
CHAPTER

14
Packages to the Max

IN THIS CHAPTER
• Why Use Packages? 626

• Why Not Use Packages? 627

• Types of Packages 628

• Package Files 628

• Using Runtime Packages 629

• Installing Packages into the Delphi IDE 629

• Creating Packages 630

• Package Versioning 635

• Package Compiler Directives 635

• Package Naming Conventions 637

• Extensible Applications Using Runtime
(Add-In) Packages 637

• Exporting Functions from Packages 644

• Obtaining Information About a Package 648

19 chpt_14.qxd 11/19/01 12:09 PM Page 625

Delphi 3 introduced packages, which enable you to place portions of your application into sep-
arate modules that can be shared across multiple applications. Packages are simply special
dynamic link libraries (DLLs) that contain additional Delphi specific information. They differ
from DLLs in how they are used. Packages are primarily used to store collections of compo-
nents in a separate, sharable module (a Borland Package Library, or .bpl file). As you or other
developers create Delphi applications, the packages you create can be used by the application
at runtime instead of being directly linked at compile/link time. Because the code for these
units resides in the .bpl file rather than in your .exe or .dll, the size of your .exe or .dll
can become very small.

Packages are specific to the VCL; that is, applications written in other languages can’t use
packages created by Delphi (with the exception of C++Builder). One of the reasons behind
packages was to get around a limitation of Delphi 1 and 2. In these prior versions of Delphi,
the VCL added a minimum of 150KB to 200KB of code to every executable. Therefore, even if
you were to separate a piece of your application into a DLL, both the DLL and the application
would contain redundant code. This was especially a problem if you were providing a suite of
applications on one machine. Packages allow you to reduce the footprint of your applications
and provide a convenient way for you to distribute your component collections.

Why Use Packages?
There are several reasons why you might want to use packages. Three important reasons are
discussed in the following sections: code reduction, application partitioning, and component
containment.

Code Reduction
A primary reason behind using packages is to reduce the size of your applications and DLLs.
Delphi already ships with several predefined packages that break up the VCL into logical
groupings. In fact, you can choose to compile your application so that it assumes the existence
of many of these Delphi packages.

A Smaller Distribution of Applications—
Application Partitioning
You’ll find that many programs are available over the Internet as full-blown applications,
downloadable demos, or updates to existing applications. Consider the benefit of giving users
the option of downloading smaller versions of the application when pieces of the application
might already exist on their system, such as when they have a prior installation.

Component-Based Development

PART IV
626

19 chpt_14.qxd 11/19/01 12:09 PM Page 626

By partitioning your applications using packages, you also allow your users to obtain updates
to only those parts of the application that they need. Note, however, that there are some ver-
sioning issues that you’ll have to take into account. We’ll cover these versioning issues in this
chapter.

Component Containment
Probably one of the most common reasons for using packages is the distribution of third-party
components. If you are a component vendor, you must know how to create packages because
certain design-time elements—such as component and property editors, wizards, and experts—
are all provided by packages.

Packages to the Max

CHAPTER 14

14

P
A

C
K

A
G

ES
TO

TH
E

M
A

X
627

Packages Versus DLLs
Using DLLs to host administrative forms for their server applications results in the DLL
having its own copy of Forms.pas. This will cause a weird error involving Windows’
handling of the window handles generated within the DLL—when the DLL is unloaded,
the Window handle isn’t dereferenced by the operating system. The next message
that crosses the queue for all top-level windows causes a fault at the application,
which the operating system then shuts down because the application is in an invalid
state. Using packages instead of DLLs overcomes this problem because the packages
refer to the main application’s copy of Forms.pas, and the message queue can broad-
cast successfully to the application.

Why Not Use Packages?
You shouldn’t use runtime packages unless you are sure that other applications will be using
these packages. Otherwise, these packages will end up using more disk space than if you were
to just compile the source code into your final executable. Why is this so? If you create a pack-
aged application resulting in a code reduction from 200KB to roughly 30KB, it might seem
like you’ve saved quite a bit of space. However, you still have to distribute your packages and
possibly even the Vcl60.dcp package, which is roughly 2MB in size. You can see that this isn’t
quite the saving you had hoped for. Our point is that you should use packages to share code
when that code will be used by multiple executables. Note that this only applies to runtime
packages. If you are a component writer, you must provide a design package that contains the
component you want to make available to the Delphi IDE.

19 chpt_14.qxd 11/19/01 12:09 PM Page 627

Types of Packages
Four types of packages are available for you to create and use:

• Runtime package—Runtime packages contain code, components, and so on needed by
an application at runtime. If you write an application that depends on a particular runtime
package, the application won’t run in the absence of that package.

• Design package—Design packages contain components, property/component editors,
experts, and so on necessary for application design in the Delphi IDE. This type of pack-
age is used only by Delphi and is never distributed with your applications.

• Runtime and design package—A package that is both design- and runtime-enabled is
typically used when there are no design-specific elements such as property/component
editors and experts. You can create this type of package to simplify application develop-
ment and deployment. However, if this package does contain design elements, its runtime
use will carry the extra baggage of the design support in your deployed applications. In
the event of many design time elements, we recommend creating both a design and run-
time package to separate design-specific elements when they are present.

• Neither runtime nor design package—This rare breed of package is intended to be used
only by other packages and isn’t intended to be referenced directly by an application or
used in the design environment. This implies that packages can use or include other
packages.

Package Files
Table 14.1 lists and describes the types of package-specific files based on their file extensions.

