
CHAPTER

33
Inventory Manager:
Client/Server Development

IN THIS CHAPTER
• Designing the Back End 1732

• Centralizing Database Access: The
Business Rules 1741

• Designing the User Interface 1758

• Summary 1784

This chapter illustrates how to design a database application using the concepts discussed in
Chapter 29, “Developing Client/Server Applications.” Here, we illustrate techniques for devel-
oping a two-tier client/server application. In this application we have divided up the application
logic, or business rules, between both the client and the server. We also illustrate how to cen-
tralize data access in a data module, thus allowing us to completely separate the user interface
from the database logic.

Back in Chapter 4, “Application Frameworks and Design Concepts,” we introduced you to a
framework for forms that could be created independently or as child windows to another con-
trol. In this chapter, we use that framework for our user interface.

The database back end used is Local InterBase. The application is designed around a typical
auto-parts business model. This business model requires the application to keep track of three
primary sets of data:

• Product inventory. This includes the quantities of each item in the inventory and how
much each item is worth.

• Sales. This set contains information on items sold and to which customer these items
were sold.

• Customer. This set contains information such as name and address.

This is by no means a full-blown inventory manager application. The purpose of this chapter is
to focus on the techniques of client/server development. We have provided a complete working
application to illustrate that focus.

The chapter is divided into three parts. The first part, “Designing the Back End,” discusses the
design of the back end. This includes the database objects you learned about in Chapter 29.
The second part, “Centralizing Database Access: The Business Rules,” discusses how to use
Delphi’s TDataModule to centralize database access. Finally, the third part, “Designing the User
Interface,” discusses the design of the actual user interface for the inventory application.

Designing the Back End
We use the Local InterBase Server by InterBase Software Corporation as the back end for the
Inventory Manager application. This gives us the capability to design the database entirely
through SQL. It also offers the flexibility of being able to move some of the data processing to
the server side of the equation through the use of triggers, generators, and stored procedures—
which also helps to ensure better data integrity. Another more tangible benefit of the SQL back
end is that it can be scaled to a true client/server environment.

Rapid Database Application Development

PART V
1732

As discussed in Chapter 29, we will use SQL to create the various database objects required
for the Inventory Manager application. This will include objects such as domains, tables, gen-
erators, triggers, stored procedures, and permissions.

There are several ways to create the back end using various data-modeling tools. Data-modeling
tools such as xCase, RoboCase, Erwin, and SQL-Designer are but a few of the tools that greatly
simplify the data-modeling process. All basically allow you to visually model your data without
having to type out the SQL code. After you get your basic data-model designed, you can make
changes as needed.

Figure 33.1 depicts the data model for our sales application.

Inventory Manager: Client/Server Development

CHAPTER 33
1733

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

NOTE

Some of the topics in this chapter are specific to InterBase and may not apply to
other SQL RDBMSs such as Oracle and Microsoft SQL. The concepts discussed, how-
ever, still apply and may just be implemented differently.

Part

Part_number:vc(10)

Description:vc(18)
Quantity:si(4,0)
List_price:f
Retail_price:f
Dealer_price:f
Jobber_price:f

Items

Sale_number:i(9,0)

Item_no:i(9,0)
Part_number:vc(10)
Quantity:i(9,0)

Sales

Sale_number:i(9,0)

Customer_id:i(9,0)
Sale_date:dt
Total_price:f

Customer

Customer_id:i(9,0)

Frame:c(20)
Lname:c(20)
Credit_line:si(4,0)
Work_address:vc(50)
Alt_address:vc(50)
City:vc(20)
State:vc(20)
Zip:vc(10)
Work_phone:vc(20)
Alt_phone:vc(20)
Comments:b
Company:vc(40)

RRRI

RRRI

RRRI

FIGURE 33.1
Sales application data model.

Defining Domains
Before defining any tables, triggers, and so forth, you define domains that you will use
throughout the rest of the SQL code that makes up the metadata.

Rapid Database Application Development

PART V
1734

NOTE

Metadata is all the objects (tables, indexes, and so on) contained as part of a data-
base definition.

Think of a domain as an entity similar to a user-defined type in Object Pascal. Domains enable
you to define special data types with more structure than the built-in data types.

Domains help simplify data and constraint declarations by enabling you to create shorthand
names for types that are common throughout your database. Note that you cannot alter a
domain after table columns have used it.

The following are some of the domains used in the sales metadata:

• CREATE DOMAIN DCUSTOMERID AS INTEGER;

This is a straightforward domain. It defines a new domain called DCUSTOMERID as a type
identical to that of a standard, run-of-the-mill integer.

• CREATE DOMAIN DCREDITLINE AS SMALLINT default 0 CHECK (VALUE BETWEEN 0

AND 3000);

This defines a new smallint-type domain, but it applies the additional constraint that the
value must lie between 0 and 3000.

• CREATE DOMAIN DNAME AS CHAR(20);

This defines a domain called DNAME that is a fixed-length string of exactly 20 characters.

• CREATE DOMAIN DADDRESS AS VARCHAR(50);

CREATE DOMAIN DCITY AS VARCHAR(20);

CREATE DOMAIN DSTATE AS VARCHAR(20);

CREATE DOMAIN DZIP AS VARCHAR(10);

CREATE DOMAIN DPHONE AS VARCHAR(20);

This defines several domains as variable-length strings of up to 50, 20, 20, 10, and 20
characters, respectively.

• CREATE DOMAIN DPRICE AS NUMERIC(15, 2) default 0.00;

This creates a domain representing a decimal number. The first number, 15, specifies the
digits of precision to store. The second number, 2, specifies the number of decimal
places to store. The default value for columns of this domain is 0.00.

You can refer to the InterBase Corp. “InterBase Language Reference Guide” or to the
IB32.Hlp help file for further information on domains.

Defining the Tables
Using the defined domains, you can create tables. Each table is created by using the CREATE
TABLE SQL statement, followed by the enumeration of table fields and data types or domains.

The CUSTOMER Table
The CUSTOMER table represents the customer data object, and it is defined as follows:

/* Table: CUSTOMER, Owner: SYSDBA */
CREATE TABLE CUSTOMER (CUSTOMER_ID INTEGER NOT NULL,

FNAME DNAME NOT NULL,
LNAME DNAME NOT NULL,
CREDIT_LINE DCREDITLINE NOT NULL,
WORK_ADDRESS DADDRESS,
ALT_ADDRESS DADDRESS,
CITY DCITY,
STATE DSTATE,
ZIP DZIP,
WORK_PHONE DPHONE,
ALT_PHONE DPHONE,
COMMENTS BLOB SUB_TYPE TEXT SEGMENT SIZE 80,
COMPANY VARCHAR(40),

CONSTRAINT PCUSTOMER_ID PRIMARY KEY (CUSTOMER_ID));

The fields defined with the NOT NULL specifier indicate that the user must enter a value for
those fields before a record can be posted to the table. In other words, those fields cannot be
left blank.

The COMMENTS field requires a bit of explanation. This field is of type BLOB (Binary Large
Object), which means that any type of free-form data can be stored there. The SUB TYPE of
TEXT, however, means that the data contained within the BLOB is ASCII text and therefore is
compatible with the Delphi TDBMemo component.

Inventory Manager: Client/Server Development

CHAPTER 33
1735

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

NOTE

The CHAR(n) data type always stores n characters to the database. If the string con-
tained in a particular field is less than n characters, unused characters will be padded
with spaces.

The VARCHAR(n) data type stores the exact size of the string, up to a maximum of n.
Its advantage over CHAR is that it is more space efficient, but operations on VARCHARs
tend to be slightly slower.

The CONSTRAINT statement creates a primary key on the CUSTOMER_ID field, which ensures that
each record’s value for this field will be unique. This also is the first step to ensuring referen-
tial integrity throughout the database; the PRIMARY KEY field acts as a lookup field for the FOR-
EIGN KEY field defined in another table, as you will see later.

The PART Table
The PART table is the shop inventory. This table’s definition is fairly straightforward:

/* Table: PART, Owner: SYSDBA */
CREATE TABLE PART (PART_NUMBER VARCHAR(10) NOT NULL,

DESCRIPTION VARCHAR(18),
QUANTITY SMALLINT NOT NULL,
LIST_PRICE DPRICE NOT NULL,
RETAIL_PRICE DPRICE NOT NULL,
DEALER_PRICE DPRICE NOT NULL,
JOBBER_PRICE DPRICE NOT NULL,

CONSTRAINT PPART_NUMBER PRIMARY KEY (PART_NUMBER));

Each record represents the inventory of one unique part, holding description, quantity, and
pricing information. Notice that this table also has a primary key—this time, on the PART_NUM-
BER field.

The SALES Table
The SALES table is the table that contains records for every sale to a customer. This table is
defined as follows:

/* Table: SALES, Owner: SYSDBA */
CREATE TABLE SALES (SALE_NUMBER INTEGER,

CUSTOMER_ID INTEGER,
SALE_DATE DATE,
TOTAL_PRICE DOUBLE PRECISION);

ALTER TABLE SALES ADD FOREIGN KEY (CUSTOMER_ID)
REFERENCES CUSTOMER(CUSTOMER_ID);

Notice the ALTER TABLE statement, which adds a foreign key to the SALES table. A foreign key
is a column or set of columns in one table that correspond in exact order to a column or set of
columns defined as the primary key in another table. The foreign keys complete the referential
integrity with the SALES table by ensuring that no entries are made for the CUSTOMER_ID field
unless an entry with the same customer ID exists in the CUSTOMER table.

