
CHAPTER

22
Advanced Component Design
Techniques

IN THIS CHAPTER
• Pseudo-Visual Components 1008

• Animated Components 1012

• Writing Property Editors 1029

• Component Editors 1040

• Streaming Nonpublished
Component Data 1046

• Property Categories 1058

• Lists of Components: TCollection and
TCollectionItem 1064

• Summary 1088

The last chapter broke into writing Delphi custom components, and it gave you a solid intro-
duction to the basics. In this chapter, you’ll learn how to take component writing to the next
level by incorporating advanced design techniques into your Delphi custom components. This
chapter provides examples of advanced techniques such as pseudo-visual components, detailed
property editors, component editors, and collections.

Pseudo-Visual Components
You’ve learned about visual components such as TButton and TEdit, and you’ve learned about
nonvisual components such as TTable and TTimer. In this section, you’ll also learn about a
type of component that kind of falls in between visual and nonvisual components—we’ll call
these components pseudo-visual components.

Extending Hints
Specifically, the pseudo-visual component shown in this section is an extension of a Delphi
pop-up hint window. We call this a pseudo-visual component because it’s not a component
that’s used visually from the Component Palette at design time, but it does represent itself visu-
ally at runtime in the body of pop-up hints.

Replacing the default style hint window in a Delphi application requires that you complete the
following four steps:

1. Create a descendant of THintWindow.

2. Destroy the old hint window class.

3. Assign the new hint window class.

4. Create the new hint window class.

Creating a THintWindow Descendant
Before you write the code for a THintWindow descendant, you must first decide how you want
your new hint window class to behave differently than the default one. In this case, you’ll cre-
ate an elliptical hint window rather than the default square one. This actually demonstrates
another cool technique: creating nonrectangular windows! Listing 22.1 shows the RndHint.pas
unit, which contains the THintWindow descendant TDDGHintWindow.

LISTING 22.1 RndHint.pas—Illustrates an Elliptical Hint

unit RndHint;

interface

uses Windows, Classes, Controls, Forms, Messages, Graphics;

Component-Based Development

PART III
1008

type

TDDGHintWindow = class(THintWindow)

private

FRegion: THandle;

procedure FreeCurrentRegion;

public

destructor Destroy; override;

procedure ActivateHint(Rect: TRect; const AHint: string); override;

procedure Paint; override;

procedure CreateParams(var Params: TCreateParams); override;

end;

implementation

destructor TDDGHintWindow.Destroy;

begin

FreeCurrentRegion;

inherited Destroy;

end;

procedure TDDGHintWindow.FreeCurrentRegion;

{ Regions, like other API objects, should be freed when you are }

{ through using them. Note, however, that you cannot delete a }

{ region which is currently set in a window, so this method sets }

{ the window region to 0 before deleting the region object. }

begin

if FRegion <> 0 then begin // if Region is alive...

SetWindowRgn(Handle, 0, True); // set win region to 0

DeleteObject(FRegion); // kill the region

FRegion := 0; // zero out field

end;

end;

procedure TDDGHintWindow.ActivateHint(Rect: TRect; const AHint: string);

{ Called when the hint is activated by putting the mouse pointer }

{ above a control. }

begin

with Rect do

Right := Right + Canvas.TextWidth(‘WWWW’); // add some slop

BoundsRect := Rect;

FreeCurrentRegion;

with BoundsRect do

Advanced Component Design Techniques

CHAPTER 22
1009

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

LISTING 22.1 Continued

{ Create a round rectangular region to display the hint window }

FRegion := CreateRoundRectRgn(0, 0, Width, Height, Width, Height);

if FRegion <> 0 then

SetWindowRgn(Handle, FRegion, True); // set win region

inherited ActivateHint(Rect, AHint); // call inherited

end;

procedure TDDGHintWindow.CreateParams(var Params: TCreateParams);

{ We need to remove the border created on the Windows API-level }

{ when the window is created. }

begin

inherited CreateParams(Params);

Params.Style := Params.Style and not ws_Border; // remove border

end;

procedure TDDGHintWindow.Paint;

{ This method gets called by the WM_PAINT handler. It is }

{ responsible for painting the hint window. }

var

R: TRect;

begin

R := ClientRect; // get bounding rectangle

Inc(R.Left, 1); // move left side slightly

Canvas.Font.Color := clInfoText; // set to proper color

{ paint string in the center of the round rect }

DrawText(Canvas.Handle, PChar(Caption), Length(Caption), R,

DT_NOPREFIX or DT_WORDBREAK or DT_CENTER or DT_VCENTER);

end;

initialization

Application.ShowHint := False; // destroy old hint window

HintWindowClass := TDDGHintWindow; // assign new hint window

Application.ShowHint := True; // create new hint window

end.

The overridden CreateParams() and Paint() methods are fairly straightforward.
CreateParams() provides an opportunity to adjust the structure of the window styles before
the hint window is created on an API level. In this method, the WS_BORDER style is removed
from the window class in order to prevent a rectangular border from being drawn around the
window. The Paint() method is responsible for rendering the window. In this case, the method
must paint the hint’s Caption property into the center of the caption window. The color of the
text is set to clInfoText, which is the system-defined color of hint text.

Component-Based Development

PART III
1010

An Elliptical Window
The ActivateHint() method contains the magic for creating the nonrectangular hint window.
Well, it’s not really magic. Actually, two API calls make it happen: CreateRoundRectRgn()
and SetWindowRgn().

CreateRoundRectRgn() defines a rounded rectangular region within a particular window. A
region is a special API object that allows you to perform special painting, hit testing, filling,
and clipping in one area. In addition to CreateRoundRectRgn(), a number of other Win32 API
functions create different types of regions, including the following:

• CreateEllipticRgn()

• CreateEllipticRgnIndirect()

• CreatePolygonRgn()

• CreatePolyPolygonRgn()

• CreateRectRgn()

• CreateRectRgnIndirect()

• CreateRoundRectRgn()

• ExtCreateRegion()

Additionally, the CombineRgn() function can be used to combine multiple regions into one
complex region. All these functions are described in detail in the Win32 API online help.

SetWindowRgn() is then called, passing the recently created region handle as a parameter. This
function causes the operating system to take ownership of the region, and all subsequent draw-
ing in the specified window will occur only within the region. Therefore, if the region defined
is a rounded rectangle, painting will occur only within that rounded rectangular region.

Advanced Component Design Techniques

CHAPTER 22
1011

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

CAUTION

You need to be aware of two side effects when using SetWindowRgn(). First, because
only the portion of the window within the region is painted, your window probably
won’t have a frame or title bar. You must be prepared to provide the user with an
alternative way to move, size, and close the window without the aid of a frame or
title bar. Second, because the operating system takes ownership of the region speci-
fied in SetWindowRgn(), you must be careful not to manipulate or delete the region
while it’s in use. The TDDGHintWindow component handles this by calling its
FreeCurrentRegion() method before the window is destroyed or a new window is
created.

Enabling the THintWindow Descendant
The initialization code for the RndHint unit does the work of making the TDDGHintWindow
component the application-wide active hint window. Setting Application.ShowHint to False
causes the old hint window to be destroyed. At that point, you must assign your THintWindow
descendant class to the HintWindowClass global variable. Then, setting
Application.ShowHint back to True causes a new hint window to be created—this time it will
be an instance of your descendant class.

Figure 22.1 shows the TDDGHintWindow component in action.

Component-Based Development

PART III
1012

FIGURE 22.1
Looking at a TDDGHintWindow hint.

Deploying TDDGHintWindow
Deploying this pseudo-visual component is different from normal visual and nonvisual compo-
nents. Because all the work for instantiating the component is performed in the initializa-
tion part of its unit, the unit should not be added to a design package for use on the
Component Palette but merely added to the uses clause of one of the source files in your pro-
ject.

Animated Components
Once upon a time while writing a Delphi application, we thought to ourselves, “This is a really
cool application, but our About dialog is kind of boring. We need something to spice it up a lit-
tle.” Suddenly, a light bulb came on and an idea for a new component was born: We would cre-
ate a scrolling credits marquee window to incorporate into our About dialogs.

The Marquee Component
Let’s take a moment to analyze how the marquee component works. The marquee control is able
to take a bunch of strings and scroll them across the component on command, like a real-life
marquee. You’ll use TCustomPanel as the base class for this TddgMarquee component because it
already has the basic built-in functionality you need, including a pretty 3D beveled border.

TddgMarquee paints some text strings to a bitmap residing in memory and then copies portions
of the memory bitmap to its own canvas to simulate a scrolling effect. It does this using the

BitBlt() API function to copy a component-sized portion of the memory canvas to the com-
ponent, starting at the top. Then, it moves down a couple pixels on the memory canvas and
copies that image to the control. It moves down again, copies again, and repeats the process
over and over so that the entire contents of the memory canvas appear to scroll through the
component.

Now is the time to identify any additional classes you might need to integrate into the
TddgMarquee component in order to bring it to life. There are really only two such classes.
First, you need the TStringList class to hold all the strings you want to scroll. Second, you
must have a memory bitmap on which you can render all the text strings. VCL’s own TBitmap
component will work nicely for this purpose.

Writing the Component
As with the previous components in this chapter, the code for TddgMarquee should be
approached with a logical plan of attack. In this case, we break up the code work into reason-
able parts. The TddgMarquee component can be divided into five major parts:

• The mechanism that renders the text onto the memory canvas

• The mechanism that copies the text from the memory canvas to the marquee window

• The timer that keeps track of when and how to scroll the window to perform the anima-
tion

• The class constructor, destructor, and associated methods

• The finishing touches, such as various helper properties and methods

Drawing on an Offscreen Bitmap
When creating an instance of TBitmap, you need to know how big it must be to hold the entire
list of strings in memory. You do this by first figuring out how high each line of text will be
and then multiplying by the number of lines. To find the height and spacing of a line of text in
a particular font, use the GetTextMetrics() API function by passing it the canvas’s handle. A
TTextMetric record to be filled in by the function:

var

Metrics: TTextMetric;

begin

GetTextMetrics(Canvas.Handle, Metrics);

Advanced Component Design Techniques

CHAPTER 22
1013

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

NOTE

The GetTextMetrics() API function modifies a TTextMetric record that contains a
great deal of quantitative information about a device context’s currently selected

continues

The height of a character cell in the canvas’s current font is given by the tmHeight field of the
Metrics record. If you add to that value the tmInternalLeading field—to allow for some
space between lines—you get the height for each line of text to be drawn on the memory
canvas:

LineHi := Metrics.tmHeight + Metrics.tmInternalLeading;

The height necessary for the memory canvas then can be determined by multiplying LineHi by
the number of lines of text and adding that value to two times the height of the TddgMarquee
control (to create the blank space at the beginning and end of the marquee). Suppose that the
TStringList in which all the strings live is called FItems; now place the memory canvas
dimensions in a TRect structure:

var

VRect: TRect;

begin

{ VRect rectangle represents entire memory bitmap }

VRect := Rect(0, 0, Width, LineHi * FItems.Count + Height * 2);

end;

After being instantiated and sized, the memory bitmap is initialized further by setting the font
to match the Font property of TddgMarquee, filling the background with a color determined by
the Color property of TddgMarquee, and setting the Style property of Brush to bsClear.

Component-Based Development

PART III
1014

font. This function gives you information not only on font height and width but also
on whether the font is boldfaced, italicized, struck out, or even what the character
set name is.

The TextHeight() method of TCanvas won’t work here. That method only determines
the height of a specific line of text rather than the spacing for the font in general.

TIP

When you render text on TCanvas, the text background is filled with the current
color of TCanvas.Brush. To cause the text background to be invisible, set
TCanvas.Brush.Style to bsClear.

Most of the preliminary work is now in place, so it’s time to render the text on the memory
bitmap. As discussed in Chapter 8, “Graphics Programming with GDI and Fonts,” there are a
couple of ways to output text onto a canvas. The most straightforward way is to use the
TextOut() method of TCanvas; however, you have more control over the formatting of the text

when you use the more complex DrawText() API function. Because it requires control over
justification, TddgMarquee will use the DrawText() function. An enumerated type is ideal to
represent the text justification:

type

TJustification = (tjCenter, tjLeft, tjRight);

The following code shows the PaintLine() method for TddgMarquee, which makes use of
DrawText() to render text onto the memory bitmap. In this method, FJust represents an
instance variable of type TJustification. Here’s the code:

procedure TddgMarquee.PaintLine(R: TRect; LineNum: Integer);

{ this method is called to paint each line of text onto MemBitmap }

const

Flags: array[TJustification] of DWORD = (DT_CENTER, DT_LEFT, DT_RIGHT);

var

S: string;

begin

{ Copy next line to local variable for clarity }

S := FItems.Strings[LineNum];

{ Draw line of text onto memory bitmap }

DrawText(MemBitmap.Canvas.Handle, PChar(S), Length(S), R,

Flags[FJust] or DT_SINGLELINE or DT_TOP);

end;

Painting the Component
Now that you know how to create the memory bitmap and paint text onto it, the next step is
learning how to copy that text to the TddgMarquee canvas.

The Paint() method of a component is invoked in response to a Windows WM_PAINT message.
The Paint() method is what gives your component life; you use the Paint() method to paint,
draw, and fill to determine the graphical appearance of your components.

The job of TddgMarquee.Paint() is to copy the strings from the memory canvas to the canvas
of TddgMarquee. This feat is accomplished by the BitBlt() API function, which copies the
bits from one device context to another.

To determine whether TddgMarquee is currently running, the component will maintain a
Boolean instance variable called FActive that reveals whether the marquee’s scrolling capabil-
ity has been activated. Therefore, the Paint() method paints differently depending on whether
the component is active:

procedure TddgMarquee.Paint;

{ this virtual method is called in response to a }

{ Windows paint message }

Advanced Component Design Techniques

CHAPTER 22
1015

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

begin

if FActive then

{ Copy from memory bitmap to screen }

BitBlt(Canvas.Handle, 0, 0, InsideRect.Right, InsideRect.Bottom,

MemBitmap.Canvas.Handle, 0, CurrLine, srcCopy)

else

inherited Paint;

end;

If the marquee is active, the component uses the BitBlt() function to paint a portion of the
memory canvas onto the TddgMarquee canvas. Notice the CurrLine variable, which is passed
as the next-to-last parameter to BitBlt(). The value of this parameter determines which por-
tion of the memory canvas to transfer onto the screen. By continuously incrementing or decre-
menting the value of CurrLine, you can give TddgMarquee the appearance that the text is
scrolling up or down.

Animating the Marquee
The visual aspects of the TddgMarquee component are now in place. The rest of the work
involved in getting the component working is just hooking up the plumbing, so to speak. At
this point, TddgMarquee requires some mechanism to change the value of CurrLine every so
often and to repaint the component. This trick can be accomplished fairly easily using Delphi’s
TTimer component.

Before you can use TTimer, of course, you must create and initialize the class instance.
TddgMarquee will have a TTimer instance called FTimer, and you’ll initialize it in a procedure
called DoTimer:

procedure DoTimer;

{ procedure sets up TddgMarquee’s timer }

begin

FTimer := TTimer.Create(Self);

with FTimer do

begin

Enabled := False;

Interval := TimerInterval;

OnTimer := DoTimerOnTimer;

end;

end;

In this procedure, FTimer is created, and it’s disabled initially. Its Interval property then is
assigned to the value of a constant called TimerInterval. Finally, the OnTimer event for
FTimer is assigned to a method of TddgMarquee called DoTimerOnTimer. This is the method
that will be called when an OnTimer event occurs.

