
CHAPTER

5
Understanding Windows
Messaging

IN THIS CHAPTER
• What Is a Message? 192

• Types of Messages 193

• How the Windows Message
System Works 194

• Delphi’s Message System 195

• Handling Messages 197

• Sending Your Own Messages 201

• Nonstandard Messages 203

• Anatomy of a Message System:
VCL 207

• The Relationship Between Messages
and Events 214

• Summary 215

Although Visual Component Library (VCL) components expose many Win32 messages via
Object Pascal events, it’s still essential that you, the Win32 programmer, understand how the
Windows message system works.

As a Delphi applications programmer, you’ll find that the events surfaced by VCL will suit
most of your needs; only occasionally will you have to delve into the world of Win32 message
handling. As a Delphi component developer, however, you and messages will become very
good friends because you have to directly handle many Windows messages and then invoke
events corresponding to those messages.

What Is a Message?
A message is a notification of some occurrence sent by Windows to an application. Clicking a
mouse button, resizing a window, or pressing a key on the keyboard, for example, causes
Windows to send a message to an application notifying it of what occurred.

A message manifests itself as a record passed to an application by Windows. That record con-
tains information such as what type of event occurred and additional information specific to the
message. The message record for a mouse button click message, for example, contains the
mouse coordinates at the time the button was pressed. The record type passed from Windows
to the application is called a TMsg, which is defined in the Windows unit as shown in the follow-
ing code:

type
TMsg = packed record
hwnd: HWND; // the handle of the Window for which the message

// is intended
message: UINT; // the message constant identifier
wParam: WPARAM; // 32 bits of additional message-specific information
lParam: LPARAM; // 32 bits of additional message-specific information
time: DWORD; // the time that the message was created
pt: TPoint; // the position of the mouse cursor when the message

// was created
end;

Essentials for Rapid Development

PART I
192

What’s in a Message?
Does the information in a message record look like Greek to you? If so, here’s a little
insight to what’s what:

hwnd The 32-bit window handle of the window for which the message
is intended. The window can be almost any type of screen object
because Win32 maintains window handles for most visual
objects (windows, dialog boxes, buttons, edits, and so on).

Now that you have an idea what makes up an message, it’s time to take a look at some differ-
ent types of Windows messages.

Types of Messages
The Win32 API predefines a constant for each Windows message. These constants are the val-
ues kept in the message field of the TMsg record. All these constants are defined in Delphi’s
Messages unit; most are also described in the online help. Notice that each of these constants
begins with the letters WM, which stand for Windows Message. Table 5.1 lists some of the
common Windows messages, along with their meanings and values.

TABLE 5.1 Common Windows Messages

Message Identifier Value Tells a Window That…

WM_ACTIVATE $0006 It’s being activated or deactivated.

WM_CHAR $0102 WM_KEYDOWN and WM_KEYUP messages have been sent
for one key.

WM_CLOSE $0010 It should terminate.

WM_KEYDOWN $0100 A keyboard key is being pressed.

WM_KEYUP $0101 A keyboard key has been released.

WM_LBUTTONDOWN $0201 The user is pressing the left mouse button.

WM_MOUSEMOVE $0200 The mouse is being moved.

WM_PAINT $000F It must repaint its client area.

WM_TIMER $0113 A timer event has occurred.

WM_QUIT $0012 A request has been made to shut down the program.

Understanding Windows Messaging

CHAPTER 5
193

5

U
N

D
ER

STA
N

D
IN

G
W

IN
D

O
W

S
M

ESSA
G

IN
G

message A constant value that represents some message. These con-
stants can be defined by Windows in the Windows unit or by
you through user-defined messages.

wParam This field often contains a constant value associated with the
message; it can also contain a window handle or the identifica-
tion number of some window or control associated with the
message.

lParam This field often holds an index or pointer to some data in mem-
ory. Because wParam, lParam, and Pointer are all 32 bits in
size, you can typecast interchangeably between them.

How the Windows Message System Works
A Windows application’s message system has three key components:

• Message queue. Windows maintains a message queue for each application. A Windows
application must get messages from this queue and dispatch them to the proper windows.

• Message loop. This is the loop mechanism in a Windows program that fetches a message
from the application queue and dispatches it to the appropriate window, fetches the next
message, dispatches it to the appropriate window, and so on.

• Window procedure. Each window in your application has a window procedure that
receives each of the messages passed to it by the message loop. The window procedure’s
job is to take each window message and respond to it accordingly. A window procedure
is a callback function; a window procedure usually returns a value to Windows after pro-
cessing a message.

Essentials for Rapid Development

PART I
194

NOTE

A callback function is a function in your program that’s called by Windows or some
other external module.

