Coding Standards Document CHAPTER

IN THIS CHAPTER

° Introduction 218

. General Source Code
Formatting Rules 218

e Object Pascal 219

o Files 228

e Forms and Data Modules 231
e Packages 233

° Components 234

e Coding Standards Document
Updates 235

218

Essentials for Rapid Development

PART |

Introduction

This document describes the coding standards for Delphi programming as used in Delphi 5
Developer’s Guide. In general, this document follows the often “unspoken” formatting guide-
lines used by Borland International with a few minor exceptions. The purpose for including
this document in Delphi 5 Developer’s Guide is to present a method by which development
teams can enforce a consistent style to the coding they do. The intent is to make it so that every
programmer on a team can understand the code being written by other programmers. This is
accomplished by making the code more readable by use of consistency.

This document by no means includes everything that might exist in a coding standard.
However, it does contain enough detail to get you started. Feel free to use and modify these
standards to fit your needs. We don’t recommend, however, that you deviate too far from the
standards used by Borland’s development staff. We recommend this because as you bring new
programmers to your team, the standards that they’re most likely to be most familiar with are
Borland’s. Like most coding standards documents, this document will evolve as needed.
Therefore, you’ll find the most updated version online at www.xapware.com/ddg.

This document does not cover user interface standards. This is a separate but equally impor-
tant topic. Enough third-party books and Microsoft documentation cover such guidelines that
we decided not to replicate this information but rather refer you to the Microsoft Developers
Network and other sources where that information is available.

General Source Code Formatting Rules

Indentation

Indenting shall be two spaces per level. Do not save tab characters to source files. The reason
for this is because tab characters are expanded to different widths with different users’ settings
and by different source management utilities (print, archive, version control, and so on).

You can disable saving tab characters by turning off the Use Tab Character and Optimal Fill
check boxes on the General page of the Editor Properties dialog box (accessed via Tools,
Editor Options).

Margins

Margins will be set to 80 characters. In general, source shall not exceed this margin, with the
exception to finish a word. However, this guideline is somewhat flexible. Wherever possible,
statements that extend beyond one line shall be wrapped after a comma or an operator. When a
statement is wrapped, it shall be indented two characters from the original statement line.

Coding Standards Document

CHAPTER 6

begin..end Pair

The begin statement appears on its own line. For example, the following first line is incorrect;
the second line is correct:

for I := 0 to 10 do begin // Incorrect, begin on same line as for
for I := 0 to 10 do // Correct, begin appears on a separate line
begin

An exception to this rule is when the begin statement appears as part of an else clause. Here’s
an example:

if some statement = then
begin

end

else begin

SomeOtherStatement;
end;

The end statement always appears on its own line.

When the begin statement is not part of an else clause, the corresponding end statement is
always indented to match its begin part.

Object Pascal

Parentheses

There shall never be white space between an open parenthesis and the next character. Likewise,
there shall never be white space between a closed parenthesis and the previous character. The
following example illustrates incorrect and correct spacing with regard to parentheses:

CallProc(AParameter); // incorrect
CallProc(AParameter); /| correct

Never include extraneous parentheses in a statement. Parentheses shall only be used where
required to achieve the intended meaning in source code. The following examples illustrate
incorrect and correct usage:

if (I = 42) then // incorrect - extraneous parentheses
if (I = 42) or (J = 42) then // correct - parentheses required

Reserved Words and Key Words

Object Pascal language reserved words and key words shall always be completely lowercase.