Component-Based Development

PART III
1016

The DoTimerOnTimer() method is defined as follows:

procedure TddgMarquee.DoTimerOnTimer(Sender: TObject);

{ This method is executed in response to a timer event }

begin

IncLine;

{ only repaint within borders }

InvalidateRect(Handle, @InsideRect, False);

end;

In this method, a procedure named IncLine() is called; this procedure increments or decre-
ments the value of CurrLine as necessary. Then the InvalidateRect() API function is called
to “invalidate” (or repaint) the interior portion of the component. We chose to use
InvalidateRect() rather than the Invalidate() method of TCanvas because Invalidate()
causes the entire canvas to be repainted rather than just the portion within a defined rectangle,
as is the case with InvalidateRect(). This method, because it doesn’t continuously repaint
the entire component, eliminates much of the flicker that would otherwise occur. Remember:
Flicker is bad.

The IncLine() method, which updates the value of CurrLine and detects whether scrolling
has completed, is defined as follows:

procedure TddgMarquee.IncLine;

{ this method is called to increment a line }

begin

if not FScrollDown then // if Marquee is scrolling upward

begin

{ Check to see if marquee has scrolled to end yet }

if FItems.Count * LineHi + ClientRect.Bottom -

ScrollPixels >= CurrLine then

{ not at end, so increment current line }

Inc(CurrLine, ScrollPixels)

Advanced Component Design Techniques

CHAPTER 22
1017

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N
NOTE

When assigning values to events in your code, you need to follow two rules:

• The procedure you assign to the event must be a method of some object instance.
It can’t be a standalone procedure or function.

• The method you assign to the event must accept the same parameter list as the
event type. For example, the OnTimer event for TTimer is of type TNotifyEvent.
Because TNotifyEvent accepts one parameter, Sender, of type TObject, any
method you assign to OnTimer must also take one parameter of type TObject.

else SetActive(False);

end

else begin // if Marquee is scrolling downward

{ Check to see if marquee has scrolled to end yet }

if CurrLine >= ScrollPixels then

{ not at end, so decrement current line }

Dec(CurrLine, ScrollPixels)

else SetActive(False);

end;

end;

The constructor for TddgMarquee is actually quite simple. It calls the inherited Create()
method, creates a TStringList instance, sets up FTimer, and then sets all the default values for
the instance variables. Once again, you must remember to call the inherited Create() method
in your components. Failure to do so means your components will miss out on important and
useful functionality, such as handle and canvas creation, streaming, and Windows message
response. The following code shows the TddgMarquee constructor, Create():

constructor TddgMarquee.Create(AOwner: TComponent);

{ constructor for TddgMarquee class }

procedure DoTimer;

{ procedure sets up TddgMarquee’s timer }

begin

FTimer := TTimer.Create(Self);

with FTimer do

begin

Enabled := False;

Interval := TimerInterval;

OnTimer := DoTimerOnTimer;

end;

end;

begin

inherited Create(AOwner);

FItems := TStringList.Create; { instantiate string list }

DoTimer; { set up timer }

{ set instance variable default values }

Width := 100;

Height := 75;

FActive := False;

FScrollDown := False;

FJust := tjCenter;

Component-Based Development

PART III
1018

BevelWidth := 3;

end;

The TddgMarquee destructor is even simpler: The method deactivates the component by pass-
ing False to the SetActive() method, frees the timer and the string list, and then calls the
inherited Destroy() method:

destructor TddgMarquee.Destroy;

{ destructor for TddgMarquee class }

begin

SetActive(False);

FTimer.Free; // free allocated objects

FItems.Free;

inherited Destroy;

end;

Advanced Component Design Techniques

CHAPTER 22
1019

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

TIP

As a rule of thumb, when you override constructors, you usually call inherited first,
and when you override destructors, you usually call inherited last. This ensures that
the class has been set up before you modify it and that all dependent resources have
been cleaned up before you dispose of the class.

Exceptions to this rule exist; however, you should generally stick to it unless you have
good reason not to.

The SetActive() method, which is called by both the IncLine() method and the destructor
(in addition to serving as the writer for the Active property), serves as a vehicle that starts and
stops the marquee scrolling up the canvas:

procedure TddgMarquee.SetActive(Value: Boolean);

{ called to activate/deactivate the marquee }

begin

if Value and (not FActive) and (FItems.Count > 0) then

begin

FActive := True; // set active flag

MemBitmap := TBitmap.Create;

FillBitmap; // Paint Image on bitmap

FTimer.Enabled := True; // start timer

end

else if (not Value) and FActive then

begin

FTimer.Enabled := False; // disable timer,

if Assigned(FOnDone) // fire OnDone event,

then FOnDone(Self);

FActive := False; // set FActive to False

MemBitmap.Free; // free memory bitmap

Invalidate; // clear control window

end;

end;

An important feature of TddgMarquee that’s lacking thus far is an event that tells the user when
scrolling is complete. Never fear—this feature is very straightforward to add by way of an
event: FOnDone. The first step to adding an event to your component is to declare an instance
variable of some event type in the private portion of the class definition. You’ll use the
TNotifyEvent type for the FOnDone event:

FOnDone: TNotifyEvent;

The event should then be declared in the published part of the class as a property:

property OnDone: TNotifyEvent read FOnDone write FOnDone;

Recall that the read and write directives specify from which function or variable a given prop-
erty should get or set its value.

Taking just these two small steps will cause an entry for OnDone to be displayed in the Events
page of the Object Inspector at design time. The only other thing that needs to be done is to
call the user’s handler for OnDone (if a method is assigned to OnDone), as demonstrated by
TddgMarquee with this line of code in the Deactivate() method:

if Assigned(FOnDone) then FOnDone(Self); // fire OnDone event

This line basically reads, “If the component user has assigned a method to the OnDone event,
call that method and pass the TddgMarquee class instance (Self) as a parameter.”

Listing 22.2 shows the completed source code for the Marquee unit. Notice that because the
component descends from a TCustomXXX class, you need to publish many of the properties pro-
vided by TCustomPanel.

LISTING 22.2 Marquee.pas—Illustrates the TddgMarquee Component

unit Marquee;

interface

uses
SysUtils, Windows, Classes, Forms, Controls, Graphics,
Messages, ExtCtrls, Dialogs;

const

Component-Based Development

PART III
1020

ScrollPixels = 3; // num of pixels for each scroll
TimerInterval = 50; // time between scrolls in ms

type
TJustification = (tjCenter, tjLeft, tjRight);

EMarqueeError = class(Exception);

TddgMarquee = class(TCustomPanel)
private
MemBitmap: TBitmap;
InsideRect: TRect;
FItems: TStringList;
FJust: TJustification;
FScrollDown: Boolean;
LineHi : Integer;
CurrLine : Integer;
VRect: TRect;
FTimer: TTimer;
FActive: Boolean;
FOnDone: TNotifyEvent;
procedure SetItems(Value: TStringList);
procedure DoTimerOnTimer(Sender: TObject);
procedure PaintLine(R: TRect; LineNum: Integer);
procedure SetLineHeight;
procedure SetStartLine;
procedure IncLine;
procedure SetActive(Value: Boolean);

protected
procedure Paint; override;
procedure FillBitmap; virtual;

public
property Active: Boolean read FActive write SetActive;
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

published
property ScrollDown: Boolean read FScrollDown write FScrollDown;
property Justify: TJustification read FJust write FJust default tjCenter;
property Items: TStringList read FItems write SetItems;
property OnDone: TNotifyEvent read FOnDone write FOnDone;
{ Publish inherited properties: }
property Align;
property Alignment;
property BevelInner;
property BevelOuter;
property BevelWidth;

Advanced Component Design Techniques

CHAPTER 22
1021

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

LISTING 22.2 Continued

property BorderWidth;
property BorderStyle;
property Color;
property Ctl3D;
property Font;
property Locked;
property ParentColor;
property ParentCtl3D;
property ParentFont;
property Visible;
property OnClick;
property OnDblClick;
property OnMouseDown;
property OnMouseMove;
property OnMouseUp;
property OnResize;

end;

implementation

constructor TddgMarquee.Create(AOwner: TComponent);
{ constructor for TddgMarquee class }

procedure DoTimer;
{ procedure sets up TddgMarquee’s timer }
begin
FTimer := TTimer.Create(Self);
with FTimer do
begin
Enabled := False;
Interval := TimerInterval;
OnTimer := DoTimerOnTimer;

end;
end;

begin
inherited Create(AOwner);
FItems := TStringList.Create; { instantiate string list }
DoTimer; { set up timer }
{ set instance variable default values }
Width := 100;
Height := 75;
FActive := False;
FScrollDown := False;

Component-Based Development

PART III
1022

FJust := tjCenter;
BevelWidth := 3;

end;

destructor TddgMarquee.Destroy;
{ destructor for TddgMarquee class }
begin
SetActive(False);
FTimer.Free; // free allocated objects
FItems.Free;
inherited Destroy;

end;

procedure TddgMarquee.DoTimerOnTimer(Sender: TObject);
{ This method is executed in response to a timer event }
begin
IncLine;
{ only repaint within borders }
InvalidateRect(Handle, @InsideRect, False);

end;

procedure TddgMarquee.IncLine;
{ this method is called to increment a line }
begin
if not FScrollDown then // if Marquee is scrolling upward
begin
{ Check to see if marquee has scrolled to end yet }
if FItems.Count * LineHi + ClientRect.Bottom -
ScrollPixels >= CurrLine then
{ not at end, so increment current line }
Inc(CurrLine, ScrollPixels)

else SetActive(False);
end
else begin // if Marquee is scrolling downward
{ Check to see if marquee has scrolled to end yet }
if CurrLine >= ScrollPixels then
{ not at end, so decrement current line }
Dec(CurrLine, ScrollPixels)

else SetActive(False);
end;

end;

procedure TddgMarquee.SetItems(Value: TStringList);
begin
if FItems <> Value then
FItems.Assign(Value);

Advanced Component Design Techniques

CHAPTER 22
1023

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

LISTING 22.2 Continued

end;

procedure TddgMarquee.SetLineHeight;
{ this virtual method sets the LineHi instance variable }
var
Metrics : TTextMetric;

begin
{ get metric info for font }
GetTextMetrics(Canvas.Handle, Metrics);
{ adjust line height }
LineHi := Metrics.tmHeight + Metrics.tmInternalLeading;

end;

procedure TddgMarquee.SetStartLine;
{ this virtual method initializes the CurrLine instance variable }
begin
// initialize current line to top if scrolling up, or...
if not FScrollDown then CurrLine := 0
// bottom if scrolling down
else CurrLine := VRect.Bottom - Height;

end;

procedure TddgMarquee.PaintLine(R: TRect; LineNum: Integer);
{ this method is called to paint each line of text onto MemBitmap }
const
Flags: array[TJustification] of DWORD = (DT_CENTER, DT_LEFT, DT_RIGHT);

var
S: string;

begin
{ Copy next line to local variable for clarity }
S := FItems.Strings[LineNum];
{ Draw line of text onto memory bitmap }
DrawText(MemBitmap.Canvas.Handle, PChar(S), Length(S), R,
Flags[FJust] or DT_SINGLELINE or DT_TOP);

end;

procedure TddgMarquee.FillBitmap;
var
y, i : Integer;
R: TRect;

begin
SetLineHeight; // set height of each line
{ VRect rectangle represents entire memory bitmap }
VRect := Rect(0, 0, Width, LineHi * FItems.Count + Height * 2);

Component-Based Development

PART III
1024

{ InsideRect rectangle represents interior of beveled border }
InsideRect := Rect(BevelWidth, BevelWidth, Width - (2 * BevelWidth),
Height - (2 * BevelWidth));

R := Rect(InsideRect.Left, 0, InsideRect.Right, VRect.Bottom);
SetStartLine;
MemBitmap.Width := Width; // initialize memory bitmap
with MemBitmap do
begin
Height := VRect.Bottom;
with Canvas do
begin
Font := Self.Font;
Brush.Color := Color;
FillRect(VRect);
Brush.Style := bsClear;

end;
end;
y := Height;
i := 0;
repeat
R.Top := y;
PaintLine(R, i);
{ increment y by the height (in pixels) of a line }
inc(y, LineHi);
inc(i);

until i >= FItems.Count; // repeat for all lines
end;

procedure TddgMarquee.Paint;
{ this virtual method is called in response to a }
{ Windows paint message }
begin
if FActive then
{ Copy from memory bitmap to screen }
BitBlt(Canvas.Handle, 0, 0, InsideRect.Right, InsideRect.Bottom,
MemBitmap.Canvas.Handle, 0, CurrLine, srcCopy)

else
inherited Paint;

end;

procedure TddgMarquee.SetActive(Value: Boolean);
{ called to activate/deactivate the marquee }
begin
if Value and (not FActive) and (FItems.Count > 0) then
begin
FActive := True; // set active flag

Advanced Component Design Techniques

CHAPTER 22
1025

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

LISTING 22.2 Continued

MemBitmap := TBitmap.Create;
FillBitmap; // Paint Image on bitmap
FTimer.Enabled := True; // start timer

end
else if (not Value) and FActive then
begin
FTimer.Enabled := False; // disable timer,
if Assigned(FOnDone) // fire OnDone event,
then FOnDone(Self);

FActive := False; // set FActive to False
MemBitmap.Free; // free memory bitmap
Invalidate; // clear control window

end;
end;

end.

Component-Based Development

PART III
1026

TIP

Notice the default directive and value used with the Justify property of
TddgMarquee. This use of default optimizes streaming of the component, which
improves the component’s design-time performance. You can give default values to
properties of any ordinal type (Integer, Word, Longint, as well as enumerated types,
for example), but you can’t give them to nonordinal property types such as strings,
floating-point numbers, arrays, records, and classes.

You also need to initialize the default values for the properties in your constructor.
Failure to do so will cause streaming problems.

Testing TddgMarquee
Although it’s very exciting to finally have this component written and in the testing stages,
don’t get carried away by trying to add it to the Component Palette just yet. It has to be
debugged first. You should do all preliminary testing with the component by creating a project
that creates and uses a dynamic instance of the component. Listing 22.3 depicts the main unit
for a project called TestMarq, which is used to test the TddgMarquee component. This simple
project consists of a form that contains two buttons.

LISTING 22.3 TestU.pas—Tests the TddgMarquee Component

unit Testu;

interface

uses

SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,

Forms, Dialogs, Marquee, StdCtrls, ExtCtrls;

type

TForm1 = class(TForm)

Button1: TButton;

Button2: TButton;

procedure FormCreate(Sender: TObject);

procedure Button1Click(Sender: TObject);

procedure Button2Click(Sender: TObject);

private

Marquee1: TddgMarquee;

procedure MDone(Sender: TObject);

public

{ Public declarations }

end;

var

Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.MDone(Sender: TObject);

begin

Beep;

end;

procedure TForm1.FormCreate(Sender: TObject);

begin

Marquee1 := TddgMarquee.Create(Self);

with Marquee1 do

begin

Parent := Self;

Top := 10;

Left := 10;

Height := 200;

Width := 150;

OnDone := MDone;

Show;

Advanced Component Design Techniques

CHAPTER 22
1027

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

LISTING 22.3 Continued

with Items do

begin

Add(‘Greg’);

Add(‘Peter’);

Add(‘Bobby’);

Add(‘Marsha’);

Add(‘Jan’);

Add(‘Cindy’);

end;

end;

end;

procedure TForm1.Button1Click(Sender: TObject);

begin

Marquee1.Active := True;

end;

procedure TForm1.Button2Click(Sender: TObject);

begin

Marquee1.Active := False;

end;

end.

