
CHAPTER

10
Component Architecture: VCL
and CLX

IN THIS CHAPTER
• More on the New CLX 383

• What Is a Component? 383

• Component Hierarchy 384

• The Component Structure 387

• The Visual Component Hierarchy 394

• Runtime Type Information 403

15 chpt_10.qxd 11/19/01 12:16 PM Page 381

Few will recall Borland’s first Object Windows Library (OWL), which was introduced with
Turbo Pascal for Windows. OWL ushered in a drastic simplification over traditional Windows
programming. OWL objects automated and streamlined many tedious tasks you otherwise were
required to code yourself. No longer did you have to write huge case statements to capture mes-
sages or big chunks of code to manage Windows classes; OWL did this for you. On the other
hand, you had to learn a new programming methodology—object-oriented programming.

Then, with Delphi 1, Borland introduced Visual Component Library (VCL). The VCL was
based on an object model similar to OWL’s in principle but radically different in implementa-
tion. The VCL in Delphi 6 is pretty much the same as its predecessors in all previous versions
of Delphi.

With Delphi 6, Borland, once again, introduced a new technology, Component Library for Cross-
Platform (CLX). According to Borland, CLX is “the next-generation component library and
framework for developing native Linux and Windows applications and reusable components.”

Both the VCL and CLX are designed specifically to work within Delphi’s visual environment.
Instead of creating a window or dialog box and adding its behavior in code, you modify the
behavioral and visual characteristics of components as you design your program visually.

The level of knowledge required about the VCL/CLX really depends on how you use them.
First, you must realize that there are two types of Delphi developers: applications developers
and visual component writers. Applications developers create complete applications by inter-
acting with the Delphi visual environment (a concept nonexistent in many other frameworks).
These people use the VCL/CLX to create their GUI and other elements of their application
such as database connectivity. Component writers, on the other hand, expand the existing
VCL/CLX by developing more components. Such components are made available through
third-party companies.

Whether you plan to create applications with Delphi or to create Delphi components, under-
standing the VCL/CLX is essential. An applications developer should know which properties,
events, and methods are available for each component. Additionally, it’s advantageous to fully
understand the object model inherent in a Delphi application that’s provided by the VCL/CLX.
A common problem we see with Delphi developers is that they tend to fight the tool—a symp-
tom of not understanding it completely. Component writers take this knowledge one step fur-
ther to determine whether to write a new component or to extend an existing one by knowing
how VCL/CLX works internally: how they handle messages, notifications, component owner-
ship, parenting/ownership issues, property editors, and so on.

This chapter introduces you to the VCL/CLX. It discusses the component hierarchy and
explains the purpose of the key levels within the hierarchy. It also discusses the purposes of the
common properties, methods, and events that appear at the different component levels. Finally,
we complete this chapter by covering Runtime Type Information (RTTI).

Component-Based Development

PART IV
382

15 chpt_10.qxd 11/19/01 12:16 PM Page 382

More on the New CLX
CLX, the new cross platform library, is actually composed of four pieces. These are explained
in Table 10.1.

TABLE 10.1 CLX Parts (from Delphi 6 Online Help)

Part Description

VisualCLX Native cross-platform GUI components and graphics. The components
in this area might differ on Linux and Windows.

DataCLX Client data-access components. The components in this area are a sub-
set of the local, client/server, and n-tier based on client datasets. The
code is the same on Linux and Windows.

NetCLX Internet components including Apache DSO and CGI Web Broker.
These are the same on Linux and Windows.

RTL Runtime Library up to and including Classes.pas. The code is the same
on Linux and Windows. Under Linux, this file is BaseRTL.

VisualCLX sits on top of the Qt framework from Trolltech. Qt is pronounced “cute” by most
people, although Trolltech will tell you that it’s pronounced “kyu-tee.” This framework cur-
rently runs under Linux and Windows. VisualCLX is discussed in this chapter, and we cover
the other CLX elements in other chapters.

What Is a Component?
Components are the building blocks developers use to design the user interface and provide
some non-visual capability to their applications. As far as applications developers are con-
cerned, a component is something developers get from the Component Palette and place on
their forms. From there, they can manipulate the various properties and add event handlers to
give the component a specific appearance or behavior. From the perspective of a component
writer, components are objects in Object Pascal code. These objects can encapsulate the behav-
ior of elements provided by the system (such as the standard Windows controls). Other objects
can introduce entirely new visual or non-visual elements; in which case a component’s code
makes up the entire behavior of the component.

The complexity of components varies widely. Some components are simple; others encapsulate
elaborate tasks. There’s no limit to what a component can do or be made up of. You can have a
simple component such as a TLabel, or you can have a much more complex component that
encapsulates the complete functionality of a spreadsheet.

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

383

15 chpt_10.qxd 11/19/01 12:16 PM Page 383

The key to understanding the VCL/CLX is to know what types of components exist. You
should understand the common elements of components. You should also understand the com-
ponent hierarchy and the purpose of each level within the hierarchy. The following sections
provide this information.

Component Hierarchy
Figures 10.1 and 10.2 show the VCL and CLX hierarchies, respectively. You’ll see that there
are many similarities between both the VCL and CLX.

Component-Based Development

PART IV
384

TObject

TListTRegistryTPersistent

TGraphicsObject TStrings

TComponent
TFont TStringList

TDataSource
TControl

TTimer

TWinControl
TGraphicControl

TBevel

TCustomEdit TCustomControl

TEdit TMediaPlayer

TCustomLabel

TCustomPanel

TPanel

TLabel

Streamable Classes

Nonstreamable Classes

Nonvisual Components

Use a Window
Handle and
Receive Input
Focus

Custom Paint Method
with Canvas

Automation and
ActiveX Support

Visual Components

Do Not Receive Input
Focus
Custom Paint Method
with Canvas

TComObject

TTypedComObject

TAutoObject

TActiveXControl

FIGURE 10.1
The VCL hierarchy.

Two types of components exist: nonvisual and visual.

15 chpt_10.qxd 11/19/01 12:16 PM Page 384

FIGURE 10.2
The CLX hierarchy.

Nonvisual Components
Nonvisual components aren’t visible to the end user. These components encapsulate behavior
and allow the developer to modify certain characteristics of that component through the Object
Inspector at design time by modifying its properties and providing event handlers for its
events. Examples of such components are TOpenDialog, TTable, and TTimer. As Figures 10.1
and 10.2 indicate, these nonvisual components descend directly from TComponent.

Visual Components
Visual components, as the name implies, are components that the end user sees. Visual compo-
nents add visibility and behavior, but not necessarily interaction. These components directly
descend from TControl. In fact, TControl is the class that introduces properties and methods
that have to do with visibility such as Top, Left, Color, and so forth.

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

385

TObject

TListTCustomIniFileTPersistent

TGraphicsObject TStrings TComponent

TFont TStringList

THandleComponentTDataSource

TControl
TTimer

TWidgetControl
TGraphicControl

TBevel
TCustomEdit TFrameControl TCustomControl

TEdit TCustomLabel TCustomPanel

TLabel TPanel

Streamable Classes

Nonstreamable Classes

Nonvisual Components

Use a Window
Handle and
Receive Input
Focus

Custom Paint Method
with Canvas

Visual Components

Do Not Receive Input
Focus
Custom Paint Method
with Canvas

15 chpt_10.qxd 11/19/01 12:16 PM Page 385

Visual components come in two flavors—those that can have focus and those that cannot.

Visible Controls That Gain Focus
Certain types of controls gain user focus. By this, we mean that the user can manipulate such
controls. These types of controls are descendants of TWinControl (VCL) or TWidgetControl
(CLX). TWinControl descendants are wrappers around Windows controls, whereas
TWidgetControl descendants are wrappers around Qt screen objects. Characteristics of
these controls are as follows:

• They can get focus and do things such as handle keyboard events.

• The user can interact with them.

• They can be containers (parents) to other controls.

• They have an associated handle (VCL) or widget (CLX).

Component-Based Development

PART IV
386

You’ll often see the terms component and control used interchangeably, although
they’re not always the same. A control refers to a visual user-interface element. In
Delphi, controls are always components because they descend from the TComponent
class. Components are the objects whose basic behavior allows them to appear on the
Component Palette and be manipulated in the form designer. Components are of the
type TComponent and aren’t always controls—that is, they aren’t always visual user-
interface elements.

NOTE

Both TWinControl and TWidgetControl have a property named Handle.
TWinControl’s Handle refers to the underlying Windows Handle for the control.
TWidgetControl’s Handle refers to the underlying Qt object pointer (widget). Both
are named Handle for backward compatibility and cross compilation between CLX
and VCL applications.

NOTE

In Chapters 11–14, you’ll learn much more about TWinControls and TWidgetControls as you
learn how to create components for both VCL and CLX.

15 chpt_10.qxd 11/19/01 12:16 PM Page 386

Visible Controls That Do Not Gain Focus
Other controls, although visible, don’tave the same characteristics as Windowed controls.
These controls are for visibility only and are frequently referred to as graphical controls,
which descend directly from TGraphicControl (see Figures 10.1 and 10.2).

Unlike windowed controls, graphical controls don’t receive the input focus from the user. They
are useful when you want to display something to the user but don’t want the component to
use up resources such as windowed controls. Graphical controls don’t use Windows resources
because they require no window handle (or CLX Gadget), which is also the reason they can’t
get focus. Examples of graphical controls are TLabel and TShape. Such controls can’t serve as
containers either; that is, they can’t parent other controls placed on top of them. Other exam-
ples of graphical controls are TImage, TBevel, and TPaintBox.

The Component Structure
As we mentioned earlier, components are Object Pascal classes that encapsulate the functional-
ity and behavior of elements developers use to add visual and behavioral characteristics to their
programs. All components have a certain structure. The following sections discuss the makeup
of Delphi components.

