t be
assigned to providers that reside on another form or DataModule at design time. This is why
Delphi 6 introduced the TLocalConnection component. TLocalConnection will autodiscover
and expose any TDatasetProviders that it finds with the same owner. To use this method
of assigning providers, assign the ClientDataset.RemoteServer property to be the
LocalConnection component on the external form or DataModule. After doing this, you
will have the list of providers for that LocalConnection in the ClientDataset.ProviderName
property.

The major difference between using TDataset components and ClientDataset is that when
you’re using ClientDataset, you’re using the IAppServer interface to broker your requests for
data to the underlying TDataset component. This means that you’ll be manipulating the prop-
erties, methods, events, and fields of the TClientDataset component, not the TDataset com-

27 chpt_21.qxd 11/19/01 12:16 PM Page 1040

ponent. Think of the TDataset component as if it were in a separate application and therefore
can’t be manipulated directly by you in code. Place all your server components on a separate
DataModule. Placing the TDatabase, TDataset, and TLocalConnection components on a sepa-
rate DataModule effectively prepares your application for an easier transition to a multitier
deployment later on. Another benefit of doing this is that it might help you think of the
DataModule as something that the client cannot touch easily. Again, this is good preparation
for your application, and your own mindset, when it comes time to port this application to a
multitier deployment.

Classic Mistakes
The most common mistake in creating a multitier application is introducing unnecessary
knowledge of the data tier into the presentation tier. Some validation is more suitable in the
presentation tier, but it’s how that validation is performed that determines its suitability in a
multitier application.

For example, if you’re passing dynamic SQL statements from the client to the server, this
introduces a dependency for the client application to always be synchronized with the data tier.
Doing things this way introduces more moving parts that need to be coordinated in the overall
multitier application. If you change one of the tables’ structures on the data tier, you must
update all the client applications that send dynamic SQL so that they can now send the proper
SQL statement. This clearly limits the benefit that a properly developed thin-client application
holds.

Another example of a classic mistake is when the client application attempts to control the
transaction lifetime, as opposed to allowing the business tier to take care of this on the client’s
behalf. Most of the time, this is implemented by exposing three methods of the TDataBase
instance on the server—BeginTransaction(), Commit(), and Rollback()—and calling those
methods from the client. Doing things in this manner makes the client code much more com-
plicated to maintain and violates the principle that the presentation tier should be the only tier
responsible for communication to the data tier. The presentation tier should never have to rely
on such an approach. Instead, you should send your updates to the business tier and let that tier
deal with updating the data in a transaction.

Deploying DataSnap Applications
After you’ve built a complete DataSnap application, the last hurdle left to clear is deploying
that application. This section outlines what needs to be done in order to make your DataSnap
application deployment painless.

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1041

27 chpt_21.qxd 11/19/01 12:16 PM Page 1041

Licensing Issues
Licensing has been a tough subject for many people ever since DataSnap was first introduced
in Delphi 3. The myriad of options for deploying this technology has contributed to this confu-
sion. This section details the overall requirements of when you need to purchase a DataSnap
license. However, the only legally binding document for licensing is in DEPLOY.TXT, located in
the Delphi 6 directory. Finally, for the ultimate authority to answer this question for a specific
situation, you must contact your local Borland sales office. More guidelines and examples are
available at

http://www.borland.com/midas/papers/licensing/

or our Web site at

http://www.xapware.com/ddg

The information from this document was prepared to answer some of the more common
scenarios in which DataSnap is used. Pricing information and options are also included in
the document.

The key criteria to determine the necessity of a DataSnap license for your application is whether
the DataSnap data packet crosses a machine boundary. If it does, and you use the DataSnap
components on both machines, you need to purchase a license. If it doesn’t (as in the one- and
two-tier examples presented earlier), you’re using DataSnap technology, but there’s no need to
purchase a license to use DataSnap in this manner.

DCOM Configuration
DCOM configuration appears to be as much art as it is science. There are many aspects to a
complete and secure DCOM configuration, but this section will help you understand some of
the basics of this black art.

After registering your application server, your server object is now available for customization
in the Microsoft utility DCOMCNFG. This utility is included with NT systems automatically
but is a separate download for Win9x machines. As a side note, there are plenty of bugs in
DCOMCNFG; the most notable being DCOMCNFG can only be run on Win9x machines that
have User-level share enabled. This, of course, requires a domain. This isn’t always possible or
desirable in a peer-to-peer network, such as two Windows 9x machines. This has led many peo-
ple to incorrectly assume that an NT machine is required to run DCOM.

