
CHAPTERCHAPTER

13
CLX Component Development

IN THIS CHAPTER
• What Is CLX? 564

• The CLX Architecture 565

• Porting Issues 568

• Sample Components 570

• CLX Design Editors 608

• Packages 613

18 chpt_13.qxd 11/19/01 12:15 PM Page 563

The last three chapters have focused on creating custom components in Delphi. More precisely,
Chapters 11, “VCL Component Building,” and 12, “Advanced VCL Component Building,”
have focused on creating custom VCL components. However, as noted in Chapter 10,
“Component Architecture: VCL and CLX,” there are two component class hierarchies in
Delphi 6: the VCL and CLX. In this chapter, we change our focus slightly to that of creating
custom CLX components. Fortunately, much of what you have learned in creating VCL com-
ponents also applies to creating CLX components.

What Is CLX?
CLX, pronounced “clicks,” is an acronym for Component Library for Cross-Platform, and was
first introduced in Borland’s new Linux RAD tool, Kylix. However, CLX isn’t just simply the
VCL under Linux. That is, the CLX architecture is also available in Delphi 6, and therefore
provides the foundation for creating native cross-platform applications using Delphi 6 and
Kylix.

In Delphi, the VCL is typically associated with the components that appear on the Component
Palette. This isn’t surprising because the vast majority of the components appearing on the
palette are visual controls. However, CLX encompasses much more than a visual component
hierarchy. Specifically, CLX is divided into four separate parts: BaseCLX, VisualCLX,
DataCLX, and NetCLX.

BaseCLX, as it is called in Kylix, contains the base units and classes that are shared between
Kylix and Delphi 6. For example, the System, SysUtils, and Classes units are part of
BaseCLX. VisualCLX is similar to what most people consider the VCL. However, VisualCLX
is based on the Qt widget library rather than the standard Windows controls defined in
User32.dll or ComCtl32.dll. DataCLX contains the data access components and encom-
passes the new dbExpress technology. And finally, NetCLX contains the new cross-platform
WebBroker technology.

If you are familiar with previous versions of Delphi, you will recognize that the units included
in BaseCLX have been available in Delphi since version 1. As such, you could argue that these
units are also part of the VCL. In fact, Borland recognized the confusion caused by calling
these base units collectively as BaseCLX, and in Delphi 6 these base units are referred to as
the RTL.

The point of all this is that even though these base units will be used in both VCL and CLX
applications, a CLX application is typically defined as one built using the classes in
VisualCLX.

In this chapter, we will be focusing on VisualCLX. In particular, we’ll be investigating how to
extend the VisualCLX architecture by creating our own custom CLX components. As noted

Component-Based Development

PART IV
564

18 chpt_13.qxd 11/19/01 12:15 PM Page 564

earlier, VisualCLX is based on the Qt widget library, which is produced by Troll Tech. Qt, pro-
nounced “cute,” is a platform independent C++ class library of user interface (UI) widgets (or
controls).To be precise, Qt currently supports Windows and the X Window System, and thus
can be used on both Windows and Linux desktops. In fact, Qt is the most prevalent class
library used for Linux GUI development. For instance, Qt is used in the development of the
KDE Window Manager.

Other cross-platform class libraries are available, but Borland chose to build VisualCLX on top
of Qt for several reasons. First, Qt classes look very much like VCL components. For example,
properties are defined as get/set method pairs. Qt also incorporates the notion of events
through a mechanism called a signal. Plus, the Qt graphics model is very similar to the one
used in the VCL. And finally, the Qt library defines a wide variety of standard user interface
controls, which are called widgets in the Qt nomenclature. As a result, the Borland engineers
were able to wrap many of the existing Qt widgets with Object Pascal wrappers rather than
create the required components from scratch.

The CLX Architecture
As suggested previously, VisualCLX consists of Object Pascal classes that wrap around exist-
ing functionality defined in the Qt classes. This is very similar to the way in which the VCL
encapsulates the functionality of the Windows API and the Common Controls. One of the
design goals in creating CLX was to make it as easy as possible to port existing VCL applica-
tions to the CLX architecture. As a result, the class hierarchy in CLX is very similar to the
VCL as illustrated in Figures 13.1 and 13.2. The dark gray boxes in Figure 13.1 highlight the
principal base classes in the VCL.

However, the class hierarchies aren’t identical. In particular, some new classes have been
added and some classes have been moved to different branches from their VCL counterparts.
Figure 13.2 highlights these differences with light gray boxes. For example, the CLX Timer
component does not descend directly from TComponent as it does in the VCL. Instead, it
descends from the new THandleComponent, which is a base class that should be used whenever
a nonvisual component requires access to the handle of an underlying Qt control. Also, note
how the CLX Label component is no longer a graphical control, but rather a descendant of the
new TFrameControl class. The Qt library provides a wide variety of bordering options for con-
trols, and the TFrameControl class provides a wrapper around that functionality.

As noted earlier, controls in the Qt library are called widgets. As a result, the TWidgetControl
class is the CLX equivalent to the VCL’s TWinControl. Why change the classname? Switching
to Widget puts the class in line with the base Qt classes, and removing Win further removes the
dependency on the Windows controls in VisualCLX.

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
565

18 chpt_13.qxd 11/19/01 12:15 PM Page 565

FIGURE 13.1
The VCL Base Class hierarchy.

Surprisingly, Borland also defined the TWinControl class in CLX as an alias for
TWidgetControl. During the development of Kylix and CLX, one of the early ideas that was
promoted was that a single source file could be used to define both a CLX component and a
VCL component. Conditional directives would be used to specify a VCL uses clause when
compiled under Windows and a CLX uses clause when compiled under Linux. However, this
approach is only feasible for very simple components. In practice, there are usually enough
significant changes between the implementations to warrant the creation of separate units.

Component-Based Development

PART IV
566

TObject

TListTRegistryTPersistent

TGraphicsObject TStrings

TComponent
TFont TStringList

TDataSource
TControl

TTimer

TWinControl
TGraphicControl

TBevel

TCustomEdit TCustomControl

TEdit TMediaPlayer

TCustomLabel

TCustomPanel

TPanel

TLabel

Streamable Classes

Nonstreamable Classes

Nonvisual Components

Use a Window
Handle and
Receive Input
Focus

Custom Paint Method
with Canvas

Automation and
ActiveX Support

Visual Components

Do Not Receive Input
Focus
Custom Paint Method
with Canvas

TComObject

TTypedComObject

TAutoObject

TActiveXControl

Creating a VCL component and a CLX component in a single source file is different
from creating a CLX component (in a single source file) that can be used in both
Delphi 6 and Kylix. This chapter illustrates how to do the latter.

NOTE

18 chpt_13.qxd 11/19/01 12:15 PM Page 566

FIGURE 13.2
The CLX Base Class hierarchy.

Fortunately, the changes in the class hierarchy illustrated in Figure 13.2 should have little
impact on application developers. That is, most of the VCL components that come with Delphi
have VisualCLX equivalents such as TEdit, TListBox, TComboBox, and so on. Unfortunately,
component writers aren’t so lucky because they will be much more affected by changes to the
class hierarchy.

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
567

TObject

TListTCustomIniFileTPersistent

TGraphicsObject TStrings TComponent

TFont TStringList

THandleComponentTDataSource

TControl
TTimer

TWidgetControl
TGraphicControl

TBevel
TCustomEdit TFrameControl TCustomControl

TEdit TCustomLabel TCustomPanel

TLabel TPanel

Streamable Classes

Nonstreamable Classes

Nonvisual Components

Use a Window
Handle and
Receive Input
Focus

Custom Paint Method
with Canvas

Visual Components

Do Not Receive Input
Focus
Custom Paint Method
with Canvas

The Object Browser in Delphi 6 and Kylix is extremely helpful in learning the struc-
ture of the new class hierarchy. However, because of the TWinControl alias to
TWidgetControl, you will actually see two identical class hierarchies in the Object
Browser.

NOTE

18 chpt_13.qxd 11/19/01 12:15 PM Page 567

Fortunately, there are actually quite a few similarities between the VCL and CLX architectures
that the figures don’t illustrate. For instance, the TCanvas class is very similar in both architec-
tures. Of course, the implementation encapsulated by the class is quite different. Under the
VCL, the TCanvas class provides a wrapper around a Windows GDI device context, which is
accessible through the TCanvas.Handle property. Under CLX, the TCanvas class provides a
wrapper around a Qt painter, which is also accessible through the TCanvas.Handle property.
As a result, you can use the Handle property to access any of the low-level GDI functions in a
VCL application and the Qt graphics library functions in a CLX application.

The components in CLX were designed to ease porting an existing VCL application to a CLX
application. As a result, the public and published interfaces to many of the components are
nearly identical in both architectures. This means that events such as OnClick, OnChange, and
OnKeyPress as well as their corresponding event dispatch methods—Click(), Change(), and
KeyPress()—are implemented in both the VCL and CLX.

Porting Issues
CLX does indeed share many similarities with the VCL. However, many platform differences
must be addressed, especially for component writers. You must address Win32 dependencies in
your code. For example, any calls to the Win32 API (in Windows.pas) will need to be changed
if the component is to operate in Kylix.

Component-Based Development

PART IV
568

Building a CLX component implies that you want to use the component in Kylix
under Linux and possibly in Delphi 6 under Windows. If you only need to support
Windows, create a VCL component and not a CLX component.

NOTE

In addition, several runtime library (RTL) issues must be handled differently on Linux versus
Windows such as case sensitivity for filenames and path delimiters under Linux. For some
VCL components, it will simply be impossible to port to Linux. Consider a VCL component
that provides a wrapper around the Messaging API (MAPI). Because MAPI doesn’t exist under
Linux, a different mechanism will need to be used.

In addition to the platform issues described previously, some additional porting issues must be
considered when migrating to CLX. For example, COM certainly isn’t supported under Linux,
but interfaces most certainly are. Owner-Draw techniques available in many VCL wrappers
around Windows controls aren’t recommended in CLX components. Owner-Draw capabilities
have been deprecated in lieu of Qt Styles. Other VCL features that aren’t supported under CLX
include docking, bi-directional support, the input method editor, and Asian locale support.

18 chpt_13.qxd 11/19/01 12:15 PM Page 568

One additional change that will certainly cause developers some problems is that the CLX ver-
sions of components are located in a different set of units from the VCL controls. For example,
the Controls.pas unit in the VCL becomes the QControls.pas unit in CLX. The problem
with this change is that if you are developing a CLX component or application under Delphi 6,
the VCL units are still available. As a result, it is quite possible to inadvertently mix CLX and
VCL units into your component units. In some cases, your component might run correctly
under Windows. However, if you move the component over to Kylix, you will get compiler
errors because the VCL units aren’t available on Linux.

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
569

Borland suggests that developers create their CLX components in Kylix on Linux to
help prevent the misuse of VCL units in a CLX component. However, many developers
will probably opt to develop under Delphi 6, with its new IDE enhancements and the
comfort of Windows, and then test their components under Kylix.

