
CHAPTER

19
CORBA Development
by David Sampson

IN THIS CHAPTER
• CORBA Features 938

• CORBA Architecture 939

• Interface Definition Language 942

• The Bank Example 946

• Complex Data Types 958

• Delphi, CORBA, and EJBs 965

• CORBA and Web Services 975

25 chpt_19.qxd 11/19/01 12:08 PM Page 937

CORBA stands for Common Object Request Broker Architecture. Its purpose is to facilitate
distributed object computing. Unlike a proprietary approach such as DCOM, CORBA is an
open standard that isn’t under the control of any single company. An organization called the
Object Management Group (OMG), which is made up of more than 800 industry representa-
tives, controls the CORBA specification. The OMG meets periodically to issue updates or
amendments to the standard and to resolve any outstanding issues.

The OMG specifies what CORBA will do and to a certain degree, how it will do it. Beyond
that, each CORBA vendor is free to come up with its own implementation and method of com-
plying with the CORBA specification. This freedom has a price. For example, the OMG does-
n’t specify how different CORBA implementations locate objects when using two different
ORBs (Object Request Brokers). So in the past, it has been a struggle to get applications to
bootstrap together when they were written with different vendor’s products. This is one area
that has received a lot of attention and is continuing to improve as the CORBA specification
evolves.

More information on the OMG is available at its Web site (www.omg.org). You’ll find a wealth
of information about CORBA, including the latest specifications, tutorials, Web links to ven-
dors, and so on.

One thing you’ll discover is that many free CORBA implementations are available on the inter-
net. This chapter deals with the Borland CORBA implementation bundled with Delphi 6
Enterprise edition. The CORBA product is called VisiBroker, and is arguably the most widely
used ORB in the world. Delphi 6 contains all the runtime library files needed to use CORBA.
In addition, wizards are integrated into the IDE that make application development relatively
straightforward.

CORBA Features
CORBA has several features that make it beneficial for use in distributed enterprise environments:

• CORBA is an object-oriented approach. Each CORBA server publishes an interface that
lists the methods and data types it supports. The implementation details are hidden from
the caller.

• Location Transparency. The real power in CORBA is that objects can be located any-
where. When a CORBA client application calls a server object, it doesn’t know where
the server resides. In fact, CORBA presents the client application with an image of the
server application. The client then operates as if the server object is running locally in its
own process space. This will be discussed in more detail in the CORBA Architecture
section.

Enterprise Development

PART V
938

25 chpt_19.qxd 11/19/01 12:08 PM Page 938

• Programming Language Independence. A major benefit is that objects can be written in a
variety of different languages. Java and C++ are the leaders, but Delphi is gaining much
wider acceptance because of all the features available in the product. To make sure that
these languages can interoperate, CORBA objects interact with each other through their
published interfaces. Each server object must comply with its interface definition.
Because of the differences in programming languages, clients cannot know about or com-
pensate for any of the implementation details on the server side. Strict object-oriented
design is enforced in the CORBA world.

• Multi Platform/Multi Operating Systems. CORBA implementations exist for different
platforms and operating systems. It isn’t unusual for a deployment to use Java on the
back-end mainframe computer and Delphi on the middle tier or client side. Developers
can write powerful applications that tap into legacy systems and present information to
end users with feature-rich clients built in Delphi.

CORBA Architecture
Figure 19.1 shows a block diagram of the CORBA architecture. The common piece to both the
client and the server is the ORB. The ORB handles all communications between objects. It
does this using the Internet Inter-ORB Protocol (IIOP) that is layered on TCP/IP. This guaran-
tees reliable end-to-end message delivery and usage anywhere TCP/IP is deployed. In addition
to handling all message traffic, the ORB also corrects for platform variations.

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
939

Client

Stub

ORB

Server

Skeleton

BOA

ORB

Impl

FIGURE 19.1
The CORBA Architecture.

For example, if the number 123 is originated on an Intel based machine and is sent to a Sun
workstation, the number won’t be processed correctly without some sort of intervention. This
is because the two processors use different layouts for their registers.

25 chpt_19.qxd 11/19/01 12:08 PM Page 939

This is referred to as the Big-Endian/Little-Endian problem. Because the ORB knows what
platform it is running on, it will set a flag in the CORBA message to indicate whether it origi-
nated on a big-endian or little-endian machine. The receiving side will read this flag and auto-
matically process the data correctly. This ensures that the number 123 is processed correctly on
both ends.

Enterprise Development

PART V
940

According to Rhu, Herron, and Klinker in IIOP Complete (Addison Wesley), p.65, “The
terms little endian and big endian are an analogy drawn by Cohen from Gulliver’s
Travels, in which the islands of Lilliput and Blefescua feuded over which end of an
egg to crack, the little end or the big end.”

NOTE

The client side consists of two additional layers. The client block is the application that is writ-
ten by the developer. The more interesting piece is the stub. The stub is a file that is automati-
cally generated by a tool that is included in the Delphi Enterprise edition. This tool is called
the IDL2Pas compiler. Its purpose is to take files that describe the server interfaces and gener-
ate Delphi Pascal that can interact with the CORBA ORB. The IDL2Pas compiler is docu-
mented in a set of HTML files on the Delphi 6 CD-ROM (Delphi6\Doc\Corba).

The stub file contains one or more classes that “mirror” the CORBA server. The classes con-
tain the same published interfaces and data types that are exposed by the server. The client
calls the stub classes in order to communicate with the server. The stub classes act as a proxy
for the server objects. The symbol in the stub block represents a connection to the server. The
connection is established through a bind call that is issued by the client. The stub is said to
have an object reference to the server (represented by the symbol). Once the connection is
made to the server, the client invokes a method call on the stub class. The stub packs the
request and any required method arguments into a buffer for transmission to the server. This is
referred to as marshaling the data. The stub invokes the call through its server object reference
via the ORB. When the server responds, the stub class receives the message from the ORB and
hands the response back to the client.

The client can also call some utility type functions directly in the ORB. The block diagram
shows this logical connection.

The server side contains an ORB interface called the Basic Object Adaptor (BOA). The BOA is
responsible for routing messages from the ORB to the skeleton interface (described next). In
the future, Delphi will also provide a Portable Object Adaptor (POA), which will offer more
flexibility and customization of the server interface.

25 chpt_19.qxd 11/19/01 12:08 PM Page 940

The skeleton is a class that is generated by the IDL2Pas compiler, just like the stub. The skele-
ton contains one or more classes that publish the server side CORBA interfaces. In the Delphi
CORBA implementation, the skeleton doesn’t contain any implementation details of the server-
side interfaces. Instead, there is another file (also generated by IDL2Pas) that contains the
classes which represent the functional details of the server. This is referred to as the IMPL file
(short for Implementation).

The classes in the Impl file aren’t tied to CORBA. The same implementation classes can be
used to provide interfaces for CORBA, COM, or anything else.

When a message arrives on the server side, the ORB passes a message buffer to the BOA,
which in turn, passes the buffer to the skeleton class. The skeleton un-marshals the data from
the buffer and determines which method should be called in the IMPL file. After the IMPL file
class method is called, the skeleton takes any return results and parameter values and marshals
them into a buffer for transmission back to the client. The response buffer is handed back to
the BOA and ORB, and is sent back to the client-side ORB.

OSAgent
CORBA objects need a way of locating one another. The OMG provides a solution for this
with the Naming Service that is described in the CORBA specification. The Naming Service is
a program that runs somewhere on the network. Server-side objects register with the Naming
Service so that client applications have a method of locating specific objects. The Naming
Service requires additional code on both the client and server sides. The location of the
Naming Service process has to be known in advance before a client application can request a
connection to a server object.

This is a fairly complicated way of letting clients and servers connect. VisiBroker has a utility
that makes object location much easier than using the Naming Service. This program is called
OSAgent. It isn’t part of the CORBA specification. OSAgent is a proprietary utility that is only
available with the Borland ORB. As long as the VisiBroker ORB is used within a CORBA
implementation, the OSAgent is the preferred method of locating and binding to objects.

Before running CORBA applications created with VisiBroker, start OSAgent. When the server
application starts, it will register itself with the agent. The client application will connect to the
server by first contacting the OSAgent, requesting the address of the server, and then connect-
ing directly to the server process.

Interfaces
All CORBA objects are described by their interfaces. This is pure object-oriented design. A
server application will publish specific type declarations, interfaces, and methods that any

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
941

25 chpt_19.qxd 11/19/01 12:08 PM Page 941

client might call. Once these interfaces are published, they are immutable. That is, they should
never change. To add additional features to an object, the best approach is to derive a new
server from the old one and enhance the new object. That way, a new interface can be pub-
lished without creating backward compatibility problems for deployed applications.

