
CHAPTER

27
CORBA Development
with Delphi

IN THIS CHAPTER
• Object Request Brokers 1412

• Interfaces 1412

• Stubs and Skeletons 1413

• The VisiBroker ORB 1414

• Delphi CORBA Support 1415

• Creating CORBA Solutions with
Delphi 5 1427

• Deploying the VisiBroker ORB 1461

• Summary 1462

The acronym CORBA stands for Common Object Request Broker Architecture. CORBA is a
specification, developed by the Object Management Group (OMG), that defines a standards-
based architecture for building language- and platform-neutral object implementations. The
OMG is an independent consortium of companies and industry experts who adhere strictly to
the goal of developing standards for open, platform-neutral, distributed object architectures.
Unlike some competing standards (such as Microsoft’s COM/DCOM), the OMG does not offer
any implementations of the standards it defines.

Object Request Brokers
The workhorse of the CORBA architecture is the Object Request Broker (ORB). The ORB
provides the implementation of the CORBA specification and is the glue (or middleware) that
holds the entire solution together. If you’re familiar with Microsoft’s COM/DCOM technology,
you’ll notice that the ORB provides runtime, security, and transport layers similar to that of the
COM/DCOM library. All communication between client and server passes through the ORB so
that method calls and parameters can be resolved into the address space of the caller or callee
(marshaling). The ORB also provides many helper routines that can be called directly from a
client or server, similar to the functionality that oleaut32.dll provides for COM/DCOM. As
previously mentioned, the CORBA specification provides no default implementation of an
ORB library. Because building an ORB is no trivial task, CORBA developers are dependent on
third parties to supply CORBA-compliant ORB implementations. The good news is that ORB
implementations are currently available from many vendors and for all the major platforms
(such as Windows and UNIX) as well as some more obscure operating systems. Currently, the
two most widely recognized CORBA implementations are the Inprise VisiBroker ORB and the
IONA Orbix ORB.

Interfaces
A single CORBA solution can be comprised of various objects, developed in a heterogeneous
mix of development languages and executing on a variety of different platforms. Therefore,
there needs to be some standard way for the objects to represent themselves to other objects,
clients, and the ORB. This representation is accomplished using an interface. An interface
defines a list of available methods and their parameters but does not serve to implement any
functionality of these routines. When a CORBA object implements an interface, it’s guarantee-
ing that it implements all the methods defined by the interface. At its lowest level, an interface
is simply a function table or list of entry points into specific methods. Because this construct
can be represented on any hardware platform and by any serious development tool, interfaces
become the common tongue of the CORBA world. Because the syntax of development lan-
guages can differ widely, the OMG has defined the Interface Definition Language (IDL),

Component-Based Development

PART III
1412

which is used for defining CORBA interfaces. IDL is the standard language for defining
CORBA interfaces, and many development tools are able to translate IDL into their native syn-
tax in order to allow developers to easily construct CORBA-compliant interfaces. With Delphi,
we won’t need to manually write IDL; instead, the type library editor will allow us to visually
define our interfaces and optionally export the corresponding IDL code.

Stubs and Skeletons
The CORBA mechanism works using proxies. The use of proxies is currently the leading
design pattern for solving the complex problems associated with passing data between distrib-
uted objects. A proxy sits on both the client and server side and makes it appear to the client or
server that it is communicating with a local process. The ORB then handles all the messy
details that need to occur between the proxies (for example, marshaling, network communica-
tion, and so on). This architecture, as shown in Figure 27.1, affords the developers of a
CORBA client or server some protection from low-level transport details and allows them to
focus on correctly implementing their specific business solution. In CORBA terms, the proxy
that represents the server that a client communicates with is called a stub, and a proxy that rep-
resents a client on the server side is called a skeleton. When you’re creating a CORBA server
object using the Delphi wizard, a unit containing interface definitions for the stub and skeleton
will be automatically generated.

CORBA Development with Delphi

CHAPTER 27
1413

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

Object
Implementation

Interface

Interface

Skeleton

ORBORB

Stub

Server

Client

FIGURE 27.1
A simplified schematic of the CORBA architecture.

The VisiBroker ORB
As mentioned previously, CORBA is a standard that requires some third party to actually
implement the ORB services. The CORBA support offered in Delphi 4 and 5 uses the
VisiBroker ORB from Inprise to implement the CORBA specification. The VisiBroker product
provides full support for the CORBA specification as well as many VisiBroker extensions such
as naming and event services. Because full coverage of the VisiBroker product is outside the
scope of this chapter, we’ll focus on the parts of VisiBroker that are most pertinent to Delphi’s
CORBA implementation. More information on VisiBroker, including product documentation,
can be found at www.borland.com/visibroker.

VisiBroker Runtime Support Services
Included with the VisiBroker ORB libraries are various runtime support services that function
to hold the whole CORBA/VisiBroker distributed architecture together. We’ll discuss each of
these.

Smart Agent (osagent)
The VisiBroker Smart Agent provides object location services to CORBA applications. Use of
the Smart Agent provides the CORBA environment with location transparency. That is, clients
are not concerned with the location of the servers themselves; clients simply need to be able to
locate the Smart Agent and it will handle the details of finding an appropriate server. A Smart
Agent must be running somewhere on your local network. Multiple Smart Agents in a single
network can be configured to listen on different ports, in effect providing multiple ORB
domains. This might be useful for providing a production ORB environment and a develop-
ment ORB environment. Smart Agents can also be configured to communicate with Smart
Agents residing on different local networks, thus extending the range of your CORBA infra-
structure.

Object Activation Daemon
The VisiBroker Object Activation Daemon (OAD) provides services for dynamically launching
servers when their services are needed. The Smart Agent can only bind clients to implementa-
tions of objects that are already running. However, if a CORBA object implementation is regis-
tered with the Object Activation Daemon, the Smart Agent and the OAD can cooperate and
launch the server process if there isn’t one available.

The Interface Repository
The Interface Repository (IREP) is an online database of object type information. This reposi-
tory is necessary for clients who wish to dynamically bind (late-bind) to CORBA interfaces.
The ORB can use the type information in the interface repository for correctly marshaling late-
bound method invocations. In order for dynamic binding to be used, the Interface Repository

Component-Based Development

PART III
1414

must be running somewhere on the network that’s accessible to clients, and the interface to be
used must be registered with the repository.

VisiBroker Administration Tools
In order to configure and administer the aforementioned runtime support tools, the Delphi
VisiBroker package ships with an assortment of GUI and command-line administration utili-
ties. We list them in Table 27.1 for completeness but defer the details on their usage until
they’re needed later in this chapter.

TABLE 27.1 VisiBroker Administration Tools

Tool Purpose

osagent Used for administering the Smart Agent

osfind Enumerates object implementations available on the network

oad Used for administering the OAD

oadutil Used for registering, unregistering, and listing interfaces with the OAD

irep Used to administer the Interface Repository

idl2ir Utility for registering IDL with the Interface Repository

vregedit Allows for easy Registry (Windows) changes to Smart Agent defaults

vbver Reports version numbers of the VisiBroker services

Delphi CORBA Support
The CORBA support introduced in Delphi (starting with version 4) has been often criticized.
Although there are limitations, many of the rumors are exaggerated or simply wrong. To begin
with, the support in Delphi is indeed a “true” CORBA implementation. The VisiBroker ORB
for C++ (orb_br.dll) is used underneath and is wrapped by a dynamic link library
(orbpas50.dll) in order to allow Pascal and Delphi interface definitions and data types to
work with the VisiBroker ORB.

One area that usually causes CORBA purists to cringe is when they look at Delphi-generated
stub and skeleton code and see references to GUIDs and IUnknown and IDispatch interfaces.
These constructs reek of COM/DCOM, and most CORBA supporters wish to have them far
from their beloved CORBA implementations. Many myths have been circulated surrounding
the existence of these COM beasts, including that CORBA calls go through COM, or that para-
meters are marshaled twice (once through COM and once through CORBA). Before running
amok with all kinds of crazy assumptions, let’s examine why these COM definitions exist in a
Delphi-generated CORBA server:

CORBA Development with Delphi

CHAPTER 27
1415

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

• To begin with, when interfaces were added to Delphi, it was done with COM in mind.
All Delphi interfaces “inherit” from the base COM interface (IUnknown). This means that
when you define an interface in Delphi that’s to be used with CORBA, the three addi-
tional methods of IUnknown (QueryInterface, AddRef, and Release) must be imple-
mented. This is true even for a CORBA interface; the base implementation of the
TCorbaImplementation class implements these methods for the Delphi developer.

• Second, when creating a CORBA object using the Delphi wizard, you’ll notice that a
COM “dual” interface is created by default. By examining the generated stub and skele-
ton unit, you see that the CORBA interface inherits from IDispatch and defines a
dispinterface. Although this is unnecessary for CORBA (and you can alter the definition
to inherit from IUnknown), the object implementation must define the additional methods
of IDispatch in order for these objects to compile properly. The class declarations of
TCorbaDispatchStub and TCorbaImplementation implement the four additional meth-
ods of IDispatch. Careful inspection of this code will show that the implementations do
not really do anything; they are present so that the type library editor can be used with
CORBA objects.

• Finally, the interfaces that are generated by the wizard contain GUIDs (or IIDs). These
are unique identifiers that COM uses to identify interfaces. Although CORBA does not
use GUIDs itself in order to identify objects or interfaces, some internal VCL routines
use these GUIDs in order to uniquely identify the CORBA interfaces. For this reason,
GUIDs should not be removed from the interfaces generated by the CORBA Object
Wizard.

As you can see from this discussion, the COM entities that are generated by the Delphi
CORBA wizard may be less of a cost than some developers think. One beneficial side effect of
this—a feature that’s unique to Delphi—is that it becomes very easy to build classes that can
be exposed through both COM/DCOM and CORBA at the same time!

At the time of writing, the most glaring weakness of Delphi’s CORBA implementation is the
lack of a utility for converting IDL to Pascal (Idl2Pas), a tool that’s currently available from
Inprise for both Java and C++. It’s a common misconception that Delphi does not have the
ability to early-bind to a CORBA server written in a different language. A more correct state-
ment would be that a Delphi developer cannot easily early-bind to a CORBA server written in
another language. Delphi clients can perform static (early) binding or dynamic (late) binding to
CORBA servers written in Delphi or any other language. However, the inability of Delphi to
import an IDL file and generate Pascal code that the compiler can understand makes it much
more difficult to early-bind to CORBA servers that are written in other languages. Due to this,
a developer must manually code CORBA stub classes when desiring to early-bind a Delphi
client to a CORBA object implemented in C++ or Java. Inprise is currently working on an

Component-Based Development

PART III
1416

Idl2Pas converter that will simplify Delphi/CORBA development and should soon be avail-
able as an add-on to Delphi 5. Later in this chapter we will provide an introductory look at
this new technology.

