
CHAPTER

28
Writing Desktop Database
Applications

IN THIS CHAPTER
• Working with Datasets 1466

• Using TTable 1497

• Data Modules 1504

• The Search, Range, and Filter
Demo 1505

• TQuery and TStoredProc: The Other
Datasets 1516

• Text File Tables 1517

• Connecting with ODBC 1522

• ActiveX Data Objects (ADO) 1527

• Summary 1534

In this chapter, you’ll learn the art and science of accessing external database files from your
Delphi applications. If you’re new to database programming, we do assume a bit of database
knowledge, but this chapter will get you started on the road to creating high-quality database
applications. If database applications are “old hat” to you, you’ll benefit from the chapter’s
demonstration of Delphi’s spin on database programming. In this chapter, you first learn about
datasets and techniques for manipulating them, and later you learn how to work with tables and
queries specifically. Along the way, this chapter outlines the important points you need to know
to be a productive Delphi database developer.

Delphi 5 ships with version 5.0 of the Borland Database Engine (BDE), which offers you the
capability to communicate with Paradox, dBASE, Access, FoxPro, ODBC, ASCII text, and
SQL database servers all in much the same manner. Unlike previous versions, the Standard edi-
tion of Delphi 5 does not contain database connectivity. The Professional edition provides con-
nections to file-based Paradox, dBASE, Access, FoxPro, and ASCII text formats, in addition to
connectivity to Local InterBase and ODBC data sources. Delphi Enterprise builds upon Delphi
Professional, adding high-performance BDE SQL Links connections for InterBase, Microsoft
SQL Server, Oracle, Informix Dynamic Server, Sybase Adaptive Server, and DB2.
Additionally, Delphi Enterprise also provides ADOExpress components for native access to
Microsoft ActiveX Data Objects (ADO) data sources. The topics discussed pertain primarily to
using Delphi with file-based data, such as Paradox and dBASE tables, although the chapter
will also touch on data access via ODBC and ADO. This chapter also serves as a primer for the
next chapter, “Developing Client/Server Applications.”

Working with Datasets
A dataset is a collection of rows and columns of data. Each column is of some homogeneous
data type, and each row is made up of a collection of data of each column data type.
Additionally, a column is also known as a field, and a row is sometimes called a record. VCL
encapsulates a dataset into an abstract component called TDataSet. TDataSet introduces many
of the properties and methods necessary for manipulating and navigating a dataset.

To help keep the nomenclature clear and to cover some of the basics, the following list
explains some of the common database terms that are used in this and other database-oriented
chapters:

• A dataset is a collection of discrete data records. Each record is made up of multiple
fields. Each field can contain a different type of data (integer number, string, decimal
number, graphic, and so on). Datasets are represented by VCL’s abstract TDataset class.

• A table is a special type of dataset. A table is generally a file containing records that
are physically stored on a disk somewhere. VCL’s TTable class encapsulates this func-
tionality.

Database Development

PART IV
1466

• A query is also a special type of dataset. Think of queries as “memory tables” that are
generated by special commands that manipulate some physical table or set of tables.
VCL has a TQuery class to handle queries.

• A database refers to a directory on a disk (when dealing with nonserver data such as
Paradox and dBASE files) or a SQL database (when dealing with SQL servers). A data-
base can contain multiple tables. As you may have guessed, VCL also has a TDatabase
class.

• An index defines rules by which a table is ordered. To have an index on a particular field
in a table means to sort its records based on the value that field holds for each record.
The TTable component contains properties and methods that help you manipulate
indexes.

Writing Desktop Database Applications

CHAPTER 28
1467

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

NOTE

We mentioned earlier that this chapter assumes a bit of database knowledge. This
chapter is not intended to be a primer on database programming, and we expect
that you’re already familiar with the items in this list. If terms such as database,
table, and index sound foreign to you, you might want to obtain an introductory
text on database concepts.

VCL Database Architecture
During the development of Delphi 3, VCL’s database architecture was significantly overhauled
in order to open the dataset architecture to allow non-BDE datasets to more easily be used
within Delphi. At the root of this architecture is the base TDataSet class. TDataSet is a compo-
nent that provides an abstract representation of dataset records and fields. A number of meth-
ods of TDataSet can be overridden in order to create a component that communicates with
some particular physical data format. Following this formula, VCL’s TBDEDataSet descends
from TDataSet and serves as the base class for data sources that communicate via the BDE. If
you’d like to learn how to create a TDataSet descendant to plug some type of custom data into
this architecture, you’ll find an example in Chapter 30, “Extending Database VCL.”

BDE Data-Access Components
The Data Access page of the Component Palette contains the VCL components you’ll use to
access and manage BDE datasets. These are shown in Figure 28.1. VCL represents datasets
with three components: TTable, TQuery, and TStoredProc. These components all descend
directly from the TDBDataSet component, which descends from TBDEDataSet (which, in turn,

descends from TDataSet). As mentioned earlier, TDataSet is an abstract component that
encapsulates dataset management, navigation, and manipulation. TBDEDataSet is an abstract
component that represents a BDE-specific dataset. TDBDataSet introduces concepts such as
BDE databases and sessions (these are explained in detail in the next chapter). Throughout the
rest of this chapter, we’ll refer to this type of BDE-specific dataset simply as a dataset.

Database Development

PART IV
1468

FIGURE 28.1
The Data Access page of the Component Palette.

As their names imply, TTable is a component that represents the structure and data contained
within a database table, TQuery is a component representing the set of data returned from a
SQL query operation, and TStoredProc encapsulates a stored procedure on a SQL server. In
this chapter, for simplicity’s sake, we use the TTable component when discussing datasets.
Later, the TQuery component is covered in detail.

Opening a Dataset
Before you can do any nifty manipulation of your dataset, you must first open it. To open a
dataset, simply call its Open() method, as shown in this example:

Table1.Open;

This is equivalent, by the way, to setting a dataset’s Active property to True:

Table1.Active := True;

There’s slightly less overhead in the latter method, because the Open() method ends up setting
the Active property to True. However, the overhead is so minimal that it’s not worth worrying
about.

Once the dataset has been opened, you’re free to manipulate it, as you’ll see in just a moment.
When you finish using the dataset, you should close it by calling its Close() method, like this:

Table1.Close;

Alternatively, you could close it by setting its Active property to False, like this:

Table1.Active := False;

Writing Desktop Database Applications

CHAPTER 28
1469

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

TIP

When you’re communicating with SQL servers, a connection to the database must be
established when you first open a dataset in that database. When you close the last
dataset in a database, your connection is terminated. Opening and closing these con-
nections involves a certain amount of overhead. Therefore, if you find that you open
and close the connection to the database often, use a TDatabase component instead
to maintain a connection to a SQL server’s database throughout many open and close
operations. The TDatabase component is explained in more detail in the next chapter.

Navigating Datasets
TDataSet provides some simple methods for basic record navigation. The First() and Last()
methods move you to the first and last records in the dataset, respectively, and the Next() and
Prior() methods move you either one record forward or back in the dataset. Additionally, the
MoveBy() method, which accepts an Integer parameter, moves you a specified number of
records forward or back.

NOTE

One of the big, but less obvious, benefits of using the BDE is that it allows navigable
SQL tables and queries. SQL data generally is not navigable—you can move forward
through the rows of a query but not backward. Unlike ODBC, BDE makes SQL data
navigable.

BOF, EOF, and Looping
BOF and EOF are Boolean properties of TDataSet that reveal whether the current record is the
first or last record in the dataset. For example, you might need to iterate through each record in
a dataset until reaching the last record. The easiest way to do so would be to employ a while
loop to keep iterating over records until the EOF property returns True, as shown here:

Table1.First; // go to beginning of data set
while not Table1.EOF do // iterate over table
begin

// do some stuff with current record
Table1.Next; // move to next record

end;

Database Development

PART IV
1470

CAUTION

Be sure to call the Next() method inside your while-not-EOF loop; otherwise, your
application will get caught in an endless loop.

Avoid using a repeat..until loop to perform actions on a dataset. The following code may
look OK on the surface, but bad things may happen if you try to use it on an empty dataset,
because the DoSomeStuff() procedure will always execute at least once, regardless of whether
the dataset contains records:

repeat
DoSomeStuff;
Table1.Next;

until Table1.EOF;

Because the while-not-EOF loop performs the check up front, you won’t encounter such a
problem with this construct.

Bookmarks
Bookmarks enable you to save your place in a dataset so that you can come back to the same
spot at a later time. Bookmarks are very easy to use in Delphi because you only have one prop-
erty to remember.

Delphi represents a bookmark as type TBookmarkStr. TTable has a property of this type called
Bookmark. When you read from this property, you obtain a bookmark, and when you write to
this property, you go to a bookmark. When you find a particularly interesting place in a dataset
that you’d like to be able to get back to easily, here’s the syntax to use:

var
BM: TBookmarkStr;

begin
BM := Table1.Bookmark;

When you want to return to the place in the dataset you marked, just do the reverse—set the
Bookmark property to the value you obtained earlier by reading the Bookmark property:

Table1.Bookmark := BM;

TBookmarkStr is defined as an AnsiString, so memory is automatically managed for book-
marks (you never have to free them). If you’d like to clear an existing bookmark, just set it to
an empty string:

BM := ‘’;

Note that TBookmarkStr is an AnsiString for storage convenience. You should consider it an
opaque data type and not depend on the implementation, because the bookmark data is com-
pletely determined by BDE and the underlying data layers.

Writing Desktop Database Applications

CHAPTER 28
1471

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

NOTE

Although 32-bit Delphi still supports GetBookmark(), GotoBookmark(), and
FreeBookmark() from Delphi 1.0, because the 32-bit Delphi technique is a bit cleaner
and less prone to error, you should use this newer technique unless you have to
maintain compatibility with 16-bit projects.

Navigational Example
You’ll now create a small project that incorporates the TDataSet navigational methods and
properties you just learned. This project will be called Navig8, and the main form for this pro-
ject is shown in Figure 28.2.

FIGURE 28.2
The Navig8 project’s main form.

To display the data contained in a TTable object, this project will employ the TDBGrid compo-
nent. The process of “wiring” a data-aware control such as the TDBGrid component to a dataset

requires several steps. The following list covers the steps for displaying Table1’s data in
DBGrid1:

1. Set Table1’s DatabaseName property to an existing alias or directory. Use the DBDEMOS
alias if you installed Delphi’s sample programs.

2. Choose a table from the list presented in Table1’s TableName property.

3. Drop a TDataSource component on the form and wire it to TTable by setting
DataSource1’s dataset property to Table1. TDataSource serves as a conduit between
data sources and controls; it’s explained in more detail earlier in the chapter.

4. Wire the TDBGrid component to the TDataSource component by setting DBGrid1’s
DataSource property to DataSource1.

5. Open the table by setting Table1’s Active property to True.

6. Poof! You now have data in the grid control.

Database Development

PART IV
1472

TIP

A shortcut for picking components from the drop-down list provided for the DataSet
and DataSource properties is to double-click the area to the right of the property
name in the Object Inspector. This sets the property value to the first item in the
drop-down list.

The source code for main unit of Navig8, called Nav.pas, is shown in Listing 28.1.

