
CHAPTER

3
The Win32 API

IN THIS CHAPTER
• Objects—Then and Now 124

• Multitasking and Multithreading 128

• Win32 Memory Management 129

• Error Handling in Win32 133

• Summary 134

This chapter gives you an introduction to the Win32 API and the Win32 system in general. The
chapter discusses the capabilities of the Win32 system and also points out some key differences
from the 16-bit implementation of various features. The intent of this chapter is not to docu-
ment the Win32 system in depth but rather to give you a basic idea of how Win32 operates. By
having a basic understanding of the Win32 operation, you’ll be able use advanced features pro-
vided by the Win32 system whenever the need arises.

Objects—Then and Now
The term objects is used for a number of reasons. When we speak of the Win32 architecture,
we’re not speaking of objects as they exist in object-oriented programming or the Component
Object Model (COM). Objects have a totally different meaning in this context, and to make
things more confusing, object means something different in 16-bit Windows than it does in
Win32. We want to make sure you understand what objects are in Win32.

Basically two types of objects are in the Win32 environment: kernel objects and GDI/User
objects.

Kernel Objects
Kernel objects are native to the Win32 system and include events, file mappings, files, mail-
slots, mutexes, pipes, processes, semaphores, and threads. The Win32 API includes various
functions specific to each kernel object. Before discussing kernel objects in general, we want
to discuss processes that are essential to understanding how objects are managed in the Win32
environment.

Processes and Threads
A process can be thought of as a running application or an application instance. Therefore, sev-
eral processes can be active at once in the Win32 environment. Each process gets its own 4GB
address space for its code and data. Within this 4GB address space, any memory allocations,
threads, file mappings, and so on exist. Additionally, any dynamic link libraries (DLLs) loaded
by a process are loaded into the address space of the process. We’ll say more about the mem-
ory management of the Win32 system later in this chapter, in the section “Win32 Memory
Management.”

Processes are inert. In other words, they execute nothing. Instead, each process gets a primary
thread that executes code within the context of the process that owns this thread. A process
may contain several threads; however, it has only one main or primary thread.

Essentials for Rapid Development

PART I
124

When a process is created, the system creates the main thread for it. This thread may then cre-
ate additional threads, if necessary. The Win32 system allocates CPU time called time slices to
the threads of the process.

Table 3.1 shows some common process functions of the Win32 API.

TABLE 3.1 Process Functions

Function Purpose

CreateProcess() Creates a new process and its primary thread. This function replaces
the WinExec() function used in Windows 3.11.

ExitProcess() Exits the current process, terminating the process and all threads
related to that process.

GetCurrentProcess() Returns a pseudohandle of the current process. A pseudohandle is a
special handle that can be interpreted as the current process handle.
A real handle can be obtained by using the DuplicateHandle()
function.

DuplicateHandle() Duplicates the handle of a kernel object.

GetCurrentProcessID() Retrieves the current process ID, which uniquely identifies the
process throughout the system until the process has terminated.

GetExitCodeProcess() Retrieves the exit status of a specified process.

GetPriorityClass() Retrieves the priority class for a specified process. This value and
the values of each thread priority in the process determine the base
priority level for each thread.

GetStartupInfo() Retrieves the contents of the TStartupInfo structure initialized
when the process was created.

OpenProcess() Returns a handle of an existing process as specified by a process ID.

SetPriorityClass() Sets a process’s priority class.

TerminateProcess() Terminates a process and kills all threads associated with that process.

WaitForInputIdle() Waits until the process is waiting for input from the user.

The Win32 API

CHAPTER 3
125

3

T
H

E
W

IN32 A
PI

NOTE

A thread is an operating system object that represents a path of code execution
within a particular process. Every Win32 application has at least one thread—often
called the primary thread or default thread—but applications are free to create other
threads to perform other tasks. Threads are covered in greater depth in Chapter 11,
“Writing Multithreaded Applications.”

