
CHAPTER

15
COM Development

IN THIS CHAPTER
• COM Basics 654

• COM Meets Object Pascal 658

• COM Objects and Class Factories 667

• Distributed COM 673

• Automation 673

• Advanced Automation Techniques 700

• TOleContainer 733

20 chpt_15.qxd 11/19/01 12:13 PM Page 653

Robust support for COM-based technologies is one of the marquee features of Delphi. This
chapter covers COM and the various sundry technologies that rely on COM as their founda-
tion. These technologies include (but definitely aren’t limited to) COM servers and clients,
ActiveX controls, object linking and embedding (OLE), and Automation. However, all this new
technology at your fingertips can be a bit perplexing, if not daunting. This chapter is designed
to give you a complete overview of the technologies that make up COM, ActiveX, and OLE
and help you leverage these technologies in your own applications. In earlier days, this topic
referred primarily to OLE, which provides a method for sharing data among different applica-
tions, dealing primarily with linking or embedding data associated with one type of application
to data associated with another application (such as embedding a spreadsheet into a word
processor document). However, there’s a lot more to COM than just OLE-based word proces-
sor tricks!

In this chapter, you’ll first get a solid background in the basics of COM-based technologies in
general and extensions to Object Pascal and VCL added to support COM. You’ll learn how to
apply this knowledge in order to control Automation servers from your Delphi applications and
write Automation servers of your own. You’ll also learn about more sophisticated COM topics,
such as advanced Automation techniques and MTS. Finally, this chapter covers VCL’s
TOleContainer class, which encapsulates ActiveX containers. This chapter doesn’t teach you
everything there is to know about COM—that could take volumes—but it does cover all the
important features of COM, particularly as they apply to Delphi.

COM Basics
First things first. Before we jump into the topic at hand, it’s important that you understand the
basic concepts and terminology associated with the technology. This section introduces you to
basic ideas and terms behind the COM-based technologies.

COM: The Component Object Model
The Component Object Model (COM) forms the foundation upon which OLE and ActiveX
technology is built. COM defines an API and a binary standard for communication between
objects that’s independent of any particular programming language or (in theory) platform.
COM objects are similar to the VCL objects you’re familiar with—except that they have only
methods and properties associated with them, not data fields.

A COM object consists of one or more interfaces (described in the “Interfaces” section later in
this chapter), which are essentially tables of functions associated with that object. You can call
an interface’s methods just like the methods of a Delphi object.

The component objects you use can be implemented from any EXE or DLL, although the
implementation is transparent to you as a user of the object because of a service provided by

Component-Based Development

PART IV
654

20 chpt_15.qxd 11/19/01 12:13 PM Page 654

COM called marshaling. The COM marshaling mechanism handles all the intricacies of call-
ing functions across process—and even machine—boundaries, which makes it possible to use
a 32-bit object from a 16-bit application or access an object located on machine A from an
application running on machine B. This intermachine communication is known as Distributed
COM (DCOM) and is described in greater detail in the “Distributed COM” section later in this
chapter.

COM Versus ActiveX Versus OLE
“So, what’s the difference between COM, OLE, and ActiveX, anyway?” That’s one of the most
common (and reasonable) questions developers ask as they get into this technology. It’s a rea-
sonable question because it seems that the purveyor of this technology, Microsoft, does little to
clarify the matter. You’ve already learned that COM is the API and binary standard that forms
the building blocks of the other technologies. In the old days (like 1995), OLE was the blanket
term used to describe the entire suite of technologies built on the COM architecture. These
days, OLE refers only to those technologies associated specifically with linking and embed-
ding, such as containers, servers, in-place activation, drag-and-drop, and menu merging. In
1996, Microsoft embarked on an aggressive marketing campaign in an attempt to create brand
recognition for the term ActiveX, which became the blanket term used to describe non-OLE
technologies built on top of COM. ActiveX technologies include Automation (formerly called
OLE Automation) controls, documents, containers, scripting, and several Internet technologies.
Because of the confusion created by using the term ActiveX to describe everything short of the
family pet, Microsoft has backed off a bit and now sometimes refers to non-OLE COM tech-
nologies simply as COM-based technologies.

Those with a more cynical view of the industry might say that the term OLE became associ-
ated with adjectives such as slow and bloated, and marketing-savvy Microsoft needed a new
term for those APIs on which it planned to base its future operating system and Internet tech-
nologies. Also amusing is the fact that Microsoft now claims OLE no longer stands for object
linking and embedding—it’s just a word that’s pronounced Oh-lay.

Terminology
COM technologies bring with them a great deal of new terminology, so some terms are pre-
sented here before going any deeper into the guts of ActiveX and OLE.

Although an instance of a COM object is usually referred to simply as an object, the type that
identifies that object is usually referred to as a component class or coclass. Therefore, to create
an instance of a COM object, you must pass the CLSID of the COM class you want to create.

The chunk of data that’s shared between applications is referred to as an OLE object.
Applications that have the capability to contain OLE objects are referred to as OLE containers.

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
655

20 chpt_15.qxd 11/19/01 12:13 PM Page 655

Applications that have the capability to have their data contained within an OLE container are
called OLE servers.

A document that contains one or more OLE objects is usually referred to as a compound docu-
ment. Although OLE objects can be contained within a particular document, full-scale applica-
tions that can be hosted within the context of another document are known as ActiveX
documents.

As the name implies, an OLE object can be linked or embedded into a compound document.
Linked objects are stored in a file on disk. With object linking, multiple containers—or even
the server application—can link to the same OLE object on disk. When one application modi-
fies the linked object, the modification is reflected in all the other applications maintaining a
link to that object. Embedded objects are stored by the OLE container application. Only the
container application is able to edit the OLE object. Embedding prevents other applications
from accessing (and therefore modifying or corrupting) your data, but it does put the burden of
managing the data on the container.

Another facet of ActiveX that you’ll learn more about in this chapter is Automation, which is a
means by which you can allow applications (called Automation controllers) to manipulate
objects associated with other applications or libraries (called an Automation server).
Automation enables you to manipulate objects in another application and, conversely, to
expose elements of your application to other developers.

What’s So Great About ActiveX?
The coolest thing about ActiveX is that it enables you to easily build the capability to manipu-
late many types of data into your applications. You might snicker at the word easily, but it’s
true. It is much easier, for example, to give your application the capability to contain ActiveX
objects than it is to build word processing, spreadsheet, or graphics-manipulation capabilities
into your application.

ActiveX fits very well with Delphi’s tradition of maximum code reuse. You don’t have to write
code to manipulate a particular kind of data if you already have an OLE server application that
does the job. As complicated as OLE can be, it often makes more sense than the alternatives.

It also is no secret that Microsoft has a large investment in ActiveX technology, and serious
developers for Windows 95, NT, and other upcoming operating systems will have to become
familiar with using ActiveX in their applications. So, like it or not, COM is here for a while,
and it behooves you, as a developer, to become comfortable with it.

Component-Based Development

PART IV
656

20 chpt_15.qxd 11/19/01 12:13 PM Page 656

OLE 1 Versus OLE 2
One of the primary differences between OLE objects associated with 16-bit OLE version 1
servers and those associated with OLE version 2 servers is in how they activate themselves.
When you activate an object created with an OLE 1 server, the server application starts up and
receives focus, and then the OLE object appears in the server application, ready for editing.
When you activate an OLE 2 object, the OLE 2 server application becomes active “inside”
your container application. This is known as in-place activation or visual editing.

When an OLE 2 object is activated, the menus and toolbars of the server application replace or
merge with those of the client application, and a portion of the client application’s window
essentially becomes the window of the server application. This process is demonstrated in the
sample application in the “TOleContainer” section later in this chapter.

Structured Storage
OLE 2 defines a system for storing information on disk known as structured storage. This sys-
tem basically does on a file level what DOS does on a disk level. A storage object is one physi-
cal file on a disk, but it equates with the DOS concept of a directory, and it’s made up of
multiple storages and streams. A storage equates to a subdirectory, and a stream equates to a
DOS file. You’ll often hear this implementation referred to as compound files.

Uniform Data Transfer
OLE 2 also has the concept of a data object, which is the basic object used to exchange data
under the rules of uniform data transfer. Uniform data transfer (UDT) governs data transfers
through the Clipboard, drag-and-drop, DDE, and OLE. Data objects allow for a greater degree
of description about the kind of data they contain than previously was practical given the limi-
tations of those transfer media. In fact, UDT is destined to replace DDE. A data object can be
aware of its important properties, such as size, color, and even what device it’s designed to be
rendered on. Try doing that on the Windows Clipboard!

Threading Models
Every COM object operates in a particular threading model that dictates how an object can be
manipulated in a multithreaded environment. When a COM server is registered, each of the
COM objects contained in that server should register the threading model they support. For
COM objects written in Delphi, the threading model chosen in the Automation, ActiveX con-
trol, or COM object wizards dictates how a control is registered. The COM threading models
include the following:

• Single—The entire COM server runs on a single thread.

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
657

20 chpt_15.qxd 11/19/01 12:13 PM Page 657

• Apartment—Also known as single-threaded apartment (STA). Each COM object exe-
cutes within the context of its own thread, and multiple instances of the same type of
COM object can execute within separate threads. Because of this, any data that’s shared
between object instances (such as global variables) must be protected by thread synchro-
nization objects when appropriate.

• Free—Also known as multithreaded apartment (MTA). A client can call a method of an
object on any thread at any time. This means that the COM object must protect even its
own instance data from simultaneous access by multiple threads.

• Both—Both the apartment and free threading models are supported.

Keep in mind that merely selecting the desired threading model in the wizard doesn’t guaran-
tee that your COM object will be safe for that threading model. You must write the code to
ensure that your COM servers operate correctly for the threading model you want to support.
This most often includes using thread synchronization objects to protect access to global or
instance data in your COM objects. For more information on multithreaded development in
Delphi, see Chapter 5, “Multithreaded Techniques.”

COM+
As a part of the Windows 2000 release, Microsoft has provided the most significant update to
COM in recent memory with the release of a new iteration called COM+. The goal of COM+
is the simplification of the COM development process through the integration of several satel-
lite technologies, most notably MTS and Microsoft Message Queue (MSMQ). The integration
of these technologies into the standard COM+ runtime means that all COM+ developers will
be able to take advantage of features such as transaction control, security, administration,
queued components, and publish and subscribe event services. Because COM+ consists mostly
of off-the-shelf parts, this means complete backward compatibility, such that all existing COM
and MTS applications automatically become COM+ applications. You can learn more about
COM+ and MTS technologies in Chapter 18, “Transactional Development with COM+/MTS.”

COM Meets Object Pascal
Now that you understand the basic concepts and terms behind COM, ActiveX, and OLE, it’s
time to discuss how the concepts are implemented in Delphi. This section goes into more detail
on COM and gives you a look at how it fits into the Object Pascal language and VCL.

Interfaces
COM defines a standard map for how an object’s functions are laid out in memory. Functions
are arranged in virtual tables (called vtables)—tables of function addresses identical to Delphi
class virtual method tables (VMTs). The programming language description of each vtable is
referred to as an interface.

Component-Based Development

PART IV
658

20 chpt_15.qxd 11/19/01 12:13 PM Page 658

Think of an interface as a facet of a particular class. Each facet represents a specific set of
functions or procedures that you can use to manipulate the class. For example, a COM object
that represents a bitmap image might support two interfaces: one containing methods that
enable the bitmap to render itself to the screen or printer and another interface to manage stor-
ing and retrieving the bitmap to and from a file on disk.

An interface really has two parts: The first part is the interface definition, which consists of a
collection of one or more function declarations in a specific order. The interface definition is
shared between the object and the user of the object. The second part is the interface imple-
mentation, which is the actual implementation of the functions described in the interface decla-
ration. The interface definition is like a contract between the COM object and a client of that
object—a guarantee to the client that the object will implement specific methods in a specific
order.

Introduced in Delphi 3, the interface keyword in Object Pascal enables you to easily define
COM interfaces. An interface declaration is semantically similar to a class declaration, with a
few exceptions. Interfaces can consist only of properties and methods—no data. Because inter-
faces cannot contain data, their properties must write and read to and from methods. Most
important, interfaces have no implementation because they only define a contract.

IUnknown
Just as all Object Pascal classes implicitly descend from TObject, all COM interfaces (and
therefore all Object Pascal interfaces) implicitly derive from IUnknown, which is defined in the
System unit as follows:

type
IUnknown = interface
[‘{00000000-0000-0000-C000-000000000046}’]
function QueryInterface(const IID: TGUID; out Obj): Integer; stdcall;
function _AddRef: Integer; stdcall;
function _Release: Integer; stdcall;

end;

Aside from the use of the interface keyword, another obvious difference between an interface
and class declaration that you’ll notice from the preceding code is the presence of a globally
unique identifier (GUID).

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
659

You can generate a new GUID in the Delphi IDE using the Ctrl+Shift+G keystroke in
the Code Editor.

TIP

20 chpt_15.qxd 11/19/01 12:13 PM Page 659

Component-Based Development

PART IV
660

Globally Unique Identifiers (GUIDs)
A GUID (pronounced goo-id) is a 128-bit integer used in COM to uniquely identify an
interface, coclass, or other entity. Because of their large size and the hairy algorithm
used to generate these numbers, GUIDs are almost guaranteed to be globally unique
(hence the name). GUIDs are generated using the CoCreateGUID() API function, and
the algorithm employed by this function to generate new GUIDs combines informa-
tion such as the current date and time, CPU clock sequence, network card number,
and the balance of Bill Gates’s bank accounts. (Okay, so we made up the last one.) If
you have a network card installed on a particular machine, a GUID generated on that
machine is guaranteed to be unique because every network card has an internal ID
that’s globally unique. If you don’t have a network card, it will synthesize a close
approximation using other hardware information.

Because there’s no language type that holds something as large as 128 bits in size,
GUIDs are represented by the TGUID record, which is defined as follows in the System
unit:

type
PGUID = ^TGUID;
TGUID = record
D1: LongWord;
D2: Word;
D3: Word;
D4: array[0..7] of Byte;

end;

Because it can be a pain to assign GUID values to variables and constants in this
record format, Object Pascal also allows a TGUID to be represented as a string with
the following format:

‘{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx}’

Thanks to this, the following declarations are equivalent as far as the Delphi com-
piler is concerned:

MyGuid: TGUID = (
D1:$12345678;D2:$1234;D3:$1234;D4:($01,$02,$03,$04,$05,$06,$07,$08));

MyGuid: TGUID = ‘{12345678-1234-1234-12345678}’;

In COM, every interface or class has an accompanying GUID that uniquely defines that
interface. In this way, two interfaces or classes having the same name defined by two
different people will never conflict because their respective GUIDs will be different.
When used to represent an interface, a GUID is normally referred to as an interface
ID (IID). When used to represent a class, a GUID is referred to as a class ID (CLSID).

20 chpt_15.qxd 11/19/01 12:13 PM Page 660

In addition to its IID, IUnknown declares three methods: QueryInterface(), _AddRef(), and
_Release(). Because IUnknown is the base interface for COM, all interfaces must implement
IUnknown and its methods. The _AddRef() method should be called when a client obtains and
wants to use a pointer to a given interface, and a call to _AddRef() must have an accompany-
ing call to _Release() when the client is finished using the interface. In this way, the object
that implements the interfaces can maintain a count of clients that are keeping a reference to
the object, or reference count. When the reference count reaches zero, the object should free
itself from memory. The QueryInterface() function is used to query whether an object sup-
ports a given interface and, if so, to return a pointer to that interface. For example, suppose that
object O supports two interfaces, I1 and I2, and you have a pointer to O’s I1 interface. To
obtain a pointer to O’s I2 interface, you would call I1.QueryInterface().

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
661

If you’re an experienced COM developer, you might have noticed that the underscore
in front of the _AddRef() and _Release() methods isn’t consistent with other COM
programming languages or even with Microsoft’s COM documentation. Because
Object Pascal is “IUnknown aware,” you won’t normally call these methods directly
(more on this in a moment), so the underscores exist primarily to make you think
before calling these methods.

NOTE

Because every interface in Delphi implicitly descends from IUnknown, every Delphi class that
implements interfaces must also implement the three IUnknown methods. You can do this your-
self manually, or you can let VCL do the dirty work for you by descending your class from
TInterfacedObject, which implements IUnknown for you.

Using Interfaces
Chapter 2, “The Object Pascal Language,” and Delphi’s own “Object Pascal Language Guide”
documentation cover the semantics of using interface instances, so we won’t rehash that mater-
ial here. Instead, we’ll discuss how IUnknown is seamlessly integrated into the rules of Object
Pascal.

When an interface variable is assigned a value, the compiler automatically generates a call to
the interface’s _AddRef() method so that the reference count of the object is incremented.
When an interface variable falls out of scope or is assigned the value nil, the compiler auto-
matically generates a call to the interface’s _Release() method. Consider the following piece
of code:

var
I: ISomeInteface;

20 chpt_15.qxd 11/19/01 12:13 PM Page 661

begin
I := FunctionThatReturnsAnInterface;
I.SomeMethod;

end;

Now take a look at the following code snippet, which shows the code you would type (in bold)
and an approximate Pascal version of the code the compiler generates (in normal font):

var
I: ISomeInterface;

begin
// interface is automatically initialized to nil
I := nil;
try
// your code goes here
I := FunctionThatReturnsAnInterface;
// _AddRef() is called implicitly when I is assigned
I._AddRef;
I.SomeMethod;

finally
// implicit finally block ensures that the reference to the
// interface is released
if I <> nil I._Release;

end;
end;

The Delphi compiler is also smart enough to know when to call _AddRef() and _Release() as
interfaces are reassigned to other interface instances or assigned the value nil. For example,
consider the following code block:

var
I: ISomeInteface;

begin
// assign I
I := FunctionThatReturnsAnInterface;
I.SomeMethod;
// reassign I
I := OtherFunctionThatReturnsAnInterface;
I.OtherMethod;
// set I to nil
I := nil;

end;

Again, here’s a composite of the user-written (bold) code and the approximate compiler-gener-
ated (normal) code:

Component-Based Development

PART IV
662

20 chpt_15.qxd 11/19/01 12:13 PM Page 662

var
I: ISomeInterface;

begin
// interface is automatically initialized to nil
I := nil;
try
// your code goes here
// assign I
I := FunctionThatReturnsAnInterface;
// _AddRef() is called implicitly when I is assigned
I._AddRef;
I.SomeMethod;
// reassign I
I._Release;
I := OtherFunctionThatReturnsAnInterface;
I._AddRef;
I.OtherMethod;
// set I to nil
I._Release;
I := nil;

finally
// implicit finally block ensures that the reference to the
// interface is released
if I <> nil I._Release;

end;
end;

The preceding code example also helps to illustrate why Delphi prepends the underscore to the
_AddRef() and _Release() methods. Forgetting to increment or decrement the reference of an
interface was one of the classic COM programming bugs in the pre-interface days. Delphi’s
interface support is designed to alleviate these problems by handling the housekeeping details
for you, so there’s rarely ever a reason to call these methods directly.