CORBA Support Classes
The Delphi CORBA framework uses a mixture of interface and implementation inheritance in
order to enable developers to create CORBA clients and servers. CORBA work is accom-
plished primarily by implementing interfaces for objects, stubs, and skeletons. Because inter-
faces do not support the concept of inheriting implementation code, this task could become
quite tedious because all interfaces would need to reimplement common calls to the CORBA
ORB. To address this, Delphi provides a group of VCL base classes that implement the meth-
ods of the primary CORBA interfaces (for example, ICorbaObject, ISkeletonObject, and
IStubObject). The primary base classes are shown in Figure 27.2 and are described in the
following list.

CORBA Development with Delphi

CHAPTER 27
1417

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

TObject

TInterfacedObject TCorbaImplementation TCorbaListManager

TCorbaStub

TCorbaDispatchStub

TCorbaSkeleton

TCorbaFactory

TCorbaInterfaceIDManager

TCorbaStubManager

TCorbaSkeletonManager

TCorbaFactoryManager

TCorbaObjectFactory

TORB TBOA

FIGURE 27.2
The VCL’s CORBA support hierarchy.

• TCorbaImplementation. This class supports IUnknown (interfaces) and provides
interface-querying and reference-counting capabilities. The methods of IDispatch are
also stubbed out on this class so that dual interfaces added from the type library editor
are supported. Delphi CORBA objects will descend from this class.

• TCorbaStub. This class implements the ICorbaObject and IStubObject interfaces.
TCorbaStub is the base class for all stubs generated by the Delphi Type Library Editor.

A stub is used to marshal interface calls for a CORBA client. Developers wishing (or
having) to provide their own marshaling will create TCorbaStub descendants.

• TCorbaDispatchStub. This class inherits from TCorbaStub and implements (stubs out)
the methods of the COM interface IDispatch. This is so those interfaces that are created
with the Delphi Type Library Editor that inherit from IDispatch can be used with
CORBA.

• TCorbaSkeleton. This class implements the ISkeletonObject interface and is responsi-
ble for communicating with the ORB and passing calls on the server object. Unlike the
stub, the skeleton class does not actually implement the interface of the server. Instead,
the skeleton holds a reference to the server and invokes methods on this reference.

• TCorbaFactory and TCorbaObjectFactory. TCorbaFactory is the base class for objects
that can create CORBA object instances. TCorbaObjectFactory can instantiate any
descendants of TCorbaImplementation.

• TCorbaListManager (and subclasses). The Delphi CORBA framework must keep track
of various entities at runtime, such as skeletons, stubs, factories, and interface IDs.
TCorbaListManager is a base class that provides support for thread synchronization. This
allows the VCL to provide internal housekeeping in a thread-safe manner. Typically, a
developer will not need to do much with these list manager classes except for occasion-
ally registering a custom stub object.

• TBOA. This is the Delphi class that represents the Basic Object Adapter (BOA), a CORBA
mechanism for communication between the ORB and the skeleton. The TBOA class is a
“singleton” object and never needs to be instantiated directly.

• TORB. The TORB class is how the Delphi VCL communicates with the VisiBroker ORB.
Like the TBOA class, the TORB class is a “singleton” and should never be instantiated
directly. The implementations of many of TORB’s methods call functions in
orbpas50.dll, which in turn calls routines in the VisiBroker C++ ORB (orb_br.dll).

CORBA Object Wizard
The classes just listed are relatively straightforward and represent just about all the VCL
CORBA classes that a Delphi developer should have to deal with. However, you may be happy
to know that there’s a Delphi wizard that helps you properly implement your CORBA objects.
Use the File, New menu to invoke Delphi’s Object Repository, as shown in Figure 27.3, and
select the Multitier tab.

Component-Based Development

PART III
1418

FIGURE 27.3
The Delphi Object Repository/CORBA Wizard.

Now click CORBA Object and you’ll see the CORBA Object Wizard pictured in Figure 27.4.

CORBA Development with Delphi

CHAPTER 27
1419

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

FIGURE 27.4
The CORBA Object Wizard.

Fill in the class name with the desired name for your CORBA object and interface. Note that
you should probably not use the standard Delphi convention of starting your class name with a
T, because this will be automatically added for you. For example, if you enter MyObject, a
Delphi class named TMyObject will be generated that implements the interface IMyObject.

The Instancing option determines how object instances are handed out to clients. One of the
following two options may be chosen:

• Shared Instance. This model is normally used for CORBA development. Each client uses
a single shared instance of the object implementation. CORBA servers that use this
model should be built as “stateless” servers. Because many clients may be sharing a sin-
gle instance, any particular client is not guaranteed to find the server in the exact same
state that it was in after the last call.

• Instance-per-client. The instance-per-client model constructs a unique instance of an
object for each client that requests an object’s service. This model allows for the con-
struction of “state” objects that maintain a consistent state across client calls. However,

this model can be more resource-intensive because it requires servers to track the state of
connected clients so that objects can be freed when clients are finished with them.

The Threading Model option specifies how your CORBA objects will be called. Two options
are available here:

• Single-threaded. Each object instance will be called from a single thread; therefore, the
object itself does not need to be made thread-safe. Note that the CORBA server applica-
tion may contain multiple objects or instances; therefore, global or shared data must still
be made thread-safe.

• Multithreaded. Although each client connection will make calls on a dedicated client
thread, objects can receive concurrent calls from multiple threads. In this scenario, global
as well as object data must be made thread-safe. The most difficult scenario to imple-
ment (regarding threading concerns) is you’re when using a shared object instance with
the multithreaded model. The simplest would be the single-threaded, instance-per-client
model.

Keep in mind that simply selecting a threading option does not serve to implement your
servers or objects in a thread-safe manner. These options are purely for specifying the thread-
ing model your object supports. It remains your responsibility to implement your CORBA
servers in a thread-safe manner, based on the threading model desired.

After you’ve successfully completed the CORBA wizard, two Pascal code units will be gener-
ated. A stub/skeleton unit will be generated that follows the naming pattern
YourProject_TLB.pas. This file will contain the definition of the main interface of your
object, a stub and skeleton class, a CORBA class factory class, and code to register the stub,
skeleton, and interface with the appropriate Delphi mechanisms. Listing 27.1 shows the code
generated for a class named “MyFirstCORBAServer.”

LISTING 27.1 A Delphi-Generated Stub and Skeleton Unit

unit FirstCorbaServer_TLB;

// ** //
// WARNING
// -------
// The types declared in this file were generated from data read from a
// Type Library. If this type library is explicitly or indirectly (via
// another type library referring to this type library) re-imported, or the
// ‘Refresh’ command of the Type Library Editor activated while editing the
// Type Library, the contents of this file will be regenerated and all
// manual modifications will be lost.
// ** //

Component-Based Development

PART III
1420

// PASTLWTR : $Revision: 1.88 $
// File generated on 11/02/1999 4:01:10 PM from Type Library described below.

// ** //
// Type Lib: C:\ICON99\FirstCORBAServer\FirstCorbaServer.tlb (1)
// IID\LCID: {CE8DB340-913A-11D3-9706-0000861F6726}\0
// Helpfile:
// DepndLst:
// (1) v2.0 stdole, (C:\WINDOWS\SYSTEM\STDOLE2.TLB)
// (2) v4.0 StdVCL, (C:\WINDOWS\SYSTEM\STDVCL40.DLL)
// ** //
{$TYPEDADDRESS OFF} // Unit must be compiled without type-checked pointers.
interface

uses Windows, ActiveX, Classes, Graphics, OleServer, OleCtrls, StdVCL,
SysUtils, CORBAObj, OrbPas, CorbaStd;

// ***//
// GUIDS declared in the TypeLibrary. Following prefixes are used:
// Type Libraries : LIBID_xxxx
// CoClasses : CLASS_xxxx
// DISPInterfaces : DIID_xxxx
// Non-DISP interfaces: IID_xxxx
// ***//
const
// TypeLibrary Major and minor versions
FirstCorbaServerMajorVersion = 1;
FirstCorbaServerMinorVersion = 0;

LIBID_FirstCorbaServer: TGUID = ‘{CE8DB340-913A-11D3-9706-0000861F6726}’;

IID_IMyFirstCorbaServer: TGUID = ‘{CE8DB341-913A-11D3-9706-0000861F6726}’;
CLASS_MyFirstCorbaServer: TGUID = ‘{CE8DB343-913A-11D3-9706-0000861F6726}’;

type

// ***//
// Forward declaration of types defined in TypeLibrary
// ***//
IMyFirstCorbaServer = interface;
IMyFirstCorbaServerDisp = dispinterface;

// ***//
// Declaration of CoClasses defined in Type Library
// (NOTE: Here we map each CoClass to its Default Interface)
// ***//

CORBA Development with Delphi

CHAPTER 27
1421

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

continues

LISTING 27.1 Continued

MyFirstCorbaServer = IMyFirstCorbaServer;

// ***//
// Interface: IMyFirstCorbaServer
// Flags: (4416) Dual OleAutomation Dispatchable
// GUID: {CE8DB341-913A-11D3-9706-0000861F6726}
// ***//
IMyFirstCorbaServer = interface(IDispatch)
[‘{CE8DB341-913A-11D3-9706-0000861F6726}’]
procedure SayHelloWorld; safecall;

end;

// ***//
// DispIntf: IMyFirstCorbaServerDisp
// Flags: (4416) Dual OleAutomation Dispatchable
// GUID: {CE8DB341-913A-11D3-9706-0000861F6726}
// ***//
IMyFirstCorbaServerDisp = dispinterface
[‘{CE8DB341-913A-11D3-9706-0000861F6726}’]
procedure SayHelloWorld; dispid 1;

end;

TMyFirstCorbaServerStub = class(TCorbaDispatchStub, IMyFirstCorbaServer)
public
procedure SayHelloWorld; safecall;

end;

TMyFirstCorbaServerSkeleton = class(TCorbaSkeleton)
private
FIntf: IMyFirstCorbaServer;

public
constructor Create(const InstanceName: string; const Impl: IUnknown);
override;

procedure GetImplementation(out Impl: IUnknown); override; stdcall;
published
procedure SayHelloWorld(const InBuf: IMarshalInBuffer; Cookie: Pointer);

end;

// ***//
// The Class CoMyFirstCorbaServer provides a Create and CreateRemote method to
// create instances of the default interface IMyFirstCorbaServer exposed by
// the CoClass MyFirstCorbaServer. The functions are intended to be used by
// clients wishing to automate the CoClass objects exposed by the
// server of this typelibrary.