Some Win32 API functions require an application’s instance handle, whereas others require a
module handle. In 16-bit Windows, there was a distinction between these two values. This is
not true under Win32. Every process gets its own instance handle. Your Delphi 5 applications
can refer to this instance handle by accessing the global variable, HInstance. Because
HInstance and the application’s module handle are the same, you can pass HInstance to
Win32 API functions calling for a module handle, such as the GetModuleFileName() function,
which returns the filename of a specified module. See the following Caution for when
HInstance does not refer to the module handle of the current application.

Essentials for Rapid Development

PART I
126

CAUTION

HInstance will not be the module handle of the application for code that’s compiled
into packages. Use MainInstance to refer always to the host application module and
HInstance to refer to the module in which your code resides.

Another difference between Win32 and 16-bit Windows has to do with the HPrevInst global
variable. In 16-bit Windows, this variable held the handle of a previously run instance of the
same application. You could use the value to prevent multiple instances of your application
from running. This no longer works in Win32. Each process runs within its own 4GB address
space and can’t see any other processes. Therefore, HPrevInst is always assigned the value 0.
You must use other techniques to prevent multiple instances of your application from running,
as shown in Chapter 13, “Hard-core Techniques.”

Types of Kernel Objects
There are several kinds of kernel objects. When a kernel object is created, it exists in the
address space of the process, and that process gets a handle to that object. This handle can’t
be passed to other processes or reused by the next process to access the same kernel object.
However, a second process can obtain its own handle to a kernel object that already exists by
using the appropriate Win32 API function. For example, the CreateMutex() Win32 API func-
tion creates a named or unnamed mutex object and returns its handle. The OpenMutex() Win32
API returns the handle to an existing named mutex object. OpenMutex() passes the name of the
mutex whose handle is being requested.

NOTE

Named kernel objects are optionally assigned a null-terminated string name when
created with their respective CreateXXXX() functions. This name is registered in the
Win32 system. Other processes can access the same kernel object by opening it, using

If you want to share a mutex across processes, you can have the first process create the mutex
by using the CreateMutex() function. This process must pass a name that will be associated
with this new mutex. Other processes must use the OpenMutex() function, to which they pass
the same name of the mutex used by the first process. OpenMutex() will return a handle to the
mutex object of the given name. Various security constraints may be imposed on other
processes accessing existing kernel objects. Such security constraints are specified when the
mutex is initially created with CreateMutex(). Look to the online help for these constraints as
they apply to each kernel object.

Because multiple processes can access kernel objects, kernel objects are maintained by a usage
count. As a second application accesses the object, the usage count is incremented. When it’s
done with the object, the application should call the CloseHandle() function, which decre-
ments the object’s usage count.

GDI and User Objects
Objects in 16-bit Windows referred to entities that could be referenced by a handle. This didn’t
include kernel objects because they didn’t exist under 16-bit Windows.

In 16-bit Windows, there are two types of objects: those stored in the GDI and User local
heaps, and those allocated from the global heap. Examples of GDI objects are brushes, pens,
fonts, palettes, bitmaps, and regions. Examples of User objects are windows, window classes,
atoms, and menus.

A direct relationship exists between an object and its handle. An object’s handle is a selector that,
when converted into a pointer, points to a data structure describing an object. This structure exists
in either the GDI or User default data segment, depending on the type of object to which the han-
dle refers. Additionally, a handle for an object referring to the global heap is a selector to the
global memory segment; therefore, when converted to a pointer, it points to that memory block.

A result of this particular design is that objects in 16-bit Windows are sharable. The globally
accessible Local Descriptor Table (LDT) stores the handles to these objects. The GDI and User
default data segments are also globally accessible to all applications and DLLs under 16-bit
Windows. Therefore, any application or DLL can get to an object used by another application.
Do note that objects such as the LDT are only sharable in Windows 3.1 (16-bit Windows).
Many applications use this arrangement for different purposes. One example is to enable appli-
cations to share memory.