Getting a message from point A (some event occurs, creating a message) to point B (a window
in your application responds to the message) is a five-step process:

1. Some event occurs in the system.

2. Windows translates this event into a message and places it into the message queue for
your application.

3. Your application retrieves the message from the queue and places it in a TMsg record.

4. Your application passes on the message to the window procedure of the appropriate win-
dow in your application.

5. The window procedure performs some action in response to the message.

Steps 3 and 4 make up the application’s message loop. The message loop is often considered
the heart of a Windows program because it’s the facility that enables your program to respond
to external events. The message loop spends its whole life fetching messages from the applica-
tion queue and passing them to the appropriate windows in your application. If there are no
messages in your application’s queue, Windows allows other applications to process their mes-
sages. Figure 5.1 shows these steps.

Understanding Windows Messaging

CHAPTER 5
195

5

U
N

D
ER

STA
N

D
IN

G
W

IN
D

O
W

S
M

ESSA
G

IN
G

Something Message
Loop

Window
Procedure

Message
Queue

Event
Occurs

Windows
creates a
message

Message is placed
at the end of the
applications message
queue

Message Loop
takes next
message from
the queue

And passes the
message on to the
window procedure
for the appropriate
window

FIGURE 5.1
The Windows Message system.

Delphi’s Message System
VCL handles many of the details of the Windows message system for you. The message loop
is built into VCL’s Forms unit, for example, so you don’t have to worry about fetching mes-
sages from the queue or dispatching them to a window procedure. Delphi also places the infor-
mation located in the Windows TMsg record into a generic TMessage record:

type
TMessage = record
Msg: Cardinal;
case Integer of
0: (
WParam: Longint;
LParam: Longint;
Result: Longint);

1: (
WParamLo: Word;
WParamHi: Word;
LParamLo: Word;
LParamHi: Word;
ResultLo: Word;
ResultHi: Word);

end;

Notice that TMessage record has a little less information than does TMsg. That’s because Delphi
internalizes the other TMsg fields; TMessage contains just the essential information you need to
handle a message.

It’s important to note that the TMessage record also contains a Result field. As mentioned ear-
lier, some messages require the window procedure to return some value after processing a mes-
sage. With Delphi, you accomplish this process in a straightforward fashion by placing the
return value in the Result field of TMessage. This process is explained in detail in the later
section “Assigning Message Result Values.”

Message-Specific Records
In addition to the generic TMessage record, Delphi defines a message-specific record for every
Windows message. The purpose of these message-specific records is to give you all the infor-
mation the message offers without having to decipher the wParam and lParam fields of a
record. All the message-specific records can be found in the Messages unit. As an example,
here’s the message record used to hold most mouse messages:

type
TWMMouse = record
Msg: Cardinal;
Keys: Longint;
case Integer of
0: (
XPos: Smallint;
YPos: Smallint);

1: (
Pos: TSmallPoint;
Result: Longint);

end;

All the record types for specific mouse messages (WM_LBUTTONDOWN and WM_RBUTTONUP, for
example) are simply defined as equal to TWMMouse, as in the following example:

TWMRButtonUp = TWMMouse;
TWMLButtonDown = TWMMouse;

Essentials for Rapid Development

PART I
196

NOTE

A message record is defined for nearly every standard Windows message. The nam-
ing convention dictates that the name of the record must be the same as the name
of the message with a T prepended, using camel capitalization and without the
underscore. For example, the name of the message record type for a WM_SETFONT
message is TWMSetFont.

By the way, TMessage works with all messages in all situations but isn’t as convenient
as message-specific records.

Handling Messages
Handling or processing a message means that your application responds in some manner to a
Windows message. In a standard Windows application, message handling is performed in each
window procedure. By internalizing the window procedure, however, Delphi makes it much
easier to handle individual messages; instead of having one procedure that handles all mes-
sages, each message has its own procedure. Three requirements must be met for a procedure to
be a message-handling procedure:

• The procedure must be a method of an object.

• The procedure must take one var parameter of a TMessage or other message-specific
record type.

• The procedure must use the message directive followed by the constant value of the mes-
sage you want to process.

Here’s an example of a procedure that handles WM_PAINT messages:

procedure WMPaint(var Msg: TWMPaint); message WM_PAINT;

Understanding Windows Messaging

CHAPTER 5
197

5

U
N

D
ER

STA
N

D
IN

G
W

IN
D

O
W

S
M

ESSA
G

IN
G

NOTE

When naming message-handling procedures, the convention is to give them the same
name as the message itself, using camel-capitalization and without the underscore.

As another example, let’s write a simple message-handling procedure for WM_PAINT that
processes the message simply by beeping.

Start by creating a new, blank project. Then access the Code Editor window for this project and
add the header for the WMPaint function to the private section of the TForm1 object:

procedure WMPaint(var Msg: TWMPaint); message WM_PAINT;

Now add the function definition to the implementation part of this unit. Remember to use the
dot operator to scope this procedure as a method of TForm1. Don’t use the message directive as
part of the function implementation:

procedure TForm1.WMPaint(var Msg: TWMPaint);
begin
Beep;
inherited;

end;

Notice the use of the inherited keyword here. Call inherited when you want to pass the
message to the ancestor object’s handler. By calling inherited in this example, you pass on
the message to TForm’s WM_PAINT handler.