Component-Based Development

PART III
1422

// ***//
CoMyFirstCorbaServer = class
class function Create: IMyFirstCorbaServer;
class function CreateRemote(const MachineName: string):
➥IMyFirstCorbaServer;

end;

TMyFirstCorbaServerCorbaFactory = class
class function CreateInstance(const InstanceName: string):
IMyFirstCorbaServer;

end;

implementation

uses ComObj;

{ TMyFirstCorbaServerStub }

procedure TMyFirstCorbaServerStub.SayHelloWorld;
var
OutBuf: IMarshalOutBuffer;
InBuf: IMarshalInBuffer;

begin
FStub.CreateRequest(‘SayHelloWorld’, True, OutBuf);
FStub.Invoke(OutBuf, InBuf);

end;

{ TMyFirstCorbaServerSkeleton }

constructor TMyFirstCorbaServerSkeleton.Create(const InstanceName: string;
const Impl: IUnknown);

begin
inherited;
inherited InitSkeleton(‘MyFirstCorbaServer’, InstanceName,
‘IDL:FirstCorbaServer/IMyFirstCorbaServer:1.0’, tmMultiThreaded, True);

FIntf := Impl as IMyFirstCorbaServer;
end;

procedure TMyFirstCorbaServerSkeleton.GetImplementation(out Impl: IUnknown);
begin
Impl := FIntf;

end;

procedure TMyFirstCorbaServerSkeleton.SayHelloWorld(
const InBuf: IMarshalInBuffer; Cookie: Pointer);

var

CORBA Development with Delphi

CHAPTER 27
1423

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

continues

LISTING 27.1 Continued

OutBuf: IMarshalOutBuffer;
begin
FIntf.SayHelloWorld;
FSkeleton.GetReplyBuffer(Cookie, OutBuf);

end;

class function CoMyFirstCorbaServer.Create: IMyFirstCorbaServer;
begin
Result := CreateComObject(CLASS_MyFirstCorbaServer) as IMyFirstCorbaServer;

end;

class function CoMyFirstCorbaServer.CreateRemote(const MachineName: string):
IMyFirstCorbaServer;

begin
Result := CreateRemoteComObject(MachineName, CLASS_MyFirstCorbaServer) as
IMyFirstCorbaServer;

end;

class function TMyFirstCorbaServerCorbaFactory.CreateInstance(
const InstanceName: string): IMyFirstCorbaServer;

begin
Result := CorbaFactoryCreateStub(
‘IDL:FirstCorbaServer/MyFirstCorbaServerFactory:1.0’, ‘MyFirstCorbaServer’,
InstanceName, ‘’, IMyFirstCorbaServer) as IMyFirstCorbaServer;

end;

initialization
CorbaStubManager.RegisterStub(IMyFirstCorbaServer, TMyFirstCorbaServerStub);
CorbaInterfaceIDManager.RegisterInterface(IMyFirstCorbaServer,
‘IDL:FirstCorbaServer/IMyFirstCorbaServer:1.0’);

CorbaSkeletonManager.RegisterSkeleton(IMyFirstCorbaServer,
TMyFirstCorbaServerSkeleton);

end.

Upon examination of this stub and skeleton unit, one interesting point to note is that the skele-
ton class does not actually implement the IMyFirstCorbaServer interface. The skeleton will
have the same methods as the supported interface, but you’ll notice that the parameters are dif-
ferent. The methods of the skeleton will receive raw, marshaled information and must then
unmarshal the parameters and pass them to the appropriate interface. For this reason, the skele-
ton does not implement the interface directly. Instead, the skeleton will hold an internal refer-
ence to the supported interface and delegate its calls to this internal reference.

Component-Based Development

PART III
1424

The second unit generated will contain the framework for implementing your object. A Delphi
class that descends from TCorbaImplementation and implements your main interface will be
generated. This unit will also create an instance of the factory that’s responsible for creating
the CORBA object. A typical CORBA object implementation unit would look like the code
shown in Listing 27.2.

LISTING 27.2 A Delphi-Generated CORBA Object Implementation

unit uMyFirstCorbaServer;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, ComObj, StdVcl,
CorbaObj, FirstCorbaServer_TLB;

type

TMyFirstCorbaServer = class(TCorbaImplementation, IMyFirstCorbaServer)
private
{ Private declarations }

public
{ Public declarations }

protected
procedure SayHelloWorld; safecall;

end;

implementation

uses CorbInit;

procedure TMyFirstCorbaServer.SayHelloWorld;
begin
//Implement method here.

end;

initialization
TCorbaObjectFactory.Create(‘MyFirstCorbaServerFactory’, ‘MyFirstCorbaServer’,
‘IDL:FirstCorbaServer/MyFirstCorbaServerFactory:1.0’, IMyFirstCorbaServer,
TMyFirstCorbaServer, iMultiInstance, tmSingleThread);

end.

CORBA Development with Delphi

CHAPTER 27
1425

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

This unit will eventually contain the code that implements all the methods of the
IMyFirstCORBAServer interface as well as any internal functionality of the
TMyFirstCORBAServer class. By using classical implementation inheritance descending from
TCorbaImplementation, the implementation will automatically be able to become a CORBA
object. By supporting the IMyFirstCorbaServer interface, the object guarantees it will satisfy
the contract of this interface. In lieu of manually declaring the object’s interface and imple-
mentation, we’ll now turn to the Delphi Visual Type Library Editor.

The Delphi Type Library Editor
To fully implement this custom CORBA object, code must be added to both the stub and skele-
ton unit and the object implementation unit listed previously. Although at first this may appear
to be a somewhat daunting task, the Delphi Type Library Editor is available to help you with
the process. Proceed to the Delphi main menu and select View, Type Library. You’ll see the
window shown in Figure 27.5, which visually represents the interfaces and other entities
defined in the stub and skeleton unit.

Component-Based Development

PART III
1426

FIGURE 27.5
The Delphi Visual Type Library Editor.

At this point, you can select the IMyFirstCorbaServer interface in the editor and click the
speedbutton to add a new method. Once the method has been added, you can use the editor’s
visual interface to define parameters, return types, and so on. Note that not all the data types
shown as possible parameter types in the Type Library Editor are valid for CORBA objects.
Because the Type Library Editor currently is a dual-purpose tool for both COM and CORBA,
many of the data types are valid for COM/Automation objects only. Consult the Delphi help

files for exhaustive lists of valid CORBA (IDL) data types. Once you’ve used the Type Library
Editor to add the methods of your interface, clicking the Refresh speedbutton will regenerate
the code in your project. The stub and skeleton unit will be refreshed, and empty implementa-
tion methods will be added to your implementation unit. All that’s left for you to do is to fill in
the code and implement the empty methods that the Type Library Editor generates.

CORBA Development with Delphi

CHAPTER 27
1427

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

NOTE

Delphi 5 contains a new feature that will generate component wrappers for
CoClasses contained in a type library. Unfortunately, wrappers are generated whether
you are importing an existing type library or creating one of your own. These com-
ponent wrappers are not appropriate for a CORBA object, so you should perform the
following steps to prevent generation of this additional code. From the Delphi menu,
select Project, Import Type Library. When the dialog box appears, clear the “Generate
Component Wrapper” check box and close the dialog box by clicking Close in the
upper right corner. Finally, click the Refresh speedbutton in the Type Library Editor.
The extraneous code will be eliminated from your application.

Creating CORBA Solutions with Delphi 5
Now that we have discussed the basic CORBA framework and IDE tools in Delphi, we are
going to apply our knowledge by creating a CORBA server. Then we’ll finish by building a
client that will use our custom CORBA server.

Building a CORBA Server
Having examined the basics of creating a CORBA server, we’ll now go into detail and con-
struct a CORBA server from start to finish. Our objective is to create a middle-tier CORBA
object that can accept SQL queries from a client, query a database, and send results back to the
calling client. Our implementation will use the Borland Database Engine (BDE) in order to
easily retrieve data from a database server. Keep in mind that this dependency is only a consid-
eration from the standpoint of the server object. The client application needs no knowledge (or
deployment) of the BDE, and the server could easily be adapted to retrieve data using other
mechanisms such as Delphi 5’s new ADO datasets or even a custom TDataset.

Invoking the CORBA Object Wizard
Create a new Delphi application and then invoke the CORBA Object Wizard as described ear-
lier. The name of our object will be QueryServer; this will produce an interface named
IQueryServer and an implementation class with the name TQueryServer. Choose Instance-Per-
Client for the Instancing option because our object will support data navigation (for example,

First, Next, and so on) and therefore is not a stateless object. In order to avoid the complexities
of writing thread-safe code at this point, select Single-Threaded for the Threading Model
option. After you click OK, the stub and skeleton unit as well as the object’s implementation
unit will be added to the project.

You may notice that the default Delphi application contains a form by default. A Delphi GUI
application must have a form in order to remain in the main Windows message loop. Most
CORBA server applications have no need for a visual form; therefore, we could solve this by
entering

Application.ShowMainForm := False;

in the project file of the application. For this example, we would like to verify that the server is
running, so we’ll leave the form visible and provide a TLabel to inform us that our CORBA
server is active. This form is shown in Figure 27.6.

Component-Based Development

PART III
1428

FIGURE 27.6
Our CORBA server’s main form.

Be aware that this form should be considered global data. Even though we’ve created the
CORBA object with a single-threaded model, the CORBA server application could contain
other objects that are servicing calls on other threads. Therefore, accessing this form from the
code of the object would not be considered thread-safe.

Using the Type Library Editor
Now that we’ve generated the necessary code to implement our CORBA object, we’re going to
use the Type Library Editor to add support methods to our interface. We’re going to add func-
tionality to our IQueryServer interface to allow clients to log in to a database and send SQL
statements, navigate the data, and retrieve a row at a time of the result set. This is accom-
plished by selecting the IQueryServer interface and clicking the New Method speedbutton. As
each of our new methods are added, we can name them using the Name edit box on the
Attributes tab. For each new method, you may also need to use the grid on the Parameters tab
of the Type Library Editor in order to supply parameter types and return values. After adding
several methods to provide our desired functionality, the Type Library Editor will look like
Figure 27.7.

FIGURE 27.7
IQueryServer methods in the Type Library Editor.

Implementing the Methods of IQueryServer
Now that we’ve defined the interface of our CORBA object, what remains to be done is to
implement the code to make the exposed methods work. Our implementation class will encap-
sulate a TDatabase and a TQuery in order to provide access to the BDE and server data. The
remainder of the work is trivial—the interface methods will simply call the provided function-
ality of the TDatabase and TQuery VCL components.

