Transactional Development CHAPTER

with COM+/MTS 1 8

IN THIS CHAPTER

e What Is COM+? 880

e Why COM? 880

e Services 881

e Runtime 906

¢ Creating COM+ Applications 908
e COM+ in Delphi 912

880

Enterprise Development
PART V

The release of Windows 2000 brought with it perhaps the largest single step forward for COM
since its inception as the underpinnings of OLE 2.0: COM+. COM+ is the latest iteration of
COM, and it ships as a standard part of Windows 2000 and Windows XP. This chapter is
intended to bring you up to speed on all the various aspects of COM+ and how you can lever-
age its power in your Delphi applications.

What Is COM+?

Before we progress any further into describing COM+, allow us to set your mind at ease by
saying this: Almost everything you know about COM still applies. After all, COM definitely
takes no small degree of dedication to learn well, and it would be very disheartening to have to
ride the same learning curve once again. The interesting thing about COM+ is that it isn’t this
strange, new monster, but merely some nice evolutionary changes to COM exist combined with
the integration of some of Microsoft’s COM-based services that you might already be familiar
with. In plain English, COM+ can be boiled down to this: COM with a few new features, inte-
grated with Microsoft Transaction Server (MTS) and Microsoft Message Queue (MSMQ).

Because COM+ is based on and fully backward compatible with COM, you have no worries
from a Delphi perspective. Delphi works just as great with COM+ as it does with COM. To
build optimized COM+ components, there are certainly a few fundamental additions you’ll
need to know about, particularly with regard to a new type of components called configured
that we’ll discuss later. But, it’s important for you to know that the entire world of COM+ is
available to you as a Delphi developer.

Why COM?

Why did Microsoft choose to base COM+ on COM, rather than moving it to some completely
different direction? This is a fair question, especially in light of some of the negative comments
we all might hear about COM in its skirmishes with competing technologies such as CORBA
and Enterprise Java Beans (EJB) in the battlefields of the industry tabloids. Not only is COM
a good foundation to build on technologically, but also a business case around COM is very
compelling when you consider that

* COM is programming language independent.

* COM is supported by every major Windows development tool.

» Every 32-bit Windows user is already running COM, which puts the installed base at
somewhere around 150 million users (according to Microsoft).

* The Giga Information Group recently reported that COM is a $670 million market (not
including Microsoft).

Transactional Development with COM+/MTS

CHAPTER 18

Probably the biggest drawback of COM is its reputation for being difficult to scale to large
numbers of users involved in large numbers of transactions. In Microsoft fashion, a major
intent of COM+ is to leverage the assets s, while attempting to eliminate the liabilities.

We can classify COM+ features into three distinct categories: administration, services, and
runtime. Administration is primarily handled in the Component Services administration tool,
which is discussed throughout this chapter. We will tackle the discussion of services and run-
time in turn. Because services make up the bulk of the new features in COM+, we’ll discuss
those first.

Services

COM+ services are the things that we today consider to be add-ons to COM. Technology cur-
rently found in MTS and MSMQ, for example, make up some of the services found in COM+.
Think of services as systems built by Microsoft on top of COM+ designed to somehow add
value to component-based development. As we mentioned, some services, such as transactions
and queued components, are present thanks to off-the-shelf technology. Consequently, if you
have experience with these technologies already, you’ll have an advantage as you begin to
write COM+ applications. Other services, however, such as object pooling and late-bound-
events are probably new to you and might take some getting used to.

Transactions

As the “T” in MTS, it should be no surprise to find transactions playing a major role in
COM+. COM+ implements the MTS model for transactions, which is described in greater
detail later in this chapter. Without transaction support, there is no way that collection objects
would be able to support a complicated business application. For example, a transaction
involving an online purchase of some item might involve the participation of several objects
communicating with one or more databases to receive the request, check inventory, debit the
credit card, update the accounting ledger, and issue a ship order. All these things needs to hap-
pen in concert; if something goes wrong in any of these processes, the state of all objects and
data needs to be rolled back to the state they were in before the entire transaction began. As
you can imagine, this process of managing transactions is even more complicated when the
objects involved are spread across multiple machines.

Transactions are controlled centrally by the MS Distributed Transaction Coordinator (DTC).
When a COM+ application calls for transactions, the DTC will enlist the assistance of and
coordinate other software elements, including transaction managers, resource managers, and
resource dispensers. Each computer participating in a transaction has a transaction manager
that tracks transaction activity on that specific machine. Transaction managers, however, are
ignorant of data because persistent information such as database data or message queue

881

1

(o]

1N3INdO13INIQ
TVNOILOVSNVY |

882

Enterprise Development
PART V

messages are managed by a resource manager. A resource dispenser manages non-persistent
state information, such as database connections. Each of these specialized elements managed
by the DTC knows how to commit and recover its specific resource.

Security

As the introduction of one new technology quickly follows another in today’s insanely paced
world of software development, we occasionally reflect with fond remembrance on the olden
days of PC software development, when applications consisted of a .EXE or a .COM file and a
network was a place to share data files with your co-workers. Business applications today often
consist of multiple types of user interfaces (Windows, Web-based, Java, and so on) communi-
cating with software components distributed across a network, which in turn communicates
with one or more database servers on the network. Our success as developers is now linked not
only to our ability to tie disparate application elements together, but also to provide a means by
which they can communicate in privacy. This means building security into distributed applica-
tions that enables components to authenticate one another, determine what services they should
offer one another, and provide a means for private communication between one another.

The notion of security has become common sense at this point. We all understand that most
data needs to be protected; for example, human resources data shouldn’t be accessible to all
employees, sales data shouldn’t be accessible to your competitors, and so on. Equally, compo-
nent functionality also needs to be secure; perhaps only administrators should have the right to
use certain objects or only department managers should have access to a particular business
rules engine. In practice, however, building this type of security into distributed applications
can be a time-consuming process, and security features naturally take a backseat to core func-
tionality in project schedules.

COM+ provides a well-constructed set of security features that addresses many of these issues.
COM+ makes security more of an administrative issue than a programmatic one, and therefore
helps you to spend your time developing application logic and less time writing security code.
Configuring COM+ application security in the Component Services administration tool is a
one-time process, and your application can remain free of security-specific code. At the same
time, COM+ does provide APIs for accessing security information for cases in which you do
need to go beyond the provided functionality. My goal here is to provide you with an overview
of security architecture for COM+ server applications and how to use security in your COM+
applications.

Role-Based Security
COM+’s security architecture is often referred to as role-based. Rather than managing accounts
for individual users, COM+ applications rely on categories or groups of users referred to as

Transactional Development with COM+/MTS
CHAPTER 18

roles. Roles work hand-in-hand with the operating system-based security because the members
of roles are the user accounts on the Windows 2000 server or domain. Roles can be created on
an application-by-application basis using the Component Services administration tool, and the
process is rather straightforward. This is done by right-clicking on the Roles node of the
COM+ application in the treeview on the left in the Component Services administration tool.
After a role has been added, another right-click can add users to the role. Figure 18.1 illus-
trates the process of adding users to a role.

S=IE
|y Console Window Help [T |

Tree | Normal 1 object{s)

- 2 COM+ Uiilties = \:I

- & Delphi Evert Demo

=& Queue Demo Users
Security Demo

([Companents

£ Roles

Hero
Juriior
System Application
TTT
(20 Distributed Transaction Coardinatar
(i) Event Viewer (Local)
48 Services (Local)

0-E-H-E

FiGURe 18.1

Using the Component Services administration tools to configure roles.

You can see from Figure 18.1 that in this example, the COM+ application has three roles:
Junior, Normal, and Hero. These are simply names made up to indicate three different groups
of users we plan to provide differing functionality for in our COM+ application. Noteworthy is
the fact that the actual authentication is handled automatically by the OS, and COM+ builds on
top of those services.

Role-Based Security Configuration

Arguably the slickest aspect of COM+’s role-based security system is that security can be
established at the application, component, interface, or even method level! This means that you
can control which roles have access to which methods without writing a line of code.

The first step to configuring COM+ application security is to enable security at the application
level. This is done by editing the properties of the application in the Component Services
administration tool and switching to the Security tab, which is shown in Figure 18.2.

Application security is enabled when the Enforce Access Checks For This Application check
box is checked. This dialog also enables selection of the security level, which can be set to per-
form security checking at the process level only or at the process and component level.

883

1

(o]

1N3INdOT13IAIQg
TVNOILOVSNVY |

884

Enterprise Development

Security Demo Properties 2lx|
General Securly | denty | Activation | Gueing | Advenced |
i~ Authorizstion
IV Efoics atoess Shacks for (s spplistion
-~ Secuity lsvel
© Perfom access checks only at the process level
Sscurty praperty wil not b included on the chiect contsst
COM+ security call contest wil not be available
& Petfom access checks at the procsss and componsnt lsvel
Secuiy property will be included on the obiect conlest The
COM+ security call contest is svailabls
Authentication Jevel for calls
[Packet |
Impersonation levek
| Impersonats j
ok || Cancel | ap |

Configuring COM+ application security.

Enabling security only at the process level has the effect of locking the front door to the
COM+ application, where all members of roles assigned to the application have the key to that
door. When this option is selected, no security checking will be performed on the component,
interface, or method level, and security context information will not be maintained for objects
running in the application. This type of security is useful when you don’t need granular secu-
rity control, but simply want to limit overall access to the COM+ application to a specific
group of users. This type of security also has the advantage in increased performance because
security checks don’t need to be made by COM+ during execution of the application.

Enabling security at the process and component level ensures that role-based security checks
will be made at the component, interface, and method level and security context information
will be available to objects in the application. Although this provides maximum control and
flexibility, note that a performance of your COM+ application will suffer slightly because of
the increased level of management that COM+ will need to perform during execution.

The security properties dialog box shown in the Figure 18.2 also provides for configuration of
the authentication level of the COM+ application. The authentication level determines the
degree to which authentication is performed on client calls into the application. Each succes-
sive authentication level option provides for a greater level of security, and the options are
shown in Table 18.1.

Transactional Development with COM+/MTS

CHAPTER 18
TaBLE 18.1 COM+ Authentication Levels

Level Description

None No authentication occurs.

Connect Authenticates credentials only when the connection is made.

Call Authenticates credentials at the beginning of every call.

Packet Authenticates credentials and verifies that all call data is received.
This is the default setting for COM+ server applications.

Packet Integrity Authenticates credentials and verifies that no call data has been
modified in transit.

Packet Privacy Authenticates credentials and encrypts the packet, including the

data and the sender’s identity and signature.

Note that authentication requires the participation of the client as well as the server. COM+
will examine the client and the server preference for authentication and will use the maximum
of the two. The client authentication preference can be set using any one of the following
techniques:

* The machine-wide setting specified in the Component Services administration tool (or
DCOMCNEFG on non-Windows 2000/XP machines)

e The application-level setting specified in the Component Services administration tool (or
DCOMCNFG on non-Windows 2000/XP machines)

» The process-level setting specified programmatically using the CoInitializeSecurity ()
COM API call

* An on-the-fly setting that can be specified programmatically using the CoSetProxyBlanket ()
API

Finally, the properties security dialog box shown in Figure 18.2 allows configuration of the
application impersonation level. The impersonation level setting dictates to what degree the
server application might impersonate its client in order to access other resources on behalf of
clients. Table 18.2 explains the options for impersonation level.

TaBLE 18.2 COM+ Impersonation Levels

Level Description
Anonymous The client is anonymous to the server.
Identify The server can obtain the client’s identity, and can impersonate the

client only to perform Access Control checking.

885

1

(o]

1N3INdO13INIQ
TVNOILOVSNVY |

Enterprise Development
PART V

886

TaBLE 18.2 Continued

Level Description

Impersonate The server can impersonate the client while acting on its behalf,
although with restrictions. The server can access resources on the
same computer as the client. If the server is on the same computer
as the client, it can access network resources as the client. If the
server is on a computer different from the client, it can only access
resources that are on the same computer as the server. This is the
default setting for COM+ server applications.