To describe interfaces, the OMG has published an Interface Definition Language (IDL). IDL is
programming language independent, but looks like C or Java. Each ORB vendor supplies an
IDL compiler to translate IDL files into code for a specific language. The term IDL compiler is
a misnomer. It doesn’t actually compile the IDL file into an executable file. It is more of a
code generator because the output is a set of source code files in the target language.

The OMG has specified language mappings for some languages like C++ and Java. A C++
ORB will have an IDL2CPP compiler. Java ORBs have an IDL2Java compiler.

The files generated by the IDL2 whatever compilers are the stub and skeleton class files that
were discussed in the CORBA Architecture section. Delphi contains an IDL2Pas compiler that
can be executed from the command line or launched through the IDE CORBA wizards.

Interface Definition Language (IDL)
IDL is an extensive subject. The Delphi 6 Enterprise CD-ROM contains a PDF document
(Delphi6\Doc\CORBA) that describes the Object Pascal mapping for IDL. This document con-
tains all the details about each data type, modules, inheritance, and user-defined types. This
section highlights some of the notable aspects of IDL; however, to gain more insight into the
details, refer to the mapping document.

There are a few rules that an IDL file must follow. The first is that an IDL file must have .idl
as the file extension. This can be upper- or lowercase. Other file extensions won’t be accepted.

The contents of an IDL file are relatively free flowing but do follow a certain structure. The
interface descriptions are case sensitive. In C++ and Java, two interfaces named Foo and foo
are considered different. However, in Delphi, they will create a problem because it will appear
that the same interface has been created twice.

Comments in an IDL file are the same as C and C++. These are valid comments:

// This is a single line comment.
/* This is an example of a block comment

that can be spread
over several lines */

All IDL keywords must be written in lowercase, or the IDL2Pas compiler will reject them.
Avoid using Delphi keywords if possible. The Delphi mapping specification states that all
Delphi keywords will be prepended with the underscore (_) character. It is a good practice to
avoid the use of Delphi reserved words.

Enterprise Development

PART V
942

25 chpt_19.qxd 11/19/01 12:08 PM Page 942

An IDL file can include another IDL file with the #include pragma statement. This facilitates
organizing large IDL files into smaller groups.

Basic Types
IDL has a number of basic types that can be used in interface descriptions. Table 19.1 shows a
list of the basic types and shows how they are mapped to Object Pascal.

TABLE 19.1 Basic IDL Types

IDL Type Pascal Type

boolean Boolean

Char Char

wchar Wchar

octet Byte

string AnsiString

wstring WideString

short SmallInt

unsigned short Word

long Integer

unsigned long Cardinal

long long Int64

unsigned long long Int64

float Single

double Double

long double Extended

fixed not implemented—no corresponding type

IDL doesn’t have a type called int. Instead, the short, long, unsigned short, and unsigned long
are used to specify the integer type. Characters correspond to the ISO Latin-1 type, which is
equivalent to the ASCII table. The only exception is the NUL character (#0). C and C++ pro-
grammers asked the OMG to make that an illegal character because it represents the termina-
tion character in a string in those languages.

The implementation of Booleans is vendor specific. The Boolean mapping corresponds to a
Boolean type in Delphi. The Any type is mapped to a Variant in Delphi.

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
943

25 chpt_19.qxd 11/19/01 12:08 PM Page 943

User-Defined Types
You can define your own types in IDL. The syntax is similar to the way data structures are
specified in C. Common user-defined types include aliases, enumerations, structures, arrays,
and sequences.

Aliases
Aliases are used to give data types more meaningful names. For example, a year type can be
created like this:

typedef short YearType;

Enumerations
IDL enumerations are mapped to an enumeration type in Delphi. An enumeration of some
color values would look like this:

enum Color(red, white, blue, green, black);

Structures
Structures are similar to records in Pascal. Here’s an example of a structure that represents a
time value:

struct TimeOfDay {
short hour;
short minute;
short seconds;

};

Arrays
Arrays can be single or multi dimensional. Specify an array with a typedef. Here are some
examples:

typedef Color ColorArray[4]; // single dimensional array of the Color enum
typedef string StringArray[10][20]; //10 strings of max length 20

Sequences
Sequences are used heavily in IDL. They map to a variable length array in Delphi. Sequences
can be bounded or unbounded.

typedef sequence<Color> Colors;
typedef sequence<long, 1000> NumSeq;

Enterprise Development

PART V
944

25 chpt_19.qxd 11/19/01 12:08 PM Page 944

The first argument in the sequence specification is the base type of the variable array. The sec-
ond argument is optional and specifies the length in a bounded sequence.

The most common use of sequences in CORBA programming is to pass database records
between servers and clients. When the client application receives a sequence, it has to loop
through it to extract all the fields in a record. Then it populates the user interface database con-
trols with the information. MIDAS and CORBA can be used together to provide a friendlier
approach.

Method Arguments
All arguments that are specified in a method have to be declared with one of three attributes.
These attributes are in, out, or inout.

A parameter declared as an in type has its values set by the client. This is mapped as a const
parameter in Delphi.

An out parameter has its value set by the server. It is mapped as a var parameter.

An inout parameter has its initial value set by the client. The server receives the data and
changes it before returning the variable to the client. An inout parameter is mapped as a var’
parameter in Delphi.

Modules
The keyword module is used to group interfaces and types. The module name will be used by
IDL2Pas to name the Delphi unit. Interfaces and types defined within a module are local in
scope. A module named Foo that contained an interface named Bar would be referenced out-
side the module with the module name and the interface name like this: Foo::Bar.

IDL doesn’t support the idea of private or protected types and methods. All interfaces and
methods are considered public. This makes sense when you consider that the IDL file repre-
sents the interfaces that the server exposes to the world. It wouldn’t make sense to hide or pro-
tect something in this context.

One of the best ways to learn how to write IDL is to look at examples other people have writ-
ten. The VisiBroker directory (c:\Inprise, by default) has a subdirectory called IDL that con-
tains the IDL files for the various CORBA interfaces such as the ORB and the various services.
These files are a good starting point and are full of examples of type declarations and interface
definitions. These files contain examples of nested modules and references to outer scoped
types.

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
945

25 chpt_19.qxd 11/19/01 12:08 PM Page 945

With this basic understanding of IDL, several CORBA examples can be developed to demon-
strate the power of distributed object computing. The remainder of the chapter covers the
development of several CORBA servers and clients.

The Bank Example
CORBA has a traditional example that is the equivalent of “Hello, world” in C. It’s known as
the Bank Example and consists of a simple method call that returns a bank balance. We’re
going to add some additional capabilities such as a deposit and withdraw method. It would
also be a good idea to prohibit overdrafts on the account, so an exception will be used to block
drawing out more than the account contents. The IDL for this example is in Listing 19.1.

LISTING 19.1 Bank.idl

module Bank {
exception WithdrawError {

float current_balance;
};

interface Account {
void deposit(in float amount);
void withdraw(in float amount) raises (WithdrawError);
float balance();

};
};

The exception is declared with one data member. If the client attempts to withdraw more
money than the account contains, the exception will be raised with the current account balance
stored in the data member. Client applications can trap the exception and display a message to
the user. In this case, a warning will be displayed along with the current balance.

The deposit and withdraw methods are equivalent to procedures, so they have a return type of
void. Each takes one argument: the amount to add to or subtract from the account. The amount
is a floating point number that will be mapped to a single in Delphi. Notice that the arguments
for deposit and withdraw are declared as in parameters because the methods are passing the
value from the client to the server. The balance method is a function that returns a floating
point value that contains the current balance of the account.

The Delphi 6 IDE contains a set of wizards that make creating CORBA clients and servers
pretty easy. We’ll start by creating the server side of our application. To bring up the wizard,
go to File, New, Other and select the CORBA tab in the dialog box. Then double-click on the
CORBA server icon. The main wizard screen will appear as shown in Figure 19.2.

Enterprise Development

PART V
946

25 chpt_19.qxd 11/19/01 12:08 PM Page 946

FIGURE 19.2
The CORBA Wizard in Delphi 6.

This window contains a list of all the IDL files that will be processed to generate the applica-
tion. Initially, it is empty. To add one or more files, click the Add’ button. This brings up a
standard file open dialog. Change to the directory where the Bank.idl file is located, select
that file, and then click OK. The Bank.idl file will be added to the list of files that will be
processed by the IDL2Pas compiler. Because this is the only IDL file in the application, click
on Generate to create the server application.

The IDL2Pas compiler will process the IDL file, and the wizard will create an application with
the generated files. For server applications, four files are generated:

• Bank_I.pas—This file contains all the interfaces and type definitions.