TABLE 14.1 Package Files

File Extension File Type Description

.dpk Package source This file is created when you invoke the
file Package Editor. You can think of this as you

might think of the .dpr file for a Delphi project.

.dcp Runtime/Design This is the compiled version of the package
package symbol that contains the symbol information for the
file package and its units. Additionally, there is header

information required by the Delphi IDE.

.dcu Compiled unit A compiled version of a unit contained in a pack-
age. One .dcu file will be created for each unit
contained in the package.

Component-Based Development

PART IV
628

19 chpt_14.qxd 11/19/01 12:09 PM Page 628

TABLE 14.1 Continued

File Extension File Type Description

.bpl Runtime/Design This is the runtime or design package library
package, equivalent to a Windows DLL. If this is
a runtime package, you will distribute the file
along with your applications (if they are enabled
for runtime packages). If this file represents a
design package, you will distribute it along with
its runtime partner to programmers that will use it
to write programs. Note that if you aren’t distrib-
uting source code, you must distribute the corre-
sponding .dcp files.

Using Runtime Packages
To use runtime packages in your Delphi applications, simply check the Build With Runtime
Packages check box found in the Project, Options dialog on the Packages page. The next time
you build your application after this option is selected, your application will be linked dynami-
cally to runtime packages instead of having units linked statically into your .exe or .dll. The
result will be a much more svelte application (although bear in mind that you will have to
deploy the necessary packages with your application).

Installing Packages into the Delphi IDE
It’s sometimes necessary to install a package into the Delphi IDE. This would be the case if you
were to acquire a third-party component set or Delphi add-in that didn’t do this during the install.

This being the case, you must first place the package files in their appropriate location. Table 14.2
shows where package files are typically located.

TABLE 14.2 Package File Locations

Package File Location

Runtime packages (*.bpl) Runtime package files should be placed in the \Windows\
System\ directory (Windows 95/98) or \WinNT\System32\
directory (Windows NT/2000).

Design packages (*.bpl) Because it is possible that you will obtain several packages
from various vendors, design packages should be placed in
a common directory where they can be properly managed.
For example, create a \PKG directory off your \Delphi 6\
directory and place design packages in that location.

Packages to the Max

CHAPTER 14

14

P
A

C
K

A
G

ES
TO

TH
E

M
A

X
629

19 chpt_14.qxd 11/19/01 12:09 PM Page 629

TABLE 14.2 Continued

Package File Location

Package symbol files (*.dcp) You can place package symbol files in the same location
as design package files (*.bpl).

Compiled units (*.dcu) You must distribute compiled units if you are distributing
design packages without source. We recommend keeping
DCUs from third-party vendors in a directory similar to
the \Delphi 6\Lib directory. For example, you can create
the directory \Delphi 6\3PrtyLib in which third-party
components’ *.dcus will reside. Your search path will
have to include this directory.

To install a package, you simply invoke the Packages page of the Project Options dialog box
by selecting Component, Install Packages from the Delphi 6 menu.

By clicking the Add button, you can select the specific .bpl file. Upon doing so, this file will
become the selected file on the Project page. When you click OK, the new package is installed
into the Delphi IDE. If this package contains components, you will see the new component
page on the Component Palette along with any newly installed components.

Creating Packages
Before creating a package, you’ll need to decide on a few things. First, you need to know what
type of package you’re going to create (runtime, design, and so on). This will be based on one
or more of the scenarios that we present momentarily. Second, you need to know what you
intend on naming your newly created package and where you want to store the package pro-
ject. Keep in mind that the directory where your deployed package exists will probably not be
the same as where you create your package. Finally, you need to know which units your pack-
age will contain and which other packages your new package will require.

The Package Editor
Packages are most commonly created using the Package Editor, which you invoke by selecting
the Packages icon from the Object Repository. (Select File, New, Other from the Delphi main
menu.) You’ll notice that the Package Editor contains two folders: Contains and Requires.

The Contains Folder
In the Contains folder, you specify units that need to be compiled into your new package.
There are a few rules for placing units into the Contains page of a package:

Component-Based Development

PART IV
630

19 chpt_14.qxd 11/19/01 12:09 PM Page 630

• The unit must not be listed in the contains clause of another package or uses clause of
a unit within another package, which will be loaded concurrently with the package the
unit is to be contained in.

• The units listed in the contains clause of a package, either directly or indirectly (they
exist in uses clauses of units listed in the package’s contains clause), cannot be listed in
the package’s requires clause. This is because these units are already bound to the
package when it is compiled.

• You cannot list a unit in a package’s contains clause if it is already listed in the con-
tains clause of another package used by the sameapplication.

The Requires Folder
In the Requires folder, you specify other packages that are required by the new package. This is
similar to the uses clause of a Delphi unit. In most cases, any packages you create will have
VCL60—the package that hosts Delphi’s standard VCL components—in its requires clause.
The typical arrangement here, for example, is that you place all your components into a runtime
package. Then you create a design package that includes the runtime package in its requires
clause. There are a few rules for placing packages on the Requires folder of another package:

• Avoid circular references—Package1 cannot have Package1 in its requires clause, nor
can it contain another package that has Package1 in its requires clause.

• The chain of references must not refer back to a package previously referenced in the
chain.

The Package Editor has a toolbar and context-sensitive menus. Refer to the Delphi 6 online
help under “Package Editor” for an explanation of what these buttons do. We won’t repeat that
information here.

Package Design Scenarios
Earlier we said that you must know what type of package you want to create based on a partic-
ular scenario. In this section, we’re going to present four possible scenarios in which you
would use design and/or runtime packages.