The Win32 API

CHAPTER 3
127

3

T
H

E
W

IN32 A
PI

the OpenXXXX() function, and passing the specified object name. A demonstration of
this technique is used in Chapter 13, “Hard-core Techniques,” where we show you
how to prevent multiple instances of an application from running.

Win32 deals with GDI and User objects a bit differently, and the same techniques you used in
16-bit Windows might not be applicable to the Win32 environment.

To begin with, Win32 introduces kernel objects, which we’ve already discussed. Also, the
implementation of GDI and User objects is different under Win32 than under 16-bit Windows.

Under Win32, GDI objects are not shared like their 16-bit counterparts. GDI objects are stored
in the address space of the process rather than in a globally accessible memory block (each
process gets its own 4GB address space). Additionally, each process gets its own handle table,
which stores handles to GDI objects within the process. This is an important point to remem-
ber, because you don’t want to be passing GDI object handles to other processes.

Earlier, we mentioned that LDTs are accessible from other applications. In Win32, each
process address space is defined by its own LDT. Therefore, Win32 uses LDTs as they were
intended: as process-local tables.

Essentials for Rapid Development

PART I
128

CAUTION

Although it’s possible that a process could call SelectObject() on a handle from
another process and successfully use that handle, this would be entirely coincidental.
GDI objects have different meanings in different processes, so you don’t want to
practice this method.

The managing of GDI handles happens in the Win32 GDI subsystem, which includes the vali-
dation of GDI objects and the recycling of handles.

User objects work similarly to GDI objects and are managed by the Win32 User subsystem.
However, any handle tables are also maintained by User—not in the address space of the
process, as with the GDI handle tables. Therefore, objects such as windows, window classes,
atoms, and so on are sharable across processes.

Multitasking and Multithreading
Multitasking is a term used to describe an operating system’s capability of running multiple
applications concurrently. The system does this by issuing time slices to each application. In
this sense, multitasking is not true multitasking but rather task switching. In other words, the
operating system isn’t really running multiple applications at the same time. Instead, it’s run-
ning one application for a certain amount of time and then switching to another application and
running it for a certain amount of time. It does this for each application. To the user it appears
as though all applications are running simultaneously because the time slices are small.

This concept of multitasking isn’t really a new feature of Windows and has existed in previous
versions. The key difference between the Win32 implementation of multitasking and that of
earlier versions of Windows is that Win32 uses preemptive multitasking, whereas earlier ver-
sions use nonpreemptive multitasking (which means that the Windows system doesn’t schedule
time to applications based on the system timer). Applications have to tell Windows that they’re
finished processing code before Windows can grant time to other applications. This is a prob-
lem because a single application can tie up the system with a lengthy process. Therefore,
unless the programmers of the application make sure that the application gives up time to other
applications, problems can arise for the user.

Under Win32, the system grants CPU time to the threads for each process. The Win32 system
manages the time allotted to each thread based on thread priorities. This concept is discussed
in greater depth in Chapter 11, “Writing Multithreaded Applications.”

The Win32 API

CHAPTER 3
129

3

T
H

E
W

IN32 A
PI

NOTE

The Windows NT/2000 implementation of Win32 offers the capacity to perform true
multitasking on machines with multiple processors. Under these conditions, each
application can be granted time on its own processor. Actually, each individual
thread can be given CPU time on any available CPU in a multiprocessor machine.

Multithreading is the capability of an application to multitask within itself. This means that
your application can perform different types of processing simultaneously. A process can have
several threads, and each thread contains its own distinct code to execute. Threads may have
dependencies on one another and therefore must be synchronized. For example, it wouldn’t be
a good idea to assume that a particular thread will finish processing its code when its result
will be used by another thread. Thread-synchronization techniques are used to coordinate
multiple-thread execution. Threads are discussed in greater depth in Chapter 11, “Writing
Multithreaded Applications.”

Win32 Memory Management
The Win32 environment introduces you to the 32-bit flat memory model. Finally, Pascal pro-
grammers can declare that big array without running into a compile error:

BigArray = array[1..100000] of integer;

The following sections discuss the Win32 memory model and how the Win32 system lets you
manipulate memory.

