
CHAPTER

11
VCL Component Building

IN THIS CHAPTER
• Component Building Basics 430

• Sample Components 459

• TddgButtonEdit—Container
Components 477

16 chpt_11.qxd 11/19/01 12:10 PM Page 429

The ability to easily write custom components in Delphi 6 is a chief productivity advantage
that you wield over other programmers. In most other environments, folks are stuck using the
standard controls available through Windows or else have to use an entirely different set of
complex controls that were developed by somebody else. Being able to incorporate your cus-
tom components into your Delphi applications means that you have complete control over the
application’s user interface. Custom controls give you the final say in your application’s look
and feel.

In Delphi 6, you have the option of writing components for the Delphi VCL, which has existed
since Delphi 1. You can also write components for Delphi’s CLX architecture, which will be
covered in Chapter 13, “CLX Component Development.”

If your forte is component design, you will appreciate all the information this chapter has to
offer. You will learn about all aspects of component design from concept to integration into the
Delphi environment. You will also learn about the pitfalls of component design, as well as
some tips and tricks to developing highly functional and extensible components.

Even if your primary interest is application development and not component design, you will
get a great deal out of this chapter. Incorporating a custom component or two into your pro-
grams is an ideal way to spice up and enhance the productivity of your applications. Invariably,
you will get caught in a situation while writing your application where, of all the components
at your disposal, none is quite right for some particular task. That’s where component design
comes in. You will be able to tailor a component to meet your exact needs, and hopefully
design it smart enough to use again and again in subsequent applications.

Component Building Basics
The following sections teach you the basic skills required to get you started in writing compo-
nents. Then, we show you how to apply those skills by demonstrating how we designed some
useful components.

Deciding Whether to Write a Component
Why go through the trouble of writing a custom control in the first place when it’s probably
less work to make do with an existing component or hack together something quick and dirty
that “will do”? There are a number of reasons to write your own custom control:

• You want to design a new user-interface element that can be used in more than one
application.

• You want to make your application more robust by separating its elements into logical
object-oriented classes.

Component-Based Development

PART IV
430

16 chpt_11.qxd 11/19/01 12:10 PM Page 430

• You cannot find an existing Delphi component or ActiveX control that suits your needs
for a particular situation.

• You recognize a market for a particular component, and you want to create a component
to share with other Delphi developers for fun or profit.

• You want to increase your knowledge of Delphi, VCL internals, and the Win32 API.

One of the best ways to learn how to create custom components is from the people who
invented them. Delphi’s VCL source code is an invaluable resource for component writers, and
it is highly recommended for anyone who is serious about creating custom components. The
VCL source code is included in the Enterprise and Professional versions of Delphi.

Writing custom components can seem like a pretty daunting task, but don’t believe the hype.
Writing a custom component is only as hard or as easy as you make it. Components can be
tough to write, of course, but you also can create very useful components fairly easily.

Component Writing Steps
Assuming that you have already defined a problem and have a component-based solution, here
are the important points in creating a component from concept to deployment:

• First, you need an idea for a useful and hopefully unique component.

• Next, sit down and map out the algorithm for how the component will work.

• Start with the preliminaries—don’t jump right into the component. Ask yourself, “What
do I need up front to make this component work?”

• Try to break up the construction of your component into logical portions. This will not
only modularize and simplify the creation of the component, but it also will help you to
write cleaner, more organized code. Design your component with the thought that some-
one else might try to create a descendant component.

• Test your component in a test project first. You will be sorry if you immediately add it to
the Component Palette.

• Finally, add the component and an optional bitmap to the Component Palette. After a lit-
tle fine-tuning, it will be ready for you to drop into your Delphi applications.

The six basic steps to writing your Delphi component are as follows:

1. Deciding on an ancestor class.

2. Creating the Component Unit.

3. Adding properties, methods, and events to your new component.

4. Testing your component.

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

431

16 chpt_11.qxd 11/19/01 12:10 PM Page 431

5. Registering your component with the Delphi environment.

6. Creating a help file for your component.

In this chapter, we will discuss the first five steps; however, it is beyond the scope of this chap-
ter to get into the topic of writing help files. However, this doesn’t mean that this step is any
less important than the others. We recommend that you look into some of the third-party tools
available that simplify writing help files. Also, Borland provides information on how to do this
in its online help. Look up “Providing Help for Your Component” in the online help for more
information.

Deciding on an Ancestor Class
In Chapter 10, “Component Architecture: VCL and CLX,” we discussed the VCL hierarchy
and the special purposes of the different classes at the different hierarchical levels. We wrote
about four basic components from which your components will descend: standard controls,
custom controls, graphical controls, and non-visual components. For instance, if you need to
simply extend the behavior of an existing Win32 control such as TMemo, you’ll be extending a
standard control. If you need to define an entirely new component class, you’ll be dealing with
a custom control. Graphical controls let you create components that have a visual effect, but
don’t take up Win32 resources. Finally, if you want to create a component that can be edited
from Delphi’s Object Inspector but doesn’t necessarily have a visual characteristic, you’ll be
creating a non-visual component. Different VCL classes represent these diverse types of com-
ponents. You might want to review Chapter 10 unless you’re quite comfortable with these con-
cepts. Table 11.1 gives you a quick reference.

TABLE 11.1 VCL Classes as Component Base Classes

VCL Class Types of Custom Controls

TObject Although classes descending directly from TObject aren’t compo-
nents, strictly speaking, they do merit mention. You will use TObject
as a base class for many things that you don’t need to work with at
design time. A good example is the TIniFile object.

TComponent This is a starting point for many non-visual components. Its forte is
that it offers built-in streaming capability to load and save itself in
the IDE at design time.

TGraphicControl Use this class when you want to create a custom component that has
no window handle. TGraphicControl descendants are drawn on
their parent’s client surface, so they are easier on resources.

TWinControl This is the base class for all components that require a window han-
dle. It provides you with common properties and events specific to
windowed controls.

Component-Based Development

PART IV
432

16 chpt_11.qxd 11/19/01 12:10 PM Page 432

TABLE 11.1 Continued

VCL Class Types of Custom Controls

TCustomControl This class descends from TWinControl. It introduces the concepts of
a canvas and a Paint() method to give you greater control over the
component’s appearance. Use this class for most of your window-
handled custom component needs.

TCustomClassName The VCL contains several classes that don’t publish all their proper-
ties; they leave it up to descendant classes to do. This allows com-
ponent developers to create custom components from the same base
class and to publish only the predefined properties required for each
customized class.

TComponentName This is an existing class such as TEdit, TPanel, or TScrollBox. Use
an already established component as a base class for your class
(such as TEdit), and custom components when you want to extend
them rather than create a new one from scratch. Many of your cus-
tom components will fall into this category.

It is extremely important that you understand these various classes and also the capabilities of
the existing components. The majority of the time, you’ll find that an existing component
already provides most of the functionality you require of your new component. Only by know-
ing the capabilities of existing components will you be able to decide from which component
to derive your new component. We can’t inject this knowledge into your brain from this book.
What we can do is to tell you that you must make every effort to learn about each component
and class within Delphi’s VCL, and the only way to do that is to use it, even if only
experimentally.

Creating a Component Unit
When you have decided on a component from which your new component will descend, you
can go ahead and create a unit for your new component. We’re going to go through the steps of
designing a new component in the next several sections. Because we want to focus on the
steps, and not on component functionality, this component will do nothing other than to illus-
trate these necessary steps.

The component is appropriately named TddgWorthless. TddgWorthless will descend from
TCustomControl and will therefore have both a window handle and the capability to paint
itself. This component will also inherit several properties, methods, and events already belong-
ing to TCustomControl.

The easiest way to get started is to use the Component Expert, shown in Figure 11.1, to create
a component unit.

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

433

16 chpt_11.qxd 11/19/01 12:10 PM Page 433

FIGURE 11.1
The Component Expert.

You invoke the Component Expert by selecting Component, New Component. In the
Component Expert, you enter the component’s ancestor classname, the component’s class-
name, the palette page on which you want the component to appear, and the unit name for the
component. When you click OK, Delphi automatically creates the component unit that has the
component’s type declaration and a register procedure. Listing 11.1 shows the unit created by
Delphi.

LISTING 11.1 Worthless.pas—A Sample Delphi Component

unit Worthless;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs;

type
TddgWorthless = class(TCustomControl)
private
{ Private declarations }

protected
{ Protected declarations }

public
{ Public declarations }

published
{ Published declarations }

end;
procedure Register;
implementation
procedure Register;
begin
RegisterComponents(‘DDG’, [TddgWorthless]);

end;
end.

Component-Based Development

PART IV
434

16 chpt_11.qxd 11/19/01 12:10 PM Page 434

At this point, you can see that TddgWorthless is nothing more than a skeleton component. In
the following sections, you’ll add properties, methods, and events to TddgWorthless.

Creating Properties
In Chapter 10, we discussed using properties with your components. This section shows you
how to add the various types of properties to your components.

Types of Properties
In Chapter 10, we listed the various property types. We’re going to add properties of each of
these types to the TddgWorthless component to illustrate the differences between each type.
Each type of property is edited a bit differently from the Object Inspector. You will examine
each of these types and how they are edited.

Adding Simple Properties to Components
Simple properties refer to numbers, strings, and characters. They can be edited directly by the
user from within the Object Inspector and require no special access method. Listing 11.2
shows the TddgWorthless component with three simple properties.

LISTING 11.2 Simple Properties

TddgWorthless = class(TCustomControl)
private
// Internal Data Storage
FIntegerProp: Integer;
FStringProp: String;
FCharProp: Char;

published
// Simple property types
property IntegerProp: Integer read FIntegerProp write FIntegerProp;
property StringProp: String read FStringProp write FStringProp;
property CharProp: Char read FCharProp write FCharProp;

end;

You should already be familiar with the syntax used here because it was discussed previously
in Chapter 10. Here, you have your internal data storage for the component declared in the
private section. The properties that refer to these storage fields are declared in the published
section, meaning that when you install the component in Delphi, you can edit the properties in
the Object Inspector.

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

435

16 chpt_11.qxd 11/19/01 12:10 PM Page 435

Adding Enumerated Properties to Components
You can edit user-defined enumerated properties and Boolean properties in the Object
Inspector by double-clicking in the Value section or by selecting the property value from a
drop-down list. An example of such a property is the Align property that exists on most visual
components. To create an enumerated property, you must first define the enumerated type as
follows:

TEnumProp = (epZero, epOne, epTwo, epThree);

You then define the internal storage field to hold the value specified by the user. Listing 11.3
shows two enumerated property types for the TddgWorthless component.

LISTING 11.3 Enumerated Properties

TddgWorthless = class(TCustomControl)
private
// Enumerated data types
FEnumProp: TEnumProp;
FBooleanProp: Boolean;

published
property EnumProp: TEnumProp read FEnumProp write FEnumProp;
property BooleanProp: Boolean read FBooleanProp write FBooleanProp;

end;

We’ve excluded the other properties for illustrative purposes. If you were to install this compo-
nent, its enumerated properties would appear in the Object Inspector as shown in Figure 11.2.

Adding Set Properties to Components
Set properties, when edited in the Object Inspector, appear as a set in Pascal syntax. An easier
way to edit them is to expand the properties in the Object Inspector. Each set item then works
in the Object Inspector like a Boolean property. To create a set property for the TddgWorthless
component, we must first define a set type as follows:

TSetPropOption = (poOne, poTwo, poThree, poFour, poFive);
TSetPropOptions = set of TSetPropOption;

Component-Based Development

PART IV
436

When writing components, the convention is to make private field names begin with
the letter F. For components and types in general, give the object or type a name
starting with the letter T. Your code will be much more clear if you follow these sim-
ple conventions.

NOTE

16 chpt_11.qxd 11/19/01 12:10 PM Page 436

FIGURE 11.2
The Object Inspector showing enumerated properties for TddgWorthless.

