
CHAPTER

26
Using Delphi’s Open Tools API

IN THIS CHAPTER
• Open Tools Interfaces 1372

• Using the Open Tools API 1374

• Form Wizards 1402

• Summary 1410

Have you ever thought to yourself, “Delphi is great, but why doesn’t the IDE perform this little
task that I’d like it to?” If you have, then have no fear. The Open Tools API is for you. The
Delphi Open Tools API provides you with the capability of creating your own tools that work
closely with Delphi’s IDE. In this chapter, you will learn about the different interfaces that
make up the Open Tools API, how to use the interfaces, and also how to leverage your newly
found expertise to write a fully featured wizard.

Open Tools Interfaces
The Open Tools API is composed of eight units, each containing one or more objects that pro-
vide interfaces to a variety of facilities in the IDE. Using these interfaces enables you to write
your own Delphi wizards, version control managers, and component and property editors. You
will also gain a window into Delphi’s IDE and editor through any of these add-ons.

With the exception of the interfaces designed for component and property editors, the Open
Tools interface objects provide an all-virtual interface to the outside world—meaning that
using these interface objects involves working only with the objects’ virtual functions. You can-
not access the objects’ data fields, properties, or static functions. Because of this, the Open
Tools interface objects follow the COM standard (see Chapter 23, “COM and ActiveX”). With
a little work on your part, these interfaces can be used by any programming language that sup-
ports COM. In this chapter, you will work only with Delphi, but you should know that the
capacity for using other languages is available (in case you just can’t get enough of C++).

Component-Based Development

PART III
1372

NOTE

The complete Open Tools API is available only with the Delphi Professional and
Client/Server Suite. Delphi Standard has the capability to use add-ons created with
the Open Tools API, but it cannot create add-ons because it contains only the units
for creating component and property editors. You can find the source code for the
Open Tools interfaces in the \Delphi 5\Source\ToolsAPI subdirectory.

Table 26.1 shows the units that make up the Open Tools API and the interfaces they provide.
The term interface is used loosely here because it does not refer to Delphi’s native interface
types. Because the Open Tools API predates Delphi’s native interface support, the Open Tools
API uses regular Delphi classes with virtual abstract methods as substitutes for true interfaces.
The use of true interfaces has been phased into the Open Tools API over the past few versions
of Delphi, and the current incarnation of the Open Tools API is primarily interface-based.

TABLE 26.1 Units in the Open Tools API

Unit Name Purpose

ToolsAPI Contains the latest interface-based Open Tools API elements. The contents of
this unit essentially supersede the pre-Delphi 5 Open Tools API units that use
abstract classes to manipulate menus, notifications, the file system, the editor,
and wizard add-ins. It also contains new interfaces for manipulating the debug-
ger, IDE key mappings, projects, project groups, packages, and the To Do list.

VirtIntf* Defines the base TInterface class from which other interfaces are derived.
This unit also defines TIStream class, which is a wrapper around a VCL
TStream.

IStreams* Defines TIMemoryStream, TIFileStream, and TIVirtualStream classes,
which are descendants of TIStream. These interfaces can be used to hook into
the IDE’s own streaming mechanism.

ToolIntf* Defines TIMenuItemIntf and TIMainMenuIntf classes, which enable the
Open Tools developer to create and modify menus in the Delphi IDE. This unit
also defines the TIAddInNotifier class, which allows add-in tools to be noti-
fied of certain events within the IDE. Most importantly, this unit defines the
TIToolServices class, which provides an interface into various portions of
the Delphi IDE (such as the editor, component library, Code Editor, Form
Designer, and file system).

VCSIntf Defines the TIVCSClient class, which enables the Delphi IDE to communi-
cate with version-control software.

FileIntf* Defines the TIVirtualFileSystem class, which the Delphi IDE uses for fil-
ing. Wizards, version-control managers, and property and component editors
can use this interface to hook into Delphi’s own file system to perform special
file operations.

EditIntf* Defines classes necessary for manipulating the Delphi Code Editor and Form
Designer. The TIEditReader class provides read access to an editor buffer.
TIEditWriter provides write access to the same. TIEditView is defined as
an individual view of an edit buffer. TIEditInterface is the base interface to
the editor, which can be used to obtain the previously mentioned editor inter-
faces. The TIComponentInterface class is an interface to an individual
component sitting on a form at design time. TIFormInterface is the base
interface to a design-time form or data module. TIResourceEntry is an inter-
face for the raw data in a project’s resource (*.res) file. TIResourceFile is
a higher-level interface to the project resource file. TIModuleNotifier is a
class that provides notifications when various events occur for a particular
module. Finally, TIModuleInterface is the interface for any file or module
open in the IDE.

Using Delphi’s Open Tools API

CHAPTER 26
1373

26
U

SIN
G

D
ELPH

I’S
O

PEN
T

O
O

LS
A

PI

continues

TABLE 26.1 Continued

Unit Name Purpose

ExptIntf* Defines the abstract TIExpert class from which all experts descend.

DsgnIntf Defines the IFormDesigner interface and the TPropertyEditor and
TComponentEditor classes, which are used to create custom property and
component editors.

*Functionality replaced by the ToolsAPI unit. Exists only for backward compatibility with versions prior
to Delphi 5.

Component-Based Development

PART III
1374

NOTE

You might wonder where all this wizard stuff is documented in Delphi. We assure
you that it is documented, but it isn’t easy to find. Each of these units contains com-
plete documentation for the interface, classes, methods, and procedures declared
within. We will not regurgitate the same information that these units contain, so we
urge you to take a look at the units for complete documentation.

Using the Open Tools API
Now that you know what’s what, it is time to get your hands dirty and look at some actual
code. This section focuses primarily on writing wizards by using the Open Tools API. We
will not discuss the building of version-control systems because the interest for such a topic is
arguably limited. For examples of component and property editors, you should look at Chapter
21, “Writing Delphi Custom Components,” and Chapter 22, “Advanced Component
Techniques.”

A Dumb Wizard
To start out, you will create a very simple wizard appropriately dubbed the Dumb wizard. The
minimum requirement in creating a wizard is to create a class that implements the IOTAWizard
interface. For reference, IOTAWizard is defined in the ToolsAPI unit as follows:

type
IOTAWizard = interface(IOTANotifier)
[‘{B75C0CE0-EEA6-11D1-9504-00608CCBF153}’]
{ Expert UI strings }
function GetIDString: string;
function GetName: string;
function GetState: TWizardState;
{ Launch the AddIn }

procedure Execute;
end;

This interface mainly consists of some GetXXX() functions that are designed to be overridden
by the descendant classes in order to provide specific information for each wizard. The
Execute() method is the business end of IOTAWizard. Execute() is called by the IDE when
the user selects your wizard from the main menu or the New Items menu, and it is in this
method that the wizard should be created and invoked.