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

387

Handles
Handles are 32-bit numbers issued by Win32 that refer to certain object instances.
The term objects here refers to Win32 objects, not Delphi objects. There are different
types of objects under Win32: kernel objects, user objects, and GDI objects. Kernel
objects apply to items such as events, file-mapping objects, and processes. User
objects refer to window objects such as edit controls, list boxes, and buttons. GDI
objects refer to bitmaps, brushes, fonts, and so on.

In the Win32 environment, every window has a unique handle. Many Windows API
functions require a handle so that they know the window on which they are to per-
form the operation. Delphi encapsulates much of the Win32 API and performs handle
management. If you want to use a Windows API function that requires a window
handle, you must use descendants of TWinControl and TCustomControl, which both
have a Handle property.

Understand the distinction between a component and a class. A component is a class
that can be manipulated within the Delphi environment. A class is an Object Pascal
structure, as explained in Chapter 2, “The Object Pascal Language.”

NOTE

15 chpt_10.qxd 11/19/01 12:16 PM Page 387

Properties
Chapter 2 introduced you to properties. Properties give the user an interface to a component’s
internal storage fields. Using properties, the component user can modify or read storage field
values. Typically, the user doesn’t have direct access to component storage fields because
they’re declared in the private section of a component’s class definition.

Properties: Storage Field Accessors
Properties provide access to storage fields by either accessing the storage fields directly or
through access methods. Take a look at the following property definition:

TCustomEdit = class(TWinControl)
private
FMaxLength: Integer;

protected
procedure SetMaxLength(Value: Integer);

...
published
property MaxLength: Integer read FMaxLength write SetMaxLength default 0;

...
end;

The property MaxLength is the access to the storage field FMaxLength. The parts of a property
definition consist of the property name, the property type, a read declaration, a write declara-
tion, and an optional default value. The read declaration specifies how the component’s stor-
age fields are read. The MaxLength property directly reads the value from the FMaxLength
storage field. The write declaration specifies the method by which the storage fields are
assigned values. For the property MaxLength, the writer access method SetMaxLength() is used
to assign the value to the storage field FMaxLength. A property can also contain a reader access
method; in which case the MaxLength property would be declared as this:

property MaxLength: Integer read GetMaxLength write SetMaxLength default 0;

The reader access method GetMaxLength() would be declared as follows:

function GetMaxLength: Integer;

Property Access Methods
Access methods take a single parameter of the same type as the property. The purpose of the
writer access method is to assign the value of the parameter to the internal storage field to
which the property refers. The reason for using the method layer to assign values is to protect
the storage field from receiving erroneous data as well as to perform various side effects, if
required. For example, examine the implementation of the following SetMaxLength() method:

Component-Based Development

PART IV
388

15 chpt_10.qxd 11/19/01 12:16 PM Page 388

procedure TCustomEdit.SetMaxLength(Value: Integer);
begin
if FMaxLength <> Value then
begin
FMaxLength := Value;
if HandleAllocated then SendMessage(Handle, EM_LIMITTEXT, Value, 0);

end;
end;

This method first checks to verify that the component user isn’t attempting to assign the same
value as that which the property already holds. If not, it makes the assignment to the internal
storage field FMaxLength and then calls the SendMessage() function to pass the EM_LIMITTEXT
Windows message to the window that the TCustomEdit encapsulates. This message limits the
amount of text that a user can enter into an edit control. Calling SendMessage() in the prop-
erty’s writer access method is known as a side effect when assigning property values.

Side effects are any actions affected by the assignment of a value to a property. In assigning a
value to the MaxLength property of TCustomEdit, the side effect is that the encapsulated edit
control is given an entry limit. Side effects can be much more sophisticated than this.

One key advantage to providing access to a component’s internal storage fields through proper-
ties is that the component writer can change the implementation of the field access without
affecting the behavior for the component user.

A reader access method, for example, can change the type of the returned value to something
different from the type of the storage field to which the property refers.

Another fundamental reason for the use of properties is to make modifications available to
them during design time. When a property appears in the published section of a component’s
declaration, it also appears in the Object Inspector so that the component user can make modi-
fications to this property.

You learn more about properties and how to create them and their access methods in Chapters
11, “VCL Component Building,” and 13, “CLX Component Development,” for VCL and CLX,
respectively.

Types of Properties
The standard rules that apply to Object Pascal data types apply to properties as well. The
important point about properties is that their types also determine how they’re edited in the
Object Inspector. Properties can be of the types shown in Table 10.2. For more detailed infor-
mation, look up “properties” in the online help.

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

389

15 chpt_10.qxd 11/19/01 12:16 PM Page 389

TABLE 10.2 Property Types

Property Type Object Inspector Treatment

Simple Numeric, character, and string properties appear in the Object Inspector
as numbers, characters, and strings, respectively. The user can type and
edit the value of the property directly.

Enumerated Properties of enumerated types (including Boolean) display the value
as defined in the source code. The user can cycle through the possible
values by double-clicking the Value column. There’s also a drop-down
list that shows all possible values of the enumerated type.

Set Properties of set types appear in the Object Inspector grouped as a set.
By expanding the set, the user can treat each element of the set as a
Boolean value: True if the element is included in the set and False if
it’s not included.

Object Properties that are themselves objects often have their own property
editors. However, if the object that’s a property also has published
properties, the Object Inspector allows the user to expand the list of
object properties and edit them individually. Object properties must
descend from TPersistent.

Array Array properties must have their own property editors. The Object
Inspector has no built-in support for editing array properties.

Methods
Because components are objects, they can therefore have methods. You’ve already seen infor-
mation on object methods in Chapter 2 (that information is not repeated here). The later sec-
tion “The Visual Component Hierarchy” describes some of the key methods of the different
component levels in the component hierarchy.

Events
Events are occurrences of an action, typically a system action such as a button control click or
a keypress on a keyboard. Components contain special properties called events; component
users can plug code into the event (called event handlers) that executes when the event is
invoked.

Plugging Code into Events at Design Time
If you look at the events page of a TEdit component, you’ll find events such as OnChange,
OnClick, and OnDblClick. To component writers, events are really pointers to methods. When
users of a component assign code to an event, they create an event handler. For example, when

Component-Based Development

PART IV
390

15 chpt_10.qxd 11/19/01 12:16 PM Page 390

you double-click an event in the Object Inspector’s events page for a component, Delphi gener-
ates a method to which you add your code, such as the following code for the OnClick event of
a TButton component:

TForm1 = class(TForm)
Button1: Tbutton;
procedure Button1Click(Sender: TObject);

end;
...
procedure TForm1.Button1Click(Sender: TObject);
begin
{ Event code goes here }

end;

This code is generated by Delphi.

Plugging Code into Events at Runtime
It becomes clear how events are method pointers when you assign an event handler to an event
programmatically. For example, to link your own event handler to an OnClick event of a
TButton component, you first declare and define the method you intend to assign to the but-
ton’s OnClick event. This method might belong to the form that owns the TButton component,
as shown here:

TForm1 = class(TForm)
Button1: TButton;

...
private
MyOnClickEvent(Sender: TObject); // Your method declaration

end;
...
{ Your method definition below }
procedure TForm1.MyOnClickEvent(Sender: TObject);
begin
{ Your code goes here }

end;

The preceding example shows a user-defined method called MyOnClickEvent() that serves as
the event handler for Button1.OnClick. The following line shows how you assign this method
to the Button1.OnClick event in code, which is usually done in the form’s OnCreate event
handler:

procedure TForm1.FormCreate(Sender: TObject);
begin
Button1.OnClick := MyOnClickEvent;

end;

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

391

15 chpt_10.qxd 11/19/01 12:16 PM Page 391

This technique can be used to add different event handlers to events, based on various condi-
tions in your code. Additionally, you can disable an event handler from an event by assigning
nil to the event, as shown here:

Button1.OnClick := nil;

Assigning event handlers at runtime is essentially what happens when you create an event han-
dler through Delphi’s Object Inspector—except that Delphi generates the method declaration.
You can’t just assign any method to a particular event handler. Because event properties are
method pointers, they have specific method signatures, depending on the type of event. For
example, an OnMouseDown method is of the type TMouseEvent, a procedure definition shown
here:

TMouseEvent = procedure (Sender: TObject; Button: TMouseButton; Shift:
TShiftState; X, Y: Integer) of object;

Therefore, the methods that become event handlers for certain events must follow the same sig-
nature as the event types. They must contain the same type, number, and order of parameters.

Earlier, we said that events are properties. Similar to data properties, events refer to private
data fields of a component. This data field is of the procedure type, such as TMouseEvent.
Examine this code:

TControl = class(TComponent)
private
FOnMouseDown: TMouseEvent;

protected
property OnMouseDown: TMouseEvent read FOnMouseDown write FOnMouseDown;

public
end;

Recall the discussion of properties and how they refer to private data fields of a component.
You can see how events, being properties, refer to private method pointer fields of a compo-
nent.

You learn more about creating events and event handlers in Chapters 11 and 13.

Streamability
One characteristic of components is that they must have the capability to be streamed.
Streaming is a way to store a component and information regarding its properties’ values to a
file. Delphi’s streaming capabilities take care of all this for you. In fact, the DFM file created
by Delphi is nothing more than a resource file containing the streamed information on the form
and its components as an RCDATA resource. As a component writer, however, you must some-
times go beyond what Delphi can do automatically. The streaming mechanism of Delphi is
explained in greater depth in Chapter 12, “Advanced VCL Component Building.”

Component-Based Development

PART IV
392

15 chpt_10.qxd 11/19/01 12:16 PM Page 392

Ownership
Components have the capability of owning other components. A component’s owner is speci-
fied by its Owner property. When a component owns other components, it’s responsible for
freeing the components it owns when it’s destroyed. Typically, the form owns all components
that appear on it. When you place a component on a form in the form designer, the form auto-
matically becomes the component’s owner. When you create a component at runtime, you
must pass the ownership of the component to the component’s Create constructor; it’s
assigned to the new component’s Owner property. The following line shows how to pass the
form’s implicit Self variable to a TButton.Create() constructor, thus making the form the
owner of the newly created component:

MyButton := TButton.Create(self);

When the form is destroyed, the TButton instance to which MyButton refers is also destroyed.
This is handled internally in the VCL. Essentially, the form iterates through the components
referred to by its Components array property (explained in more detail shortly) and destroys
them.

