BizSnap Development: Writing
SOAP-Based Web Services

IN THIS CHAPTER

e What Are Web Services? 984
e What Is SOAP? 984
e Writing a Web Service 985

¢ Invoking a Web Service from a Client 991

CHAPTER

20

984

Enterprise Development
PART V

Developing eBusiness solutions rapidly is key to the success of many organizations. Fortunately,
Borland has made this rapid development possible through the use of a new Delphi 6 feature
called BizSnap. BizSnap is a technology that integrates XML and Web Services using the
SOAP protocol into Delphi 6.

What Are Web Services?

Borland describes Web Services as follows:

Using the Internet and Web infrastructure as the platform, Web Services seamlessly
connect applications, business processes, customers, and suppliers—anywhere in the
world—with standardized language and machine-independent Internet protocols.

Distributed applications generally consist of servers and clients—servers that provide some
functionality to the clients. Any distributed application might contain many servers, and those
servers might themselves be clients. Web Services are a new type of server component for
applications with a distributed architecture. Web Services are applications that use common
Internet protocols to deliver their functionality.

Because Web Services communicate using open standards, they offer the opportunity for many
different platforms to interoperate. For instance, from the perspective of a client application, a
Web service deployed on a Sun Solaris machine will look (for all intents and purposes) identi-
cal to the same service deployed on a Windows NT machine. Prior to Web Services, this type
of integration was extremely time-consuming, expensive, and generally proprietary.

This open nature and the ability to use existing network hardware and software position Web
Services to be powerful tools for both internal and business-to-business transactions.

What Is SOAP?

SOAP is the acronym for Simple Object Access Protocol. SOAP is a lightweight protocol used
for exchanging data in a distributed environment, similar to portions of CORBA and DCOM,
but with less functionality and resulting overhead. SOAP exchanges data using XML docu-
ments, using HTTP (or HTTPS) for its communications. A specification on SOAP is available
for reference on the Internet at http://www.w3.0org/TR/SOAP/.

Web Services also use a form of XML to instruct users about themselves, called WSDL.
WSDL is short for Web Services Description Language. WSDL is used by client applications
to identify what a Web service can do, where it can be found, and how to call it.

The wonderful thing about BizSnap is that you don’t have to learn all the specifics of SOAP,
XML, or WSDL in order to create Web Service applications.

In this chapter, we will show you how simple it is to create a Web Service, and then we’ll show
you how to access this service from a client application.

BizSnap Development: Writing SOAP-Based Web Services
CHAPTER 20

Writing a Web Service

To demonstrate how to create a Web Service, we’ll show you how to create the ever-popular
Fahrenheit Celsius converter as a Web Service.

A Web service written in Delphi consists of three main things. The first is a WebModule with a
few SOAP components (described in a moment). The module is automatically created for you
when you execute the SOAP Server Wizard. The second two components you must build your-
self. One of those is a class implementation, which is simply the code that describes what your
Web service will actually do. The second thing to create is an interface to that class. The inter-
face will expose only those pieces of the class that you want to offer to the rest of the world
through your Web service.

Delphi provides a Web Service Wizard in the WebServices tab of the Object Repository. You
will see three items in this tab. At this point, we’ll concern ourselves with only the Soap Server
Application Wizard. When you click this, you’ll be shown the New Soap Server Application
dialog box (see Figure 20.1). This dialog box should look familiar if you’ve done any Web
Server development. In fact, Web Services are really Web Servers that handle the specific
SOAP response.

New Soap Server Application x|

*You may select from one of the following types of World
‘Wide Web server applications

€ [SAPINEABI Dyraio Lk Lbram
(¥ LG Stand-alone executable

€~ WinCGl Stand-alone executable
" Apache Shared Module [DLL)

" ‘Web App Debugger executable

CaClass Name: |

Ok I Cancel Help

FiGURE 20.1
The New Soap Server Application dialog box.

In our example, we chose a CGI Stand-alone Executable. Click OK, and the wizard will gener-
ate a TWebModule as shown in Figure 20.2.

