
CHAPTER

17
Using the Open Tools API

IN THIS CHAPTER
• Open Tools Interfaces 836

• Using the Open Tools API 839

• Form Wizards 868

22 chpt_17.qxd 11/19/01 12:06 PM Page 835

Have you ever thought to yourself, “Delphi is great, but why doesn’t the IDE perform this little
task that I’d like it to?” If you have, the Open Tools API is for you. The Delphi Open Tools
API provides you with the capability of integrating your own tools that work closely with
Delphi’s IDE. In this chapter, you’ll learn about the different interfaces that make up the Open
Tools API, how to use the interfaces, and also how to leverage your newly found expertise to
write a fully featured wizard.

Open Tools Interfaces
The Open Tools API is composed of 14 units, each containing one or more objects that provide
interfaces to a variety of facilities in the IDE. Using these interfaces enables you to write your
own Delphi wizards, version control managers, and component and property editors. You’ll
also gain a window into Delphi’s IDE and editor through any of these add-ons.

With the exception of the interfaces designed for component and property editors, the Open
Tools interface objects provide an all-virtual interface to the outside world—meaning that
using these interface objects involves working only with the objects’ virtual functions. You
can’t access the objects’ data fields, properties, or static functions. Because of this, the Open
Tools interface objects follow the COM standard (see Chapter 15, “COM Development”). With
a little work on your part, these interfaces can be used in any programming language that sup-
ports COM interfaces. In this chapter, you’ll work only with Delphi, but you should know that
the capacity for using other languages is available (in case you just can’t get enough of C++).

Component-Based Development

PART IV
836

The complete Open Tools API is available only with Delphi Professional and
Enterprise. Delphi Personal has the capability to use add-ons created with the Open
Tools API, but it cannot create add-ons because it contains only the units for creating
component and property editors. You can find the source code for the Open Tools
interfaces in the \Delphi 6\Source\ToolsAPI subdirectory.

NOTE

Table 17.1 shows the units that make up the Open Tools API and the classes and interfaces
they provide. Table 17.2 lists obsolete Open Tools API units that remain only for backward
compatibility with experts written in Delphi 4 or earlier. Because the obsolete units pre-date
the native interface type, they employ regular Delphi classes with virtual abstract methods as
a substitute for true interfaces. The use of true interfaces has been phased into the Open Tools
API over the past few versions of Delphi, and the current incarnation of the Open Tools API is
primarily interface-based.

22 chpt_17.qxd 11/19/01 12:06 PM Page 836

TABLE 17.1 Units in the Open Tools API

Unit Name Purpose

ToolsAPI Contains the latest interface-based Open Tools API elements. The
contents of this unit essentially supersede the pre-Delphi 5 Open
Tools API units that use abstract classes to manipulate menus, noti-
fications, the filesystem, the editor, and wizard add-ins. It also
contains new interfaces for manipulating the debugger, IDE key
mappings, projects, project groups, packages, and the To Do list.

VCSIntf Defines the TIVCSClient class, which enables the Delphi IDE to
communicate with version-control software.

DesignConst Contains strings used by the Open Tools API.

DesignEditors Provides property editor support.

DesignIntf This unit replaces the DsgnIntf unit from previous versions
and provides core support for design-time IDE interfaces. The
IProperty interface is used by the IDE to edit properties.
IDesignerSelections is used to manipulate the form designer’s
selected objects list (replaces TDesignerSelectionList used
in previous Delphi versions). IDesigner is one of the primary
interfaces used by wizards for general IDE services.
IDesignNotification provides notification of designer events
such as items being inserted, deleted, or modified. The
IComponentEditor interface is implemented by component editors
to provide design time component editing, and ISelectionEditor
provides the same functionality for a group of selected compo-
nents. The TBaseComponentEditor class is the class from which all
component editors should be derived. ICustomModule and
TBaseCustomModule are provided in order to install modules that
can be edited in the IDE’s form designer.

DesignMenus Contains the IMenuItems, IMenuItem, and related interfaces for
design-time manipulation of the IDE’s menus.

DesignWindows Declares the TDesignWindow class, which would serve as the base
class for any new design windows one might want to add to
the IDE.

PropertyCategories Contains the classes to support the categorization of custom com-
ponent properties. Used by the Object Inspector’s category view.

TreeIntf Provides TSprig and related classes and interfaces to support cus-
tom sprigs, or nodes in the IDE’s Object TreeView.

VCLSprigs Sprig implementations for VCL components.

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
837

22 chpt_17.qxd 11/19/01 12:06 PM Page 837

TABLE 17.1 Continued

Unit Name Purpose

VCLEditors Declares base ICustomPropertyDrawing and
ICustomPropertyListDrawing to handle custom drawing of
properties and property lists in the IDE’s Object Inspector. Also
declares custom property drawing objects for common VCL
properties.

ClxDesignWindows Declares the TClxDesignWindow class, which is the CLX equivalent
of the TDesignWindow class.

ClxEditors CLX equivalent of the VCLEditors unit, which includes property
editors for CLX components.

ClxSprigs Sprig implementations for CLX components.

TABLE 17.2 Obsolete Open Tools API units

Unit Name Purpose

FileIntf Defines the TIVirtualFileSystem class, which the Delphi IDE
uses for filing. Wizards, version-control managers, and property
and component editors can use this interface to hook into Delphi’s
own file system to perform special file operations.

EditIntf Defines classes necessary for manipulating the Delphi Code Editor
and Form Designer. The TIEditReader class provides read access
to an editor buffer. TIEditWriter provides write access to the
same. TIEditView is defined as an individual view of an edit
buffer. TIEditInterface is the base interface to the editor, which
can be used to obtain the previously mentioned editor interfaces.
The TIComponentInterface class is an interface to an individual
component sitting on a form at design time. TIFormInterface is
the base interface to a design-time form or data module.
TIResourceEntry is an interface for the raw data in a project’s
resource (*.res) file. TIResourceFile is a higher-level interface to
the project resource file. TIModuleNotifier is a class that provides
notifications when various events occur for a particular module.
Finally, TIModuleInterface is the interface for any file or module
open in the IDE.

ExptIntf Defines the abstract TIExpert class from which all experts
descend.

Component-Based Development

PART IV
838

22 chpt_17.qxd 11/19/01 12:06 PM Page 838

TABLE 17.2 Continued

Unit Name Purpose

VirtIntf Defines the base TInterface class from which other interfaces are
derived. This unit also defines TIStream class, which is a wrapper
around a VCL TStream.

IStreams Defines TIMemoryStream, TIFileStream, and TIVirtualStream
classes, which are descendants of TIStream. These interfaces can
be used to hook into the IDE’s own streaming mechanism.

ToolIntf Defines TIMenuItemIntf and TIMainMenuIntf classes, which
enable the Open Tools developer to create and modify menus in the
Delphi IDE. This unit also defines the TIAddInNotifier class,
which allows add-in tools to be notified of certain events within the
IDE. Most importantly, this unit defines the TIToolServices class,
which provides an interface into various portions of the Delphi IDE
(such as the editor, component library, Code Editor, Form
Designer, and filesystem).

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
839

You might wonder where all this wizard stuff is documented in Delphi. We assure you
that it is documented, but the documentation isn’t easy to find. Each of these units
contains complete documentation for the interface, classes, methods, and procedures
declared within. We won’t regurgitate the same information that these units contain,
so we urge you to take a look at the units for complete documentation.

NOTE

Using the Open Tools API
Now that you know what’s what, it’s time to get your hands dirty and look at some actual code.
This section focuses primarily on writing wizards by using the Open Tools API. We won’t dis-
cuss the building of version-control systems because the interest for such a topic is arguably
limited. For examples of component and property editors, you should look at Chapter 11, “VCL
Component Building,” and Chapter 12, “Advanced VCL Component Building.”