Because the compiler knows how to generate calls to _AddRef() and _Release(), wouldn’t it
make sense if the compiler had some inherent knowledge of the third IUnknown method,
QueryInterface()? It would, and it does. Given an interface pointer for an object, you can use
the as operator to “typecast” the interface to another interface supported by the COM object.
We say typecast because this application of the as operator isn’t really a typecast in the strict
sense but rather an internal call to the QueryInterface() method. The following sample code
demonstrates this:

var
I1: ISomeInterface;
I2: ISomeOtherInterface;

begin

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
663

20 chpt_15.qxd 11/19/01 12:13 PM Page 663

// assign to I1
I1 := FunctionThatReturnsAnInterface;
// QueryInterface I1 for an I2 interface
I2 := I1 as ISomeOtherInterface;

end;

In the preceding example, if the object referenced by I1 doesn’t support the ISomeOtherInterface
interface, an exception will be raised by the as operator.

One additional language rule pertaining to interfaces is that an interface variable is assignment
compatible with an Object Pascal class that implements that interface. For example, consider
the following interface and class declarations:

type
IFoo = interface
// definition of IFoo

end;

IBar = interface(IFoo)
// definition of IBar

end;

TBarClass = class(TObject, IBar)
// definition of TBarClass

end;

Given the preceding declarations, the following code is correct:

var
IB: IBar;
TB: TBarClass;

begin
TB := TBarClass.Create;
try
// obtain TB’s IBar interface pointer:
IB := TB;
// use TB and IB

finally
IB := nil; // explicitly release IB
TB.Free;

end;
end;

Although this feature seems to violate traditional Pascal assignment-compatibility rules, it does
make interfaces feel more natural and easier to work with.

An important but nonobvious corollary to this rule is that interfaces are only assignment com-
patible with classes that explicitly support the interface. For example, the TBarClass class
defined earlier declares explicit support for the IBar interface. Because IBar descends from

Component-Based Development

PART IV
664

20 chpt_15.qxd 11/19/01 12:13 PM Page 664

IFoo, conventional wisdom might indicate that TBarClass also directly supports IFoo. This
isn’t the case, however, as the following sample code illustrates:

var
IF: IFoo;
TB: TBarClass;

begin
TB := TBarClass.Create;
try
// compiler error raised on the next line because TBarClass
// doesn’t explicitly support IFoo.
IF := TB;
// use TB and IF

finally
IF := nil; // expicitly release IF
TB.Free;

end;
end;

Interfaces and IIDs
Because the interface ID is declared as a part of an interface declaration, the Object Pascal
compiler knows how to obtain the IID from an interface. Therefore, you can pass an interface
type to a procedure or function that requires a TIID or TGUID as a parameter. For example, sup-
pose that you have a function like this:

procedure TakesIID(const IID: TIID);

The following code is syntactically correct:

TakesIID(IUnknown);

This capability obviates the need for IID_InterfaceType constants defined for each interface
type that you might be familiar with if you’ve done COM development in C++.

Method Aliasing
A problem that occasionally arises when you implement multiple interfaces in a single class is
that there can be a collision of method names in two or more interfaces. For example, consider
the following interfaces:

type
IIntf1 = interface
procedure AProc;

end;

IIntf2 = interface
procedure AProc;

end;

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
665

20 chpt_15.qxd 11/19/01 12:13 PM Page 665

Given that each of the interfaces contains a method called AProc(), how can you declare a
class that implements both interfaces? The answer is method aliasing. Method aliasing enables
you to map a particular interface method to a method of a different name in a class. The fol-
lowing code example demonstrates how to declare a class that implements IIntf1 and IIntf2:

type
TNewClass = class(TInterfacedObject, IIntf1, IIntf2)
protected
procedure IIntf2.AProc = AProc2;
procedure AProc; // binds to IIntf1.AProc
procedure AProc2; // binds to IIntf2.AProc

end;

In this declaration, the AProc() method of IIntf2 is mapped to a method with the name
AProc2(). Creating aliases in this way enables you to implement any interface on any class
without fear of method name collisions.

The HResult Return Type
You might notice that the QueryInterface() method of IUnknown returns a result of type
HResult. HResult is a very common return type for many ActiveX and OLE interface methods
and COM API functions. HResult is defined in the System unit as a type LongWord. Possible
HResult values are listed in the Windows unit. (If you have the VCL source code, you can find
them under the heading { HRESULT value definitions }.) An HResult value of S_OK or
NOERROR (0) indicates success, whereas if the high bit of the HResult value is set, it indicates
failure or some type of error condition. Two functions in the Windows unit, Succeeded() and
Failed(), take an HResult as a parameter and return a BOOL, indicating success or failure.
Here’s the syntax for calling these methods:

if Succeeded(FunctionThatReturnsHResult) then
\\ continue as normal

if Failed(FunctionThatReturnsHResult) then
\\ error condition code

Of course, checking the return value of every single function call can become tedious. Also,
dealing with errors returned by functions undermines Delphi’s exception-handling methods for
error detection and recovery. For these reasons, the ComObj unit defines a procedure called
OleCheck() that converts HResult errors to exceptions. The syntax for calling this method is

OleCheck(FunctionThatReturnsHResult);

This procedure can be quite handy, and it will clean up your ActiveX code considerably.

Component-Based Development

PART IV
666

20 chpt_15.qxd 11/19/01 12:13 PM Page 666

COM Objects and Class Factories
In addition to supporting one or more interfaces that descend from IUnknown and implement-
ing reference counting for lifetime management, COM objects also have another special fea-
ture: They are created through special objects called class factories. Each COM class has an
associated class factory that’s responsible for creating instances of that COM class. Class fac-
tories are special COM objects that support the IClassFactory interface. This interface is
defined in the ActiveX unit as follows:

type
IClassFactory = interface(IUnknown)
[‘{00000001-0000-0000-C000-000000000046}’]
function CreateInstance(const unkOuter: IUnknown; const iid: TIID;
out obj): HResult; stdcall;

function LockServer(fLock: BOOL): HResult; stdcall;
end;

The CreateInstance() method is called to create an instance of the class factory’s associated
COM object. The unkOuter parameter of this method references the controlling IUnknown if
the object is being created as a part of an aggregate (aggregation is explained a bit later). The
iid parameter contains the IID of the interface by which you want to manipulate the object.
Upon return, the obj parameter will hold a pointer to the interface indicated by iid.

The LockServer() method is called to keep a COM server in memory, even though no clients
might be referencing the server. The fLock parameter, when True, should increment the
server’s lock count. When False, fLock should decrement the server’s lock count. When the
server’s lock count is 0 and no clients are referencing the server, COM will unload the server.

TComObject and TComObjectFactory
Delphi provides two classes that encapsulate COM objects and class factories: TComObject and
TComObjectFactory, respectively. TComObject contains the necessary infrastructure for sup-
porting IUnknown and creation via TComObjectFactory. Likewise, TComObjectFactory sup-
ports IClassFactory and has the capability to create TComObject objects. You can easily
generate a COM object using the COM Object Wizard found on the ActiveX page of the New
Items dialog box. Listing 15.1 shows pseudocode for the unit generated by this wizard, which
illustrates the relationship between these classes. Note that the wizard’s Include Type Library
check box is unchecked; type libraries are discussed in the “Automation” section later in this
chapter.

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
667

20 chpt_15.qxd 11/19/01 12:13 PM Page 667

LISTING 15.1 COM Server Unit Pseudocode

unit ComDemo;

{$WARN SYMBOL_PLATFORM OFF}

interface

uses
Windows, ActiveX, Classes, ComObj;

type
TSomeComObject = class(TComObject, interfaces supported)
class and interface methods declared here

end;

const
Class_SomeObject: TGUID = ‘{CB11BA07-735D-4937-885A-1CFB5312AEC8}’;

implementation

uses ComServ;

TSomeComObject implementation here

initialization
TComObjectFactory.Create(ComServer, TSomeObject, Class_SomeObject,
‘SomeObject’, ‘The SomeObject class’, ciMultiInstance, tmApartment);end;

The TComServer descendant is declared and implemented like most VCL classes. What binds it
to its corresponding TComObjectFactory object is the parameters passed to TComObjectFactory’s
constructor Create(). The first constructor parameter is a TComServer object. You almost
always will pass the global ComServer object declared in the ComServ unit in this parameter.
The second parameter is the TComObject class you want to bind to the class factory. The third
parameter is the CLSID of the TComObject’s COM class. The fourth and fifth parameters are
the class name and description strings used to describe the COM class in the System Registry.
The sixth parameter indicates the instancing of the COM object, and the final parameter indi-
cates the threading model of the object.

The TTypedComObjectFactory instance is created in the initialization of the unit in order to
ensure that the class factory will be available to create instances of the COM object as soon as
the COM server is loaded. Exactly how the COM server is loaded depends on whether the
COM server is an in-process server (a DLL) or an out-of-process server (an application).

Component-Based Development

PART IV
668

20 chpt_15.qxd 11/19/01 12:13 PM Page 668

In-Process COM Servers
In-process (or in-proc, for short) COM servers are DLLs that can create COM objects for use
by the host application. This type of COM server is called in-process because, as a DLL, it
resides in the same process as the calling application. An in-proc server must export four stan-
dard entry-point functions:

function DllRegisterServer: HResult; stdcall;
function DllUnregisterServer: HResult; stdcall;
function DllGetClassObject (const CLSID, IID: TGUID; var Obj): HResult;
stdcall;

function DllCanUnloadNow: HResult; stdcall;

Each of these functions is already implemented by the ComServ unit, so the only work to be
done for your Delphi COM servers is to ensure that these functions are added to an exports
clause in your project.

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
669

A good example of a real-world application of in-process COM servers can be found
in Chapter 16, “Windows Shell Programming,” which demonstrates how to create
shell extensions.

NOTE

DllRegisterServer()
The DllRegisterServer() function is called to register a COM server DLL with the System
Registry. If you simply export this method from your Delphi application, as described earlier,
VCL will iterate over all the COM objects in your application and register them with the
System Registry. When a COM server is registered, it will make a key entry in the System
Registry under

HKEY_CLASSES_ROOT\CLSID\{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxx}

for each COM class, where the Xs denote the CLSID of the COM class. For in-proc servers, an
additional entry is created as a subkey of the preceding key called InProcServer32. The
default value for this key is the full path to the in-proc server DLL. Figure 15.1 shows a COM
server registered with the System Registry.

DllUnregsterServer()
The DllUnregisterServer() function’s job is simply to undo what is done by the
DllRegisterServer() function. When called, it should remove all the entries in the System
Registry made by DllRegisterServer().

20 chpt_15.qxd 11/19/01 12:13 PM Page 669

FIGURE 15.1
A COM server as shown in the Registry Editor.

DllGetClassObject()
DllGetClassObject() is called by the COM engine in order to retrieve a class factory for a
particular COM class. The CLSID parameter of this method is the CLSID of the type of COM
class you want to create. The IID parameter holds the IID of the interface instance pointer you
want to obtain for the class factory object (usually, IClassFactory’s interface ID is passed
here). Upon successful return, the Obj parameter contains a pointer to the class factory inter-
face denoted by IID that’s capable of creating COM objects of the class type denoted by
CLSID.

DllCanUnloadNow()
DllCanUnloadNow() is called by the COM engine to determine whether the COM server DLL
is capable of being unloaded from memory. If there are references to any COM object within
the DLL, this function should return S_FALSE, indicating that the DLL shouldn’t be unloaded.
If none of the DLL’s COM objects are in use, this method should return S_TRUE.

Component-Based Development

PART IV
670

Even after all references to an in-proc server’s COM objects have been freed, COM
might not necessarily call DllCanUnloadNow() to begin the process of releasing the in-
proc server DLL from memory. If you want to ensure that all unused COM server DLLs
have been released from memory, call the CoFreeUnusedLibraries() API function,
which is defined in the ActiveX units as follows:

procedure CoFreeUnusedLibraries; stdcall;

TIP

Creating an Instance of an In-Proc COM Server
To create an instance of a COM server in Delphi, use the CreateComObject() function, which
is defined in the ComObj unit as follows:

20 chpt_15.qxd 11/19/01 12:13 PM Page 670

function CreateComObject(const ClassID: TGUID): IUnknown;

The ClassID parameter holds the CLSID, which identifies the type of COM object you want to
create. The return value of this function is the IUnknown interface of the requested COM
object, or the function raises an exception if the COM object cannot be created.

CreateComObject() is a wrapper around the CoCreateInstance() COM API function.
Internally, CoCreateInstance() calls the CoGetClassObject() API function to obtain an
IClassFactory for the specified COM object. CoCreateInstance() does this by looking in
the Registry for the COM class’s InProcServer32 entry in order to find the path to the in-proc
server DLL, calling LoadLibrary() on the in-proc server DLL, and then calling the DLL’s
DllGetClassObject() function. After obtaining the IClassFactory interface pointer,
CoCreateInstance() calls IClassFactory.CreateInstance() to create an instance of the
specified COM class.

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
671

CreateComObject() can be inefficient if you need to create multiple objects from a
class factory because it disposes of the IClassFactory interface pointer obtained by
CoGetClassObject() after creating the requested COM object. In cases where you
need to create multiple instances of the same COM object, you should call
CoGetClassObject() directly and use IClassFactory.CreateInstance() to create
multiple instances of the COM object.

TIP

Before you can use any COM or OLE API functions, you must initialize the COM
library using the CoInitialize() function. The single parameter to this function must
be nil. To properly shut down the COM library, you should call the CoUninitialize()
function as the last call to the OLE library. Calls are cumulative, so each call to
CoInitialize() in your application must have a corresponding call to
CoUninitialize().

For applications, CoInitialize() is called automatically from Application.Initialize(),
and CoUninitialize() is called automatically from the finalization of ComObj.

It’s not necessary to call these functions from in-process libraries because their client
applications are required to perform the initialization and uninitialization for the
process.

NOTE

20 chpt_15.qxd 11/19/01 12:13 PM Page 671

Out-of-Process COM Servers
Out-of-process servers are executables that can create COM objects for use by other applica-
tions. The name comes from the fact that they do not execute from within the same process of
the client but instead are executables that operate within the context of their own processes.

Registration
Similar to their in-proc cousins, out-of-process servers must also be registered with the System
Registry. Out-of-process servers must make an entry under

HKEY_CLASSES_ROOT\CLSID\{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxx}

called LocalServer32, which identifies the full pathname of the out-of-process server executable.

Delphi applications’ COM servers are registered in the Application.Initialize() method,
which is usually the first line of code in an application’s project file. If the /regserver com-
mand-line switch is passed to your application, Application.Initialize() will register the
COM classes with the System Registry and immediately terminate the application. Likewise, if
the /unregserver command-line switch is passed, Application.Initialize() will unregister
the COM classes with the System Registry and immediately terminate the application. If neither
of these switches are passed, Application.Initialize() will register the COM classes with
the System Registry and continue to run the application normally.

Creating an Instance of an Out-of-Proc COM Server
On the surface, the method for creating instances of COM objects from out-of-process servers
is the same as for in-proc servers: Just call ComObj’s CreateComObject() function. Behind the
scenes, however, the process is quite different. In this case, CoGetClassObject() looks for the
LocalServer32 entry in the System Registry and invokes the associated application using the
CreateProcess() API function. When the out-of-proc server application is invoked, the server
must register its class factories using the CoRegisterClassObject() COM API function. This
function adds an IClassFactory pointer to COM’s internal table of active registered class
objects. CoGetClassObject() can then obtain the requested COM class’s IClassFactory
pointer from this table to create an instance of the COM object.

Aggregation
You know now that interfaces are the basic building blocks of COM as well as that inheritance
is possible with interfaces, but interfaces are entities without implementation. What happens,
then, when you want to recycle the implementation of one COM object within another? COM’s
answer to this question is a concept called aggregation. Aggregation means that the containing
(outer) object creates the contained (inner) object as part of its creation process, and the inter-
faces of the inner object are exposed by the outer. An object has to allow itself to operate as an

Component-Based Development

PART IV
672

20 chpt_15.qxd 11/19/01 12:13 PM Page 672

aggregate by providing a means to forward all calls to its IUnknown methods to the containing
object. For an example of aggregation within the context of VCL COM objects, you should take
a look at the TAggregatedObject class in the AxCtrls unit.

Distributed COM
Introduced with Windows NT 4, Distributed COM (or DCOM) provides a means for accessing
COM objects located on other machines on a network. In addition to remote object creation,
DCOM also provides security facilities that allow servers to specify which clients have rights
to create instances of which servers and what operations they might perform. Windows NT 4
and Windows 98 have built-in DCOM capability, but Windows 95 requires an add-on available
on Microsoft’s Web site (http://www.microsoft.com) to serve as a DCOM client.

You can create remote COM objects using the CreateRemoteComObject() function, which is
declared in the ComObj unit as follows:

function CreateRemoteComObject(const MachineName: WideString;
const ClassID: TGUID): IUnknown;

The first parameter, MachineName, to this function is a string representing the network name
of the machine containing the COM class. The ClassID parameter specifies the CLSID of the
COM class to be created. The return value for this function is the IUnknown interface pointer
for the COM object specified in CLSID. An exception will be raised if the object cannot be
created.

CreateRemoteComObject() is a wrapper around the CoCreateInstanceEx() COM API func-
tion, which is an extended version of CoCreateInstance() that knows how to create objects
remotely.

Automation
Automation (formerly known as OLE Automation) provides a means for applications or DLLs
to expose programmable objects for use by other applications. Applications or DLLs that
expose programmable objects are referred to as Automation servers. Applications that access
and manipulate the programmable objects contained within Automation servers are known as
Automation controllers. Automation controllers are able to program the Automation server
using a macro-like language exposed by the server.

Among the chief advantages to using Automation in your applications is its language-indepen-
dent nature. An Automation controller is able to manipulate a server regardless of the program-
ming language used to develop either component. Additionally, because Automation is
supported at the operating system level, the theory is that you’ll be able to leverage future

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
673

20 chpt_15.qxd 11/19/01 12:13 PM Page 673

advancements in this technology by using Automation today. If these things sound good to
you, read on. What follows is information on creating Automation servers and controllers in
Delphi.

Component-Based Development

PART IV
674

If you have an Automation project from Delphi 2 that you want to migrate to the
current version of Delphi, you should be forewarned that the techniques for
Automation changed drastically starting with Delphi 3. In general, you shouldn’t mix
Delphi 2’s Automation unit, OleAuto, with the newer ComObj or ComServ units. If you
want to compile a Delphi 2 Automation project in Delphi 5, the OleAuto unit remains
in the \Delphi5\lib\Delphi2 subdirectory for backward compatibility.