Here, you first define a range for the set by defining an enumerated type, TSetPropOption.
Then you define the set TSetPropOptions.

You can now add a property of TSetPropOptions to the TddgWorthless component as follows:

TddgWorthless = class(TCustomControl) s
private
FOptions: TSetPropOptions;

published
property Options: TSetPropOptions read FOptions write FOptions;

end;

Figure 11.3 shows how this property looks when expanded in the Object Inspector.

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

437

FIGURE 11.3
The set property in the Object Inspector.

16 chpt_11.qxd 11/19/01 12:10 PM Page 437

Adding Object Properties to Components
Properties can also be objects or other components. For example, the TBrush and TPen proper-
ties of a TShape component are also objects. When a property is an object, it can be expanded
in the Object Inspector so its own properties can also be modified. Properties that are objects
must be descendants of TPersistent so that their published properties can be streamed and
displayed in the Object Inspector.

To define an object property for the TddgWorthless component, you must first define an object
that will serve as this property’s type. This object is shown in Listing 11.4.

LISTING 11.4 TSomeObject Definition

TSomeObject = class(TPersistent)
private
FProp1: Integer;
FProp2: String;

public
procedure Assign(Source: TPersistent);

published
property Prop1: Integer read FProp1 write FProp1;
property Prop2: String read FProp2 write FProp2;

end;

The TSomeObject class descends directly from TPersistent, although it doesn’t have to. As
long as the object from which the new class descends is, itself, a descendant of TPersistent, it
can be used as another object’s property.

We’ve given this class two properties of its own: Prop1 and Prop2, which are both simple
property types. We’ve also added a procedure, Assign(), to TSomeObject, which we’ll discuss
momentarily.

Now, you can add a field of the type TSomeObject to the TddgWorthless component. However,
because this property is an object, it must be created. Otherwise, when the user places a
TddgWorthless component on the form, there won’t be an instance of TSomeObject that the
user can edit. Therefore, it is necessary to override the Create() constructor for
TddgWorthless to create an instance of TSomeObject. Listing 11.5 shows the declaration of
TddgWorthless with its new object property.

LISTING 11.5—Adding Object Properties

TddgWorthless = class(TCustomControl)
private
FSomeObject: TSomeObject;
procedure SetSomeObject(Value: TSomeObject);

Component-Based Development

PART IV
438

16 chpt_11.qxd 11/19/01 12:10 PM Page 438

LISTING 11.5—Continued

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

published
property SomeObject: TSomeObject read FSomeObject write SetSomeObject;

end;

Notice that we’ve included the overridden Create() constructor and Destroy() destructor.
We’ve also declared a write access method, SetSomeObject(), for the SomeObject property. A
write access method is often referred to as a writer method or setter method. Read access
methods are called reader or getter methods. As you might recall from Chapter 10, writer
methods must have one parameter of the same type as the property to which they belong. By
convention, the name of the writer method usually begins with Set.

We’ve defined the TddgWorthless.Create() constructor as follows:

constructor TddgWorthless.Create(AOwner: TComponent);
begin
inherited Create(AOwner);
FSomeObject := TSomeObject.Create;

end;

Here, we first call the inherited Create() constructor and then create the instance of the
TSomeObject class. Because Create() is called both when the user drops the component on
the form at design time and when the application is run, you can be assured that FSomeObject
will always be valid.

You must also override the Destroy() destructor to free the object before you free the
TddgWorthless component. The code to do this follows:

destructor TddgWorthless.Destroy;
begin
FSomeObject.Free;
inherited Destroy;

end;

Now that we’ve shown how to create the instance of TSomeObject, consider what would hap-
pen if the user executes the following code at runtime:

var
MySomeObject: TSomeObject;

begin
MySomeObject := TSomeObject.Create;
ddgWorthless.SomeObjectj := MySomeObject;

end;

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

439

16 chpt_11.qxd 11/19/01 12:10 PM Page 439

If the TddgWorthless.SomeObject property were defined without a writer method like the fol-
lowing, when the user assigns her own object to the SomeObject field, the previous instance to
which FSomeObject referred would be lost:

property SomeObject: TSomeObject read FSomeObject write FSomeObject;

As you might recall from Chapter 2, “The Object Pascal Language,” object instances are really
pointer references to the actual object. When you make an assignment as shown in the preced-
ing example, you refer the pointer to another object instance while the previous object instance
still hangs around. When designing components, you want to avoid having to place conditions
on your users when accessing properties. To prevent this pitfall, foolproof your component by
creating access methods for properties that are objects. These access methods can then ensure
that no resources get lost when the user assigns new values to these properties. The access
method for SomeObject does just that and is shown here:

procedure TddgWorthLess.SetSomeObject(Value: TSomeObject);
begin
if Assigned(Value) then
FSomeObject.Assign(Value);

end;

The SetSomeObject() method calls the FSomeObject.Assign(), passing it the new
TSomeObject reference. TSomeObject.Assign() is implemented as follows:

procedure TSomeObject.Assign(Source: TPersistent);
begin
if Source is TSomeObject then
begin
FProp1 := TSomeObject(Source).Prop1;
FProp2 := TSomeObject(Source).Prop2;
inherited Assign(Source);

end;
end;

In TSomeObject.Assign(), you first ensure that the user has passed in a valid TSomeObject
instance. If so, you then copy the property values from Source accordingly. This illustrates
another technique you’ll see throughout the VCL for assigning objects to other objects. If you
have the VCL source code, you might take a look at the various Assign() methods such as
TBrush and TShape to see how they are implemented. This would give you some ideas on how
to implement them in your components.

Component-Based Development

PART IV
440

16 chpt_11.qxd 11/19/01 12:10 PM Page 440

Adding Array Properties to Components
Some properties lend themselves to being accessed as though they were arrays. That is, they
contain a list of items that can be referenced with an index value. The actual items referenced
can be of any object type. Examples of such properties are TScreen.Fonts, TMemo.Lines, and
TDBGrid.Columns. Such properties require their own property editors. We will get into creating
property editors in Chapter 12, “Advanced VCL Component Building.” Therefore, we will not
go into detail on creating array properties with a list of different object types until later. For
now, we’ll show a simple method for defining a property that can be indexed as though it were
an array of items, yet contains no list at all. We’re going to put aside the TddgWorthless com-
ponent for a moment and instead look at the TddgPlanets component. TddgPlanets contains
two properties: PlanetName and PlanetPosition. PlanetName will be an array property that
returns the name of the planet based on the value of an integer index. PlanetPosition won’t
use an integer index, but rather a string index. If this string is one of the planet names, the
result will be the planet’s position in the solar system.

For example, the following statement will display the string “Neptune” by using the
TddgPlanets.PlanetName property:

ShowMessage(ddgPlanets.PlanetName[8]);

Compare the difference when the sentence From the sun, Neptune is planet number: 8 is
generated from the following statement:

ShowMessage(‘From the sun, Neptune is planet number: ‘+
IntToStr(ddgPlanets.PlanetPosition[‘Neptune’]));

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

441

Never make an assignment to a property in a property’s writer method. For example,
examine the following property declaration:

property SomeProp: integer read FSomeProp write SetSomeProp;
....
procedure SetSomeProp(Value:integer);
begin
SomeProp := Value; // This causes infinite recursion }

end;

Because you are accessing the property itself (not the internal storage field), you
cause the SetSomeProp() method to be called again, which results in a recursive loop.
Eventually, the program will crash with a stack overflow. Always access the internal
storage field in the writer methods of properties.

CAUTION

16 chpt_11.qxd 11/19/01 12:10 PM Page 441

Before we show you this component, we’ll list some key characteristics of array properties that
differ from the other properties we’ve mentioned:

• Array properties are declared with one or more index parameters. These indexes can be
of any simple type. For example, the index can be an integer or a string, but not a record
or a class.

• Both the read and write property access directives must be methods. They cannot be
one of the component’s fields.

• If the array property is indexed by multiple index values, that is, the property represents a
multidimensional array, the access method must include parameters for each index in the
same order as defined by the property.

Now, we’ll get to the actual component shown in Listing 11.6.

LISTING 11.6 Using TddgPlanets to Illustrate Array Properties

unit planets;

interface

uses
Classes, SysUtils;

type

TddgPlanets = class(TComponent)
private
// Array property access methods
function GetPlanetName(const AIndex: Integer): String;
function GetPlanetPosition(const APlanetName: String): Integer;

public
{ Array property indexed by an integer value. This will be the default
array property. }

property PlanetName[const AIndex: Integer]: String
read GetPlanetName; default;

// Array property index by a string value
property PlanetPosition[const APlantetName: String]: Integer

read GetPlanetPosition;
end;

implementation

const

Component-Based Development

PART IV
442

16 chpt_11.qxd 11/19/01 12:10 PM Page 442

LISTING 11.6 Continued

// Declare a constant array containing planet names
PlanetNames: array[1..9] of String[7] =
(‘Mercury’, ‘Venus’, ‘Earth’, ‘Mars’, ‘Jupiter’, ‘Saturn’,
‘Uranus’, ‘Neptune’, ‘Pluto’);

function TddgPlanets.GetPlanetName(const AIndex: Integer): String;
begin
{ Return the name of the planet specified by Index. If Index is
out of the range, then raise an exception }

if (AIndex < 0) or (AIndex > 9) then
raise Exception.Create(‘Wrong Planet number, enter a number 1-9’)

else
Result := PlanetNames[AIndex];

end;

function TddgPlanets.GetPlanetPosition(const APlanetName: String): Integer;
var
i: integer;

begin
Result := 0;
i := 0;
{ Compare PName to each planet name and return the index of the
appropriate position where PName appears in the constant array.
Otherwise return zero. }

repeat
inc(i);

until (i = 10) or (CompareStr(UpperCase(APlanetName),
UpperCase(PlanetNames[i])) = 0);

if i <> 10 then // A Planet name was found
Result := i;

end;

end.

This component gives you an idea of how you would create an array property with both an
integer and string being used as an index. Notice how the value returned from reading the
property’s value is based on the function return value and not a value from a storage field, as is
the case with the other properties. You can refer to the code’s comments for additional explana-
tion on this component.

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

443

16 chpt_11.qxd 11/19/01 12:10 PM Page 443

Default Values
You can give a property a default value by assigning a value to the property in the component’s
constructor. Therefore, if we added the following statement to the constructor of the
TddgWorthless component, its FIntegerProp property would always default to 100 when the
component is first placed onto the form:

FIntegerProp := 100;

This is probably the best place to mention the Default and NoDefault directives for property
declarations. If you’ve looked at Delphi’s VCL source code, you’ve probably noticed that some
property declarations contain the Default directive, as is the case with the TComponent.FTag
property:

property Tag: Longint read FTag write FTag default 0;

Don’t confuse this statement with the default value specified in the component’s constructor
that actually sets the property value. For example, change the declaration of the IntegerProp
property for the TddgWorthless component to read as follows:

property IntegerProp: Integer read FIntegerProp write FIntegerProp default 100;

This statement doesn’t set the value of the property to 100. This only affects whether the prop-
erty value is saved when you save a form containing the TddgWorthless component. If
IntegerProp’s value isn’t 100, the value will be saved to the DFM file. Otherwise, it doesn’t
get saved because 100 is what the property value will be in a newly constructed object prior to
reading its properties from the stream. It is recommended that you use the Default directive
whenever possible because it might speed up the load time of your forms. It is important for
you to realize that the Default directive doesn’t set the value of the property. You must do that
in the component’s constructor as was shown previously.

The NoDefault directive is used to redeclare a property that specifies a default value, so it will
always be written to the stream regardless of its value. For example, you can redeclare your
component to not specify a default value for the Tag property:

TSample = class(TComponent)
published
property Tag NoDefault;

Note that you should never declare anything NoDefault unless you have a specific reason. An
example of such a property is TForm.PixelsPerInch, which must always be stored so that
scaling will work right at runtime. Also, string, floating point, and int64 type properties can-
not declare default values.

