
CHAPTER

21
Writing Delphi Custom
Components

IN THIS CHAPTER
• Component Building Basics 930

• Sample Components 958

• TddgButtonEdit—
Container Components 976

• Component Packages 987

• Add-In Packages 998

• Summary 1005

The ability to easily write custom components in Delphi 5 is a chief productivity advantage
that you wield over other programmers. In most other environments, folks are stuck using the
standard controls available through Windows or else have to use an entirely different set of
complex controls that were developed by somebody else. Being able to incorporate your cus-
tom components into your Delphi applications means that you have complete control over the
application’s user interface. Custom controls give you the final say in your application’s look
and feel.

If your forte is component design, you will appreciate all the information this chapter has to
offer. You will learn about all aspects of component design from concept to integration into the
Delphi environment. You will also learn about the pitfalls of component design, as well as
some tips and tricks to developing highly functional and extensible components.

Even if your primary interest is application development and not component design, you will
get a great deal out of this chapter. Incorporating a custom component or two into your pro-
grams is an ideal way to spice up and enhance the productivity of your applications. Invariably,
you will get caught in a situation while writing your application where, of all the components
at your disposal, none is quite right for some particular task. That’s where component design
comes in. You will be able to tailor a component to meet your exact needs, and hopefully
design it smart enough to use again and again in subsequent applications.

Component Building Basics
The following sections teach you the basic skills required to get you started in writing compo-
nents. Then, we show you how to apply those skills by demonstrating how we designed some
useful components.

Deciding Whether to Write a Component
Why go through the trouble of writing a custom control in the first place when it’s probably
less work to make do with an existing component or hack together something quick and dirty
that “will do”? There are a number of reasons to write your own custom control:

• You want to design a new user-interface element that can be used in more than one appli-
cation.

• You want to make your application more robust by separating its elements into logical
object-oriented classes.

• You cannot find an existing Delphi component or ActiveX control that suits your needs
for a particular situation.

• You recognize a market for a particular component, and you want to create a component
to share with other Delphi developers for fun or profit.

• You want to increase your knowledge of Delphi, VCL internals, and the Win32 API.

Component-Based Development

PART III
930

One of the best ways to learn how to create custom components is from the people who
invented them. Delphi’s VCL source code is an invaluable resource for component writers, and
it is highly recommended for anyone who is serious about creating custom components. The
VCL source code is included in the Client Server and Professional versions of Delphi.

Writing custom components can seem like a pretty daunting task, but don’t believe the hype.
Writing a custom component is only as hard or as easy as you make it. Components can be
tough to write, of course, but you also can create very useful components fairly easily.

Component Writing Steps
Assuming that you have already defined a problem and have a component-based solution, here
are the important points in creating a component—from concept to deployment.

• First, you need an idea for a useful and hopefully unique component.

• Next, sit down and map out the algorithm for how the component will work.

• Start with the preliminaries—don’t jump right into the component. Ask yourself, “What
do I need up front to make this component work?”

• Try to break up the construction of your component into logical portions. This will not
only modularize and simplify the creation of the component, but it also will help you to
write cleaner, more organized code. Design your component with the thought that some-
one else might try to create a descendant component.

• Test your component in a test project first. You will be sorry if you immediately add it to
the Component Palette.

• Finally, add the component and an optional bitmap to the Component Palette. After a lit-
tle fine-tuning, it will be ready for you to drop into your Delphi applications.

There are six basic steps to writing your Delphi component.

1. Deciding on an ancestor class.

2. Creating the Component Unit.

3. Adding properties, methods, and events to your new component.

4. Testing your component.

5. Registering your component with the Delphi environment.

6. Creating a help file for your component.

In this chapter, we will discuss the first five steps; however, it is beyond the scope of this chap-
ter to get into the topic of writing help files. However, this does not mean that this step is any
less important than the others. We recommend that you look into some of the third-party tools
available that simplify writing help files. Also, Borland provides information on how to do this

Writing Delphi Custom Components

CHAPTER 21
931

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS

in their online help. Look up “Providing Help for Your Component” in the online help for more
information.

Deciding on an Ancestor Class
In Chapter 20, “Key Elements of the Visual Component Library,” we discussed the VCL hier-
archy and the special purposes of the different classes at the different hierarchical levels. We
wrote about four basic components from which your components will descend: standard con-
trols, custom controls, graphical controls, and non-visual components. For instance, if you
need to simply extend the behavior of an existing Win32 control such as TMemo, you’ll be
extending a standard control. If you need to define an entirely new component class, you’ll be
dealing with a custom control. Graphical controls let you create components that have a visual
effect, but don’t take up Win32 resources. Finally, if you want to create a component that can
be edited from Delphi’s Object Inspector but doesn’t necessarily have a visual characteristic,
you’ll be creating a non-visual component. Different VCL classes represent these different
types of components. You might want to review Chapter 20 unless you’re quite comfortable
with these concepts. Table 21.1 gives you a quick reference.

Table 21.1 VCL Classes as Component-Based Classes

VCL Class Types of Custom Controls

TObject Although classes descending directly from TObject are not compo-
nents, strictly speaking, they do merit mention. You will use TObject as
a base class for many things that you don’t need to work with at design
time. A good example is the TIniFile object.