It’s possible to create a component without an owner by passing nil to the component’s
Create() method. However, when this is done, it’s your responsibility to destroy the compo-
nent programmatically. The following code shows this technique:

MyTable := TTable.Create(nil)
try
{ Do stuff with MyTable }

finally
MyTable.Free;

end;

When using this technique, you should use a try..finally block to ensure that you free up
any allocated resources if an exception is raised. You wouldn’t use this technique except in
specific circumstances when it’s impossible to pass an owner to the component.

Another property associated with ownership is the Components property. The Components
property is an array property that maintains a list of all components belonging to a component.
For example, to loop through all the components on a form to show their classnames, execute
the following code:

var
i: integer;

begin
for i := 0 to ComponentCount - 1 do

ShowMessage(Components[i].ClassName);
end;

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

393

15 chpt_10.qxd 11/19/01 12:16 PM Page 393

Obviously, you’ll probably perform a more meaningful operation on these components. The
preceding code merely illustrates the technique.

Parenthood
Not to be confused with ownership is the concept of parenthood. Components can be parents
to other components. Only windowed components such as TWinControl and TWidgetControl
descendants can serve as parents to other components. Parent components are responsible for
calling the child component methods to force them to draw themselves. Parent components are
responsible for the proper painting of child components. A component’s parent is specified
through its Parent property.

A component’s parent doesn’t necessarily have to be its owner. It’s perfectly legal for a compo-
nent to have different parents and owners.

The Visual Component Hierarchy
Remember from Chapter 2 that the abstract class TObject is the base class from which all
classes descend (see Figures 10.1 and 10.2).

As a component writer, you don’t descend your components directly from TObject. The VCL
already has TObject class descendants from which your new components can be derived.
These existing classes provide much of the functionality you require for your own components.
Only when you create noncomponent classes do your classes descend from TObject.

TObject’s Create() and Destroy() methods are responsible for allocating and deallocating
memory for an object instance. In fact, the TObject.Create() constructor returns a reference
to the object being created. TObject has several functions that return useful information about
a specific object.

The VCL uses most of TObject’s methods internally. You can obtain useful information about
an instance of a TObject or TObject descendant such as the instance’s class type, classname,
and ancestor classes.

Component-Based Development

PART IV
394

Use TObject.Free instead of TObject.Destroy. The free method calls destroy for
you but first checks to see whether the object is nil before calling destroy. This
method ensures that you won’t generate an exception by attempting to destroy an
invalid object.

CAUTION

15 chpt_10.qxd 11/19/01 12:16 PM Page 394

The TPersistent Class
The TPersistent class descends directly from TObject. The special characteristic of
TPersistent is that objects descending from it can read their properties from and write them
to a stream after they’re created. Because all components are descendants of TPersistent,
they are all streamable. TPersistent defines no special properties or events, although it does
define some methods that are useful to both the component user and writer.

TPersistent Methods
Table 10.3 lists some methods of interest defined by the TPersistent class.

TABLE 10.3 Methods of the TPersistent Class

Method Purpose

Assign() This public method allows a component to assign to itself the
data associated with another component.

AssignTo() This protected method is where TPersistent descendants
must implement the VCL definition for AssignTo().
TPersistent raises an exception when this method is called.
AssignTo() is where a component can assign its data values
to another instance or class—the reverse of Assign().

DefineProperties() This protected method allows component writers to define
how the component stores extra or unpublished properties.
This method is typically used to provide a way for a compo-
nent to store data that’s not of a simple data type, such as
binary data.

The streamability of components is described in greater depth in Chapter 12, “Working with
Files,” from Delphi 5 Developer’s Guide on the CD-ROM. For now, it’s enough to know that
components can be stored and retrieved from a disk file by means of streaming.

The TComponent Class
The TComponent class descends directly from TPersistent. TComponent’s special characteris-
tics are that its properties can be manipulated at design time through the Object Inspector and
that it can own other components.

Nonvisual components also descend from TComponent so that they inherit the capability to be
manipulated at design time. A good example of a nonvisual TComponent descendant is the
TTimer component. TTimer components aren’t visual controls, but they are still available on
the Component Palette.

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

395

15 chpt_10.qxd 11/19/01 12:16 PM Page 395

TComponent defines several properties and methods of interest, as described in the following
sections.

TComponent Properties
The properties defined by TComponent and their purposes are shown in Table 10.4.

TABLE 10.4 The Special Properties of TComponent

Property Name Purpose

Owner Points to the component’s owner.

ComponentCount Holds the number of components that the component owns.

ComponentIndex The position of this component in its owner’s list of components.
The first component in this list has the value 0.

Components A property array containing a list of components owned by this
component. The first component in this list has the value 0.

ComponentState This property holds the current state of a component of the type
TComponentState. Additional information about TComponentState
can be found in the online help and in Chapter 11.

ComponentStyle Governs various behavioral characteristics of the component.
csInheritable and csCheckPropAvail are two values that can be
assigned to this property; both values are explained in the online
help.

Name Holds the name of a component.

Tag An integer property that has no defined meaning. This property
shouldn’t be used by component writers—it’s intended to be used
by application writers. Because this value is an integer type, point-
ers to data structures—or even object instances—can be referred
to by this property.

DesignInfo Used by the form designer. Do not access this property.

TComponent Methods
TComponent defines several methods having to do with its capacity to own other components
and to be manipulated on the form designer.

TComponent defines the component’s Create() constructor, which was discussed earlier in this
chapter. This constructor is responsible for creating an instance of the component and giving it an
owner based on the parameter passed to it. Unlike TObject.Create(), TComponent.Create() is
virtual. TComponent descendants that implement a constructor must declare the Create()
constructor with the override directive. Although you can declare other constructors on a

Component-Based Development

PART IV
396

15 chpt_10.qxd 11/19/01 12:16 PM Page 396

component class, TComponent.Create() is the only constructor VCL will use to create an
instance of the class at design time and at runtime when loading the component from a stream.

The TComponent.Destroy() destructor is responsible for freeing the component and any
resources allocated by the component.

The TComponent.Destroying() method is responsible for setting a component and its owned
components to a state indicating that they are being destroyed; the TComponent.Destroy
Components() method is responsible for destroying the components. You probably won’t have
to deal with these methods.

The TComponent.FindComponent() method is handy when you want to refer to a component
for which you know only the name. Suppose you know that the main form has a TEdit compo-
nent named Edit1. When you don’t have a reference to this component, you can retrieve a
pointer to its instance by executing the following code:

EditInstance := FindComponent.(‘Edit1’);

In this example, EditInstance is a TEdit type. FindComponent() will return nil if the name
doesn’t exist.

The TComponent.GetParentComponent() method retrieves an instance to the component’s par-
ent component. This method can return nil if there is no parent to a component.

The TComponent.HasParent() method returns a Boolean value indicating whether the compo-
nent has a parent component. Note that this method doesn’t refer to whether this component
has an owner.

The TComponent.InsertComponent() method adds a component so that it’s owned by the call-
ing component; TComponent.RemoveComponent() removes an owned component from the calling
component. You wouldn’t normally use these methods because they’re called automatically by
the component’s Create() constructor and Destroy() destructor.

The TControl Class
The TControl class defines many properties, methods, and events commonly used by visual
components. For example, TControl introduces the capability for a control to display itself.
The TControl class includes position properties such as Top and Left as well as size properties
such as Width and Height, which hold the horizontal and vertical sizes. Other properties
include ClientRect, ClientWidth, and ClientHeight.

TControl also introduces properties regarding appearances and accessibility, such as Visible,
Enabled, and Color. You can even specify a font for the text of a TControl through its Font
property. This text is provided through the TControl properties Text and Caption.

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

397

15 chpt_10.qxd 11/19/01 12:16 PM Page 397

TControl also introduces some standard events, such as the mouse events OnClick,
OnDblClick, OnMouseDown, OnMouseMove, and OnMouseUp. It also introduces drag events
such as OnDragOver, OnDragDrop, and OnEndDrag.

TControl isn’t very useful at the TControl level. You’ll never create descendants of TControl.

Another concept introduced by TControl is that it can have a parent component. Although
TControl might have a parent, its parent must be a TWinControl (VCL) or a TWidgetControl
(CLX). Parent controls must be windowed controls. The TControl introduces the Parent
property.

Most of Delphi’s controls are derived from TControl’s descendants: TWinControl and
TWidgetControl.

The TWinControl and TWidgetControl
Standard controls descend from the classes TWinControl for VCL controls and TWidgetControl
for CLX controls. These controls are the user-interface objects you see in most applications.
Items such as edit controls, list boxes, combo boxes, and buttons are examples of these con-
trols. Because Delphi encapsulates the behavior of standard controls instead of using Windows
or Qt API level functions to manipulate them, you use the properties provided by each of the
various control components.

The three basic characteristics of these controls are that they have a Windows handle, can
receive input focus, and can be parents to other controls. CLX controls don’t have a window
handle; rather, they have an object pointer that accomplished the same thing. You’ll find that
the properties, methods, and events belonging to these controls support focus changing, key-
board events, drawing of controls, and other necessary functions.

An applications developer primarily uses TWinControl/TWidgetControl descendants. A com-
ponent writer must understand these controls and their descendants in much greater depth.

TWinControl/TWidgetControl Properties
TWinControl and TWidgetControl define several properties applicable to changing the focus
and appearance of the control. In the remaining text, we’ll refer only to TWinControl although
it will also be applicable to TWidgetControl.

The TWinControl.Brush property is used to draw the patterns and shapes of the control (See
Chapter 8, “Graphics Programming with GDI and Fonts,” in Delphi 5 Developer’s Guide on
this book’s CD-ROM.)

TWinControl.Controls is an array property that maintains a list of all controls to which the
calling TWinControl is a parent.