Component-Based Development

PART IV
444

16 chpt_11.qxd 11/19/01 12:10 PM Page 444

To change a property’s default value, you redeclare it by using the new default value (but no
reader or writer methods).

Default Array Properties
You can declare an array property so that it is the default property for the component to which
it belongs. This allows the component user to implement the object instance as though it
were an array variable. For example, using the TddgPlanets component, we declared the
TddgPlanets.PlanetName property with the default keyword. By doing this, the component
user isn’t required to use the property name, PlanetName, in order to retrieve a value. One sim-
ply has to place the index next to the object identifier. Therefore, the following two lines of
code will produce the same result:

ShowMessage(ddgPlanets.PlanetName[8]);
ShowMessage(ddgPlanets[8]);

Only one default array property can be declared for an object, and it cannot be overridden in
descendants.

Creating Events
In Chapter 10, we introduced events and told you that events were special properties linked to
code that get executed whenever a particular action occurs. In this section, we’re going to dis-
cuss events in more detail. We’ll show you how events are generated and how you can define
your own event properties for your custom components.

Where Do Events Come From?
The general definition of an event is basically any type of occurrence that might result from
user interaction, the system, or from code logic. The event is linked to some code that responds
to that occurrence. The linkage of the event to code that responds to an event is called an event
property and is provided in the form of a method pointer. The method to which an event prop-
erty points is called an event handler.

For example, when the user clicks the mouse button, a WM_MOUSEDOWN message is sent to the
Win32 system. Win32 passes that message to the control for which the message was intended.
This control can then respond to the message. The control can respond to this event by first
checking to see whether there is any code to execute. It does this by checking to see whether
the event property points to any code. If so, it executes that code, or rather, the event handler.

The OnClick event is just one of the standard event properties defined by Delphi. OnClick and
other event properties each have a corresponding event-dispatching method. This method is
typically a protected method of the component to which it belongs. This method performs the

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

445

16 chpt_11.qxd 11/19/01 12:10 PM Page 445

logic to determine whether the event property refers to any code provided by the user of the
component. For the OnClick property, this would be the Click() method. Both the OnClick
property and the Click() method are defined by TControl as follows:

TControl = class(TComponent)
private
FOnClick: TNotifyEvent;

protected
procedure Click; dynamic;
property OnClick: TNotifyEvent read FOnClick write FOnClick;

end;

Here is the TControl.Click() method:

procedure TControl.Click;
begin
if Assigned(FOnClick) then FOnClick(Self);

end;

One bit of essential information that you must understand is that event properties are nothing
more than method pointers. Notice that the FOnClick property is defined to be a
TNotifyEvent. TNotifyEvent is defined as follows:

TNotifyEvent = procedure(Sender: TObject) of object;

This says that TNotifyEvent is a procedure that takes one parameter, Sender, which is of the
type TObject. The directive, of object, is what makes this procedure become a method. This
means that an additional implicit parameter that you don’t see in the parameter list also gets
passed to this procedure. This is the Self parameter that refers to the object to which this
method belongs. When the Click() method of a component is called, it checks to see if
FOnClick actually points to a method, and if so, calls that method.

As a component writer, you write all the code that defines your event, your event property, and
your dispatching methods. The component user will provide the event handler when using your
component. Your event-dispatching method will check to see whether the user has assigned any
code to your event property and then execute it when code exists.

In Chapter 10, we discussed how event handlers are assigned to event properties either at run-
time or at design time. In the following section, we show you how to create your own events,
event properties, and dispatching methods.

Defining Event Properties
Before you define an event property, you need to determine whether you need a special event
type. It helps to be familiar with the common event properties that exist in the Delphi VCL.
Most of the time, you’ll be able to have your component descend from one of the existing

Component-Based Development

PART IV
446

16 chpt_11.qxd 11/19/01 12:10 PM Page 446

components and just use its event properties, or you might have to surface a protected event
property. If you determine that none of the existing events meet your need, you can define your
own.

As an example, consider the following scenario. Suppose you want a component containing an
event that gets called every half-minute based on the system clock. That is, it gets invoked on
the minute and on the half minute. Well, you can certainly use a TTimer component to check
the system time and then perform some action whenever the time is at the minute or half
minute. However you might want to incorporate this code into your own component and then
make that component available to your users so that all they have to do is add code to your
OnHalfMinute event.

The TddgHalfMinute component shown in Listing 11.7 illustrates how you would design such
a component. More importantly, it shows how you would go about creating your own event
type.

LISTING 11.7 TddgHalfMinute—Event Creation

unit halfmin;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, ExtCtrls;

type
{ Define a procedure for the event handler. The event property will
be of this procedure type. This type will take two parameters, the
object that invoked the event and a TDateTime value to represent
the time that the event occurred. For our component this will be
every half-minute. }

TTimeEvent = procedure(Sender: TObject; TheTime: TDateTime) of object;

TddgHalfMinute = class(TComponent)
private
FTimer: TTimer;
{ Define a storage field to point to the user’s event handler.
The user’s event handler must be of the procedural type
TTimeEvent. }

FOnHalfMinute: TTimeEvent;
FOldSecond, FSecond: Word; // Variables used in the code
{ Define a procedure, FTimerTimer that will be assigned to
FTimer.OnClick. This procedure must be of the type TNotifyEvent
which is the type of TTimer.OnClick. }

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

447

16 chpt_11.qxd 11/19/01 12:10 PM Page 447

LISTING 11.7 Continued

procedure FTimerTimer(Sender: TObject);
protected
{ Define the dispatching method for the OnHalfMinute event. }
procedure DoHalfMinute(TheTime: TDateTime); dynamic;

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

published
// Define the actual property that will show in the Object Inspector
property OnHalfMinute: TTimeEvent read FOnHalfMinute write FOnHalfMinute;

end;

implementation

constructor TddgHalfMinute.Create(AOwner: TComponent);
{ The Create constructor, creates the TTimer instanced for FTimer. It
then sets up the various properties of FTimer, including its OnTimer
event handler which is TddgHalfMinute’s FTimerTimer() method. Notice
that FTimer.Enabled is set to true only if the component is running
and not while the component is in design mode. }

begin
inherited Create(AOwner);
// If the component is in design mode, do not enable FTimer.
if not (csDesigning in ComponentState) then
begin
FTimer := TTimer.Create(self);
FTimer.Enabled := True;
// Set up the other properties, including the FTimer.OnTimer event handler
FTimer.Interval := 500;
FTimer.OnTimer := FTimerTimer;
end;

end;

destructor TddgHalfMinute.Destroy;
begin
FTimer.Free;
inherited Destroy;

end;

procedure TddgHalfMinute.FTimerTimer(Sender: TObject);
{ This method serves as the FTimer.OnTimer event handler and is assigned
to FTimer.OnTimer at run-time in TddgHalfMinute’s constructor.

Component-Based Development

PART IV
448

16 chpt_11.qxd 11/19/01 12:10 PM Page 448

LISTING 11.7 Continued

This method gets the system time, and then determines whether or not
the time is on the minute, or on the half-minute. If either of these
conditions are true, it calls the OnHalfMinute dispatching method,
DoHalfMinute. }

var
DT: TDateTime;
Temp: Word;

begin
DT := Now; // Get the system time.
FOldSecond := FSecond; // Save the old second.
// Get the time values, needed is the second value
DecodeTime(DT, Temp, Temp, FSecond, Temp);

{ If not the same second when this method was last called, and if
it is a half minute, call DoOnHalfMinute. }

if FSecond <> FOldSecond then
if ((FSecond = 30) or (FSecond = 0)) then
DoHalfMinute(DT)

end;

procedure TddgHalfMinute.DoHalfMinute(TheTime: TDateTime);
{ This method is the dispatching method for the OnHalfMinute event.
it checks to see if the user of the component has attached an
event handler to OnHalfMinute and if so, calls that code. }

begin
if Assigned(FOnHalfMinute) then
FOnHalfMinute(Self, TheTime);

end;

end.

When creating your own events, you must determine what information you want to provide to
users of your component as a parameter in the event handler. For example, when you create an
event handler for the TEdit.OnKeyPress event, your event handler looks like the following
code:

procedure TForm1.Edit1KeyPress(Sender: TObject; var Key: Char);
begin
end;

Not only do you get a reference to the object that caused the event, but you also get a Char
parameter specifying the key that was pressed. Deep in the Delphi VCL, this event occurred as

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

449

16 chpt_11.qxd 11/19/01 12:11 PM Page 449

a result of a WM_CHAR Win32 message that drags along some additional information relating to
the key pressed. Delphi takes care of extracting the necessary data and making it available to
component users as event handler parameters. One of the nice things about the whole scheme
is that it enables component writers to take information that might be somewhat complex to
understand and make it available to component users in a much more understandable and easy-
to-use format.

Notice the var parameter in the preceding Edit1KeyPress() method. You might be wondering
why this method wasn’t declared as a function that returns a Char type instead of a procedure.
Although method types can be functions, you shouldn’t declare events as functions because it
will introduce ambiguity; when you refer to a method pointer that is a function, you can’t
know whether you’re referring to the function result or to the function pointer value itself. By
the way, one function event in the VCL slipped past the developers from the Delphi 1 days,
and now it must remain. This event is the TApplication.OnHelp event.

Looking at Listing 11.7, you’ll see that we’ve defined the procedure type TOnHalfMinute as
this:

TTimeEvent = procedure(Sender: TObject; TheTime: TDateTime) of object;

This procedure type defines the procedure type for the OnHalfMinute event handler. Here, we
decided that we want the user to have a reference to the object causing the event to occur and
the TDateTime value of when the event occurred.

The FOnHalfMinute storage field is the reference to the user’s event handler and is surfaced to
the Object Inspector at design time through the OnHalfMinute property.

The basic functionality of the component uses a TTimer object to check the seconds value
every half second. If the seconds value is 0 or 30, it invokes the DoHalfMinute() method,
which is responsible for checking for the existence of an event handler and then calling it.
Much of this is explained in the code’s comments, which you should read over.

After installing this component to Delphi’s Component Palette, you can place the component
on the form and add the following event handler to the OnHalfMinute event:

procedure TForm1.ddgHalfMinuteHalfMinute(Sender: TObject; TheTime: TDateTime);
begin
ShowMessage(‘The Time is ‘+TimeToStr(TheTime));

end;

This should illustrate how your newly defined event type becomes an event handler.

Component-Based Development

PART IV
450

16 chpt_11.qxd 11/19/01 12:11 PM Page 450

Creating Methods
Adding methods to components is no different from adding methods to other objects. However,
there are a few guidelines that you should always take into account when designing compo-
nents.

No Interdependencies!
One of the key goals behind creating components is to simplify the use of the component for
the end user. Therefore, you will want to avoid any method interdependencies as much as pos-
sible. For example, you never want to force the user to have to call a particular method in order
to use the component, and methods shouldn’t have to be called in any particular order. Also,
methods called by the user shouldn’t place the component in a state that makes other events or
methods invalid. Finally, you will want to give your methods meaningful names so that the
user doesn’t have to try to guess what a method does.

Method Exposure
Part of designing a component is to know what methods to make private, public, or protected.
You must take into account not only users of your component, but also those who might use
your component as an ancestor for yet another custom component. Table 11.2 will help you
decide what goes where in your custom component.

TABLE 11.2 Private, Protected, Public, or Published?

Directive What Goes There?

Private Instance variables and methods that you don’t want the descendant type to be
able to access or modify. Typically, you will give access to some private
instance variables through properties that have read and write directives set
in such a way as to help prevent users from shooting themselves in the foot.
Therefore, you want to avoid giving access to any methods that are property-
implementation methods.