A Look at the TwebModule

Three components exist on the TWebModule. The purpose of these components is as follows:

* THTTPSoapDispatcher receives SOAP messages and dispatches them to the appropriate
Invoker as specified by its Dispatcher property.

985

N
o

SADINY3S

a3\ a3svy
-dVOS SDNILIMAA

Enterprise Development
PART V

986

* THTTPSoapPascallnvoker is the component referred to by the THTTPSoap
Dispatcher.Dispatcher property. This component receives the SOAP message,
interprets it, and then invokes the invokable interface being called by the message.

e TWSDLHTMLPublish is used to publish the list of WSDL documents that contain the infor-
mation on available invokable interfaces. This allows clients other than Delphi to identify
and use the methods made available through a given Web Service.

There is nothing that you have to do with the Web Module at this point. However, you must
define and implement an invokable interface.

Ie: webMadule1 [=10lx|
piscil o]
%% EﬂzﬁP

HTTPSoapDispatcher HTTPSoapPascallnvokerl WSDLHTMLPublish1

FIGURE 20.2
The Web Module generated from the wizard.

Defining an Invokable Interface

You must create a new unit in which you’ll place your interface definition. Listing 20.1 shows
the source code for the unit that we’ve created for our demonstration application, which you’ll
find on the CD. We’ve named this unit TempConverterIntf.pas.

LisTING 20.1 TempConverter.pas—Invokable Interface Definition

unit TempConverterIntf;
interface

type
ITempConverter = Interface(IInvokable)
['{6D239CB5-6E74-445B-B101-F76F5CQOF6E42} ']
function FahrenheitToCelsius(AFValue: double): double; stdcall;
function CelsiusToFahrenheit(ACValue: double): double; stdcall;

BizSnap Development: Writing SOAP-Based Web Services
CHAPTER 20

LisTiING 20.1 Continued

function Purpose: String; stdcall;
end;

implementation

uses InvokeRegistry;

initialization
InvRegistry.RegisterInterface(TypeInfo(ITempConverter));

end.

This small unit contains only an interface that defines the methods that we intend to publish as
part of our Web Service. You’ll note that our interface descends from IInvokable. IInvokable
is a simple interface compiled with the {M+} compiler option to ensure that RTTI is compiled
into all of its descendants. This is necessary to allow the Web Services and Clients to translate
code and symbolic information passed to each other.

In our example, we’ve defined two methods for converting temperatures and a Purpose () method
that returns a string. Also, note that we provided a GUID for this interface to give it unique identi-
fication (to create a GUID in your own code, simply press Ctrl+Shift+G in the editor).

CAUTION

Note that each method defined in the invokable interface is defined using the std-
call calling convention. This convention must be used, or the invokable interface will
not work.

Finally, the last items to note are the user of the InvokeRegistry unit and the call to
InvRegistry.RegisterInterface(). The THTTPSoapPascallInvoker component must be able
to identify the invokable interface when it is passed a SOAP message. The RegisterInterface()
method call registers the interface with the invocation registry. When we discuss the client
code later, you’ll see that the RegisterInterface() call is also made on the client. The server
requires the registration so that it can identify the interface implementation to execute on an
interface call. On the client, the method is used to allow components to look up information on
invokable interfaces and how to call them. By placing the RegisterInterface() call in the
initialization block, we ensure that the method is called when the service is run.

Implementing an Invokable Interface

Implementing an invokable interface is no different from implementing any interface. Listing 20.2
shows the source for our temperature conversion interface.