The only method that will be a little more involved to implement is the Data method (func-
tion). This method will retrieve the entire row of data that’s currently positioned in the query
results. Because we’re returning multiple values, we need some type of structure to be returned
that represents these values appropriately. In IDL, this would usually involve the use of a
sequence, which is a varying array of some data type. The Type Library Editor does not cur-
rently allow us to define an IDL sequence, so we’ll make the return type of the Data method be
an OLEVariant. This OLEVariant will actually be an array that holds the column values for the
positioned row in each of its elements. We can use an OLEVariant for this task because IDL
has a similar construct called an Any that can hold any valid IDL data type. The IDL that
Delphi generates (shown later) will recognize an OLEVariant as an IDL Any, and the Delphi
CORBA framework will allow this value to be converted to an Any and correctly marshaled to
and from the ORB. In fact, there’s a type declared in the Delphi VCL called TAny that maps
directly to a Variant. All we’ll need to do is create an array of Variant types and pass this as
the return value of our Data function, as follows:

function TQueryServer.Data: OleVariant;
var
i : integer;

CORBA Development with Delphi

CHAPTER 27
1429

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

begin
//Pack and send data.
Result := VarArrayCreate([0,FQuery.FieldCount-1],varOLEStr);
for i := 0 to FQuery.FieldCount - 1 do
begin
Result[i] := FQuery.Fields[i].AsString;

end;
end;

Once we implement the remainder of our methods, we’ll have a stub and skeleton unit, as
shown in Listing 27.3.

LISTING 27.3 The Stub and Skeleton Unit for IQueryServer

unit SimpleCorbaServer_TLB;

// ** //
// WARNING
// -------
// The types declared in this file were generated from data read from a
// Type Library. If this type library is explicitly or indirectly (via
// another type library referring to this type library) re-imported, or the
// ‘Refresh’ command of the Type Library Editor activated while editing the
// Type Library, the contents of this file will be regenerated and all
// manual modifications will be lost.
// ** //

// PASTLWTR : $Revision: 1.88 $
// File generated on 11/02/1999 6:01:08 PM from Type Library described below.

// ** //
// Type Lib: C:\ICON99\CORBA Server\SimpleCorbaServer.tlb (1)
// IID\LCID: {B7D4ED80-27C2-11D3-9703-0000861F6726}\0
// Helpfile:
// DepndLst:
// (1) v2.0 stdole, (C:\WINDOWS\SYSTEM\STDOLE2.TLB)
// (2) v4.0 StdVCL, (C:\WINDOWS\SYSTEM\STDVCL40.DLL)
// ** //
{$TYPEDADDRESS OFF} // Unit must be compiled without type-checked pointers.
interface

uses Windows, ActiveX, Classes, Graphics, OleServer, OleCtrls, StdVCL,
SysUtils, CORBAObj, OrbPas, CorbaStd;

// ***//
// GUIDS declared in the TypeLibrary. Following prefixes are used:

Component-Based Development

PART III
1430

// Type Libraries : LIBID_xxxx
// CoClasses : CLASS_xxxx
// DISPInterfaces : DIID_xxxx
// Non-DISP interfaces: IID_xxxx
// ***//
const
// TypeLibrary Major and minor versions
SimpleCorbaServerMajorVersion = 1;
SimpleCorbaServerMinorVersion = 0;

LIBID_SimpleCorbaServer: TGUID = ‘{B7D4ED80-27C2-11D3-9703-0000861F6726}’;

IID_IQueryServer: TGUID = ‘{B7D4ED81-27C2-11D3-9703-0000861F6726}’;
CLASS_QueryServer: TGUID = ‘{B7D4ED83-27C2-11D3-9703-0000861F6726}’;

type

// ***//
// Forward declaration of types defined in TypeLibrary
// ***//
IQueryServer = interface;
IQueryServerDisp = dispinterface;

// ***//
// Declaration of CoClasses defined in Type Library
// (NOTE: Here we map each CoClass to its Default Interface)
// ***//
QueryServer = IQueryServer;

// ***//
// Interface: IQueryServer
// Flags: (4416) Dual OleAutomation Dispatchable
// GUID: {B7D4ED81-27C2-11D3-9703-0000861F6726}
// ***//
IQueryServer = interface(IDispatch)
[‘{B7D4ED81-27C2-11D3-9703-0000861F6726}’]
function Login(const Db: WideString; const User: WideString;
const Password: WideString): WordBool; safecall;

function Get_SQL: WideString; safecall;
procedure Set_SQL(const Value: WideString); safecall;
procedure Next; safecall;
procedure Prev; safecall;
procedure First; safecall;
procedure Last; safecall;
function Get_FieldCount: Integer; safecall;
function Data: OleVariant; safecall;

CORBA Development with Delphi

CHAPTER 27
1431

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

continues

LISTING 27.3 Continued

function Get_EOF: WordBool; safecall;
function Get_BOF: WordBool; safecall;
function Execute: WordBool; safecall;
property SQL: WideString read Get_SQL write Set_SQL;
property FieldCount: Integer read Get_FieldCount;
property EOF: WordBool read Get_EOF;
property BOF: WordBool read Get_BOF;

end;

// ***//
// DispIntf: IQueryServerDisp
// Flags: (4416) Dual OleAutomation Dispatchable
// GUID: {B7D4ED81-27C2-11D3-9703-0000861F6726}
// ***//
IQueryServerDisp = dispinterface
[‘{B7D4ED81-27C2-11D3-9703-0000861F6726}’]
function Login(const Db: WideString; const User: WideString;
const Password: WideString): WordBool; dispid 1;

property SQL: WideString dispid 2;
procedure Next; dispid 3;
procedure Prev; dispid 4;
procedure First; dispid 5;
procedure Last; dispid 6;
property FieldCount: Integer readonly dispid 7;
function Data: OleVariant; dispid 8;
property EOF: WordBool readonly dispid 9;
property BOF: WordBool readonly dispid 11;
function Execute: WordBool; dispid 12;

end;

TQueryServerStub = class(TCorbaDispatchStub, IQueryServer)
public
function Login(const Db: WideString; const User: WideString;
const Password: WideString): WordBool; safecall;

function Get_SQL: WideString; safecall;
procedure Set_SQL(const Value: WideString); safecall;
procedure Next; safecall;
procedure Prev; safecall;
procedure First; safecall;
procedure Last; safecall;
function Get_FieldCount: Integer; safecall;
function Data: OleVariant; safecall;
function Get_EOF: WordBool; safecall;
function Get_BOF: WordBool; safecall;
function Execute: WordBool; safecall;

Component-Based Development

PART III
1432

end;

TQueryServerSkeleton = class(TCorbaSkeleton)
private
FIntf: IQueryServer;

public
constructor Create(const InstanceName: string; const Impl: IUnknown);
override;

procedure GetImplementation(out Impl: IUnknown); override; stdcall;
published
procedure Login(const InBuf: IMarshalInBuffer; Cookie: Pointer);
procedure Get_SQL(const InBuf: IMarshalInBuffer; Cookie: Pointer);
procedure Set_SQL(const InBuf: IMarshalInBuffer; Cookie: Pointer);
procedure Next(const InBuf: IMarshalInBuffer; Cookie: Pointer);
procedure Prev(const InBuf: IMarshalInBuffer; Cookie: Pointer);
procedure First(const InBuf: IMarshalInBuffer; Cookie: Pointer);
procedure Last(const InBuf: IMarshalInBuffer; Cookie: Pointer);
procedure Get_FieldCount(const InBuf: IMarshalInBuffer; Cookie: Pointer);
procedure Data(const InBuf: IMarshalInBuffer; Cookie: Pointer);
procedure Get_EOF(const InBuf: IMarshalInBuffer; Cookie: Pointer);
procedure Get_BOF(const InBuf: IMarshalInBuffer; Cookie: Pointer);
procedure Execute(const InBuf: IMarshalInBuffer; Cookie: Pointer);

end;

// ***//
// The Class CoQueryServer provides a Create and CreateRemote method to
// create instances of the default interface IQueryServer exposed by
// the CoClass QueryServer. The functions are intended to be used by
// clients wishing to automate the CoClass objects exposed by the
// server of this typelibrary.
// ***//
CoQueryServer = class
class function Create: IQueryServer;
class function CreateRemote(const MachineName: string): IQueryServer;

end;

TQueryServerCorbaFactory = class
class function CreateInstance(const InstanceName: string): IQueryServer;

end;

implementation

uses ComObj;

{ TQueryServerStub }

CORBA Development with Delphi

CHAPTER 27
1433

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

continues

LISTING 27.3 Continued

function TQueryServerStub.Login(const Db: WideString; const User: WideString;
const Password: WideString): WordBool;

var
OutBuf: IMarshalOutBuffer;
InBuf: IMarshalInBuffer;

begin
FStub.CreateRequest(‘Login’, True, OutBuf);
OutBuf.PutWideText(PWideChar(Pointer(Db)));
OutBuf.PutWideText(PWideChar(Pointer(User)));
OutBuf.PutWideText(PWideChar(Pointer(Password)));
FStub.Invoke(OutBuf, InBuf);
Result := UnmarshalWordBool(InBuf);

end;

function TQueryServerStub.Get_SQL: WideString;
var
OutBuf: IMarshalOutBuffer;
InBuf: IMarshalInBuffer;

begin
FStub.CreateRequest(‘Get_SQL’, True, OutBuf);
FStub.Invoke(OutBuf, InBuf);
Result := UnmarshalWideText(InBuf);

end;

procedure TQueryServerStub.Set_SQL(const Value: WideString);
var
OutBuf: IMarshalOutBuffer;
InBuf: IMarshalInBuffer;

begin
FStub.CreateRequest(‘Set_SQL’, True, OutBuf);
OutBuf.PutWideText(PWideChar(Pointer(Value)));
FStub.Invoke(OutBuf, InBuf);

end;

procedure TQueryServerStub.Next;
var
OutBuf: IMarshalOutBuffer;
InBuf: IMarshalInBuffer;

begin
FStub.CreateRequest(‘Next’, True, OutBuf);
FStub.Invoke(OutBuf, InBuf);

end;

procedure TQueryServerStub.Prev;
var

Component-Based Development

PART III
1434

OutBuf: IMarshalOutBuffer;
InBuf: IMarshalInBuffer;

begin
FStub.CreateRequest(‘Prev’, True, OutBuf);
FStub.Invoke(OutBuf, InBuf);

end;

procedure TQueryServerStub.First;
var
OutBuf: IMarshalOutBuffer;
InBuf: IMarshalInBuffer;

begin
FStub.CreateRequest(‘First’, True, OutBuf);
FStub.Invoke(OutBuf, InBuf);

end;

procedure TQueryServerStub.Last;
var
OutBuf: IMarshalOutBuffer;
InBuf: IMarshalInBuffer;

begin
FStub.CreateRequest(‘Last’, True, OutBuf);
FStub.Invoke(OutBuf, InBuf);

end;

function TQueryServerStub.Get_FieldCount: Integer;
var
OutBuf: IMarshalOutBuffer;
InBuf: IMarshalInBuffer;

begin
FStub.CreateRequest(‘Get_FieldCount’, True, OutBuf);
FStub.Invoke(OutBuf, InBuf);
Result := InBuf.GetLong;

end;

function TQueryServerStub.Data: OleVariant;
var
OutBuf: IMarshalOutBuffer;
InBuf: IMarshalInBuffer;

begin
FStub.CreateRequest(‘Data’, True, OutBuf);
FStub.Invoke(OutBuf, InBuf);
Result := UnmarshalAny(InBuf);

end;

function TQueryServerStub.Get_EOF: WordBool;