Protected Instance variables, methods, and properties that you want descendant classes
to be able to access and modify—but not users of your class. It is a common
practice to place properties in the protected section of a base class for
descendant classes to publish at their discretion.

Public Methods and properties that you want to have accessible to any user of your
class. If you have properties that you want to be accessible at runtime, but
not at design time, this is the place to put them.

Published Properties that you want to be placed on the Object Inspector at design time.
Runtime Type Information (RTTI) is generated for all properties in this section.

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

451

16 chpt_11.qxd 11/19/01 12:11 PM Page 451

Constructors and Destructors
When creating a new component, you have the option of overriding the ancestor component’s
constructor and defining your own. You should keep a few precautions in mind when doing so.

Overriding Constructors
Always make sure to include the override directive when declaring a constructor on a
TComponent descendant class. Here’s an example:

TSomeComopnent = class(TComponent)
private
{ Private declarations }

protected
{ Protected declarations }

public
constructor Create(AOwner: TComponent); override;

published
{ Published declarations }

end;

Component-Based Development

PART IV
452

The Create() constructor is made virtual at the TComponent level. Non-component
classes have static constructors that are invoked from within the constructor of
TComponent classes. Therefore, if you are creating a non-component, descendant class
such as the following, the constructor cannot be overridden because it is not virtual:

TMyObject = class(TPersistant)

You simply redeclare the constructor in this instance.

NOTE

Although not adding the override directive is syntactically legal, it can cause problems when
using your component. This is because when you use the component (both at design time and
at runtime), the non-virtual constructor won’t be called by code that creates the component
through a class reference (such as the streaming system).

Also, be sure that you call the inherited constructor inside your constructor’s code:

constructor TSomeComponent.Create(AOwner: TComponent);
begin
inherited Create(AOwner);
// Place your code here.

end;

16 chpt_11.qxd 11/19/01 12:11 PM Page 452

Design-Time Behavior
Remember that your component’s constructor is called whenever the component is created.
This includes the component’s design-time creation—when you place it on the form. You
might want to prevent certain actions from occurring when the component is being designed.
For example, in the TddgHalfMinute component, you created a TTimer component inside the
component’s constructor. Although it doesn’t hurt to do this, it can be avoided by making sure
that the TTimer is only created at runtime.

You can check the ComponentState property of a component to determine its current state.
Table 11.3 lists the various component states as shown in Delphi 6’s online help.

TABLE 11.3 Component State Values

Flag Component State

csAncestor Set if the component was introduced in an ancestor form. Only set if
csDesigning is also set.

csDesigning Design mode, meaning that it is in a form being manipulated by a form
designer.

csDestroying The component is about to be destroyed.

csFixups Set if the component is linked to a component in another form that
hasn’t yet been loaded. This flag is cleared when all pending fixups are
resolved.

csLoading Loading from a filer object.

csReading Reading its property values from a stream.

csUpdating The component is being updated to reflect changes in an ancestor form.
Only set if csAncestor is also set.

csWriting Writing its property values to a stream.

You will mostly use the csDesigning state to determine whether your component is in design
mode. You can do this with the following statement:

inherited Create(AOwner);
if csDesigning in ComponentState then
{ Do your stuff }

You should note that the csDesigning state is uncertain until after the inherited constructor has
been called and the component is being created with an owner. This is almost always the case
in the IDE form designer.

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

453

16 chpt_11.qxd 11/19/01 12:11 PM Page 453

Overriding Destructors
The general guideline to follow when overriding destructors is to make sure that you call the
inherited destructor only after you free up resources allocated by your component, not before.
The following code illustrates this:

destructor TMyComponent.Destroy;
begin
FTimer.Free;
MyStrings.Free;
inherited Destroy;

end;

Component-Based Development

PART IV
454

As a rule of thumb, when you override constructors, you usually call the inherited
constructor first, and when you override destructors, you usually call the inherited
destructor last. This ensures that the class has been set up before you modify it and
that all dependent resources have been cleaned up before you dispose of a class.

There are exceptions to this rule, but you generally should stick with it unless you
have a good reason not to.

TIP

Registering Your Component
Registering the component tells Delphi which component to place on the Component Palette.
If you used the Component Expert to design your component, you don’t have to do anything
here because Delphi has already generated the code for you. However, if you are creating your
component manually, you’ll need to add the Register() procedure to your component’s unit.

All you have to do is add the procedure Register() to the interface section of the compo-
nent’s unit.

The Register procedure simply calls the RegisterComponents() procedure for every compo-
nent that you are registering in Delphi. The RegisterComponents() procedure takes two para-
meters: the name of the page on which to place the components, and an array of component
types. Listing 11.8 shows how to do this.

LISTING 11.8 Registering Components

Unit MyComp;
interface
type
TMyComp = class(TComponent)
...
end;

16 chpt_11.qxd 11/19/01 12:11 PM Page 454

LISTING 11.8 Continued

TOtherComp = class(TComponent)
...
end;

procedure Register;
implementation
{ TMyComp methods }
{ TOtherCompMethods }
procedure Register;
begin
RegisterComponents(‘DDG’, [TMyComp, TOtherComp]);

end;
end.

The preceding code registers the components TMyComp and TOtherComp and places them on
Delphi’s Component Palette on a page labeled DDG.

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

455

The Component Palette
In Delphi 1 and 2, Delphi maintained a single component library file that stored all
components, icons, and editors for design-time usage. Although it was sometimes
convenient to have everything dealing with design in one file, it could easily get
unwieldy when many components were placed in the component library. Addition-
ally, the more components you added to the palette, the longer it would take to
rebuild the component library when adding new components.

Thanks to packages, introduced with Delphi 3, you can split up your components into
several design packages. Although it’s slightly more complex to deal with multiple
files, this solution is significantly more configurable. The time required to rebuild a
package after adding a component is a fraction of the time it took to rebuild the
component library.

By default, new components are added to a package called DclUser6, but you can
create and install new design packages using the File, New, Package menu item.
The CD-ROM accompanying this book contains a pre-built design package called
DdgDT6.dpk, which includes the components from this book. The runtime package is
named DdgRT6.dpk.

If your design-time support involves anything more than a call to RegisterComponents()
(like property editors or component editors or expert registrations), you should move
the Register() procedure and the information it registers into a unit separate from
your component. The reason for this is that if you compile your all-in-one unit into a
runtime package, and your all-in-one unit’s Register procedure refers to classes or
procedures that exist only in design-time IDE packages, your runtime package is unus-
able. Design-time support should be packaged separately from runtime material.

16 chpt_11.qxd 11/19/01 12:11 PM Page 455

Testing the Component
Although it’s very exciting when you finally write a component and are in the testing stages,
don’t get carried away by trying to add your component to the Component Palette before it has
been debugged sufficiently. You should do all preliminary testing with your component by cre-
ating a project that creates and uses a dynamic instance of the component. The reason for this
is that your component lives inside the IDE when it is used at design time. If your component
contains a bug that corrupts memory, for example, it might crash the IDE as well. Listing 11.9
depicts a unit for testing the TddgExtendedMemo component that will be created later in this
chapter. This project can be found on the CD in the project TestEMem.dpr.

LISTING 11.9 Testing the TddgExtendedMemo Component

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, exmemo, ExtCtrls;

type

TMainForm = class(TForm)
btnCreateMemo: TButton;
btnGetRowCol: TButton;
btnSetRowCol: TButton;
edtColumn: TEdit;
edtRow: TEdit;
Panel1: TPanel;
procedure btnCreateMemoClick(Sender: TObject);
procedure btnGetRowColClick(Sender: TObject);
procedure btnSetRowColClick(Sender: TObject);

public
EMemo: TddgExtendedMemo; // Declare the component.
procedure OnScroll(Sender: TObject);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

Component-Based Development

PART IV
456

16 chpt_11.qxd 11/19/01 12:11 PM Page 456

LISTING 11.9 Continued

procedure TMainForm.btnCreateMemoClick(Sender: TObject);
begin
{ Dynamically create the component. Make sure to make the appropriate
property assignments so that the component can be used normally.
These assignments depend on the component being tested }

if not Assigned(EMemo) then
begin
EMemo := TddgExtendedMemo.Create(self);
EMemo.Parent := Panel1;
EMemo.ScrollBars := ssBoth;
EMemo.WordWrap := True;
EMemo.Align := alClient;
// Assign event handlers to untested events.
EMemo.OnVScroll := OnScroll;
EMemo.OnHScroll := OnScroll;

end;
end;

{ Write whatever methods are required to test the run-time behavior
of the component. This includes methods to access each of the
new properties and methods belonging to the component.

Also, create event handlers for user-defined events so that you can
test them. Since you’re creating the comoponent at run-time, you
have to manually assign the event handlers as was done in the
above Create() constructor.

}
procedure TMainForm.btnGetRowColClick(Sender: TObject);
begin
if Assigned(EMemo) then
ShowMessage(Format(‘Row: %d Column: %d’, [EMemo.Row, EMemo.Column]));

EMemo.SetFocus;
end;

procedure TMainForm.btnSetRowColClick(Sender: TObject);
begin
if Assigned(EMemo) then
begin
EMemo.Row := StrToInt(edtRow.Text);
EMemo.Column := StrToInt(edtColumn.Text);
EMemo.SetFocus;

end;
end;

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

457

16 chpt_11.qxd 11/19/01 12:11 PM Page 457

LISTING 11.9 Continued

procedure TMainForm.OnScroll(Sender: TObject);
begin
MessageBeep(0);

end;

end.

Keep in mind that even testing the component at design time doesn’t mean that your compo-
nent is foolproof. Some design-time behavior can still raise havoc with the Delphi IDE, such as
not calling the inherited Create() constructor.

Component-Based Development

PART IV
458

You cannot assume that your component has been created and set up by the design-
time environment. Your component must be fully usable after only the Create() con-
structor has executed. Therefore, you shouldn’t treat the Loaded() method as part of
the component construction process. The Loaded() method is called only when the
component is loaded from a stream—such as when it is placed in a form built at
design time. Loaded() marks the end of the streaming process. If your component
was simply created (not streamed), Loaded() isn’t called.

NOTE

Providing a Component Icon
No custom component would be complete without its own icon for the Component Palette. To
create one of these icons, use Delphi’s Image Editor (or your favorite bitmap editor) to create
a 24×24 bitmap on which you will draw the component’s icon. This bitmap must be stored
within a DCR file. A file with a .dcr extension is nothing more than a renamed RES file.
Therefore, if you store your icon in a RES file, you can simply rename it to a DCR file.

Even if you have a 256 or higher color driver, save your Component Palette icon as a
16-color bitmap if you plan on releasing the component to others. Your 256-color
bitmaps most likely will look awful on machines running 16-color drivers.

TIP

After you create the bitmap in the DCR file, give the bitmap the same name as the classname of
your component—in all capital letters. Save the resource file as the same name as your compo-
nent’s unit with a .dcr extension. Therefore, if your component is named TXYZComponent, the

16 chpt_11.qxd 11/19/01 12:11 PM Page 458

bitmap name is TXYZCOMPONENT. If the component’s unit name is XYZCOMP.PAS, name the
resource file XYZCOMP.DCR. Place this file in the same directory as the unit, and when you
recompile the unit, the bitmap is linked into the component library automatically.

Sample Components
The remaining sections of this chapter give some real examples of component creation. The
components created here serve two primary purposes. First, they illustrate the techniques
explained in the first part of this chapter. Second, you can actually use these components in
your applications. You might even decide to extend their functionality to meet your needs.

Extending Win32 Component Wrapper Capabilities
In some cases, you might want to extend the functionality of existing components, especially
those components that wrap the Win32 control classes. We’re going to show you how to do
this by creating two components that extend the behavior of the TMemo control and the
TListBox control.

