Extending Database VCL CHAPTER

30

IN THIS CHAPTER

e Using the BDE 1588

e dBASE Tables 1590

e Paradox Tables 1595

e Extending TDataSet 1613

e Summary 1641

1588

Database Development

PART IV

Out of the box, Visual Component Library’s (VCL’s) database architecture is equipped to com-
municate primarily by means of the Borland Database Engine (BDE)—feature-rich and reli-
able database middleware. What’s more, VCL serves as a kind of insulator between you and
your databases, allowing you to access different types of databases in much the same manner.
Although all this adds up to reliability, scalability, and ease of use, there is a downside: data-
base-specific features provided both within and outside the BDE are generally not provided for
in the VCL database framework. This chapter provides you with the insight you’ll need to
extend VCL by communicating directly with the BDE and other data sources to obtain data-
base functionality not otherwise available in Delphi.

Using the BDE

When you’re writing applications that make direct calls to the BDE, there are a few rules of
thumb to keep in mind. This section presents the general information you need to get into the
BDE API from your Delphi applications.

The BDE Unit

All BDE functions, types, and constants are defined in the BDE unit. This unit will need to be in
the uses clause of any unit from which you want to make BDE calls. Additionally, the inter-
face portion of the BDE unit is available in the BDE. INT file, which you’ll find in the
..\Delphi5\Doc directory. You can use this file as a reference to the functions and records
available to you.

Tip

For additional assistance on programming using the BDE API, take a look at the
BDE32.hl1p help file provided in your BDE directory (the default path for this directory
is \Program Files\Borland\Common Files\BDE). This file contains detailed informa-
tion on all BDE API functions and very good examples in both Object Pascal and C.

Check()

All BDE functions return a value of type DBIRESULT, which indicates the success or failure of
the function call. Rather than going through the cumbersome process of checking the result
of every BDE function call, Delphi defines a procedure called Check (), which accepts a
DBIRESULT as a parameter. This procedure will raise an exception when the DBIRESULT indi-
cates any value except success. The following code shows how to, and how not to, make a
BDE function call:

// !'!'Don't do this:
var

Extending Database VCL

CHAPTER 30

Rez: DBIRESULT;
A: array[0..dbiMaxUserNameLen] of char;
begin
Rez := dbiGetNetUserName(A); // make BDE call
if Rez <> DBIERR_NONE then // handle error
// handle error here
else begin
// continue with function
end;
end;

// !'Do do this:

var
A: array[0..dbiMaxUserNameLen] of char;

begin
{ Handle error and make BDE call at one time. }
{ Exception will be raised in case of error. }
Check (dbiGetNetUserName(A));
// continue with function

end;

Cursors and Handles

Many BDE functions accept as parameters handles to cursors or databases. Roughly speaking,
a cursor handle is a BDE object that represents a particular set of data positioned at some par-
ticular row in that data. The data type of a cursor handle is hDBICur. Delphi surfaces this con-
cept as the current record in a particular table, query, or stored procedure. The Handle
properties of TTable, TQuery, and TStoredProc hold this cursor handle. Remember to pass the
Handle of one of these objects to any BDE function that requires an hDBICur.

Some BDE functions also require a handle to a database. A BDE database handle is of type
hDBIDb, and it represents some particular open database—either a local or networked directory
in the case of dBASE or Paradox, or a server database file in the case of a SQL server data-
base. You can obtain this handle from a TDatabase through its Handle property. If you’re not
connecting to a database using a TDatabase object, the DBHandle properties of TTable, TQuery,
and TStoredProc also contain this handle.

Synching Cursors

It’s been established that an open Delphi dataset has the concept of a current record, whereas
the underlying BDE maintains the concept of a cursor that points to some particular record in a
dataset. Because of the way Delphi performs record caching to optimize performance, some-
times the Delphi current record is not in sync with the underlying BDE cursor. Normally, this
is not a problem because this behavior is business as usual for VCL’s database framework.

1589

w
o

TDA 3svavivqg
DNIANILX]

1590

Database Development

PART IV

However, if you want to make a direct call to a BDE function that expects a cursor as a parame-
ter, you need to ensure that Delphi’s current cursor position is synchronized with the underlying
BDE cursor. It might sound like a daunting task, but it’s actually quite easy to do. Simply call
the UpdateCursorPos () method of a TDataSet descendant to perform this synchronization.

In a similar vein, after making a BDE call that modifies the position of the underlying cursor,
you need to inform VCL that it needs to resynchronize its own current record position with that
of the BDE. To do this, you must call the CursorPosChanged () method of TDataSet descen-
dants immediately after calling into the BDE. The following code demonstrates how to use
these cursor-synchronization functions:

procedure DoSomethingWithTable(T: TTable);

begin
T.UpdateCursorPos;
// call BDE function(s) which modifies cursor position
T.CursorPosChanged;

end;

dBASE Tables

dBASE tables have a number of useful capabilities that are not directly supported by Delphi.
These features include, among other things, the maintenance of a unique physical record num-
ber for each record, the capability to “soft-delete” records (delete records without removing
them from the table), the capability to undelete soft-deleted records, and the capability to pack
a table to remove soft-deleted records. In this section, you’ll learn about the BDE functions
involved in performing these actions, and you’ll create a TTable descendant called
TdBaseTable that incorporates these features.

Physical Record Number

dBASE tables maintain a unique physical record number for each record in a table. This num-
ber represents a record’s physical position relative to the beginning of the table (regardless of
any index currently applied to the table). To obtain a physical record number, you must call the
BDE’s DbiGetRecord() function, which is defined as follows:

function DbiGetRecord(hCursor: hDBICur; eLock: DBILockType;
pRecBuff: Pointer; precProps: pRECProps): DBIResult stdcall;

hCursor is the cursor handle. Usually, this is the Handle property of the TDataSet descendant.

eLock is an optional request for the type of lock to place on the record. This parameter is of
type DBILockType, which is an enumerated type defined as follows:

type
DBILockType = (

Extending Database VCL

CHAPTER 30

dbiNOLOCK, // No lock (Default)
dbiWRITELOCK, // Write lock
dbiREADLOCK) ; // Read lock

In this case you don’t want to place a lock on the record because you’re not intending to mod-
ify the record content; therefore, dbiNOLOCK is the appropriate choice.

pRecBuff is a pointer to a record buffer. Because you want to obtain only the record properties
and not the data, you should pass Nil for this parameter.

pRecProps is a pointer to a RECProps record. This record is defined as follows:

type

pRECProps = "“RECProps;

RECProps = packed record // Record properties
iSegqNum : Longint; // When Seqg# supported only
iPhyRecNum : Longint; // When Phy Rec#s supported only
iRecStatus : Word; // Delayed Updates Record Status
bSeqNumChanged : WordBool; // Not used
bDeleteFlag : WordBool; // When soft delete supported only

end;

As you can see, you can obtain a variety of information from this record. In this case, you're
concerned only with the iPhyRecNum field, which is valid only in the case of dBASE and
FoxPro tables.

Putting this all together, the following code shows a method of TdBaseTable that returns the
physical record number of the current record:

function TdBaseTable.GetRecNum: Longint;
{ Returns the physical record number of the current record. }
var

RP: RECProps;
begin

UpdateCursorPos; // update BDE from Delphi

{ Get current record properties }

Check (DbiGetRecord(Handle, dbiNOLOCK, Nil, @RP));

Result := RP.iPhyRecNum; // return value from properties
end;

Viewing Deleted Records

Viewing records that have been soft-deleted in a dBASE table is as easy as making one BDE
API call. The function to call is DbiSetProp (), which is a very powerful function that enables
you to modify the different properties of multiple types of BDE objects. For a complete
description of this function and how it works, your best bet is to check out the “Properties—
Getting and Setting” topic in the BDE help. This function is defined as follows:

1591

w
o

TDA 3svavivqg
DNIANILX]

1592

Database Development

PART IV

function DbiSetProp(hObj: hDBIObj; iProp: Longint;
iPropValue: Longint): DBIResult stdcall;

The hobj parameter holds a handle to some type of BDE object. In this case, it will be a cursor
handle.

The iProp parameter will contain the identifier of the property to be set. You’ll find a complete
list of these in the aforementioned topic in the BDE help. For the purposes of enabling or dis-
abling the view of deleted records, use the curSOFTDELETEON identifier.

iPropValue is the new value for the given property. In this case, it’s a Boolean value (¢ mean-
ing off; 1 meaning on).

The following code shows the SetViewDeleted () method of TdBaseTable:

procedure TdBaseTable.SetViewDeleted(Value: Boolean);
{ Allows the user to toggle between viewing and not viewing }
{ deleted records. }
begin
{ Table must be active }
if Active and (FViewDeleted <> Value) then begin
DisableControls; // avoid flicker
try
{ Magic BDE call to toggle view of soft deleted records }
Check (DbiSetProp(hDBIObj (Handle), curSOFTDELETEON, Longint(Value)));

finally
Refresh; // update Delphi
EnableControls; // flicker avoidance complete
end;
FViewDeleted := Value
end;

end;

This method first performs a test to ensure that the table is open and that the value to be set is
different than the value the FvViewDeleted field in the object already contains. It then calls
DisableControls() to avoid flicker of any data-aware controls attached to the table. The
DbiSetProp() function is called next (notice the necessary typecast of hDBICur’s Handle para-
meter to an hDBIObj). Think of hDBIObj as an untyped handle to some type of BDE object.
After that, the dataset is refreshed and any attached controls are reenabled.

Tip

Whenever you use DisableControls() to suspend a dataset’s connection to data-
aware controls, you should always use a try..finally block to ensure that the sub-
sequent call to EnableControls() takes place whether or not an error occurs.

Extending Database VCL

CHAPTER 30

Testing for a Deleted Record

When viewing a dataset that includes deleted records, you’ll probably need to determine as you
navigate through the dataset which records are deleted and which aren’t. Actually, you’ve
already learned how to perform this check. You can obtain this information using the
DbiGetRecord () function that you used to obtain the physical record number. The following
code shows this procedure. The only material difference between this procedure and
GetRecNum() is the checking of the bDeletedFlag field rather than the iPhyRecNo field of the
RECProps record. Here’s the code:

function TdBaseTable.GetIsDeleted: Boolean;

{ Returns a boolean indicating whether or not the current record }
{ has been soft deleted. }

var
RP: RECProps;
begin
if not FViewDeleted then // don't bother if they aren't viewing
Result := False // deleted records
else begin
UpdateCursorPos; // update BDE from Delphi
{ Get current record properties }
Check (DbiGetRecord(Handle, dbiNOLOCK, Nil, @RP));
Result := RP.bDeleteFlag; // return flag from properties
end;
end;

Undeleting a Record

So far, you’ve learned how to view deleted records as well as determine whether a record has
been deleted, and, of course, you already know how to delete a record. The only other thing you
need to learn regarding record deletion is how to undelete a record. Fortunately, the BDE makes
this an easy task thanks to the DbiUndeleteRecord() function, which is defined as follows:

function DbiUndeleteRecord(hCursor: hDBICur): DBIResult stdcall;

The lone parameter is a cursor handle for the current dataset. Using this function, you can cre-
ate an UndeleteRecord() method for TdBaseTable as shown here:

procedure TdBaseTable.UndeleteRecord;
begin
if not IsDeleted then
raise EDatabaseError.Create('Record is not deleted');
Check (DbiUndeleteRecord(Handle));
Refresh;
end;

1593

w
o

TDA 3svavivqg
DNIANILX]

1594

Database Development

PART IV

Packing a Table

To remove soft-deleted records from a dBASE table, that table must go through a process
called packing. For this, the BDE provides a function called DbiPackTable (), which is defined
as follows:

function DbiPackTable(hDb: hDBIDb; hCursor: hDBICur;
pszTableName: PChar; pszDriverType: PChar;
bRegenIdxs: Bool): DBIResult stdcall;

hDb is a handle to a database. You should pass the DBHandle property of a TDataSet descendant
or the Handle property of a TDatabase component in this parameter.

hCursor is a cursor handle. You should pass the Handle property of a TDataSet descendant in
this parameter. You may also pass Nil if you want to instead use the pszTableName and
pszDriverType parameters to identify the table.

pszTableName is a pointer to a string containing the name of the table.

pszDriverType is a pointer to a string representing the driver type of the table. If hCursor is
Nil, this parameter must be set to szDBASE. As a side note, it’s unusual that this parameter is
required because this function is supported only for dBASE tables—we don’t make the rules,
we just play by them.

bRegenIdxs indicates whether or not you want to rebuild all out-of-date indexes associated
with the table.