LISTING 28.1 The Source Code for Nav.pas

unit Nav;

interface

uses
SysUtils, Windows, Messages, Classes, Controls, Forms, StdCtrls,
Grids, DBGrids, DB, DBTables, ExtCtrls;

type
TForm1 = class(TForm)
Table1: TTable;
DataSource1: TDataSource;
DBGrid1: TDBGrid;
GroupBox1: TGroupBox;
GetButton: TButton;
GotoButton: TButton;

ClearButton: TButton;
GroupBox2: TGroupBox;
FirstButton: TButton;
LastButton: TButton;
NextButton: TButton;
PriorButton: TButton;
MoveByButton: TButton;
Edit1: TEdit;
Panel1: TPanel;
PosLbl: TLabel;
Label1: TLabel;
procedure FirstButtonClick(Sender: TObject);
procedure LastButtonClick(Sender: TObject);
procedure NextButtonClick(Sender: TObject);
procedure PriorButtonClick(Sender: TObject);
procedure MoveByButtonClick(Sender: TObject);
procedure DataSource1DataChange(Sender: TObject; Field: TField);
procedure GetButtonClick(Sender: TObject);
procedure GotoButtonClick(Sender: TObject);
procedure ClearButtonClick(Sender: TObject);

private
BM: TBookmarkStr;

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.FirstButtonClick(Sender: TObject);
begin
Table1.First; // Go to first record in table

end;

procedure TForm1.LastButtonClick(Sender: TObject);
begin
Table1.Last; // Go to last record in table

end;

procedure TForm1.NextButtonClick(Sender: TObject);
begin
Table1.Next; // Go to next record in table

Writing Desktop Database Applications

CHAPTER 28
1473

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

continues

LISTING 28.1 Continued

end;

procedure TForm1.PriorButtonClick(Sender: TObject);
begin
Table1.Prior; // Go to prior record in table

end;

procedure TForm1.MoveByButtonClick(Sender: TObject);
begin
// Move a specified number of record forward or back in the table
Table1.MoveBy(StrToInt(Edit1.Text));

end;

procedure TForm1.DataSource1DataChange(Sender: TObject; Field: TField);
begin
// Set caption appropriately, depending on state of Table1 BOF/EOF
if Table1.BOF then PosLbl.Caption := ‘Beginning’
else if Table1.EOF then PosLbl.Caption := ‘End’
else PosLbl.Caption := ‘Somewheres in between’;

end;

procedure TForm1.GetButtonClick(Sender: TObject);
begin
BM := Table1.Bookmark; // Get a bookmark
GotoButton.Enabled := True; // Enable/disable proper buttons
GetButton.Enabled := False;
ClearButton.Enabled := True;

end;

procedure TForm1.GotoButtonClick(Sender: TObject);
begin
Table1.Bookmark := BM; // Go to the bookmark position

end;

procedure TForm1.ClearButtonClick(Sender: TObject);
begin
BM := ‘’; // clear the bookmark
GotoButton.Enabled := False; // Enable/disable appropriate buttons
GetButton.Enabled := True;
ClearButton.Enabled := False;

end;

end.

Database Development

PART IV
1474

This example illustrates quite well the fact that you can use Delphi’s database classes to do
quite a lot of database manipulation in your programs with very little code.

Note that you should initially set the Enabled properties of GotoButton and FreeButton to
False, because you can’t use them until a bookmark is allocated. The FreeButtonClick() and
GetButtonClick() methods ensure that the proper buttons are enabled, depending on whether
a bookmark has been set.

Most of the other procedures in this example are one-liners, although one method that does
require some explanation is TForm1.DataSource1DataChange(). This method is wired to
DataSource1’s OnDataChange event, which fires every time a field value changes (for example,
when you move from one record to another). This event checks to see whether you’re at the
beginning, in the middle, or at the end of a dataset; it then changes the label’s caption appropri-
ately. You’ll learn more about the TTable and TDataSource events a bit later in this chapter.

Writing Desktop Database Applications

CHAPTER 28
1475

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

BOF and EOF
You may notice that when you run the Navig8 project, PosLbl’s caption indicates that
you’re at the beginning of the dataset, which makes sense. However, if you move to
the next record and back again, PosLbl’s caption isn’t aware that you’re at the first
record. Notice, however, that PosLbl.Caption does indicate BOF if you click the Prior
button once more. Note that the same holds true for EOF if you try this at the end of
the dataset. Why?

The reason is that the BDE cannot be sure you’re at the beginning or end of the
dataset anymore, because another user of the table (if it’s a networked table) or even
another process within your program could have added a record to the beginning or
end of the table in the time it took you to move from the first to the second record
and then back again.

With that in mind, BOF can only be True under one of the following circumstances:

• You just opened the dataset.

• You just called the dataset’s First() method.

• A call to TDataSet.Prior() failed, indicating that there are no prior records.

Likewise, EOF can only be True under the following circumstances:

• You opened an empty dataset.

• You just called the dataset’s Last() method.

• A call to TDataSet.Next() failed, indicating that there are no more records.

A subtle but important piece of information that you can garner from this list is that
you know a dataset is empty when both BOF and EOF are True.

TDataSource
A TDataSource component was used in that last example, so let’s digress for a moment to dis-
cuss this very important object. TDataSource is the conduit that enables data-access compo-
nents such as TTable components to connect to data controls such as TDBEdit and
TDBLookupCombo components. In addition to being the interface between datasets and data-
aware controls, TDataSource contains a couple of handy properties and events that make your
life easier when manipulating data.

The State property of TDataSource reveals the current state of the underlying dataset. The
value of State tells you whether the dataset is currently inactive or in Insert, Edit, SetKey, or
CalcFields mode, for example. The State property of TDataSet is explained in more detail later
in this chapter. The OnStateChange event fires whenever the value of this property changes.

The OnDataChange event of TDataset is executed whenever the dataset becomes active or a
data-aware control informs the dataset that something has changed.

The OnUpdateData event occurs whenever a record is posted or updated. This is the event that
causes data-aware controls to change their value based on the contents of the table. You can
respond to the event yourself to keep track of such changes within your application.

Working with Fields
Delphi enables you to access the fields of any dataset through the TField object and its
descendants. Not only can you get and set the value of a given field of the current record of a
dataset, but you can also change the behavior of a field by modifying its properties. You can
also modify the dataset, itself, by changing the visual order of fields, removing fields, or even
creating new calculated or lookup fields.

Field Values
It’s very easy to access field values from Delphi. TDataSet provides a default array property
called FieldValues[] that returns the value of a particular field as a Variant. Because
FieldValues[] is the default array property, you don’t need to specify the property name to
access the array. For example, the following piece of code assigns the value of Table1’s
CustName field to String S:

S := Table1[‘CustName’];

You could just as easily store the value of an integer field called CustNo in an integer variable
called I:

I := Table1[‘CustNo’];

Database Development

PART IV
1476

A powerful corollary to this is the capability to store the values of several fields into a Variant
array. The only catches are that the Variant array index must be zero based and the Variant
array contents should be varVariant. The following code demonstrates this capability:

const
AStr = ‘The %s is of the %s category and its length is %f in.’;

var
VarArr: Variant;
F: Double;

begin
VarArr := VarArrayCreate([0, 2], varVariant);
{ Assume Table1 is attached to Biolife table }
VarArr := Table1[‘Common_Name;Category;Length_In’];
F := VarArr[2];
ShowMessage(Format(AStr, [VarArr[0], VarArr[1], F]));

end;

Delphi 1 programmers will note that the FieldValues[] technique is much easier than the pre-
vious technique for accessing field values. That technique (which still works in 32-bit Delphi
for backward compatibility) involves using TDataset’s Fields[] array property or
FieldsByName() function to access individual TField objects associated with the dataset. The
TField component provides information about a specific field.

Fields[] is a zero-based array of TField objects, so Fields[0] returns a TField representing
the first logical field in the record. FieldsByName() accepts a string parameter that corresponds
to a given field name in the table; therefore, FieldsByName(‘OrderNo’) would return a TField
component representing the OrderNo field in the current record of the dataset.

Given a TField object, you can retrieve or assign the field’s value using one of the TField
properties shown in Table 28.1.

TABLE 28.1 Properties to Access TField Values

Property Return Type

AsBoolean Boolean

AsFloat Double

AsInteger Longint

AsString String

AsDateTime TDateTime

Value Variant

Writing Desktop Database Applications

CHAPTER 28
1477

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

If the first field in the current dataset is a string, you can store its value in the String variable
S, like this:

S := Table1.Fields[0].AsString;

The following code sets the integral variable I to contain the value of the ‘OrderNo’ field in
the current record of the table:

I := Table1.FieldsByName(‘OrderNo’).AsInteger;

Field Data Types
If you want to know the type of a field, look at TField’s DataType property, which indicates
the data type with respect to the database table (irrespective of a corresponding Object Pascal
type). The DataType property is of TFieldType, and TFieldType is defined as follows:

type
TFieldType = (ftUnknown, ftString, ftSmallint, ftInteger, ftWord,
ftBoolean, ftFloat, ftCurrency, ftBCD, ftDate, ftTime, ftDateTime,
ftBytes, ftVarBytes, ftAutoInc, ftBlob, ftMemo, ftGraphic, ftFmtMemo,
ftParadoxOle, ftDBaseOle, ftTypedBinary, ftCursor, ftFixedChar,
ftWideString, ftLargeint, ftADT, ftArray, ftReference, ftDataSet,
ftOraBlob, ftOraClob, ftVariant, ftInterface, ftIDispatch, ftGuid);

There are descendants of TField designed to work specifically with many of the preceding
data types. These are covered a bit later in this chapter.

Field Names and Numbers
To find the name of a specified field, use TField’s FieldName property. For example, the fol-
lowing code places the name of the first field in the current table in the String variable S:

var
S: String;

begin
S := Table1.Fields[0].FieldName;

end;

Likewise, you can obtain the number of a field you know only by name by using the FieldNo
property. The following code stores the number of the OrderNo field in the Integer variable I:

var
I: integer;

begin
I := Table1.FieldsByName(‘OrderNo’).FieldNo;

end;

Database Development

PART IV
1478

Manipulating Field Data
Here’s a three-step process for editing one or more fields in the current record:

1. Call the dataset’s Edit() method to put the dataset into Edit mode.

2. Assign new values to the fields of your choice.

3. Post the changes to the dataset either by calling the Post() method or by moving to a
new record, which will automatically post the edit.

For instance, a typical record edit looks like this:

Table1.Edit;
Table1[‘Age’] := 23;
Table1.Post;

Writing Desktop Database Applications

CHAPTER 28
1479

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

NOTE

To determine how many fields a dataset contains, use TDataset’s FieldList property.
FieldList represents a flattened view of all the nested fields in a table containing
fields that are abstract data types (ADTs).

For backward compatibility, the FieldCount property still works, but it will skip over
any ADT fields.

TIP

Sometimes you work with datasets that contain read-only data. Examples of this
would include a table located on a CD-ROM drive or a query with a non-live result
set. Before attempting to edit data, you can determine whether the dataset contains
read-only data before you try to modify it by checking the value of the CanModify
property. If CanModify is True, you have the green light to edit the dataset.

Along the same lines as editing data, you can insert or append records to a dataset in much the
same way:

1. Call the dataset’s Insert() or Append() method to put the dataset into Insert or Append
mode.

2. Assign values to the dataset’s fields.

3. Post the new record to the dataset either by calling Post() or by moving to a new record,
which forces a post to occur.

If at some point, before your additions or modifications to the dataset are posted, you want to
abandon your changes, you can do so by calling the Cancel() method. For instance, the fol-
lowing code cancels the edit before changes are posted to the table:

Table1.Edit;
Table1[‘Age’] := 23;
Table1.Cancel;

Cancel() undoes changes to the dataset, takes the dataset out of Edit, Append, or Insert mode,
and puts it back into Browse mode.

To round out the set of TDataSet’s record-manipulation methods, the Delete() method
removes the current record from the dataset. For example, the following code deletes the last
record in the table:

Table1.Last;
Table1.Delete;

The Fields Editor
Delphi gives you a great degree of control and flexibility when working with dataset fields
through the Fields Editor. You can view the Fields Editor for a particular dataset in the Form
Designer, either by double-clicking the TTable, TQuery, or TStoredProc or by selecting Fields
Editor from the dataset’s local menu. The Fields Editor window enables you to determine
which of a dataset’s fields you want to work with and create new calculated or lookup fields.
You can use a local menu to accomplish these tasks. The Fields Editor window with its local
menu deployed is shown in Figure 28.3.

To demonstrate the usage of the Fields Editor, open a new project and drop a TTable compo-
nent onto the main form. Set Table1’s DatabaseName property to DBDEMOS (this is the alias that
points to the Delphi sample tables) and set the TableName property to ORDERS.DB. To provide
some visual feedback, also drop a TDataSource and TDBGrid component on the form. Hook
DataSource1 to Table1 and then hook DBGrid1 to DataSource1. Now set Table1’s Active
property to True, and you’ll see Table1’s data in the grid.

Database Development

PART IV
1480

NOTE

When you’re in Edit, Insert, or Append mode, keep in mind that your changes will
always post when you move off the current record. Therefore, be careful when you
use the Next(), Prior(), First(), Last(), and MoveBy() methods while editing
records.

FIGURE 28.3
The Fields Editor’s local menu.

Adding Fields
Invoke the Fields Editor by double-clicking Table1, and you’ll see the Fields Editor window,
as shown in Figure 28.3. Let’s say you want to limit your view of the table to only a few fields.
Select Add Fields from the Fields Editor local menu. This will invoke the Add Fields dialog.
Highlight the OrderNo, CustNo, and ItemsTotal fields in this dialog and click OK. The three
selected fields will now be visible in the Fields Editor and in the grid.

Delphi creates TField descendant objects, which map to the dataset fields you select in the
Fields Editor. For example, for the three fields mentioned in the preceding paragraph, Delphi
adds the following declarations of TField descendants to the source code for your form:

Table1OrderNo: TFloatField;
Table1CustNo: TFloatField;
Table1ItemsTotal: TCurrencyField;

Notice that the name of the field object is the concatenation of the TTable name and the field
name. Because these fields are created in code, you can also access TField descendant proper-
ties and methods in your code rather than solely at design time.