NOTE

Another issue that developers must contend with when writing CLX components (and applica-
tions for that matter) is case sensitivity under Linux. In particular because filenames and paths
are case sensitive under Linux, the unit names that you specify on your uses clause of your
own units must be the correct case. This requirement is needed in order for the Kylix compiler
to be able to locate the units under Linux. Although Delphi is not case sensitive, this isn’t the
first time that Delphi requires an element to be case sensitive. The first situation involves the
naming of the Register() procedure in a unit to be exported from a package.

No More Messages
Linux, or more appropriately XWindows, doesn’t implement a messaging architecture like
Windows does. As a result, there are no wm_LButtonDown, wm_SetCursor, or wm_Char messages
passing around on Linux. When a CLX component is used under Linux, the underlying Qt
classes handle the appropriate system events and provide the necessary hooks in order to
respond to those events. The bottom line is that system events are handled by the Qt classes
even on Windows. Therefore, a CLX component won’t be able to hook into a Windows
message.

As a result, VCL component message handlers such as CMTextChanged() have been replaced
with dynamic methods—for example, TextChanged(). This will be highlighted in the follow-
ing section. This also means that implementing certain behaviors, which are easily imple-
mented using messages in the VCL, must be implemented quite differently under CLX.

18 chpt_13.qxd 11/19/01 12:15 PM Page 569

Sample Components
In this section, we will take a detailed look into several VCL components that have been trans-
formed into CLX components. The first one is a custom spinner component that involves sev-
eral principle features including custom painting, keyboard handling, focus changes, mouse
interactions, and even custom events.

The next three components are successive descendants of the base spinner component—each
extending the previous component. The first descendant extends the base spinner by adding
support for handling mouse events at design time and displaying custom cursors. The second
spinner descendant adds support for displaying images from an ImageList. The final spinner
component adds support for connecting the control to a field in a dataset.

Component-Based Development

PART IV
570

All the units presented in this chapter can be used in both Delphi 6 and Kylix.

NOTE

The TddgSpinner Component
Figure 13.3 shows three instances of the TddgSpinner component being used in a CLX appli-
cation. Unlike traditional spin-edits, this custom component displays the increment and decre-
ment buttons that change the spinner’s value at each end of the spinner rather than on top of
one another at one end.

FIGURE 13.3
The TddgSpinner CLX component can be used to specify integer values.

Listing 13.1 shows the complete source code for the QddgSpin.pas unit, which implements the
TddgSpinner component. This particular component started out as a custom spinner control
that descended from the TCustomControl class in the VCL. However, the TddgSpinner class
now descends from the CLX TCustomControl class, and as a result, can be used in both
Windows and Linux.

Although classnames rarely change when migrating to CLX, unit names are typically prefixed
with the letter Q to indicate their dependency on the Qt library via VisualCLX.

18 chpt_13.qxd 11/19/01 12:15 PM Page 570

LISTING 13.1 QddgSpin.pas—Source Code for the TddgSpinner Component

unit QddgSpin;

interface

uses
SysUtils, Classes, Types, Qt, QControls, QGraphics;
(*
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
ImgList;
*)

type
TddgButtonType = (btMinus, btPlus);
TddgSpinnerEvent = procedure (Sender: TObject; NewValue: Integer;

var AllowChange: Boolean) of object;

TddgSpinner = class(TCustomControl)
private
// Instance Data for Component
FValue: Integer;
FIncrement: Integer;
FButtonColor: TColor;
FButtonWidth: Integer;
FMinusBtnDown: Boolean;
FPlusBtnDown: Boolean;

// Method Pointers to Hold Custom Events
FOnChange: TNotifyEvent;
FOnChanging: TddgSpinnerEvent;

(*
// VCL->CLX: These message handlers are not available in CLX

// Window Message Handling Method
procedure WMGetDlgCode(var Msg: TWMGetDlgCode);
message wm_GetDlgCode;

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
571

Although commented out, each listing includes the original VCL-specific code.
Comments that start with VCL->CLX: highlight specific issues involved in transforming
the control from the VCL to CLX.

NOTE

18 chpt_13.qxd 11/19/01 12:15 PM Page 571

LISTING 13.1 Continued

// Component Message Handling Method
procedure CMEnabledChanged(var Msg: TMessage);
message cm_EnabledChanged;

*)
protected
procedure Paint; override;
procedure DrawButton(Button: TddgButtonType; Down: Boolean;

Bounds: TRect); virtual;

// Support Methods
procedure DecValue(Amount: Integer); virtual;
procedure IncValue(Amount: Integer); virtual;

function CursorPosition: TPoint;
function MouseOverButton(Btn: TddgButtonType): Boolean;

// VCL->CLX: EnabledChanged replaces cm_EnabledChanged
// component message handler
procedure EnabledChanged; override;

// New Event Dispatch Methods
procedure Change; dynamic;
function CanChange(NewValue: Integer): Boolean; dynamic;

// Overridden Event Dispatch Methods
procedure DoEnter; override;
procedure DoExit; override;
procedure KeyDown(var Key: Word; Shift: TShiftState); override;

procedure MouseDown(Button: TMouseButton; Shift: TShiftState;
X, Y: Integer); override;

procedure MouseUp(Button: TMouseButton; Shift: TShiftState;
X, Y: Integer); override;

(*
// VCL->CLX: These following declarations have changed in CLX

function DoMouseWheelDown(Shift: TShiftState;
MousePos: TPoint): Boolean; override;

function DoMouseWheelUp(Shift: TShiftState;
MousePos: TPoint): Boolean; override;

*)

Component-Based Development

PART IV
572

18 chpt_13.qxd 11/19/01 12:15 PM Page 572

LISTING 13.1 Continued

function DoMouseWheelDown(Shift: TShiftState;
const MousePos: TPoint): Boolean; override;

function DoMouseWheelUp(Shift: TShiftState;
const MousePos: TPoint): Boolean; override;

// Access Methods for Properties
procedure SetButtonColor(Value: TColor); virtual;
procedure SetButtonWidth(Value: Integer); virtual;
procedure SetValue(Value: Integer); virtual;

public
// Don’t forget to specify override for constructor
constructor Create(AOwner: TComponent); override;

published
// New Property Declarations
property ButtonColor: TColor
read FButtonColor
write SetButtonColor
default clBtnFace;

property ButtonWidth: Integer
read FButtonWidth
write SetButtonWidth
default 18;

property Increment: Integer
read FIncrement
write FIncrement
default 1;

property Value: Integer
read FValue
write SetValue;

// New Event Declarations

property OnChange: TNotifyEvent
read FOnChange
write FOnChange;

property OnChanging: TddgSpinnerEvent
read FOnChanging
write FOnChanging;

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
573

18 chpt_13.qxd 11/19/01 12:15 PM Page 573

LISTING 13.1 Continued

// Inherited Properties and Events
property Color;
(*
property DragCursor; // VCL->CLX: Property not yet in CLX
*)
property DragMode;
property Enabled;
property Font;
property Height default 18;
property HelpContext;
property Hint;
property ParentShowHint;
property PopupMenu;
property ShowHint;
property TabOrder;
property TabStop default True;
property Visible;
property Width default 80;

property OnClick;
property OnDragDrop;
property OnDragOver;
property OnEndDrag;
property OnEnter;
property OnExit;
property OnKeyDown;
property OnKeyPress;
property OnKeyUp;
property OnMouseDown;
property OnMouseMove;
property OnMouseUp;
property OnStartDrag;

end;

implementation

{=========================}
{== TddgSpinner Methods ==}
{=========================}

constructor TddgSpinner.Create(AOwner: TComponent);
begin

Component-Based Development

PART IV
574

18 chpt_13.qxd 11/19/01 12:15 PM Page 574

LISTING 13.1 Continued

inherited Create(AOwner);

// Initialize Instance Data
FButtonColor := clBtnFace;
FButtonWidth := 18;
FValue := 0;
FIncrement := 1;

FMinusBtnDown := False;
FPlusBtnDown := False;

// Initializing inherited properties
Width := 80;
Height := 18;
TabStop := True;

// VCL->CLX: TWidgetControl sets Color property to clNone
Color := clWindow;

// VCL->CLX: InputKeys assignment replaces handling the
// wm_GetDlgCode message.
InputKeys := InputKeys + [ikArrows];

end;

{== Property Access Methods ==}

procedure TddgSpinner.SetButtonColor(Value: TColor);
begin
if FButtonColor <> Value then
begin
FButtonColor := Value;
Invalidate;

end;
end;

procedure TddgSpinner.SetButtonWidth(Value: Integer);
begin
if FButtonWidth <> Value then
begin
FButtonWidth := Value;
Invalidate;

end;
end;

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
575

18 chpt_13.qxd 11/19/01 12:15 PM Page 575

LISTING 13.1 Continued

procedure TddgSpinner.SetValue(Value: Integer);
begin
if FValue <> Value then
begin
if CanChange(Value) then
begin
FValue := Value;
Invalidate;

// Trigger Change event
Change;

end;
end;

end;

{== Painting Related Methods ==}

procedure TddgSpinner.Paint;
var
R: TRect;
YOffset: Integer;
S: string;
XOffset: Integer; // VCL->CLX: Added for CLX support

begin
inherited Paint;
with Canvas do
begin
Font := Self.Font;
Pen.Color := clBtnShadow;

if Enabled then
Brush.Color := Self.Color

else
begin
Brush.Color := clBtnFace;
Font.Color := clBtnShadow;

end;

// Display Value
(*
// VCL->CLX: SetTextAlign not available in CLX
SetTextAlign(Handle, ta_Center or ta_Top); // GDI function
*)

Component-Based Development

PART IV
576

18 chpt_13.qxd 11/19/01 12:15 PM Page 576

LISTING 13.1 Continued

R := Rect(FButtonWidth - 1, 0,
Width - FButtonWidth + 1, Height);

Canvas.Rectangle(R.Left, R.Top, R.Right, R.Bottom);
InflateRect(R, -1, -1);

S := IntToStr(FValue);
YOffset := R.Top + (R.Bottom - R.Top -

Canvas.TextHeight(S)) div 2;

// VCL->CLX: Calculate XOffset b/c no SetTextAlign function
XOffset := R.Left + (R.Right - R.Left -

Canvas.TextWidth(S)) div 2;

(*
// VCL->CLX: Change TextRect call b/c no SetTextAlign function
TextRect(R, Width div 2, YOffset, S);
*)
TextRect(R, XOffset, YOffset, S);

DrawButton(btMinus, FMinusBtnDown,
Rect(0, 0, FButtonWidth, Height));

DrawButton(btPlus, FPlusBtnDown,
Rect(Width - FButtonWidth, 0, Width, Height));

if Focused then
begin
Brush.Color := Self.Color;
DrawFocusRect(R);

end;
end;

end; {= TddgSpinner.Paint =}

procedure TddgSpinner.DrawButton(Button: TddgButtonType;
Down: Boolean; Bounds: TRect);

begin
with Canvas do
begin
if Down then // Set background color
Brush.Color := clBtnShadow

else
Brush.Color := FButtonColor;

Pen.Color := clBtnShadow;