TComponent A starting point for many non-visual components. Its forte is that it
offers built-in streaming capability to load and save itself in the IDE at
design time.

TGraphicControl Use this class when you want to create a custom component that has no
window handle. TGraphicControl descendants are drawn on their par-
ent’s client surface, so they are easier on resources.

TWinControl This is the base class for all components that require a window handle.
It provides you with common properties and events specific to win-
dowed controls.

TCustomControl This class descends from TWinControl. It introduces the concepts of a
canvas and a Paint() method to give you greater control over the com-
ponent’s appearance. Use this class for most of your window-handled
custom component needs.

Component-Based Development

PART III
932

VCL Class Types of Custom Controls

TCustomClassName The VCL contains several classes that do not publish all their properties;
they leave it up to descendant classes to do. This allows component
developers to create “custom” components from the same base class and
to publish only the predefined properties required for each customized
class.

TComponentName An existing class such as TEdit, TPanel, or TScrollBox. Use an
already established component as a base class for your class (such as
TEdit) and custom components when you want to extend the behavior
of a control rather than create a new one from scratch. Many of your
custom components will fall into this category.

It is extremely important that you understand these various classes and also the capabilities of
the existing components. The majority of the time, you’ll find that an existing component
already provides most of the functionality you require of your new component. Only by know-
ing the capabilities of existing components will you be able to decide from which component
to derive your new component. We can’t inject this knowledge into your brain from this book.
What we can do is to tell you that you must make every effort to learn about each component
and class within Delphi’s VCL, and the only way to do that is to use it, even if only experi-
mentally.

Creating a Component Unit
When you have decided on a component from which your new component will descend, you
can go ahead and create a unit for your new component. We’re going to go through the steps of
designing a new component in the next several sections. Because we want to focus on the
steps, and not on component functionality, this component will do nothing other than to illus-
trate these necessary steps.

The component is appropriately named TddgWorthless. TddgWorthless will descend from
TCustomControl and will therefore have both a window handle and the capability to paint
itself. This component will also inherit several properties, methods, and events already belong-
ing to TCustomControl.

The easiest way to get started is to use the Component Expert, shown in Figure 21.1, to create
a component unit.

Writing Delphi Custom Components

CHAPTER 21
933

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS

FIGURE 21.1
The Component Expert.

You invoke the Component Expert by selecting Component, New Component. In the
Component Expert, you enter the component’s ancestor class name, the component’s class
name, the palette page on which you want the component to appear, and the unit name for the
component. When you select OK, Delphi automatically creates the component unit that has the
component’s type declaration and a register procedure. Listing 21.1 shows the unit created by
Delphi.

LISTING 21.1 Worthless.pas, a Sample Delphi Component

unit Worthless;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs;

type
TddgWorthless = class(TCustomControl)
private
{ Private declarations }

protected
{ Protected declarations }

public
{ Public declarations }

published
{ Published declarations }

end;
procedure Register;
implementation
procedure Register;
begin
RegisterComponents(‘DDG’, [TddgWorthless]);

end;
end.

Component-Based Development

PART III
934

You can see that at this point TddgWorthless is nothing more than a skeleton component. In
the following sections, you’ll add properties, methods, and events to TddgWorthless.

Creating Properties
Chapter 20 discusses the use and advantages of using properties with your components. This
section shows you how to add the various types of properties to your components.

Types of Properties
Table 20.1 in Chapter 20 lists the various property types. We’re going to add properties of each
of these types to the TddgWorthless component to illustrate the differences between each type.
Each different type of property is edited a bit differently from the Object Inspector. You will
examine each of these types and how they are edited.

Adding Simple Properties to Components
Simple properties refer to numbers, strings, and characters. They can be edited directly by the
user from within the Object Inspector and require no special access method. Listing 21.2
shows the TddgWorthless component with three simple properties.

LISTING 21.2 Simple Properties

TddgWorthless = class(TCustomControl)
private
// Internal Data Storage
FIntegerProp: Integer;
FStringProp: String;
FCharProp: Char;

published
// Simple property types
property IntegerProp: Integer read FIntegerProp write FIntegerProp;
property StringProp: String read FStringProp write FStringProp;
property CharProp: Char read FCharProp write FCharProp;

end;

You should already be familiar with the syntax used here because it was discussed previously
in Chapter 20. Here, you have your internal data storage for the component declared in the
private section. The properties that refer to these storage fields are declared in the published
section, meaning that when you install the component in Delphi, you can edit the properties in
the Object Inspector.