• Bank_C.pas—This contains any user-defined types, exceptions, and client stub classes.
In addition, all user-defined types and stub classes will have a helper class. The helper
class assists in reading and writing data to the CORBA buffers.

• Bank_S.pas—This has the server-side skeleton class definitions.

• Bank_Impl.pas—This has a general class definition for an implementation on the server
side. You can add code to the methods to perform the actions you want the server to
complete. You don’t have to use this file, but it’s a handy starting point.

From this list of files, you can see that the client-side stub shown in the CORBA architecture is
in the Bank_C.pas file, whereas the server-side skeleton is in Bank_S.pas. A sample imple-
mentation for the server side is stored in the Bank_Impl.pas file.

Listing 19.2 shows the interface definitions for the application. There is only one interface
named Account, and it contains the three methods that were declared in the IDL file.

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
947

25 chpt_19.qxd 11/19/01 12:08 PM Page 947

LISTING 19.2 Bank_I.pas

unit Bank_i;
interface

uses
CORBA;

type
Account = interface;

Account = interface
[‘{99FCA96D-77B2-4A99-7677-E1E0C32F8C67}’]
procedure deposit (const amount : Single);
procedure withdraw (const amount : Single);
function balance : Single;

end;

implementation

initialization

end.

Listing 19.3 shows the source for the Bank_C.pas file. This file contains the declaration of the
Overdrawn exception. It is derived from a class called UserException that is also defined in
that file.

LISTING 19.3 The Bank_C.pas File

unit Bank_c;

interface

uses
CORBA, Bank_i;

type
EWithdrawError = class;
TAccountHelper = class;
TAccountStub = class;

EWithdrawError = class(UserException)
private
Fcurrent_balance : Single;

Enterprise Development

PART V
948

25 chpt_19.qxd 11/19/01 12:08 PM Page 948

LISTING 19.3 Continued

protected
function _get_current_balance : Single; virtual;

public
property current_balance : Single read _get_current_balance;
constructor Create; overload;
constructor Create(const current_balance : Single); overload;
procedure Copy(const _Input : InputStream); override;
procedure WriteExceptionInfo(var _Output : OutputStream); override;

end;

TAccountHelper = class
class procedure Insert (var _A: CORBA.Any; const _Value : Bank_i.Account);
class function Extract(var _A: CORBA.Any) : Bank_i.Account;
class function TypeCode : CORBA.TypeCode;
class function RepositoryId : string;
class function Read (const _Input : CORBA.InputStream) : Bank_i.Account;
class procedure Write(const _Output : CORBA.OutputStream;

➥ const _Value : Bank_i.Account);
class function Narrow(const _Obj : CORBA.CORBAObject; _

➥ IsA : Boolean = False) : Bank_i.Account;
class function Bind(const _InstanceName : string = ‘’; _

➥ HostName : string = ‘’) : Bank_i.Account; overload;
class function Bind(_Options : BindOptions;

➥ const _InstanceName : string = ‘’; _HostName: string = ‘’) :
➥ Bank_i.Account; overload;
end;

TAccountStub = class(CORBA.TCORBAObject, Bank_i.Account)
public
procedure deposit (const amount : Single); virtual;
procedure withdraw (const amount : Single); virtual;
function balance : Single; virtual;

end;

implementation

var

WithdrawErrorDesc : PExceptionDescription;

function EWithdrawError._get_current_balance : Single;
begin
Result := Fcurrent_balance;

end;

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
949

25 chpt_19.qxd 11/19/01 12:08 PM Page 949

LISTING 19.3 Continued

constructor EWithdrawError.Create;
begin
inherited Create;

end;

constructor EWithdrawError.Create(const current_balance : Single);
begin
inherited Create;
Fcurrent_balance := current_balance;

end;

procedure EWithdrawError.Copy(const _Input: InputStream);
begin
_Input.ReadFloat(Fcurrent_balance);

end;

procedure EWithdrawError.WriteExceptionInfo(var _Output : OutputStream);
begin
_Output.WriteString(‘IDL:Bank/WithdrawError:1.0’);
_Output.WriteFloat(Fcurrent_balance);

end;

function WithdrawError_Factory: PExceptionProxy; cdecl;
begin
with Bank_c.EWithdrawError.Create() do Result := Proxy;

end;

class procedure TAccountHelper.Insert(var _A : CORBA.Any;
➥ const _Value : Bank_i.Account);
begin
_A := Orb.MakeObjectRef(TAccountHelper.TypeCode, _

➥ Value as CORBA.CORBAObject);
end;

class function TAccountHelper.Extract(var _A : CORBA.Any): Bank_i.Account;
var
_obj : Corba.CorbaObject;

begin
_obj := Orb.GetObjectRef(_A);
Result := TAccountHelper.Narrow(_obj, True);

end;

class function TAccountHelper.TypeCode : CORBA.TypeCode;

Enterprise Development

PART V
950

25 chpt_19.qxd 11/19/01 12:08 PM Page 950

LISTING 19.3 Continued

begin
Result := ORB.CreateInterfaceTC(RepositoryId, ‘Account’);

end;

class function TAccountHelper.RepositoryId : string;
begin
Result := ‘IDL:Bank/Account:1.0’;

end;

class function TAccountHelper.Read(const _Input : CORBA.InputStream)
➥ : Bank_i.Account;
var
_Obj : CORBA.CORBAObject;

begin
_Input.ReadObject(_Obj);
Result := Narrow(_Obj, True)

end;

class procedure TAccountHelper.Write(const _Output : CORBA.OutputStream;
➥ const _Value : Bank_i.Account);
begin
_Output.WriteObject(_Value as CORBA.CORBAObject);

end;

class function TAccountHelper.Narrow(const _Obj : CORBA.CORBAObject; _
➥ IsA : Boolean) : Bank_i.Account;
begin
Result := nil;
if (_Obj = nil) or (_Obj.QueryInterface(Bank_i.Account, Result) = 0) then
exit;

if _IsA and _Obj._IsA(RepositoryId) then
Result := TAccountStub.Create(_Obj);

end;

class function TAccountHelper.Bind(const _InstanceName : string = ‘’; _
➥ HostName: string = ‘’) : Bank_i.Account;
begin
Result := Narrow(ORB.bind(RepositoryId, _InstanceName, _HostName), True);

end;

class function TAccountHelper.Bind(_Options : BindOptions;
➥ const_InstanceName : string = ‘’; HostName : string = ‘’) :
➥ Bank_i.Account;

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
951

25 chpt_19.qxd 11/19/01 12:08 PM Page 951

LISTING 19.3 Continued

begin
Result := Narrow(ORB.bind(RepositoryId, _Options, _InstanceName, _

➥ HostName), True);
end;

procedure TAccountStub.deposit (const amount : Single);
var
_Output: CORBA.OutputStream;
_Input : CORBA.InputStream;

begin
inherited _CreateRequest(‘deposit’,True, _Output);
_Output.WriteFloat(amount);
inherited _Invoke(_Output, _Input);

end;

procedure TAccountStub.withdraw (const amount : Single);
var
_Output: CORBA.OutputStream;
_Input : CORBA.InputStream;

begin
inherited _CreateRequest(‘withdraw’,True, _Output);
_Output.WriteFloat(amount);
inherited _Invoke(_Output, _Input);

end;

function TAccountStub.balance : Single;
var
_Output: CORBA.OutputStream;
_Input : CORBA.InputStream;

begin
inherited _CreateRequest(‘balance’,True, _Output);
inherited _Invoke(_Output, _Input);
_Input.ReadFloat(Result);

end;

initialization

Bank_c.WithdrawErrorDesc := RegisterUserException(‘WithdrawError’,
➥ ‘IDL:Bank/WithdrawError:1.0’, @Bank_c.WithdrawError_Factory);

finalization

UnRegisterUserException(Bank_c.WithdrawErrorDesc);

end.

Enterprise Development

PART V
952

25 chpt_19.qxd 11/19/01 12:08 PM Page 952

Listing 19.4 shows the definition for the Account implementation class. This class isn’t tied to
CORBA, so it can be reused for other applications or interfaces. The Account class contains
the methods that were declared in the Bank.idl file. Code has been added to the TAccount
methods to implement the full server.

LISTING 19.4 The Implementation Class for the Bank Server

unit Bank_impl;

interface

uses
SysUtils, CORBA, Bank_i, Bank_c;

type
TAccount = class;

unit Bank_impl;

interface

uses
SysUtils, CORBA, Bank_i, Bank_c;

type

TAccount = class(TInterfacedObject, Bank_i.Account)
protected
_balance : Single;

public
constructor Create;
procedure deposit (const amount : Single);
procedure withdraw (const amount : Single);
function balance : Single;

end;

implementation

constructor TAccount.Create;
begin
inherited;
_balance := random(10000);

end;

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
953

25 chpt_19.qxd 11/19/01 12:08 PM Page 953

LISTING 19.4 Continued

procedure TAccount.deposit(const amount : Single);
begin
if amount > 0 then
_balance := _balance + amount;

end;

procedure TAccount.withdraw(const amount : Single);
begin
if amount < _balance then
_balance := _balance - amount

else
raise EWithdrawError.Create(_balance);

end;

function TAccount.balance : Single;
begin
result := _balance;

end;

initialization
randomize;

end.

