
CHAPTER

4
Application Frameworks and
Design Concepts

IN THIS CHAPTER
• Understanding the Delphi Environment

and Project Architecture 136

• Files That Make Up a Delphi 5
Project 137

• Project Management Tips 141

• The Framework Classes of a Delphi 5
Project 145

• Defining a Common Architecture: Using
the Object Repository 160

• Miscellaneous Project Management
Routines 174

• Summary 189

This chapter is about Delphi project management and architecting. It shows you how to use
forms properly in your applications as well as how to manipulate their behavioral and visual
characteristics. The techniques discussed in this chapter include application startup/initializa-
tion procedures, form reuse/inheritance, and user interface enhancement. The text discusses the
framework classes that make up Delphi 5 applications: TApplication, TForm, TFrame, and
TScreen. We’ll then show you why understanding these concepts is essential to properly archi-
tecting Delphi applications.

Understanding the Delphi Environment and
Project Architecture
There are at least two important factors in properly building and managing Delphi 5 projects.
The first is knowing the ins and outs of the development environment in which you create your
projects. The second is having a solid understanding of the inherent architecture of the applica-
tions created with Delphi 5. This chapter doesn’t walk you through the Delphi 5 environment
(the Delphi documentation shows you how to work within that environment); instead, this
chapter points out features of the Delphi 5 IDE that help you manage your projects more effec-
tively. This chapter will also explain the architecture inherent in all Delphi applications. This
will not only allow you to maximize the environment’s features but also to properly use a solid
architecture instead of fighting it—a common mistake among those who don’t understand
Delphi project architectures.

Our first suggestion is to become well acquainted with the Delphi 5 development environment.
This book assumes that you’re already familiar with the Delphi 5 IDE. Second, this book
assumes that you’ve thoroughly read the Delphi 5 documentation (hint). However, you should
navigate through each of the Delphi 5 menus and bring up each of its dialog boxes. When you
see an option, setting, or action you’re unsure of, bring up the online help and read through it.
The time you spend doing this can prove interesting as well as insightful (not to mention that
you’ll learn how to navigate through the online help efficiently).

Essentials for Rapid Development

PART I
136

TIP

The Delphi 5 help system is without a doubt the most valuable and speedy reference
you have at your disposal. It would be advantageous to learn how to use it to
explore the thousands of help screens available.

Delphi 5 contains help on everything from how to use the Delphi 5 environment to
details on the Win32 API and complex Win32 structures. You can get immediate help
on a topic by typing the topic in the editor and, with the cursor still on the word you
typed, pressing Ctrl+F1. The help screen appears immediately. Help is also available

Files That Make Up a Delphi 5 Project
A Delphi 5 project is composed of several related files. Some files are created at design time as
you define forms. Others aren’t created until you compile the project. To manage a Delphi 5
project effectively, you must know the purpose of each of these files. Both the Delphi 5 docu-
mentation and the online help give detailed descriptions of the Delphi 5 project files. It’s a
good idea to review the documentation to ensure that you’re familiar with these files before
going on with this chapter.

The Project File
The project file is created at design time and has the extension .dpr. This file is the main pro-
gram source file. The project file is where the main form and any automatically created forms
are instantiated. You’ll seldom have to edit this file except when performing program initializa-
tion routines, displaying a splash screen, or performing various other routines that must happen
immediately when the program starts. The following code shows a typical project file:

program Project1;
uses
Forms,
Unit1 in ‘Unit1.pas’ {Form1};

{$R *.RES}
begin
Application.Initialize;
Application.CreateForm(TForm1, Form1);
Application.Run;

end.

Pascal programmers will recognize this file as a standard Pascal program file. Notice that this
file lists the form unit Unit1 in the uses clause. Project files list all form units that belong to
the project in the same manner. The following line refers to the project’s resource file:

{$R *.RES}

This line tells the compiler to link the resource file that has the same name as the project file
and an .RES extension to this project. The project resource file contains the program icon and
version information.

Application Frameworks and Design Concepts

CHAPTER 4
137

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

from the Delphi 5 dialog boxes by selecting the Help button or by pressing F1 when a
particular component has focus. You can also navigate through help by simply select-
ing Help from Delphi 5’s Help menu.

Finally, the begin..end block is where the application’s main code is executed. In this simple
example, the main form, Form1, is created. When Application.Run() executes, Form1 is dis-
played as the main form. You can add code in this block, as shown later in this chapter.

Project Unit Files
Units are Pascal source files with a .pas extension. There are basically three types of units
files: form/data module and frame units, component units, and general-purpose units.

• Form/data module and frame units are units automatically generated by Delphi 5.
There’s one unit for each form/data module or frame you create. For example, you can’t
have two forms defined in one unit and use them both in the Form Designer. For the pur-
pose of explaining form files, we won’t make a distinction between forms, data modules,
and frames.

• Component units are unit files created by you or Delphi 5 whenever you create a new
component.

• General-purpose units are units you can create for data types, variables, procedures, and
classes you want to make accessible to your applications.

Details about units are provided later in this chapter.

Form Files
A form file contains a binary representation of a form. Whenever you create a new form,
Delphi 5 creates both a form file (with the extension .dfm) and a Pascal unit (with the exten-
sion .pas) for your new form. If you look at a form’s unit file, you’ll see the following line:

{$R *.DFM}

This line tells the compiler to link the corresponding form file (the form file that has the same
name as the unit file and a .DFM extension) to the project.

You typically don’t edit the form file itself (although it’s possible to do so). You can load the
form file into the Delphi 5 editor so that you can view or edit the text representation of this
file. Select File, Open and then select the option to open only form files (.dfm). You can also
do this by simply right-clicking the Form Designer and selecting View as Text from the pop-up
menu. When you open the file, you see the text representation of the form.

Viewing the textual representation of the form is handy because you can see the nondefault
property settings for the form and any components that exist on the form. One way you can
edit the form file is to change a component type. For example, suppose that the form file con-
tains this definition for a TButton component:

object Button1: TButton
Left = 8

Essentials for Rapid Development

PART I
138

Top = 8
Width = 75
Height = 25
Caption = ‘Button1’
TabOrder = 0

end

If you change the line object Button1: TButton to object Button1: TLabel, you change
the component type to a TLabel component. When you view the form, you see a label on the
form and not a button.

Application Frameworks and Design Concepts

CHAPTER 4
139

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

NOTE

Changing component types in the form file might result in a property read error. For
example, changing a TButton component (which has a TabOrder property) to a
TLabel component (which doesn’t have a TabOrder property) results in this error.
However, there’s no need for concern because Delphi will correct the reference to
the property the next time the form is saved.

CAUTION

You must be extremely careful when you edit the form file. It’s possible to corrupt it,
which will prevent Delphi 5 from opening the form later.

NOTE

New to Delphi 5 is the ability to save forms in text file format. This was made possi-
ble to allow editing with other common tools such as Notepad.exe. Simply right-click
the form to invoke the context menu and select Text DFM.

Resource Files
Resource files contain binary data, also called resources, that are linked to the application’s
executable file. The RES file automatically created by Delphi 5 contains the project’s applica-
tion icon, the application’s version information, and other information. You can add resources
to your application by creating a separate resource file and linking it to your project. You can
create this resource file with a resource editor such as the Image Editor provided with Delphi 5
or the Resource Workshop.

Project Options and Desktop Settings Files
The project options file (with the extension .dof) is where the options specified from the
Project, Options menu are saved. This file is created when you first save your project; the file
is saved again with each subsequent save.

The desktop options file (with the extension .dsk) stores the options specified from the Tools,
Environment Options menu for the desktop. Desktop option settings differ from project option
settings in that project options are specific to a given project; desktop settings apply to the
Delphi 5 environment.

Essentials for Rapid Development

PART I
140

CAUTION

Don’t edit the resource file that Delphi creates automatically at compile time. Doing
so will cause any changes to be lost the next time you compile. If you want to add
resources to your application, create a separate resource file with a different name
from that of your project file. Then link the new file to your project by using the $R
directive, as shown in the following line:

{$R MYRESFIL.RES}

TIP

A corrupt DSK or DOF file can cause unexpected results, such as a GPF, during compi-
lation. If this happens, delete both the DOF and DSK files. They’re regenerated when
you save your project and when you exit Delphi 5; the IDE and project will revert to
the default settings.

Backup Files
Delphi 5 creates backup files for the DPR project file and for any PAS units on the second and
any subsequent saves. The backup files contain the last copy of the file before the save was
performed. The project backup file has the extension .~dp. Unit backup files have the exten-
sion .~pa.

A binary backup of the DFM form file is also created after you’ve saved it for the second or
subsequent time. This form file backup has a .~df extension.

You harm nothing if you delete any of these files—as long as you realize that you’re deleting
your last backup. Also, if you find that you prefer not to create these files at all, you can prevent
Delphi from creating them by deselecting Create Backup File in the Editor Properties dialog
box’s Display page.

Package Files
Packages are simply DLLs that contain code that can be shared among many applications.
However, packages are specific to Delphi in that they allow you to share components, classes,
data, and code between modules. This means that you can now reduce the footprint of your
applications drastically by using components residing in packages instead of linking them
directly into your applications. Later chapters talk much more about packages. Package source
files use the extension .dpk (short for Delphi package). When compiled, a BPL file is created
(A .BPL file is simply a dll). This BPL may be composed of several units or DCU (Delphi
compiled units) files, which can be any of the unit types previously mentioned. The binary
image of a DPK file containing all included units and the package header has the extension
.dcp (Delphi compiled package). Don’t be concerned if this seems confusing now; we’ll
explain packages in more detail later.

Project Management Tips
There are several ways to optimize the development process by using techniques that facilitate
better organization and code reuse. The next few sections offer some tips on these techniques.

One Project, One Directory
It’s a good idea to manage your projects so that one project’s files are separate from other pro-
jects’ files. Doing so prevents one project from overwriting another project’s files.

Notice that each project on the CD-ROM that accompanies this book is in its own directory.
You should follow this approach and maintain each of your projects in its own directory.

Application Frameworks and Design Concepts

CHAPTER 4
141

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

File Naming Conventions
It’s a good idea to establish a standard file naming convention for the files that make
up your projects. You might take a look at the DDG Coding Standards Document
included on the CD-ROM and used by the authors for the projects contained in this
book. (See Chapter 6, “Delphi 5 Developer’s Guide Coding Standards Document.”)

Units for Sharing Code
You can share commonly used routines with other applications by placing such routines in
units that can be accessed by multiple projects. Typically, you create a utility directory some-
where on your hard drive and place your units in that directory. When you need to access a
particular function that exists in one of the units in that directory, you just place the unit’s
name in the uses clause of the unit/project file requiring access.