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
577

18 chpt_13.qxd 11/19/01 12:15 PM Page 577

LISTING 13.1 Continued

Rectangle(Bounds.Left, Bounds.Top,
Bounds.Right, Bounds.Bottom);

if Enabled then
begin
(*
// VCL->CLX: clActiveCaption is set to
// clActiveHighlightedText in CLX.
Pen.Color := clActiveCaption;
Brush.Color := clActiveCaption;
*)
Pen.Color := clActiveBorder;
Brush.Color := clActiveBorder;

end
else
begin
Pen.Color := clBtnShadow;
Brush.Color := clBtnShadow;

end;

if Button = btMinus then // Draw the Minus Button
begin
Rectangle(4, Height div 2 - 1,

FButtonWidth - 4, Height div 2 + 1);
end
else // Draw the Plus Button
begin
Rectangle(Width - FButtonWidth + 4, Height div 2 - 1,

Width - 4, Height div 2 + 1);
Rectangle(Width - FButtonWidth div 2 - 1,

(Height div 2) - (FButtonWidth div 2 - 4),
Width - FButtonWidth div 2 + 1,
(Height div 2) + (FButtonWidth div 2 - 4));

end;
Pen.Color := clWindowText;
Brush.Color := clWindow;

end;
end; {= TddgSpinner.DrawButton =}

procedure TddgSpinner.DoEnter;
begin
inherited DoEnter;

Component-Based Development

PART IV
578

18 chpt_13.qxd 11/19/01 12:15 PM Page 578

LISTING 13.1 Continued

// Controls gets focus--update display to show focus border
Repaint;

end;

procedure TddgSpinner.DoExit;
begin
inherited DoExit;
// Control lost focus--update display to remove focus border
Repaint;

end;

// VCL->CLX: EnabledChanged replaces cm_EnabledChanged handler

procedure TddgSpinner.EnabledChanged;
begin
inherited;
// Repaint the component so that it reflects the state change
Repaint;

end;

{== Event Dispatch Methods ==}

{==
TddgSpinner.CanChange

This is the event dispatch method supporting the OnChanging
event. Notice that this method is a function, rather than the
common procedure variety. As a function, the Result variable is
assigned a value before calling the user defined event handler.

==}

function TddgSpinner.CanChange(NewValue: Integer): Boolean;
var
AllowChange: Boolean;

begin
AllowChange := True;
if Assigned(FOnChanging) then
FOnChanging(Self, NewValue, AllowChange);

Result := AllowChange;
end;

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
579

18 chpt_13.qxd 11/19/01 12:15 PM Page 579

LISTING 13.1 Continued

procedure TddgSpinner.Change;
begin
if Assigned(FOnChange) then
FOnChange(Self);

end;

// Notice that both DecValue and IncValue assign the new value to
// the Value property (not FValue), which indirectly calls SetValue

procedure TddgSpinner.DecValue(Amount: Integer);
begin
Value := Value - Amount;

end;

procedure TddgSpinner.IncValue(Amount: Integer);
begin
Value := Value + Amount;

end;

{== Keyboard Processing Methods ==}

(*
// VCL->CLX: Replaced with InputKeys assignment in constructor

procedure TddgSpinner.WMGetDlgCode(var Msg: TWMGetDlgCode);
begin
inherited;
Msg.Result := dlgc_WantArrows; // Control will handle arrow keys

end;
*)

procedure TddgSpinner.KeyDown(var Key: Word; Shift: TShiftState);
begin
inherited KeyDown(Key, Shift);

// VCL->CLX: Key constants changed in CLX.
// vk_ prefix changed to Key_

case Key of
Key_Left, Key_Down:
DecValue(FIncrement);

Component-Based Development

PART IV
580

18 chpt_13.qxd 11/19/01 12:15 PM Page 580

LISTING 13.1 Continued

Key_Up, Key_Right:
IncValue(FIncrement);

end;
end;

{== Mouse Processing Methods ==}

function TddgSpinner.CursorPosition: TPoint;
begin
GetCursorPos(Result);
Result := ScreenToClient(Result);

end;

function TddgSpinner.MouseOverButton(Btn: TddgButtonType): Boolean;
var
R: TRect;

begin
// Get bounds of appropriate button
if Btn = btMinus then
R := Rect(0, 0, FButtonWidth, Height)

else
R := Rect(Width - FButtonWidth, 0, Width, Height);

// Is cursor position within bounding rectangle?
Result := PtInRect(R, CursorPosition);

end;

procedure TddgSpinner.MouseDown(Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
inherited MouseDown(Button, Shift, X, Y);

if not (csDesigning in ComponentState) then
SetFocus; // Move focus to Spinner only at runtime

if (Button = mbLeft) and
(MouseOverButton(btMinus) or MouseOverButton(btPlus)) then

begin
FMinusBtnDown := MouseOverButton(btMinus);
FPlusBtnDown := MouseOverButton(btPlus);

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
581

18 chpt_13.qxd 11/19/01 12:15 PM Page 581

LISTING 13.1 Continued

Repaint;
end;

end;

procedure TddgSpinner.MouseUp(Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
inherited MouseUp(Button, Shift, X, Y);

if Button = mbLeft then
begin
if MouseOverButton(btPlus) then
IncValue(FIncrement)

else if MouseOverButton(btMinus) then
DecValue(FIncrement);

FMinusBtnDown := False;
FPlusBtnDown := False;

Repaint;
end;

end;

function TddgSpinner.DoMouseWheelDown(Shift: TShiftState;
const MousePos: TPoint): Boolean;

begin
inherited DoMouseWheelDown(Shift, MousePos);
DecValue(FIncrement);
Result := True;

end;

function TddgSpinner.DoMouseWheelUp(Shift: TShiftState;
const MousePos: TPoint): Boolean;

begin
inherited DoMouseWheelUp(Shift, MousePos);
IncValue(FIncrement);
Result := True;

end;

end.

Component-Based Development

PART IV
582

18 chpt_13.qxd 11/19/01 12:15 PM Page 582

As you can see, the source code for the CLX version is very similar to the VCL edition.
However, there are several important differences.

First, notice the inclusion of the Qt specific units: Qt, QControls, and QGraphics. Types is
also a new unit that is shared between the VCL and CLX. Fortunately, the majority of the
TddgSpinner CLX class declaration looks identical to what you would find in the VCL. That
is, instance fields are declared the same way, as are method pointers to hold event handlers, as
well as event dispatch methods.

The CMEnabledChanged() and WMGetDlgCode() message handling methods represent the first
implementation change that we must handle in migrating to CLX. Specifically, the correspond-
ing cm_EnabledChanged and wm_GetDlgCode messages don’t exist in CLX. Therefore the func-
tionality implemented in these message handlers must be moved elsewhere.

As noted earlier, in CLX, component messages such as cm_EnabledChanged have been
replaced with appropriate dynamic methods. So instead of sending a cm_EnabledChanged
message whenever the Enabled property is changed, the TControl class in CLX simply calls
the EnabledChanged() method. Therefore, the code from the old CMEnabledChanged() method
is simply moved to the overridden EnabledChanged() method.

A common task in component writing is to handle the arrow keys on the keyboard. For the
TddgSpinner component, the arrow keys can be used to increment and decrement the value. In
a VCL component, this behavior is accomplished by handling the wm_GetDlgCode message and
specifying which keys your control will handle. As noted previously, the wm_GetDlgCode mes-
sage doesn’t exist for a CLX component. Thus a different approach must be taken. Fortunately,
the TWidgetControl class defines the InputKeys property, which allows us to specify the keys
we want to handle in the constructor of our component.

The constructor code also indicates another change between the VCL and CLX. That is, the
TWidgetControl class sets the Color property, which is declared in the TControl class to be
clNone. In the VCL, the TWinControl class simply uses the inherited Color value of clWindow.
As a result, we need to set the Color property in the constructor to clWindow so that the spin-
ner appears in the correct color.

After these constructor changes, there aren’t too many other changes. As you can see, most
event dispatch methods are also available under CLX. As a result, it is much easier to migrate
to CLX if you are currently overriding event dispatch methods in your VCL components rather
than handling specific Windows messages for the underlying window handle.

At the beginning of this chapter, it was noted that all the techniques you learned about VCL
component building in the previous chapters also apply to creating CLX components. You will
notice that property declarations, access methods, and even custom events are handled the
same way in both the VCL and CLX.

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
583

18 chpt_13.qxd 11/19/01 12:15 PM Page 583

More than any other component method, the Paint() method will probably require the most
modifications when transforming a VCL component into a CLX component.

When transforming a VCL control into a CLX component, display methods, such as Paint(),
will usually require the most modifications even though the TCanvas classes in both architec-
tures have nearly identical interfaces.

Two display issues needed to be handled in transforming the TddgSpinner component. First,
the VCL version of the TddgSpinner used the SetTextAlign GDI function to automatically
center the text of the spinner in display area. However, under Linux, this API function doesn’t
exist. And even under Windows, this function wouldn’t work because it expects a handle to a
GDI device context, and CLX components don’t have access to a device context the
Canvas.Handle property references a Qt Painter object.

Fortunately, most of the TCanvas methods do exist under both Windows and Linux. Therefore,
we can circumvent this problem by calculating the center position manually.

The second display problem involves the DrawButton() method. In particular, the plus and
minus symbols on the buttons are drawn using the clActiveCaption color in the VCL.
Unfortunately, the clActiveCaption identifier is assigned to the clActiveHighlightedText
value in the QGraphics.pas unit, which clearly isn’t what we want.

Component-Based Development

PART IV
584

To perform any painting outside of your CLX component’s Paint() method, you must
first call the Canvas.Start() method and then call the Canvas.Stop() method when
you are finished.

NOTE

Not everything migrates as easily as you would have expected. The virtual key code constants
defined in the VCL, such as vk_Left, aren’t available in CLX. Instead, a completely new set of
constants is used to determine which key was pressed. It turns out that the virtual key codes are
part of the Windows API, and thus aren’t available under Linux.

And that’s it! We now have a fully functional custom CLX component that can be used in both
Windows applications developed with Delphi 6 and Linux applications developed with Kylix.
Of course, the most important aspect of this is that the same source code is used for both
platforms.

Design-Time Enhancements
All things considered, migrating the TddgSpinner VCL component to CLX was fairly straight-
forward and not too tricky—although discovering the InputKeys property did take some effort.

18 chpt_13.qxd 11/19/01 12:15 PM Page 584

However, as you shall see, once you start adding more functionality to our CLX components,
the differences between the VCL and CLX will become evident.

Consider the source code displayed in Listing 13.2. This unit implements the TddgDesign
Spinner, which is a descendant of TddgSpinner. Figure 13.4 illustrates how this component
simply changes the mouse cursor whenever the mouse is positioned over one of the buttons.
The descendant component also adds the ability to change the spinner value by clicking the
plus or minus buttons directly on the form at design time as illustrated in Figure 13.5.

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
585

FIGURE 13.4
The TddgDesignSpinner displays a custom mouse cursor when the mouse is positioned over either button.