TddgExtendedMemo: Extending the TMemo Component
Although the TMemo component is quite robust, there are a few features it doesn’t make avail-
able that would be useful. For starters, it’s not capable of providing the caret position in terms
of the row and column on which the caret sits. We’ll extend the TMemo component to provide
these as public properties.

Additionally, it is sometimes convenient to perform some action whenever the user touches the
TMemo’s scrollbars. You’ll create events to which the user can attach code whenever these
scrolling events occur.

The source code for the TddgExtendedMemo component is shown in Listing 11.10.

LISTING 11.10 ExtMemo.pas—The Source for the TddgExtendedMemo Component

unit ExtMemo;

interface

uses
Windows, Messages, Classes, StdCtrls;

type

TddgExtendedMemo = class(TMemo)
private
FRow: Longint;

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

459

16 chpt_11.qxd 11/19/01 12:11 PM Page 459

LISTING 11.10 Continued

FColumn: Longint;
FOnHScroll: TNotifyEvent;
FOnVScroll: TNotifyEvent;
procedure WMHScroll(var Msg: TWMHScroll); message WM_HSCROLL;
procedure WMVScroll(var Msg: TWMVScroll); message WM_VSCROLL;
procedure SetRow(Value: Longint);
procedure SetColumn(Value: Longint);
function GetRow: Longint;
function GetColumn: Longint;

protected
// Event dispatching methods
procedure HScroll; dynamic;
procedure VScroll; dynamic;

public
property Row: Longint read GetRow write SetRow;
property Column: Longint read GetColumn write SetColumn;

published
property OnHScroll: TNotifyEvent read FOnHScroll write FOnHScroll;
property OnVScroll: TNotifyEvent read FOnVScroll write FOnVScroll;

end;

implementation

procedure TddgExtendedMemo.WMHScroll(var Msg: TWMHScroll);
begin
inherited;
HScroll;

end;

procedure TddgExtendedMemo.WMVScroll(var Msg: TWMVScroll);
begin
inherited;
VScroll;

end;

procedure TddgExtendedMemo.HScroll;
{ This is the OnHScroll event dispatch method. It checks to see
if OnHScroll points to an event handler and calls it if it does. }

begin
if Assigned(FOnHScroll) then
FOnHScroll(self);

end;

Component-Based Development

PART IV
460

16 chpt_11.qxd 11/19/01 12:11 PM Page 460

LISTING 11.10 Continued

procedure TddgExtendedMemo.VScroll;
{ This is the OnVScroll event dispatch method. It checks to see
if OnVScroll points to an event handler and calls it if it does. }

begin
if Assigned(FOnVScroll) then
FOnVScroll(self);

end;

procedure TddgExtendedMemo.SetRow(Value: Longint);
{ The EM_LINEINDEX returns the character position of the first
character in the line specified by wParam. The Value is used for
wParam in this instance. Setting SelStart to this return value
positions the caret on the line specified by Value. }

begin
SelStart := Perform(EM_LINEINDEX, Value, 0);
FRow := SelStart;

end;

function TddgExtendedMemo.GetRow: Longint;
{ The EM_LINEFROMCHAR returns the line in which the character specified
by wParam sits. If -1 is passed as wParam, the line number at which
the caret sits is returned. }

begin
Result := Perform(EM_LINEFROMCHAR, -1, 0);

end;

procedure TddgExtendedMemo.SetColumn(Value: Longint);
begin
{ Get the length of the current line using the EM_LINELENGTH
message. This message takes a character position as WParam.
The length of the line in which that character sits is returned. }

FColumn := Perform(EM_LINELENGTH, Perform(EM_LINEINDEX, GetRow, 0), 0);
{ If the FColumn is greater than the value passed in, then set
FColumn to the value passed in }

if FColumn > Value then
FColumn := Value;

// Now set SelStart to the newly specified position
SelStart := Perform(EM_LINEINDEX, GetRow, 0) + FColumn;

end;

function TddgExtendedMemo.GetColumn: Longint;
begin
{ The EM_LINEINDEX message returns the line index of a specified
character passed in as wParam. When wParam is -1 then it

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

461

16 chpt_11.qxd 11/19/01 12:11 PM Page 461

LISTING 11.10 Continued

returns the index of the current line. Subtracting SelStart from this
value returns the column position }

Result := SelStart - Perform(EM_LINEINDEX, -1, 0);
end;

end.

We’ll discuss adding the capability to provide row and column information to TddgExtendedMemo.
Notice that we’ve added two private fields to the component, FRow and FColumn. These fields
will hold the row and column of the TddgExtendedMemo’s caret position. We’ve also provided
the Row and Column public properties. These properties are made public because there’s really
no use for them at design time. The Row and Column properties have both reader and writer
access methods. For the Row property, these access methods are GetRow() and SetRow(). The
Column access methods are GetColumn() and SetColumn(). For all practical purposes, you
probably could do away with the FRow and FColumn storage fields because the values for Row
and Column are provided through access methods. However, we’ve left them there because it
offers the opportunity to extend this component.

The four access methods make use of various EM_XXXX Messages. The code comments explain
what is going on in each method and how these messages are used to provide Row and Column
information for the component. The TddgExtendedMemo component also provides two new
events: OnHScroll and OnVScroll. The OnHScroll event occurs whenever the user clicks the
horizontal scrollbar of the control. Likewise, the OnVScroll occurs when the user clicks the
vertical scrollbar. To surface such events, you have to capture the WM_HSCROLL and WM_VSCROLL
Win32 messages that are passed to the control whenever the user clicks either scrollbar. Thus,
you’ve created the two message handlers: WMHScroll() and WMVScroll(). These two message
handlers call the event-dispatching methods HScroll() and VScroll(). These methods are
responsible for checking whether the component user has provided event handlers for the
OnHScroll and OnVScroll events and then calling those event handlers. If you’re wondering
why we didn’t just perform this check in the message handler methods, it’s because often times
you want to be able to invoke an event handler as a result of a different action, such as when
the user changes the caret position.

You can install and use the TddgExtendedMemo with your applications. You might even con-
sider extending this component; for example, whenever the user changes the caret position, a
WM_COMMAND message is sent to the control’s owner. The HiWord(wParam) carries a notification
code indicating the action that occurred. This code would have the value of EN_CHANGE, which
stands for edit-notification message change. It is possible to have your component subclass its
parent and capture this message in the parent’s window procedure. It can then automatically

Component-Based Development

PART IV
462

16 chpt_11.qxd 11/19/01 12:11 PM Page 462

update the FRow and FColumn fields. Subclassing is an altogether different and advanced topic
that is discussed later.

TddgTabbedListBox—Extending the TListBox Component
VCL’s TListbox component is merely an Object Pascal wrapper around the standard Win32
API LISTBOX control. Although it does a fair job encapsulating most of that functionality, there
is a little bit of room for improvement. This section takes you through the steps in creating a
custom component based on TListbox.

The Idea
The idea for this component, like most, was born out of necessity. A list box was needed with
the capability to use tab stops (which is supported in the Win32 API, but not in a TListbox),
and a horizontal scrollbar was needed to view strings that were longer than the list box width
(also supported by the API but not a TListbox). This component will be called a
TddgTabListbox.

The plan for the TddgTabListbox component isn’t terribly complex; We did this by creating a
TListbox descendant component containing the correct field properties, overridden methods,
and new methods to achieve the desired behavior.

The Code
When creating a scrollable list box with tab stops you must include specific window styles in
the TddgTabListbox’s style when the listbox window is created. The window styles needed
are lbs_UseTabStops for tabs and ws_HScroll to allow a horizontal scrollbar. Whenever you
add window styles to a descendant of TWinControl, do so by overriding the CreateParams()
method, as shown in the following code:

procedure TddgTabListbox.CreateParams(var Params: TCreateParams);
begin
inherited CreateParams(Params);
Params.Style := Params.Style or lbs_UseTabStops or ws_HScroll;

end;

To set the tab stops, the TddgTabListbox performs an lb_SetTabStops message, passing the
number of tab stops and a pointer to an array of tabs as the wParam and lParam (these two
variables will be stored in the class as FNumTabStops and FTabStops). The only catch is that
listbox tab stops are handled in a unit of measure called dialog box units. Because dialog box
units don’t make sense for the Delphi programmer, you will surface tabs only in pixels. With
the help of the PixDlg.pas unit shown in Listing 11.11, you can convert back and forth
between dialog box units and screen pixels in both the X and Y planes.

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

463

16 chpt_11.qxd 11/19/01 12:11 PM Page 463

LISTING 11.11 The Source Code for PixDlg.pas

unit Pixdlg;

interface

function DialogUnitsToPixelsX(DlgUnits: word): word;
function DialogUnitsToPixelsY(DlgUnits: word): word;
function PixelsToDialogUnitsX(PixUnits: word): word;
function PixelsToDialogUnitsY(PixUnits: word): word;

implementation
uses WinProcs;

function DialogUnitsToPixelsX(DlgUnits: word): word;
begin
Result := (DlgUnits * LoWord(GetDialogBaseUnits)) div 4;

end;

Component-Based Development

PART IV
464

CreateParams()

Whenever you need to modify any of the parameters—such as style or window
class—that are passed to the CreateWindowEx() API function, you should do so in the
CreateParams() method. CreateWindowEx() is the function used to create the
window handle associated with a TWinControl descendant. By overriding
CreateParams(), you can control the creation of a window on the API level.

CreateParams accepts one parameter of type TCreateParams, which follows:

TCreateParams = record
Caption: PChar;
Style: Longint;
ExStyle: Longint;
X, Y: Integer;
Width, Height: Integer;
WndParent: HWnd;
Param: Pointer;
WindowClass: TWndClass;
WinClassName: array[0..63] of Char;

end;

As a component writer, you will override CreateParams() frequently—whenever you
need to control the creation of a component on the API level. Make sure that you call
the inherited CreateParams() first in order to fill up the Params record for you.

16 chpt_11.qxd 11/19/01 12:11 PM Page 464

LISTING 11.11 Continued

function DialogUnitsToPixelsY(DlgUnits: word): word;
begin
Result := (DlgUnits * HiWord(GetDialogBaseUnits)) div 8;

end;

function PixelsToDialogUnitsX(PixUnits: word): word;
begin
Result := PixUnits * 4 div LoWord(GetDialogBaseUnits);

end;

function PixelsToDialogUnitsY(PixUnits: word): word;
begin
Result := PixUnits * 8 div HiWord(GetDialogBaseUnits);

end;

end.

When you know the tab stops, you can calculate the extent of the horizontal scrollbar. The
scrollbar should extend at least to the end of the longest string in the listbox. Luckily, the
Win32 API provides a function called GetTabbedTextExtent() that retrieves just the informa-
tion you need. When you know the length of the longest string, you can set the scrollbar range
by performing the lb_SetHorizontalExtent message, passing the desired extent as the
wParam.

You also need to write message handlers for some special Win32 messages. In particular, you
need to handle the messages that control inserting and deleting because you need to be able to
measure the length of any new string or know when a long string has been deleted. The mes-
sages you’re concerned with are lb_AddString, lb_InsertString, and lb_DeleteString.
Listing 11.12 contains the source code for the LbTab.pas unit, which contains the
TddgTabListbox component.