Writing Delphi Custom Components

CHAPTER 21
935

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS

Adding Enumerated Properties to Components
You can edit user-defined enumerated properties and Boolean properties in the Object
Inspector by double-clicking in the Value section or by selecting the property value from a
drop-down list. An example of such a property is the Align property that exists on most visual
components. To create an enumerated property, you must first define the enumerated type as
follows:

TEnumProp = (epZero, epOne, epTwo, epThree);

You then define the internal storage field to hold the value specified by the user. Listing 21.3
shows two enumerated property types for the TddgWorthless component:

LISTING 21.3 Enumerated Properties

TddgWorthless = class(TCustomControl)
private
// Enumerated data types
FEnumProp: TEnumProp;
FBooleanProp: Boolean;

published
property EnumProp: TEnumProp read FEnumProp write FEnumProp;
property BooleanProp: Boolean read FBooleanProp write FBooleanProp;

end;

We’ve excluded the other properties for illustrative purposes. If you were to install this compo-
nent, its enumerated properties would appear in the Object Inspector, as shown in Figure 21.2.

Adding Set Properties to Components
Set properties, when edited in the Object Inspector, appear as a set in Pascal syntax. An easier
way to edit them is to expand the properties in the Object Inspector. Each set item then works
in the Object Inspector like a Boolean property. To create a set property for the TddgWorthless
component, we must first define a set type as follows:

TSetPropOption = (poOne, poTwo, poThree, poFour, poFive);
TSetPropOptions = set of TSetPropOption;

Component-Based Development

PART III
936

NOTE

When writing components, the convention is to make private field names begin with
the letter F. For components and types in general, give the object or type a name
starting with the letter T. Your code will be much more clear if you follow these sim-
ple conventions.

FIGURE 21.2
The Object Inspector showing enumerated properties for TddgWorthless.

Here, you first define a range for the set by defining an enumerated type, TSetPropOption.
Then you define the set TSetPropOptions.

You can now add a property of TSetPropOptions to the TddgWorthless component as follows:

TddgWorthless = class(TCustomControl)
private
FOptions: TSetPropOptions;

published
property Options: TSetPropOptions read FOptions write FOptions;

end;

Figure 21.3 shows how this property looks when expanded in the Object Inspector.

Writing Delphi Custom Components

CHAPTER 21
937

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS

FIGURE 21.3
The set property in the Object Inspector.

Adding Object Properties to Components
Properties can also be objects or other components. For example, the TBrush and TPen proper-
ties of a TShape component are also objects. When a property is an object, it can be expanded
in the Object Inspector so its own properties can also be modified. Properties that are objects

must be descendants of TPersistent so that their published properties can be streamed and
displayed in the Object Inspector.

To define an object property for the TddgWorthless component, you must first define an object
that will serve as this property’s type. This object is shown in Listing 21.4.

LISTING 21.4 TSomeObject Definition

TSomeObject = class(TPersistent)
private
FProp1: Integer;
FProp2: String;

public
procedure Assign(Source: TPersistent)

published
property Prop1: Integer read FProp1 write FProp1;
property Prop2: String read FProp2 write FProp2;

end;

The TSomeObject class descends directly from TPersistent, although it does not have to. As
long as the object from which the new class descends is a descendant of TPersistent, it can
be used as another object’s property.

We’ve given this class two properties of its own: Prop1 and Prop2, which are both simple
property types. We’ve also added a procedure, Assign(), to TSomeObject, which we’ll discuss
momentarily.

Now you can add a field of the type TSomeObject to the TddgWorthless component. However,
because this property is an object, it must be created. Otherwise, when the user places a
TddgWorthless component on the form, there won’t be an instance of TSomeObject that the
user can edit. Therefore, it is necessary to override the Create() constructor for
TddgWorthless to create an instance of TSomeObject. Listing 21.5 shows the declaration of
TddgWorthless with its new object property.

LISTING 21.5 Adding Object Properties

TddgWorthless = class(TCustomControl)
private
FSomeObject: TSomeObject;
procedure SetSomeObject(Value: TSomeObject);

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

published

Component-Based Development

PART III
938

property SomeObject: TSomeObject read FSomeObject write SetSomeObject;
end;

Notice that we’ve included the overridden Create() constructor and Destroy() destructor.
Also, notice that we’ve declared a write access method, SetSomeObject(), for the SomeObject
property. A write access method is often referred to as a writer method or setter method. Read
access methods are called reader or getter methods. If you recall from Chapter 20, writer
methods must have one parameter of the same type as the property to which they belong. By
convention, the name of the writer method usually begins with Set.

We’ve defined the TddgWorthless.Create() constructor as follows:

constructor TddgWorthless.Create(AOwner: TComponent);
begin
inherited Create(AOwner);
FSomeObject := TSomeObject.Create;

end;

Here, we first call the inherited Create() constructor and then create the instance of the
TSomeObject class. Because Create() is called both when the user drops the component on
the form at design time and when the application is run, you can be assured that FSomeObject
will always be valid.