TField Descendants
Let’s digress for just a moment on the topic of TFields. There are one or more different
TField descendant objects for each field type (field types are described in the “Field Data

Writing Desktop Database Applications

CHAPTER 28
1481

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

Types” section, earlier in this chapter). Many of these field types also map to Object Pascal
data types. Table 28.2 shows the various classes in the TField hierarchy, their ancestor classes,
their field types, and the Object Pascal types to which they equate.

TABLE 28.2 TField Descendants and their Field Types

Object
Field Field Pascal
Class Ancestor Type Type

TStringField TField ftString String

TWideStringField TStringField ftWideString WideString

TGuidField TStringField ftGuid TGUID

TNumericField TField * *

TIntegerField TNumericField ftInteger Integer

TSmallIntField TIntegerField ftSmallInt SmallInt

TLargeintField TNumericField ftLargeint Int64

TWordField TIntegerField ftWord Word

TAutoIncField TIntegerField ftAutoInc Integer

TFloatField TNumericField ftFloat Double

TCurrencyField TFloatField ftCurrency Currency

TBCDField TNumericField ftBCD Double

TBooleanField TField ftBoolean Boolean

TDateTimeField TField ftDateTime TDateTime

TDateField TDateTimeField ftDate TDateTime

TTimeField TDateTimeField ftTime TDateTime

TBinaryField TField * *

TBytesField TBinaryField ftBytes None

TVarBytesField TBytesField ftVarBytes None

TBlobField TField ftBlob None

TMemoField TBlobField ftMemo None

TGraphicField TBlobField ftGraphic None

TObjectField TField * *

TADTField TObjectField ftADT None

TArrayField TObjectField ftArray None

TDataSetField TObjectField ftDataSet TDataSet

TReferenceField TDataSetField ftReference

Database Development

PART IV
1482

Object
Field Field Pascal
Class Ancestor Type Type

TVariantField TField ftVariant OleVariant

TInterfaceField TField ftInterface IUnknown

TIDispatchField TInterfaceField ftIDispatch IDispatch

TAggregateField TField None None

*Denotes an abstract base class in the TField hierarchy

As Table 28.2 shows, BLOB and Object field types are special in that they don’t map directly
to native Object Pascal types. BLOB fields are discussed in more detail later in this chapter.

Fields and the Object Inspector
When you select a field in the Fields Editor, you can access the properties and events associ-
ated with that TField descendant object in the Object Inspector. This feature enables you to
modify field properties such as minimum and maximum values, display formats, and whether
the field is required as well as whether it’s read-only. Some of these properties, such as
ReadOnly, are obvious in their purpose, but some aren’t quite as intuitive. Some of the less
intuitive properties are covered later in this chapter. Figure 28.4 shows the OrderNo field
focused in the Object Inspector.

Writing Desktop Database Applications

CHAPTER 28
1483

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

FIGURE 28.4
Editing a field’s properties.

Switch to the Events page of the Object Inspector and you’ll see that there are also events asso-
ciated with field objects. The events OnChange, OnGetText, OnSetText, and OnValidate are all
well-documented in the online help. Simply click to the left of the event in the Object

Inspector and press F1. Of these, OnChange is probably the most common to use. It enables you
to perform some action whenever the contents of the field change (moving to another record or
adding a record, for example).

Calculated Fields
You can also add calculated fields to a dataset using the Fields Editor. Let’s say, for example,
you wanted to add a field that figures the wholesale total for each entry in the ORDERS table,
and the wholesale total was 32 percent of the normal total. Select New Field from the Fields
Editor local menu, and you’ll be presented with the New Field dialog, as shown in Figure 28.5.
Enter the name, WholesaleTotal, for the new field in the Name edit control. The type of this
field is Currency, so enter that in the Type edit control. Make sure the Calculated radio button
is selected in the Field Type group; then press OK. Now the new field will show up in the grid,
but it won’t yet contain any data.

Database Development

PART IV
1484

FIGURE 28.5
Adding a calculated field with the New Field dialog.

To cause the new field to become populated with data, you must assign a method to Table1’s
OnCalcFields event. The code for this event simply assigns the value of the WholesaleTotal
field to be 32 percent of the value of the existing SalesTotal field. This method, which han-
dles Table1.OnCalcFields, is shown here:

procedure TForm1.Table1CalcFields(DataSet: TDataSet);
begin
DataSet[‘WholesaleTotal’] := DataSet[‘ItemsTotal’] * 0.68;

end;

Figure 28.6 shows that the WholesaleTotal field in the grid now contains the correct data.

Lookup Fields
Lookup fields enable you to create fields in a dataset that actually look up their values from
another dataset. To illustrate this, you’ll add a lookup field to the current project. The CustNo
field of the ORDERS table doesn’t mean anything to someone who doesn’t have all the customer

FIGURE 28.6
The calculated field has been added to the table.

First, you should drop in a second TTable object, setting its DatabaseName property to DBDEMOS
and its TableName property to CUSTOMER. This is Table2. Then you once again select New Field
from the Fields Editor local menu to invoke the New Field dialog. This time you’ll call the
field CustName, and the field type will be a String. The size of the string is 15 characters.
Don’t forget to select the Lookup button in the Field Type radio group. The Dataset control in
this dialog should be set to Table2—the dataset you want to look into. The Key Fields and
Lookup Keys controls should be set to CustNo—this is the common field upon which the
lookup will be performed. Finally, the Result field should be set to Contact—this is the field
you want displayed. Figure 28.7 shows the New Field dialog for the new lookup field. The new
field will now display the correct data, as shown in the completed project in Figure 28.8.

Writing Desktop Database Applications

CHAPTER 28
1485

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

FIGURE 28.7
Adding a lookup field with the New Field dialog.

numbers memorized. You can add a lookup field to Table1 that looks into the CUSTOMER table
and then, based on the customer number, retrieves the name of the current customer.

FIGURE 28.8
Viewing the table containing a lookup field.

Drag-and-Drop Fields
Another less obvious feature of the Fields Editor is that it enables you to drag fields from its
Fields list box and drop them onto your forms. We can easily demonstrate this feature by start-
ing a new project that contains only a TTable on the main form. Assign Table1.DatabaseName
to DBDEMOS and assign Table1.TableName to BIOLIFE.DB. Invoke the Fields Editor for this
table and add all the fields in the table to the Fields Editor list box. You can now drag one or
more of the fields at a time from the Fields Editor window and drop them on your main form.

You’ll notice a couple of cool things happening here: First, Delphi senses what kind of field
you’re dropping onto your form and creates the appropriate data-aware control to display the
data (that is, a TDBEdit is created for a string field, whereas a TDBImage is created for a graphic
field). Second, Delphi checks to see if you have a TDataSource object connected to the dataset;
it hooks to an existing one if available or creates one if needed. Figure 28.9 shows the result of
dragging and dropping the fields of the BIOLIFE table onto a form.

Database Development

PART IV
1486

FIGURE 28.9
Dragging and dropping fields on a form.

Working with BLOB Fields
A BLOB (Binary Large Object) field is a field that’s designed to contain an indeterminate
amount of data. A BLOB field in one record of a dataset may contain three bytes of data,
whereas the same field in another record of that dataset may contain 3K bytes. Blobs are most
useful for holding large amounts of text, graphic images, or raw data streams such as OLE
objects.

TBlobField and Field Types
As discussed earlier, VCL includes a TField descendant called TBlobField, which encapsu-
lates a BLOB field. TBlobField has a BlobType property of type TBlobType, which indicates
what type of data is stored in the BLOB field. TBlobType is defined in the DB unit as follows:

TBlobType = ftBlob..ftOraClob;

All these field types and the type of data associated with these field types are listed in Table 28.3.

TABLE 28.3 TBlobField Field Types

Field Type Type of Data

ftBlob Untyped or user-defined data

ftMemo Text

ftGraphic Windows bitmap

ftFmtMemo Paradox formatted memo

ftParadoxOle Paradox OLE object

ftDBaseOLE dBASE OLE object

ftTypedBinary Raw data representation of an existing type

ftCursor..ftDataSet Not valid BLOB types

ftOraBlob BLOB fields in Oracle8 tables

ftOraClob CLOB fields in Oracle8 tables

You’ll find that most of the work you need to do in getting data in and out of TBlobField com-
ponents can be accomplished by loading or saving the BLOB to a file or by using a
TBlobStream. TBlobStream is a specialized descendant of TStream that uses the BLOB field
inside the physical table as the stream location. To demonstrate these techniques for interacting
with TBlobField components, you’ll create a sample application.

Writing Desktop Database Applications

CHAPTER 28
1487

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

BLOB Field Example
This project creates an application that enables the user to store WAV files in a database table
and play them directly from the table. Start the project by creating a main form with the com-
ponents shown in Figure 28.10. The TTable component can map to the Wavez table in the
DDGUtils alias or your own table of the same structure. The structure of the table is as follows:

Field Name Field Type Size

WaveTitle Character 25

FileName Character 25

Wave BLOB

Database Development

PART IV
1488

NOTE

If you ran the Setup program on the CD-ROM accompanying this book, it should
have set up a BDE alias that points to the \Data subdirectory of the directory in
which you installed the software. In this directory, you can find the tables used in the
applications throughout this book. Several of the examples on the CD-ROM expect
the DDGData alias.

FIGURE 28.10
Main form for Wavez, the BLOB field example.

The Add button is used to load a WAV file from disk and add it to the table. The method
assigned to the OnClick event of the Add button is shown here:

procedure TMainForm.sbAddClick(Sender: TObject);
begin
if OpenDialog.Execute then
begin
tblSounds.Append;
tblSounds[‘FileName’] := ExtractFileName(OpenDialog.FileName);
tblSoundsWave.LoadFromFile(OpenDialog.FileName);
edTitle.SetFocus;

end;
end;

The code first attempts to execute OpenDialog. If it’s successful, tblSounds is put into Append
mode, the FileName field is assigned a value, and the Wave BLOB field is loaded from the file
specified by OpenDialog. Notice that TBlobField’s LoadFromFile method is very handy here,
and the code is very clean for loading a file into a BLOB field.

Similarly, the Save button saves the current WAV sound found in the Wave field to an external
file. The code for this button is as follows:

procedure TMainForm.sbSaveClick(Sender: TObject);
begin
with SaveDialog do
begin
FileName := tblSounds[‘FileName’]; // initialize file name
if Execute then // execute dialog
tblSoundsWave.SaveToFile(FileName); // save blob to file

end;
end;

There’s even less code here. SaveDialog is initialized with the value of the FileName field. If
SaveDialog’s execution is successful, tblSoundsWave’s SaveToFile method is called to save
the contents of the BLOB field to the file.

The handler for the Play button does the work of reading the WAV data from the BLOB field
and passing it to the PlaySound() API function to be played. The code for this handler, shown
next, is a bit more complex than the code shown thus far:

procedure TMainForm.sbPlayClick(Sender: TObject);
var
B: TBlobStream;
M: TMemoryStream;

begin
B := TBlobStream.Create(tblSoundsWave, bmRead); // create blob stream
Screen.Cursor := crHourGlass; // wait hourglass
try
M := TMemoryStream.Create; // create memory stream
try
M.CopyFrom(B, B.Size); // copy from blob to memory stream
// Attempt to play sound. Raise exception if something goes wrong
Win32Check(PlaySound(M.Memory, 0, SND_SYNC or SND_MEMORY));

finally
M.Free;

end;
finally
Screen.Cursor := crDefault;
B.Free; // clean up

end;
end;

Writing Desktop Database Applications

CHAPTER 28
1489

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

The first thing this method does is to create an instance of TBlobStream, B, using the
tblSoundsWave BLOB field. The first parameter passed to TBlobStream.Create() is the
BLOB field object, and the second parameter indicates how you want to open the stream.
Typically, you’ll use bmRead for read-only access to the BLOB stream or bmReadWrite for
read/write access.

Database Development

PART IV
1490

TIP

The dataset must be in Edit, Insert, or Append mode to open a TBlobStream with
bmReadWrite privilege.

An instance of TMemoryStream, M, is then created. At this point, the cursor shape is changed to
an hourglass to let the user know that the operation may take a couple of seconds. The stream B
is then copied to the stream M. The function used to play a WAV sound, PlaySound(), requires
a filename or a memory pointer as its first parameter. TBlobStream doesn’t provide pointer
access to the stream data, but TMemoryStream does through its Memory property. Given that,
you can successfully call PlaySound() to play the data pointed at by M.Memory. Once the func-
tion is called, it cleans up by freeing the streams and restoring the cursor. The complete code
for the main unit of this project is shown in Listing 28.2.