LISTING 11.12 LbTab.pas—The TddgTabListBox

unit Lbtab;

interface

uses
SysUtils, Windows, Messages, Classes, Controls, StdCtrls;

type

EddgTabListboxError = class(Exception);

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

465

16 chpt_11.qxd 11/19/01 12:11 PM Page 465

LISTING 11.12 Continued

TddgTabListBox = class(TListBox)
private
FLongestString: Word;
FNumTabStops: Word;
FTabStops: PWord;
FSizeAfterDel: Boolean;
function GetLBStringLength(S: String): word;
procedure FindLongestString;
procedure SetScrollLength(S: String);
procedure LBAddString(var Msg: TMessage); message lb_AddString;
procedure LBInsertString(var Msg: TMessage); message lb_InsertString;
procedure LBDeleteString(var Msg: TMessage); message lb_DeleteString;

protected
procedure CreateParams(var Params: TCreateParams); override;

public
constructor Create(AOwner: TComponent); override;
procedure SetTabStops(A: array of word);

published
property SizeAfterDel: Boolean read FSizeAfterDel

➥ write FSizeAfterDel default True;
end;

implementation

uses PixDlg;

constructor TddgTabListBox.Create(AOwner: TComponent);
begin
inherited Create(AOwner);
FSizeAfterDel := True;
{ set tab stops to Windows defaults... }
FNumTabStops := 1;
GetMem(FTabStops, SizeOf(Word) * FNumTabStops);
FTabStops^ := DialogUnitsToPixelsX(32);

end;

procedure TddgTabListBox.SetTabStops(A: array of word);
{ This procedure sets the listbox’s tabstops to those specified
in the open array of word, A. New tabstops are in pixels, and must
be in ascending order. An exception will be raised if new tabs
fail to set. }

var
i: word;
TempTab: word;
TempBuf: PWord;

Component-Based Development

PART IV
466

16 chpt_11.qxd 11/19/01 12:11 PM Page 466

LISTING 11.12 Continued

begin
{ Store new values in temps in case exception occurs in setting tabs }
TempTab := High(A) + 1; // Figure number of tabstops
GetMem(TempBuf, SizeOf(A)); // Allocate new tabstops
Move(A, TempBuf^, SizeOf(A));// copy new tabstops }
{ convert from pixels to dialog units, and... }
for i := 0 to TempTab - 1 do
A[i] := PixelsToDialogUnitsX(A[i]);

{ Send new tabstops to listbox. Note that we must use dialog units. }
if Perform(lb_SetTabStops, TempTab, Longint(@A)) = 0 then
begin
{ if zero, then failed to set new tabstops, free temp
tabstop buffer and raise an exception }

FreeMem(TempBuf, SizeOf(Word) * TempTab);
raise EddgTabListboxError.Create(‘Failed to set tabs.’)

end
else begin
{ if nonzero, then new tabstops set okay, so
Free previous tabstops }

FreeMem(FTabStops, SizeOf(Word) * FNumTabStops);
{ copy values from temps... }
FNumTabStops := TempTab; // set number of tabstops
FTabStops := TempBuf; // set tabstop buffer
FindLongestString; // reset scrollbar
Invalidate; // repaint

end;
end;

procedure TddgTabListBox.CreateParams(var Params: TCreateParams);
{ We must OR in the styles necessary for tabs and horizontal scrolling
These styles will be used by the API CreateWindowEx() function. }

begin
inherited CreateParams(Params);
{ lbs_UseTabStops style allows tabs in listbox
ws_HScroll style allows horizontal scrollbar in listbox }

Params.Style := Params.Style or lbs_UseTabStops or ws_HScroll;
end;

function TddgTabListBox.GetLBStringLength(S: String): word;
{ This function returns the length of the listbox string S in pixels }
var
Size: Integer;

begin

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

467

16 chpt_11.qxd 11/19/01 12:11 PM Page 467

LISTING 11.12 Continued

// Get the length of the text string
Canvas.Font := Font;
Result := LoWord(GetTabbedTextExtent(Canvas.Handle, PChar(S),

StrLen(PChar(S)), FNumTabStops, FTabStops^));
// Add a little bit of space to the end of the scrollbar extent for looks
Size := Canvas.TextWidth(‘X’);
Inc(Result, Size);

end;

procedure TddgTabListBox.SetScrollLength(S: String);
{ This procedure resets the scrollbar extent if S is longer than the }
{ previous longest string }
var
Extent: Word;

begin
Extent := GetLBStringLength(S);
// If this turns out to be the longest string...
if Extent > FLongestString then
begin
// reset longest string
FLongestString := Extent;
//reset scrollbar extent
Perform(lb_SetHorizontalExtent, Extent, 0);

end;
end;

procedure TddgTabListBox.LBInsertString(var Msg: TMessage);
{ This procedure is called in response to a lb_InsertString message.
This message is sent to the listbox every time a string is inserted.
Msg.lParam holds a pointer to the null-terminated string being
inserted. This will cause the scrollbar length to be adjusted if
the new string is longer than any of the existing strings. }

begin
inherited;
SetScrollLength(PChar(Msg.lParam));

end;

procedure TddgTabListBox.LBAddString(var Msg: TMessage);
{ This procedure is called in response to a lb_AddString message.
This message is sent to the listbox every time a string is added.
Msg.lParam holds a pointer to the null-terminated string being
added. This Will cause the scrollbar length to be ajdusted if the
new string is longer than any of the existing strings.}

Component-Based Development

PART IV
468

16 chpt_11.qxd 11/19/01 12:11 PM Page 468

LISTING 11.12 Continued

begin
inherited;
SetScrollLength(PChar(Msg.lParam));

end;

procedure TddgTabListBox.FindLongestString;
var
i: word;
Strg: String;

begin
FLongestString := 0;
{ iterate through strings and look for new longest string }
for i := 0 to Items.Count - 1 do
begin
Strg := Items[i];
SetScrollLength(Strg);

end;
end;

procedure TddgTabListBox.LBDeleteString(var Msg: TMessage);
{ This procedure is called in response to a lb_DeleteString message.
This message is sent to the listbox everytime a string is deleted.
Msg.wParam holds the index of the item being deleted. Note that
by setting the SizeAfterDel property to False, you can cause the
scrollbar update to not occur. This will improve performance
if you’re deleting often. }

var
Str: String;

begin
if FSizeAfterDel then
begin
Str := Items[Msg.wParam]; // Get string to be deleted
inherited; // Delete string
{ Is deleted string the longest? }
if GetLBStringLength(Str) = FLongestString then
FindLongestString;

end
else
inherited;

end;

end.

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

469

16 chpt_11.qxd 11/19/01 12:11 PM Page 469

One particular point of interest in this component is the SetTabStops() method, which accepts
an open array of word as a parameter. This enables users to pass in as many tabstops as they
want. Here is an example:

ddgTabListboxInstance.SetTabStops([50, 75, 150, 300]);

If the text in the listbox extends beyond the viewable window, the horizontal scrollbar will
appear automatically.

TddgRunButton—Creating Properties
If you wanted to run another executable program in 16-bit Windows, you could use the
WinExec() API function. Although these functions still work in Win32, it isn’t the recom-
mended approach. Now, you should use the CreateProcess() or ShellExecute() functions to
launch another application. CreateProcess() can be a somewhat daunting task when needed
just for that purpose. Therefore, we’ve provided the ProcessExecute() method, which we’ll
show in a moment.

To illustrate the use of ProcessExecute(), we’ve created the component TddgRunButton. All
that is required of the user is to click the button and the application executes.

The TddgRunButton component is an ideal example of creating properties, validating property
values, and encapsulating complex operations. Additionally, we’ll show you how to grab the
application icon from an executable file and how to display it in the TddgRunButton at design
time. There’s one other thing; TddgRunButton descends from TSpeedButton. Because TSpeed
Button contains certain properties that you don’t want accessible at design time through the
Object Inspector, we’ll show you how you can hide (sort of) existing properties from the com-
ponent user. Admittedly, this technique isn’t exactly the cleanest approach to use. Typically, you
would create a component of your own if you want to take the purist approach—of which the
authors are advocates. However, this is one of those instances in which Borland, in all its
infinite wisdom, didn’t provide an intermediate component in between TSpeedButton and
TCustomControl (from which TSpeedButton descends), as Borland did with its other compo-
nents. Therefore, the choice was either to roll our own component that pretty much duplicates
the functionality you get from TSpeedButton, or borrow from TSpeedButton’s functionality
and hide a few properties that aren’t applicable for your needs. We opted for the latter, but only
out of necessity. However, this should clue you in to practice careful forethought as to how
component writers might want to extend your own components.

The code to TddgRunButton is shown in Listing 11.13.

Component-Based Development

PART IV
470

16 chpt_11.qxd 11/19/01 12:11 PM Page 470

LISTING 11.13 RunBtn.pas—The Source to the TddgRunButton Component

unit RunBtn;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, Buttons;

type

TCommandLine = type string;

TddgRunButton = class(TSpeedButton)
private
FCommandLine: TCommandLine;
// Hiding Properties from the Object Inspector
FCaption: TCaption;
FAllowAllUp: Boolean;
FFont: TFont;
FGroupIndex: Integer;
FLayOut: TButtonLayout;
procedure SetCommandLine(Value: TCommandLine);

public
constructor Create(AOwner: TComponent); override;
procedure Click; override;

published
property CommandLine: TCommandLine read FCommandLine write SetCommandLine;
// Read only properties are hidden
property Caption: TCaption read FCaption;
property AllowAllUp: Boolean read FAllowAllUp;
property Font: TFont read FFont;
property GroupIndex: Integer read FGroupIndex;
property LayOut: TButtonLayOut read FLayOut;

end;

implementation

uses ShellAPI;

const
EXEExtension = ‘.EXE’;

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

471

16 chpt_11.qxd 11/19/01 12:11 PM Page 471

LISTING 11.13 Continued

function ProcessExecute(CommandLine: TCommandLine; cShow: Word): Integer;
{ This method encapsulates the call to CreateProcess() which creates
a new process and its primary thread. This is the method used in
Win32 to execute another application, This method requires the use
of the TStartInfo and TProcessInformation structures. These structures
are not documented as part of the Delphi 6 online help but rather
the Win32 help as STARTUPINFO and PROCESS_INFORMATION.

The CommandLine parameter specifies the pathname of the file to
execute.

The cShow parameter specifies one of the SW_XXXX constants which
specifies how to display the window. This value is assigned to the
sShowWindow field of the TStartupInfo structure. }

var
Rslt: LongBool;
StartUpInfo: TStartUpInfo; // documented as STARTUPINFO
ProcessInfo: TProcessInformation; // documented as PROCESS_INFORMATION

begin
{ Clear the StartupInfo structure }
FillChar(StartupInfo, SizeOf(TStartupInfo), 0);
{ Initialize the StartupInfo structure with required data.
Here, we assign the SW_XXXX constant to the wShowWindow field
of StartupInfo. When specifying a value to this field the
STARTF_USESSHOWWINDOW flag must be set in the dwFlags field.
Additional information on the TStartupInfo is provided in the Win32
online help under STARTUPINFO. }

with StartupInfo do
begin
cb := SizeOf(TStartupInfo); // Specify size of structure
dwFlags := STARTF_USESHOWWINDOW or STARTF_FORCEONFEEDBACK;
wShowWindow := cShow

end;

{ Create the process by calling CreateProcess(). This function
fills the ProcessInfo structure with information about the new
process and its primary thread. Detailed information is provided
in the Win32 online help for the TProcessInfo structure under
PROCESS_INFORMATION. }

Rslt := CreateProcess(PChar(CommandLine), nil, nil, nil, False,
NORMAL_PRIORITY_CLASS, nil, nil, StartupInfo, ProcessInfo);

{ If Rslt is true, then the CreateProcess call was successful.
Otherwise, GetLastError will return an error code representing the
error which occurred. }

Component-Based Development

PART IV
472

16 chpt_11.qxd 11/19/01 12:11 PM Page 472

LISTING 11.13 Continued

if Rslt then
with ProcessInfo do
begin
{ Wait until the process is in idle. }
WaitForInputIdle(hProcess, INFINITE);
CloseHandle(hThread); // Free the hThread handle
CloseHandle(hProcess);// Free the hProcess handle
Result := 0; // Set Result to 0, meaning successful

end
else Result := GetLastError; // Set result to the error code.

end;

function IsExecutableFile(Value: TCommandLine): Boolean;
{ This method returns whether or not the Value represents a valid
executable file by ensuring that its file extension is ‘EXE’ }

var
Ext: String[4];

begin
Ext := ExtractFileExt(Value);
Result := (UpperCase(Ext) = EXEExtension);

end;

constructor TddgRunButton.Create(AOwner: TComponent);
{ The constructor sets the default height and width properties
to 45x45 }

begin
inherited Create(AOwner);
Height := 45;
Width := 45;

end;

procedure TddgRunButton.SetCommandLine(Value: TCommandLine);
{ This write access method sets the FCommandLine field to Value, but
only if Value represents a valid executable file name. It also
set the icon for the TddgRunButton to the application icon of the
file specified by Value. }

var
Icon: TIcon;

begin
{ First check to see that Value *is* an executable file and that
it actually exists where specified. }

if not IsExecutableFile(Value) then
Raise Exception.Create(Value+’ is not an executable file.’);

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

473

16 chpt_11.qxd 11/19/01 12:11 PM Page 473

LISTING 11.13 Continued

if not FileExists(Value) then
Raise Exception.Create(‘The file: ‘+Value+’ cannot be found.’);

FCommandLine := Value; // Store the Value in FCommandLine

{ Now draw the application icon for the file specified by Value
on the TddgRunButton icon. This requires us to create a TIcon
instance to which to load the icon. It is then copied from this
TIcon instance to the TddgRunButton’s Canvas.