You must also override the Destroy() destructor to free the object before you free the
TddgWorthless component. The code to do this follows.

destructor TddgWorthless.Destroy;
begin
FSomeObject.Free;
inherited Destroy;

end;

Now that we’ve shown how to create the instance of TSomeObject, consider what would hap-
pen if at runtime the user executes the following code:

var
MySomeObject: TSomeObject;

begin
MySomeObject := TSomeObject.Create;
ddgWorthless.SomeObjectj := MySomeObject;

end;

If the TddgWorthless.SomeObject property were defined without a writer method like the fol-
lowing, when the user assigns their own object to the SomeObject field, the previous instance
that FSomeObject referred to would be lost:

property SomeObject: TSomeObject read FSomeObject write FSomeObject;

Writing Delphi Custom Components

CHAPTER 21
939

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS

If you recall from Chapter 2, “The Object Pascal Language,” object instances are really pointer
references to the actual object. When you make an assignment, as shown in the preceding
example, you refer the pointer to another object instance while the previous object instance still
hangs around. When designing components, you want to avoid having to place conditions on
your users when accessing properties. To prevent this pitfall, you foolproof your component by
creating access methods for properties that are objects. These access methods can then ensure
that no resources get lost when the user assigns new values to these properties. The access
method for SomeObject does just that and is shown here:

procedure TddgWorthLess.SetSomeObject(Value: TSomeObject);
begin
if Assigned(Value) then
FSomeObject.Assign(Value);

end;

The SetSomeObject() method calls the FSomeObject.Assign(), passing it the new
TSomeObject reference. TSomeObject.Assign() is implemented as follows:

procedure TSomeObject.Assign(Source: TPersistent);
begin
if Source is TSomeObject then
begin
FProp1 := TSomeObject(Source).Prop1;
FProp2 := TSomeObject(Source).Prop2;
inherited Assign(Source);

end;
end;

In TSomeObject.Assign(), you first ensure that the user has passed in a valid TSomeObject
instance. If so, you then copy the property values from Source accordingly. This illustrates
another technique you’ll see throughout the VCL for assigning objects to other objects. If you
have the VCL source code, you might take a look at the various Assign() methods such as
TBrush and TShape to see how they are implemented. This would give you some ideas on how
to implement them in your components.

Component-Based Development

PART III
940

CAUTION

Never make an assignment to a property in a property’s writer method. For example,
examine the following property declaration:

property SomeProp: integer read FSomeProp write SetSomeProp;
....
procedure SetSomeProp(Value:integer);
begin
SomeProp := Value; // This causes infinite recursion }

end;

Adding Array Properties to Components
Some properties lend themselves to being accessed as though they were arrays. That is, they
contain a list of items that can be referenced with an index value. The actual items referenced
can be of any object type. Examples of such properties are TScreen.Fonts, TMemo.Lines, and
TDBGrid.Columns. Such properties require their own property editors. We will get into creating
property editors later in the next chapter. Therefore, we will not go into detail on creating array
properties that have a list of different object types until later. For now, we’ll show a simple
method for defining a property that can be indexed as though it were an array of items, yet
contains no list at all.

We’re going to put aside the TddgWorthless component for a moment and instead look at the
TddgPlanets component. TddgPlanets contains two properties: PlanetName and
PlanetPosition. PlanetName will be an array property that returns the name of the planet
based on the value of an integer index. PlanetPosition won’t use an integer index, but rather
a string index. If this string is one of the planet names, the result will be the planet’s position in
the solar system.

For example, the following statement will display the string “Neptune” by using the
TddgPlanets.PlanetName property:

ShowMessage(ddgPlanets.PlanetName[8]);

Compare the difference when the sentence From the sun, Neptune is planet number: 8 is
generated from the following statement:

ShowMessage(‘From the sun, Neptune is planet number: ‘+
IntToStr(ddgPlanets.PlanetPosition[‘Neptune’]));

Before we show you this component, we list some key characteristics of array properties that
differ from the other properties we’ve mentioned.

• Array properties are declared with one or more index parameters. These indexes can be
of any simple type. For example, the index may be an integer or a string, but not a record
or a class.

• Both the read and write property access directives must be methods. They cannot be
one of the component’s fields.

Writing Delphi Custom Components

CHAPTER 21
941

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS
Because you are accessing the property itself (not the internal storage field), you
cause the SetSomeProp() method to be called again, which results in a recursive loop.
Eventually, the program will crash with a stack overflow. Always access the internal
storage field in the writer method of a property.

• If the array property is indexed by multiple index values, that is, the property represents a
multidimensional array, the access method must include parameters for each index in the
same order as defined by the property.

Now we’ll get to the actual component shown in Listing 21.6.

LISTING 21.6 Using TddgPlanets to Illustrate Array Properties

unit planets;

interface

uses
Classes, SysUtils;

type

TddgPlanets = class(TComponent)
private
// Array property access methods
function GetPlanetName(const AIndex: Integer): String;
function GetPlanetPosition(const APlanetName: String): Integer;

public
{ Array property indexed by an integer value. This will be the default
array property. }

property PlanetName[const AIndex: Integer]: String
read GetPlanetName; default;

// Array property index by a string value
property PlanetPosition[const APlanetName: String]: Integer

read GetPlanetPosition;
end;

implementation

const
// Declare a constant array containing planet names
PlanetNames: array[1..9] of String[7] =
(‘Mercury’, ‘Venus’, ‘Earth’, ‘Mars’, ‘Jupiter’, ‘Saturn’,
‘Uranus’, ‘Neptune’, ‘Pluto’);

function TddgPlanets.GetPlanetName(const AIndex: Integer): String;
begin
{ Return the name of the planet specified by Index. If Index is
out of the range, then raise an exception }

if (AIndex < 0) or (AIndex > 9) then
raise Exception.Create(‘Wrong Planet number, enter a number 1-9’)

Component-Based Development

PART III
942

else
Result := PlanetNames[AIndex];

end;

function TddgPlanets.GetPlanetPosition(const APlanetName: String): Integer;
var
i: integer;

begin
Result := 0;
i := 0;
{ Compare PName to each planet name and return the index of the
appropriate position where PName appears in the constant array.
Otherwise return zero. }

repeat
inc(i);

until (i = 10) or (CompareStr(UpperCase(APlanetName),
UpperCase(PlanetNames[i])) = 0);

if i <> 10 then // A Planet name was found
Result := i;

end;

end.