FIGURE 13.5
The TddgDesignSpinner allows the Value property to be changed at design time by simply clicking on the component’s
buttons.

LISTING 13.2 QddgDsnSpin.pas—Source Code for the TddgDesignSpinner Component

unit QddgDsnSpn;

interface

uses
SysUtils, Classes, Qt, QddgSpin;
(*
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
ddgSpin;
*)

18 chpt_13.qxd 11/19/01 12:15 PM Page 585

LISTING 13.2 Continued

type
TddgDesignSpinner = class(TddgSpinner)
private
// VCL->CLX: Custom cursor stored in QCursorH field
FThumbCursor: QCursorH;

(*
// VCL->CLX: Custom cursors and design-time interactions are
// handled differently under CLX. The following
// block is VCL-specific.

FThumbCursor: HCursor;

// Window Message Handling Method
procedure WMSetCursor(var Msg : TWMSetCursor);
message wm_SetCursor;

// Component Message Handling Method
procedure CMDesignHitTest(var Msg: TCMDesignHitTest);
message cm_DesignHitTest;

*)
protected
procedure Change; override;

// VCL->CLX: The following two methods are overridden for CLX
procedure MouseMove(Shift: TShiftState;

X, Y: Integer); override;
function DesignEventQuery(Sender: QObjectH;

Event: QEventH): Boolean; override;
public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

end;

implementation

(*
// VCL->CLX: CLX does not support cursor resources
{$R DdgDsnSpn.res} // Link in custom cursor resource
*)

uses
Types, QControls, QForms; // VCL->CLX: Add CLX units

Component-Based Development

PART IV
586

18 chpt_13.qxd 11/19/01 12:15 PM Page 586

LISTING 13.2 Continued

// VCL->CLX: Two arrays of bytes (one for the image and one for
// the mask) are used to represent custom cursors in CLX

const
Bits: array[0..32*4-1] of Byte = (
$00, $30, $00, $00, $00, $48, $00, $00,
$00, $48, $00, $00, $00, $48, $00, $00,
$00, $48, $00, $00, $00, $4E, $00, $00,
$00, $49, $C0, $00, $00, $49, $30, $00,
$00, $49, $28, $00, $03, $49, $24, $00,
$04, $C0, $24, $00, $04, $40, $04, $00,
$02, $40, $04, $00, $02, $00, $04, $00,
$01, $00, $04, $00, $01, $00, $04, $00,
$00, $80, $08, $00, $00, $40, $08, $00,
$00, $40, $08, $00, $00, $20, $10, $00,
$00, $20, $10, $00, $00, $7F, $F8, $00,
$00, $7F, $F8, $00, $00, $7F, $E8, $00,
$00, $7F, $F8, $00, $00, $00, $00, $00,
$00, $00, $00, $00, $00, $00, $00, $00,
$00, $00, $00, $00, $00, $00, $00, $00,
$00, $00, $00, $00, $00, $00, $00, $00);

Mask: array[0..32*4-1] of Byte = (
$00, $30, $00, $00, $00, $78, $00, $00,
$00, $78, $00, $00, $00, $78, $00, $00,
$00, $78, $00, $00, $00, $7E, $00, $00,
$00, $7F, $C0, $00, $00, $7F, $F0, $00,
$00, $7F, $F8, $00, $03, $7F, $FC, $00,
$07, $FF, $FC, $00, $07, $FF, $FC, $00,
$03, $FF, $FC, $00, $03, $FF, $FC, $00,
$01, $FF, $FC, $00, $01, $FF, $FC, $00,
$00, $FF, $F8, $00, $00, $7F, $F8, $00,
$00, $7F, $F8, $00, $00, $3F, $F0, $00,
$00, $3F, $F0, $00, $00, $7F, $F8, $00,
$00, $7F, $F8, $00, $00, $7F, $E8, $00,
$00, $7F, $F8, $00, $00, $00, $00, $00,
$00, $00, $00, $00, $00, $00, $00, $00,
$00, $00, $00, $00, $00, $00, $00, $00,
$00, $00, $00, $00, $00, $00, $00, $00);

{===============================}
{== TddgDesignSpinner Methods ==}
{===============================}

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
587

18 chpt_13.qxd 11/19/01 12:15 PM Page 587

LISTING 13.2 Continued

constructor TddgDesignSpinner.Create(AOwner: TComponent);
var
BitsBitmap: QBitmapH;
MaskBitmap: QBitmapH;

begin
inherited Create(AOwner);

(*
// VCL->CLX: No LoadCursor in CLX
FThumbCursor := LoadCursor(HInstance, ‘DdgDSNSPN_BTNCURSOR’);
*)

// VCL->CLX: Byte arrays are used to create a custom cursor
BitsBitmap := QBitmap_create(32, 32, @Bits, False);
MaskBitmap := QBitmap_create(32, 32, @Mask, False);
try
FThumbCursor := QCursor_create(BitsBitmap, MaskBitmap, 8, 0);

finally
QBitmap_destroy(BitsBitmap);
QBitmap_destroy(MaskBitmap);

end;
end;

destructor TddgDesignSpinner.Destroy;
begin
(*
VCL->CLX: In CLX, use QCursor_Destroy instead of DestroyCursor
DestroyCursor(FThumbCursor); // Release GDI cursor object
*)
QCursor_Destroy(FThumbCursor);
inherited Destroy;

end;

// If the mouse is over one of the buttons, then change cursor to
// the custom cursor that resides in the DdgDsnSpn.res
// resource file

(*
// VCL->CLX: There is no wm_SetCursor in CLX
procedure TddgDesignSpinner.WMSetCursor(var Msg: TWMSetCursor);
begin
if MouseOverButton(btMinus) or MouseOverButton(btPlus) then
SetCursor(FThumbCursor)

Component-Based Development

PART IV
588

18 chpt_13.qxd 11/19/01 12:15 PM Page 588

LISTING 13.2 Continued

else
inherited;

end;
*)

// VCL->CLX: Override MouseMove to handle displaying custom cursor

procedure TddgDesignSpinner.MouseMove(Shift: TShiftState;
X, Y: Integer);

begin
if MouseOverButton(btMinus) or MouseOverButton(btPlus) then
QWidget_setCursor(Handle, FThumbCursor)

else
QWidget_UnsetCursor(Handle);

inherited;
end;

(*
// VCL->CLX: cm_DesignHitTest does not exist in CLX. Instead,
// override the DesignEventQuery method (see below).

procedure TddgDesignSpinner.CMDesignHitTest(var Msg:
TCMDesignHitTest);

begin
// Handling this component message allows the Value of the
// spinner to be changed at design-time using the left mouse
// button. If the mouse is positioned over one of the buttons,
// then set the Msg.Result value to 1. This instructs Delphi to
// allow mouse events to “get through to” the component.

if MouseOverButton(btMinus) or MouseOverButton(btPlus) then
Msg.Result := 1

else
Msg.Result := 0;

end;
*)

function TddgDesignSpinner.DesignEventQuery(Sender: QObjectH;
Event: QEventH): Boolean;

var
MousePos: TPoint;

begin
Result := False;

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
589

18 chpt_13.qxd 11/19/01 12:15 PM Page 589

LISTING 13.2 Continued

if (Sender = Handle) and
(QEvent_type(Event) in [QEventType_MouseButtonPress,

QEventType_MouseButtonRelease,
QEventType_MouseButtonDblClick]) then

begin
// Note: extracting MousePos is not actually needed in this
// example, but if you need to get the position of the
// mouse, this is how you do it.

MousePos := Point(QMouseEvent_x(QMouseEventH(Event)),
QMouseEvent_y(QMouseEventH(Event)));

if MouseOverButton(btMinus) or MouseOverButton(btPlus) then
Result := True

else
Result := False;

end;
end;

procedure TddgDesignSpinner.Change;
var
Form: TCustomForm;

begin
inherited Change;

// Force the Object Inspector to update what it shows for the
// Value property of the spinner when changed via the mouse.

if csDesigning in ComponentState then
begin
Form := GetParentForm(Self);

(*
// VCL->CLX: Form.Designer replaced with DesignerHook in CLX
if (Form <> nil) and (Form.Designer <> nil) then
Form.Designer.Modified;

*)

if (Form <> nil) and (Form.DesignerHook <> nil) then
Form.DesignerHook.Modified;

end;
end;

end.

Component-Based Development

PART IV
590

18 chpt_13.qxd 11/19/01 12:15 PM Page 590

As you can see from the commented blocks of VCL-based code included in the source code,
implementing these two features wasn’t trivial because both features use messages in the VCL.
As noted earlier, Linux doesn’t use a message loop and thus CLX must use a different mecha-
nism to implement these features.

First of all, specifying the mouse cursor to use in the control is much more complicated. In the
VCL version, we simply attached a Windows resource file that included a custom cursor, and
we then called the LoadCursor API function to get a reference to the cursor (a handle). This
cursor handle is then used in handling the wm_SetCursor message, which Windows sends to
any control that needs to have its mouse pointer updated.

Under CLX, this approach cannot be used. First, Qt doesn’t support cursor resources. The
Qt.pas unit defines several QCursor_create() methods—each providing a different way to
construct a mouse cursor except from a cursor resource. You could specify one of the stock Qt
cursors by passing an appropriate integer value to the QCursor_create() method. But, to cre-
ate a custom cursor, you need to create two arrays of bytes that contain the bit layout for the
cursor. The first array represents the black or white pixels, whereas the second array represents
the mask, which determines which regions in the cursor are transparent.

Next, in order to display the mouse cursor at the appropriate time, we override the MouseMove()
event dispatch method instead of handling the wm_SetCursor message. To change the cursor,
the QWidget_setCursor() function is called whenever the mouse is positioned over either but-
ton. Otherwise, the QWidget_UnsetCursor() method is called.

In the VCL, handling the cm_DesignHitTest component message allows mouse events to be
handled by a component at design-time. Unfortunately, this message doesn’t exist in CLX.
Instead, to accomplish the same features, we need to override the new DesignEventQuery()

method. This method provides a way for component writers to become notified when the
underlying Qt widget receives an input event at design-time. If the method returns True, the
control should respond to the event. In our example, we are only concerned with mouse input
events. Therefore, we must first determine whether the input event meets our criteria. If so, we
must determine whether the mouse is positioned over one of the buttons.

The Change() method must be overridden in TddgDesignSpinner so that the Object Inspector’s
display of the Value property can remain in-sync with the selected component. If this method
isn’t overridden, the Object Inspector won’t be updated as the user clicks directly on the spin-
ner’s button on the Form Designer. As you can see, the only change is the reference of
Form.Designer to Form.DesignerHook.

Component References and Image Lists
The next component once again extends the functionality of the spinner. In particular, the
TddgImgListSpinner component descends from the TddgDesignSpinner and implements a

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
591

18 chpt_13.qxd 11/19/01 12:15 PM Page 591

component reference property to allow the user to connect the spinner to an ImageList. The
images in the ImageList can then be displayed in place of the plus and minus default symbols
as shown in Figure 13.6.