219

()]

ININNd0Q
SAYVANVLS

DNIdOD)

220

Essentials for Rapid Development

PART |

Procedures and Functions (Routines)

Naming/Formatting
Routine names shall always begin with a capital letter and be camel-capped for readability. The
following is an example of an incorrectly formatted procedure name:

procedure thisisapoorlyformattedroutinename;
This is an example of an appropriately capitalized routine name:
procedure ThisIsMuchMoreReadableRoutineName;

Routines shall be given names meaningful to their content. Routines that cause an action to
occur will be prefixed with the action verb. Here’s an example:

procedure FormatHardDrive;

Routines that set values of input parameters shall be prefixed with the word set:
procedure SetUserName;

Routines that retrieve a value shall be prefixed with the word get:

function GetUserName: string;

Formal Parameters
Formatting
Where possible, formal parameters of the same type shall be combined into one statement:

procedure Foo(Parami, Param2, Param3: Integer; Param4: string);

Naming

All formal parameter names shall be meaningful to their purpose and typically will be based
off the name of the identifier that was passed to the routine. When appropriate, parameter
names shall be prefixed with the character A:

procedure SomeProc(AUserName: string; AUserAge: integer);

The A prefix is a convention to disambiguate when the parameter name is the same as a prop-
erty or field name in the class.

Ordering of Parameters
The following formal parameter ordering emphasizes taking advantage of register calling con-
ventions calls.

Most frequently used (by the caller) parameters shall be in the first parameter slots. Less fre-
quently used parameters shall be listed after that in left-to-right order.

Coding Standards Document

CHAPTER 6

Input lists shall exist before output lists in left-to-right order.

Place most generic parameters before most specific parameters in left-to-right order. For exam-
ple: SomeProc(APlanet, AContinent, ACountry, AState, ACity).

Exceptions to the ordering rule are possible, such as in the case of event handlers, where a
parameter named Sender of type TObject is often passed as the first parameter.

Constant Parameters

When parameters of a record, array, ShortString, or interface type are unmodified by a rou-
tine, the formal parameters for that routine shall mark the parameter as const. This ensures
that the compiler will generate code to pass these unmodified parameters in the most efficient
manner.

Parameters of other types may optionally be marked as const if they’re unmodified by a rou-
tine. Although this will have no effect on efficiency, it provides more information about para-
meter use to the caller of the routine.

Name Collisions

When using two units that each contain a routine of the same name, the routine residing in the
unit appearing last in the uses clause will be invoked if you call that routine. To avoid these
uses clause—dependent ambiguities, always prefix such method calls with the intended unit
name. Here are two examples:

SysUtils.FindClose(SR);
and

Windows.FindClose (Handle) ;

Variables

Variable Naming and Formatting
Variables shall be given names meaningful to their purpose.

Loop control variables are generally given a single character name such as I, J, or K. It’s
acceptable to use a more meaningful name as well, such as UserIndex.

Boolean variable names must be descriptive enough so that the meanings of True and False
values will be clear.

Local Variables
Local variables used within procedures follow the same usage and naming conventions for all
other variables. Temporary variables shall be named appropriately.

221

()]

ININNd0Q
SAYVANVLS

DNIdOD)

222

Essentials for Rapid Development

PART |

When necessary, initialization of local variables will occur immediately upon entry into the
routine. Local AnsiString variables are automatically initialized to an empty string, local
interface and dispinterface type variables are automatically initialized to nil, and local
Variant and OleVariant type variables are automatically initialized to Unassigned.

Use of Global Variables

Use of global variables is discouraged. However, they may be used when necessary. When this
is the case, you’re encouraged to keep global variables within the context in which they’re
used. For example, a global variable may be global only within the scope of a single unit’s
implementation section.

Global data that’s intended to be used by a number of units shall be moved into a common unit
used by all.

Global data may be initialized with a value directly in the var section. Bear in mind that all
global data is automatically zero initialized; therefore, do not initialize global variables to
“empty” values such as 0, nil, ' ', Unassigned, and so on. One reason for this is because zero-
initialized global data occupies no space in the EXE file. Zero-initialized data is stored in a vir-
tual data segment that’s allocated only in memory when the application starts up. Nonzero
initialized global data occupies space in the EXE file on disk.