LISTING 28.2 The Main Unit for the Wavez Project

unit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
ExtCtrls, DBCtrls, DB, DBTables, StdCtrls, Mask, Buttons, ComCtrls;

type
TMainForm = class(TForm)
tblSounds: TTable;
dsSounds: TDataSource;
tblSoundsWaveTitle: TStringField;
tblSoundsWave: TBlobField;
edTitle: TDBEdit;
edFileName: TDBEdit;
Label1: TLabel;
Label2: TLabel;
OpenDialog: TOpenDialog;
tblSoundsFileName: TStringField;

SaveDialog: TSaveDialog;
pnlToobar: TPanel;
sbPlay: TSpeedButton;
sbAdd: TSpeedButton;
sbSave: TSpeedButton;
sbExit: TSpeedButton;
Bevel1: TBevel;
dbnNavigator: TDBNavigator;
stbStatus: TStatusBar;
procedure sbPlayClick(Sender: TObject);
procedure sbAddClick(Sender: TObject);
procedure sbSaveClick(Sender: TObject);
procedure sbExitClick(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
procedure OnAppHint(Sender: TObject);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

uses MMSystem;

procedure TMainForm.sbPlayClick(Sender: TObject);
var
B: TBlobStream;
M: TMemoryStream;

begin
B := TBlobStream.Create(tblSoundsWave, bmRead); // create blob stream
Screen.Cursor := crHourGlass; // wait hourglass
try
M := TMemoryStream.Create; // create memory stream
try
M.CopyFrom(B, B.Size); // copy from blob to memory stream
// Attempt to play sound. Show error box if something goes wrong
Win32Check(PlaySound(M.Memory, 0, SND_SYNC or SND_MEMORY));

finally
M.Free;

end;
finally
Screen.Cursor := crDefault;
B.Free; // clean up

Writing Desktop Database Applications

CHAPTER 28
1491

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

continues

LISTING 28.2 Continued

end;
end;

procedure TMainForm.sbAddClick(Sender: TObject);
begin
if OpenDialog.Execute then
begin
tblSounds.Append;
tblSounds[‘FileName’] := ExtractFileName(OpenDialog.FileName);
tblSoundsWave.LoadFromFile(OpenDialog.FileName);
edTitle.SetFocus;

end;
end;

procedure TMainForm.sbSaveClick(Sender: TObject);
begin
with SaveDialog do
begin
FileName := tblSounds[‘FileName’]; // initialize file name
if Execute then // execute dialog
tblSoundsWave.SaveToFile(FileName); // save blob to file

end;
end;

procedure TMainForm.sbExitClick(Sender: TObject);
begin
Close;

end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
Application.OnHint := OnAppHint;

end;

procedure TMainForm.OnAppHint(Sender: TObject);
begin
stbStatus.SimpleText := Application.Hint;

end;

end.

Refreshing the Dataset
If there’s one thing you can count on when you create database applications, it’s that data con-
tained in a dataset is in a constant state of flux. Records will constantly be added to, removed

Database Development

PART IV
1492

from, and modified in your dataset, particularly in a networked environment. Because of this,
you may occasionally need to reread the dataset information from disk or memory to update
the contents of your dataset.

You can update your dataset using TDataset’s Refresh() method. It functionally does about
the same thing as using Close() and then Open() on the dataset, but Refresh() is a bit faster.
The Refresh() method works with all local tables; however, some restrictions apply when
using Refresh() with a database from a SQL database server.

TTable components connected to SQL databases must have a unique index before the BDE
will attempt a Refresh() operation. This is because Refresh() tries to preserve the current
record, if possible. This means that the BDE has to use Seek() to go to the current record at
some point, which is practical only on a SQL dataset if a unique index is available. Refresh()
does not work for TQuery components connected to SQL databases.

Writing Desktop Database Applications

CHAPTER 28
1493

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

CAUTION

When Refresh() is called, it can create some unexpected side effects for the users of
your program. For example, if user 1 is viewing a record on a networked table, and
that record has been deleted by user 2, a call to Refresh() will cause user 1 to see
the record disappear for no apparent reason. The fact that data could be changing
beneath the user is something you need to keep in mind when you call this function.

Altered States
At some point, you may need to know whether a table is in Edit mode or Append mode, or
even if it’s active. You can obtain this information by inspecting TDataset’s State property.
The State property is of type TDataSetState, and it can have any one of the values shown in
Table 28.4.

TABLE 28.4 Values for TDataSet.State

Value Meaning

dsBrowse The dataset is in Browse (normal) mode.

dsCalcFields The OnCalcFields event has been called, and a record value calculation is in
progress.

dsEdit The dataset is in Edit mode. This means the Edit() method has been called,
but the edited record has not yet been posted.

dsInactive The dataset is closed.

continues

TABLE 28.4 Continued

Value Meaning

dsInsert The dataset is in Insert mode. This typically means that Insert() has been
called but changes haven’t been posted.

dsSetKey The dataset is in SetKey mode, meaning that SetKey() has been called but
GotoKey() hasn’t yet been called.

dsNewValue The dataset is in a temporary state where the NewValue property is being
accessed.

dsOldValue The dataset is in a temporary state where the OldValue property is being
accessed.

dsCurValue The dataset is in a temporary state where the OldValue property is being
accessed.

dsFilter The dataset is currently processing a record filter, lookup, or some other opera-
tion that requires a filter.

dsBlockRead Data is being buffered en masse, so data-aware controls are not updated and
events are not triggered when the cursor moves while this member is set.

dsInternalCalc A field value is currently being calculated for a field that has a FieldKind of
fkInternalCalc.

dsOpening DataSet is in the process of opening but has not finished. This state occurs
when the dataset is opened for asynchronous fetching.

Filters
Filters enable you to do simple dataset searching or filtering using only Object Pascal code.
The primary advantage of using filters is that they don’t require an index or any other prepara-
tion on the datasets with which they’re used. In many cases, filters can be a bit slower than
index-based searching (which is covered later in this chapter), but they’re still very usable in
almost any type of application.

Filtering a Dataset
One of the more common uses of Delphi’s filtering mechanism is to limit a view of a dataset to
some specific records only. This is a simple two-step process:

1. Assign a procedure to the dataset’s OnFilterRecord event. Inside of this procedure, you
should write code that accepts records based on the values of one or more fields.

2. Set the dataset’s Filtered property to True.

As an example, Figure 28.11 shows a form containing TDBGrid, which displays an unfiltered
view of Delphi’s CUSTOMER table.

Database Development

PART IV
1494

FIGURE 28.11
An unfiltered view of the CUSTOMER table.

In step 1, you write a handler for the table’s OnFilterRecord event. In this case, we’ll accept
only records whose Company field starts with the letter S. The code for this procedure is shown
here:

procedure TForm1.Table1FilterRecord(DataSet: TDataSet;
var Accept: Boolean);

var
FieldVal: String;

begin
FieldVal := DataSet[‘Company’]; // Get the value of the Company field
Accept := FieldVal[1] = ‘S’; // Accept record if field starts with ‘S’

end;

After following step 2 and setting the table’s Filtered property to True, you can see in Figure
28.12 that the grid displays only those records that meet the filter criteria.

Writing Desktop Database Applications

CHAPTER 28
1495

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

FIGURE 28.12
A filtered view of the CUSTOMER table.

FindFirst/FindNext
TDataSet also provides methods called FindFirst(), FindNext(), FindPrior(), and
FindLast() that employ filters to find records that match a particular search criteria. All these
functions work on unfiltered datasets by calling that dataset’s OnFilterRecord event handler.
Based on the search criteria in the event handler, these functions will find the first, next, previ-
ous, or last match, respectively. Each of these functions accepts no parameters and returns a
Boolean, which indicates whether a match was found.

Locating a Record
Not only are filters useful for defining a subset view of a particular dataset, but they can also
be used to search for records within a dataset based on the value of one or more fields. For this
purpose, TDataSet provides a method called Locate(). Once again, because Locate()
employs filters to do the searching, it will work irrespective of any index applied to the dataset.
The Locate() method is defined as follows:

function Locate(const KeyFields: string; const KeyValues: Variant;
Options: TLocateOptions): Boolean;

The first parameter, KeyFields, contains the name of the field(s) on which you want to search.
The second parameter, KeyValues, holds the field value(s) you want to locate. The third and
last parameter, Options, allows you to customize the type of search you want to perform. This
parameter is of type TLocateOptions, which is a set type defined in the DB unit as follows:

type
TLocateOption = (loCaseInsensitive, loPartialKey);
TLocateOptions = set of TLocateOption;

If the set includes the loCaseInsensitive member, a case-insensitive search of the data will
be performed. If the set includes the loPartialKey member, the values contained in KeyValues
will match even if they’re substrings of the field value.

Database Development

PART IV
1496

NOTE

The OnFilterRecord event should only be used in cases where the filter cannot be
expressed in the Filter property. The reason for this is that it can provide significant
performance benefits. On SQL databases, for example, the TTable component will
pass the contents of the FILTER property in a WHERE clause to the database, which is
generally much faster than the record-by-record search performed in
OnFilterRecord.

Locate() will return True if it finds a match. For example, to search for the first occurrence of
the value 1356 in the CustNo field of Table1, use the following syntax:

Table1.Locate(‘CustNo’, 1356, []);

Writing Desktop Database Applications

CHAPTER 28
1497

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

TIP

You should use Locate() whenever possible to search for records, because it will
always attempt to use the fastest method possible to find the item, switching indexes
temporarily if necessary. This makes your code independent of indexes. Also, if you
determine that you no longer need an index on a particular field, or if adding one
will make your program faster, you can make that change on the data without hav-
ing to recode the application.

Using TTable
This section describes the common properties and methods of the TTable component and how
to use them. In particular, you learn how to search for records, filter records using ranges, and
create tables. This section also contains a discussion of TTable events.

Searching for Records
When you need to search for records in a table, VCL provides several methods to help you
out. When you’re working with dBASE and Paradox tables, Delphi assumes that the fields on
which you search are indexed. For SQL tables, the performance of your search will suffer if
you search on unindexed fields.

Say, for example, you have a table that’s keyed on field 1, which is numeric, and on field 2,
which is alphanumeric. You can search for a specific record based on those two criteria in one
of two ways: using the FindKey() technique or the SetKey()..GotoKey() technique.

FindKey()
TTable’s FindKey() method enables you to search for a record matching one or more keyed
fields in one function call. FindKey() accepts an array of const (the search criteria) as a
parameter and returns True when it’s successful. For example, the following code causes the
dataset to move to the record where the first field in the index has the value 123 and the second
field in the index contains the string Hello:

if not Table1.FindKey([123, ‘Hello’]) then MessageBeep(0);

If a match is not found, FindKey() returns False and the computer beeps.

SetKey()..GotoKey()
Calling TTable’s SetKey() method puts the table in a mode that prepares its fields to be loaded
with values representing search criteria. Once the search criteria have been established, use the
GotoKey() method to do a top-down search for a matching record. The previous example can
be rewritten with SetKey()..GotoKey(), as follows:

with Table1 do begin
SetKey;
Fields[0].AsInteger := 123;
Fields[1].AsString := ‘Hello’;
if not GotoKey then MessageBeep(0);

end;

The Closest Match
Similarly, you can use FindNearest() or the SetKey..GotoNearest methods to search for a
value in the table that’s the closest match to the search criteria. To search for the first record
where the value of the first indexed field is closest to (greater than or equal to) 123, use the fol-
lowing code:

Table1.FindNearest([123]);

Once again, FindNearest() accepts an array of const as a parameter that contains the field
values for which you want to search.

To search using the longhand technique provided by SetKey()..GotoNearest(), you can use
this code:

with Table1 do begin
SetKey;
Fields[0].AsInteger := 123;
GotoNearest;

end;

If the search is successful and the table’s KeyExclusive property is set to False, the record
pointer will be on the first matching record. If KeyExclusive is True, the current record will be
the one immediately following the match.

Database Development

PART IV
1498

TIP

If you want to search on the indexed fields of a table, use FindKey() and
FindNearest()—rather than SetKey()..GotoX()—whenever possible because you
type less code and leave less room for human error.