Essentials for Rapid Development

PART I
198

NOTE

Unlike normal calls to inherited methods, here you don’t give the name of the inher-
ited method. That’s because the name of the method is unimportant when it’s dis-
patched. Delphi knows what method to call based on the message value used with
the message directive in the class interface.

The main unit in Listing 5.1 provides a simple example of a form that processes the WM_PAINT
message. Creating this project is easy: Just create a new project and add the code for the
WMPaint procedure to the TForm object.

LISTING 5.1 GetMess: A Message-Handling Example

unit GMMain;

interface

uses
SysUtils, Windows, Messages, Classes, Graphics, Controls,
Forms, Dialogs;

type
TForm1 = class(TForm)
private
procedure WMPaint(var Msg: TWMPaint); message WM_PAINT;

end;

var
Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.WMPaint(var Msg: TWMPaint);
begin
MessageBeep(0);
inherited;

end;

end.

Whenever a WM_PAINT message comes down the pike, it’s passed to the WMPaint procedure.
The WMPaint procedure simply informs you of the WM_PAINT message by making some noise
with the MessageBeep() procedure and then passes the message to the inherited handler.

Understanding Windows Messaging

CHAPTER 5
199

5

U
N

D
ER

STA
N

D
IN

G
W

IN
D

O
W

S
M

ESSA
G

IN
G

MessageBeep(): The Poor Man’s Debugger
While we’re on the topic of beeping, now is a good time for a slight digression. The
MessageBeep() procedure is one of the most straightforward and useful elements in
the Win32 API. Its use is simple: Call MessageBeep(), pass a predefined constant, and
Windows beeps the PC’s speaker (if you have a sound card, it plays a WAV file). Big
deal, you say? On the surface it may not seem like much, but MessageBeep() really
shines as an aid in debugging your programs.

If you’re looking for a quick-and-dirty way to tell whether your program is reaching a
certain place in your code—without having to bother with the debugger and break-
points—MessageBeep() is for you. Because it doesn’t require a handle or some other
Windows resource, you can use it practically anywhere in your code, and as a wise
man once said, “MessageBeep() is for the itch you can’t scratch with the debugger.” If
you have a sound card, you can pass MessageBeep() one of several predefined con-
stants to have it play a wider variety of sounds—these constants are defined under
MessageBeep() in the Win32 API help file.

If you’re like the authors and are too lazy to type out that whole big, long function
name and parameter, you can use the Beep() procedure found in the SysUtils unit.
The implementation of Beep() is simply a call to MessageBeep() with the parameter 0.

Message Handling: Not Contract Free
Unlike responding to Delphi events, handling Windows messages is not “contract free.” Often,
when you decide to handle a message yourself, Windows expects you to perform some action
when processing the message. Most of the time, VCL has much of this basic message process-
ing built in—all you have to do is call inherited to get to it. Think of it this way: You write a
message handler so that your application will do the things you expect, and you call inherited
so that your application will do the additional things Windows expects.

NOTE

The contractual nature of message handling can be more than just calling the inher-
ited handler. In message handlers, you’re sometimes restricted in what you can do.
For example, in a WM_KILLFOCUS message, you cannot set focus to another control
without causing a crash.

To demonstrate the inherited elements, try running the program in Listing 5.1 without calling
inherited in the WMPaint() method. Just remove the line that calls inherited so that the pro-
cedure looks like this:

procedure TForm1.WMPaint(var Msg: TWMPaint);
begin
MessageBeep(0);

end;

Because you never give Windows a chance to perform basic handling of the WM_PAINT mes-
sage, the form will never paint itself.

Sometimes there are circumstances in which you don’t want to call the inherited message han-
dler. An example is handling the WM_SYSCOMMAND messages to prevent a window from being
minimized or maximized.

Assigning Message Result Values
When you handle some Windows messages, Windows expects you to return a result value. The
classic example is the WM_CTLCOLOR message. When you handle this message, Windows expects
you to return a handle to a brush with which you want Windows to paint a dialog box or con-
trol. (Delphi provides a Color property for components that does this for you, so the example is
just for illustration purposes.) You can return this brush handle easily with a message-handling
procedure by assigning a value to the Result field of TMessage (or another message record)
after calling inherited. For example, if you were handling WM_CTLCOLOR, you could return a
brush handle value to Windows with the following code:

procedure TForm1.WMCtlColor(var Msg: TWMCtlColor);
var
BrushHand: hBrush;

begin
inherited;
{ Create a brush handle and place into BrushHand variable }
Msg.Result := BrushHand;

end;

The TApplication Type’s OnMessage Event
Another technique for handling messages is to use TApplication’s OnMessage event. When
you assign a procedure to OnMessage, that procedure is called whenever a message is pulled
from the queue and about to be processed. This event handler is called before Windows itself
has a chance to process the message. The Application.OnMessage event handler is of
TMessageEvent type and must be defined with a parameter list, as shown here:

procedure SomeObject.AppMessageHandler(var Msg: TMsg;
var Handled: Boolean);

Essentials for Rapid Development

PART I
200

All the message parameters are passed to the OnMessage event handler in the Msg parameter.
(Note that this parameter is of the Windows TMsg record type described earlier in this chapter.)
The Handled field requires you to assign a Boolean value indicating whether you have handled
the message.