CORBA Development with Delphi

CHAPTER 27
1435

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

continues

LISTING 27.3 Continued

var
OutBuf: IMarshalOutBuffer;
InBuf: IMarshalInBuffer;

begin
FStub.CreateRequest(‘Get_EOF’, True, OutBuf);
FStub.Invoke(OutBuf, InBuf);
Result := UnmarshalWordBool(InBuf);

end;

function TQueryServerStub.Get_BOF: WordBool;
var
OutBuf: IMarshalOutBuffer;
InBuf: IMarshalInBuffer;

begin
FStub.CreateRequest(‘Get_BOF’, True, OutBuf);
FStub.Invoke(OutBuf, InBuf);
Result := UnmarshalWordBool(InBuf);

end;

function TQueryServerStub.Execute: WordBool;
var
OutBuf: IMarshalOutBuffer;
InBuf: IMarshalInBuffer;

begin
FStub.CreateRequest(‘Execute’, True, OutBuf);
FStub.Invoke(OutBuf, InBuf);
Result := UnmarshalWordBool(InBuf);

end;

{ TQueryServerSkeleton }

constructor TQueryServerSkeleton.Create(const InstanceName: string;
const Impl: IUnknown);

begin
inherited;
inherited InitSkeleton(‘QueryServer’, InstanceName,
‘IDL:SimpleCorbaServer/IQueryServer:1.0’, tmMultiThreaded, True);

FIntf := Impl as IQueryServer;
end;

procedure TQueryServerSkeleton.GetImplementation(out Impl: IUnknown);
begin
Impl := FIntf;

end;

Component-Based Development

PART III
1436

procedure TQueryServerSkeleton.Login(const InBuf: IMarshalInBuffer;
Cookie: Pointer);

var
OutBuf: IMarshalOutBuffer;
Retval: WordBool;
Db: WideString;
User: WideString;
Password: WideString;

begin
Db := UnmarshalWideText(InBuf);
User := UnmarshalWideText(InBuf);
Password := UnmarshalWideText(InBuf);
Retval := FIntf.Login(Db, User, Password);
FSkeleton.GetReplyBuffer(Cookie, OutBuf);
MarshalWordBool(OutBuf, Retval);

end;

procedure TQueryServerSkeleton.Get_SQL(const InBuf: IMarshalInBuffer;
Cookie: Pointer);

var
OutBuf: IMarshalOutBuffer;
Retval: WideString;

begin
Retval := FIntf.Get_SQL;
FSkeleton.GetReplyBuffer(Cookie, OutBuf);
OutBuf.PutWideText(PWideChar(Pointer(Retval)));

end;

procedure TQueryServerSkeleton.Set_SQL(const InBuf: IMarshalInBuffer;
Cookie: Pointer);

var
OutBuf: IMarshalOutBuffer;
Value: WideString;

begin
Value := UnmarshalWideText(InBuf);
FIntf.Set_SQL(Value);
FSkeleton.GetReplyBuffer(Cookie, OutBuf);

end;

procedure TQueryServerSkeleton.Next(const InBuf: IMarshalInBuffer;
Cookie: Pointer);

var
OutBuf: IMarshalOutBuffer;

begin
FIntf.Next;
FSkeleton.GetReplyBuffer(Cookie, OutBuf);

CORBA Development with Delphi

CHAPTER 27
1437

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

continues

LISTING 27.3 Continued

end;

procedure TQueryServerSkeleton.Prev(const InBuf: IMarshalInBuffer;
Cookie: Pointer);

var
OutBuf: IMarshalOutBuffer;

begin
FIntf.Prev;
FSkeleton.GetReplyBuffer(Cookie, OutBuf);

end;

procedure TQueryServerSkeleton.First(const InBuf: IMarshalInBuffer;
Cookie: Pointer);

var
OutBuf: IMarshalOutBuffer;

begin
FIntf.First;
FSkeleton.GetReplyBuffer(Cookie, OutBuf);

end;

procedure TQueryServerSkeleton.Last(const InBuf: IMarshalInBuffer;
Cookie: Pointer);

var
OutBuf: IMarshalOutBuffer;

begin
FIntf.Last;
FSkeleton.GetReplyBuffer(Cookie, OutBuf);

end;

procedure TQueryServerSkeleton.Get_FieldCount(const InBuf: IMarshalInBuffer;
Cookie: Pointer);

var
OutBuf: IMarshalOutBuffer;
Retval: Integer;

begin
Retval := FIntf.Get_FieldCount;
FSkeleton.GetReplyBuffer(Cookie, OutBuf);
OutBuf.PutLong(Retval);

end;

procedure TQueryServerSkeleton.Data(const InBuf: IMarshalInBuffer;
Cookie: Pointer);

var
OutBuf: IMarshalOutBuffer;
Retval: OleVariant;

Component-Based Development

PART III
1438

begin
Retval := FIntf.Data;
FSkeleton.GetReplyBuffer(Cookie, OutBuf);
MarshalAny(OutBuf, Retval);

end;

procedure TQueryServerSkeleton.Get_EOF(const InBuf: IMarshalInBuffer;
Cookie: Pointer);

var
OutBuf: IMarshalOutBuffer;
Retval: WordBool;

begin
Retval := FIntf.Get_EOF;
FSkeleton.GetReplyBuffer(Cookie, OutBuf);
MarshalWordBool(OutBuf, Retval);

end;

procedure TQueryServerSkeleton.Get_BOF(const InBuf: IMarshalInBuffer;
Cookie: Pointer);

var
OutBuf: IMarshalOutBuffer;
Retval: WordBool;

begin
Retval := FIntf.Get_BOF;
FSkeleton.GetReplyBuffer(Cookie, OutBuf);
MarshalWordBool(OutBuf, Retval);

end;

procedure TQueryServerSkeleton.Execute(const InBuf: IMarshalInBuffer;
Cookie: Pointer);

var
OutBuf: IMarshalOutBuffer;
Retval: WordBool;

begin
Retval := FIntf.Execute;
FSkeleton.GetReplyBuffer(Cookie, OutBuf);
MarshalWordBool(OutBuf, Retval);

end;

class function CoQueryServer.Create: IQueryServer;
begin
Result := CreateComObject(CLASS_QueryServer) as IQueryServer;

end;

class function CoQueryServer.CreateRemote(const MachineName: string):
IQueryServer;

CORBA Development with Delphi

CHAPTER 27
1439

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

continues

LISTING 27.3 Continued

begin
Result := CreateRemoteComObject(MachineName, CLASS_QueryServer) as
IQueryServer;

end;

class function TQueryServerCorbaFactory.CreateInstance(
const InstanceName: string): IQueryServer;

begin
Result := CorbaFactoryCreateStub(
‘IDL:SimpleCorbaServer/QueryServerFactory:1.0’, ‘QueryServer’,
InstanceName, ‘’, IQueryServer) as IQueryServer;

end;

initialization
CorbaStubManager.RegisterStub(IQueryServer, TQueryServerStub);
CorbaInterfaceIDManager.RegisterInterface(IQueryServer,
‘IDL:SimpleCorbaServer/IQueryServer:1.0’);

CorbaSkeletonManager.RegisterSkeleton(IQueryServer, TQueryServerSkeleton);

end.

Notice that the Type Library Editor in conjunction with the Delphi wizards have generated all
the necessary code to correctly marshal parameters. Parameters are marshaled from the stub to
the ORB and are unmarshaled from the skeleton to the actual object implementation.

The only code we’ll have to write is shown in Listing 27.4. You can see we only have to deal
with correctly implementing our object’s behavior; we don’t have to get into the messy details
of CORBA and parameter marshaling.

LISTING 27.4 The Implementation Unit for TQueryServer

unit uQueryServer;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, ComObj, StdVcl,
CorbaObj, db, dbtables, orbpas, SimpleCorbaServer_TLB, frmqueryserver;

type

TQueryServer = class(TCorbaImplementation, IQueryServer)
private
{ Private declarations }

Component-Based Development

PART III
1440

FDatabase: TDatabase;
FQuery: TQuery;

public
{ Public declarations }
constructor Create(Controller: IObject; AFactory: TCorbaFactory); override;
destructor Destroy; override;

protected
function Data: OleVariant; safecall;
function Get_BOF: WordBool; safecall;
function Get_EOF: WordBool; safecall;
function Get_FieldCount: Integer; safecall;
function Get_SQL: WideString; safecall;
function Login(const Db, User, Password: WideString): WordBool; safecall;
procedure First; safecall;
procedure Last; safecall;
procedure Next; safecall;
procedure Prev; safecall;
procedure Set_SQL(const Value: WideString); safecall;
function Execute: WordBool; safecall;

end;

implementation

uses CorbInit;

function TQueryServer.Data: OleVariant;
var
i : integer;

begin
//Pack and send data.
Result := VarArrayCreate([0,FQuery.FieldCount-1],varOLEStr);
for i := 0 to FQuery.FieldCount - 1 do
begin
Result[i] := FQuery.Fields[i].AsString;

end;
end;

function TQueryServer.Get_BOF: WordBool;
begin
Result := FQuery.BOF;

end;

function TQueryServer.Get_EOF: WordBool;
begin
Result := FQuery.EOF;

end;