We must use the Win32 API function ExtractIcon() to retrieve the
icon for the application. }

Icon := TIcon.Create; // Create the TIcon instance
try
{ Retrieve the icon from the application’s file }
Icon.Handle := ExtractIcon(hInstance, PChar(FCommandLine), 0);
with Glyph do
begin
{ Set the TddgRunButton properties so that the icon held by Icon
can be copied onto it. }

{ First, clear the canvas. This is required in case another
icon was previously drawn on the canvas }

Canvas.Brush.Style := bsSolid;
Canvas.FillRect(Canvas.ClipRect);
{ Set the Icon’s width and height }
Width := Icon.Width;
Height := Icon.Height;
Canvas.Draw(0, 0, Icon); // Draw the icon to TddgRunButton’s Canvas

end;
finally
Icon.Free; // Free the TIcon instance.

end;
end;

procedure TddgRunButton.Click;
var
WERetVal: Word;

begin
inherited Click; // Call the inherited Click method
{ Execute the ProcessExecute method and check it’s return value.
if the return value is <> 0 then raise an exception because
an error occurred. The error code is shown in the exception }

WERetVal := ProcessExecute(FCommandLine, sw_ShowNormal);
if WERetVal <> 0 then begin

Component-Based Development

PART IV
474

16 chpt_11.qxd 11/19/01 12:11 PM Page 474

LISTING 11.13 Continued

raise Exception.Create(‘Error executing program. Error Code:; ‘+
IntToStr(WERetVal));

end;
end;

end.

TddgRunButton has one property, CommandLine, which is defined to be of the type String. The
private storage field for CommandLine is FCommandLine.

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

475

It is worth discussing the special definition of TCommandLine. Here is the syntax used:

TCommandLine = type string;

By defining TCommandLine as such, you tell the compiler to treat TCommandLine as a
unique type that is still compatible with other string types. The new type will get its
own runtime type information and therefore can have its own property editor. This
same technique can be used with other types as well. Here is an example:

TMySpecialInt = type Integer;

We will show you how we use this to create a property editor for the CommandLine
property in the next chapter. We don’t show you this technique in this chapter
because creating property editors is an advanced topic that we want to talk about in
more depth.

TIP

The write access method for CommandLine is SetCommandLine(). We’ve provided two helper
functions: IsExecutableFile() and ProcessExecute().

IsExecutableFile() is a function that determines whether a filename passed to it is an exe-
cutable file based on the file’s extension.

Creating and Executing a Process
ProcessExecute() is a function that encapsulates the CreateProcess() Win32 API function
that enables you to launch another application. The application to launch is specified by the
CommandLine parameter, which holds the filename path. The second parameter contains one of
the SW_XXXX constants that indicate how the process’s main windows is to be displayed. Table
11.4 lists the various SW_XXXX constants and their meanings as explained in the online help.

16 chpt_11.qxd 11/19/01 12:11 PM Page 475

TABLE 11.4 SW_XXXX Constants

SW_XXXX Constant Meaning

SW_HIDE Hides the window. Another window will become active.

SW_MAXIMIZE Displays the window as maximized.

SW_MINIMIZE Minimizes the window.

SW_RESTORE Displays a window at its size before it was maximized/minimized.

SW_SHOW Displays a window at its current size/position.

SW_SHOWDEFAULT Shows a window at the state specified by the TStartupInfo struc-
ture passed to CreateProcess().

SW_SHOWMAXIMIZED Activates/displays the window as maximized.

SW_SHOWMINIMIZED Activates/displays the window as minimized.

SW_SHOWMINNOACTIVE Displays the window as minimized, but the currently active window
remains active.

SW_SHOWNA Displays the window at its current state. The currently active win-
dow remains active.

SW_SHOWNOACTIVATE Displays the window at the most recent size/position. The currently
active window remains active.

SW_SHOWNORMAL Activates/displays the window at its more recent size/position. This
position is restored if the window was previously maximized/
minimized.

ProcessExecute() is a handy utility function that you might want to keep around in a separate
unit that can be shared by other applications.

TddgRunButton Methods
The TddgRunButton.Create() constructor simply sets a default size for itself after calling the
inherited constructor.

The SetCommandLine() method, which is the writer access method for the CommandLine para-
meter, performs several tasks. It determines whether the value being assigned to CommandLine
is a valid executable filename. If not, it raises an exception.

If the entry is valid, it is assigned to the FCommandLine field. SetCommandLine() then extracts
the icon from the application file and draws it to TddgRunButton’s canvas. The Win32 API
function ExtractIcon() is used to do this. The technique used is explained in the source code
comments.

TddgRunButton.Click() is the event-dispatching method for the TSpeedButton.OnClick
event. It is necessary to call the inherited Click() method that will invoke the OnClick event

Component-Based Development

PART IV
476

16 chpt_11.qxd 11/19/01 12:11 PM Page 476

handler if assigned. After calling the inherited Click(), you call ProcessExecute() and exam-
ine its result value to determine whether the call was successful. If not, an exception is raised.

TddgButtonEdit—Container Components
Occasionally you might like to create a component that is composed of one or more other
components. Delphi’s TDBNavigator is a good example of such a component because it con-
sists of a TPanel and a number of TSpeedButton components. Specifically, this section illus-
trates this concept by creating a component that is a combination of a TEdit and a
TSpeedButton component. We will call this component TddgButtonEdit.

Design Decisions
Considering that Object Pascal is based on a single-inheritance object model, TddgButtonEdit
will need to be a component in its own right, which must contain both a TEditl and a
TSpeedButton. Furthermore, because it’s necessary that this component contain windowed
controls, it will need to be a windowed control itself. For these reasons, we chose to descend
TddgButtonEdit from TWinControl. We created both the TEdit and TSpeedButton in
TddgButtonEdit’s constructor using the following code:

constructor TddgButtonEdit.Create(AOwner: TComponent);
begin
inherited Create(AOwner);
FEdit := TEdit.Create(Self);
FEdit.Parent := self;
FEdit.Height := 21;

FSpeedButton := TSpeedButton.Create(Self);
FSpeedButton.Left := FEdit.Width;
FSpeedButton.Height := 19; // two less then TEdit’s Height
FSpeedButton.Width := 19;
FSpeedButton.Caption := ‘...’;
FSpeedButton.Parent := Self;

Width := FEdit.Width+FSpeedButton.Width;
Height := FEdit.Height;

end;

When creating a component that contains other components, The challenge is surfacing the
properties of the “inner” components from the container component. For example, the
TddgButtonEdit will need a Text property. You also might want to be able to change the font
for the text in the control, therefore, a Font property is needed. Finally, there needs to be an
OnClick event for the button in the control. You wouldn’t want to attempt to implement this
yourself in the container component when it is already available from the inner components.

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

477

16 chpt_11.qxd 11/19/01 12:11 PM Page 477

The goal, then, is to surface the appropriate properties of the inner controls without rewriting
the interfaces to these controls.

Surfacing Properties
This usually boils down to the simple but time-consuming task of writing reader and writer
methods for each of the inner component properties you want to resurface through the con-
tainer component. In the case of the Text property, for example, you might give the
TddgButtonEdit a Text property with read and write methods:

TddgButtonEdit = class(TWinControl)
private
FEdit: TEdit;
protected
procedure SetText(Value: String);
function GetText: String;

published
property Text: String read GetText write SetText;

end;

The SetText() and GetText() methods directly access the Text property of the contained
TEdit control, as shown in the following:

function TddgButtonEdit.GetText: String;
begin
Result := FEdit.Text;

end;

procedure TddgButtonEdit.SetText(Value: String);
begin
FEdit.Text := Value;

end;

Surfacing Events
In addition to properties, it’s also quite likely that you might want to resurface events that exist
in the inner components. For example, when the user clicks the TSpeedButton control, you
would want to surface its OnClick event. Resurfacing events is just as straightforward as resur-
facing properties—after all, events are properties.

You need to first give the TddgButtonEdit its own OnClick event. For clarity, we named this
event OnButtonClick. The read and write methods for this event simply redirect the assign-
ment to the OnClick event of the internal TSpeedButton.

Listing 11.14 shows the TddgButtonEdit container component.

Component-Based Development

PART IV
478

16 chpt_11.qxd 11/19/01 12:11 PM Page 478

LISTING 11.14 TddgButtonEdit—A Container Component

unit ButtonEdit;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, Buttons;

type
TddgButtonEdit = class(TWinControl)
private
FSpeedButton: TSpeedButton;
FEdit: TEdit;

protected
procedure WMSize(var Message: TWMSize); message WM_SIZE;
procedure SetText(Value: String);
function GetText: String;
function GetFont: TFont;
procedure SetFont(Value: TFont);
function GetOnButtonClick: TNotifyEvent;
procedure SetOnButtonClick(Value: TNotifyEvent);

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

published
property Text: String read GetText write SetText;
property Font: TFont read GetFont write SetFont;
property OnButtonClick: TNotifyEvent read GetOnButtonClick

write SetOnButtonClick;
end;

implementation

procedure TddgButtonEdit.WMSize(var Message: TWMSize);
begin
inherited;
FEdit.Width := Message.Width-FSpeedButton.Width;
FSpeedButton.Left := FEdit.Width;

end;

constructor TddgButtonEdit.Create(AOwner: TComponent);
begin
inherited Create(AOwner);
FEdit := TEdit.Create(Self);

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

479

16 chpt_11.qxd 11/19/01 12:11 PM Page 479

LISTING 11.14 Continued

FEdit.Parent := self;
FEdit.Height := 21;

FSpeedButton := TSpeedButton.Create(Self);
FSpeedButton.Left := FEdit.Width;
FSpeedButton.Height := 19; // two less than TEdit’s Height
FSpeedButton.Width := 19;
FSpeedButton.Caption := ‘...’;
FSpeedButton.Parent := Self;

Width := FEdit.Width+FSpeedButton.Width;
Height := FEdit.Height;

end;

destructor TddgButtonEdit.Destroy;
begin
FSpeedButton.Free;
FEdit.Free;
inherited Destroy;

end;

function TddgButtonEdit.GetText: String;
begin
Result := FEdit.Text;

end;

procedure TddgButtonEdit.SetText(Value: String);
begin
FEdit.Text := Value;

end;

function TddgButtonEdit.GetFont: TFont;
begin
Result := FEdit.Font;

end;

procedure TddgButtonEdit.SetFont(Value: TFont);
begin
if Assigned(FEdit.Font) then
FEdit.Font.Assign(Value);

end;

function TddgButtonEdit.GetOnButtonClick: TNotifyEvent;

Component-Based Development

PART IV
480

16 chpt_11.qxd 11/19/01 12:11 PM Page 480

LISTING 11.14 Continued

begin
Result := FSpeedButton.OnClick;

end;

procedure TddgButtonEdit.SetOnButtonClick(Value: TNotifyEvent);
begin
FSpeedButton.OnClick := Value;

end;

end.