If you have a keen eye, you may have noticed that IOTAWizard descends from another inter-
face, called IOTANotifier. IOTANotifier is an interface defined in the ToolsAPI unit that con-
tains methods that can be called by the IDE to notify a wizard of various occurrences. This
interface is defined as the following:

type
IOTANotifier = interface(IUnknown)
[‘{F17A7BCF-E07D-11D1-AB0B-00C04FB16FB3}’]
{ This procedure is called immediately after the item is successfully

➥saved.
This is not called for IOTAWizards }

procedure AfterSave;
{ This function is called immediately before the item is saved. This is not
called for IOTAWizard }

procedure BeforeSave;
{ The associated item is being destroyed so all references should be

➥dropped.
Exceptions are ignored. }

procedure Destroyed;
{ This associated item was modified in some way. This is not called for
IOTAWizards }

procedure Modified;
end;

As the comments in the source code indicate, most of these methods are not called for simple
IOTAWizard wizards. Because of this, ToolsAPI provides a class called TNotifierObject that
provides empty implementations for IOTANotifier methods. You may choose to descend your
wizards from this class to take advantage of the convenience of having the IOTANotifier
methods implemented for you.

Wizards are not much use without a means to invoke them, and one of the simplest ways to do
that is through a menu pick. If you want to place your wizard on Delphi’s main menu, you just
need to implement the IOTAMenuWizard interface, which is defined in all its complexity in
ToolsAPI as the following:

type
IOTAMenuWizard = interface(IOTAWizard)
[‘{B75C0CE2-EEA6-11D1-9504-00608CCBF153}’]

Using Delphi’s Open Tools API

CHAPTER 26
1375

26
U

SIN
G

D
ELPH

I’S
O

PEN
T

O
O

LS
A

PI

function GetMenuText: string;
end;

As you can see, this interface descends from IOTAWizard and adds only one additional method
to return the menu text string.

To jump right in and pull together your knowledge thus far, Listing 26.1 shows the
DumbWiz.pas unit, which contains the source code for TDumbWizard.

LISTING 26.1 DumbWiz.pas, a Simple Wizard Implementation

unit DumbWiz;

interface

uses
ShareMem, SysUtils, Windows, ToolsAPI;

type
TDumbWizard = class(TNotifierObject, IOTAWizard, IOTAMenuWizard)
// IOTAWizard methods
function GetIDString: string;
function GetName: string;
function GetState: TWizardState;
procedure Execute;
// IOTAMenuWizard method
function GetMenuText: string;

end;

procedure Register;

implementation

uses Dialogs;

function TDumbWizard.GetName: string;
begin
Result := ‘Dumb Wizard’;

end;

function TDumbWizard.GetState: TWizardState;
begin
Result := [wsEnabled];

end;

function TDumbWizard.GetIDString: String;
begin

Component-Based Development

PART III
1376

Result := ‘DDG.DumbWizard’;
end;

procedure TDumbWizard.Execute;
begin
MessageDlg(‘This is a dumb wizard.’, mtInformation, [mbOk], 0);

end;

function TDumbWizard.GetMenuText: string;
begin
Result := ‘Dumb Wizard’;

end;

procedure Register;
begin
RegisterPackageWizard(TDumbWizard.Create);

end;

end.

The IOTAWizard.GetName() function should return a unique name for this wizard.

IOTAWizard.GetState() returns the state of a wsStandard wizard on the main menu. The
return value of this function is a set that can contain wsEnabled and/or wsChecked, depending
on how you want the menu item to appear in the IDE. This function is called every time the
wizard is shown in order to determine how to paint the menu.

IOTAWizard.GetIDString() should return a globally unique string identifier for the wizard.
Convention dictates that the return value of this string should be in the following format:

CompanyName.WizardName

IOTAWizard.Execute() invokes the wizard. As Listing 26.1 shows, the Execute() method for
TDumbWizard does not do much. Later in this chapter, however, you will see some wizards that
actually do perform tasks.

IOTAMenuWizard.GetMenuText() returns the text that should appear on the main menu. This
function is called every time the user pulls down the Help menu, so it is possible to dynami-
cally change the value of the menu text as your wizard runs.

Take a look at the call to RegisterPackageWizard() inside the Register() procedure. You
might notice that this is very similar to the syntax used for registering components, component
editors, and property editors for inclusion in the component library, as described in Chapter 21
and Chapter 22. The reason for this similarity is that this type of wizard is stored in a package
that is part of the component library, along with components and the like. You can also store
wizards in a standalone DLL, as you will see in the next example.

Using Delphi’s Open Tools API

CHAPTER 26
1377

26
U

SIN
G

D
ELPH

I’S
O

PEN
T

O
O

LS
A

PI

This wizard is installed just like a component: Select the components, Install Component
option from the main menu, and add the unit to a new or existing package. Once this is
installed, the menu choice to invoke the wizard appears under the Help menu, as shown in
Figure 26.1. You can see the outstanding output of this wizard in Figure 26.2.

Component-Based Development

PART III
1378

FIGURE 26.1
The Dumb wizard on the main menu.

FIGURE 26.2
The Dumb wizard in action.

The Wizard Wizard
A little more work is involved in creating a DLL-based wizard (as opposed to a component
library–based wizard). In addition to demonstrating the creation of a DLL-based wizard, the
Wizard wizard example has a couple of ulterior motives, including illustrating how DLL wiz-
ards relate to the Registry and how to maintain one source code base that targets either an EXE
or a DLL wizard.

For Delphi to recognize a DLL wizard, it must have an entry in the system Registry under the
following key:

HKEY_CURRENT_USER\Software\Borland\Delphi\5.0\Experts

Figure 26.3 shows sample entries using the Windows RegEdit application.

Using Delphi’s Open Tools API

CHAPTER 26
1379

26
U

SIN
G

D
ELPH

I’S
O

PEN
T

O
O

LS
A

PI
NOTE

DLLs are discussed in greater detail in Chapter 9, “Dynamic Link Libraries.”

TIP

There is no hard-and-fast rule that dictates whether a wizard should reside in a pack-
age in the component library or a DLL. From a user’s perspective, the primary differ-
ence between the two is that component library wizards require a simple package
installation to be rebuilt, whereas DLL wizards require a Registry entry, and Delphi
must be exited and restarted for changes to take effect. However, as a developer,
package wizards are a bit easier to deal with for a number of reasons. Namely,
exceptions propagate between your wizard and the IDE automatically, you do not
have to use sharemem.dll for memory management, you do not have to do anything
special to initialize the DLL’s application variable, and pop-up hints and mouse
enter/exit messages will work properly.

With this in mind, you should consider using a DLL wizard when you want the wizard
to install with a minimum amount of work on the part of the end user.

FIGURE 26.3
Delphi wizard entries viewed with RegEdit.

Wizard Interface
The purpose of the Wizard wizard is to provide an interface to add, modify, and delete DLL
wizard entries from the Registry without having to use the cumbersome RegEdit application.
First, let’s examine InitWiz.pas, the unit containing the wizard class (see Listing 26.2).