CAUTION

IDispatch
Automation objects are essentially COM objects that implement the IDispatch interface.
IDispatch is defined in the System unit as shown here:

type
IDispatch = interface(IUnknown)
[‘{00020400-0000-0000-C000-000000000046}’]
function GetTypeInfoCount(out Count: Integer): Integer; stdcall;
function GetTypeInfo(Index, LocaleID: Integer; out TypeInfo):
Integer; stdcall;
function GetIDsOfNames(const IID: TGUID; Names: Pointer;
NameCount, LocaleID: Integer; DispIDs: Pointer): Integer; stdcall;

function Invoke(DispID: Integer; const IID: TGUID; LocaleID: Integer;
Flags: Word; var Params; VarResult, ExcepInfo, ArgErr: Pointer): Integer;

end;

The first thing you should know is that you don’t have to understand the ins and outs of the
IDispatch interface to take advantage of Automation in Delphi, so don’t let this complicated
interface alarm you. You generally don’t have to interact with this interface directly because
Delphi provides an elegant encapsulation of Automation, but the description of IDispatch in
this section should provide you with a good foundation for understanding Automation.

Central to the function of IDispatch is the Invoke() method, so we’ll start there. When a
client obtains an IDispatch pointer for an Automation server, it can call the Invoke() method
to execute a particular method on the server. The DispID parameter of this method holds a
number, called a dispatch ID, that indicates which method on the server should be invoked.
The IID parameter is unused. The LocaleID parameter contains language information. The
Flags parameter describes what kind of method is to be invoked and whether it’s a normal
method or a put or get method for a property. The Params property contains a pointer to an

20 chpt_15.qxd 11/19/01 12:13 PM Page 674

array of TDispParams, which holds the parameters passed to the method. The VarResult para-
meter is a pointer to an OleVariant, which will hold the return value of the method that’s
invoked. ExcepInfo is a pointer to a TExcepInfo record that will contain error information if
Invoke() returns DISP_E_EXCEPTION. Finally, if Invoke() returns DISP_E_TYPEMISMATCH or
DISP_E_PARAMNOTFOUND, the ArgError parameter is a pointer to an integer that will contain the
index of the offending parameter in the Params array.

The GetIDsOfName() method of IDispatch is called to obtain the dispatch ID of one or more
method names given strings identifying those methods. The IID parameter of this method is
unused. The Names parameter points to an array of PWideChar method names. The NameCount
parameter holds the number of strings in the Names array. LocaleID contains language informa-
tion. The last parameter, DispIDs, is a pointer to an array of NameCount integers, which
GetIDsOfNames() will fill in with the dispatch IDs for the methods listed in the Names parameter.

GetTypeInfo() retrieves the type information (type information is described next) for the
Automation object. The Index parameter represents the type of information to obtain and
should normally be 0. The LCID parameter holds language information. Upon successful return,
the TypeInfo parameter will hold an ITypeInfo pointer for the Automation object’s type
information.

The GetTypeInfoCount() method retrieves the number of type information interfaces sup-
ported by the Automation object in the Count parameter. Currently, Count will only contain
two possible values: 0, meaning the Automation object doesn’t support type information, and
1, meaning the Automation object does support type information.

Type Information
After you’ve spent a great deal of time carefully crafting an Automation server, it would be a
shame if potential users of your server couldn’t exploit its capabilities to the fullest because of
lack of documentation on the methods and properties provided. Fortunately, Automation pro-
vides a means for helping avoid this problem by allowing developers to associate type infor-
mation with Automation objects. This type information is stored in something called a type
library, and an Automation server’s type library can be linked to the server application or
library as a resource or stored in an external file. Type libraries contain information about
classes, interfaces, types, and other entities in a server. This information provides clients of the
Automation server with the information needed to create instances of each of its classes and
properly call methods on each interface.

Delphi generates type libraries for you when you add Automation objects to applications and
libraries. Additionally, Delphi knows how to translate type library information into Object
Pascal so that you can easily control Automation servers from your Delphi applications.

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
675

20 chpt_15.qxd 11/19/01 12:13 PM Page 675

Late Versus Early Binding
The elements of Automation that you’ve learned about so far in this chapter deal with
what’s called late binding. Late binding is a fancy way to say that a method is called through
IDispatch’s Invoke() method. It’s called late binding because the method call isn’t
resolved until runtime. At compile time, an Automation method call resolves into a call to
IDispatch.Invoke() with the proper parameters, and at runtime, Invoke() executes the
Automation method. When you call an Automation method via a Delphi Variant or
OleVariant type, you’re using late binding because Delphi must call IDispatch.GetIDs
OfNames() to convert the method name into a DispID, and then it can invoke the method by
calling IDispatch.Invoke() with the DispID.

A common optimization of early binding is to resolve the DispIDs of methods at compile time
and therefore avoid the runtime calls to GetIDsOfNames() in order to invoke a method. This
optimization is often referred to as ID binding, and it’s the convention used when you invoke
methods via a Delphi dispinterface type.

Early binding occurs when the Automation object exposes methods by means of a custom
interface descending from IDispatch. This way, controllers can call Automation objects
directly through the vtable without going through IDispatch.Invoke(). Because the call is
direct, a call to such as method will generally occur faster than a call through late binding.
Early binding is used you when call a method using a Delphi interface type.

An Automation object that allows methods to be called both from Invoke() and directly from
an IDispatch descendant interface is said to support a dual interface. Delphi-generated
Automation objects always support a dual interface, and Delphi controllers allow methods to
be called both through Invoke() and directly through an interface.

Registration
Automation objects must make all the same Registry entries as regular COM objects, but
Automation servers typically also make an additional entry under

HKEY_CLASSES_ROOT\CLSID\{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxx}

called ProgID, which provides a string identifier for the Automation class. Yet another Registry
entry under HKEY_CLASSES_ROOT\(ProgID string) is made, which contains the CLSID of the
Automation class in order to cross-reference back to the first Registry entry under CLSID.

Creating Automation Servers
Delphi makes it a fairly simple chore to create both out-of-process and in-process Automation
servers. The process for creating an Automation server can be boiled down into four steps:

1. Create the application or DLL you want to automate. You can even use one of your exist-
ing applications as a starting point in order to spice it up with some automation. This is

Component-Based Development

PART IV
676

20 chpt_15.qxd 11/19/01 12:13 PM Page 676

the only step in which you’ll see a real difference between creating in-process and out-
of-process servers.

2. Create the Automation object and add it to your project. Delphi provides an Automation
Object Expert to help this step go smoothly.

3. Add properties and methods to the Automation object by means of the type library.
These are the properties and methods that will be exposed to Automation controllers.

4. Implement the methods generated by Delphi from your type library in your source code.

Creating an Out-of-Process Automation Server
This section walks you through the creation of a simple out-of-process Automation server.
Start by creating a new project and placing a TShape and a TEdit component on the main
form, as shown in Figure 15.2. Save this project as Srv.dpr.

FIGURE 15.2
The main form of the Srv project.

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
677

Now add an Automation object to the project by selecting File, New from the main menu and
choosing Automation Object from the ActiveX page of the New Items dialog box, as shown in
Figure 15.3. This will invoke the Automation Object Wizard shown in Figure 15.4.

FIGURE 15.3
Adding a new Automation object.

20 chpt_15.qxd 11/19/01 12:13 PM Page 677

FIGURE 15.4
The Automation Object Wizard.

In the Class Name field of the Automation Object Wizard dialog box, you should enter the
name you want to give the COM class for this Automation object. The wizard will automati-
cally prepend a T to the classname when creating the Object Pascal class for the Automation
object and an I to the classname when creating the primary interface for the Automation object.
The Instancing combo box in the wizard can hold any one of these three values:

Value Description

Internal This OLE object will be used internal to the application
only, and it will not be registered with the System Registry.
External processes cannot access internal instanced
Automation servers.

Single Instance Each instance of the server can export only one instance of
the OLE object. If a controller application requests another
instance of the OLE object, Windows will start a new
instance of the server application.

Multiple Instance Each server instance can create and export multiple
instances of the OLE object. In-process servers are always
multiple instance.

When you complete the wizard’s dialog, Delphi will create a new type library for your project
(if one doesn’t already exist) and add an interface and a coclass to the type library. Additionally,
the wizard will generate a new unit in your project that contains the implementation of the
Automation interface added to the type library. Figure 15.5 shows the type library editor imme-
diately after the wizard’s dialog is dismissed, and Listing 15.2 shows the implementation unit
for the Automation object.

Component-Based Development

PART IV
678

20 chpt_15.qxd 11/19/01 12:13 PM Page 678

FIGURE 15.5
A new Automation project as shown in the type library editor.

LISTING 15.2 Automation Object Implementation Unit

unit TestImpl;

interface

uses
ComObj, ActiveX, Srv_TLB;

type
TAutoTest = class(TAutoObject, IAutoTest)
protected
{ Protected declarations }

end;

implementation

uses ComServ;

initialization
TAutoObjectFactory.Create(ComServer, TAutoTest, Class_AutoTest,
ciMultiInstance, tmApartment);

end.

The Automation object, TAutoTest, is a class that descends from TAutoObject. TAutoObject
is the base class for all Automation servers. As you add methods to your interface by using the
type library editor, new method skeletons will be generated in this unit that you’ll implement,
thus forming the innards of your Automation object.

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
679

20 chpt_15.qxd 11/19/01 12:13 PM Page 679

Component-Based Development

PART IV
680

Again, be careful not to confuse Delphi 2’s TAutoObject (from the OleAuto unit) with
Delphi 5’s TAutoObject (from the ComObj unit). The two aren’t compatible.

Similarly, the automated visibility specifier introduced in Delphi 2 is now mostly
obsolete.

CAUTION

When the Automation object has been added to the project, you must add one or more proper-
ties or methods to the primary interface using the type library editor. For this project, the type
library will contain properties to get and set the shape, color, and type as well as the edit con-
trol’s text. For good measure, you’ll also add a method that displays the current status of these
properties in a dialog. Figure 15.6 shows the completed type library for the Srv project. Note
especially the enumeration added to the type library (whose values are shown in the right pane)
to support the ShapeType property.

As you add properties and methods to Automation objects in the type library, keep in
mind that the parameters and return values used for these properties and methods
must be of Automation-compatible types. Types compatible with Automation include
Byte, SmallInt, Integer, Single, Double, Currency, TDateTime, WideString, WordBool,
PSafeArray, TDecimal, OleVariant, IUnknown, and IDispatch.

NOTE

FIGURE 15.6
The completed type library.

20 chpt_15.qxd 11/19/01 12:13 PM Page 680

When the type library has been completed, all that is left to do is fill in the implementation for
each of the method stubs created by the type library editor. This unit is shown in Listing 15.3.

LISTING 15.3 The Completed Implementation Unit

unit TestImpl;

interface

uses
ComObj, ActiveX, Srv_TLB;

type
TAutoTest = class(TAutoObject, IAutoTest)
protected
function Get_EditText: WideString; safecall;
function Get_ShapeColor: OLE_COLOR; safecall;
procedure Set_EditText(const Value: WideString); safecall;
procedure Set_ShapeColor(Value: OLE_COLOR); safecall;
function Get_ShapeType: TxShapeType; safecall;
procedure Set_ShapeType(Value: TxShapeType); safecall;
procedure ShowInfo; safecall;

end;

implementation

uses ComServ, SrvMain, TypInfo, ExtCtrls, Dialogs, SysUtils, Graphics;

function TAutoTest.Get_EditText: WideString;
begin
Result := FrmAutoTest.Edit.Text;

end;

function TAutoTest.Get_ShapeColor: OLE_COLOR;
begin
Result := ColorToRGB(FrmAutoTest.Shape.Brush.Color);

end;

procedure TAutoTest.Set_EditText(const Value: WideString);
begin
FrmAutoTest.Edit.Text := Value;

end;

procedure TAutoTest.Set_ShapeColor(Value: OLE_COLOR);
begin
FrmAutoTest.Shape.Brush.Color := Value;

end;

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
681

20 chpt_15.qxd 11/19/01 12:13 PM Page 681

LISTING 15.3 Continued

function TAutoTest.Get_ShapeType: TxShapeType;
begin
Result := TxShapeType(FrmAutoTest.Shape.Shape);

end;

procedure TAutoTest.Set_ShapeType(Value: TxShapeType);
begin
FrmAutoTest.Shape.Shape := TShapeType(Value);

end;

procedure TAutoTest.ShowInfo;
const
SInfoStr = ‘The Shape’’s color is %s, and it’’s shape is %s.’#13#10 +
‘The Edit’’s text is “%s.”’;

begin
with FrmAutoTest do
ShowMessage(Format(SInfoStr, [ColorToString(Shape.Brush.Color),
GetEnumName(TypeInfo(TShapeType), Ord(Shape.Shape)), Edit.Text]));

end;

initialization
TAutoObjectFactory.Create(ComServer, TAutoTest, Class_AutoTest,
ciMultiInstance, tmApartment);

end.

The uses clause for this unit contains a unit called Srv_TLB. This unit is the Object Pascal
translation of the project type library, and it’s shown in Listing 15.4.

LISTING 15.4 Srv_TLB—The Type Library File

unit Srv_TLB;

// ** //
// WARNING
// -------
// The types declared in this file were generated from data read from a
// Type Library. If this type library is explicitly or indirectly (via
// another type library referring to this type library) re-imported, or the
// ‘Refresh’ command of the Type Library Editor activated while editing the
// Type Library, the contents of this file will be regenerated and all
// manual modifications will be lost.
// ** //

Component-Based Development

PART IV
682

20 chpt_15.qxd 11/19/01 12:13 PM Page 682

LISTING 15.4 Continued

// PASTLWTR : $Revision: 1.130 $
// File generated on 8/27/2001 1:23:58 AM from Type Library described below.

// ** //
// Type Lib: C:\ D6DG\Source\Ch15\Automate\Srv.tlb (1)
// LIBID: {B43DD7DB-21F8-4244-A494-C4793366691B}
// LCID: 0
// Helpfile:
// DepndLst:
// (1) v2.0 stdole, (C:\WINNT\System32\stdole2.tlb)
// (2) v4.0 StdVCL, (C:\WINNT\System32\stdvcl40.dll)
// ** //
{$TYPEDADDRESS OFF} // Unit must be compiled without type-checked pointers.
{$WARN SYMBOL_PLATFORM OFF}
{$WRITEABLECONST ON}

interface

uses ActiveX, Classes, Graphics, StdVCL, Variants, Windows;

// ***//
// GUIDS declared in the TypeLibrary. Following prefixes are used:
// Type Libraries : LIBID_xxxx
// CoClasses : CLASS_xxxx
// DISPInterfaces : DIID_xxxx
// Non-DISP interfaces: IID_xxxx
// ***//
const
// TypeLibrary Major and minor versions
SrvMajorVersion = 1;
SrvMinorVersion = 0;

LIBID_Srv: TGUID = ‘{B43DD7DB-21F8-4244-A494-C4793366691B}’;

IID_IAutoTest: TGUID = ‘{C16B6A4C-842C-417F-8BF2-2F306F6C6B59}’;
CLASS_AutoTest: TGUID = ‘{64C576F0-C9A7-420A-9EAB-0BE98264BC9E}’;

// ***//
// Declaration of Enumerations defined in Type Library
// ***//
// Constants for enum TxShapeType
type
TxShapeType = TOleEnum;

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
683

20 chpt_15.qxd 11/19/01 12:13 PM Page 683

LISTING 15.4 Continued

const
stRectangle = $00000000;
stSquare = $00000001;
stRoundRect = $00000002;
stRoundSquare = $00000003;
stEllipse = $00000004;
stCircle = $00000005;

type

// ***//
// Forward declaration of types defined in TypeLibrary
// ***//
IAutoTest = interface;
IAutoTestDisp = dispinterface;

// ***//
// Declaration of CoClasses defined in Type Library
// (NOTE: Here we map each CoClass to its Default Interface)
// ***//
AutoTest = IAutoTest;

// ***//
// Interface: IAutoTest
// Flags: (4416) Dual OleAutomation Dispatchable
// GUID: {C16B6A4C-842C-417F-8BF2-2F306F6C6B59}
// ***//
IAutoTest = interface(IDispatch)
[‘{C16B6A4C-842C-417F-8BF2-2F306F6C6B59}’]
function Get_EditText: WideString; safecall;
procedure Set_EditText(const Value: WideString); safecall;
function Get_ShapeColor: OLE_COLOR; safecall;
procedure Set_ShapeColor(Value: OLE_COLOR); safecall;
function Get_ShapeType: TxShapeType; safecall;
procedure Set_ShapeType(Value: TxShapeType); safecall;
procedure ShowInfo; safecall;
property EditText: WideString read Get_EditText write Set_EditText;
property ShapeColor: OLE_COLOR read Get_ShapeColor write Set_ShapeColor;
property ShapeType: TxShapeType read Get_ShapeType write Set_ShapeType;

end;

// ***//
// DispIntf: IAutoTestDisp

Component-Based Development

PART IV
684

20 chpt_15.qxd 11/19/01 12:13 PM Page 684

LISTING 15.4 Continued

// Flags: (4416) Dual OleAutomation Dispatchable
// GUID: {C16B6A4C-842C-417F-8BF2-2F306F6C6B59}
// ***//
IAutoTestDisp = dispinterface
[‘{C16B6A4C-842C-417F-8BF2-2F306F6C6B59}’]
property EditText: WideString dispid 1;
property ShapeColor: OLE_COLOR dispid 2;
property ShapeType: TxShapeType dispid 3;
procedure ShowInfo; dispid 4;

end;

// ***//
// The Class CoAutoTest provides a Create and CreateRemote method to
// create instances of the default interface IAutoTest exposed by
// the CoClass AutoTest. The functions are intended to be used by
// clients wishing to automate the CoClass objects exposed by the
// server of this typelibrary.
// ***//
CoAutoTest = class
class function Create: IAutoTest;
class function CreateRemote(const MachineName: string): IAutoTest;

end;

implementation

uses ComObj;

class function CoAutoTest.Create: IAutoTest;
begin
Result := CreateComObject(CLASS_AutoTest) as IAutoTest;

end;

class function CoAutoTest.CreateRemote(const MachineName: string): IAutoTest;
begin
Result := CreateRemoteComObject(MachineName, CLASS_AutoTest) as IAutoTest;

end;

end.

Looking at this unit from the top down, you’ll notice that the type library version is specified
first and then the GUID for the type library, LIBID_Srv, is declared. This GUID will be used
when the type library is registered with the System Registry. Next, the values for the TxShapeType
enumeration are listed. What’s interesting about the enumeration is that the values are declared

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
685

20 chpt_15.qxd 11/19/01 12:13 PM Page 685

as constants rather than as an Object Pascal enumerated type. This is because type library
enums are like C/C++ enums (and unlike Object Pascal) in that they don’t have to start at the
ordinal value zero or be sequential in value.

Next, in the Srv_TLB unit the IAutoTest interface is declared. In this interface declaration
you’ll see the properties and methods you created in the type library editor. Additionally, you’ll
see the Get_XXX and Set_XXX methods generated as the read and write methods for each of
the properties.