Which Index?
All these searching methods assume that you’re searching under the table’s primary index. If
you want to search using a secondary index, you need to set the table’s IndexName parameter
to the desired index. For instance, if your table had a secondary index on the Company field
called ByCompany, the following code would enable you to search for the company “Unisco”:

with Table1 do begin
IndexName := ‘ByCompany’;
SetKey;
FieldValues[‘Company’] := ‘Unisco’;
GotoKey;

end;

Writing Desktop Database Applications

CHAPTER 28
1499

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

NOTE

Keep in mind that some overhead is involved in switching indexes while a table is
opened. You should expect a delay of a second or more when you set the IndexName
property to a new value.

Ranges enable you to filter a table so that it contains only records with field values that fall
within a certain scope you define. Ranges work similar to key searches, and as with searches,
there are several ways to apply a range to a given table—either using the SetRange() method
or the manual SetRangeStart(), SetRangeEnd(), and ApplyRange() methods.

CAUTION

If you are working with dBASE or Paradox tables, ranges only work with indexed
fields. If you’re working with SQL data, performance will suffer greatly if you don’t
have an index on the ranged field.

SetRange()
Like FindKey() and FindNearest(), SetRange() enables you to perform a fairly complex
action on a table with one function call. SetRange() accepts two array of const variables as
parameters: The first represents the field values for the start of the range, and the second repre-
sents the field values for the end of the range. As an example, the following code filters
through only those records where the value of the first field is greater than or equal to 10 but
less than or equal to 15:

Table1.SetRange([10], [15]);

ApplyRange()
To use the ApplyRange() method of setting a range, follow these steps:

1. Call the SetRangeStart() method and then modify the Fields[] array property of the
table to establish the starting value of the keyed field(s).

2. Call the SetRangeEnd() method and modify the Fields[] array property once again to
establish the ending value of the keyed field(s).

3. Call ApplyRange() to establish the new range filter.

The preceding range example could be rewritten using this technique:

with Table1 do begin
SetRangeStart;
Fields[0].AsInteger := 10; // range starts at 10
SetRangeEnd;
Fields[0].AsInteger := 15; // range ends at 15
ApplyRange;

end;

Database Development

PART IV
1500

TIP

Use SetRange() whenever possible to filter records—your code will be less prone to
error when doing so.

To remove a range filter from a table and restore the table to the state it was in before you
called ApplyRange() or SetRange(), just call TTable’s CancelRange() method.

Table1.CancelRange;

Master/Detail Tables
Very often, when programming databases, you’ll find situations where the data to be managed
lends itself to being broken up into multiple tables that relate to one another. The classic exam-
ple is a customer table with one record per customer information and an orders table with one
record per order. Because every order would have to be made by one of the customers, a nat-
ural relationship forms between the two collections of data. This is called a one-to-many rela-
tionship, because one customer may have many orders (the customer table being the master
and the orders table being the detail).

Delphi makes it easy to create these types of relationships between tables. In fact, it’s all han-
dled at design time through the Object Inspector; therefore, it’s not even necessary for you to
write any code. Start with an empty project and add two each of the TTable, TDataSource, and

TDBGrid components. DBGrid1 will hook to Table1 via DataSource1, and DBGrid2 hooks to
Table2 via DataSource2. Using the DBDEMOS alias as the DatabaseName, Table1 hooks to the
CUSTOMER.DB table, and Table2 hooks to the ORDERS.DB table. Your form should look like the
one shown in Figure 28.13.

Writing Desktop Database Applications

CHAPTER 28
1501

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

FIGURE 28.13
The master/detail main form in progress.

You now have two unrelated tables sharing the same form. Once you’ve come this far, the only
thing left to do is to create the relationship between the tables using the MasterSource and
MasterFields properties of the detail table. Table2’s MasterSource property should be set to
DataSource1. When you attempt to edit the MasterFields property, you are presented with a
property editor called the Field Link Designer. This is shown in Figure 28.14.

FIGURE 28.14
The Field Link Designer.

In this dialog, you specify which common fields relate the two tables to one another. The field
the two tables have in common is CustNo—a numeric identifier that represents a customer.
Because the CustNo field is not a part of the ORDERS table’s primary index, you’ll need to
switch to a secondary index that does include the CustNo field. You can do that using the
Available Indexes drop-down list in the Field Link Designer. Once you’ve switched to the

CustNo index, you can then select the CustNo field from both the Detail Fields and Master
Fields list boxes and click the Add button to create a link between the tables. Click OK to dis-
miss the Field Link Designer.

You’ll now notice that as you move through the records in Table1, the view of Table2 will be
limited to only those records that share the same value in the CustNo field as Table1. The
behavior is shown in the finished application in Figure 28.15.

Database Development

PART IV
1502

FIGURE 28.15
Master/detail demo program.

TTable Events
TTable provides you with events that occur before and after a record in the table is deleted,
edited, and inserted, whenever a modification is posted or canceled, and whenever the table is
opened or closed. This is so that you have full control of your database application. The
nomenclature for these events is BeforeXXX and AfterXXX, where XXX stands for Delete, Edit,
Insert, Open, and so on. These events are fairly self-explanatory, and you’ll use them in the
database applications in Parts II, “Advanced Techniques,” and III, “Component-Based
Development,” of this book.

TTable’s OnNewRecord event fires every time a new record is posted to the table. It’s ideal to
perform various housekeeping tasks in a handler for this event. An example of this would be to
keep a running total of records added to a table.

The OnCalcFields event occurs whenever the table cursor is moved off the current record or
the current record changes. Adding a handler for the OnCalcFields event enables you to keep a
calculated field current whenever the table is modified.

Creating a Table in Code
Instead of creating all your database tables up front (using the Database Desktop, for example)
and deploying them with your application, a time will come when you’ll need your program to

have the capability to create local tables for you. When this need arises, once again VCL has
you covered. TTable contains the CreateTable() method, which enables you to create tables
on disk. Simply follow these steps to create a table:

1. Create an instance of TTable.

2. Set the DatabaseName property of the table to a directory or existing alias.

3. Give the table a unique name in the TableName property.

4. Set the TableType property to indicate what type of table you want to create. If you set
this property to ttDefault, the table type will correspond to the extension of the name
provided in the TableName property (for example, DB stands for Paradox, and DBF
stands for dBASE).

5. Use Add() method for TTable.FieldDefs to add fields to the table. The Add() method
takes four parameters:

• A string indicating the field name.

• A TFieldType variable indicating the field type.

• A word parameter that represents the size of the field. Note that this parameter is
only valid for types such as String and Memo, where the size may vary. Fields such
as Integer and Date are always the same size, so this parameter doesn’t apply to
them.

• A Boolean parameter that dictates whether this is a required field. All required
fields must have a value before a record can be posted to a table.

6. If you want the table to have an index, use the Add() method of TTable.IndexDefs to
add indexed fields. IndexDefs.Add() takes the following three parameters:

• A string that identifies the index.

• A string that matches the field name to be indexed. Composite key indexes
(indexes on multiple fields) can be specified as a semicolon-delimited list of field
names.

• A set of TIndexOptions that determines the index type.

7. Call TTable.CreateTable().

The following code creates a table with Integer, String, and Float fields with an index on
the Integer field. The table is called FOO.DB, and it will live in the C:\TEMP directory:

begin
with TTable.Create(Self) do begin // create TTable object
DatabaseName := ‘c:\temp’; // point to directory or alias
TableName := ‘FOO’; // give table a name
TableType := ttParadox; // make a Paradox table
with FieldDefs do begin

Writing Desktop Database Applications

CHAPTER 28
1503

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

Add(‘Age’, ftInteger, 0, True); // add an integer field
Add(‘Name’, ftString, 25, False); // add a string field
Add(‘Weight’, ftFloat, 0, False); // add a floating-point field

end;
{ create a primary index on the Age field... }
IndexDefs.Add(‘’, ‘Age’, [ixPrimary, ixUnique]);
CreateTable; // create the table

end;
end;

Database Development

PART IV
1504

NOTE

As mentioned earlier, TTable.CreateTable() works only for local tables. For SQL
tables, you should use a technique that employs TQuery (this is shown in the next
chapter).

Data Modules
Data modules enable you to keep all your database rules and relationships in one central loca-
tion to be shared across projects, groups, or enterprises. Data modules are encapsulated by
VCL’s TDataModule component. Think of TDataModule as an invisible form on which you can
drop data-access components to be used throughout a project. Creating a TDataModule instance
is simple: Select File, New from the main menu and then select Data Module from the Object
Repository.

The simple justification for using TDataModule over just putting data-access components on a
form is that it’s easier to share the same data across multiple forms and units in your project. In
a more complex situation, you would have an arrangement of multiple TTable, TQuery, and/or
TStoredProc components. You might have relationships defined between the components and
perhaps rules enforced on the field level, such as minimum/maximum values or display for-
mats. Perhaps this assortment of data-access components models the business rules of your
enterprise. After taking great pains to set up something so impressive, you wouldn’t want to
have to do it again for another application, would you? Of course you wouldn’t. In such cases,
you would want to save your data module to the Object Repository for later use. If you work in
a team environment, you might even want to keep the Object Repository on a shared network
drive for the use of all the developers on your team.

In the example that follows, you’ll create a simple instance of a data module so that many
forms have access to the same data. In the database applications shown in several of the later
chapters, you’ll build more complex relationships into data modules.

The Search, Range, and Filter Demo
Now it’s time to create a sample application to help drive home some of the key concepts that
were covered in this chapter. In particular, this application will demonstrate the proper use of
filters, key searches, and range filters in your applications. This project, called SRF, contains
multiple forms. The main form consists mainly of a grid for browsing a table, and other forms
demonstrate the different concepts mentioned earlier. Each of these forms will be explained
in turn.

The Data Module
Although we’re starting a bit out of order, the data module for this project will be covered first.
This data module, called DM, contains only a TTable and a TDataSource component. The
TTable, called Table1, is hooked to the CUSTOMERS.DB table in the DBDEMOS alias. The
TDataSource, DataSource1, is wired to Table1. All the data-aware controls in this project will
use DataSource1 as their DataSource. DM is contained in a unit called DataMod, and it’s shown
in its design-time state in Figure 28.16.

Writing Desktop Database Applications

CHAPTER 28
1505

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

FIGURE 28.16
DM, the data module.

The Main Form
The main form for SRF, appropriately called MainForm, is shown in Figure 28.17. This form is
contained in a unit called Main. As you can see, it contains a TDBGrid control, DBGrid1, for
browsing a table, and it contains a radio button that enables you to switch between different
indexes on the table. DBGrid1, as explained earlier, is hooked to DM.DataSource1 as its data
source.

Database Development

PART IV
1506

NOTE

In order for DBGrid1 to be able to hook to DM.DataSource1 at design time, the
DataMod unit must be in the uses clause of the Main unit. The easiest way to do this is
to bring up the Main unit in the Code Editor and select File, Use Unit from the main
menu. You’ll then be presented with a list of units in your project from which you
can select DataMod. You must do this for each of the units from which you want to
access the data contained within DM.

FIGURE 28.17
MainForm in the SRF project.

The radio group, called RGKeyField, is used to determine which of the table’s two indexes is
currently active. The code attached to the OnClick event for RGKeyField is shown here:

procedure TMainForm.RGKeyFieldClick(Sender: TObject);
begin
case RGKeyField.ItemIndex of
0: DM.Table1.IndexName := ‘’; // primary index
1: DM.Table1.IndexName := ‘ByCompany’; // secondary, by company

end;
end;

MainForm also contains a TMainMenu component, MainMenu1, which enables you to open and
close each of the other forms. The items on this menu are Key Search, Range, Filter, and Exit.
The Main unit, in its entirety, is shown in Listing 28.3.

LISTING 28.3 The Source Code for MAIN.PAS

unit Main;

interface

uses
SysUtils, Windows, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ExtCtrls, Grids, DBGrids, DB, DBTables,
Buttons, Mask, DBCtrls, Menus;

type
TMainForm = class(TForm)
DBGrid1: TDBGrid;
RGKeyField: TRadioGroup;
MainMenu1: TMainMenu;
Forms1: TMenuItem;
KeySearch1: TMenuItem;
Range1: TMenuItem;
Filter1: TMenuItem;
N1: TMenuItem;
Exit1: TMenuItem;
procedure RGKeyFieldClick(Sender: TObject);
procedure KeySearch1Click(Sender: TObject);
procedure Range1Click(Sender: TObject);
procedure Filter1Click(Sender: TObject);
procedure Exit1Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
MainForm: TMainForm;

implementation

uses DataMod, KeySrch, Rng, Fltr;

{$R *.DFM}

procedure TMainForm.RGKeyFieldClick(Sender: TObject);
begin
case RGKeyField.ItemIndex of
0: DM.Table1.IndexName := ‘’; // primary index
1: DM.Table1.IndexName := ‘ByCompany’; // secondary, by company

Writing Desktop Database Applications

CHAPTER 28
1507

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

continues

LISTING 28.3 Continued

end;
end;

procedure TMainForm.KeySearch1Click(Sender: TObject);
begin
KeySearch1.Checked := not KeySearch1.Checked;
KeySearchForm.Visible := KeySearch1.Checked;

end;

procedure TMainForm.Range1Click(Sender: TObject);
begin
Range1.Checked := not Range1.Checked;
RangeForm.Visible := Range1.Checked;

end;

procedure TMainForm.Filter1Click(Sender: TObject);
begin
Filter1.Checked := not Filter1.Checked;
FilterForm.Visible := Filter1.Checked;

end;

procedure TMainForm.Exit1Click(Sender: TObject);
begin
Close;

end;

end.