A Dumb Wizard
To start out, you’ll create a very simple wizard appropriately dubbed the Dumb Wizard. The
minimum requirement to create a wizard is to create a class that implements the IOTAWizard
interface. For reference, IOTAWizard is defined in the ToolsAPI unit as follows:

type
IOTAWizard = interface(IOTANotifier)

22 chpt_17.qxd 11/19/01 12:06 PM Page 839

[‘{B75C0CE0-EEA6-11D1-9504-00608CCBF153}’]
{ Expert UI strings }
function GetIDString: string;
function GetName: string;
function GetState: TWizardState;
{ Launch the AddIn }
procedure Execute;

end;

This interface consists mainly of some GetXXX() functions that are designed to be overridden
by the descendant classes in order to provide specific information for each wizard. The
Execute() method is the business end of IOTAWizard. Execute() is called by the IDE when
the user selects your wizard from the main menu or the New Items menu, and it’s in this
method that the wizard should be created and invoked.

If you’ve got a keen eye, you might have noticed that IOTAWizard descends from another inter-
face, called IOTANotifier. IOTANotifier is an interface defined in the ToolsAPI unit that con-
tains methods that can be called by the IDE to notify a wizard of various goings on. This
interface is defined as

type
IOTANotifier = interface(IUnknown)
[‘{F17A7BCF-E07D-11D1-AB0B-00C04FB16FB3}’]
{ This procedure is called immediately after the item is successfully
saved. This is not called for IOTAWizards }

procedure AfterSave;
{ This function is called immediately before the item is saved. This is not
called for IOTAWizard }

procedure BeforeSave;
{ The associated item is being destroyed so all references should be
dropped. Exceptions are ignored. }

procedure Destroyed;
{ This associated item was modified in some way. This is not called for
IOTAWizards }

procedure Modified;
end;

As the comments in the source code indicate, most of these methods aren’t called for simple
IOTAWizard wizards. Because of this, ToolsAPI provides a class called TNotifierObject that
provides empty implementations for IOTANotifier methods. You might choose to descend
your wizards from this class to take advantage of the convenience of having the IOTANotifier
methods implemented for you.

Component-Based Development

PART IV
840

22 chpt_17.qxd 11/19/01 12:06 PM Page 840

Wizards are not much use without a means to invoke them, and one of the simplest ways to do
that is through a menu pick. If you want to place your wizard on Delphi’s main menu, you
need only implement the IOTAMenuWizard interface, which is defined in all its complexity in
ToolsAPI as

type
IOTAMenuWizard = interface(IOTAWizard)
[‘{B75C0CE2-EEA6-11D1-9504-00608CCBF153}’]
function GetMenuText: string;

end;

As you can see, this interface descends from IOTAWizard and adds only one additional method
to return the menu text string.

To jump right in and pull together your knowledge thus far, Listing 17.1 shows the
DumbWiz.pas unit, which contains the source code for TDumbWizard.

LISTING 17.1 DumbWiz.pas—a Simple Wizard Implementation

unit DumbWiz;

interface

uses
ShareMem, SysUtils, Windows, ToolsAPI;

type
TDumbWizard = class(TNotifierObject, IOTAWizard, IOTAMenuWizard)
// IOTAWizard methods
function GetIDString: string;
function GetName: string;
function GetState: TWizardState;
procedure Execute;
// IOTAMenuWizard method
function GetMenuText: string;

end;

implementation

uses Dialogs;

function TDumbWizard.GetName: string;
begin
Result := ‘Dumb Wizard’;

end;

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
841

22 chpt_17.qxd 11/19/01 12:06 PM Page 841

LISTING 17.1 Continued

function TDumbWizard.GetState: TWizardState;
begin
Result := [wsEnabled];

end;

function TDumbWizard.GetIDString: String;
begin
Result := ‘DDG.DumbWizard’;

end;

procedure TDumbWizard.Execute;
begin
MessageDlg(‘This is a dumb wizard.’, mtInformation, [mbOk], 0);

end;

function TDumbWizard.GetMenuText: string;
begin
Result := ‘Dumb Wizard’;

end;

end.

The IOTAWizard.GetName() function should return a unique name for this wizard.

IOTAWizard.GetState() returns the state of an wsStandard wizard on the main menu. The
return value of this function is a set that can contain wsEnabled and/or wsChecked, depending
on how you want the menu item to appear in the IDE. This function is called every time the
wizard is shown in order to determine how to paint the menu.

IOTAWizard.GetIDString() should return a globally unique string identifier for the wizard.
Convention dictates that the return value of this string should be in the following format:

CompanyName.WizardName

IOTAWizard.Execute() invokes the wizard. As Listing 17.1 shows, the Execute() method for
TDumbWizard doesn’t do much. However, later in this chapter you’ll see some wizards that
actually do perform stuff.

IOTAMenuWizard.GetMenuText() returns the text that should appear on the main menu. This
function is called every time the user pulls down the Help menu, so it’s possible to dynami-
cally change the value of the menu text as your wizard runs.

Take a look at the call to RegisterPackageWizard() inside the Register() procedure. You
might notice that this is very similar to the syntax used for registering components, component
editors, and property editors for inclusion in the component library, as described in Chapters 11

Component-Based Development

PART IV
842

22 chpt_17.qxd 11/19/01 12:06 PM Page 842

and 12. The reason for this similarity is that this type of wizard is stored in a package that’s
part of the component library, along with components and the like. You can also store wizards
in a standalone DLL, as you’ll see in the next example.

This wizard is installed just like a component: Select the Components, Install Component
option from the main menu and add the unit to a new or existing package. Once this is
installed, the menu choice to invoke the wizard appears under the Help menu, as shown in
Figure 17.1. You can see the outstanding output of this wizard in Figure 17.2.

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
843

FIGURE 17.1
The Dumb Wizard on the main menu.

FIGURE 17.2
The Dumb Wizard in action.

The Wizard Wizard
There’s just a little bit more work involved in creating a DLL-based wizard (as opposed to a
component-library–based wizard). In addition to demonstrating the creation of a DLL-based
wizard, the Wizard Wizard example has a couple of ulterior motives, including illustrating how
DLL wizards relate to the Registry and how to maintain one source code base that targets
either an EXE or a DLL wizard.

If you’re unfamiliar with the ins and outs of Windows DLLs, take a look at Chapter 9,
“Dynamic Link Libraries,” in the electronic version of Delphi 5 Developer’s Guide on
the CD accompanying this book.

NOTE

22 chpt_17.qxd 11/19/01 12:06 PM Page 843

For Delphi to recognize a DLL wizard, it must have an entry in the system Registry under the
following key:

HKEY_CURRENT_USER\Software\Borland\Delphi\5.0\Experts

Figure 17.3 shows sample entries using the Windows RegEdit application.

Component-Based Development

PART IV
844

There’s no hard-and-fast rule that dictates whether a wizard should reside in a pack-
age in the component library or a DLL. From a user’s perspective, the primary differ-
ence between the two is that component library wizards require a simple package
installation to be rebuilt, whereas DLL wizards require a Registry entry, and Delphi
must be exited and restarted for changes to take effect. However, as a developer,
you’ll find package wizards a bit easier to deal with for a number of reasons. Namely,
exceptions propagate between your wizard and the IDE automatically, you don’t
have to use sharemem.dll for memory management, you don’t have to do anything
special to initialize the DLL’s application variable, and pop-up hints and mouse
enter/exit messages will work properly.

With this in mind, you should consider using a DLL wizard when you want the wizard
to install with a minimum amount of work on the part of the end user.

TIP

FIGURE 17.3
Delphi wizard entries viewed with RegEdit.