Component-Based Development

PART IV
592

FIGURE 13.6
The TddgImgListSpinner supports displaying images from an ImageList for each button.

Listing 13.3 shows the complete source code for the QddgILSpin.pas unit, which implements
the TddgImgListSpinner component. Unlike the TddgDesignSpinner, this component required
very little changes in moving to CLX.

LISTING 13.3 QddgILSpin.pas—Source Code for the TddgImgListSpinner Component

unit QddgILSpin;

interface

uses
Classes, Types, QddgSpin, QddgDsnSpn, QImgList;
(*
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
ddgSpin, ddgDsnSpn, ImgList;
*)

type
TddgImgListSpinner = class(TddgDesignSpinner)
private
FImages: TCustomImageList;
FImageIndexes: array[1..2] of Integer;
FImageChangeLink: TChangeLink;

// Internal Event Handlers
procedure ImageListChange(Sender: TObject);

protected

18 chpt_13.qxd 11/19/01 12:15 PM Page 592

LISTING 13.3 Continued

procedure Notification(AComponent : TComponent;
Operation : TOperation); override;

procedure DrawButton(Button: TddgButtonType; Down: Boolean;
Bounds: TRect); override;

procedure CalcCenterOffsets(Bounds: TRect; var L, T: Integer);

procedure CheckMinSize;

// Property Access Methods
procedure SetImages(Value: TCustomImageList); virtual;
function GetImageIndex(PropIndex: Integer): Integer; virtual;
procedure SetImageIndex(PropIndex: Integer;

Value: Integer); virtual;
public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

published
property Images: TCustomImageList
read FImages
write SetImages;

property ImageIndexMinus: Integer
index 1
read GetImageIndex
write SetImageIndex;

property ImageIndexPlus: Integer
index 2
read GetImageIndex
write SetImageIndex;

end;

implementation

uses
QGraphics; // VCL->CLX: Added for CLX support

{================================}
{== TddgImgListSpinner Methods ==}
{================================}

constructor TddgImgListSpinner.Create(AOwner: TComponent);

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
593

18 chpt_13.qxd 11/19/01 12:15 PM Page 593

LISTING 13.3 Continued

begin
inherited Create(AOwner);

FImageChangeLink := TChangeLink.Create;
FImageChangeLink.OnChange := ImageListChange;
// NOTE: Since, the component user does not have direct access to
// the change link, the user cannot assign custom event handlers.

FImageIndexes[1] := -1;
FImageIndexes[2] := -1;

end;

destructor TddgImgListSpinner.Destroy;
begin
FImageChangeLink.Free;
inherited Destroy;

end;

procedure TddgImgListSpinner.Notification(AComponent: TComponent;
Operation: TOperation);

begin
inherited Notification(AComponent, Operation);
if (Operation = opRemove) and (AComponent = FImages) then
SetImages(nil); // Note the call to access method

end;

function TddgImgListSpinner.GetImageIndex(PropIndex:
Integer): Integer;

begin
Result := FImageIndexes[PropIndex];

end;

procedure TddgImgListSpinner.SetImageIndex(PropIndex: Integer;
Value: Integer);

begin
if FImageIndexes[PropIndex] <> Value then
begin
FImageIndexes[PropIndex] := Value;
Invalidate;

end;
end;

Component-Based Development

PART IV
594

18 chpt_13.qxd 11/19/01 12:15 PM Page 594

LISTING 13.3 Continued

procedure TddgImgListSpinner.SetImages(Value: TCustomImageList);
begin
if FImages <> nil then
FImages.UnRegisterChanges(FImageChangeLink);

FImages := Value;

if FImages <> nil then
begin
FImages.RegisterChanges(FImageChangeLink);
FImages.FreeNotification(Self);
CheckMinSize;

end;
Invalidate;

end;

procedure TddgImgListSpinner.ImageListChange(Sender: TObject);
begin
if Sender = Images then
begin
CheckMinSize;
// Call Update instead of Invalidate to prevent flicker
Update;

end;
end;

procedure TddgImgListSpinner.CheckMinSize;
begin
// Ensures button area will display entire image
if FImages.Width > ButtonWidth then
ButtonWidth := FImages.Width;

if FImages.Height > Height then
Height := FImages.Height;

end;

procedure TddgImgListSpinner.DrawButton(Button: TddgButtonType;
Down: Boolean;
Bounds: TRect);

var
L, T: Integer;

begin
with Canvas do
begin

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
595

18 chpt_13.qxd 11/19/01 12:15 PM Page 595

LISTING 13.3 Continued

Brush.Color := ButtonColor;
Pen.Color := clBtnShadow;
Rectangle(Bounds.Left, Bounds.Top,

Bounds.Right, Bounds.Bottom);

if Button = btMinus then // Draw the Minus (-) Button
begin
if (Images <> nil) and (ImageIndexMinus <> -1) then
begin
(*
// VCL->CLX: DrawingStyle does not exist in CLX TImageList
// BkColor is used instead.
if Down then
FImages.DrawingStyle := dsSelected

else
FImages.DrawingStyle := dsNormal;

*)
if Down then
FImages.BkColor := clBtnShadow

else
FImages.BkColor := clBtnFace;

CalcCenterOffsets(Bounds, L, T);

(*
// VCL->CLX: TImageList.Draw is different in CLX
FImages.Draw(Canvas, L, T, ImageIndexMinus, Enabled);
*)
FImages.Draw(Canvas, L, T, ImageIndexMinus, itImage,

Enabled);
end
else
inherited DrawButton(Button, Down, Bounds);

end
else // Draw the Plus (+) Button
begin
if (Images <> nil) and (ImageIndexPlus <> -1) then
begin
(*
// VCL->CLX: DrawingStyle does not exist in CLX TImageList
// BkColor is used instead.
if Down then
FImages.DrawingStyle := dsSelected

else

Component-Based Development

PART IV
596

18 chpt_13.qxd 11/19/01 12:15 PM Page 596

LISTING 13.3 Continued

FImages.DrawingStyle := dsNormal;
*)
if Down then
FImages.BkColor := clBtnShadow

else
FImages.BkColor := clBtnFace;

CalcCenterOffsets(Bounds, L, T);

(*
// VCL->CLX: TImageList.Draw is different in CLX
FImages.Draw(Canvas, L, T, ImageIndexPlus, Enabled);
*)
FImages.Draw(Canvas, L, T, ImageIndexPlus, itImage,

Enabled);
end
else
inherited DrawButton(Button, Down, Bounds);

end;
end;

end; {= TddgImgListSpinner.DrawButton =}

procedure TddgImgListSpinner.CalcCenterOffsets(Bounds: TRect;
var L, T: Integer);

begin
if FImages <> nil then
begin
L := Bounds.Left + (Bounds.Right - Bounds.Left) div 2 -

(FImages.Width div 2);
T := Bounds.Top + (Bounds.Bottom - Bounds.Top) div 2 -

(FImages.Height div 2);
end;

end;

end.

As usual, the uses clause of the unit needs to be changed to include the CLX specific units and
to remove the VCL specific ones. In particular, notice that the QImgList unit replaces the
ImgList unit. This is significant because under the VCL, the TCustomImageList component is
a wrapper around the ImageList common control implemented in the ComCtl32.dll. Borland
created a CLX version of the TCustomImageList component that uses the graphics primitives
of Qt instead of the ComCtl32.dll.

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
597

18 chpt_13.qxd 11/19/01 12:15 PM Page 597

The benefit of this is clearly visible in the class declaration. The declaration of the CLX ver-
sion of TddgImgListSpinner is identical to the VCL version. Furthermore, the implementa-
tions of all but one of the component’s methods are also identical.

Of course, it is the single display method, the overridden DrawButton() method, that requires
some tweaking. In particular, two issues need to be addressed. The first illustrates a key point
in comparing classes that exist in both the VCL and CLX. That is, just because a VCL class
has a corresponding class in CLX, it doesn’t necessarily mean that all the functionality of the
VCL class is also available in the CLX version.

In the case of the TCustomImageList class, the VCL version implements the DrawingStyle
property, which is used by the VCL version of the TddgImgListSpinner to display the button’s
image differently when clicked. The DrawingStyle property doesn’t exist in the CLX version,
and therefore a different approach must be taken.

The second modification to the DrawButton() method results from the
TCustomImageList.Draw() method being different between the two architectures.

Data-Aware CLX Components
In this fourth sample component, data awareness is added to the spinner component. That is,
the TddgDBSpinner component can be connected to an integer field in a dataset through its
DataSource and DataField properties. Figure 13.7 shows a TddgDBSpinner component con-
nected to the VenueNo field of the Events dataset.

Component-Based Development

PART IV
598

FIGURE 13.7
The TddgDBSpinner can be used to display and edit integer fields in a dataset.

Listing 13.4 shows the source code for the QddgDBSpin.pas unit, which implements the
TddgDBSpinner component, which in turn descends from TddgImgListSpinner.

18 chpt_13.qxd 11/19/01 12:15 PM Page 598

LISTING 13.4 QddgDBSpin.pas—Source Code for the TddgDBSpinner Component

unit QddgDBSpin;

interface

uses
SysUtils, Classes, Qt, QddgILSpin, DB, QDBCtrls;
(*
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
ddgILSpin, DB, DBCtrls;
*)

type
TddgDBSpinner = class(TddgImgListSpinner)
private
FDataLink: TFieldDataLink; // Provides Access to Data

// Internal Event Handlers for DataLink Events
procedure DataChange(Sender: TObject);
procedure UpdateData(Sender: TObject);
procedure ActiveChange(Sender: TObject);

(*
// VCL->CLX: Component Message handling methods not in CLX
procedure CMExit(var Msg: TCMExit); message cm_Exit;
procedure CMDesignHitTest(var Msg: TCMDesignHitTest);
message cm_DesignHitTest;

*)
protected
procedure Notification(AComponent : TComponent;

Operation : TOperation); override;
procedure CheckFieldType(const Value: string); virtual;

// Overridden event dispatch methods
procedure Change; override;
procedure KeyPress(var Key : Char); override;

// VCL->CLX: DoExit replaces CMExit
procedure DoExit; override;
// VCL->CLX: DesignEventQuery replaces CMDesignHitTest
function DesignEventQuery(Sender: QObjectH;

Event: QEventH): Boolean; override;

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
599

18 chpt_13.qxd 11/19/01 12:15 PM Page 599

LISTING 13.4 Continued

// Overridden support methods
procedure DecValue(Amount: Integer); override;
procedure IncValue(Amount: Integer); override;

// Property Access Methods
function GetField: TField; virtual;
function GetDataField: string; virtual;
procedure SetDataField(const Value: string); virtual;
function GetDataSource: TDataSource; virtual;
procedure SetDataSource(Value: TDataSource); virtual;
function GetReadOnly: Boolean; virtual;
procedure SetReadOnly(Value: Boolean); virtual;

// Give Descendants Access to Field object and DataLink
property Field: TField
read GetField;

property DataLink: TFieldDataLink
read FDataLink;

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

published
property DataField: string
read GetDataField
write SetDataField;

property DataSource: TDataSource
read GetDataSource
write SetDataSource;