Component-Based Development

PART III
1028

TIP

Always create a test project for your new components. Never try to do initial testing
on a component by adding it to the Component Palette. By trying to debug a com-
ponent that resides on the palette, not only will you waste time with a lot of gratu-
itous package rebuilding, but it’s possible to crash the IDE as a result of a bug in your
component.

Figure 22.2 shows the TestMarq project in action.

After you squash all the bugs you find in this program, it’s time to add it to the Component
Palette. As you may recall, doing so is easy: Simply choose Component, Install Component
from the main menu and then fill in the unit filename and package name in the Install
Component dialog. Choose OK and Delphi will rebuild the package to which the component
was added and update the Component Palette. Of course, your component will need to expose

a Register() procedure in order to be placed on the Component Palette. The TddgMarquee
component is registered in the DDGReg.pas unit of the DDGDsgn package on the CD-ROM
accompanying this book.

Advanced Component Design Techniques

CHAPTER 22
1029

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

FIGURE 22.2
Testing the TddgMarquee component.

Writing Property Editors
Chapter 21, “Writing Delphi Custom Components,” shows how properties are edited in the
Object Inspector for most of the common property types. The means by which a property is
edited is determined by its property editor. Several predefined property editors are used for the
existing properties. However, there may be a situation in which none of the predefined editors
meet your needs, such as when you’ve created a custom property. Given this situation, you’ll
need to create your own editor for that property.

You can edit properties in the Object Inspector in two ways. One is to allow the user to edit the
value as a text string. The other is to use a dialog that performs the editing of the property. In
some cases, you’ll want to allow both editing capabilities for a single property.

Here are the steps required for writing a property editor:

1. Create a descendant property editor object.

2. Edit the property as text.

3. Edit the property as a whole with a dialog (optional).

4. Specify the property editor’s attributes.

5. Register the property editor.

The following sections cover each of these steps.

Creating a Descendant Property Editor Object
Delphi defines several property editors in the unit DsgnIntf.pas, all of which descend from
the base class TPropertyEditor. When you create a property editor, your property editor must
descend from TPropertyEditor or one of its descendants. Table 22.1 shows the
TPropertyEditor descendants that are used with the existing properties.

TABLE 22.1 Property Editors Defined in DsgnIntf.pas

Property Editor Description

TOrdinalProperty The base class for all ordinal property editors, such as
TIntegerProperty, TEnumProperty, TCharProperty, and so on.

TIntegerProperty The default property editor for integer properties of all sizes.

TCharProperty The property editor for properties that are a char type and a subrange
of char; that is, ‘A’..’Z’.

TEnumProperty The default property for all user-defined enumerated types.

TFloatProperty The default property editor for floating-point numeric properties.

TStringProperty The default property editor for string type properties.

TSetElementProperty The default property editor for individual set elements. Each element
in the set is displayed as an individual Boolean option.

TSetProperty The default property editor for set properties. The set expands into
separate set elements for each element in the set.

TClassProperty The default property editor for properties that are, themselves, objects.

TMethodProperty The default property editor for properties that are method pointers—
that is, events.

TComponentProperty The default property editor for properties that refer to a component.
This isn’t the same as the TClassProperty editor. Instead, this editor
allows the user to specify a component to which the property refers—
that is, ActiveControl.

TColorProperty The default property editor for properties of the type TColor.

TFontNameProperty The default property editor for font names. This editor displays a drop-
down list of fonts available on the system.

TFontProperty The default property editor for properties of type TFont, which allows
the editing of subproperties. TFontProperty allows the editing of
subproperties because it derives from TClassProperty.

The property editor from which your property editor must descend depends on how the prop-
erty is going to behave when it’s edited. In some cases, for example, your property might
require the same functionality as TIntegerProperty, but it might also require additional logic

Component-Based Development

PART III
1030

in the editing process. Therefore, it would be logical that your property editor descend from
TIntegerProperty.

Advanced Component Design Techniques

CHAPTER 22
1031

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

TIP

Bear in mind that there are cases when you don’t need to create a property editor
that depends on your property type. For example, subrange types are checked auto-
matically (for example, 1..10 is checked for by TIntegerProperty), enumerated types
get drop-down lists automatically, and so on. You should try to use type definitions
instead of custom property editors because they’re enforced by the language at com-
pile time as well as by the default property editors.

Editing the Property as Text
The property editor has two basic purposes: One is to provide a means for the user to edit the
property; this is obvious. The other not-so-obvious purpose is to provide the string representa-
tion of the property value to the Object Inspector so that it can be displayed accordingly.

When you create a descendant property editor class, you must override the GetValue() and
SetValue() methods. GetValue() returns the string representation of the property value for the
Object Inspector to display. SetValue() sets the value based on its string representation as it’s
entered in the Object Inspector.

As an example, examine the definition of the TIntegerProperty class type as it’s defined in
DSGNINTF.PAS:

TIntegerProperty = class(TOrdinalProperty)

public

function GetValue: string; override;

procedure SetValue(const Value: string); override;

end;

Here, you see that the GetValue() and SetValue() methods have been overridden. The
GetValue() implementation is as follows:

function TIntegerProperty.GetValue: string;

begin

Result := IntToStr(GetOrdValue);

end;

Here’s the SetValue() implementation:

procedure TIntegerProperty.SetValue(const Value: String);

var

L: Longint;

begin

L := StrToInt(Value);

with GetTypeData(GetPropType)^ do

if (L < MinValue) or (L > MaxValue) then

raise EPropertyError.CreateResFmt(SOutOfRange, [MinValue, MaxValue]);

SetOrdValue(L);

end;

GetValue() returns the string representation of an integer property. The Object Inspector uses
this value to display the property’s value. GetOrdValue() is a method defined by
TPropertyEditor and is used to retrieve the value of the property referenced by the property
editor.

SetValue() takes the string value entered by the user and assigns it to the property in the cor-
rect format. SetValue() also performs some error checking to ensure that the value is within a
specified range of values. This illustrates how you might perform error checking with your
descendant property editors. The SetOrdValue() method assigns the value to the property ref-
erenced by the property editor.

TPropertyEditor defines several methods similar to GetOrdValue() for getting the string rep-
resentation of various types. Additionally, TPropertyEditor contains the equivalent “set”
methods for setting the values in their respective format. TPropertyEditor descendants inherit
these methods. These methods are used for getting and setting the values of the properties that
the property editor references. Table 22.2 shows these methods.

TABLE 22.2 Read/Write Property Methods for TPropertyEditor

Property Type “Get” Method “Set” Method

Floating point GetFloatValue() SetFloatValue()

Event GetMethodValue() SetMethodValue()

Ordinal GetOrdValue() SetOrdValue()

String GetStrValue() SetStrValue()

Variant GetVarValue() SetVarValue(), SetVarValueAt()

To illustrate creating a new property editor, we’ll have some more fun with the solar system
example introduced in the last chapter. This time, we’ve created a simple component, TPlanet,
to represent a single planet. TPlanet contains the property PlanetName. Internal storage for
PlanetName is going to be of type integer and will hold the planet’s position in the solar sys-
tem. However, it will be displayed in the Object Inspector as the name of the planet.

So far this sounds easy, but here’s the catch: We want to enable the user to type two values to
represent the planet. The user should be able to type the planet name as a string, such as Venus,

Component-Based Development

PART III
1032

VENUS, or VeNuS. He or she should also be able to type the position of the planet in the solar
system. Therefore, for the planet Venus, the user would type the numeric value 2.

The component TPlanet is as follows:

type

TPlanetName = type Integer;

TPlanet = class(TComponent)

private

FPlanetName: TPlanetName;

published

property PlanetName: TPlanetName read FPlanetName write FPlanetName;

end;

As you can see, there’s not much to this component. It has only one property: PlanetName of
the type TPlanetName. Here, the special definition of TPlanetName is used so that it’s given its
own runtime type information, yet it’s still treated like an integer type.

This functionality doesn’t come from the TPlanet component; rather, it comes from the prop-
erty editor for the TPlanetName property type. This property editor is shown in Listing 22.4.

LISTING 22.4 PlanetPE.PAS—The Source Code for TPlanetNameProperty

unit PlanetPE;

interface

uses

Windows, SysUtils, DsgnIntF;

type

TPlanetNameProperty = class(TIntegerProperty)

public

function GetValue: string; override;

procedure SetValue(const Value: string); override;

end;

implementation

const

{ Declare a constant array containing planet names }

PlanetNames: array[1..9] of String[7] =

(‘Mercury’, ‘Venus’, ‘Earth’, ‘Mars’, ‘Jupiter’, ‘Saturn’,

Advanced Component Design Techniques

CHAPTER 22
1033

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

LISTING 22.4 Continued

‘Uranus’, ‘Neptune’, ‘Pluto’);

function TPlanetNameProperty.GetValue: string;
begin
Result := PlanetNames[GetOrdValue];

end;

procedure TPlanetNameProperty.SetValue(const Value: String);
var
PName: string[7];
i, ValErr: Integer;

begin
PName := UpperCase(Value);
i := 1;
{ Compare the Value with each of the planet names in the PlanetNames
array. If a match is found, the variable i will be less than 10 }

while (PName <> UpperCase(PlanetNames[i])) and (i < 10) do
inc(i);

{ If i is less than 10, a valid planet name was entered. Set the value
and exit this procedure. }

if i < 10 then // A valid planet name was entered.
begin
SetOrdValue(i);
Exit;

end
{ If i was greater than 10, the user might have typed in a planet number, or
an invalid planet name. Use the Val function to test if the user typed in
a number, if an ValErr is non-zero, an invalid name was entered,
otherwise, test the range of the number entered for (0 < i < 10). }

else begin
Val(Value, i, ValErr);
if ValErr <> 0 then
raise Exception.Create(Format(‘Sorry, Never heard of the planet %s.’,
[Value]));

if (i <= 0) or (i >= 10) then
raise Exception.Create(‘Sorry, that planet is not in OUR solar

system.’);
SetOrdValue(i);

end;
end;

end.

Component-Based Development

PART III
1034

First, we create our property editor, TPlanetNameProperty, which descends from
TIntegerProperty. By the way, it’s necessary to include the DsgnIntf unit in the uses clause
of this unit.

We’ve defined an array of string constants to represent the planets in the solar system by their
position from the sun. These strings will be used to display the string representation of the
planet in the Object Inspector.

As stated earlier, we have to override the GetValue() and SetValue() methods. In the
GetValue() method, we just return the string from the PlanetNames array, which is indexed by
the property value. Of course, this value must be within the range of 1–9. We handle this by
not allowing the user to enter a number out of that range in the SetValue() method.

SetValue() gets a string as it’s entered from the Object Inspector. This string can either be a
planet name or a number representing a planet’s position. If a valid planet name or planet num-
ber is entered, as determined by the code logic, the value assigned to the property is specified
by the SetOrdValue() method. If the user enters an invalid planet name or planet position, the
code raises the appropriate exception.

That’s all there is to defining a property editor. Well, not quite; it must still be registered before
it becomes known to the property to which you want to attach it.

Registering the New Property Editor
You register a property editor by using the appropriately named procedure
RegisterPropertyEditor(). This method is declared as follows:

procedure RegisterPropertyEditor(PropertyType: PTypeInfo;

ComponentClass: TClass; const PropertyName: string;
EditorClass: TPropertyEditorClass);

The first parameter, PropertyType, is a pointer to the Runtime Type Information of the prop-
erty being edited. This information is obtained by using the TypeInfo() function.
ComponentClass is used to specify to which class this property editor will apply.
PropertyName specifies the property name on the component, and the EditorClass parameter
specifies the type of property editor to use. For the TPlanet.PlanetName property, the function
looks like this:

RegisterPropertyEditor(TypeInfo(TPlanetName), TPlanet, ‘PlanetName’,

TPlanetNameProperty);

Advanced Component Design Techniques

CHAPTER 22
1035

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

TIP

Although, for the purpose of illustration, this particular property editor is registered
for use only with the TPlanet component and ‘PlanetName’ property name, you

continues

You can register the property editor along with the registration of the component in the compo-
nent’s unit, as shown in Listing 22.5.

LISTING 22.5 Planet.pas: The TPlanet Component

unit Planet;

interface

uses

Classes, SysUtils;

type

TPlanetName = type Integer;

TddgPlanet = class(TComponent)

private

FPlanetName: TPlanetName;

published

property PlanetName: TPlanetName read FPlanetName write FPlanetName;

end;

implementation

end.

Component-Based Development

PART III
1036

might choose to be less restrictive in registering your custom property editors. By set-
ting the ComponentClass parameter to nil and the PropertyName parameter to ‘’,
your property editor will work for any component’s property of type TPlanetName.

TIP

Placing the property editor registration in the Register() procedure of the compo-
nent’s unit will force all the property editor code to be linked in with your compo-
nent when it’s put into a package. For complex components, the design-time tools
may take up more code space than the components themselves. Although code size
isn’t much of an issue for a small component such as this, keep in mind that every-
thing that’s listed in the interface section of your component’s unit (such as the
Register() procedure) as well as everything it touches (such as the property editor

Editing the Property as a Whole with a Dialog
Sometimes it’s necessary to provide more editing capability than the in-place editing of the
Object Inspector. This is when it becomes necessary to use a dialog as a property editor. An
example of this would be the Font property for most Delphi components. Certainly, the makers
of Delphi could have forced the user to type the font name and other font-related information.
However, it would be unreasonable to expect the user to know this information. It’s far easier
to provide the user with a dialog where he or she can set these various attributes related to the
font and see an example before selecting it.

To illustrate using a dialog to edit a property, we’re going to extend the functionality of the
TddgRunButton component created in Chapter 21, “Writing Delphi Custom Components.”
Now the user will be able to click an ellipsis button in the Object Inspector for the
CommandLine property, which will invoke an Open File dialog from which the user can select a
file for TddgRunButton to represent.

Sample Dialog Property Editor: Extending TddgRunButton
The TddgRunButton component is shown in Listing 21.13 in Chapter 21, “Writing Delphi
Custom Components.” We won’t show it again here, but there are a few things we want to
point out. The TddgRunButton.CommandLine property is of type TCommandLine, which is
defined as follows:

TCommandLine = type string;

Again, this is a special declaration that attaches unique Runtime Type Information to this spe-
cial type. This allows you to define a property editor specific to the TCommandLine type.
Additionally, because TCommandLine is treated as a string, the property editor for editing string
properties still applies to the TCommandLine type as well.

Also, as we illustrate the property editor for the TCommandLine type, keep in mind that
TddgRunButton already has included the necessary error checking of property assignments in
the properties’ access methods. Therefore, it isn’t necessary to repeat this error checking in the
property editor’s logic.

Listing 22.6 shows the definition of the TCommandLineProperty property editor.