The ITEMS Table
The ITEMS table holds the items, or parts, for a particular sale. The SALES table has a one-to-
many relationship with the ITEMS table and is linked by the SALE_NUMBER and SALE_NO fields in
each table. The ITEMS table is defined as follows:

Rapid Database Application Development

PART V
1736

/* Table: ITEMS, Owner: SYSDBA */
CREATE TABLE ITEMS (SALE_NUMBER INTEGER,

ITEM_NO INTEGER,
PART_NO VARCHAR(10),
QTY SMALLINT);

ALTER TABLE ITEMS ADD FOREIGN KEY (PART_NO)
REFERENCES PART(PART_NUMBER);

Like the SALES table, the ITEMS table has a foreign key that ensures that no record is entered
where the part number is nonexistent in the PART table.

Defining Generators
Think of a generator as a mechanism that automatically generates sequential numbers to be
inserted into a table. Generators are often used to create unique numbers to be inserted into a
table’s keyed field. The SALES database will use generators to automatically generate new cus-
tomer IDs for the CUSTOMER, SALES, and ITEMS tables. These generators are defined as follows:

CREATE GENERATOR GEN_CUSTID;
CREATE GENERATOR GEN_ITEMNO;
CREATE GENERATOR GEN_SALENO;

Inventory Manager: Client/Server Development

CHAPTER 33
1737

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

NOTE

After you add a generator to a database, it cannot be easily removed. The simplest
technique is to remove or modify the trigger or stored procedure so that GEN ID() is
not called. You also can remove your generator from the RDB$GENERATORS systems
table.

Defining Triggers
A trigger is a routine that automatically performs some action whenever a record in a table is
inserted, updated, or deleted. Triggers enable you to let the database perform repetitive tasks as
records are committed to tables, thereby freeing the application(s) used to access and modify
the data from doing so.

NOTE

Triggers and generators are features specific to InterBase. Although most major SQL
vendors also offer these facilities, it is possible that other SQL server vendors use

continues

For starters, you need triggers that add new customers and sales numbers to their respective
tables using the generators created earlier. The trigger to insert a new, unique customer ID
would be as follows:

CREATE TRIGGER TCUSTOMER_ID FOR CUSTOMER
ACTIVE BEFORE INSERT POSITION 0
as begin
new.customer_id = gen_id(gen_custid, 1);

end

The following trigger also works on the ITEMS table:

CREATE TRIGGER TITEM_NO FOR ITEMS
ACTIVE BEFORE INSERT POSITION 0
as begin
new.item_no = gen_id(gen_itemno, 1);

end

Rapid Database Application Development

PART V
1738

different syntax and semantics in their implementations. Although they are very nice
features, you should keep in mind that using generators and triggers can be a sticky
point in migrating the application to a non-InterBase SQL server.

NOTE

There are several additional triggers in this database that convert a two-letter state
abbreviation to a full state name. You can find these triggers in Sales.ddl on the
CD-ROM in the directory for this chapter.

Defining Stored Procedures
A stored procedure is a standalone routine that is located on the server as part of a database’s
metadata.

You can invoke a stored procedure and have it return a dataset just like a normal query. The
advantages of stored procedures are that they reduce the amount of processing required at the
client end, they reduce the network traffic, and they centralize some particular functionality.
Stored procedures also can improve performance because they are precompiled SQL code exe-
cuted on the server instead of across a network. The general functionality of stored procedures
is discussed in greater length in Chapter 29, “Developing Client/Server Applications.”

The SALES database employs two stored procedures. The first, INSERT_SALE, is used to insert
a sale record into the SALES table. This stored procedure takes three input parameters: the

customer ID, the sale data, and the total cost of the sale. This procedure returns the sale identi-
fier generated from within the stored procedure. The client application passes the value
returned to another stored procedure where it will be used as a foreign key for the ITEMS table.
INSERT_SALE is shown in Listing 33.1.

LISTING 33.1 The INSERT_SALE Stored Procedure

CREATE PROCEDURE INSERT_SALE AS BEGIN EXIT; END ^
·
ALTER PROCEDURE INSERT_SALE (
ICUSTOMER_ID INTEGER,
ISALE_DATE DATE,
ITOTAL_PRICE DOUBLE PRECISION)

RETURNS(
RSALE_NUMBER INTEGER)

AS
BEGIN
/* First obtain a new Sale identifier from the */
/* GEN_SALENO generator. This value is being stored in */
/* the rSale parameter which is defined as a return */
/* value and will therefore be returned to the calling */
/* client. */
rSALE_NUMBER = gen_id(GEN_SALENO, 1);
/* Now insert the record into the SALES table */
INSERT INTO SALES(
SALE_NUMBER,
CUSTOMER_ID,
SALE_DATE,
TOTAL_PRICE)

VALUES(
:rSALE_NUMBER,
:iCUSTOMER_ID,
:iSALE_DATE,
:iTOTAL_PRICE);

END

This stored procedure executes some very basic SQL code. It first retrieves a new ID for the
sale record from the GEN_SALENO generator. It then performs a simple INSERT INTO SQL state-
ment to insert the data passed to it through parameters.

The second stored procedure used by the application is slightly more complex. This stored pro-
cedure is named INSERT_SALE_ITEM and is used to insert individual items of a sale in the ITEMS
table. More than likely, this stored procedure will be called several times for a single sale.
Therefore, the client will first call the INSERT_SALE stored procedure to insert a sale record. It
would have also gotten a sale ID from the call to INSERT_SALE. Then, the client would call

Inventory Manager: Client/Server Development

CHAPTER 33
1739

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

INSERT_SALE_ITEM for each item being sold. For every call, it must pass the specific item
information and the sale ID previously obtained.

INSERT_SALE_ITEM takes three parameters: the sale ID, the part number, and the quantity of the
item specified being sold. This stored procedure performs a few data-integrity operations. First,
it makes sure that there is at least the number of items requested in the PART table. If not, an
exception is raised. If the quantity of parts exists, the value of the Qty parameter is subtracted
from the quantity in the PART table for the specified part. Finally, the item is added to the
ITEMS table.

INSERT_SALE_ITEM is shown in Listing 33.2.

LISTING 33.2 The INSERT_SALE_ITEM Stored Procedure

CREATE PROCEDURE INSERT_SALE_ITEM AS BEGIN EXIT; END ^
·
ALTER PROCEDURE INSERT_SALE_ITEM (
ISALE_NUMBER INTEGER,
IPART_NO VARCHAR(10),
IQTY SMALLINT)

AS
DECLARE VARIABLE Actual_Qty VARCHAR(10);

BEGIN
/* CHECK IF iQTY ITEMS EXISTS IN THE PARTS TABLE */
SELECT QUANTITY FROM PART
WHERE PART_NUMBER = :iPART_NO
INTO Actual_Qty;

IF (Actual_Qty < iQTY) THEN
EXCEPTION EXP_EXCESS_ORDER;

ELSE BEGIN
/* First remove the quantity of parts from the PART table */
UPDATE PART
SET QUANTITY = (:Actual_Qty - :iQty)
WHERE PART_NUMBER = :iPART_NO;
/* Now Insert the new order */
INSERT INTO ITEMS(
SALE_NUMBER,
PART_NO,
QTY)

VALUES(
:iSALE_NUMBER,
:iPART_NO,
:iQTY);

END
END

Rapid Database Application Development

PART V
1740

Granting Permissions
The final step in defining a database is granting permission to the tables and stored procedures
to particular users. For simplicity, you can grant all users SELECT and UPDATE rights on the
CUSTOMER table with the following statement:

GRANT SELECT, UPDATE ON CUSTOMER TO PUBLIC WITH GRANT OPTION;

Alternatively, you can grant all rights to the SALES table with the following statement:

GRANT ALL ON SALE TO PUBLIC WITH GRANT OPTION;

The GRANT OPTION clause means that those who are granted access to tables also are allowed
to grant others access to the data. The GRANT statements used on the Inventory Manager’s tables
and stored procedures are as follows:

/* Grant permissions for this database */
GRANT SELECT, UPDATE ON CUSTOMER TO PUBLIC WITH GRANT OPTION;
GRANT ALL ON SALES TO PUBLIC WITH GRANT OPTION;
GRANT ALL ON PART TO PUBLIC WITH GRANT OPTION;
GRANT ALL ON ITEMS TO PUBLIC WITH GRANT OPTION;
GRANT EXECUTE ON PROCEDURE INSERT_SALE TO PUBLIC;
GRANT EXECUTE ON PROCEDURE INSERT_SALE_ITEM TO PUBLIC;

The next section discusses how to connect to the database objects.

Centralizing Database Access: The Business Rules
This section illustrates how to separate database access and business logic from the user inter-
face. This serves several purposes. By placing the business logic within one data module, you
make it easier to maintain that same business logic because it is not scattered throughout the

Inventory Manager: Client/Server Development

CHAPTER 33
1741

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

NOTE

If you are using the ISQL tool to enter database metadata, you need to change the
terminating character. Because all statements within a procedure must be terminated
by a semicolon (;)—which is also the SQL terminating character—you must set the
SQL terminating character to some other symbol to avoid conflicts. Do this by using
the SET TERM command.

In SALES, you will use the caret symbol as the terminating character. This line of SQL
code will invoke the following change:

SET TERM ^ ;

application. This technique also makes it possible to port your two-tier model to a three-tier
model by adding the appropriate components to the data module that already contains the busi-
ness logic. We do not do that here, but we mention this because it is something that merits seri-
ous consideration when developing two-tier systems.

You can use TDataModule to encompass as much of the database side of things as you see fit.
We will show how we do this for the Inventory Manager application.