Types

Capitalization Convention

Type names that are reserved words shall be completely lowercase. Win32 API types are gener-
ally completely uppercase, and you shall follow the convention for a particular type name
shown in the Windows. pas or other API unit. For other variable names, the first letter shall be
uppercase, and the rest shall be camel-capped for clarity. Here are some examples:

var
MyString: string; // reserved word
WindowHandle: HWND; // Win32 API type
I: Integer; // type identifier introduced in System unit

Floating-Point Types

Use of the Real type is discouraged because it existed only for backward compatibility with
older Pascal code. Although it’s now the same as Double, this fact may be confusing to other
developers. Use Double for general-purpose floating-point needs. Also, Double is what the
processor instructions and busses are optimized for and is an IEEE-defined standard data for-
mat. Use Extended only when more range is required than that offered by Double. Extended is
an Intel-specified type and is not supported in Java. Use Single only when the physical byte
size of the floating-point variable is significant (such as when using other-language DLLs).

Coding Standards Document

CHAPTER 6

Enumerated Types

Names for enumerated types must be meaningful to the purpose of the enumeration. The type
name must be prefixed with the T character to annotate it as a type declaration. The identifier
list of the enumerated type must contain a lowercase two-to-three-character prefix that relates it
to the original enumerated type name. Here’s an example:

TSongType = (stRock, stClassical, stCountry, stAlternative, stHeavyMetal,
StRB) ;

Variable instances of an enumerated type will be given the same name as the type without the T
prefix (SongType) unless there’s a reason to give the variable a more specific name, such as
FavoriteSongTypel, FavoriteSongType2, and so on.

Variant and OleVariant Types

The use of the variant and 0levariant types is discouraged in general, but these types are
necessary for programming when data types are known only at runtime, as is often the case in
COM and database development. Use Olevariant for COM-based programming such as
Automation and ActiveX controls, and use Variant for non-COM programming. The reason is
that a Variant can store native Delphi strings efficiently (like a string var), but Olevariant
converts all strings to OLE strings (WideChar strings) and are not reference counted; instead,
they’re always copied.

Structured Types

Array Types
Names for array types must be meaningful to the purpose for the array. The type name must be
prefixed with a T character. If a pointer to the array type is declared, it must be prefixed with
the character P and declared immediately prior to the type declaration. Here’s an example:
type

PCycleArray = "“TCycleArray;

TCycleArray = array[1..100] of integer;

When practical, variable instances of the array type shall be given the same name as the type
name without the T prefix.

Record Types

A record type shall be given a name meaningful to its purpose. The type declaration must be
prefixed with the character T. If a pointer to the record type is declared, it must be prefixed
with the character P and declared immediately prior to the type declaration. The type declara-
tion for each element may be optionally aligned in a column to the right. Here’s an example:

type

223

()]

ININNd0Q
SAYVANVLS

DNIdOD)

224

Essentials for Rapid Development

PART |

PEmployee = "“TEmployee;

TEmployee = record
EmployeeName: string
EmployeeRate: Double;

end;

Statements

if Statements
The most likely case to execute in an if/then/else statement shall be placed in the then
clause, with less likely cases residing in the else clause(s).

Try to avoid chaining if statements and use case statements instead if at all possible.
Do not nest if statements more than five levels deep. Create a clearer approach to the code.
Do not use extraneous parentheses in an if statement.

If multiple conditions are being tested in an if statement, conditions shall be arranged from
left to right in order of least to most computation intensive. This enables your code to take
advantage of short-circuit Boolean evaluation logic built into the compiler. For example, if
Condition1 is faster than Condition2, and Condition2 is faster than Condition3, then the if
statement shall be constructed as follows:

if Conditioni and Condition2 and Condition3 then

case Statements

General Topics
The individual cases in a case statement shall be ordered by the case constant either numeri-
cally or alphabetically.

The actions statements of each case shall be kept simple and generally shall not exceed four to
five lines of code. If the actions are more complex, the code shall be placed in a separate pro-
cedure or function.