987

N
o

SIDINYIS
a3\ a3svy
-dVOS SDNILIMAA

988

Enterprise Development
PART V

LisTING 20.2 TempConverterImpl.pas—Invokable Interface Implementation

unit TempConverterImpl;

interface
uses InvokeRegistry, TempConverterIntf;

type

TTempConverter = class(TInvokableClass, ITempConverter)

public
function FahrenheitToCelsius(AFValue: double): double; stdcall;
function CelsiusToFahrenheit(ACValue: double): double; stdcall;
function Purpose: String; stdcall;

end;

implementation
{ TTempConverter }

function TTempConverter.CelsiusToFahrenheit (ACValue: double): double;
begin
/] Tf = (9/5)*Tc+32
Result := (9/5)*ACValue+32;
end;

function TTempConverter.FahrenheitToCelsius(AFValue: double): double;
begin
/] Tc = (5/9)*(Tf-32)

Result := (5/9)*(AFValue-32);
end;

function TTempConverter.Purpose: String;
begin

Result := 'Temperature converstions';
end;

initialization
InvRegistry.RegisterInvokableClass(TTempConverter);
end.

First, note that our interface implementation is a descendant of the TInvokableClass object.
There are two primary reasons for doing this. The following reasons are take from the Delphi 6
online help:

BizSnap Development: Writing SOAP-Based Web Services

CHAPTER 20

¢ The invocation registry (InvRegistry) knows how to create instances of TInvokableClass
and (because it has a virtual constructor) its descendants. This allows the registry to sup-
ply an invoker in a Web Service application with an instance of the invokable class that
can handle an incoming request.

* TInvokableClass is an interfaced object that frees itself when the reference count on its
interface drops to zero. Invoker components do not know when to free the implementa-
tion classes of the interfaces they call. Because TInvokableClass knows when to free
itself, you do not need to supply your own lifetime management for this object.

Additionally, you’ll see that our TTempConverter class implements the ITempConverter inter-
face. The implementation methods for performing temperature conversions are self-explanatory.

In the initialization section, the call to RegisterInvokableClass () registers the
TTempConverter class with the invocation registry. This is required only on the server
so that the Web Service will be able to invoke the appropriate interface implementation.

That is really all there is to creating a simple Web Service. At this point, you can compile the
Web Service and place it into an executable directory of a Web Server such as IIS or Apache.
Typically, this would be a \Scripts or \cgi-bin directory.

Testing the Web Service

The URL http://127.0.0.1/cgi-bin/TempConvWS.exe/wsdl/ITempConverter was used to
view the WSDL document generated from our Web Service. This service is hosted on an
Apache server. To get a list of all the service interfaces available from a Delphi-generated Web
service, the URL can be ended at wsd1. To see the specific WSDL document for a service,
append the interface name desired—in this case ItempConverter. The resulting WSDL docu-
ment is shown in Listing 20.3.

ListiNG 20.3 Resulting WSDL Document from Web Service

<?xml version="1.0" ?>
- <definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
wxmlns:xs="http://www.w3.0rg/2001/XMLSchema" name="ITempConverterservice"
targetNamespace="http://www.borland.com/soapServices/"
wxmlns:soap="http://schemas.xmlsoap.org/wsdl/soap"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">
- <message name="FahrenheitToCelsiusRequest">

<part name="AFValue" type="xs:double" />

</message>
- <message name="FahrenheitToCelsiusResponse">

<part name="return" type="xs:double" />

</message>

989

N
o

SIDINYIS
a3\ a3svy
-dVOS SDNILIMAA

990

Enterprise Development
PART V

LisTiING 20.3 Continued

- <message name="CelsiusToFahrenheitRequest">
<part name="ACValue" type="xs:double" />
</message>
- <message name="CelsiusToFahrenheitResponse">
<part name="return" type="xs:double" />
</message>
<message name="PurposeRequest" />
- <message name="PurposeResponse">
<part name="return" type="xs:string" />
</message>
- <portType name="ITempConverter">
- <operation name="FahrenheitToCelsius">
<input message="FahrenheitToCelsiusRequest" />
<output message="FahrenheitToCelsiusResponse" />
</operation>
- <operation name="CelsiusToFahrenheit">
<input message="CelsiusToFahrenheitRequest" />
<output message="CelsiusToFahrenheitResponse" />
</operation>
- <operation name="Purpose">
<input message="PurposeRequest" />
<output message="PurposeResponse" />
</operation>
</portType>
- <binding name="ITempConverterbinding" type="ITempConverter">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"
- <operation name="FahrenheitToCelsius">
<soap:operation soapAction="urn:TempConverterIntf-
wITempConverter#FahrenheitToCelsius" />
- <input>
<soap:body use="encoded" encodingStyle="http:
=/ /schemas.xmlsoap.org/soap/encoding/"
namespace="urn:TempConverterIntf-ITempConverter" />
</input>
- <output>
<soap:body use="encoded" encodingStyle=
= "http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:TempConverterIntf-ITempConverter" />
</output>
</operation>
- <operation name="CelsiusToFahrenheit">
<soap:operation soapAction="urn:TempConverterIntf-
= ITempConverter#CelsiusToFahrenheit" />
- <input>