Delegate The server can impersonate the client while acting on its behalf,
whether or not on the same computer as the client. During imper-
sonation, the client’s credentials can be passed to any number of
machines. This is the broadest permission that can be granted.

Like authentication, impersonation can also only be accomplished with the consent of the
client. The client’s consent and preferences can be established exactly the same as
authentication, using Component Services administration tool, DCOMCNFG, or the
CoInitializeSecurity() and CoSetProxyBlanket () APIs.

After application security has been configured, security can then be configured for compo-
nents, interfaces, and methods of the application. This is done in a similar manner by editing
the properties of the item in the tree and choosing the Security tab. This will invoke a dialog
box with a page similar to that shown in Figure 18.3.

ActivePopup.1 Properties [20x|

General | Transactions Secuy | Activation | Concurrency | Advanced |

rAuthorization

¥ [Enforce component level acoess checks

Roles explicitly set for selected item(s):

Name

18 Junior
O Nomal
1§ Hero

0K | Cancel Apply

FIGURE 18.3

Configuring COM+ component security.

Transactional Development with COM+/MTS

CHAPTER 18

The dialog box shown in Figure 18.3 is fairly straightforward; it enables you to specify
whether security checks should be enabled for the item and which roles are to be allowed
access to the item.

Multitier Performance

When designing multitier applications that employ COM+ security, there are a number of per-
formance considerations you should weigh. First and foremost, always bear in mind that one of
the primary goals of a multitier system is to improve overall system scalability. One mistake
that often compromises scalability and performance is over securing an application by imple-
menting security at multiple tiers. A better solution would be to leverage COM+ services by
implementing security only or mostly at the middle tier. For example, rather than impersonat-
ing the client in order to gain access to a database, it is more efficient to access the database
using a common connection that can be pooled among multiple clients.

Programmatic Security

Up until now, we’ve focused primarily on declarative (or administration-driven) security; how-
ever we did mention that it is also possible to program security into COM+ applications. The
most common thing you might want to do is determine whether the caller of a particular
method belongs to a specific role. This enables you to control not only method access, but also
method behavior, based on the role of the client. To serve this purpose, COM+ provides not
one but two means for making this determination. There is a method of I0bjectContext called
IsCallerInRole(), which is defined as

function IsCallerInRole(const bstrRole: WideString): Bool; safecall;

This function is used by passing the name of the role in the bstrRole parameter, and it will
return a Boolean value indicating whether the current caller belongs to the specified role. A
reference to the current object context can be found by calling the GetObjectContext() API,
which is defined as

function GetObjectContext: IObjectContext;

The following code checks to see if the caller is in the Hero role prior to performing a task:

var
Ctx: IObjectContext;
begin
Ctx := GetObjectContext;
if (Ctx <> nil) and (Ctx.IsCallerInRole('Hero')) then
begin
// do something interesting
end;
end;

887

1

(o]

1N3INdOT13IAIQg
TVNOILOVSNVY |

888

Enterprise Development
PART V

Similarly, an IsCallerInRole() method is also found on the ISecurityCallContext inter-
face, a reference that can be obtained using the CoGetCallContext () APIL This version of the
method is actually preferred, simply because ISecurityCallContext makes handy a lot of
other security information, such as the caller and its authentication and impersonation level.

Just-In-Time Activation

Just-In-Time (JIT) activation refers to functionality already present in COM+ that enables an
object to be transparently destroyed and re-created without the knowledge of the client applica-
tion. JIT activation potentially enables a server to handle a higher volume of clients because
resources used by an object can be reclaimed by the system when it is deactivated.

The object developers has full control over when an object is deactivated, and objects should
only be deactivated when they have no state to maintain. An object can be deactivated using
the SetComplete() or SetAbort() methods of I0bjectContext or the
SetDeactivateOnReturn() method of IContextState.

Queued Components

Delphi developers normally don’t have to be lectured on the benefits of briefcase model appli-
cations. When MIDAS was introduced in Delphi 3, the barrier of entry was forever lowered for
creating applications having the capability to operate even when the client is disconnected from
the server. Delphi developers quickly realized the power of enabling their users to work with
their data in a disconnected, briefcase model, and embraced MIDAS as well as other technolo-
gies that provide this capability. Rather than having to write complicated code to, for example,
enable a salesman to edit his customer database on his laptop while on the road and synchro-
nize when he gets back into the office, this functionality is now easily accessible simply by
dropping a few components and writing a few lines of code.

This is all really great if you happen to be data, but what to do if you’re an object? As object
remoting technologies such as DCOM, MTS/COM+, and CORBA become easier to implement
in our tools, our reliance on such technologies increases as we build solutions for our compa-
nies and clients. Consequently, this reliance increases as we employ object remoting technolo-
gies to build ever-more-complex distributed applications. As a result of all this, distributed
component applications—Ilike data applications—also have the need to function when discon-
nected from servers.

Queued Components: The Object Briefcase

COM+ queued components answer this need. Based on MSMQ (Microsoft Message Queue)
technology, queued components provide a means for COM+ clients to asynchronously invoke
methods of COM+ server components. In essence, this means that clients can create instances

Transactional Development with COM+/MTS
CHAPTER 18

of server objects and invoke their methods without regard to whether the server is actually
accessible to the client. COM+ manages this by storing the method invocations in a queue and
executing the methods at a later time when the server is accessible. What’s more, the server
objects likewise have little reason to know or care whether their methods are being invoked
directly or via a COM+ queue. Our goal here is to cover the essential elements of working
with COM+ queued components.

Figure 18.4 illustrates how queued components are internally implemented. When the client
makes a method call on a queued component, that method call is captured by the recorder,
which packages up the call and parameters and places it into a queue. Because the client has
no knowledge that it isn’t actually communicating with the server, you can see that the
recorder server as a sort of a proxy for the server. The recorder knows how to behave because
it obtains information on the server from its type library and its configuration or registration
information. The listener removes the message, which contains the call information, from the
queue and passes it on to the player. Finally, the player unpackages the call information (along
with related information, such as the client’s security context) and executes the method call on
the server.

Client

!
(Recorder) (Queue)

Server

FIGURE 18.4

COM+ queued component architecture.

“All this sounds cool,” you might be saying to yourself, “but I’ll bet implementing it requires a
degree in some new variety of non-Newtonian physics.” If you did say that to yourself, you're
only half right; it is cool, but it’s also very easy to do, as you will soon see.

Why Queued Components?
Before jumping into implementation, however, we’d like to address some of the specific rea-
sons for using queued components.

889

1

(o]

1N3INdOT13IAIQg
TVNOILOVSNVY |

890

Enterprise Development
PART V

* System scalability—In a non-queued system, there will be a finite number of server
objects capable of handling requests from clients at any given time. When all these
objects become tied up handling client calls, other incoming client calls will be blocked
until an object finishes and again becomes available. In a system having a large number
of simultaneous transactions, this can seriously limit the number of concurrent clients
that can be serviced. Using queues, the call always returns immediately to the client after
being queued and played back to servers in the servers’ own time. This enables the sys-
tem to handle a greater number of concurrent transactions.

Scalability is also increased on the back end because the client doesn’t manage the life-
time of the server. Rather than being active while the client carries on with its processing
and various method calls, a queued server only needs to be active while calls are being
played back by the recorder. Reducing the amount of time a server needs to remain in
memory means that a greater number of servers can be activated over a given period of
time with a given amount of RAM.

* Briefcase model—As we mentioned, COM+ enables queued components to behave in a
disconnected manner in much the same way MIDAS does for data. This enables clients
to work without being connected to their network and method calls to be played back to
the server when the client connects to the network at a later time.

 Fail-safety—If you are creating a mission-critical application that requires a high degree
of availability, such as an e-commerce storefront, the last thing you want to happen is for
the system to go down because your front end is having trouble communicating with
server objects. Queued components provide an ideal safety net to prevent this problem
because they will queue method calls intended for servers if the servers become unavail-
able and play them back when the server again comes online.

* Load scheduling—Rather than having your servers work like rented mules during their
peak hours of activity and sit nearly dormant during the other hours of the day, using
queued components you can spread processing throughout the day to even the workflow
and place less demand on your servers at any specific time.

Creating a Server

There’s little difference between creating a queued component and a creating normal
COM/COM+ component. The biggest adjustment you will need to make is that all methods on
queued interfaces must accept only in parameters and must not make use of return values. Of
course, these limitations make perfect sense when you consider the fact that the client won’t be
sitting around waiting for the server to return any values or out parameters. Also, you will need
to perform a few extra steps as far as component configuration at install time.

To illustrate, we will create a Delphi server that contains one COM+ class with one interface
with one method. To make life easier, we’ll get started using the Automation Object Wizard

Transactional Development with COM+/MTS

CHAPTER 18

accessible via the File, New Main menu item. We call this object QTest, and the wizard auto-
matically names the primary interface IQTest. (Don’t worry, it’s easier than it sounds.) To the
IQTest interface we add one method, which is defined in the type library editor as follows:

procedure SendText(Value: WideString; Time: TDateTime) [dispid $00000001];
safecall;

The idea is that this method takes two parameters: the first a string message and the second the
time on the client when the method was called. Our implementation of this method simply
writes this information, in addition to the time the message was processed by the server, to a
log file we create called c:\queue.txt. The implementation file for this Automation object is
shown Listing 18.1.

LisTING 18.1 TestImpl.pas—Implementation of Queued Object

unit TestImpl;
interface

uses
Windows, ComObj, ActiveX, Srv_TLB, StdVcl;

type
TQTest = class(TAutoObject, IQTest)
protected
procedure SendText(const Value: WideString; Time: TDateTime); safecall;
end;

implementation
uses ComServ, SysUtils;

procedure TQTest.SendText(const Value: WideString; Time: TDateTime);
const
SFileName = 'c:\queue.txt';
SEntryFormat = 'Send time: %s'#13#10'Write time: %s'#13#10 +
‘Message: %s'#13#10#13#10;
var
F: THandle;
WriteStr: string;
begin
F := CreateFile(SFileName, GENERIC_WRITE, FILE_SHARE_READ, nil, OPEN_ALWAYS,
FILE_ATTRIBUTE_NORMAL, 0);
if F = INVALID HANDLE_VALUE then RaiselLastWin32Error;
try

891

1

(o]

1N3INdO13INIQ
TVNOILOVSNVY |

892

Enterprise Development
PART V

LisTiING 18.1 Continued

FileSeek(F, @, 2); // go to EOF
WriteStr := Format(SEntryFormat, [DateTimeToStr(Time),
DateTimeToStr(Now), Value]);

FileWrite(F, WriteStr[1], Length(WriteStr));

finally
CloseHandle(F);

end;

end;

initialization
TAutoObjectFactory.Create(ComServer, TQTest, Class_QTest,
ciMultiInstance, tmApartment);
end.

After the server has been created, it needs to be installed into a new COM+ application using
either the Component Services management tool or the COM+ Administration Library APL
Using the Component Services tool, the first step is to create a new empty application by
selecting that option from the local menu of the COM+ Applications node in the tree and fol-
lowing the prompts. Once the application has been created, the next step is to edit the applica-
tion’s properties to mark the application as queued, as shown in Figure 18.5. We also chose to
enable queue listening on this application so that it would immediately play any incoming mes-
sages on its queue when it is active. The configuration is shown in Figure 18.5.

Queue Demo Properties [21x|

General | Securiy | Identiy | Activation Gueuing | Advenced |

[¥ Listen - This application, when activated, will process messages
that arrive on its MSMI queue.