LISTING 26.2 InitWiz.pas, the Unit Containing the DLL Wizard Class

unit InitWiz;

interface

uses Windows, ToolsAPI;

type
TWizardWizard = class(TNotifierObject, IOTAWizard, IOTAMenuWizard)
// IOTAWizard methods
function GetIDString: string;
function GetName: string;
function GetState: TWizardState;
procedure Execute;
// IOTAMenuWizard method
function GetMenuText: string;

end;

function InitWizard(const BorlandIDEServices: IBorlandIDEServices;
RegisterProc: TWizardRegisterProc;
var Terminate: TWizardTerminateProc): Boolean stdcall;

var
{ Registry key where Delphi 5 wizards are kept. EXE version uses default, }
{ whereas DLL version gets key from ToolServices.GetBaseRegistryKey }
SDelphiKey: string = ‘\Software\Borland\Delphi\5.0\Experts’;

implementation

uses SysUtils, Forms, Controls, Main;

function TWizardWizard.GetName: string;
{ Return name of expert }
begin
Result := ‘WizardWizard’;

end;

function TWizardWizard.GetState: TWizardState;
{ This expert is always enabled }

Component-Based Development

PART III
1380

begin
Result := [wsEnabled];

end;

function TWizardWizard.GetIDString: String;
{ “Vendor.AppName” ID string for expert }
begin
Result := ‘DDG.WizardWizard’;

end;

function TWizardWizard.GetMenuText: string;
{ Menu text for expert }
begin
Result := ‘Wizard Wizard’;

end;

procedure TWizardWizard.Execute;
{ Called when expert is chosen from the main menu. }
{ This procedure creates, shows, and frees the main form. }
begin
MainForm := TMainForm.Create(Application);
try
MainForm.ShowModal;

finally
MainForm.Free;

end;
end;

function InitWizard(const BorlandIDEServices: IBorlandIDEServices;
RegisterProc: TWizardRegisterProc;
var Terminate: TWizardTerminateProc): Boolean stdcall;

var
Svcs: IOTAServices;

begin
Result := BorlandIDEServices <> nil;
if Result then
begin
Svcs := BorlandIDEServices as IOTAServices;
ToolsAPI.BorlandIDEServices := BorlandIDEServices;
Application.Handle := Svcs.GetParentHandle;
SDelphiKey := Svcs.GetBaseRegistryKey + ‘\Experts’;
RegisterProc(TWizardWizard.Create);

end;
end;

end.

Using Delphi’s Open Tools API

CHAPTER 26
1381

26
U

SIN
G

D
ELPH

I’S
O

PEN
T

O
O

LS
A

PI

You should notice a couple of differences between this unit and the one used to create the Dumb
wizard. Most important, an initialization function of type TWizardInitProc is required as an
entry point for the IDE into the wizard DLL. In this case, that function is called InitWizard().
This function performs a number of wizard initialization tasks, including the following:

• Obtaining a IOTAServices interface from the BorlandIDEServices parameter.

• Saving the BorlandIDEServices interface pointer for use at a later time.

• Setting the handle of the DLL’s Application variable to the value returned by
IOTAServices.GetParentHandle(). GetParentHandle() returns the window handle of
the window that must serve as the parent to all top-level windows created by the wizard.

• Passing the newly created instance of the wizard to the RegisterProc() procedure in
order to register the wizard with the IDE. RegisterProc() will be called once for each
wizard instance the DLL registers with the IDE.

• Optionally, InitWizard() can also assign a procedure of type TWizardTerminateProc to
the Terminate parameter to serve as an exit procedure for the wizard. This procedure
will be called immediately before the wizard is unloaded by the IDE, and in it you may
perform any necessary cleanup. This parameter is initially nil, so if you do not need to
perform any special cleanup, leave its value as nil.

Component-Based Development

PART III
1382

CAUTION

The wizard initialization method must use the stdcall calling convention.

CAUTION

Any DLL wizards that call Open Tools API functions that have string parameters must
have the ShareMem unit in their uses clause; otherwise, Delphi will raise an access vio-
lation when the wizard instance is freed.

The Wizard User Interface
The Execute() method is a bit more complex this time around. It creates an instance of the
wizard’s MainForm, shows it modally, and then frees the instance. Figure 26.4 shows a picture
of this form, and Listing 26.3 shows the Main.pas unit in which MainForm exists.

FIGURE 26.4
MainForm in the Wizard wizard.

LISTING 26.3 Main.pas, the Main Unit of the Wizard Wizard

unit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls, Registry, AddModU, ComCtrls, Menus;

type
TMainForm = class(TForm)
TopPanel: TPanel;
Label1: TLabel;
BottomPanel: TPanel;
WizList: TListView;
PopupMenu1: TPopupMenu;
Add1: TMenuItem;
Remove1: TMenuItem;
Modify1: TMenuItem;
AddBtn: TButton;
RemoveBtn: TButton;
ModifyBtn: TButton;
CloseBtn: TButton;
procedure RemoveBtnClick(Sender: TObject);
procedure CloseBtnClick(Sender: TObject);
procedure AddBtnClick(Sender: TObject);
procedure ModifyBtnClick(Sender: TObject);

Using Delphi’s Open Tools API

CHAPTER 26
1383

26
U

SIN
G

D
ELPH

I’S
O

PEN
T

O
O

LS
A

PI

continues

LISTING 26.3 Continued

procedure FormCreate(Sender: TObject);
private
procedure DoAddMod(Action: TAddModAction);
procedure RefreshReg;

end;

var
MainForm: TMainForm;

implementation

uses InitWiz;

{$R *.DFM}

var
DelReg: TRegistry;

procedure TMainForm.RemoveBtnClick(Sender: TObject);
{ Handler for Remove button click. Removes selected item from registry. }
var
Item: TListItem;

begin
Item := WizList.Selected;
if Item <> nil then
begin
if MessageDlg(Format(‘Remove item “%s”’, [Item.Caption]), mtConfirmation,
[mbYes, mbNo], 0) = mrYes then
DelReg.DeleteValue(Item.Caption);

RefreshReg;
end;

end;

procedure TMainForm.CloseBtnClick(Sender: TObject);
{ Handler for Close button click. Closes app. }
begin
Close;

end;

procedure TMainForm.DoAddMod(Action: TAddModAction);
{ Adds a new expert item to registry or modifies existing one. }
var
OrigName, ExpName, ExpPath: String;
Item: TListItem;

Component-Based Development

PART III
1384

begin
if Action = amaModify then // if modify...
begin
Item := WizList.Selected;
if Item = nil then Exit; // make sure item is selected
ExpName := Item.Caption; // init variables
if Item.SubItems.Count > 0 then
ExpPath := Item.SubItems[0];

OrigName := ExpName; // save original name
end;
{ Invoke dialog which allows user to add or modify entry }
if AddModWiz(Action, ExpName, ExpPath) then
begin
{ if action is Modify, and the name was changed, handle it }
if (Action = amaModify) and (OrigName <> ExpName) then
DelReg.RenameValue(OrigName, ExpName);

DelReg.WriteString(ExpName, ExpPath); // write new value
end;
RefreshReg; // update listbox

end;

procedure TMainForm.AddBtnClick(Sender: TObject);
{ Handler for Add button click }
begin
DoAddMod(amaAdd);

end;

procedure TMainForm.ModifyBtnClick(Sender: TObject);
{ Handler for Modify button click }
begin
DoAddMod(amaModify);

end;

procedure TMainForm.RefreshReg;
{ Refreshes listbox with contents of registry }
var
i: integer;
TempList: TStringList;
Item: TListItem;

begin
WizList.Items.Clear;
TempList := TStringList.Create;
try
{ Get expert names from registry }
DelReg.GetValueNames(TempList);
{ Get path strings for each expert name }

Using Delphi’s Open Tools API

CHAPTER 26
1385

26
U

SIN
G

D
ELPH

I’S
O

PEN
T

O
O

LS
A

PI

continues

LISTING 26.3 Continued

for i := 0 to TempList.Count - 1 do
begin
Item := WizList.Items.Add;
Item.Caption := TempList[i];
Item.SubItems.Add(DelReg.ReadString(TempList[i]));

end;
finally
TempList.Free;

end;
end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
RefreshReg;

end;

initialization
DelReg := TRegistry.Create; // create registry object
DelReg.RootKey := HKEY_CURRENT_USER; // set root key
DelReg.OpenKey(SDelphiKey, True); // open/create Delphi expert key

finalization
Delreg.Free; // free registry object

end.