The Range Form
RangeForm is shown in Figure 28.18. RangeForm is located in a unit called Rng. This form
enables you to set a range on the data displayed in MainForm to limit the view of the table.
Depending on the active index, the items you specify in the Range Start and Range End edit
controls can be either numeric (the primary index) or text (the secondary index). Listing 28.4
shows the source code for RNG.PAS.

Database Development

PART IV
1508

FIGURE 28.18
The RangeForm form.

LISTING 28.4 The Source Code for RNG.PAS

unit Rng;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls;

type
TRangeForm = class(TForm)
Panel1: TPanel;
Label2: TLabel;
StartEdit: TEdit;
Label1: TLabel;
EndEdit: TEdit;
Label7: TLabel;
ApplyButton: TButton;
CancelButton: TButton;
procedure ApplyButtonClick(Sender: TObject);
procedure CancelButtonClick(Sender: TObject);

private
{ Private declarations }
procedure ToggleRangeButtons;

public
{ Public declarations }

end;

var
RangeForm: TRangeForm;

implementation

uses DataMod;

{$R *.DFM}

procedure TRangeForm.ApplyButtonClick(Sender: TObject);
begin
{ Set range of records in dataset from StartEdit’s value to EndEdit’s }
{ value. Strings are again implicitly converted to numerics. }
DM.Table1.SetRange([StartEdit.Text], [EndEdit.Text]);
ToggleRangeButtons; // enable proper buttons

end;

procedure TRangeForm.CancelButtonClick(Sender: TObject);

Writing Desktop Database Applications

CHAPTER 28
1509

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

continues

LISTING 28.4 Continued

begin
DM.Table1.CancelRange; // remove set range
ToggleRangeButtons; // enable proper buttons

end;

procedure TRangeForm.ToggleRangeButtons;
begin
{ Toggle the enabled property of the range buttons }
ApplyButton.Enabled := not ApplyButton.Enabled;
CancelButton.Enabled := not CancelButton.Enabled;

end;

end.

Database Development

PART IV
1510

NOTE

Pay close attention to the following line of code from the Rng unit:

DM.Table1.SetRange([StartEdit.Text], [EndEdit.Text]);

You might find it strange that although the keyed field can be of either a Numeric
type or Text type, you’re always passing strings to the SetRange() method. Delphi
allows this because SetRange(), FindKey(), and FindNearest() will perform the con-
version from String to Integer, and vice versa, automatically.

What this means to you is that you should not bother calling IntToStr() or
StrToInt() in these situations—it will be taken care of for you.

The Key Search Form
KeySearchForm, contained in the KeySrch unit, provides a means for the user of the application
to search for a particular key value in the table. The form enables the user to search for a value
in one of two ways. First, when the Normal radio button is selected, the user can search by typ-
ing text into the Search For edit control and pressing the Exact or Nearest button to find an
exact match or closest match in the table. Second, when the Incremental radio button is
selected, the user can perform an incremental search on the table every time he or she changes
the text in the Search For edit control. The form is shown in Figure 28.19. The code for the
KeySrch unit is shown in Listing 28.5.

FIGURE 28.19
The KeySearchForm form.

LISTING 28.5 The Source Code for KeySrch.PAS

unit KeySrch;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls;

type
TKeySearchForm = class(TForm)
Panel1: TPanel;
Label3: TLabel;
SearchEdit: TEdit;
RBNormal: TRadioButton;
Incremental: TRadioButton;
Label6: TLabel;
ExactButton: TButton;
NearestButton: TButton;
procedure ExactButtonClick(Sender: TObject);
procedure NearestButtonClick(Sender: TObject);
procedure RBNormalClick(Sender: TObject);
procedure IncrementalClick(Sender: TObject);

private
procedure NewSearch(Sender: TObject);

end;

var
KeySearchForm: TKeySearchForm;

implementation

uses DataMod;

Writing Desktop Database Applications

CHAPTER 28
1511

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

continues

LISTING 28.5 Continued

{$R *.DFM}

procedure TKeySearchForm.ExactButtonClick(Sender: TObject);
begin
{ Try to find record where key field matches SearchEdit’s Text value. }
{ Notice that Delphi handles the type conversion from the string }
{ edit control to the numeric key field value. }
if not DM.Table1.FindKey([SearchEdit.Text]) then
MessageDlg(Format(‘Match for “%s” not found.’, [SearchEdit.Text]),

mtInformation, [mbOk], 0);
end;

procedure TKeySearchForm.NearestButtonClick(Sender: TObject);
begin
{ Find closest match to SearchEdit’s Text value. Note again the }
{ implicit type conversion. }
DM.Table1.FindNearest([SearchEdit.Text]);

end;

procedure TKeySearchForm.NewSearch(Sender: TObject);
{ This is the method which is wired to the SearchEdit’s OnChange }
{ event whenever the Incremental radio is selected. }
begin
DM.Table1.FindNearest([SearchEdit.Text]); // search for text

end;

procedure TKeySearchForm.RBNormalClick(Sender: TObject);
begin

ExactButton.Enabled := True; // enable search buttons
NearestButton.Enabled := True;
SearchEdit.OnChange := Nil; // unhook the OnChange event

end;

procedure TKeySearchForm.IncrementalClick(Sender: TObject);
begin
ExactButton.Enabled := False; // disable search buttons
NearestButton.Enabled := False;
SearchEdit.OnChange := NewSearch; // hook the OnChange event
NewSearch(Sender); // search current text

end;

end.

The code for the KeySrch unit should be fairly straightforward to you. You might notice that,
once again, we can safely pass text strings to the FindKey() and FindNearest() methods with

Database Development

PART IV
1512

the knowledge that they will do the right thing with regard to type conversion. You might also
appreciate the small trick that’s employed to switch to and from incremental searching on the
fly. This is accomplished by either assigning a method to or assigning Nil to the OnChange
event of the SearchEdit edit control. When assigned a handler method, the OnChange event
will fire whenever the text in the control is modified. By calling FindNearest() inside that
handler, an incremental search can be performed as the user types.

The Filter Form
The purpose of FilterForm, found in the Fltr unit, is two-fold. First, it enables the user to fil-
ter the view of the table to a set where the value of the State field matches that of the current
record. Second, this form enables the user to search for a record where the value of any field in
the table is equal to some value he or she has specified. This form is shown in Figure 28.20.

Writing Desktop Database Applications

CHAPTER 28
1513

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

FIGURE 28.20
The FilterForm form.

The record-filtering functionality actually involves very little code. First, the state of the check
box labeled Filter on this State (called cbFiltered) determines the setting of DM.Table1’s
Filtered property. This is accomplished with the following line of code attached to
cbFiltered.OnClick:

DM.Table1.Filtered := cbFiltered.Checked;

When DM.Table1.Filtered is True, Table1 filters records using the following
OnFilterRecord method, which is actually located in the DataMod unit:

procedure TDM.Table1FilterRecord(DataSet: TDataSet;
var Accept: Boolean);

begin
{ Accept record as a part of the filter if the value of the State }
{ field is the same as that of DBEdit1.Text. }
Accept := Table1State.Value = FilterForm.DBEdit1.Text;

end;

To perform the filter-based search, the Locate() method of TTable is employed:

DM.Table1.Locate(CBField.Text, EValue.Text, LO);

The field name is taken from a combo box called CBField. The contents of this combo box are
generated in the OnCreate event of this form using the following code to iterate through the
fields of Table1:

procedure TFilterForm.FormCreate(Sender: TObject);
var
i: integer;

begin
with DM.Table1 do begin
for i := 0 to FieldCount - 1 do
CBField.Items.Add(Fields[i].FieldName);

end;
end;

Database Development

PART IV
1514

TIP

The preceding code will only work when DM is created prior to this form. Otherwise,
any attempts to access DM before it’s created will probably result in an Access
Violation error. To make sure that the data module, DM, is created prior to any of the
child forms, we manually adjusted the creation order of the forms in the Autocreate
Forms list on the Forms page of the Project Options dialog (found under Options,
Project on the main menu).

The main form must, of course, be the first one created, but other than that, this lit-
tle trick ensures that the data module gets created prior to any other form in the
application.

The complete code for the Fltr unit is shown in Listing 28.6.

LISTING 28.6 The Source Code for Fltr.pas

unit Fltr;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, Buttons, Mask, DBCtrls, ExtCtrls;

type
TFilterForm = class(TForm)
Panel1: TPanel;

Label4: TLabel;
DBEdit1: TDBEdit;
cbFiltered: TCheckBox;
Label5: TLabel;
SpeedButton1: TSpeedButton;
SpeedButton2: TSpeedButton;
SpeedButton3: TSpeedButton;
SpeedButton4: TSpeedButton;
Panel2: TPanel;
EValue: TEdit;
LocateBtn: TButton;
Label1: TLabel;
Label2: TLabel;
CBField: TComboBox;
MatchGB: TGroupBox;
RBExact: TRadioButton;
RBClosest: TRadioButton;
CBCaseSens: TCheckBox;
procedure cbFilteredClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure LocateBtnClick(Sender: TObject);
procedure SpeedButton1Click(Sender: TObject);
procedure SpeedButton2Click(Sender: TObject);
procedure SpeedButton3Click(Sender: TObject);
procedure SpeedButton4Click(Sender: TObject);

end;

var
FilterForm: TFilterForm;

implementation

uses DataMod, DB;

{$R *.DFM}

procedure TFilterForm.cbFilteredClick(Sender: TObject);
begin
{ Filter table if checkbox is checked }
DM.Table1.Filtered := cbFiltered.Checked;

end;

procedure TFilterForm.FormCreate(Sender: TObject);
var
i: integer;

begin

Writing Desktop Database Applications

CHAPTER 28
1515

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

continues

LISTING 28.6 Continued

with DM.Table1 do begin
for i := 0 to FieldCount - 1 do
CBField.Items.Add(Fields[i].FieldName);

end;
end;

procedure TFilterForm.LocateBtnClick(Sender: TObject);
var
LO: TLocateOptions;

begin
LO := [];
if not CBCaseSens.Checked then Include(LO, loCaseInsensitive);
if RBClosest.Checked then Include(LO, loPartialKey);
if not DM.Table1.Locate(CBField.Text, EValue.Text, LO) then
MessageDlg(‘Unable to locate match’, mtInformation, [mbOk], 0);

end;

procedure TFilterForm.SpeedButton1Click(Sender: TObject);
begin
DM.Table1.FindFirst;

end;

procedure TFilterForm.SpeedButton2Click(Sender: TObject);
begin
DM.Table1.FindNext;

end;

procedure TFilterForm.SpeedButton3Click(Sender: TObject);
begin
DM.Table1.FindPrior;

end;

procedure TFilterForm.SpeedButton4Click(Sender: TObject);
begin
DM.Table1.FindLast;

end;

end.

TQuery and TStoredProc: The Other Datasets
Although these components aren’t discussed in detail until the next chapter, this section is
intended to introduce you to the TQuery and TStoredProc components as TDataSet descen-
dants and siblings of TTable.

Database Development

PART IV
1516

TQuery
The TQuery component enables you to use SQL to obtain specific datasets from one or more
tables. Delphi enables you to use the TQuery component with both file-oriented server data
(that is, Paradox and dBASE) and SQL server data. After assigning the DatabaseName property
of TQuery to an alias or directory, you can enter into the SQL property the lines of SQL code
you want to execute against the given database. For example, if Query1 were hooked to the
DBDEMOS alias, the following code would retrieve all records in the BIOLIFE table where the
Length (cm) field is greater than 100:

select * from BIOLIFE where BIOLIFE.”Length (cm)” > 100

Like other datasets, the query will execute when its Active property is set to True or when its
Open() method is called. If you want to perform a query that doesn’t return a result set (an
insert into query, for example), you should use ExecSQL() rather than Open() to invoke the
query.

Another important property of TQuery is RequestLive. The RequestLive property indicates
whether the result set returned is editable. Set this property to True when you want to edit the
data returned by a query.