You must also add the utility directory’s path to the search path on the Directories/Conditionals
page in the Project Options dialog box. Doing so ensures that Delphi 5 knows where to find
your utility units.

Essentials for Rapid Development

PART I
142

TIP

By using the Project Manager, you can add a unit from another directory to an exist-
ing project, which automatically takes care of adding the search path.

To explain how to use utility units, Listing 4.1 shows a small unit, StrUtils.pas, that contains
a single string-utility function. In reality, such units would probably contain many more rou-
tines, but this suffices as an example. The comments explain the function’s purpose.

LISTING 4.1 The StrUtils.pas Unit

unit strutils;
interface
function ShortStringAsPChar(var S: ShortString): PChar;
implementation
function ShortStringAsPChar(var S: ShortString): PChar;
{ This function null-terminates a short string so that it can be passed to
functions that require PChar types. If string is longer than 254 chars, then
it will be truncated to 254.

}
begin
if Length(S) = High(S) then Dec(S[0]); { Truncate S if it’s too long }
S[Ord(Length(S)) + 1] := #0; { Place null at end of string }
Result := @S[1]; { Return “PChar’d” string }

end;
end.

Suppose that you have a unit, SomeUnit.Pas, that requires the use of this function. Simply add
StrUtils to the uses clause of the unit in need, as shown here:

unit SomeUnit;
interface
...
implementation
uses
strutils;

...
end.

Also, you must ensure that Delphi 5 can find the unit StrUtils.pas by adding it to the search
path from the Project, Options menu.

When you do this, you can use the function ShortStringAsPChar() anywhere in the imple-
mentation section of SomeUnit.pas. You must place StrUtils in the uses clause of all units
that need access to the ShortStringAsPChar() function. It isn’t enough to add StrUtils to
only one unit in a project, or even to the project file (DPR) of the application to make the rou-
tine available throughout the entire application.

Application Frameworks and Design Concepts

CHAPTER 4
143

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

TIP

Because ShortStringAsPChar() is a handy function, it pays to place it in a utility unit
where it can be reused by any application so that you don’t have to remember how
or where you last used it.

Units for Global Identifiers
Units are also useful for declaring global identifiers for your project. As mentioned earlier, a
project typically consists of many units—form units, component units, and general-purpose
units. What if you need a particular variable to be present and accessible to all units throughout
the running of your application? The following steps show a simple way to create a unit to
store these global identifiers:

1. Create a new unit in Delphi 5.

2. Give the unit a name indicating that it holds global identifiers for the application (for
example, Globals.Pas or ProjGlob.pas).

3. Place the variables, types, and so on in the interface section of your global unit. These
are the identifiers that will be accessible to other units in the application.

4. To make these identifiers accessible to a unit, just add the unit name to the uses clause
of the unit that needs access (as described earlier in this chapter in the discussion about
sharing code in units).

Making Forms Know About Other Forms
Just because each form is contained within its own unit doesn’t mean that it can’t access
another form’s variables, properties, and methods. Delphi generates code in the form’s corre-
sponding PAS file, declaring the instance of that form as a global variable. All that’s required is
that you add the name of the unit defining a particular form to the uses clause of the unit
defining the form needing access. For example, if Form1, defined in UNIT1.PAS, needs access
to Form2, defined in UNIT2.PAS, just add UNIT2 to UNIT1’s uses clause:

unit Unit1;
interface
...
implementation
uses
Unit2;

...
end.

Now UNIT1 can refer to Form2 anywhere in its implementation section.

Essentials for Rapid Development

PART I
144

NOTE

Form linking will ask you if you want to include Unit2 in Unit1’s uses clause when
you compile the project if you refer to the Unit2’s form (call it Form2); all that’s nec-
essary is to refer to Form2 somewhere in Unit1.

Multiple Projects Management (Project Groups)
Often, a product is made up of multiple projects (projects that are dependent on one another).
Examples of such projects are the separate tiers in a multitiered application. Also, DLLs to be
used in other projects might be considered part of the overall project, even though DLLs are
separate projects themselves.

Delphi 5 allows you to manage such project groups. The Project Manager allows you to com-
bine several Delphi projects into one grouping called a project group. We won’t go into to the
details of using the Project Manager because Delphi’s documentation already does this. We do
want to emphasize how important it is to organize project groups and how the Project Manager
helps you do this.

It’s still important that each project live in its own directory and that all files specific to that
project alone reside in the same directory. Any shared units, forms, and so on should be placed
in a common directory that’s accessed by the separate projects. For example, your directory
structure might look something like this:

\DDGBugProduct
\DDGBugProduct\BugReportProject
\DDGBugProduct\BugAdminTool
\DDGBugProduct\CommonFiles

Given this structure, you have two separate directories for each Delphi project:
BugReportProject and BugAdminTool. However, both of these projects may use forms and
units that are common. You would place these files into the CommonFiles directory.

Organization is crucial in your development efforts, especially in a team development environ-
ment. It’s highly recommended that you establish a standard before your team dives into creat-
ing a bunch of files that are going to be difficult to manage. You can use the Delphi Project
Manager to help you understand your project-management structure.

The Framework Classes of a Delphi 5 Project
Most Delphi 5 applications have at least one instance of a TForm class. Also, Delphi 5 VCL
applications will have only one instance of a TApplication class and a TScreen class. These
three classes play important roles in managing the behavior of a Delphi 5 project. The follow-
ing sections familiarize you with the roles of these classes so that you have the knowledge to
modify their default behaviors when necessary.

The TForm Class
The TForm class is the focal point for Delphi 5 applications. In most cases, the entire applica-
tion revolves around the main form. From the main form, you can launch other forms, usually
as a result of a menu or button-click event. You might want Delphi 5 to create your forms auto-
matically, in which case you don’t have to worry about creating and destroying them. You may
also choose to create the forms dynamically at runtime.

Application Frameworks and Design Concepts

CHAPTER 4
145

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

NOTE

Delphi can create applications that don’t use forms (for example, console apps, ser-
vices, and COM servers). Therefore, the TForm class is not always the focal point of
your applications.

You can display the form to the end user by using one of two methods: modal or modeless.
The method you choose depends on how you intend the user to interact with the form and
other forms concurrently.

Displaying a Modal Form
A modal form is displayed so that the user can’t access the rest of the application until he or
she has dismissed the form. Modal forms are typically associated with dialog boxes, much like
the dialog boxes in Delphi 5 itself. In fact, you’ll probably use modal forms in most cases. To
display a form as modal, simply call its ShowModal() method. The following code shows how
you create an instance of a user-defined form, TModalForm, and then display it as a modal form:

Begin
// Create ModalForm instance
ModalForm := TModalForm.Create(Application);

try
if ModalForm.ShowModal = mrOk then // Show form in modal state
{ do something }; // Execute some code

finally
ModalForm.Free; // Free form instance
ModalForm := nil; // Set form variable to nil

end;
end;

This code shows how you would dynamically create an instance of TModalForm and assign it to
the variable ModalForm. It’s important to note that, if you create a form dynamically, you must
remove it from the list of available forms from the Auto-Create list box in the Project Options
dialog box. This dialog box is invoked by selecting Project, Options from the menu. If the form
instance is already created, however, you can show it as a modal form just by calling the
ShowModal() method. The surrounding code can be removed:

begin
if ModalForm.ShowModal = mrOk then // ModalForm is already created
{ do something }

end;

The ShowModal() method returns the value assigned to ModalForm’s ModalResult property. By
default, ModalResult is zero, which is the value of the predefined constant mrNone. When you
assign any nonzero value to ModalResult, the form is closed, and the assignment made to
ModalResult is passed back to the calling routine through the ShowModal() method.

Buttons have a ModalResult property. You can assign a value to this property that’s passed to
the form’s ModalResult property when the button is pressed. If this value is anything other
than mrNone, the form will close, and the value passed back from the ShowModal() method will
reflect that assigned to ModalResult.

You can also assign a value to the form’s ModalResult property at runtime:

begin
ModalForm.ModalResult := 100; // Assigning a value to ModalResult
// causing form to close.

end;

Table 4.1 shows the predefined ModalResult values.

TABLE 4.1 ModalResult Values?

Constant Value

mrNone 0

mrOk idOk

mrCancel idCancel

Essentials for Rapid Development

PART I
146

Constant Value

mrAbort idAbort

mrRetry idRetry

mrIgnore idIgnore

mrYes idYes

mrNo idNo

mrAll mrNo+1

Launching Modeless Forms
You can launch a modeless form by calling its Show() method. Calling a modeless form differs
from the modal method in that the user can switch between the modeless form and other forms
in the application. The intent of modeless forms is to allow users to work with different parts
of the application at the same time as the form is displayed. The following code shows how
you can dynamically create a modeless form:

Begin
// Check for an instance of modeless first
if not Assigned(Modeless) then
Modeless := TModeless.Create(Application); // Create form

Modeless.Show // Show form as non-modal
end; // instance already exists

This code also shows how you prevent multiple instances of one form class from being created.
Remember that a modeless form allows the user to interact with the rest of the application.
Therefore, nothing prevents the user from selecting the menu option again to create another
form instance of TModeless. It’s important that you manage the creation and destruction of
forms.

Here’s an important note about form instances: When you close a modeless form—either by
accessing the system menu or clicking the close button in the upper-right corner of the form—
the form isn’t actually freed from memory. The instance of the form still exists in memory
until you close the main form (that is, the application). In the preceding code example, the
then clause is executed only once, provided that the form is not autocreated. From that point
on, the else clause is executed because the form instance always exists from its previous cre-
ation. This is fine if that’s the way you want your application to function. However, if you want
the form to be freed whenever the user closes it, you must provide code for the OnClose event
handler for the form and set its Action parameter to caFree. This tells the VCL to free the
form when it’s closed:

procedure TModeless.FormClose(Sender: TObject;
var Action: TCloseAction);

Application Frameworks and Design Concepts

CHAPTER 4
147

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

begin
Action := caFree; // Free the form instance when closed

end;

The preceding version of the code solves the issue of the form not being freed. There’s another
issue, however. You might have noticed that this line was used in the first snippet of code
showing modeless forms:

if not Assigned(Modeless) then begin

This line checks for an instance of TModeless referenced by the Modeless variable. Actually,
this really checks to see that Modeless is not nil. Although Modeless will be nil the first time
you enter the routine, it won’t be nil when you enter the routine a second time after having
destroyed the form. The reason is because the VCL doesn’t set the variable Modeless to nil
when it’s destroyed. Therefore, this is something you must do yourself.