This is the unit responsible for providing the user interface for adding, removing, and modify-
ing DLL wizard entries in the Registry. In the initialization section of this unit, a
TRegistry object called DelReg is created. The RootKey property of DelReg is set to
HKEY_CURRENT_USER, and it opens the \Software\Borland\Delphi\5.0\Experts key—the key
used to keep track of DLL wizards—using its OpenKey() method.

When the wizard first comes up, a TListView component called ExptList is filled with the
items and values from the previously mentioned Registry key. This is accomplished by first
calling DelReg.GetValueNames() to retrieve the names of the items into a TStringList. A
TListItem component is added to ExptList for each element in the string list, and the
DelReg.ReadString() method is used to read the value for each item, which is placed in the
SubItems list of TListItem.

The Registry work is done in the RemoveBtnClick() and DoAddMod() methods.
RemoveBtnClick() is in charge of removing the currently selected wizard item from the
Registry. It first checks to ensure that an item is highlighted; then it throws up a confirmation
dialog. Finally, it does the deed by calling the DelReg.DeleteValue() method and passing
CurrentItem as the parameter.

Component-Based Development

PART III
1386

DoAddMod() accepts a parameter of type TAddModAction. This type is defined as follows:

type

TAddModAction = (amaAdd, amaModify);

As the values of the type imply, this variable indicates whether a new item is to be added or an
existing item modified. This function first checks to see that there is a currently selected item
or, if there isn’t, that the Action parameter holds the value amaAdd. After that, if Action is
amaModify, the existing wizard item and value are copied to the local variables ExpName and
ExpPath. These values are then passed to a function called AddModExpert(), which is defined
in the AddModU unit shown in Listing 26.4. This function invokes a dialog in which the user can
enter new or modified name or path information for a wizard (see Figure 26.5). It returns True
when the user exits the dialog with the OK button. At that point, an existing item is modified
using DelReg.RenameValue(), and a new or modified value is written with
DelReg.WriteString().

Using Delphi’s Open Tools API

CHAPTER 26
1387

26
U

SIN
G

D
ELPH

I’S
O

PEN
T

O
O

LS
A

PI

FIGURE 26.5
AddModForm in the Wizard wizard.

LISTING 26.4 AddModU.pas, the Unit that Adds and Modifies Wizard Entries in the Registry

unit AddModU;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls;

type
TAddModAction = (amaAdd, amaModify);

TAddModForm = class(TForm)
OkBtn: TButton;
CancelBtn: TButton;

continues

LISTING 26.4 Continued

OpenDialog: TOpenDialog;
Panel1: TPanel;
Label1: TLabel;
Label2: TLabel;
PathEd: TEdit;
NameEd: TEdit;
BrowseBtn: TButton;
procedure BrowseBtnClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

function AddModWiz(AAction: TAddModAction; var WizName, WizPath: String):
➥Boolean;

implementation

{$R *.DFM}

function AddModWiz(AAction: TAddModAction; var WizName, WizPath: String):
Boolean;
{ called to invoke dialog to add and modify registry entries }
const
CaptionArray: array[TAddModAction] of string[31] =
(‘Add new expert’, ‘Modify expert’);

begin
with TAddModForm.Create(Application) do // create dialog
begin
Caption := CaptionArray[AAction]; // set caption
if AAction = amaModify then // if modify...
begin
NameEd.Text := WizName; // init name and
PathEd.Text := WizPath; // path

end;
Result := ShowModal = mrOk; // show dialog
if Result then // if Ok...
begin
WizName := NameEd.Text; // set name and
WizPath := PathEd.Text; // path

end;
Free;

end;
end;

Component-Based Development

PART III
1388

procedure TAddModForm.BrowseBtnClick(Sender: TObject);
begin
if OpenDialog.Execute then
PathEd.Text := OpenDialog.FileName;

end;

end.

Dual Targets: EXE and DLL
As mentioned earlier, it is possible to maintain one set of source code modules that target both a
DLL wizard and a standalone executable. This is possible through the use of compiler directives
in the project file. Listing 26.5 shows WizWiz.dpr, the project file source code for this project.

LISTING 26.5 WizWiz.dpr, Main Project File for the WizWiz Project

{$ifdef BUILD_EXE}
program WizWiz; // Build as EXE
{$else}
library WizWiz; // Build as DLL
{$endif}

uses
{$ifndef BUILD_EXE}
ShareMem, // ShareMem required for DLL
InitWiz in ‘InitWiz.pas’, // Wizard stuff

{$endif}
ToolsAPI,
Forms,
Main in ‘Main.pas’ {MainForm},
AddModU in ‘AddModU.pas’ {AddModForm};

{$ifdef BUILD_EXE}
{$R *.RES} // required for EXE
{$else}
exports // required for DLL
InitWizard name WizardEntryPoint; // required entry point

{$endif}

begin
{$ifdef BUILD_EXE} // required for EXE...
Application.Initialize;
Application.CreateForm(TMainForm, MainForm);
Application.Run;

{$endif}
end.

Using Delphi’s Open Tools API

CHAPTER 26
1389

26
U

SIN
G

D
ELPH

I’S
O

PEN
T

O
O

LS
A

PI

As the code shows, this project will build an executable if the BUILD_EXE conditional is
defined. Otherwise, it will build a DLL-based wizard. You can define a conditional under
Conditional Defines in the Directories/Conditionals page of the Project, Options dialog, which
is shown in Figure 26.6.

Component-Based Development

PART III
1390

FIGURE 26.6
The Project Options dialog.

One final note concerning this project: Notice that the InitWizard() function from the
InitWiz unit is being exported in the exports clause of the project file. You must export this
function with the name WizardEntryPoint, which is defined in the ToolsAPI unit.

CAUTION

Borland does not provide a ToolsAPI.dcu file, meaning that EXEs or DLLs containing
a reference to ToolsAPI in a uses clause can be built only with packages. Currently, it
is not possible to build wizards without packages.

DDG Search
Remember the nifty little Delphi Search program you developed back in Chapter 11, “Writing
Multithreaded Applications?” In this section, you will learn how you can turn that useful appli-
cation into an even more useful Delphi wizard with just a little bit of code. This wizard is
called DDG Search.

First, the unit that interfaces DDG Search to the IDE, InitWiz.pas, is shown in Listing 26.6.
You will notice that this unit is very similar to the unit of the same name in the previous exam-
ple. That’s on purpose. This unit is just a copy of the previous one with some necessary
changes involving the name of the wizard and the Execute() method. Copying and pasting is
what we call “old-fashioned inheritance.” After all, why do more typing than you have to?