// This property controls the ReadOnly state of the DataLink
property ReadOnly: Boolean
read GetReadOnly
write SetReadOnly
default False;

end;

type
EInvalidFieldType = class(Exception);

resourcestring
SInvalidFieldType = ‘DataField can only be connected to ‘ +

‘columns of type Integer, Smallint, Word, ‘ +
‘and Float’;

Component-Based Development

PART IV
600

18 chpt_13.qxd 11/19/01 12:15 PM Page 600

LISTING 13.4 Continued

implementation

uses
Types; // VCL->CLX: Added for CLS support

{===========================}
{== TddgDBSpinner Methods ==}
{===========================}

constructor TddgDBSpinner.Create(AOwner: TComponent);
begin
inherited Create(AOwner);

FDataLink := TFieldDataLink.Create;

// To support the TField.FocusControl method, set the
// FDataLink.Control property to point to the spinner.
// The Control property requires a TWinControl component.
FDataLink.Control := Self;

// Assign Event Handlers
FDataLink.OnDataChange := DataChange;
FDataLink.OnUpdateData := UpdateData;
FDataLink.OnActiveChange := ActiveChange;

// NOTE: Since, the component user does not have direct access to
// the data link, the user cannot assign custom event handlers.

end;

destructor TddgDBSpinner.Destroy;
begin
FDataLink.Free;
FDataLink := nil;
inherited Destroy;

end;

procedure TddgDBSpinner.Notification(AComponent: TComponent;
Operation: TOperation);

begin
inherited Notification(AComponent, Operation);
if (Operation = opRemove) and

(FDataLink <> nil) and

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
601

18 chpt_13.qxd 11/19/01 12:15 PM Page 601

LISTING 13.4 Continued

(AComponent = FDataLink.DataSource) then
begin
DataSource := nil; // Indirectly calls SetDataSource

end;
end;

function TddgDBSpinner.GetField: TField;
begin
Result := FDataLink.Field;

end;

function TddgDBSpinner.GetDataField: string;
begin
Result := FDataLink.FieldName;

end;

procedure TddgDBSpinner.SetDataField(const Value: string);
begin
CheckFieldType(Value);
FDataLink.FieldName := Value;

end;

function TddgDBSpinner.GetDataSource: TDataSource;
begin
Result := FDataLink.DataSource;

end;

procedure TddgDBSpinner.SetDataSource(Value: TDataSource);
begin
if FDatalink.DataSource <> Value then
begin
FDataLink.DataSource := Value;

// FreeNotification must be called b/c DataSource may be
// located on another form or data module.
if Value <> nil then
Value.FreeNotification(Self);

end;
end;

Component-Based Development

PART IV
602

18 chpt_13.qxd 11/19/01 12:15 PM Page 602

LISTING 13.4 Continued

function TddgDBSpinner.GetReadOnly: Boolean;
begin
Result := FDataLink.ReadOnly;

end;

procedure TddgDBSpinner.SetReadOnly(Value: Boolean);
begin
FDataLink.ReadOnly := Value;

end;

procedure TddgDBSpinner.CheckFieldType(const Value: string);
var
FieldType: TFieldType;

begin
// Make sure the field type corresponding to the column
// referenced by Value is either ftInteger, ftSmallInt, ftWord,
// or ftFloat. If it is not, an EInvalidFieldType exception is
// raised.

if (Value <> ‘’) and
(FDataLink <> nil) and
(FDataLink.Dataset <> nil) and
(FDataLink.Dataset.Active) then

begin
FieldType := FDataLink.Dataset.FieldByName(Value).DataType;
if (FieldType <> ftInteger) and

(FieldType <> ftSmallInt) and
(FieldType <> ftWord) and
(FieldType <> ftFloat) then

begin
raise EInvalidFieldType.Create(SInvalidFieldType);

end;
end;

end;

procedure TddgDBSpinner.Change;
begin
// Tell the FDataLink that the data has changed
if FDataLink <> nil then
FDataLink.Modified;

inherited Change; // Generates OnChange event
end;

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
603

18 chpt_13.qxd 11/19/01 12:15 PM Page 603

LISTING 13.4 Continued

procedure TddgDBSpinner.KeyPress(var Key: Char);
begin
inherited KeyPress(Key);

if Key = #27 then
begin
FDataLink.Reset; // Esc key pressed
Key := #0; // Set to #0 so Esc won’t close dialog

end;
end;

procedure TddgDBSpinner.DecValue(Amount: Integer);
begin
if ReadOnly or not FDataLink.CanModify then
begin
// Prevent change if FDataLink is ReadOnly
(*
// VCL->CLX: MessageBeep is a Windows API function
MessageBeep(0)
*)
Beep;

end
else
begin
// Try to put Dataset in edit mode--only dec if in edit mode
if FDataLink.Edit then
inherited DecValue(Amount);

end;
end;

procedure TddgDBSpinner.IncValue(Amount: Integer);
begin
if ReadOnly or not FDataLink.CanModify then
begin
// Prevent change if FDataLink is ReadOnly
(*
// VCL->CLX: MessageBeep is a Windows API function
MessageBeep(0)
*)
Beep;

end
else

Component-Based Development

PART IV
604

18 chpt_13.qxd 11/19/01 12:15 PM Page 604

LISTING 13.4 Continued

begin
// Try to put Dataset in edit mode--only inc if in edit mode
if FDataLink.Edit then
inherited IncValue(Amount);

end;
end;

{==
TddgDBSpinner.DataChange

This method gets called as a result of a number of
different events:

1. The underlying field value changes. Occurs when changing the
value of the column tied to this control and then move to a
new column or a new record.

2. The corresponding Dataset goes into Edit mode.
3. The corresponding Dataset referenced by DataSource changes.
4. The current cursor is scrolled to a new record in the table.
5. The record is reset through a Cancel call.
6. The DataField property changes to reference another column.

==}

procedure TddgDBSpinner.DataChange(Sender: TObject);
begin
if FDataLink.Field <> nil then
Value := FDataLink.Field.AsInteger;

end;

{==
TddgDBSpinner.UpdateData

This method gets called when the corresponding field value and
the contents of the Spinner need to be synchronized. Note that
this method only gets called if this control was responsible for
altering the data.

==}

procedure TddgDBSpinner.UpdateData(Sender: TObject);
begin
FDataLink.Field.AsInteger := Value;

end;

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
605

18 chpt_13.qxd 11/19/01 12:15 PM Page 605

LISTING 13.4 Continued

{==
TddgDBSpinner.ActiveChange

This method gets called whenever the Active property of the
attached Dataset changes.

NOTE: You can use the FDataLink.Active property to determine
the *new* state of the Dataset.

==}

procedure TddgDBSpinner.ActiveChange(Sender: TObject);
begin
// If the Dataset is becoming Active, then check to make sure the
// field type of the DataField property is a valid type.

if (FDataLink <> nil) and FDataLink.Active then
CheckFieldType(DataField);

end;

(*
// VCL->CLX: CMExit replaced with DoExit (see below)

procedure TddgDBSpinner.CMExit(var Msg: TCMExit);
begin
try // Attempt to update the record if focus leaves the spinner
FDataLink.UpdateRecord;

except
SetFocus; // Keep the focus on the control if Update fails
raise; // Reraise the exception

end;
inherited;

end;
*)

procedure TddgDBSpinner.DoExit;
begin
try // Attempt to update the record if focus leaves the spinner
FDataLink.UpdateRecord;

except
SetFocus; // Keep the focus on the control if Update fails
raise; // Reraise the exception

end;
inherited;

end;

Component-Based Development

PART IV
606

18 chpt_13.qxd 11/19/01 12:15 PM Page 606

LISTING 13.4 Continued

(*
// VCL->CLX: CMDesignHitTest replaced by DesignEventQuery

procedure TddgDBSpinner.CMDesignHitTest(var Msg: TCMDesignHitTest);
begin
// Ancestor component allows Value to be changed at design-time.
// This is not valid in a data-aware component because it would
// put the connected dataset into edit mode.
Msg.Result := 0;

end;
*)

function TddgDBSpinner.DesignEventQuery(Sender: QObjectH;
Event: QEventH): Boolean;

begin
// Ancestor component allows Value to be changed at design-time.
// This is not valid in a data-aware component because it would
// put the connected dataset into edit mode.
Result := False;

end;

end.

Fortunately, incorporating data awareness into a CLX component is nearly identical to the
VCL implementation. That is, once you have a working nondata-aware CLX component, you
simply need to embed a TFieldDataLink object into your CLX component and respond to the
DataChange and UpdateData events. Of course, you will need to implement the DataSource,
DataField, and ReadOnly properties, but this is no different from doing the same thing in a
VCL component.

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
607

Don’t forget to change the DBCtrls unit to QDBCtrls. Although the DB unit is shared
between the VCL and CLX, the DBCtrls unit isn’t. Both DBCtrls and QDBCtrls define
a TFieldDataLink class. Unfortunately, under Delphi 6, you won’t receive any errors if
you use the VCL version of the TFieldDataLink instead of the CLX version. In fact, the
component might even operate correctly under Windows. However, when you try the
component under Kylix, you will receive many syntax errors from the compiler.

NOTE

However, one situation will require your attention. Many data-aware VCL components handle
the cm_Exit component message in order to call the UpdateRecord method of the data link.

18 chpt_13.qxd 11/19/01 12:15 PM Page 607

However, CLX doesn’t implement the cm_Exit message, and therefore the DoExit() event dis-
patch method must be overridden instead.

The TddgDBSpinner is a direct descendant of TddgImgListSpinner, which in turn descends
from TddgDesignSpinner. Recall that one of the features of the TddgDesignSpinner was to
allow the user to change the value of the spinner using the mouse at design time. This feature
is no longer useful in our data-aware component because if the user changes the value of the
spinner, the associated dataset will be placed into edit mode. Unfortunately, at design-time
there is no way to get out of edit mode once this happens. Therefore, the TddgDBSpinner over-
rides the DesignEventQuery() method and simply returns False to prevent mouse operations
from being handled by the component at design-time.

CLX Design Editors
Design editors for CLX components are implemented in exactly the same way they are for
VCL components. However, there are few changes that you must be aware of. The most signif-
icant is that the units that implement the base design-time functionality have been broken up
and placed into new units. Specifically, the DsgnIntf unit has been renamed to DesignIntf. In
most cases, you will also need to add the new DesignEditors unit to your uses clause. The
DesignIntf unit defines the interfaces used by the Form Designer and Object Inspector. The
DesignEditors unit implements the basic property editor and component editor classes.

Unfortunately, not all the design-time features of the VCL have made it over into CLX. For
example, owner-draw property editors are only available in the VCL. As a result, CLX specific
editors are implemented in the CLXEditors unit, whereas VCL specific editors are defined in
the VCLEditors unit.

Figure 13.8 shows the TddgRadioGroupEditor, a custom component editor for the CLX
TRadioGroup component, allowing a user to easily set the ItemIndex property. The
TddgRadioGroupEditor is defined in the QddgRgpEdt.pas unit, which appears in Listing 13.5.