Wizard Interface
The purpose of the Wizard Wizard is to provide an interface to add, modify, and delete DLL
wizard entries from the Registry without having to use the cumbersome RegEdit application.
First, let’s examine InitWiz.pas, the unit containing the wizard class (see Listing 17.2).

22 chpt_17.qxd 11/19/01 12:06 PM Page 844

LISTING 17.2 InitWiz.pas—Unit Containing DLL Wizard Class

unit InitWiz;

interface

uses Windows, ToolsAPI;

type
TWizardWizard = class(TNotifierObject, IOTAWizard, IOTAMenuWizard)
// IOTAWizard methods
function GetIDString: string;
function GetName: string;
function GetState: TWizardState;
procedure Execute;
// IOTAMenuWizard method
function GetMenuText: string;

end;

function InitWizard(const BorlandIDEServices: IBorlandIDEServices;
RegisterProc: TWizardRegisterProc;
var Terminate: TWizardTerminateProc): Boolean stdcall;

var
{ Registry key where Delphi 6 wizards are kept. EXE version uses default, }
{ whereas DLL version gets key from ToolServices.GetBaseRegistryKey }
SDelphiKey: string = ‘\Software\Borland\Delphi\6.0\Experts’;

implementation

uses SysUtils, Forms, Controls, Main;
function TWizardWizard.GetName: string;
{ Return name of expert }
begin
Result := ‘WizardWizard’;

end;

function TWizardWizard.GetState: TWizardState;
{ This expert is always enabled }
begin
Result := [wsEnabled];

end;

function TWizardWizard.GetIDString: String;
{ “Vendor.AppName” ID string for expert }

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
845

22 chpt_17.qxd 11/19/01 12:06 PM Page 845

LISTING 17.2 Continued

begin
Result := ‘DDG.WizardWizard’;

end;

function TWizardWizard.GetMenuText: string;
{ Menu text for expert }
begin
Result := ‘Wizard Wizard’;

end;

procedure TWizardWizard.Execute;
{ Called when expert is chosen from the main menu. }
{ This procedure creates, shows, and frees the main form. }
begin
MainForm := TMainForm.Create(Application);
try
MainForm.ShowModal;

finally
MainForm.Free;

end;
end;

function InitWizard(const BorlandIDEServices: IBorlandIDEServices;
RegisterProc: TWizardRegisterProc;
var Terminate: TWizardTerminateProc): Boolean stdcall;

var
Svcs: IOTAServices;

begin
Result := BorlandIDEServices <> nil;
if Result then
begin
Svcs := BorlandIDEServices as IOTAServices;
ToolsAPI.BorlandIDEServices := BorlandIDEServices;
Application.Handle := Svcs.GetParentHandle;
SDelphiKey := Svcs.GetBaseRegistryKey + ‘\Experts’;
RegisterProc(TWizardWizard.Create);

end;
end;

end.

Component-Based Development

PART IV
846

22 chpt_17.qxd 11/19/01 12:06 PM Page 846

You should notice a couple of differences between this unit and the one used to create the
Dumb Wizard. Most importantly, an initialization function of type TWizardInitProc is
required as an entry point for the IDE into the wizard DLL. In this case, that function is called
InitWizard(). This function performs a number of wizard initialization tasks, including the
following:

• Obtaining a IOTAServices interface from the BorlandIDEServices parameter.

• Saving the BorlandIDEServices interface pointer for use at a later time.

• Setting the handle of the DLL’s Application variable to the value returned by
IOTAServices.GetParentHandle(). GetParentHandle() returns the window handle of
the window that must serve as the parent to all top-level windows created by the wizard.

• Passing the newly created instance of the wizard to the RegisterProc() procedure in
order to register the wizard with the IDE. RegisterProc() will be called once for each
wizard instance the DLL registers with the IDE.

• Optionally, InitWizard() can also assign a procedure of type TWizardTerminateProc to
the Terminate parameter to serve as an exit procedure for the wizard. This procedure
will be called immediately before the wizard is unloaded by the IDE, and in it you can
perform any necessary cleanup. This parameter is initially nil, so if you don’t need to
perform any special cleanup, leave its value as nil.

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
847

The wizard initialization method must use the stdcall calling convention.

CAUTION

The Wizard User Interface
The Execute() method is a bit more complex this time around. It creates an instance of the
wizard’s MainForm, shows it modally, and then frees the instances. Figure 17.4 shows this
form, and Listing 17.3 shows the Main.pas unit in which MainForm exists.

Any DLL wizards calling Open Tools API functions that have string parameters must
have the ShareMem unit in their uses clause; otherwise, Delphi will raise an access
violation when the wizard instance is freed.

CAUTION

22 chpt_17.qxd 11/19/01 12:06 PM Page 847

FIGURE 17.4
MainForm in the Wizard Wizard.

LISTING 17.3 Main.pas—Main Unit of Wizard Wizard

unit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls, Registry, AddModU, ComCtrls, Menus;

type
TMainForm = class(TForm)
TopPanel: TPanel;
Label1: TLabel;
BottomPanel: TPanel;
WizList: TListView;
PopupMenu1: TPopupMenu;
Add1: TMenuItem;
Remove1: TMenuItem;
Modify1: TMenuItem;
AddBtn: TButton;
RemoveBtn: TButton;
ModifyBtn: TButton;
CloseBtn: TButton;
procedure RemoveBtnClick(Sender: TObject);
procedure CloseBtnClick(Sender: TObject);
procedure AddBtnClick(Sender: TObject);
procedure ModifyBtnClick(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
procedure DoAddMod(Action: TAddModAction);

Component-Based Development

PART IV
848

22 chpt_17.qxd 11/19/01 12:06 PM Page 848

LISTING 17.3 Continued

procedure RefreshReg;
end;

var
MainForm: TMainForm;

implementation

uses InitWiz;

{$R *.DFM}

var
DelReg: TRegistry;

procedure TMainForm.RemoveBtnClick(Sender: TObject);
{ Handler for Remove button click. Removes selected item from registry. }
var
Item: TListItem;

begin
Item := WizList.Selected;
if Item <> nil then
begin
if MessageDlg(Format(‘Remove item “%s”’, [Item.Caption]), mtConfirmation,
[mbYes, mbNo], 0) = mrYes then
DelReg.DeleteValue(Item.Caption);

RefreshReg;
end;

end;

procedure TMainForm.CloseBtnClick(Sender: TObject);
{ Handler for Close button click. Closes app. }
begin
Close;

end;

procedure TMainForm.DoAddMod(Action: TAddModAction);
{ Adds a new expert item to registry or modifies existing one. }
var
OrigName, ExpName, ExpPath: String;
Item: TListItem;

begin
if Action = amaModify then // if modify...
begin
Item := WizList.Selected;

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
849

22 chpt_17.qxd 11/19/01 12:06 PM Page 849

LISTING 17.3 Continued

if Item = nil then Exit; // make sure item is selected
ExpName := Item.Caption; // init variables
if Item.SubItems.Count > 0 then
ExpPath := Item.SubItems[0];

OrigName := ExpName; // save original name
end;
{ Invoke dialog which allows user to add or modify entry }
if AddModWiz(Action, ExpName, ExpPath) then
begin
{ if action is Modify, and the name was changed, handle it }
if (Action = amaModify) and (OrigName <> ExpName) then
DelReg.RenameValue(OrigName, ExpName);

DelReg.WriteString(ExpName, ExpPath); // write new value
end;
RefreshReg; // update listbox

end;

procedure TMainForm.AddBtnClick(Sender: TObject);
{ Handler for Add button click }
begin
DoAddMod(amaAdd);

end;

procedure TMainForm.ModifyBtnClick(Sender: TObject);
{ Handler for Modify button click }
begin
DoAddMod(amaModify);

end;

procedure TMainForm.RefreshReg;
{ Refreshes listbox with contents of registry }
var
i: integer;
TempList: TStringList;
Item: TListItem;

begin
WizList.Items.Clear;
TempList := TStringList.Create;
try
{ Get expert names from registry }
DelReg.GetValueNames(TempList);
{ Get path strings for each expert name }
for i := 0 to TempList.Count - 1 do
begin
Item := WizList.Items.Add;

Component-Based Development

PART IV
850

22 chpt_17.qxd 11/19/01 12:06 PM Page 850

LISTING 17.3 Continued

Item.Caption := TempList[i];
Item.SubItems.Add(DelReg.ReadString(TempList[i]));

end;
finally
TempList.Free;

end;
end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
RefreshReg;

end;

initialization
DelReg := TRegistry.Create; // create registry object
DelReg.RootKey := HKEY_CURRENT_USER; // set root key
DelReg.OpenKey(SDelphiKey, True); // open/create Delphi expert key

finalization
Delreg.Free; // free registry object

end.