Advanced Component Design Techniques

CHAPTER 22
1037

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N
class type) will tag along with your component when it’s compiled into a package. For
this reason, you might want to perform registration of your property editor in a sepa-
rate unit. Furthermore, some component writers choose to create both design-time
and runtime packages for their components, whereas the property editors and other
design-time tools reside only in the design-time package. You’ll note that the pack-
ages containing this book’s code do this using the DdgStd5 runtime package and the
DdgDsgn5 design package.

LISTING 22.6 RunBtnPE.pas: The Unit Containing TCommandLineProperty

unit runbtnpe;

interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, StdCtrls, Buttons, DsgnIntF, TypInfo;

type

{ Descend from the TStringProperty class so that this editor

inherits the string property editing capabilities }

TCommandLineProperty = class(TStringProperty)

function GetAttributes: TPropertyAttributes; override;

procedure Edit; override;

end;

implementation

function TCommandLineProperty.GetAttributes: TPropertyAttributes;

begin

Result := [paDialog]; // Display a dialog in the Edit method

end;

procedure TCommandLineProperty.Edit;

{ The Edit method displays a TOpenDialog from which the user obtains

an executable file name that gets assigned to the property }

var

OpenDialog: TOpenDialog;

begin

{ Create the TOpenDialog }

OpenDialog := TOpenDialog.Create(Application);

try

{ Show only executable files }

OpenDialog.Filter := ‘Executable Files|*.EXE’;

{ If the user selects a file, then assign it to the property. }

if OpenDialog.Execute then

SetStrValue(OpenDialog.FileName);

finally

OpenDialog.Free // Free the TOpenDialog instance.

end;

Component-Based Development

PART III
1038

end;

end.

Examination of TCommandLineProperty shows that the property editor, itself, is very simple.
First, notice that it descends from TStringProperty so that the string-editing capabilities are
maintained. Therefore, in the Object Inspector, it isn’t necessary to invoke the dialog. The user
can just type the command line directly. Also, we didn’t override the SetValue() and
GetValue() methods, because TStringProperty already handles this correctly. However, it
was necessary to override the GetAttributes() method in order for the Object Inspector to
know that this property is capable of being edited with a dialog. GetAttributes() merits fur-
ther discussion.

Specifying the Property Editor’s Attributes
Every property editor must tell the Object Inspector how a property is to be edited and what
special attributes (if any) must be used when editing a property. Most of the time, the inherited
attributes from a descendant property editor will suffice. In certain circumstances, however,
you must override the GetAttributes() method of TPropertyEditor, which returns a set of
property attribute flags (TPropertyAttribute flags) that indicate special property-editing
attributes. The various TPropertyAttribute flags are shown in Table 22.3.

TABLE 22.3 TPropertyAttribute Flags

Attribute How the Property Editor Works with the Object Inspector

paValueList Returns an enumerated list of values for the property. The GetValues()
method populates the list. A drop-down arrow button appears to the right of
the property value. This applies to enumerated properties such as
TForm.BorderStyle and integer const groups such as TColor and
TCharSet.

paSubProperties Subproperties are displayed indented below the current property in outline
format. paValueList must also be set. This applies to set properties and
class properties such as TOpenDialog.Options and TForm.Font.

paDialog An ellipsis button is displayed to the right of the property in the Object
Inspector, which, when pressed, causes the property editor’s Edit()
method to invoke a dialog. This applies to properties such as TForm.Font.

paMultiSelect Properties are displayed when more than one component is selected on the
Form Designer, allowing the user to change the property values for multiple
components at once. Some properties aren’t appropriate for this capability,
such as the Name property.

Advanced Component Design Techniques

CHAPTER 22
1039

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

TABLE 22.3 Continued

paAutoUpdate SetValue() is called on each change made to the property. If this flag
isn’t set, SetValue() is called when the user presses Enter or moves off
the property in the Object Inspector. This applies to properties such as
TForm.Caption.

paFullWidthName Tells the Object Inspector that the value doesn’t need to be rendered, and as
such, the name should be rendered the full width of the inspector.

paSortList The Object Inspector sorts the list returned by GetValues().

paReadOnly The property value can’t be changed.

paRevertable The property can be reverted to its original value. Some properties, such as
nested properties, shouldn’t be reverted. TFont is an example of this.

Component-Based Development

PART III
1040

NOTE

You should take a look at DsgnIntf.pas and examine which TPropertyAttribute
flags are set for various property editors.

Setting the paDialog Attribute for TCommandLineProperty
Because TCommandLineProperty is to display a dialog, you must tell the Object Inspector to
use this capability by setting the paDialog attribute in the TCommandLineProperty.
GetAttributes() method. This will place an ellipsis button to the right of the CommandLine
property value in the Object Inspector. When the user presses this button, the
TCommandLineProperty.Edit() method will be called.

Registering the TCommandLineProperty
The final step required for implementing the TCommandLineProperty property editor is to reg-
ister it using the RegisterPropertyEditor() procedure discussed earlier in this chapter. This
procedure was added to the Register() procedure in DDGReg.pas in the DDGDsgn package:

RegisterComponents(‘DDG’, [TddgRunButton]);

RegisterPropertyEditor(TypeInfo(TCommandLine), TddgRunButton,

‘’, TCommandLineProperty);

Also, note that the units DsgnIntf and RunBtnPE had to be added to the uses clause.

Component Editors
Component editors extend the design-time behavior of your components by allowing you to
add items to the local menu associated with a particular component and by allowing you to
change the default action when a component is double-clicked in the Form Designer. You
might already be familiar with component editors without knowing it if you’ve ever used the
fields editor provided with the TTable, TQuery, and TStoredProc components.

TComponentEditor
You might not be aware of this, but a different component editor is created for each component
that’s selected in the Form Designer. The type of component editor created depends on the
component’s type, although all component editors descend from TComponentEditor. This class
is defined in the DsgnIntf unit as follows:

type

TComponentEditor = class(TInterfacedObject, IComponentEditor)

private

FComponent: TComponent;

FDesigner: IFormDesigner;

public

constructor Create(AComponent: TComponent; ADesigner: IFormDesigner);

virtual;

procedure Edit; virtual;

procedure ExecuteVerb(Index: Integer); virtual;

function GetIComponent: IComponent;

function GetDesigner: IFormDesigner;

function GetVerb(Index: Integer): string; virtual;

function GetVerbCount: Integer; virtual;

procedure Copy; virtual;

property Component: TComponent read FComponent;

property Designer: IFormDesigner read GetDesigner;

end;

Properties
The Component property of TComponentEditor is the instance of the component you’re in the
process of editing. Because this property is of the generic TComponent type, you must typecast
the property in order to access fields introduced by descendant classes.

The Designer property is the instance of TFormDesigner that’s currently hosting the applica-
tion at design time. You’ll find the complete definition for this class in the DsgnIntf.pas unit.

Methods
The Edit() method is called when the user double-clicks the component at design time. Often,
this method will invoke some sort of design dialog. The default behavior for this method is to
call ExecuteVerb(0) if GetVerbCount() returns a value of 1 or greater. You must call
Designer.Modified() if you modify the component from this (or any) method.

The GetVerbCount() method is called to retrieve the number of items that are to be added to
the local menu.

GetVerb() accepts an integer, Index, and returns a string containing the text that should appear
on the local menu in the position corresponding to Index.

Advanced Component Design Techniques

CHAPTER 22
1041

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

When an item is chosen from the local menu, the ExecuteVerb() method is called. This
method receives the zero-based index of the item selected from the local menu in the Index
parameter. You should respond by performing whatever action is necessary based on the verb
the user selected from the local menu.

The Paste() method is called whenever the component is pasted to the Clipboard. Delphi
places the component’s filed stream image on the Clipboard, but you can use this method to
paste data on the Clipboard in a different type of format.

TDefaultEditor
If a custom component editor isn’t registered for a particular component, that component will
use the default component editor, TDefaultEditor. TDefaultEditor overrides the behavior of
the Edit() method so that it searches the properties of the component and generates (or navi-
gates to) the OnCreate, OnChanged, or OnClick event (whichever it finds first).

A Simple Component
Consider the following simple custom component:

type

TComponentEditorSample = class(TComponent)

protected

procedure SayHello; virtual;

procedure SayGoodbye; virtual;

end;

procedure TComponentEditorSample.SayHello;

begin

MessageDlg(‘Hello, there!’, mtInformation, [mbOk], 0);

end;

procedure TComponentEditorSample.SayGoodbye;

begin

MessageDlg(‘See ya!’, mtInformation, [mbOk], 0);

end;

As you can see, this little guy doesn’t do much: It’s a nonvisual component that descends
directly from TComponent, and it contains two methods, SayHello() and SayGoodbye(), that
simply display message dialogs.

A Simple Component Editor
To make the component a bit more exiting, you’ll create a component editor that calls into the
component and executes its methods at design time. The minimum TComponentEditor methods

Component-Based Development

PART III
1042

that must be overridden are ExecuteVerb(), GetVerb(), and GetVerbCount(). The code for
this component editor is as follows:

type

TSampleEditor = class(TComponentEditor)

private

procedure ExecuteVerb(Index: Integer); override;

function GetVerb(Index: Integer): string; override;

function GetVerbCount: Integer; override;

end;

procedure TSampleEditor.ExecuteVerb(Index: Integer);

begin

case Index of

0: TComponentEditorSample(Component).SayHello; // call function

1: TComponentEditorSample(Component).SayGoodbye; // call function

end;

end;

function TSampleEditor.GetVerb(Index: Integer): string;

begin

case Index of

0: Result := ‘Hello’; // return hello string

1: Result := ‘Goodbye’; // return goodbye string

end;

end;

function TSampleEditor.GetVerbCount: Integer;

begin

Result := 2; // two possible verbs

end;

The GetVerbCount() method returns 2, indicating that there are two different verbs the compo-
nent editor is prepared to execute. GetVerb() returns a string for each of these verbs to appear
on the local menu. The ExecuteVerb() method calls the appropriate method inside the compo-
nent, based on the verb index it receives as a parameter.

Registering a Component Editor
Like components and property editors, component editors must also be registered with the IDE
within a unit’s Register() method. To register a component editor, call the aptly named
RegisterComponentEditor() procedure, which is defined as follows:

procedure RegisterComponentEditor(ComponentClass: TComponentClass;

ComponentEditor: TComponentEditorClass);

Advanced Component Design Techniques

CHAPTER 22
1043

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

The first parameter to this function is the component type for which you want to register a
component editor, and the second parameter is the component editor itself.

Listing 22.7 shows the CompEdit.pas unit, which includes the component, component editor,
and registration calls. Figure 22.3 shows the local menu associated with the
TComponentEditorSample component, and Figure 22.4 displays the result of selecting one of
the verbs from the local menu.

LISTING 22.7 CompEdit.pas—Illustrates a Component Editor

unit CompEdit;

interface

uses

SysUtils, Windows, Messages, Classes, Graphics, Controls, Forms, Dialogs,

DsgnIntf;

type

TComponentEditorSample = class(TComponent)

protected

procedure SayHello; virtual;

procedure SayGoodbye; virtual;

end;

TSampleEditor = class(TComponentEditor)

private

procedure ExecuteVerb(Index: Integer); override;

function GetVerb(Index: Integer): string; override;

function GetVerbCount: Integer; override;

end;

implementation

{ TComponentEditorSample }

procedure TComponentEditorSample.SayHello;

begin

MessageDlg(‘Hello, there!’, mtInformation, [mbOk], 0);

Component-Based Development

PART III
1044

end;

procedure TComponentEditorSample.SayGoodbye;

begin

MessageDlg(‘See ya!’, mtInformation, [mbOk], 0);

end;

{ TSampleEditor }

const

vHello = ‘Hello’;

vGoodbye = ‘Goodbye’;

procedure TSampleEditor.ExecuteVerb(Index: Integer);

begin

case Index of

0: TComponentEditorSample(Component).SayHello; // call function

1: TComponentEditorSample(Component).SayGoodbye; // call function

end;

end;

function TSampleEditor.GetVerb(Index: Integer): string;

begin

case Index of

0: Result := vHello; // return hello string

1: Result := vGoodbye; // return goodbye string

end;

end;

function TSampleEditor.GetVerbCount: Integer;

begin

Result := 2; // two possible verbs

end;

end.

Advanced Component Design Techniques

CHAPTER 22
1045

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

FIGURE 22.3
The local menu of TComponentEditorSample.

Component-Based Development

PART III
1046

FIGURE 22.4
The result of selecting a verb.

Streaming Nonpublished Component Data
Chapter 21 indicates that the Delphi IDE automatically knows how to stream the published
properties of a component to and from a DFM file. What happens, however, when you have
nonpublished data that you want to be persistent by keeping it in the DFM file? Fortunately,
Delphi components provide a mechanism for writing and reading programmer-defined data to
and from the DFM file.

Defining Properties
The first step in defining persistent nonpublished “properties” is to override a component’s
DefineProperties() method. This method is inherited from TPersistent, and it’s defined as
follows:

procedure DefineProperties(Filer: TFiler); virtual;

By default, this method handles reading and writing published properties to and from the DFM
file. You can override this method, and, after calling inherited, you can call the TFiler
method DefineProperty() or DefineBinaryProperty() once for each piece of data you want
to become part of the DFM file. These methods are defined, respectively, as follows:

procedure DefineProperty(const Name: string; ReadData: TReaderProc;

WriteData: TWriterProc; HasData: Boolean); virtual;

procedure DefineBinaryProperty(const Name: string; ReadData,

WriteData: TStreamProc; HasData: Boolean); virtual;

DefineProperty() is used to make persistent standard data types such as strings, integers,
Booleans, chars, floats, and enumerated types. DefineBinaryProperty() is used to provide
access to raw binary data, such as a graphic or sound, written to the DFM file.

For both of these functions, the Name parameter identifies the property name that should be
written to the DFM file. This doesn’t have to be the same as the internal name of the data field
you’re accessing. The ReadData and WriteData parameters differ in type between
DefineProperty() and DefineBinaryProperty(), but they serve the same purpose: These
methods are called in order to write or read data to or from the DFM file. (We’ll discuss these
in more detail in just a moment.) The HasData parameter indicates whether the “property” has
data that it needs to store.

The ReadData and WriteData parameters of DefineProperty() are of type TReaderProc and
TWriterProc, respectively. These types are defined as follows:

type

TReaderProc = procedure(Reader: TReader) of object;

TWriterProc = procedure(Writer: TWriter) of object;

TReader and TWriter are specialized descendants of TFiler that have additional methods for
reading and writing native types. Methods of these types provide the conduit between pub-
lished component data and the DFM file.

The ReadData and WriteData parameters of DefineBinaryProperty() are of type
TStreamProc, which is defined as follows:

type

TStreamProc = procedure(Stream: TStream) of object;

Advanced Component Design Techniques

CHAPTER 22
1047

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

Because TStreamProc-type methods receive only TStream as a parameter, this allows you to
read and write binary data very easily to and from the stream. Like the other method types
described earlier, methods of this type provide the conduit between nonstandard data and the
DFM file.

An Example of DefineProperty()
In order to bring all this rather technical information together, Listing 22.8 shows the
DefProp.pas unit. This unit illustrates the use of DefineProperty() by providing storage for
two private data fields: a string and an integer.