The first step in creating an OnMessage event handler is to create a method that accepts the
same parameter list as a TMessageEvent. For example, here’s a method that keeps a running
count of how many messages your application receives:

var
NumMessages: Integer;

procedure Form1.AppMessageHandler(var Msg: TMsg; var Handled: Boolean);
begin
Inc(NumMessages);
Handled := False;

end;

The second and final step in creating the event handler is to assign a procedure to
Application.OnMessage somewhere in your code. This can be done in the DPR file after cre-
ating the project’s forms but before calling Application.Run:

Application.OnMessage := Form1.AppMessageHandler;

One limitation of OnMessage is that it’s executed only for messages pulled out of the queue and
not for messages sent directly to the window procedures of windows in your application.
Chapter 13, “Hard-core Techniques,” shows techniques for working around this limitation by
hooking into the application window procedure.

Understanding Windows Messaging

CHAPTER 5
201

5

U
N

D
ER

STA
N

D
IN

G
W

IN
D

O
W

S
M

ESSA
G

IN
G

TIP

OnMessage sees all messages posted to all window handles in your application. This is
the busiest event in your application (thousands of messages per second), so don’t do
anything in an OnMessage handler that takes a lot of time because you’ll slow your
whole application to a crawl. Clearly, this is one place where a breakpoint would be
a very bad idea.

Sending Your Own Messages
Just as Windows sends messages to your application’s windows, you will occasionally need to
send messages between windows and controls within your application. Delphi provides several
ways to send messages within your application, such as the Perform() method (which works
independently of the Windows API) and the SendMessage() and PostMessage() API functions.

The Perform() Method
VCL provides the Perform() method for all TControl descendants; Perform() enables you to
send a message to any form or control object given an instance of that object. The Perform()
method takes three parameters—a message and its corresponding lParam and wParam—and is
defined as follows:

function TControl.Perform(Msg: Cardinal; WParam, LParam: Longint):
Longint;

To send a message to a form or control, use the following syntax:

RetVal := ControlName.Perform(MessageID, wParam, lParam);

After you call Perform(), it doesn’t return until the message has been handled. The Perform()
method packages its parameters into a TMessage record and then calls the object’s Dispatch()
method to send the message—bypassing the Windows API messaging system. The Dispatch()
method is described later in this chapter.

The SendMessage() and PostMessage() API Functions
Sometimes you need to send a message to a window for which you don’t have a Delphi object
instance. For example, you might want to send a message to a non-Delphi window, but you
have only a handle to that window. Fortunately, the Windows API offers two functions that fit
this bill: SendMessage() and PostMessage(). These two functions are essentially identical,
except for one key difference: SendMessage(), similar to Perform(), sends a message directly
to the window procedure of the intended window and waits until the message is processed
before returning; PostMessage() posts a message to the Windows message queue and returns
immediately.

SendMessage() and PostMessage() are declared as follows:

function SendMessage(hWnd: HWND; Msg: UINT; wParam: WPARAM;
lParam: LPARAM): LRESULT; stdcall;

function PostMessage(hWnd: HWND; Msg: UINT; wParam: WPARAM;
lParam: LPARAM): BOOL; stdcall;

• hWnd is the window handle for which the message is intended.

• Msg is the message identifier.

• wParam is 32 bits of additional message-specific information.

• lParam is 32 bits of additional message-specific information.

Essentials for Rapid Development

PART I
202

Nonstandard Messages
Until now, the discussion has centered on regular Windows messages (those that begin with
WM_XXX). However, two other major categories of messages merit some discussion: notification
messages and user-defined messages.

Notification Messages
Notification messages are messages sent to a parent window when something happens in one of
its child controls that may require the parent’s attention. Notification messages occur only with
the standard Windows controls (button, list box, combo box, and edit control) and with the
Windows Common Controls (tree view, list view, and so on). For example, clicking or double-
clicking a control, selecting some text in a control, and moving the scroll bar in a control all
generate notification messages.

You can handle notification messages by writing message-handling procedures in the form that
contains a particular control. Table 5.2 lists the Win32 notification messages for standard
Windows controls.

TABLE 5.2 Standard Control Notification Messages

Notification Meaning

Button Notification

BN_CLICKED The user clicked a button.

BN_DISABLE A button is disabled.

BN_DOUBLECLICKED The user double-clicked a button.

BN_HILITE The user highlighted a button.

BN_PAINT The button should be painted.

BN_UNHILITE The highlight should be removed.