Unlike with a modal form, you can’t determine in code when the modeless form will be
destroyed. Therefore, you can’t destroy the form inside the routine that creates it. The user can
close the form at any moment while running the application. Therefore, setting Modeless to
nil must be a process of the TModeless class itself. The best place to do this is in the
OnDestroy event handler for TModeless:

procedure TModeless.FormDestroy(Sender: TObject);
begin
Modeless := nil; // Set the Modeless variable to nil when destroyed

end;

This ensures that the Modeless variable is set to nil every time it’s destroyed, thus preventing
the Assigned() method from failing. Keep in mind that it’s up to you to ensure that only one
instance of TModeless is created at a time, as shown in this routine.

Essentials for Rapid Development

PART I
148

CAUTION

Avoid the following pitfall when working with modeless forms:

begin
Form1 := TForm1.Create(Application);
Form1.Show;

end;

This code results in memory unnecessarily being consumed because, each time you
create a form instance, you overwrite the previous instance referenced by Form1.
Although you could refer to each instance of the form created through the
Screen.Forms list, the practice shown in the preceding code is not recommended.
Passing nil to the Create() constructor will result in no way to refer to the form
instance pointer after the Form1 instance variable is overwritten.

The project ModState.dpr on the accompanying CD-ROM illustrates using both modal and
modeless forms.

Managing a Form’s Icons and Borders
TForm has a BorderIcons property that’s a set that may contain the following values:
biSystemMenu, biMinimize, biMaximize, and biHelp. By setting any or all of these values to
False, you can remove the system menu, the maximize button, the minimize button and the
help button from the form. All forms have the Windows 95/98 close button.

You also can change the nonclient area of the form by changing the BorderStyle property. The
BorderStyle property is defined as follows:

TFormBorderStyle = (bsNone, bsSingle, bsSizeable, bsDialog,
➥bsSizeToolWin, bsToolWindow);

The BorderStyle property gives forms the following characteristics:

• bsDialog. Nonsizable border; close button only.

• bsNone. No border, nonsizable, and no buttons.

• bsSingle. Nonsizable border; all buttons available. If only one of the biMinimize and
biMaximize buttons is set to False, both buttons appear on the form. However, the but-
ton set to False is disabled. If both are False, neither button appears on the form. If
biSystemMenu is False, no buttons appear on the form.

• bsSizable. Sizable border. All buttons are available. The same circumstances exist for
this option regarding buttons as with the bsSingle setting.

• bsSizeToolWin. Sizable border. Close button only and small caption bar.

• bsToolWindow. Nonsizable border. Close button only and small caption bar.

Application Frameworks and Design Concepts

CHAPTER 4
149

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

NOTE

Changes to the BorderIcon and BorderStyle properties aren’t reflected at design
time. These changes happen at runtime only. This is also the case with other proper-
ties, most of which are found on TForm. The reason for this behavior is that it doesn’t
make sense to change the appearance of certain properties at design time. Take, for
example, the Visible property. It’s difficult to select a control on the form when its
Visible property is set to False because the control is invisible.

Take a look at the BrdrIcon.dpr project on the CD-ROM. This project shows how you can
change the BorderIcon and BorderStyle property at runtime so that you see the visual effect.
Listing 4.2 shows the main form for this project, which contains the relevant code.

LISTING 4.2 The Main Form for the BorderStyle/BorderIcon Project

unit MainFrm;

interface

Essentials for Rapid Development

PART I
150

Sticky Captions!
You might have noticed that none of the options mentioned allow you to create cap-
tionless, resizable forms. Although this isn’t impossible, doing so requires a bit of
trickery not yet covered. You must override the form’s CreateParams() method and
set the styles required for that window style. The following code snippet does this:

unit Nocapu;
interface
uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs;

type
TForm1 = class(TForm)

public
{ override CreateParams method }
procedure CreateParams(var Params: TCreateParams); override;

end;
var
Form1: TForm1;

implementation
{$R *.DFM}
procedure TForm1.CreateParams(var Params: TCreateParams);
begin
inherited CreateParams(Params); { Call the inherited Params }
{ Set the style accordingly }
Params.Style := WS_THICKFRAME or WS_POPUP or WS_BORDER;

end;
end.

You’ll learn more about the CreateParams() method in Chapter 21, “Writing Delphi
Custom Components.”

You can find an example of a sizable, borderless form in the project NoCaption.dpr
on the CD-ROM that accompanies this book. This demo also illustrates how to capture
the WM_NCHITTEST message to enable moving the form without the caption by drag-
ging the form.

uses
SysUtils, Windows, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ExtCtrls;

type
TMainForm = class(TForm)
gbBorderIcons: TGroupBox;
cbSystemMenu: TCheckBox;
cbMinimize: TCheckBox;
cbMaximize: TCheckBox;
rgBorderStyle: TRadioGroup;
cbHelp: TCheckBox;
procedure cbMinimizeClick(Sender: TObject);
procedure rgBorderStyleClick(Sender: TObject);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.cbMinimizeClick(Sender: TObject);
var
IconSet: TBorderIcons; // Temp variable to hold values.

begin
IconSet := []; // Initialize to an empty set
if cbSystemMenu.Checked then
IconSet := IconSet + [biSystemMenu]; // Add the biSystemMenu button

if cbMinimize.Checked then
IconSet := IconSet + [biMinimize]; // Add the biMinimize button

if cbMaximize.Checked then
IconSet := IconSet + [biMaximize]; // Add the biMaximize button

if cbHelp.Checked then
IconSet := IconSet + [biHelp];

BorderIcons := IconSet; // Assign result to the form’s
end; // BorderIcons property.

procedure TMainForm.rgBorderStyleClick(Sender: TObject);
begin
BorderStyle := TBorderStyle(rgBorderStyle.ItemIndex);

end;

end.

Application Frameworks and Design Concepts

CHAPTER 4
151

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

Form Reusability: Visual Form Inheritance
A useful feature of Delphi 5 is a concept known as visual form inheritance. In the first version
of Delphi, you could create a form and save it as a template, but you didn’t have the advantage
of true inheritance (the capability to access the ancestor form’s components, methods, and
properties). By using inheritance, all descendant forms share the same code as their ancestor.
The only overhead involves the methods you add to your descendant forms. Therefore, you
also gain the advantage of reducing your application’s overall footprint. Another advantage is
that changes made to the ancestor code are also applied to its descendants.

Essentials for Rapid Development

PART I
152

The Object Repository
Delphi 5 has a project-management feature that allows programmers to share forms,
dialog boxes, data modules, and project templates. This feature is called the Object
Repository. By using the Object Repository, developers can share the various objects
listed with developers of other projects. Additionally, the Object Repository allows
developers to maximize code reuse by allowing them to inherit their objects from
objects that exist in the Object Repository. Chapter 4 of the Delphi 5 User’s Guide covers
the Object Repository. It’s a good idea to become familiar with this powerful feature.

Inheriting a form from another form is simple because it’s completely built into the Delphi 5
environment. To create a form that descends from another form definition, you simply select
File, New from Delphi’s main menu, which invokes the New Items dialog box. This dialog box

TIP

In a network environment, you might want to share form templates with other pro-
grammers. This is possible by creating a shared repository. In the Environment
Options dialog box (select Tools, Environment Options), you can specify the location
of a shared repository. Each programmer must map to the same drive that points to
this directory location. Then, whenever File, New is selected, Delphi will scan this
directory for any shared items in the repository.

NOTE

Some properties in the Object Inspector affect the appearance of your form; others
define behavioral aspects for your form. Experiment with each property that’s unfa-
miliar. If you need to know more about a property, use the Delphi 5 help system to
find additional information.

The various forms listed are those that have been added previously to the Object Repository.
You’ll notice that there are three options for how to include the form in your project: Copy,
Inherit, and Use.

Choosing Copy adds an exact duplicate of the form to your project. If the form kept in the
Object Repository is modified, this won’t affect your copied form.

Choosing Inherit causes a new form class derived from the form you selected to be added to
your project. This powerful feature allows you to inherit from the class in the Object
Repository so that changes made to the Object Repository’s form are reflected by the form in
your project as well. This is the option that most developers ought to select.

Choosing Use causes the form to be added to your project as if you had created it as part of the
project. Changes you make to the item at design time will appear in all projects that also use
the form and any projects that inherit from the form.

The TApplication Class
Every form-based Delphi 5 program contains a global variable, Application, of the type
TApplication. TApplication encapsulates your program and performs many behind-the-
scenes functions that enable your application to work correctly within the Windows environ-
ment. These functions include creating your window class definition, creating the main
window for your application, activating your application, processing messages, adding context-
sensitive help, processing menu accelerator keys, and handling VCL exceptions.

Application Frameworks and Design Concepts

CHAPTER 4
153

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

NOTE

You don’t have to go through the Object Repository to get form inheritance. You can
inherit from forms that are in your project. Select File, New and then select the
Project page. From there, you can select an existing form in your project. Forms
shown in the Project page are not in the Object Repository.

NOTE

Only form-based Delphi applications contain the global Application object.
Applications such as console apps don’t contain a VCL Application object.

actually gives you a view of the objects that exist in the Object Repository (see the sidebar
“The Object Repository”). You then select the Forms page, which lists the forms that have been
added to the Object Repository.

You typically won’t have to be concerned about the background tasks that TApplication per-
forms. However, some situations might necessitate that you delve into the inner workings of
TApplication.

Because TApplication doesn’t appear in the Object Inspector, you can’t modify its properties
there. However, you can choose Project, Options and select the Application page, from which
you can set some of the properties for TApplication. Mostly, you work with the
TApplication instance, Application, at runtime—that is, you set its property values and
assign event handlers to Application when the program is running.

TApplication’s Properties
TApplication has several properties that you can access at runtime. The following sections
discuss some of the properties specific to TApplication and how you can use them to change
the default behavior of Application to enhance your project. TApplication’s properties are
also well documented in the Delphi 5 online help.

The TApplication.ExeName Property
The ExeName property of Application holds the full path and filename for the project. Because
this is a runtime, read-only property, you can’t modify it. However, you can read it—or even
let your users know where they ran the application from. For example, the following line of
code changes a main form’s caption to the contents of ExeName:

Application.MainForm.Caption := Application.ExeName;

Essentials for Rapid Development

PART I
154

TIP

Use the ExtractFileName() function to retrieve the filename from a string contain-
ing the full path of a file:

ShowMessage(ExtractFileName(Application.ExeName));

Use ExtractFilePath() to retrieve the path of a full path string:

ShowMessage(ExtractFilePath(Application.ExeName));

Finally, use ExtractFileExt() to extract the extension of a filename:

ShowMessage(ExtractFileExt(Application.ExeName));

The TApplication.MainForm Property
In the preceding section, you saw how to access the MainForm property to change its Caption
to reflect the ExeName for the application. MainForm points to a TForm so that you can access
any TForm property through MainForm. You can also access properties that you add to your
descendant forms, as long as you typecast MainForm accordingly:

(MainForm as TForm1).SongTitle := ‘The Flood’;

MainForm is a read-only property. You can specify which form in your application is the main
form at design time by using the Forms page in the Project Options dialog box.