The else clause of a case statement shall be used only for legitimate defaults or to detect
errors.

Formatting
case statements follow the same formatting rules as other constructs in regards to indentation
and naming conventions.

while Statements
The use of the Exit procedure to exit a while loop is discouraged; when possible, you shall
exit the loop using only the loop condition.

Coding Standards Document

CHAPTER 6

All initialization code for a while loop shall occur directly before entering the while loop and
shall not be separated by other nonrelated statements.

Any ending housekeeping shall be done immediately following the loop.

for Statements
for statements shall be used in place of while statements when the code must execute for a
known number of increments.

repeat Statements
repeat statements are similar to while loops and shall follow the same general guidelines.

with Statements

General Topics

The with statement shall be used sparingly and with considerable caution. Avoid overuse of
with statements and beware of using multiple objects, records, and so on in the with state-
ment. For example,

with Recordl, Record2 do

can confuse the programmer and can easily lead to difficult-to-detect bugs.

Formatting
with statements follow the same formatting rules in regard to naming conventions and indenta-
tion as described previously in this document.

Structured Exception Handling

General Topics

Exception handling shall be used abundantly for both error correction and resource protection.
This means that in all cases where resources are allocated, a try..finally must be used to
ensure proper deallocation of the resource. The exception to this involves cases where
resources are allocated/freed in the initialization/finalization of a unit or the
constructor/destructor of an object.

Use of try..finally
Where possible, each allocation shall be matched with a try..finally construct. For example,
the following code could lead to possible bugs:

SomeClass1 := TSomeClass.Create;
SomeClass2 := TSomeClass.Create;
try

{ do some code }
finally

225

()]

1IN3InNd>0Qg
SAQYVANVLS

DNIdOD)

226

Essentials for Rapid Development

PART |

SomeClass1.Free;
SomeClass2.Free;
end;

A safer approach to the preceding allocation would be this:

SomeClass1 := TSomeClass.Create
try

SomeClass2 := TSomeClass.Create;

try

{ do some code }
finally
SomeClass2.Free;

end;
finally

SomeClass1.Free;
end;

Use of try..except

Use try..except only when you want to perform some task when an exception is raised. In
general, you shall not use try..except to simply show an error message on the screen because
that will be done automatically in the context of an application by the Application object. If
you want to invoke the default exception handling after you’ve performed some task in the
except clause, use raise to reraise the exception to the next handler.

Use of try..except..else
The use of the else clause with try. .except is discouraged because it will block all excep-
tions, even those for which you may not be prepared.

Classes

Naming/Formatting
Type names for classes shall be meaningful to the purpose of the class. The type name must
have the T prefix to annotate it as a type definition. Here’s an example:

type
TCustomer = class(TObject)

Instance names for classes will generally match the type name of the class without the T prefix:

var
Customer: TCustomer;

Coding Standards Document

CHAPTER 6

227

NoTE

See the section “Component Type Naming Standards” for further information on
naming components.

Fields

Naming/Formatting
Class field names follow the same naming conventions as variable identifiers, except they’re
prefixed with the F annotation to signify that they’re field names.

Visibility
All fields shall be private. Fields that are accessible outside the class scope shall be made
accessible through the use of a property.

Methods

Naming/Formatting
Method names follow the same naming conventions as described for procedures and functions
in this document.

Use of Static Methods
Use static methods when you do not intend for a method to be overridden by descendant
classes.

Use of Virtual/Dynamic Methods

Use virtual methods when you intend for a method to be overridden by descendant classes.
Dynamic methods shall only be used on classes of which there will be many descendants
(direct or indirect). For example, when working with a class that contains one infrequently
overridden method and 100 descendent classes, you shall make the method dynamic to reduce
the memory use by the 100 descendent classes.

Use of Abstract Methods
Do not use abstract methods on classes of which instances will be created. Use abstract meth-
ods only on base classes that will never be created.