CORBA Development with Delphi

CHAPTER 27
1441

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

continues

LISTING 27.4 Continued

function TQueryServer.Get_FieldCount: Integer;
begin
Result := FQuery.FieldCount;

end;

function TQueryServer.Get_SQL: WideString;
begin
Result := FQuery.SQL.Text;

end;

function TQueryServer.Login(const Db, User,
Password: WideString): WordBool;

begin
if FDatabase.Connected then FDatabase.Close;
FDatabase.AliasName := Db;
FDatabase.Params.Clear;
FDatabase.Params.Add(‘USER NAME=’ + User);
FDatabase.Params.Add(‘PASSWORD=’ + Password);
FDatabase.Open;

end;

procedure TQueryServer.First;
begin
FQuery.First;

end;

procedure TQueryServer.Last;
begin
FQuery.Last;

end;

procedure TQueryServer.Next;
begin
FQuery.Next;

end;

procedure TQueryServer.Prev;
begin
FQuery.Prior;

end;

procedure TQueryServer.Set_SQL(const Value: WideString);
begin
FQuery.SQL.Clear;
FQuery.SQL.Add(Value);

Component-Based Development

PART III
1442

end;

constructor TQueryServer.Create(Controller: IObject;
AFactory: TCorbaFactory);

begin
inherited Create(Controller,AFactory);
FDatabase := TDatabase.Create(nil);
FDatabase.LoginPrompt := false;
FDatabase.DatabaseName := ‘CorbaDb’;
FDatabase.HandleShared := true;
FQuery := TQuery.Create(nil);
FQuery.DatabaseName := ‘CorbaDb’;

end;

destructor TQueryServer.Destroy;
begin
FQuery.Free;
FDatabase.Free;
inherited Destroy;

end;

function TQueryServer.Execute: WordBool;
begin
FQuery.Close;
FQuery.Open;

end;

initialization
TCorbaObjectFactory.Create(‘QueryServerFactory’, ‘QueryServer’,
‘IDL:SimpleCorbaServer/QueryServerFactory:1.0’, IQueryServer,
TQueryServer, iMultiInstance, tmSingleThread);

end.

One VCL detail you should note in the code in Listing 27.4 is the correct handling of the
TDatabase object. The BDE namespace only allows for one uniquely named database within
the same session. Because we could have multiple TQueryServer objects within this CORBA
server that are sharing a single TSession object, we must set the HandleShared property of the
TDatabase to True. If we don’t do this, the next client that causes a new TQueryServer to be
created will not be able to connect.

From the Type Library Editor, you can view the IDL that represents our interface. Click the
drop-down arrow on the Export to IDL speedbutton in the Type Library Editor and select
Export to CORBA IDL (note that this is similar but yet different from Microsoft IDL, or
MIDL). You’ll see the IDL code in the Delphi editor, as shown in Listing 27.5.

CORBA Development with Delphi

CHAPTER 27
1443

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

LISTING 27.5 The CORBA IDL for IQueryServer

module SimpleCorbaServer
{
interface IQueryServer;

interface IQueryServer
{
boolean Login(in wstring Db, in wstring User, in wstring Password);
wstring Get_SQL();
wstring Set_SQL(in wstring Value);
void Next();
void Prev();
void First();
void Last();
long Get_FieldCount();
any Data();
boolean Get_EOF();
boolean Get_BOF();
boolean Execute();

};

interface QueryServerFactory
{
IQueryServer CreateInstance(in string InstanceName);

};

};

Notice that the COM data types we selected in the Type Library Editor have all been properly
converted to their IDL equivalents. This IDL can be imported into any other tools that support
CORBA. Development tools such as CBuilder and JBuilder will generate wrapper classes so
that clients written in these languages can easily use the functionality of our Delphi CORBA
object.

Component-Based Development

PART III
1444

NOTE

The IDL generated by Delphi, shown in Listing 27.5, is actually slightly incorrect. The
Set_SQL function should not be returning a value. Although Delphi should correctly
handle this, the problem stems from the fact that we added a property (SQL) in the
Type Library Editor. Properties are recognized by COM but are not a construct nor-
mally found in CORBA. Delphi has created the read and write methods for the

Running the CORBA Server
The construction of our query server is finally complete. Now it’s time to run the CORBA
server application and let the VisiBroker ORB know that our object is available to clients. In
order for clients to locate and connect to CORBA object implementations using the VisiBroker
ORB, the VisiBroker Smart Agent must be running somewhere on your local network. The
agent does not have to be running on the same computer as the client or the server. The Smart
Agent can be launched from the command line (on Windows NT the Smart Agent can be run
as a service) by typing

OSAGENT [-options]

from the command prompt, where valid options are as follows:

• -p. Sets a port for the agent to listen on

• -v. Prints debugging information to osagent.log

• -?. Prints usage information to osagent.log

• -C. Runs osagent in console mode (only on NT; default for 95/98)

If you are manually starting the Smart Agent on Windows NT, it is important to launch
osagent using the –c switch. This will allow an osagent that has been installed as an NT ser-
vice to run as a console application. An example of starting the Smart Agent on Windows NT
as a console application to listen for requests on port 14005 would look as follows:

osagent -c -p 14005.

Once the Smart Agent is running on the network, you can run the project we’ve just built and it
will register itself with the Smart Agent and become available for client connections. Note that
at this point you must actually run the server application; there is no built-in facility for
launching a server (as in DCOM) unless you use the OAD.

Building an Early-Bound CORBA Client
Now that we have an available CORBA server serving objects, we can proceed to the next step
and create a CORBA client with Delphi. We’re going to build a simple client that uses the
IQueryServer interface prepared earlier to read data from the server and populate a string grid
with the retrieved data. It’s important to realize that we’re reaping the benefits of a multitier

CORBA Development with Delphi

CHAPTER 27
1445

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

property, but has not exported the write method to IDL correctly. This problem can
be avoided by only declaring methods on your CORBA interfaces, or by manually edit-
ing the generated IDL to correct the declaration as follows:

void Set_SQL(in wstring Value);

architecture here. Our client only needs access to the VisiBroker ORB software and does not
need any knowledge whatsoever of Delphi datasets or the Borland Database Engine (BDE).

A CORBA client can communicate via two ways with a CORBA object: early binding and late
binding. Early binding means that the compiler can compile direct calls to the v-table of the
stub. This not only offers performance benefits, but the compiler can provide type checking to
ensure that you’re passing correct parameter data types. In a late-binding scenario, all remote
calls are made through the Any data type. Calls are slower because parameter information must
be obtained from the VisiBroker Interface Repository and the incorrect parameter types are not
detected until runtime. In order for Delphi to early-bind to a stub, the compiler must be sup-
plied with some Pascal representation on the stub interface. With objects built in other lan-
guages, this becomes more difficult because Delphi 5 currently does not ship with a utility to
convert IDL files into Pascal. In our case, we’ve built the server in Delphi and the wizards have
generated a Pascal version of the stub interface. Therefore, we can early-bind to our server by
simply including the stub and skeleton unit from the preceding example in the uses clause of
our client.

Creating the CORBA Client
We’ll first create a simple Delphi GUI application that will serve to view the results we obtain
from the IQueryServer interface, as shown in Figure 27.8.

Component-Based Development

PART III
1446

FIGURE 27.8
Our CORBA client GUI.

Having done this, we’ll add the stub and skeleton unit from the server example to the uses
clause of our form’s unit (SimpleCorbaServer_TLB.pas).

Connecting to the CORBA Server
All that remains is to connect to our server and begin to make method calls against the remote
interface. The used stub and skeleton unit defines a class factory for IQueryServer (named
TQueryServerCorbaFactory). This class provides a class function (so we don’t need to create
an instance of TQueryServerCorbaFactory) named CreateInstance that will create the appro-
priate stub object and return the IQueryServer interface to us. We can then proceed to make
early-bound calls to the remote IQueryServer interface. The only other nontrivial work in this
client is to call the Data method of IQueryServer and unbundle the OLEVariant array in order
to populate our string grid. This is done in the ExecuteClick event of our client. The complete
implementation of our CORBA client is shown in Listing 27.6.

LISTING 27.6 The Implementation of SimpleCorbaClient

unit ufrmCorbaClient;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, SimpleCorbaServer_TLB, corbaObj, Grids;

type
TForm1 = class(TForm)
GroupBox1: TGroupBox;
Label2: TLabel;
edtDatabase: TEdit;
Label3: TLabel;
edtUserName: TEdit;
Label4: TLabel;
edtPassword: TEdit;
Button5: TButton;
GroupBox2: TGroupBox;
memoSQL: TMemo;
GroupBox3: TGroupBox;
Button6: TButton;
grdCorbaData: TStringGrid;
procedure ConnectClick(Sender: TObject);
procedure ExecuteClick(Sender: TObject);

private
{ Private declarations }
FQueryServer: IQueryServer;

public
{ Public declarations }

end;

CORBA Development with Delphi

CHAPTER 27
1447

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

continues

LISTING 27.6 Continued

var
Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.ConnectClick(Sender: TObject);
begin
if not(assigned(FQueryServer)) then
FQueryServer := TQueryServerCorbaFactory.CreateInstance(‘SimpleServer’);

FQueryServer.Login(edtDatabase.Text,edtUserName.Text,edtPassword.Text);
end;

procedure TForm1.ExecuteClick(Sender: TObject);
var
i,j: integer;
CorbaData : OLEVariant;

begin
FQueryServer.SQL := memoSQL.Text;
FQueryServer.Execute;

grdCorbaData.ColCount := FQueryServer.FieldCount;
grdCorbaData.RowCount := 0;
j := 0;

while not(FQueryServer.EOF) do
begin
inc(j);
grdCorbaData.RowCount := j;
CorbaData := (FQueryServer.Data);
for i := 0 to FQueryServer.FieldCount - 1 do
begin
grdCorbaData.Cells[i + 1,j-1] := CorbaData[i];

end;
FQueryServer.Next;

end;
end;

end.

Provided that you’ve launched the Smart Agent and the server is running where the Smart
Agent can see it, you can now run this application and retrieve data from our CORBA server!

Component-Based Development

PART III
1448

Building a Late-Bound CORBA Client
We’re now going to modify our CORBA client so that it uses late binding to communicate with
the remote interface. In CORBA we use what’s called the Dynamic Invocation Interface (DII).
Late binding is not necessary here because both the server and client were developed with
Delphi. However, it’s a useful technique to learn if you wish to easily use CORBA servers
developed in other languages.

First, we can remove the stub and skeleton unit from the uses clause of our form’s unit.
Remember that if the server had been written in Java (for example), this would not be available
for you to use anyway.

Second, our client now has no knowledge of the interface IQueryServer. Therefore, we’ll
change the data type of the encapsulated FQueryServer field from type IQueryServer to
type TAny.

Third, we need to acquire a generic CORBA stub in a different manner than before. We can
call the global Pascal CorbaBind method (from the CorbaObj unit) and pass the repository ID
of the factory we’re requesting. After we’ve acquired the factory, we can call the
CreateInstance method of the factory that will return a generic interface. We can keep this
interface in an Any and call late-bound methods from the reference. The complete source for
the late-bound client is shown in Listing 27.7.