Writing Desktop Database Applications

CHAPTER 28
1517

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

NOTE

Simply setting the RequestLive property doesn’t guarantee a live result set.
Depending on the structure of your query, the BDE may not be able to obtain a live
result set. For example, queries containing a HAVING clause, using the TO_DATE func-
tion, or containing abstract data type (ADT) fields are not editable (see the BDE doc-
umentation for a complete list of restrictions). To determine whether a query is live,
check the value of the CanModify property after opening the query.

In the next chapter, you’ll learn more about TQuery features such as parameterized queries and
SQL optimization.

TStoredProc
The TStoredProc component provides you with a means to execute stored procedures on a
SQL server. Because this is a server-specific feature—and certainly not for database begin-
ners—we’ll save the explanation of this component for the next chapter.

Text File Tables
Delphi provides limited support for using text file tables in your applications. Text tables must
consist of two files: a data file, which must end in a .TXT extension, and a schema file, which

must end in an .SCH extension. Each file must have the same name (that is, FOO.TXT and
FOO.SCH). The data file can be of fixed length or delimited. The schema file tells the BDE how
to interpret the data file by providing information such as field names, sizes, and types.

The Schema File
The format of a schema file is similar to that of a Windows INI file. The section name is the
same as that of the table (minus the extension). Table 28.5 shows the items and possible item
values for a schema file.

TABLE 28.5 Schema File Items and Values

Item Possible Values Meaning

FILETYPE VARYING Each field in the file can occupy a variable amount of
space. Fields are separated with a special character, and
strings are delimited with a special character.

FIXED Each field can be found at a specific offset from the begin-
ning of the line.

CHARSET (many) Specifies which language driver to use. Most commonly,
this will be set to ASCII.

DELIMITER (any char) Specifies which character is to be used as a delimiter for
CHAR fields. Used for VARYING tables only.

SEPARATOR (any char) Specifies which character is to be used as a field separator.
Used for VARYING tables only.

Using the information shown in Table 28.5, the schema file must have an entry for each field in
the table. Each entry will be in the following form:

FieldX = Field Name, Field Type, Size, Decimal Places, Offset

The syntax in the preceding example is explained in the following list:

• X represents the field number, from 1 to the total number of fields.

• Field Name can be any string identifier. Do not use quotes or string delimiters.

• Field Type can be any one of the following values:

Type Meaning

CHAR A character or string field

BOOL A Boolean (T or F)

DATE A date in the format specified in the BDE Config Tool

FLOAT A 64-bit floating-point number

LONGINT A 32-bit integer

Database Development

PART IV
1518

Type Meaning

NUMBER A 16-bit integer

TIME A time in the format specified in the BDE Config Tool

TIMESTAMP A date and time in the format specified in the BDE Config Tool

• Size refers to the total number of characters or units. This value must be less than or
equal to 20 for numeric fields.

• Decimal Places only has meaning for FLOAT fields. It specifies the number of digits
after the decimal.

• Offset is used only for FIXED tables. It specifies the character position where a particular
field begins.

Now, here’s a sample schema file for a fixed table called OPTeam:

[OPTEAM]
FILETYPE = FIXED
CHARSET = ascii
Field1 = EmpNo,LONGINT,04,00,00
Field2 = Name,CHAR,16,00,05
Field3 = OfficeNo,CHAR,05,00,21
Field4 = PhoneExt,LONGINT,04,00,27

Field5 = Height,FLOAT,05,02,32

Here’s a schema file for a VARYING version of a similar table called OPTeam2:

[OPTEAM2]
FILETYPE = VARYING
CHARSET = ascii
DELIMITER = “
SEPARATOR = ,
Field1 = EmpNo,LONGINT,04,00,00
Field2 = Name,CHAR,16,00,00
Field3 = OfficeNo,CHAR,05,00,00
Field4 = PhoneExt,LONGINT,04,00,00
Field5 = Height,FLOAT,05,02,00

Writing Desktop Database Applications

CHAPTER 28
1519

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

CAUTION

The BDE is very picky about the format of a schema file. If you have one misplaced
character or misspelled word, the BDE may not be able to recognize your data at all.
If you’re having problems getting at your data, scrutinize your schema file.

The Data File
The data file should be a fixed-length (FIXED) or delimited (VARYING) file that contains one
record per line. A sample data file for OPTeam can be shown as this:

2093 Steve Teixeira C2121 1234 6.5
3265 Xavier Pacheco C0001 3456 5.6
2610 Lino Tadros E2126 5678 5.11
2900 Lance Bullock C2221 9012 6.5
0007 Greg de Vries F3169 7890 5.10
1001 Tillman Dickson C3456 0987 5.9
2611 Rory Bannon E2127 6543 6.0
6908 Karl Santos A1098 5893 5.6
0909 Mr. T B0087 1234 5.9

A similar data file for OPTeam2 would look like this:

2093,”Steve Teixeira”,”C2121”,1234,6.5
3265,”Xavier Pacheco”,”C0001”,3456,5.6
2610,”Lino Tadros”,”E2126”,5678,5.11
2900,”Lance Bullock”,”C2221”,9012,6.5
0007,”Greg de Vries”,”F3169”,7890,5.10
1001,”Tillman Dickson”,”C3456”,0987,5.9
2611,”Rory Bannon”,”E2127”,6543,6.0
6908,”Karl Santos”,”A1098”,5893,5.6
0909,”Mr. T”,”B0087”,1234,5.9

Using the Text Table
You can use text tables with TTable components much like any other database type. Set the
table’s DatabaseName property to the alias or directory containing the TXT and SCH files. Set
the TableType property to ttASCII. Now you should be able to view all available text tables
by clicking the drop-down button on the TableName property. Select one of the tables into the
property, and you’ll be able to view the fields by hooking up a TDataSource and a TDBGrid.
Figure 28.21 shows a form browsing the OPTeam table.

Database Development

PART IV
1520

NOTE

If all the fields in your text table appear to be cramped into one field, the BDE is hav-
ing problems reading your schema file.

Limitations
Borland never intended for text files to be used in lieu of proper database formats. Because of
the limitations inherent in text files, we (the authors) seriously advise against using text file

tables for anything other than importing data to and exporting data from real database formats.
Here’s a list of limitations to keep in mind when working with text tables:

• Indexes are not supported, so you can’t use any TTable method that requires an index.

• You cannot use a TQuery component with a text table.

• Deleting records is not supported.

• Inserting records is not supported. Attempts to insert a record will cause the new record
to be appended to the end of the table.

• Referential integrity is not supported.

• BLOB data types are not supported.

• Editing is not supported on VARYING tables.

• Text tables are always opened with exclusive access. You should, therefore, open your
text tables in code rather than during design time.

Writing Desktop Database Applications

CHAPTER 28
1521

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

FIGURE 28.21
Browsing a text table.

Text Table Import
As mentioned earlier, about the only reasonable use for text tables is in converting them to a
real database format. With that in mind, what follows is a set of step-by-step instructions for
using a TBatchMove component to copy a table from text format to a Paradox table. Assume a
form containing two TTable objects and one TBatchMove component. The TTable object that
represents the text table is called TextTbl, and the TTable object that represents the target
Paradox table is called PDoxTbl. The TBatchMove component is called BM. Here are the steps:

1. Hook TextTbl to the text table you want to import (as described earlier).

2. Set the DatabaseName property of PDoxTbl to the target alias or directory. Set the
TableName property to the desired table name. Set the TableType property to ttParadox.

3. Set the Source property of BM to TextTbl. Set the Destination property to PDoxTbl. Set
the Mode property to batCopy.

4. Right click BM and select Execute from the local menu.

5. Voilà! You have just copied your text table to a Paradox table.

Connecting with ODBC
It’s a given that the BDE can only provide native support for a limited subset of databases in
the world. What happens, then, when your situation requires that you connect to a database
type—such as Btrieve, for example—that’s not directly supported by the BDE? Can you still
use Delphi? Of course. The BDE provides an ODBC socket so that you can use an Open
Database Connectivity (ODBC) driver to access databases not directly supported by the BDE;
the capability to take advantage of this feature is built into the Professional and Client/Server
Suite editions of Delphi. ODBC is a standard developed by Microsoft for product-independent
database driver support.

Where to Find an ODBC Driver
The best place to obtain an ODBC driver is through the vendor who distributes the database
format you want to access. When you do venture out to obtain an ODBC driver, bear in mind
that there’s a difference between 16- and 32-bit ODBC drivers, and that Delphi requires the
32-bit drivers. In addition to the vendor of your particular database, there are a number of ven-
dors who produce ODBC drivers for many different types of databases. In particular, you can
obtain ODBC drivers for Access, Excel, SQL Server, and FoxPro from Microsoft. These dri-
vers are available either in the ODBC Driver Pack, or you can often find them on the MS
Developer Network CD-ROMs.

Database Development

PART IV
1522

CAUTION

Not all ODBC drivers are created equal! Many ODBC drivers are “brain deadened” to
work with only one particular software package or to have their functionality other-
wise limited. Examples of these types of drivers are ones that have shipped with past
versions of Microsoft Office products (which are intended to work only with MS
Office). Make sure that the ODBC driver you purchase is certified for application
development, not just to work with some existing package.

An ODBC Example: Connecting to MS Access
Assuming you’ve obtained the necessary 32-bit ODBC driver from Microsoft or another ven-
dor, this section takes you step by step from configuring the driver to making it work with a
Delphi TTable object. Although Access is directly supported by the BDE, that’s beside the
point—this section is intended to serve as an example of using the BDE’s ODBC socket. This
demonstration assumes that you do not yet have an Access database on your hard disk, and it
takes you through the steps for creating one:

1. Install the driver using the vendor-provided disk. Once it’s installed, run the Windows
Control Panel, and you should see an icon for ODBC Data Sources (32bit), as shown in
Figure 28.22. Double-click the icon and you’ll be presented with the ODBC Data Source
Administrator dialog, as shown in Figure 28.23.

Writing Desktop Database Applications

CHAPTER 28
1523

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

FIGURE 28.22
The Windows Control Panel containing the ODBC Data Sources (32 bit) icon.

2. Click the Add button in the Data Source Administrator dialog, and you’ll be presented
with the Create New Data Source dialog, as shown in Figure 28.24. From this dialog,
select “Microsoft Access Driver (*.mdb)” and click Finish.

3. You’ll now be presented with a dialog similar to the ODBC Microsoft Access Setup dia-
log shown in Figure 28.25. You can give the data source any name and description you
choose. In this case, we’ll call it AccessDB, and the description will read DDG Test for
Access.

4. Click the Create button in the ODBC Microsoft Access Setup dialog, and you’ll be pre-
sented with the New Database dialog, where you can choose a name for your new data-
base and a directory in which to store the database file. Click the OK button after you

FIGURE 28.23
The ODBC Data Source Administrator dialog.

Database Development

PART IV
1524

FIGURE 28.24
The Create New Data Source dialog.

5. Close all applications that use the BDE. Run the BDE Administrator tool that comes with
Delphi and change to the Configuration page on the left pane. Expand the Drivers branch
of the tree view, right-click ODBC, and select New from the local menu. This will
invoke the New ODBC Driver dialog. Driver Name can be anything you like. For the
sake of this example, we’ll use ODBC_Access. ODBC Driver Name will be “Microsoft
Access Driver (*.mdb)” (the same driver name as step 2). Default Data Source Name
should come up automatically as AccessDB (the same name as step 3). The completed

choose a file and path. Figure 28.25 shows a picture of the ODBC Microsoft Access
Setup dialog with steps 3 and 4 completed. Click OK to dismiss this dialog, and then
click Close to dismiss the Data Sources dialog. The data source is now configured, and
you’re ready to create a BDE alias that maps to this data source.

FIGURE 28.25
The ODBC Microsoft Access Setup dialog.

Writing Desktop Database Applications

CHAPTER 28
1525

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

FIGURE 28.26
The completed New ODBC Driver dialog.

6. Change to the Databases page in the left pane of the BDE Administrator and select
Object, New from the main menu. This will invoke the New Database Alias dialog. In
this dialog, select ODBC_Access (from step 5) as the database driver name and click OK.
You can then give the alias any name you like—we’ll use Access in this case. The com-
pleted alias is shown in Figure 28.27. Select OK to dismiss the dialog and then select
Object, Apply from the BDE Administrator main window. The alias has now been cre-
ated, and you may now close the BDE Administrator tool. The next step is to create a
table for the database.