Understanding Windows Messaging

CHAPTER 5
203

5

U
N

D
ER

STA
N

D
IN

G
W

IN
D

O
W

S
M

ESSA
G

IN
G

NOTE

Although SendMessage() and PostMessage() are used similarly, their respective
return values are different. SendMessage() returns the result value of the message
being processed, but PostMessage() returns only a BOOL that indicates whether the
message was placed in the target window’s queue.

continues

TABLE 5.2 Continued

Notification Meaning

Combo Box Notification

CBN_CLOSEUP The list box of a combo box has closed.

CBN_DBLCLK The user double-clicked a string.

CBN_DROPDOWN The list box of a combo box is dropping down.

CBN_EDITCHANGE The user has changed text in the edit control.

CBN_EDITUPDATE Altered text is about to be displayed.

CBN_ERRSPACE The combo box is out of memory.

CBN_KILLFOCUS The combo box is losing the input focus.

CBN_SELCHANGE A new combo box list item is selected.

CBN_SELENDCANCEL The user’s selection should be canceled.

CBN_SELENDOK The user’s selection is valid.

CBN_SETFOCUS The combo box is receiving the input focus.

Edit Notification

EN_CHANGE The display is updated after text changes.

EN_ERRSPACE The edit control is out of memory.

EN_HSCROLL The user clicked the horizontal scrollbar.

EN_KILLFOCUS The edit control is losing the input focus.

EN_MAXTEXT The insertion is truncated.

EN_SETFOCUS The edit control is receiving the input focus.

EN_UPDATE The edit control is about to display altered text.

EN_VSCROLL The user clicked the vertical scrollbar.

List Box Notification

LBN_DBLCLK The user double-clicked a string.

LBN_ERRSPACE The list box is out of memory.

LBN_KILLFOCUS The list box is losing the input focus.

LBN_SELCANCEL The selection is canceled.

LBN_SELCHANGE The selection is about to change.

LBN_SETFOCUS The list box is receiving the input focus.

Internal VCL Messages
VCL has an extensive collection of its own internal and notification messages. Although you
don’t commonly use these messages in your Delphi applications, Delphi component writers

Essentials for Rapid Development

PART I
204

will find them useful. These messages begin with CM_ (for component message) or CN_ (for
component notification), and they are used to manage VCL internals such as focus, color, visi-
bility, window re-creation, dragging, and so on. You can find a complete list of these messages
in the “Creating Custom Components” portion of the Delphi online help.

User-Defined Messages
At some point, you’ll come across a situation in which one of your own applications must send
a message to itself, or you have to send messages between two of your own applications. At
this point, one question that might come to mind is, “Why would I send myself a message
instead of simply calling a procedure?” It’s a good question, and there are actually several
answers. First, messages give you polymorphism without requiring knowledge of the recipi-
ent’s type. Messages are therefore as powerful as virtual methods but more flexible. Also, mes-
sages allow for optional handling: If the recipient doesn’t do anything with the message, no
harm is done. Finally, messages allow for broadcast notifications to multiple recipients and
“parasitic” eavesdropping, which isn’t easily done with procedures alone.

Messages Within Your Application
Having an application send a message to itself is easy. Just use the Perform(), SendMessage(),
or PostMessage() function and use a message value in the range of WM_USER + 100 through
$7FFF (the value Windows reserves for user-defined messages):

const
SX_MYMESSAGE = WM_USER + 100;

begin
SomeForm.Perform(SX_MYMESSAGE, 0, 0);
{ or }
SendMessage(SomeForm.Handle, SX_MYMESSAGE, 0, 0);
{ or }
PostMessage(SomeForm.Handle, SX_MYMESSAGE, 0, 0);
.
.
.

end;

Then create a normal message-handling procedure for this message in the form in which you
want to handle the message:

TForm1 = class(TForm)
.
.
.

private

Understanding Windows Messaging

CHAPTER 5
205

5

U
N

D
ER

STA
N

D
IN

G
W

IN
D

O
W

S
M

ESSA
G

IN
G

procedure SXMyMessage(var Msg: TMessage); message SX_MYMESSAGE;
end;

procedure TForm1.SXMyMessage(var Msg: TMessage);
begin
MessageDlg(‘She turned me into a newt!’, mtInformation, [mbOk], 0);

end;

As you can see, there’s little difference between using a user-defined message in your
application and handling any standard Windows message. The real key here is to start at
WM_USER + 100 for interapplication messages and to give each message a name that has
something to do with its purpose.

Essentials for Rapid Development

PART I
206

CAUTION

Never send messages with values of WM_USER through $7FFF unless you’re sure that
the intended recipient is equipped to handle the message. Because each window can
define these values independently, the potential for bad things to happen is great
unless you keep careful tabs on which recipients you send WM_USER through $7FFF
messages to.

Messaging Between Applications
When you want to send messages between two or more applications, it’s usually best to use the
RegisterWindowMessage() API function in each application. This method ensures that every
application uses the same message number for a given message.