In our demo application, we use a single TDataModule component. For small applications, this
approach is sufficient. For larger applications, you might consider separating the disparate
pieces among several TDataModule components where it logically makes sense.

Listing 33.3 shows the source code for TDDGSalesDataModule, which is defined in
SalesDM.pas.

LISTING 33.3 TDDGSalesDataModule

unit SalesDM;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
DBTables, Db;

type
TDDGSalesDataModule = class(TDataModule)
qryCustomer: TQuery;
dbSales: TDatabase;
usqlCustomer: TUpdateSQL;
qryCustomerCUSTOMER_ID: TIntegerField;
qryCustomerFNAME: TStringField;
qryCustomerLNAME: TStringField;
qryCustomerCREDIT_LINE: TSmallintField;
qryCustomerWORK_ADDRESS: TStringField;
qryCustomerALT_ADDRESS: TStringField;
qryCustomerCITY: TStringField;
qryCustomerSTATE: TStringField;
qryCustomerZIP: TStringField;
qryCustomerWORK_PHONE: TStringField;
qryCustomerALT_PHONE: TStringField;
qryCustomerCOMMENTS: TMemoField;
qryCustomerCOMPANY: TStringField;
qryParts: TQuery;
usqlParts: TUpdateSQL;
qryPartsPART_NUMBER: TStringField;
qryPartsDESCRIPTION: TStringField;

Rapid Database Application Development

PART V
1742

qryPartsQUANTITY: TSmallintField;
qryPartsLIST_PRICE: TFloatField;
qryPartsRETAIL_PRICE: TFloatField;
qryPartsDEALER_PRICE: TFloatField;
qryPartsJOBBER_PRICE: TFloatField;
spInsertSaleItem: TStoredProc;
spInsertSale: TStoredProc;
qryTotalPrice: TQuery;
tblTempItems: TTable;
tblTempItemsPART_NUMBER: TStringField;
tblTempItemsDESCRIPTION: TStringField;
tblTempItemsQUANTITY: TSmallintField;
tblTempItemsRETAIL_PRICE: TFloatField;
tblTempItemsTOTAL_PRICE: TFloatField;
qryTotalPriceSUMOFTOTAL_PRICE: TFloatField;
qrySale: TQuery;
dsCustomer: TDataSource;
qryItems: TQuery;
dsSale: TDataSource;
qrySaleSALE_NUMBER: TIntegerField;
qrySaleSALE_DATE: TDateTimeField;
qrySaleTOTAL_PRICE: TFloatField;
qryItemsDESCRIPTION: TStringField;
qryItemsQTY: TSmallintField;
qryCustomerSearch: TQuery;
procedure tblTempItemsBeforePost(DataSet: TDataSet);
procedure dbSalesLogin(Database: TDatabase; LoginParams: TStrings);

protected
procedure SetAfterTempItemsChange(Value: TDataSetNotifyEvent);
function GetAfterTempItemsChange: TDataSetNotifyEvent;

public

// Connection methods

procedure Logout;
function Login: Boolean;
function Connect: Boolean;
procedure Disconnect;

// Customer methods
procedure FirstCustomer;
procedure LastCustomer;
procedure NextCustomer;
procedure PrevCustomer;
procedure EditCustomer;
procedure NewCustomer;

Inventory Manager: Client/Server Development

CHAPTER 33
1743

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

continues

LISTING 33.3 Continued

procedure AcceptCustomer;
procedure CancelCustomer;
procedure DeleteCustomer;
function IsFirstCustomer: Boolean;
function IsLastCustomer: Boolean;
function GetCustomerName: String;
function SearchForCustomer: Boolean;

// Parts methods
procedure FirstPart;
procedure LastPart;
procedure NextPart;
procedure PrevPart;
procedure EditPart;
procedure NewPart;
procedure AcceptPart;
procedure CancelPart;
procedure DeletePart;
function IsFirstPart: Boolean;
function IsLastPart: Boolean;
function SearchForPart: Boolean;

// Sales methods

procedure AddItemToSale;
procedure SaveSale;
procedure CancelSale;
function SaleItemsTotalPrice: double;
procedure OpenTempItems;
procedure CloseTempItems;

// Surfaced properties
property AfterTempItemsChange: TDataSetNotifyEvent

read GetAfterTempItemsChange
write SetAfterTempItemsChange;

end;

var
DDGSalesDataModule: TDDGSalesDataModule;

implementation

uses CustomerSrchFrm, LoginFrm;

Rapid Database Application Development

PART V
1744

{$R *.DFM}

procedure TDDGSalesDataModule.SetAfterTempItemsChange(Value:
TDataSetNotifyEvent);

begin
{ This writer method adds the Value parameter to both the AfterPost and
AfterDelete events of the temporary items table. This ensures that whenever
the data changes, the event handler will get called. }

tblTempItems.AfterPost := Value;
tblTempItems.AfterDelete := Value;

end;

function TDDGSalesDataModule.GetAfterTempItemsChange: TDataSetNotifyEvent;
begin
Result := tblTempItems.AfterPost;

end;

// Login methods.

procedure TDDGSalesDataModule.dbSalesLogin(Database: TDatabase;
LoginParams: TStrings);

begin
{ Calls method below to populate the LoginParams strings list
with the user’s login information. GetLoginParams is defined in
LoginFrm.pas. }

GetLoginParams(LoginParams);
end;

procedure TDDGSalesDataModule.Logout;
begin
Disconnect;

end;

function TDDGSalesDataModule.Login: Boolean;
begin
Result := Connect;

end;

function TDDGSalesDataModule.Connect: Boolean;
begin
{ Connects the user to the database. When dbSales is set to True, its OnLogon
event handler will be invoked which will invoke our customer login dialog
defined in LoginFrm.pas. }

try
dbSales.Connected := True;

Inventory Manager: Client/Server Development

CHAPTER 33
1745

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

continues

LISTING 33.3 Continued

qryCustomer.Active := True;
qryParts.Active := True;
qrySale.Active := True;
qryItems.Active := True;
Result := True;

except
MessageDlg(‘Invalid Password or login information, cannot login.’,

mtError, [mbok], 0);
dbSales.Connected := False;
Result := False;

end;
end;

procedure TDDGSalesDataModule.Disconnect;
begin
// Disconnect from the database.
dbSales.Connected := False;

end;

// Customer methods

procedure TDDGSalesDataModule.AcceptCustomer;
begin
dbSales.ApplyUpdates([qryCustomer]);

end;

procedure TDDGSalesDataModule.CancelCustomer;
begin
qryCustomer.CancelUpdates;

end;

procedure TDDGSalesDataModule.DeleteCustomer;
begin
qryCustomer.Delete;

end;

procedure TDDGSalesDataModule.EditCustomer;
begin
qryCustomer.Edit;

end;

procedure TDDGSalesDataModule.FirstCustomer;
begin
qryCustomer.First;

end;

Rapid Database Application Development

PART V
1746

procedure TDDGSalesDataModule.LastCustomer;
begin
qryCustomer.Last;

end;

procedure TDDGSalesDataModule.NewCustomer;
begin
qryCustomer.Insert;

end;

procedure TDDGSalesDataModule.NextCustomer;
begin
qryCustomer.Next;

end;

procedure TDDGSalesDataModule.PrevCustomer;
begin
qryCustomer.Prior;

end;

function TDDGSalesDataModule.IsFirstCustomer: Boolean;
begin
Result := qryCustomer.Bof;

end;

function TDDGSalesDataModule.IsLastCustomer: Boolean;
begin
Result := qryCustomer.Eof;

end;

function TDDGSalesDataModule.GetCustomerName: String;
begin
{ Normally, return the company name. If there is not a company name, return
the customer’s name. }

if qryCustomerCOMPANY.AsString <> EmptyStr then
Result := qryCustomerCOMPANY.AsString

else
Result := Format(‘%s %s’, [qryCustomerFNAME.AsString,

qryCustomerLNAME.AsString]);
end;

function TDDGSalesDataModule.SearchForCustomer: Boolean;
var
CustID: Integer;
SearchQry: String;

begin

Inventory Manager: Client/Server Development

CHAPTER 33
1747

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

continues

LISTING 33.3 Continued

// Assume failure.
Result := False;
{ Invoke the SearchCustomer function which is defined in CustomerSrchFrm.pas.
this function returns the query string that is added to the

qryCustomerSearch
TQuery component }

SearchQry := SearchCustomer;
if SearchQry <> EmptyStr then
begin
Screen.Cursor := crSQLWait;
try

qryCustomerSearch.Close;
qryCustomerSearch.SQL.Clear;
qryCustomerSearch.SQL.Add(SearchQry);
qryCustomerSearch.Open;
try

// If a record was not found, exit this method.
if qryCustomerSearch.FieldByName(‘CUSTOMER_ID’).IsNull then
begin
Screen.Cursor := crDefault;
Exit;

end;

{ If a record is found, get the customer’s id that is used to
locate the record in the actual qryCustomer, TQuery component. This
will position the cursor to the location of the record. }

CustID := qryCustomerSearch.FieldByName(‘CUSTOMER_ID’).AsInteger;

{ If the record is not found in qryCustomer, there is an
inconsistency

in the database, raise an error. }
if not qryCustomer.Locate(‘CUSTOMER_ID’, CustID, []) then
raise Exception.Create(‘Inconsistency in database.’)

else
Result := True;

finally
qryCustomerSearch.Close;

end;
finally
Screen.Cursor := crDefault;

end;
end
else
Result := False;

end;