Just What Is the Flat Memory Model?
The 16-bit world uses a segmented memory model. Under that model, addresses are represented
with a segment:offset pair. The segment refers to a base address, and the offset represents a num-
ber of bytes from that base. The problem with this scheme is that it’s confusing to the average
programmer, especially when dealing with large memory requirements. It’s also limiting—data
structures larger than 64KB are extremely painful to manage and are therefore avoided.

Under the flat-memory model, these limitations are gone. Each process has its own 4GB
address space to use for allocating large data structures. Additionally, an address actually repre-
sents a unique memory location.

How Does the Win32 System Manage Memory?
It’s not likely that your computer has 4GB installed. How does the Win32 system make more
memory available to your processes than the amount of physical memory installed on the com-
puter? Addresses that are 32 bit don’t actually represent a memory location in physical mem-
ory. Instead, Win32 uses virtual addresses.

By using virtual memory, each process can get its own 4GB virtual address space. The upper
2MB area of this address space belongs to Windows, and the bottom 2MB is where your appli-
cations reside and where you can allocate memory. One advantage to this scheme is that the
thread for one process can’t access the memory in another process. The address $54545454 in
one process points to a completely different location than the same address in another process.

It’s important to note that a process doesn’t actually have 4GB of memory but rather has the
capability to access a range of addresses up to 4GB. The amount of memory available to a
process really depends on how much physical RAM is installed on the machine and how much
space is available on disk for a paging file. The physical RAM and the paging file are used by
the system to break the memory available to a process into pages. The size of a page depends
on the type of system on which Win32 is installed. These page sizes are 4KB for Intel plat-
forms and 8KB for Alpha platforms. The defunct PowerPC and MIPS platforms used 4KB
pages as well. The system then moves pages from the paging file to physical memory and back
as needed. The system maintains a page map to translate the virtual addresses of a process to a
physical address. We won’t get into the hairy details of how all this happens; we just want to
familiarize you with the general scheme of things at this point.

A developer can manipulate memory in the Win32 environment in essentially three ways:
using virtual memory, file-mapping objects, and heaps.

Virtual Memory
Win32 provides you with a set of low-level functions that enable you to manipulate the virtual
memory of a process. This memory exists in one of the following three states:

Essentials for Rapid Development

PART I
130

• Free. Memory that’s available to be reserved and/or committed.

• Reserved. Memory within an address range that’s reserved for future use. Memory within
this address is protected from other allocation requests. However, this memory cannot be
accessed by the process because no physical memory is associated with it until it’s com-
mitted. The VirtualAlloc() function is used to reserve memory.

• Committed. Memory that has been allocated and associated with physical memory.
Committed memory can be accessed by the process. The VirtualAlloc() function is
used to commit virtual memory.

As stated earlier, Win32 provides various VirtualXXXX() functions for manipulating virtual
memory, as shown in Table 3.2. These functions are also documented in detail in the online help.

TABLE 3.2 Virtual Memory Functions

Function Purpose

VirtualAlloc() Reserves and/or commits pages in a process’s virtual address space.

VirtualFree() Releases and/or decommits pages in a process’s virtual address space.

VirtualLock() Locks a region of a process’s virtual address to prevent it from being
swapped to a page file. This prevents page faults with subsequent
accesses to that region.

VirtualUnLock() Unlocks a specified region of memory in a process’s address space so
that it can be swapped to a page file if necessary.

VirtualQuery() Returns information about a range of pages in the calling process’s
virtual address space.

VirtualQueryEx() Returns the same information as VirtualQuery() except that it
allows you to specify the process.

VirtualProtect() Changes access protection for a region of committed pages in the
calling process’s virtual address space.

VirtualProtectEx() Same as VirtualProtect() except that it makes changes to a
specified process.

The Win32 API

CHAPTER 3
131

3

T
H

E
W

IN32 A
PI

NOTE

The xxxEx() routines listed in this table can only be used by a process that has
debugging privileges on the other process. It’s complicated and rare for anything but
a debugger to use these routines.