Scenario 1—Design and Runtime Packages for Components
The Design and Runtime Packages for Components scenario is the case in which you are a
component writer and one or both of the following conditions apply:

• You want Delphi programmers to be able to compile/link your components right into
their applications or to distribute them separately along with their applications.

• You have a component package, and you don’t want to force your users to have to com-
pile design features (component/property editors and so on) into their application code.

Packages to the Max

CHAPTER 14

14

P
A

C
K

A
G

ES
TO

TH
E

M
A

X
631

19 chpt_14.qxd 11/19/01 12:09 PM Page 631

Given this scenario, you would create both a design and runtime package. Figure 14.1 depicts
this arrangement. As the figure illustrates, the design package (ddgDT60.dpk) encompasses
both the design features (property and component editors) and the runtime package
(ddgRT60.dpk). The runtime package (ddgRT60.dpk) includes only your components. This
arrangement is accomplished by listing the runtime package into the requires section of the
design package, as shown in Figure 14.1.

Component-Based Development

PART IV
632

ddgDT60.dpk

DdgReg.pas
Component editors
Property Editors

ddgRT60.dpk

TddgButtonEdit
TddgDigitalClock
TddgLaunchPad
TddgRunButton

FIGURE 14.1
Design packages hosts design elements and runtime packages.

You must also apply the appropriate usage options for each package before compiling that
package. You do this from the Package Options dialog box. (You access the Package Options
dialog box by right-clicking within the Package Editor to invoke the local menu. Select Options
to get to the dialog box.) For the runtime package, DdgRT60.dpk, the usage option should be
set to Runtime Only. This ensures that the package cannot be installed into the IDE as a design
package (see the sidebar “Component Security” later in this chapter). For the design package,
DdgDT60.dpk, the usage option Design Time Only should be selected. This enables users to
install the package into the Delphi IDE, yet prevents them from using the package as a runtime
package.

Adding the runtime package to the design package doesn’t make the components contained in
the runtime package available to the Delphi IDE yet. You must still register your components
with the IDE. As you already know, whenever you create a component, Delphi automatically
inserts a Register() procedure into the component unit, which in turn calls the
RegisterComponents() procedure. RegisterComponents() is the procedure that actually
registers your component with the Delphi IDE when you install the component. When working
with packages, the recommended approach is to move the Register() procedure from the
component unit into a separate registration unit. This registration unit registers all your compo-
nents by calling RegisterComponents(). This not only makes it easier for you to manage the
registration of your components, but it also prevents anyone from being able to install and use
your runtime package illegally because the components won’t be available to the Delphi IDE.

19 chpt_14.qxd 11/19/01 12:09 PM Page 632

As an example, the components used in this book are hosted by the runtime package
DdgRT60.dpk. The property editors, component editors, and registration unit (DdgReg.pas)
for our components exist in the design package DdgDT60.dpk. DdgDT60.dpk also includes
DdgRT60.dpk in its requires clause. Listing 14.1 shows what our registration unit looks like.

LISTING 14.1 Registration Unit for Delphi 6 Developer’s Guide Components

unit DDGReg;

interface

procedure Register;

implementation

uses Classes, ExptIntf, DsgnIntf, TrayIcon, AppBars, ABExpt, Worthless,
RunBtn, PwDlg, Planets, LbTab, HalfMin, DDGClock, ExMemo, MemView,
Marquee, PlanetPE, RunBtnPE, CompEdit, DefProp, Wavez,
WavezEd, LnchPad, LPadPE, Cards, ButtonEdit, Planet, DrwPnel;

procedure Register;
begin

// Register the components.
RegisterComponents(‘DDG’,
[TddgTrayNotifyIcon, TddgDigitalClock, TddgHalfMinute, tddgButtonEdit,
TddgExtendedMemo, TddgTabListbox, TddgRunButton, TddgLaunchPad,
TddgMemView, TddgMarquee, TddgWaveFile, TddgCard, TddgPasswordDialog,
TddgPlanet, TddgPlanets, TddgWorthLess, TddgDrawPanel,
TComponentEditorSample, TDefinePropTest]);

// Register any property editors.
RegisterPropertyEditor(TypeInfo(TRunButtons), TddgLaunchPad, ‘’,
TRunButtonsProperty);

RegisterPropertyEditor(TypeInfo(TWaveFileString), TddgWaveFile, ‘WaveName’,
TWaveFileStringProperty);

RegisterComponentEditor(TddgWaveFile, TWaveEditor);
RegisterComponentEditor(TComponentEditorSample, TSampleEditor);
RegisterPropertyEditor(TypeInfo(TPlanetName), TddgPlanet,
‘PlanetName’, TPlanetNameProperty);
RegisterPropertyEditor(TypeInfo(TCommandLine), TddgRunButton, ‘’,
TCommandLineProperty);

Packages to the Max

CHAPTER 14

14

P
A

C
K

A
G

ES
TO

TH
E

M
A

X
633

19 chpt_14.qxd 11/19/01 12:09 PM Page 633

LISTING 14.1 Continued

// Register any custom modules, library experts.
RegisterCustomModule(TAppBar, TCustomModule);
RegisterLibraryExpert(TAppBarExpert.Create);

end;

end.

Component-Based Development

PART IV
634

Component Security
It is possible for someone to register your components, even though he has only your
runtime package. He would do this by creating his own registration unit in which he
would register your components. He would then add this unit to a separate package
that would also have your runtime package in the requires clause. After he installs
this new package into the Delphi IDE, your components will appear on the Component
Palette. However, it is still not possible to compile any applications using your compo-
nents because the required *.dcu files for your component units will be missing.