The TAccount object is derived from TInterfacedObject, so it will be reference counted auto-
matically. It implements the Account interface that was contained in the Bank_I.pas file. The
deposit method does a simple check to make sure that the user hasn’t passed a negative number
to the application. The withdraw method performs a check on the amount passed by the client.
If it is less than the balance, the exception is raised with the current account balance as the
exception argument. The client can process the exception to display information to the end
user. The balance method returns the current balance on the server.

Listing 19.5 shows the stub class that is used as the proxy object for the client application.
Like the server skeleton, it has the three methods defined in the Account interface in the IDL
file.

LISTING 19.5 Client-Side Stub Class

TAccountStub = class(CORBA.TCORBAObject, Bank_i.Account) public

public

public

Enterprise Development

PART V
954

25 chpt_19.qxd 11/19/01 12:08 PM Page 954

LISTING 19.5 Continued

procedure deposit (const amount : Single); virtual;
procedure withdraw (const amount : Single); virtual;
function balance : Single; virtual;

end;

Listing 19.6 shows the deposit() method in detail. Two CORBA buffer streams are declared
as local variables. The CreateRequest() method is a call into the ORB that asks for a valid
output buffer so that information can be written into it. The stub passes the name of the
method that will be called on the server side and specifies whether to wait for the server to
complete its task before continuing. This is referred to as a one-way call or a two-way call.

LISTING 19.6 The Stub Class Deposit Method

procedure TAccountStub.deposit(const amount : Single);
var
_Output: CORBA.OutputStream;
_Input : CORBA.InputStream;

begin
inherited _CreateRequest(‘deposit’, True, Output);
_Output.WriteFloat(amount);
inherited _Invoke(Output, Input);

end;

The next step is to write any data values that need to be passed to the server into the output
buffer. In this case, the amount to deposit is stored in the buffer. The final call is the Invoke
method. This is another call to the ORB that sends the request and output buffer to the server
side. After the server has finished processing, execution continues on the client side. In situa-
tions where the method call is a function (such as the balance method), the input buffer con-
tains the returned result. IDL2Pas would have generated the code to read the values from the
input buffer. However, in this case it was a call to a procedure, so no return value is present.

All of the stub code is generated automatically by IDL2Pas, so you should never have to edit it
yourself. However, it is helpful to understand what this generated code does.

The final part of the code for the application is in the client GUI. The client will contain three
push buttons, two edit controls, and one label control as shown in Figure 19.3. All CORBA
interface variables are declared as interface types. In this case, the Account interface is declared
as type Account. This establishes a variable from the type defined in the Bank_i.pas file that
has the three methods defined in the Bank.idl file. The other benefit to having interface type
variables is the automatic reference counting that takes place behind the scenes. All the
CORBA objects should be reference counted. The IDL2Pas compiler automatically generates
the code to facilitate this.

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
955

25 chpt_19.qxd 11/19/01 12:08 PM Page 955

FIGURE 19.3
The CORBA Client Application.

The most interesting part of the code is the Withdraw OnClick event. Listing 19.7 contains the
client-side source. The call to the Withdraw() method checks to make sure that the client isn’t
attempting to take more than the account holds. If this is the case, an exception is raised. Notice
that raising an exception in CORBA is identical to raising an exception in Delphi. The Delphi
exception gets translated to a CORBA exception automatically.

LISTING 19.7 The Client Source

unit ClientMain;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
Corba, Bank_c, Bank_i, StdCtrls;

type
TForm1 = class(TForm)
btnDeposit: TButton;
btnWithdraw: TButton;
btnBalance: TButton;
Edit1: TEdit;
Edit2: TEdit;
Label1: TLabel;
procedure btnDepositClick(Sender: TObject);
procedure btnWithdrawClick(Sender: TObject);
procedure btnBalanceClick(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
{ private declarations }
protected
Acct : Account;
procedure InitCorba;

{ protected declarations }

Enterprise Development

PART V
956

25 chpt_19.qxd 11/19/01 12:08 PM Page 956

LISTING 19.7 Continued

public
{ public declarations }
end;

var
Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.InitCorba;
begin
CorbaInitialize;
// Bind to the Corba server
Acct := TAccountHelper.bind;

end;

procedure TForm1.btnDepositClick(Sender: TObject);
begin
Acct.deposit(StrToFloat(Edit1.text));

end;

procedure TForm1.btnWithdrawClick(Sender: TObject);
begin
try
Acct.withdraw(StrToFloat(Edit2.Text));

except
on e: EWithdrawError do
ShowMessage(‘Withdraw Error. The balance = ‘ +
FormatFloat(‘$##,##0.00’, E.current_balance));

end;
end;

procedure TForm1.btnBalanceClick(Sender: TObject);
begin
label1.caption := FormatFloat(‘Balance = $##,##0.00’, acct.balance);

end;

procedure TForm1.FormCreate(Sender: TObject);
begin
InitCorba;
end;

end.

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
957

25 chpt_19.qxd 11/19/01 12:08 PM Page 957

After the client and server applications are compiled, OSAgent needs to be started. On a
Windows NT machine, the VisiBroker OSAgent can be installed as a service. On other operat-
ing systems, it has to be started manually. To start OSAgent manually on any MS Windows
platform, choose the Start, Run menu and type OSAgent –C. This starts OSAgent in console
mode. The agent will appear as an icon on the taskbar.

The server application is started next, followed by the client. The client GUI is shown in
Figure 19.3. It has three buttons, two edit boxes, and a label control to display the balance.
Click the Balance button to get the initial value from the server. Then add some money. Click
Balance again to refresh the value on the client side. (Balance can also be called as part of the
deposit and withdraw methods to automatically update the client.) After trying a few values,
try to withdraw more than the balance. You should see the exception message.

Complex Data Types
This next example won’t do much as a practical application. However, it illustrates how to use
some of the complex data types that are available in CORBA IDL. Listing 19.8 shows the IDL
for the Advanced Data Types (ADTs).

LISTING 19.8 ADT.idl

// ADT IDL file
//
// Demonstrates various data structures in IDL
//

// use an alias for string types

typedef string Identifier;

enum EnumType
{
first,
second,
third

};

struct StructType
{
short s;
long l;
Identifier i;

};

Enterprise Development

PART V
958

25 chpt_19.qxd 11/19/01 12:08 PM Page 958

LISTING 19.8 Continued

const unsigned long ArraySize = 3;

typedef StructType StructArray[ArraySize];

typedef sequence<StructType> StructSequence;

interface ADT
{

void Test1(in Identifier st, in EnumType myEnum, inout StructType myStruct);

void Test2(out StructType myStruct, in StructArray myStructArray,
➥ out StructSequence myStructSeq);

};

The first data type shows the use of an alias to remap the string type. All strings in this exam-
ple will be of type Identifier. The EnumType consists of three values: first, second, and
third.

The StructType is similar to a record in Pascal. This data structure consists of a short, a long,
and a string (mapped to the Identifier alias). The ArraySize is mapped as a constant.

The next two items in the IDL file declare types based on the previous definitions. The
StructArray is declared as an array of three elements maximum (zero based). A sequence is a
dynamic array. The last typedef declares a sequence of StructTypes.

Finally, the ADT interface is defined with two methods: Test1 and Test2. The arguments to
these methods are designed to show the different directions data can take. In parameters are
created and initialized on the client side. Out parameters are created and initialized on the
server side. InOut parameters are created and initialized on the client side, but typically are
modified on the server side and returned to the client with new values in the data members.

Listing 19.9 shows the ADT_I.pas interface file. Notice that the typedefs are defined in this
file. Also an interface is created for the StructType. All complex types are mapped to objects
in Object Pascal with the appropriate get and set methods and a Helper class to facilitate mar-
shaling the data in a CORBA buffer.