The TApplication.Handle Property
The Handle property is an HWND (a window handle, in Win32 API terms). The window han-
dle is the owner of all top-level windows in your application. Handle is what makes modal dia-
log boxes modal over all windows of your application. You don’t have to access Handle that
often, unless you intend to take over the default behavior of the application in a way that isn’t
provided by Delphi. You may also refer to the Handle property when using Win32 API func-
tions requiring the application’s window handle. We’ll discuss Handle more later in the chapter.

The TApplication.Icon and TApplication.Title Properties
The Icon property holds the icon that represents the application when your project is mini-
mized. You can change the application’s icon by providing another icon and assigning it to
Application.Icon, as described in the later section “Adding Resources to Your Project.”

The text that appears next to the icon in the application’s task button on the Windows 95/98
taskbar is the application’s Title property. If you’re running Windows NT, this text appears
just underneath the icon. Changing the title of the task button is simple—just make a string
assignment to the Title property:

Application.Title := ‘New Title’;

Other Properties
The Active property is a read-only Boolean property that indicates whether the application has
focus and is active.

The ComponentCount property indicates the number of components that Application contains.
Mainly, these components are forms and a THintWindow instance if the Application.ShowHint
property is True. ComponentIndex is always -1 for any component that does not have an
owner. Therefore, TApplication.ComponentIndex is always -1. This property mainly applies
to forms and components on forms.

The Components property is an array of components that belong to the Application. There
will be TApplication.ComponentCount items in the Components array. The following code
shows how you would add the class names of all components referred to by ComponentCount
to a TListBox component:

var
i: integer;

begin
for i := 0 to Application.ComponentCount - 1 do
ListBox1.Items.Add(Application.Components[i].ClassName);

end;

Application Frameworks and Design Concepts

CHAPTER 4
155

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

The HelpFile property contains the Windows help filename, which enables you to add online
help to your application. It’s used by TApplication.HelpContext and other help invocation
methods.

The TApplication.Owner property is always nil because TApplication can’t be owned by
any other component.

The ShowHint property enables or disables the display of hints for the entire application. The
Application.ShowHint property overrides the values of any other component’s ShowHint
property. Therefore, if Application.ShowHint is False, hints are not displayed for any com-
ponent.

The Terminated property is True whenever the application has been terminated by closing the
main form or by calling the TApplication.Terminate() method.

TApplication’s Methods
TApplication has several methods with which you should be familiar. The following sections
discuss some of the methods specific to TApplication.

The TApplication.CreateForm() Method
The TApplication.CreateForm() method is defined as follows:

procedure CreateForm(InstanceClass: TComponentClass; var Reference)

This method creates an instance of a form with the type specified by InstanceClass and
assigns that instance to the Reference variable. Earlier, you saw how this method was called in
the project’s DPR file. The code had the following line, which creates the instance of Form1 of
type TForm1:

Application.CreateForm(TForm1, Form1);

The line would have been created automatically by Delphi 5 if Form1 appeared in the project’s
Auto-Create list. However, you can call this method elsewhere in your code if you’re creating a
form that doesn’t appear in the Auto-Create list (in which case the form’s instance wouldn’t
have been created automatically). This approach doesn’t differ much from calling the form’s
own Create() method, except that TApplication.CreateForm() checks to see whether the
TApplication.MainForm property is nil; if so, CreateForm() assigns the newly created form
to Application.MainForm. Subsequent calls to CreateForm() don’t affect this assignment.
Typically, you don’t call CreateForm(); you use a form’s Create() method instead.

The TApplication.HandleException() Method
The HandleException() method is where the TApplication instance displays information
about exceptions that occur in your project. This information is displayed with a standard
exception message box defined by VCL. You can override this message box by attaching an

Essentials for Rapid Development

PART I
156

event handler to the Application.OnException event, as shown in the later section
“Overriding the Application’s Exception Handling.”

TApplication’s HelpCommand(), HelpContext(),
and HelpJump() Methods
The HelpCommand(), HelpContext(), and HelpJump() methods each provide a way for you to
interface your projects with the Windows help system provided by the WINHELP.EXE program
that ships with Windows. HelpCommand() allows you to call any of the WinHelp macro com-
mands and macros defined in your help file. HelpContext() allows you to launch a help page
in the help file specified by the TApplication.HelpFile property. The page displayed is based
on the value of the Context parameter passed to HelpContext(). HelpJump() is much like
HelpContext(), except that it takes a JumpID string parameter.

The TApplication.ProcessMessages() Method
ProcessMessages() causes your application to actively go get any messages that are waiting
for it and then process them. This is useful when you have to perform a process within a tight
loop and you don’t want your code to prevent you from executing other code (such as process-
ing an abort button). In contrast, TApplication.HandleMessages() puts the application into an
idle state if there are no messages, whereas ProcessMessages() won’t put it in an idle state.
The ProcessMessages() method is used in Chapter 10, “Printing in Delphi 5.”

The TApplication.Run() Method
Delphi 5 automatically places the Run() method within the project file’s main block. You never
have to call this method yourself, but you should know where it goes and what it does in case
you ever have to modify the project file. Basically, TApplication.Run() first sets up an exit
procedure for the project, which ensures that all components are freed when the project ends. It
then enters a loop that calls the methods to process messages for the project until the applica-
tion is terminated.

The TApplication.ShowException() Method
The ShowException() method simply takes an exception class as a parameter and displays a
message box with information about that exception. This method comes in handy if you’re
overriding the Application’s exception handling method, as shown in the later section
“Overriding the Application’s Exception Handling.”

Other Methods
TApplication.Create() creates the TApplication instance. This method is called internally
by Delphi 5; you should never call it.

TApplication.Destroy() destroys the TApplication instance. This method is called inter-
nally by Delphi 5. You should never call this method.

Application Frameworks and Design Concepts

CHAPTER 4
157

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

TApplication.MessageBox() allows you to display a Windows message box. However, this
method doesn’t require that you pass a window’s handle, as the Windows MessageBox() func-
tion does.

TApplication.Minimize() places your application in a minimized state.

TApplication.Restore() restores your application to its previous size from a minimized or
maximized state.

TApplication.Terminate() terminates the execution of your application. Terminate is an
indirect call to PostQuitMessage, resulting in a graceful shutdown of the application (unlike
Halt()).

Essentials for Rapid Development

PART I
158

NOTE

Use the TApplication.Terminate() method to halt an application. Terminate() calls
the Windows API function PostQuitMessage(), which posts a message to your appli-
cation’s message queue. VCL responds by properly freeing objects that have been cre-
ated in your application. The Terminate() method is a clean way to stop your
application’s process. It’s important to note that your application does not terminate
at the call to Terminate(). Instead, it continues to run until the application returns to
its message queue and retrieves the WM_QUIT message. Halt(), on the other hand,
forcibly terminates your application without freeing any objects or shutting down
gracefully. Execution does not return from a call to Halt().

TApplication’s Events
TApplication has several events to which you can add event handlers. In past versions of
Delphi, these events were not accessible from the Object Inspector (for example, the events for
the form or components on the Component Palette). You had to add an event handler to the
Application variable by first defining the handler as a method and then assigning that method
to the handler at runtime. Delphi 5 adds a new component to the Additional page of the
Component Palette—TApplicationEvents. This component allows you to assign event han-
dlers at design time to the global Application instance. Table 4.2 lists the events associated
with TApplication.

TABLE 4.2 TApplication and TApplicationEvents Events

Event Description

OnActivate Occurs when the application becomes active; OnDeactivate occurs when
the application stops being active (for example, when you switch to another
application).

Event Description

OnException Occurs when an unhandled exception has occurred; you can add default
processing for unhandled exceptions. OnException occurs if the exception
makes it all the way up to the application object. Normally, you should
allow exceptions to be handled by the default exception handler and not
trapped by Application.OnException or lower code. If you must trap
an exception, reraise it and make sure that the exception instance carries a
full description of the situation so that the default exception handler can
present useful information.

OnHelp Occurs for any invocation of the help system, such as when F1 is pressed or
when the following methods are called: HelpCommand(),
HelpContext(), and HelpJump().

OnMessage Enables you to process messages before they’re dispatched to their intended
controls. OnMessage gets to peek at all messages posted to all controls in
the application. Exercise caution when using OnMessage because it could
result in a bottleneck.

OnHint Enables you to display hints associated with controls when the mouse is
positioned over the control. An example of this is a status line hint.

OnIdle Occurs when the application is switched into an idle state. OnIdle is not
called continuously. Once in the idle state, an application will not wake up
until it receives a message.

You work more with TApplication later in this chapter as well as in other projects in other
chapters.

Application Frameworks and Design Concepts

CHAPTER 4
159

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

NOTE

The TApplication.OnIdle event provides a handy way to perform certain processing
when no user interaction is occurring. One common use for the OnIdle event handler
is to update menus and speedbuttons based on the status of the application.

The TScreen Class
The TScreen class simply encapsulates the state of the screen on which your applications runs.
TScreen is not a component that you add to your Delphi 5 forms, nor do you create it dynami-
cally during runtime. Delphi 5 automatically creates a TScreen global variable called Screen,
which you can access from within your application. The TScreen class contains several proper-
ties that you’ll find useful. These properties are listed in Table 4.3.

TABLE 4.3 TScreen Properties

Property Meaning

ActiveControl A read-only property that indicates which control on the screen has cur-
rent focus. As focus shifts from one control to another, ActiveControl
is assigned the newly focused control before the OnExit event of the
control losing focus finishes.

ActiveForm Indicates the form that has focus. This property is set when another form
switches focus or when the Delphi 5 application gains focus from
another application.

Cursor The cursor shape that’s global to the application. By default, this is set
to crDefault. Each windowed component has its own Cursor prop-
erty that may be modified. However, when the cursor is set to something
other than crDefault, all other controls reflect that change until
Screen.Cursor is set back to crDefault. Another way to look at this
is Screen.Cursor = crDefault means “ask the control under the
mouse what cursor should be displayed.” Screen.Cursor <>
crDefault means “don’t ask.”

Cursors A list of all cursors available to the screen device.

DataModules A list of all data modules belonging to the application.

DataModuleCount The number of data modules belonging to the application.

FormCount The number of available forms in the application.

Forms A list of forms available to the application.

Fonts A list of font names available to the screen device.