Here’s the Pack () method for the TdBaseTable class:

procedure TdBaseTable.Pack(RegenIndexes: Boolean);
{ Packs the table in order to removed soft deleted records }
{ from the file. }
const
SPackError = 'Table must be active and opened exclusively';
begin
{ Table must be active and opened exclusively }
if not (Active and Exclusive) then
raise EDatabaseError.Create(SPackError);
try
{ Pack the table }
Check(DbiPackTable (DBHandle, Handle, Nil, Nil, RegenIndexes));
finally
{ update Delphi from BDE }
CursorPosChanged;
Refresh;
end;
end;

The complete listing of the TdBaseTable object is provided in Listing 30.1, later in this chapter.

Extending Database VCL

CHAPTER 30

Paradox Tables

Paradox tables don’t have as many nifty features, such as soft deletion, but they do carry the
concept of a record number and table pack. In this section, you’ll learn how to extend a TTable
to perform these Paradox-specific tasks and to create a new TParadoxTable class.

Sequence Number

Paradox tables do not have the concept of a physical record number in the dBASE sense. They
do, however, maintain the concept of a sequence number for each record in a table. The
sequence number differs from the physical record number in that the sequence number is
dependent on whatever index is currently applied to the table. The sequence number of a
record is the order in which the record appears based on the current index.

The BDE makes it pretty easy to obtain a sequence number using the DbiGetSeqgNo () function,
which is defined as follows:

function DbiGetSeqgNo (hCursor: hDBICur; var iSeqNo: Longint): DBIResult;
stdcall;

hCursor is a cursor handle for a Paradox table, and the iSeqNo parameter will be filled in with
the sequence number of the current record. The following code shows the GetRecNum() func-
tion for TParadoxTable:

cfunction TParadoxTable.GetRecNum: Longint;

{ Returns the sequence number of the current record. }

begin
UpdateCursorPos; // update BDE from Delphi
{ Get sequence number of current record into Result }
Check (DbiGetSeqNo(Handle, Result));

end;

Table Packing

Table packing in Paradox has a different meaning than in dBASE because Paradox does not
support soft deletion of records. When a record is deleted in Paradox, the record is removed
from the table, but a “hole” is left in the database file where the record used to be. To compress
these holes left by deleted records and make the table smaller and more efficient, you must
pack the table.

Unlike with dBASE tables, there’s no obvious BDE function you can use to pack a Paradox
table. Instead, you must use DbiDoRestructure() to restructure the table and specify that the
table should be packed as it’s restructured. DbiDoRestructure() is defined as follows:
function DbiDoRestructure(hDb: hDBIDb; iTblDescCount: Word;

pTblDesc: pCRTblDesc; pszSaveAs, pszKeyviolName,
pszProblemsName: PChar; bAnalyzeOnly: Bool): DBIResult stdcall;

1595

w
o

TDA 3svavivqg
DNIANILX]

1596

Database Development

PART IV

hDb is the handle to a database. However, because this function will not work when Delphi has
the table open, you won’t be able to use the DBHandle property of a TDataSet. To overcome
this, the sample code (shown a bit later) that uses this function demonstrates how to create a
temporary database.

iTblDescCount is the number of table descriptors. This parameter must be set to 1 because the
current version of the BDE supports only one table descriptor per call.

pTblDesc is a pointer to a CRTb1Desc record. This is the record that identifies the table and
specifies how the table is to be restructured. This record is defined as follows:

type

pCRTb1lDesc = "“CRTblDesc;

CRTblDesc = packed record // Create/Restruct Table descr
szTb1Name : DBITBLNAME; // TableName incl. optional path & ext
szTb1lType : DBINAME; // Driver type (optional)
szErrTblName : DBIPATH; // Error Table name (optional)
szUserName : DBINAME; // User name (if applicable)
szPassword : DBINAME; // Password (optional)
bProtected : WordBool; // Master password supplied in szPassword
bPack : WordBool; // Pack table (restructure only)
iFldCount : Word; // Number of field defs supplied
pecrF1dOp : pCROpType; // Array of field ops
pfldDesc : pFLDDesc; // Array of field descriptors
iIdxCount : Word; // Number of index defs supplied
pecrIdxOp : pCROpType; // Array of index ops
pidxDesc : PIDXDesc; // Array of index descriptors
iSecRecCount : Word; // Number of security defs supplied
pecrSecOp : pCROpType; // Array of security ops
psecDesc : pSECDesc; // Array of security descriptors
ivValChkCount : Word; // Number of val checks
pecrValChkOp : pCROpType; // Array of val check ops
pvchkDesc : pVCHKDesc; // Array of val check descs
iRintCount : Word; // Number of ref int specs
pecrRintOp : pCROpType; // Array of ref int ops
printDesc : pRINTDesc; // Array of ref int specs
iOptParams : Word; // Number of optional parameters
pfldOptParams: pFLDDesc; // Array of field descriptors
pOptData : Pointer; // Optional parameters

end;

For Paradox table packing, it’s only necessary to specify values for the szTb1Name, szTb1Type,
and bPack fields.

pszSaveAs is an optional string pointer that identifies the destination table if it is different than
the source table.

Extending Database VCL

CHAPTER 30

pszKeyviolName is an optional string pointer that identifies the table to which records that
cause key violations during the restructure will be sent.

pszProblemsName is an optional string pointer that identifies the table to which records that
cause problems during the restructure will be sent.

bAnalyzeOnly is unused.

The following code shows the Pack () method of TParadoxTable. You can see from the code
how the CRTb1Desc record is initialized and how the temporary database is created using the
DbiOpenDatabase () function. Also note the finally block, which ensures that the temporary
database is cleaned up after use.

procedure TParadoxTable.Pack;
var
TblDesc: CRTblDesc;
TempDBHandle: HDBIDb;
WasActive: Boolean;
begin
{ Initialize TblDesc record }
FillChar(TblDesc, SizeOf(TblDesc), 0); // fill with 0s
with TblDesc do begin

StrPCopy(szTblName, TableName); // set table name
StrCopy(szTblType, szPARADOX) ; // set table type
bPack := True; /| set pack flag
end;
{ Store table active state. Must close table to pack. }
WasActive := Active;
if WasActive then Close;
try

{ Create a temporary database. Must be read-write/exclusive }
Check (DbiOpenDatabase (PChar (DatabaseName), Nil, dbiREADWRITE,
dbiOpenExcl, Nil, @, Nil, Nil, TempDBHandle));
try
{ Pack the table }
Check (DbiDoRestructure(TempDBHandle, 1, @TblDesc, Nil, Nil, Nil,
False));
finally
{ Close the temporary database }
DbiCloseDatabase(TempDBHandle) ;
end;
finally
{ Reset table active state }
Active := WasActive;
end;
end;

1597

w
o

TDA 3svavivqg
DNIANILX]

Database Development

1598

PART IV

Listing 30.1 shows the DDGTb1s unit in which the TdBaseTable and TParadoxTable objects are
defined.

Listing 30.1 The DDGTbls.pas Unit

unit DDGTbls;
interface
uses DB, DBTables, BDE;

type
TdBaseTable = class(TTable)
private
FviewDeleted: Boolean;
function GetIsDeleted: Boolean;
function GetRecNum: Longint;
procedure SetViewDeleted(Value: Boolean);
protected
function CreateHandle: HDBICur; override;
public
procedure Pack(RegenIndexes: Boolean);
procedure UndeleteRecord;
property IsDeleted: Boolean read GetIsDeleted;
property RecNum: Longint read GetRecNum;
property ViewDeleted: Boolean read FViewDeleted write SetViewDeleted;
end;

TParadoxTable = class(TTable)
private
protected
function CreateHandle: HDBICur; override;
function GetRecNum: Longint;
public
procedure Pack;
property RecNum: Longint read GetRecNum;
end;

implementation

uses SysUtils;

{ TdBaseTable }

function TdBaseTable.GetIsDeleted: Boolean;

{ Returns a boolean indicating whether or not the current record }
{ has been soft deleted. }

Extending Database VCL

CHAPTER 30
var
RP: RECProps;
begin
if not FViewDeleted then // don't bother if they aren't viewing
Result := False // deleted records
else begin
UpdateCursorPos; // update BDE from Delphi
{ Get current record properties }
Check (DbiGetRecord(Handle, dbiNOLOCK, Nil, @RP));
Result := RP.bDeleteFlag; // return flag from properties
end;
end;
function TdBaseTable.GetRecNum: Longint;
{ Returns the physical record number of the current record. }
var
RP: RECProps;
begin
UpdateCursorPos; // update BDE from Delphi
{ Get current record properties }
Check (DbiGetRecord(Handle, dbiNOLOCK, Nil, @RP));
Result := RP.iPhyRecNum; // return value from properties
end;
function TdBaseTable.CreateHandle: HDBICur;
{ Overridden from ancestor in order to perform a check to }
{ ensure that this is a dBASE table. }
var
CP: CURProps;
begin
Result := inherited CreateHandle; // do inherited
if Result <> Nil then begin
{ Get cursor properties, and raise exception if the }
{ table isn't using the dBASE driver. }
Check (DbiGetCursorProps(Result, CP));
if not (CP.szTableType = szdBASE) then
raise EDatabaseError.Create('Not a dBASE table');
end;
end;
procedure TdBaseTable.Pack(RegenIndexes: Boolean);
{ Packs the table in order to removed soft deleted records }
{ from the file. }
const
SPackError = 'Table must be active and opened exclusively';
begin
continues

1599

w
o

TDA 3svavivqg
DNIANILX]