LISTING 26.6 InitWiz.pas, the Unit Containing Wizard Logic for the DDGSrch Wizard

unit InitWiz;

interface

uses
Windows, ToolsAPI;

type
TSearchWizard = class(TNotifierObject, IOTAWizard, IOTAMenuWizard)
// IOTAWizard methods
function GetIDString: string;
function GetName: string;
function GetState: TWizardState;
procedure Execute;
// IOTAMenuWizard method
function GetMenuText: string;

end;

function InitWizard(const BorlandIDEServices: IBorlandIDEServices;
RegisterProc: TWizardRegisterProc;
var Terminate: TWizardTerminateProc): Boolean stdcall;

var
ActionSvc: IOTAActionServices;

implementation

uses SysUtils, Dialogs, Forms, Controls, Main, PriU;

function TSearchWizard.GetName: string;
{ Return name of expert }

Using Delphi’s Open Tools API

CHAPTER 26
1391

26
U

SIN
G

D
ELPH

I’S
O

PEN
T

O
O

LS
A

PI

continues

LISTING 26.6 Continued

begin
Result := ‘DDG Search’;

end;

function TSearchWizard.GetState: TWizardState;
{ This expert is always enabled on the menu }
begin
Result := [wsEnabled];

end;

function TSearchWizard.GetIDString: String;
{ Return the unique Vendor.Product name of expert }
begin
Result := ‘DDG.DDGSearch’;

end;

function TSearchWizard.GetMenuText: string;
{ Return text for Help menu }
begin
Result := ‘DDG Search Expert’;

end;

procedure TSearchWizard.Execute;
{ Called when expert name is selected from Help menu of IDE. }
{ This function invokes the expert }
begin
// if not created, created it and show it
if MainForm = nil then
begin
MainForm := TMainForm.Create(Application);
ThreadPriWin := TThreadPriWin.Create(Application);
MainForm.Show;

end
else
// if created then restore window and show it
with MainForm do
begin
if not Visible then Show;
if WindowState = wsMinimized then WindowState := wsNormal;
SetFocus;

end;
end;

function InitWizard(const BorlandIDEServices: IBorlandIDEServices;
RegisterProc: TWizardRegisterProc;

Component-Based Development

PART III
1392

var Terminate: TWizardTerminateProc): Boolean stdcall;
var
Svcs: IOTAServices;

begin
Result := BorlandIDEServices <> nil;
if Result then
begin
Svcs := BorlandIDEServices as IOTAServices;
ActionSvc := BorlandIDEServices as IOTAActionServices;
ToolsAPI.BorlandIDEServices := BorlandIDEServices;
Application.Handle := Svcs.GetParentHandle;
RegisterProc(TSearchWizard.Create);

end;
end;

end.

The Execute() function of this wizard shows you something a bit different than what you have
seen so far: The wizard’s main form, MainForm, is being shown modelessly rather than
modally. Of course, this requires a bit of extra housekeeping, because you have to know when
a form is created and when the form variable is invalid. This can be accomplished by making
sure the MainForm variable is set to nil when the wizard is inactive. More on this a bit later.

One other aspect of this project that has changed significantly since Chapter 11 is that the pro-
ject file is now called DDGSrch.dpr. This file is shown in Listing 26.7.

LISTING 26.7 DDGSrch.dpr, Project File for the DDGSrch Project

library DDGSrch;

uses
ShareMem,
ToolsAPI,
Main in ‘MAIN.PAS’ {MainForm},
SrchIni in ‘SrchIni.pas’,
SrchU in ‘SrchU.pas’,
PriU in ‘PriU.pas’ {ThreadPriWin},
InitWiz in ‘InitWiz.pas’,
MemMap in ‘..\..\Utils\MemMap.pas’,
StrUtils in ‘..\..\Utils\StrUtils.pas’;

{$R *.RES}

exports
{ Entry point which is called by Delphi IDE }

Using Delphi’s Open Tools API

CHAPTER 26
1393

26
U

SIN
G

D
ELPH

I’S
O

PEN
T

O
O

LS
A

PI

continues

LISTING 26.7 Continued

InitWizard name WizardEntryPoint;

begin
end.

As you can see, this file is fairly small. The two important points are that it uses the library
header to indicate that it is a DLL, and it exports the InitWiz() function for initialization by
the Delphi IDE.

Only a couple of changes were made to the Main unit in this project. As mentioned earlier, the
MainForm variable must be set to nil when the wizard is not active. As you learned in Chapter
2, “The Object Pascal Language,” the MainForm instance variable will automatically have the
value nil upon application startup. Also, in the OnClose event handler for the form, the form
instance is released and the MainForm global is reset to nil. Here is the method:

procedure TMainForm.FormClose(Sender: TObject; var Action: TCloseAction);
begin
Action := caFree;
Application.OnShowHint := FOldShowHint;
MainForm := nil;

end;

The finishing touch for this wizard is to bring up files in the IDE’s Code Editor when they are
double-clicked in the list box in the main form. This logic is handled by a new
FileLBDblClick() method, as follows:

procedure TMainForm.FileLBDblClick(Sender: TObject);
{ Called when user double-clicks in listbox. Loads file into IDE }
var
FileName: string;
Len: Integer;

begin
FileName := FileLB.Items[FileLB.ItemIndex];
{ make sure user clicked on a file... }
if (FileName <> ‘’) and (Pos(‘File ‘, FileName) = 1) then
begin
{ Trim “File “ and “:” from string }
FileName := Copy(FileName, 6, Length(FileName));
Len := Length(FileName);
if FileName[Len] = ‘:’ then SetLength(FileName, Len - 1);
{ Open the project or file }
if CompareText(ExtractFileExt(FileName), ‘.DPR’) = 0 then
ActionSvc.OpenProject(FileName, True)

else

Component-Based Development

PART III
1394

ActionSvc.OpenFile(FileName);
end;

end;

This method employs the OpenFile() and OpenProject() methods of the
IOTAActionServices in order to open a particular file.

Listing 26.8 shows the complete source code for the Main unit in the DDGSrch project, and
Figure 26.7 shows the DDG Search wizard doing its thing inside the IDE.