TddgDigitalClock—Creating Component Events
TddgDigitalClock illustrates the process of creating and making available user-defined events.
We will use the same technique that was discussed earlier when we illustrated creating events
with the TddgHalfMinute component.

TddgDigitalClock descends from TPanel. We decided that TPanel was an ideal component
from which TddgDigitalClock could descend because TPanel has the BevelXXXX properties.
This enables you to give the TddgDigitalClock a pleasing visual appearance. Also, you can
use the TPanel.Caption property to display the system time.

TddgDigitalClock contains the following events to which the user can assign code:

OnHour Occurs on the hour, every hour.

OnHalfPast Occurs on the half hour.

OnMinute Occurs on the minute.

OnHalfMinute Occurs every 30 seconds, on the minute and on the half
minute.

OnSecond Occurs on the second.

TddgDigitalClock uses a TTimer component internally. Its OnTimer event handler performs
the logic to paint the time information and to invoke the event-dispatching methods for the pre-
viously listed events accordingly. Listing 11.15 shows the source code for DdgClock.pas.

LISTING 11.15 DdgClock.pas—Source for the TddgDigitalClock Component

{$IFDEF VER110}
{$OBJEXPORTALL ON}
{$ENDIF}

unit DDGClock;

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

481

16 chpt_11.qxd 11/19/01 12:11 PM Page 481

LISTING 11.15 Continued

interface

uses
Windows, Messages, Controls, Forms, SysUtils, Classes, ExtCtrls;

type

{ Declare an event type which takes the sender of the event, and
a TDateTime variable as parameters }

TTimeEvent = procedure(Sender: TObject; DDGTime: TDateTime) of object;

TddgDigitalClock = class(TPanel)
private
{ Data fields }
FHour,
FMinute,
FSecond: Word;
FDateTime: TDateTime;
FOldMinute,
FOldSecond: Word;
FTimer: TTimer;
{ Event handlers }
FOnHour: TTimeEvent; // Occurs on the hour
FOnHalfPast: TTimeEvent; // Occurs every half-hour
FOnMinute: TTimeEvent; // Occurs on the minute
FOnSecond: TTimeEvent; // Occurs every second
FOnHalfMinute: TTimeEvent; // Occurs every 30 seconds
{ Define OnTimer event handler for internal TTimer, FTimer }
procedure TimerProc(Sender: TObject);

protected
{ Override the Paint methods }
procedure Paint; override;

{ Define the various event dispatching methods }
procedure DoHour(Tm: TDateTime); dynamic;
procedure DoHalfPast(Tm: TDateTime); dynamic;
procedure DoMinute(Tm: TDateTime); dynamic;
procedure DoHalfMinute(Tm: TDateTime); dynamic;
procedure DoSecond(Tm: TDateTime); dynamic;

public
{ Override the Create constructor and Destroy destructor }
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

Component-Based Development

PART IV
482

16 chpt_11.qxd 11/19/01 12:11 PM Page 482

LISTING 11.15 Continued

published
{ Define event properties }
property OnHour: TTimeEvent read FOnHour write FOnHour;
property OnHalfPast: TTimeEvent read FOnHalfPast write FOnHalfPast;
property OnMinute: TTimeEvent read FOnMinute write FOnMinute;
property OnHalfMinute: TTimeEvent read FOnHalfMinute

write FOnHalfMinute;
property OnSecond: TTimeEvent read FOnSecond write FOnSecond;

end;

implementation

constructor TddgDigitalClock.Create(AOwner: TComponent);
begin
inherited Create(AOwner); // Call the inherited constructor
Height := 25; // Set default width and height properties
Width := 120;
BevelInner := bvLowered; // Set Default bevel properties
BevelOuter := bvLowered;
{ Set the inherited Caption property to an empty string }
inherited Caption := ‘’;
{ Create the TTimer instance and set both its Interval property and
OnTime event handler. }

FTimer:= TTimer.Create(self);
FTimer.interval:= 200;
FTimer.OnTimer:= TimerProc;

end;

destructor TddgDigitalClock.Destroy;
begin
FTimer.Free; // Free the TTimer instance.
inherited Destroy; // Call inherited Destroy method

end;

procedure TddgDigitalClock.Paint;
begin
inherited Paint; // Call the inherited Paint method
{ Now set the inherited Caption property to current time. }
inherited Caption := TimeToStr(FDateTime);

end;

procedure TddgDigitalClock.TimerProc(Sender: TObject);
var

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

483

16 chpt_11.qxd 11/19/01 12:11 PM Page 483

LISTING 11.15 Continued

HSec: Word;
begin
{ Save the old minute and second for later use }
FOldMinute := FMinute;
FOldSecond := FSecond;
FDateTime := Now; // Get the current time.
{ Extract the individual time elements }
DecodeTime(FDateTime, FHour, FMinute, FSecond, Hsec);

refresh; // Redraw the component so that the new time is displayed.

{ Now call the event handlers depending on the time }
if FMinute = 0 then
DoHour(FDateTime);

if FMinute = 30 then
DoHalfPast(FDateTime);

if (FMinute <> FOldMinute) then
DoMinute(FDateTime);

if FSecond <> FOldSecond then
if ((FSecond = 30) or (FSecond = 0)) then
DoHalfMinute(FDateTime)

else
DoSecond(FDateTime);

end;

{ The event dispatching methods below determine if component user has
attached event handlers to the various clock events and calls them
if they exist }

procedure TddgDigitalClock.DoHour(Tm: TDateTime);
begin
if Assigned(FOnHour) then
TTimeEvent(FOnHour)(Self, Tm);

end;

procedure TddgDigitalClock.DoHalfPast(Tm: TDateTime);
begin
if Assigned(FOnHalfPast) then
TTimeEvent(FOnHalfPast)(Self, Tm);

end;

procedure TddgDigitalClock.DoMinute(Tm: TDateTime);
begin
if Assigned(FOnMinute) then
TTimeEvent(FOnMinute)(Self, Tm);

end;

Component-Based Development

PART IV
484

16 chpt_11.qxd 11/19/01 12:11 PM Page 484

LISTING 11.15 Continued

procedure TddgDigitalClock.DoHalfMinute(Tm: TDateTime);
begin
if Assigned(FOnHalfMinute) then
TTimeEvent(FOnHalfMinute)(Self, Tm);

end;

procedure TddgDigitalClock.DoSecond(Tm: TDateTime);
begin
if Assigned(FOnSecond) then
TTimeEvent(FOnSecond)(Self, Tm);

end;

end.

The logic behind this component is explained in the source commentary. The methods used are
no different from those that were previously explained when we discussed creating events.
TddgDigitalClock only adds more events and contains logic to determine when each event is
invoked.

Adding Forms to the Component Palette
Adding forms to the Object Repository is a convenient way to give forms a starting point. But
what if you develop a form that you reuse often that doesn’t need to be inherited and doesn’t
require added functionality? Delphi 6 provides a way you can reuse your forms as components
on the Component Palette. In fact, the TFontDialog and TOpenDialog components are exam-
ples of forms that are accessible from the Component Palette. Actually, these dialogs aren’t
Delphi forms; these are dialogs provided by the CommDlg.dll. Nevertheless, the concept is the
same.

To add forms to the Component Palette, you must wrap your form with a component to make
it a separate, installable component. The process as described here uses a simple password dia-
log whose functionality will verify your password automatically. Although this is a very simple
project, the purpose of this discussion is not to show you how to install a complex dialog as a
component, but rather to show you the general method for adding dialog boxes to the
Component Palette. The same method applies to dialog boxes of any complexity.

You must create the form that is going to be wrapped by the component. The form we used is
defined in the file PwDlg.pas. This unit also shows a component wrapper for this form.

Listing 11.16 shows the unit defining the TPasswordDlg form and its wrapper component,
TddgPasswordDialog.

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

485

16 chpt_11.qxd 11/19/01 12:11 PM Page 485

LISTING 11.16 PwDlg.pas—TPasswordDlg Form and Its Component Wrapper
TddgPasswordDialog

unit PwDlg;

interface

uses Windows, SysUtils, Classes, Graphics, Forms, Controls, StdCtrls,
Buttons;

type

TPasswordDlg = class(TForm)
Label1: TLabel;
Password: TEdit;
OKBtn: TButton;
CancelBtn: TButton;

end;

{ Now declare the wrapper component. }
TddgPasswordDialog = class(TComponent)
private
PassWordDlg: TPasswordDlg; // TPassWordDlg instance
FPassWord: String; // Place holder for the password

public
function Execute: Boolean; // Function to launch the dialog

published
property PassWord: String read FPassword write FPassword;

end;

implementation
{$R *.DFM}

function TddgPasswordDialog.Execute: Boolean;
begin
{ Create a TPasswordDlg instance }
PasswordDlg := TPasswordDlg.Create(Application);
try
Result := False; // Initialize the result to false
{ Show the dialog and return true if the password
is correct. }

if PasswordDlg.ShowModal = mrOk then
Result := PasswordDlg.Password.Text = FPassword;

Component-Based Development

PART IV
486

16 chpt_11.qxd 11/19/01 12:11 PM Page 486

LISTING 11.16 Continued

finally
PasswordDlg.Free; // Free instance of PasswordDlg

end;
end;

end.

The TddgPasswordDialog is called a wrapper component because it wraps the form with a
component that can be installed into Delphi 6’s Component Palette.

TddgPasswordDialog descends directly from TComponent. You might recall from the last chap-
ter that TComponent is the lowest-level class that can be manipulated by the Form Designer in
the IDE. This class has two private variables: PasswordDlg of type TPasswordDlg and
FPassWord of type string. PasswordDlg is the TPasswordDlg instance that this wrapper com-
ponent displays. FPassWord is an internal storage field that holds a password string.

FPassWord gets its data through the property PassWord. Thus, PassWord doesn’t actually store
data; rather, it serves as an interface to the storage variable FPassWord.

TddgPassWordDialog’s Execute() function creates a TPasswordDlg instance and displays it as
a modal dialog box. When the dialog box terminates, the string entered in the password TEdit
control is compared against the string stored in FPassword.

The code here is contained within a try..finally construct. The finally portion ensures that
the TPasswordDlg component is disposed of regardless of any error that might occur.

After you have added TddgPasswordDialog to the Component Palette, you can create a project
that uses it. As with any other component, you select TddgPasswordDialog from the
Component Palette and place it on your form. The project created in the preceding section con-
tains a TddgPasswordDialog and one button whose OnClick event handler does the following:

procedure TForm1.Button1Click(Sender: TObject);
begin
if ddgPasswordDialog.Execute then // Launch the PasswordDialog
ShowMessage(‘You got it!’) // Correct password

else
ShowMessage(‘Sorry, wrong answer!’); // Incorrect password

end;

The Object Inspector contains three properties for the TddgPasswordDialog component: Name,
Password, and Tag. To use the component, you must set the Password property to some string

VCL Component Building

CHAPTER 11

11

V
C

L C
O

M
PO

N
EN

T
B

U
ILD

IN
G

487

16 chpt_11.qxd 11/19/01 12:11 PM Page 487

value. When you run the project, TddgPasswordDialog prompts the user for a password and
compares it against the password you entered for the Password property.

Summary
Knowing how components work is fundamental to understanding Delphi, and you work with
many more custom components later in the book. Now that you can see what happens behind
the scenes, components will no longer seem like just a black box. The next chapter goes
beyond component creation into more advanced component building techniques.

Component-Based Development

PART IV
488

16 chpt_11.qxd 11/19/01 12:11 PM Page 488