This is the unit responsible for providing the user interface for adding, removing, and modifying
DLL wizard entries in the Registry. In the initialization section of this unit, a TRegistry
object called DelReg is created. The RootKey property of DelReg is set to HKEY_CURRENT_USER,
and it opens the \Software\Borland\Delphi\6.0\Experts key—the key used to keep track of
DLL wizards—using its OpenKey() method.

When the wizard first comes up, a TListView component called ExptList is filled with the
items and values from the previously mentioned Registry key. This is accomplished by first
calling DelReg.GetValueNames() to retrieve the names of the items into a TStringList. A
TListItem component is added to ExptList for each element in the string list, and the
DelReg.ReadString() method is used to read the value for each item, which is placed in the
SubItems list of TListItem.

The Registry work is done in the RemoveBtnClick() and DoAddMod() methods.
RemoveBtnClick() is in charge of removing the currently selected wizard item from the
Registry. It first checks to ensure that an item is highlighted; then it throws up a confirmation
dialog box. Finally, it does the deed by calling the DelReg.DeleteValue() method and passing
CurrentItem as the parameter.

DoAddMod() accepts a parameter of type TAddModAction. This type is defined as follows:

type
TAddModAction = (amaAdd, amaModify);

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
851

22 chpt_17.qxd 11/19/01 12:06 PM Page 851

As the values of the type imply, this variable indicates whether a new item is to be added or an
existing item modified. This function first checks to see that there’s a currently selected item
or, if there isn’t, that the Action parameter holds the value amaAdd. After that, if Action is
amaModify, the existing wizard item and value are copied to the local variables ExpName and
ExpPath. These values are then passed to a function called AddModExpert(), which is defined
in the AddModU unit shown in Listing 17.4. This function invokes a dialog box in which the user
can enter new or modified name or path information for a wizard (see Figure 17.5). It returns
True when the user exits the dialog with the OK button. At that point, an existing item is modi-
fied using DelReg.RenameValue(), and a new or modified value is written with
DelReg.WriteString().

Component-Based Development

PART IV
852

FIGURE 17.5
AddModForm in the Wizard Wizard.

LISTING 17.4 AddModU.pas—Unit That Adds and Modifies Wizard Entries in the Registry

unit AddModU;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls;

type
TAddModAction = (amaAdd, amaModify);

TAddModForm = class(TForm)
OkBtn: TButton;
CancelBtn: TButton;
OpenDialog: TOpenDialog;
Panel1: TPanel;
Label1: TLabel;
Label2: TLabel;
PathEd: TEdit;
NameEd: TEdit;
BrowseBtn: TButton;
procedure BrowseBtnClick(Sender: TObject);

private

22 chpt_17.qxd 11/19/01 12:06 PM Page 852

LISTING 17.4 Continued

{ Private declarations }
public
{ Public declarations }

end;

function AddModWiz(AAction: TAddModAction; var WizName,
WizPath: String): Boolean;

implementation

{$R *.DFM}

function AddModWiz(AAction: TAddModAction; var WizName,
WizPath: String): Boolean;

{ called to invoke dialog to add and modify registry entries }
const
CaptionArray: array[TAddModAction] of string[31] =
(‘Add new expert’, ‘Modify expert’);

begin
with TAddModForm.Create(Application) do // create dialog
begin
Caption := CaptionArray[AAction]; // set caption
if AAction = amaModify then // if modify...
begin
NameEd.Text := WizName; // init name and
PathEd.Text := WizPath; // path

end;
Result := ShowModal = mrOk; // show dialog
if Result then // if Ok...
begin
WizName := NameEd.Text; // set name and
WizPath := PathEd.Text; // path

end;
Free;

end;
end;

procedure TAddModForm.BrowseBtnClick(Sender: TObject);
begin
if OpenDialog.Execute then
PathEd.Text := OpenDialog.FileName;

end;

end.

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
853

22 chpt_17.qxd 11/19/01 12:06 PM Page 853

Dual Targets: EXE and DLL
As mentioned earlier, it’s possible to maintain one set of source code modules that target both
a DLL wizard and a standalone executable. This is possible through the use of compiler direc-
tives in the project file. Listing 17.5 shows WizWiz.dpr, the project file source code for this
project.

LISTING 17.5 WizWiz.dpr—Main Project File for the WizWiz Project

{$ifdef BUILD_EXE}
program WizWiz; // Build as EXE
{$else}
library WizWiz; // Build as DLL
{$endif}

uses
{$ifndef BUILD_EXE}
ShareMem, // ShareMem required for DLL
InitWiz in ‘InitWiz.pas’, // Wizard stuff

{$endif}
ToolsAPI,
Forms,
Main in ‘Main.pas’ {MainForm},
AddModU in ‘AddModU.pas’ {AddModForm};

{$ifdef BUILD_EXE}
{$R *.RES} // required for EXE
{$else}
exports // required for DLL
InitWizard name WizardEntryPoint; // required entry point

{$endif}

begin
{$ifdef BUILD_EXE} // required for EXE...
Application.Initialize;
Application.CreateForm(TMainForm, MainForm);
Application.Run;

{$endif}
end.

As the code shows, this project will build an executable if the BUILD_EXE conditional is
defined. Otherwise, it will build a DLL-based wizard. You can define a conditional under
Conditional Defines in the Directories/Conditionals page of the Project Options dialog box,
which is shown in Figure 17.6.

Component-Based Development

PART IV
854

22 chpt_17.qxd 11/19/01 12:06 PM Page 854

FIGURE 17.6
The Project Options dialog box.

One final note concerning this project: Notice that the InitWizard() function from the
InitWiz unit is being exported in the exports clause of the project file. You must export this
function with the name WizardEntryPoint, which is defined in the ToolsAPI unit.

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
855

Borland doesn’t provide a ToolsAPI.dcu file, meaning that EXEs or DLLs containing a
reference to ToolsAPI in a uses clause can only be built with packages. It isn’t cur-
rently possible to build wizards without packages.

CAUTION

DDG Search
Remember the nifty little Delphi Search program you developed back in Chapter 5, “ Multithreaded
Techniques”? In this section, you’ll learn how you can turn that useful application into an even
more useful Delphi wizard with just a little bit of code. This wizard is called DDG Search.

First, the unit that interfaces DDG Search to the IDE, InitWiz.pas, is shown in Listing 17.6.
You’ll notice that this unit is very similar to the unit of the same name in the previous example.
That’s on purpose. This unit is just a copy of the previous one with some necessary changes
involving the name of the wizard and the Execute() method. Copying and pasting is what we
call “old-fashioned inheritance.” After all, why do more typing than you have to?