LISTING 22.8 DefProp.pas—Illustrates Using the DefineProperty() Function

unit DefProp;

interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs;

type

TDefinePropTest = class(TComponent)

private

FString: String;

FInteger: Integer;

procedure ReadStrData(Reader: TReader);

procedure WriteStrData(Writer: TWriter);

procedure ReadIntData(Reader: TReader);

procedure WriteIntData(Writer: TWriter);

protected

procedure DefineProperties(Filer: TFiler); override;

public

constructor Create(AOwner: TComponent); override;

end;

implementation

constructor TDefinePropTest.Create(AOwner: TComponent);

begin

inherited Create(AOwner);

{ Put data in private fields }

FString := ‘The following number is the answer...’;

FInteger := 42;

end;

Component-Based Development

PART III
1048

procedure TDefinePropTest.DefineProperties(Filer: TFiler);

begin

inherited DefineProperties(Filer);

{ Define new properties and reader/writer methods }

Filer.DefineProperty(‘StringProp’, ReadStrData, WriteStrData,

FString <> ‘’);

Filer.DefineProperty(‘IntProp’, ReadIntData, WriteIntData, True);

end;

procedure TDefinePropTest.ReadStrData(Reader: TReader);

begin

FString := Reader.ReadString;

end;

procedure TDefinePropTest.WriteStrData(Writer: TWriter);

begin

Writer.WriteString(FString);

end;

procedure TDefinePropTest.ReadIntData(Reader: TReader);

begin

FInteger := Reader.ReadInteger;

end;

procedure TDefinePropTest.WriteIntData(Writer: TWriter);

begin

Writer.WriteInteger(FInteger);

end;

end.

Advanced Component Design Techniques

CHAPTER 22
1049

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

CAUTION

Always use the ReadString() and WriteString() methods of TReader and TWriter
to read and write string data. Never use the similar-looking ReadStr() and
WriteStr() methods because they’ll corrupt your DFM file.

To demonstrate that the proof is in the pudding, Figure 22.5 shows a form containing a
TDefinePropTest component, as text, in the Delphi Code Editor. Notice that the new proper-
ties have been written to the file.

FIGURE 22.5
Viewing a form as text to see the properties.

TddgWaveFile: An Example of DefineBinaryProperty()
We mentioned earlier that a good time to use DefineBinaryProperty() is when you need to
store graphic or sound information along with a component. In fact, VCL uses this technique
for storing images associated with components—the Glyph of a TBitBtn, for example, or the
Icon of a TForm. In this section, you’ll learn how to use this technique when storing the sound
associated with the TddgWaveFile component.

Component-Based Development

PART III
1050

NOTE

TddgWaveFile is quite a full-featured component, complete with a custom property,
property editor, and component editor to allow you to play sounds at design time.
You’ll be able to pick through the code for all this a little later in the chapter, but for
now we’re going to focus the discussion on the mechanism for storing the binary
property.

The DefineProperties() method for TddgWaveFile is as follows:

procedure TddgWaveFile.DefineProperties(Filer: TFiler);

{ Defines binary property called “Data” for FData field. }

{ This allows FData to be read from and written to DFM file. }

function DoWrite: Boolean;

begin

if Filer.Ancestor <> nil then

Result := not (Filer.Ancestor is TddgWaveFile) or

not Equal(TddgWaveFile(Filer.Ancestor))

else

Result := not Empty;

end;

begin

inherited DefineProperties(Filer);

Filer.DefineBinaryProperty(‘Data’, ReadData, WriteData, DoWrite);

end;

This method defines a binary property called Data, which is read and written using the compo-
nent’s ReadData() and WriteData() methods. Additionally, data is written only if the return
value of DoWrite() is True. (You’ll learn more about DoWrite() in just moment.)

The ReadData() and WriteData() methods are defined as follows:

procedure TddgWaveFile.ReadData(Stream: TStream);

{ Reads WAV data from DFM stream. }

begin

LoadFromStream(Stream);

end;

procedure TddgWaveFile.WriteData(Stream: TStream);

{ Writes WAV data to DFM stream }

begin

SaveToStream(Stream);

end;

As you can see, there isn’t much to these methods; they simply call the LoadFromStream() and
SaveToStream() methods, which are also defined by the TddgWaveFile component. The
LoadFromStream() method is as follows:

procedure TddgWaveFile.LoadFromStream(S: TStream);

{ Loads WAV data from stream S. This procedure will free }

{ any memory previously allocated for FData. }

begin

if not Empty then

FreeMem(FData, FDataSize);

FDataSize := 0;

FData := AllocMem(S.Size);

FDataSize := S.Size;

S.Read(FData^, FDataSize);

end;

Advanced Component Design Techniques

CHAPTER 22
1051

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

This method first checks to see whether memory has been previously allocated by testing the
value of the FDataSize field. If it’s greater than zero, the memory pointed to by the FData field
is freed. At that point, a new block of memory is allocated for FData, and FDataSize is set to
the size of the incoming data stream. The contents of the stream are then read into the FData
pointer.

The SaveToStream() method is much simpler; it’s defined as follows:

procedure TddgWaveFile.SaveToStream(S: TStream);

{ Saves WAV data to stream S. }

begin

if FDataSize > 0 then

S.Write(FData^, FDataSize);

end;

This method writes the data pointed to by pointer FData to TStream S.

The local DoWrite() function inside the DefineProperties() method determines whether the
Data property needs to be streamed. Of course, if FData is empty, there’s no need to stream
data. Additionally, you must take extra measures to ensure that your component works cor-
rectly with form inheritance: You must check to see whether the Ancestor property for Filer
is non-nil. If it is and it points to an ancestor version of the current component, you must
check to see whether the data you’re about to write is different than the ancestor. If you don’t
perform these additional tests, a copy of the data (the wave file, in this case) will be written in
each of the descendant forms, and changes to the ancestor’s wave file won’t be copied to the
descendant forms.

Component-Based Development

PART III
1052

CAUTION

For the reasons just explained, DefineProperties() is one area where you’ll find a
distinct difference between 16- and 32-bit Delphi. For the most part, Borland tried to
make form inheritance transparent to the component writer. This is one place where
it couldn’t be hidden. Although Delphi 1.0 components will function in 32-bit Delphi,
they won’t be able to propagate updates in form inheritance without modification.

Figure 22.6 shows a view of the Delphi Code Editor displaying, as text, a form containing
TddgWaveFile.

Listing 22.9 shows Wavez.pas, which includes the complete source code for the component.

FIGURE 22.6
Viewing the Data property in the Code Editor.

LISTING 22.9 Wavez.pas—Illustrates a Component Encapsulating a Wave File

unit Wavez;

interface

uses

SysUtils, Classes;

type

{ Special string “descendant” used to make a property editor. }

TWaveFileString = type string;

EWaveError = class(Exception);

TWavePause = (wpAsync, wpsSync);

TWaveLoop = (wlNoLoop, wlLoop);

TddgWaveFile = class(TComponent)

private

FData: Pointer;

FDataSize: Integer;

FWaveName: TWaveFileString;

Advanced Component Design Techniques

CHAPTER 22
1053

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

LISTING 22.9 Continued

FWavePause: TWavePause;

FWaveLoop: TWaveLoop;

FOnPlay: TNotifyEvent;

FOnStop: TNotifyEvent;

procedure SetWaveName(const Value: TWaveFileString);

procedure WriteData(Stream: TStream);

procedure ReadData(Stream: TStream);

protected

procedure DefineProperties(Filer: TFiler); override;

public

destructor Destroy; override;

function Empty: Boolean;

function Equal(Wav: TddgWaveFile): Boolean;

procedure LoadFromFile(const FileName: String);

procedure LoadFromStream(S: TStream);

procedure Play;

procedure SaveToFile(const FileName: String);

procedure SaveToStream(S: TStream);

procedure Stop;

published

property WaveLoop: TWaveLoop read FWaveLoop write FWaveLoop;

property WaveName: TWaveFileString read FWaveName write SetWaveName;

property WavePause: TWavePause read FWavePause write FWavePause;

property OnPlay: TNotifyEvent read FOnPlay write FOnPlay;

property OnStop: TNotifyEvent read FOnStop write FOnStop;

end;

implementation

uses MMSystem, Windows;

{ TddgWaveFile }

destructor TddgWaveFile.Destroy;

{ Ensures that any allocated memory is freed }

begin

if not Empty then

FreeMem(FData, FDataSize);

inherited Destroy;

end;

Component-Based Development

PART III
1054

function StreamsEqual(S1, S2: TMemoryStream): Boolean;

begin

Result := (S1.Size = S2.Size) and CompareMem(S1.Memory, S2.Memory, S1.Size);

end;

procedure TddgWaveFile.DefineProperties(Filer: TFiler);

{ Defines binary property called “Data” for FData field. }

{ This allows FData to be read from and written to DFM file. }

function DoWrite: Boolean;

begin

if Filer.Ancestor <> nil then

Result := not (Filer.Ancestor is TddgWaveFile) or

not Equal(TddgWaveFile(Filer.Ancestor))

else

Result := not Empty;

end;

begin

inherited DefineProperties(Filer);

Filer.DefineBinaryProperty(‘Data’, ReadData, WriteData, DoWrite);

end;

function TddgWaveFile.Empty: Boolean;

begin

Result := FDataSize = 0;

end;

function TddgWaveFile.Equal(Wav: TddgWaveFile): Boolean;

var

MyImage, WavImage: TMemoryStream;

begin

Result := (Wav <> nil) and (ClassType = Wav.ClassType);

if Empty or Wav.Empty then

begin

Result := Empty and Wav.Empty;

Exit;

end;

if Result then

begin

MyImage := TMemoryStream.Create;

try

Advanced Component Design Techniques

CHAPTER 22
1055

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

LISTING 22.9 Continued

SaveToStream(MyImage);

WavImage := TMemoryStream.Create;

try

Wav.SaveToStream(WavImage);

Result := StreamsEqual(MyImage, WavImage);

finally

WavImage.Free;

end;

finally

MyImage.Free;

end;

end;

end;

procedure TddgWaveFile.LoadFromFile(const FileName: String);

{ Loads WAV data from FileName. Note that this procedure does }

{ not set the WaveName property. }

var

F: TFileStream;

begin

F := TFileStream.Create(FileName, fmOpenRead);

try

LoadFromStream(F);

finally

F.Free;

end;

end;

procedure TddgWaveFile.LoadFromStream(S: TStream);

{ Loads WAV data from stream S. This procedure will free }

{ any memory previously allocated for FData. }

begin

if not Empty then

FreeMem(FData, FDataSize);

FDataSize := 0;

FData := AllocMem(S.Size);

FDataSize := S.Size;

S.Read(FData^, FDataSize);

end;

procedure TddgWaveFile.Play;

Component-Based Development

PART III
1056

{ Plays the WAV sound in FData using the parameters found in }

{ FWaveLoop and FWavePause. }

const

LoopArray: array[TWaveLoop] of DWORD = (0, SND_LOOP);

PauseArray: array[TWavePause] of DWORD = (SND_ASYNC, SND_SYNC);

begin

{ Make sure component contains data }

if Empty then

raise EWaveError.Create(‘No wave data’);

if Assigned(FOnPlay) then FOnPlay(Self); // fire event

{ attempt to play wave sound }

if not PlaySound(FData, 0, SND_MEMORY or PauseArray[FWavePause] or

LoopArray[FWaveLoop]) then

raise EWaveError.Create(‘Error playing sound’);

end;

procedure TddgWaveFile.ReadData(Stream: TStream);

{ Reads WAV data from DFM stream. }

begin

LoadFromStream(Stream);

end;

procedure TddgWaveFile.SaveToFile(const FileName: String);

{ Saves WAV data to file FileName. }

var

F: TFileStream;

begin

F := TFileStream.Create(FileName, fmCreate);

try

SaveToStream(F);

finally

F.Free;

end;

end;

procedure TddgWaveFile.SaveToStream(S: TStream);

{ Saves WAV data to stream S. }

begin

if not Empty then

S.Write(FData^, FDataSize);

end;

Advanced Component Design Techniques

CHAPTER 22
1057

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

LISTING 22.9 Continued

procedure TddgWaveFile.SetWaveName(const Value: TWaveFileString);

{ Write method for WaveName property. This method is in charge of }

{ setting WaveName property and loading WAV data from file Value. }

begin

if Value <> ‘’ then begin

FWaveName := ExtractFileName(Value);

{ don’t load from file when loading from DFM stream }

{ because DFM stream will already contain data. }

if (not (csLoading in ComponentState)) and FileExists(Value) then

LoadFromFile(Value);

end

else begin

{ if Value is an empty string, that is the signal to free }

{ memory allocated for WAV data. }

FWaveName := ‘’;

if not Empty then

FreeMem(FData, FDataSize);

FDataSize := 0;

end;

end;

procedure TddgWaveFile.Stop;

{ Stops currently playing WAV sound }

begin

if Assigned(FOnStop) then FOnStop(Self); // fire event

PlaySound(Nil, 0, SND_PURGE);

end;

procedure TddgWaveFile.WriteData(Stream: TStream);

{ Writes WAV data to DFM stream }

begin

SaveToStream(Stream);

end;

end.

Property Categories
As you learned back in Chapter 1, “Windows Programming in Delphi 5,” a feature new to
Delphi 5 is property categories. This feature provides a means for the properties of VCL com-
ponents to be specified as belonging to particular categories and for the Object Inspector to be

Component-Based Development

PART III
1058

sorted by these categories. Properties can be registered as belonging to a particular category
using the RegisterPropertyInCategory() and RegisterPropertiesInCategory() functions
declared in the DsgnIntf unit. The former enables you to register a single property for a cate-
gory, whereas the latter allows you to register multiple properties with one call.

RegisterPropertyInCategory() is overloaded in order to provide four different versions of
this function to suit your exact needs. All the versions of this function take a
TPropertyCategoryClass as the first parameter, describing the category. From there, each of
these versions takes a different combination of property name, property type, and component
class to enable you to choose the best method for registering your properties. The various ver-
sions of RegisterPropertyInCategory() are shown here:

function RegisterPropertyInCategory(ACategoryClass: TPropertyCategoryClass;
const APropertyName: string): TPropertyFilter; overload;

function RegisterPropertyInCategory(ACategoryClass: TPropertyCategoryClass;
AComponentClass: TClass; const APropertyName: string): TPropertyFilter
overload;

function RegisterPropertyInCategory(ACategoryClass: TPropertyCategoryClass;
APropertyType: PTypeInfo; const APropertyName: string): TPropertyFilter;
overload;

function RegisterPropertyInCategory(ACategoryClass: TPropertyCategoryClass;
APropertyType: PTypeInfo): TPropertyFilter; overload;

These functions are also smart enough to understand wildcard symbols, so you can, for exam-
ple, add all properties that match ‘Data*’ to a particular category. Refer to the online help for
the TMask class for a complete list of supported wildcard characters and their behavior.

RegisterPropertiesInCategory() comes in three overloaded variations:

function RegisterPropertiesInCategory(ACategoryClass: TPropertyCategoryClass;
const AFilters: array of const): TPropertyCategory; overload;

function RegisterPropertiesInCategory(ACategoryClass: TPropertyCategoryClass;
AComponentClass: TClass; const AFilters: array of string): TPropertyCategory;
overload;

function RegisterPropertiesInCategory(ACategoryClass: TPropertyCategoryClass;
APropertyType: PTypeInfo; const AFilters: array of string):

TPropertyCategory;
overload;

Category Classes
The TPropertyCategoryClass type is a class reference for a TPropertyCategory.
TPropertyCategory is the base class for all standard property categories in VCL. There are 12
standard property categories, and these classes are described in Table 22.4.