Height The height of the screen device in pixels.

PixelsPerInch Indicates the relative scale of the system font.

Width The width of the screen device in pixels.

Defining a Common Architecture:
Using the Object Repository
Delphi makes it so easy to develop applications that you can get 60 percent into your applica-
tion development before you realize that you should have spent more time up front on applica-
tion architecture. A common problem with development is that developers are too anxious to
get coding before spending the appropriate time really thinking about application design. This
alone is one of the biggest contributors to project failure.

Essentials for Rapid Development

PART I
160

Thoughts on Application Architecture
This is not a book on architecture or object-oriented analysis and design. However, we strongly
feel that this is one of the most important aspects of application development in addition to
requirements, detail design, and everything else that constitutes the initial 80 percent of a prod-
uct before coding begins. We’ve listed some of our favorite references on topics such as object-
oriented analysis in Appendix C, “Suggested Reading.” It would be to your best interest to
research this topic thoroughly before you roll your sleeves up and start coding.

Here are a few examples of the many issues that come into play when considering application
architecture:

• Does the architecture support code reuse?

• Is the system organized so that modules, objects, and so on are localized?

• Can changes more easily be made to the architecture?

• Are the user interface and back end localized so that either can be replaced?

• Does the architecture support a team development effort? In other words, can team mem-
bers easily work on separate modules without overlap?

These are just a few of the things to consider during development.

Volumes have been written on this topic alone, so we won’t attempt to compete with that infor-
mation. We do, however, hope that we’ve sparked your interest enough to make you learn
about it if you aren’t already an architecture guru. The following sections illustrate a simple
method of architecting a common UI for a database application and how Delphi can help you
do that.

Delphi’s Inherent Architecture
You’ll often hear that you don’t have to be a component writer to be a Delphi developer.
Although true, it’s also true that if you’re a component writer, you’re a much better Delphi
developer.

This is because component writers clearly understand the object model and architecture that
Delphi applications inherit just by being Delphi applications. This means that component writ-
ers are better equipped to take advantage of this powerful and flexible model in their own
applications. In fact, you’ve probably already heard that Delphi is written in Delphi. Delphi is
an example of an application written with the same inherent architecture that your applications
can also use.

Even if you don’t intend to write components, you’ll be better off if you learn it anyway.
Become thoroughly knowledgeable of the VCL and the Object Pascal model as well as of the
Win32 operating system.

Application Frameworks and Design Concepts

CHAPTER 4
161

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

An Architecture Example
To demonstrate the power of form inheritance as well as the use of the Object Repository,
we’re going to define a common application architecture. The issues we’re focusing on are
code reusability, flexibility for change, consistency, and facility for team development.

The form class hierarchy, or rather, framework, consists of forms to be used specifically for
database applications. These forms are typical of most database applications. The forms should
be aware of the state of the database operation (edit, add, or browse). They should also contain
the common controls used in performing these operations on a database table, such as a toolbar
and status bar whose displays and controls change according to the form’s state. Additionally,
they should provide an event that can be invoked whenever the form mode changes.

This framework should also enable a team to work on isolated parts of an application without
requiring the entire application’s source code. Otherwise, there’s the likelihood that different
programmers would modify the same files.

For now, this framework’s hierarchy will contain three levels. This will be expanded on later in
the book.

Table 4.4 describes the purpose of each form in the framework.

TABLE 4.4 Database Form Framework

Form Class Purpose

TChildForm = class(TForm) Provides the capability to be inserted as a child to
another window

TDBModeForm = class(TChildForm) Is aware of a database state (browse, insert, edit)
and contains an event to be invoked upon state
change

TDBNavStatForm = class(TDBBaseForm) Typical database entry form that’s aware of its state
and contains the standard navigation bar and status
bar to be used by all database applications

The Child Form (TChildForm)
TChildForm is a base class for forms that can be launched as independent modal and modeless
forms and can become child windows to any other window.

This capability makes it easy for a team of developers to work on separate pieces of an appli-
cation apart from the overall application. It also provides a nice UI feature in that the user can
launch a form as a separate entity in an application, even though that might not be the normal

Essentials for Rapid Development

PART I
162

method of interacting with that form. Listing 4.3 is the source for TChildForm. You’ll find this
and all the other forms to be placed in the Object Repository in the \Code directory on the CD-
ROM.

LISTING 4.3 TChildForm Source

unit ChildFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ExtCtrls, Menus;

type

TChildForm = class(TForm)
private
FAsChild: Boolean;
FTempParent: TWinControl;

protected
procedure CreateParams(var Params: TCreateParams); override;
procedure Loaded; override;

public
constructor Create(AOwner: TComponent); overload; override;
constructor Create(AOwner: TComponent;

AParent: TWinControl); reintroduce; overload;

// The method below must be overridden to return either the main menu
// of the form, or nil.
function GetFormMenu: TMainMenu; virtual; abstract;
function CanChange: Boolean; virtual;

end;

implementation

{$R *.DFM}
constructor TChildForm.Create(AOwner: TComponent);
begin
FAsChild := False;
inherited Create(AOwner);

end;

constructor TChildForm.Create(AOwner: TComponent; AParent: TWinControl);
begin

Application Frameworks and Design Concepts

CHAPTER 4
163

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

FAsChild := True;
FTempParent := aParent;
inherited Create(AOwner);

end;

procedure TChildForm.Loaded;
begin
inherited;
if FAsChild then
begin
align := alClient;
BorderStyle := bsNone;
BorderIcons := [];
Parent := FTempParent;
Position := poDefault;

end;
end;

procedure TChildForm.CreateParams(var Params: TCreateParams);
Begin
Inherited CreateParams(Params);
if FAsChild then
Params.Style := Params.Style or WS_CHILD;

end;

function TChildForm.CanChange: Boolean;
begin
Result := True;

end;

end.

This listing demonstrates a couple of techniques. First, it shows how to use the overload exten-
sions to the Object Pascal language, and second, it shows how to make a form a child of
another window.

Providing a Second Constructor
You’ll notice that we’ve declared two constructors for this child form. The first constructor
declared is used when the form is created as a normal form. This is the constructor with one
parameter. The second constructor, which takes two parameters, is declared as an overloaded
constructor. You would use this constructor to create the form as a child window. The parent to
the form gets passed as the AParent parameter. Notice that we’ve used the reintroduce direc-
tive to suppress the warning about hiding the virtual constructor.

Essentials for Rapid Development

PART I
164

The first constructor simply sets the FAsChild variable to False to ensure that the form is cre-
ated normally. The second constructor sets the value to True and sets FTempParent to the
AParent parameter. This value is used later as the parent of the child form in the Loaded()
method.

Making a Form a Child Window
To make a form a child window, there are a few things you need to do. First, you have to make
sure that various property settings have been set, which you’ll see is done programmatically in
TChildForm.Loaded(). In Listing 4.3, we ensure that when the form becomes a child it doesn’t
look like a dialog box. We do this by removing the border and any border icons. We also make
sure that the form is client-aligned and set the parent to the window referred to by the
FTempParent variable. If this form were going to be used as a child only, we could have made
these settings at design time. However, this form will also be launched as a normal form, so we
set these properties only if the FAsChild variable is True.

We also have to override the CreateParams() method to tell Windows to create the form as a
child window. We do this by setting the WS_CHILD style in the Params.Style property.

This base form is not restricted to a database application. In fact, you can use it for any form
that you want to have child window capabilities. You’ll find a demo of this child form being
used as both a normal form and as a child form in the ChildTest.dpr project found in the
\Form Framework directory on the CD-ROM.

Application Frameworks and Design Concepts

CHAPTER 4
165

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

NOTE

Delphi 5 introduces frames to the VCL. Frames work so that they can be embedded
within a form. Because frames serve as containers for components, they function
much like the child form shown previously. We’ll discuss frames in more detail
momentarily.

The Database Base Mode Form (TDBModeForm)
TDBModeForm is a descendant of TChildForm. Its purpose is to be aware of the state of a table
(browse, insert, and edit). This form also provides an event that occurs whenever the mode is
changed.

Listing 4.4. shows the source code for TDBModeForm.

LISTING 4.4 TDBModeForm

unit DBModeFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
CHILDFRM;

type

TFormMode = (fmBrowse, fmInsert, fmEdit);

TDBModeForm = class(TChildForm)
private
FFormMode : TFormMode;
FOnSetFormMode : TNotifyEvent;

protected
procedure SetFormMode(AValue: TFormMode); virtual;
function GetFormMode: TFormMode; virtual;

public
property FormMode: TFormMode read GetFormMode write SetFormMode;

published
property OnSetFormMode: TNotifyEvent read FOnSetFormMode

write FOnSetFormMode;

end;

var
DBModeForm: TDBModeForm;

implementation

{$R *.DFM}

procedure TDBModeForm.SetFormMode(AValue: TFormMode);
begin
FFormMode := AValue;
if Assigned(FOnSetFormMode) then
FOnSetFormMode(self);

end;

function TDBModeForm.GetFormMode: TFormMode;
begin
Result := FFormMode;

end;

end.

Essentials for Rapid Development

PART I
166

The implementation of TDBModeForm is straightforward. Although we’re using some techniques
we haven’t yet discussed, you should be able to follow what’s happening here. First, we just
defined the enumerated type, TFormMode, to represent the form’s state. Then we provided the
FormMode property and its read and write methods. The technique for creating the property and
read/write methods is discussed further in Chapter 21, “Writing Delphi Custom Components.”

A demo using TDBModeForm is in the project FormModeTest.DPR found in the \Form Framework
directory on the CD-ROM.

The Database Navigation/Status Form (TDBNavStatForm)
TDBNavStatForm brings the bulk of the functionality of this framework. This form contains the
common set of components to be used in our database applications. In particular, it has a navi-
gation bar and status bar that automatically change based on the form’s state. For example,
you’ll see that the Accept and Cancel buttons are initially disabled when the form is in the state
of fsBrowse. However, when the user places the form in the fsInsert or fsEdit state, the but-
tons become enabled. The status bar also displays the state the form is in.

Listing 4.5 shows the source code for TDBNavStatForm. Notice that we’ve eliminated the com-
ponent list from the listing. You’ll see these if you load the demo project for this form.