This component gives you an idea of how you would create an array property with both an
integer and a string being used as an index. Notice how the value returned from reading the
property’s value is based on the function return value and not a value from a storage field, as is
the case with the other properties. You can refer to the code’s comments for additional explana-
tion on this component.

Default Values
You can give a property a default value by assigning a value to the property in the component’s
constructor. Therefore, if we added the following statement to the constructor of the
TddgWorthless component, its FIntegerProp property would always default to 100 when the
component is first placed onto the form:

FIntegerProp := 100;

This is probably the best place to mention the Default and NoDefault directives for property
declarations. If you’ve looked at Delphi’s VCL source code, you’ve probably noticed that some
property declarations contain the Default directive, as is the case with the TComponent.FTag
property:

property Tag: Longint read FTag write FTag default 0;

Writing Delphi Custom Components

CHAPTER 21
943

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS

Don’t confuse this statement with the default value specified in the component’s constructor
that actually sets the property value. For example, change the declaration of the IntegerProp
property for the TddgWorthless component to read as follows:

property IntegerProp: Integer read FIntegerProp write FIntegerProp default 100;

This statement does not set the value of the property to 100. This only affects whether or not
the property value is saved when you save a form containing the TddgWorthless component. If
IntegerProp’s value is not 100, the value will be saved to the DFM file. Otherwise, it does not
get saved (because 100 is what the property value will be in a newly constructed object prior to
reading its properties from the stream). It is recommended that you use the Default directive
whenever possible because it may speed up the load time of your forms. It is important that
you realize that the Default directive does not set the value of the property. You must do that
in the component’s constructor, as was shown previously.

The NoDefault directive is used to re-declare a property that specifies a default value, so that it
will always be written to the stream regardless of its value. For example, you can re-declare
your component to not specify a default value for the Tag property:

TSample = class(TComponent)
published
property Tag NoDefault;

Note that you should never declare anything NoDefault unless you have a specific reason. An
example of such a property is TForm.PixelsPerInch, which must always be stored so that
scaling will work right at runtime. Also, string, floating point, and int64 type properties can-
not declare default values.

To change a property’s default value, you re-declare it by using the new default value (but no
reader or writer methods).

Default Array Properties
You can declare an array property so that it is the default property for the component to which
it belongs. This allows the component user to use the object instance as though it were an array
variable. For example, using the TddgPlanets component, we declared the
TddgPlanets.PlanetName property with the default keyword. By doing this, the component
user is not required to use the property name, PlanetName, in order to retrieve a value. One
simply has to place the index next to the object identifier. Therefore, the following two lines of
code will produce the same result:

ShowMessage(ddgPlanets.PlanetName[8]);
ShowMessage(ddgPlanets[8]);

Component-Based Development

PART III
944

Only one default array property can be declared for an object, and it cannot be overridden in
descendants.

Creating Events
In Chapter 20, we introduced events and told you that events were special properties linked to
code that gets executed whenever a particular action occurs. In this section, we’re going to dis-
cuss events in more detail. We’ll show you how events are generated and how you can define
your own event properties for your custom components.

Where Do Events Come From?
The general definition of an event is basically any type of occurrence that might result from
user interaction, the system, or from code logic. The event is linked to some code that responds
to that occurrence. The linkage of the event to code that responds to an event is called an event
property and is provided in the form of a method pointer. The method to which an event prop-
erty points is called an event handler.

For example, when the user clicks the mouse button, a WM_MOUSEDOWN message is sent to the
Win32 system. Win32 passes that message to the control for which the message was intended.
This control can then respond to the message. The control can respond to this event by first
checking to see whether there is any code to execute. It does this by checking to see whether
the event property points to any code. If so, it executes that code, or rather, the event handler.