LISTING 19.9 The ADT_I.pas File

unit adt_i;

interface

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
959

25 chpt_19.qxd 11/19/01 12:08 PM Page 959

LISTING 19.9 Continued

uses
CORBA;

type

EnumType = (first, second, third);

const
{ (Do not edit the values assigned to these constants.) }

ArraySize : Cardinal = 3;

type
StructType = interface;
ADT = interface;

Identifier = AnsiString;

StructArray = array[0..2] of adt_i.StructType;

StructSequence = array of adt_i.StructType;

StructType = interface
[‘{B4A1845D-4DB0-9B2E-A2E3-001F2D6B8C81}’]
function _get_s : SmallInt;
procedure _set_s (const s : SmallInt);
function _get_l : Integer;
procedure _set_l (const l : Integer);
function _get_i : adt_i.Identifier;
procedure _set_i (const i : adt_i.Identifier);
property s : SmallInt read _get_s write _set_s;
property l : Integer read _get_l write _set_l;
property i : adt_i.Identifier read _get_i write _set_i;

end;

ADT = interface
[‘{203B9E07-735F-2980-CB02-353A7C6A5B68}’]
procedure Test1 (const st : adt_i.Identifier;

const myEnum : adt_i.EnumType;
var myStruct : adt_i.StructType);

procedure Test2 (out myStruct : adt_i.StructType;
const myStructArray : adt_i.StructArray;
out myStructSeq : adt_i.StructSequence);

end;

Enterprise Development

PART V
960

25 chpt_19.qxd 11/19/01 12:08 PM Page 960

LISTING 19.9 Continued

implementation

initialization

end.

Listing 19.10 shows the implementation of the server side. When you read the method parame-
ter lists in IDL, the direction is applicable to the server, or receiving side. So an out parameter
means that it is out relative to the server. An in parameter is in relative to the server, and so on.

All the out parameters on the server side need to have their data structures created and initial-
ized before the data can be passed back to the client. Any parameter defined as a const or var
parameter will have an existing data structure associated with it.

LISTING 19.10 The ADT Implementation File for the Server

unit adt_impl;

interface

uses
SysUtils, CORBA, adt_i, adt_c;

type
TADT = class;

TADT = class(TInterfacedObject, adt_i.ADT)
public
constructor Create;
procedure Test1 (const st : adt_i.Identifier;

const myEnum : adt_i.EnumType;
var myStruct : adt_i.StructType);

procedure Test2 (out myStruct : adt_i.StructType;
const myStructArray : adt_i.StructArray;
out myStructSeq : adt_i.StructSequence);

end;

implementation

uses ServerMain;

constructor TADT.Create;

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
961

25 chpt_19.qxd 11/19/01 12:08 PM Page 961

LISTING 19.10 Continued

begin
inherited;

end;

procedure TADT.Test1 (const st : adt_i.Identifier;
const myEnum : adt_i.EnumType;
var myStruct : adt_i.StructType);

begin
Form1.Memo1.Lines.Add(‘String from Client : ‘ + st);

case myEnum of
first : Form1.Memo1.Lines.Add(‘Enum value is “first”’);
second: Form1.Memo1.Lines.Add(‘Enum value is “second”’);
third: Form1.Memo1.Lines.Add(‘Enum value is “third”’);

end;

Form1.Memo1.Lines.Add(Format(‘myStruct.s = %d’, [myStruct.s]));
Form1.Memo1.Lines.Add(Format(‘myStruct.l = %d’, [myStruct.l]));
Form1.Memo1.Lines.Add(Format(‘myStruct.i = %s’, [myStruct.i]));

myStruct.s := 10;
myStruct.l := 1000;
myStruct.i := ‘This is the return string from the Server’;

end;

procedure TADT.Test2 (out myStruct : adt_i.StructType;
const myStructArray : adt_i.StructArray;
out myStructSeq : adt_i.StructSequence);

var
k : integer;
tempSeq : StructSequence;

begin
myStruct := TStructType.Create(20, 2000,

➥ ‘Hello from the server structType Test 2’);

for k := 0 to ArraySize - 1 do
With Form1.Memo1.Lines do
begin
Add(Format(‘myStructArray[%d].s = %d’, [k, myStructArray[k].s]));
Add(Format(‘myStructArray[%d].l = %d’, [k, myStructArray[k].l]));
Add(Format(‘myStructArray[%d].i = %s’, [k, myStructArray[k].i]));

end;

SetLength(tempSeq, 2);

Enterprise Development

PART V
962

25 chpt_19.qxd 11/19/01 12:08 PM Page 962

LISTING 19.10 Continued

for k := 0 to 1 do
tempSeq[k] := TStructType.Create(k + 100, k + 1000, Format(‘k = %d’, [k]));

myStructSeq := tempSeq;
end;

initialization

end.

The client application user interface has two buttons and a memo control. Each button is
mapped to one of the ADT test methods. The results of the calls are written to the memo con-
trol. Listing 19.11 shows the client file.

LISTING 19.11 The ADT Client Side

unit ClientMain;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
Corba, adt_c, adt_i, StdCtrls;

type
TForm1 = class(TForm)
Button1: TButton;
Button2: TButton;
Memo1: TMemo;
procedure FormCreate(Sender: TObject);
procedure Button1Click(Sender: TObject);
procedure Button2Click(Sender: TObject);

private
{ private declarations }
protected
myADT : ADT;
procedure InitCorba;

{ protected declarations }
public
{ public declarations }
end;

var
Form1: TForm1;

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
963

25 chpt_19.qxd 11/19/01 12:08 PM Page 963

LISTING 19.11 Continued

implementation

{$R *.DFM}

procedure TForm1.InitCorba;
begin
CorbaInitialize;
myADT := TADTHelper.bind;

end;

procedure TForm1.FormCreate(Sender: TObject);
begin
initCorba;

end;

procedure TForm1.Button1Click(Sender: TObject);
var
temp : StructType;

begin
temp := TStructType.Create(50, 500, ‘This is the client struct in Test 1’);
myADT.Test1(‘Hello from the Test1 Client’, first, temp);

with Memo1.Lines do
begin
Add(‘Response from server inout struc var:’);
Add(Format(‘myStruct.s = %d’, [temp.s]));
Add(Format(‘myStruct.l = %d’, [temp.l]));
Add(Format(‘myStruct.i = %s’, [temp.i]));

end;
end;

procedure TForm1.Button2Click(Sender: TObject);
var
I: Integer;
temp : StructType;
tempSeq : StructSequence;
tempArray : StructArray;

begin
temp := TStructType.Create(0,0,’test’);
SetLength(tempSeq, 2);

for I := 0 to ArraySize -1 do
tempArray[I] := TStructType.Create(200 + I, 2000 + I,

➥ Format(‘Stuct %d in Array’, [I]));

Enterprise Development

PART V
964

25 chpt_19.qxd 11/19/01 12:08 PM Page 964

LISTING 19.11 Continued

myADT.Test2(temp, tempArray, tempSeq);

with Memo1.Lines do
begin
Add(Format(‘struct.s = %d’, [temp.s]));
Add(Format(‘struct.l = %d’, [temp.l]));
Add(Format(‘struct.i = %s’, [temp.i]));

end;

for I := 0 to 1 do
with Memo1.Lines do
begin
Add(Format(‘tempSeq[%d].s = %d’, [I, tempSeq[I].s]));
Add(Format(‘tempSeq[%d].l = %d’, [I, tempSeq[I].l]));
Add(Format(‘tempSeq[%d].i = %s’, [I, tempSeq[I].i]));

end;
end;

end.

To run this example, compile the code and make sure that the OSAgent is running. When you
click on either of the test buttons on the data, structures are exchanged between the client and
server. The data that is received on each side is written to the respective memo control in the
application’s window.

Delphi, CORBA, and Enterprise Java Beans (EJBs)
This section shows you how to make a Delphi CORBA application connect to EJBs that
are deployed under the Borland Application Server. To construct and deploy the EJB for
this demo, you’ll need Borland JBuilder 5 and Borland Application Server 4.51. Both of
these products are available as a free trial download edition from the Borland Web site
(www.borland.com).

A Crash Course in EJBs for Delphi Programmers
Several years ago, Sun Microsystems came out with their J2EE platform. This was an enhance-
ment to the Java environment to add enterprise level distributed object computing. The specifi-
cation for J2EE is fairly complex, but from an application developer’s point of view, it can be
broken down into a few straightforward concepts.

One key piece of the J2EE platform is an Enterprise Java Bean (EJB). An EJB is (usually) a
small, portable and scaleable object that is designed to do a specific job. The idea is that many

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
965

25 chpt_19.qxd 11/19/01 12:08 PM Page 965

EJBs can be scattered around the enterprise to perform various functions. At some central
point, an application is deployed that will contact an EJB only when it needs the functionality
that EJB provides.

An EJB Is a Specialized Component
In terms of Delphi, think of an EJB as a component. One example of an EJB would be a com-
ponent that connects to a database and provides records to any application that requests them.
Another EJB might perform a calculation based on information supplied to it, such as calculat-
ing sales tax for a purchase.