Component-Based Development

PART IV
398

15 chpt_10.qxd 11/19/01 12:16 PM Page 398

The TWinControl.ControlCount property holds the count of controls to which it is a parent.

TWinControl.Ctl3D is a property that specifies whether to draw the control using a three-
dimensional appearance.

The TWinControl.Handle property corresponds to the handle of the Windows object that the
TWinControl encapsulates. This is the handle you would pass to Win32 API functions requir-
ing a window handle parameter.

TWinControl.HelpContext holds a help context number that corresponds to a help screen in a
help file. This is used to provide context-sensitive help for individual controls.

TWinControl.Showing indicates whether a control is visible.

The TWinControl.TabStop property holds a Boolean value to determine whether a user can
tab to the said control. The TWinControl.TabOrder property specifies where in the parent’s list
of tabbed controls the control exists.

TWinControl Methods
The TWinControl component also offers several methods that have to do with window creation,
focus control, event dispatching, and positioning. There are too many methods to discuss in
depth in this chapter; however, they’re all documented in Delphi’s online help. We’ll list only
those methods of particular interest in the following paragraphs.

Methods that relate to window creation, re-creation, and destruction apply mainly to component
writers and are discussed in Chapter 11. These methods are CreateParams(), CreateWnd(),
CreateWindowHandle(), DestroyWnd(), DestroyWindowHandle(), and RecreateWnd() for
VCL. For CLX’s TWidgetControl, these methods are CreateWidget(), DestroyWidget(),
CreateHandle(), and DestroyHandle().

Methods having to do with window focusing, positioning, and alignment are CanFocus(),
Focused(), AlignControls(), EnableAlign(), DisableAlign(), and ReAlign().

TWinControl Events
TWinControl introduces events for keyboard interaction and focus change. Keyboard events
are OnKeyDown, OnKeyPress, and OnKeyUp. Focus-change events are OnEnter and OnExit. All
these events are documented in Delphi’s online help.

The TGraphicControl Class
TGraphicControls, unlike TWinControls, don’t have a window handle and therefore can’t
receive input focus. They also can’t be parents to other controls. TGraphicControls are used
when you want to display something to the user on the form, but you don’t want this control to
function as a regular user-input control. The advantage of TGraphicControls is that they don’t

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

399

15 chpt_10.qxd 11/19/01 12:16 PM Page 399

request a handle from Windows that uses up system resources. Additionally, not having a win-
dow handle means that TGraphicControls don’t have to go through the convoluted Windows
paint process. This makes drawing with TGraphicControls much faster than using the
TWinControl equivalents.

TGraphicControls can respond to mouse events. Actually, the TGraphicControl parent
processes the mouse message and sends it to its child controls.

TGraphicControl allows you to paint the control and therefore provides the property Canvas,
which is of the type TCanvas. TGraphicControl also provides a Paint() method that its
descendants must override.

The TCustomControl Class
You might have noticed that the names of some TWinControl descendants begin with TCustom,
such as TCustomComboBox, TCustomControl, TCustomEdit, and TCustomListBox.

Custom controls have the same functionality as other TWinControl descendants, except that
with specialized visual and interactive characteristics, custom controls provide you with a base
from which you can derive and create your own customized components. You provide the func-
tionality for the custom control to draw itself if you’re a component writer.

Other Classes
Several classes aren’t components but serve as supporting classes to the existing component.
These classes are typically properties of other components and descend directly from
TPersistent. Some of these classes are of the type TStrings, TCanvas, and TCollection.

The TStrings and TStringLists Classes
The TStrings abstract class gives you the capability to manipulate lists of strings that belong
to a component such as a TListBox. TStrings doesn’t actually maintain the memory for the
strings (that’s done by the native control that owns the TStrings class). Instead, TStrings
defines the methods and properties to access and manipulate the control’s strings without hav-
ing to use the control’s set of API level functions and messages.

Notice that we said TStrings is an abstract class. This means that TStrings doesn’t really
implement the code required to manipulate the strings—it just defines the methods that must
be there. It’s up to the descendant components to implement the actual string-manipulation
methods.

To explain this point further, some examples of components and their TStrings properties are
TListBox.Items, TMemo.Lines, and TComboBox.Items. Each of these properties is of the type

Component-Based Development

PART IV
400

15 chpt_10.qxd 11/19/01 12:16 PM Page 400

TStrings. You might wonder, if their properties are TStrings, how can you call methods of
these properties when these methods have yet to be implemented in code? That’s a good ques-
tion. The answer is that, even though each of these properties is defined as TStrings, the vari-
able to which the property refers (TListBox.FItems, for example) was instantiated as a
descendant class. To clarify this, FItems is the private storage field for the Items property of
TListBox:

TCustomListBox = class(TWinControl)
private
FItems: TStrings;

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

401

Although the class type shown in the preceding code snippet is a TCustomListBox,
the TListBox descends directly from TCustomListBox in the same unit and therefore
has access to its private fields.

NOTE

The unit StdCtrls.pas, which is part of the Delphi VCL, defines a descendant class
TListBoxStrings, which is a descendant of TStrings. Listing 10.1 shows its definition.

LISTING 10.1 The Declaration of the TListBoxStrings Class

TListBoxStrings = class(TStrings)
private
ListBox: TCustomListBox;

protected
procedure Put(Index: Integer; const S: string); override;
function Get(Index: Integer): string; override;
function GetCount: Integer; override;
function GetObject(Index: Integer): TObject; override;
procedure PutObject(Index: Integer; AObject: TObject); override;
procedure SetUpdateState(Updating: Boolean); override;

public
function Add(const S: string): Integer; override;
procedure Clear; override;
procedure Delete(Index: Integer); override;
procedure Exchange(Index1, Index2: Integer); override;
function IndexOf(const S: string): Integer; override;
procedure Insert(Index: Integer; const S: string); override;
procedure Move(CurIndex, NewIndex: Integer); override;

end;

15 chpt_10.qxd 11/19/01 12:16 PM Page 401

StdCtrls.pas then defines the implementation of each method of this descendant class. When
TListBox creates its class instances for its FItems variable, it actually creates an instance of
this descendant class and refers to it with the FItems property:

constructor TCustomListBox.Create(AOwner: TComponent);
begin
inherited Create(AOwner);
...
// An instance of TListBoxStrings is created
FItems := TListBoxStrings.Create;
...

end;

We want to make it clear that although the TStrings class defines its methods, it doesn’t
implement these methods to manipulate strings. The TStrings descendant class does the
implementation of these methods. This is important if you’re a component writer because you
must know how to perform this technique as the Delphi components did it. It’s always good to
refer to the VCL or CLX source code to see how Borland performs these techniques when
you’re unsure.

If you’re not a component writer but want to manipulate a list of strings, you can use the
TStringList class, another descendant of TStrings, with which you can instantiate a com-
pletely self-contained class. TStringList maintains a list of strings external to components.
The best part is that TStringList is totally compatible with TStrings, which means that you
can directly assign a TStringList instance to a control’s TStrings property. The following
code shows how you can create an instance of TStringList:

var
MyStringList: TStringList;

begin
MyStringList := TStringList.Create;

To add strings to this TStringList instance, do the following:

MyStringList.Add(‘Red’);
MyStringList.Add(‘White’);
MyStringList.Add(‘Blue’);

If you want to add these same strings to both a TMemo component and a TListBox component,
all you have to do is take advantage of the compatibility between the different components’
TStrings properties and make the assignments in one line of code each:

Memo1.Lines.Assign(MyStringList);
ListBox1.Items.Assign(MyStringList);

You use the Assign() method to copy TStrings instances instead of making a direct assign-
ment such as Memo1.Lines := MyStringList.

Component-Based Development

PART IV
402

15 chpt_10.qxd 11/19/01 12:16 PM Page 402

Table 10.5 shows some common methods of TStrings classes.

TABLE 10.5 Some Common TStrings Methods

TStrings Method Description

Add(const S: String): Integer Adds the string S to the string’s list and returns
the string’s position in the list.

AddObject(const S: string; Appends both a string and an object to a string
AObject: TObject): Integer or string list object.

AddStrings(Strings: TStrings) Copies strings from one TStrings to the end of
its existing list of strings.

Assign(Source: TPersistent) Replaces the existing strings with those speci-
fied by the Source parameter.

Clear Removes all strings from the list.

Delete(Index: Integer) Removes the string at the location specified by
Index.

Exchange(Index1, Index2: Integer) Switches the location of the two strings speci-
fied by the two index values.

IndexOf(const S: String): Integer Returns the position of the string S on the list.

Insert(Index: Integer; Inserts the string S into the position in the list
const S: String) specified by Index.

Move(CurIndex, NewIndex: Integer) Moves the string at the position CurIndex to the
position NewIndex.

LoadFromFile(const FileName: Reads the text file, FileName, and places its
String) lines into the string list.

SaveToFile(const FileName: string) Saves the string list to the text file, FileName.

The TCanvas Class
The Canvas property, of type TCanvas, is provided for windowed controls and represents the
drawing surface of the control. TCanvas encapsulates what’s called the device context of a win-
dow. It provides many of the functions and objects required for drawing to the window’s sur-
face. (Chapter 8, “Graphics Programming with GDI and Fonts,” of Delphi 5 Developer’s Guide
on this book’s CD-ROM goes into detail about the TCanvas class.)

Runtime Type Information
Back in Chapter 2 you were introduced to Runtime Type Information (RTTI). This chapter
delves much deeper into the RTTI innards that will allow you to take advantage of RTTI

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

403

15 chpt_10.qxd 11/19/01 12:16 PM Page 403

beyond what you get in the normal usage of the Object Pascal language. In other words, we’re
going to show you how to obtain type information on objects and data types much similar to
the way the Delphi IDE obtains the same information.