Component-Based Development

PART IV
686

Safecall

Safecall is the default calling convention for methods entered into the type library
editor, as you can see from the IAutoTest declaration earlier. Safecall is actually
more than a calling convention because it implies two things: First, it means that the
method will be called using the safecall calling convention. Second, it means that
the method will be encapsulated so that it returns an HResult value to the caller. For
example, suppose that you have a method that looks like this in Object Pascal:

function Foo(W: WideString): Integer; safecall;

This method actually compiles to code that looks something like this:

function Foo(W: WideString; out RetVal: Integer): HResult; stdcall;

The advantage of safecall is that it catches all exceptions before they flow back into
the caller. When an unhandled exception is raised in a safecall method, the excep-
tion is handled by the implicit wrapper and converted into an HResult, which is
returned to the caller.

Next in Srv_TLB is the dispinterface declaration for the Automation object: IAutoTestDisp.
A dispinterface signals to the caller that Automation methods might be executed by Invoke()
but doesn’t imply a custom interface through which methods can be executed. Although the
IAutoTest interface can be used by development tools that support early-binding Automation,
IAutoTestDisp’s dispinterface can be used by tools that support late binding.

The Srv_TLB unit then declares a class called CoAutoTest, which makes creation of the
Automation object easy; just call CoAutoTest.Create() to create an instance of the
Automation object.

Finally, Srv_TLB creates a class called TAutoTest that wraps the server into a component that
can be placed on the palette. This feature, new in Delphi 5, is targeted more toward
Automation servers that you import rather than new Automation servers that you create.

20 chpt_15.qxd 11/19/01 12:13 PM Page 686

As mentioned earlier, you must run this application once to register it with the System
Registry. Later, in the “Automation” section of this chapter, you’ll learn about the controller
application used to manipulate this server.

Creating an In-Process Automation Server
Just as out-of-process servers start out as applications, in-process servers start out as DLLs.
You can begin with an existing DLL or with a new DLL, which you can create by selecting
DLL from the New Items dialog found under the File, New menu.

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
687

If you’re not familiar with DLLs, they’re covered in depth in Chapter 6, “Dynamic Link
Libraries.” This chapter assumes that you have some knowledge of DLL programming.

NOTE

As mentioned earlier, in order to serve as an in-process Automation server, a DLL must export
four functions that are defined in the ComServ unit: DllGetClassObject(), DllCanUnloadNow(),
DllRegisterServer(), and DllUnregisterServer(). Do this by adding these functions to the
exports clause in your project file, as shown in the project file IPS.dpr in Listing 15.5.

LISTING 15.5 IPS.dpr—The Project File for an In-Process Server

library IPS;

uses
ComServ;

exports
DllRegisterServer,
DllUnregisterServer,
DllGetClassObject,
DllCanUnloadNow;

begin
end.

The Automation object is added to the DLL project in the same manner as an executable pro-
ject: through the Automation Object Wizard. For this project, you’ll add only one property and
one method, as shown in the type library editor in Figure 15.7. The Object Pascal version of
the type library, IPS_TLB, is shown in Listing 15.6.

20 chpt_15.qxd 11/19/01 12:13 PM Page 687

FIGURE 15.7
The IPS project in the type library editor.

LISTING 15.6 IPS_TLB.pas—The Type Library Import File for the In-Process Server Project

unit IPS_TLB;

// ** //
// WARNING
// -------
// The types declared in this file were generated from data read from a
// Type Library. If this type library is explicitly or indirectly (via
// another type library referring to this type library) re-imported, or the
// ‘Refresh’ command of the Type Library Editor activated while editing the
// Type Library, the contents of this file will be regenerated and all
// manual modifications will be lost.
// ** //

// PASTLWTR : $Revision: 1.130 $
// File generated on 8/27/2001 1:27:45 AM from Type Library described below.

// ** //
// Type Lib: C:\ D6DG\Source\Ch15\Automate\IPS.tlb (1)
// LIBID: {17A05B88-0094-11D1-A9BF-F15F8BE883D4}
// LCID: 0
// Helpfile:
// DepndLst:
// (1) v1.0 stdole, (C:\WINNT\System32\stdole32.tlb)
// (2) v2.0 StdType, (C:\WINNT\System32\olepro32.dll)
// (3) v1.0 StdVCL, (C:\WINNT\System32\STDVCL32.DLL)
// ** //

Component-Based Development

PART IV
688

20 chpt_15.qxd 11/19/01 12:13 PM Page 688

LISTING 15.6 Continued

{$TYPEDADDRESS OFF} // Unit must be compiled without type-checked pointers.
{$WARN SYMBOL_PLATFORM OFF}
{$WRITEABLECONST ON}

interface

uses ActiveX, Classes, Graphics, StdVCL, Variants, Windows;

// ***//
// GUIDS declared in the TypeLibrary. Following prefixes are used:
// Type Libraries : LIBID_xxxx
// CoClasses : CLASS_xxxx
// DISPInterfaces : DIID_xxxx
// Non-DISP interfaces: IID_xxxx
// ***//
const
// TypeLibrary Major and minor versions
IPSMajorVersion = 1;
IPSMinorVersion = 0;

LIBID_IPS: TGUID = ‘{17A05B88-0094-11D1-A9BF-F15F8BE883D4}’;

IID_IIPTest: TGUID = ‘{17A05B89-0094-11D1-A9BF-F15F8BE883D4}’;
CLASS_IPTest: TGUID = ‘{17A05B8A-0094-11D1-A9BF-F15F8BE883D4}’;

type

// ***//
// Forward declaration of types defined in TypeLibrary
// ***//
IIPTest = interface;
IIPTestDisp = dispinterface;

// ***//
// Declaration of CoClasses defined in Type Library
// (NOTE: Here we map each CoClass to its Default Interface)
// ***//
IPTest = IIPTest;

// ***//
// Interface: IIPTest
// Flags: (4432) Hidden Dual OleAutomation Dispatchable
// GUID: {17A05B89-0094-11D1-A9BF-F15F8BE883D4}

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
689

20 chpt_15.qxd 11/19/01 12:13 PM Page 689

LISTING 15.6 Continued

// ***//
IIPTest = interface(IDispatch)
[‘{17A05B89-0094-11D1-A9BF-F15F8BE883D4}’]
function Get_MessageStr: WideString; safecall;
procedure Set_MessageStr(const Value: WideString); safecall;
function ShowMessageStr: Integer; safecall;
property MessageStr: WideString read Get_MessageStr write Set_MessageStr;

end;

// ***//
// DispIntf: IIPTestDisp
// Flags: (4432) Hidden Dual OleAutomation Dispatchable
// GUID: {17A05B89-0094-11D1-A9BF-F15F8BE883D4}
// ***//
IIPTestDisp = dispinterface
[‘{17A05B89-0094-11D1-A9BF-F15F8BE883D4}’]
property MessageStr: WideString dispid 1;
function ShowMessageStr: Integer; dispid 2;

end;

// ***//
// The Class CoIPTest provides a Create and CreateRemote method to
// create instances of the default interface IIPTest exposed by
// the CoClass IPTest. The functions are intended to be used by
// clients wishing to automate the CoClass objects exposed by the
// server of this typelibrary.
// ***//
CoIPTest = class
class function Create: IIPTest;
class function CreateRemote(const MachineName: string): IIPTest;

end;

implementation

uses ComObj;

class function CoIPTest.Create: IIPTest;
begin
Result := CreateComObject(CLASS_IPTest) as IIPTest;

end;

class function CoIPTest.CreateRemote(const MachineName: string): IIPTest;

Component-Based Development

PART IV
690

20 chpt_15.qxd 11/19/01 12:13 PM Page 690

LISTING 15.6 Continued

begin
Result := CreateRemoteComObject(MachineName, CLASS_IPTest) as IIPTest;

end;

end.

Clearly, this is a pretty simple Automation server, but it serves to illustrate the point. The
MessageStr property can be set to a value and then shown with the ShowMessageStr() func-
tion. The implementation of the IIPTest interface resides in the unit IPSMain.pas, which is
shown in Listing 15.7.

LISTING 15.7 IPSMain.pas—The Main Unit for the In-Process Server Project

unit IPSMain;

interface

uses
ComObj, IPS_TLB;

type
TIPTest = class(TAutoObject, IIPTest)
private
MessageStr: string;

protected
function Get_MessageStr: WideString; safecall;
procedure Set_MessageStr(const Value: WideString); safecall;
function ShowMessageStr: Integer; safecall;

end;

implementation

uses Windows, ComServ;

function TIPTest.Get_MessageStr: WideString;
begin
Result := MessageStr;

end;

function TIPTest.ShowMessageStr: Integer;
begin
MessageBox(0, PChar(MessageStr), ‘Your string is...’, MB_OK);
Result := Length(MessageStr);

end;

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
691

20 chpt_15.qxd 11/19/01 12:13 PM Page 691

LISTING 15.7 Continued

procedure TIPTest.Set_MessageStr(const Value: WideString);
begin
MessageStr := Value;

end;

initialization
TAutoObjectFactory.Create(ComServer, TIPTest, Class_IPTest, ciMultiInstance,
tmApartment);

end.

As you learned earlier in this chapter, in-process servers are registered differently than out-of-
process servers; an in-process server’s DllRegisterServer() function is called to register it
with the System Registry. The Delphi IDE makes this very easy: Select Run, Register ActiveX
server from the main menu.

Creating Automation Controllers
Delphi makes it extremely easy to control Automation servers in your applications. Delphi also
gives you a great amount of flexibility in how you want to control Automation servers: with
options for early binding using interfaces or late binding using dispinterfaces or variants.

Controlling Out-of-Process Servers
The Control project is an Automation controller that demonstrates all three types of
Automation (interfaces, dispinterface, and variants). Control is the controller for the Srv
Automation server application from earlier in this chapter. The main form for this project is
shown in Figure 15.8.

When the Connect button is clicked, the Control application connects to the server in several
different ways with the following code:

FIntf := CoAutoTest.Create;
FDispintf := CreateComObject(Class_AutoTest) as IAutoTestDisp;
FVar := CreateOleObject(‘Srv.AutoTest’);

This code shows interface, dispinterface, and OleVariant variables, each creating an
instance of the Automation server in different ways. What’s interesting about these different
techniques is that they’re almost totally interchangeable. For example, the following code is
also correct:

FIntf := CreateComObject(Class_AutoTest) as IAutoTest;
FDispintf := CreateOleObject(‘Srv.AutoTest’) as IAutoTestDisp;
FVar := CoAutoTest.Create;

Component-Based Development

PART IV
692

20 chpt_15.qxd 11/19/01 12:13 PM Page 692

FIGURE 15.8
The main form for the Control project.

Listing 15.8 shows the Ctrl unit, which contains the rest of the source code for the Automation
controller. Notice that the application allows you to manipulate the server using either the
interface, dispinterface, or OleVariant.

LISTING 15.8 Ctrl.pas—The Main Unit for the Controller Project for the Out-of-Process
Server Project

unit Ctrl;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ColorGrd, ExtCtrls, Srv_TLB, Buttons;

type
TControlForm = class(TForm)
CallViaRG: TRadioGroup;
ShapeTypeRG: TRadioGroup;
GroupBox1: TGroupBox;
GroupBox2: TGroupBox;
Edit: TEdit;
GroupBox3: TGroupBox;
ConBtn: TButton;
DisBtn: TButton;
InfoBtn: TButton;

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
693

20 chpt_15.qxd 11/19/01 12:13 PM Page 693

LISTING 15.8 Continued

ColorBtn: TButton;
ColorDialog: TColorDialog;
ColorShape: TShape;
ExitBtn: TButton;
TextBtn: TButton;
procedure ConBtnClick(Sender: TObject);
procedure DisBtnClick(Sender: TObject);
procedure ColorBtnClick(Sender: TObject);
procedure ExitBtnClick(Sender: TObject);
procedure TextBtnClick(Sender: TObject);
procedure InfoBtnClick(Sender: TObject);
procedure ShapeTypeRGClick(Sender: TObject);

private
{ Private declarations }
FIntf: IAutoTest;
FDispintf: IAutoTestDisp;
FVar: OleVariant;
procedure SetControls;
procedure EnableControls(DoEnable: Boolean);

public
{ Public declarations }

end;

var
ControlForm: TControlForm;

implementation

{$R *.DFM}

uses ComObj;

procedure TControlForm.SetControls;
// Initializes the controls to the current server values
begin
case CallViaRG.ItemIndex of
0:
begin
ColorShape.Brush.Color := FIntf.ShapeColor;
ShapeTypeRG.ItemIndex := FIntf.ShapeType;
Edit.Text := FIntf.EditText;

end;
1:
begin
ColorShape.Brush.Color := FDispintf.ShapeColor;

Component-Based Development

PART IV
694

20 chpt_15.qxd 11/19/01 12:13 PM Page 694

LISTING 15.8 Continued

ShapeTypeRG.ItemIndex := FDispintf.ShapeType;
Edit.Text := FDispintf.EditText;

end;
2:
begin
ColorShape.Brush.Color := FVar.ShapeColor;
ShapeTypeRG.ItemIndex := FVar.ShapeType;
Edit.Text := FVar.EditText;

end;
end;

end;

procedure TControlForm.EnableControls(DoEnable: Boolean);
begin
DisBtn.Enabled := DoEnable;
InfoBtn.Enabled := DoEnable;
ColorBtn.Enabled := DoEnable;
ShapeTypeRG.Enabled := DoEnable;
Edit.Enabled := DoEnable;
TextBtn.Enabled := DoEnable;

end;

procedure TControlForm.ConBtnClick(Sender: TObject);
begin
FIntf := CoAutoTest.Create;
FDispintf := CreateComObject(Class_AutoTest) as IAutoTestDisp;
FVar := CreateOleObject(‘Srv.AutoTest’);
EnableControls(True);
SetControls;

end;

procedure TControlForm.DisBtnClick(Sender: TObject);
begin
FIntf := nil;
FDispintf := nil;
FVar := Unassigned;
EnableControls(False);

end;

procedure TControlForm.ColorBtnClick(Sender: TObject);
var
NewColor: TColor;

begin
if ColorDialog.Execute then

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
695

20 chpt_15.qxd 11/19/01 12:13 PM Page 695

LISTING 15.8 Continued

begin
NewColor := ColorDialog.Color;
case CallViaRG.ItemIndex of
0: FIntf.ShapeColor := NewColor;
1: FDispintf.ShapeColor := NewColor;
2: FVar.ShapeColor := NewColor;

end;
ColorShape.Brush.Color := NewColor;

end;
end;

procedure TControlForm.ExitBtnClick(Sender: TObject);
begin
Close;

end;

procedure TControlForm.TextBtnClick(Sender: TObject);
begin
case CallViaRG.ItemIndex of
0: FIntf.EditText := Edit.Text;
1: FDispintf.EditText := Edit.Text;
2: FVar.EditText := Edit.Text;

end;
end;

procedure TControlForm.InfoBtnClick(Sender: TObject);
begin
case CallViaRG.ItemIndex of
0: FIntf.ShowInfo;
1: FDispintf.ShowInfo;
2: FVar.ShowInfo;

end;
end;

procedure TControlForm.ShapeTypeRGClick(Sender: TObject);
begin
case CallViaRG.ItemIndex of
0: FIntf.ShapeType := ShapeTypeRG.ItemIndex;
1: FDispintf.ShapeType := ShapeTypeRG.ItemIndex;
2: FVar.ShapeType := ShapeTypeRG.ItemIndex;

end;
end;

end.

Component-Based Development

PART IV
696

20 chpt_15.qxd 11/19/01 12:13 PM Page 696

Another interesting thing this code illustrates is how easy it is to disconnect from an
Automation server: Interfaces and dispinterfaces can be set to nil, and variants can be set to
Unassigned. Of course, the Automation server will also be released when the Control applica-
tion is closed, as a part of the normal finalization of these lifetime-managed types.

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
697

Interfaces will almost always perform better than dispinterfaces and variants, so you
should always use interfaces to control Automation servers when available.

Variants rank last in terms of performance because, at runtime, an Automation call
through a variant must call GetIDsOfNames() to convert a method name into a dis-
patch ID before it can execute the method with a call to Invoke().

The performance of dispinterfaces is in between that of an interface and that of a
variant. “But why,” you might ask, “is the performance different if variants and
dispinterfaces both use late binding?” The reason for this is that dispinterfaces take
advantage of an optimization called ID binding, which means that the dispatch IDs of
methods are known at compile time, so the compiler doesn’t need to generate a run-
time call to GetIDsOfName() prior to calling Invoke(). Another, perhaps more obvi-
ous, advantage of dispinterfaces over variants is that dispinterfaces allow for the use
of CodeInsight for easier coding, whereas this is not possible using variants.

TIP

Figure 15.9 shows the Control application controlling the Srv server.

FIGURE 15.9
Automation controller and server.

20 chpt_15.qxd 11/19/01 12:13 PM Page 697

Controlling In-Process Servers
The technique for controlling an in-process server is no different from that for controlling its
out-of-process counterpart. Just keep in mind that the Automation controller is now executing
within your own process space. This means that performance will be a bit better than with out-
of-process servers, but it also means that a crash in the Automation server can take down your
application.

Now you’ll look at a controller application for the in-process Automation server created earlier
in this chapter. In this case, we’ll use only the interface for controlling the server. This is a
pretty simple application, and Figure 15.10 shows the main form for the IPCtrl project. The
code in Listing 15.9 is IPCMain.pas, the main unit for the IPCtrl project.

Component-Based Development

PART IV
698

FIGURE 15.10
The IPCtrl project’s main form.

LISTING 15.9 IPCMain.pas—The Main Unit for the Controller Project for the In-Process
Server Project

unit IPCMain;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls, IPS_TLB;

type
TIPCForm = class(TForm)
ExitBtn: TButton;
Panel1: TPanel;
ConBtn: TButton;
DisBtn: TButton;
Edit: TEdit;
SetBtn: TButton;
ShowBtn: TButton;
procedure ConBtnClick(Sender: TObject);

20 chpt_15.qxd 11/19/01 12:13 PM Page 698

LISTING 15.9 Continued

procedure DisBtnClick(Sender: TObject);
procedure SetBtnClick(Sender: TObject);
procedure ShowBtnClick(Sender: TObject);
procedure ExitBtnClick(Sender: TObject);

private
{ Private declarations }
IPTest: IIPTest;
procedure EnableControls(DoEnable: Boolean);

public
{ Public declarations }

end;

var
IPCForm: TIPCForm;

implementation

uses ComObj;

{$R *.DFM}

procedure TIPCForm.EnableControls(DoEnable: Boolean);
begin
DisBtn.Enabled := DoEnable;
Edit.Enabled := DoEnable;
SetBtn.Enabled := DoEnable;
ShowBtn.Enabled := DoEnable;

end;

procedure TIPCForm.ConBtnClick(Sender: TObject);
begin
IPTest := CreateComObject(CLASS_IPTest) as IIPTest;
EnableControls(True);

end;

procedure TIPCForm.DisBtnClick(Sender: TObject);
begin
IPTest := nil;
EnableControls(False);

end;

procedure TIPCForm.SetBtnClick(Sender: TObject);
begin
IPTest.MessageStr := Edit.Text;

end;

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
699

20 chpt_15.qxd 11/19/01 12:13 PM Page 699

LISTING 15.9 Continued

procedure TIPCForm.ShowBtnClick(Sender: TObject);
begin
IPTest.ShowMessageStr;

end;

procedure TIPCForm.ExitBtnClick(Sender: TObject);
begin
Close;

end;

end.