LISTING 27.7 The Late-Bound Query Server Client

unit ufrmCorbaClientLate;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, corbaObj, Grids;

type
TForm1 = class(TForm)
GroupBox1: TGroupBox;
Label2: TLabel;
edtDatabase: TEdit;
Label3: TLabel;
edtUserName: TEdit;
Label4: TLabel;
edtPassword: TEdit;
Button5: TButton;
GroupBox2: TGroupBox;
memoSQL: TMemo;

CORBA Development with Delphi

CHAPTER 27
1449

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

continues

LISTING 27.7 Continued

GroupBox3: TGroupBox;
Button6: TButton;
grdCorbaData: TStringGrid;
procedure ConnectClick(Sender: TObject);
procedure ExecuteClick(Sender: TObject);

private
{ Private declarations }
FQueryServer: TAny;

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.ConnectClick(Sender: TObject);
var
Factory: TAny;
User, Pass: WideString;

begin
Factory := CorbaBind(‘IDL:SimpleCorbaServer/QueryServerFactory:1.0’);
FQueryServer := Factory.CreateInstance(‘’);
User := WideString(edtUserName.Text);
Pass := WideString(edtPassword.Text);
FQueryServer.Login(WideString(edtDatabase.Text),User,Pass);

end;

procedure TForm1.ExecuteClick(Sender: TObject);
var
i,j: integer;
CorbaData : OLEVariant;

begin
FQueryServer.Set_SQL((memoSQL.Text));
FQueryServer.Execute;

grdCorbaData.ColCount := FQueryServer.Get_FieldCount;
grdCorbaData.RowCount := 0;
j := 0;

while not(FQueryServer.Get_EOF) do

Component-Based Development

PART III
1450

begin
inc(j);
grdCorbaData.RowCount := j;
CorbaData := FQueryServer.Data;
for i := 0 to FQueryServer.Get_FieldCount - 1 do
begin
grdCorbaData.Cells[i + 1,j-1] := CorbaData[i];

end;
FQueryServer.Next;

end;
end;

end.

You’ll notice a couple other changes in the source code for the late-bound client.

IDL does not support the notion of “properties” as in COM. When we use early binding, we
can get away with this because the compiler simply resolves to the address of the getter or set-
ter method for the property. When we use late binding, the DII does not know about a property
so we must call the getter or setter method explicitly. For example, instead of reading
FieldCount, we would call Get_FieldCount.

All DII parameters are passed as Any types that store the data type as well. Some values need
to be explicitly cast in order for the data type of the Any to be set correctly. For example, send-
ing a string value to the Login method’s Db parameter will cause the Any’s type to be set to
varString. This will result in a bad parameter error unless the string is cast to a WideString
so that the Any’s type is set to varOleStr (a WideString).

Finally, in addition to the Smart Agent, the VisiBroker Interface Repository must be running
somewhere on your network and the IQueryServer interface must be registered with the
Interface Repository. The Interface Repository is like an online database that allows the ORB
to look up interface information for use with DII. The VisiBroker Interface Repository can be
launched from the command line using the command

IREP [-console] IRname [file.idl]

The only required argument here is IRname. Because multiple Interface Repository instances
can be running, this one needs to be identified somehow. The –console argument specifies
whether the Interface Repository runs in console mode (the default is GUI mode), and the
file.idl argument can specify an initial IDL file to be loaded when the repository starts.
Additional IDL files can be loaded using the menu option (if running as GUI) or by running
the idl2ir utility.

CORBA Development with Delphi

CHAPTER 27
1451

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

Cross-Language CORBA
At the time of writing, an Inprise-supplied Idl2Pas compiler is still not present in Delphi;
however, a pre-release version of such a tool does currently exist. In this section, we will dis-
cuss the steps required to manually early-bind to a CORBA server written in another language
as well as take an introductory look at the forthcoming Idl2Pas compiler.

Hand-Marshaling a Java CORBA Server
The following example uses a very simple CORBA server constructed in Java (JBuilder) that’s
to be called from a Delphi application. The IDL for the CORBA server is shown in Listing 27.8.

LISTING 27.8 The IDL for a Simple Java Server

module CorbaServer {
interface SimpleText {
string setText(in string txt);

};
};

Provided the CORBA server has been registered with the Interface Repository, Delphi can eas-
ily access the server using DII (this code is shown in Listing 27.9 in the btnDelphiTextEarly
method).

In order to early-bind without an Idl2Pas compiler, we must hand-code our own stub class to
perform the marshaling code. Although this is not exactly rocket science, it can be quite
tedious and error-prone for a large number of methods. We must also register the stub class and
the interface for the stub class with the proper Delphi mechanisms. Listing 27.9 contains the
entire code.

LISTING 27.9 The Code for Accessing a Java Server from the Delphi Client (Early and Late
Bound)

unit uDelphiClient;

interface

uses
Windows, Messages, SysUtils, CorbInit, CorbaObj, orbpas, Classes,
Graphics, Controls, Forms, Dialogs, StdCtrls;

type

ISimpleText = interface
[‘{49F25940-3C3C-11D3-9703-0000861F6726}’]

Component-Based Development

PART III
1452

function SetText(const txt: String): String;
end;

TSimpleTextStub = class(TCorbaStub, ISimpleText)
public
function SetText(const txt: String): String;

end;

TForm1 = class(TForm)
edtDelphiText: TEdit;
btnDelphiTextLate: TButton;
btnDelphiTextEarlyClick: TButton;
edtResult: TEdit;
procedure btnDelphiTextLateClick(Sender: TObject);
procedure btnDelphiTextEarlyClickClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.btnDelphiTextLateClick(Sender: TObject);
var
JavaServer: TAny;

begin
JavaServer := ORB.Bind(‘IDL:CorbaServer/SimpleText:1.0’);
edtResult.Text := JavaServer.setText(edtDelphiText.text);

end;

{ TSimpleTextStub }

function TSimpleTextStub.SetText(const txt: String): String;
var
InBuf: IMarshalInBuffer;
OutBuf: IMarshalOutBuffer;

begin
FStub.CreateRequest(‘setText’,True,OutBuf);
OutBuf.PutText(pchar(txt));
FStub.Invoke(OutBuf, InBuf);

CORBA Development with Delphi

CHAPTER 27
1453

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

continues

LISTING 27.9 Continued

Result := UnmarshalText(InBuf);
end;

procedure TForm1.btnDelphiTextEarlyClickClick(Sender: TObject);
var
JavaServer: ISimpleText;

begin
JavaServer := CorbaBind(ISimpleText) as ISimpleText;
edtResult.Text := JavaServer.SetText(edtDelphiText.text);

end;

initialization
CorbaStubManager.RegisterStub(ISimpleText, TSimpleTextStub);
CorbaInterfaceIDManager.RegisterInterface(ISimpleText,
‘IDL:CorbaServer/SimpleText:1.0’);

end.

You will notice that the above code looks very similar to the code generated by the Type
Library Editor when we create a CORBA object within Delphi. We have added our own
descendant of TCorbaStub that will serve to provide client-side marshaling. Note that it is not
necessary to descend from TCorbaDispatchStub because the Type Library Editor is not
involved here. Next we implement our custom stub to marshal the parameters to and from the
CORBA marshaling buffer interfaces: IMarshalInBuffer and IMarshalOutBuffer. These
interfaces contain convenient methods for reading and writing various data types to the buffers.
Consult the Delphi 5 online help for more information on using these methods. Finally, we
need to register our custom stub and our interface with the Delphi CORBA framework. This
code is shown in the initialization part of our unit.

The Inprise Idl2Pas Compiler
As evident from the code in Listing 27.9, hand-marshaling a large CORBA object would
require a great deal of work. The solution to this problem lies in the availability of an Idl2Pas
compiler that can automatically generate the appropriate marshaling code for our stub. By the
time you read this chapter, such a tool should be available from Inprise. We will conclude this
section by taking a brief look at the current per-release version of Idl2Pas.

The Inprise Idl2Pas compiler is implemented in Java and therefore requires a Java VM to be
installed on your development machine. A suitable Java Runtime Environment (JRE) is pro-
vided when you install Delphi 5. The current pre-release Idl2Pas compiler is not yet integrated
into the Delphi IDE, so we must invoke the compiler from the command line using the sup-
plied Idl2Pas.bat batch file. The command necessary to invoke Idl2Pas on SimpleText.idl
and store the generated files in c:\idl would look as follows:

Component-Based Development

PART III
1454

IDL2PAS -root_dir c:\idl SimpleText.idl

The Idl2Pas compiler will generate two files in the specified directory, named after the mod-
ule name included in the idl file. For our example, CorbaServer_i.pas will contain the Pascal
declarations for the idl interfaces and is shown in Listing 27.10.

LISTING 27.10 Interface Definitions Generated from Idl2Pas

unit CorbaServer_i;

// This file was generated on 4 Nov 1999 17:58:12 GMT by version
// 01.09.00.A2.032c of the Inprise VisiBroker idl2pas CORBA IDL compiler.

//Delphi Pascal unit CorbaServer_i for the CorbaServer IDL module.
// The purpose of this file is to declare the interfaces and variables used in
// the associated client (CorbaServer_c)
// and/or server (CorbaServer_s) units.

//This unit contains the pascal interface code for IDL module CorbaServer.

(* IDL Source : “c:\icon99\MultiLanguage\MyProjects\CorbaServer\
SimpleText.idl”, line 1

** IDL Name : module
** Repository Id : IDL:CorbaServer:1.0
** IDL definition :
*)

interface

uses
CORBA;

type
//These forward references have been supplied to resolve dependencies between
//the following interfaces.
SimpleText = interface;
//These interface definitions were generated from the IDL from which this
//unit originated.

//Signature for the “CorbaServer_i.SimpleText” interface derived from the IDL
//interface “SimpleText”.

(* IDL Source : “c:\icon99\MultiLanguage\MyProjects\CorbaServer\
SimpleText.idl”, line 2

** IDL Name : interface

CORBA Development with Delphi

CHAPTER 27
1455

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

continues

LISTING 27.10 Continued

** Repository Id : IDL:CorbaServer/SimpleText:1.0
** IDL definition :
*)
SimpleText = interface
[‘{C8864064-C211-B145-29DB-CD5119D884CD}’]

//Interface methods representing IDL operations.