Memory-Mapped Files
Memory-mapped files (file-mapping objects) allow you to access disk files in the same way
you would access dynamically allocated memory. This is done by mapping all or part of the
file to the calling process’s address range. After this is done, you can access the file’s data by
using a simple pointer. Memory-mapped files are discussed in greater detail in Chapter 12,
“Working with Files.”

Heaps
Heaps are contiguous blocks of memory in which smaller blocks can be allocated. Heaps effi-
ciently manage the allocation and manipulation of dynamic memory. Heap memory is manipu-
lated using various HeapXXXX() Win32 API functions. These functions are listed in Table 3.3
and are also documented in detail in Delphi’s online help.

TABLE 3.3 Heap Functions

Function Purpose

HeapCreate() Reserves a contiguous block in the virtual address space of the call-
ing process and allocates physical storage for a specified initial por-
tion of this block

HeapAlloc() Allocates a block of nonmovable memory from a heap

HeapReAlloc() Reallocates a block of memory from the heap, thus allowing you to
resize or change the heap’s properties

HeapFree() Frees a memory block allocated from the heap with HeapAlloc()

HeapDestroy() Destroys a heap object created with HeapCreate()

Essentials for Rapid Development

PART I
132

NOTE

It’s important to note that there are several differences in the Win32 implementation
of Windows NT/2000 and Windows 95/98. Generally, these differences have to do
with security and speed. The Windows 95/98 memory manager, for instance, is leaner
than that of Windows NT/2000 (NT maintains more internal tracking information on
heap blocks). However, the NT virtual memory manager is generally regarded as
much faster than Windows 95/98.

Be aware of such differences when using the various functions associated with these
Windows objects. The online help will point out platform-specific variations of such a
function’s usage. Be sure to refer to the help whenever using these functions.

Error Handling in Win32
Most Win32 API functions return either True or False, indicating that the function was either
successful or unsuccessful, respectively. If the function is unsuccessful (the function returns
False), you must use the GetLastError() Win32 API function to obtain the error code value
for the thread in which the error occurred.

The Win32 API

CHAPTER 3
133

3

T
H

E
W

IN32 A
PI

NOTE

Not all Win32 system API functions set error codes that are accessible by
GetLastError(). For example, many GDI routines don’t set error codes.

This error code is maintained on a per-thread basis, so GetLastError() must be called in the
context of the thread causing the error. The following is an example of this function’s usage:

if not CreateProcess(CommandLine, nil, nil, nil, False,
NORMAL_PRIORITY_CLASS, nil, nil, StartupInfo, ProcessInfo) then
raise Exception.Create(‘Error creating process: ‘+
IntToStr(GetLastError));

TIP

The Delphi 5 SysUtils.pas unit has a standard exception class and utility function to
convert system errors into exceptions. These functions are Win32Check() and
RaiseLastWin32Error(), which raises an EWin32Error exception. Use these helper
routines instead of writing your own result checks.

This code attempts to create a process specified by the null-terminated string CommandLine.
We’ll defer discussing the CreateProcess() method for a later chapter since we’re focusing on
the GetLastError() function. If CreateProcess() fails, an exception is raised. This exception
displays the last error code that resulted from the function call by getting it from the
GetLastError() function. You might use a similar approach in your application.

TIP

Error codes returned by GetLastError() are typically documented in the online help
under the functions that cause the error to occur. Therefore, the error code for
CreateMutex() would be documented under CreateMutex() in the Win32 online help.

Summary
This chapter introduced you to the Win32 API. You should now have an idea of the new kernel
objects available as well as how Win32 manages memory. You should also be familiar with the
different memory-management features available to you. As a Delphi developer, it isn’t neces-
sary that you know all the ins and outs of the Win32 system. However, you should possess a
basic understanding of the Win32 system, its functions, and how you can use these functions to
maximize your development effort. This chapter provides you with a starting point.

Essentials for Rapid Development

PART I
134