RegisterWindowMessage() accepts a null-terminated string as a parameter and returns a new
message constant in the range of $C000 through $FFFF. This means that all you have to do is
call RegisterWindowMessage() with the same string in each application between which you
want to send messages; Windows returns the same message value for each application. The
true benefit of RegisterWindowMessage() is that, because a message value for any given string
is guaranteed to be unique throughout the system, you can safely broadcast such messages to
all windows with fewer harmful side effects. It can be a bit more work to handle this kind of
message, though; because the message identifier isn’t known until runtime, you can’t use a
standard message handler procedure, and you must override a control’s WndProc() or
DefaultHandler() method or subclass an existing window procedure. A technique for han-
dling registered messages is demonstrated in Chapter 13, “Hard-core Techniques.”

Broadcasting Messages
TWinControl descendants can broadcast a message record to each of their owned controls—
thanks to the Broadcast() method. This technique is useful when you need to send the same
message to a group of components. For example, to send a user-defined message called um_Foo
to all of Panel1’s owned controls, use the following code:

var
M: TMessage;

begin
with M do
begin
Message := UM_FOO;
wParam := 0;
lParam := 0;
Result := 0;

end;
Panel1.Broadcast(M);

end;

Anatomy of a Message System: VCL
There’s much more to VCL’s message system than handling messages with the message direc-
tive. After a message is issued by Windows, it makes a couple of stops before reaching your
message-handling procedure (and it may make a few more stops afterward). All along the way,
you have the power to act on the message.

For posted messages, the first stop for a Windows message in VCL is the
Application.ProcessMessage() method, which houses the VCL main message loop. The next
stop for a message is the handler for the Application.OnMessage event. OnMessage is called as
messages are fetched from the application queue in the ProcessMessage() method. Because
sent messages aren’t queued, OnMessage won’t be called for sent messages.

For posted messages, the DispatchMessage() API is then called internally to dispatch the mes-
sage to the StdWndProc() function. For sent messages, StdWndProc() will be called directly by
Win32. StdWndProc() is an assembler function that accepts the message from Windows and
routes it to the object for which the message is intended.

Understanding Windows Messaging

CHAPTER 5
207

5

U
N

D
ER

STA
N

D
IN

G
W

IN
D

O
W

S
M

ESSA
G

IN
G

NOTE

The number returned by RegisterWindowMessage() varies between Windows sessions
and can’t be determined until runtime.

The object method that receives the message is called MainWndProc(). Beginning with
MainWndProc(), you can perform any special handling of the message your program might
require. Generally, you handle a message at this point only if you don’t want a message to go
through VCL’s normal dispatching.

After leaving the MainWndProc() method, the message is routed to the object’s WndProc()
method and then on to the dispatch mechanism. The dispatch mechanism, found in the object’s
Dispatch() method, routes the message to any specific message-handling procedure that
you’ve defined or that already exists within VCL.

Then the message finally reaches your message-specific handling procedure. After flowing
through your handler and the inherited handlers you might have invoked using the inherited
keyword, the message goes to the object’s DefaultHandler() method. DefaultHandler() per-
forms any final message processing and then passes the message to the Windows
DefWindowProc() function or other default window procedure (such as DefMDIProc) for any
Windows default processing. Figure 5.2 shows VCL’s message-processing mechanism.

Essentials for Rapid Development

PART I
208

NOTE

You should always call inherited when handling messages unless you’re absolutely
certain you want to prevent normal message processing.

TIP

Because all unhandled messages flow to DefaultHandler(), that’s usually the best
place to handle interapplication messages in which the values were obtained by way
of the RegisterWindowMessage() procedure.

To better understand VCL’s message system, create a small program that can handle a message
at the Application.OnMessage, WndProc(), message procedure, or DefaultHandler() stage.
This project is called CatchIt; its main form is shown in Figure 5.3.

The OnClick event handlers for PostMessButton and SendMessButton are shown in the fol-
lowing code. The former uses PostMessage() to post a user-defined message to the form; the
latter uses SendMessage() to send a user-defined message to the form. To differentiate between
post and send, note that the value 1 is passed in the wParam of PostMessage() and that the
value 0 (zero) is passed for SendMessage(). Here’s the code:

FIGURE 5.2
VCL’s message system.

Understanding Windows Messaging

CHAPTER 5
209

5

U
N

D
ER

STA
N

D
IN

G
W

IN
D

O
W

S
M

ESSA
G

IN
G

SomeClass WndProcMessage

SomeClass
Dispatch

SomeClass
Message Handler

Ancestor
Message Handler

AncestorN
Message Handler

SomeClass
Default Handler

FIGURE 5.3
The main form of the CatchIt message example.

procedure TMainForm.PostMessButtonClick(Sender: TObject);
{ posts message to form }
begin
PostMessage(Handle, SX_MYMESSAGE, 1, 0);

end;

procedure TMainForm.SendMessButtonClick(Sender: TObject);
{ sends message to form }
begin
SendMessage(Handle, SX_MYMESSAGE, 0, 0); // send message to form

end;

This application provides the user with the opportunity to “eat” the message in the OnMessage
handler, WndProc() method, message-handling method, or DefaultHandler() method (that is,
to not trigger the inherited behavior and to therefore stop the message from fully circulating

through VCL’s message-handling system). Listing 5.2 shows the completed source code for the
main unit of this project, thus demonstrating the flow of messages in a Delphi application.