If you can run DCOMCNFG, you can select the registered application server and click the
Properties button to reveal information about your server. The Identity page is a good place to
start in our brief tour of DCOMCNFG. The default setting for a registered server object is
Launching User. Microsoft couldn’t have made a worse decision for the default if it tried.

Enterprise Development

PART V
1042

27 chpt_21.qxd 11/19/01 12:16 PM Page 1042

When DCOM creates the server, it uses the security context of the user specified on the
Identity page. The launching user will spawn one new process of the server object for each and
every distinct user login. Many people look at the fact that they selected the ciMultiple
instancing mode and wonder why multiple copies of their server are being created. For exam-
ple, if user A connects to the server and then user B connects, DCOM will spawn an entirely
new process for user B. Additionally, you won’t see the GUI portion of the server for users
who log in under an account different from that currently in use on the server machine. This is
because of the NT concept known as Windows stations. The only Windows station capable of
writing to the screen is the Interactive User, which is the user who is currently logged in on the
server machine. Furthermore, windows stations are a scarce resource, and you might not be
able to run many server processes if you use this setting. In summary, never use the Launching
User option as your identity for your server.

The next interesting option on this page is the Interactive User, which means that every single
client that creates a server will do so under the context of the user who is logged in to the
server at that point in time. This will also allow you to have visual interaction with your appli-
cation server. Unfortunately, most system administrators don’t allow an open login to just sit
there idle on an NT machine. In addition, if the logged-in user decides to log out, the applica-
tion server will no longer work as desired.

For this discussion, this only leaves the last enabled option on the Identity page: This User.
Using this setting, all clients will create one application server and use the login credentials
and context of the user specified on the Identity page. This also means that the NT machine
doesn’t require a user to be logged in to use the application server. The one downside to this
approach is that there will be no GUI display of the server when using this option. However, it
is by far the best of all available options to put your application server in production.

After the server object is configured properly with the right identity, you need to turn your
attention to the Security tab. Make sure that the user who will be running this object has the
appropriate privileges assigned. Also be sure to grant the SYSTEM user access to the server;
otherwise, you’ll encounter errors along the way.

Many subtle nuances are strewn throughout the DCOM configuration process. For the latest on
DCOM configuration issues, especially as they pertain to Windows 9x, Delphi, and DataSnap,
visit the DCOM page of our Web site at

http://www.DistribuCon.com/dcom95.htm

Files to Deploy
The requirements for deploying a DataSnap application have changed with each new release of
Delphi. Delphi 6 makes deployment easier than any other version.

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1043

27 chpt_21.qxd 11/19/01 12:16 PM Page 1043

With Delphi 6, the minimum files needed for deployment of your DataSnap application is
shown in the following lists.

Here are the steps for the server (these steps assume a COM server; they will differ slightly for
other varieties):

1. Copy the application server to a directory with sufficient NTFS privileges or share level
privileges set properly if on a Win9x machine.

2. Install your data access layer to allow the application server to act as a client to the
RDBMS (for example, BDE, MDAC, specific client-side database libraries, and so on).

3. Copy MIDAS.DLL to the %SYSTEM% directory. By default, this would be C:\Winnt\
System32 for NT machines and C:\Windows\System for 9x machines.

4. Run the application server once to register it with COM.

Here are the steps for the client:

1. Copy the client to a directory, along with any other external dependency files used by
your client (for example, runtime packages, DLLs, ActiveX controls, and so on).

2. Copy MIDAS.DLL to the %SYSTEM% directory. Note that Delphi 6 can statically link
MIDAS.DLL into your application, thus making this step unnecessary. To do this, simply
add the unit MidasLib to your uses clause and rebuild your application. You will see an
increase in the size of the EXE due to the static linking.

3. Optional: If you specify the ServerName property in your TDispatchConnection or if
you employ early binding in your client, you need to register the server’s type library
(TLB) file. This can be done by using a utility such as <DELPHI>\BIN\TREGSVR.EXE
(or programmatically if you so choose).

Internet Deployment Considerations (Firewalls)
When deploying your application over a LAN, there’s nothing to get in your way. You can
choose whatever connection type best suits your application’s needs. However, if you need to
rely on the Internet as your backbone, many things can go wrong—namely, firewalls.