/>

BizSnap Development: Writing SOAP-Based Web Services

CHAPTER 20

LisTiING 20.3 Continued

991

<soap:body use="encoded" encodingStyle="http:
=/ /schemas.xmlsoap.org/soap/encoding/"
namespace="urn:TempConverterIntf-ITempConverter" />
</input>
- <output>
<soap:body use="encoded" encodingStyle=
= "http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:TempConverterIntf-ITempConverter" />
</output>
</operation>
- <operation name="Purpose">
<soap:operation soapAction="urn:TempConverterIntf-ITempConverter#Purpose" />
- <input>
<soap:body use="encoded" encodingStyle=
= "http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:TempConverterIntf-ITempConverter" />
</input>
- <output>
<soap:body use="encoded" encodingStyle=
= "http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:TempConverterIntf-ITempConverter" />
</output>
</operation>
</binding>
- <service name="ITempConverterservice">
- <port name="ITempConverterPort" binding="ITempConverterbinding">
<soap:address location="http://127.0.0.1/cgi-bin/TempConvWS.exe
= /soap/ITempConverter" />
</port>
</service>
</definitions>

Now we’ll show you how simple it is to invoke a Web Service.

Invoking a Web Service from a Client

To invoke the Web Service, you must know the URL used to retrieve the WSDL document.
This is the same URL we used earlier.

To demonstrate this, we used a simple application with single, main form (see Figure 20.3).

This application is straightforward: The user enters a temperature in the edit control, presses
the desired conversion button, and the converted value is displayed in the Temperature label.
The source for this application is shown in Listing 20.4.

N
o

SADINY3S

a3\ a3svy
-dVOS SDNILIMAA

Enterprise Development
PART V

992

Fahrenheit to Celsius

FiGUuRe 20.3
The Main Form to the Web Service Client Application.

LisTING 20.4 Web Service Client

unit MainFrm;
interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Rio, SoapHTTPClient;

type

TMainForm = class(TForm)
btnFah2Cel: TButton;
btnCel2Fah: TButton;
edtArguement: TEdit;
1blTemperature: TLabel;
1blResultValue: TLabel;
1blResult: TLabel;
HTTPRIO1: THTTPRIO;

private
{ Private declarations }
public
{ Public declarations }
end;
var

MainForm: TMainForm;
implementation
uses TempConvImport;
{$R *.dfm}

end.

BizSnap Development: Writing SOAP-Based Web Services
CHAPTER 20

On the main form, we’ve placed a THTTPRIO component. A THTTPRIO represents a remotely
invokable object, and acts as a local proxy for a Web service that very likely resides on a
remote machine somewhere. The two TButton event handlers perform the code to invoke the
remove object from our Web Service. Note that we must cast the THTTPRIO component as
ITempConverter to refer to it. Then, we are able to invoke its method call.

Before any of this code will run, we must prepare the THTTPRIO component, which requires a
few steps.

Generating an Import Unit for the Remote Invokable
Object

Before we are able to use the THTTPRIO component, we need to create an import unit for our
invokable object. Fortunately, Borland made this easy by providing a wizard to handle this.
This wizard is available on the WebServices page of the Object Repository. When launched,
you’ll see the dialog box shown in Figure 20.4.