LISTING 17.6 InitWiz.pas—Unit Containing Wizard Logic for the DDGSrch Wizard

unit InitWiz;

interface

22 chpt_17.qxd 11/19/01 12:06 PM Page 855

LISTING 17.6 Continued

uses
Windows, ToolsAPI;

type
TSearchWizard = class(TNotifierObject, IOTAWizard, IOTAMenuWizard)
// IOTAWizard methods
function GetIDString: string;
function GetName: string;
function GetState: TWizardState;
procedure Execute;
// IOTAMenuWizard method
function GetMenuText: string;

end;

function InitWizard(const BorlandIDEServices: IBorlandIDEServices;
RegisterProc: TWizardRegisterProc;
var Terminate: TWizardTerminateProc): Boolean stdcall;

var
ActionSvc: IOTAActionServices;

implementation

uses SysUtils, Dialogs, Forms, Controls, Main, PriU;

function TSearchWizard.GetName: string;
{ Return name of expert }
begin
Result := ‘DDG Search’;

end;

function TSearchWizard.GetState: TWizardState;
{ This expert is always enabled on the menu }
begin
Result := [wsEnabled];

end;

function TSearchWizard.GetIDString: String;
{ Return the unique Vendor.Product name of expert }
begin
Result := ‘DDG.DDGSearch’;

end;

function TSearchWizard.GetMenuText: string;
{ Return text for Help menu }

Component-Based Development

PART IV
856

22 chpt_17.qxd 11/19/01 12:06 PM Page 856

LISTING 17.6 Continued

begin
Result := ‘DDG Search Expert’;

end;

procedure TSearchWizard.Execute;
{ Called when expert name is selected from Help menu of IDE. }
{ This function invokes the expert }
begin
// if not created, created it and show it
if MainForm = nil then
begin
MainForm := TMainForm.Create(Application);
ThreadPriWin := TThreadPriWin.Create(Application);
MainForm.Show;

end
else
// if created then restore window and show it
with MainForm do
begin
if not Visible then Show;
if WindowState = wsMinimized then WindowState := wsNormal;
SetFocus;

end;
end;

function InitWizard(const BorlandIDEServices: IBorlandIDEServices;
RegisterProc: TWizardRegisterProc;
var Terminate: TWizardTerminateProc): Boolean stdcall;

var
Svcs: IOTAServices;

begin
Result := BorlandIDEServices <> nil;
if Result then
begin
Svcs := BorlandIDEServices as IOTAServices;
ActionSvc := BorlandIDEServices as IOTAActionServices;
ToolsAPI.BorlandIDEServices := BorlandIDEServices;
Application.Handle := Svcs.GetParentHandle;
RegisterProc(TSearchWizard.Create);

end;
end;

end.

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
857

22 chpt_17.qxd 11/19/01 12:06 PM Page 857

The Execute() function of this wizard shows you something a bit different from what you’ve
seen so far: The wizard’s main form, MainForm, is being shown modelessly rather than modally.
Of course, this requires a bit of extra housekeeping because you have to know when a form is
created and when the form variable is invalid. This can be accomplished by making sure that
the MainForm variable is set to nil when the wizard is inactive. More on this is discussed a
bit later.

One other aspect of this project that has changed significantly since Chapter 5 is that the pro-
ject file is now called DDGSrch.dpr. This file is shown in Listing 17.7.

LISTING 17.7 DDGSrch.dpr—Project File for the DDGSrch Project

{$IFDEF BUILD_EXE}
program DDGSrch;
{$ELSE}
library DDGSrch;
{$ENDIF}

uses
{$IFDEF BUILD_EXE}
Forms,

{$ELSE}
ShareMem,
ToolsAPI,
InitWiz in ‘InitWiz.pas’,

{$ENDIF}
Main in ‘MAIN.PAS’ {MainForm},
SrchIni in ‘SrchIni.pas’,
SrchU in ‘SrchU.pas’,
PriU in ‘PriU.pas’ {ThreadPriWin},
MemMap in ‘..\..\Utils\MemMap.pas’,
DDGStrUtils in ‘..\..\Utils\DDGStrUtils.pas’;

{$R *.RES}

{$IFNDEF BUILD_EXE}
exports
{ Entry point which is called by Delphi IDE }
InitWizard name WizardEntryPoint;

{$ENDIF}

begin
{$IFDEF BUILD_EXE}
Application.Initialize;

Component-Based Development

PART IV
858

22 chpt_17.qxd 11/19/01 12:06 PM Page 858

LISTING 17.7 Continued

Application.CreateForm(TMainForm, MainForm);
Application.Run;

{$ENDIF}
end.

Once again, you can see that this project is designed to be compiled as a standalone EXE or a
DLL-based wizard. When compiled as a wizard, it uses the library header to indicate that it’s
a DLL, and it exports the InitWiz() function for initialization by the Delphi IDE.

We made only a couple of changes to the Main unit in this project. As mentioned earlier, the
MainForm variable must be set to nil when the wizard isn’t active. As you learned in Chapter 2,
“The Object Pascal Language,” the MainForm instance variable will automatically have the
value nil upon application startup. Also, in the OnClose event handler for the form, the form
instance is released and the MainForm global is reset to nil. Here’s the method:

procedure TMainForm.FormClose(Sender: TObject; var Action: TCloseAction);
begin
Action := caFree;
Application.OnShowHint := FOldShowHint;
MainForm := nil;

end;

The finishing touch for this wizard is to bring up files in the IDE’s Code Editor when
they’re double-clicked in the list box in the main form. This logic is handled by a new
FileLBDblClick() method, as follows:

procedure TMainForm.FileLBDblClick(Sender: TObject);
{ Called when user double-clicks in listbox. Loads file into IDE }
var
FileName: string;
Len: Integer;

begin
{ make sure user clicked on a file... }
if Integer(FileLB.Items.Objects[FileLB.ItemIndex]) > 0 then
begin
FileName := FileLB.Items[FileLB.ItemIndex];
{ Trim “File “ and “:” from string }
FileName := Copy(FileName, 6, Length(FileName));
Len := Length(FileName);
if FileName[Len] = ‘:’ then SetLength(FileName, Len - 1);
{ Open the project or file }

{$IFNDEF BUILD_EXE}
if CompareText(ExtractFileExt(FileName), ‘.DPR’) = 0 then
ActionSvc.OpenProject(FileName, True)

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
859

22 chpt_17.qxd 11/19/01 12:06 PM Page 859

else
ActionSvc.OpenFile(FileName);

{$ELSE}
ShellExecute(0, ‘open’, PChar(FileName), nil, nil, SW_SHOWNORMAL);

{$ENDIF}
end;

end;

When compiled as a wizard, this method employs the OpenFile() and OpenProject() meth-
ods of the IOTAActionServices in order to open a particular file. As a standalone EXE, this
method calls the ShellExecute() API function to open the file using the default application
associated with the file extension.

Listing 17.8 shows the complete source code for the Main unit in the DDGSrch project, and
Figure 17.7 shows the DDG Search Wizard doing its thing inside the IDE.