©NOTE: If this application s already unning, you will need to restart the
application before any changes made here will taks effect

oK | Cancel |

FiGURe 18.5
Configuring a queued COM+ application.

Transactional Development with COM+/MTS
CHAPTER 18

To install the server into the COM+ application, select New, Component from the local menu
of the Component node of the application in the tree. This invokes the COM Component
Install Wizard, which can install a new component using the defaults and select the name of
the COM+ server DLL created earlier. After installation into the application, edit the properties
of the IQTest interface on this object to support queuing as shown in Figure 18.6.

IQTest Properties [21x|

General Queting | Securty |

Queing Properti

¥ lueved

aK I Cancel Epply

FIGURE 18.6

Specifying an interface as queued.

Note that COM+ requires that queuing be enabled on both the COM+ application and the
interface level.

Creating a Client

The workflow for creating a queued component client is identical to creating a client of any
old Automation client. In this case, create an application with a main form as shown in
Figure 18.7.

J=TE]
|

FIGURE 18.7

A client application for a queued component.

When the Send button is clicked, the contents of the edit is sent to the server via its SendText ()
method. The code for this unit corresponding to this form is shown in Listing 18.2.

893

1

(o]

1N3INdOT13IAIQg
TVNOILOVSNVY |

Enterprise Development
PART V

894

LisTING 18.2 cCtrl.pas—The Main Unit for a Queued Component Client

unit Ctrl;
interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ColorGrd, ExtCtrls, Srv_TLB, Buttons;

type
TControlForm = class(TForm)
BtnExit: TButton;
Edit: TEdit;
BtnSend: TButton;
procedure BtnExitClick(Sender: TObject);
procedure BtnSendClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
private
FIntf: IQTest;
end;

var
ControlForm: TControlForm;

implementation
{$R *.DFM}
uses ComObj, ActiveX;
// Need to import CoGetObject because import in the ActiveX unit is incorrect:
function MyCoGetObject (pszName: PWideChar; pBindOptions: PBindOpts;
const iid: TIID; out ppv): HResult; stdcall;
external 'ole32.dl1l' name 'CoGetObject';
procedure TControlForm.BtnExitClick(Sender: TObject);
begin
Close;

end;

procedure TControlForm.BtnSendClick(Sender: TObject);

begin
FIntf.SendText(Edit.Text, Now);
Edit.Clear;

end;

Transactional Development with COM+/MTS

CHAPTER 18
LisTiNnG 18.2 Continued
procedure TControlForm.FormCreate(Sender: TObject);
const
SMoniker: PWideChar = 'queue:/new:{64C576F0-C9A7-420A-9EAB-0BE98264BCOD}';
begin

// Create object using a moniker that specifies queued creation
O0leCheck (MyCoGetObject (SMoniker, nil, IQTest, FIntf));
end;

end.

The only element in this unit that sets it apart from a standard Automation controller is the
means by which it creates the server object instance. Rather than using, for example, the
CoCreateInstance() COM API function, this client uses the CoGetObject () APL
CoGetObject () enables an object to be created via a moniker, and COM+ allows a special
string moniker syntax that can be used to invoke components in a queued manner. The general
syntax of this moniker is queue: /new: followed by the CLSID or program ID of the server
object. The following are all examples of properly formatted queue monikers:

queue:/new:Srv.IQTest
queue: /new: {64C576F0-C9A7 -420A-9EAB - 0BE98264BC9D}
queue:/new:64C576F0-C9A7 -420A-9EAB - 0BE98264BC9OD

There are also a number of queue moniker parameters that you can incorporate into the string
to modify the destination queue or queue behavior. The following list describes these moniker
parameters:

* ComputerName—The parameter’s value is the string name of the computer containing the
queue. Specifies the computer name portion of a queue pathname. If not specified, the
computer name associated with the configured application is used.

* QueueName—The parameter’s value is the string name of the queue on the target server
machine. Specifies the queue name. If not specified, the queue name associated with the
configured application is used.

e PathName—The queue pathname must be formatted as ComputerName\QueueName.
Specifies the complete queue pathname. If not specified, the queue pathname associated
with the configured application is used.

* FormatName—The parameter’s value is the format name of queue, for example,
DIRECT=9CA3600F - 7E8F - 11D2 -88C5 - 00ABC90AB40QE. Specifies the queue format name.

* AppSpecific—For example, AppSpecific=8675309. An unsigned integer design for
application-specific use.

895

1

(o]

1N3INdO13INIQ
TVNOILOVSNVY |

896

Enterprise Development
PART V

* AuthLevel—MQMSG_AUTH_LEVEL_NONE (0) or MGMSG_AUTH_LEVEL_ALWAYS (1). Specifies
the message authentication level. An authenticated message is digitally signed and
requires a certificate for the user sending the message.

* Delivery—MQMSG_DELIVERY_EXPRESS (0) or MQMSG_DELIVERY_RECOVERABLE (1).
Specifies the message delivery option. Ignored for transacted queues.

* EncryptAlgorithm—CALG_RC2, CALG_RC4, or other integer value recognized by COM+
as an identifier representing an acceptable encryption algorithm. Specifies the encryption
algorithm to be used by COM+ to encrypt and decrypt the message.

* HashAlgorithm—CALG_MD2, CALG_MD4, CALG_MD5, CALG_SHA, CALG_SHA1, CALG_MAC,
CALG_SSL3_SHAMD5, CALG_HMAC, CALG_TLS1PRF, or other integer value recognized by
COM+ as acceptable. Specifies a cryptographic hash function.

* Journal—MQMSG_JOURNAL_NONE (0), MQMSG_DEADLETTER (1), or MQMSG_JOURNAL (2).
Specifies the COM+ queue message journal option.

* Label—Any string. Specifies a message label string up to MQ_MAX_MSG_LABEL_LEN
characters.

* MaxTimeToReachQueue—INFINITE, LONG_LIVED, or an integer value indicating a specific
number of seconds. Specifies a maximum time, in seconds, for the message to reach the
queue.

* MaxTimeToReceive—INFINITE, LONG_LIVED, or an integer value indicating a specific
number of seconds. Specifies a maximum time, in seconds, for the message to be
received by the target application.

e Priority—MQ_MIN_PRIORITY (0), Q_MAX_PRIORITY (7), MQ_DEFAULT PRIORITY (3), or
any integer between 0 and 7. Specifies a message priority level, within the MSMQ values
permitted.

* PrivLevel—MQMSG_PRIV_LEVEL_NONE, NONE, MOMSG_PRIV_LEVEL_BODY, BODY,

MQMSG_ PRIV LEVEL_BODY BASE, BODY BASE, MQMSG PRIV LEVEL_BODY ENHANCED, or
BODY_ENHANCED. Specifies the privacy level that is used to encrypt messages.

* Trace—NMQMSG_TRACE_NONE (0) or QMSG_SEND_ROUTE_TO REPORT_QUEUE (1). Specifies

trace options, used in tracing COM+ queue routing.

Using some of these options, other valid queue monikers might be

queue:Priority=6,ComputerName=foo/new: {64C576F0-COA7 -420A-9EAB-0BE98264BC9D}
queue:PathName=drevil\myqueue/new: {64C576F0-C9A7 -420A-9EAB - 0BE98264BC9D}

Running the Server
After invoking the client and typing a few strings into the edit, you can check for yourself on
your hard disk, and you will see that the file c: \queue.txt isn’t present on your hard disk.

Transactional Development with COM+/MTS

CHAPTER 18

That is because the server application needs to start running before queued messages will be
played back. Three ways to start the server are as follows:

1. Manually—Using the Component Services tool. This can be done simply by selecting
Start from the local menu of the application node in the tree.

2. Programmatically—Using the COM+ Administration Library APL.

3. Scheduled—Using scripting. This can be done using a script similar to the following in

the task scheduler:

dim cat

set cat = CreateObject("COMAdmin.COMAdminCatalog");
cat.StartApplication("YourApplication");

After starting the application, you will see the c:\queue.txt file present on your hard disk. Its

contents will look something like this:

Send time: 7/6/2001 7:15:08 AM
Write time: 7/6/2001 7:15:18 AM
Message: this is a test

Send time: 7/6/2001 7:15:10 AM

Write time: 7/6/2001 7:15:18 AM
Message: this is another

Object Pooling

You might remember that wacky CanBePooled() method of I0bjectControl that MTS simply
ignored. The good news is that CanBePooled () is no longer ignored, and COM+ does support
object pooling. Object pooling provides the ability to keep a pool of some particular number of
instances of a particular object, and have the objects in this pool used by multiple clients.
Similar to JIT activation, the goal is to increase overall throughput of the system. However, JIT
activation carries the assumption that objects aren’t expensive to create or destroy (because it is
done frequently). If an object is expensive to create or destroy, it makes more sense to keep
instances around after their creation by pooling them.

A number of limitations are imposed on objects that want to support pooling. These include

* The object must be stateless so that it maintains no instance-specific data between

method calls.

* The object must have no thread affinity. That is, they shouldn’t be bound to any particu-
lar thread and they shouldn’t use thread local storage (TLS, or “threadvar” variables in

the Delphi world).
e The object must be aggregatable.

897

1

(o]

1N3INdOT13IAIQg
TVNOILOVSNVY |

898

Enterprise Development
PART V

* Resources must be manually enlisted in transactions. The resource manager cannot auto-
matically enlist resources on the object’s behalf.

* The object must implement IObjectControl.

Events

Delphi developers don’t need to be sold on the importance of events. How else would we know
when a button was clicked or a record posted? However, although COM developers have also
been aware of the importance of events, they often avoided them because of the complexity of
implementation. COM+ introduces a new event model, which—thank heavens—isn’t tied to
the Byzantine connection points model that has been common in COM to this point.

The typical picture we imagine when we think about the relationship between COM client and
server objects is fairly linear; clients invoke methods on servers and servers do useful things in
response to the client call and optionally provide some data back to the client in the form of a
return value and out parameters. It’s probably true that this relationship is an accurate represen-
tation of probably more than 90% of COM client/server interactions, but you don’t have to be a
COM guru to realize that this model is limited, particularly with regard to clients having the
ability to be quickly updated when some server data changes.

The simplest way to obtain such a notification would be for clients to poll servers on a periodic
basis in order to check whether the information in which they’re interested changes. However,
the disadvantages of polling are pretty self-evident; clients waste a lot of cycles sending polls,
servers likewise waste a lot of clocks responding to polls, extraneous network traffic can be
generated, and the overall scalability of the system is diminished to the sum of all this
increased load on client, server, and wire.

More desirable, but still low tech, is a system whereby clients can pass servers one or more
predefined interfaces to call back on when the information in question changes. However, this
system essentially has to be re-invented for every different interface you want to use, and it is
incumbent upon the server to write specialized code to track multiple client connections.

Traditional COM provides a more efficient and structured solution to this problem, called
events. This solution involves the use of the connection points, which provide servers with the
capability to track clients that want to be notified of information changes as well as the means
for servers to call client methods to make the notifications. Connection points are an example
of what is known as a tightly coupled event (TCE) system. In a TCE system, clients and servers
are mutually aware of the other’s identity. Additionally, TCE systems require that clients and
servers be running simultaneously, and they provide no means for filtering of events. The con-
nection point system also has the inherent disadvantages because it is rather complex to imple-
ment and use, and clients are forced to implement entire event interfaces, even if they are only
interested in a single method of the interface.

Transactional Development with COM+/MTS
CHAPTER 18

COM+ contains a new event system that solves some of these problems and adds some nice
additional features. The COM+ event model is known as a Loosely Coupled Event (LCE) sys-
tem. It is referred to as such because there is no hard connection between servers (known as
event publishers) and clients (known as event subscribers). Instead, publishers register with the
COM+ catalog the events they want to publish, and subscribers separately register with the
COM+ catalog the events in which they are interested. When a publisher fires an event, the
COM+ runtime reviews its database to determine which clients should receive an event notifi-
cation and sends the notification to those clients. What’s more, clients don’t even have to be
running when the event is fired; COM will activate clients upon invocation of the event.
Additionally, the event registration model supports method-level granularity. This means that
subscribers aren’t forced to implement methods for events for which they have no interest.
Figure 18.8 provides an illustration of the COM+ event system.