Package Distribution
When distributing your packages to component writers without the source code, you must dis-
tribute both compiled packages, DdgDT6.bpl and DdgRT6.bpl, both *.dcp files, and any com-
piled units (*.dcu) necessary to compile your components. Programmers using your components
who want their applications’ runtime packages enabled must distribute the DdgRT6.bpl pack-
age along with their applications and any other runtime package that they might be using.

Scenario 2—Design Package Only for Components
The Design Package Only for Components scenario is the case in which you want to distribute
components that you don’t want to be distributed in runtime packages. In this case, you will
include the components, component editors, property editors, component registration unit, and
so on in one package file.

Package Distribution
When distributing your package to component writers without the source code, you must
distribute the compiled package, DdgDT6.bpl, the DdgDT6.dcp file, and any compiled units
(*.dcu) necessary to compile your components. Programmers using your components must
compile your components into their applications. They will not be distributing any of your
components as runtime packages.

19 chpt_14.qxd 11/19/01 12:09 PM Page 634

Scenario 3—Design Features Only (No Components)
IDE Enhancements
The Design Features Only (No Components) IDE Enhancements scenario is the case in which
you are providing enhancements to the Delphi IDE, such as experts. For this scenario, you will
register your expert with the IDE in your registration unit. The distribution for this scenario is
simple; you only have to distribute the compiled *.bpl file.

Scenario 4—Application Partitioning
The Application Partitioning scenario is the case in which you want to partition your applica-
tion into logical pieces, each of which can be distributed separately. You might want to do this
for several reasons:

• This scenario is easier to maintain.

• Users can purchase only the needed functionality when they need it. Later, when they
need added functionality, they can download the necessary package only, which will be
much smaller than downloading the entire application.

• You can provide fixes (patches) to parts of the application more easily without requiring
users to obtain a new version of the application altogether.

In this scenario, you will provide only the *.bpl files required by your application. This sce-
nario is similar to the last with the difference being that instead of providing a package for the
Delphi IDE, you will be providing a package for your own application. When partitioning your
applications as such, you must pay attention to the issues regarding package versioning that we
discuss in the next section.

Package Versioning
Package versioning is a topic that isn’t well understood. You can think of package versioning
in much the same way as you think of unit versioning. That is, any package you provide for
your application must be compiled using the same Delphi version used to compile the applica-
tion. Therefore, you cannot provide a package written in Delphi 6 to be used by an application
written in Delphi 5. The Borland developers refer to the version of a package as a code base.
So a package written in Delphi 6 has a code base of 6.0. This concept should influence the
naming convention that you use for your package files.

Package Compiler Directives
There are some specific compiler directives that you can insert into the source code of your
packages. Some of these directives are specific to units that are being packaged; others are spe-
cific to the package file. These directives are listed and described in Tables 14.3 and 14.4.

Packages to the Max

CHAPTER 14

14

P
A

C
K

A
G

ES
TO

TH
E

M
A

X
635

19 chpt_14.qxd 11/19/01 12:09 PM Page 635

TABLE 14.3 Compiler Directives for Units Being Packaged

Directive Meaning

{$G} or {IMPORTEDDATA OFF} Use this when you want to prevent the unit from being
packaged—when you want it to be linked directly to the
application. Contrast this to the {$WEAKPACKAGEUNIT}
directive, which allows a unit to be included in a package
but whose code gets statically linked to the application.

{$DENYPACKAGEUNIT} Same as {$G}.

{$WEAKPACKAGEUNIT} See the section “More on {$WEAKPACKAGEUNIT}.”

TABLE 14.4 Compiler Directives for the Package .dpk File

Directive Meaning

{$DESIGNONLY ON} Compiles the package as a design-time only package.

{$RUNONLY ON} Compiles the package as a runtime only package.

{$IMPLICITBUILD OFF} Prevents the package from being rebuilt later. Use this
option when the package isn’t changed frequently.

More on {$WEAKPACKAGEUNIT}
The concept of a weak package is simple. Basically, it is used where your package might be
referencing libraries (DLLs) that might not be present. For example, the package Vcl60 makes
calls to the core Win32 API included with the Windows operating system. Many of these calls
exist in DLLs that aren’t present on every machine. These calls are exposed by units that con-
tain the {$WEAKPACKAGEUNIT} directive. By including this directive, you keep the unit’s source
code in the package but place it into the DCP file rather than in the BPL file (think of a DCP
as a DCU and a BPL as a DLL). Therefore, any references to functions of these weakly pack-
aged units get statically linked to the application rather than dynamically referenced through
the package.

The {$WEAKPACKAGEUNIT} directive is one that you will rarely use, if at all. It was created out
of necessity by the Delphi developers to handle a specific situation. The problem exists if there
are two components, each in a separate package and referencing the same interface unit of a
DLL. When an application uses both of the components, this causes two instances of the DLL
to be loaded, which raises havoc with initialization and global variable referencing. The solu-
tion was to provide the interface unit into one of the standard Delphi packages such as Vcl60.bpl.
However, this raises the other problem for specialized DLLs that may not be present such as
PENWIN.DLL. If Vcl60.bpl contains the interface unit for a DLL that isn’t present, it will render

Component-Based Development

PART IV
636

19 chpt_14.qxd 11/19/01 12:09 PM Page 636

Vcl60.bpl, and Delphi for that matter, unusable. The Delphi developers addressed this by
allowing Vcl60.bpl to contain the interface unit in a single package, but to make it statically
linked when used and not dynamically loaded whenever Vcl60 is used with the Delphi IDE.