LISTING 17.8 Main.pas—the Main Unit for the DDGSrch Project

unit Main;

interface

{$WARN UNIT_PLATFORM OFF}

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, Buttons, ExtCtrls, Menus, SrchIni,
SrchU, ComCtrls;

type
TMainForm = class(TForm)
FileLB: TListBox;
PopupMenu1: TPopupMenu;
Font1: TMenuItem;
N1: TMenuItem;
Exit1: TMenuItem;
FontDialog1: TFontDialog;
StatusBar: TStatusBar;
AlignPanel: TPanel;
ControlPanel: TPanel;
ParamsGB: TGroupBox;
LFileSpec: TLabel;
LToken: TLabel;
lPathName: TLabel;
EFileSpec: TEdit;
EToken: TEdit;

Component-Based Development

PART IV
860

22 chpt_17.qxd 11/19/01 12:06 PM Page 860

LISTING 17.8 Continued

PathButton: TButton;
OptionsGB: TGroupBox;
cbCaseSensitive: TCheckBox;
cbFileNamesOnly: TCheckBox;
cbRecurse: TCheckBox;
SearchButton: TBitBtn;
CloseButton: TBitBtn;
PrintButton: TBitBtn;
PriorityButton: TBitBtn;
View1: TMenuItem;
EPathName: TEdit;
procedure SearchButtonClick(Sender: TObject);
procedure PathButtonClick(Sender: TObject);
procedure FileLBDrawItem(Control: TWinControl; Index: Integer;
Rect: TRect; State: TOwnerDrawState);

procedure Font1Click(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure PrintButtonClick(Sender: TObject);
procedure CloseButtonClick(Sender: TObject);
procedure FileLBDblClick(Sender: TObject);
procedure FormResize(Sender: TObject);
procedure PriorityButtonClick(Sender: TObject);
procedure ETokenChange(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);

private
FOldShowHint: TShowHintEvent;
procedure ReadIni;
procedure WriteIni;
procedure DoShowHint(var HintStr: string; var CanShow: Boolean;
var HintInfo: THintInfo);

protected
procedure WndProc(var Message: TMessage); override;

public
Running: Boolean;
SearchPri: integer;
SearchThread: TSearchThread;
procedure EnableSearchControls(Enable: Boolean);

end;

var
MainForm: TMainForm;

implementation

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
861

22 chpt_17.qxd 11/19/01 12:06 PM Page 861

LISTING 17.8 Continued

{$R *.DFM}

uses Printers, ShellAPI, MemMap, FileCtrl, PriU;

procedure PrintStrings(Strings: TStrings);
{ This procedure prints all of the string in the Strings parameter }
var
Prn: TextFile;
i: word;

begin
if Strings.Count = 0 then // Are there strings?
begin
MessageDlg(‘No text to print!’, mtInformation, [mbOk], 0);
Exit;

end;
AssignPrn(Prn); // assign Prn to printer
try
Rewrite(Prn); // open printer
try
for i := 0 to Strings.Count - 1 do // iterate over all strings
WriteLn(Prn, Strings.Strings[i]); // write to printer

finally
CloseFile(Prn); // close printer

end;
except
on EInOutError do
MessageDlg(‘Error Printing text.’, mtError, [mbOk], 0);

end;
end;

procedure TMainForm.EnableSearchControls(Enable: Boolean);
{ Enables or disables certain controls so options can’t be modified }
{ while search is executing. }
begin
SearchButton.Enabled := Enable; // enabled/disable proper controls
cbRecurse.Enabled := Enable;
cbFileNamesOnly.Enabled := Enable;
cbCaseSensitive.Enabled := Enable;
PathButton.Enabled := Enable;
EPathName.Enabled := Enable;
EFileSpec.Enabled := Enable;
EToken.Enabled := Enable;
Running := not Enable; // set Running flag
ETokenChange(nil);

Component-Based Development

PART IV
862

22 chpt_17.qxd 11/19/01 12:06 PM Page 862

LISTING 17.8 Continued

with CloseButton do
begin
if Enable then
begin // set props of Close/Stop button
Caption := ‘&Close’;
Hint := ‘Close Application’;

end
else begin
Caption := ‘&Stop’;
Hint := ‘Stop Searching’;

end;
end;

end;

procedure TMainForm.SearchButtonClick(Sender: TObject);
{ Called when Search button is clicked. Invokes search thread. }
begin
EnableSearchControls(False); // disable controls
FileLB.Clear; // clear listbox
{ start thread }
SearchThread := TSearchThread.Create(cbCaseSensitive.Checked,
cbFileNamesOnly.Checked, cbRecurse.Checked, EToken.Text,
EPathName.Text, EFileSpec.Text, Handle);

end;

procedure TMainForm.ETokenChange(Sender: TObject);
begin
SearchButton.Enabled := not Running and (EToken.Text <> ‘’);

end;

procedure TMainForm.PathButtonClick(Sender: TObject);
{ Called when Path button is clicked. Allows user to choose new path. }
var
ShowDir: string;

begin
ShowDir := EPathName.Text;
if SelectDirectory(ShowDir, [], 0) then
EPathName.Text := ShowDir;

end;

procedure TMainForm.FileLBDblClick(Sender: TObject);
{ Called when user double-clicks in listbox. Loads file into IDE }
var
FileName: string;
Len: Integer;

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
863

22 chpt_17.qxd 11/19/01 12:06 PM Page 863

LISTING 17.8 Continued

begin
{ make sure user clicked on a file... }
if Integer(FileLB.Items.Objects[FileLB.ItemIndex]) > 0 then
begin
FileName := FileLB.Items[FileLB.ItemIndex];
{ Trim “File “ and “:” from string }
FileName := Copy(FileName, 6, Length(FileName));
Len := Length(FileName);
if FileName[Len] = ‘:’ then SetLength(FileName, Len - 1);
{ Open the project or file }

{$IFNDEF BUILD_EXE}
if CompareText(ExtractFileExt(FileName), ‘.DPR’) = 0 then
ActionSvc.OpenProject(FileName, True)

else
ActionSvc.OpenFile(FileName);

{$ELSE}
ShellExecute(0, ‘open’, PChar(FileName), nil, nil, SW_SHOWNORMAL);

{$ENDIF}
end;

end;

procedure TMainForm.FileLBDrawItem(Control: TWinControl;
Index: Integer; Rect: TRect; State: TOwnerDrawState);

{ Called in order to owner draw listbox. }
var
CurStr: string;

begin
with FileLB do
begin
CurStr := Items.Strings[Index];
Canvas.FillRect(Rect); // clear out rect
if not cbFileNamesOnly.Checked then // if not filename only...
begin
{ if current line is file name... }
if Integer(Items.Objects[Index]) > 0 then
Canvas.Font.Style := [fsBold]; // bold font

end
else
Rect.Left := Rect.Left + 15; // otherwise, indent

DrawText(Canvas.Handle, PChar(CurStr), Length(CurStr), Rect,
dt_SingleLine);
end;

end;

Component-Based Development

PART IV
864

22 chpt_17.qxd 11/19/01 12:06 PM Page 864

LISTING 17.8 Continued

procedure TMainForm.Font1Click(Sender: TObject);
{ Allows user to pick new font for listbox }
begin
{ Pick new listbox font }
if FontDialog1.Execute then
FileLB.Font := FontDialog1.Font;

end;

procedure TMainForm.FormDestroy(Sender: TObject);
{ OnDestroy event handler for form }
begin
WriteIni;

end;

procedure TMainForm.FormCreate(Sender: TObject);
{ OnCreate event handler for form }
begin
Application.HintPause := 0; // don’t wait to show hints
FOldShowHint := Application.OnShowHint; // set up hints
Application.OnShowHint := DoShowHint;
ReadIni; // read reg INI file

end;

procedure TMainForm.DoShowHint(var HintStr: string; var CanShow: Boolean;
var HintInfo: THintInfo);

{ OnHint event handler for Application }
begin
{ Display application hints on status bar }
StatusBar.Panels[0].Text := HintStr;
{ Don’t show tool tip if we’re over our own controls }
if (HintInfo.HintControl <> nil) and
(HintInfo.HintControl.Parent <> nil) and
((HintInfo.HintControl.Parent = ParamsGB) or
(HintInfo.HintControl.Parent = OptionsGB) or
(HintInfo.HintControl.Parent = ControlPanel)) then
CanShow := False;

if Assigned(FOldShowHint) then
FOldShowHint(HintStr, CanSHow, HintInfo);

end;

procedure TMainForm.PrintButtonClick(Sender: TObject);
{ Called when Print button is clicked. }
begin
if MessageDlg(‘Send search results to printer?’, mtConfirmation,