(* IDL Source : “c:\icon99\MultiLanguage\MyProjects\CorbaServer\
SimpleText.idl”, line 3

** IDL Name : operation
** Repository Id : IDL:CorbaServer/SimpleText/setText:1.0
** IDL definition :
*)
function setText (const txt : AnsiString): AnsiString;

end;

implementation

//The implementation code (if any) is located in the associated _C file.

initialization

end.

The second generated file, CorbaServer_c.pas, contains the implementation code for the stub
class as well as a helper object (TSimpleTextHelper) that facilitates the passing of non-simple
data type such as structs, unions, and user-defined data types. The generated implementation
code is shown in Listing 27.11.

LISTING 27.11 Stub and Helper Classes Generated from Idl2Pas

unit CorbaServer_c;

// c:\icon99\MultiLanguage\MyProjects\CorbaServer\SimpleText.idl.

//Delphi Pascal unit CorbaServer_i for the CorbaServer IDL module.
// The purpose of this file is to implement the client-side classes (stubs)
// required by the associated Interface unit (CorbaServer_i).
// This unit must be matched with it’s associated skeleton unit on the server
// side.

Component-Based Development

PART III
1456

//This unit contains the stub code for IDL module CorbaServer.

(* IDL Source : “c:\icon99\MultiLanguage\MyProjects\CorbaServer\
SimpleText.idl”, line 1

** IDL Name : module
** Repository Id : IDL:CorbaServer:1.0
** IDL definition :
*)

interface

uses
CORBA,
CorbaServer_i;

type
//These forward references have been supplied to resolve dependencies between
//the following interfaces.
TSimpleTextHelper = class;
TSimpleTextStub = class;
//These stub and helper interfaces were generated from the IDL from which
//this unit originated.

//Pascal helper class “CorbaServer_c.TSimpleTextHelper” for the Pascal
//interface “CorbaServer_i.SimpleText”.

(* IDL Source : “c:\icon99\MultiLanguage\MyProjects\CorbaServer\
SimpleText.idl”, line 2

** IDL Name : interface
** Repository Id : IDL:CorbaServer/SimpleText:1.0
** IDL definition :
*)

TSimpleTextHelper = class
class procedure Insert(const A: CORBA.Any;
const Value: CorbaServer_i.SimpleText);

class function Extract(const A: CORBA.Any): CorbaServer_i.SimpleText;
class function TypeCode: CORBA.TypeCode;
class function RepositoryId: string;
class function Read(const Input: CORBA.InputStream):
CorbaServer_i.SimpleText;

class procedure Write(const Output: CORBA.OutputStream;
const Value: CorbaServer_i.SimpleText);

class function Narrow(const Obj: CORBA.CORBAObject; IsA: Boolean = False):
CorbaServer_i.SimpleText;

class function Bind(const InstanceName: string = ‘’;

CORBA Development with Delphi

CHAPTER 27
1457

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

continues

LISTING 27.11 Continued

HostName : string = ‘’): CorbaServer_i.SimpleText; overload;
class function Bind(Options: BindOptions;
const InstanceName: string = ‘’; HostName: string = ‘’):
CorbaServer_i.SimpleText; overload;

end;

//Pascal stub class “CorbaServer_c.TSimpleTextStub supporting the Pascal
//interface “CorbaServer_i.SimpleText”.

(* IDL Source : “c:\icon99\MultiLanguage\MyProjects\CorbaServer\
SimpleText.idl”, line 2

** IDL Name : interface
** Repository Id : IDL:CorbaServer/SimpleText:1.0
** IDL definition :
*)

TSimpleTextStub = class(CORBA.TCORBAObject, CorbaServer_i.SimpleText)
public

(* IDL Source : “c:\icon99\MultiLanguage\MyProjects\CorbaServer\
SimpleText.idl”, line 3

** IDL Name : operation
** Repository Id : IDL:CorbaServer/SimpleText/setText:1.0
** IDL definition :
*)
function setText (const txt : AnsiString): AnsiString; virtual;

end;

implementation
//These stub and helper implementations were generated from the IDL from
//which this unit originated.

//Implementation of the Pascal helper class “CorbaServer_c.TSimpleTextHelper”
//supporting the Pascal interface “CorbaServer_i.SimpleText.

(* IDL Source : “c:\icon99\MultiLanguage\MyProjects\CorbaServer\
SimpleText.idl”, line 2

** IDL Name : interface
** Repository Id : IDL:CorbaServer/SimpleText:1.0
** IDL definition :
*)

class procedure TSimpleTextHelper.Insert(const A: CORBA.Any;
const Value: CorbaServer_i.SimpleText);

Component-Based Development

PART III
1458

begin
//TAnyHelper.InsertObject(Value);

end;

class function TSimpleTextHelper.Extract(const A: CORBA.Any):
CorbaServer_i.SimpleText;

begin
//TAnyHelper.ExtractObject as CorbaServer_i.SimpleText;

end;

class function TSimpleTextHelper.TypeCode: CORBA.TypeCode;
begin
Result := ORB.CreateInterfaceTC(RepositoryId, ‘CorbaServer_i.SimpleText’);

end;

class function TSimpleTextHelper.RepositoryId: string;
begin
Result := ‘IDL:CorbaServer/SimpleText:1.0’;

end;

class function TSimpleTextHelper.Read(const Input: CORBA.InputStream):
CorbaServer_i.SimpleText;

var
Obj: CORBA.CORBAObject;

begin
Input.ReadObject(Obj);
Result := Narrow(Obj, True)

end;

class procedure TSimpleTextHelper.Write(const Output: CORBA.OutputStream;
const Value: CorbaServer_i.SimpleText);

begin
Output.WriteObject(Value as CORBA.CORBAObject);

end;

class function TSimpleTextHelper.Narrow(const Obj: CORBA.CORBAObject;
IsA: Boolean): CorbaServer_i.SimpleText;

begin
Result := nil;
if (Obj = nil) or (Obj.QueryInterface(CorbaServer_i.SimpleText, Result) = 0)
then Exit;

if IsA and Obj._IsA(RepositoryId) then
Result := TSimpleTextStub.Create(Obj);

end;

CORBA Development with Delphi

CHAPTER 27
1459

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

continues

LISTING 27.11 Continued

class function TSimpleTextHelper.Bind(const InstanceName: string = ‘’;
HostName: string = ‘’): CorbaServer_i.SimpleText;

begin
Result := Narrow(ORB.bind(RepositoryId, InstanceName, HostName), True);

end;

class function TSimpleTextHelper.Bind(
Options: BindOPtions; const InstanceName: string = ‘’;
HostName: string = ‘’): CorbaServer_i.SimpleText;

begin
Result := Narrow(ORB.bind(RepositoryId, Options, InstanceName, HostName),
True);

end;
//Implementation of the Pascal stub class “CorbaServer_c.TSimpleTextStub”
//supporting the Pascal “CorbaServer_i.SimpleText” interface.

//Implementation of Interface methods representing IDL operations.

(* IDL Source : “c:\icon99\MultiLanguage\MyProjects\CorbaServer\
SimpleText.idl”, line 3

** IDL Name : operation
** Repository Id : IDL:CorbaServer/SimpleText/setText:1.0
** IDL definition :
*)
function TSimpleTextStub.setText (const txt : AnsiString): AnsiString;
var
Output: CORBA.OutputStream;
Input : CORBA.InputStream;

begin
inherited _CreateRequest(‘setText’,True, Output);
Output.WriteString(txt);
inherited _Invoke(Output, Input);
Input.ReadString(Result);

end;

initialization

//These stub and helper initialization calls were generated from the IDL from
//which this unit originated.

//Initialization of the Pascal helper class “CorbaServer_c.TSimpleTextStub”.

(* IDL Source : “c:\icon99\MultiLanguage\MyProjects\CorbaServer\
SimpleText.idl”, line 2

Component-Based Development

PART III
1460

** IDL Name : interface
** Repository Id : IDL:CorbaServer/SimpleText:1.0
** IDL definition :
*)
CORBA.InterfaceIDManager.RegisterInterface(CorbaServer_i.SimpleText,
CorbaServer_c.TSimpleTextHelper.RepositoryId);

//Initialization of the CorbaServer_c.TSimpleTextStub interface stub for the
//CorbaServer_i.SimpleTextInterface.

(* IDL Source : “c:\icon99\MultiLanguage\MyProjects\CorbaServer\
SimpleText.idl”, line 2

** IDL Name : interface
** Repository Id : IDL:CorbaServer/SimpleText:1.0
** IDL definition :
*)
CORBA.StubManager.RegisterStub(CorbaServer_i.SimpleText,
CorbaServer_c.TSimpleTextStub);

end.

You may notice that the marshaling code contained within the setText method of the gener-
ated code differs slightly from the code we wrote to hand-marshal this same interface. This is
because the Idl2Pas tool uses a different DLL to provide ORB/Pascal access (OrbPas33.dll)
and provides two new Pascal units that supplement the Delphi CORBA framework
(Corba.pas, OrbPas30.pas). These new additions will peacefully coexist and not replace the
units and libraries currently shipping with Delphi 5.

The release of the Inprise Idl2Pas compiler will help you to simplify some of the more diffi-
cult CORBA tasks such as calling servers written in other languages, marshaling non-simple
data types, and handling custom user exceptions.

Deploying the VisiBroker ORB
The VisiBroker ORB requires a runtime deployment license. Although Delphi 5 Enterprise
includes the VisiBroker services in the development environment, you should check with
Inprise before actually deploying your solutions.

ORB services will need to be deployed on server machines as well as client computers. As
mentioned previously, many of the other VisiBroker services (such as osagent, irep, and oad)
can be executing anywhere in your local network; therefore, deployment of these services may
not be necessary on all machines that are using ORB software. As mentioned, the primary C++
ORB used with Delphi is the dynamic link library orb_br.dll. A common problem reported

CORBA Development with Delphi

CHAPTER 27
1461

27

C
O

R
B

A
D

EV
ELO

PM
EN

T
W

ITH
D

ELPH
I

with Windows VisiBroker installations is that the DOS path is not correctly defined. This must
be done in order for the system to locate the ORB DLLs. Also, remember that Delphi uses a
special “thunking” layer (orbpas50.dll) in order to map IDL interfaces to Delphi interfaces
and provide other access to the C++ ORB. Orbpas50.dll must also be deployed for all Delphi
5 CORBA installations.

Summary
In this chapter we’ve examined the basics of CORBA development with Delphi 5. We’ve cre-
ated both CORBA clients and servers as well as experimented with both early and late binding.
We’ve also looked at what’s required in order to early-bind to a CORBA server written in
another language. Finally, we have taken a sneak peek at the Inprise Idl2Pas compiler and
demonstrated how the release of this tool will help simplify CORBA development with Delphi.

Component-Based Development

PART III
1462