Remember to ensure that the server has been registered prior to attempting to run IPCtrl. You
can do this in several ways: Using Run, Register ActiveX Server from the main menu while the
IPS project is loaded, using the Windows RegSvr32.exe utility, and using the TRegSvr.exe
tool that comes with Delphi. Figure 15.11 shows this project in action controlling the IPS
server.

Component-Based Development

PART IV
700

FIGURE 15.11
IPCtrl controlling the IPS server.

Advanced Automation Techniques
In this section, our goal is to get you up to speed on some of the more advanced features of
Automation that the wizards never told you about. Topics such as Automation events, collec-
tions, type library gotchas, and low-level language support for COM are all covered. Rather
than devote more time to talking about this stuff, let’s jump right in and do it!

Automation Events
We Delphi programmers have long taken events for granted. You drop a button, you double-
click OnClick in the Object Inspector, and you write some code. It’s no big deal. Even from
the control writer’s point of view, events are a snap. You create a new method type, add a field

20 chpt_15.qxd 11/19/01 12:13 PM Page 700

and published property to your control, and you’re good to go. For Delphi COM developers,
however, events can be scary. Many Delphi COM developers avoid events altogether simply
because they “don’t have time to learn all that mumbo jumbo.” If you fall into that group,
you’ll be happy to know that working with events actually isn’t very difficult thanks to
some nice built-in support provided by Delphi. Although all the new terms associated with
Automation events can add an air of complexity, in this section I hope to demystify events to
the point where you think, “Oh, is that all they are?”

What Are Events?
Put simply, events provide a means for a server to call back into a client to provide some infor-
mation. Under a traditional client/server model, the client calls the server to perform an action
or obtain some data, the server executes the action or obtains the data, and control returns to
the client. This model works fine for most things, but it breaks down when the event in which
the client is interested is asynchronous in nature or is driven by a user interface entry. For
example, if the client sends the server a request to download a file, the client probably doesn’t
want to sit around and wait for the thing to download before it can continue processing (espe-
cially over a high-latency connection such as a modem). A better model would be for the client
to issue the instruction to the server and continue to go about its business until the server noti-
fies the client about the completion of the file download. Similarly, a user interface entry, such
as a button click, is a good example of when the server needs to notify the client using an
event mechanism. The client obviously can’t call a method on the server that waits around
until some button is clicked.

Generally speaking, the server is responsible for defining and firing events, whereas the client
is normally responsible for connecting itself to and implementing events. Of course, given such
a loose definition, there’s room to haggle, and consequently Delphi and Automation provide
two very different approaches to the idea of events. Drilling down into each of these models
will help put things into perspective.

Events in Delphi
Delphi follows the KISS (keep it simple, stupid!) methodology when it comes to events.
Events are implemented as method pointers—these pointers can be assigned to some method
in the application and are executed when such a method is called via the method pointer. As an
illustration, consider the everyday application-development scenario of an application that
needs to handle an event on a component. If you look at the situation abstractly, the “server” in
this case would be a component, which defines and fires the event. The “client” is the applica-
tion that employs the component because it connects to the event by assigning some specific
method name to the event method pointer.

Although this simple event model is one of the things that makes Delphi elegant and easy to
use, it definitely sacrifices some power for the sake of usability. For example, there’s no built-in

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
701

20 chpt_15.qxd 11/19/01 12:13 PM Page 701

way to allow multiple clients to listen for the same event (this is called multicasting). Also,
there’s no way to dynamically obtain a type description for an event without writing some
RTTI code (which you probably shouldn’t be using in a application anyway because of its ver-
sion-specific nature).

Events in Automation
Whereas the Delphi event model is simple yet limited, the Automation event model is powerful
but more complex. As a COM programmer, you might have guessed that events are imple-
mented in Automation using interfaces. Rather than existing on a per-method basis, events
exist only as part of an interface. This interface is often called an events interface or an outgo-
ing interface. It’s called outgoing because it’s not implemented by the server like other inter-
faces but is instead implemented by clients of the server, and methods of the interface will be
called outward from the server to the client. Like all interfaces, event interfaces have associated
with them corresponding interface identifications (IIDs) that uniquely identify them. Also, the
description of the events interface is found in the type library of an Automation object, tied to
the Automation object’s coclass like other interfaces.

Servers needing to surface event interfaces to clients must implement the IConnectionPoint
Container interface. This interface is defined in the ActiveX unit as follows:

type
IConnectionPointContainer = interface
[‘{B196B284-BAB4-101A-B69C-00AA00341D07}’]
function EnumConnectionPoints(out Enum: IEnumConnectionPoints):
HResult; stdcall;

function FindConnectionPoint(const iid: TIID;
out cp: IConnectionPoint): HResult; stdcall;

end;

In COM parlance, a connection point describes the entity that provides programmatic access to
an outgoing interface. If a client needs to determine whether a server supports events, all it has
to do is QueryInterface for the IConnectionPointContainer interface. If this interface is
present, the server is capable of surfacing events. The EnumConnectionPoints() method of
IConnectionPointContainer enables clients to iterate over all the outgoing interfaces sup-
ported by the server. Clients can use the FindConnectionPoint() method to obtain a specific
outgoing interface.

You’ll notice that FindConnectionPoint() provides an IConnectionPoint that represents an
outbound interface. IConnectionPoint is also defined in the ActiveX unit, and it looks like
this:

type
IConnectionPoint = interface
[‘{B196B286-BAB4-101A-B69C-00AA00341D07}’]

Component-Based Development

PART IV
702

20 chpt_15.qxd 11/19/01 12:13 PM Page 702

function GetConnectionInterface(out iid: TIID): HResult; stdcall;
function GetConnectionPointContainer(
out cpc: IConnectionPointContainer): HResult; stdcall;

function Advise(const unkSink: IUnknown; out dwCookie: Longint):
HResult; stdcall;

function Unadvise(dwCookie: Longint): HResult; stdcall;
function EnumConnections(out Enum: IEnumConnections): HResult;
stdcall;

end;

The GetConnectionInterface() method of IConnectionPoint provides the IID of the outgo-
ing interface supported by this connection point. The GetConnectionPointContainer()
method provides the IConnectionPointContainer (described earlier), which manages this
connection point. The Advise method is the interesting one. Advise() is the method that actu-
ally does the magic of hooking up the outgoing events on the server to the events interface
implemented by the client. The first parameter to this method is the client’s implementation of
the events interface, and the second parameter will receive a cookie that identifies this particu-
lar connection. Unadvise() simply disconnects the client/server relationship established by
Advise(). EnumConnections enables the client to iterate over all currently active connections
(that is, all connections that have called Advise()).

Because of the obvious confusion that can arise if we describe the participants in this relation-
ship as simply client and server, Automation defines some different nomenclature that enables
us to unambiguously describe who is who. The implementation of the outgoing interface con-
tained within the client is called a sink, and the server object that fires events to the client is
referred to as the source.

What is hopefully clear in all this is that Automation events have a couple of advantages over
Delphi events. Namely, they can be multicast because IConnectionPoint.Advise() can be
called more than once. Also, Automation events are self-describing (via the type library and
the enumeration methods), so they can be manipulated dynamically.

Automation Events in Delphi
Okay, all this technical stuff is well and good, but how do we actually make Automation events
work in Delphi? I’m glad you asked. At this point, we’ll create an Automation server applica-
tion that exposes an outgoing interface and a client that implements a sink for the interface.
Bear in mind, too, that you don’t need to be an expert in connection points, sinks, sources, and
whatnot in order to get Delphi to do what you want. However, it does help you in the long run
when you understand what goes on behind the wizard’s curtain.

The Server
The first step in creating the server is to create a new application. For purposes of this demo,
we’ll create a new application containing one form with a client-aligned TMemo, as shown in
Figure 15.12.

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
703

20 chpt_15.qxd 11/19/01 12:13 PM Page 703

FIGURE 15.12
Automation Server with the Events main form.

Next, we’ll add an Automation object to this application by selecting File, New, ActiveX,
Automation Object from the main menu. This invokes the Automation Object Wizard (refer to
Figure 15.4).

Note the Generate Event Support Code option on the Automation Object Wizard. This box
must be selected because it will generate the code necessary to expose an outgoing interface on
the Automation object. It will also create the outgoing interface in the type library. After select-
ing OK in this dialog box, we’re presented with the Type Library Editor window. Both the
Automation interface and the outgoing interface are already present in the type library (named
IServerWithEvents and IServerWithEventsEvents, respectively). AddText() and Clear()
methods have been added to the IServerWithEvents interface, and OnTextChanged() and
OnClear() methods have been added to the IServerWithEventsEvents interface.

As you might guess, Clear() will clear the contents of the memo, and AddText() will add
another line of text to the memo. The OnTextChanged() event will fire when the contents of
the memo change, and the OnClear() event will fire when the memo is cleared. Notice also
that AddText() and OnTextChanged() each have one parameter of type WideString.

The first thing to do is implement the AddText() and Clear() methods. The implementation
for these methods is shown here:

procedure TServerWithEvents.AddText(const NewText: WideString);
begin
MainForm.Memo.Lines.Add(NewText);

end;

procedure TServerWithEvents.Clear;
begin
MainForm.Memo.Lines.Clear;
if FEvents <> nil then FEvents.OnClear;

end;

Component-Based Development

PART IV
704

20 chpt_15.qxd 11/19/01 12:13 PM Page 704

You should be familiar with all this code except perhaps the last line of Clear(). This code
ensures that there’s a client sink advised on the event by checking for nil; then it first fires the
event simply by calling OnClear().

To set up the OnTextChanged() event, we first have to handle the OnChange event of the memo.
We’ll do this by inserting a line of code into the Initialized() method of
TServerWithEvents that points the event to the method in TServerWithEvents:

MainForm.Memo.OnChange := MemoChange;

The MemoChange() method is implemented as follows:

procedure TServerWithEvents.MemoChange(Sender: TObject);
begin
if FEvents <> nil then FEvents.OnTextChanged((Sender as TMemo).Text);

end;

This code also checks to ensure that a client is listening; then it fires the event, passing the
memo’s text as the parameter.

Believe it or not, that sums the implementation of the server! Now we’ll move on to the client.

The Client
The client is an application with one form that contains a TEdit, TMemo, and three TButton
components, as shown in Figure 15.13.

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
705

FIGURE 15.13
The Automation Client main form.

In the main unit for the client application, the Server_TLB unit has been added to the uses
clause so that we have access to the types and methods contained within that unit. The main
form object, TMainForm, of the client application will contain a field that references the server
called FServer of type IServerWithEvents. We’ll create an instance of the server in
TMainForm’s constructor using the helper class found in Server_TLB, like this:

FServer := CoServerWithEvents.Create;

20 chpt_15.qxd 11/19/01 12:13 PM Page 705

The next step is to implement the event sink class. Because this class will be called by the
server via Automation, it must implement IDispatch (and therefore IUnknown). The type dec-
laration for this class is shown here:

type
TEventSink = class(TObject, IUnknown, IDispatch)
private
FController: TMainForm;
{ IUnknown }
function QueryInterface(const IID: TGUID; out Obj): HResult; stdcall;
function _AddRef: Integer; stdcall;
function _Release: Integer; stdcall;
{ IDispatch }
function GetTypeInfoCount(out Count: Integer): HResult; stdcall;
function GetTypeInfo(Index, LocaleID: Integer; out TypeInfo):
HResult; stdcall;

function GetIDsOfNames(const IID: TGUID; Names: Pointer;
NameCount, LocaleID: Integer; DispIDs: Pointer): HResult; stdcall;

function Invoke(DispID: Integer; const IID: TGUID; LocaleID: Integer;
Flags: Word; var Params; VarResult, ExcepInfo, ArgErr: Pointer):
HResult; stdcall;

public
constructor Create(Controller: TMainForm);

end;

Most of the methods of IUnknown and IDispatch aren’t implemented, with the notable excep-
tions of IUnknown.QueryInterface() and IDispatch.Invoke(). These will be discussed in
turn.

The QueryInterface() method for TEventSink is implemented as shown here:

function TEventSink.QueryInterface(const IID: TGUID; out Obj): HResult;
begin
// First look for my own implementation of an interface
// (I implement IUnknown and IDispatch).
if GetInterface(IID, Obj) then
Result := S_OK

// Next, if they are looking for outgoing interface, recurse to return
// our IDispatch pointer.
else if IsEqualIID(IID, IServerWithEventsEvents) then
Result := QueryInterface(IDispatch, Obj)

// For everything else, return an error.
else
Result := E_NOINTERFACE;

end;

Component-Based Development

PART IV
706

20 chpt_15.qxd 11/19/01 12:13 PM Page 706

Essentially, this method returns an instance only when the requested interface is IUnknown,
IDispatch, or IServerWithEventsEvents.

Here’s the Invoke method for TEventSink:

function TEventSink.Invoke(DispID: Integer; const IID: TGUID;
LocaleID: Integer; Flags: Word; var Params; VarResult, ExcepInfo,
ArgErr: Pointer): HResult;

var
V: OleVariant;

begin
Result := S_OK;
case DispID of
1:
begin
// First parameter is new string
V := OleVariant(TDispParams(Params).rgvarg^[0]);
FController.OnServerMemoChanged(V);

end;
2: FController.OnClear;

end;
end;

TEventSink.Invoke() is hard-coded for methods having DispID 1 or DispID 2, which happen
to be the DispIDs chosen for OnTextChanged() and OnClear(), respectively, in the server
application. OnClear() has the most straightforward implementation: It simply calls the client
main form’s OnClear() method in response to the event. The OnTextChanged() event is a little
trickier: This code pulls the parameter out of the Params.rgvarg array, which is passed in as a
parameter to this method, and passes it through to the client main form’s OnServerMemoChanged()
method. Note that because the number and type of parameters is known, we’re able to make
simplifying assumptions in the source code. If you’re clever, it’s possible to implement
Invoke() in a generic manner such that it figures out the number and types of parameters and
pushes them onto the stack and/or into registers prior to calling the appropriate function. If
you’d like to see an example of this, take a look at the TOleControl.InvokeEvent() method in
the OleCtrls unit. This method represents the event-sinking logic for the ActiveX control con-
tainer.

The implementation for OnClear() and OnServerMemoChanged() manipulate the contents of
the client’s memo. They’re shown here:

procedure TMainForm.OnServerMemoChanged(const NewText: string);
begin
Memo.Text := NewText;

end;

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
707

20 chpt_15.qxd 11/19/01 12:13 PM Page 707

procedure TMainForm.OnClear;
begin
Memo.Clear;

end;

The final piece of the puzzle is to connect the event sink to the server’s source interface. This
is easily accomplished using the InterfaceConnect() function found in the ComObj unit,
which we’ll call from the main form’s constructor, like so:

InterfaceConnect(FServer, IServerWithEventsEvents, FEventSink, FCookie);

The first parameter to this function is a reference to the source object. The second parameter is
the IID of the outgoing interface. The third parameter holds the event sink interface. The fourth
and final parameter is the cookie, and it’s a reference parameter that will be filled in by the
callee.

To be a good citizen, you should also clean up properly by calling InterfaceDisconnect()
when you’re finished playing with events. This is done in the main form’s destructor:

InterfaceDisconnect(FEventSink, IServerWithEventsEvents, FCookie);

The Demo
Now that the client and server are written, we can see them in action. Be sure to run and close
the server once (or run it with the /regserver switch) to ensure that it’s registered before
attempting to run the client. Figure 15.14 shows the interactions between client, server, source,
and sink.

Component-Based Development

PART IV
708

FIGURE 15.14
The Automation client manipulating the server and receiving events.

Events with Multiple Sinks
Although the technique just described works great for firing events back to a single client, it
doesn’t work so well when multiple clients are involved. You’ll often find yourself in situations
where multiple clients are connecting to your server, and you need to fire events back to all
clients. Fortunately, you need just a little bit more code to add this type of functionality. In

20 chpt_15.qxd 11/19/01 12:13 PM Page 708

order to fire events back to multiple clients, you must write code that enumerates over each
advised connection and calls the appropriate method on the sink. This can be done by making
several modifications to the previous example.

First things first. In order to support multiple client connections on a connection point, we
must pass ckMulti in the Kind parameter of TConnectionPoints.CreateConnectionPoint().
This method is called from the Automation object’s Initialize() method, as shown here:

FConnectionPoints.CreateConnectionPoint(AutoFactory.EventIID, ckMulti,
EventConnect);

Before connections can be enumerated, we need to obtain a reference to IConnection
PointContainer. From IConnectionPointContainer, we can obtain the IConnectionPoint
representing the outgoing interface, and using the IConnectionPoint.EnumConnections()
method, we can obtain an IEnumConnections interface that can be used to enumerate the con-
nections. All this logic is encapsulated into the following method:

function TServerWithEvents.GetConnectionEnumerator: IEnumConnections;
var
Container: IConnectionPointContainer;
CP: IConnectionPoint;

begin
Result := nil;
OleCheck(QueryInterface(IConnectionPointContainer, Container));
OleCheck(Container.FindConnectionPoint(AutoFactory.EventIID, CP));
CP.EnumConnections(Result);

end;

After the enumerator interface has been obtained, calling the sink for each client is just a mat-
ter of iterating over each connection. This logic is demonstrated in the following code, which
fires the OnTextChanged() event:

procedure TServerWithEvents.MemoChange(Sender: TObject);
var
EC: IEnumConnections;
ConnectData: TConnectData;
Fetched: Cardinal;

begin
EC := GetConnectionEnumerator;
if EC <> nil then
begin
while EC.Next(1, ConnectData, @Fetched) = S_OK do
if ConnectData.pUnk <> nil then
(ConnectData.pUnk as IServerWithEventsEvents).OnTextChanged(

➥(Sender as TMemo).Text);
end;

end;

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
709

20 chpt_15.qxd 11/19/01 12:13 PM Page 709

Finally, in order to enable clients to connect to a single active instance of the Automation
object, we must call the RegisterActiveObject() COM API function. This function accepts
as parameters an IUnknown for the object, the CLSID of the object, a flag indicating whether
the registration is strong (the server should be AddRef-ed) or weak (do not AddRef the server),
and a handle that’s returned by reference:

RegisterActiveObject(Self as IUnknown, Class_ServerWithEvents,
ACTIVEOBJECT_WEAK, FObjRegHandle);

Listing 15.10 shows the complete source code for the ServAuto unit, which ties all these tidbits
together.