Database Development

1600

PART IV

LisTiNG 30.1 Continued

{ Table must be active and opened exclusively }
if not (Active and Exclusive) then
raise EDatabaseError.Create(SPackError);
try
{ Pack the table }
Check(DbiPackTable (DBHandle, Handle, Nil, Nil, RegenIndexes));
finally
{ update Delphi from BDE }
CursorPosChanged;
Refresh;
end;
end;

procedure TdBaseTable.SetViewDeleted(Value: Boolean);
{ Allows the user to toggle between viewing and not viewing }
{ deleted records. }
begin
{ Table must be active }
if Active and (FViewDeleted <> Value) then begin
DisableControls; // avoid flicker
try
{ Magic BDE call to toggle view of soft deleted records }
Check (DbiSetProp(hdbiObj (Handle), curSOFTDELETEON, Longint(Value)));

finally
Refresh; // update Delphi
EnableControls; // flicker avoidance complete
end;
FViewDeleted := Value
end;

end;

procedure TdBaseTable.UndeleteRecord;
begin
if not IsDeleted then
raise EDatabaseError.Create('Record is not deleted');
Check (DbiUndeleteRecord(Handle));
Refresh;
end;

function TParadoxTable.CreateHandle: HDBICur;
{ Overridden from ancestor in order to perform a check to }
{ ensure that this is a Paradox table. }
var
CP: CURProps;
begin
Result := inherited CreateHandle; // do inherited

Extending Database VCL

CHAPTER 30 1601
if Result <> Nil then begin
{ Get cursor properties, and raise exception if the }
{ table isn't using the Paradox driver. }
Check (DbiGetCursorProps(Result, CP));
if not (CP.szTableType = szPARADOX) then
raise EDatabaseError.Create('Not a Paradox table');
end;
end;
function TParadoxTable.GetRecNum: Longint;
{ Returns the sequence number of the current record. }
begin
UpdateCursorPos; // update BDE from Delphi
{ Get sequence number of current record into Result }
Check (DbiGetSeqNo(Handle, Result));
end;
procedure TParadoxTable.Pack;
var
TblDesc: CRTblDesc;
TempDBHandle: HDBIDb;
WasActive: Boolean;
begin
{ Initialize TblDesc record }
FillChar(TblDesc, SizeOf(TblDesc), @); // fill with @s
with TblDesc do begin
StrPCopy(szTblName, TableName); // set table name
szTb1lType := szPARADOX; // set table type
bPack := True; // set pack flag
end;
{ Store table active state. Must close table to pack. }
WasActive := Active;
if WasActive then Close;
try
{ Create a temporary database. Must be read-write/exclusive }
Check (DbiOpenDatabase (PChar (DatabaseName), Nil, dbiREADWRITE,
dbiOpenExcl, Nil, @, Nil, Nil, TempDBHandle));
try
{ Pack the table }
Check (dbiDoRestructure(TempDBHandle, 1, @TblDesc, Nil, Nil, Nil,
False)); 3
finally
{ Close the temporary database }
DbiCloseDatabase (TempDBHandle);
end;
finally
continues

o

TDA 3svavivqg
DNIANILX]

1602

Database Development

PART IV

LisTiNG 30.1 Continued

{ Reset table active state }
Active := WasActive;
end;
end;

end.

Limiting TQuery Result Sets

Here’s a classic SQL programming faux pas: Your application issues a SQL statement to the
server that returns a result set consisting of a gazillion rows, thereby making the application
user wait forever for the query to return and tying up precious server and network bandwidth.
Conventional SQL wisdom dictates that one shouldn’t issue queries that are so general that
they cause so many records to be fetched. However, this is sometimes unavoidable, and TQuery
doesn’t seem to help matters much, because it doesn’t provide a means for restricting the num-
ber of records in a result set to be fetched from the server. Fortunately, the BDE does provide
this capability, and it’s not very difficult to surface in a TQuery descendant.

The BDE API call that performs this magic is the catchall DbiSetProp () function, which was
explained earlier in this chapter. In this case, the first parameter to DbiSetProp() is the cursor
handle for the query, the second parameter must be curMAXROWS, and the final parameter should
be set to the maximum number of rows to which you want to restrict the result set.

The ideal place to make the call to this function is in the PrepareCursor () method of TQuery,
which is called immediately after the query is opened. Listing 30.2 shows the ResQuery unit, in
which the TRestrictedQuery component is defined.

LisTING 30.2 The ResQuery.pas Unit

unit ResQuery;
interface
uses

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, DB, DBTables, BDE;

type
TRestrictedQuery = class(TQuery)
private
FMaxRowCount: Longint;
protected

procedure PrepareCursor; override;

Extending Database VCL

CHAPTER 30

published
property MaxRowCount: Longint read FMaxRowCount write FMaxRowCount;
end;

procedure Register;
implementation

procedure TRestrictedQuery.PrepareCursor;
begin
inherited PrepareCursor;
if FMaxRowCount > @ then
Check (DbiSetProp (hDBIObj (Handle), curMAXROWS, FMaxRowCount));
end;

procedure Register;
begin

RegisterComponents('DDG', [TRestrictedQuery]);
end;

end.

You can limit the result set of a query by simply setting the MaxRowCount property to a value
greater than zero. To further illustrate the point, Figure 30.1 shows the result of a query
restricted to three rows, as shown in SQL Monitor.

(5] SOL Mo
Eile Edit Miew Clents Options Help

B E 0
Ref No. Time Stamp SOL Statement N
38 131129 SOL Data Out INTRBASE - Calumn = 11, Name = DISCOUNT, Type = fAdFLOAT,
33 131129 SOL Dats Out INTABASE - Column = 12, Name = ITEM_TYPE, Type = AdZSTRIF
40 131129 SOL Data Out INTRBASE - Column = 13, Name = AGED, Type = idFLOAT, Prec:
Bl 131129 SOL Stmt: INTABASE - Fetch

42 131129 SOLVendor INTRBASE - iec_dsgl_feich

43 131129 SOL Dats Out INTRABASE - Column = 1, Name = PO_NUMBER, Type = AdZSTRIL
44 131129 SOL Data Out INTRBASE - Column = 2, Name = CUST_NG, Type = dINT32, Pre
45 131129 SOL Dats Out INTABASE - Column = 3, Name = SALES_REP, Typs = fidiNT16,
46 131129 SOL Data Out INTRBASE - Calumn = 4, Name = ORDER_STATLS, Type = fdZ5
47 131129 SOL Dats Out INTABASE - Column = 5, Name = DRDER_DATE, Type = fidTIME!
48 131129 SOL Data Out INTRBASE - Column = B, Name = SHIP_DATE, Type = idTIMEST:
49 131129 SOL Dats Out INTABASE - Column = 7, Name = DATE_NEEDED, Type = fidTIME
50 131129 SOL Data Out INTRBASE - Calumn = B, Name = PAID, Type = ZSTRING, Prec
51 131129 SOL Dats Out: INTABASE - Name = OTY_ORDERED, Type = fldINT:
52 131129 SOL Data Out INTRBASE - . Name = TOTAL_VALUE, Type = fidINT
53 131129 SOL Dats Out INTABASE - ~Name = DISCOUNT. Type = fidFLOAT,
SOL Data Qut INTRBASE - . Name = ITEM_TYPE. Type = IZSTRIF
. Name = AGED, Type = fldFLOAT, Preci
I T

SOL Vendor: INTRBASE - isc_dsg|_free_statement
S50L Transact INTRBASE -XACT Comemit
E0 13:11:23 S0L Vendor: INTRBASE - isc_commit_transaction

SOL Stmt: INTRBASE - ROW FETCH LIMIT

13 Y

siE

Trace Enabled Delphi 4

Ficure 30.1

A restricted query viewed from SQL Monitor.

1603

w
o

TDA 3svavivqg
DNIANILX]

1604

Database Development

PART IV

BDE Miscellany

Through our development of database applications, we’ve found a few common development
tasks that could serve to be automated a bit. Some of these miscellaneous tasks include per-
forming SQL aggregate functions on a table, copying tables, and obtaining a list of Paradox
users for a particular session.

SQL Aggregate Functions

Generally speaking, SQL aggregate functions are functions built into the SQL language that
perform some arithmetic operation on one or more columns from one or more rows. Some
common examples of this are sum(), which adds columns from multiple rows, avg(), which
calculates the average value of columns from multiple rows, min (), which finds the minimum
value of columns in multiple rows, and max (), which (as you might guess) determines the
maximum value of columns within multiple rows.

Aggregate functions such as these can sometimes be inconvenient to use in Delphi. For exam-
ple, if you’re working with TTables to access data, using these functions involves creating a
TQuery, formulating the correct SQL statement for the table and column in question, executing
the query, and obtaining the result from the query. Clearly this is a process crying out to be
automated, and the code in Listing 30.3 does just that.

Listing 30.3 Automating SQL Aggregate Functions

type
TSQLAggFunc = (safSum, safAvg, safMin, safMax);

const
// SQL aggregate functions
SQLAggStrs: array[TSQLAggFunc] of string = (
'select sum(%s) from %s',
'select avg(%s) from %s',
'select min(%s) from %s',
'select max(%s) from %s');

o°

function CreateQueryFromTable(T: TTable): TQuery;
// returns a query hooked to the same database and session as table T
begin

Result := TQuery.Create(nil);

try
Result.DatabaseName := T.DatabaseName;
Result.SessionName := T.SessionName;
except

Result.Free;
Raise;

Extending Database VCL

end;
end;

CHAPTER 30

function DoSQLAggFunc(T: TTable; FieldNames: string;

Func: TSQLAggFunc): Extended;

begin
with CreateQueryFromTable(T) do
begin
try
SQL.Add (Format (SQLAggStrs[Func],
Open;
Result := Fields[@].AsFloat;
finally
Free;
end;
end;
end;
function SumField(T: TTable; Field: String):
begin
Result := DoSQLAggFunc(T, Field, safSum);
end;
function AvgField(T: TTable; Field: String):
begin
Result := DoSQLAggFunc(T, Field, safAvg);
end;
function MinField(T: TTable; Field: String):
begin
Result := DoSQLAggFunc(T, Field, safMin);
end;
function MaxField(T: TTable; Field: string):
begin
Result := DoSQLAggFunc(T, Field, safMax);
end;

[FieldNames, T.TableName]));

Extended;

Extended;

Extended;

Extended;

1605

As you can see from the listing, each of the individual aggregate function wrappers call into
the DoSQLAggFun () function. In this function, the CreateQueryFromTable () function creates
and returns a TQuery component that uses the same database and session as the TTable passed
in the T parameter. The proper SQL string is then formatted from an array of strings, the query
is executed, and the query’s result is returned from the function.

w
o

TDA 3svavivqg
DNIANILX]

1606

Database Development

PART IV

Quick Table Copy

If you want to make a copy of a table, traditional wisdom might dictate a few different courses
of action. The first might be to use the Win32 API’s CopyFile() function to physically copy
the table file(s) from one location to another. Another option is to use a TBatchMove component
to copy one TTable to another. Yet another option is to use TTable’s BatchMove () method to
perform the copy.

However, there are problems with each of these traditional alternatives: A brute-force file copy
using the CopyFile () API function may not work if the table files are open by another process
or user, and it certainly will not work if the table exists within some type of database file on a
SQL server. A file copy might become a very complex task if you consider that you may also
have to copy associated index, BLOB, or value files. The use of TBatchMove would solve these
problems, but only if you submit to the disadvantage of the complexity involved in using this
component. An additional drawback is the fact that the batch move process is much slower
than a direct file copy. Using TTable.BatchMove () does help to alleviate the issue of complex-
ity in performing the table copy, but it doesn’t overcome the performance shortcomings inher-
ent in the batch move process.