LISTING 26.8 Main.pas, the Main Unit for the DDGSrch Project

unit Main;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, Buttons, ExtCtrls, Menus, SrchIni,
SrchU, ComCtrls, InitWiz;

type
TMainForm = class(TForm)
FileLB: TListBox;
PopupMenu1: TPopupMenu;
Font1: TMenuItem;
N1: TMenuItem;
Exit1: TMenuItem;
FontDialog1: TFontDialog;
StatusBar: TStatusBar;
AlignPanel: TPanel;
ControlPanel: TPanel;
ParamsGB: TGroupBox;
LFileSpec: TLabel;
LToken: TLabel;
lPathName: TLabel;
EFileSpec: TEdit;
EToken: TEdit;
PathButton: TButton;
OptionsGB: TGroupBox;
cbCaseSensitive: TCheckBox;
cbFileNamesOnly: TCheckBox;
cbRecurse: TCheckBox;
SearchButton: TBitBtn;
CloseButton: TBitBtn;
PrintButton: TBitBtn;

Using Delphi’s Open Tools API

CHAPTER 26
1395

26
U

SIN
G

D
ELPH

I’S
O

PEN
T

O
O

LS
A

PI

continues

LISTING 26.8 Continued

PriorityButton: TBitBtn;
View1: TMenuItem;
EPathName: TEdit;
procedure SearchButtonClick(Sender: TObject);
procedure PathButtonClick(Sender: TObject);
procedure FileLBDrawItem(Control: TWinControl; Index: Integer;
Rect: TRect; State: TOwnerDrawState);

procedure Font1Click(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure PrintButtonClick(Sender: TObject);
procedure CloseButtonClick(Sender: TObject);
procedure FileLBDblClick(Sender: TObject);
procedure FormResize(Sender: TObject);
procedure PriorityButtonClick(Sender: TObject);
procedure ETokenChange(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);

private
FOldShowHint: TShowHintEvent;
procedure ReadIni;
procedure WriteIni;
procedure DoShowHint(var HintStr: string; var CanShow: Boolean;
var HintInfo: THintInfo);

procedure WMGetMinMaxInfo(var M: TWMGetMinMaxInfo); message
➥WM_GETMINMAXINFO;
public
Running: Boolean;
SearchPri: integer;
SearchThread: TSearchThread;
procedure EnableSearchControls(Enable: Boolean);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

uses Printers, ShellAPI, MemMap, FileCtrl, PriU;

procedure PrintStrings(Strings: TStrings);
{ This procedure prints all of the string in the Strings parameter }
var
Prn: TextFile;

Component-Based Development

PART III
1396

i: word;
begin
if Strings.Count = 0 then // Are there strings?
begin
MessageDlg(‘No text to print!’, mtInformation, [mbOk], 0);
Exit;

end;
AssignPrn(Prn); // assign Prn to printer
try
Rewrite(Prn); // open printer
try
for i := 0 to Strings.Count - 1 do // iterate over all strings
writeln(Prn, Strings.Strings[i]); // write to printer

finally
CloseFile(Prn); // close printer

end;
except
on EInOutError do
MessageDlg(‘Error Printing text.’, mtError, [mbOk], 0);

end;
end;

procedure TMainForm.WMGetMinMaxInfo(var M: TWMGetMinMaxInfo);
begin
inherited;
// prevent user from sizing form too small
with M.MinMaxInfo^ do
begin
ptMinTrackSize.x := OptionsGB.Left + OptionsGB.Width - ParamsGB.Left + 10;
ptMinTrackSize.y := 200;

end;
end;

procedure TMainForm.EnableSearchControls(Enable: Boolean);
{ Enables or disables certain controls so options can’t be modified }
{ while search is executing. }
begin
SearchButton.Enabled := Enable; // enabled/disable proper controls
cbRecurse.Enabled := Enable;
cbFileNamesOnly.Enabled := Enable;
cbCaseSensitive.Enabled := Enable;
PathButton.Enabled := Enable;
EPathName.Enabled := Enable;
EFileSpec.Enabled := Enable;
EToken.Enabled := Enable;
Running := not Enable; // set Running flag

Using Delphi’s Open Tools API

CHAPTER 26
1397

26
U

SIN
G

D
ELPH

I’S
O

PEN
T

O
O

LS
A

PI

continues

LISTING 26.8 Continued

ETokenChange(nil);
with CloseButton do
begin
if Enable then
begin // set props of Close/Stop button
Caption := ‘&Close’;
Hint := ‘Close Application’;

end
else begin
Caption := ‘&Stop’;
Hint := ‘Stop Searching’;

end;
end;

end;

procedure TMainForm.SearchButtonClick(Sender: TObject);
{ Called when Search button is clicked. Invokes search thread. }
begin
EnableSearchControls(False); // disable controls
FileLB.Clear; // clear listbox
{ start thread }
SearchThread := TSearchThread.Create(cbCaseSensitive.Checked,
cbFileNamesOnly.Checked, cbRecurse.Checked, EToken.Text,
EPathName.Text, EFileSpec.Text);

end;

procedure TMainForm.ETokenChange(Sender: TObject);
begin
SearchButton.Enabled := not Running and (EToken.Text <> ‘’);

end;

procedure TMainForm.PathButtonClick(Sender: TObject);
{ Called when Path button is clicked. Allows user to choose new path. }
var
ShowDir: string;

begin
ShowDir := EPathName.Text;
if SelectDirectory(ShowDir, [], 0) then
EPathName.Text := ShowDir;

end;

procedure TMainForm.FileLBDrawItem(Control: TWinControl;
Index: Integer; Rect: TRect; State: TOwnerDrawState);

{ Called in order to owner draw listbox. }
var

Component-Based Development

PART III
1398

CurStr: string;
begin
with FileLB do
begin
CurStr := Items.Strings[Index];
Canvas.FillRect(Rect); // clear out rect
if not cbFileNamesOnly.Checked then // if not filename only...
{ if current line is file name... }
if (Pos(‘File ‘, CurStr) = 1) and
(CurStr[Length(CurStr)] = ‘:’) then

begin
Canvas.Font.Style := [fsUnderline]; // underline font
Canvas.Font.Color := clRed; // paint red

end
else
Rect.Left := Rect.Left + 15; // otherwise, indent

DrawText(Canvas.Handle, PChar(CurStr), Length(CurStr), Rect,
➥dt_SingleLine);
end;

end;

procedure TMainForm.Font1Click(Sender: TObject);
{ Allows user to pick new font for listbox }
begin
{ Pick new listbox font }
if FontDialog1.Execute then
FileLB.Font := FontDialog1.Font;

end;

procedure TMainForm.FormDestroy(Sender: TObject);
{ OnDestroy event handler for form }
begin
WriteIni;

end;

procedure TMainForm.FormCreate(Sender: TObject);
{ OnCreate event handler for form }
begin
Application.HintPause := 0; // don’t wait to show hints
FOldShowHint := Application.OnShowHint; // set up hints
Application.OnShowHint := DoShowHint;
ReadIni; // read reg INI file

end;

procedure TMainForm.DoShowHint(var HintStr: string; var CanShow: Boolean;

Using Delphi’s Open Tools API

CHAPTER 26
1399

26
U

SIN
G

D
ELPH

I’S
O

PEN
T

O
O

LS
A

PI

continues

LISTING 26.8 Continued

var HintInfo: THintInfo);
{ OnHint event handler for Application }
begin
{ Display application hints on status bar }
StatusBar.Panels[0].Text := HintStr;
{ Don’t show tool tip if we’re over our own controls }
if (HintInfo.HintControl <> nil) and
(HintInfo.HintControl.Parent <> nil) and
((HintInfo.HintControl.Parent = ParamsGB) or
(HintInfo.HintControl.Parent = OptionsGB) or
(HintInfo.HintControl.Parent = ControlPanel)) then
CanShow := False;