Advanced Component Design Techniques

CHAPTER 22
1059

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

TABLE 22.4 Standard Property Category Classes

Class Name Description

TactionCategory Properties related to runtime actions. The Enabled and Hint proper-
ties of TControl are in this category.

TDatabaseCategory Properties related to database operations. The DatabaseName and
SQL properties of TQuery are in this category.

TDragNDropCategory Properties related to drag-and-drop and docking operations. The
DragCursor and DragKind properties of TControl are in this
category.

THelpCategory Properties related to using online help and hints. The HelpContext
and Hint properties of TWinControl are in this category.

TLayoutCategory Properties related to the visual display of a control at design time.
The Top and Left properties of TControl are in this category.

TLegacyCategory Properties related to obsolete operations. The Ctl3D and
ParentCtl3D properties of TWinControl are in this category.

TLinkageCategory Properties related to associating or linking one component to another.
The DataSet property of TDataSource is in this category.

TLocaleCategory Properties related to international locales. The BiDiMode and
ParentBiDiMode properties of TControl are in this category.

TLocalizableCategory Properties related to database operations. The DatabaseName and
SQL properties of TQuery are in this category.

TMiscellaneousCategory Properties that either do not fit a category, do not need to be catego-
rized, or are not explicitly registered to a specific category. The
AllowAllUp and Name properties of TSpeedButton are in this
category.

TVisualCategory Properties related to the visual display of a control at runtime; the
Align and Visible properties of TControl are in this category.

TInputCategory Properties related to the input of data (they need not be related to
database operations). The Enabled and ReadOnly properties of
TEdit are in this category.

As an example, let’s say you’ve written a component called TNeato with a property called
Keen, and you wish to register the Keen property as a member of the Action category repre-
sented by TActionCategory. You could do this by adding a call to
RegisterPropertyInCategory() to the Register() procedure for your control, as shown
here:

RegisterPropertyInCategory(TActionCategory, TNeato, ‘Keen’);

Component-Based Development

PART III
1060

Custom Categories
As you’ve already learned, a property category is represented in code as a class that descends
from TPropertyCategory. How difficult is it, then, to create your own property categories in
this way? Quite easy, actually. In most cases, all you need to do is override the Name() and
Description() virtual class functions of TPropertyCategory to return information specific to
your category.

As an illustration, we’ll create a new Sound category that will be used to categorize some of
the properties of the TddgWaveFile component, which you learned about earlier in this chapter.
This new category class, called TSoundCategory, is shown in Listing 22.10. This listing con-
tains WavezEd.pas, which is a file that contains the component’s category, property editor, and
component editor.

LISTING 22.10 WavezEd.pas—Illustrates a Property Editor for the Wave File Component

unit WavezEd;

interface

uses DsgnIntf;

type
{ Category for some of TddgWaveFile’s properties }
TSoundCategory = class(TPropertyCategory)
public
class function Name: string; override;
class function Description: string; override;

end;

{ Property editor for TddgWaveFile’s WaveName property }
TWaveFileStringProperty = class(TStringProperty)
public
procedure Edit; override;
function GetAttributes: TPropertyAttributes; override;

end;

{ Component editor for TddgWaveFile. Allows user to play and stop }
{ WAV sounds from local menu in IDE. }
TWaveEditor = class(TComponentEditor)
private
procedure EditProp(PropertyEditor: TPropertyEditor);

public
procedure Edit; override;
procedure ExecuteVerb(Index: Integer); override;
function GetVerb(Index: Integer): string; override;

Advanced Component Design Techniques

CHAPTER 22
1061

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

LISTING 22.10 Continued

function GetVerbCount: Integer; override;
end;

implementation

uses TypInfo, Wavez, Classes, Controls, Dialogs;

{ TSoundCategory }

class function TSoundCategory.Name: string;
begin
Result := ‘Sound’;

end;

class function TSoundCategory.Description: string;
begin
Result := ‘Properties dealing with the playing of sounds’

end;

{ TWaveFileStringProperty }

procedure TWaveFileStringProperty.Edit;
{ Executed when user clicks the ellipses button on the WavName }
{ property in the Object Inspector. This method allows the user }
{ to pick a file from an OpenDialog and sets the property value. }
begin
with TOpenDialog.Create(nil) do
try
{ Set up properties for dialog }
Filter := ‘Wav files|*.wav|All files|*.*’;
DefaultExt := ‘*.wav’;
{ Put current value in the FileName property of dialog }
FileName := GetStrValue;
{ Execute dialog and set property value if dialog is OK }
if Execute then
SetStrValue(FileName);

finally
Free;

end;
end;

function TWaveFileStringProperty.GetAttributes: TPropertyAttributes;
{ Indicates the property editor will invoke a dialog. }
begin
Result := [paDialog];

end;

Component-Based Development

PART III
1062

{ TWaveEditor }

const
VerbCount = 2;
VerbArray: array[0..VerbCount - 1] of string[7] = (‘Play’, ‘Stop’);

procedure TWaveEditor.Edit;
{ Called when user double-clicks on the component at design time. }
{ This method calls the GetComponentProperties method in order to }
{ invoke the Edit method of the WaveName property editor. }
var
Components: TDesignerSelectionList;

begin
Components := TDesignerSelectionList.Create;
try
Components.Add(Component);
GetComponentProperties(Components, tkAny, Designer, EditProp);

finally
Components.Free;

end;
end;

procedure TWaveEditor.EditProp(PropertyEditor: TPropertyEditor);
{ Called once per property in response to GetComponentProperties }
{ call. This method looks for the WaveName property editor and }
{ calls its Edit method. }
begin
if PropertyEditor is TWaveFileStringProperty then begin
TWaveFileStringProperty(PropertyEditor).Edit;
Designer.Modified; // alert Designer to modification

end;
end;

procedure TWaveEditor.ExecuteVerb(Index: Integer);
begin
case Index of
0: TddgWaveFile(Component).Play;
1: TddgWaveFile(Component).Stop;

end;
end;

function TWaveEditor.GetVerb(Index: Integer): string;
begin
Result := VerbArray[Index];

end;

Advanced Component Design Techniques

CHAPTER 22
1063

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

LISTING 22.10 Continued

function TWaveEditor.GetVerbCount: Integer;
begin
Result := VerbCount;

end;

end.

With the category class defined, all that needs to be done is register the properties for the cate-
gory using one of the registration functions. This is done in the Register() procedure for
TddgWaveFile using the following line of code:

RegisterPropertiesInCategory(TSoundCategory, TddgWaveFile,
[‘WaveLoop’, ‘WaveName’, ‘WavePause’]);

Figure 22.7 shows the Object Inspector view of the categorized properties of a TddgWaveFile
component.

Component-Based Development

PART III
1064

FIGURE 22.7
Viewing the categorized properties of TddgWaveFile.

Lists of Components: TCollection and
TCollectionItem
It’s common for components to maintain or own a list of items such as data types, records,
objects, or even other components. In some cases, it’s suitable to encapsulate this list within its
own object and then make this object a property of the owner component. An example of this
arrangement is the Lines property of a TMemo component. Lines is a TStrings object type that
encapsulates a list of strings. With this arrangement, the TStrings object is responsible for the
streaming mechanism used to store its lines to the form file when the user saves the form.

What if you wanted to save a list of items such as components or objects that weren’t already
encapsulated by an existing class such as TStrings? Well, you could create a class that per-
forms the streaming of the listed items and then make that a property of the owner component.
Alternatively, you could override the default streaming mechanism of the owner component so
that it knows how to stream its list of items. However, a better solution would be to take advan-
tage of the TCollection and TCollectionItem classes.

The TCollection class is an object used to store a list of TCollectionItem objects.
TCollection, itself, isn’t a component but rather a descendant of TPersistent. Typically,
TCollection is associated with an existing component.

To use TCollection to store a list of items, you would derive a descendant class from
TCollection, which you could call TNewCollection. TNewCollection will serve as a property
type for a component. Then, you must derive a class from the TCollectionItem class, which
you could call TNewCollectionItem. TNewCollection will maintain a list of
TNewCollectionItem objects. The beauty of this is that data belonging to TNewCollectionItem
that needs to be streamed only needs to be published by TNewCollectionItem. Delphi already
knows how to stream published properties.

An example of where TCollection is used is with the TStatusBar component. TStatusBar is
a TWinControl descendant. One of its properties is Panels. TStatusBar.Panels is of type
TStatusPanels, which is a TCollection descendant and defined as follows:

type

TStatusPanels = class(TCollection)

private

FStatusBar: TStatusBar;

function GetItem(Index: Integer): TStatusPanel;

procedure SetItem(Index: Integer; Value: TStatusPanel);

protected

procedure Update(Item: TCollectionItem); override;

public

constructor Create(StatusBar: TStatusBar);

function Add: TStatusPanel;

property Items[Index: Integer]: TStatusPanel read GetItem write SetItem;

default;

end;

TStatusPanels stores a list of TCollectionItem descendants, TStatusPanel, as defined here:

type

TStatusPanel = class(TCollectionItem)

private

FText: string;

FWidth: Integer;

Advanced Component Design Techniques

CHAPTER 22
1065

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

FAlignment: TAlignment;

FBevel: TStatusPanelBevel;

FStyle: TStatusPanelStyle;

procedure SetAlignment(Value: TAlignment);

procedure SetBevel(Value: TStatusPanelBevel);

procedure SetStyle(Value: TStatusPanelStyle);

procedure SetText(const Value: string);

procedure SetWidth(Value: Integer);

public

constructor Create(Collection: TCollection); override;

procedure Assign(Source: TPersistent); override;

published

property Alignment: TAlignment read FAlignment

write SetAlignment default taLeftJustify;

property Bevel: TStatusPanelBevel read FBevel

write SetBevel default pbLowered;

property Style: TStatusPanelStyle read FStyle write SetStyle

default psText;

property Text: string read FText write SetText;

property Width: Integer read FWidth write SetWidth;

end;

The TStatusPanel properties in the published section of the class declaration will automati-
cally be streamed by Delphi. TStatusPanel takes a TCollection parameter in its Create()
constructor, and it associates itself with that TCollection. Likewise, TStatusPanels takes the
TStatusBar component in its constructor to which it associates itself. The TCollection engine
knows how to deal with the streaming of TCollectionItem components and also defines some
methods and properties for manipulating the items maintained in TCollection. You can look
these up in the online help.

To illustrate how you might use these two new classes, we’ve created the TddgLaunchPad com-
ponent. TddgLaunchPad will enable the user to store a list of TddgRunButton components,
which we created in Chapter 21.

TddgLaunchPad is a descendant of the TScrollBox component. One of the properties of
TddgLaunchPad is RunButtons, a TCollection descendant. RunButtons maintains a list of
TRunBtnItem components. TRunBtnItem is a TCollectionItem descendant whose properties
are used to create a TddgRunButton component, which is placed on TddgLaunchPad. In the
following sections, we’ll discuss how we created this component.

Defining the TCollectionItem Class: TRunBtnItem
The first step is to define the item to be maintained in a list. For TddgLaunchPad, this would be
a TddgRunButton component. Therefore, each TRunBtnItem instance must associate itself with

Component-Based Development

PART III
1066

a TddgRunButton component. The following code shows a partial definition of the
TRunBtnItem class:

type

TRunBtnItem = class(TCollectionItem)

private

FCommandLine: String; // Store the command line

FLeft: Integer; // Store the positional properties for the

FTop: Integer; // TddgRunButton.

FRunButton: TddgRunButton; // Reference to a TddgRunButton

·

public

constructor Create(Collection: TCollection); override;

published

{ The published properties will be streamed }

property CommandLine: String read FCommandLine write SetCommandLine;

property Left: Integer read FLeft write SetLeft;

property Top: Integer read FTop write SetTop;

end;

Notice that TRunBtnItem keeps a reference to a TddgRunButton component, yet it only streams
the properties required to build a TddgRunButton. At first you might think that because
TRunBtnItem associates itself with a TddgRunButton, it could just publish the component and
let the streaming engine do the rest. Well, this poses some problems with the streaming engine
and how it handles the streaming of TComponent classes differently from TPersistent classes.
The fundamental rule here is that the streaming system is responsible for creating new
instances for every TComponent-derived class name it finds in a stream, whereas it assumes
TPersistent instances already exist does not attempt to instantiate new ones. Following this
rule, we stream the information required of the TddgRunButton and then we create the
TddgRunButton in the TRunBtnItem constructor, which we’ll illustrate shortly.

Defining the TCollection Class: TRunButtons
The next step is to define the object that will maintain this list of TRunBtnItem components.
We already said that this object must be a TCollection descendant. We call this class
TRunButtons; its definition is as follows:

type

TRunButtons = class(TCollection)

private

FLaunchPad: TddgLaunchPad; // Keep a reference to the TddgLaunchPad

function GetItem(Index: Integer): TRunBtnItem;

procedure SetItem(Index: Integer; Value: TRunBtnItem);

protected

Advanced Component Design Techniques

CHAPTER 22
1067

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

procedure Update(Item: TCollectionItem); override;

public

constructor Create(LaunchPad: TddgLaunchPad);

function Add: TRunBtnItem;

procedure UpdateRunButtons;

property Items[Index: Integer]: TRunBtnItem read GetItem

write SetItem; default;

end;

TRunButtons associates itself with a TddgLaunchPad component that we’ll show a bit later. It
does this in its Create() constructor, which, as you can see, takes a TddgLaunchPad compo-
nent as its parameter. Notice the various properties and methods that have been added to allow
the user to manipulate the individual TRunBtnItem classes. In particular, the Items property is
an array to the TRunBtnItem list.

The use of the TRunBtnItem and TRunButtons classes will become clearer as we discuss the
implementation of the TddgLaunchPad component.

Implementing the TddgLaunchPad, TRunBtnItem,
and TRunButtons Objects
The TddgLaunchPad component has a property of the type TRunButtons. Its implementation, as
well as the implementation of TRunBtnItem and TRunButtons, is shown in Listing 22.11.

LISTING 22.11 LnchPad.pas—Illustrates the TddgLaunchPad Implementation

unit LnchPad;

interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, RunBtn, ExtCtrls;

type

TddgLaunchPad = class;

TRunBtnItem = class(TCollectionItem)

private

FCommandLine: string; // Store the command line

FLeft: Integer; // Store the positional properties for the

FTop: Integer; // TddgRunButton.