Property-Access Methods
All access methods must appear in the private or protected sections of the class definition.

The naming conventions for property-access methods follow the same rules as for procedures
and functions. The read accessor method (reader method) must be prefixed with the word Get.

()]

ININNd0Q
SAYVANVLS

DNIdOD)

228

Essentials for Rapid Development

PART |

The write accessor method (writer method) must be prefixed with the word Set. The parameter
for the writer method shall have the name Value, and its type shall be that of the property it
represents. Here’s an example:
TSomeClass = class(TObject)
private
FSomeField: Integer;
protected
function GetSomeField: Integer;
procedure SetSomeField(Value: Integer);
public
property SomeField: Integer read GetSomeField write SetSomeField;
end;

Properties

Naming/Formatting
Properties that serve as accessors to private fields will be named the same as the fields they
represent, without the F annotator.

Property names shall be nouns, not verbs. Properties represent data; methods represent actions.

Array property names shall be plural. Normal property names shall be singular.

Use of Access Methods
Although not required, it’s encouraged that you use, at a minimum, a write access method for
properties that represent a private field.

Files

Project Files

Naming

Project files shall be given descriptive names. For example, The Delphi 5 Developer’s Guide
Bug Manager is given the project name DDGBugs .dpr. A system information program shall be
given a name such as SysInfo.dpr.

Form Files

Naming

A form file shall be given a name descriptive of the form’s purpose, postfixed with the charac-
ters Frm. For example, an About form would have the filename AboutFrm.dpr, and a Main
form would have the filename MainFrm.dpr.

Coding Standards Document

CHAPTER 6

Data Module Files

Naming

A data module shall be given a name that’s descriptive of the data module’s purpose. The name
shall be postfixed with the characters DM. For example, a Customers data module will have the
form filename CustomersDM.dfm.

Remote Data Module Files

Naming

A remote data module shall be given a name that’s descriptive of the remote data module’s
purpose. The name shall be postfixed with the characters RDM. For example, a Customers
remote data module would have the form filename CustomersRDM. dfm.

Unit Files

General Unit Structure

Unit Name
Unit files shall be given descriptive names. For example, the unit containing an application’s
main form might be called MainFrm.pas.

The uses Clause

A uses clause in the interface section shall only contain units required by code in the inter-
face section. Remove any extraneous unit names that might have been automatically inserted
by Delphi.

A uses clause in the implementation section shall only contain units required by code in the
implementation section. Remove any extraneous unit names.

The interface Section

The interface section shall contain declarations for only those types, variables,
procedure/function forward declarations, and so on that are to be accessible by external units.
Otherwise, these declarations shall go into the implementation section.

The implementation Section
The implementation section shall contain any declarations for types, variables,
procedures/functions, and so on that are private to the containing unit.

The initialization Section
Do not place time-intensive code in the initialization section of a unit. This will cause the
application to seem sluggish upon startup.

229

()]

1IN3InNd>0Qg
SAQYVANVLS

DNIdOD)

230

Essentials for Rapid Development

PART |

The finalization Section
Make sure you deallocate any items you allocated in the initialization section.

Form Units

Naming

A unit file for a form shall be given the same name as its corresponding form file. For exam-
ple, an About form would have the unit name AboutFrm.pas, and a Main form would have the
unit filename MainFrm.pas.

Data Module Units

Naming
Unit files or data modules shall be given the same names as their corresponding form files. For
example, a Customers data module unit would have the unit name CustomersDM. pas.

General-purpose Units

Naming

A general-purpose unit shall be given a name meaningful to the unit’s purpose. For example, a
utilities unit would be given the name BugUtilities.pas, and a unit containing global vari-
ables would be given the name CustomerGlobals.pas.

Keep in mind that unit names must be unique across all packages used by a project. Generic or
common unit names are not recommended.