EJBs Live Within a Container
In Delphi, components are put into a package and are installed into the IDE. The IDE manages
the components on the palette. The hooks are there to create the component when you drop
one on a form. If you delete the component from the form, it is destroyed within the IDE.

A similar approach is taken for EJBs only not through the Delphi IDE. The J2EE specification
describes an entity known as the EJB container. The container is the host for all EJBs. This is
a similar concept to the way the IDE manages components within Delphi. The container man-
ages the process of creating and destroying EJBs.

EJBs Have Predefined APIs
Borland AppServer has an EJB container embedded within itself. Just like the Delphi IDE and
its components, the EJB container and all EJBs must have a predefined set of APIs that let the
EJB live within the container. The EJB developer adds additional methods to the EJB to give it
specific functionality. However, the predefined APIs must be there for the EJB to be managed
correctly by the container.

In addition to creating and destroying the EJB, there are specific APIs for message routing and
callbacks to an EJB. The container also performs numerous other features described in the
specification, but those details are beyond the scope of this book.

The Home and Remote Interfaces
As part of the predefined API set, all EJBs must have two interfaces. One is called the Home
interface, and the other is the Remote interface. The Home interface is the initial method that an
application calls to get an instance of the EJB. The Home interface is a factory that creates
instances of the Remote interface and hands them back to the calling application.

The Remote interface has all the methods that the calling program wants to use. These are
equivalent to the interfaces declared in an IDL file. So the process is that a client application

Enterprise Development

PART V
966

25 chpt_19.qxd 11/19/01 12:08 PM Page 966

will call the EJB Home interface to get an instance of the Remote interface. Once it has the
Remote interface, the client can call any method published by that interface.

Types of EJBs
All EJBs can be divided into one of two groups:

• Session beans

• Entity beans

A session bean is (typically) a stateless EJB. Stateless means that between calls, the session
bean doesn’t store any information about the calling application. It is said to be nonpersistent.
It doesn’t keep track of where the client might be in a calling sequence, so it doesn’t have the
equivalent of a state machine. It is possible to have a stateful session bean, but the developer
has to write all the logic to implement that.

An entity bean generally wraps a database record. This type of bean is said to have state
because the information it processes (the database record) is stored between calls.

There is another key difference between a session and entity bean. When a client connects to a
session bean, one instance of the session bean is created specifically for the calling client. If
another client calls the session bean, another instance is created. So each client will get its own
instance of a session bean.

When a client calls an entity bean, one instance of the entity bean is created. If another client
calls the entity bean, it will share the same entity bean instance. Each entity bean is managed
by the container in a connection pool.

Configuring JBuilder 5 for EJB Development
The easiest way to create EJBs is with Borland’s JBuilder 5. To connect Delphi to an EJB, the
EJB needs to be deployed with Borland’s Application Server (version 4.51 or higher). Both
JBuilder 5 and Borland AppServer are available on the Borland Web site as trial edition down-
loads. Typically, AppServer should be installed, followed by JBuilder.

Before starting JBuilder, it is a good idea to set up a projects directory for all your JBuilder
applications. Typically, this will be something similar to c:\MyProjects.

When you start JBuilder 5 and try to create an EJB using the wizards built into the IDE, you
might see them grayed out. If this is the case, it is because JBuilder needs to be configured to
point to the AppServer. This is a configuration setting in a JBuilder dialog box.

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
967

25 chpt_19.qxd 11/19/01 12:08 PM Page 967

To configure JBuilder 5 for EJB support,

1. Start JBuilder 5, go to the Tools menu, and select Enterprise Setup. This opens a dialog
box to set the CORBA configuration.

2. On the CORBA tab, select VisiBroker. JBuilder ships with VisiBroker for Java.

3. Click on the Edit button. The Edit Configuration dialog box appears. Enter the path to
the ORB. This is where IDL2Java resides (typically, c:\Borland\AppServer\bin).

4. Select that Application server tab. This is used to tell JBuilder which Application Server
to use. Select BAS 4.5 and make sure that it is pointing to the AppServer directory (that
is, c:\Borland\AppServer).

5. Under Projects, Default Project Proprieties, select the Servers tab. Then make sure that
the Borland Application Server is selected. If not, click on the ellipse button and add it to
the configuration.

That should configure JBuilder for EJBs. Now we can create our first EJB.

Building a Simple “Hello, world” EJB
Borrowing from the C world, the EJB application we’ll build is one that returns the string
“Hello, world”. This example guides you through the process of making an EJB. More com-
plex EJBs can be developed by following the same process and adding more methods to the
Remote interface.

First start Borland AppServer, and then JBuilder. When you become more proficient in Java
and JBuilder, you can eventually develop and test your EJBs totally within the JBuilder envi-
ronment. In this section, we’ll develop the EJB and deploy it to the Borland AppServer. Then
we’ll make a Delphi client that will connect to the EJB. This is a more realistic scenario for
real-world development and deployment.

To build the “Hello, world” EJB,

1. Close down all projects within JBuilder. Then choose File, New Project. Give this project
the name “HelloWorld”. This will also be the name of the project file when JBuilder
saves it to disk.

2. Next we need to add an EJB Group. Choose File, New, Enterprise and select the Empty
EJB Group icon. When prompted for a name, give it HelloGroup. Notice that there is an
edit control that specifies the name of the jar file that this application will be built into. A
jar file is similar to a zip file. You archive all the Java byte code files into a jar file so that
you only have one file to deploy. In this case, rename the jar file to HelloWorld.jar.

3. Next add a new EJB by selecting File, New, Enterprise and select Enterprise Java Bean.
When prompted for a name, enter HelloBean. JBuilder 5 will automatically create the
bean and all the required interfaces.

Enterprise Development

PART V
968

25 chpt_19.qxd 11/19/01 12:08 PM Page 968

4. Select the HelloBean.java file in the project window and click on the Source tab. Make
sure that your source code resembles Listing 19.12.

LISTING 19.12 The JavaBean Source

package helloworld;
import java.rmi.*;
import javax.ejb.*;
import java.lang.String;
public class HelloBean implements SessionBean
{

private SessionContext sessionContext;
public void ejbCreate()
{
}
public void ejbRemove() throws RemoteException
{
}
public void ejbActivate() throws RemoteException
{
}
public void ejbPassivate() throws RemoteException
{
}
public void setSessionContext(SessionContext sessionContext) throws
RemoteException
{

this.sessionContext = sessionContext;
}
public String sayHello() {

return “Hello, world”;
}

}

5. You need to enter the last method in the code block (sayHello()). This method returns a
string, so it must include the java.lang.String package as shown near the top of the
file.

6. Now we need to expose the sayHello() method through the Remote interface. To do
that, select the Bean tab at the bottom of the code window. Then select the Methods tab
at the bottom of the Bean tab window. You’ll see the sayHello() method listed with an
unchecked check box next to it. Check the box. That exposes the method through the
Remote interface. To verify this, double-click on the Hello.java file in the project win-
dow. This brings up the source for the Remote interface. Notice that sayHello() is there
now.

7. Save your work and build the project. You should have no errors.

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
969

25 chpt_19.qxd 11/19/01 12:08 PM Page 969

Building a Client Test Application in JBuilder
JBuilder lets you build a client-side Java application to test your EJB. To do this,

1. Choose File, New, Enterprise and select EJB Test Client. Name this
HelloTestClient1.java.

2. JBuilder will automatically create the file. Go to the bottom of it, and you will see a
main program. Make yours resemble Listing 19.13.

LISTING 19.13 EJB Java Test Client Application

public static void main(String[] args) {
HelloTestClient1 client = new HelloTestClient1();
client.create(); //add these two lines
client.sayHello();
// Use the client object to call one of the Home interface wrappers
// above, to create a Remote interface reference to the bean.
// If the return value is of the Remote interface type, you can use it
// to access the remote interface methods. You can also just use the
// client object to call the Remote interface wrappers.

}

You add the create() and sayHello() methods to the main program.

Building the Client and Testing the EJB
Now build the test client. Follow these steps:

1. Run the EJB by selecting the HelloGroup entity in the project window and right-clicking
on it. Then choose Run. Soon you should see messages in the JBuilder message pane
indicating that the EJB is running. This might take 20 or 30 seconds depending on the
speed and memory of your machine. Remember, Java is a resource hog.

2. Select the client application and right-click on it. Choose Run from the menu. You’ll see
it start up and eventually print “Hello, world” to the message window. This means that
our EJB works correctly.