You’ll most likely never have to use this directive, unless you anticipate a similar scenario that
the Delphi developers faced or if you want to make certain that a particular unit is included
with a package but statically linked to the using application. A reason for the latter might be
for optimization purposes. Note that any units that are weakly packaged cannot have global
variables or code in their initialization/finalization sections. You must also distribute any *.dcu
files for weakly packaged units along with your packages.

Package Naming Conventions
Earlier we said that the package versioning issue should influence how you name your pack-
ages. There isn’t a set rule for how to name your packages, but we suggest using a naming
convention that incorporates the code base into the package’s name. For example, the compo-
nents for this book are contained in a runtime package whose name contains the 6 qualifier for
Delphi 6 (DdgRT6.dpk). The same goes for the design package (DdgDT6.dpk). A previous ver-
sion of the package would be DdgRT5.dpk. By using such a convention, you will prevent any
confusion for your package users as to which version of the package they have and as to which
version of the Delphi compiler applies to them. Note that our package name starts with a
3-character author/company identifier, followed by RT to indicate a runtime package and DT
to signify a design time package. You can follow whatever naming convention you like. Just be
consistent and use the recommended inclusion of the Delphi version into your package name.

Extensible Applications Using Runtime
(Add-In) Packages
Add-in packages allow you to partition your applications into modules and to distribute those
modules separately from the main application. This is useful because it allows you to extend
the functionality of your application without having to recompile/redesign the entire applica-
tion. This, however, requires careful architectural design planning. Although it is beyond the
scope of this book to go into such design issues, our discussion will illustrate how to take
advantage of this powerful capability.

Generating Add-In Forms
The application is partitioned into three logical pieces: the main application (ChildTest.exe),
the TChildForm package (AIChildFrm6.bpl), and the concrete TChildForm descendant classes,
each residing in its own package.

Packages to the Max

CHAPTER 14

14

P
A

C
K

A
G

ES
TO

TH
E

M
A

X
637

19 chpt_14.qxd 11/19/01 12:09 PM Page 637

The package AIChildFrm6.bpl contains the base TChildForm class. The other packages con-
tain descendant TChildForm classes or concrete TChildForms. We will refer to these packages
as the base package and concrete packages, respectively.

The main application uses the abstract package (AIChildFrm6.bpl). Each concrete package
also uses the abstract package. In order for this to work properly the main application must be
compiled with runtime packages including the AIChildFrm6.dcp package. Likewise, each con-
crete package must require the AIChildFrm6.dcp package. We will not list the TChildForm
source nor the concrete descendants to each TChildForm descendant unit, which must include
initialization and finalization blocks that look like this:

initialization
RegisterClass(TCF2Form);

finalization
UnRegisterClass(TCF2Form);

The call to RegisterClass() is necessary to make the TChildForm descendant class available
to the main application’s streaming system when the main application loads its package. This
is similar to how RegisterComponents() makes available components to the Delphi IDE.
When the package is unloaded, the call to UnRegisterClass() is required to remove the regis-
tered class. Note, however, that RegisterClass() only makes the class available to the main
application. The main application still doesn’t know of the classname. So how does the main
application create an instance of a class whose classname is unknown? Isn’t the intent of this
exercise to make these forms available to the main application without having to hard-code
their classnames into the main applications source? Listing 14.2 shows the source code to the
main application’s main form where we will highlight how we accomplish add-in forms with
add-in packages.

LISTING 14.2 Main Form to the Main Application Using Add-In Packages

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls, ChildFrm, Menus;

const
{ Child form registration location in the Windows Registry. }
cAddInIniFile = ‘AddIn.ini’;
cCFRegSection = ‘ChildForms’; // Module initialization data section

FMainCaption = ‘Delphi 6 Developer’’s Guide Child Form Demo’;

Component-Based Development

PART IV
638

19 chpt_14.qxd 11/19/01 12:09 PM Page 638

LISTING 14.2 Continued

type

TChildFormClass = class of TChildForm;

TMainForm = class(TForm)
pnlMain: TPanel;
Splitter1: TSplitter;
pnlParent: TPanel;
mmMain: TMainMenu;
mmiFile: TMenuItem;
mmiExit: TMenuItem;
mmiHelp: TMenuItem;
mmiForms: TMenuItem;
procedure mmiExitClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);

private
// reference to the child form.
FChildForm: TChildForm;
// a list of available child forms used to build a menu.
FChildFormList: TStringList;
// Index to the Close Form menu which shifts position.
FCloseFormIndex: Integer;
// Handle to the currently loaded package.
FCurrentModuleHandle: HModule;
// method to create menus for available child forms.
procedure CreateChildFormMenus;
// Handler to load a child form and its package.
procedure LoadChildFormOnClick(Sender: TObject);
// Handler to unload a child form and its package.
procedure CloseFormOnClick(Sender: TObject);
// Method to retrieve the classname for a TChildForm descendant
function GetChildFormClassName(const AModuleName: String): String;

public
{ Public declarations }

end;

var
MainForm: TMainForm;

implementation
uses IniFiles;