Component Units

Naming

Component units shall be placed in a separate directory to distinguish them as units defining
components or sets of components. They shall never be placed in the same directory as the
project. The unit name must be meaningful to its content.

NoTE

See the section “User-Defined Components” for further information on component-
naming standards.

File Headers

Use of informational file headers is encouraged for all source files, project files, units, and so
on. A proper file header must contain the following information:

{
Copyright © YEAR by AUTHORS

}

Coding Standards Document

CHAPTER 6

Forms and Data Modules

Forms
Form Type Naming Standard

Form types shall be given names descriptive of the form’s purpose. The type definition shall be
prefixed with a T, and a descriptive name shall follow the prefix. Finally, Form shall postfix the
descriptive name. For example, the type name for an About form would be

TAboutForm = class(TForm)
A main form definition would be
TMainForm = class(TForm)

The customer entry form would have a name such as
TCustomerEntryForm = class(TForm)
Form Instance Naming Standard

Form instances shall be named the same as their corresponding types, without the T prefix. For
example, for the preceding form types, the instance names are as follows:

Type Name Instance Name
TAboutForm AboutForm
TMainForm MainForm
TCustomerEntryForm CustomerEntryForm

Auto-creating Forms

Only the main form shall be autocreated unless there’s a good reason to do otherwise. All other
forms must be removed from the Autocreate list in the Project Options dialog box. See the fol-
lowing section for more information.

Modal Form Instantiation Functions

All form units shall contain a form-instantiation function that creates, sets up, and shows the
form modally as well as frees the form. This function shall return the modal result returned by
the form. Parameters passed to this function shall follow the parameter-passing standard speci-
fied in this document. This functionality is to be encapsulated in this way to facilitate code
reuse and maintenance.

The form variable shall be removed from the unit and declared locally in the form-instantiation
function. (Note that this requires that the form be removed from the Autocreate list in the
Project Options dialog box. See “Autocreating Forms™ earlier in this document.)

231

()]

ININNd0Q
SAYVANVLS

DNIdOD)

Essentials for Rapid Development
232 Jor Rap P

PART |

For example, the following unit illustrates such a function for a GetUserData form:

unit UserDataFrm;
interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls;

type
TUserDataForm = class(TForm)
edtUserName: TEdit;
edtUserID: TEdit;

private

{ Private declarations }
public

{ Public declarations }
end;

function GetUserData(var aUserName: String; var aUserID: Integer): Word;

implementation
{$R *.DFM}

function GetUserData(var aUserName: String; var aUserID: Integer): Word;

var
UserDataForm: TUserDataForm;
begin
UserDataForm := TUserDataForm.Create(Application);
try
UserDataForm.Caption := 'Getting User Data';
Result := UserDataForm.ShowModal;
if (Result = mrOK) then begin
aUserName := UserDataForm.edtUserName.Text;
aUserID 1= StrToInt(UserDataForm.edtUserID.Text);
end;
finally
UserDataForm.Free;
end;
end;

end.

Coding Standards Document

CHAPTER 6

Data Modules

Data Module Naming Standard

A DataModule type shall be given a name descriptive of the data module’s purpose. The type
definition shall be prefixed with a T, and a descriptive name shall follow the prefix. Finally, the
name shall be postfixed with the word DataModule. For example, the type name for a
Customer data module would be something such as this:

TCustomerDataModule = class(TDataModule)

Similarly, an Orders data module might have the following name:
TOrdersDataModule = class(TDataModule)

Data Module Instance Naming Standard

Data module instances will be named the same as their corresponding types, without the T pre-
fix. For example, for the preceding form types, the instance names are as follows:

Type Name Instance Name

TCustomerDataModule CustomerDataModule

TOrdersDataModule OrdersDataModule
Packages

Use of Runtime Versus Design Packages

Runtime packages shall contain only units/components required by other components in that
package. Other units containing property/component editors and other design-only code shall
be placed into a design package. Registration units shall also be placed into a design package.