FRunButton: TddgRunButton; // Reference to a TddgRunButton

FWidth: Integer; // Keep track of the width and height

Component-Based Development

PART III
1068

FHeight: Integer;

procedure SetCommandLine(const Value: string);

procedure SetLeft(Value: Integer);

procedure SetTop(Value: Integer);

public

constructor Create(Collection: TCollection); override;

destructor Destroy; override;

procedure Assign(Source: TPersistent); override;

property Width: Integer read FWidth;

property Height: Integer read FHeight;

published

{ The published properties will be streamed }

property CommandLine: String read FCommandLine

write SetCommandLine;

property Left: Integer read FLeft write SetLeft;

property Top: Integer read FTop write SetTop;

end;

TRunButtons = class(TCollection)

private

FLaunchPad: TddgLaunchPad; // Keep a reference to the TddgLaunchPad

function GetItem(Index: Integer): TRunBtnItem;

procedure SetItem(Index: Integer; Value: TRunBtnItem);

protected

procedure Update(Item: TCollectionItem); override;

public

constructor Create(LaunchPad: TddgLaunchPad);

function Add: TRunBtnItem;

procedure UpdateRunButtons;

property Items[Index: Integer]: TRunBtnItem read

GetItem write SetItem; default;

end;

TddgLaunchPad = class(TScrollBox)

private

FRunButtons: TRunButtons;

TopAlign: Integer;

LeftAlign: Integer;

procedure SeTRunButtons(Value: TRunButtons);

procedure UpdateRunButton(Index: Integer);

public

constructor Create(AOwner: TComponent); override;

Advanced Component Design Techniques

CHAPTER 22
1069

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

LISTING 22.11 Continued

destructor Destroy; override;

procedure GetChildren(Proc: TGetChildProc; Root: TComponent); override;

published

property RunButtons: TRunButtons read FRunButtons write SeTRunButtons;

end;

implementation

{ TRunBtnItem }

constructor TRunBtnItem.Create(Collection: TCollection);

{ This constructor gets the TCollection that owns this TRunBtnItem. }

begin

inherited Create(Collection);

{ Create an FRunButton instance. Make the launch pad the owner

and parent. Then initialize its various properties. }

FRunButton := TddgRunButton.Create(TRunButtons(Collection).FLaunchPad);

FRunButton.Parent := TRunButtons(Collection).FLaunchPad;

FWidth := FRunButton.Width; // Keep track of the width and the

FHeight := FRunButton.Height; // height.

end;

destructor TRunBtnItem.Destroy;

begin

FRunButton.Free; // Destroy the TddgRunButton instance.

inherited Destroy; // Call the inherited Destroy destructor.

end;

procedure TRunBtnItem.Assign(Source: TPersistent);

{ It is necessary to override the TCollectionItem.Assign method so that

it knows how to copy from one TRunBtnItem to another. If this is done,

then don’t call the inherited Assign(). }

begin

if Source is TRunBtnItem then

begin

{ Instead of assigning the command line to the FCommandLine storage

field, make the assignment to the property so that the accessor

method will be called. The accessor method as some side-effects

that we want to occur. }

CommandLine := TRunBtnItem(Source).CommandLine;

{ Copy values to the remaining fields. Then exit the procedure. }

FLeft := TRunBtnItem(Source).Left;

Component-Based Development

PART III
1070

FTop := TRunBtnItem(Source).Top;

Exit;

end;

inherited Assign(Source);

end;

procedure TRunBtnItem.SetCommandLine(const Value: string);

{ This is the write accessor method for TRunBtnItem.CommandLine. It

ensures that the private TddgRunButton instance, FRunButton, gets

assigned the specified string from Value }

begin

if FRunButton <> nil then

begin

FCommandLine := Value;

FRunButton.CommandLine := FCommandLine;

{ This will cause the TRunButtons.Update method to be called

for each TRunBtnItem }

Changed(False);

end;

end;

procedure TRunBtnItem.SetLeft(Value: Integer);

{ Access method for the TRunBtnItem.Left property. }

begin

if FRunButton <> nil then

begin

FLeft := Value;

FRunButton.Left := FLeft;

end;

end;

procedure TRunBtnItem.SetTop(Value: Integer);

{ Access method for the TRunBtnItem.Top property }

begin

if FRunButton <> nil then

begin

FTop := Value;

FRunButton.Top := FTop;

end;

end;

{ TRunButtons }

Advanced Component Design Techniques

CHAPTER 22
1071

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

LISTING 22.11 Continued

constructor TRunButtons.Create(LaunchPad: TddgLaunchPad);

{ The constructor points FLaunchPad to the TddgLaunchPad parameter.

LaunchPad is the owner of this collection. It is necessary to keep

a reference to LauchPad as it will be accessed internally. }

begin

inherited Create(TRunBtnItem);

FLaunchPad := LaunchPad;

end;

function TRunButtons.GetItem(Index: Integer): TRunBtnItem;

{ Access method for TRunButtons.Items which returns the TRunBtnItem

instance. }

begin

Result := TRunBtnItem(inherited GetItem(Index));

end;

procedure TRunButtons.SetItem(Index: Integer; Value: TRunBtnItem);

{ Access method for TddgRunButton.Items which makes the assignment to

the specified indexed item. }

begin

inherited SetItem(Index, Value)

end;

procedure TRunButtons.Update(Item: TCollectionItem);

{ TCollection.Update is called by TCollectionItems

whenever a change is made to any of the collection items. This is

initially an abstract method. It must be overridden to contain

whatever logic is necessary when a TCollectionItem has changed.

We use it to redraw the item by calling TddgLaunchPad.UpdateRunButton.}

begin

if Item <> nil then

FLaunchPad.UpdateRunButton(Item.Index);

end;

procedure TRunButtons.UpdateRunButtons;

{ UpdateRunButtons is a public procedure that we made available so that

users of TRunButtons can force all run-buttons to be re-drawn. This

method calls TddgLaunchPad.UpdateRunButton for each TRunBtnItem

instance. }

var

i: integer;

Component-Based Development

PART III
1072

begin

for i := 0 to Count - 1 do

FLaunchPad.UpdateRunButton(i);

end;

function TRunButtons.Add: TRunBtnItem;

{ This method must be overridden to return the TRunBtnItem instance when

the inherited Add method is called. This is done by typecasting the

original result }

begin

Result := TRunBtnItem(inherited Add);

end;

{ TddgLaunchPad }

constructor TddgLaunchPad.Create(AOwner: TComponent);

{ Initializes the TRunButtons instance and internal variables

used for positioning of the TRunBtnItem as they are drawn }

begin

inherited Create(AOwner);

FRunButtons := TRunButtons.Create(Self);

TopAlign := 0;

LeftAlign := 0;

end;

destructor TddgLaunchPad.Destroy;

begin

FRunButtons.Free; // Free the TRunButtons instance.

inherited Destroy; // Call the inherited destroy method.

end;

procedure TddgLaunchPad.GetChildren(Proc: TGetChildProc; Root: TComponent);

{ Override GetChildren to cause TddgLaunchPad to ignore any TRunButtons

that it owns since they do not need to be streamed in the context

TddgLaunchPad. The information necessary for creating the TddgRunButton

instances is already streamed as published properties of the

TCollectionItem descendant, TRunBtnItem. This method prevents the

TddgRunButton’s from being streamed twice. }

var

I: Integer;

begin

for I := 0 to ControlCount - 1 do

Advanced Component Design Techniques

CHAPTER 22
1073

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

LISTING 22.11 Continued

{ Ignore the run buttons and the scrollbox }

if not (Controls[i] is TddgRunButton) then

Proc(TComponent(Controls[I]));

end;

procedure TddgLaunchPad.SeTRunButtons(Value: TRunButtons);

{ Access method for the RunButtons property }

begin

FRunButtons.Assign(Value);

end;

procedure TddgLaunchPad.UpdateRunButton(Index: Integer);

{ This method is responsible for drawing the TRunBtnItem instances.

It ensures that the TRunBtnItem’s do not extend beyond the width

of the TddgLaunchPad. If so, it creates rows. This is only in effect

as the user is adding/removing TRunBtnItems. The user can still

resize the TddgLaunchPad so that it is smaller than the width of a

TRunBtnItem }

begin

{ If the first item being drawn, set both positions to zero. }

if Index = 0 then

begin

TopAlign := 0;

LeftAlign := 0;

end;

{ If the width of the current row of TRunBtnItems is more than

the width of the TddgLaunchPad, then start a new row of TRunBtnItems. }

if (LeftAlign + FRunButtons[Index].Width) > Width then

begin

TopAlign := TopAlign + FRunButtons[Index].Height;

LeftAlign := 0;

end;

FRunButtons[Index].Left := LeftAlign;

FRunButtons[Index].Top := TopAlign;

LeftAlign := LeftAlign + FRunButtons[Index].Width;

end;

end.

Component-Based Development

PART III
1074

Implementing TRunBtnItem
The TRunBtnItem.Create() constructor creates an instance of TddgRunButton. Each
TRunBtnItem in the collection will maintain its own TddgRunButton instance. The following
two lines in TRunBtnItem.Create() require further explanation:

FRunButton := TddgRunButton.Create(TRunButtons(Collection).FLaunchPad);

FRunButton.Parent := TRunButtons(Collection).FLaunchPad;

The first line creates a TddgRunButton instance, FRunButton. The owner of FRunButton is
FLaunchPad, which is a TddgLaunchPad component and a field of the TCollection object
passed in as a parameter. It’s necessary to use the FLaunchPad as the owner of FRunButton
because neither a TRunBtnItem instance nor a TRunButtons object can be owners because they
descend from TPersistent. Remember, an owner must be a TComponent.

We want to point out a problem that arises by making FLaunchPad the owner of FRunButton.
By doing this, we effectively make FLaunchPad the owner of FRunButton at design time. The
normal behavior of the streaming engine will cause Delphi to stream FRunButton as a compo-
nent owned by the FLaunchPad instance when the user saves the form. This is not a desired
behavior because FRunButton is already being created in the constructor of TRunBtnItem,
based on the information that’s also streamed in the context of TRunBtnItem. This is a vital tid-
bit of information. Later, you’ll see how we prevent TddgRunButton components from being
streamed by TddgLaunchPad in order to remedy this undesired behavior.

The second line assigns FLaunchPad as the parent to FRunButton so that FLaunchPad can take
care of drawing FRunButton.

The TRunBtnItem.Destroy() destructor frees FRunButton before calling its inherited destructor.

Under certain circumstances, it becomes necessary to override the TRunBtnItem.Assign()
method that’s called. One such instance is when the application is first run and the form is read
from the stream. It’s in the Assign() method that we tell the TRunBtnItem instance to assign
the streamed values of its properties to the properties of the component (in this case
TddgRunButton) that it encompasses.

The other methods are simply access methods for the various properties of TRunBtnItem; they
are explained in the code’s comments.

Implementing TRunButtons
TRunButtons.Create() simply points FLaunchPad to the TddgLaunchPad parameter passed to
it so that LaunchPad can be referred to later.

TRunButtons.Update() is a method that’s invoked whenever a change has been made to any of
the TRunBtnItem instances. This method contains logic that should occur due to that change.
We use it to call the method of TddgLaunchPad that redraws the TRunBtnItem instances. We’ve
also added a public method, UpdateRunButtons(), to allow the user to force a redraw.

The remaining methods of TRunButtons are property access methods, which are explained in
the code’s comments in Listing 22.11.

Advanced Component Design Techniques

CHAPTER 22
1075

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

Implementing TddgLaunchPad
The constructor and destructor for TddgLaunchPad are simple. TddgLaunchPad.Create() cre-
ates an instance of the TRunButtons object and passes itself as a parameter.
TddgLaunchPad.Destroy() frees the TRunButtons instance.

The overriding of the TddgLaunchPad.GetChildren() method is important to note here. This is
where we prevent the TddgRunButton instances stored by the collection from being streamed
as owned components of TddgLaunchPad. Remember that this is necessary because they
shouldn’t be created in the context of the TddgLaunchPad object but rather in the context of the
TRunBtnItem instances. Because no TddgRunButton components are passed to the Proc proce-
dure, they won’t be streamed or read from a stream.

The TddgLaunchPad.UpdateRunButton() method is where the TddgRunButton instances main-
tained by the collection are drawn. The logic in this code ensures that they never extend
beyond the width of TddgLaunchPad. Because TddgLaunchPad is a descendant of TScrollBox,
scrolling will occur vertically.

The other methods are simply property-access methods and are commented in the code in
Listing 22.11.

Finally, we register the property editor for the TRunButtons collection class in this unit’s
Register() procedure. The next section discusses this property editor and illustrates how to
edit a list of components from a dialog property editor.

Editing the List of TCollectionItem Components
with a Dialog Property Editor
Now that we’ve defined the TddgLaunchPad component, the TRunButtons collection class, and
the TRunBtnItem collection class, we must provide a way for the user to add TddgRunButton
components to the TRunButtons collection. The best way to do this is through a property editor
that manipulates the list maintained by the TRunButtons collection.

The property editor that we’ll use is a dialog, as shown in Figure 22.8.

Component-Based Development

PART III
1076

FIGURE 22.8
The TddgLaunchPad - RunButtons editor.

This dialog directly manipulates the TRunBtnItem components maintained by the RunButtons
collection of TddgLaunchPad. The various CommandLine strings for each TddgRunButton
enclosed in TRunBtnItem are displayed in PathListBox. A TddgRunButton component reflects
the currently selected item in the list box to allow the user to test the selection. The dialog also
contains buttons to allow the user to add or remove an item, accept the changes, and cancel the
operation. As the user makes changes in the dialog, the changes are reflected on the
TddgLaunchPad.

Advanced Component Design Techniques

CHAPTER 22
1077

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

TIP

A convention for property editors is to include an Apply button to invoke changes on
the form. We didn’t show this here, but you might consider adding such a button to
the RunButtons property editor as an exercise. To see how an Apply button works,
take a look at the property editor for the Panels property of the TStatusBar compo-
nent from the Win32 page of the Component Palette.

Figure 22.9 illustrates the TddgLaunchPad - RunButtons property editor with some items. It
also shows the form’s TddgLaunchPad component with the TddgRunButton components listed
in the property editor.

FIGURE 22.9
The TddgLaunchPad - RunButtons property editor with TRunBtnItem components.

Listing 22.12 shows the source code for the TddgLaunchPad - RunButtons property editor and
its dialog.

LISTING 22.12 LPadPE.pas: the TRunButtons Property Editor

unit LPadPE;

interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,

Dialogs, Buttons, RunBtn, StdCtrls, LnchPad, DsgnIntF, TypInfo, ExtCtrls;

type

{ First declare the editor dialog }

TLaunchPadEditor = class(TForm)

PathListBox: TListBox;

AddBtn: TButton;

RemoveBtn: TButton;

CancelBtn: TButton;

OkBtn: TButton;

Label1: TLabel;

pnlRBtn: TPanel;

procedure PathListBoxClick(Sender: TObject);

procedure AddBtnClick(Sender: TObject);

procedure RemoveBtnClick(Sender: TObject);

procedure FormCreate(Sender: TObject);

procedure FormDestroy(Sender: TObject);

procedure CancelBtnClick(Sender: TObject);

private

TestRunBtn: TddgRunButton;

FLaunchPad: TddgLaunchPad; // To be used as a backup

FRunButtons: TRunButtons; // Will refer to the actual TRunButtons

Modified: Boolean;

procedure UpdatePathListBox;

end;

{ Now declare the TPropertyEditor descendant and override the

required methods }

TRunButtonsProperty = class(TPropertyEditor)

function GetAttributes: TPropertyAttributes; override;

function GetValue: string; override;

procedure Edit; override;

end;

Component-Based Development

PART III
1078

{ This function will be called by the property editor. }

function EditRunButtons(RunButtons: TRunButtons): Boolean;

implementation

{$R *.DFM}

function EditRunButtons(RunButtons: TRunButtons): Boolean;

{ Instantiates the TLaunchPadEditor dialog which directly modifies

the TRunButtons collection. }

begin

with TLaunchPadEditor.Create(Application) do

try

FRunButtons := RunButtons; // Point to the actual TRunButtons

{ Copy the TRunBtnItems to the backup FLaunchPad which will be

used as a backup in case the user cancels the operation }

FLaunchPad.RunButtons.Assign(RunButtons);

{ Draw the listbox with the list of TRunBtnItems. }

UpdatePathListBox;

ShowModal; // Display the form.