So how does RTTI manifest itself? You’ll see RTTI at work in at least two areas with which
you normally work. The first place is right in the Delphi IDE, as stated earlier. Through RTTI,
the IDE magically knows everything about the object and components with which you work
(see the Object Inspector). Actually, there’s more to it than just RTTI. But for the sake of this
discussion, we’re covering only the RTTI aspect. The second area is in the runtime code that
you write. Already, in Chapter 2 you read about the is and as operators.

Let’s examine the is operator to illustrate typical usage of RTTI.

Suppose that you need to make all TEdit components read-only on a given form. This is simple
enough—just loop through all components, use the is operator to determine whether the com-
ponent is a TEdit class, and then set the ReadOnly property accordingly. Here’s an example:

for i := 0 to ComponentCount - 1 do
if Components[i] is TEdit then
TEdit(Components[i]).ReadOnly := True;

A typical usage for the as operator would be to perform an action on the Sender parameter of
an event handler, where the handler is attached to several different components. Assuming that
you know that all components are derived from a common ancestor whose property you want
to access, the event handler can use the as operator to safely typecast Sender as the desired
descendant, thus surfacing the wanted property. Here’s an example:

procedure TForm1.ControlOnClickEvent(Sender: TObject);
var
i: integer;

begin
(Sender as TControl).Enabled := False;
end;

These examples of typesafe programming illustrate enhancements to the Object Pascal lan-
guage that indirectly use RTTI. Now let’s look at a problem that would call for direct usage of
RTTI.

Suppose you have a form containing components that are data aware and components that
aren’t data aware. However, you need to perform some action on the data-aware components
only. Certainly you could loop through the Components array for the form and test for each
data-aware component type. However, this could get messy to maintain because you would
have to test against every type of data-aware component. Also, you don’t have a base class to
test against that’s common to only data-aware components. For instance, something such as
TDataAwareControl would have been nice, but it doesn’t exist.

Component-Based Development

PART IV
404

15 chpt_10.qxd 11/19/01 12:16 PM Page 404

A clean way to determine whether a component is data aware is to test for the existence of a
DataSource property. You are sure that this property exists for all data-aware components. To
do this, however, you need to use RTTI directly.

The following sections discuss RTTI in more depth to give you the background knowledge
needed to solve problems such as the one mentioned earlier.

The TypInfo.pas Unit: Definer of Runtime Type
Information
Type information exists for any object (a descendant of TObject). This information exists in
memory and is queried by the IDE and the Runtime Library to obtain information about
objects. The TypInfo.pas unit defines the structures that allow you to query for type informa-
tion. The TObject methods shown in Table 10.6 are repeated from Chapter 2.

TABLE 10.6 TObject Methods

Function Return Type Returns

ClassName() string The name of the object’s class

ClassType() TClass The object’s type

InheritsFrom() Boolean Boolean to indicate whether the class descends
from a given class

ClassParent() TClass The object Cancestor’s type

InstanceSize() word The size, in bytes, of an instance

ClassInfo() Pointer A pointer to the object’s in-memory RTTI

For now, we want to focus on the ClassInfo() function, which is defined as follows:

class function ClassInfo: Pointer;

This function returns a pointer to the RTTI for the calling class. The structure to which this
pointer refers is of the type PTypeInfo. This type is defined in the TypInfo.pas unit as a
pointer to a TTypeInfo structure. Both definitions are given in the following code as they
appear in TypInfo.pas:

PPTypeInfo = ^PTypeInfo;
PTypeInfo = ^TTypeInfo;
TTypeInfo = record
Kind: TTypeKind;
Name: ShortString;
{TypeData: TTypeData}
end;

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

405

15 chpt_10.qxd 11/19/01 12:16 PM Page 405

The commented field, TypeData, represents the actual reference to the type information for the
given class. The type to which it actually refers depends on the value of the Kind field. Kind
can be any of the enumerated values defined in the TTypeKind:

TTypeKind = (tkUnknown, tkInteger, tkChar, tkEnumeration, tkFloat,
tkString, tkSet, tkClass, tkMethod, tkWChar, tkLString, tkWString,
tkVariant, tkArray, tkRecord, tkInterface);

Take a look at the TypInfo.pas unit at this time to examine the subtypes to some of the pre-
ceding enumerated values to get yourself familiar with them. For example, the tkFloat value
can be further broken down into one of the following:

TFloatType = (ftSingle, ftDouble, ftExtended, ftComp, ftCurr);

Now you know that Kind determines to which type TypeData refers. The TTypeData structure
is defined in TypInfo.pas, as shown in Listing 10.2.

LISTING 10.2 The TTypeData Structure

PTypeData = ^TTypeData;
TTypeData = packed record
case TTypeKind of
tkUnknown, tkLString, tkWString, tkVariant: ();
tkInteger, tkChar, tkEnumeration, tkSet, tkWChar: (

OrdType: TOrdType;
case TTypeKind of
tkInteger, tkChar, tkEnumeration, tkWChar: (
MinValue: Longint;
MaxValue: Longint;
case TTypeKind of
tkInteger, tkChar, tkWChar: ();
tkEnumeration: (
BaseType: PPTypeInfo;
NameList: ShortStringBase));

tkSet: (
CompType: PPTypeInfo));

tkFloat: (FloatType: TFloatType);
tkString: (MaxLength: Byte);
tkClass: (

ClassType: TClass;
ParentInfo: PPTypeInfo;
PropCount: SmallInt;
UnitName: ShortStringBase;
{PropData: TPropData});

tkMethod: (
MethodKind: TMethodKind;
ParamCount: Byte;

Component-Based Development

PART IV
406

15 chpt_10.qxd 11/19/01 12:16 PM Page 406

LISTING 10.2 Continued

ParamList: array[0..1023] of Char
{ParamList: array[1..ParamCount] of
record
Flags: TParamFlags;
ParamName: ShortString;
TypeName: ShortString;

end;
ResultType: ShortString});

tkInterface: (
IntfParent : PPTypeInfo; { ancestor }
IntfFlags : TIntfFlagsBase;
Guid : TGUID;
IntfUnit : ShortStringBase;
{PropData: TPropData});

tkInt64: (
MinInt64Value, MaxInt64Value: Int64);

end;

As you can see, the TTypeData structure is really just a big variant record. If you’re familiar
with working with variant records and pointers, you’ll see that dealing with RTTI is really sim-
ple. It just seems complex because it’s an undocumented feature.

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

407

Often, Borland doesn’t document a feature because it might change between ver-
sions. When using features such as the undocumented RTTI, realize that your code
might not be fully portable between versions of Delphi.

NOTE

At this point, we’re ready to demonstrate how to use these structures of RTTI to obtain type
information.

Obtaining Type Information
To demonstrate how to obtain Runtime Type Information on an object, we’ve created a project
whose main form is defined in Listing 10.3.

LISTING 10.3 Main Form for ClassInfo.dpr

unit MainFrm;

interface

15 chpt_10.qxd 11/19/01 12:16 PM Page 407

LISTING 10.3 Continued

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls, DBClient, MidasCon, MConnect;

type

TMainForm = class(TForm)
pnlTop: TPanel;
pnlLeft: TPanel;
lbBaseClassInfo: TListBox;
spSplit: TSplitter;
lblBaseClassInfo: TLabel;
pnlRight: TPanel;
lblClassProperties: TLabel;
lbPropList: TListBox;
lbSampClasses: TListBox;
procedure FormCreate(Sender: TObject);
procedure lbSampClassesClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
MainForm: TMainForm;

implementation
uses TypInfo;

{$R *.DFM}

function CreateAClass(const AClassName: string): TObject;
{ This method illustrates how you can create a class from the class name. Note
that this requires that you register the class using RegisterClasses() as
shown in the initialization method of this unit. }

var
C : TFormClass;
SomeObject: TObject;

begin
C := TFormClass(FindClass(AClassName));
SomeObject := C.Create(nil);
Result := SomeObject;

end;

Component-Based Development

PART IV
408

15 chpt_10.qxd 11/19/01 12:16 PM Page 408

LISTING 10.3 Continued

procedure GetBaseClassInfo(AClass: TObject; AStrings: TStrings);
{ This method obtains some basic RTTI data from the given object and adds that
information to the AStrings parameter. }

var
ClassTypeInfo: PTypeInfo;
ClassTypeData: PTypeData;
EnumName: String;

begin
ClassTypeInfo := AClass.ClassInfo;
ClassTypeData := GetTypeData(ClassTypeInfo);
with AStrings do
begin
Add(Format(‘Class Name: %s’, [ClassTypeInfo.Name]));
EnumName := GetEnumName(TypeInfo(TTypeKind), Integer(ClassTypeInfo.Kind));
Add(Format(‘Kind: %s’, [EnumName]));
Add(Format(‘Size: %d’, [AClass.InstanceSize]));
Add(Format(‘Defined in: %s.pas’, [ClassTypeData.UnitName]));
Add(Format(‘Num Properties: %d’,[ClassTypeData.PropCount]));

end;
end;

procedure GetClassAncestry(AClass: TObject; AStrings: TStrings);
{ This method retrieves the ancestry of a given object and adds the
class names of the ancestry to the AStrings parameter. }

var
AncestorClass: TClass;

begin
AncestorClass := AClass.ClassParent;
{ Iterate through the Parent classes starting with Sender’s
Parent until the end of the ancestry is reached. }

AStrings.Add(‘Class Ancestry’);
while AncestorClass <> nil do
begin
AStrings.Add(Format(‘ %s’,[AncestorClass.ClassName]));
AncestorClass := AncestorClass.ClassParent;

end;
end;

procedure GetClassProperties(AClass: TObject; AStrings: TStrings);
{ This method retrieves the property names and types for the given object
and adds that information to the AStrings parameter. }

var
PropList: PPropList;