LISTING 4.5 TDBNavStatForm

unit DBNavStatFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
DBMODEFRM, ComCtrls, ToolWin, Menus, ExtCtrls, ImgList;

type
TDBNavStatForm = class(TDBModeForm)
{ components not included in listing. }
procedure sbAcceptClick(Sender: TObject);
procedure sbInsertClick(Sender: TObject);
procedure sbEditClick(Sender: TObject);

private
{ Private declarations }

protected
procedure Setbuttons; virtual;
procedure SetStatusBar; virtual;
procedure SetFormMode(AValue: TFormMode); override;

public

Application Frameworks and Design Concepts

CHAPTER 4
167

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

continues

LISTING 4.5 Continued

constructor Create(AOwner: TComponent); overload; override;
constructor Create(AOwner: TComponent; AParent: TWinControl); overload;
procedure SetToolBarParent(AParent: TWinControl);
procedure SetStatusBarParent(AParent: TWinControl);

end;

var
DBNavStatForm: TDBNavStatForm;

implementation

{$R *.DFM}

{ TDBModeForm3 }

procedure TDBNavStatForm.SetFormMode(AValue: TFormMode);
begin
inherited SetFormMode(AValue);
SetButtons;
SetStatusBar;

end;

procedure TDBNavStatForm.Setbuttons;

procedure SetBrowseButtons;
begin
sbAccept.Enabled := False;
sbCancel.Enabled := False;

sbInsert.Enabled := True;
sbDelete.Enabled := True;
sbEdit.Enabled := True;

sbFind.Enabled := True;
sbBrowse.Enabled := True;

sbFirst.Enabled := True ;
sbPrev.Enabled := True ;
sbNext.Enabled := True ;
sbLast.Enabled := True ;

end;

procedure SetInsertButtons;

Essentials for Rapid Development

PART I
168

begin
sbAccept.Enabled := True;
sbCancel.Enabled := True;

sbInsert.Enabled := False;
sbDelete.Enabled := False;
sbEdit.Enabled := False;

sbFind.Enabled := False;
sbBrowse.Enabled := False;

sbFirst.Enabled := False;
sbPrev.Enabled := False;
sbNext.Enabled := False;
sbLast.Enabled := False;

end;

procedure SetEditButtons;
begin
sbAccept.Enabled := True;
sbCancel.Enabled := True;

sbInsert.Enabled := False;
sbDelete.Enabled := False;
sbEdit.Enabled := False;

sbFind.Enabled := False;
sbBrowse.Enabled := True;

sbFirst.Enabled := False;
sbPrev.Enabled := False;
sbNext.Enabled := False;
sbLast.Enabled := False;

end;

begin
case FormMode of
fmBrowse: SetBrowseButtons;
fmInsert: SetInsertButtons;
fmEdit: SetEditButtons;

end; { case }

end;

procedure TDBNavStatForm.SetStatusBar;
begin

Application Frameworks and Design Concepts

CHAPTER 4
169

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

continues

LISTING 4.5 Continued

case FormMode of
fmBrowse: stbStatusBar.Panels[1].Text := ‘Browsing’;
fmInsert: stbStatusBar.Panels[1].Text := ‘Inserting’;
fmEdit: stbStatusBar.Panels[1].Text := ‘Edit’;

end;

mmiInsert.Enabled := sbInsert.Enabled;
mmiEdit.Enabled := sbEdit.Enabled;
mmiDelete.Enabled := sbDelete.Enabled;
mmiCancel.Enabled := sbCancel.Enabled;
mmiFind.Enabled := sbFind.Enabled;

mmiNext.Enabled := sbNext.Enabled;
mmiPrevious.Enabled := sbPrev.Enabled;
mmiFirst.Enabled := sbFirst.Enabled;
mmiLast.Enabled := sbLast.Enabled;

end;

procedure TDBNavStatForm.sbAcceptClick(Sender: TObject);
begin
inherited;
FormMode := fmBrowse;

end;

procedure TDBNavStatForm.sbInsertClick(Sender: TObject);
begin
inherited;
FormMode := fmInsert;

end;

procedure TDBNavStatForm.sbEditClick(Sender: TObject);
begin
inherited;
FormMode := fmEdit;

end;

constructor TDBNavStatForm.Create(AOwner: TComponent);
begin
inherited Create(AOwner);
FormMode := fmBrowse;

end;

constructor TDBNavStatForm.Create(AOwner: TComponent; AParent: TWinControl);

Essentials for Rapid Development

PART I
170

begin
inherited Create(AOwner, AParent);
FormMode := fmBrowse;

end;

procedure TDBNavStatForm.SetStatusBarParent(AParent: TWinControl);
begin
stbStatusBar.Parent := AParent;

end;

procedure TDBNavStatForm.SetToolBarParent(AParent: TWinControl);
begin
tlbNavigationBar.Parent := AParent;

end;

end.

The event handlers for the various TToolButton components basically set the form to its
appropriate state. This, in turn, invokes the SetFormMode() methods, which we’ve overridden
to call the SetButtons() and SetStatusBar() methods. SetButtons() enables or disables the
buttons accordingly based on the form’s mode.

You’ll notice that we’ve also provided two procedures to change the parent of the TToolBar
and TStatusBar components on the form. This functionality is provided so that when the form
is invoked as a child window, we can set the parent of these components to the main form.
When you run the demo provided in the \Form Framework directory on the CD-ROM, you’ll
see why this makes sense.

As stated earlier, TDBNavStatForm inherits the functionality to be an independent form as well
as a child window. The demo invokes an instance of TDBNavStatForm with the following code:

procedure TMainForm.btnNormalClick(Sender: TObject);
var
LocalNavStatForm: TNavStatForm;

begin
LocalNavStatForm := TNavStatForm.Create(Application);
try
LocalNavStatForm.ShowModal;

finally
LocalNavStatForm.Free;

end;
end;

The following code shows how to invoke the form as a child window:

procedure TMainForm.btnAsChildClick(Sender: TObject);
begin

Application Frameworks and Design Concepts

CHAPTER 4
171

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

if not Assigned(FNavStatForm) then
begin
FNavStatForm := TNavStatForm.Create(Application, pnlParent);
FNavStatForm.SetToolBarParent(self);
FNavStatForm.SetStatusBarParent(self);
mmMainMenu.Merge(FNavStatForm.mmFormMenu);
FNavStatForm.Show;
pnlParent.Height := pnlParent.Height - 1;

end;
end;

This code not only invokes the form as a child to the TPanel component, pnlParent, but also
sets the form’s TToolBar and TStatusBar components to reside on the main form.
Additionally, notice the call to TMainForm.mmMainMenu.Merge(). This allows us to merge any
menus that reside on the TDBNavStatForm instance with MainForm’s main menu. Naturally,
when we free the TDBNavStatForm instance, we must also make a call to
TMainForm.mmMainMenu.UnMerge(), as shown in the following code:

procedure TMainForm.btnFreeChildClick(Sender: TObject);
begin
if Assigned(FNavStatForm) then
begin
mmMainMenu.UnMerge(FNavStatForm.mmFormMenu);
FNavStatForm.Free;
FNavStatForm := nil;

end;
end;

Take a look at the demo provided on the CD-ROM. Figure 4.1 shows this project with both the
child form and independent TDBNavStatForm instances created. Notice that we’ve placed a
TImage component on the form to better display the form as a child. Figure 4.1 shows how we
use the same child form (the one with the picture) as both an embedded window and as a sepa-
rate form.

Later, we’ll use and expand on this same framework to create a fully functional database appli-
cation.

Using Frames in Application Framework Design
Delphi 5 now has frames. They allow you to create component containers that may be embed-
ded within another form. This is similar to what we’ve already demonstrated using
TChildForm. Frames, however, allow you to manipulate your component containers at design
time and to add them to the Component Palette so that they may be reused. Listing 4.6 shows
the main form for a project similar to the child form demo, except that it uses frames.

Essentials for Rapid Development

PART I
172

FIGURE 4.1
TDBNavStatForm as a normal form and as a child window.

LISTING 4.6 Frames Demo

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls;

type
TMainForm = class(TForm)
spltrMain: TSplitter;
pnlParent: TPanel;
pnlMain: TPanel;
btnFrame1: TButton;
btnFrame2: TButton;
procedure btnFrame1Click(Sender: TObject);
procedure btnFrame2Click(Sender: TObject);

private
{ Private declarations }
FFrame: TFrame;

public

Application Frameworks and Design Concepts

CHAPTER 4
173

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

continues

LISTING 4.6 Continued

{ Public declarations }
end;

var
MainForm: TMainForm;

implementation
uses Frame1Fram, Frame2Fram;

{$R *.DFM}

procedure TMainForm.btnFrame1Click(Sender: TObject);
begin
if FFrame <> nil then
FFrame.Free;

FFrame := TFrame1.Create(pnlParent);
FFrame.Align := alClient;
FFrame.Parent := pnlParent;

end;

procedure TMainForm.btnFrame2Click(Sender: TObject);
begin
if FFrame <> nil then
FFrame.Free;

FFrame := TFrame2.Create(pnlParent);
FFrame.Align := alClient;
FFrame.Parent := pnlParent;

end;

end.

In Listing 4.6, we show a main form that contains two panes made up of two separate panels.
The panel on the right will serve to hold our frame. We’ve defined two separate frames. The
private field, FFrame, is a reference to a TFrame class. Since, both our frames descend directly
from TFrame, FFrame can refer to both our TFrame descendants. The two buttons on the main
form each create a different TFrame and assign it to FFrame. The effect is the same as with
TChildForm. The demo FrameDemo.dpr is located on the accompanying CD-ROM.

Miscellaneous Project Management Routines
The projects that follow are a series of project-management routines that have been helpful to
many Delphi 5 developers.

Essentials for Rapid Development

PART I
174

Adding Resources to Your Project
Earlier, you learned that the RES file is the resource file for your application. You also learned
what Windows resources are. You can add resources to your applications by creating a separate
RES file to store your bitmaps, icons, cursors, and so on.

You must use a resource editor to build an RES file. After you create your RES file, you sim-
ply link it to your application by placing this statement in the application’s DPR file:

{$R MYFILE.RES}

This statement can be placed directly under the following statement, which links the resource
file with the same name as the project file to your project:

{$R *.RES}

If you’ve done this correctly, you can then load resources from the RES file by using the
TBitmap.LoadFromResourceName() or TBitmap.LoadFromResourceID() method. Listing 4.7
shows the technique for loading a bitmap, icon, and cursor from a resource (RES) file. You can
find this project, Resource.dpr, on the CD-ROM that accompanies this book. Notice that the
API functions used here—LoadIcon() and LoadCursor()—are all documented in the
Windows API help.

Application Frameworks and Design Concepts

CHAPTER 4
175

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

NOTE

The Windows API provides a function called LoadBitmap() that loads a bitmap (as its
name implies). However, this function does not return a color palette and therefore
does not work for loading 256-color bitmaps. Use TBitmap.LoadFromResouceName() or
TBitmap.LoadFromResouceID() instead.