FOldShowHint(HintStr, CanSHow, HintInfo);
end;

procedure TMainForm.PrintButtonClick(Sender: TObject);
{ Called when Print button is clicked. }
begin
if MessageDlg(‘Send search results to printer?’, mtConfirmation,
[mbYes, mbNo], 0) = mrYes then
PrintStrings(FileLB.Items);

end;

procedure TMainForm.CloseButtonClick(Sender: TObject);
{ Called to stop thread or close application }
begin
// if thread is running then terminate thread
if Running then SearchThread.Terminate
// otherwise close app
else Close;

end;

procedure TMainForm.FormResize(Sender: TObject);
{ OnResize event handler. Centers controls in form. }
begin
{ divide status bar into two panels with a 1/3 - 2/3 split }
with StatusBar do
begin
Panels[0].Width := Width div 3;
Panels[1].Width := Width * 2 div 3;

end;
{ center controls in the middle of the form }
ControlPanel.Left := (AlignPanel.Width div 2) - (ControlPanel.Width div 2);

Component-Based Development

PART III
1400

end;

procedure TMainForm.PriorityButtonClick(Sender: TObject);
{ Show thread priority form }
begin
ThreadPriWin.Show;

end;

procedure TMainForm.ReadIni;
{ Reads default values from Registry }
begin
with SrchIniFile do
begin
EPathName.Text := ReadString(‘Defaults’, ‘LastPath’, ‘C:\’);
EFileSpec.Text := ReadString(‘Defaults’, ‘LastFileSpec’, ‘*.*’);
EToken.Text := ReadString(‘Defaults’, ‘LastToken’, ‘’);
cbFileNamesOnly.Checked := ReadBool(‘Defaults’, ‘FNamesOnly’, False);
cbCaseSensitive.Checked := ReadBool(‘Defaults’, ‘CaseSens’, False);
cbRecurse.Checked := ReadBool(‘Defaults’, ‘Recurse’, False);
Left := ReadInteger(‘Position’, ‘Left’, 100);
Top := ReadInteger(‘Position’, ‘Top’, 50);
Width := ReadInteger(‘Position’, ‘Width’, 510);
Height := ReadInteger(‘Position’, ‘Height’, 370);

end;
end;

procedure TMainForm.WriteIni;
{ writes current settings back to Registry }
begin
with SrchIniFile do
begin
WriteString(‘Defaults’, ‘LastPath’, EPathName.Text);
WriteString(‘Defaults’, ‘LastFileSpec’, EFileSpec.Text);
WriteString(‘Defaults’, ‘LastToken’, EToken.Text);
WriteBool(‘Defaults’, ‘CaseSens’, cbCaseSensitive.Checked);
WriteBool(‘Defaults’, ‘FNamesOnly’, cbFileNamesOnly.Checked);
WriteBool(‘Defaults’, ‘Recurse’, cbRecurse.Checked);
WriteInteger(‘Position’, ‘Left’, Left);
WriteInteger(‘Position’, ‘Top’, Top);
WriteInteger(‘Position’, ‘Width’, Width);
WriteInteger(‘Position’, ‘Height’, Height);

end;
end;

procedure TMainForm.FormClose(Sender: TObject; var Action: TCloseAction);
begin

Using Delphi’s Open Tools API

CHAPTER 26
1401

26
U

SIN
G

D
ELPH

I’S
O

PEN
T

O
O

LS
A

PI

continues

LISTING 26.8 Continued

Action := caFree;
Application.OnShowHint := FOldShowHint;
MainForm := nil;

end;

end.

Component-Based Development

PART III
1402

FIGURE 26.7
The DDG Search wizard in action.

Form Wizards
Yet another type of wizard supported by the Open Tools API is the Form wizard. Once
installed, Form wizards are accessed from the New Items dialog; they generate new forms and
units for the user. Chapter 24, “Extending the Windows Shell,” employed this type of wizard to
generate new AppBar forms; however, you did not get to see the code that made the wizard tick.

Creating a Form wizard is fairly straightforward, although you must implement a good number
of interface methods. Creation of a Form wizard can be boiled down to five basic steps:

1. Create a class that descends from TCustomForm, TDataModule, or any TWinControl that
will be used as the base form class. This class typically will reside in a separate unit
from the wizard. In this case, TAppBar will serve as the base class.

2. Create a TNotifierObject descendent that implements the following interfaces:
IOTAWizard, IOTARepositoryWizard, IOTAFormWizard, IOTACreator, and
IOTAModuleCreator.

3. In your IOTAWizard.Execute() method, you typically will call
IOTAModuleServices.GetNewModuleAndClassName() to obtain a new unit and class
name for your wizard and IOTAModuleServices.CreateModule() to instruct the IDE to
begin creation of the new module.

4. Many of the method implementations for the aforementioned interfaces are one-liners.
The nontrivial ones include IOTAModuleCreator’s NewFormFile() and NewImplFile()
methods, which will return the code for the form and unit, respectively. The
IOTACreator.GetOwner() method also can be a little tricky, but the following example
gives you a good technique for adding the unit to the current project (if any).

5. Complete the Register() procedure for the wizard by registering a handler for your
new form class using the RegisterCustomModule() procedure in the DsgnIntf unit and
creating your wizard by calling the RegisterPackageWizard() procedure in the
ToolsAPI unit.

Listing 26.9 shows the source code for ABWizard.pas, which is the AppBar wizard.

LISTING 26.9 ABWizard.pas, the Unit Containing the Implementation of the AppBar
Wizard

unit ABWizard;

interface

uses Windows, Classes, ToolsAPI;

type
TAppBarWizard = class(TNotifierObject, IOTAWizard, IOTARepositoryWizard,
IOTAFormWizard, IOTACreator, IOTAModuleCreator)

private
FUnitIdent: string;
FClassName: string;
FFileName: string;

protected
// IOTAWizard methods
function GetIDString: string;
function GetName: string;
function GetState: TWizardState;
procedure Execute;
// IOTARepositoryWizard / IOTAFormWizard methods
function GetAuthor: string;

Using Delphi’s Open Tools API

CHAPTER 26
1403

26
U

SIN
G

D
ELPH

I’S
O

PEN
T

O
O

LS
A

PI

continues

LISTING 26.9 Continued

function GetComment: string;
function GetPage: string;
function GetGlyph: HICON;
// IOTACreator methods
function GetCreatorType: string;
function GetExisting: Boolean;
function GetFileSystem: string;
function GetOwner: IOTAModule;
function GetUnnamed: Boolean;
// IOTAModuleCreator methods
function GetAncestorName: string;
function GetImplFileName: string;
function GetIntfFileName: string;
function GetFormName: string;
function GetMainForm: Boolean;
function GetShowForm: Boolean;
function GetShowSource: Boolean;
function NewFormFile(const FormIdent, AncestorIdent: string): IOTAFile;
function NewImplSource(const ModuleIdent, FormIdent,
AncestorIdent: string): IOTAFile;

function NewIntfSource(const ModuleIdent, FormIdent,
AncestorIdent: string): IOTAFile;

procedure FormCreated(const FormEditor: IOTAFormEditor);
end;

implementation

uses Forms, AppBars, SysUtils, DsgnIntf;

{$R CodeGen.res}

type
TBaseFile = class(TInterfacedObject)
private
FModuleName: string;
FFormName: string;
FAncestorName: string;

public
constructor Create(const ModuleName, FormName, AncestorName: string);

end;

TUnitFile = class(TBaseFile, IOTAFile)
protected
function GetSource: string;
function GetAge: TDateTime;

Component-Based Development

PART III
1404

end;

TFormFile = class(TBaseFile, IOTAFile)
protected
function GetSource: string;
function GetAge: TDateTime;

end;