Rapid Database Application Development

PART V
1748

// Parts Methods

function TDDGSalesDataModule.IsFirstPart: Boolean;
begin
Result := qryParts.Bof;

end;

function TDDGSalesDataModule.IsLastPart: Boolean;
begin
Result := qryParts.Eof;

end;

procedure TDDGSalesDataModule.AcceptPart;
begin
dbSales.ApplyUpdates([qryParts]);

end;

procedure TDDGSalesDataModule.CancelPart;
begin
qryParts.CancelUpdates;

end;

procedure TDDGSalesDataModule.DeletePart;
begin
qryParts.Delete;

end;

procedure TDDGSalesDataModule.EditPart;
begin
qryParts.Edit;

end;

procedure TDDGSalesDataModule.FirstPart;
begin
qryParts.First;

end;

procedure TDDGSalesDataModule.LastPart;
begin
qryParts.Last;

end;

procedure TDDGSalesDataModule.NewPart;
begin
qryParts.Insert;

end;

Inventory Manager: Client/Server Development

CHAPTER 33
1749

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

continues

LISTING 33.3 Continued

procedure TDDGSalesDataModule.NextPart;
begin
qryParts.Next;

end;

procedure TDDGSalesDataModule.PrevPart;
begin
qryParts.Prior;

end;

function TDDGSalesDataModule.SearchForPart: Boolean;
{ This method searches for a part based on the part id specified by the
user. }

var
PartNumber: string;

begin
Result := False;
PartNumber := ‘’;
if InputQuery(‘Part Search’, ‘Enter a Part Number’, PartNumber) then
if not qryParts.Locate(‘PART_NUMBER’, PartNumber, []) then
Exit

else
Result := True;

end;

// Sales methods

procedure TDDGSalesDataModule.AddItemToSale;
begin
{ The tblTempItems is a temporary table used to hold the
items that are being added to a sale. If the user saves
the sale, these records will be used in the stored procedure
calls that actually store the sale on the database. }

if not tblTempItems.Locate(‘PART_NUMBER’,
qryParts.FieldByName(‘PART_NUMBER’).AsString, []) then

begin
tblTempItems.Insert;
try
tblTempItems[‘PART_NUMBER’] := qryParts[‘PART_NUMBER’];
tblTempItems[‘DESCRIPTION’] := qryParts[‘DESCRIPTION’];
tblTempItems[‘QUANTITY’] := 1;
tblTempItems[‘RETAIL_PRICE’] := qryParts[‘RETAIL_PRICE’];
tblTempItems.Post;

except
tblTempItems.Cancel;

end;

Rapid Database Application Development

PART V
1750

end
else
MessageDlg(‘Item already in list’, mtWarning, [mbok], 0);

end;

procedure TDDGSalesDataModule.CancelSale;
begin
{ If the user cancels the sale, the items that were added to the tblTempItems
table will have to be cleared. }

tblTempItems.Close;
tblTempItems.EmptyTable;
tblTempItems.Open;

end;

procedure TDDGSalesDataModule.SaveSale;
var
SaleNo: Integer;

begin
{ If the user saves the sale, first create a sale record which will return
a sale key to SaleNo. This is used as the link for sale items which are
added next. The sale items are gotten from the temporary table
tblTempItems. }

dbSales.StartTransaction;
try
{ First create the sale record. }
with spInsertSale do
begin
ParamByName(‘iCUSTOMER_ID’).AsInteger := qryCustomer[‘CUSTOMER_ID’];
ParamByName(‘iSALE_DATE’).AsDateTime := Now;
ParamByName(‘iTOTAL_PRICE’).AsFloat := SaleItemsTotalPrice;
ExecProc;
// Get the key value in SaleNo.
SaleNo := ParamByName(‘rSALE_NUMBER’).AsInteger;

end;

// Now add all records in tblTempItems to the sale specified by SaleNo.
tblTempItems.First;
while not tblTempItems.Eof do
begin
with spInsertSaleItem do
begin
ParamByName(‘IPART_NO’).AsString := tblTempItems[‘PART_NUMBER’];
ParamByName(‘IQTY’).AsInteger := tblTempItems[‘QUANTITY’];
ParamByName(‘ISALE_NUMBER’).AsInteger := SaleNo;
ExecProc;

end;

Inventory Manager: Client/Server Development

CHAPTER 33
1751

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

continues

LISTING 33.3 Continued

tblTempItems.Next;
end;

dbSales.Commit;

// Refresh modified tables.
qryParts.Close;
qryParts.Open;

tblTempItems.Close;
tblTempItems.EmptyTable;
tblTempItems.Open;

except
dbSales.Rollback;

end;
end;

function TDDGSalesDataModule.SaleItemsTotalPrice: double;
begin
{ qryTotalPrice retrieves the total price for all records added to the
tblTempItems table. This method may be called from any form using this
data module. }

qryTotalPrice.Close;
qryTotalPrice.Open;
try
Result := qryTotalPrice.FieldByName(‘SUM OF TOTAL_PRICE’).AsFloat;

finally
qryTotalPrice.Close;

end;
end;

procedure TDDGSalesDataModule.tblTempItemsBeforePost(DataSet: TDataSet);
begin
{ Before posting a record to the temporary table, calculate the total price
for the TOTAL_PRICE field based on the number of items that the user is
adding. }

tblTempItemsTOTAL_PRICE.ReadOnly := False;
try
tblTempItems[‘TOTAL_PRICE’] := tblTempItems[‘RETAIL_PRICE’] *
tblTempItems[‘QUANTITY’];

finally
tblTempItemsTOTAL_PRICE.ReadOnly := True;

end;
end;

Rapid Database Application Development

PART V
1752

procedure TDDGSalesDataModule.OpenTempItems;
begin
tblTempItems.Close;
tblTempItems.EmptyTable;
tblTempItems.Open;

end;

procedure TDDGSalesDataModule.CloseTempItems;
begin
tblTempItems.Active := False;

end;

end.

TDDGSalesDataModule has a TDatabase component, dbSales, and the various TQuery,
TUpdateSQL, and TStoredProc components necessary for our sales inventory application.

DbSales is the main connection to the SQL back end that exists in Sales.gdb. This connection
is made through the alias DDGSALES, which we set up using the DBExplorer program. DBSales
establishes the application-level alias DDGSalesDB. Initially, its Connected property is set to
False so all tables belonging to it will also be closed when the application is first run. DbSales
has an OnLogin event handler that we will discuss momentarily.

You will notice that we functionally grouped the TDDGSalesDataModule’s method definitions.
These functional groups are as follows:

Method Group Definition

Connection methods Methods that allow the user to log on and log off the appli-
cation

Customer methods Methods that manipulate customer data specifically

Parts methods Methods that manipulate the parts data specifically

Sales methods Methods that create and manage sales

Refer to the listing’s commentary for an explanation of the various methods. In particular,
examine the SaveSale() method, which is the method that uses the TStoredProc component
to create a new sale and adds sale items to that sale. The stored procedures in this method are
hooked to the stored procedures shown in Listings 33.1 and 33.2.

Login/Logout Methods
The methods for logging in and logging out are appropriately named Login() and Logout().
Login() invokes the Connect() method, which establishes a connection to the database
through dbSales. It does this by setting the dbSales.Connected property to True. When this

Inventory Manager: Client/Server Development

CHAPTER 33
1753

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

happens, the dbSales.OnLogin event handler is invoked if one exists. The event handler
dbSalesLogin() invokes the GetLoginParams() method defined in LoginFrm.pas, which pop-
ulates the user’s login information by displaying a custom login dialog. This method is shown
in Listing 33.4.

LISTING 33.4 TLoginForm: The Custom Login Form

unit LoginFrm;

interface

uses WinTypes, WinProcs, Classes, Graphics, Forms, Controls, StdCtrls,
Buttons, ExtCtrls;

type
TLoginForm = class(TForm)
lblEnterPassword: TLabel;
lblEnterName: TLabel;
edtName: TEdit;
edtPassword: TEdit;
btnOK: TButton;
btnCancel: TButton;

public
end;

function GetLoginParams(ALoginParams: TStrings): Boolean;

implementation

{$R *.DFM}

function GetLoginParams(ALoginParams: TStrings): Boolean;
var
LoginForm: TLoginForm;

begin
Result := False;
LoginForm := TLoginForm.Create(Application);
try
if LoginForm.ShowModal = mrOk then
begin
ALoginParams.Values[‘USER NAME’] := LoginForm.edtName.Text;
ALoginParams.Values[‘PASSWORD’] := LoginForm.edtPassWord.Text;
Result := True;

end;
finally

Rapid Database Application Development

PART V
1754

LoginForm.Free;
end;

end;

end.

The Logout() method simply closes dbSales, which in turn closes all the TQuery/TTable con-
nections.

Customer Table Methods
DDGSalesDataModule contains several methods to manipulate the CUSTOMER table:
NewCustomer(), AcceptCustomer(), EditCustomer(), DeleteCustomer(), and
CancelCustomer(). All are straightforward in that they just call the appropriate TQuery meth-
ods to invoke the action. The remaining methods require a bit more explanation.

GetCustomerName() is a function that retrieves the company name of a customer. If a company
name does not exist, the method returns the first and last name of a customer whose customer
ID is that specified by the CustID parameter.

SearchForCustomer() allows the user to perform a search on the customer table for a certain
customer. The search is based on the fields specified by the user from a customer search form.
This form builds a query string that gets passed to the server. We will discuss the functionality
of this form later. For now, just assume that it builds a query string that gets assigned to
qryCustomerSearch.SQL. If the customer specified is found, that customer record is made the
active one.