LISTING 4.7 Examples of Loading Resources from an RES File

unit MainFrm;
interface
uses
Windows, Forms, Controls, Classes, StdCtrls, ExtCtrls;

const
crXHair = 1; // Declare a constant for the new cursor. This value

type // must be a positive number. or less than -20.

TMainForm = class(TForm)
imgBitmap: TImage;
btnChemicals: TButton;

continues

LISTING 4.7 Continued

btnClear: TButton;
btnChangeIcon: TButton;
btnNewCursor: TButton;
btnOldCursor: TButton;
btnOldIcon: TButton;
btnAthena: TButton;
procedure btnChemicalsClick(Sender: TObject);
procedure btnClearClick(Sender: TObject);
procedure btnChangeIconClick(Sender: TObject);
procedure btnNewCursorClick(Sender: TObject);
procedure btnOldCursorClick(Sender: TObject);
procedure btnOldIconClick(Sender: TObject);
procedure btnAthenaClick(Sender: TObject);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.btnChemicalsClick(Sender: TObject);
begin
{ Load the bitmap from the resource file. The bitmap must be
specified in all CAPS! }

imgBitmap.Picture.Bitmap.LoadFromResourceName(hInstance, ‘CHEMICAL’);
end;

procedure TMainForm.btnClearClick(Sender: TObject);
begin
imgBitmap.Picture.Assign(nil); // Clear the image

end;

procedure TMainForm.btnChangeIconClick(Sender: TObject);
begin
{ Load the icon from the resource file. The icon must be
specified in all CAPS! }

Application.Icon.Handle := LoadIcon(hInstance, ‘SKYLINE’);
end;

procedure TMainForm.btnNewCursorClick(Sender: TObject);
begin
{ Assign the new cursor to the Screen’s Cursor array }
Screen.Cursors[crXHair] := LoadCursor(hInstance, ‘XHAIR’);
Screen.Cursor := crXHair; // Now change the cursor

Essentials for Rapid Development

PART I
176

end;

procedure TMainForm.btnOldCursorClick(Sender: TObject);
begin
// Change back to default cursor
Screen.Cursor := crDefault;

end;

procedure TMainForm.btnOldIconClick(Sender: TObject);
begin
{ Load the icon from the resource file. The icon must be
specified in all CAPS! }

Application.Icon.Handle := LoadIcon(hInstance, ‘DELPHI’);
end;

procedure TMainForm.btnAthenaClick(Sender: TObject);
begin
{ Load the bitmap from the resource file. The bitmap must be
specified in all CAPS! }

imgBitmap.Picture.Bitmap.LoadFromResourceName(hInstance, ‘ATHENA’);
end;

end.

Changing the Screen’s Cursor
Probably one of the most commonly used TScreen properties is the Cursor property, which
enables you to change the global cursor for the application. For example, the following code
changes the current cursor to an hourglass to indicate that users must wait while a lengthy
process executes:

Screen.Cursor := crHourGlass
{ Do some lengthy process }
Screen.Cursor := crDefault;

crHourGlass is a predefined constant that indexes into the Cursors array. There are other cur-
sor constants, such as crBeam and crSize. The existing cursor values range from 0 to -20
(crDefault to crHelp). Look in the online help for the Cursors property to see a list of all
available cursors. You can assign these values to Screen.Cursor when necessary.

You also can create your own cursors and add them to the Cursors property array. To do this,
you must first define a constant with a value that doesn’t conflict with the already-available
cursors. Predefined cursor values are from -20 to 0. Application cursors should only use posi-
tive ID numbers. All negative cursor ID numbers are reserved by Borland. Here’s an example:

crCrossHair := 1;

Application Frameworks and Design Concepts

CHAPTER 4
177

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

You can use any resource editor (such as the Image Editor that ships with Delphi 5) to create
your custom cursor. You must save the cursor into a resource (RES) file. One important point:
You must give your RES file a different name than that of your project. Remember that Delphi
5 creates a RES file of the same name as your project whenever you compile your project. You
don’t want Delphi 5 to overwrite the cursor you create. When you compile your project, make
sure that the RES file is in the same directory as your source files so that Delphi 5 will link the
cursor resource with your application. You tell Delphi 5 to link the RES file by placing a state-
ment such as the following into the application’s DPR file:

{$R CrossHairRes.RES}

Finally, you must add the following lines of code to load the cursor, add it to the Cursors
property, and then switch to that cursor:

procedure TMainForm.FormCreate(Sender: TObject);
begin
Screen.Cursors[crCrossHair] := LoadCursor (hInstance, ‘CROSSHAIR’);
Screen.Cursor := crCrossHair;

end;

Here you use the LoadCursor() Win32 API function to load the cursor. LoadCursor() takes
two parameters: An instance handle to the module from which you want to get the cursor and
the name of the cursor as specified in the RES file. Make sure to write the cursor name in the
file in ALL CAPS!

hInstance refers to the application currently running. Next, assign the value returned from
LoadCursor() to the Cursors property at the location specified by crCrossHair, which was
previously defined. Finally, assign the current cursor to Screen.Cursor.

For an example, locate the project CrossHair.dpr on the CD-ROM. This project loads and
changes to the crosshair cursor created here and placed in the file CrossHairRes.res.

You might also want to invoke the Image Editor by selecting Tools, Image Editor and opening
the CrossHairRes.res file to see how the cursor was created.

Preventing Multiple Instances of a Form
from Being Created
If you use Application.CreateForm() or TForm.Create() in your code to create a form
instance, it’s a good idea to ensure that no instance of the form is being held by the Reference
parameter (as described in the earlier section “The TForm Class”). The following code fragment
shows this:

begin
if not Assigned(SomeForm) then begin
Application.CreateForm(TSomeForm, SomeForm);

Essentials for Rapid Development

PART I
178

try
SomeForm.ShowModal;

finally
SomeForm.Free;
SomeForm := nil;

end;
end
else
SomeForm.ShowModal;

end;

In this code, it’s necessary to assign nil to the SomeForm variable after it has been destroyed.
Otherwise, the Assigned() method doesn’t function properly, and the method fails. This
wouldn’t work for a modeless form, however. With modeless forms, you can’t determine in
code when the form is going to be destroyed. Therefore, you must make the nil assignment
from within the OnDestroy event handler of the form being destroyed. This method was
described earlier in this chapter.

Adding Code to the DPR File
You can place code in the project’s DPR file before you launch your main form. Such code can
be initialization code, a splash screen, database initialization—anything you deem necessary
before the main form is displayed. You also have the opportunity to terminate the application
before the main form comes up. Listing 4.8 shows a DPR file that prompts the user for a pass-
word before granting access to the application. This project is also on the CD-ROM as
Initialize.dpr.

LISTING 4.8 The Initialize.dpr File, Showing Project Initialization

program Initialize;

uses
Forms,
Dialogs,
Controls,
MainFrm in ‘MainFrm.pas’ {MainForm};

{$R *.RES}

var
Password: String;

begin
if InputQuery(‘Password’, ‘Enter your password’, PassWord) then
if Password = ‘D5DG’ then

Application Frameworks and Design Concepts

CHAPTER 4
179

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

continues

LISTING 4.8 Continued

begin
// Other initialization routines can go here.
Application.CreateForm(TMainForm, MainForm);

Application.Run;
end
else
MessageDlg(‘Incorrect Password, terminating program’, mtError, [mbok],

0);
end.

Overriding the Application’s Exception Handling
The Win32 system has a powerful error-handling capability—exceptions. By default, whenever
an exception occurs in your project, the Application instance automatically handles that
exception by displaying to the user a standard error box.

As you build larger applications, you’ll start to define exception classes of your own. Perhaps
the Delphi 5 default exception handling will no longer suit your needs because you have to
perform special processing on a specific exception. In such cases, it will be necessary to over-
ride TApplication’s default exception handling and replace it with your own custom routine.

You saw that TApplication has an OnException event handler to which you can add code.
When an exception occurs, this event handler is called. There you can perform your special
processing so that the default exception message doesn’t show.

However, recall that the TApplication object’s properties aren’t editable from the Object
Inspector. Therefore, you must use the TApplicationEvents component to add specialized
exception handling to your application.

Listing 4.9 shows you what you need to do to override the application’s default exception han-
dling.

LISTING 4.9 Main Form for the Exception Override Demo

unit MainFrm;

interface

uses
SysUtils, Windows, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, AppEvnts, Buttons;

type

Essentials for Rapid Development

PART I
180

ENotSoBadError = class(Exception);
EBadError = class(Exception);
ERealBadError = class(Exception);

TMainForm = class(TForm)
btnNotSoBad: TButton;
btnBad: TButton;
btnRealBad: TButton;
appevnMain: TApplicationEvents;
procedure btnNotSoBadClick(Sender: TObject);
procedure btnBadClick(Sender: TObject);
procedure btnRealBadClick(Sender: TObject);
procedure appevnMainException(Sender: TObject; E: Exception);

public
end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.btnNotSoBadClick(Sender: TObject);
begin
raise ENotSoBadError.Create(‘This isn’’t so bad!’);

end;

procedure TMainForm.btnBadClick(Sender: TObject);
begin
raise EBadError.Create(‘This is bad!’);

end;

procedure TMainForm.btnRealBadClick(Sender: TObject);
begin
raise ERealBadError.Create(‘This is real bad!’);

end;

procedure TMainForm.appevnMainException(Sender: TObject; E: Exception);
var
rslt: Boolean;

begin
if E is EBadError then
begin
{ Show a custom message box and prompt for application termination. }
rslt := MessageDlg(Format(‘%s %s %s %s %s’, [‘An’, E.ClassName,

Application Frameworks and Design Concepts

CHAPTER 4
181

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

continues

LISTING 4.9 Continued

‘exception has occurred.’, E.Message, ‘Quit App?’]),
mtError, [mbYes, mbNo], 0) = mrYes;

if rslt then
Application.Terminate;

end
else if E is ERealBadError then
begin // Show a custom message

// and terminate the application.
MessageDlg(Format(‘%s %s %s %s %s’, [‘An’, E.ClassName,

‘exception has occured.’, E.Message, ‘Quitting Application’]),
mtError, [mbOK], 0);

Application.Terminate;
end
else // Perform default exception handling
Application.ShowException(E);

end;

end.

In Listing 4.9, the appevnMainException() method is the OnException event handler to the
TApplicationEvent component. This event handler uses RTTI to check the type of exception
that occurred and performs special processing based on the exception type. The comments in
the code discuss the process. You’ll also find the project that uses these routines,
OnException.dpr, on the CD-ROM accompanying this book.