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

409

15 chpt_10.qxd 11/19/01 12:16 PM Page 409

LISTING 10.3 Continued

ClassTypeInfo: PTypeInfo;
ClassTypeData: PTypeData;
i: integer;
NumProps: Integer;

begin

ClassTypeInfo := AClass.ClassInfo;
ClassTypeData := GetTypeData(ClassTypeInfo);

if ClassTypeData.PropCount <> 0 then
begin
// allocate the memory needed to hold the references to the TPropInfo
// structures on the number of properties.
GetMem(PropList, SizeOf(PPropInfo) * ClassTypeData.PropCount);
try
// fill PropList with the pointer references to the TPropInfo structures
GetPropInfos(AClass.ClassInfo, PropList);
for i := 0 to ClassTypeData.PropCount - 1 do
// filter out properties that are events (method pointer properties)
if not (PropList[i]^.PropType^.Kind = tkMethod) then
AStrings.Add(Format(‘%s: %s’, [PropList[i]^.Name,
PropList[i]^.PropType^.Name]));

// Now get properties that are events (method pointer properties)
NumProps := GetPropList(AClass.ClassInfo, [tkMethod], PropList);
if NumProps <> 0 then begin
AStrings.Add(‘’);
AStrings.Add(‘ EVENTS ================ ‘);
AStrings.Add(‘’);

end;
// Fill the AStrings with the events.
for i := 0 to NumProps - 1 do

AStrings.Add(Format(‘%s: %s’, [PropList[i]^.Name,
PropList[i]^.PropType^.Name]));

finally
FreeMem(PropList, SizeOf(PPropInfo) * ClassTypeData.PropCount);

end;
end;

end;

procedure TMainForm.FormCreate(Sender: TObject);
begin

Component-Based Development

PART IV
410

15 chpt_10.qxd 11/19/01 12:16 PM Page 410

LISTING 10.3 Continued

// Add some example classes to the list box.
lbSampClasses.Items.Add(‘TApplication’);
lbSampClasses.Items.Add(‘TButton’);
lbSampClasses.Items.Add(‘TForm’);
lbSampClasses.Items.Add(‘TListBox’);
lbSampClasses.Items.Add(‘TPaintBox’);
lbSampClasses.Items.Add(‘TMidasConnection’);
lbSampClasses.Items.Add(‘TFindDialog’);
lbSampClasses.Items.Add(‘TOpenDialog’);
lbSampClasses.Items.Add(‘TTimer’);
lbSampClasses.Items.Add(‘TComponent’);
lbSampClasses.Items.Add(‘TGraphicControl’);

end;

procedure TMainForm.lbSampClassesClick(Sender: TObject);
var
SomeComp: TObject;

begin
lbBaseClassInfo.Items.Clear;
lbPropList.Items.Clear;

// Create an instance of the selected class.
SomeComp := CreateAClass(lbSampClasses.Items[lbSampClasses.ItemIndex]);
try
GetBaseClassInfo(SomeComp, lbBaseClassInfo.Items);
GetClassAncestry(SomeComp, lbBaseClassInfo.Items);
GetClassProperties(SomeComp, lbPropList.Items);

finally
SomeComp.Free;

end;
end;

initialization
begin
RegisterClasses([TApplication, TButton, TForm, TListBox, TPaintBox,
TMidasConnection, TFindDialog, TOpenDialog, TTimer, TComponent,
TGraphicControl]);

end;

end.

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

411

15 chpt_10.qxd 11/19/01 12:16 PM Page 411

This main form contains three list boxes. lbSampClasses contains classnames for a few sample
objects whose type information we’ll retrieve. On selecting an object from lbSampClasses,
lbBaseClassInfo will be populated with basic information about the selected object, such as
its size and ancestry. lbPropList will display the properties belonging to the selected object
from lbSampClasses.

Three helper procedures are used to obtain class information:

• GetBaseClassInfo()—Populates a string list with basic information about an object,
such as its type, size, defining unit, and number of properties

• GetClassAncestry()—Populates a string list with the object names of a given object’s
ancestry

• GetClassProperties()—Populates a string list with the properties and their types for a
given class

Each procedure takes an object instance and a string list as parameters.

As the user selects one of the classes from lbSampClasses, its OnClick event,
lbSampClassesClick(), calls a helper function, CreateAClass(), which creates an instance of
a class given the name of the class type. It then passes the object instance and the appropriate
TListBox.Items property to be populated.

Component-Based Development

PART IV
412

CLX versions of the RTTI demos shown here reside on the CD-ROM under the subdi-
rectory CLX for this chapter.

NOTE

The CreateAClass() function can be used to create any class by its name. However, as
demonstrated, you must make sure that any classes passed to it have been registered
by calling the RegisterClasses() procedure.

TIP

Obtaining Runtime Type Information for Objects
GetBaseClassInfo() passes the return value from TObject.ClassInfo() to the function
GetTypeData(). GetTypeData() is defined in TypInfo.pas. Its purpose is to return a pointer to
the TTypeData structure based on the class whose PTypeInfo structure was passed to it (see
Listing 10.2). GetBaseClassInfo() simply refers to the various fields of both the TTypeInfo
and TTypeData structures to populate the AStrings string list. Note the use of the function

15 chpt_10.qxd 11/19/01 12:16 PM Page 412

GetEnumName() to return the string for an enumerated type. This is also a function of RTTI
defined in TypInfo.pas. Type information on enumerated types is discussed in a later section.

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

413

Use the GetTypeData() function defined in TypInfo.pas to return a pointer
to the TTypeInfo structure for a given class. You must pass the result of
TObject.ClassInfo() to GetTypeData().

TIP

Obtaining the Ancestry for an Object
The GetClassAncestry() procedure populates a string list with the classnames of the given
object’s ancestry. This is a simple operation that uses the ClassParent() class procedure on
the given object. ClassParent() will return a TClass reference to the given class’s parent or
nil if the top of the ancestry is reached. GetClassAncestry() simply walks up the ancestry
and adds each classname to the string list until the top is reached.

Obtaining Type Information on Object Properties
If an object has properties, its TTypeData.PropCount value will contain the number of proper-
ties it has. There are several approaches you can use to obtain the property information for a
given class—we demonstrate two.

The GetClassProperties() procedure begins much like the previous two methods in that it
passes the ClassInfo() result to GetTypeData() to obtain the reference to the TTypeData
structure for the class. It then allocates memory for the PropList variable based on the value
of ClassTypeData.PropCount. PropList is defined as the type PPropList. PPropList is
defined in TypInfo.pas as follows:

type
PPropList = ^TPropList;
TPropList = array[0..16379] of PPropInfo;

The TPropList array stores pointers to the TPropInfo data for each property. TPropInfo is
defined in TypInfo.pas as follows:

PPropInfo = ^TPropInfo;
TPropInfo = packed record

You can use the GetEnumName() function to obtain the name of an enumeration value
as a string. GetEnumValue() returns the enumeration value given its name.

TIP

15 chpt_10.qxd 11/19/01 12:16 PM Page 413

PropType: PPTypeInfo;
GetProc: Pointer;
SetProc: Pointer;
StoredProc: Pointer;
Index: Integer;
Default: Longint;
NameIndex: SmallInt;
Name: ShortString;

end;

TPropInfo is the Runtime Type Information for a property.

GetClassProperties() uses the GetPropInfos() function to fill this array with pointers to the
RTTI information for all properties for the given object. It then loops through the array and
writes out the name and type for the property by accessing that property’s type information.
Note the following line:

if not (PropList[i]^.PropType^.Kind = tkMethod) then

This is used to filter out properties that are events (method pointers). We populate these proper-
ties last, which allows us to demonstrate an alternative method for retrieving property RTTI. In
the final part of the GetClassProperties() method, we use the GetPropList() function to
return the TPropList for properties of a specific type. In this case, we want only properties of
the type tkMethod. GetPropList() is also defined in TypInfo.pas. Refer to the source com-
mentary for additional information.

Component-Based Development

PART IV
414

Use GetPropInfos() when you want to retrieve a pointer to the property Runtime
Type Information for all properties of a given object. Use GetPropList() if you want
to retrieve the same information, except for properties of a specific type.

TIP

Figure 10.3 shows the output of the main form with Runtime Type Information for a selected
class.

Checking for the Existence of a Property for an Object
Earlier we presented the problem of needing to check for the existence of a property for a
given object. Specifically, we were referring to the DataSource property. Using functions
defined in TypInfo.pas, we could write the following function to determine whether a control
is data aware:

function IsDataAware(AComponent: TComponent): Boolean;
var
PropInfo: PPropInfo;

15 chpt_10.qxd 11/19/01 12:16 PM Page 414

begin
// Find the property named datasource.
PropInfo := GetPropInfo(AComponent.ClassInfo, ‘DataSource’);
Result := PropInfo <> nil;

// Double check, make sure it descends from TDataSource
if Result then
if not ((PropInfo^.Proptype^.Kind = tkClass) and

(GetTypeData(PropInfo^.PropType^).ClassType.InheritsFrom(TDataSource)))
then

Result := False;
end;

Here, we’re using the GetPropInfo() function to return the TPropInfo pointer on a given
property. This function returns nil if the property doesn’t exist. As an additional check, we
make sure that the property named DataSource is actually a descendant of TDataSource.

We also could have written this function more generically to check for the existence of any
property by its name, like this:

function HasProperty(AComponent: TComponent; APropertyName: String): Boolean;
var
PropInfo: PPropInfo;

begin
PropInfo := GetPropInfo(AComponent.ClassInfo, APropertyName);
Result := PropInfo <> nil;

end;

Note, however, that this works only on published properties. RTTI doesn’t exist for unpub-
lished properties.

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

415

FIGURE 10.3
Output of a class’s Runtime Type Information.

15 chpt_10.qxd 11/19/01 12:16 PM Page 415

Obtaining Type Information on Method Pointers
Runtime Type Information can be obtained on method pointers. For example, you can deter-
mine the type of method (procedure, function, and so on) and its parameters. Listing 10.4
demonstrates how to obtain Runtime Type Information for a selected group of methods.