Fortunately, the BDE developers also recognized this issue and made a BDE API function
available that provides the best of both worlds: speed and ease of use. The function in question
is DbiCopyTable (), and it’s declared as shown here:

function DbiCopyTable ({ Copy one table to another }
hDb : hDBIDb; { Database handle }
bOverWrite : Bool; { True, to overwrite existing file }
pszSrcTableName : PChar; { Source table name }
pszSrcDriverType : PChar; { Source driver type }
pszDestTableName : PChar { Destination table name }

): DBIResult stdcall;

Because the BDE API function can’t deal directly with VCL TTable components, the following
procedure wraps DbiCopyTable() into a nifty routine to which you can pass a TTable and a
destination table name:

procedure QuickCopyTable(T: TTable; DestTblName: string;
Overwrite: Boolean);
// Copies TTable T to an identical table with name DestTblName.
// Will overwrite existing table with name DestTblName if Overwrite is
// True.
var
DBType: DBINAME;
WasOpen: Boolean;
NumCopied: Word;
begin

Extending Database VCL

CHAPTER 30

WasOpen := T.Active; // save table active state

if not WasOpen then T.Open; // ensure table is open

// Get driver type string

Check (DbiGetProp (hDBIObj (T.Handle), drvDRIVERTYPE, @DBType,
SizeOf (DBINAME), NumCopied));

// Copy the table

Check (DbiCopyTable(T.DBHandle, Overwrite, PChar(T.TableName), DBType,
PChar (DestTblName)));

T.Active := WasOpen; // restore active state

end;

1607

NoTE

For local databases (Paradox, dBASE, Access, and FoxPro), all files associated with the
table—index and BLOB files, for example—are copied to the destination table. For

tables residing in a SQL database, only the table will be copied, and it's up to you to
ensure that the necessary indexes and other elements are applied to the destination

table.

Paradox Session Users

If your application uses Paradox tables, you may come across a situation where you need to
determine which users are currently using a particular Paradox table. You can accomplish this
with the DbiOpenUserList () BDE API function. This function provides a BDE cursor for a
list of users for the current session. The following procedure demonstrates how to use this
function effectively:

procedure GetPDoxUsersForSession(Sess: TSession; UserList: TStrings);
// Clears UserList and adds each user using the same netfile as session
// Sess to the list. If Sess = nil, then procedure works for default
// net file.
var
WasActive: Boolean;
SessHand: hDBISes;
ListCur: hDBICur;
User: UserDesc;
begin
if UserList = nil then Exit;
UserList.Clear;
if Assigned(Sess) then
begin
WasActive := Sess.Active;
if not WasActive then Sess.Open;
Check (DbiStartSession(nil, SessHand, PChar(Sess.NetFileDir)));

w
o

TDA 3svavivqg
DNIANILX]

Database Development

1608

PART IV

end
else
Check (DbiStartSession(nil, SessHand, nil));
try
Check (DbiOpenUserList(ListCur));
try
while DbiGetNextRecord(ListCur, dbiNOLOCK, @User, nil) =
DBIERR_NONE do
UserList.Add(User.szUserName);
finally
DbiCloseCursor(ListCur); // close "user list table" cursor
end;
finally
DbiCloseSession(SessHand);
if Assigned(Sess) then Sess.Active := WasActive;
end;
end;

The interesting thing about the DbiOpenUserList () function is that it creates a cursor for a
table that’s manipulated in the same manner as any other BDE table cursor. In this case,
DbiGetNextRecord() is called repeatedly until the end of the table is reached. The record
buffer for this table follows the format of the UserDesc record, which is defined in the BDE
unit as follows:

type

pUSERDesc = "“USERDesc;

USERDesc = packed record { User description }
szUserName : DBIUSERNAME; { User Name }
iNetSession : Word; { Net level session number }
iProductClass: Word; { Product class of user }
szSerialNum : packed array [0..21] of Char; { Serial number }

end;

Each call to DbiGetNextRecord() fills a UserDesc record called User, and the szUserName
field of that record is added to the UserList string list.

Tip

Note the use of the try..finally resource protection blocks in the
GetPDoxUsersForSession () procedure. These ensure that both the BDE resources
associated with the session and cursor are properly released.

Extending Database VCL

CHAPTER 30

Writing Data-Aware VCL Controls

Chapter 21, “Writing Delphi Custom Components,” and Chapter 22, “Advanced Component
Techniques,” provided you with thorough coverage of component-building techniques and
methodologies. One large topic that wasn’t covered, however, is data-aware controls. Actually,
there isn’t much more to creating a data-aware control than there is to creating a regular VCL
control, but a typical data-aware component is different in four key respects:

e Data-aware controls maintain an internal data link object. A descendant of TDatalLink,
this object provides the means by which the control communicates with a TDataSource.
For data-aware controls that connect to a single field of a dataset, this is usually a
TFieldDatalLink. The control should handle the OnDataChange event of the data link in
order to receive notifications when the field or record data has changed.

e Data-aware controls must handle the CM_GETDATALINK message. The typical response to
this message is to return the data link object in the message’s Result field.

» Data-aware controls should surface a property of type TDataSource so the control can be
connected to a data source by which it will communicate with a dataset. By convention,
this property is called DataSource. Controls that connect to a single field should also
surface a string property to hold the name of the field to which it is connected. By con-
vention, this property is called DataField.

e Data-aware controls should override the Notification() method of TComponent. By

overriding this method, the data-aware control can be notified if the data source compo-
nent connected to the control has been deleted from the form.

To demonstrate the creation of a simple data-aware control, Listing 30.4 shows the DBSound
unit. This unit contains the TDBWavPlayer component, a component that plays WAV sounds
from a BLOB field in a dataset.

LisTING 30.4 The DBSound.pas Unit

1609

unit DBSound;
interface

uses Windows, Messages, Classes, SysUtils, Controls, Buttons, DB,
DBTables, DbCtrls;

type
EDBWavError = class(Exception);

TDBWavPlayer = class(TSpeedButton)
private

continues

w
o

TDA 3svavivqg
DNIANILX]

Database Development

1610

PART IV

LisTiING 30.4 Continued

FAutoPlay: Boolean;
FDataLink: TFieldDatalLink;
FDataStream: TMemoryStream;
FExceptOnError: Boolean;
procedure DataChange(Sender: TObject);
function GetDataField: string;
function GetDataSource: TDataSource;
function GetField: TField;
procedure SetDataField(const Value: string);
procedure SetDataSource(Value: TDataSource);
procedure CMGetDataLink(var Message: TMessage); message
CM_GETDATALINK;
procedure CreateDataStream;
procedure PlaySound;
protected
procedure Notification(AComponent: TComponent;
Operation: TOperation); override;
public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;
procedure Click; override;
property Field: TField read GetField;
published
property AutoPlay: Boolean read FAutoPlay write FAutoPlay
default False;
property ExceptOnError: Boolean read FExceptOnError
write FExceptOnError;
property DataField: string read GetDataField write SetDataField;
property DataSource: TDataSource read GetDataSource
write SetDataSource;
end;

implementation
uses MMSystem;

const
// Error strings
SNotBlobField = 'Field "%s" is not a blob field';
SPlaySoundErr = 'Error attempting to play sound';

constructor TDBWavPlayer.Create(AOwner: TComponent);

begin
inherited Create(AOwner); // call inherited
FDatalLink := TFieldDatalink.Create; // create field data link

Extending Database VCL

FDatalLink.OnDataChange := DataChange; // get data link notifications
FDataStream := TMemoryStream.Create; // create worker memory stream

end;

destructor TDBWavPlayer.Destroy;
begin
FDataStream.Free;
FDatalLink.Free;
FDataLink := Nil;
inherited Destroy;
end;

procedure TDBWavPlayer.Click;

begin
inherited Click; // do default behavior
PlaySound; // play the sound

end;

procedure TDBWavPlayer.CreateDataStream;
// creates memory stream from wave file in blob field
var
BS: TBlobStream;
begin
// make sure it's a blob field
if not (Field is TBlobField) then

raise EDBWavError.CreateFmt(SNotBlobField, [DataField]);

// create a blob stream

BS := TBlobStream.Create(TBlobField(Field), bmRead);

try
// copy from blob stream to memory stream
FDataStream.SetSize(BS.Size);
FDataStream.CopyFrom(BS, BS.Size);

finally
BS.Free; // free blob stream

end;

end;

procedure TDBWavPlayer.PlaySound;
// plays wave sound loaded in memory stream

begin
// make sure we are hooked to a dataset and field
if (DataSource <> nil) and (DataField <> '') then
begin

// make sure data stream is created
if FDataStream.Size = 0 then CreateDataStream;

// Play the sound in the memory stream, raise exception on error

CHAPTER 30

continues

1611

w
o

TDA 3svavivqg
DNIANILX]

1612

Database Development

PART IV

LisTiING 30.4 Continued

if (not MMSystem.PlaySound(FDataStream.Memory, @, SND_ASYNC

SND_MEMORY)) and FExceptOnError then
raise EDBWavError.Create(SPlaySoundErr);
end;
end;

procedure TDBWavPlayer.DataChange(Sender: TObject);
// OnChange handler FFieldDatalLink.DataChange
begin
// deallocate memory occupied by previous wave file
with FDataStream do if Size <> @ then SetSize(0);
// if AutoPlay is on, the play the sound
if FAutoPlay then PlaySound;
end;

procedure TDBWavPlayer.Notification(AComponent: TComponent;
Operation: TOperation);
begin
inherited Notification(AComponent, Operation);
// do some required housekeeping
if (Operation = opRemove) and (FDataLink <> nil) and
(AComponent = DataSource) then DataSource := nil;
end;

function TDBWavPlayer.GetDataSource: TDataSource;
begin

Result := FDatalLink.DataSource;
end;

procedure TDBWavPlayer.SetDataSource(Value: TDataSource);
begin

FDataLink.DataSource := Value;

if Value <> nil then Value.FreeNotification(Self);
end;

function TDBWavPlayer.GetDataField: string;
begin

Result := FDatalLink.FieldName;
end;

procedure TDBWavPlayer.SetDataField(const Value: string);
begin

FDatalLink.FieldName := Value;
end;

or

Extending Database VCL

CHAPTER 30

function TDBWavPlayer.GetField: TField;
begin

Result := FDatalLink.Field;
end;

procedure TDBWavPlayer.CMGetDataLink(var Message: TMessage);
begin

Message.Result := Integer(FDatalLink);
end;

end.

This component is a TSpeedButton descendant that, when pressed, can play a WAV sound
residing in a database BLOB field. The AutoPlay property can also be set to True, which will
cause the sound to play every time the user navigates to a new record in the table. When this
property is set, it might also make sense to set the Visible property of the component to False
so that a button doesn’t appear visually on the form.

In the FDataLink.OnChange handler, DataChange (), the component works by extracting the
BLOB field using a TBlobStream and copying the BLOB stream to a memory stream,
FDataStream. When the sound is in a memory stream, you can play it using the PlaySound ()
Win32 API function.