LISTING 5.2 The Source Code for CIMain.PAS

unit CIMain;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ExtCtrls, Menus;

const
SX_MYMESSAGE = WM_USER; // User-defined message value
MessString = ‘%s message now in %s.’; // String to alert user

type
TMainForm = class(TForm)
GroupBox1: TGroupBox;
PostMessButton: TButton;
WndProcCB: TCheckBox;
MessProcCB: TCheckBox;
DefHandCB: TCheckBox;
SendMessButton: TButton;
AppMsgCB: TCheckBox;
EatMsgCB: TCheckBox;
EatMsgGB: TGroupBox;
OnMsgRB: TRadioButton;
WndProcRB: TRadioButton;
MsgProcRB: TRadioButton;
DefHandlerRB: TRadioButton;
procedure PostMessButtonClick(Sender: TObject);
procedure SendMessButtonClick(Sender: TObject);
procedure EatMsgCBClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure AppMsgCBClick(Sender: TObject);

private
{ Handles messages at Application level }
procedure OnAppMessage(var Msg: TMsg; var Handled: Boolean);
{ Handles messages at WndProc level }
procedure WndProc(var Msg: TMessage); override;
{ Handles message after dispatch }
procedure SXMyMessage(var Msg: TMessage); message SX_MYMESSAGE;
{ Default message handler }
procedure DefaultHandler(var Msg); override;

end;

Essentials for Rapid Development

PART I
210

var
MainForm: TMainForm;

implementation

{$R *.DFM}

const
// strings which will indicate whether a message is sent or posted
SendPostStrings: array[0..1] of String = (‘Sent’, ‘Posted’);

procedure TMainForm.FormCreate(Sender: TObject);
{ OnCreate handler for main form }
begin
// set OnMessage to my OnAppMessage method
Application.OnMessage := OnAppMessage;
// use the Tag property of checkboxes to store a reference to their
// associated radio buttons
AppMsgCB.Tag := Longint(OnMsgRB);
WndProcCB.Tag := Longint(WndProcRB);
MessProcCB.Tag := Longint(MsgProcRB);
DefHandCB.Tag := Longint(DefHandlerRB);
// use the Tag property of radio buttons to store a reference to their
// associated checkbox
OnMsgRB.Tag := Longint(AppMsgCB);
WndProcRB.Tag := Longint(WndProcCB);
MsgProcRB.Tag := Longint(MessProcCB);
DefHandlerRB.Tag := Longint(DefHandCB);

end;

procedure TMainForm.OnAppMessage(var Msg: TMsg; var Handled: Boolean);
{ OnMessage handler for Application }
begin
// check to see if message is my user-defined message
if Msg.Message = SX_MYMESSAGE then
begin
if AppMsgCB.Checked then
begin
// Let user know about the message. Set Handled flag appropriately
ShowMessage(Format(MessString, [SendPostStrings[Msg.WParam],
‘Application.OnMessage’]));

Handled := OnMsgRB.Checked;
end;

end;
end;

Understanding Windows Messaging

CHAPTER 5
211

5

U
N

D
ER

STA
N

D
IN

G
W

IN
D

O
W

S
M

ESSA
G

IN
Gcontinues

LISTING 5.2 Continued

procedure TMainForm.WndProc(var Msg: TMessage);
{ WndProc procedure of form }
var
CallInherited: Boolean;

begin
CallInherited := True; // assume we will call the inherited
if Msg.Msg = SX_MYMESSAGE then // check for our user-defined message
begin
if WndProcCB.Checked then // if WndProcCB checkbox is checked...
begin
// Let user know about the message.
ShowMessage(Format(MessString, [SendPostStrings[Msg.WParam],
‘WndProc’]));

// Call inherited only if we are not supposed to eat the message.
CallInherited := not WndProcRB.Checked;

end;
end;
if CallInherited then inherited WndProc(Msg);

end;

procedure TMainForm.SXMyMessage(var Msg: TMessage);
{ Message procedure for user-defined message }
var
CallInherited: Boolean;

begin
CallInherited := True; // assume we will call the inherited
if MessProcCB.Checked then // if MessProcCB checkbox is checked
begin
// Let user know about the message.
ShowMessage(Format(MessString, [SendPostStrings[Msg.WParam],
‘Message Procedure’]));