Part Table Methods
The part methods are similar to the customer methods. The NewPart(), EditPart(),
AcceptPart(), DeletePart(), and CancelPart() methods are simple methods that call the
appropriate TQuery methods to perform the specific operation.

SearchForPart() is not quite as complex as SearchForCustomer(). It retrieves a part number
by using the InputQuery() function and then performs a Locate() operation to find the part.

Sales Methods
The sales methods are where things get a bit more interesting. These methods represent more
what you would be doing to perform various operations against a client/server database—in
particular, the SaveSale() method.

AddItemToSale() allows the user to specify the items to add to a new sale (see Figure 33.2).

Inventory Manager: Client/Server Development

CHAPTER 33
1755

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

FIGURE 33.2
Adding items to a sale.

CancelSale() terminates an “insert sale” operation.

SaveSale() is DDGSalesDataModule’s most complex method. This method uses the transaction
capabilities of dbSales to add a sale to the database. This involves starting the transaction,
adding the sale record, adding x number of items being sold, and then committing or rolling
back the entire process (transaction).

The sale record is added by using the spInsertSale stored procedure. Notice how the sale
number that is generated inside the actual stored procedure is returned to the client with the
following statement:

SaleNo := ParamByName(‘rSALE_NUMBER’).AsInteger;

This value is then used for each record added to the ITEMS table through the TStoredProc
component spInsertSaleItems. This is how you link the items being sold with a sale.

Temporary Table Methods
The TempPartsTable methods perform operations on the temporary table used to hold items
for a sale. Table 33.1 shows the definition of this table.

Rapid Database Application Development

PART V
1756

TABLE 33.1 TEMPPART.DB Table Fields

Field Name Type Size Meaning

PART_NO A 10 Part number for this item

DESCRIPTION A 18 Description of this part

QUANTITY S Number of parts being sold

RETAIL_PRICE N 50 Retail price for the item being sold

RETAIL_PRICE N 50 Total price for the number of parts being sold

The AddItemToSale() method is responsible for adding parts to the sale.

The SaleItemsTotalPrice() method returns the total price in items existing in tblTempItems.
This method uses the qryTotalPrice component to run a query against the Paradox table to
calculate the total price. The SQL statement that is executed is

select SUM(RETAIL_PRICE) from temppart.db

This statement returns the sum of the numeric values for the specified column—in this case the
RETAIL_PRICE column.

The tblTempItemsBeforePost() method is the event handler for the
tblTempParts.BeforePost event. This event handler ensures that the record being posted
reflects the correct price based on the quantity of items being sold. This is possible because the
BeforePost event occurs before the record is actually posted to the table.

Surfacing Data-Access Component Events to Users of the
TDataModule
One of the problems with centralizing database access is that the data-access components each
have their own event that you might want the user interface to know about. Usually, you do
this because you want something to happen on the UI side as a result of a data-access compo-
nent’s event. Because the components reside on the TDataModule, there is no automatic way
for forms using the TDataModule to hook into these events. Keep in mind that the TDataModule
may be made accessible in the form of a compiled unit.

One way of surfacing certain events is to give the TDataModule its own event to which any
forms using it can attach an event handler. This TDataModule event can be invoked as a result
of a specific component’s event. This is how you surface the AfterPost and AfterDelete
events for the tblTempParts table through one property—AfterTempItemsChange. This prop-
erty has both reader and writer methods that directly access the tblTempParts actual properties.

Inventory Manager: Client/Server Development

CHAPTER 33
1757

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

Designing the User Interface
With the centralized data access defined, you can build the user interface around the methods,
properties, and events of the TDataModule object. In the next few sections, we are going to talk
about the various forms in the application.

This application uses the framework discussed in Chapter 4, “Application Frameworks and
Design Concepts,” where a form can become a child window of another window.

Our application uses the model shown in Figure 33.3.

Rapid Database Application Development

PART V
1758

TCustomerForm TNewSalesFormTPartsForm TSalesForm

TMainForm

1 1 1 1

11

1 1

FIGURE 33.3
Inventory application layout.

This main form can contain four child forms:

• Customer form. Used to add, edit, and browse customers in the system

• Parts form. Used to add, edit, and browse the inventory of parts

• Sales form. Used to browse sales

• New Sales form. Used to add a new sale

There are some other supportive forms that are not invoked as child forms of the main form.
We will discuss these forms momentarily. For now, we will focus primarily on the main form
and each of the child forms.

TMainForm: The Application’s Main Form
The main form of the application contains a TTabControl component, which serves as the par-
ent component to the child forms. The user changes the child form by selecting the desired
screen either from the main menu or by selecting a tab of tcMain. The coding logic ensures
that the menu items and tab controls remain in sync. Most of the main form logic focuses on
ensuring that only one child form is created and visible and that others are properly freed.

Listing 33.5 shows the source code for the main form, TMainForm.

LISTING 33.5 The Inventory Application’s Main Form: TMainForm

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
Menus, StdCtrls, ComCtrls, ExtCtrls, ChildFrm;

type

{ There are four types of child forms that can be displayed in this
application. The TActiveScreenType is declared to allow us to know
which of the four types of forms are active. }

TActiveScreenType = (acCustomer, acParts, acSales, acNewSales);

TMainForm = class(TForm)
mmSales: TMainMenu;
mmiScreen: TMenuItem;
mmiCustomer: TMenuItem;
mmiParts: TMenuItem;
mmiNewSale: TMenuItem;
mmiSales: TMenuItem;
mmiFile: TMenuItem;
mmiExit: TMenuItem;
mmiHelp: TMenuItem;
tcMain: TTabControl;
mmiUser: TMenuItem;
mmiLogon: TMenuItem;
mmiLogoff: TMenuItem;
imgCar: TImage;
procedure ScreenClick(Sender: TObject);
procedure mmiExitClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure tcMainChange(Sender: TObject);
procedure tcMainChanging(Sender: TObject; var AllowChange: Boolean);
procedure mmiLogonClick(Sender: TObject);
procedure mmiLogoffClick(Sender: TObject);

private
// ActiveScreenType stores the type of form that is active.
ActiveScreenType: TActiveScreenType;
// ActiveScreen is a reference to the active child form.

Inventory Manager: Client/Server Development

CHAPTER 33
1759

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

continues

LISTING 33.5 Continued

ActiveScreen: TChildForm;
procedure SetActiveScreen;

public
{ Public declarations }

end;

var
MainForm: TMainForm;

implementation

uses CustomerFrm, PartsFrm, NewSalesFrm, SalesFrm, SalesDM;

{$R *.DFM}

procedure TMainForm.FormCreate(Sender: TObject);
begin
// Set the alignment for the main tab control.
tcMain.Align := alClient;

end;

procedure TMainForm.mmiExitClick(Sender: TObject);
begin
Close;

end;

procedure TMainForm.ScreenClick(Sender: TObject);
begin
{ This method is invoked when the user has chosen to change the screen via
the main menu.
This method determines if it is possible to change to another child form. It
does this by making sure that each child form’s CanChange() method returns
True. If so, it changes the global ActiveScreenType value and invokes the
SetActiveScreen() method to actually perform the change logic. }
if Sender is TMenuItem then
begin
if ActiveScreen <> nil then
begin
if ActiveScreen.CanChange then
begin

TMenuItem(Sender).Checked := True;
if Sender = mmiCustomer then
ActiveScreenType := acCustomer

else if Sender = mmiParts then

Rapid Database Application Development

PART V
1760

ActiveScreenType := acParts
else if Sender = mmiSales then
ActiveScreenType := acSales

else if Sender = mmiNewSale then
ActiveScreenType := acNewSales;

// Ensure the TTabControl is in-sync with the clicked item on the menu.
tcMain.TabIndex := ord(ActiveScreenType);
SetActiveScreen;

end
end;

end;
end;

procedure TMainForm.tcMainChange(Sender: TObject);
begin
{ This method changes the screen when the user has switched tabs. It
synchronizes the settings for the main menu and the tab control. This method
also calls the SetActiveScreen() method to actually change the active

screen.}
if ActiveScreen <> nil then
begin
case tcMain.TabIndex of
0: mmiCustomer.Checked := True;
1: mmiParts.Checked := True;
2: mmiSales.Checked := True;
3: mmiNewSale.Checked := True;

end;
ActiveScreenType := TActiveScreenType(tcMain.TabIndex);
SetActiveScreen;

end;
end;

procedure TMainForm.SetActiveScreen;
{ This method changes the active screen to one of the four child forms. Each
child form becomes a child of the TTabControl tcMain. }

var
TempScreen: TChildForm;

begin
{ Determine if we have an instantiated child form yet. If so, unmerge its
menu and free the child form. }

TempScreen := ActiveScreen;

// Unmerge the menu.
if Assigned(ActiveScreen) then

Inventory Manager: Client/Server Development

CHAPTER 33
1761

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

continues

LISTING 33.5 Continued

begin
if ActiveScreen.GetFormMenu <> nil then
mmSales.UnMerge(ActiveScreen.GetFormMenu);

end;

{ Determine which active screen (child form) to create and set its toolbar
to have the main form as the parent if appropriate. }

case ActiveScreenType of
acCustomer:
begin
ActiveScreen := TCustomerForm.Create(Application, tcMain);
TCustomerForm(ActiveScreen).SetToolBarParent(self);

end;
acParts:
begin
ActiveScreen := TPartsForm.Create(Application, tcMain);
TPartsForm(ActiveScreen).SetToolBarParent(self);

end;
acSales:

ActiveScreen := TSalesForm.Create(Application, tcMain);
acNewSales:
begin
ActiveScreen := TNewSalesForm.Create(Application, tcMain);
TPartsForm(ActiveScreen).SetToolBarParent(self);

end;
end;

// Merge the menu of the child form with the menu of the main form.
if ActiveScreen <> nil then
begin
if ActiveScreen.GetFormMenu <> nil then
mmSales.Merge(ActiveScreen.GetFormMenu);

ActiveScreen.Show;

end;

if Assigned(TempScreen) then
TempScreen.Free;

end;

procedure TMainForm.tcMainChanging(Sender: TObject;
var AllowChange: Boolean);

begin

Rapid Database Application Development

PART V
1762

// Change only if the child form is in the mode that allows changing.
AllowChange := ActiveScreen.CanChange;

end;

procedure TMainForm.mmiLogonClick(Sender: TObject);
begin
// Log the user onto the system
if DDGSalesDataModule.Login then
begin
tcMain.Align := alClient;
tcMain.Visible := True;
ActiveScreenType := acCustomer;
SetActiveScreen;
mmiScreen.Enabled := True;
mmiLogon.Enabled := False;
mmiLogoff.Enabled := True;

end;
end;

procedure TMainForm.mmiLogoffClick(Sender: TObject);
begin
// Log the user off the system.
if Assigned(ActiveScreen) then
begin
if ActiveScreen.GetFormMenu <> nil then
mmSales.UnMerge(ActiveScreen.GetFormMenu);

ActiveScreen.Free;
ActiveScreen := nil;

end;

tcMain.Visible := False;
DDGSalesDataModule.Logout;

mmiScreen.Enabled := False;
mmiLogon.Enabled := True;
mmiLogoff.Enabled := False;

end;

end.

Refer to the commentary within the main form’s listing (see Listing 33.5) for specifics of each
method. The bulk of this application’s code exists in DDGSalesDataModule (already discussed).
The child forms contain most of the logic in regards to the user interface. We will discuss these
next.

Inventory Manager: Client/Server Development

CHAPTER 33
1763

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

TCustomerForm: Customer Entry
TCustomerForm is where the user can add, edit, and delete customers from the database. This
form is shown in Figure 33.4. Because much of the user interface logic exists in
TCustomerForm’s ancestor classes, this form’s source code is pleasingly thin and simple to
understand. Listing 33.6 is the source for TCustomerForm.

Rapid Database Application Development

PART V
1764

FIGURE 33.4
The customer data-entry form.

LISTING 33.6 Customer Entry Form: TCustomerForm

unit CustomerFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
DBNAVSTATFRM, StdCtrls, DBCtrls, Mask, Menus, ImgList, ComCtrls, ToolWin,
Db, DBModeFrm;

type
TCustomerForm = class(TDBNavStatForm)
lblFirstName: TLabel;
dbeFirstName: TDBEdit;
lblLastName: TLabel;
dbeLastName: TDBEdit;
lblCreditLine: TLabel;
dbeCreditLine: TDBEdit;
lblWorkAddress: TLabel;

dbeWorkAddress: TDBEdit;
lblHomeAddress: TLabel;
dbeHomeAddress: TDBEdit;
lblCity: TLabel;
dbeCity: TDBEdit;
lblState: TLabel;
dbeState: TDBEdit;
lblZipCode: TLabel;
dbeZip: TDBEdit;
lblWorkPhone: TLabel;
dbeWorkPhone: TDBEdit;
lblHomePhone: TLabel;
dbeHomePhone: TDBEdit;
lblComments: TLabel;
dbmmComments: TDBMemo;
lblCompany: TLabel;
dbeCompany: TDBEdit;
dsCustomer: TDataSource;
EXit1: TMenuItem;
procedure sbFirstClick(Sender: TObject);
procedure sbPrevClick(Sender: TObject);
procedure sbNextClick(Sender: TObject);
procedure sbLastClick(Sender: TObject);
procedure sbInsertClick(Sender: TObject);
procedure sbEditClick(Sender: TObject);
procedure sbDeleteClick(Sender: TObject);
procedure sbCancelClick(Sender: TObject);
procedure sbAcceptClick(Sender: TObject);
procedure FormShow(Sender: TObject);
procedure sbFindClick(Sender: TObject);
procedure sbBrowseClick(Sender: TObject);

private
procedure SetNavButtons;

public
function GetFormMenu: TMainMenu; override;
function CanChange: Boolean; override;

end;

var
CustomerForm: TCustomerForm;

implementation

uses SalesDM;

Inventory Manager: Client/Server Development

CHAPTER 33
1765

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

continues

LISTING 33.6 Continued

{$R *.DFM}

procedure TCustomerForm.SetNavButtons;
begin
// Ensure that the navigational buttons are set according to the form’s mode.
sbFirst.Enabled := not DDGSalesDataModule.IsFirstCustomer;
sbLast.Enabled := not DDGSalesDataModule.IsLastCustomer;
sbPrev.Enabled := not DDGSalesDataModule.IsFirstCustomer;
sbNext.Enabled := not DDGSalesDataModule.IsLastCustomer;

// synchronize the navigational menu items with the speedbuttons.
mmiFirst.Enabled := sbFirst.Enabled;
mmiLast.Enabled := sbLast.Enabled;
mmiPrevious.Enabled := sbPrev.Enabled;
mmiNext.Enabled := sbNext.Enabled;

end;

procedure TCustomerForm.sbFirstClick(Sender: TObject);
begin
// Go to the first record in the result set.
inherited;
DDGSalesDataModule.FirstCustomer;
SetNavButtons;

end;

procedure TCustomerForm.sbPrevClick(Sender: TObject);
begin
// Go to the previous record in the result set.
inherited;
DDGSalesDataModule.PrevCustomer;
SetNavButtons;

end;

procedure TCustomerForm.sbNextClick(Sender: TObject);
begin
// Go to the next record in the result set.
inherited;
DDGSalesDataModule.NextCustomer;
SetNavButtons;

end;

procedure TCustomerForm.sbLastClick(Sender: TObject);
begin
// Go to the last record in the result set.

Rapid Database Application Development

PART V
1766

inherited;
DDGSalesDataModule.LastCustomer;
SetNavButtons;

end;

procedure TCustomerForm.sbInsertClick(Sender: TObject);
begin
// Insert a new customer.
inherited;
DDGSalesDataModule.NewCustomer;

end;

procedure TCustomerForm.sbEditClick(Sender: TObject);
begin
// Edit the current customer.
inherited;
DDGSalesDataModule.EditCustomer;

end;

procedure TCustomerForm.sbDeleteClick(Sender: TObject);
begin
// Delete the current customer.
inherited;
DDGSalesDataModule.DeleteCustomer;

end;

procedure TCustomerForm.sbCancelClick(Sender: TObject);
begin
// Cancel the Edit or Add operation.
inherited;
DDGSalesDataModule.CancelCustomer;

end;

procedure TCustomerForm.sbAcceptClick(Sender: TObject);
begin
// Accept Add or Edit changes.
inherited;
DDGSalesDataModule.AcceptCustomer;

end;

procedure TCustomerForm.FormShow(Sender: TObject);
begin
// Initialize menus and buttons accordingly.
inherited;
SetNavButtons;

end;

Inventory Manager: Client/Server Development

CHAPTER 33
1767

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

continues

LISTING 33.6 Continued

function TCustomerForm.CanChange: Boolean;
begin
// Allow the user to change forms only when browsing record.
Result := FormMode = fmBrowse;

end;

function TCustomerForm.GetFormMenu: TMainMenu;
begin
{ Return the main menu. This is required by the main form for
menu merging. }

Result := mmFormMenu;
end;

procedure TCustomerForm.sbFindClick(Sender: TObject);
begin
// Search for a specific customer by invoking the customer search form.
inherited;
DDGSalesDataModule.SearchForCustomer;

end;

procedure TCustomerForm.sbBrowseClick(Sender: TObject);
begin
// Set the form to browse mode. This will cancel an edit or add operation.
inherited;
if not (FormMode = fmBrowse) then
DDGSalesDataModule.CancelCustomer;

end;

end.

Refer to the listing commentary for explanations of the specific methods. The small amount of
code required for this form is possible because most of the database logic exists in
TDDGSalesDataModule, not to mention how much is handled for you by the VCL. The remain-
ing forms are equally lean.

TPartsForm: Inventory Entry
The parts entry form, TPartsForm, is shown in Figure 33.5. Listing 33.7 shows its source code.

Rapid Database Application Development

PART V
1768

FIGURE 33.5
The parts data-entry form.