LISTING 10.4 Obtaining Runtime Type Information for Methods

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls, DBClient, MidasCon, MConnect;

type

TMainForm = class(TForm)
lbSampMethods: TListBox;
lbMethodInfo: TMemo;
lblBasicMethodInfo: TLabel;
procedure FormCreate(Sender: TObject);
procedure lbSampMethodsClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
MainForm: TMainForm;

implementation
uses TypInfo, DBTables, Provider;

{$R *.DFM}

type
// It is necessary to redefine this record as it is commented out in
// typinfo.pas.

PParamRecord = ^TParamRecord;
TParamRecord = record
Flags: TParamFlags;
ParamName: ShortString;

Component-Based Development

PART IV
416

15 chpt_10.qxd 11/19/01 12:16 PM Page 416

LISTING 10.4 Continued

TypeName: ShortString;
end;

procedure GetBaseMethodInfo(ATypeInfo: PTypeInfo; AStrings: TStrings);
{ This method obtains some basic RTTI data from the TTypeInfo and adds that
information to the AStrings parameter. }

var
MethodTypeData: PTypeData;
EnumName: String;

begin
MethodTypeData := GetTypeData(ATypeInfo);
with AStrings do
begin
Add(Format(‘Class Name: %s’, [ATypeInfo^.Name]));
EnumName := GetEnumName(TypeInfo(TTypeKind), Integer(ATypeInfo^.Kind));
Add(Format(‘Kind: %s’, [EnumName]));
Add(Format(‘Num Parameters: %d’,[MethodTypeData.ParamCount]));

end;
end;

procedure GetMethodDefinition(ATypeInfo: PTypeInfo; AStrings: TStrings);
{ This method retrieves the property info on a method pointer. We use this
information to reconstruct the method definition. }

var
MethodTypeData: PTypeData;
MethodDefine: String;
ParamRecord: PParamRecord;
TypeStr: ^ShortString;
ReturnStr: ^ShortString;
i: integer;

begin
MethodTypeData := GetTypeData(ATypeInfo);

// Determine the type of method
case MethodTypeData.MethodKind of
mkProcedure: MethodDefine := ‘procedure ‘;
mkFunction: MethodDefine := ‘function ‘;
mkConstructor: MethodDefine := ‘constructor ‘;
mkDestructor: MethodDefine := ‘destructor ‘;
mkClassProcedure: MethodDefine := ‘class procedure ‘;
mkClassFunction: MethodDefine := ‘class function ‘;

end;

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

417

15 chpt_10.qxd 11/19/01 12:16 PM Page 417

LISTING 10.4 Continued

// point to the first parameter
ParamRecord := @MethodTypeData.ParamList;
i := 1; // first parameter

// loop through the method’s parameters and add them to the string list as
// they would be normally defined.
while i <= MethodTypeData.ParamCount do
begin
if i = 1 then
MethodDefine := MethodDefine+’(‘;

if pfVar in ParamRecord.Flags then
MethodDefine := MethodDefine+(‘var ‘);

if pfconst in ParamRecord.Flags then
MethodDefine := MethodDefine+(‘const ‘);

if pfArray in ParamRecord.Flags then
MethodDefine := MethodDefine+(‘array of ‘);

// we won’t do anything for the pfAddress but know that the Self parameter
// gets passed with this flag set.
{

if pfAddress in ParamRecord.Flags then
MethodDefine := MethodDefine+(‘*address* ‘);

}
if pfout in ParamRecord.Flags then
MethodDefine := MethodDefine+(‘out ‘);

// Use pointer arithmetic to get the type string for the parameter.
TypeStr := Pointer(Integer(@ParamRecord^.ParamName) +
Length(ParamRecord^.ParamName)+1);

MethodDefine := Format(‘%s%s: %s’, [MethodDefine, ParamRecord^.ParamName,
TypeStr^]);

inc(i); // Increment the counter.

// Go the next parameter. Notice that use of pointer arithmetic to
// get to the appropriate location of the next parameter.
ParamRecord := PParamRecord(Integer(ParamRecord) + SizeOf(TParamFlags) +
(Length(ParamRecord^.ParamName) + 1) + (Length(TypeStr^)+1));

// if there are still parameters then setup
if i <= MethodTypeData.ParamCount then

Component-Based Development

PART IV
418

15 chpt_10.qxd 11/19/01 12:16 PM Page 418

LISTING 10.4 Continued

begin
MethodDefine := MethodDefine + ‘; ‘;

end
else
MethodDefine := MethodDefine + ‘)’;

end;

// If the method type is a function, it has a return value. This is also
// placed in the method definition string. The return value will be at the
// location following the last parameter.
if MethodTypeData.MethodKind = mkFunction then
begin
ReturnStr := Pointer(ParamRecord);
MethodDefine := Format(‘%s: %s;’, [MethodDefine, ReturnStr^])

end
else
MethodDefine := MethodDefine+’;’;

// finally, add the string to the listbox.
with AStrings do
begin
Add(MethodDefine)

end;
end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
{ Add some method types to the list box. Also, store the pointer to the RTTI
data in listbox’s Objects array }

with lbSampMethods.Items do
begin
AddObject(‘TNotifyEvent’, TypeInfo(TNotifyEvent));
AddObject(‘TMouseEvent’, TypeInfo(TMouseEvent));
AddObject(‘TBDECallBackEvent’, TypeInfo(TBDECallBackEvent));
AddObject(‘TDataRequestEvent’, TypeInfo(TDataRequestEvent));
AddObject(‘TGetModuleProc’, TypeInfo(TGetModuleProc));
AddObject(‘TReaderError’, TypeInfo(TReaderError));

end;
end;

procedure TMainForm.lbSampMethodsClick(Sender: TObject);
begin
lbMethodInfo.Lines.Clear;
with lbSampMethods do

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

419

15 chpt_10.qxd 11/19/01 12:16 PM Page 419

LISTING 10.4 Continued

begin
GetBaseMethodInfo(PTypeInfo(Items.Objects[ItemIndex]), lbMethodInfo.Lines);
GetMethodDefinition(PTypeInfo(Items.Objects[ItemIndex]),
lbMethodInfo.Lines);

end;
end;

end.

In Listing 10.4, we populate a list box, lbSampMethods, with some sample method names. We
also store the references to those methods’ RTTI data in the Objects array of the list box.
We do this by using the TypeInfo() function, which is a special function that can retrieve a
pointer to Runtime Type Information for a given type identifier. When the user selects one of
these methods, we use that RTTI data from the Objects array to retrieve and reconstruct the
method definition from the information we have about the method and its parameters in the
RTTI data. Refer to the listing’s commentary for further information.

Component-Based Development

PART IV
420

Use the TypeInfo() function to retrieve a pointer to the compiler-generated Runtime
Type Information for a given type identifier. For example, the following line retrieves
a pointer to the RTTI for the TButton type:

TypeInfoPointer := TypeInfo(TButton);

TIP

Obtaining Type Information for Ordinal Types
We’ve already covered the more difficult pieces to RTTI. However, you can also obtain RTTI
for ordinal types. The following sections illustrate how to obtain RTTI data on integer, enumer-
ated, and set types.

Type Information for Integer Types
Obtaining type information for integer types is simple. Listing 10.5 illustrates this process.

LISTING 10.5 Obtaining Runtime Type Information for Integers

procedure TMainForm.lbSampsClick(Sender: TObject);
var
OrdTypeInfo: PTypeInfo;
OrdTypeData: PTypeData;

15 chpt_10.qxd 11/19/01 12:16 PM Page 420

LISTING 10.5 Continued

TypeNameStr: String;
TypeKindStr: String;
MinVal, MaxVal: Integer;

begin
memInfo.Lines.Clear;
with lbSamps do
begin

// Get the TTypeInfo pointer
OrdTypeInfo := PTypeInfo(Items.Objects[ItemIndex]);
// Get the TTypeData pointer
OrdTypeData := GetTypeData(OrdTypeInfo);

// Get the type name string
TypeNameStr := OrdTypeInfo.Name;
// Get the type kind string
TypeKindStr := GetEnumName(TypeInfo(TTypeKind),

Integer(OrdTypeInfo^.Kind));

// Get the minimum and maximum values for the type
MinVal := OrdTypeData^.MinValue;
MaxVal := OrdTypeData^.MaxValue;

// Add the information to the memo
with memInfo.Lines do
begin
Add(‘Type Name: ‘+TypeNameStr);
Add(‘Type Kind: ‘+TypeKindStr);

Add(‘Min Val: ‘+IntToStr(MinVal));
Add(‘Max Val: ‘+IntToStr(MaxVal));

end;
end;

end;

Here, we use the TypeInfo() function to obtain a pointer to the TTypeInfo structure for the
Integer data type. We then pass that reference to the GetTypeData() function to obtain a
pointer to the TTypeData structure. We use both those structures to populate a list box with the
integer’s RTTI. See the demo named IntegerRTTI.dpr in the directory for this chapter on
the CD-ROM accompanying this book for a more detailed demonstration.

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

421

15 chpt_10.qxd 11/19/01 12:16 PM Page 421

Type Information for Enumerated Types
Obtaining RTTI for enumerated types is just as easy as it is for integers. In fact, you’ll see that
Listing 10.6 is almost identical to Listing 10.5, with the exception of the additional for loop to
show the values of the enumeration type.

LISTING 10.6 Obtaining RTTI for an Enumerated Type

procedure TMainForm.lbSampsClick(Sender: TObject);
var
OrdTypeInfo: PTypeInfo;
OrdTypeData: PTypeData;

TypeNameStr: String;
TypeKindStr: String;
MinVal, MaxVal: Integer;
i: integer;

begin
memInfo.Lines.Clear;
with lbSamps do
begin

// Get the TTypeInfo pointer
OrdTypeInfo := PTypeInfo(Items.Objects[ItemIndex]);
// Get the TTypeData pointer
OrdTypeData := GetTypeData(OrdTypeInfo);

// Get the type name string
TypeNameStr := OrdTypeInfo.Name;
// Get the type kind string
TypeKindStr := GetEnumName(TypeInfo(TTypeKind),

Integer(OrdTypeInfo^.Kind));

// Get the minimum and maximum values for the type
MinVal := OrdTypeData^.MinValue;
MaxVal := OrdTypeData^.MaxValue;

// Add the information to the memo
with memInfo.Lines do
begin
Add(‘Type Name: ‘+TypeNameStr);
Add(‘Type Kind: ‘+TypeKindStr);

Add(‘Min Val: ‘+IntToStr(MinVal));
Add(‘Max Val: ‘+IntToStr(MaxVal));

Component-Based Development

PART IV
422

15 chpt_10.qxd 11/19/01 12:16 PM Page 422

LISTING 10.6 Continued

// Show the values and names of the enumerated types
if OrdTypeInfo^.Kind = tkEnumeration then
for i := MinVal to MaxVal do
Add(Format(‘ Value: %d Name: %s’, [i,
GetEnumName(OrdTypeInfo, i)]));

end;
end;

end;

You’ll find a more detailed demo named EnumRTTI.dpr on the CD-ROM in the directory for
this chapter.