Extending TDataSet

One of the marquee features of the database VCL is the abstract TDataSet, which provides the
capability to manipulate non-BDE data sources within the database VCL framework.

In the Olden Days...

In previous versions of Delphi, the VCL database architecture was closed, making it was very
difficult to manipulate non-BDE data sources using VCL components. Figure 30.2 illustrates
the BDE-centric data set architecture found in Delphi 1 and 2.

As Figure 30.2 shows, TDataSet is essentially hard-coded for the BDE, and there’s no room in
this architecture for non-BDE data sources. Developers wanting to use non-BDE data sources
within VCL had two choices:

e Creating a DLL that looks to VCL like the BDE but talks to a different type of data
e Throwing TDataSet out the window and writing their own dataset class and data-aware

controls

Clearly, either of these options involves a very significant amount of work, and neither is a par-
ticularly elegant solution. Something had to be done.

1613

w
o

TDA 3svavivqg

DNIAN3LX]

Database Development

1614
PART IV
TTable TQuery TStoredProc
TDBDataSet
TDataSet
Borland Database Engine
Local Data Server Data ODBC Data
(Paradox, (Oracle, MS,
dBASE, Sybase, etc.)
Text)
FiGure 30.2

Delphi I and 2 VCL dataset architecture.

Modern Times

Recognizing these issues and the strong customer demand for easier access to non-BDE data

sources, the Delphi development team made it a priority to extend VCL’s data set architecture
in Delphi 3. The idea behind the new architecture was to make the TDataSet class an abstrac-
tion of a VCL dataset and to move the BDE-specific data set code into the new TBDEDataSet

class. Figure 30.3 provides an illustration of this new architecture.

When you understand how TDataSet was uncoupled from the BDE, the challenge becomes
how to employ this concept to create a TDataSet descendant that manipulates some type of
non-BDE data. And we’re not using the term challenge loosely; creating a functional TDataSet
descendant is not a task for the faint of heart. This is a fairly demanding task that requires
familiarity with VCL database architecture and component writing.

Tip

Delphi provides two examples of creating a TDataSet descendant—one very simple
and one very complicated. The simple example is the TTextDataSet class found in the
TextData unit in the \Delphi5\Demos\Db\TextData directory. This example encapsu-
lates TStringList as a one-field dataset. The complex example is the TBDEDataSet
class found in the DbTables unit in the VCL source. As mentioned earlier, this class
maps VCL's dataset architecture to the BDE.

Extending Database VCL

TTable TQuery TStoredProc

~N | 7

CHAPTER 30

1615

TDBDataSet
TClientDataSet Custom data set
TBDEDataSet
TDataSet TDataSet TDataSet
[[[
. . Custom data
Borland Database Engine DBClient.dll source
r{ r_\l }\’ IDProv32.dll

Local Data Server Data ODBC Data

(Paradox, (Oracle, MS,
dBASE, Sybase, etc.)
Text)

FiGure 30.3
Delphi 3 and higher VCL dataset architecture.

BDE

Creating a TDataSet Descendant

Most dataset implementations will fall in between TTextDataSet and TBDEDataSet in terms of
complexity. To provide an example of this, we’ll demonstrate how to create a TDataSet
descendant that manipulates an Object Pascal file of record (for a description of file of
record, see Chapter 12, “Working With Files”). The following record and file type will be

used for this example:

type

// arbitrary-length array of char used for name field

TNameStr = array[0..31] of char;

// this record info represents the "table" structure:

PDDGData = ~TDDGData;
TDDGData = record
Name: TNameStr;
Height: Double;
ShoeSize: Integer;
end;

// Pascal file of record which holds
TDDGDataFile = file of TDDGData;

"table"

data:

w
o

TDA 3svavivqg
DNIANILX]

1616

Database Development

PART IV

An Object Pascal file of record can provide a convenient and efficient way to store infor-
mation, but the format is inherently limited by its inability to insert records into or delete
records from the middle of the file. For this reason, we’ll use a two-file scheme to track the
“table” information: the first, data file, being the file of record; the second, index file,
maintaining a list of integers that represent seek values into the first file. This means that a
record’s position in the data file doesn’t necessarily coincide with its position in the dataset. A
record’s position in the dataset is controlled by the order of the index file; the first integer in
the index file contains the seek value of the first record into the data file, the second integer in
the index file contains the next seek value into the data file, and so on.

In this section we’ll discuss what’s necessary to create a TDataSet descendant called
TDDGDataSet, which communicates to this file of record.

TDataSet Abstract Methods

TDataSet, being an abstract class, is useless until you override the methods necessary for
manipulation of some particular type of dataset. In particular, you must at least override each
of TDataSet’s 23 abstract methods and perhaps some optional methods. For the sake of discus-
sion, we’ve divided them into six logical groupings: record buffer methods, navigational meth-
ods, bookmark methods, editing methods, miscellaneous methods, and optional methods.

The following code shows an edited version of TDataSet as it is defined in Db.pas. For clarity,
only the methods mentioned thus far are shown, and the methods are categorized based on the
logical groupings we discussed. Here’s the code:

type
TDataSet = class(TComponent)
{ ...}
protected
{ Record buffer methods }
function AllocRecordBuffer: PChar; virtual; abstract;
procedure FreeRecordBuffer(var Buffer: PChar); virtual; abstract;
procedure InternalInitRecord(Buffer: PChar); virtual; abstract;
function GetRecord(Buffer: PChar; GetMode: TGetMode;
DoCheck: Boolean):
TGetResult; virtual; abstract;
function GetRecordSize: Word; virtual; abstract;
function GetFieldData(Field: TField; Buffer: Pointer): Boolean;
override;
procedure SetFieldData(Field: TField; Buffer: Pointer); virtual;
abstract;
{ Bookmark methods }
function GetBookmarkFlag(Buffer: PChar): TBookmarkFlag; override;
procedure SetBookmarkFlag(Buffer: PChar; Value: TBookmarkFlag);
override;

Extending Database VCL

CHAPTER 30

procedure GetBookmarkData(Buffer: PChar; Data: Pointer); override;
procedure SetBookmarkData(Buffer: PChar; Data: Pointer); override;
procedure InternalGotoBookmark(Bookmark: Pointer); override;
procedure InternalSetToRecord(Buffer: PChar); override;
{ Navigational methods }
procedure InternalFirst; virtual; abstract;
procedure InternallLast; virtual; abstract;
{ Editing methods }
procedure InternalAddRecord(Buffer: Pointer; Append: Boolean);
virtual; abstract;
procedure InternalDelete; virtual; abstract;
procedure InternalPost; virtual; abstract;
{ Miscellaneous methods }
procedure InternalClose; virtual; abstract;
procedure InternalHandleException; virtual; abstract;
procedure InternallnitFieldDefs; virtual; abstract;
procedure InternalOpen; virtual; abstract;
function IsCursorOpen: Boolean; virtual; abstract;
{ optional methods }
function GetRecordCount: Integer; virtual;
function GetRecNo: Integer; virtual;
procedure SetRecNo(Value: Integer); virtual;
{ ...}

end;

Record Buffer Methods
You must override a number of methods that deal with record buffers. Actually, VCL does a
pretty good job of hiding the gory details of its record buffer implementation; TDataSet will
create and manage groups of buffers, so your job is primarily to decide what goes in the
buffers and to move data between different buffers. Because it’s a requirement for all TDataSet
descendants to implement bookmarks, we’ll store bookmark information after the record data
in the record buffer. The record we’ll use to describe bookmark information is as follows:
type
// Bookmark information record to support TDataset bookmarks:
PDDGBookmarkInfo = ~TDDGBookmarkInfo;
TDDGBookmarkInfo = record
BookmarkData: Integer;
BookmarkFlag: TBookmarkFlag;
end;

The BookmarkData field will represent a simple seek value into the data file. The
BookmarkFlag field is used to determine whether the buffer contains a valid bookmark, and it
will contain special values when the dataset is positioned on the BOF and EOF cracks.

1617

w
o

TDA 3svavivqg
DNIANILX]

1618

Database Development

PART IV

NoTE

Keep in mind that this implementation of bookmarks and record buffers is specific to
this solution. If you were creating a TDataSet descendant to manipulate some other
type of data, you might choose to implement your record buffer or bookmarks dif-
ferently. For example, the data source you're trying to encapsulate may natively sup-
port bookmarks.

Before examining the record buffer—specific methods, first take a look at the constructor for the
TDDGDataSet class:

constructor TDDGDataSet.Create(AOwner: TComponent);
begin
FIndexList := TIndexList.Create;
FRecordSize := SizeOf (TDDGData);
FBufferSize := FRecordSize + SizeOf (TDDGBookmarkInfo);
inherited Create(AOwner);
end;

This constructor does three important things: First, it creates the TIndexList object. This list
object is used as the index file described earlier to maintain order in the dataset. Next, the
FRecordSize and FBufferSize fields are initialized. FRecordSize holds the size of the data
record, and FBufferSize represents the total size of the record buffer (the data record size plus
the size of the bookmark information record). Finally, this method calls the inherited construc-
tor to perform the default TDataSet setup.

The following are TDataSet methods that deal with record buffers that must be overridden in a
descendant. Except for GetFieldData(), all are declared as abstract in the base class:

function AllocRecordBuffer: PChar; override;
procedure FreeRecordBuffer(var Buffer: PChar); override;
procedure InternalInitRecord(Buffer: PChar); override;
function GetRecord(Buffer: PChar; GetMode: TGetMode;
DoCheck: Boolean): TGetResult; override;
function GetRecordSize: Word; override;
function GetFieldData(Field: TField; Buffer: Pointer): Boolean; override;
procedure SetFieldData(Field: TField; Buffer: Pointer); override;

AllocRecordBuffer()

The AllocRecordBuffer () method is called to allocate memory for a single record buffer. In
this implementation of the method, the AllocMem() function is used to allocate enough mem-
ory to hold both the record data and the bookmark data:

Extending Database VCL

CHAPTER 30

function TDDGDataSet.AllocRecordBuffer: PChar;

begin

Result := AllocMem(FBufferSize);
end;
FreeRecordBuffer()

As you might expect, FreeRecordBuffer () must free the memory allocated by the
AllocRecordBuffer () method. It’s implemented using the FreeMem() procedure, as shown
here:

procedure TDDGDataSet.FreeRecordBuffer(var Buffer: PChar);
begin

FreeMem(Buffer);
end;

InternallnitRecord()

The InternalInitRecord() method is called to initialize a record buffer. In this method, you
can do things such as setting default field values and performing some type of initialization of
custom record buffer data. In this case, we simply zero-initialize the record buffer:

procedure TDDGDataSet.InternalInitRecord(Buffer: PChar);
begin

FillChar(Buffer”, FBufferSize, 0);
end;

GetRecord()

The primary function of the GetRecord () method is to retrieve the record data for either the
previous, current, or next record in the dataset. The return value of this function is of type
TGetResult, which is defined in the Db unit as follows:

TGetResult = (grOK, grBOF, greEOF, grError);

The meaning of each of the enumerations is pretty much self-explanatory: grok means success,
grBOF means the dataset is at the beginning, grEOF means the dataset is at the end, and
grError means an error has occurred.