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
865

22 chpt_17.qxd 11/19/01 12:06 PM Page 865

LISTING 17.8 Continued

[mbYes, mbNo], 0) = mrYes then
PrintStrings(FileLB.Items);

end;

procedure TMainForm.CloseButtonClick(Sender: TObject);
{ Called to stop thread or close application }
begin
// if thread is running then terminate thread
if Running then SearchThread.Terminate
// otherwise close app
else Close;

end;

procedure TMainForm.FormResize(Sender: TObject);
{ OnResize event handler. Centers controls in form. }
begin
{ divide status bar into two panels with a 1/3 - 2/3 split }
with StatusBar do
begin
Panels[0].Width := Width div 3;
Panels[1].Width := Width * 2 div 3;

end;
{ center controls in the middle of the form }
ControlPanel.Left := (AlignPanel.Width div 2) - (ControlPanel.Width div 2);

end;

procedure TMainForm.PriorityButtonClick(Sender: TObject);
{ Show thread priority form }
begin
ThreadPriWin.Show;

end;

procedure TMainForm.ReadIni;
{ Reads default values from Registry }
begin
with SrchIniFile do
begin
EPathName.Text := ReadString(‘Defaults’, ‘LastPath’, ‘C:\’);
EFileSpec.Text := ReadString(‘Defaults’, ‘LastFileSpec’, ‘*.*’);
EToken.Text := ReadString(‘Defaults’, ‘LastToken’, ‘’);
cbFileNamesOnly.Checked := ReadBool(‘Defaults’, ‘FNamesOnly’, False);
cbCaseSensitive.Checked := ReadBool(‘Defaults’, ‘CaseSens’, False);
cbRecurse.Checked := ReadBool(‘Defaults’, ‘Recurse’, False);

Component-Based Development

PART IV
866

22 chpt_17.qxd 11/19/01 12:06 PM Page 866

LISTING 17.8 Continued

Left := ReadInteger(‘Position’, ‘Left’, 100);
Top := ReadInteger(‘Position’, ‘Top’, 50);
Width := ReadInteger(‘Position’, ‘Width’, 510);
Height := ReadInteger(‘Position’, ‘Height’, 370);

end;
end;

procedure TMainForm.WriteIni;
{ writes current settings back to Registry }
begin
with SrchIniFile do
begin
WriteString(‘Defaults’, ‘LastPath’, EPathName.Text);
WriteString(‘Defaults’, ‘LastFileSpec’, EFileSpec.Text);
WriteString(‘Defaults’, ‘LastToken’, EToken.Text);
WriteBool(‘Defaults’, ‘CaseSens’, cbCaseSensitive.Checked);
WriteBool(‘Defaults’, ‘FNamesOnly’, cbFileNamesOnly.Checked);
WriteBool(‘Defaults’, ‘Recurse’, cbRecurse.Checked);
WriteInteger(‘Position’, ‘Left’, Left);
WriteInteger(‘Position’, ‘Top’, Top);
WriteInteger(‘Position’, ‘Width’, Width);
WriteInteger(‘Position’, ‘Height’, Height);

end;
end;

procedure TMainForm.FormClose(Sender: TObject; var Action: TCloseAction);
begin
Action := caFree;
Application.OnShowHint := FOldShowHint;
MainForm := nil;

end;

procedure TMainForm.WndProc(var Message: TMessage);
begin
if Message.Msg = DDGM_ADDSTR then
begin
FileLB.Items.AddObject(PChar(Message.WParam), TObject(Message.LParam));
StrDispose(PChar(Message.WParam));

end
else
inherited WndProc(Message);

end;

end.

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
867

22 chpt_17.qxd 11/19/01 12:06 PM Page 867

FIGURE 17.7
The DDG Search wizard in action.

Form Wizards
Yet another type of wizard supported by the Open Tools API is the form wizard. Once installed,
form wizards are accessed from the New Items dialog box; they generate new forms and units
for the user. Chapter 16, “Windows Shell Programming,” employs this type of wizard to gener-
ate new AppBar forms; however, you didn’t get to see the code that made the wizard tick.

Creating a form wizard is fairly straightforward, although there a good number of interface
methods that you must implement. Creation of a form wizard can be boiled down to five basic
steps:

1. Create a class that descends from TCustomForm, TDataModule, or any TWinControl that
will be used as the base form class. This class will typically reside in a separate unit
from the wizard. In this case, TAppBar will serve as the base class.

2. Create a TNotifierObject descendent that implements the following interfaces:
IOTAWizard, IOTARepositoryWizard, IOTAFormWizard, IOTACreator, and
IOTAModuleCreator.

Component-Based Development

PART IV
868

Note the following line from Listing 17.8:

{$WARN UNIT_PLATFORM OFF}

This compiler directive is used to silence the compile-time warning that is generated
because Main.pas uses the FileCtrl unit, which is a Windows platform specific unit.
FileCtrl is marked as such using the platform directive.

TIP

22 chpt_17.qxd 11/19/01 12:06 PM Page 868

3. In your IOTAWizard.Execute() method, you will typically call IOTAModule
Services.GetNewModuleAndClassName() to obtain a new unit and classname for your
wizard and IOTAModuleServices.CreateModule() to instruct the IDE to begin creation
of the new module.

4. Many of the method implementations for the aforementioned interfaces are one-liners.
The non-trivial ones include IOTAModuleCreator’s NewFormFile() and NewImplFile()
methods, which will return the code for the form and unit, respectively. The
IOTACreator.GetOwner() method can also be a little tricky, but the example that follows
gives you a good technique for adding the unit to the current project (if any).

5. Complete the Register() procedure for the wizard by registering a handler for your new
form class using the RegisterCustomModule() procedure in the DsgnIntf unit and creat-
ing your wizard by calling the RegisterPackageWizard() procedure in the ToolsAPI
unit.

Listing 17.9 shows the source code for ABWizard.pas, which is the AppBar wizard.

LISTING 17.9 ABWizard.pas—The Unit Containing the Implementation of the
AppBar Wizard

unit ABWizard;

interface

uses Windows, Classes, ToolsAPI;

type
TAppBarWizard = class(TNotifierObject, IOTAWizard, IOTARepositoryWizard,
IOTAFormWizard, IOTACreator, IOTAModuleCreator)

private
FUnitIdent: string;
FClassName: string;
FFileName: string;

protected
// IOTAWizard methods
function GetIDString: string;
function GetName: string;
function GetState: TWizardState;
procedure Execute;
// IOTARepositoryWizard / IOTAFormWizard methods
function GetAuthor: string;
function GetComment: string;
function GetPage: string;
function GetGlyph: HICON;

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
869

22 chpt_17.qxd 11/19/01 12:06 PM Page 869

LISTING 17.9 Continued

// IOTACreator methods
function GetCreatorType: string;
function GetExisting: Boolean;
function GetFileSystem: string;
function GetOwner: IOTAModule;
function GetUnnamed: Boolean;
// IOTAModuleCreator methods
function GetAncestorName: string;
function GetImplFileName: string;
function GetIntfFileName: string;
function GetFormName: string;
function GetMainForm: Boolean;
function GetShowForm: Boolean;
function GetShowSource: Boolean;
function NewFormFile(const FormIdent, AncestorIdent: string): IOTAFile;
function NewImplSource(const ModuleIdent, FormIdent,
AncestorIdent: string): IOTAFile;

function NewIntfSource(const ModuleIdent, FormIdent,
AncestorIdent: string): IOTAFile;

procedure FormCreated(const FormEditor: IOTAFormEditor);
end;

implementation

uses Forms, AppBars, SysUtils, DsgnIntf;

{$R CodeGen.res}

type
TBaseFile = class(TInterfacedObject)
private
FModuleName: string;
FFormName: string;
FAncestorName: string;

public
constructor Create(const ModuleName, FormName, AncestorName: string);

end;