Type Information for Set Types
Obtaining RTTI for set types is only slightly more complex than the two previous techniques.
Listing 10.7 is the main form for the project SetRTTI.dpr, which you’ll find on the CD-ROM
in the directory for this chapter.

LISTING 10.7 Obtaining RTTI for Set Types

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, Grids;

type
TMainForm = class(TForm)
lbSamps: TListBox;
memInfo: TMemo;
procedure FormCreate(Sender: TObject);
procedure lbSampsClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
MainForm: TMainForm;

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

423

15 chpt_10.qxd 11/19/01 12:16 PM Page 423

LISTING 10.7 Continued

implementation
uses TypInfo, Buttons;

{$R *.DFM}

procedure TMainForm.FormCreate(Sender: TObject);
begin
// Add some example enumerated types
with lbSamps.Items do
begin
AddObject(‘TBorderIcons’, TypeInfo(TBorderIcons));
AddObject(‘TGridOptions’, TypeInfo(TGridOptions));

end;
end;

procedure GetTypeInfoForOrdinal(AOrdTypeInfo: PTypeInfo; AStrings: TStrings);
var
// OrdTypeInfo: PTypeInfo;
OrdTypeData: PTypeData;

TypeNameStr: String;
TypeKindStr: String;
MinVal, MaxVal: Integer;
i: integer;

begin

// Get the TTypeData pointer
OrdTypeData := GetTypeData(AOrdTypeInfo);

// Get the type name string
TypeNameStr := AOrdTypeInfo.Name;
// Get the type kind string
TypeKindStr := GetEnumName(TypeInfo(TTypeKind), Integer(AOrdTypeInfo^.Kind));

// Get the minimum and maximum values for the type
MinVal := OrdTypeData^.MinValue;
MaxVal := OrdTypeData^.MaxValue;

// Add the information to the memo
with AStrings do
begin
Add(‘Type Name: ‘+TypeNameStr);
Add(‘Type Kind: ‘+TypeKindStr);

Component-Based Development

PART IV
424

15 chpt_10.qxd 11/19/01 12:16 PM Page 424

LISTING 10.7 Continued

// Call this function recursively to show the enumeration
// values for this set type.
if AOrdTypeInfo^.Kind = tkSet then
begin
Add(‘==========’);
Add(‘’);
GetTypeInfoForOrdinal(OrdTypeData^.CompType^, AStrings);

end;

// Show the values and names of the enumerated types belonging to the
// set.
if AOrdTypeInfo^.Kind = tkEnumeration then
begin
Add(‘Min Val: ‘+IntToStr(MinVal));
Add(‘Max Val: ‘+IntToStr(MaxVal));

for i := MinVal to MaxVal do
Add(Format(‘ Value: %d Name: %s’, [i,
GetEnumName(AOrdTypeInfo, i)]));

end;
end;

end;

procedure TMainForm.lbSampsClick(Sender: TObject);
begin
memInfo.Lines.Clear;
with lbSamps do
GetTypeInfoForOrdinal(PTypeInfo(Items.Objects[ItemIndex]), memInfo.Lines);

end;
end.

In this demo, we set up two set types in a list box. We add the pointer to the TTypeInfo struc-
tures for these two types to the Objects array of the list box by using the TypeInfo() function.
When the user selects one of the items in the list box, the GetTypeInfoForOrdinal() proce-
dure is called, passing both the PTypeInfo pointer and the memInfo.Lines property that’s pop-
ulated with the RTTI data.

The GetTypeInfoForOrdinal() procedure goes through the same steps you’ve already seen
for getting the pointer to the type’s TTypeData structure. This initial type information is stored
to the TStrings parameter and then the GetTypeInfoForOrdinal() is called recursively, pass-
ing OrdTypeData^.CompType^, which refers to the enumerated data type for the set. This RTTI
data is also added to the same TStrings property.

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

425

15 chpt_10.qxd 11/19/01 12:16 PM Page 425

Assigning Values to Properties Through RTTI
Now that we’ve shown you how to find and determine which published properties exist for
components, we ought to show you how to assign values to properties through RTTI. This task
is simple. The TypInfo.pas unit contains many helper routines to allow you to interrogate and
manipulate component-published properties. These are the same helper routines used by the
Delphi IDE (Object Inspector). It would be a good idea to open TypInfo.pas and to familiar-
ize yourself with these routines. We’ll demonstrate a few of them here.

Suppose that you want to assign an integer value to a property for a given component. Also
suppose that you don’t know whether this property exists on that component. Here’s a proce-
dure that assigns an integer value to a property for a given component, only if that property
exists:

procedure SetIntegerPropertyIfExists(AComp: TComponent; APropName: String;
AValue: Integer);

var
PropInfo: PPropInfo;

begin
PropInfo := GetPropInfo(AComp.ClassInfo, APropName);
if PropInfo <> nil then
begin
if PropInfo^.PropType^.Kind = tkInteger then
SetOrdProp(AComp, PropInfo, Integer(AValue));

end;
end;

This procedure takes three parameters. The first, AComp, is the component whose property you
want to modify. The second parameter, APropName, is the name of the property to which you
want to assign the value of the third parameter, AValue. This procedure uses the GetPropInfo()
function to retrieve the TPropInfo pointer on the specified property. GetPropInfo() will return
nil if the property doesn’t exist. If the property does exist, the second if clause determines
whether the property is of the correct type. The property type tkInteger is defined in the
TypInfo.pas unit along with other possible property types, as shown here:

TTypeKind = (tkUnknown, tkInteger, tkChar, tkEnumeration, tkFloat,
tkString, tkSet, tkClass, tkMethod, tkWChar, tkLString, tkWString,
tkVariant, tkArray, tkRecord, tkInterface, tkInt64, tkDynArray);

Finally, the assignment is made to the property using the SetOrdProp() procedure, another
helper routine from TypInfo.pas used to set values to ordinal-type properties. The call to this
procedure might look something like the following:

SetIntegerPropertyIfExists(Button2, ‘Width’, 50);

SetOrdProp() is referred to as a setter method, a method used to set a value to a property.
There is also a getter method, which retrieves the property value. Several of these

Component-Based Development

PART IV
426

15 chpt_10.qxd 11/19/01 12:16 PM Page 426

SetXXXProp() helper routines are in the TypInfo.pas unit for the possible property types, as
shown in Table 10.7.

TABLE 10.7 Getter and Setter Methods

Property Type Setter Method Getter Method

Ordinal SetOrdProp() GetOrdProp()

Enumerated SetEnumProp() GetEnumProp()

Objects SetObjectProp() GetObjectProp()

String SetStrProp() GetStrProp()

Floating Point SetFloatProp() GetFloatProp()

Variant SetVariantProp() GetVariantProp()

Methods (Events) SetMethodProp() GetMethodProp()

Int64 SetInt64Prop() GetInt64Prop()

Again, there are many other helper routines you’ll find useful in TypInfo.pas.

The following code shows how to assign an object property:

procedure SetObjectPropertyIfExists(AComponent: TComponent; APropName: String;
AValue: TObject);

var
PropInfo: PPropInfo;

begin
PropInfo := GetPropInfo(AComponent.ClassInfo, APropName);
if PropInfo <> nil then
begin
if PropInfo^.PropType^.Kind = tkClass then
SetObjectProp(AComponent, PropInfo, AValue);

end;
end;

This method might be called as follows:

var
F: TFont;

begin
F := TFont.Create;
F.Name := ‘Arial’;
F.Size := 24;
F.Color := clRed;
SetObjectPropertyIfExists(Panel1, ‘Font’, F);

end;

Component Architecture: VCL and CLX

CHAPTER 10

10

C
O

M
PO

N
EN

T
A

R
C

H
ITEC

TU
R

E:
V

C
L A

N
D

C
LX

427

15 chpt_10.qxd 11/19/01 12:16 PM Page 427

The following code shows how to assign a method property:

procedure SetMethodPropertyIfExists(AComp: TComponent; APropName: String;
AMethod: TMethod);

var
PropInfo: PPropInfo;

begin
PropInfo := GetPropInfo(AComp.ClassInfo, APropName);
if PropInfo <> nil then
begin
if PropInfo^.PropType^.Kind = tkMethod then
SetMethodProp(AComp, PropInfo, AMethod);

end;
end;

This method requires the use of the TMethod type, which is defined in the System.pas unit.
To call this method to assign an event handler from one component to another, you can use
GetMethodProp to retrieve the TMethod value from the source component, as shown here:

SetMethodPropertyIfExists(Button5, ‘OnClick’,
GetMethodProp(Panel1, ‘OnClick’));

The accompanying CD-ROM has a project, SetProperties.dpr, that demonstrates these
routines.

Summary
This chapter introduced you to the Visual Component Library (VCL) and Component Library
for Cross Platform (CLX). We discussed the hierarchies and the special characteristics of com-
ponents at different levels in each hierarchy. We also covered Runtime Type Information in
depth. This chapter prepared you for the following chapters, which cover component writing.

Component-Based Development

PART IV
428

15 chpt_10.qxd 11/19/01 12:16 PM Page 428