Result := Modified;

finally

Free;

end;

end;

{ TLaunchPadEditor }

procedure TLaunchPadEditor.FormCreate(Sender: TObject);

begin

{ Created the backup instances of TLaunchPad to be used if the user

cancels editing the TRunBtnItems }

FLaunchPad := TddgLaunchPad.Create(Self);

// Create the TddgRunButton instance and align it to the

// enclosing panel.

TestRunBtn := TddgRunButton.Create(Self);

TestRunBtn.Parent := pnlRBtn;

TestRunBtn.Width := pnlRBtn.Width;

TestRunBtn.Height := pnlRBtn.Height;

end;

Advanced Component Design Techniques

CHAPTER 22
1079

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

LISTING 22.12 Continued

procedure TLaunchPadEditor.FormDestroy(Sender: TObject);

begin

TestRunBtn.Free;

FLaunchPad.Free; // Free the TLaunchPad instance.

end;

procedure TLaunchPadEditor.PathListBoxClick(Sender: TObject);

{ When the user clicks on an item in the list of TRunBtnItems, make

the test TRunButton reflect the currently selected item }

begin

if PathListBox.ItemIndex > -1 then

TestRunBtn.CommandLine := PathListBox.Items[PathListBox.ItemIndex];

end;

procedure TLaunchPadEditor.UpdatePathListBox;

{ Re-initializes the PathListBox so that it reflects the list of

TRunBtnItems }

var

i: integer;

begin

PathListBox.Clear; // First clear the list box.

for i := 0 to FRunButtons.Count - 1 do

PathListBox.Items.Add(FRunButtons[i].CommandLine);

end;

procedure TLaunchPadEditor.AddBtnClick(Sender: TObject);

{ When the add button is clicked, launch a TOpenDialog to retrieve

an executable filename and path. Then add this file to the

PathListBox. Also, add a new FRunBtnItem. }

var

OpenDialog: TOpenDialog;

begin

OpenDialog := TOpenDialog.Create(Application);

try

OpenDialog.Filter := ‘Executable Files|*.EXE’;

if OpenDialog.Execute then

begin

{ add to the PathListBox. }

PathListBox.Items.Add(OpenDialog.FileName);

FRunButtons.Add; // Create a new TRunBtnItem instance.

{ Set focus to the new item in PathListBox }

Component-Based Development

PART III
1080

PathListBox.ItemIndex := FRunButtons.Count - 1;

{ Set the command line for the new TRunBtnItem to that of the

file name gotten as specified by PathListBox.ItemIndex }

FRunButtons[PathListBox.ItemIndex].CommandLine :=

PathListBox.Items[PathListBox.ItemIndex];

{ Invoke the PathListBoxClick event handler so that the test

TRunButton will reflect the newly added item }

PathListBoxClick(nil);

Modified := True;

end;

finally

OpenDialog.Free

end;

end;

procedure TLaunchPadEditor.RemoveBtnClick(Sender: TObject);

{ Remove the selected path/filename from PathListBox as well as the

corresponding TRunBtnItem from FRunButtons }

var

i: integer;

begin

i := PathListBox.ItemIndex;

if i >= 0 then

begin

PathListBox.Items.Delete(i); // Remove the item from the listbox

FRunButtons[i].Free; // Remove the item from the collection

TestRunBtn.CommandLine := ‘’; // Erase the test run button

Modified := True;

end;

end;

procedure TLaunchPadEditor.CancelBtnClick(Sender: TObject);

{ When the user cancels the operation, copy the backup LaunchPad

TRunBtnItems back to the original TLaunchPad instance. Then,

close the form by setting ModalResult to mrCancel. }

begin

FRunButtons.Assign(FLaunchPad.RunButtons);

Modified := False;

ModalResult := mrCancel;

end;

{ TRunButtonsProperty }

Advanced Component Design Techniques

CHAPTER 22
1081

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

LISTING 22.12 Continued

function TRunButtonsProperty.GetAttributes: TPropertyAttributes;

{ Tell the Object Inspector that the property editor will use a

dialog. This will cause the Edit method to be invoked when the user

clicks the ellipsis button in the Object Inspector. }

begin

Result := [paDialog];

end;

procedure TRunButtonsProperty.Edit;

{ Invoke the EditRunButton() method and pass in the reference to the

TRunButton’s instance being edited. This reference can be obtained by

using the GetOrdValue method. Then redraw the LaunchDialog by calling

the TRunButtons.UpdateRunButtons method. }

begin

if EditRunButtons(TRunButtons(GetOrdValue)) then

Modified;

TRunButtons(GetOrdValue).UpdateRunButtons;

end;

function TRunButtonsProperty.GetValue: string;

{ Override the GetValue method so that the class type of the property

being edited is displayed in the Object Inspector. }

begin

Result := Format(‘(%s)’, [GetPropType^.Name]);

end;

end.

TddgLaunchPadEditor = class(TForm)

PathListBox: TListBox;

AddBtn: TButton;

RemoveBtn: TButton;

TestRunBtn: TddgRunButton;

CancelBtn: TButton;

OkBtn: TButton;

Label1: TLabel;

procedure PathListBoxClick(Sender: TObject);

procedure AddBtnClick(Sender: TObject);

procedure RemoveBtnClick(Sender: TObject);

procedure FormCreate(Sender: TObject);

procedure FormDestroy(Sender: TObject);

procedure CancelBtnClick(Sender: TObject);

Component-Based Development

PART III
1082

private

FLaunchPad: TddgLaunchPad; // To be used as a backup

FRunButtons: TRunButtons; // Will refer to the actual TRunButtons

Modified: Boolean;

procedure UpdatePathListBox;

end;

{ Now declare the TPropertyEditor descendant and override the

required methods }

TRunButtonsProperty = class(TPropertyEditor)

function GetAttributes: TPropertyAttributes; override;

function GetValue: string; override;

procedure Edit; override;

end;

{ This function will be called by the property editor. }

function EdiTRunButtons(RunButtons: TRunButtons): Boolean;

implementation

{$R *.DFM}

function EdiTRunButtons(RunButtons: TRunButtons): Boolean;

{ Instantiates the TddgLaunchPadEditor dialog which directly modifies

the TRunButtons collection. }

begin

with TddgLaunchPadEditor.Create(Application) do

try

FRunButtons := RunButtons; // Point to the actual TRunButtons

{ Copy the TRunBtnItems to the backup FLaunchPad which will be

used as a backup in case the user cancels the operation }

FLaunchPad.RunButtons.Assign(RunButtons);

{ Draw the listbox with the list of TRunBtnItems. }

UpdatePathListBox;

ShowModal; // Display the form.

Result := Modified;

finally

Free;

end;

end;

{ TddgLaunchPadEditor }

Advanced Component Design Techniques

CHAPTER 22
1083

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

LISTING 22.12 Continued

procedure TddgLaunchPadEditor.FormCreate(Sender: TObject);

begin

{ Created the backup instances of TddgLaunchPad to be used if the user

cancels editing the TRunBtnItems }

FLaunchPad := TddgLaunchPad.Create(Self);
// Create the TddgRunButton instance and align it to the
// enclosing panel.
TestRunBtn := TddgRunButton.Create(Self);
TestRunBtn.Parent := pnlRBtn;

TestRunBtn.Width := pnlRBtn.Width;

TestRunBtn.Height := pnlRBtn.Height;

end;

procedure TddgLaunchPadEditor.FormDestroy(Sender: TObject);

begin

TestRunBtn.Free;

FLaunchPad.Free; // Free the TddgLaunchPad instance.

end;

procedure TddgLaunchPadEditor.PathListBoxClick(Sender: TObject);

{ When the user clicks on an item in the list of TRunBtnItems, make

the test TddgRunButton reflect the currently selected item }

begin

if PathListBox.ItemIndex > -1 then

TestRunBtn.CommandLine := PathListBox.Items[PathListBox.ItemIndex];

end;

procedure TddgLaunchPadEditor.UpdatePathListBox;

{ Re-initializes the PathListBox so that it reflects the list of

TRunBtnItems }

var

i: integer;

begin

PathListBox.Clear; // First clear the list box.

for i := 0 to FRunButtons.Count - 1 do

PathListBox.Items.Add(FRunButtons[i].CommandLine);

end;

procedure TddgLaunchPadEditor.AddBtnClick(Sender: TObject);

{ When the add button is clicked, launch a TOpenDialog to retrieve

an executable filename and path. Then add this file to the

Component-Based Development

PART III
1084

PathListBox. Also, add a new FRunBtnItem. }

var

OpenDialog: TOpenDialog;

begin

OpenDialog := TOpenDialog.Create(Application);

try

OpenDialog.Filter := ‘Executable Files|*.EXE’;

if OpenDialog.Execute then

begin

{ add to the PathListBox. }

PathListBox.Items.Add(OpenDialog.FileName);

FRunButtons.Add; // Create a new TRunBtnItem instance.

{ Set focus to the new item in PathListBox }

PathListBox.ItemIndex := FRunButtons.Count - 1;

{ Set the command line for the new TRunBtnItem to that of the

filename gotten as specified by PathListBox.ItemIndex }

FRunButtons[PathListBox.ItemIndex].CommandLine :=

PathListBox.Items[PathListBox.ItemIndex];

{ Invoke the PathListBoxClick event handler so that the test

TddgRunButton will reflect the newly added item }

PathListBoxClick(nil);

Modified := True;

end;

finally

OpenDialog.Free

end;

end;

procedure TddgLaunchPadEditor.RemoveBtnClick(Sender: TObject);

{ Remove the selected path/filename from PathListBox as well as the

corresponding TRunBtnItem from FRunButtons }

var

i: integer;

begin

i := PathListBox.ItemIndex;

if i >= 0 then

begin

PathListBox.Items.Delete(i); // Remove the item from the listbox

FRunButtons[i].Free; // Remove the item from the collection

TestRunBtn.CommandLine := ‘’; // Erase the test run button

Modified := True;

end;

Advanced Component Design Techniques

CHAPTER 22
1085

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

continues

LISTING 22.12 Continued

end;

procedure TddgLaunchPadEditor.CancelBtnClick(Sender: TObject);

{ When the user cancels the operation, copy the backup LaunchPad

TRunBtnItems back to the original TddgLaunchPad instance. Then,

close the form by setting ModalResult to mrCancel. }

begin

FRunButtons.Assign(FLaunchPad.RunButtons);

Modified := False;

ModalResult := mrCancel;

end;

{ TRunButtonsProperty }

function TRunButtonsProperty.GetAttributes: TPropertyAttributes;

{ Tell the Object Inspector that the property editor will use a

dialog. This will cause the Edit method to be invoked when the user

clicks the ellipsis button in the Object Inspector. }

begin

Result := [paDialog];

end;

procedure TRunButtonsProperty.Edit;

{ Invoke the EdiTddgRunButton() method and pass in the reference to the

TddgRunButton’s instance being edited. This reference can be obtained by

using the GetOrdValue method. Then redraw the LaunchDialog by calling

the TRunButtons.UpdateRunButtons method. }

begin

if EdiTRunButtons(TRunButtons(GetOrdValue)) then

Modified;

TRunButtons(GetOrdValue).UpdateRunButtons;

end;

function TRunButtonsProperty.GetValue: string;

{ Override the GetValue method so that the class type of the property

being edited is displayed in the Object Inspector. }

begin

Result := Format(‘(%s)’, [GetPropType^.Name]);

end;

end.

Component-Based Development

PART III
1086

This unit first defines the TddgLaunchPadEditor dialog and then the TRunButtonsProperty
property editor. We’re going to discuss the property editor first because it’s the property editor
that invokes the dialog.

The TRunButtonsProperty property editor is not much different than the dialog property editor
we showed earlier. Here, we override the GetAttributes(), Edit(), and GetValue() methods.

GetAttributes() simply sets the TPropertyAttributes return value to specify that this editor
invokes a dialog. Again, this will place an ellipsis button on the Object Inspector.

The GetValue() method uses the GetPropType() function to return a pointer to the Runtime
Type Information for the property being edited. It returns the name field of this information
that represents the property’s type string. The string is displayed in the Object Inspector inside
parentheses, which is a convention used by Delphi.

Finally, the Edit() method calls a function defined in this unit, EdiTRunButtons(). As a para-
meter, it passes the reference to the TRunButtons property by using the GetOrdValue function.
When the function returns, the method UpdateRunButton() is invoked to cause RunButtons to
be redrawn to reflect any changes.

The EditRunButtons() function creates the TddgLaunchPadEditor instance and points its
FRunButtons field to the TRunButtons parameter passed to it. It uses this reference internally
to make changes to the TRunButtons collection. The function then copies the TRunButtons col-
lection of the property to an internal TddgLaunchPad component, FLaunchPad. It uses this
instance as a backup in case the user cancels the edit operation.

Earlier we talked about the possibility of adding an Apply button to this dialog. To do so, you
can edit the FLaunchPad component’s RunButtons collection instance instead of directly modi-
fying the actual collection. This way, if the user cancels the operation, nothing happens; if the
user presses Apply or OK, the changes are invoked.

The form’s Create() constructor creates the internal TddgLaunchPad instance. The Destroy()
destructor ensures that it’s freed when the form is destroyed.

PathListBoxClick() is the OnClick event handler for PathListBox. This method makes
TestRunBtn (the test TddgRunButton) reflect the currently selected item in PathListBox,
which displays a path to the executable file. The user can press this TddgRunButton instance to
launch the application.

UpdatePathListBox() initializes PathListBox with the items in the collection.

AddButtonClick() is the OnClick event handler for the Add button. This event handler invokes
a File Open dialog to retrieve an executable filename from the user and adds the path of this
filename to PathListBox. It also creates a TRunBtnItem instance in the collection and assigns
the path to its CommandLine property, which in turn does the same for the TddgRunButton com-
ponent it encloses.

Advanced Component Design Techniques

CHAPTER 22
1087

22

A
D

V
A

N
C

ED
C

O
M

PO
N

EN
T

D
ESIG

N

RemoveBtnClick() is the OnClick event handler for the Remove button. It removes the
selected item from PathListBox as well as the TRunBtnItem instance from the collection.

CancelBtnClick() is the OnClick event handler for the Cancel button. It copies the backup
collection from FLaunchPad to the actual TRunButtons collection and closes the form.

The TCollection and TCollectionItems objects are extremely useful and offer themselves to
being used for a variety of purposes. Get to know them well, and next time you need to store a
list of components, you’ll already have a solution.

Summary
This chapter let you in on some of the more advanced tricks and techniques for Delphi compo-
nent design. Among other things, you learned about extending hints and animating components
as well as component editors, property editors, and component collections. Armed with this
information, as well as the more conventional information you learned in the preceding chap-
ter, you should be able to write a component to suit just about any of your programming needs.
In the next chapter, “COM and ActiveX,” we’ll go even deeper into the world of component-
based development.

Component-Based Development

PART III
1088