{ TBaseFile }

constructor TBaseFile.Create(const ModuleName, FormName,
AncestorName: string);

begin
inherited Create;
FModuleName := ModuleName;
FFormName := FormName;
FAncestorName := AncestorName;

end;

{ TUnitFile }

function TUnitFile.GetSource: string;
var
Text: string;
ResInstance: THandle;
HRes: HRSRC;

begin
ResInstance := FindResourceHInstance(HInstance);
HRes := FindResource(ResInstance, ‘CODEGEN’, RT_RCDATA);
Text := PChar(LockResource(LoadResource(ResInstance, HRes)));
SetLength(Text, SizeOfResource(ResInstance, HRes));
Result := Format(Text, [FModuleName, FFormName, FAncestorName]);

end;

function TUnitFile.GetAge: TDateTime;
begin
Result := -1;

end;

{ TFormFile }

function TFormFile.GetSource: string;
const
FormText =
‘object %0:s: T%0:s’#13#10’end’;

begin

Using Delphi’s Open Tools API

CHAPTER 26
1405

26
U

SIN
G

D
ELPH

I’S
O

PEN
T

O
O

LS
A

PI

continues

LISTING 26.9 Continued

Result := Format(FormText, [FFormName]);
end;

function TFormFile.GetAge: TDateTime;
begin
Result := -1;

end;

{ TAppBarWizard }

{ TAppBarWizard.IOTAWizard }

function TAppBarWizard.GetIDString: string;
begin
Result := ‘DDG.AppBarWizard’;

end;

function TAppBarWizard.GetName: string;
begin
Result := ‘DDG AppBar Wizard’;

end;

function TAppBarWizard.GetState: TWizardState;
begin
Result := [wsEnabled];

end;

procedure TAppBarWizard.Execute;
begin
(BorlandIDEServices as IOTAModuleServices).GetNewModuleAndClassName(
‘AppBar’, FUnitIdent, FClassName, FFileName);

(BorlandIDEServices as IOTAModuleServices).CreateModule(Self);
end;

{ TAppBarWizard.IOTARepositoryWizard / TAppBarWizard.IOTAFormWizard }

function TAppBarWizard.GetGlyph: HICON;
begin
Result := 0; // use standard icon

end;

function TAppBarWizard.GetPage: string;
begin
Result := ‘DDG’;

end;

Component-Based Development

PART III
1406

function TAppBarWizard.GetAuthor: string;
begin
Result := ‘Delphi 5 Developer’’s Guide’;

end;

function TAppBarWizard.GetComment: string;
begin
Result := ‘Creates a new AppBar form.’

end;

{ TAppBarWizard.IOTACreator }

function TAppBarWizard.GetCreatorType: string;
begin
Result := ‘’;

end;

function TAppBarWizard.GetExisting: Boolean;
begin
Result := False;

end;

function TAppBarWizard.GetFileSystem: string;
begin
Result := ‘’;

end;

function TAppBarWizard.GetOwner: IOTAModule;
var
I: Integer;
ModServ: IOTAModuleServices;
Module: IOTAModule;
ProjGrp: IOTAProjectGroup;

begin
Result := nil;
ModServ := BorlandIDEServices as IOTAModuleServices;
for I := 0 to ModServ.ModuleCount - 1 do
begin
Module := ModSErv.Modules[I];
// find current project group
if CompareText(ExtractFileExt(Module.FileName), ‘.bpg’) = 0 then
if Module.QueryInterface(IOTAProjectGroup, ProjGrp) = S_OK then
begin
// return active project of group
Result := ProjGrp.GetActiveProject;
Exit;

Using Delphi’s Open Tools API

CHAPTER 26
1407

26
U

SIN
G

D
ELPH

I’S
O

PEN
T

O
O

LS
A

PI

continues

LISTING 26.9 Continued

end;
end;

end;

function TAppBarWizard.GetUnnamed: Boolean;
begin
Result := True;

end;

{ TAppBarWizard.IOTAModuleCreator }

function TAppBarWizard.GetAncestorName: string;
begin
Result := ‘TAppBar’;

end;

function TAppBarWizard.GetImplFileName: string;
var
CurrDir: array[0..MAX_PATH] of char;

begin
// Note: full path name required!
GetCurrentDirectory(SizeOf(CurrDir), CurrDir);
Result := Format(‘%s\%s.pas’, [CurrDir, FUnitIdent, ‘.pas’]);

end;

function TAppBarWizard.GetIntfFileName: string;
begin
Result := ‘’;

end;

function TAppBarWizard.GetFormName: string;
begin
Result := FClassName;

end;

function TAppBarWizard.GetMainForm: Boolean;
begin
Result := False;

end;

function TAppBarWizard.GetShowForm: Boolean;
begin
Result := True;

end;

Component-Based Development

PART III
1408

function TAppBarWizard.GetShowSource: Boolean;
begin
Result := True;

end;

function TAppBarWizard.NewFormFile(const FormIdent,
AncestorIdent: string): IOTAFile;

begin
Result := TFormFile.Create(‘’, FormIdent, AncestorIdent);

end;

function TAppBarWizard.NewImplSource(const ModuleIdent, FormIdent,
AncestorIdent: string): IOTAFile;

begin
Result := TUnitFile.Create(ModuleIdent, FormIdent, AncestorIdent);

end;

function TAppBarWizard.NewIntfSource(const ModuleIdent, FormIdent,
AncestorIdent: string): IOTAFile;

begin
Result := nil;

end;

procedure TAppBarWizard.FormCreated(const FormEditor: IOTAFormEditor);
begin
// do nothing

end;

end.

This unit employs an interesting trick for source code generation: The unformatted source code
is stored in an RES file that is linked with the $R directive. This is a very flexible way to store a
wizard’s source code so that it can be readily modified. The RES file is built by including a text
file and RCDATA resource in an RC file and then compiling that RC file with BRCC32. Listings
26.10 and 26.11 show the contents of CodeGen.txt and CodeGen.rc.

LISTING 26.10 CodeGen.txt, the Resource Template for the AppBar Wizard

unit %0:s;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, AppBars;

Using Delphi’s Open Tools API

CHAPTER 26
1409

26
U

SIN
G

D
ELPH

I’S
O

PEN
T

O
O

LS
A

PI

continues

LISTING 26.10 Continued

type
T%1:s = class(%2:s)
private
{ Private declarations }

public
{ Public declarations }

end;

var
%1:s: T%1:s;

implementation

{$R *.DFM}

end.

LISTING 26.11 CODEGEN.RC

CODEGEN RCDATA CODEGEN.TXT

Registration of the custom module and wizard occurs inside a Register() procedure in the
design package containing the wizard using the following two lines:

RegisterCustomModule(TAppBar, TCustomModule);
RegisterPackageWizard(TAppBarWizard.Create);

Summary
After reading this chapter, you should have a greater understanding of the various units and
interfaces involved in the Delphi Open Tools API. In particular, you should know and under-
stand the issues involved in creating wizards that plug into the IDE. The next chapter,
“CORBA Development with Delphi,” completes this part of the book with a thorough discus-
sion of the CORBA technology and its implementation in Delphi.

Component-Based Development

PART III
1410