LISTING 33.7 Parts Entry Form: TPartsForm

unit PartsFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
DBNAVSTATFRM, Menus, ImgList, ComCtrls, ToolWin, Grids, DBGrids, Db,
StdCtrls, Mask, DBCtrls, DBModeFrm;

type
TPartsForm = class(TDBNavStatForm)
lblPartNo: TLabel;
dbePartNo: TDBEdit;
dsParts: TDataSource;
lblDescription: TLabel;
dbeDescription: TDBEdit;
lblQuantity: TLabel;
dbeQuantity: TDBEdit;
lblListPrice: TLabel;
dbeListPrice: TDBEdit;
lblRetailPrice: TLabel;
dbeRetailPrice: TDBEdit;
lblDealerPrice: TLabel;
dbeDealerPrice: TDBEdit;
lblJobberPrice: TLabel;

Inventory Manager: Client/Server Development

CHAPTER 33
1769

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

continues

LISTING 33.7 Continued

dbeJobberPrice: TDBEdit;
dbgParts: TDBGrid;
procedure sbAcceptClick(Sender: TObject);
procedure sbCancelClick(Sender: TObject);
procedure sbInsertClick(Sender: TObject);
procedure sbEditClick(Sender: TObject);
procedure sbDeleteClick(Sender: TObject);
procedure sbFirstClick(Sender: TObject);
procedure sbPrevClick(Sender: TObject);
procedure sbNextClick(Sender: TObject);
procedure sbLastClick(Sender: TObject);
procedure FormShow(Sender: TObject);
procedure sbFindClick(Sender: TObject);
procedure sbBrowseClick(Sender: TObject);

private
procedure SetNavButtons;

public
function GetFormMenu: TMainMenu; override;
function CanChange: Boolean; override;

end;

var
PartsForm: TPartsForm;

implementation

uses SalesDM;

{$R *.DFM}

procedure TPartsForm.SetNavButtons;
begin
// Ensure that the navigational buttons are set according to the form’s mode.
sbFirst.Enabled := not DDGSalesDataModule.IsFirstPart;
sbLast.Enabled := not DDGSalesDataModule.IsLastPart;
sbPrev.Enabled := not DDGSalesDataModule.IsFirstPart;
sbNext.Enabled := not DDGSalesDataModule.IsLastPart;

// synchronize the navigational menu items with the speedbuttons.
mmiFirst.Enabled := sbFirst.Enabled;
mmiLast.Enabled := sbLast.Enabled;
mmiPrevious.Enabled := sbPrev.Enabled;
mmiNext.Enabled := sbNext.Enabled;

end;

Rapid Database Application Development

PART V
1770

procedure TPartsForm.sbAcceptClick(Sender: TObject);
begin
// Accept add/edit changes to this part.
inherited;
DDGSalesDataModule.AcceptPart;

end;

procedure TPartsForm.sbCancelClick(Sender: TObject);
begin
// Cancel add/Edit operation.
inherited;
DDGSalesDataModule.CancelPart;

end;

procedure TPartsForm.sbInsertClick(Sender: TObject);
begin
// Insert a new part.
inherited;
DDGSalesDataModule.NewPart;

end;

procedure TPartsForm.sbEditClick(Sender: TObject);
begin
// Edit the current part.
inherited;
DDGSalesDataModule.EditPart;

end;

procedure TPartsForm.sbDeleteClick(Sender: TObject);
begin
// Delete the current part.
inherited;
DDGSalesDataModule.DeletePart;

end;

procedure TPartsForm.sbFirstClick(Sender: TObject);
begin
// Go to the first record in the result set.
inherited;
DDGSalesDataModule.FirstPart;
SetNavButtons;

end;

procedure TPartsForm.sbPrevClick(Sender: TObject);
begin
// Go to the previous record in the result set.

Inventory Manager: Client/Server Development

CHAPTER 33
1771

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

continues

LISTING 33.7 Continued

inherited;
DDGSalesDataModule.PrevPart;
SetNavButtons;

end;

procedure TPartsForm.sbNextClick(Sender: TObject);
begin
// Go to the next record in the result set.
inherited;
DDGSalesDataModule.NextPart;
SetNavButtons;

end;

procedure TPartsForm.sbLastClick(Sender: TObject);
begin
// Go to the last record in the result set.
inherited;
DDGSalesDataModule.LastPart;
SetNavButtons;

end;

procedure TPartsForm.FormShow(Sender: TObject);
begin
// Initialize the speedbuttons and menu items accordingly.
inherited;
SetNavButtons;

end;

function TPartsForm.CanChange: Boolean;
begin
// Allow the user to change forms, only if not adding or editing a record.
Result := FormMode = fmBrowse;

end;

function TPartsForm.GetFormMenu: TMainMenu;
begin
// Return the main menu. This is used by the main form for menu merging of
// child forms.
Result := mmFormMenu;

end;

procedure TPartsForm.sbFindClick(Sender: TObject);
begin
// Search for a part by the part number.
inherited;

Rapid Database Application Development

PART V
1772

DDGSalesDataModule.SearchForPart;
end;

procedure TPartsForm.sbBrowseClick(Sender: TObject);
begin
// Go into browse mode but only after canceling any changes made to the
// current record.
inherited;
if not (FormMode = fmBrowse) then
DDGSalesDataModule.CancelPart;

end;

end.

You will see from the listing that this is almost identical to TCustomerForm. This type of con-
sistency is a desired attribute and one that makes code easier to understand.

TSalesForm: Sales Browsing
The sales form is used to browse existing sales (see Figure 33.6). Its source code contains only
one method, GetFormMenu(), which had to be overridden to return nil so that the main form
would not attempt to perform a menu-merging operation. We will not show the listing for this
form because there is no specific code that we wrote. You will find its unit, SalesFrm.pas, on
the CD-ROM in the directory for this chapter.

Inventory Manager: Client/Server Development

CHAPTER 33
1773

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

FIGURE 33.6
The sales-browsing form.

TNewSalesForm: Sales Entry
TNewSalesForm is the most complex of the four child forms. Its source is shown in Listing
33.8. Nevertheless, it is still a very simple form. The code commentary discusses the coding
logic. In particular, note that we had to create a method to return its TToolBar component. This
method already exists in the TDBNavStatForm component of which the other child forms were
descendants. This form, however, is a descendant of TChildForm only. Therefore, we needed to
create the method for it. Figure 33.7 shows TNewSalesForm.

Rapid Database Application Development

PART V
1774

FIGURE 33.7
The new sales data-entry form.

LISTING 33.8 New Sales Entry Form: TNewSalesForm

unit NewSalesFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
CHILDFRM, Grids, DBGrids, Buttons, StdCtrls, Db, Menus, ToolWin, ComCtrls,
ImgList;

type
TNewSalesForm = class(TChildForm)
dsParts: TDataSource;
dsTempItems: TDataSource;
lblCustomer1: TLabel;
lblCustomerName: TLabel;
lblTotCost: TLabel;

lblTotalCost: TLabel;
lblSelectParts: TLabel;
sbAddPart: TSpeedButton;
sbRemovePart: TSpeedButton;
lblSaleItems: TLabel;
dbgParts: TDBGrid;
dbgSaleItems: TDBGrid;
mmFormMenu: TMainMenu;
mmiSales: TMenuItem;
mmiNew: TMenuItem;
mmiCancel: TMenuItem;
mmiSave: TMenuItem;
tbSales: TToolBar;
sbAccept: TToolButton;
sbCancel: TToolButton;
tb1: TToolButton;
sbInsert: TToolButton;
ilNavigationBar: TImageList;
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure FormShow(Sender: TObject);
procedure sbAddPartClick(Sender: TObject);
procedure mmiNewClick(Sender: TObject);
procedure mmiCancelClick(Sender: TObject);
procedure mmiSaveClick(Sender: TObject);

private
AddingSale: Boolean;

procedure SetSaleMenus;
procedure TempItemsAfterChange(DataSet: TDataSet);

public
function CanChange: Boolean; override;
function GetFormMenu: TMainMenu; override;
procedure SetToolBarParent(AParent: TWinControl);

end;

var
NewSalesForm: TNewSalesForm;

implementation

uses SalesDM;

{$R *.DFM}

function TNewSalesForm.CanChange: Boolean;

Inventory Manager: Client/Server Development

CHAPTER 33
1775

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

continues

LISTING 33.8 Continued

begin
Result := not AddingSale;

end;

procedure TNewSalesForm.FormCreate(Sender: TObject);
begin
inherited;
// The tblTempItems table on DDGSalesDataModule is required for this form.
DDGSalesDataModule.OpenTempItems;
AddingSale := False; // Initially we’re not adding a sale.

{ Assign the TempItemsAfterChange event handler to the event handlers
surfaced by DDGSalesDataModule. }

DDGSalesDataModule.AfterTempItemsChange := TempItemsAfterChange;
SetSaleMenus;

end;

procedure TNewSalesForm.FormDestroy(Sender: TObject);
begin
// Close the DDGSalesDataModule.tblTempItems table.
inherited;
DDGSalesDataModule.CloseTempItems;

end;

procedure TNewSalesForm.FormShow(Sender: TObject);
begin
// Retrieve the customer name for the current customer.
inherited;
lblCustomerName.Caption := DDGSalesDataModule.GetCustomerName;
{ The total should show a balance of zero since the form has just been
invoked. }

lblTotalCost.Caption := ‘$ 0.00’;
end;

procedure TNewSalesForm.TempItemsAfterChange(DataSet: TDataSet);
begin
// This is required in the AfterPost event of the
// tblTempItems on the datamodule
// because we must recalculate this everytime the user makes a change.
lblTotalCost.Caption := FormatFloat(‘$#,##0.00’,

DDGSalesDataModule.SaleItemsTotalPrice);
end;

procedure TNewSalesForm.sbAddPartClick(Sender: TObject);
begin

Rapid Database Application Development

PART V
1776

// Add the selected item to the sale.
inherited;
DDGSalesDataModule.AddItemToSale;

end;

procedure TNewSalesForm.mmiNewClick(Sender: TObject);
begin
// Set the form into a mode to represent adding a sale.
inherited;
AddingSale := True;
SetSaleMenus;

end;

procedure TNewSalesForm.mmiCancelClick(Sender: TObject);
begin
// Cancel the current sale.
inherited;
AddingSale := False;
DDGSalesDataModule.CancelSale;
SetSaleMenus;

end;

procedure TNewSalesForm.mmiSaveClick(Sender: TObject);
begin
// Save the current sale.
inherited;
DDGSalesDataModule.SaveSale;
AddingSale := False;
SetSaleMenus;
{ Invoke the TempItemsAfterChange event handler to ensure that the form
updates is controls accordingly. }

TempItemsAfterChange(nil);
end;

procedure TNewSalesForm.SetSaleMenus;
begin
// Set menu items and speed buttons to reflect the form’s mode.
mmiNew.Enabled := not AddingSale;
mmiCancel.Enabled := AddingSale;
mmiSave.Enabled := AddingSale;
sbAddPart.Enabled := AddingSale;
sbRemovePart.Enabled := AddingSale;

sbAccept.Enabled := mmiSave.Enabled;
sbCancel.Enabled := mmiCancel.Enabled;
sbInsert.Enabled := mmiNew.Enabled;

Inventory Manager: Client/Server Development

CHAPTER 33
1777

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

continues

LISTING 33.8 Continued

end;

function TNewSalesForm.GetFormMenu: TMainMenu;
begin
// Return the main menu to be used by the main form for menu merging.
Result := mmFormMenu;

end;

procedure TNewSalesForm.SetToolBarParent(AParent: TWinControl);
begin
{ This form uses a toolbar, return its parent. We were required to
create this method for this form as it is a descendant of TChildForm,
not TDBNavStatForm which already contains this method. }

tbSales.Parent := AParent;
end;

end.