3. You can stop the EJB group by clicking on the red Stop button at the bottom of the mes-
sage window.

Deploying the EJB to AppServer
To deploy the EJB to AppServer, follow these steps:

1. Select Tools, EJB Deployment. Follow the wizard, and it will deploy the EJB.

2. Once the EJB is deployed, AppServer will automatically start it. Click on the Next button
until you reach step 4.

Enterprise Development

PART V
970

25 chpt_19.qxd 11/19/01 12:08 PM Page 970

3. In step 4 of the wizard, you must select an EJB container. Make sure that Borland
AppServer is running. Then click on the Add EJB Container button, and you’ll see the
AppServer container. Select it and click OK. Then continue with the wizard until it
completes.

Generating the SIDL File
Borland has developed a proprietary technique to remap EJBs to an AppServer interface called
Simplified IDL (SIDL). This remapping makes sure that older CORBA applications can call
EJBs by using the CORBA 2.1 standard (or higher). There is a tool that ships with AppServer
called the SIDL compiler that can take a Remote interface and generate conventional IDL files.

Borland provides a free plug-in for JBuilder that facilitates converting the EJB interfaces to
IDL with the SIDL compiler. The plug-in can be found on the CD-ROM in the same directory
as the source code for this chapter. The plug-in is a Java jar file called otSIDL.jar. Copy it to
the c:\ JBuilder5\lib\ext directory (or the equivalent path where you installed JBuilder).
You’ll have to restart JBuilder to activate the tool.

When the JBuilder IDE comes up, choose Tools, IDE Options, and you’ll see a dialog box
with a tab for SIDL. Select the SIDL tab and specify an output directory. In this case, enter
c:\MyProjects\HelloWorld (or where ever you stored the HelloWorld project).

This tool adds a pop-up menu to the EJB Remote interface.

Select the HelloHome.java file from the project list and right-click on it. You’ll see a menu
item called Generate Simplified IDL. Choose that, and it will run the SIDL compiler. The out-
put will be in the classes directory for the project.

Developing the EJB Client in Delphi
Now that we have a complete EJB, we can take the IDL file generated by the SIDL compiler
and create a Delphi CORBA client to talk to the EJB. If you look under the EJB project’s
classes directory, you’ll see a file called HelloHome.idl. You will need this and a copy of the
sidl.idl file that is found on the Delphi6\Demos\Corba\Idl2pas\EJB\EuroConverter direc-
tory. Put those two files in a new directory. Then, follow these steps:

1. Start Delphi and choose File, New, Other, CORBA, CORBA Client Application.

2. Add the HelloHome.idl file to the list of files that will be processed. You don’t need to
add the sidl.idl file because it is included automatically in HelloHome.idl via the
include pragma.

3. The wizard will create a new CORBA client. Save the project and call it HelloClient.
Many file windows will be displayed after the wizard runs. Other than the Unit1.pas
file, the only two that need to be displayed are HelloHome_HelloWorld_i.pas and
HelloHome_HelloWorld_c.pas. All the rest can be closed.

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
971

25 chpt_19.qxd 11/19/01 12:08 PM Page 971

4. On the main form, drop a button and label control. Make your application resemble
Figure 19.4.

Enterprise Development

PART V
972

FIGURE 19.4
The EJB Delphi Client.

5. In the form’s OnCreate() method, enter initCorba.

6. Modify the initCorba() method to resemble the code block shown in Listing 19.14.
You’ll have to add two variables to the class definition. One is for the Home interface, and
the other one is for the Remote interface. The Home interface is a factory that creates
Remote interfaces. Once you have an instance of the Remote interface, you can call the
methods on the EJB. So the initCorba() method will contain the code that binds to the
Home interface and generates a Remote interface object.

7. Add a button OnClick event and make it resemble the button OnClick code block shown
in Listing 19.14.

8. Build the client application. See the note if you get errors.

LISTING 19.14 The EJB Client Main Application File

unit ClientMain;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
Corba, HelloHome_c, HelloHome_helloworld_c, HelloHome_helloworld_i,
HelloHome_i, HelloHome_sidl_javax_ejb_c, HelloHome_sidl_javax_ejb_i,
HelloHome_sidl_java_lang_c, HelloHome_sidl_java_lang_i,
HelloHome_sidl_java_math_c, HelloHome_sidl_java_math_i,
HelloHome_sidl_java_sql_c, HelloHome_sidl_java_sql_i,
HelloHome_sidl_java_util_c, HelloHome_sidl_java_util_i,
StdCtrls;

type
TForm1 = class(TForm)

25 chpt_19.qxd 11/19/01 12:08 PM Page 972

LISTING 19.14 Continued

Button1: TButton;
Label1: TLabel;
procedure FormCreate(Sender: TObject);
procedure Button1Click(Sender: TObject);

private
{ private declarations }
protected
myHome : HelloHome;
myRemote : Hello;
procedure InitCorba;

{ protected declarations }
public
{ public declarations }
end;

var
Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.InitCorba;
begin

CorbaInitialize;

myHome := THelloHomeHelper.Bind;
myRemote := myHome._create;

end;

procedure TForm1.FormCreate(Sender: TObject);
begin

initCorba;
end;

procedure TForm1.Button1Click(Sender: TObject);
begin

Label1.Caption := myRemote.sayHello;
end;

end.

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
973

25 chpt_19.qxd 11/19/01 12:08 PM Page 973

Running the Application
To run the application, follow these steps:

1. Start the OSAgent.

2. Make sure that Borland AppServer has started.

3. Start the HelloClient. Click on the button, and you should see the label text change to
“Hello, world”.

More complex EJBs can be developed by following a similar development process. In Java,
you just add more method interfaces to increase the capabilities of the EJB. The client-side
process will essentially remain the same as this example. Delphi CORBA clients will be built
by gathering the SIDL produced IDL files and processing them through the Delphi CORBA
IDE wizard.

Enterprise Development

PART V
974

You’ll encounter two possible errors with the original Delphi 6 distribution. These
errors were fixed in the Service Pack 1 update. The first error is that the compiler will
complain about a unit not being included. It will point you to the particular unit
name. When it does, just add the unit name to the uses clause in the file with the
error.

The second error occurs at runtime. This is related to the Home interface create()
method. Create was originally on the reserved word list for IDL2Pas. So when it
encounters that word, it puts an underscore in front of it. When the EJB gets a
request for a method called _create(), it generates an exception because it doesn’t
publish that method. It publishes a method called create().

To fix this, go to the THelloHomeStub._create() method in HelloHome_helloworld_c.pas
(the code snippet follows). The first argument in the _CreateRequest() method tells
the CORBA server which method will be called. If you see _create as the first argu-
ment, change it to create:

function THelloHomeStub._create : HelloHome_helloworld_i.Hello;
var
_Output: CORBA.OutputStream;
_Input : CORBA.InputStream;

begin
inherited _CreateRequest(‘create’, True, _Output);
inherited _Invoke(_Output, _Input);
Result := HelloHome_helloworld_c.THelloHelper.Read(_Input);

end;

Both of these errors were fixed in the Delphi 6 update 1, so you should upgrade to
that to get around these errors.

NOTE

25 chpt_19.qxd 11/19/01 12:08 PM Page 974

CORBA and Web Services
It is fairly straightforward to extend a CORBA application through the Web Services architec-
ture. The SOAP specification doesn’t allow object references to be passed between applica-
tions, so a little work needs to be done on the middle-tier level to isolate SOAP clients from
the details of CORBA applications.

This next example will publish the EJB that was created in the last section so that it can be
used by SOAP clients. Figure 19.5 shows the architecture of the application.

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
975

BorlandAppServer Web Service

EJB Container

Remote Intf
SayHello()

Home Intf
Create()

SOAP
ClientC

O
R
B
A

S
O
A
P

CORBA SOAP

FIGURE 19.5
The CORBA/Web Services example architecture.

The EJB is deployed under the Borland AppServer. It has a published CORBA interface that
any CORBA client can call. The Web Service application is both a SOAP server and a CORBA
client. The SOAP server portion of the application will wrap the calls the SOAP client makes
around the CORBA client interface.

By using this technique, you can harness the power of EJBs and publish the results as SOAP
interfaces to clients that only have that capability. This means that a SOAP enabled application
can access applications that manipulate EJBs. This brings an enormous capability to the client
desktop and gets rid of CORBA ORB deployment issues on the client side as well.

In this example, the EJB will remain exactly as it was in the last section. No modifications to
its interface or functionally have to be made. That portion of the application is complete.

Creating the Web Service
To create the Web Service, you need the IDL files from the last section. IDL2Pas can be run in
a command window to generate the client-side files. Create a directory for the project and copy
the SIDL.idl and HelloHome.idl files into the new directory. Then open a command window
and type the following:

IDL2Pas HelloHome.idl

25 chpt_19.qxd 11/19/01 12:08 PM Page 975

The IDL2Pas compiler will generate the files for the application. We only need the
HelloHome_I.pas and HelloHome_C.pas files for the CORBA client side.