The OnClick event is just one of the standard event properties defined by Delphi. OnClick and
other event properties each have a corresponding event-dispatching method. This method is
typically a protected method of the component to which it belongs. This method performs the
logic to determine whether the event property refers to any code provided by the user of the
component. For the OnClick property, this would be the Click() method. Both the OnClick
property and the Click() method are defined by TControl as follows:

TControl = class(TComponent)
private
FOnClick: TNotifyEvent;

protected
procedure Click; dynamic;
property OnClick: TNotifyEvent read FOnClick write FOnClick;

end;

Here is the TControl.Click() method:

procedure TControl.Click;
begin
if Assigned(FOnClick) then FOnClick(Self);

end;

Writing Delphi Custom Components

CHAPTER 21
945

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS

One bit of essential information that you must understand is that event properties are nothing
more than method pointers. Notice that the FOnClick property is defined to be a
TNotifyEvent. TNotifyEvent is defined as follows:

TNotifyEvent = procedure(Sender: TObject) of object;

This says that TNotifyEvent is a procedure that takes one parameter, Sender, which is of the
type TObject. The directive, of object, is what makes this procedure become a method. This
means that an additional implicit parameter that you do not see in the parameter list also gets
passed to this procedure. This is the Self parameter that refers to the object to which this
method belongs. When the Click() method of a component is called, it checks to see if
FOnClick actually points to a method and, if so, calls that method.

As a component writer, you write all the code that defines your event, your event property, and
your dispatching methods. The component user will provide the event handler when they use
your component. Your event-dispatching method will check to see whether the user has
assigned any code to your event property and then execute it when code exists.

In Chapter 20, we discussed how event handlers are assigned to event properties either at run-
time or at design time. In the following section, we show you how to create your own events,
event properties, and dispatching methods.

Defining Event Properties
Before you define an event property, you need to determine whether you need a special event
type. It helps to be familiar with the common event properties that exist in the Delphi VCL.
Most of the time, you’ll be able to have your component descend from one of the existing
components and just use its event properties, or you might have to surface a protected event
property. If you determine that none of the existing events meet your needs, you can define
your own.

As an example, consider the following scenario. Suppose you want a component that contains
an event that gets called every half-minute based on the system clock. That is, it gets invoked
on the minute and on the half-minute. Well, you can certainly use a TTimer component to
check the system time and then perform some action whenever the time is at the minute or
half-minute. However, you might want to incorporate this code into your own component and
then make that component available to your users so that all they have to do is add code to
your OnHalfMinute event.

The TddgHalfMinute component shown in Listing 21.7 illustrates how you would design such a
component. More importantly, it shows how you would go about creating your own event type.

Component-Based Development

PART III
946

LISTING 21.7 TddgHalfMinute Event Creation

unit halfmin;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, ExtCtrls;

type
{ Define a procedure for the event handler. The event property will
be of this procedure type. This type will take two parameters, the
object that invoked the event and a TDateTime value to represent
the time that the event occurred. For our component this will be
every half-minute. }

TTimeEvent = procedure(Sender: TObject; TheTime: TDateTime) of object;

TddgHalfMinute = class(TComponent)
private
FTimer: TTimer;
{ Define a storage field to point to the user’s event handler.
The user’s event handler must be of the procedural type
TTimeEvent. }

FOnHalfMinute: TTimeEvent;
FOldSecond, FSecond: Word; // Variables used in the code
{ Define a procedure, FTimerTimer that will be assigned to
FTimer.OnClick. This procedure must be of the type TNotifyEvent
which is the type of TTimer.OnClick. }

procedure FTimerTimer(Sender: TObject);
protected
{ Define the dispatching method for the OnHalfMinute event. }
procedure DoHalfMinute(TheTime: TDateTime); dynamic;

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

published
// Define the actual property that will show in the Object Inspector
property OnHalfMinute: TTimeEvent read FOnHalfMinute write FOnHalfMinute;

end;

implementation

constructor TddgHalfMinute.Create(AOwner: TComponent);
{ The Create constructor, creates the TTimer instanced for FTimer. It
then sets up the various properties of FTimer, including its OnTimer

Writing Delphi Custom Components

CHAPTER 21
947

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS

continues

LISTING 21.7 Continued

event handler which is TddgHalfMinute’s FTimerTimer() method. Notice
that FTimer.Enabled is set to true only if the component is running
and not while the component is in design mode. }

begin
inherited Create(AOwner);
// If the component is in design mode, do not enable FTimer.
if not (csDesigning in ComponentState) then
begin
FTimer := TTimer.Create(self);
FTimer.Enabled := True;
// Set up the other properties, including the FTimer.OnTimer event handler
FTimer.Interval := 500;
FTimer.OnTimer := FTimerTimer;
end;

end;

destructor TddgHalfMinute.Destroy;
begin
FTimer.Free;
inherited Destroy;

end;

procedure TddgHalfMinute.FTimerTimer(Sender: TObject);
{ This method serves as the FTimer.OnTimer event handler and is assigned
to FTimer.OnTimer at run-time in TddgHalfMinute’s constructor.

This method gets the system time, and then determines whether or not
the time is on the minute, or on the half-minute. If either of these
conditions are true, it calls the OnHalfMinute dispatching method,
DoHalfMinute. }

var
DT: TDateTime;
Temp: Word;

begin
DT := Now; // Get the system time.
FOldSecond := FSecond; // Save the old second.
// Get the time values, needed is the second value
DecodeTime(DT, Temp, Temp, FSecond, Temp);

{ If not the same second when this method was last called, and if
it is a half minute, call DoOnHalfMinute. }

if FSecond <> FOldSecond then
if ((FSecond = 30) or (FSecond = 0)) then
DoHalfMinute(DT)

Component-Based Development

PART III
948

end;

procedure TddgHalfMinute.DoHalfMinute(TheTime: TDateTime);
{ This method is the dispatching method for the OnHalfMinute event.
it checks to see if the user of the component has attached an
event handler to OnHalfMinute and if so, calls that code. }

begin
if Assigned(FOnHalfMinute) then
FOnHalfMinute(Self, TheTime);

end;

end.