Administration

COM+ Event System
Registration A 4 A 4 Registration
> <

> <
Event Publisher | Creation Event Class |-10Sa100 ol o pscription Invocation o | Event Subscriber
Invocation

Y

FIGURE 18.8

The COM+ event system architecture.

As Figure 18.8 shows, the process begins when the publisher registers a new event

class. This can be done using the Component Services administration tool or using the
ICOMAdminCatalog.InstallEventClass() method. Once registered, the object that imple-
ments the event class will reside in the COM+ runtime. The publisher or another object can
then call the CoCreateInstance() COM API call to create an instance of this object and call
methods on this object to fire events.

On the subscriber side, the subscriber can register for an event class permanently, using the
Component Services administration tool, or in a transient manner using the COM admin cata-
log API. Permanent subscription means that the subscribing component doesn’t need to be
active when the event fires; the COM+ runtime will automatically create the component before
invoking the event. Transient subscriptions are intended for already active components that
want to receive event notifications only temporarily. When the publisher fires an event, COM+
will iterate over all the registered subscribers, invoking the event on each. Note that it isn’t
possible to determine the order in which COM+ will iterate over the clients when invoking an

899

1

(o]

1N3INdOT13IAIQg
TVNOILOVSNVY |

900

Enterprise Development
PART V

event. However, it is possible to gain some control over the firing of events using event filters,
which we describe in more detail later.

Speaking practically, creating a COM+ event can be boiled down to a five-step process:

Creating an event class server
Registering and configuring the event class server
Creating a subscriber server

Registering and configuring the subscriber servers

M

Publishing of events

We’ll take these steps one at a time to demonstrate a Delphi implementation of COM+ events.

Creating an Event Class Server

The first step to creating an event class server is to create an in-process COM server to which
you will add a COM object. The important distinction to bear in mind between creating an
event class server and creating a regular COM server is that an event class server carries with it
no implementation—it only serves as a vehicle for definition of the event class.

You create an event class server in Delphi by using the ActiveX Library wizard to create a new
COM server DLL and the Automation Object wizard to generate the event class and interface.
Call this object EventObj. The wizards leave you off in the Type Library Editor in order to
complete the definition of the server, where you add a method called MyEvent to the IEventObj
interface that will serve as the event method. The implementation file produced for this type
library is shown in Listing 18.3.

LisTING 18.3 PubMain.pas—The Main Unit for an Event Class Server

unit PubMain;
interface

uses
ComObj, ActiveX, Publisher_TLB, StdVcl;

type
TEventObj = class(TAutoObject, IEventObj)
protected
function MyEvent(const EventParam: WideString): HResult; safecall;
end;

implementation

Transactional Development with COM+/MTS

CHAPTER 18

LisTING 18.3 Continued

uses ComServ;

function TEventObj.MyEvent(const EventParam: WideString): HResult;
begin

end;

initialization
TAutoObjectFactory.Create(ComServer, TEventObj, Class_EventObj,
ciMultiInstance, tmApartment);
end.

That’s all there is to creating the event class server. Note that it’s not necessary to register this
server. Registration is handled specially, and we discuss it in the next step.

Registration and Configuration of the Event Class Server

In this phase, we will again make use of the Component Services administration tool. You’ll
use this tool often as you develop COM+ applications. You’ll find this tool in the
Administrative Tools group of the Programs section of the Start menu. The first thing you’ll
need to do in the Component Services administration tool is create a new COM+ application.
You can do this by selecting New, Application from the local menu of the COM+ Applications
node in the tree view on the left. This will invoke the COM+ Application Install Wizard as
shown in Figure 18.9. In this wizard, I choose to create a new application from scratch and call
it Delphi Event Demo.

welcome to the COM Application Install Wizard x|
Install or Creats a New Application \.‘
Please choose whether you want 1o install 2 pre-built application or create an 7
emply application B

@ Installpre-buit application(s).

£ 4

r&r Create an empty application
B

E

Computer: My Computer

< Back Nezt> Cancel

FIGURE 18.9

Using the Component Services tool to add a COM+ application.

901

1

(o]

1N3INdOT13IAIQg
TVNOILOVSNVY |

902

Enterprise Development
PART V

After the COM+ application has been installed, you can install the event class server into the
application. This is done by selecting New, Component from the local menu of the
Components node under the new application in the tree. This invokes the COM Component
Install Wizard, a frame of which is shown in Figure 18.10.

Welcome to the COM Component Install Wizard [x|

Impart or Install a Component ‘_‘
Plesse choose whelher you want 1 nsel new comsanent o et conponents |\

that are alieady registered.

Install new component(s).

Impott componentls) that are already registered

86

Istall new event class(ss)

Application Secuity Demo

Computer: My Computer

< Back Iext > Cancel

FIGURE 18.10

Using the Component Services tool to add a COM+ component.

In this wizard, install a new event class, and select the filename of the event class server that
was just created. With that done, it’s time to move on to the creation of the subscriber server.

Creation of a Subscriber Server

A subscriber server is essentially a standard Delphi Automation server. The only catch is that
you need to implement the event interface that you defined when creating the event class
server. We accomplish this by using the type library from the event class server in the subscriber
server and adding the IEventObj interface to the implements list of the co-class. Figure 18.11
shows the SubObj coclass, containing both ISubObj and IEventObj, and the implementation
file for this type library is shown in Listing 18.4.

LisTING 18.4 SubMain.pas—The Implementation Unit for the Event Server

unit SubMain;
interface

uses
ComObj, ActiveX, Subscriber_TLB, StdVcl, Publisher_TLB;

type
TSubObj = class(TAutoObject, ISubObj, IEventObj)
protected

Transactional Development with COM+/MTS
CHAPTER 18

LisTING 18.4 Continued

function MyEvent(const EventParam: WideString): HResult; safecall;
{ Protected declarations }
end;

implementation
uses ComServ, Windows;

function TSubObj.MyEvent(const EventParam: WideString): HResult;
begin
MessageBox (@, PChar(string(EventParam)), 'COM+ Event!', MB_OK);
Result := S_OK;
end;

initialization
TAutoObjectFactory.Create(ComServer, TSubObj, Class_SubObj,
ciMultiInstance, tmApartment);

end.
i
2o 4SS e S v | DH B
= ’;’ Py Attibutes | Flags | Tedt |
& MyEvent
& EventDb
l A
FiGURe 18.11

The 1EventObj interface in the type library editor.

You can see that the implementation of the event is quite earth shattering; a message box is
displayed showing a real, live text string! Again, there is no need to register this server as you
would a standard COM server. That housekeeping is handled in the next step.

Registration and Configuration of the Subscriber Servers
To register the subscriber server, reopen the Component Services administration tool, and
choose New, Component from the local menu just as you did for the event class server. The

903

1N3INdO13AIQg 00
TVNOILOVSNVY |

904

Enterprise Development
PART V

difference is that this time you should choose to install a new component in the COM
Component Install Wizard and select the subscriber DLL.

After the subscriber server is installed, you can create a new subscription for the subscriber
server by selecting New, Subscription from the Subscriptions node under your new subscriber
server. This brings up the New Subscription Wizard, which allows you to define the correlation
between the publisher and subscriber interfaces or methods. In this case, select IEventObj for
the subscriber method(s) and Publisher.EventObj for the event class. Enter Subscription of
Doom as the name of this subscription and choose to enable the server immediately, as shown in
Figure 18.12.

Welcome to the COM New Subscription Wizard x|
Subscription Dptions ‘ﬁ

Set the subscription properties. A
2

Enter a name for the new subscription

ISubscnptiun of Doom

Publisher D:

Option:
[IV Enable this subscription immediatel

< Back I Mext > I Cancel

FIGURE 18.12

Subscription wizard in the Component Services tool.

Figure 18.13 shows the complete COM+ application definition as shown in the Component
Services administration tool.

Publishing of Events

The setup is now complete, so all that is left is to publish the event by creating an instance of
the EventObj class and calling the IEventObj.MyEvent method. The simplest way to do this is
in a simple test application, as shown in Listing 18.5.

LisTING 18.5 TestU.pas—Unit to Fire the Loosely Coupled Event

unit TestU;

interface

Transactional Development with COM+/MTS

CHAPTER 18

LisTING 18.5 Continued

905

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
Publisher TLB, StdCtrls;

type
TForm1 = class(TForm)
Buttoni: TButton;
procedure ButtoniClick(Sender: TObject);
private
FEvent: IEventObj;
end;

var
Form1: TFormi;

implementation
uses ComObj, ActiveX;
{$R *.DFM}

procedure TForm1.ButtoniClick(Sender: TObject);

begin
OleCheck(CoCreateInstance(CLASS_EventObj, nil, CLSCTX_ALL, IEventObj,
FEvent));
FEvent.MyEvent('This is a clever string');
end;
end.

Figure 18.14 shows the result of pushing the magic button. Note that the event subscriber is
created automatically by COM+ and the event handler code is executed.

You might notice that COM+ takes a few moments to invoke the event the first time through.

This is because of the fairly substantial amount of internal infrastructure that needs to be
loaded in order to fire COM+ events. The bottom line here is that you shouldn’t depend on
events being fired back to subscribers in real time. They’ll get there soon, but not instantly.

1

(o]

1N3INdO13INIQ
TVNOILOVSNVY |

906

Enterprise Development
PART V

JRT=IEY
1% Console Window Help |;|i|5|

Tree | Delphi Event Demo

T SRR 0000 | il
(] Companents _l |_,

£ @ Publisher,Eventob; Components Rales
-] Interfaces
3@ IEventobj
-] Methods
B MyEvent
[subscriptions
@ Subscriber.5ubobj
-] Interfaces
= 3@ IEventobj
-] Methods
B MyEvent
= 3@ 1subobj
[Methods
=[] Subscriptions
@3 Subscription of Doom

ks [roles 4|

FIGURE 18.13

Event demo application in the Component Services tool.

COM-+ Eventl SPH |

This s a clever string

FiIGURE 18.14

Event demo application in action.

Beyond the Basics

Although this information provides a solid grounding in the fundamentals of the COM+ event
model, there are a couple of powerful features that a we’d like to mention. The first is queued
events. Queued events are the synthesis of COM+ events and queued components (MSMQ
components in pre-COM+ days). Essentially, this functionality provides the capability to fire
events to disconnected components, and those events can be played back at a later time. The
other advanced topic worthy of mention is event filters, which come in two flavors: publisher
filters and parameter filters. Publisher filters provide a means for publishers to control the
order and firing of an event method by an event class. Parameter filters enable the publisher to
intercept events based on the value of the parameters of that event.

Runtime

You can think of the COM+ runtime a as essentially the COM you already know and love. The
COM+ runtime is comprised of all the various COM API functions (you know, all those func-
tions that start with Co. ..) and the underlying code that makes those functions go. The runtime
handles things like object creation and lifetime, marshaling, proxies, memory management,

Transactional Development with COM+/MTS

CHAPTER 18

and all the other low-level things that make up the foundation of COM+. In order to support
many of the nifty services you just learned about, Microsoft has added a number of new fea-
tures to the COM+ runtime, including configured components, a registration database, the pro-
motion of the contexts concept, and a new neutral threading model.

Registration Database (RegDB)

In COM, the attributes of a particular COM object are generally kept in two places: the system
registry and a type library. COM+ now introduces the concept of a registration database that
will be used to hold attribute information for COM+ object. Type libraries will continue to be
used, but the system registry has distinctly fallen out of favor as the place to store object attrib-
utes, and use of the registry for this purpose is supported only for the sake of backward com-
patibility. Common attributes stored in the RegDB include the transaction level supported by
an object and whether it supports JIT activation.