The implementation of this method is as follows:

function TDDGDataSet.GetRecord(Buffer: PChar; GetMode: TGetMode;
DoCheck: Boolean): TGetResult;
var
IndexPos: Integer;
begin
if FIndexList.Count < 1 then
Result := greoF
else begin

1619

w
o

TDA 3svavivqg
DNIANILX]

Database Development

1620 PART IV

Result := grok;
case GetMode of
gmPrior:
if FRecordPos <= 0@ then
begin
Result := grBOF;
FRecordPos := -1;
end
else
Dec (FRecordPos) ;
gmCurrent:
if (FRecordPos < @) or (FRecordPos >= RecordCount) then
Result := grError;
gmNext:
if FRecordPos >= RecordCount-1 then
Result := greoOF

else
Inc (FRecordPos);
end;
if Result = grOk then
begin
IndexPos := Integer(FIndexList[FRecordPos]);

Seek (FDataFile, IndexPos);
BlockRead (FDataFile, PDDGData(Buffer)~, 1);
with PDDGBookmarkInfo(Buffer + FRecordSize)” do

begin
BookmarkData := FRecordPos;
BookmarkFlag := bfCurrent;
end;
end

else if (Result = grError) and DoCheck then
DatabaseError('No records');
end;
end;

The FRecordPos field tracks the current record position in the dataset. You’ll notice that
FRecordPos is incremented or decremented, as appropriate, when GetRecord() is called to
obtain the next or previous record. If FRecordPos contains a valid record number, FRecordPos
is used as an index into FIndexList. The number at that index is a seek value into the data file,
and the record data is read from that position in the data file into the buffer specified by the
Buffer parameter.

GetRecord() also has one additional job: When the DoCheck parameter is True and grError is
the potential return value, an exception should be raised.

Extending Database VCL

CHAPTER 30

GetRecordSize()

The GetRecordSize () method should return the size, in bytes, of the record data portion of the
record buffer. Be careful not to return the size of the entire record buffer; just return the size of
the data portion. In this implementation, we return the value of the FRecordSize field:

function TDDGDataSet.GetRecordSize: Word;

begin

Result := FRecordSize;
end;
GetFieldData()

The GetFieldData() method is responsible for copying data from the active record buffer (as
provided by the ActiveBuffer property) into a field buffer. This is often accomplished most
expediently using the Move () procedure. You can differentiate which field to copy using
Field’s Index or Name property. Also, be sure to copy from the correct offset into
ActiveBuffer because ActiveBuffer contains a complete record’s data and Buffer only holds
one field’s data. This implementation copies the fields from the internal buffer structure to its
respective TField:

function TDDGDataSet.GetFieldData(Field: TField; Buffer: Pointer):
Boolean;

begin
Result := True;
case Field.Index of
0:
begin

Move (ActiveBuffer~, Buffer”, Field.Size);
Result := PChar(Buffer)” <> #0;
end;
1: Move(PDDGData(ActiveBuffer)”.Height, Buffer”, Field.DataSize);
2: Move (PDDGData(ActiveBuffer)~.ShoeSize, Buffer”, Field.DataSize);
end;
end;

Both this method and SetFieldData() can become much more complex if you want to support
more advanced features such as calculated fields and filters.

SetFieldData()

The purpose of SetFieldData() is inverse to that of GetFieldData(); SetFieldData() copies
data from a field buffer into the active record buffer. As you can see from the following code,
the implementations of these two methods are very similar:

procedure TDDGDataSet.SetFieldData(Field: TField; Buffer: Pointer);

begin
case Field.Index of

1621

w
o

TDA 3svavivqg
DNIANILX]

1622

Database Development

PART IV

Q: Move(Buffer”, ActiveBuffer”, Field.Size);
1: Move(Buffer”, PDDGData(ActiveBuffer)~.Height, Field.DataSize);
2: Move(Buffer”, PDDGData(ActiveBuffer)~.ShoeSize, Field.DataSize);
end;
DataEvent (deFieldChange, Longint(Field));
end;

After the data is copied, the DataEvent () method is called to signal that a field has changed
and fire the OnChange event of the field.

Bookmark Methods
We mentioned earlier that bookmark support is required for TDataSet descendants. The follow-
ing abstract methods of TDataSet are overridden to provide this support:

function GetBookmarkFlag(Buffer: PChar): TBookmarkFlag; override;
procedure SetBookmarkFlag(Buffer: PChar; Value: TBookmarkFlag); override;
procedure GetBookmarkData(Buffer: PChar; Data: Pointer); override;
procedure SetBookmarkData(Buffer: PChar; Data: Pointer); override;
procedure InternalGotoBookmark(Bookmark: Pointer); override;

procedure InternalSetToRecord(Buffer: PChar); override;

For TDDGDataSet, you'll see that the implementations of these methods revolve mostly around
manipulating the bookmark information tacked onto the end of the record buffer.

GetBookmarkFlag() and SetBookmarkFlag()

Bookmark flags are used internally by TDataSet to determine whether a particular record is the
first or last in the dataset. For this purpose, you must override the GetBookmarkFlag() and
SetBookmarkFlag() methods. The TDDGDataSet implementation of these methods reads from
and writes to the record buffer to keep track of this information, as shown here:

function TDDGDataSet.GetBookmarkFlag(Buffer: PChar): TBookmarkFlag;
begin

Result := PDDGBookmarkInfo(Buffer + FRecordSize)”.BookmarkFlag;
end;

procedure TDDGDataSet.SetBookmarkFlag(Buffer: PChar;

Value: TBookmarkFlag);
begin

PDDGBookmarkInfo(Buffer + FRecordSize)"~.BookmarkFlag := Value;
end;

GetBookmarkData() and SetBookmarkData()

The GetBookmarkData () and SetBookmarkData() methods provide a means for TDataSet to
manipulate a record’s bookmark data without repositioning the current record. As you can see,
these methods are implemented in a manner similar to the methods described in the preceding
example:

Extending Database VCL

CHAPTER 30

procedure TDDGDataSet.GetBookmarkData(Buffer: PChar; Data: Pointer);
begin

PInteger(Data)”~ :=PDDGBookmarkInfo(Buffer + FRecordSize)".BookmarkData;
end;

procedure TDDGDataSet.SetBookmarkData(Buffer: PChar; Data: Pointer);
begin

PDDGBookmarkInfo(Buffer + FRecordSize)"~.BookmarkData :=PInteger(Data)”;
end;

InternalGotoBookmark()

The InternalGotoBookmark () method is called to reposition the current record to that repre-
sented by the Bookmark parameter. Because a bookmark value is the same as the record num-
ber for TDDGDataSet, the implementation of this method is straightforward:

procedure TDDGDataSet.InternalGotoBookmark(Bookmark: Pointer);
begin

FRecordPos := Integer(Bookmark);
end;

InternalSetToRecord()

InternalSetToRecord() is similar to InternalGotoBookmark () except that it receives as a
parameter a record buffer instead of a bookmark value. The job of this method is to position
the dataset to the record provided in the Buffer parameter. This implementation of a record
buffer contains the bookmark information because the bookmark value is the same as the
record position; therefore, the implementation of this method is a one-liner:

procedure TDDGDataSet.InternalSetToRecord(Buffer: PChar);
begin

// bookmark value is the same as an offset into the file

FRecordPos := PDDGBookmarkInfo(Buffer + FRecordSize)".Bookmarkdata;
end;

Navigational Methods
You must override several abstract navigational methods in TDataSet in order to position the
dataset on the first or last record:

procedure InternalFirst; override;
procedure InternallLast; override;

The implementations of these methods are quite simple; InternalFirst() sets the FRecordPos
value to -1 (the BOF crack value), and InternallLast() sets the record position to the record
count. Because the record index is zero based, the count is 1 greater than the last index (the
EOF crack). Here’s an example:

procedure TDDGDataSet.InternalFirst;
begin

1623

3

o

TDA 3svavivqg
DNIANILX]

1624

Database Development

PART IV

FRecordPos := -1;
end;

procedure TDDGDataSet.InternallLast;
begin

FRecordPos := FIndexList.Count;
end;

Editing Methods

Three abstract TDataSet methods must be overridden in order to allow for the editing, append-
ing, inserting, and deleting of records:

procedure InternalAddRecord(Buffer: Pointer; Append: Boolean); override;
procedure InternalDelete; override;
procedure InternalPost; override;

InternalAddRecord()

InternalAddRecord() is called when a record is inserted or appended to the dataset. The
Buffer parameter points to the record buffer to be added to the dataset, and the Append para-
meter is True when a record is being appended and False when a record is being inserted. The
TDDGDataSet implementation of this method seeks to the end of the data file, writes the record
data to the file, and then adds or inserts the data file seek value into the appropriate position in
the index list:

procedure TDDGDataSet.InternalAddRecord(Buffer: Pointer;
Append: Boolean);
var
RecPos: Integer;
begin
Seek (FDataFile, FileSize(FDataFile));
BlockWrite (FDataFile, PDDGData(Buffer)~, 1);
if Append then
begin
FIndexList.Add(Pointer(FileSize(FDataFile) - 1));
InternallLast;
end
else begin
if FRecordPos = -1 then RecPos := 0
else RecPos := FRecordPos;
FIndexList.Insert(RecPos, Pointer(FileSize(FDataFile) - 1));
end;
FIndexList.SaveToFile(FIdxName);
end;

InternalDelete()
The InternalDelete () method deletes the current record from the dataset. Because it’s not
practical to remove a record from the middle of the data file, the current record is deleted from

Extending Database VCL

CHAPTER 30

the index list. This, in effect, orphans the deleted record in the data file by removing the index
entry for a data record. Here’s an example:

procedure TDDGDataSet.InternalDelete;
begin
FIndexList.Delete(FRecordPos);
if FRecordPos >= FIndexList.Count then Dec(FRecordPos);

end;

1625

NoTE

This method of deletion means that the data file will not shrink in size even as
records are deleted (similar to dBASE files). If you intend to use this type of dataset
for commercial work, a good addition would be a file-pack method, which removes
orphaned records from the data file.