{$R *.DFM}

Packages to the Max

CHAPTER 14

14

P
A

C
K

A
G

ES
TO

TH
E

M
A

X
639

19 chpt_14.qxd 11/19/01 12:09 PM Page 639

LISTING 14.2 Continued

function RemoveExt(const AFileName: String): String;
{ Helper function to remove the extension from a file name. }
begin
if Pos(‘.’, AFileName) <> 0 then
Result := Copy(AFileName, 1, Pos(‘.’, AFileName)-1)

else
Result := AFileName;

end;

procedure TMainForm.mmiExitClick(Sender: TObject);
begin
Close;

end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
FChildFormList := TStringList.Create;
CreateChildFormMenus;

end;

procedure TMainForm.FormDestroy(Sender: TObject);
begin
FChildFormList.Free;
// Unload any loaded child forms.
if FCurrentModuleHandle <> 0 then
CloseFormOnClick(nil);

end;

procedure TMainForm.CreateChildFormMenus;
{ All available child forms are registered in the Windows Registry.
Here, we use this information to create menu items for loading each of the
child forms. }

var
IniFile: TIniFile;
MenuItem: TMenuItem;
i: integer;

begin
inherited;

{ Retrieve a list of all child forms and build a menu based on the
entries in the registry. }

IniFile :=
TIniFile.Create(ExtractFilePath(Application.ExeName)+cAddInIniFile);
try

Component-Based Development

PART IV
640

19 chpt_14.qxd 11/19/01 12:09 PM Page 640

LISTING 14.2 Continued

IniFile.ReadSectionValues(cCFRegSection, FChildFormList);
finally
IniFile.Free;

end;

{ Add Menu items for each module. Note the mmMain.AutoHotKeys property must
bet set to maAutomatic }

for i := 0 to FChildFormList.Count - 1 do
begin
MenuItem := TMenuItem.Create(mmMain);
MenuItem.Caption := FChildFormList.Names[i];
MenuItem.OnClick := LoadChildFormOnClick;
mmiForms.Add(MenuItem);

end;

// Create Separator
MenuItem := TMenuItem.Create(mmMain);
MenuItem.Caption := ‘-’;
mmiForms.Add(MenuItem);

// Create Close Module menu item
MenuItem := TMenuItem.Create(mmMain);
MenuItem.Caption := ‘&Close Form’;
MenuItem.OnClick := CloseFormOnClick;
MenuItem.Enabled := False;
mmiForms.Add(MenuItem);

{ Save a reference to the index of the menu item required to
close a child form. This will be referred to in another method. }

FCloseFormIndex := MenuItem.MenuIndex;
end;

procedure TMainForm.LoadChildFormOnClick(Sender: TObject);
var
ChildFormClassName: String;
ChildFormClass: TChildFormClass;
ChildFormName: String;
ChildFormPackage: String;

begin

// The menu caption represents the module name.
ChildFormName := (Sender as TMenuItem).Caption;
// Get the actual Package file name.
ChildFormPackage := FChildFormList.Values[ChildFormName];

Packages to the Max

CHAPTER 14

14

P
A

C
K

A
G

ES
TO

TH
E

M
A

X
641

19 chpt_14.qxd 11/19/01 12:09 PM Page 641

LISTING 14.2 Continued

// Unload any previously loaded packages.
if FCurrentModuleHandle <> 0 then
CloseFormOnClick(nil);

try
// Load the specified package
FCurrentModuleHandle := LoadPackage(ChildFormPackage);

// Return the classname that needs to be created
ChildFormClassName := GetChildFormClassName(ChildFormPackage);

{ Create an instance of the class using the FindClass() procedure. Note,
this requires that the class already be registered with the streaming
system using RegisterClass(). This is done in the child form
initialization section for each child form package. }

ChildFormClass := TChildFormClass(FindClass(ChildFormClassName));
FChildForm := ChildFormClass.Create(self, pnlParent);
Caption := FChildForm.GetCaption;

{ Merge child form menus with the main menu }
if FChildForm.GetMainMenu <> nil then
mmMain.Merge(FChildForm.GetMainMenu);

FChildForm.Show;

mmiForms[FCloseFormIndex].Enabled := True;
except
on E: Exception do
begin
CloseFormOnClick(nil);
raise;

end;
end;

end;

function TMainForm.GetChildFormClassName(const AModuleName: String): String;
{ The Actual class name of the TChildForm implementation resides in the
registry. This method retrieves that class name. }

var
IniFile: TIniFile;

begin
IniFile :=

TIniFile.Create(ExtractFilePath(Application.ExeName)+cAddInIniFile);
try

Component-Based Development

PART IV
642

19 chpt_14.qxd 11/19/01 12:09 PM Page 642

LISTING 14.2 Continued

Result := IniFile.ReadString(RemoveExt(AModuleName), ‘ClassName’,
EmptyStr);

finally
IniFile.Free;

end;
end;

procedure TMainForm.CloseFormOnClick(Sender: TObject);
begin
if FCurrentModuleHandle <> 0 then
begin
if FChildForm <> nil then
begin
FChildForm.Free;
FChildForm := nil;

end;

// Unregister any classes provided by the module
UnRegisterModuleClasses(FCurrentModuleHandle);
// Unload the child form package
UnloadPackage(FCurrentModuleHandle);

FCurrentModuleHandle := 0;
mmiForms[FCloseFormIndex].Enabled := False;
Caption := FMainCaption;

end;
end;

end.

The application’s logic is actually very simple. It uses the system registry to determine which
packages are available, the menu captions to use when building menus for loading each pack-
age, and the classname of the form contained in each package.

The LoadChildFormOnClick() event handler is where most of the work is performed. After
determining the package filename, the method loads the package using the LoadPackage()
function. The LoadPackage() function is basically the same thing as LoadLibrary() for DLLs.
The method then determines the classname for the form contained in the loaded package.