Component-Based Development

PART IV
608

18 chpt_13.qxd 11/19/01 12:15 PM Page 608

FIGURE 13.8
Selecting an item in the CLX RadioGroup is a snap with this custom component editor.

LISTING 13.5 QddgRgpEdt.pas—Source Code for the TddgRadioGroupEditor Component
Editor

unit QddgRgpEdt;

interface

uses
DesignIntf, DesignEditors, QExtCtrls, QDdgDsnEdt;

type
TddgRadioGroupEditor = class(TddgDefaultEditor)
protected
function RadioGroup: TRadioGroup; virtual;

public
function GetVerbCount: Integer; override;
function GetVerb(Index: Integer) : string; override;
procedure ExecuteVerb(Index: Integer); override;

end;

implementation

uses
QControls;

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
609

18 chpt_13.qxd 11/19/01 12:15 PM Page 609

LISTING 13.5 Continued

{==================================}
{== TddgRadioGroupEditor Methods ==}
{==================================}

function TddgRadioGroupEditor.RadioGroup: TRadioGroup;
begin
// Helper function to provide quick access to component being
// edited. Also makes sure Component is a TRadioGroup
Result := Component as TRadioGroup;

end;

function TddgRadioGroupEditor.GetVerbCount: Integer;
begin
// Return the number of new menu items to display
Result := RadioGroup.Items.Count + 1;

end;

function TddgRadioGroupEditor.GetVerb(Index: Integer): string;
begin
// Menu item caption for context menu
if Index = 0 then
Result := ‘Edit Items...’

else
Result := RadioGroup.Items[Index - 1];

end;

procedure TddgRadioGroupEditor.ExecuteVerb(Index: Integer);
begin
if Index = 0 then
EditPropertyByName(‘Items’) // Defined in QDdgDsnEdt.pas

else
begin
if RadioGroup.ItemIndex <> Index - 1 then
RadioGroup.ItemIndex := Index - 1

else
RadioGroup.ItemIndex := -1; // Uncheck all items

Designer.Modified;
end;

end;

end.

Component-Based Development

PART IV
610

18 chpt_13.qxd 11/19/01 12:15 PM Page 610

The techniques illustrated in the TddgRadioGroupEditor apply to both the VCL and CLX. In
this example, the context menu of the TRadioGroup component is changed to reflect the items
currently in the group. Selecting a group item’s corresponding menu item causes the radio
group’s ItemIndex property to be set accordingly. If no items are in the group, only the Edit
Items menu item is added.

If the user chooses this menu item, the string list editor is invoked on the Items property for
the TRadioGroup. The EditPropertyByName() method isn’t part of CLX or the VCL—it is
defined in the TddgDefaultEditor class. This method can be used to invoke the currently reg-
istered property editor for any named property of a component within the context of a compo-
nent editor. Listing 13.6 shows the source code for the QddgDsnEdt.pas unit, which
implements the TddgDefaultEditor class.

LISTING 13.6 QddgDsnEdt.pas—Source Code for the TddgDefaultEditor Component
Editor

unit QddgDsnEdt;

interface

uses
Classes, DesignIntf, DesignEditors;

type
TddgDefaultEditor = class(TDefaultEditor)
private
FPropName: string;
FContinue: Boolean;
FPropEditor: IProperty;
procedure EnumPropertyEditors(const PropertyEditor: IProperty);
procedure TestPropertyEditor(const PropertyEditor: IProperty;

var Continue: Boolean);
protected
procedure EditPropertyByName(const APropName: string);

end;

implementation

uses
SysUtils, TypInfo;

{===============================}
{== TddgDefaultEditor Methods ==}
{===============================}

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
611

18 chpt_13.qxd 11/19/01 12:15 PM Page 611

LISTING 13.6 Continued

procedure TddgDefaultEditor.EnumPropertyEditors(const
PropertyEditor: IProperty);

begin
if FContinue then
TestPropertyEditor(PropertyEditor, FContinue);

end;

procedure TddgDefaultEditor.TestPropertyEditor(const
PropertyEditor: IProperty;
var Continue: Boolean);

begin
if not Assigned(FPropEditor) and

(CompareText(PropertyEditor.GetName, FPropName) = 0) then
begin
Continue := False;
FPropEditor := PropertyEditor;

end;
end;

procedure TddgDefaultEditor.EditPropertyByName(const
APropName: string);

var
Components: IDesignerSelections;

begin
Components := TDesignerSelections.Create;
FContinue := True;
FPropName := APropName;
Components.Add(Component);
FPropEditor := nil;
try
GetComponentProperties(Components, tkAny, Designer,

EnumPropertyEditors);
if Assigned(FPropEditor) then
FPropEditor.Edit;

finally
FPropEditor := nil;

end;
end;

end.

Component-Based Development

PART IV
612

18 chpt_13.qxd 11/19/01 12:15 PM Page 612

Packages
CLX components, like VCL components, need to be placed into a package in order to be
installed into the Kylix or Delphi IDEs. However, it is important to note that a compiled
Delphi 6 package containing a CLX component cannot be installed into Kylix. This is because
packages under Windows are implemented as specially compiled DLLs, whereas packages
under Linux are implemented as shared object (.so) files. Fortunately, the format and syntax of
package source files under both platforms is identical.

However, the information that you need to provide in the packages will differ between
Windows and Linux. For example, the requires clause for a Linux runtime package will usu-
ally specify the baseclx and visualclx packages. However, baseclx doesn’t exist in Delphi
6. Under Windows, a runtime package containing CLX components will only require the
visualclx package. Of course, as with VCL packages, CLX design packages will require the
runtime packages containing your new custom CLX components.

Naming Conventions
The CLX components presented in this chapter are contained in the packages described in
Tables 13.1 and 13.2. Table 13.1 shows the BPL files generated under Windows and also lists
the packages required for each custom package. Table 13.2 shows the shared object files gener-
ated under Linux and likewise lists the required packages. The package source files are the
same in both tables. As you can see, we’ve adopted a specific naming convention for package
names.

TABLE 13.1 CLX Packages for Windows (Delphi 6)

Package Source Compiled Version Requires

QddgSamples.dpk QddgSamples60.bpl visualclx

QddgSamples_Dsgn.dpk QddgSamples_Dsgn60.bpl visualclx

designide

QddgSamples

QddgDBSamples.dpk QddgDBSamples60.bpl visualclx

dbrtl

visualdbclx

QddgSamples

QddgDBSamples_Dsgn.dpk QddgDBSamples_Dsgn60.bpl visualclx

QddgSamples_Dsgn

QddgDBSamples

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
613

18 chpt_13.qxd 11/19/01 12:15 PM Page 613

TABLE 13.2 CLX Packages for Linux (Kylix)

Package Source Compiled Version Requires

QddgSamples.dpk bplQddg6Samples.so.6 baseclx

visualclx

QddgSamples_Dsgn.dpk bplQddgSamples_Dsgn.so.6 baseclx

visualclx

designide

QddgSamples

QddgDBSamples.dpk bplQddgDBSamples.so.6 baseclx

visualclx

visualdbclx

dataclx

QddgSamples

QddgDBSamples_Dsgn.dpk bplQddgDBSamples_Dsgn.so.6 baseclx

visualclx

QddgSamples_Dsgn

QddgDBSamples

CLX packages to be used under Windows typically incorporate the product version in the
name. For example, QddgSamples60.bpl indicates that this file is for Delphi 6 and is a Borland
Package Library as noted by the .bpl extension. Under Linux, Borland has chosen to follow
traditional Linux practices in naming shared objects. For example, rather than use an extension
to indicate the type of file, a bpl prefix is used to indicate a package. Borland will occasionally
name some of its design packages with the dcl prefix. However, we discourage this practice
because design packages are more clearly identified by the _Dsgn suffix. In addition, all pack-
ages (runtime and design) under Windows use a .bpl extension. Using a bpl prefix for all
packages under Linux establishes a certain level of consistency. The suffix used for a Linux
shared object is typically .so followed by a version number. The prefix and suffix used in gen-
erating a compiled package are controlled through the package options.

You will also note that the package source files don’t specify a version number. In previous
versions of Delphi, it was common practice to add a suffix to the package name to indicate
which version of the VCL the package required. However, starting in Kylix and Delphi 6,
Borland has added several new options controlling the names used when compiling package. In
the Delphi 6 examples in Table 13.1, the new {$LIBSUFFIX} option is used to specify 60. When
Delphi compiles the package, the suffix is automatically added to the end of the bpl file. In the
Kylix examples in Table 13.2, the {$SOPREFIX} directive specifies bpl, whereas the {$SOVER-
SION} directive specifies 6.

Component-Based Development

PART IV
614

18 chpt_13.qxd 11/19/01 12:15 PM Page 614

Runtime Packages
Listings 13.7 and 13.8 show the source code for the nondata-aware and data-aware runtime
packages containing the components presented in this chapter. Note the use of the conditional
symbols MSWINDOWS and LINUX to specify the appropriate directives and to include the appro-
priate packages in the requires clause. MSWINDOWS is defined when compiling under Delphi 6,
whereas LINUX is defined when compiling under Kylix.

LISTING 13.7 QddgSamples.dpk—Source Code for the NonData-Aware CLX Runtime
Package

package QddgSamples;

{$R *.res}
{$ALIGN 8}
{$ASSERTIONS ON}
{$BOOLEVAL OFF}
{$DEBUGINFO ON}
{$EXTENDEDSYNTAX ON}
{$IMPORTEDDATA ON}
{$IOCHECKS ON}
{$LOCALSYMBOLS ON}
{$LONGSTRINGS ON}
{$OPENSTRINGS ON}
{$OPTIMIZATION ON}
{$OVERFLOWCHECKS OFF}
{$RANGECHECKS OFF}
{$REFERENCEINFO OFF}
{$SAFEDIVIDE OFF}
{$STACKFRAMES OFF}
{$TYPEDADDRESS OFF}
{$VARSTRINGCHECKS ON}
{$WRITEABLECONST ON}
{$MINENUMSIZE 1}
{$IMAGEBASE $400000}
{$DESCRIPTION ‘DDG: CLX Components’}
b
{$IFDEF MSWINDOWS}
{$LIBSUFFIX ‘60’}
{$ENDIF}

{$IFDEF LINUX}
{$SOPREFIX ‘bpl’}
{$SOVERSION ‘6’}
{$ENDIF}

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
615

18 chpt_13.qxd 11/19/01 12:15 PM Page 615

LISTING 13.7 Continued

{$RUNONLY}
{$IMPLICITBUILD OFF}

requires
{$IFDEF LINUX}
baseclx,
{$ENDIF}
visualclx;

contains
QddgSpin in ‘QddgSpin.pas’,
QddgDsnSpn in ‘QddgDsnSpn.pas’,
QddgILSpin in ‘QddgILSpin.pas’;

end.