Configured Components

Components that store attributes in RegDB are referred to as configured components, whereas
components that don’t are called non-configured. The best example of a non-configured com-
ponent is a COM or MTS component that you are using unchanged in the COM+ environment.
In order to participate in most of the services we mentioned earlier, your components will need
to be configured.

Contexts

Contexts is a term originally introduced in MTS that described the state of the current execu-
tion environment of a given component. Not only has this term moved forward in COM+, but
also it has been promoted. In COM, an apartment is the most granular description of the run-
time context of a given object, referring to an execution context bounded by a thread or
process. In COM+ that honor goes to a context, which runs within some particular apartment.
A context implies a description on a more granular level than an apartment, such as transaction
and activation state.

Neutral Threading

COM+ introduces a new threading model, known as Thread Neutral Apartment (TNA). TNA is
designed to provide the performance and scalability benefits of a free threaded object without
the programming problems of dealing with interlocking access to shared data and resources
within the server. TNA is the preferred threading model for COM+ components that don’t sur-
face Ul elements. Components containing UI should continue to use apartment threading
because window handles are tied to a specific thread. There is a limitation of one TNA per
process.

907

1

(o]

1N3INdOT13IAIQg
TVNOILOVSNVY |

908

Enterprise Development
PART V

Creating COM+ Applications

With all the knowledge of individual COM+ features under your belt, now is a good time to
learn more about creating applications that leverage COM+ features such as transactions, life-
time management, and shared resources.

The Goal: Scale

The magic word of system design these days is scalability. With the hyper-growth of the
Internet (intranets, extranet, and all other things net), the consolidation of corporate data into
centrally-located data stores, and the need for everyone and their cousin to get at the data, it’s
absolutely crucial that systems be able to scale to ever larger numbers of concurrent users. It’s
definitely a challenge, especially considering the rather unforgiving limitations we must deal
with, such as finite database connections, network bandwidth, server load, and so on. In the
good old days of the early 90s, client/server computing was all the rage and considered “The
Way” to write scalable applications. However, as databases were bogged down with triggers
and stored procedures and clients were complicated with various bits of code here and there in
an effort to implement business rules, it shortly became obvious that such systems would never
scale to a large number of users. The multitier architecture soon became popular as a way to
scale a system to a greater number of users. By placing application logic and sharing database
connections in the middle tier, database and client logic could be simplified and resource usage
optimized for an overall higher-bandwidth system.

NoTE

The added infrastructure introduced in a multitier environment tends to increase
latency as it increases bandwidth. In other words, you might very well need to sacri-
fice the performance of the system in order to improve scalability!

Execution Context

It’s important to bear in mind that because COM+ object don’t run directly within the context
of a client like other COM objects, clients never really obtain interface pointers directly to an
object instance. Instead, COM+ inserts a proxy between the client and the COM+ object such
that the proxy is identical to the object from the client’s point of view. However, because
COM+ has complete control over the proxy, it can control access to interface methods of the
object for purposes such as lifetime management and security, as you will soon learn.

Transactional Development with COM+/MTS

CHAPTER 18

Stateful Versus Stateless

The number one topic of conversation among folks looking at, playing with, and working on
COM+ technology seems to be the discussion of stateful versus stateless objects. Although
COM itself doesn’t give a whit as to the state of an object, in practice most traditional COM
objects are stateful. That is, they continuously maintain state information from the time that
they’re created, while they’re being used, and up until the time that they’re destroyed. The
problem with stateful objects is that they aren’t particularly scalable because state information
would have to be maintained for every object being accessed by every client. A stateless object
is one that generally doesn’t maintain state information between method calls. COM+ prefers
stateless objects because they enable COM+ to play some optimization tricks. If an object
doesn’t maintain any state between method calls, COM+ could theoretically make the object
go away between calls without causing any harm. Furthermore because the client maintains
pointers only to COM+’s internal proxy for the object, COM+ could do so without the client
being any the wiser. It’s more than a theory; this is actually how COM+ works. COM+ will
destroy the instances of the object between calls in order to free up resources associated with
the object. When the client makes another call to that object, the COM+ proxy will intercept it
and a new instance of the object will be created automatically. This helps the system scale to a
larger number of users because there will likely be comparatively few active instances of a
class at any given time.

Writing interfaces to behave in a stateless manner will probably require a slight departure from
your usual way of thinking for interface design. For example, consider the following classic
COM-style interface:

ICheckbook = interface
['{2CCF0409-EE29-11D2-AF31-0000861EFQOBB} ']
procedure SetAccount(AccountNum: WideString); safecall;
procedure AddActivity(Amount: Integer); safecall;
end;

As you might imagine, you would use this interface in a manner something like this:

var
CB: ICheckbook;
begin
CB := SomehowGetInstance;
CB.SetAccount('12345ABCDE"'); // open my checking account
CB.AddActivity(-100); // add a debit for $100
end;

The problem with this style is that the object isn’t stateless between method calls because state
information regarding the account number must be maintained across the call. A better

909

1

(o]

1N3INdOT13IAIQg
TVNOILOVSNVY |

910

Enterprise Development
PART V

approach to this interface for use in COM+ would be to pass all the necessary information to
the AddActivity () method so that the object could behave in a stateless manner:

procedure AddActivity(AccountNum: WideString; Amount: Integer); safecall;

The particular state of an active object is also referred to as a context. COM+ maintains a con-
text for each active object that tracks things like security and transaction information for the
object. An object can at any time call GetObjectContext () to obtain an I0bjectContext inter-
face pointer for the object’s context. I0bjectContext is defined in the Mtx unit as

IObjectContext = interface(IUnknown)
['{51372AEQ-CAE7 -11CF -BE81 - 00AAQQA2FA25} ']
function CreatelInstance(const cid, rid: TGUID; out pv): HResult; stdcall;
procedure SetComplete; safecall;
procedure SetAbort; safecall;
procedure EnableCommit; safecall;
procedure DisableCommit; safecall;
function IsInTransaction: Bool; stdcall;
function IsSecurityEnabled: Bool; stdcall;
function IsCallerInRole(const bstrRole: WideString): Bool; safecall;
end;

The two most important methods in this interface are SetComplete() and SetAbort (). If either
of these methods are called, the object is telling COM+ that it no longer has any state to main-
tain. COM+ will therefore destroy the object (unbeknown to the client, of course), thereby
freeing up resources for other instances. If the object is participating in a transaction,
SetComplete() and SetAbort () also have effect of a commit or rollback for the transaction,
respectively.

Lifetime Management

From the time we were tiny COM programmers, we were taught to hold on to interface point-
ers only for as long as necessary and to release them as soon as they are unneeded. In tradi-
tional COM, this makes a lot of sense because we don’t want to occupy the system with
maintaining resources that aren’t being used. However, because COM+ will automatically free
up stateless objects after they call SetComplete () or SetAbort (), there is no expense associ-
ated with holding a reference to such an object indefinitely. Furthermore, because the client
never knows that the object instance might have been deleted under the sheets, clients don’t
have to be rewritten to take advantage of this feature.

COM+ Application Organization

Remember that a collection of COM+ components that share common configuration and attrib-
utes are referred to in the Component Services tools as an application. Prior to COM+ MTS,

Transactional Development with COM+/MTS

CHAPTER 18

used the word package to refer to what we now call applications, but we are happy with the
change in terminology—the term package was already overloaded enough, with Delphi pack-
ages, C++Builder packages, Oracle packages, and holiday gifts all coming to mind as exam-
ples of the overuse of this word.

By default, COM+ will run all components within a package in the same process. This enables
you to configure well behaved and error-free packages that are insulated from the potential
problems that could be caused by faults or errors in other packages. It is also interesting to
note that the physical location of components has no bearing on eligibility for package inclu-
sion; a single COM+ server can contain several COM+ objects, each in a separate package.

Applications can be created and manipulated using either the Run, Install COM+ Objects
menu in Delphi or the Component Services tool.

Thinking About Transactions

And of course, COM+ also does transactions. You might be thinking to yourself, “big deal, my
database server already supports transactions. Why do I need my components to support them
as well?” A fair question, and luckily we’re equipped with good answers. Transaction support
in COM+ can enable you to perform transactions across multiple databases or can even make a
single atomic action out of some set of operations having nothing to do with databases. In
order to support transactions on your COM+ objects, you must either set the correct transac-
tion flag on your object’s coclass in the type library during development (this is what the
Delphi Transactional Object wizard does) or after deployment in the Transaction Server
Explorer.

When should you use transactions in your objects? That’s easy: you should use transactions
whenever you have a process involving multiple steps that you want to make into a single,
atomic transaction. In doing so, the entire process can be either committed or rolled back, but
you will never leave your logic or data in an incorrect or indeterminate state somewhere in
between. For example, if you are writing software for a bank and you want to handle the case
in which a client bounces a check, there would likely be several steps involved in handling
that, including

¢ debiting the account for amount of check
* debiting the account for bounced check service charge
* sending a letter to the client
In order to properly process the bounced check, each of these things must happen. Therefore,

wrapping them in a single transaction would ensure that all will occur if no errors are encoun-
tered. All will roll back to their original pre-transaction state if an error occurs.

911

1

(o]

1N3INdO13INIQ
TVNOILOVSNVY |

912

Enterprise Development
PART V

Resources

With objects being created and destroyed all the time and transactions happening everywhere,
it’s important for COM+ to provide a means for sharing certain finite or expensive resources
(such as database connections) across multiple objects. COM+ does this using resource man-
agers and resource dispensers. A resource manager is a service that manages some type of
durable data, such as account balance or inventory. Microsoft provides a resource manager in
MS SQL Server. A resource dispenser manages non-durable resources, such as database con-
nections. Microsoft provides a resource dispenser for ODBC database connections, and
Borland provides a resource dispenser for BDE database connections.

When a transaction makes use of some type of resource, it enlists the resource to become a
part of the transaction so that all changes made to the resource during the transaction will par-
ticipate in the commit or rollback of the transaction.

COM-+ in Delphi

Now that you’ve got the “what” and “why”” down, it’s time to talk about the “how.” In particu-
lar we intend to focus on Delphi’s support of COM+ and how to build COM+ solutions in
Delphi. Before we jump right in, however, you should first know that COM+ support is built
only into the Client/Server version of Delphi. Although it’s technically possible to create
COM+ components using the facilities available in the Standard and Professional versions, we
wouldn’t consider it the most productive use of your time, so we intend to help you leverage
the features of Delphi to build COM+ applications.

COM+ Wizards

Delphi provides two wizards for building COM+ components: the Transactional Data Module
Wizard found on the Multitier tab of the New Items dialog box and the Transactional Object
Wizard found on the ActiveX tab. The Transactional Data Module Wizard enables you to build
MIDAS servers that operate in the COM+ environment. The Transactional Object Wizard will
serve as the starting point for your COM+ transactional objects, and it is this wizard upon
which I will focus my discussion. Upon invoking this wizard, you will be presented with the
dialog box shown in Figure 18.15.

This dialog box is similar to the Automation Object Wizard with which you are probably
already familiar based on your previous COM development experience in Delphi. The obvious
difference is the facility provided by this wizard to select the transaction model supported by
your COM+ component. The available transaction models are as follows:

* Requires a Transaction—The component will always be created within the context of a
transaction. It will inherit the transaction of its creator if one exists, or it will otherwise
create a new one.

Transactional Development with COM+/MTS
CHAPTER 18

e Requires a New Transaction—A new transaction will always be created for the compo-
nent to execute within.

e Supports Transactions—The component will inherit the transaction of its creator if one
exists, or it will execute without a transaction otherwise.