TUnitFile = class(TBaseFile, IOTAFile)
protected
function GetSource: string;
function GetAge: TDateTime;

end;

Component-Based Development

PART IV
870

22 chpt_17.qxd 11/19/01 12:06 PM Page 870

LISTING 17.9 Continued

TFormFile = class(TBaseFile, IOTAFile)
protected
function GetSource: string;
function GetAge: TDateTime;

end;

{ TBaseFile }

constructor TBaseFile.Create(const ModuleName, FormName,
AncestorName: string);

begin
inherited Create;
FModuleName := ModuleName;
FFormName := FormName;
FAncestorName := AncestorName;

end;

{ TUnitFile }

function TUnitFile.GetSource: string;
var
Text: string;
ResInstance: THandle;
HRes: HRSRC;

begin
ResInstance := FindResourceHInstance(HInstance);
HRes := FindResource(ResInstance, ‘CODEGEN’, RT_RCDATA);
Text := PChar(LockResource(LoadResource(ResInstance, HRes)));
SetLength(Text, SizeOfResource(ResInstance, HRes));
Result := Format(Text, [FModuleName, FFormName, FAncestorName]);

end;

function TUnitFile.GetAge: TDateTime;
begin
Result := -1;

end;

{ TFormFile }

function TFormFile.GetSource: string;
const
FormText =
‘object %0:s: T%0:s’#13#10’end’;

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
871

22 chpt_17.qxd 11/19/01 12:06 PM Page 871

LISTING 17.9 Continued

begin
Result := Format(FormText, [FFormName]);

end;

function TFormFile.GetAge: TDateTime;
begin
Result := -1;

end;

{ TAppBarWizard }

{ TAppBarWizard.IOTAWizard }

function TAppBarWizard.GetIDString: string;
begin
Result := ‘DDG.AppBarWizard’;

end;

function TAppBarWizard.GetName: string;
begin
Result := ‘DDG AppBar Wizard’;

end;

function TAppBarWizard.GetState: TWizardState;
begin
Result := [wsEnabled];

end;

procedure TAppBarWizard.Execute;
begin
(BorlandIDEServices as IOTAModuleServices).GetNewModuleAndClassName(
‘AppBar’, FUnitIdent, FClassName, FFileName);

(BorlandIDEServices as IOTAModuleServices).CreateModule(Self);
end;

{ TAppBarWizard.IOTARepositoryWizard / TAppBarWizard.IOTAFormWizard }

function TAppBarWizard.GetGlyph: HICON;
begin
Result := 0; // use standard icon

end;

function TAppBarWizard.GetPage: string;

Component-Based Development

PART IV
872

22 chpt_17.qxd 11/19/01 12:06 PM Page 872

LISTING 17.9 Continued

begin
Result := ‘DDG’;

end;

function TAppBarWizard.GetAuthor: string;
begin
Result := ‘Delphi 5 Developer’’s Guide’;

end;

function TAppBarWizard.GetComment: string;
begin
Result := ‘Creates a new AppBar form.’

end;

{ TAppBarWizard.IOTACreator }

function TAppBarWizard.GetCreatorType: string;
begin
Result := ‘’;

end;

function TAppBarWizard.GetExisting: Boolean;
begin
Result := False;

end;

function TAppBarWizard.GetFileSystem: string;
begin
Result := ‘’;

end;

function TAppBarWizard.GetOwner: IOTAModule;
var
I: Integer;
ModServ: IOTAModuleServices;
Module: IOTAModule;
ProjGrp: IOTAProjectGroup;

begin
Result := nil;
ModServ := BorlandIDEServices as IOTAModuleServices;
for I := 0 to ModServ.ModuleCount - 1 do
begin
Module := ModSErv.Modules[I];
// find current project group

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
873

22 chpt_17.qxd 11/19/01 12:07 PM Page 873

LISTING 17.9 Continued

if CompareText(ExtractFileExt(Module.FileName), ‘.bpg’) = 0 then
if Module.QueryInterface(IOTAProjectGroup, ProjGrp) = S_OK then
begin
// return active project of group
Result := ProjGrp.GetActiveProject;
Exit;

end;
end;

end;

function TAppBarWizard.GetUnnamed: Boolean;
begin
Result := True;

end;

{ TAppBarWizard.IOTAModuleCreator }

function TAppBarWizard.GetAncestorName: string;
begin
Result := ‘TAppBar’;

end;

function TAppBarWizard.GetImplFileName: string;
var
CurrDir: array[0..MAX_PATH] of char;

begin
// Note: full path name required!
GetCurrentDirectory(SizeOf(CurrDir), CurrDir);
Result := Format(‘%s\%s.pas’, [CurrDir, FUnitIdent, ‘.pas’]);

end;

function TAppBarWizard.GetIntfFileName: string;
begin
Result := ‘’;

end;

function TAppBarWizard.GetFormName: string;
begin
Result := FClassName;

end;

function TAppBarWizard.GetMainForm: Boolean;
begin
Result := False;

end;

Component-Based Development

PART IV
874

22 chpt_17.qxd 11/19/01 12:07 PM Page 874

LISTING 17.9 Continued

function TAppBarWizard.GetShowForm: Boolean;
begin
Result := True;

end;

function TAppBarWizard.GetShowSource: Boolean;
begin
Result := True;

end;

function TAppBarWizard.NewFormFile(const FormIdent,
AncestorIdent: string): IOTAFile;

begin
Result := TFormFile.Create(‘’, FormIdent, AncestorIdent);

end;

function TAppBarWizard.NewImplSource(const ModuleIdent, FormIdent,
AncestorIdent: string): IOTAFile;

begin
Result := TUnitFile.Create(ModuleIdent, FormIdent, AncestorIdent);

end;

function TAppBarWizard.NewIntfSource(const ModuleIdent, FormIdent,
AncestorIdent: string): IOTAFile;

begin
Result := nil;

end;

procedure TAppBarWizard.FormCreated(const FormEditor: IOTAFormEditor);
begin
// do nothing

end;

end.

This unit employs an interesting trick for source code generation: The unformatted source code is
stored in an RES file that’s linked in with the $R directive. This is a very flexible way to store a
wizard’s source code so that it can be readily modified. The RES file is built by including a text
file and RCDATA resource in an RC file and then compiling that RC file with BRCC32. Listings 17.10
and 17.11 show the contents of CodeGen.txt and CodeGen.rc.

Using the Open Tools API

CHAPTER 17

17

U
SIN

G
TH

E
O

PEN
T

O
O

LS
A

PI
875

22 chpt_17.qxd 11/19/01 12:07 PM Page 875

LISTING 17.10 CodeGen.txt—the Resource Template for the AppBar Wizard

unit %0:s;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, AppBars;

type
T%1:s = class(%2:s)
private
{ Private declarations }

public
{ Public declarations }

end;

var
%1:s: T%1:s;

implementation

{$R *.DFM}

end.

LISTING 17.11 CODEGEN.RC

CODEGEN RCDATA CODEGEN.TXT

Registration of the custom module and wizard occurs inside of a Register() procedure in the
design package containing the wizard using the following two lines:

RegisterCustomModule(TAppBar, TCustomModule);
RegisterPackageWizard(TAppBarWizard.Create);

Summary
After reading this chapter, you should have a greater understanding of the various units and
interfaces involved in the Delphi Open Tools API. In particular, you should know and under-
stand the issues involved in creating wizards that plug into the IDE. This chapter completes the
“Component-Based Development” section of the book. In the next section, “Enterprise
Development,” you will learn techniques for building enterprise-grade applications, starting
with those based on COM+ and MTS.

Component-Based Development

PART IV
876

22 chpt_17.qxd 11/19/01 12:07 PM Page 876