InternalPost()

The InternalPost() method is called by TDataSet.Post (). In this method, you should write
the data from the active record buffer to the data file. You’ll note that the implementation of
this method is quite similar to that of InternalAddRecord(), as shown here:

procedure TDDGDataSet.InternalPost;

var
RecPos, InsPos: Integer;
begin
if FRecordPos = -1 then
RecPos := 0
else begin

if State = dskEdit then RecPos := Integer(FIndexList[FRecordPos])
else RecPos := FileSize(FDataFile);

end;

Seek (FDataFile, RecPos);

BlockWrite(FDataFile, PDDGData(ActiveBuffer)”, 1);

if State <> dsEdit then

begin
if FRecordPos = -1 then InsPos := 0
else InsPos := FRecordPos;
FIndexList.Insert(InsPos, Pointer(RecPos));
end;
FIndexList.SaveToFile (FIdxName);
end;

Miscellaneous Methods
Several other abstract methods must be overridden in order to create a working TDataSet
descendant. These are general housekeeping methods, and because these methods can’t be

w
o

TDA 3svavivqg
DNIANILX]

1626

Database Development

PART IV

pigeonholed into a particular category, we’ll call them miscellaneous methods. These methods
are as follows:

procedure InternalClose; override;

procedure InternalHandleException; override;
procedure InternallnitFieldDefs; override;
procedure InternalOpen; override;

function IsCursorOpen: Boolean; override;

InternalClose()

InternalClose() is called by TDataSet.Close(). In this method, you should deallocate all
resources associated with the dataset that were allocated by InternalOpen() or that were allo-
cated throughout the course of using the dataset. In this implementation, the data file is closed,
and we ensure that the index list has been persisted to disk. Additionally, the FRecordPos is set
to the BOF crack, and the data file record is zeroed out:

procedure TDDGDataSet.InternalClose;
begin
if TFileRec(FDataFile).Mode <> @ then
CloseFile(FDataFile);
FIndexList.SaveToFile (FIdxName);
FIndexList.Clear;
if DefaultFields then
DestroyFields;
FRecordPos := -1;
FillChar(FDataFile, SizeOf(FDataFile), 0);
end;

InternalHandleException()
InternalHandleException() is called if an exception is raised while this component is being
read from or written to a stream. Unless you have a specific need to handle these exceptions,
you should implement this method as follows:

procedure TDDGDataSet.InternalHandleException;
begin
// standard implementation for this method:
Application.HandleException(Self);
end;

InternallnitFieldDefs()

In the InternalInitFieldDefs () method is where you should define the fields contained in
the dataset. This is done by instantiating TFieldDef objects, passing the TDataSet’s FieldDefs
property as the Owner. In this case, three TFieldDef objects are created, representing the three
fields in this dataset:

Extending Database VCL

CHAPTER 30

procedure TDDGDataSet.InternalInitFieldDefs;

begin
/| create FieldDefs which map to each field in the data record
FieldDefs.Clear;
TFieldDef.Create(FieldDefs, 'Name', ftString, SizeOf(TNameStr), False,

1);

TFieldDef.Create(FieldDefs, 'Height', ftFloat, 0, False, 2);
TFieldDef.Create(FieldDefs, 'ShoeSize', ftInteger, 0, False, 3);

end;

InternalOpen()

The InternalOpen() method is called by TDataSet.Open(). In this method, you should open

the underlying data source, initialize any internal fields or properties, create the field defs if
necessary, and bind the field defs to the data. The following implementation of this method
opens the data file, loads the index list from a file, initializes the FRecordPos field and the
BookmarkSize property, and creates and binds the field defs. You’ll see from the following
code that this method also gives the user a chance to create the database files if they aren’t
found on disk:

procedure TDDGDataSet.InternalOpen;
var
HFile: THandle;
begin
// make sure table and index files exist
FIdxName := ChangeFileExt(FTableName, feDDGIndex) ;
if not (FileExists(FTableName) and FileExists(FIdxName)) then
begin
if MessageDlg('Table or index file not found. Create new table?'
mtConfirmation, [mbYes, mbNo], @) = mrYes then
begin
HFile := FileCreate(FTableName);
if HFile = INVALID HANDLE_VALUE then
DatabaseError('Error creating table file');
FileClose(HFile);
HFile := FileCreate(FIdxName);
if HFile = INVALID HANDLE_VALUE then
DatabaseError('Error creating index file');
FileClose(HFile);
end
else
DatabaseError('Could not open table');
end;
// open data file
FileMode := fmShareDenyNone or fmOpenReadWrite;
AssignFile (FDataFile, FTableName);

1627

w
o

TDA 3svavivqg
DNIANILX]

1628

Database Development

PART IV

Reset (FDataFile);
try
FIndexList.LoadFromFile (FIdxName); //initialize index TList from file
FRecordPos := -1; //initial record pos before BOF
BookmarkSize := SizeOf(Integer); //initialize bookmark size for VCL
InternalInitFieldDefs; //initialize FieldDef objects
// Create TField components when no persistent fields have been
/| created
if DefaultFields then CreateFields;
BindFields(True); //bind FieldDefs to actual data
except
CloseFile(FDataFile);
FillChar(FDataFile, SizeOf(FDataFile), 0);
raise;
end;
end;

NoTE

Any resource allocations made in InternalOpen() should be freed in
InternalClose().

IsCursorOpen()

The IsCursorOpen() method is called internal to TDataSet while the dataset is being opened
in order to determine whether data is available even though the dataset is inactive. The
TDDGData implementation of this method returns True only if the data file has been opened, as
shown here:

function TDDGDataSet.IsCursorOpen: Boolean;

begin
// "Cursor" is open if data file is open. File is open if FDataFile's
// Mode includes the FileMode in which the file was open.
Result := TFileRec(FDataFile).Mode <> 0;

end;

Tip

The preceding method illustrates an interesting feature of Object Pascal: a file of
record or untyped file can be typecast to a TFileRec in order to obtain low-level
information about the file. TFileRec is described in Chapter 12, “Working with Files.”

Extending Database VCL

CHAPTER 30

Optional Record Number Methods

If you want to take advantage of TDBGrid’s ability to scroll relative to the cursor position in the
dataset, you must override three methods:

function GetRecordCount: Integer; override;

function GetRecNo: Integer; override;
procedure SetRecNo(Value: Integer); override;

Although this feature makes sense for this implementation, in many cases this capability isn’t
practical or even possible. For example, if you're working with a huge amount of data, it might
not be practical to obtain a record count, or if you’re communicating with a SQL server, this
information might not even be available.

This TDataSet implementation is fairly simple, and these methods are appropriately straight-
forward to implement:
function TDDGDataSet.GetRecordCount: Integer;
begin
Result := FIndexList.Count;
end;

function TDDGDataSet.GetRecNo: Integer;

begin
UpdateCursorPos;
if (FRecordPos = -1) and (RecordCount > Q) then
Result := 1
else
Result := FRecordPos + 1;
end;

procedure TDDGDataSet.SetRecNo(Value: Integer);
begin
if (Value >= @) and (Value <= FIndexList.Count-1) then
begin
FRecordPos := Value - 1;
Resync([]);
end;
end;

TDDGDataSet
Listing 30.5 shows the DDG_DS unit, which contains the complete implementation of the
TDDGDataSet unit.

1629

w
o

TDA 3svavivqg
DNIANILX]

1630

Database Development

PART IV

LisTING 30.5 The DDG_DS.pas Unit

unit DDG_DS;
interface

uses Windows, Db, Classes, DDG_Rec;

type

// Bookmark information record to support TDataset bookmarks:
PDDGBookmarkInfo = ~TDDGBookmarkInfo;
TDDGBookmarkInfo = record
BookmarkData: Integer;
BookmarkFlag: TBookmarkFlag;
end;

// List used to maintain access to file of record:

TIndexList = class(TList)

public
procedure LoadFromFile(const FileName: string); virtual;
procedure LoadFromStream(Stream: TStream); virtual;
procedure SaveToFile(const FileName: string); virtual;
procedure SaveToStream(Stream: TStream); virtual;

end;

// Specialized DDG TDataset descendant for our "table" data:
TDDGDataSet = class(TDataSet)
private
function GetDataFileSize: Integer;
public
FDataFile: TDDGDataFile;
FIdxName: string;
FIndexList: TIndexList;
FTableName: string;
FRecordPos: Integer;
FRecordSize: Integer;
FBufferSize: Integer;
procedure SetTableName(const Value: string);
protected
{ Mandatory overrides }
// Record buffer methods:
function AllocRecordBuffer: PChar; override;
procedure FreeRecordBuffer(var Buffer: PChar); override;
procedure InternalInitRecord(Buffer: PChar); override;
function GetRecord(Buffer: PChar; GetMode: TGetMode;
DoCheck: Boolean): TGetResult; override;

Extending Database VCL

CHAPTER 30 1631

function GetRecordSize: Word; override;
procedure SetFieldData(Field: TField; Buffer: Pointer); override;
// Bookmark methods:
procedure GetBookmarkData(Buffer: PChar; Data: Pointer); override;
function GetBookmarkFlag(Buffer: PChar): TBookmarkFlag; override;
procedure InternalGotoBookmark(Bookmark: Pointer); override;
procedure InternalSetToRecord(Buffer: PChar); override;
procedure SetBookmarkFlag(Buffer: PChar; Value: TBookmarkFlag);

override;
procedure SetBookmarkData(Buffer: PChar; Data: Pointer); override;
// Navigational methods:
procedure InternalFirst; override;
procedure InternallLast; override;
// Editing methods:
procedure InternalAddRecord(Buffer: Pointer; Append: Boolean);

override;
procedure InternalDelete; override;
procedure InternalPost; override;
// Misc methods:
procedure InternalClose; override;
procedure InternalHandleException; override;
procedure InternallnitFieldDefs; override;
procedure InternalOpen; override;
function IsCursorOpen: Boolean; override;
{ Optional overrides }
function GetRecordCount: Integer; override;
function GetRecNo: Integer; override;
procedure SetRecNo(Value: Integer); override;

public

constructor Create(AOwner: TComponent); override;
destructor Destroy; override;
function GetFieldData(Field: TField; Buffer: Pointer): Boolean;

override;
// Additional procedures
procedure EmptyTable;

published
property Active;
property TableName: string read FTableName write SetTableName;
property BeforeOpen;
property AfterOpen; 30
property BeforeClose;
property AfterClose; E?
property Beforelnsert; o
property AfterInsert; g
property BeforeEdit; :é
continues p

DNIAN3LX]

1632

Database Development

PART IV

LisTiNG 30.5 Continued

property AfterEdit;
property BeforePost;
property AfterPost;
property BeforeCancel;
property AfterCancel;
property BeforeDelete;
property AfterDelete;
property BeforeScroll;
property AfterScroll;
property OnDeleteError;
property OnEditError;

// Additional Properties
property DataFileSize: Integer read GetDataFileSize;
end;
procedure Register;

implementation

uses BDE, DBTables, SysUtils, DBConsts, Forms, Controls, Dialogs;

const
feDDGTable = '.ddg';
feDDGIndex = '.ddx';

// note that file is not being locked!
{ TIndexList }

procedure TIndexList.LoadFromFile(const FileName: string);
var
F: TFileStream;
begin
F := TFileStream.Create(FileName, fmOpenRead or fmShareDenyWrite);
try
LoadFromStream;
finally
F.Free;
end;
end;

procedure TIndexList.LoadFromStream(Stream: TStream);
var

Value: Integer;
begin

Extending Database VCL

CHAPTER 30

while Stream.Position < Stream.Size do
begin
Stream.Read(Value, SizeOf(Value));
Add (Pointer(Value));
end;
ShowMessage (IntToStr(Count));
end;

procedure TIndexList.SaveToFile(const FileName: string);
var
F: TFileStream;
begin
F := TFileStream.Create(FileName, fmCreate or fmShareExclusive);
try
SaveToStream(F);
finally
F.Free;
end;
end;

procedure TIndexList.SaveToStream(Stream: TStream);
var
i: Integer;
Value: Integer;
begin
for i := 0 to Count - 1 do
begin
Value := Integer(Items[i]);
Stream.Write(Value, SizeOf(Value));
end;
end;