* Does Not Support Transactions—The component will never be created within a transac-
tion.

* Ignores Transactions—The component doesn’t care about the transaction context.

The transaction model information is stored along with the component’s co-class in the type

library.
New Transactional Dbject x|
Colass Name: |
Thieading Modek: [Apartment =]
Transaction modst
" Renquires a transaction
 Renquires a new iansaction
" Supports iansactions
¥ Does not support transactions
 Ignores Transactions
Options
’7 I~ Generate Event support code |
0k | Ccancel tep |

COM+ Transactional Object Wizard.

After you click OK to dismiss the dialog box, the wizard will generate an empty definition for a
class that descends from TMtsAutoObject and it will present the Type Library Editor in order to
define your COM+ components by adding properties, methods, interfaces, and so on. This should
be familiar territory because the workflow is identical at this point to developing automation
objects in Delphi. It’s interesting to note that, although the Delphi wizard-created COM+ objects
are automation objects (that is, COM objects that implement IDispatch), COM+ doesn’t techni-
cally require this. However, because COM inherently knows how to marshal IDispatch inter-
faces accompanied by type libraries, employing this type of object in COM+ enables you to
concentrate more on your components’ functionality and less on how they integrate with COM+.
You should also be aware that COM+ components must reside in in-process COM servers
(.DLLs); COM+ components aren’t supported in out-of-process servers (.EXEs).

COM+ Framework

The aforementioned TMtsAutoObject class, which is the base class for all Delphi wizard-
created COM+ objects, is defined in the MtsObj unit. TMtsAutoObject is a relatively straight-
forward class that is defined as follows:

913

1

(o]

1N3INdOT13IAIQg
TVNOILOVSNVY |

Enterprise Development

914
PART V
type
TMtsAutoObject = class(TAutoObject, IObjectControl)
private
FObjectContext: IObjectContext;
protected

{ IObjectControl }

procedure Activate; safecall;
procedure Deactivate; stdcall;
function CanBePooled: Bool; stdcall;

procedure OnActivate; virtual;

procedure OnDeactivate; virtual;

property ObjectContext: IObjectContext read FObjectContext;
public

procedure SetComplete;

procedure SetAbort;

procedure EnableCommit;

procedure DisableCommit;

function IsInTransaction: Bool;

function IsSecurityEnabled: Bool;

function IsCallerInRole(const Role: WideString): Bool;
end;

TMtsAutoObject is essentially a TAutoObject that adds functionality to manage initialization,
cleanup, and context.

TMtsAutoObject implements the I0bjectControl interface, which manages initialization and
cleanup of COM+ components. The methods of this interface are as follows:

Activate ()—Allows an object to perform context-specific initialization when activated.
This method will be called by COM+ prior to any custom methods on your COM+ com-
ponent.

Deactivate ()—Enables you to perform context-specific cleanup when an object is deac-
tivated.

CanBePooled()—Was unused in MTS, but is supported in COM+, as described earlier in
this chapter.

TMtsAutoObject provides virtual OnActivate() and OnDeactivate () methods, which are fired
from the private Activate() and Deactivate () methods. Simply override these to create spe-
cial context-specific activation or deactivation logic.

TMtsAutoObject also maintains a pointer to COM+’s I0bjectContext interface in the form of
the ObjectContext property. As a shortcut for users of this class, TMtsAutoObject also sur-
faces each of I0bjectContext's methods, which are implemented to simply call into

Transactional Development with COM+/MTS

CHAPTER 18

ObjectContext. For example, the implementation of TMtsAutoObject’s SetComplete ()
method simply checks FObjectContext for nil and then calls
FObjectContext.SetComplete().

The following is a list of I0bjectContext’s methods and a brief explanation of each:

CreateInstance()—Creates an instance of another COM+ object. You can think of this
method as performing the same task for COM+ objects as
IClassFactory.CreateInstance() does for normal COM objects.

SetComplete ()—Signals to COM+ that the component has completed whatever work it
needs to do and no longer has any internal state to maintain. If the component is transac-
tional, it also indicates that the current transactions can be committed. After the method
calling this function returns, COM+ might deactivate the object, thereby freeing up
resources for greater scalability.

SetAbort ()—Similar to SetComplete (), this method signals to COM+ that the compo-
nent has completed work and no longer has state information to maintain. However, call-
ing this method also means that the component is in an error or indeterminate state and
any pending transactions must be aborted.

EnableCommit ()—Indicates that the component is in a “committable” state, such that
transactions can be committed when the component calls SetComplete (). This is the
default state of a component.

DisableCommit ()—Indicates that the component is in an inconsistent state, and further
method invocations are necessary before the component will be prepared to commit
transactions.

IsInTransaction()—Enables the component to determine whether it is executing
within the context of a transaction.

IsSecurityEnabled()—Allows a component to determine whether COM+ security is
enabled. This method always returns True unless the component is executing in the
client’s process space.

IsCallerInRole()—Provides a means by which a component can determine whether
the user serving as the client for the component is a member of a specific COM+ role.
This method is the heart of COM+’s easy-to-use, role-based security system. We’ll speak
more on roles later.

The Mtx unit contains the core COM+ support. It is the Pascal translation of the mtx.h header
file, and it contains the types (such as IObjectControl and IObjectContext) and functions
that make up the COM+ APL

915

1

(o]

1N3INdO13INIQ
TVNOILOVSNVY |

916

Enterprise Development
PART V

Tic-Tac-Toe: A Sample Application

That’s enough theory. Now it’s time to write some code and see how all this COM+ stuff per-
forms on the open road. COM+ ships with a sample tic-tac-toe application that’s a bit on the
ugly side, so it inspired me to implement the classic game from the ground up in Delphi. To
start, you use the Transactional Object Wizard to create a new object called GameServer. Using
the Type Library Editor, add to the default interface for this object, IGameServer, three meth-
ods, NewGame (), ComputerMove (), and PlayerMove (). Additionally, add two new enums,
SkilllLevels and GameResults, that are used by these methods. Figure 18.16 shows all these
items displayed in the Type Library Editor.

Bermmserverdh___________ =
PO DS LS|40 DH T-

Ee%
E.Wmamesﬁve. Aebutes | Uses | Flags | Teu |

& NewGame
& Playeriove

Mame: [TTTSemver

& Computenos GUID: [(EANZARADFOU711D2AF 31 000BE EFOBE)
& GameServer .
B4 Skillevels ersion: [0
sllinconcious Lei [
* slwake
B4 GemeRssults Help

ginProgiess Help Stiing |Fm|ecn Library
* aTie

* giPlayerwin Help Context: |
* aComputerwin

Help Stiing Contest: |

Help Sting DLL: |

Help File: |

FIGURE 18.16
Tic-Tac-Toe server in the Type Library Editor.

The logic behind the three methods of this interface is simple, and they make up the require-
ments to support a game of human versus computer tic-tac-toe. NewGame initializes a new game
for the client. ComputerMove analyzes the available moves and makes a move for the computer.
PlayerMove enables the client to let the computer know how he has chosen to move. Earlier,
we mentioned that COM+ component development requires a frame of mind different from the
development of standard COM components. This component offers a nice opportunity to illus-
trate this fact.

If this were your average, everyday, run-of-the-mill COM component, you might approach the
design of the object by initializing some data structure to maintain game state in the NewGame ()
method. That data structure would probably be an instance field of the object, which the other

methods would access and manipulate throughout the life of the object.

Transactional Development with COM+/MTS

CHAPTER 18

What'’s the problem with this approach for a COM+ component? One word: state. As you
learned earlier, object must be stateless in order to realize the full benefit of COM+. However,
a component architecture that depends on instance data to be maintained across method calls is
far from stateless. A better design for COM+ would be to return a handle identifying a game
from the NewGame () method and using that handle to maintain per-game data structures in
some type of shared resource facility. This shared resource facility would need to be maintained
outside the context of a specific object instance because COM+ might activate and deactivate
object instances with each method call. Each of the other methods of the component could
accept this handle as a parameter, enabling it to retrieve game data from the shared resource
facility. This is a stateless design because it doesn’t require the object to remain activated
between method calls and because each method is a self-contained operation that gets all the
data it needs from parameters and a shared data facility.

This shared data facility is known as a resource dispenser in COM+. Specifically, the

Shared Property Manager is the COM+ resource dispenser used to maintain component-
defined, process-wide shared data. The Shared Property Manager is represented by the
ISharedPropertyGroupManager interface. The Shared Property Manager is the top level

of a hierarchical storage system, maintaining any number of shared property groups, which

are represented by the ISharedPropertyGroup interface. In turn, each shared property group
can contain any number of shared properties, represented by the ISharedProperty interface.
Shared properties are convenient because they exist within COM+, outside the context of any
specific object instance, and access to them is controlled by locks and semaphores managed by
the Shared Property Manager.

With all that in mind, the implementation of the NewGame () method is shown in the following
listing:

procedure TGameServer.NewGame(out GameID: Integer);
var
SPG: ISharedPropertyGroup;
SProp: ISharedProperty;
Exists: WordBool;
GameData: OleVariant;
begin
// Use caller's role to validate security
CheckCallerSecurity;
/| Get shared property group for this object
SPG := GetSharedPropertyGroup;
/| Create or retrieve NextGameID shared property
SProp := SPG.CreateProperty('NextGameID', Exists);
if Exists then GameID := SProp.Value
else GameID := 0;
// Increment and store NextGameID shared property

917

1

(o]

1N3INdO13INIQ
TVNOILOVSNVY |

918

Enterprise Development
PART V

SProp.Value := GameID + 1;
// Create game data array
GameData := VarArrayCreate([1, 3, 1, 3], varByte);
SProp := SPG.CreateProperty(Format(GameDataStr, [GameID]), Exists);
SProp.Value := GameData;
SetComplete;
end;

This method first checks to ensure that the caller is in the proper role to invoke this method
(more on this in a moment). It then uses a shared property to obtain an ID number for the next
game. Next, this method creates a variant array into which to store game data and saves that
data as a shared property. Finally, this method calls SetComplete () so that COM+ knows it’s
okay to deactivate this instance after the method returns.

This leads us to the number one rule of COM+ development: call SetComplete () or SetAbort()
as often as possible. Ideally, you will call SetComplete() or SetAbort() in every method so
that COM+ can reclaim resources previously consumed by your component instance after the
method returns. A corollary to this rule is that object activation and deactivation shouldn’t be
expensive because that code is likely to be called quite frequently.

The implementation of the CheckCallerSecurity () method illustrates how easy it is to take
advantage of role-based security in COM+:

procedure TGameServer.CheckCallerSecurity;
begin
// Just for fun, only allow those in the "TTT" role to play the game.
if IsSecurityEnabled and not IsCallerInRole('TTT') then
raise Exception.Create('Only those in the TTT role can play tic-tac-toe');
end;

This code raises the obvious question, “how does one establish the TTT role and determine
what users belong to that role?”” Although it’s possible to define roles programmatically, the
most straightforward way to add and configure roles is using the Transaction Server Explorer.
After the component is installed (you’ll learn how to install the component shortly), you can
set up roles using the Roles node found under each package node in the Explorer. It’s impor-
tant to note that roles-based security is supported only for components running on Windows
NT. For components running on Windows 9x/Me, IsCallerInRole() will always return True.