When creating your own events, you must determine what information you want to provide to
users of your component as a parameter in the event handler. For example, when you create an
event handler for the TEdit.OnKeyPress event, your event handler looks like the following
code:

procedure TForm1.Edit1KeyPress(Sender: TObject; var Key: Char);
begin
end;

Not only do you get a reference to the object that caused the event, but you also get a Char
parameter specifying the key that was pressed. Deep in the Delphi VCL, this event occurred as
a result of a WM_CHAR Win32 message that drags along some additional information relating to
the key pressed. Delphi takes care of extracting the necessary data and making it available to
component users as event handler parameters. One of the nice things about the whole scheme
is that it enables component writers to take information that might be somewhat complex to
understand and make it available to component users in a much more understandable and easy-
to-use format.

Notice the var parameter in the preceding Edit1KeyPress() method. You might be wondering
why this method was not declared as a function that returns a Char type instead of a procedure.
Although method types can be functions, you should not declare events as functions because it
will introduce ambiguity; when you refer to a method pointer that is a function, you can’t
know whether you’re referring to the function result or to the function pointer value itself. By
the way, there is one function event in the VCL that slipped past the developers from the
Delphi 1 days and now it must remain. This event is the TApplication.OnHelp event.

Looking at Listing 21.7, you’ll see that we’ve defined the procedure type TOnHalfMinute
as this:

TTimeEvent = procedure(Sender: TObject; TheTime: TDateTime) of object;

Writing Delphi Custom Components

CHAPTER 21
949

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS

This procedure type defines the procedure type for the OnHalfMinute event handler. Here, we
decided that we want the user to have a reference to the object causing the event to occur and
the TDateTime value of when the event occurred.

The FOnHalfMinute storage field is the reference to the user’s event handler and is surfaced to
the Object Inspector at design time through the OnHalfMinute property.

The basic functionality of the component uses a TTimer object to check the seconds value
every half second. If the seconds value is 0 or 30, it invokes the DoHalfMinute() method,
which is responsible for checking for the existence of an event handler and then calling it.
Much of this is explained in the code’s comments, which you should read over.

After installing this component to Delphi’s Component Palette, you can place the component
on the form and add the following event handler to the OnHalfMinute event:

procedure TForm1.ddgHalfMinuteHalfMinute(Sender: TObject; TheTime: TDateTime);
begin
ShowMessage(‘The Time is ‘+TimeToStr(TheTime));

end;

This should illustrate how your newly defined event type becomes an event handler.

Creating Methods
Adding methods to components is no different than adding methods to other objects. However,
there are a few guidelines that you should always take into account when designing compo-
nents.

No Interdependencies!
One of the key goals behind creating components is to simplify the use of the component for
the end user. Therefore, you will want to avoid any method interdependencies as much as pos-
sible. For example, you never want to force the user to have to call a particular method in order
to use the component, and methods should not have to be called in any particular order. Also,
methods called by the user should not place the component in a state that makes other events
or methods invalid. Finally, you will want to give your methods meaningful names so that the
user does not have to try to guess what a method does.

Method Exposure
Part of designing a component is to know what methods to make private, public, or protected.
You must take into account not only users of your component, but also those who might use
your component as an ancestor for yet another custom component. Table 21.2 will help you
decide what goes where in your custom component.

Component-Based Development

PART III
950

Table 21.2 Private, Protected, Public, or Published?

Directive What Goes There?

Private Instance variables and methods that you do not want the descendant type to be
able to access or modify. Typically, you will give access to some private instance
variables through properties that have read and write directives set in such a
way as to help prevent the users from shooting themselves in the foot. Therefore,
you want to avoid giving access to any methods that are property-implementation
methods.

Protected Instance variables, methods, and properties that you want descendant classes to be
able to access and modify—but not users of your class. It is a common practice to
place properties in the protected section of a base class for descendant classes to
publish at their discretion.

Public Methods and properties that you want to have accessible to any user of your class.
If you have properties that you want to be accessible at runtime, but not at design
time, this is the place to put them.

Published Properties that you want to be placed on the Object Inspector at design time.
Runtime Type Information (RTTI) is generated for all properties in this section.

Constructors and Destructors
When creating a new component, you have the option of overriding the ancestor component’s
constructor and defining your own. You should keep a few precautions in mind when doing so.

Overriding Constructors
Always make sure to include the override directive when declaring a constructor on a
TComponent descendant class. Here’s an example:

TSomeComponent = class(TComponent)
private
{ Private declarations }

protected
{ Protected declarations }

public
constructor Create(AOwner: TComponent); override;

published
{ Published declarations }

end;

Writing Delphi Custom Components

CHAPTER 21
951

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS

Although not adding the override directive is syntactically legal, it can cause problems when
using your component. This is because when you use the component (both at design time and
at runtime), the non-virtual constructor won’t be called by code that creates the component
through a class reference (such as the streaming system).