LISTING 15.10 ServAuto.pas

unit ServAuto;

interface

uses
ComObj, ActiveX, AxCtrls, Server_TLB;

type
TServerWithEvents = class(TAutoObject, IConnectionPointContainer,
IServerWithEvents)

private
{ Private declarations }
FConnectionPoints: TConnectionPoints;
FObjRegHandle: Integer;
procedure MemoChange(Sender: TObject);

protected
{ Protected declarations }
procedure AddText(const NewText: WideString); safecall;
procedure Clear; safecall;
function GetConnectionEnumerator: IEnumConnections;
property ConnectionPoints: TConnectionPoints read FConnectionPoints
implements IConnectionPointContainer;

public
destructor Destroy; override;
procedure Initialize; override;

end;

implementation

uses Windows, ComServ, ServMain, SysUtils, StdCtrls;

destructor TServerWithEvents.Destroy;

Component-Based Development

PART IV
710

20 chpt_15.qxd 11/19/01 12:13 PM Page 710

LISTING 15.10 Continued

begin
inherited Destroy;
RevokeActiveObject(FObjRegHandle, nil); // Make sure I’m removed from ROT

end;

procedure TServerWithEvents.Initialize;
begin
inherited Initialize;
FConnectionPoints := TConnectionPoints.Create(Self);
if AutoFactory.EventTypeInfo <> nil then
FConnectionPoints.CreateConnectionPoint(AutoFactory.EventIID, ckMulti,
EventConnect);

// Route main form memo’s OnChange event to MemoChange method:
MainForm.Memo.OnChange := MemoChange;
// Register this object with COM’s Running Object Table (ROT) so other
// clients can connect to this instance.
RegisterActiveObject(Self as IUnknown, Class_ServerWithEvents,
ACTIVEOBJECT_WEAK, FObjRegHandle);

end;

procedure TServerWithEvents.Clear;
var
EC: IEnumConnections;
ConnectData: TConnectData;
Fetched: Cardinal;

begin
MainForm.Memo.Lines.Clear;
EC := GetConnectionEnumerator;
if EC <> nil then
begin
while EC.Next(1, ConnectData, @Fetched) = S_OK do
if ConnectData.pUnk <> nil then
(ConnectData.pUnk as IServerWithEventsEvents).OnClear;

end;
end;

procedure TServerWithEvents.AddText(const NewText: WideString);
begin
MainForm.Memo.Lines.Add(NewText);

end;

procedure TServerWithEvents.MemoChange(Sender: TObject);
var
EC: IEnumConnections;

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
711

20 chpt_15.qxd 11/19/01 12:13 PM Page 711

LISTING 15.10 Continued

ConnectData: TConnectData;
Fetched: Cardinal;

begin
EC := GetConnectionEnumerator;
if EC <> nil then
begin
while EC.Next(1, ConnectData, @Fetched) = S_OK do
if ConnectData.pUnk <> nil then
(ConnectData.pUnk as IServerWithEventsEvents).OnTextChanged(

(➥(Sender as TMemo).Text);
end;

end;

function TServerWithEvents.GetConnectionEnumerator: IEnumConnections;
var
Container: IConnectionPointContainer;
CP: IConnectionPoint;

begin
Result := nil;
OleCheck(QueryInterface(IConnectionPointContainer, Container));
OleCheck(Container.FindConnectionPoint(AutoFactory.EventIID, CP));
CP.EnumConnections(Result);

end;

initialization
TAutoObjectFactory.Create(ComServer, TServerWithEvents,
Class_ServerWithEvents, ciMultiInstance, tmApartment);

end.

On the client side, a small adjustment needs to be made in order to enable clients to connect to
an active instance if it’s already running. This is accomplished using the GetActiveObject
COM API function, as shown here:

procedure TMainForm.FormCreate(Sender: TObject);
var
ActiveObj: IUnknown;

begin
// Get active object if it’s available, or create anew if not
GetActiveObject(Class_ServerWithEvents, nil, ActiveObj);
if ActiveObj <> nil then FServer := ActiveObj as IServerWithEvents
else FServer := CoServerWithEvents.Create;
FEventSink := TEventSink.Create(Self);
InterfaceConnect(FServer, IServerWithEventsEvents, FEventSink, FCookie);

end;

Component-Based Development

PART IV
712

20 chpt_15.qxd 11/19/01 12:13 PM Page 712

Figure 15.15 shows several clients receiving events from a single server.

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
713

FIGURE 15.15
Several clients manipulating the same server and receiving events.

Automation Collections
Let’s face it: We programmers are obsessed with bits of software code that serve as containers
for other bits of software code. Think about it—whether it’s an array, a TList, a TCollection,
a template container class for you C++ folks, or a Java vector, it seems that we’re always in
search of the proverbial better mousetrap for software objects that hold other software objects.
If you consider the time invested over the years in this pursuit for the perfect container class,
it’s clear that this is an important problem in the minds of developers. And why not? This logi-
cal separation of container and contained entities helps us better organize our algorithms and
maps to the real world rather nicely (a basket can contain eggs, a pocket can contain coins, a
parking lot can contain autos, and so on). Whenever you learn a new language or development
model, you have to learn “their way” of managing groups of entities. This leads to my point:
Like any other software development model, COM also has its ways for managing these kinds
of groups of entities, and to be an effective COM developer, we must learn how to master these
things.

When we work with the IDispatch interface, COM specifies two primary methods by which
we represent the notion of containership: arrays and collections. If you’ve done a bit of
Automation or ActiveX control work in Delphi, you’ll probably already be familiar with

20 chpt_15.qxd 11/19/01 12:13 PM Page 713

arrays. You can easily create automation arrays in Delphi by adding an array property to your
IDispatch descendant interface or dispinterface, as shown in the following example:

type
IMyDisp = interface(IDispatch)
function GetProp(Index: Integer): Integer; safecall;
procedure SetProp(Index, Value: Integer); safecall;
property Prop[Index: Integer]: Integer read GetProp write SetProp;

end;

Arrays are useful in many circumstances, but they pose some limitations. For example, arrays
make sense when you have data that can be accessed in a logical, fixed-index manner, such as
the strings in an IStrings. However, if the nature of the data is such that individual items are
frequently deleted, added, or moved, an array is a poor container solution. The classic example
is a group of active windows. Because windows are constantly being created, destroyed, and
changing z-order, there’s no solid criteria for determining the order in which the windows
should appear in the array.

Collections are designed to solve this problem by allowing you to manipulate a series of ele-
ments in a manner that doesn’t imply any particular order or number of items. Collections are
unusual because there isn’t really a collection object or interface, but a collection is instead
represented as a custom IDispatch that follows a number of rules and guidelines. The follow-
ing rules must be adhered to in order for an IDispatch to qualify as a collection:

• Collections must contain a _NewEnum property that returns the IUnknown for an object
that supports the IEnumVARIANT interface, which will be used to enumerate the items in
the collection. Note that the name of this property must be preceded with an underscore,
and this property must be marked as restricted in the type library. The DispID for the
_NewEnum property must be DISPID_NEWENUM (-4), and it will be defined as follows in the
Delphi type library editor:

function _NewEnum: IUnknown [propget, dispid $FFFFFFFC, restricted];

safecall;

• Languages that support the For Each construct, such as Visual Basic, will use this
method to obtain the IEnumVARIANT interface needed to enumerate collection items. More
on this is discussed later.

• Collections must contain an Item() method that returns an element from the collection
based on the index. The DispID for this method must be 0, and it should be marked with
the default collection element flag. If we were to implement a collection of IFoo inter-
face pointers, the definition for this method in the type library editor might look some-
thing like this:

function Item(Index: Integer): IFoo [propget, dispid $00000000,
defaultcollelem]; safecall;

Component-Based Development

PART IV
714

20 chpt_15.qxd 11/19/01 12:13 PM Page 714

Note that it’s also acceptable for the Index parameter to be an OleVariant so that an
Integer, WideString, or some other type of value can index the item in question.

• Collections must contain a Count property that contain returns the number of items in the
collection. This method would typically be defined in the type library editor as this:

function Count: Integer [propget, dispid $00000001]; safecall;

In addition to the aforementioned rules, you should also follow these guidelines when creating
your own collection contain objects:

• The property or method that returns a collection should be named with the plural of the
name of the items in the collection. For example, if you had a property that returned a
collection of listview items, the property name would probably be Items, whereas the
name of the item in the collection would be Item. Likewise, an item called Foot would
be contained in a collection property called Feet. In the rare case that the plural and sin-
gular of a word are the same (a collection of fish or deer, for example), the collection
property name should be the name of the item with Collection tacked on the end
(FishCollection or DeerCollection).

• Collections that support the addition of items should do so using a method called Add().
The parameters for this method vary depending on the implementation, but you might
want to pass parameters that indicate the initial position of the new item within the collec-
tion. The Add() method normally returns a reference to the item added to the collection.

• Collections that support the deletion of items should do so using a method called
Remove(). This method should take one parameter that identifies the index of the item
being deleted, and this index should behave semantically in the same manner as the
Item() method.

A Delphi Implementation
If you’ve ever created ActiveX controls in Delphi, you might have noticed that fewer controls
are listed in the combo box in the ActiveX Control Wizard than there are on the IDE’s
Component Palette. This is because Borland prevents some controls showing in the list using
the RegisterNonActiveX() function. One such control that’s available on the palette but not in
the wizard is the TListView control found on the Win32 page of the palette. The TListView
control isn’t shown in the wizard because the wizard doesn’t know what to do with its Items
property, which is of type TListItems. Because the wizard doesn’t know how to wrap this
property type in an ActiveX control, the control is simply excluded from the wizard’s list
rather than allowing the user to create an utterly useless ActiveX control wrapper of a control.

However, in the case of TListView, RegisterNonActiveX() is called with the axrComponentOnly
flag, which means that a descendent of TListView will show up in the ActiveX Control
Wizard’s list. By taking the minor detour of creating a do-nothing descendent of TListView

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
715

20 chpt_15.qxd 11/19/01 12:13 PM Page 715

called TListView2 and adding it to the palette, we can then create an ActiveX control that
encapsulates the listview control. Of course, then we’re faced with the same problem of the
wizard not generating wrappers for the Items property and having a useless ActiveX control.
Fortunately, ActiveX control writing doesn’t have to stop at the wizard-generated code, and
we’re free to wrap the Items property ourselves at this point in order to make the control use-
ful. As you might be beginning to suspect, a collection is the perfect way to encapsulate the
Items property of the TListView.

In order to implement this collection of listview items, we must create new objects represent-
ing the item and the collection and add a new property to the ActiveX control default interface
that returns a collection. We’ll begin by defining the object representing an item, which we’ll
call ListItem. The first step to creating the ListItem object is to create a new Automation
object using the icon found on the ActiveX page of the New Items dialog box. After creating
the object, we can fill out the properties and methods for this object in the type library editor.
For the purposes of this demonstration, we’ll add properties for the Caption, Index, Checked,
and SubItems properties of a listview item. Similarly, we’ll create yet another new Automation
object for the collection itself. This Automation object is called ListItems, and it’s provided
with the _NewEnum, Item(), Count(), Add(), and Remove() methods mentioned earlier. Finally,
we’ll add a new property to the default interface of the ActiveX control called Items that
returns a collection.

After the interfaces for IListItem and IListItems are completely defined in the type library
editor, there’s a little manual tweaking to be done in the implementation files generated for
these objects. Specifically, the default parent class for a new automation object is TAutoObject;
however, these objects will only be created internally (that is, not from a factory), so we’ll
manually change the ancestor to TAutoInfObject, which is more appropriate for internally cre-
ated automation objects. Also, because these objects won’t be created from a factory, we’ll
remove from the units the initialization code that creates the factories because it’s not needed.

Now that the entire infrastructure is properly set up, it’s time to implement the ListItem and
ListItems objects. The ListItem object is the most straightforward because it’s a pretty sim-
ple wrapper around a listview item. The code for the unit containing this object is shown in
Listing 15.11.

LISTING 15.11 The Listview Item Wrapper

unit LVItem;

interface

uses
ComObj, ActiveX, ComCtrls, LVCtrl_TLB, StdVcl, AxCtrls;

Component-Based Development

PART IV
716

20 chpt_15.qxd 11/19/01 12:13 PM Page 716

LISTING 15.11 Continued

type
TListItem = class(TAutoIntfObject, IListItem)
private
FListItem: ComCtrls.TListItem;

protected
function Get_Caption: WideString; safecall;
function Get_Index: Integer; safecall;
function Get_SubItems: IStrings; safecall;
procedure Set_Caption(const Value: WideString); safecall;
procedure Set_SubItems(const Value: IStrings); safecall;
function Get_Checked: WordBool; safecall;
procedure Set_Checked(Value: WordBool); safecall;

public
constructor Create(AOwner: ComCtrls.TListItem);

end;

implementation

uses ComServ;

constructor TListItem.Create(AOwner: ComCtrls.TListItem);
begin
inherited Create(ComServer.TypeLib, IListItem);
FListItem := AOwner;

end;

function TListItem.Get_Caption: WideString;
begin
Result := FListItem.Caption;

end;

function TListItem.Get_Index: Integer;
begin
Result := FListItem.Index;

end;

function TListItem.Get_SubItems: IStrings;
begin
GetOleStrings(FListItem.SubItems, Result);

end;

procedure TListItem.Set_Caption(const Value: WideString);
begin
FListItem.Caption := Value;

end;

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
717

20 chpt_15.qxd 11/19/01 12:13 PM Page 717

LISTING 15.11 Continued

procedure TListItem.Set_SubItems(const Value: IStrings);
begin
SetOleStrings(FListItem.SubItems, Value);

end;

function TListItem.Get_Checked: WordBool;
begin
Result := FListItem.Checked;

end;

procedure TListItem.Set_Checked(Value: WordBool);
begin
FListItem.Checked := Value;

end;

end.

Note that ComCtrls.TListItem() is being passed into the constructor to serve as the listview
item to be manipulated by this Automation object.

The implementation for the ListItems collection object is just a bit more complex. First,
because the object must be able to provide an object supporting IEnumVARIANT in order to
implement the _NewEnum property, IEnumVARIANT is supported directly in this object. Therefore,
the TListItems class supports both IListItems and IEnumVARIANT. IEnumVARIANT contains
four methods, which are described in Table 15.1.

TABLE 15.1 IEnumVARIANT Methods

Method Purpose

Next Retrieves the next n number of items in the collection

Skip Skips over n items in the collection

Reset Resets current item back to the first item in the collection

Clone Creates a copy of this IEnumVARIANT

The source code for the unit containing the ListItems object is shown in Listing 15.12.

LISTING 15.12 The Listview Items Wrapper

unit LVItems;

interface

Component-Based Development

PART IV
718

20 chpt_15.qxd 11/19/01 12:13 PM Page 718

LISTING 15.12 Continued

uses
ComObj, Windows, ActiveX, ComCtrls, LVCtrl_TLB;

type
TListItems = class(TAutoIntfObject, IListItems, IEnumVARIANT)
private
FListItems: ComCtrls.TListItems;
FEnumPos: Integer;

protected
{ IListItems methods }
function Add: IListItem; safecall;
function Get_Count: Integer; safecall;
function Get_Item(Index: Integer): IListItem; safecall;
procedure Remove(Index: Integer); safecall;
function Get__NewEnum: IUnknown; safecall;
{ IEnumVariant methods }
function Next(celt: Longint; out elt; pceltFetched: PLongint): HResult;
stdcall;

function Skip(celt: Longint): HResult; stdcall;
function Reset: HResult; stdcall;
function Clone(out Enum: IEnumVariant): HResult; stdcall;

public
constructor Create(AOwner: ComCtrls.TListItems);

end;

implementation

uses ComServ, LVItem;

{ TListItems }

constructor TListItems.Create(AOwner: ComCtrls.TListItems);
begin
inherited Create(ComServer.TypeLib, IListItems);
FListItems := AOwner;

end;

{ TListItems.IListItems }

function TListItems.Add: IListItem;
begin
Result := LVItem.TListItem.Create(FListItems.Add);

end;

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
719

20 chpt_15.qxd 11/19/01 12:13 PM Page 719

LISTING 15.12 Continued

function TListItems.Get__NewEnum: IUnknown;
begin
Result := Self;

end;

function TListItems.Get_Count: Integer;
begin
Result := FListItems.Count;

end;

function TListItems.Get_Item(Index: Integer): IListItem;
begin
Result := LVItem.TListItem.Create(FListItems[Index]);

end;

procedure TListItems.Remove(Index: Integer);
begin
FListItems.Delete(Index);

end;

{ TListItems.IEnumVariant }

function TListItems.Clone(out Enum: IEnumVariant): HResult;
begin
Enum := nil;
Result := S_OK;
try
Enum := TListItems.Create(FListItems);

except
Result := E_OUTOFMEMORY;

end;
end;

function TListItems.Next(celt: Integer; out elt; pceltFetched: PLongint):
HResult;

var
V: OleVariant;
I: Integer;

begin
Result := S_FALSE;
try
if pceltFetched <> nil then pceltFetched^ := 0;
for I := 0 to celt - 1 do
begin
if FEnumPos >= FListItems.Count then Exit;

Component-Based Development

PART IV
720

20 chpt_15.qxd 11/19/01 12:13 PM Page 720

LISTING 15.12 Continued

V := Get_Item(FEnumPos);
TVariantArgList(elt)[I] := TVariantArg(V);
// trick to prevent variant from being garbage collected, since it needs
// to stay alive because it is party of the elt array
TVarData(V).VType := varEmpty;
TVarData(V).VInteger := 0;
Inc(FEnumPos);
if pceltFetched <> nil then Inc(pceltFetched^);

end;
except
end;
if (pceltFetched = nil) or ((pceltFetched <> nil) and
(pceltFetched^ = celt)) then
Result := S_OK;

end;

function TListItems.Reset: HResult;
begin
FEnumPos := 0;
Result := S_OK;

end;

function TListItems.Skip(celt: Integer): HResult;
begin
Inc(FEnumPos, celt);
Result := S_OK;

end;

end.

The only method in this unit with a nontrivial implementation is the Next() method. The celt
parameter of the Next() method indicates how many items should be retrieved. The elt para-
meter contains an array of TVarArgs with at least elt elements. Upon return, pceltFetched (if
not nil) should hold the actual number of items fetched. This method returns S_OK when the
number of items returned is the same as the number requested; it returns S_FALSE otherwise.
The logic for this method iterates over the array in elt and assigns a TVarArg representing a
collection item to an element of the array. Note the little trick we’re performing to clear out the
OleVariant after assigning it to the array. This ensures that the array won’t be garbage col-
lected. Were we not to do this, the contents of elt could potentially become stale if the objects
referenced by V are freed when the OleVariant is finalized.

Similar to TListItem, the constructor for TListItems takes ComCtrls.TListItems as a para-
meter and manipulates that object in the implementation of its methods.