The ComputerMove () and PlayerMove () methods are shown here:

procedure TGameServer.ComputerMove (GameID: Integer;

Skilllevel: SkilllLevels; out X, Y: Integer; out GameRez: GameResults);
var

Exists: WordBool;

Propval: OleVariant;

Transactional Development with COM+/MTS

CHAPTER 18

GameData: PGameData;
SProp: ISharedProperty;
begin
// Get game data shared property
SProp := GetSharedPropertyGroup.CreateProperty(Format(GameDataStr, [GamelD]),
Exists);
// Get game data array and lock it for more efficient access
PropVal := SProp.Value;
GameData := PGameData(VarArrayLock(Propval));
try
// If game isn't over, then let computer make a move
GameRez := CalcGameStatus(GameData);
if GameRez = grInProgress then
begin
CalcComputerMove (GameData, SkilllLevel, X, Y);
// Save away new game data array
SProp.Value := PropVal;
// Check for end of game

GameRez := CalcGameStatus(GameData);
end;
finally
VarArrayUnlock (Propval);
end;
SetComplete;

end;

procedure TGameServer.PlayerMove (GameID, X, Y: Integer;
out GameRez: GameResults);
var
Exists: WordBool;
PropVal: OleVariant;
GameData: PGameData;
SProp: ISharedProperty;
begin
// Get game data shared property
SProp := GetSharedPropertyGroup.CreateProperty(Format(GameDataStr, [GamelD]),
Exists);
// Get game data array and lock it for more efficient access
PropVal := SProp.Value;
GameData := PGameData(VarArrayLock(Propval));
try
// Make sure game isn't over
GameRez := CalcGameStatus(GameData);
if GameRez = grInProgress then
begin
// If spot isn't empty, raise exception

919

1

(o]

1N3INdOT13IAIQg
TVNOILOVSNVY |

Enterprise Development
PART V

920

if GameData[X, Y] <> EmptySpot then
raise Exception.Create('Spot is occupied!');
// Allow move
GameData[X, Y] := PlayerSpot;
// Save away new game data array
SProp.Value := PropVal;
// Check for end of game

GameRez := CalcGameStatus(GameData);
end;
finally
VarArrayUnlock(Propval);
end;
SetComplete;
end;

These methods are similar in that they both obtain the game data from the shared property
based on the GameID parameter, manipulate the data to reflect the current move, save the data
away again, and check to see if the game is over. The ComputerMove () method also calls
CalcComputerMove () to analyze the game and make a move. If you’re interested in seeing this
and the other logic of this COM+ component, take a look at Listing 18.6, which contains the
entire source code for the ServMain unit.

LisTING 18.6 ServMain.pas—Containing TGameServer

unit ServMain;
interface

uses
ActiveX, MtsObj, Mtx, ComObj, TTTServer_TLB;

type
PGameData = "“TGameData;
TGameData = array[1..3, 1..3] of Byte;

TGameServer = class(TMtsAutoObject, IGameServer)
private
procedure CalcComputerMove (GameData: PGameData; Skill: SkilllLevels;
var X, Y: Integer);
function CalcGameStatus(GameData: PGameData): GameResults;
function GetSharedPropertyGroup: ISharedPropertyGroup;
procedure CheckCallerSecurity;
protected
procedure NewGame(out GameID: Integer); safecall;

Transactional Development with COM+/MTS

CHAPTER 18

LisTING 18.6 Continued

921

procedure ComputerMove(GameID: Integer; SkillLevel: SkilllLevels; out X,
Y: Integer; out GameRez: GameResults); safecall;
procedure PlayerMove(GameID, X, Y: Integer; out GameRez: GameResults);
safecall;
end;

implementation

uses ComServ, Windows, SysUtils;

const
GameDataStr = 'TTTGameData%d';
EmptySpot = 0;
PlayerSpot = $1;
ComputerSpot = $2;

function TGameServer.GetSharedPropertyGroup: ISharedPropertyGroup;
var
SPGMgr: ISharedPropertyGroupManager;
LockMode, RelMode: Integer;
Exists: WordBool;
begin
if ObjectContext = nil then
raise Exception.Create('Failed to obtain object context');
// Create shared property group for this object
OleCheck(ObjectContext.CreateInstance (CLASS_SharedPropertyGroupManager,
ISharedPropertyGroupManager, SPGMgr));
LockMode := LockSetGet;
RelMode := Process;
Result := SPGMgr.CreatePropertyGroup('DelphiTTT', LockMode, RelMode, Exists);
if Result = nil then
raise Exception.Create('Failed to obtain property group');
end;

procedure TGameServer.NewGame (out GameID: Integer);
var
SPG: ISharedPropertyGroup;
SProp: ISharedProperty;
Exists: WordBool;
GameData: OleVariant;
begin
// Use caller's role to validate security
CheckCallerSecurity;

1

(o]

1N3INdO13INIQ
TVNOILOVSNVY |

922

Enterprise Development
PART V

LisTING 18.6 Continued

// Get shared property group for this object
SPG := GetSharedPropertyGroup;
/] Create or retrieve NextGameID shared property
SProp := SPG.CreateProperty('NextGameID', Exists);
if Exists then GameID := SProp.Value
else GamelID := 0;
// Increment and store NextGameID shared property
SProp.Value := GamelID + 1;
// Create game data array
GameData := VarArrayCreate([1, 3, 1, 3], varByte);
SProp := SPG.CreateProperty(Format(GameDataStr, [GameID]), Exists);
SProp.Value := GameData;
SetComplete;

end;

procedure TGameServer.ComputerMove (GameID: Integer;

Skilllevel: SkilllLevels; out X, Y: Integer; out GameRez: GameResults);
var

Exists: WordBool;

PropVval: OleVariant;

GameData: PGameData;

SProp: ISharedProperty;
begin

// Get game data shared property

SProp := GetSharedPropertyGroup.CreateProperty(Format(GameDataStr, [GamelD]),

Exists);

// Get game data array and lock it for more efficient access

PropVal := SProp.Value;

GameData := PGameData(VarArrayLock(PropVval));

try
// If game isn't over, then let computer make a move
GameRez := CalcGameStatus(GameData);
if GameRez = grInProgress then
begin
CalcComputerMove (GameData, SkilllLevel, X, Y);
// Save away new game data array
SProp.Value := PropVal;
// Check for end of game
GameRez := CalcGameStatus(GameData);
end;
finally
VarArrayUnlock (PropVal);
end;
SetComplete;

end;

Transactional Development with COM+/MTS

CHAPTER 18

LisTING 18.6 Continued

procedure TGameServer.PlayerMove (GameID, X, Y: Integer;
out GameRez: GameResults);
var
Exists: WordBool;
PropVal: OleVariant;
GameData: PGameData;
SProp: ISharedProperty;
begin
/] Get game data shared property
SProp := GetSharedPropertyGroup.CreateProperty(Format(GameDataStr, [GamelD]),
Exists);
// Get game data array and lock it for more efficient access
PropVal := SProp.Value;
GameData := PGameData(VarArrayLock(PropVval));
try
// Make sure game isn't over
GameRez := CalcGameStatus(GameData);
if GameRez = grInProgress then
begin
// If spot isn't empty, raise exception
if GameData[X, Y] <> EmptySpot then
raise Exception.Create('Spot is occupied!');
// Allow move
GameData[X, Y] := PlayerSpot;
// Save away new game data array
SProp.Value := PropVal;
// Check for end of game
GameRez := CalcGameStatus(GameData);
end;
finally
VarArrayUnlock(Propval);
end;
SetComplete;
end;

function TGameServer.CalcGameStatus(GameData: PGameData): GameResults;
var
I, J: Integer;
begin
// First check for a winner
if GameData[1, 1] <> EmptySpot then
begin
// Check top row, left column, and top left to bottom right diagonal for win

923

1

(o]

1N3INdO13INIQ
TVNOILOVSNVY |

Enterprise Development
PART V

924

LisTING 18.6 Continued

((GameData[1, 1] = GameData[1, 2]) and
GameData[1, 1] = GameData[1, 3])) or
(GameData[1, 1] = GameData[2, 1]) and
GameData[1, 1] = GameData[3, 1])) or
(GameData[1, 1] = GameData[2, 2]) and
(GameData[1, 1] = GameData[3, 3])) then
begin
Result := GameData[1, 1] + 1; // Game result is spot ID + 1
Exit;
end;
end;
if GameData[3, 3] <> EmptySpot then
begin
// Check bottom row and right column for win
if ((GameData[3, 3] = GameData[3, 2]) and
(GameData[3, 3] = GameData[3, 1])) or
((GameData[3, 3] = GameData[2, 3]) and
(GameData[3, 3] = GameData[1, 3])) then
begin
Result := GameData[3, 3] + 1; // Game result is spot ID + 1
Exit;
end;
end;
if GameData[2, 2] <> EmptySpot then
begin
// Check middle row, middle column, and bottom left to top right
// diagonal for win
if ((GameData[2, 2] = GameData[2, 1]) and
GameData[2, 2] = GameData[2, 3])) or
(GameData[2, 2] = GameData[1, 2]) and
GameData[2, 2] = GameData[3, 2])) or
(GameData[2, 2] = GameData[3, 1]) and
(GameData[2, 2] = GameData[1, 3])) then
begin
Result := GameData[2, 2] + 1; // Game result is spot ID + 1
Exit;
end;
end;
// Finally, check for game still in progress
for I :=1 to 3 do
for J :=1 to 3 do
if GameData[I, J] = @ then
begin
Result := grInProgress;
Exit;
end;

(
(
(
(

(
(
(
(

Transactional Development with COM+/MTS 925
CHAPTER 18
ListiNnG 18.6 Continued
// If we get here, then we've tied
Result := grTie;
end;
procedure TGameServer.CalcComputerMove (GameData: PGameData;
Skill: SkillLevels; var X, Y: Integer);
type
// Used to scan for possible moves by either row, column, or diagonal line
TCalcType = (ctRow, ctColumn, ctDiagonal);
// mtWin = one move away from win, mtBlock = opponent is one move away from
// win, mtOne = I occupy one other spot in this line, mtNew = I occupy no
// spots on this line
TMoveType = (mtWin, mtBlock, mtOne, mtNew);
var
CurrentMoveType: TMoveType;
function DoCalcMove(CalcType: TCalcType; Position: Integer): Boolean;
var
RowData, I, J, CheckTotal: Integer; 12;
Posval, Mask: Byte;
begin

Result := False;
RowData := 0;
X 1= 0;
Y = 0;
if CalcType = ctRow then
begin
I := Position;
J =1,
end
else if CalcType = ctColumn then
begin
I :=1;
J Position;
end
else begin
I :=1;
case Position of
1: J :=1; // scanning from top left to bottom right
2: J := 8; // scanning from top right to bottom left
else
Exit; // bail; only 2 diagonal scans
end;
end;

1N3INdO13INIQ
TVNOILOVSNVY |

Enterprise Development
PART V

926

LisTING 18.6 Continued

// Mask masks off Player or Computer bit, depending on whether we're
//thinking
// offensively or defensively. Checktotal determines whether that is a row
// we need to move into.
case CurrentMoveType of
mtWin:
begin
Mask := PlayerSpot;
CheckTotal := 4;
end;
mtNew:
begin
Mask := PlayerSpot;
CheckTotal := 0;
end;
mtBlock:
begin
Mask := ComputerSpot;
CheckTotal := 2;
end;
else
begin
Mask := 0;
CheckTotal := 2;
end;
end;
// loop through all lines in current CalcType
repeat
// Get status of current spot (X, O, or empty)
PosvVal := GameData[I, J];
// Save away last empty spot in case we decide to move here
if PosVal = @ then

begin
X 1= 1;
Y 1= J;
end
else

// If spot isn't empty, then add masked value to RowData
Inc(RowData, (PosVal and not Mask));
if (CalcType = ctDiagonal) and (Position = 2) then
begin
Inc(I);
Dec(J);
end

Transactional Development with COM+/MTS 927
CHAPTER 18
ListiNnG 18.6 Continued
else begin
if CalcType in [ctRow, ctDiagonal] then Inc(J);
if CalcType in [ctColumn, ctDiagonal] then Inc(I);
end;
until (I > 3) or (J > 3);
// If RowData adds up, then we must block or win, depending on whether
// we're thinking offensively or defensively.
Result := (X <> 0) and (RowData = CheckTotal);
if Result then
begin
GameData[X, Y] := ComputerSpot;
Exit;
end;
end;
var
A, B, C: Integer;
begin
if Skill = slAwake then 18
begin