In order to create a class, you require a class reference like TButton or TForm1. However, this
main application doesn’t have the hard-coded classname of the concrete TChildForms, so this is
why we retrieve the classname from the system registry. The main application can pass this
classname to the FindClass() function to return a class reference for the specified class that

Packages to the Max

CHAPTER 14

14

P
A

C
K

A
G

ES
TO

TH
E

M
A

X
643

19 chpt_14.qxd 11/19/01 12:09 PM Page 643

has already been registered with the streaming system. Remember, we did this in the initializa-
tion section of the concrete form’s unit that is called when the package is loaded. We then
create the class with the lines:

ChildFormClass := TChildFormClass(FindClass(ChildFormClassName));
FChildForm := ChildFormClass.Create(self, pnlParent);

Component-Based Development

PART IV
644

A class reference is simply an area in memory that contains information about a class.
This is the same as a type-definition for a class. It gets into memory when the class is
registered with the VCL streaming system; when the RegisterClass() function is
called. The FindClass() function locates the area of memory for a class of a specified
name and returns a pointer to that location. This isn’t the same as a class instance.
Class instances are usually created when the constructor, a class function (see Chapter 2,
“The Object Pascal Language”), is called.

NOTE

The variable ChildFormClass is a pre-declared class reference to TChildForm and can poly-
morphically refer to a class reference for a TChildForm descendant.

The CloseFormOnClick() event handler simply closes the child form and unloads its package.
The rest of the code is basically set up code to create the package menus and to read the infor-
mation from the INI file.

Using this technique, you can create very extensible and loosely coupled application frame-
works.

Exporting Functions from Packages
Given that packages are simply enhanced DLLs, it seems that you should be able to export
functions and procedures from packages just as you can from DLLs. Well, you can. In this sec-
tion, we’ll show you how to use packages in the same way.

Launching a Form from a Package Function
Listing 14.3 is a unit contained inside of a package.

LISTING 14.3 Package Unit with Two Exported Functions

unit FunkFrm;

interface

19 chpt_14.qxd 11/19/01 12:09 PM Page 644

LISTING 14.3 Continued

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;

type

TFunkForm = class(TForm)
Label1: TLabel;
Button1: TButton;

private
{ Private declarations }

public
{ Public declarations }

end;

// Declare the package functions using the StdCall calling convention
procedure FunkForm; stdcall;
function AddEm(Op1, Op2: Integer): Integer; stdcall;

// Export the functions.
exports
FunkForm,
AddEm;

implementation

{$R *.dfm}

procedure FunkForm;
var
FunkForm: TFunkForm;

begin
FunkForm := TFunkForm.Create(Application);
try
FunkForm.ShowModal;

finally
FunkForm.Free;

end;
end;

function AddEm(Op1, Op2: Integer): Integer;
begin
Result := Op1+Op2;

end;

end.

Packages to the Max

CHAPTER 14

14

P
A

C
K

A
G

ES
TO

TH
E

M
A

X
645

19 chpt_14.qxd 11/19/01 12:09 PM Page 645

The procedure FunkForm() simply displays the form declared in the unit as a modal form;
nothing clever here. AdEm() is a function that takes two operands and returns their sum. Notice
that the functions are declared in the interface section of this unit using the StdCall calling
convention.

Listing 14.4 is an application that demonstrates how to invoke a function from a package.

LISTING 14.4 Demo Application

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Mask;

const
cFunkForm = ‘FunkForm’;
cAddEm = ‘AddEm’;

type
TForm1 = class(TForm)
btnPkgForm: TButton;
meOp1: TMaskEdit;
meOp2: TMaskEdit;
btnAdd: TButton;
lblPlus: TLabel;
lblEquals: TLabel;
lblResult: TLabel;
procedure btnAddClick(Sender: TObject);
procedure btnPkgFormClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

// Defined the method signatures
TAddEmProc = function(Op1, Op2: Integer): integer; stdcall;
TFunkFormProc = procedure; stdcall;

var
Form1: TForm1;

implementation

Component-Based Development

PART IV
646

19 chpt_14.qxd 11/19/01 12:09 PM Page 646

LISTING 14.4 Continued

{$R *.dfm}

procedure TForm1.btnAddClick(Sender: TObject);
var
PackageModule: THandle;
AddEmProc: TAddEmProc;
Rslt: Integer;
Op1, Op2: integer;

begin
PackageModule := LoadPackage(‘ddgPackFunk.bpl’);
try

@AddEmProc := GetProcAddress(PackageModule, PChar(cAddEm));
if not (@AddEmProc = nil) then
begin
Op1 := StrToInt(meOp1.Text);
Op2 := StrToInt(meOp2.Text);

Rslt := AddEmProc(Op1, Op2);
lblResult.Caption := IntToStr(Rslt);

end;

finally
UnloadPackage(PackageModule);

end;
end;

procedure TForm1.btnPkgFormClick(Sender: TObject);
var
PackageModule: THandle;
FunkFormProc: TFunkFormProc;

begin
PackageModule := LoadPackage(‘ddgPackFunk.bpl’);
try
@FunkFormProc := GetProcAddress(PackageModule, PChar(cFunkForm));
if not (@FunkFormProc = nil) then
FunkFormProc;

finally
UnloadPackage(PackageModule);

end;
end;

end.

Packages to the Max

CHAPTER 14

14

P
A

C
K

A
G

ES
TO

TH
E

M
A

X
647

19 chpt_14.qxd 11/19/01 12:09 PM Page 647

First notice that we had to declare the two procedural types, TAddEmProc and TFunkFormProc.
These are declared exactly as they exist in the package.