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
721

20 chpt_15.qxd 11/19/01 12:13 PM Page 721

Finally, we complete the implementation of the ActiveX control by adding the logic to manage
the Items property. First, we must add a field to the object to hold the collection:

type
TListViewX = class(TActiveXControl, IListViewX)
private
...
FItems: IListItems;
...

end;

Next, we assign FItems to a new TListItems instance in the InitializeControl() method:

FItems := LVItems.TListItems.Create(FDelphiControl.Items);

Last, the Get_Items() method can be implemented to simply return FItems:

function TListViewX.Get_Items: IListItems;
begin
Result := FItems;

end;

The real test to see whether this collection works is to load the control in Visual Basic 6 and
try to use the For Each construct with the collection. Figure 15.16 shows a simple VB test
application running.

Component-Based Development

PART IV
722

FIGURE 15.16
A Visual Basic application to test our collection.

Of the two command buttons you see in Figure 15.16, Command1 adds items to the listview,
whereas Command2 iterates over all the items in the listview using For Each and adds exclama-
tion points to each caption. The code for these methods is shown here:

Private Sub Command1_Click()
ListViewX1.Items.Add.Caption = “Delphi”

End Sub

20 chpt_15.qxd 11/19/01 12:13 PM Page 722

Private Sub Command2_Click()
Dim Item As ListItem
Set Items = ListViewX1.Items
For Each Item In Items
Item.Caption = Item.Caption + “ Rules!!”
Next

End Sub

Despite the feelings that some of the Delphi faithful have toward VB, we must remember that
VB is the primary consumer of ActiveX controls, and it’s very important to ensure that our
controls function properly in that environment.

Collections provide powerful functionality that can enable your controls and Automation
servers to function more smoothly in the world of COM. Because collections are terribly diffi-
cult to implement, it’s worth your while to get in the habit of using them when appropriate.
Unfortunately, once you become comfortable with collections, it’s very likely that someone
will soon come along and create yet a newer and better container object for COM.

New Interface Types in the Type Library
As every well-behaved Delphi developer should, we’ve used the type library editor to define
new interfaces for our Automation objects. However, it’s not unusual to occasionally run into a
situation whereby one of the methods for a new interface includes a parameter of a COM inter-
face type that isn’t supported by default in the type library editor. Because the type library edi-
tor doesn’t let you work with types that it doesn’t know about, how do you complete such a
method definition?

Before this is explained, it’s important that you understand why the type library editor behaves
the way it does. If you create a new method in the type library editor and take a look at the
types available in the Type column of the Parameters page, you’ll see a number of interfaces,
including IDataBroker, IDispatch, IEnumVARIANT, IFont, IPicture, IProvider, IStrings,
and IUnknown. Why are these the only interfaces available? What makes them so special?
They’re not special, really—they just happen to be types defined in type libraries that are used
by this type library. By default, a Delphi type library automatically uses the Borland Standard
VCL type library and the OLE Automation type library. You can configure which type libraries
are used by your type library by selecting the root node in the tree view in the left pane of the
type library editor and choosing the Uses tab in the page control in the right pane. The types
contained in the type libraries used by your type library will automatically become available in
the drop-down list shown in the type library editor.

Armed with this knowledge, you’ve probably already figured out that if the interface you want
to use as the method parameter in question is defined in a type library, you can simply use that
type library, and the problem is solved. But what if the interface isn’t defined in a type library?

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
723

20 chpt_15.qxd 11/19/01 12:13 PM Page 723

There are certainly quite a few COM interfaces that are defined only by SDK in header or IDL
files and aren’t found in type libraries. If this is the case, the best course is to define the method
parameter as being of type IUnknown. This IUnknown can be QueryInterfaced in your method
implementation for the specific interface type you want to work with. You should also be sure
to document this method parameter as an IUnknown that must support the appropriate interface.
The following code shows an example of how such a method could be implemented:

procedure TSomeClass.SomeMethod(SomeParam: IUnknown);
var
Intf: ISomeComInterface;

begin
Intf := SomeParam as ISomeComInterface;
// remainder of method implementation

end;

You should also be aware of the fact that the interface to which you cast the IUnknown must be
an interface that COM knows how to marshal. This means that it must either be defined in a
type library somewhere, must be a type compatible with the standard Automation marshaler,
or the COM server in question must provide a proxy/stub DLL capable of marshaling the
interface.

Exchanging Binary Data
Occasionally you might want to exchange a block of binary data between an Automation client
and server. Because COM doesn’t support the exchange of raw pointers, you can’t simply pass
pointers around. However, the solution isn’t much more difficult than that. The easiest way to
exchange binary data between Automation clients and servers is to use safearrays of bytes.
Delphi encapsulates safearrays nicely in OleVariants. The admittedly contrived example
shown in Listings 15.13 and 15.14 depicts client and server units that use memo text to demon-
strate how to transfer binary data using safearrays of bytes.

LISTING 15.13 The Server Unit

unit ServObj;

interface

uses
ComObj, ActiveX, Server_TLB;

type
TBinaryData = class(TAutoObject, IBinaryData)
protected
function Get_Data: OleVariant; safecall;

Component-Based Development

PART IV
724

20 chpt_15.qxd 11/19/01 12:13 PM Page 724

LISTING 15.13 Continued

procedure Set_Data(Value: OleVariant); safecall;
end;

implementation

uses ComServ, ServMain;

function TBinaryData.Get_Data: OleVariant;
var
P: Pointer;
L: Integer;

begin
// Move data from memo into array
L := Length(MainForm.Memo.Text);
Result := VarArrayCreate([0, L - 1], varByte);
P := VarArrayLock(Result);
try
Move(MainForm.Memo.Text[1], P^, L);

finally
VarArrayUnlock(Result);

end;
end;

procedure TBinaryData.Set_Data(Value: OleVariant);
var
P: Pointer;
L: Integer;
S: string;

begin
// Move data from array into memo
L := VarArrayHighBound(Value, 1) - VarArrayLowBound(Value, 1) + 1;
SetLength(S, L);
P := VarArrayLock(Value);
try
Move(P^, S[1], L);

finally
VarArrayUnlock(Value);

end;
MainForm.Memo.Text := S;

end;

initialization
TAutoObjectFactory.Create(ComServer, TBinaryData, Class_BinaryData,
ciSingleInstance, tmApartment);

end.

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
725

20 chpt_15.qxd 11/19/01 12:13 PM Page 725

LISTING 15.14 The Client Unit

unit CliMain;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls, Server_TLB;

type
TMainForm = class(TForm)
Memo: TMemo;
Panel1: TPanel;
SetButton: TButton;
GetButton: TButton;
OpenButton: TButton;
OpenDialog: TOpenDialog;
procedure OpenButtonClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure SetButtonClick(Sender: TObject);
procedure GetButtonClick(Sender: TObject);

private
FServer: IBinaryData;

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.FormCreate(Sender: TObject);
begin
FServer := CoBinaryData.Create;

end;

procedure TMainForm.OpenButtonClick(Sender: TObject);
begin
if OpenDialog.Execute then
Memo.Lines.LoadFromFile(OpenDialog.FileName);

end;

procedure TMainForm.SetButtonClick(Sender: TObject);
var
P: Pointer;

Component-Based Development

PART IV
726

20 chpt_15.qxd 11/19/01 12:13 PM Page 726

LISTING 15.14 Continued

L: Integer;
V: OleVariant;

begin
// Send memo data to server
L := Length(Memo.Text);
V := VarArrayCreate([0, L - 1], varByte);
P := VarArrayLock(V);
try
Move(Memo.Text[1], P^, L);

finally
VarArrayUnlock(V);

end;
FServer.Data := V;

end;

procedure TMainForm.GetButtonClick(Sender: TObject);
var
P: Pointer;
L: Integer;
S: string;
V: OleVariant;

begin
// Get server’s memo data
V := FServer.Data;
L := VarArrayHighBound(V, 1) - VarArrayLowBound(V, 1) + 1;
SetLength(S, L);
P := VarArrayLock(V);
try
Move(P^, S[1], L);

finally
VarArrayUnlock(V);

end;
Memo.Text := S;

end;

end.

Behind the Scenes: Language Support for COM
One thing often heard when folks talk about COM development in Delphi is what great lan-
guage support Object Pascal provides for COM. (You won’t get any static from us on that
point.) With features such as interfaces, variants, and wide strings built right into the language,
it’s hardly a point to be argued. However, what does it mean to have these things built into the

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
727

20 chpt_15.qxd 11/19/01 12:13 PM Page 727

language? How do these features work, and what’s the nature of their dependence on the COM
APIs? In this section, we’ll take a low-level look at how all the pieces fit together to form
Object Pascal’s COM support and dig into some of the implementation details of the language
features.

As I mentioned, Object Pascal’s COM language features can basically be summed up into
three categories:

• Variant and OleVariant, which encapsulate COM’s variant record, safearrays, and late-
bound Automation.

• WideString, which encapsulates COM’s BSTR.

• Interface and dispinterface, which encapsulate COM interfaces and early- and
ID-bound Automation.

You crusty old OLE developers from the Delphi 2 days might have noticed the automated
reserved word, although which late-bound Automation servers could be created is conveniently
ignored. Because this feature was superceded by the “real” Automation support first introduced
in Delphi 3 and remains only for backward compatibility, it won’t be discussed here.

Variants
Variants are the oldest form of COM support in Delphi, dating back to Delphi 2. As you likely
already know, a Variant is really just a big record that’s used to pass around some bit of data
that can be any one of a number of types. If you’re interested in what this record looks like, it’s
defined in the System unit as TVarData:

type
PVarData = ^TVarData;
TVarData = record
VType: Word;
Reserved1, Reserved2, Reserved3: Word;
case Integer of
varSmallint: (VSmallint: Smallint);
varInteger: (VInteger: Integer);
varSingle: (VSingle: Single);
varDouble: (VDouble: Double);
varCurrency: (VCurrency: Currency);
varDate: (VDate: Double);
varOleStr: (VOleStr: PWideChar);
varDispatch: (VDispatch: Pointer);
varError: (VError: LongWord);
varBoolean: (VBoolean: WordBool);
varUnknown: (VUnknown: Pointer);
varByte: (VByte: Byte);
varString: (VString: Pointer);

Component-Based Development

PART IV
728

20 chpt_15.qxd 11/19/01 12:13 PM Page 728

varAny: (VAny: Pointer);
varArray: (VArray: PVarArray);
varByRef: (VPointer: Pointer);

end;

The value of the VType field of this record indicates the type of data contained in the Variant,
and it can be any of the variant type codes found at the top of the System unit and listed in
the variant portion of this record (within the case statement). The only difference between
Variant and OleVariant is that Variant supports all the type codes, whereas OleVariant
only supports those types compatible in Automation. For example, an attempt to assign a
Pascal string (varString) to a Variant is an acceptable practice, but assigning the same
string to an OleVariant will cause it to be converted to an Automation-compatible WideString
(varOleStr).

When you work with the Variant and OleVariant types, what the compiler is really manipu-
lating and passing around is instances of this TVarData record. In fact, you can safely typecast
a Variant or OleVariant to a TVarData if you for some reason need to manipulate the innards
of the record (although we don’t recommend this practice unless you really know what you’re
doing).

In the harsh world of COM programming in C and C++ (without a class framework such as
Microsoft’s Active Template Library), variants are represented with the VARIANT struct defined
in oaidl.h. When working with variants in this environment, you have to manually initialize
and manage them using VariantXXX() API functions found in oleaut32.dll, such as
VariantInit(), VariantCopy(), VariantClear(), and so on. This makes working with vari-
ants in straight C and C++ a high-maintenance task.

With support for variants built into Object Pascal, the compiler generates the necessary calls to
the API’s variant-support routines automatically as you use instances of the Variant and
OleVariant types. This nicety in the language does saddle you with one bit of baggage you
should know about, however. If you inspect the import table of a “do-nothing” Delphi EXE
using a tool such as Borland’s TDUMP.EXE or Microsoft’s DUMPBIN.EXE, you’ll notice a few sus-
picious imports from oleaut32.dll: VariantChangeTypeEx(), VariantCopyInd(),
VariantCopy(), VariantClear(), and VariantInit(). What this means is that even in an
application in which you do not explicitly employ Variant or OleVariant types, your Delphi
EXE still has a dependence on these COM API functions in oleaut32.dll.

Variant Arrays
Variant arrays in Delphi are designed to encapsulate COM safearrays, which are a type of
record used to encapsulate an array of data in Automation. They’re called safe because they’re
self-describing; in addition to array data, the record contains information regarding the number
of dimensions, the size of an element, and the number of elements in the array. Variant arrays

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
729

20 chpt_15.qxd 11/19/01 12:13 PM Page 729

are created and managed in Delphi using the VarArrayXXX() functions and procedures found
in the System unit and documented in the online help. These functions and procedures are
essentially wrappers around the API’s SafeArrayXXX() functions. Once a Variant contains a
variant array, standard array subscript syntax is used to access array elements. Once again,
comparing this to manually coding safearrays as you would in C and C++, Object Pascal’s lan-
guage encapsulation is clean and much less cumbersome and error prone.

Late-Binding Automation
As you learned earlier in this chapter, Variant and OleVariant types enable you to write late-
binding Automation clients. (Late-binding means that functions are called at runtime using the
Invoke method of the IDispatch interface.) That’s all pretty easy to take at face value, but
the question is “Where’s the magic connection between calling a method of an Automation
server from a Variant and IDispatch.Invoke() somehow getting called with the right para-
meters?” The answer is more low tech than you might expect.

When a method call is made on a Variant or OleVariant containing an IDispatch, the com-
piler simply generates a call to the _DispInvoke helper function declared in the System unit,
which jumps to a function pointer called VarDispProc. By default, the VarDispProc pointer is
assigned to a method that simply returns an error when it’s called. However, if you include the
ComObj unit in your uses clause, the initialization section for the ComObj unit redirects
VarDispProc to another method with a line of code that looks like this:

VarDispProc := @VarDispInvoke;

VarDispInvoke is a procedure in the ComObj unit with the following declaration:

procedure VarDispInvoke(Result: PVariant; const Instance: Variant;
CallDesc: PCallDesc; Params: Pointer); cdecl;

The implementation of the procedure handles the complexity of calling
IDispatch.GetIDsOfNames() to obtain a DispID from the method name, setting up the para-
meters correctly, and making the call to IDispatch.Invoke(). What’s interesting about this is
that the compiler in this instance doesn’t have any inherent knowledge of IDispatch or how
the Invoke() call is made; it simply passes a bunch of stuff through a function pointer. Also
interesting is the fact that because of this architecture, you could reroute this function pointer
to your own procedure if you wanted to handle all Automation calls through Variant and
OleVariant types yourself. You would only have to ensure that your function declaration
matched that of VarDispInvoke. Certainly, this would be a task reserved for experts, but it’s
interesting to know that the flexibility is there when you need it.

WideString
The WideString data type was added in Delphi 3 to serve the dual purpose of providing a
native double-byte, Unicode character string and a character string compatible with the COM
BSTR string. The WideString type differs from its cousin AnsiString in a few keys respects:

Component-Based Development

PART IV
730

20 chpt_15.qxd 11/19/01 12:13 PM Page 730

• The characters comprising a WideString string are all two bytes in size.

• WideString types are always allocated using SysAllocStringLen() and therefore are
fully compatible with BSTRs.

• WideString types are never reference-counted and therefore are always copied on
assignment.

Like variants, BSTRs can be cumbersome to work with using standard API functions, so the
native Object Pascal support via WideString is certainly a welcome language addition.
However, because they consume twice the memory and aren’t reference-counted, they are much
more inefficient than AnsiStrings, and you should therefore be judicious about their use.

Like the Pascal Variant, WideString causes a number of functions to be imported from
oleaut32.dll. Inspecting the import table of a Delphi application that employs WideStrings
reveals that functions such as SysStringLen(), SysFreeString(), SysReAllocStringLen(),
and SysAllocStringLen() are all pulled in by the Delphi RTL in order to provide WideString

support.

Interfaces
Perhaps the most important big-ticket COM feature in the Object Pascal language is the
native support for interfaces. Somewhat ironically, although arguably smaller features such as
Variants and WideStrings pull in functions from the COM API for implementation, Object
Pascal’s implementation of interfaces doesn’t require COM at all. That is, Object Pascal pro-
vides a completely self-contained implementation of interfaces that adheres to the COM speci-
fication, but it doesn’t necessarily require any COM API functions.

As a part of adhering to the COM spec, all interfaces in Delphi implicitly descend from
IUnknown. As you might know, IUnknown provides the identity and reference-counting support
that’s the root of COM. This means that knowledge of IUnknown is built into the compiler, and
IUnknown is defined in the System unit. By making IUnknown a first-class citizen in the lan-
guage, Delphi is able to provide the automatic reference counting by having the compiler gen-
erate the calls to IUnknown.AddRef() and IUnknown.Release() at the appropriate times.
Additionally, the as operator can be used as a shortcut for interface identity normally obtained
via QueryInterface(). The root support for IUnknown, however, is almost incidental when you
consider the low-level support that the language and compiler provide for interfaces in general.

Figure 15.17 shows a simplified diagram of how classes internally support interfaces. A Delphi
object is really a reference that points to the physical instance. The first four bytes of an object
instance are a pointer to the object’s virtual method table (VMT). At a positive offset from the
VMT are all the object’s virtual methods. At a negative offset are pointers to methods and data
that are important to the internal function of the object. In particular, offset -72 from the VMT

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
731

20 chpt_15.qxd 11/19/01 3:30 PM Page 731

contains a pointer to the object’s interface table. The interface table is a list of
PInterfaceEntry records (defined in the System unit) that essentially contain the IID and
information on where to find the vtable pointer for that IID.

Component-Based Development

PART IV
732

Object

VMT

Instance
Data

Object
Instance

Interface
Table

GUID

GUID

GUID

GUID

GUID

VTable

VTable

VTable

VTable

VTable

Intf Table

Virtual
Methods

Internal
Methods
and Data

Virtual
Method
Table

0

–72

Via
implements

Gets
VTable
from

Method
or Field

VTable

FIGURE 15.17
How interfaces are supported internally in Object Pascal.

After you have a moment to reflect on the diagram in Figure 15.17 and understand how things
are put together, the details surrounding the implementation of interfaces just kind of fall into
place. For example, QueryInterface() is normally implemented on Object Pascal objects by
calling TObject.GetInterface(). GetInterface() walks the interface table looking for the IID
in question and returns the vtable pointer for that interface. This also illustrates why new inter-
face types must be defined with a GUID; otherwise, there would be no way for GetInterface()
to walk the interface table, and therefore there would be no identity via QueryInterface().
Typecasting of interfaces using the as operator simply generates a call to QueryInterface(), so
the same rules apply there.

The last entry in the interface table in Figure 15.17 illustrates how an interface is implemented
internally using the implements directive. Rather than providing a direct pointer for the vtable,
the interface table entry provides the address of a little compiler-generated getter function that
gets the interface vtable from the property upon which the implements directive was used.