DCOM isn’t the most firewall-friendly protocol. It requires opening multiple ports on a fire-
wall. Most system administrators are wary of opening an entire range of ports (particularly
those commonly recognized as DCOM ports) because it invites hackers to come knocking on
the door. Using TSocketConnection, the story improves somewhat. The firewall only needs
one open port. However, the occasional system administrator will even refuse to do that on the
grounds that this is a security breach.

TWebConnection is similar to TSocketConnection in that it permits DataSnap traffic to be bun-
dled up into valid HTTP traffic, and then uses the most open port in the world—the HTTP port

Enterprise Development

PART V
1044

27 chpt_21.qxd 11/19/01 12:16 PM Page 1044

(default port 80). Actually, the component even supports SSL, so you can have secure commu-
nications. By doing this, all firewall issues are completely eliminated. After all, if a corporation
doesn’t allow HTTP traffic in or out, nothing can be done to communicate with them anyway.

This bit of magic is accomplished by using the Borland-provided ISAPI extension that trans-
lates HTTP traffic into DataSnap traffic, and vice versa. In this regard, the ISAPI DLL does
the same work that ScktSrvr does for socket connections. The ISAPI extension httpsrvr.dll
needs to be placed in a directory capable of executing code. For example, with IIS, the default
location for this file would be in C:\Inetpub\Scripts.

One more benefit of using TWebConnection is that it supports object pooling. Object pooling is
used to spare the server the overhead of object creation every time a client connects to the
server. Furthermore, the pooling mechanism in DataSnap allows for a maximum number of
objects to be created. After this maximum has been reached, an error will be sent to the client
saying that the server is too busy to process this request. This is more flexible and scalable
than just creating an arbitrary number of threads for every single client that wants to connect to
the server.

To take this a step further, building your RDM as a Web Service using a SOAP Data Module
will not only provide the benefits of a TwebConnection, but will also permit clients using
industry-standard SOAP protocols to be constructed. This platform enables your application
server for use by .Net, Sun ONE, and other industry-compliant SOAP systems.

In order to tell DataSnap that this RDM will be pooled, you need to call RegisterPooled and
UnregisterPooled in the UpdateRegistry method of the RDM. (See Listing 21.1 for a sample
implementation of UpdateRegistry.) The following is a sample call to the RegisterPooled
method:

RegisterPooled(ClassID, 16, 30);

This call tells DataSnap that 16 objects will be available in the pool, and that DataSnap can
free any instances of objects that have been created if there has been no activity for 30 min-
utes. If you never want to free the objects, then you can pass 0 as the timeout parameter.

The client doesn’t change that drastically. Simply use a TWebConnection as the
TDispatchConnection for the client and fill in the appropriate properties, and the client will be
communicating to the application server over HTTP. The one major difference when using
TWebConnection is the need to specify the complete URL to the httpsrvr.dll, as opposed to
just identifying the server computer by name or address. Figure 21.11 shows a screenshot of a
typical setup using TWebConnection.

DataSnap Development

CHAPTER 21

21

D
A

TAS
N

A
P

D
EV

ELO
PM

EN
T

1045

27 chpt_21.qxd 11/19/01 12:16 PM Page 1045

FIGURE 21.11
TWebConnection setup at design time.

Another benefit of using HTTP for your transport is that an OS such as NT Enterprise allows
you to cluster servers. This provides automated load balancing and fault tolerance for your
application server. For more information about clustering, see http://www.microsoft.com/
ntserver/ntserverenterprise/exec/overview/clustering.

The limitations of using TWebConnection are fairly trivial, and they’re well worth any conces-
sion in order to have more clients capable of reaching your application server. The limitations
are that you must install wininet.dll on the client, and no callbacks are available when using
TWebConnection.

Summary
This chapter provides quite a bit of information on DataSnap. Still, it only scratches the surface
of what can be done with this technology—something far beyond the scope of a single chapter.
Even after you explore all the nooks and crannies of DataSnap, you can still add to your
knowledge and capabilities by using DataSnap with C++Builder and JBuilder. Using JBuilder,
you can achieve the nirvana of cross-platform access to an application server while using the
same technology and concepts you learned here.

DataSnap is a fast-evolving technology that brings the promise of multitier applications to
every programmer. Once you experience the true power of creating an application with
DataSnap, you might never return to database application development as you know it today.

Enterprise Development

PART V
1046

27 chpt_21.qxd 11/19/01 12:16 PM Page 1046