'Web Services Import x|
Import | Advanced |

WSDL or XML Schema Location (Filename or URL)

| Bigwse...

Generate I Cancel Help

FIGURE 20.4
The Web Services Import Wizard.

In order to import a Web service into a client application, you put the WSDL path (the URL
specified earlier) in the Schema Location and then press the Generate button to create the
import unit. The import unit for our Web Service is shown in Listing 20.5 and looks almost
exactly like our original interface definition unit.

LisTING 20.5 Web Service Import Unit

Unit TempConvImport;
interface

uses Types, XSBuiltIns;

993

N
o

SADINY3S

a3\ a3svy
-dVOS SDNILIMAA

994

Enterprise Development
PART V

LisTiING 20.5 Continued

type

ITempConverter = interface(IInvokable)
['{684379FC-7D4B-4037-8784-B58C63A0280D} ']
function FahrenheitToCelsius(const AFValue: Double): Double; stdcall;
function CelsiusToFahrenheit(const ACValue: Double): Double; stdcall;
function Purpose: WideString; stdcall;

end;

implementation

uses InvokeRegistry;

initialization
InvRegistry.RegisterInterface(TypeInfo(ITempConverter),

= ‘urn:TempConverterIntf-ITempConverter', '');

end.

Once it has been generated, return to the main form of the client application and use the newly-
generated import unit. This will make the main form aware of the new interface.

Using the THTTPRIO Component

Three properties must be set for the THTTPRIO component. The first, WSDLLocation, needs

to contain, once again, the path to the WSDL document. Once set, you can drop down the
Service property to select the only available option. Then, do the same for the Port property.
At this point, you will be able to run the client.

Putting the Web Service to Work

Now that all the pieces are in place, create an event handler for the button’s OnClick event by
double-clicking on it. The event should look like Listing 20.6.

LisTING 20.6 o0nClick Event Handler

procedure TMainForm.btnFah2CelClick(Sender: TObject);
var
TempConverter: ITempConverter;
FloatVal: Double;
begin
TempConverter := HTTPRIO1 as ITempConverter;
FloatVal := TempConverter.FahrenheitToCelsius(StrToFloat(edtArguement.Text));

BizSnap Development: Writing SOAP-Based Web Services

CHAPTER 20

LisTING 20.6 Continued

1blResultValue.Caption := FloatToStr(FloatVal);
end;

procedure TMainForm.btnCel2FahClick(Sender: TObject);
var
TempConverter: ITempConverter;
FloatVal: Double;
begin
TempConverter := HTTPRIO1 as ITempConverter;
FloatVal := TempConverter.CelsiusToFahrenheit(StrToFloat(edtArguement.Text));
1blResultValue.Caption := FloatToStr(FloatVval);
end;

While entering this code, notice that Delphi’s Codelnsight is available for the Web service
itself. This is because Delphi has adapted the Web service into your application as a native
object. The implications here are very broad-ranging: any Web service brought into a Delphi
application, regardless of whether that service is deployed on Solaris, Windows, Linux, a main-
frame, and independent of what language the service is written in, will benefit from this. In
addition to Codelnsight, an application written to use a Web service will also gain compiler
typechecking and other debugging features because of this tight integration.

Summary

Web Services are a powerful new tool in distributed computing, using open standards and
existing infrastructure to enable interoperation within and between different platforms.

In this chapter, we showed you how to create a simple Web Service and the Client to use this
service. We demonstrated the steps required to deploy this server and to set up the client’s
THTTPRIO component properly. At this point, you should be familiar enough with developing
Web Services in greater complexity. You can examine many more examples of Web Services
on Borland’s community site. One that we highly recommend is “Managing Sessions with
Delphi 6 Web Services.” This article was written by Daniel Polistchuck (Article ID: 27575)
and can be read at http://community.borland.com/article/0,1410,27575,00.html.

995

N
o

SIDINYIS
a3\ a3svy
-dVOS SDNILIMAA