Dispinterfaces
A dispinterface provides an encapsulation of a non–dual IDispatch. That is, an IDispatch in
which methods can be called via Invoke() but not via a vtable. In this respect, a dispinterface
is similar to Automation with variants. However, dispinterfaces are slightly more efficient than
variants because dispinterface declarations contain the DispID for each of the properties or
methods supported. This means that IDispatch.Invoke() can be called directly without first

20 chpt_15.qxd 11/19/01 3:30 PM Page 732

calling IDispatch.GetIDsOfNames(), as must be done with a variant. The mechanism behind
dispinterfaces is similar to that of variants: When you call a method via a dispinterface, the
compiler generates a call to _IntfDispCall in the System unit. This method jumps through the
DispCallByIDProc pointer, which by default only returns an error. However, when the ComObj
unit is included, DispCallByIDProc is routed to the DispCallByID() procedure, which is
declared in ComObj as follows:

procedure DispCallByID(Result: Pointer; const Dispatch: IDispatch;
DispDesc: PDispDesc; Params: Pointer); cdecl;

TOleContainer
Now that you have some ActiveX OLE background under your belt, take a look at Delphi’s
TOleContainer class. TOleContainer is located in the OleCntrs unit, and it encapsulates the
complexities of an OLE Document and ActiveX Document container into an easily digestible
VCL component.

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
733

If you were familiar with using Delphi 1.0’s TOleContainer component, you can pretty
much throw that knowledge out the window. The 32-bit version of this component
was redesigned from the ground up (as they say in the car commercials), so any
knowledge you have of the 16-bit version of this component might not be applicable
to the 32-bit version. Don’t let that scare you, though; the 32-bit version of this com-
ponent is of a much cleaner design, and you’ll find that the code you must write to
support the object is perhaps a quarter of what it used to be.

NOTE

A Small Sample Application
Now let’s jump right in and create an OLE container application. Create a new project and
drop a TOleContainer object (found on the System page of the Component Palette) on the
form. Right-click the object in the Form Designer and select Insert Object from the local menu.
This invokes the Insert Object dialog box, as shown in Figure 15.18.

Embedding a New OLE Object
By default, the Insert Object dialog box contains the names of OLE server applications regis-
tered with Windows. To embed a new OLE object, you can select a server application from
the Object Type list box. This causes the OLE server to execute in order to create a new
OLE object to be inserted into TOleContainer. When you close the server application, the
TOleContainer object is updated with the embedded object. For this example, we’ll create a
new MS Word 2000 document, as shown in Figure 15.19.

20 chpt_15.qxd 11/19/01 12:13 PM Page 733

FIGURE 15.18
The Insert Object dialog box.

Component-Based Development

PART IV
734

FIGURE 15.19
An embedded MS Word 2000 document.

An OLE object won’t activate in place at design time. You’ll only be able to take
advantage of the in-place activation capability of TOleContainer at runtime.

NOTE

If you want to invoke the Insert Object dialog box at runtime, you can call the
InsertObjectDialog() method of TOleContainer, which is defined as follows:

function InsertObjectDialog: Boolean;

This function returns True if a new type of OLE object was successfully chosen from the dia-
log box.

20 chpt_15.qxd 11/19/01 12:13 PM Page 734

Embedding or Linking an Existing OLE File
To embed an existing OLE file into the TOleContainer, select the Create From File radio but-
ton on the Insert Object dialog box. This enables you to pick an existing file, as shown in
Figure 15.20. After you choose the file, it behaves much the same as a new OLE object.

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
735

FIGURE 15.20
Inserting an object from a file.

To embed a file at runtime, call the CreateObjectFromFile() method of TOleContainer,
which is defined as follows:

procedure CreateObjectFromFile(const FileName: string; Iconic: Boolean);

To link (rather than embed) the OLE object, simply check the Link check box in the Insert
Object dialog box shown in Figure 15.20. As described earlier, this creates a link from your
application to the OLE file so that you can edit and view the same linked object from multiple
applications.

To link to a file at runtime, call the CreateLinkToFile() method of TOleContainer, which is
defined as follows:

procedure CreateLinkToFile(const FileName: string; Iconic: Boolean);

A Bigger Sample Application
Now that you have the basics of OLE and the TOleContainer class behind you, we’ll create a
more sizable application that truly reflects the usage of OLE in realistic applications.

Start by creating a new project based on the MDI application template. The main form makes
only a few modifications to the standard MDI template, and it’s shown in Figure 15.21.

The MDI child form is shown in Figure 15.22. It’s simply an fsMDIChild-style form with a
TOleContainer component aligned to alClient.

20 chpt_15.qxd 11/19/01 12:13 PM Page 735

FIGURE 15.21
The MDI OLE Demo main window.

Component-Based Development

PART IV
736

FIGURE 15.22
The MDI OLE Demo child window.

Listing 15.15 shows ChildWin.pas, the source code unit for the MDI child form. Note that this
unit is fairly standard except for the addition of the OLEFileName property and the associated
method and private instance variable. This property stores the path and filename of the OLE
file, and the property accessor sets the child form’s caption to the filename.

LISTING 15.15 The Source Code for ChildWin.pas

unit Childwin;

interface

uses WinTypes, WinProcs, Classes, Graphics, Forms, Controls, OleCtnrs;

type
TMDIChild = class(TForm)
OleContainer: TOleContainer;
procedure FormClose(Sender: TObject; var Action: TCloseAction);

private
FOLEFilename: String;
procedure SetOLEFileName(const Value: String);

20 chpt_15.qxd 11/19/01 12:13 PM Page 736

LISTING 15.15 Continued

public
property OLEFileName: String read FOLEFileName write SetOLEFileName;

end;

implementation

{$R *.DFM}

uses Main, SysUtils;

procedure TMDIChild.SetOLEFileName(const Value: String);
begin
if Value <> FOLEFileName then begin
FOLEFileName := Value;
Caption := ExtractFileName(FOLEFileName);

end;
end;

procedure TMDIChild.FormClose(Sender: TObject; var Action: TCloseAction);
begin
Action := caFree;

end;

end.

Creating a Child Form
When a new MDI child form is created from the File, New menu of the MDI OLE Demo
application, the Insert Object dialog box is invoked using the InsertObjectDialog() method
mentioned earlier. Additionally, a caption is assigned to the MDI child form using a global
variable called NumChildren to provide a unique number. The following code shows the main
form’s CreateMDIChild() method:

procedure TMainForm.FileNewItemClick(Sender: TObject);
begin
inc(NumChildren);
{ create a new MDI child window }
with TMDIChild.Create(Application) do
begin
Caption := ‘Untitled’ + IntToStr(NumChildren);
{ bring up insert OLE object dialog and insert into child }
OleContainer.InsertObjectDialog;

end;
end;

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
737

20 chpt_15.qxd 11/19/01 12:13 PM Page 737

Saving to and Reading from Files
As discussed earlier in this chapter, OLE objects lend themselves to the capability of being
written to and read from streams and, therefore, files. The TOleContainer component has the
methods SaveToStream(), LoadFromStream(), SaveToFile(), and LoadFromFile(), which
make saving an OLE object out to a file or stream very easy.

The MDIOLE application’s main form contains methods for saving and opening OLE object
files. The following code shows the FileOpenItemClick() method, which is called in response
to choosing File, Open from the main form. In addition to loading a saved OLE object from a
file specified by OpenDialog, this method also assigns the OleFileName field of the TMDIChild
instance to the filename provided by OpenDialog. If an error occurs loading the file, the form
instance is freed. Here’s the code:

procedure TMainForm.FileOpenItemClick(Sender: TObject);
begin
if OpenDialog.Execute then
with TMDIChild.Create(Application) do
begin
try
OleFileName := OpenDialog.FileName;
OleContainer.LoadFromFile(OleFileName);
Show;

except
Release; // free form on error
raise; // reraise exception

end;
end;

end;

The following code handles the File, Save As and File, Save menu items. Note that the
FileSaveItemClick() method invokes FileSaveAsItemClick() when the active MDI child
doesn’t have a name specified. Here’s the code:

procedure TMainForm.FileSaveAsItemClick(Sender: TObject);
begin
if (ActiveMDIChild <> Nil) and (SaveDialog.Execute) then
with TMDIChild(ActiveMDIChild) do
begin
OleFileName := SaveDialog.FileName;
OleContainer.SaveToFile(OleFileName);

end;
end;

procedure TMainForm.FileSaveItemClick(Sender: TObject);
begin
if ActiveMDIChild <> Nil then

Component-Based Development

PART IV
738

20 chpt_15.qxd 11/19/01 12:13 PM Page 738

{ if no name is assigned, then do a “save as” }
if TMDIChild(ActiveMDIChild).OLEFileName = ‘’ then
FileSaveAsItemClick(Sender)

else
{ otherwise save under current name }
with TMDIChild(ActiveMDIChild) do
OleContainer.SaveToFile(OLEFileName);

end;

Using the Clipboard to Copy and Paste
Thanks to the universal data-transfer mechanism described earlier, it’s also possible to use the
Windows Clipboard to transfer OLE objects. Again, the TOleContainer component automates
these tasks to a great degree.

Copying an OLE object from a TOleContainer to the Clipboard, in particular, is a trivial task.
Simply call the Copy() method:

procedure TMainForm.CopyItemClick(Sender: TObject);
begin
if ActiveMDIChild <> Nil then
TMDIChild(ActiveMDIChild).OleContainer.Copy;

end;

After you think you have an OLE object on the Clipboard, only one additional step is required
to properly read it out into a TOleContainer component. Prior to attempting to paste the con-
tents of the Clipboard into a TOleContainer, you should first check the value of the CanPaste
property to ensure that the data on the Clipboard is a suitable OLE object. After that, you can
invoke the Paste Special dialog box to paste the object into the TOleContainer by calling its
PasteSpecialDialog() method, as shown in the following code (the Paste Special dialog box
is shown in Figure 15.23):

procedure TMainForm.PasteItemClick(Sender: TObject);
begin
if ActiveMDIChild <> nil then
with TMDIChild(ActiveMDIChild).OleContainer do
{ Before invoking dialog, check to be sure that there }
{ are valid OLE objects on the clipboard. }
if CanPaste then PasteSpecialDialog;

end;

When the application is run, the server controlling the OLE object in the active MDI child
merges with or takes control of the application’s menu and toolbar. Figures 15.24 and 15.25
show OLE’s in-place activation feature—the MDI OLE application is controlled by two differ-
ent OLE servers.

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
739

20 chpt_15.qxd 11/19/01 12:13 PM Page 739

FIGURE 15.23
The Paste Special dialog box.

Component-Based Development

PART IV
740

FIGURE 15.24
Editing an embedded Word 2000 document.

FIGURE 15.25
Editing an embedded Paint graphic.

20 chpt_15.qxd 11/19/01 12:13 PM Page 740

The complete listing for Main.pas, the MDI OLE application’s main unit, is shown in
Listing 15.16.

LISTING 15.16 The Source Code for Main.pas

unit Main;

interface

uses WinTypes, WinProcs, SysUtils, Classes, Graphics, Forms, Controls, Menus,
StdCtrls, Dialogs, Buttons, Messages, ExtCtrls, ChildWin, ComCtrls,
ToolWin;

type
TMainForm = class(TForm)
MainMenu1: TMainMenu;
File1: TMenuItem;
FileNewItem: TMenuItem;
FileOpenItem: TMenuItem;
FileCloseItem: TMenuItem;
Window1: TMenuItem;
Help1: TMenuItem;
N1: TMenuItem;
FileExitItem: TMenuItem;
WindowCascadeItem: TMenuItem;
WindowTileItem: TMenuItem;
WindowArrangeItem: TMenuItem;
HelpAboutItem: TMenuItem;
OpenDialog: TOpenDialog;
FileSaveItem: TMenuItem;
FileSaveAsItem: TMenuItem;
Edit1: TMenuItem;
PasteItem: TMenuItem;
WindowMinimizeItem: TMenuItem;
SaveDialog: TSaveDialog;
CopyItem: TMenuItem;
CloseAll1: TMenuItem;
StatusBar: TStatusBar;
CoolBar1: TCoolBar;
ToolBar1: TToolBar;
OpenBtn: TToolButton;
SaveBtn: TToolButton;
ToolButton3: TToolButton;
CopyBtn: TToolButton;
PasteBtn: TToolButton;
ToolButton6: TToolButton;

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
741

20 chpt_15.qxd 11/19/01 12:13 PM Page 741

LISTING 15.16 Continued

ExitBtn: TToolButton;
ImageList1: TImageList;
procedure FormCreate(Sender: TObject);
procedure FileNewItemClick(Sender: TObject);
procedure WindowCascadeItemClick(Sender: TObject);
procedure UpdateMenuItems(Sender: TObject);
procedure WindowTileItemClick(Sender: TObject);
procedure WindowArrangeItemClick(Sender: TObject);
procedure FileCloseItemClick(Sender: TObject);
procedure FileOpenItemClick(Sender: TObject);
procedure FileExitItemClick(Sender: TObject);
procedure FileSaveItemClick(Sender: TObject);
procedure FileSaveAsItemClick(Sender: TObject);
procedure PasteItemClick(Sender: TObject);
procedure WindowMinimizeItemClick(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure HelpAboutItemClick(Sender: TObject);
procedure CopyItemClick(Sender: TObject);
procedure CloseAll1Click(Sender: TObject);

private
procedure ShowHint(Sender: TObject);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

uses About;

var
NumChildren: Cardinal = 0;

procedure TMainForm.FormCreate(Sender: TObject);
begin
Application.OnHint := ShowHint;
Screen.OnActiveFormChange := UpdateMenuItems;

end;

procedure TMainForm.ShowHint(Sender: TObject);
begin
{ Show hints on status bar }

Component-Based Development

PART IV
742

20 chpt_15.qxd 11/19/01 12:13 PM Page 742

LISTING 15.16 Continued

StatusBar.Panels[0].Text := Application.Hint;
end;

procedure TMainForm.FileNewItemClick(Sender: TObject);
begin
inc(NumChildren);
{ create a new MDI child window }
with TMDIChild.Create(Application) do
begin
Caption := ‘Untitled’ + IntToStr(NumChildren);
{ bring up insert OLE object dialog and insert into child }
OleContainer.InsertObjectDialog;

end;
end;

procedure TMainForm.FileOpenItemClick(Sender: TObject);
begin
if OpenDialog.Execute then
with TMDIChild.Create(Application) do
begin
try
OleFileName := OpenDialog.FileName;
OleContainer.LoadFromFile(OleFileName);
Show;

except
Release; // free form on error
raise; // reraise exception

end;
end;

end;

procedure TMainForm.FileCloseItemClick(Sender: TObject);
begin
if ActiveMDIChild <> nil then
ActiveMDIChild.Close;

end;

procedure TMainForm.FileSaveAsItemClick(Sender: TObject);
begin
if (ActiveMDIChild <> nil) and (SaveDialog.Execute) then
with TMDIChild(ActiveMDIChild) do
begin
OleFileName := SaveDialog.FileName;
OleContainer.SaveToFile(OleFileName);

end;
end;

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
743

20 chpt_15.qxd 11/19/01 12:13 PM Page 743

LISTING 15.16 Continued

procedure TMainForm.FileSaveItemClick(Sender: TObject);
begin
if ActiveMDIChild <> nil then
{ if no name is assigned, then do a “save as” }
if TMDIChild(ActiveMDIChild).OLEFileName = ‘’ then
FileSaveAsItemClick(Sender)

else
{ otherwise save under current name }
with TMDIChild(ActiveMDIChild) do
OleContainer.SaveToFile(OLEFileName);

end;

procedure TMainForm.FileExitItemClick(Sender: TObject);
begin
Close;

end;

procedure TMainForm.PasteItemClick(Sender: TObject);
begin
if ActiveMDIChild <> nil then
with TMDIChild(ActiveMDIChild).OleContainer do
{ Before invoking dialog, check to be sure that there }
{ are valid OLE objects on the clipboard. }
if CanPaste then PasteSpecialDialog;

end;

procedure TMainForm.WindowCascadeItemClick(Sender: TObject);
begin
Cascade;

end;

procedure TMainForm.WindowTileItemClick(Sender: TObject);
begin
Tile;

end;

procedure TMainForm.WindowArrangeItemClick(Sender: TObject);
begin
ArrangeIcons;

end;

procedure TMainForm.WindowMinimizeItemClick(Sender: TObject);
var
I: Integer;

Component-Based Development

PART IV
744

20 chpt_15.qxd 11/19/01 12:13 PM Page 744

LISTING 15.16 Continued

begin
{ Must be done backwards through the MDIChildren array }
for I := MDIChildCount - 1 downto 0 do
MDIChildren[I].WindowState := wsMinimized;

end;

procedure TMainForm.UpdateMenuItems(Sender: TObject);
var
DoIt: Boolean;

begin
DoIt := MDIChildCount > 0;
{ only enable options if there are active children }
FileCloseItem.Enabled := DoIt;
FileSaveItem.Enabled := DoIt;
CloseAll1.Enabled := DoIt;
FileSaveAsItem.Enabled := DoIt;
CopyItem.Enabled := DoIt;
PasteItem.Enabled := DoIt;
CopyBtn.Enabled := DoIt;
SaveBtn.Enabled := DoIt;
PasteBtn.Enabled := DoIt;
WindowCascadeItem.Enabled := DoIt;
WindowTileItem.Enabled := DoIt;
WindowArrangeItem.Enabled := DoIt;
WindowMinimizeItem.Enabled := DoIt;

end;

procedure TMainForm.FormDestroy(Sender: TObject);
begin
Screen.OnActiveFormChange := nil;

end;

procedure TMainForm.HelpAboutItemClick(Sender: TObject);
begin
with TAboutBox.Create(Self) do
begin
ShowModal;
Free;

end;
end;

procedure TMainForm.CopyItemClick(Sender: TObject);
begin
if ActiveMDIChild <> nil then

COM Development

CHAPTER 15

15

C
O

M
D

EV
ELO

PM
EN

T
745

20 chpt_15.qxd 11/19/01 12:13 PM Page 745

LISTING 15.16 Continued

TMDIChild(ActiveMDIChild).OleContainer.Copy;
end;

procedure TMainForm.CloseAll1Click(Sender: TObject);
begin
while ActiveMDIChild <> nil do
begin
ActiveMDIChild.Release; // use Release, not Free!
Application.ProcessMessages; // let Windows take care of business

end;
end;

end.

Summary
That wraps up this chapter on COM, OLE, and ActiveX. This chapter covers an enormous
amount of information! First, you received a solid foundation in COM-based technologies,
which should help you understand what goes on behind the scenes. Next, you got some insight
and information on various types of COM clients and servers. Following that, you were
immersed in various advanced techniques for Automation in Delphi. In addition to in-depth
coverage of COM and Automation, you should now be familiar with the workings of VCL’s
TOleContainer component.

If you’d like to know more about COM, you’ll find what you’re looking for in several other
areas of this book. Chapter 16 shows real-world examples of COM server creation, and
Chapter 18 discusses development with some of the more enterprise-targeted features of
COM+ in Delphi.

Component-Based Development

PART IV
746

20 chpt_15.qxd 11/19/01 12:13 PM Page 746