7. You’ll use the Database Desktop application that ships with Delphi to create tables for
your Access database. Select File, New, Table from the main menu, and you’ll be pre-
sented with the Create Table dialog. Choose ODBC_Access (same as steps 5 and 6) as the
table type, and the Create ODBC_Access Table dialog will come up.

dialog is shown in Figure 28.26. Select OK, and you’ll return to the BDE Administrator
main window.

FIGURE 28.27
The new Access alias in BDE Administrator.

Database Development

PART IV
1526

FIGURE 28.28
The completed Create ODBC_Access Table dialog.

9. Click the Save As button, and you’ll be prompted with the Save Table As dialog. In this
dialog, first set Alias to Access (from step 6). At this point, you’ll be presented with a
database login dialog—just click OK to dismiss the dialog, because no user name or
password have been specified. Now give the table a name (do not use an extension) in
the File Name edit control. We’ll use TestTable in this case. Click OK, and the table
will be stored to the database. You’re now ready to access this database with Delphi.

8. Assuming you’re familiar with creating tables in Database Desktop (if you’re not, refer
to the Delphi documentation), the Create ODBC_Access Table dialog works the same as
the “create table” dialogs for other database types. For demonstration purposes, add one
field of type CHAR and one of type INTEGER. Figure 28.28 shows the completed dialog.

10. Create a new project in Delphi. The main form should contain one each of the TTable,
TDataSource, and TDBGrid components. DBGrid1 hooks to Table1 via DataSource1.
Select Access (from steps 6 and 9) into Table1’s DatabaseName property. Click Table1’s
TableName property, and you’ll be presented with a login dialog. Simply click the OK
button (no password has been configured) and you can choose an available table from the
Access database. Because TestTable is the only table you created, choose that table.
Now set Table1’s Active property to True, and you’ll see the field names appear in
DBGrid1. Run the application, and you’ll be able to edit the table. Figure 28.29 shows the
completed application.

Writing Desktop Database Applications

CHAPTER 28
1527

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

NOTE

MS Access tables that comprise a database are stored in one MDB file. Although this
is in contrast to Paradox and dBASE, which store each table as a separate file, it is
similar to SQL server databases.

FIGURE 28.29
Browsing an ODBC table in Delphi.

ActiveX Data Objects (ADO)
One of the marquee new features added to Delphi 5 is the ability to access data directly
through Microsoft’s ADO. This is accomplished via a suite of new components in Delphi
Enterprise collectively known as ADOExpress and found on the ADO page of the Component
Palette. By leveraging the abstract TDataSet class mentioned earlier in this chapter, the
ADOExpress components are able to provide ADO connectivity directly, without having to go
through the BDE. This means simplified deployment, fewer dependencies on code you don’t
have control over, and improved performance.

The Who’s Who of Microsoft Data Access
Microsoft has backed a number of data-access strategies over the years, so don’t feel bad if the
letters A, D, O tend to fall illegibly into an alphabet soup of other acronyms, such as ODBC,
DAO, RDS, and UDA. To help put things into perspective, it’s worth taking the time to review
this collection of terms and acronyms that deal with the various Microsoft data-access strate-
gies. In doing so, you’ll hopefully gain a little perspective on how ADO fits into the picture.

• UDA (Universal Data Access) is the umbrella term Microsoft gives to its whole data
access strategy, including ADO, OLE DB, and ODBC. It’s interesting to note that UDA
doesn’t refer strictly to databases but can be applicable to other data-store technologies,
such as directory services, Excel spreadsheet data, and Exchange server data.

• ODBC (Open Database Connectivity) is the most well-established Microsoft data-
connectivity technology. The ODBC architecture involves a generic SQL-based API,
upon which drivers can be developed to access specific databases. Because of the large
market presence and proven track record of ODBC, you can still find ODBC drivers for
nearly any database. Because of this, ODBC will continue to be used extensively for
some time to come, even if it is a bit long in the tooth.

• RDO (Remote Data Objects) provides a COM wrapper for ODBC. The goal of RDO is
to simplify ODBC development and open ODBC development to Visual Basic and VBA
programmers.

• Jet is the name of the database engine built into Microsoft Access. Jet supports both
Access’s native MDB databases and ODBC.

• DAO (Data Access Objects) is yet another COM-based API for data access. DAO pro-
vides encapsulations for both Jet and ODBC.

• ODBCDirect is the technology Microsoft added later to DAO to provide direct access to
ODBC, rather than supporting ODBC through Jet.

• OLE DB is a generic and simplified COM-based specification and API for data access.
OLE DB was designed to be independent of any particular database back end and is the
underlying architecture for Microsoft’s latest data-connectivity solutions. Drivers, known
as OLE DB providers, can be written to connect to virtually any data store through
OLE DB.

• ADO (ActiveX Data Objects) provides a more developer-friendly wrapper for OLE DB.

• RDS (Remote Data Services) is an ADO-based technology that enables remote access of
ADO data sources in order to build multitier systems. RDS was formerly known as ADC
(Advanced Data Connector).

• MDAC (Microsoft Data Access Components) is the practical implementation and file dis-
tribution for UDA. MDAC includes four distinct technologies: ODBC, OLE DB, ADO,
and RDS.

Database Development

PART IV
1528

ADOExpress Components
Six components make up ADOExpress. Here, we categorize them into three groups: connectiv-
ity, ADO access, and compatibility.

Connectivity Components
The TADOConnection component is used to establish a connection with an ADO data store. You
can hook multiple ADO dataset and command components to a single TADOConnection com-
ponent in order to share the connection for the purposes of executing commands, retrieving
data, and operating on metadata. This component is similar to the TDataBase component for
BDE-based applications, and it’s not necessary for simple applications.

The TRDSConnection component encapsulates a remote RDS connection by exposing the func-
tionality of RDS’s DataSpace object. TRDSConnection is used by specifying the name of the
RDS server machine in the ComputerName parameter and the ProgID of the RDS server in the
ServerName property.

ADO Access Components
TADODataSet and TADOCommand make up the group of ADO access components. This group
gets its name because the components provide their data-manipulation capability using more of
an ADO style than the traditional BDE style with which Delphi developers are generally more
familiar.

The TADODataSet component is the primary component used to retrieve and operate on ADO
data. This component has the ability to manipulate tables and execute SQL queries and stored
procedures and can connect directly to a data store or connection through a TADOConnection
component. In VCL terms, TADODataSet encapsulates the functionality that the TTable,
TQuery, and TStoredProc components provide for BDE-based applications.

The TADOCommand component is used to execute SQL statements that do not return result sets,
much like TQuery.Execute() and TStoredProc.ExecProc() in BDE-based applications. Like
TADODataSet, this component can connect directly to a data store or connect through a
TADOConnection. TADOCommand can also be used to execute SQL that returns a result set, but
the result set must be manipulated using a TADODataSet component. The following line of code
shows how to pipe the result set of a TADOCommand query into a TADODataSet:

ADODataSet.RecordSet := ADOCommand.Execute;

Compatibility Components
We consider TADOTable, TADOQuery, TADOStoredProc to be compatibility components because
they provide developers with the separate table, query, and stored procedure components that
they may already be familiar with. Developers are free to use these or the ADO access compo-
nents described previously, although using these components may make it a bit easier to port

Writing Desktop Database Applications

CHAPTER 28
1529

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

BDE-based applications to ADO. Like TADODataSet and TADOCommand, the compatibility com-
ponents have the ability to connect directly to a data store or connect through a
TADOConnection component.

As you might have guessed, TADOTable is used to retrieve and operate on a dataset produced by
a single table. TADOQuery can be used to retrieve and operate on a dataset produced by a SQL
statement or execute Data Definition Language (DDL) SQL statements, such as CREATE TABLE.
TADOStoredProc is used to execute stored procedures, whether or not they return result sets.

Connecting to an ADO Data Store
The TADOConnection component and each of the ADO access and compatibility components
contain a property called ConnectionString that specifies the connection to an ADO data store
and its attributes. The simplest way to provide a value for this property is by using the property
editor, which you can invoke by clicking the ellipses next to the property value in the Object
Inspector. You’ll then be presented with a property editor dialog like the one shown in
Figure 28.30.

Database Development

PART IV
1530

FIGURE 28.30
The ConnectString property editor.

In this dialog, you have the option of choosing a data link file or a connection string for the
property value. A data link file is a file on disk, typically with a .UDL extension, in which a
connection string is stored. Assuming you want to build a new connection string rather than
use a UDL file, you should select the Use Connection String radio button and click the Build
button. This will invoke the Data Link Properties window shown in Figure 28.31.

Building UDL Files
If you want to build UDL files in order to create connection strings that can be
reused many times, you can do so fairly easily in the Windows Explorer, as long as
MDAC has been installed on your machine (Delphi 5 installs MDAC). Just open an
Explorer window to the folder in which to want to create a new UDL file and then
right-click. Then select New, Microsoft Data Link from the local menu. This will create

FIGURE 28.31
The Provider page of the Data Link Properties window.

The first page, Provider, of this dialog enables you to choose the OLE DB provider to which
you want to connect. For example, you may choose the Microsoft OLE DB provider for
ODBC drivers in order to connect to an ODBC driver via OLE DB.

After selecting the provider, you can click the Next button or the Connection tab in order to be
taken to the Connection page shown in Figure 28.32. On this page, you’ll configure the driver
to connect to a particular database. For this example, we want to connect to a dBASE table, so
select the dBASE ODBC data source from the Use Data Source Name drop-down list in part 1
of the page. You can skip part 2 of the page because the dBASE table is not password pro-
tected. In part 3 of the dialog, we need to set the initial catalog name to the directory contain-
ing the dBASE tables. For testing purposes, we set it to the directory containing the Borland
sample data.

To ensure that the connection is valid, click the Test Connection button, and you’ll receive a
confirmation of a valid connection or an error if the directory you entered was invalid.

The Advanced and All pages of the Data Link Properties window enable you to set various
properties on the connection, such as Connect Timeout, Access Permissions, Locale ID, and so
on. For our purposes, we don’t need to edit these pages and can use the defaults. Clicking OK

Writing Desktop Database Applications

CHAPTER 28
1531

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

a new UDL file, which you can name. Then right-click the icon for the UDL file and
select Properties from the local menu. You’ll then be presented with the Data Link
Properties window as described in this section.

in this window and then again in the property editor dialog will cause the connection string to
be created and placed in the Object Inspector, as shown in Figure 28.33.

Database Development

PART IV
1532

FIGURE 28.32
The Connection page of the Data Link Properties window.

FIGURE 28.33
The completed ConnectString property in the Object Inspector.

Example: Connecting via ADO
Now that you know how to create a new connection string, you already know the hardest part
about accessing data via ADO. To take it to the next step in Delphi, you can view the data in
the connection you just created. To accomplish this, we’ll use only a TADODataSet component.
Follow the steps outlined previously for setting the ConnectString property of the

TADODataSet. Then use the property editor for the CommandText property to create a SQL state-
ment that enables you to view the contents of a table, such as that shown in Figure 28.34. Then
click OK to close the dialog.

Writing Desktop Database Applications

CHAPTER 28
1533

28 W
R

ITIN
G

D
ESK

TO
P

D
A

TA
B

A
SE

A
PPLIC

A
TIO

N
S

FIGURE 28.34
Editing the CommandText property.

Once you’ve set the CommandText property, you can set the Active property of the
TADODataSet to True. The component is now actively viewing the data. In order to see it, you
can drop down a TDataSource component, which you’ll connect to the TADODataSet, and a
TDBGrid component, which you’ll connect to the TDataSource, as you learned earlier in this
chapter. The result is shown in Figure 28.35.

FIGURE 28.35
Accessing data using the TADODataSet component.

ADO Deployment
In order to deploy ADO-based solutions on Windows 95, 98, and NT, remember that the
MDAC must be installed on the target systems. You’ll find the redistributable files in the \MDAC
directory of the Delphi 5 CD-ROM. Windows 2000 includes MDAC, so redistribution of
MDAC isn’t necessary if your application will be running on a Windows 2000 machine.

Summary
After reading this chapter, you should be ready for just about any type of non-SQL database
programming with Delphi. You learned the ins and outs of Delphi’s TDataSet component,
which is the ancestor of the TTable, TQuery, and TStoredProc components. You also learned
techniques for manipulating TTable objects, how to manage fields, and how to work with text
tables. Along with all this how-to information, you also learned about the various data-access
strategies, including BDE, ODBC, and ADO. As you’ve seen, VCL offers a pretty tight object-
oriented wrapper around the procedural BDE in addition to an extensible framework than can
accommodate other engines, such as ADO.

The next chapter, “Developing Client/Server Applications,” focuses a bit more on client/server
technology and using related VCL classes such as TQuery and TStoredProc components.

Database Development

PART IV
1534