The CustomerSearch Dialog
TCustomerSearchForm is used by DDGSalesDataModule to retrieve a query statement to be
used to perform a search on the CUSTOMER table. This form is responsible for obtaining the field
values from the user and building the query statement in SQL code. TCustomerSearchForm is
shown in Figure 33.8.

Rapid Database Application Development

PART V
1778

FIGURE 33.8
The customer search form.

TCustomerSearchForm is not a child form like the previously mentioned forms.
TCustomerSearchForm contains no data-aware controls. The user places values into the fields
on which a search is to be performed. The user must then click the labels for the fields on
which to search. This turns the label’s color to clRed. The logic of TCustomerSearchForm uses
the values entered by the user and the TLabel colors to build a SQL query statement.

Listing 33.9 shows the source code for TCustomerSearchForm.

LISTING 33.9 Customer Search Form: TCustomerSearchForm

unit CustomerSrchFrm;

interface

uses WinTypes, WinProcs, Classes, Graphics, Forms, Controls, Buttons,
StdCtrls, SysUtils;

type
TCustomerSearchForm = class(TForm)
lblIDNumber: TLabel;
edtIDNumber: TEdit;
lblFirstName: TLabel;
lblLastName: TLabel;
lblAltPhone: TLabel;
lblWorkPhone: TLabel;
lblWorkAddress: TLabel;
lblAltAddress: TLabel;
lblCompany: TLabel;
edtFirstName: TEdit;
edtLastName: TEdit;
edtWorkPhone: TEdit;
edtAltPhone: TEdit;
edtWorkAddress: TEdit;
edtAltAddress: TEdit;
edtCompany: TEdit;
btnCancel: TButton;
btnFind: TButton;
lblInstruction: TLabel;
procedure FormCreate(Sender: TObject);
procedure FindCustBtnClick(Sender: TObject);
procedure CancelBtnClick(Sender: TObject);
procedure lblIDNumberClick(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);

private
FindPressed: Boolean;
procedure ClearEditFields;
function BuildSQLStatement: string;

public
QueryString: String;

end;

function SearchCustomer: String;

Inventory Manager: Client/Server Development

CHAPTER 33
1779

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

continues

LISTING 33.9 Continued

implementation

{$R *.DFM}

uses Dialogs;

function SearchCustomer: String;
var
CustomerSearchForm: TCustomerSearchForm;

begin
Result := EmptyStr;
CustomerSearchForm := TCustomerSearchForm.Create(Application);
try
if CustomerSearchForm.ShowModal = mrOk then
Result := CustomerSearchForm.QueryString;

finally
CustomerSearchForm.Free;

end;

end;

function TCustomerSearchForm.BuildSQLStatement: string;
{ This function builds an SQL query statement based on the search
fields of a customer record as specified by the user. The search
fields are indicated by the labels whose color is clRed. The user
can select these labels by clicking on them. The user must enter a
value into the edit field to which the labels refer. }

var
Sep: String[3]; // Used as a seperator.

begin
Sep := ‘’;
Result := ‘’;

if lblIDNumber.Font.Color = clRed then
begin
Result := Format(‘(CUSTOMER_ID = %s)’, [edtIDNumber.Text]);
Sep := ‘AND’;

end;

if lblLastName.Font.Color = clRed then
begin
Result := Format(‘%s %s (UPPER(LNAME) = “%s”)’,

[Result, Sep, UpperCase(edtLastName.Text)]);
Sep := ‘AND’;

Rapid Database Application Development

PART V
1780

end;

if lblFirstName.Font.Color = clRed then
begin
Result := Format(‘%s %s (UPPER(FNAME) = “%s”)’,

[Result, Sep, UpperCase(edtFirstName.Text)]);
Sep := ‘AND’;

end;

if lblWorkPhone.Font.Color = clRed then
begin
Result := Format(‘%s %s (UPPER(WORK_PHONE) = “%s”)’,

[Result, Sep, UpperCase(edtWorkPhone.Text)]);
Sep := ‘AND’;

end;

if lblAltPhone.Font.Color = clRed then
begin
Result := Format(‘%s %s (UPPER(ALT_PHONE) = “%s”)’,

[Result, Sep, UpperCase(edtAltPhone.Text)]);
Sep := ‘AND’;

end;

if lblWorkAddress.Font.Color = clRed then
begin
Result := Format(‘%s %s (UPPER(WORK_ADDRESS) = “%s”)’,

[Result, Sep, UpperCase(edtWorkAddress.Text)]);
Sep := ‘AND’;

end;

if lblAltAddress.Font.Color = clRed then
begin
Result := Format(‘%s %s (UPPER(ALT_ADDRESS) = “%s”)’,

[Result, Sep, UpperCase(edtAltAddress.Text)]);
Sep := ‘AND’;

end;

if lblCompany.Font.Color = clRed then
begin
Result := Format(‘%s %s (UPPER(COMPANY) = “%s”)’,

[Result, Sep, UpperCase(edtCompany.Text)]);
end;

if Length(Result) > 0 then
Result := Format(‘SELECT CUSTOMER_ID FROM CUSTOMER WHERE (%s)’,
[Result]);

Inventory Manager: Client/Server Development

CHAPTER 33
1781

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

continues

LISTING 33.9 Continued

end;

procedure TCustomerSearchForm.ClearEditFields;
{ This method clears all of the edit fields and sets their labels
to clNavy in color. }

var
i: word;

begin
for i := 0 to ComponentCount - 1 do
begin
if Components[i] is TEdit then
TEdit(Components[i]).Text := ‘’;

if Components[i] is TLabel then
TLabel(Components[i]).Font.Color := clNavy;

end;

end;

procedure TCustomerSearchForm.FormCreate(Sender: TObject);
begin
FindPressed := False;
// Clear the edit fields.
ClearEditFields;

end;

procedure TCustomerSearchForm.FindCustBtnClick(Sender: TObject);
begin
FindPressed := True;
// Make the QueryString available to the caller of this dialog.
QueryString := BuildSQLStatement;

end;

procedure TCustomerSearchForm.CancelBtnClick(Sender: TObject);
begin
ClearEditFields;

end;

procedure TCustomerSearchForm.lblIDNumberClick(Sender: TObject);
{ All labels are hooked to this OnClick event handler which changes
the color of the labels. The clRed color is used to specify a label on
which to perform a search operation. }

begin

Rapid Database Application Development

PART V
1782

with (Sender as TLabel) do
if Font.Color = clNavy then
Font.Color := clRed

else
Font.Color := clNavy;

end;

procedure TCustomerSearchForm.FormClose(Sender: TObject;
var Action: TCloseAction);

begin
{ Before closing the form to perform a search operation, make sure
the user has specified on which fields to perform the search. }

if (QueryString = ‘’) and FindPressed then
begin
MessageDlg(‘You must highlight a search field by’+

‘ clicking on a label.’, mtInformation, [mbOk], 0);
Action := caNone;

end
else begin
Action := caHide;
ClearEditFields;

end;
end;

end.

The main method to examine here is the BuildSQLStatement() function, which returns a
string representing the SQL query statement. This method looks at each of the labels and, if its
color is clRed, uses its corresponding edit control to build a query statement by using a series
of Format() statements.

ClearEditFields() is a simple method used to set all labels to clNavy and to clear the con-
tents of the edit controls. This method is used when the form is created in the FormCreate()
event handler.

The FormClose() event handler ensures that the user has specified fields on which to perform
the search by ensuring that QueryString is not empty. Only if a field was selected will
QueryString contain a valid SQL statement. Additionally, this method allows the form to close
regardless of the user’s specified fields if the user clicked the Cancel button. This is determined
by the value of the FindPressed Boolean variable, which is set to True when the Find button
is clicked.

If Find is clicked, the SQL statement is returned to the calling form.

Inventory Manager: Client/Server Development

CHAPTER 33
1783

33

IN
V

EN
TO

RY
M

A
N

A
G

ER:
C

LIEN
T/S

ER
V

ER

D
EV

ELO
PM

EN
T

Summary
This concludes the Inventory Application. This chapter illustrates how you would design a
client/server, two-tier application. The two-tier model probably makes up the majority of
client/server systems. Nevertheless, with the Internet and related technologies, the three-tiered
model is becoming more popular and is the topic of later chapters.

Rapid Database Application Development

PART V
1784