Essentials for Rapid Development

PART I
182

TIP

If the Stop on Delphi Exceptions check box is selected in the Language Exceptions
page of the Debugger Options dialog box (accessed by selecting Tools, Debugger
Options), Delphi 5’s IDE debugger reports the exception in its own dialog box, before
your application has a chance to handle the exception. Although useful for debug-
ging, having this check box selected can be annoying when you want to see how your
project handles exceptions. Disable the option to make your project run normally.

Displaying a Splash Screen
Suppose you want to create a splash screen for your project. This form can display when you
launch your application and can stay visible while your application initializes. Displaying a
splash screen is actually simple. Here are the initial steps for creating a splash screen:

1. After creating your application’s main form, create another form to represent the splash
screen. Call this form SplashForm.

2. Use the Project, Options menu to ensure that SplashForm is not in the Auto-Create list.

3. Assign bsNone to SplashForm’s BorderStyle property and [] to its BorderIcons prop-
erty.

4. Place a TImage component onto SplashForm and assign alClient to the image’s Align
property.

5. Load a bitmap into the TImage component by selecting its Picture property.

Now that you’ve designed the splash screen, you only have to edit the project’s DPR file to dis-
play it. Listing 4.10 shows the project file (DPR) for which the splash screen is displayed.
You’ll find this project, Splash.dpr, on the accompanying CD-ROM.

LISTING 4.10 A DPR File with a Splash Screen

program splash;

uses
Forms,
MainFrm in ‘MainFrm.pas’ {MainForm},
SplashFrm in ‘SplashFrm.pas’ {SplashForm};

{$R *.RES}
begin
Application.Initialize;
{ Create the splash screen }
SplashForm := TSplashForm.Create(Application);
SplashForm.Show; // Display the splash screen
SplashForm.Update; // Update the splash screen to ensure it gets drawn

{ This while loop simply uses the TTimer component on the SplashForm
to simulate a lengthy process. }

while SplashForm.tmMainTimer.Enabled do
Application.ProcessMessages;

Application.CreateForm(TMainForm, MainForm);
SplashForm.Hide; // Hide the splash screen
SplashForm.Free; // Free the splash screen
Application.Run;

end.

Application Frameworks and Design Concepts

CHAPTER 4
183

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

Notice the while loop:

while SplashForm.tmMainTimer.Enabled do
Application.ProcessMessages;

This is simply a way to simulate a long process. A TTimer component was placed on
SplashForm, and its Interval property was set to 3000. When the OnTimer event of the TTimer
component occurs, after about three seconds, it executes the following line:

tmMainTimer.Enabled := False;

This will cause the while loop’s condition to be False and will jump execution out of the loop.

Minimizing Form Size
To illustrate how to suppress or control form sizing, we’ve created a project whose main form
has a blue background and a panel onto which components are placed. When the user resizes
the form, the panel remains centered. The form also prevents the user from shrinking the form
smaller than its panel. Listing 4.11 shows the form’s unit source code.

LISTING 4.11 The Source Code for the Template Form

unit BlueBackFrm;

interface

uses
SysUtils, Windows, Messages, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, Buttons, ExtCtrls;

type
TBlueBackForm = class(TForm)
pnlMain: TPanel;
bbtnOK: TBitBtn;
bbtnCancel: TBitBtn;
procedure FormResize(Sender: TObject);

private
Procedure CenterPanel;
{ Create a message handler for the WM_WINDOWPOSCHANGING message }
procedure WMWindowPosChanging(var Msg: TWMWindowPosChanging);

message WM_WINDOWPOSCHANGING;
end;

var
BlueBackForm: TBlueBackForm;

implementation

Essentials for Rapid Development

PART I
184

uses Math;
{$R *.DFM}

procedure TBlueBackForm.CenterPanel;
{ This procedure centers the main panel horizontally and
vertically inside the form’s client area

}
begin
{ Center horizontally }
if pnlMain.Width < ClientWidth then
pnlMain.Left := (ClientWidth - pnlMain.Width) div 2

else
pnlMain.Left := 0;

{ Center vertically }
if pnlMain.Height < ClientHeight then
pnlMain.Top := (ClientHeight - pnlMain.Height) div 2

else
pnlMain.Top := 0;

end;

procedure TBlueBackForm.WMWindowPosChanging(var Msg: TWMWindowPosChanging);
var
CaptionHeight: integer;

begin
{ Calculate the caption height }
CaptionHeight := GetSystemMetrics(SM_CYCAPTION);
{ This procedure does not take into account the width and
height of the form’s frame. You can use
GetSystemMetrics() to obtain these values. }

// Prevent window from shrinking smaller then MainPanel’s width
Msg.WindowPos^.cx := Max(Msg.WindowPos^.cx, pnlMain.Width+20);

// Prevent window from shrinking smaller then MainPanel’s width
Msg.WindowPos^.cy := Max(Msg.WindowPos^.cy, pnlMain.Height+20+CaptionHeight);

inherited;
end;

procedure TBlueBackForm.FormResize(Sender: TObject);
begin
CenterPanel; // Center MainPanel when the form is resized.

end;

end.

Application Frameworks and Design Concepts

CHAPTER 4
185

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

This form illustrates capturing window messages, specifically the WM_WINDOWPOSCHANGING mes-
sage, which occurs whenever the window size is about to be changed. This is an opportune
time to prevent the resizing of a window. Chapter 5, “Understanding Messages,” will delve
further into Windows messages. This demo can be found in the project TempDemo.dpr on the
CD-ROM.

Running a Formless Project
The form is the focal point of all Delphi 5 applications. However, nothing prevents you from
creating an application that has no form. The DPR file is nothing more than a program file that
“uses” units that define the forms and other objects. This program file can certainly perform
other programming processes that require no form. To do this, simply create a new project and
remove the main form from the project by selecting Project, Remove From Project. Your DPR
file will now contain the following code:

program Project1;
uses
Forms;
{$R *.RES}
begin
Application.Initialize;
Application.Run;

end.

In fact, you can even remove the uses clause and the calls to Application.Initialize and
Application.Run:

program Project1;
begin
end.

This is a rather useless project, but keep in mind that you can place pretty much whatever you
want in the begin..end block, which would be the starting point of a Win32 console application.

Exiting Windows
One reason you might want to exit Windows from an application is because your application
has made some system configuration changes that don’t go into effect until the user restarts
Windows. Rather than have the user perform that task through Windows, your application can
ask the user whether he or she wants to exit Windows; your application can then take care of
the dirty work. Keep in mind, however, that requiring a system restart is considered bad form
and should be avoided.

Exiting Windows requires the use of one of two Windows API functions: ExitWindows() or
ExitWindowsEx().

Essentials for Rapid Development

PART I
186

The ExitWindows() function is a carryover from 16-bit Windows. In that previous version of
Windows, you could specify various options that allowed you to reboot Windows after exiting.
However, in Win32, this function just logs the current user out of Windows and enables
another user to log on to the next Windows session.

ExitWindows() has been replaced by the new function ExitWindowsEx(). With this function,
you can log off, shut down Windows, or shut down Windows and restart the system (reboot).
Listing 4.12 shows the use of both functions.

LISTING 4.12 Exiting Windows Using ExitWindows() and ExitWindowsEx()

unit MainFrm;

interface

uses
SysUtils, Windows, Messages, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls;

type
TMainForm = class(TForm)
btnExit: TButton;
rgExitOptions: TRadioGroup;
procedure btnExitClick(Sender: TObject);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.btnExitClick(Sender: TObject);
begin
case rgExitOptions.ItemIndex of
0: Win32Check(ExitWindows(0, 0)); // Exit and log on as a

// different user.
1: Win32Check(ExitWindowsEx(EWX_REBOOT, 0)); // Exit/Reboot
2: Win32Check(ExitWindowsEx(EWX_SHUTDOWN, 0));// Exit to Power Off
// Exit/Log off/Log on as different user
3: Win32Check(ExitWindowsEx(EWX_LOGOFF, 0));

end;
end;

end.

Application Frameworks and Design Concepts

CHAPTER 4
187

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

Listing 4.12 uses the value of a radio button to determine which Windows exit option to use.
The first option uses ExitWindows() to log the user off and restart Windows, asking the user to
log on again.

The remaining options use the ExitWindowsEx() function. The second option exits Windows
and reboots the system. The third option exits Windows and shuts down the system so that the
user can turn off the computer. The fourth option performs the same task as the first, except
that it uses the ExitWindowsEx() function.

Both ExitWindows() and ExitWindowsEx() return True if successful and False otherwise. You
can use the Win32Check() function from SysUtils.pas, which calls the Win32 API function
GetLastError() and displays the proper error string in the event of an error.

Essentials for Rapid Development

PART I
188

NOTE

If you’re running Windows NT, the ExitWindowsEx() function will not shut down the
system; this requires a special privilege. You must use the Win32 API function
AdjustTokenPrivleges() to enable the SE_SHUTDOWN_NAME privilege. More informa-
tion on this topic can be found in the Win32 online help.

You’ll find an example of this code in the project ExitWin.dpr on the CD-ROM accompanying
this book.

Preventing Windows Shutdown
Shutting down Windows is one thing, but what if another application performs the same task—
that is, calls ExitWindowsEx()—while you’re editing a file and haven’t yet saved the file?
Unless you somehow capture the exit request, you chance losing valuable data. It’s simple to
capture the exit request. All that’s required is that you process the OnCloseQuery event for the
main form in your application. In that event handler, you can place code similar to the following:

procedure TMainForm.FormCloseQuery(Sender: TObject; var CanClose: Boolean);
begin
if MessageDlg(‘Shutdown?’, mtConfirmation, mbYesNoCancel, 0) = mrYes then
CanClose := True

else
CanClose := False;

end;

By setting CanClose to False, you tell Windows not to shut down. Another option is to set
CanClose to True only after prompting you to save a file if necessary. You’ll find this demon-
strated in the project NoClose.dpr on the accompanying CD-ROM.

Summary
This chapter focuses on project management techniques and architectural issues. It discusses
the key components that make up most Delphi 5 projects: TForm, TApplication, and TScreen.
We demonstrated how you might start designing your applications by first developing a com-
mon architecture. The chapter also shows various useful routines for your application.

Application Frameworks and Design Concepts

CHAPTER 4
189

4

A
PPLIC

A
TIO

N

F
R

A
M

EW
O

R
K

S
A

N
D

D
ESIG

N
C

O
N

C
EPTS

NOTE

If you’re running a formless project, you must subclass the application’s window pro-
cedure and capture the WM_QUERYENDSESSION message that’s sent to each application
running whenever ExitWindows() or ExitWindowsEx() is called from any application.
If the application returns a nonzero value from this message, that application can
end successfully. The application should return zero to prevent Windows from shut-
ting down. You’ll learn more about processing Windows messages in Chapter 5,
“Understanding Messages.”