We’ll discuss the btnPkgFormClick() event handler first. This code should look familiar from
Chapter 6, “Dynamic Link Libraries.” Instead of making a LoadLibrary() call, we’re using
LoadPackage(). In fact, LoadPackage() ends up calling LoadLibrary(). Next, we retrieve
the reference to the procedure using the GetProcAddress() function. You can refer back to
Chapter 6 if you need to know more about this function. The cFunkForm constant is the same
name as the function name in the package.

You can see that the method of exporting functions and procedures from packages is almost
exactly the same as exporting from dynamic link libraries.

Obtaining Information About a Package
It is possible to query a package for information about which units it contains and which pack-
ages it requires. Two functions are used to do this: EnumModules() and GetPackageInfo().
Both of these functions require callback functions. Listing 14.5 illustrates the use of these
functions. You’ll find this demo on the CD.

LISTING 14.5 Package Information Demo

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, ComCtrls, DBXpress, DB, SqlExpr, DBTables;

type
TForm1 = class(TForm)
Button1: TButton;
TreeView1: TTreeView;
Table1: TTable;
SQLConnection1: TSQLConnection;
procedure Button1Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form1: TForm1;

Component-Based Development

PART IV
648

19 chpt_14.qxd 11/19/01 12:09 PM Page 648

LISTING 14.5 Continued

implementation

{$R *.dfm}

type
TNodeHolder = class
ContainsNode: TTreeNode;
RequiresNode: TTreeNode;

end;

procedure RealizeLength(var S: string);
begin
SetLength(S, StrLen(PChar(S)));

end;

procedure PackageInfoProc(const Name: string; NameType:
TNameType; Flags: Byte; Param: Pointer);

var
NodeHolder: TNodeHolder;
TempStr: String;

begin
with Form1.TreeView1.Items do
begin

TempStr := EmptyStr;

if (Flags and ufMainUnit) <> 0 then
TempStr := ‘Main unit’

else if (Flags and ufPackageUnit) <> 0 then
TempStr := ‘Package unit’ else

if (Flags and ufWeakUnit) <> 0 then
TempStr := ‘Weak unit’;

if TempStr <> EmptyStr then
TempStr := Format(‘ (%s)’, [TempStr]);

NodeHolder := TNodeHolder(Param);
case NameType of
ntContainsUnit: AddChild(NodeHolder.ContainsNode,
Format(‘%s %s’, [Name,TempStr]));

ntRequiresPackage: AddChild(NodeHolder.RequiresNode, Name);
end; // case

end;
end;

Packages to the Max

CHAPTER 14

14

P
A

C
K

A
G

ES
TO

TH
E

M
A

X
649

19 chpt_14.qxd 11/19/01 12:09 PM Page 649

LISTING 14.5 Continued

function EnumModuleProc(HInstance: integer; Data: Pointer): Boolean;
var
ModFileName: String;
ModNode: TTreeNode;
ContainsNode: TTreeNode;
RequiresNode: TTreeNode;
ModDesc: String;
Flags: Integer;
NodeHolder: TNodeHolder;

begin
with Form1.TreeView1 do
begin
SetLength(ModFileName, 255);
GetModuleFileName(HInstance, PChar(ModFileName), 255);
RealizeLength(ModFileName);
ModNode := Items.Add(nil, ModFileName);

ModDesc := GetPackageDescription(PChar(ModFileName));
ContainsNode := Items.AddChild(ModNode, ‘Contains’);
RequiresNode := Items.Addchild(ModNode, ‘Requires’);

if ModDesc <> EmptyStr then
begin

NodeHolder := TNodeHolder.Create;
try
NodeHolder.ContainsNode := ContainsNode;
NodeHolder.RequiresNode := RequiresNode;

GetPackageInfo(HInstance, NodeHolder, Flags, PackageInfoProc);
finally
NodeHolder.Free;

end;

Items.AddChild(ModNode, ModDesc);

if Flags and pfDesignOnly = pfDesignOnly then
Items.AddChild(ModNode, ‘Design-time package’);

if Flags and pfRunOnly = pfRunOnly then
Items.AddChild (ModNode, ‘Run-time package’);

end;

Component-Based Development

PART IV
650

19 chpt_14.qxd 11/19/01 12:09 PM Page 650

LISTING 14.5 Continued

end;
Result := True;

end;

procedure TForm1.Button1Click(Sender: TObject);
begin
EnumModules(EnumModuleProc, nil);

end;

end.

EnumModules() is first called. It enumerates the executable and any packages in the executable.
The callback function passed to EnumModules() is EnumModuleProc(). This function populates
a TTreeview component with information about each package in the application. Much of the
code is setup code for the TTreeView component. The function GetPackageDescription()
returns the description string contained in the packages resource. The call to
GetPackageInfo() passes the callback function PackageInfoProc().

In PackageInfoProc(), we are able to process the information in the package’s information
table. This function is called for every unit included in the package and for every package
required by the package. Here, we again populate the TTreeview component with this informa-
tion by examining the values of the Flags parameter and the NameType parameter. For addi-
tional information, both of these are explained in the online help under “TPackageInfoProc.”

This code demonstration is a modification of a demo from Marco Cantu’s excellent book
Mastering Delphi 5, a must for every Delphi library.

Summary
Packages are a key part of the Delphi/VCL architecture. By learning how to use packages for
more then just component containment, you can develop very elegantly designed and loosely
bound architectures.

Packages to the Max

CHAPTER 14

14

P
A

C
K

A
G

ES
TO

TH
E

M
A

X
651

19 chpt_14.qxd 11/19/01 12:09 PM Page 651

19 chpt_14.qxd 11/19/01 12:09 PM Page 652