// First look to win the game, next look to block a win
for A := Ord(mtWin) to Ord(mtBlock) do
begin

CurrentMoveType := TMoveType(A);

for B := Ord(ctRow) to Ord(ctDiagonal) do

for C := 1 to 3 do
if DoCalcMove(TCalcType(B), C) then Exit;

end;
// Next look to take the center of the board
if GameData[2, 2] = @ then

begin
GameData[2, 2] := ComputerSpot;
X 1= 2;
Y 1= 2;
Exit;
end;

// Next look for the most advantageous position on a line
for A := Ord(mtOne) to Ord(mtNew) do
begin
CurrentMoveType := TMoveType(A);
for B := Ord(ctRow) to Ord(ctDiagonal) do
for C := 1 to 3 do

1N3INdO13INIQ
TVNOILOVSNVY |

Enterprise Development
PART V

928

LisTING 18.6 Continued

if DoCalcMove(TCalcType(B), C) then Exit;
end;
end;
// Finally (or if skill level is unconscious), just find the first open place
for A :=1 to 3 do
for B := 1 to 3 do
if GameData[A, B] = 0 then

begin
GameData[A, B] := ComputerSpot;
X 1= A;
Y := B;
Exit;
end;

end;

procedure TGameServer.CheckCallerSecurity;
begin
// Just for fun, only allow those in the "TTT" role to play the game.
if IsSecurityEnabled and not IsCallerInRole('TTT') then
raise Exception.Create('Only those in the TTT role can play tic-tac-toe');
end;

initialization
TAutoObjectFactory.Create(ComServer, TGameServer, Class_GameServer,
ciMultiInstance, tmApartment);
end.

Installing the Server

Once the server has been written, and you’re ready to install it into COM+, Delphi makes your
life very easy. Simple select Run, Install COM+ Objects from the main menu, and you will
invoke the Install COM+ Objects dialog box. This dialog box enables you to install your
object(s) into a new or existing package, and it is shown in Figure 18.17.

Install COM+ Dbject
Installinto exsting Application | Instal inta new Application |

bplcaton Nane: -

Description:
Delphi Tic-Tac-Toe

[i3 I Cancel Help

FIGURE 18.17
Installing a COM+ object via the Delphi IDE.

Transactional Development with COM+/MTS

CHAPTER 18

Select the component(s) to be installed, specify whether the package is new or existing, click
OK, and that’s it; the component is installed. Alternatively, you can also install COM+ compo-
nents via the Transaction Server Explorer application. Note that this installation procedure is
markedly different from that of standard COM objects, which typically involves using the
RegSvr32 tool from the command line to register a COM server. Transaction Server Explorer
also make it similarly easy to set up COM+ components on remote machines, providing a wel-
come alternative to the configuration hell experienced by many of those trying to configure
DCOM connectivity.

The Client Application

Listing 18.7 shows the source code for the client application for this COM+ component. Its
purpose is to essentially map the engine provided by the COM+ component to a Tic-Tac-
Toe—looking user interface.

LisTiNnG 18.7 UiMain.pas—The Main Unit for the Client Application

unit UiMain;
interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
Buttons, ExtCtrls, Menus, TTTServer_TLB, ComCtrls;

type
TRecord = record
Wins, Loses, Ties: Integer;
end;

TFrmMain = class(TForm)
SbTL: TSpeedButton;
SbTM: TSpeedButton;
SbTR: TSpeedButton;
SbMM: TSpeedButton;
SbBL: TSpeedButton;
SbBR: TSpeedButton;
SbMR: TSpeedButton;
SbBM: TSpeedButton;
SbML: TSpeedButton;
Bevell: TBevel;
Bevel2: TBevel;
Bevel3: TBevel;
Bevel4: TBevel;
MainMenui: TMainMenu;

929

1

(o]

1N3INdO13INIQ
TVNOILOVSNVY |

930

Enterprise Development
PART V

LisTING 18.7 Continued

FileItem: TMenuItem;
HelpItem: TMenuItem;
ExitItem: TMenuItem;
AboutItem: TMenuItem;
SkillItem: TMenuItem;
UnconItem: TMenuItem;
AwakeItem: TMenuItem;
NewGameItem: TMenuItem;
N1: TMenultem;
StatusBar: TStatusBar;
procedure FormCreate(Sender: TObject);
procedure ExitItemClick(Sender: TObject);
procedure SkillItemClick(Sender: TObject);
procedure AboutItemClick(Sender: TObject)
procedure SBClick(Sender: TObject);
procedure NewGameItemClick(Sender: TObject);
private
FXImage: TBitmap;
FOImage: TBitmap;
FCurrentSkill: Integer;
FGameID: Integer;
FGameServer: IGameServer;
FRec: TRecord;
procedure TagToCoord(ATag: Integer; var Coords: TPoint);
function CoordToCtl(const Coords: TPoint): TSpeedButton;
procedure DoGameResult(GameRez: GameResults);
end;

3

var
FrmMain: TFrmMain;

implementation
uses UiAbout;
{$R *.DFM}

{$R xo0.res}

const
RecStr = 'Wins: %d, Loses: %d, Ties: %d';

procedure TFrmMain.FormCreate(Sender: TObject);
begin

Transactional Development with COM+/MTS 031

CHAPTER 18

LisTING 18.7 Continued

// load "X" and "O" images from resource into TBitmaps
FXImage := TBitmap.Create;
FXImage.LoadFromResourceName (MainInstance, 'x_img');
FOImage := TBitmap.Create;
FOImage.LoadFromResourceName (MainInstance, 'o_img');
// set default skill
FCurrentSkill := slAwake;
// init record UI
with FRec do
StatusBar.SimpleText := Format(RecStr, [Wins, Loses, Ties]);
// Get server instance
FGameServer := CoGameServer.Create;
// Start a new game
FGameServer.NewGame (FGameID) ;

end;

procedure TFrmMain.ExitItemClick(Sender: TObject);
begin

Close;
end;

procedure TFrmMain.SkillItemClick(Sender: TObject);
begin
with Sender as TMenuItem do
begin
Checked := True;
FCurrentSkill := Tag;
end;
end;

procedure TFrmMain.AboutItemClick(Sender: TObject);
begin
// Show About box
with TFrmAbout.Create(Application) do
try
ShowModal;
finally
Free;
end;
end;

procedure TFrmMain.TagToCoord(ATag: Integer; var Coords: TPoint);
begin
case ATag of

1

(o]

1N3INdO13INIQ
TVNOILOVSNVY |

932

Enterprise Development

PART V

LisTING 18.7 Continued

0:

[o) I & N SN VS I \O B

7:
else

Coords
Coords
Coords
Coords
Coords
Coords
Coords
Coords

Coords :=

end;
end;

function TFrmMain.CoordToCtl(const Coords: TPoint):

begin

Result :=n
with Coords do

case X of
1:

case
1:
2:
3:
end;

case

end;

case
1:
2:
3:
end;

end;

end;

procedure TFrmMain.SBClick(Sender: TObject);

var

:= Point(1, 1
:= Point(1, 2
:= Point(1, 3
:= Point(2, 1
:= Point(2, 2
:= Point(2, 3
:= Point (3, 1
:= Point (3, 2

);
);
);
);
);
);
);
)

3

Point (3, 3);

il;

Y of

Result
Result
Result

Y of

: Result
: Result
: Result

Y of

Result
Result
Result

Coords: TPoint;

GameRez: GameResults;

SB: TSpeedButton;

SbTL;
SbTM;
SbTR;

SbML;
SbMM;
SbMR;

SbhBL;
SbBM;
SbBR;

TSpeedButton;

Transactional Development with COM+/MTS 033

CHAPTER 18

LisTING 18.7 Continued

begin
if Sender is TSpeedButton then
begin
SB := TSpeedButton(Sender);
if SB.Glyph.Empty then
begin
with SB do
begin
TagToCoord(Tag, Coords);
FGameServer.PlayerMove (FGameID, Coords.X, Coords.Y, GameRez);
Glyph.Assign(FXImage);
end;
if GameRez = grInProgress then
begin
FGameServer.ComputerMove (FGameID, FCurrentSkill, Coords.X, Coords.Y,
GameRez) ;
CoordToCtl(Coords).Glyph.Assign(FOImage);
end;
DoGameResult (GameRez) ; 1
end;
end;
end;

procedure TFrmMain.NewGameItemClick(Sender: TObject);
var

I: Integer;
begin

FGameServer.NewGame (FGameID) ;

for I := 0 to ControlCount - 1 do

if Controls[I] is TSpeedButton then
TSpeedButton(Controls[I]).Glyph := nil;

end;

procedure TFrmMain.DoGameResult(GameRez: GameResults);

const
EndMsg: array[grTie..grComputerWin] of string = (
'Tie game', 'You win', 'Computer wins');
begin
if GameRez <> grInProgress then
begin

case GameRez of
grComputerWin: Inc(FRec.Loses);
grPlayerWin: Inc(FRec.Wins);
grTie: Inc(FRec.Ties);

end;

(o]

1N3INdO13INIQ
TVNOILOVSNVY |

934

Enterprise Development
PART V

LisTING 18.7 Continued

with FRec do
StatusBar.SimpleText := Format(RecStr, [Wins, Loses, Ties]);
if MessageDlg(Format('%ss! Play again?', [EndMsg[GameRez]]), mtConfirmation,
[mbYes, mbNo], @) = mrYes then
NewGameItemClick(nil);
end;
end;

end.

Figure 18.18 shows this application in action. Human is X and computer is O.

A Tic-Tac-Toe [x|

Fie Skil Help

Wins: 0, Loses: 0, Ties: 0

X

FIGURE 18.18

Playing tic-tac-toe.

Debugging COM+ Applications

Because COM+ components run within COM+’s process space rather than the client’s, you
might think that they would be difficult to debug. However, COM+ provides a side door for
debugging purposes that makes debugging a snap. Just load the server project, and use the Run
Parameters dialog box to specify mtx.exe as the host application. As a parameter to mtx.exe,
you must pass /p:{package guid}, where package guid is the GUID of the package as shown in
the Component Services tool. This dialog box is shown in Figure 18.19. Next, set your desired
breakpoints and run the application. You won’t see anything happen initially because the client
application isn’t yet running. Now you can run the client from Windows Explorer or a com-
mand prompt, and you will be off and debugging.

Transactional Development with COM+/MTS

CHAPTER 18

]
Local | Remote |
Host Application
’7|C.\Wmnt\SylemEZ\DIIhUst.Exe ~| Browse..

Paiameters
’]ﬂ‘Frncesle {SCE24D 638 766-4F 42-B3AF-F44BBES72127) j

Ld [ok | cancel Help

FIGURE 18.19

The Run Parameters dialog box.

Summary

COM+ is a powerful addition to the COM family of technologies. By adding services such as
lifetime management, transaction support, security, and transactions to COM objects without
requiring significant changes to existing source code, Microsoft has leveraged COM into a
more scalable technology, suitable for large-scale distributed development. This chapter took
you through a tour of the basics of COM+ and on to the specifics of Delphi’s support for
COM+ and how to create COM+ applications in Delphi. What’s more, you’ve hopefully
caught a few tips and tricks along the way for developing optimized and well-behaved COM+
components. COM+ packs a wallop out of the box by providing services such as lifetime man-
agement, transaction support, security, all in a familiar framework. COM+ and Delphi combine
to provide you with a great way to leverage your COM experience into creating scalable multi-
tier applications. Just don’t forget those differences in design nuances between normal COM
components and COM+ components!

935

1

(o]

1N3INdO13INIQ
TVNOILOVSNVY |