File Naming Standards
Packages shall be named according to the following templates:
e iiilibvv.dpk (design package)
e iiistdvv.dpk (runtime package)
Here, the characters iii signify a three-character identifying prefix. This prefix may be used to

identify a company, person, or any other identifying entity.

The characters vv signify a version for the package corresponding to the Delphi version for
which the package is intended.

Note that the package name contains either 1ib or std to signify it as a runtime or design-time
package.

233

()]

1IN3InNd>0Qg
SAQYVANVLS

DNIdOD)

234

Essentials for Rapid Development

PART |

In cases where there are both design-time and runtime packages, the files shall be named simi-
larly. For example, packages for Delphi 5 Developer’s Guide are named as follows:

* DdgLib50.dpk (design package)

* DdgStd50.dpk (runtime package)

Components

User-Defined Components
Component Type Naming Standards

Components shall be named similarly to classes as defined in the “Classes” section, with the
exception that components are given a three-character identifying prefix. This prefix may be
used to identify a company, person, or any other entity. For example, a clock component writ-
ten for Delphi 5 Developer’s Guide would be defined as follows:

TddgClock = class(TComponent)

Note that the three-character prefix is in lowercase.

Component Units

Component units shall contain only one major component. A major component is any compo-
nent that appears on the Component Palette. Any ancillary components/objects may also reside
in the same unit as the major component.

Use of Registration Units

The registration procedure for components shall be removed from the component unit and
placed in a separate unit. This registration unit shall be used to register any components, prop-
erty editors, component editors, experts, and so on.

Component registering shall be done only in the design packages; therefore, the registration
unit shall be contained in the design package and not in the runtime package.

It’s suggested that registration units be named as follows:
XxxReg.pas

Here, Xxx is a three-character prefix used to identify a company, person, or any other entity.
For example, the registration unit for the components in the Delphi 5 Developer’s Guide would
be named DdgReg. pas.

Component Instance Naming Conventions

All componentsmust be given descriptive names. No components shall be left with the default
names assigned to them by Delphi. Components shall be named using a variation of the

Coding Standards Document

CHAPTER 6

Hungarian naming convention. According to this standard, the component name shall consist
of two parts: a component type prefix and qualifier name.

Component Type Prefixes
The component type prefix is a set of lower case letters that represent the component type. For
example, the following are valid component type prefixes for the components specified.

TButton btn
TEdit edt
TSpeedButton spdbtn
TListBox Istbx

As shown above, the component type prefix is created by modifying the component type name
(ie: TButton, TEdit) to a prefix. The following rules illustrate how to define a component type
prefix:

1. Remove any “T” prefixes from the components type name. For example, “TButton”
becomes “Button”

2. Remove any vowels from the name formed in step 1 with the exception of the first
vowel. For example, “Button” becomes “bttn” and “edit” becomes “edt.”

3. Suppress double consonants. For example, “bttn” becomes “btn.”
4. If a naming conflict occurs, start adding vowels to the prefix for one of the components.

For example, if a new component “TBatton” is added, it will conflict with “TButton.”
Therefore, the prefix for “TBatton” becomes “batn.”

Component Qualifier Name

The component qualifier name shall be a descriptive of the component’s purpose. For example, a
TButton component with the purpose of closing a form would have the name “btnClose.” A TEdit
component used for editing the first name of a person would have the name “edtFirstName.”

Coding Standards Document Updates

This document will be updated regularly to reflect changes and enhancements to the Object
Pascal language and Visual Component Library. You can retrieve updates at http://www.
xapware.com/ddg.

235

()]

ININNd0Q
SAYVANVLS

DNIdOD)

Coding Standards Document

CHAPTER 6

237

()]

ININNd0Q
SAYVANVLS

DNIdOD)

238

Essentials for Rapid Development

PART |

Coding Standards Document

CHAPTER 6

239

()]

ININNd0Q
SAYVANVLS

DNIdOD)