In order to build this project, you need to install the Invokamatic Wizard, which lets you create
a SOAP application in a couple of minutes. When you register Delphi 6, you get access to the
Delphi 6 Registered Users’ Web site, which contains the Delphi eXtreme Toys downloads. This
contains additional tools and freebies for Delphi 6, including the Invokamatic Wizard.
Download this wizard from the Borland Web site and install it into the IDE.

Now, to create the Web Service application, follow these steps:

1. Close down all projects in Delphi and select File, New, Other, Web Services. Then
choose the Soap Server Application icon.

2. Choose the Web App Debugger Executable for the target application Web server and give
it a name such as coHelloWorld for the coClass name. Make sure that you use a unique
name every time you repeat this exercise, or clean the registry by unregistering your
application when you are done with it.

3. The wizard will generate a bare bones application. Save it to the project directory that
contains the IDL files. Name the module file ServerMod.pas, the main form file
ServerMain.pas, and the application Server.dpr.

4. Now select the Files, New, Other, Web Services and choose the Invokamatic Wizard.

5. The dialog box prompts you for a name to use. Name it HelloWorldSoap. This automati-
cally names the interface and files. In the Invokable Class drop-down box, choose
TInvokable Class. When you select OK, it creates two new units in your project. One is
an interface unit, and the other is an implementation unit.

6. Select the interface unit and add the following method to the IHelloWorldSoapIntf
interface:

function sayHello: string; stdcall;

The stdcall call tag is required so that the correct calling convention is established.

7. Now copy this method declaration to the implementation unit THelloWorldSoapIntf
class and make it a public method.

8. Put the cursor anywhere on the method line and press Shift+Control+C to activate the
class completion. Just for test purposes, we’ll have this method return a hard-wired string
to test the client. So type

result := ‘Hello, world’;

9. Save the program, compile it, and run it. Running it registers the method interface. Make
sure you start the Web App Debugger from the Delphi Tools menu. You can start the
server and check the interfaces it knows about by clicking on the URL in the Web App
Debugger UI.

Enterprise Development

PART V
976

25 chpt_19.qxd 11/19/01 12:08 PM Page 976

Creating the SOAP Client Application
To create a SOAP client application,

1. Close down the project and choose File, New, Application.

2. Add one label and one edit control to the main form. Also add the interface files
SoapHTTPClient and HelloWorldSoapIntf to the uses clause.

3. Declare a variable called mySoap to be of type IHelloWorldSoap.

4. On the button OnClick method, make the code resemble Listing 19.15.

5. Save the program and compile the files.

6. Run the application and click on the Say Hello button. After a small delay while the
server application is loaded, you should see “Hello, world” in the label caption.

This is a preliminary test to show that the SOAP client and server work together. Now we can
add the CORBA client to the server project to complete the full application.

LISTING 19.15 SOAP Client Main Form Class

unit ClientMain;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, SoapHTTPClient, HelloWorldSoapIntf;

type
TForm1 = class(TForm)
Button1: TButton;
Label1: TLabel;
procedure Button1Click(Sender: TObject);

private
{ Private declarations }
mySoap : IHelloWorldSoap;

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

{$R *.dfm}

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
977

25 chpt_19.qxd 11/19/01 12:08 PM Page 977

LISTING 19.15 Continued

procedure TForm1.Button1Click(Sender: TObject);
var x : THTTPRio;
begin

x := THTTPRio.Create(nil);
x.URL := ‘http://localhost:1024/Server.exe/SOAP/’;
mySoap := x as IHelloWorldSoap;
Label1.Caption := mySoap.sayHello;

end;

end.

Adding the CORBA Client Code to the Web Service
To add the CORBA client files to the Web Server project,

1. Copy the *_i.pas and *_c.pas files from the EJB client application developed in the last
section. The interface file is shown in Listing 19.16.

LISTING 19.16 SOAP Interface File

{ Invokable interface declaration unit for IHelloWorldSoap }

unit HelloWorldSoapIntf;

interface

uses
Types, XSBuiltIns;

type
IHelloWorldSoap = interface(IInvokable)
[‘{CA738F7B-B111-4F12-BEBD-C2ADDD80C3E2}’]
// Declare your invokable logic here using standard Object Pascal code
// Remember to include a calling convention! (usually stdcall)
// For example:
// function Add(const First, Second: double): double; stdcall;
// function Subtract(const First, Second: double): double; stdcall;
// function Multiply(const First, Second: double): double; stdcall;
// function Divide(const First, Second: double): double; stdcall;
function sayHello : String; stdcall;

end;

implementation

Enterprise Development

PART V
978

25 chpt_19.qxd 11/19/01 12:08 PM Page 978

LISTING 19.16 Continued

uses
InvokeRegistry;

initialization
InvRegistry.RegisterInterface(TypeInfo(IHelloWorldSoap), ‘’, ‘’);

end.

2. Add two public variables to the Form1 class as shown in Listing 19.17. The variables will
be public so that they are exposed to other units in the application.

3. Add an OnCreate() method to the main form and make it look like the one in Listing 19.17.

4. Finally, change the HelloWorldSoapImpl.pas file sayHello() method to look like
Listing 19.18.

5. Now save the project and compile the server.

6. Make sure OSAgent, and Borland AppServer are running, then run the client. When you
click on the Say Hello button you should see “Hello, world”.

This was not a difficult example. However, you can now see the process of exposing EJBs to
SOAP clients. This opens up new possibilities for bringing J2EE applications to the desktop
and other Delphi application types.

LISTING 19.17 SOAP Server Main Form Class

unit ServerMain;

interface

uses
SysUtils, Classes, Graphics, Controls, Forms, Dialogs, Corba,
HelloHome_helloworld_i, HelloHome_helloworld_c;

type
TForm1 = class(TForm)
procedure FormCreate(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }
myHome : HelloHome;
myRemote : Hello;

end;

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
979

25 chpt_19.qxd 11/19/01 12:08 PM Page 979

LISTING 19.17 Continued

var
Form1: TForm1;

implementation

uses ComApp;

{$R *.DFM}

const
CLASS_ComWebApp: TGUID = ‘{63859D3A-005F-43BB-8E64-85A466D9C364}’;

procedure TForm1.FormCreate(Sender: TObject);
begin
CorbaInitialize;
myHome := THelloHomeHelper.bind;
myRemote := myHome._create;

end;

initialization
TWebAppAutoObjectFactory.Create(Class_ComWebApp,
‘coHelloWorld’, ‘coHelloWorld Object’);

end.

LISTING 19.18 SOAP Server Implementation Class

{ Invokable implementation declaration unit for THelloWorldSoap,
which implements IHelloWorldSoap }

unit HelloWorldSoapImpl;

interface

uses
HelloWorldSoapIntf, InvokeRegistry, ServerMain;

type
THelloWorldSoap = class(TInvokableClass, IHelloWorldSoap)
// Make sure you have your invokable logic implemented in IHelloWorldSoap
// first, save the file, then use CodeInsight(tm) to fill in this
// implementation section by pressing Ctrl+Space, marking all the interface
// declarations for IHelloWorldSoap, and pressing Enter.

Enterprise Development

PART V
980

25 chpt_19.qxd 11/19/01 12:08 PM Page 980

LISTING 19.18 Continued

// Once the declarations are inserted here, use ClassCompletion(tm)
// to write the implementation stubs by pressing Ctrl+Shift+C
function sayHello : String; stdcall;

end;

implementation

{ THelloWorldSoap }

function THelloWorldSoap.sayHello: String;
begin
// result := ‘Hello, world’; //test for soap client
result := ServerMain.Form1.myRemote.sayHello;

end;

initialization
InvRegistry.RegisterInvokableClass(THelloWorldSoap);

end.

Summary
This chapter provides an introduction to developing CORBA applications in Delphi. We started
with the basics of the CORBA architecture and developed a fairly simple Bank application.
From there, we looked at more complex data structures.

Then we got into an area that is generating a lot of interest from enterprise developers. We
learned how to develop an EJB in JBuilder 5, deploy it to the Borland AppServer, and connect
a Delphi CORBA client to the EJB.

From there, we extended the EJB through a combination of CORBA and Web Services using
the SOAP protocol. Using this approach, you can now take any EJB, connect it to a Web
Service, and expose it to any client that can use the SOAP protocol. The client doesn’t have to
be aware that CORBA is deployed on the back end. This opens up new possibilities for extend-
ing corporate legacy applications.

CORBA Development

CHAPTER 19

19

C
O

R
B

A
D

EV
ELO

PM
EN

T
981

25 chpt_19.qxd 11/19/01 12:08 PM Page 981

25 chpt_19.qxd 11/19/01 12:08 PM Page 982