// Call inherited only if we are not supposed to eat the message.
CallInherited := not MsgProcRB.Checked;

end;
if CallInherited then Inherited;

end;

procedure TMainForm.DefaultHandler(var Msg);
{ Default message handler for form }
var
CallInherited: Boolean;

begin
CallInherited := True; // assume we will call the inherited
// check for our user-defined message
if TMessage(Msg).Msg = SX_MYMESSAGE then begin

Essentials for Rapid Development

PART I
212

if DefHandCB.Checked then // if DefHandCB checkbox is checked
begin
// Let user know about the message.
ShowMessage(Format(MessString,
[SendPostStrings[TMessage(Msg).WParam], ‘DefaultHandler’]));

// Call inherited only if we are not supposed to eat the message.
CallInherited := not DefHandlerRB.Checked;

end;
end;
if CallInherited then inherited DefaultHandler(Msg);

end;

procedure TMainForm.PostMessButtonClick(Sender: TObject);
{ posts message to form }
begin
PostMessage(Handle, SX_MYMESSAGE, 1, 0);

end;

procedure TMainForm.SendMessButtonClick(Sender: TObject);
{ sends message to form }
begin
SendMessage(Handle, SX_MYMESSAGE, 0, 0); // send message to form

end;

procedure TMainForm.AppMsgCBClick(Sender: TObject);
{ enables/disables proper radio button for checkbox click }
begin
if EatMsgCB.Checked then
begin
with TRadioButton((Sender as TCheckBox).Tag) do
begin
Enabled := TCheckbox(Sender).Checked;
if not Enabled then Checked := False;

end;
end;

end;

procedure TMainForm.EatMsgCBClick(Sender: TObject);
{ enables/disables radio buttons as appropriate }
var
i: Integer;
DoEnable, EatEnabled: Boolean;

begin
// get enable/disable flag
EatEnabled := EatMsgCB.Checked;
// iterate over child controls of GroupBox in order to

Understanding Windows Messaging

CHAPTER 5
213

5

U
N

D
ER

STA
N

D
IN

G
W

IN
D

O
W

S
M

ESSA
G

IN
G

continues

LISTING 5.2 Continued

// enable/disable and check/uncheck radio buttons
for i := 0 to EatMsgGB.ControlCount - 1 do
with EatMsgGB.Controls[i] as TRadioButton do
begin
DoEnable := EatEnabled;
if DoEnable then DoEnable := TCheckbox(Tag).Checked;
if not DoEnable then Checked := False;
Enabled := DoEnable;

end;
end;

end.

Essentials for Rapid Development

PART I
214

CAUTION

Although it’s fine to use just the inherited keyword to send the message to an
inherited handler in message-handler procedures, this technique doesn’t work with
WndProc() or DefaultHandler(). With these procedures, you must also provide the
name of the inherited procedure or function, as in this example:

inherited WndProc(Msg);

You might have noticed that the DefaultHandler() procedure is somewhat unusual in that it
takes one untyped var parameter. That’s because DefaultHandler() assumes that the first
word in the parameter is the message number; it isn’t concerned with the rest of the informa-
tion being passed. Because of this, you typecast the parameter as a TMessage so that you can
access the message parameters.

The Relationship Between Messages and Events
Now that you know all the ins and outs of messages, recall that this chapter began by stating
that VCL encapsulates many Windows messages in its event system. Delphi’s event system is
designed to be an easy interface into Windows messages. Many VCL events have a direct cor-
relation with WM_XXX Windows messages. Table 5.3 shows some common VCL events and the
Windows message responsible for each event.

TABLE 5.3 VCL Events and Corresponding Windows Messages

VCL Event Windows Message

OnActivate WM_ACTIVATE

OnClick WM_XBUTTONDOWN

VCL Event Windows Message

OnCreate WM_CREATE

OnDblClick WM_XBUTTONDBLCLICK

OnKeyDown WM_KEYDOWN

OnKeyPress WM_CHAR

OnKeyUp WM_KEYUP

OnPaint WM_PAINT

OnResize WM_SIZE

OnTimer WM_TIMER

Table 5.3 is a good rule-of-thumb reference when you’re looking for events that correspond
directly to messages.

Understanding Windows Messaging

CHAPTER 5
215

5

U
N

D
ER

STA
N

D
IN

G
W

IN
D

O
W

S
M

ESSA
G

IN
G

TIP

Never write a message handler when you can use a predefined event to do the same
thing. Because of the contract-free nature of events, you’ll have fewer problems han-
dling events than you will handling messages.

Summary
By now, you should have a pretty clear understanding of how the Win32 messaging system
works and how VCL encapsulates that messaging system. Although Delphi’s event system is
great, knowing how messages work is essential for any serious Win32 programmer.

If you’re eager to learn more about handling Windows messages, check out Chapter 21,
“Writing Delphi Custom Components.” In that chapter, you see practical application of the
knowledge you gained in this chapter. For the next chapter, you’ll learn about how to write
your Delphi code to a set of standards in order to facilitate logical coding practices and sharing
of source code.