Component-Based Development

PART IV
616

When specifying platform specific blocks of code, use separate {$IDFEF}..{$ENDIF}
blocks for each platform as illustrated in the package source files. In particular, you
want to avoid constructs such as the following:

{$IFDEF MSWINDOWS}
// Windows specific code here
{$ELSE}
// Linux specific code here
{$ENDIF}

If Borland ever decides to support another platform, the preceding construct will
cause the Linux specific code to be used as long as the platform isn’t Windows.

NOTE

LISTING 13.8 QddgDBSamples.dpk—Source Code for the Data-Aware CLX Runtime
Package

package QddgDBSamples;

{$R *.res}
{$ALIGN 8}
{$ASSERTIONS ON}
{$BOOLEVAL OFF}
{$DEBUGINFO ON}
{$EXTENDEDSYNTAX ON}
{$IMPORTEDDATA ON}
{$IOCHECKS ON}

18 chpt_13.qxd 11/19/01 12:15 PM Page 616

LISTING 13.8 Continued

{$LOCALSYMBOLS ON}
{$LONGSTRINGS ON}
{$OPENSTRINGS ON}
{$OPTIMIZATION ON}
{$OVERFLOWCHECKS OFF}
{$RANGECHECKS OFF}
{$REFERENCEINFO OFF}
{$SAFEDIVIDE OFF}
{$STACKFRAMES OFF}
{$TYPEDADDRESS OFF}
{$VARSTRINGCHECKS ON}
{$WRITEABLECONST ON}
{$MINENUMSIZE 1}
{$IMAGEBASE $400000}
{$DESCRIPTION ‘DDG: CLX Components (Data-Aware)’}

{$IFDEF MSWINDOWS}
{$LIBSUFFIX ‘60’}
{$ENDIF}

{$IFDEF LINUX}
{$SOPREFIX ‘bpl’}
{$SOVERSION ‘6’}
{$ENDIF}

{$RUNONLY}
{$IMPLICITBUILD OFF}

requires
{$IFDEF MSWINDOWS}
dbrtl,
{$ENDIF}

{$IFDEF LINUX}
baseclx,
dataclx,
{$ENDIF}

visualclx,
visualdbclx,
QddgSamples;

contains
QddgDBSpin in ‘QddgDBSpin.pas’;

end.

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
617

18 chpt_13.qxd 11/19/01 12:15 PM Page 617

Design-Time Packages
Although it is possible to put your custom components into a combination runtime/design
package, this approach isn’t recommended. In fact, this approach only works if you don’t have
any design editors included in your package. If you do, your package will require the designide
package, which cannot be redistributed.

The solution is to create separate design packages that handle registering the components con-
tained in your runtime packages. Listings 13.9 and 13.10 show the source code for the non-
data-aware and data-aware design packages, respectively. Again note the use of the conditional
symbols MSWINDOWS and LINUX to specify the appropriate directives and to include the appropri-
ate packages in the requires clause.

LISTING 13.9 QddgSamples_Dsgn.dpk—Source Code for the Nondata-Aware CLX
Design-Time Package

package QddgSamples_Dsgn;

{$R *.res}
{$R ‘QddgSamples_Reg.dcr’}
{$ALIGN 8}
{$ASSERTIONS OFF}
{$BOOLEVAL OFF}
{$DEBUGINFO OFF}
{$EXTENDEDSYNTAX ON}
{$IMPORTEDDATA ON}
{$IOCHECKS ON}
{$LOCALSYMBOLS OFF}
{$LONGSTRINGS ON}
{$OPENSTRINGS ON}
{$OPTIMIZATION ON}
{$OVERFLOWCHECKS OFF}
{$RANGECHECKS OFF}
{$REFERENCEINFO OFF}
{$SAFEDIVIDE OFF}
{$STACKFRAMES OFF}
{$TYPEDADDRESS OFF}
{$VARSTRINGCHECKS ON}
{$WRITEABLECONST ON}
{$MINENUMSIZE 1}
{$IMAGEBASE $400000}
{$DESCRIPTION ‘DDG: CLX Components’}

{$IFDEF MSWINDOWS}
{$LIBSUFFIX ‘60’}
{$ENDIF}

Component-Based Development

PART IV
618

18 chpt_13.qxd 11/19/01 12:15 PM Page 618

LISTING 13.9 Continued

{$IFDEF LINUX}
{$SOPREFIX ‘bpl’}
{$SOVERSION ‘6’}
{$ENDIF}

{$DESIGNONLY}
{$IMPLICITBUILD OFF}

requires
{$IFDEF LINUX}
baseclx,
{$ENDIF}
visualclx,
designide,
QddgSamples;

contains
QddgSamples_Reg in ‘QddgSamples_Reg.pas’,
QddgDsnEdt in ‘QddgDsnEdt.pas’,
QddgRgpEdt in ‘QddgRgpEdt.pas’;

end.

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
619

In order to support both Kylix and Delphi 6 with the same package source files, the
names specified in the requires and contains clauses must match the case of the
actual filename. For example, in the VCL it is common to specify the DesignIDE pack-
age in mixed case. However, under Linux, the designide package uses all lowercase
letters. If mixed case is used in the source file, Kylix won’t be able to locate the
designide.dcp file because DesignIDE.dcp is different from designide.dcp on Linux.

NOTE

LISTING 13.10 QddgDBSamples_Dsgn.dpk—Source Code for the Data-Aware CLX
Design-Time Package

package QddgDBSamples_Dsgn;

{$R *.res}
{$ALIGN 8}
{$ASSERTIONS OFF}
{$BOOLEVAL OFF}
{$DEBUGINFO OFF}

18 chpt_13.qxd 11/19/01 12:15 PM Page 619

LISTING 13.10 Continued

{$EXTENDEDSYNTAX ON}
{$IMPORTEDDATA ON}
{$IOCHECKS ON}
{$LOCALSYMBOLS OFF}
{$LONGSTRINGS ON}
{$OPENSTRINGS ON}
{$OPTIMIZATION ON}
{$OVERFLOWCHECKS OFF}
{$RANGECHECKS OFF}
{$REFERENCEINFO OFF}
{$SAFEDIVIDE OFF}
{$STACKFRAMES OFF}
{$TYPEDADDRESS OFF}
{$VARSTRINGCHECKS ON}
{$WRITEABLECONST ON}
{$MINENUMSIZE 1}
{$IMAGEBASE $400000}
{$DESCRIPTION ‘DDG: CLX Components (Data-Aware)’}

{$IFDEF MSWINDOWS}
{$LIBSUFFIX ‘60’}
{$ENDIF}

{$IFDEF LINUX}
{$SOPREFIX ‘bpl’}
{$SOVERSION ‘6’}
{$ENDIF}

{$DESIGNONLY}
{$IMPLICITBUILD OFF}

requires
{$IFDEF LINUX}
baseclx,
{$ENDIF}
visualclx,
QddgSamples_Dsgn,
QddgDBSamples;

contains
QddgDBSamples_Reg in ‘QddgDBSamples_Reg.pas’;

end.

Component-Based Development

PART IV
620

18 chpt_13.qxd 11/19/01 12:15 PM Page 620

Registration Units
As you can see from the source listings for the design packages, registration units are used to
handle registering all components. As is customary when creating VCL components, these reg-
istration units (QddgSamples_Reg and QddgDBSamples_Reg) are only contained within a design
package. Listing 13.11 shows the source code for the QddgSamples_Reg.pas unit, which is
responsible for registering the nondata-aware components and the TddgRadioGroupEditor
component editor.

LISTING 13.11 QddgSamples_Reg.pas—Registration Unit for Nondata-Aware CLX Sample
Components

{==
QddgSamples_Reg Unit

Registration Unit for all non-data-aware DDG-CLX components.

Copyright © 2001 by Ray Konopka
==}

unit QddgSamples_Reg;

interface

procedure Register;

implementation

uses
Classes, DesignIntf, DesignEditors, QExtCtrls,
QddgSpin, QddgDsnSpn, QddgILSpin,
QddgRgpEdt;

{========================}
{== Register Procedure ==}
{========================}

procedure Register;
begin
{== Register Components ==}

RegisterComponents(‘DDG-CLX’,
[TddgSpinner,

TddgDesignSpinner,
TddgImgListSpinner]);

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
621

18 chpt_13.qxd 11/19/01 12:15 PM Page 621

LISTING 13.11 Continued

{== Register Component Editors ==}

RegisterComponentEditor(TRadioGroup, TddgRadioGroupEditor);
end;

end.

Component Bitmaps
In order to identify your newly created custom CLX component on the Component Palette, you
should create a component bitmap, which is a 16-color bitmap that is 24x24 pixels in size.
The online help for Kylix and Delphi suggest that you create a separate resource file for each
component unit.

However, the Package Editor searches for a matching .dcr file whenever you add a unit to a
package. Unfortunately, the Package Editor does this for both runtime and design packages,
and linking palette bitmaps into a runtime package is pointless because the bitmaps will go
unused and simply waste space.

Therefore, instead of creating separate .dcr files for each component unit, simply create a sin-
gle .dcr file containing all the component bitmaps. Fortunately, resources in Kylix are the
same as those used in Delphi. That is, even though Kylix generates native Linux executables,
the format used to attach resources is the Win32 resource format. As a result, we can use any
resource editor that can create Windows .res files and then simply rename the file with a .dcr
extension. For example, Figure 13.9 shows the QddgSamples_Reg.dcr file being edited in the
Image Editor.

Notice that the name of the resource file is the same as the registration unit. As a result, when
the registration unit is added to the design package, the component resource file is also added.
Furthermore, because the registration unit isn’t used in the runtime packages, the component
bitmaps won’t be linked into them.

As a final comment, don’t underestimate the importance of well-designed bitmaps to represent
your components. The component bitmaps are the first impression users will have of your
components. Unprofessional bitmaps give the impression of unprofessional components. If you
build components for the commercial market, you might want to get a professional graphics
artist to design the bitmaps.

Component-Based Development

PART IV
622

18 chpt_13.qxd 11/19/01 12:15 PM Page 622

FIGURE 13.9
The Image Editor can be used to create DCR files for CLX components.

Summary
You can do several things in your current VCL-based components to aid in porting them to
CLX in the future. First, use existing VCL wrappers wherever possible. For example, use the
TCanvas methods instead of calling GDI functions directly. Override existing event dispatch
methods such as MouseDown() instead of handling the wm_LButtonDown window message.
Linux doesn’t use messages; therefore, the wm_LButtonDown message doesn’t even exist under
Linux. Another helpful technique is to create your own abstraction classes to help isolate plat-
form dependent code.

Although CLX was modeled after the VCL, migrating your existing VCL components to CLX
will definitely require some effort. Platform specific calls such as calls to the Win32 API or to
libc must be eliminated or at least wrapped within platform conditional compilation directives.
However, it is indeed possible to create a custom CLX component using a single source file
that will operate under both Delphi/Windows and Kylix/Linux.

CLX Component Development

CHAPTER 13

13

C
LX

 C
O

M
PO

N
EN

T
D

EV
ELO

PM
EN

T
623

18 chpt_13.qxd 11/19/01 12:15 PM Page 623

18 chpt_13.qxd 11/19/01 12:15 PM Page 624