{ TDDGDataSet }

constructor TDDGDataSet.Create(AOwner: TComponent);
begin
FIndexList := TIndexList.Create;
FRecordSize SizeOf (TDDGData) ;
FBufferSize FRecordSize + SizeOf (TDDGBookmarkInfo);
inherited Create(AOwner);
end;

destructor TDDGDataSet.Destroy;
begin
inherited Destroy;
FIndexList.Free;

continues

1633

w
o

TDA 3svavivqg
DNIANILX]

Database Development

1634

PART IV

LisTiNG 30.5 Continued

end;

function TDDGDataSet.AllocRecordBuffer: PChar;
begin

Result := AllocMem(FBufferSize);
end;

procedure TDDGDataSet.FreeRecordBuffer(var Buffer: PChar);
begin

FreeMem(Buffer);
end;

procedure TDDGDataSet.InternalInitRecord(Buffer: PChar);
begin

FillChar (Buffer~, FBufferSize, 0);
end;

function TDDGDataSet.GetRecord(Buffer: PChar; GetMode: TGetMode;
DoCheck: Boolean): TGetResult;
var
IndexPos: Integer;
begin
if FIndexList.Count < 1 then
Result := greoOF
else begin
Result := grok;
case GetMode of
gmPrior:
if FRecordPos <= 0@ then
begin
Result := grBOF;
FRecordPos := -1;
end
else
Dec (FRecordPos) ;
gmCurrent:
if (FRecordPos < @) or (FRecordPos >= RecordCount) then
Result := grError;
gmNext:
if FRecordPos >= RecordCount-1 then
Result := greoFr
else
Inc(FRecordPos);
end;
if Result = grOk then

Extending Database VCL

CHAPTER 30

begin
IndexPos := Integer(FIndexList[FRecordPos]);
Seek (FDataFile, IndexPos);
BlockRead (FDataFile, PDDGData(Buffer)~, 1);
with PDDGBookmarkInfo(Buffer + FRecordSize)”" do

begin
BookmarkData := FRecordPos;
BookmarkFlag := bfCurrent;
end;
end

else if (Result = grError) and DoCheck then
DatabaseError('No records');
end;
end;

function TDDGDataSet.GetRecordSize: Word;
begin

Result := FRecordSize;
end;

function TDDGDataSet.GetFieldData(Field: TField; Buffer: Pointer):
Boolean;

begin
Result := True;
case Field.Index of
0:
begin

Move (ActiveBuffer”, Buffer”, Field.Size);
Result := PChar(Buffer)” <> #0;
end;
1: Move (PDDGData(ActiveBuffer)”.Height, Buffer”, Field.DataSize);
2: Move (PDDGData(ActiveBuffer)"~.ShoeSize, Buffer”, Field.DataSize);
end;
end;

procedure TDDGDataSet.SetFieldData(Field: TField; Buffer: Pointer);
begin
case Field.Index of
0: Move(Buffer~, ActiveBuffer”, Field.Size);
1: Move(Buffer”, PDDGData(ActiveBuffer)".Height, Field.DataSize);
2: Move(Buffer”, PDDGData(ActiveBuffer)".ShoeSize, Field.DataSize);

end;
DataEvent (deFieldChange, Longint(Field));
end;
procedure TDDGDataSet.GetBookmarkData(Buffer: PChar; Data: Pointer);

continues

1635

w
o

TDA 3svavivqg
DNIANILX]

1636

Database Development

PART IV

LisTiNG 30.5 Continued

begin
PInteger(Data)”~ :=PDDGBookmarkInfo(Buffer + FRecordSize)".BookmarkData;
end;

function TDDGDataSet.GetBookmarkFlag(Buffer: PChar): TBookmarkFlag;
begin

Result := PDDGBookmarkInfo(Buffer + FRecordSize)".BookmarkFlag;
end;

procedure TDDGDataSet.InternalGotoBookmark(Bookmark: Pointer);
begin

FRecordPos := Integer(Bookmark);
end;

procedure TDDGDataSet.InternalSetToRecord(Buffer: PChar);
begin
// bookmark value is the same as an offset into the file
FRecordPos := PDDGBookmarkInfo(Buffer + FRecordSize)".Bookmarkdata;
end;

procedure TDDGDataSet.SetBookmarkData(Buffer: PChar; Data: Pointer);
begin

PDDGBookmarkInfo(Buffer + FRecordSize)".BookmarkData :=PInteger(Data)”;
end;

procedure TDDGDataSet.SetBookmarkFlag(Buffer: PChar;

Value: TBookmarkFlag);
begin

PDDGBookmarkInfo(Buffer + FRecordSize)"~.BookmarkFlag := Value;
end;

procedure TDDGDataSet.InternalFirst;
begin

FRecordPos := -1;
end;

procedure TDDGDataSet.InternalInitFieldDefs;

begin
/] create FieldDefs which map to each field in the data record
FieldDefs.Clear;
TFieldDef.Create(FieldDefs, 'Name', ftString, SizeOf(TNameStr), False,

1);

TFieldDef.Create(FieldDefs, 'Height', ftFloat, 0, False, 2);
TFieldDef.Create(FieldDefs, 'ShoeSize', ftInteger, 0, False, 3);

end;

Extending Database VCL

procedure TDDGDataSet.InternallLast;
begin

FRecordPos := FIndexList.Count;
end;

procedure TDDGDataSet.InternalClose;
begin
if TFileRec(FDataFile).Mode <> 0@ then
CloseFile(FDataFile);
FIndexList.SaveToFile(FIdxName);
FIndexList.Clear;
if DefaultFields then
DestroyFields;
FRecordPos := -1;
FillChar(FDataFile, SizeOf (FDataFile), 0);
end;

procedure TDDGDataSet.InternalHandleException;
begin
// standard implementation for this method:
Application.HandleException(Self);
end;

procedure TDDGDataSet.InternalDelete;
begin

FIndexList.Delete(FRecordPos);

if FRecordPos >= FIndexList.Count then Dec(FRecordPos);
end;

procedure TDDGDataSet.InternalAddRecord(Buffer: Pointer;
Append: Boolean);
var
RecPos: Integer;
begin
Seek (FDataFile, FileSize(FDataFile));
BlockWrite (FDataFile, PDDGData(Buffer)~, 1);
if Append then
begin
FIndexList.Add(Pointer(FileSize(FDataFile) - 1));
Internallast;
end
else begin
if FRecordPos = -1 then RecPos := 0
else RecPos := FRecordPos;
FIndexList.Insert(RecPos, Pointer(FileSize(FDataFile)

CHAPTER 30

continues

1637

w
o

TDA 3svavivqg
DNIANILX]

1638

Database Development

PART IV

LisTiNG 30.5 Continued

end;
FIndexList.SaveToFile (FIdxName);
end;

procedure TDDGDataSet.InternalOpen;
var
HFile: THandle;
begin
// make sure table and index files exist
FIdxName := ChangeFileExt(FTableName, feDDGIndex);
if not (FileExists(FTableName) and FileExists(FIdxName)) then
begin
if MessageDlg('Table or index file not found. Create new table?',
mtConfirmation, [mbYes, mbNo], @) = mrYes then
begin
HFile := FileCreate(FTableName);
if HFile = INVALID_HANDLE_VALUE then
DatabaseError('Error creating table file');
FileClose(HFile);
HFile := FileCreate(FIdxName);
if HFile = INVALID HANDLE_VALUE then
DatabaseError('Error creating index file');
FileClose(HFile);
end
else
DatabaseError('Could not open table');
end;
// open data file
FileMode := fmShareDenyNone or fmOpenReadWrite;
AssignFile(FDataFile, FTableName);

Reset (FDataFile);
try
FIndexList.LoadFromFile (FIdxName); //initialize index TList from file
FRecordPos := -1; //initial record pos before BOF
BookmarkSize := SizeOf(Integer); //initialize bookmark size for VCL
InternalInitFieldDefs; //initialize FieldDef objects
/| Create TField components when no persistent fields have been
// created
if DefaultFields then CreateFields;
BindFields(True); //bind FieldDefs to actual data
except
CloseFile(FDataFile);
FillChar(FDataFile, SizeOf (FDataFile), 0);
raise;
end;

end;

Extending Database VCL

CHAPTER 30

procedure TDDGDataSet.InternalPost;

var
RecPos, InsPos: Integer;
begin
if FRecordPos = -1 then
RecPos := 0
else begin
if State = dskEdit then RecPos := Integer(FIndexList[FRecordPos])
else RecPos := FileSize(FDataFile);
end;

Seek (FDataFile, RecPos);
BlockWrite(FDataFile, PDDGData(ActiveBuffer)”, 1);
if State <> dsEdit then

begin
if FRecordPos = -1 then InsPos := 0
else InsPos := FRecordPos;
FIndexList.Insert(InsPos, Pointer(RecPos));
end;
FIndexList.SaveToFile(FIdxName);
end;

function TDDGDataSet.IsCursorOpen: Boolean;

begin
// "Cursor" is open if data file is open. File is open if FDataFile's
// Mode includes the FileMode in which the file was open.
Result := TFileRec(FDataFile).Mode <> 0;

end;

function TDDGDataSet.GetRecordCount: Integer;
begin

Result := FIndexList.Count;
end;

function TDDGDataSet.GetRecNo: Integer;

begin
UpdateCursorPos;
if (FRecordPos = -1) and (RecordCount > @) then
Result := 1
else
Result := FRecordPos + 1;
end;

procedure TDDGDataSet.SetRecNo(Value: Integer);

begin
if (Value >= 0) and (Value <= FIndexList.Count-1) then
begin

continues

1639

w
o

TDA 3svavivqg
DNIANILX]

1640

Database Development

PART IV

LisTiNG 30.5 Continued

FRecordPos := Value - 1;
Resync([]);
end;

end;

procedure TDDGDataSet.SetTableName(const Value: string);
begin
CheckInactive;
FTableName := Value;
if ExtractFileExt(FTableName) = '' then
FTableName := FTableName + feDDGTable;

FIdxName := ChangeFileExt(FTableName, feDDGIndex);
end;

procedure Register;
begin

RegisterComponents('DDG', [TDDGDataSet]);
end;

function TDDGDataSet.GetDataFileSize: Integer;
begin

Result := FileSize(FDataFile);
end;

procedure TDDGDataSet.EmptyTable;
var

HFile: THandle;
begin

Close;

DeleteFile(FTableName);
HFile := FileCreate(FTableName);
FileClose(HFile);

DeleteFile(FIdxName);
HFile := FileCreate(FIdxName);
FileClose(HFile);

Open;
end;

end.

Extending Database VCL

CHAPTER 30

Summary

This chapter demonstrated how to extend your Delphi database applications to incorporate fea-
tures that aren’t encapsulated by VCL. Additionally, you learned some of the rules and
processes for making direct calls into the BDE from Delphi applications. You also learned the
specifics for extending the behavior of TTable with regard to dBASE and Paradox tables.
Finally, you went step by step through the challenging process of creating a working TDataSet
descendant. In the next chapter, “Internet-Enabling your Applications with WebBroker,” you’ll
learn how to create server-side applications for the Web and deliver data to Web clients in real
time.

1641

w
o

TDA 3svavivqg
DNIANILX]

Extending Database VCL

CHAPTER 30

1643

w
o

TDA 3svavivqg

DNIAN3LX]

1644

Database Development

PART IV