Also, be sure that you call the inherited constructor inside your constructor’s code:

constructor TSomeComponent.Create(AOwner: TComponent);
begin
inherited Create(AOwner);
// Place your code here.

end;

Design-Time Behavior
Remember that your component’s constructor is called whenever the component is created.
This includes the component’s design-time creation—when you place it on the form. You
might want to prevent certain actions from occurring when the component is being designed.
For example, in the TddgHalfMinute component, you created a TTimer component inside the
component’s constructor. Although it doesn’t hurt to do this, it can be avoided by making sure
that the TTimer is only created at runtime.

You can check the ComponentState property of a component to determine its current state.
Table 21.3 lists the various component states, as shown in Delphi 5’s online help.

Table 21.3 Component State Values

Flag Component State

csAncestor Set if the component was introduced in an ancestor form. Only set if
csDesigning is also set.

csDesigning Design mode, meaning it is in a form being manipulated by a form
designer.

csDestroying The component is about to be destroyed.

Component-Based Development

PART III
952

NOTE

The Create() constructor is made virtual at the TComponent level. Non-component
classes have static constructors that are invoked from within the constructor of
TComponent classes. Therefore, if you are creating a non-component, descendant class
such as the following, the constructor cannot be overridden because it is not virtual:

TMyObject = class(TPersistent)

You simply re-declare the constructor in this instance.

Flag Component State

csFixups Set if the component is linked to a component in another form that has not
yet been loaded. This flag is cleared when all pending fixups are resolved.

csLoading Loading from a filer object.

csReading Reading its property values from a stream.

csUpdating The component is being updated to reflect changes in an ancestor form.
Only set if csAncestor is also set.

csWriting Writing its property values to a stream.

You will mostly use the csDesigning state to determine whether your component is in design
mode. You can do this with the following statement:

inherited Create(AOwner);
if csDesigning in ComponentState then
{ Do your stuff }

You should note that the csDesigning state is uncertain until after the inherited constructor has
been called and the component is being created with an owner. This is almost always the case
in the IDE form designer.

Overriding Destructors
The general guideline to follow when overriding destructors is to make sure you call the inher-
ited destructor only after you free up resources allocated by your component, not before. The
following code illustrates this:

destructor TMyComponent.Destroy;
begin
FTimer.Free;
MyStrings.Free;
inherited Destroy;

end;

Writing Delphi Custom Components

CHAPTER 21
953

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS

TIP

As a rule of thumb, when you override constructors, you usually call the inherited
constructor first, and when you override destructors, you usually call the inherited
destructor last. This ensures that the class has been set up before you modify it and
that all dependent resources have been cleaned up before you dispose of a class.

There are exceptions to this rule, but you generally should stick with it unless you
have good reason not to.

Registering Your Component
Registering the component tells Delphi which component to place on the Component Palette.
If you used the Component Expert to design your component, you don’t have to do anything
here because Delphi has already generated the code for you. However, if you are creating your
component manually, you’ll need to add the Register() procedure to your component’s unit.

All you have to do is add the procedure Register() to the interface section of the compo-
nent’s unit.

The Register procedure simply calls the RegisterComponents() procedure for every compo-
nent that you are registering in Delphi. The RegisterComponents() procedure takes two para-
meters: the name of the page on which to place the components, and an array of component
types. Listing 21.8 shows how to do this.

LISTING 21.8 Registering Components

Unit MyComp;
interface
type
TMyComp = class(TComponent)
...
end;
TOtherComp = class(TComponent)
...
end;

procedure Register;
implementation
{ TMyComp methods }
{ TOtherCompMethods }
procedure Register;
begin
RegisterComponents(‘DDG’, [TMyComp, TOtherComp]);

end;
end.

The preceding code registers the components TMyComp and TOtherComp and places them on
Delphi’s Component Palette on a page labeled DDG.

Component-Based Development

PART III
954

The Component Palette
In Delphi 1 and 2, Delphi maintained a single component library file that stored all
components, icons, and editors for design-time usage. Although it was sometimes
convenient to have everything dealing with design in one file, it could easily get

Testing the Component
Although it’s very exciting when you finally write a component and are in the testing stages,
don’t get carried away by trying to add your component to the Component Palette before it has
been debugged sufficiently. You should do all preliminary testing with your component by cre-
ating a project that creates and uses a dynamic instance of the component. The reason for this
is that your component lives inside the IDE when it is used at design time. If your component
contains a bug that corrupts memory, for example, it might crash the IDE as well. Listing 21.9
depicts a unit for testing the TddgExtendedMemo component that will be created later in this
chapter. This project can be found on the CD in the project TestEMem.dpr.

LISTING 21.9 Testing the TddgExtendedMemo Component

unit MainFrm;

interface

uses

Writing Delphi Custom Components

CHAPTER 21
955

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS
unwieldy when many components were placed in the component library.
Additionally, the more components you added to the palette, the longer it would
take to rebuild the component library when adding new components.

Thanks to packages, introduced with Delphi 3, you can split up your components into
several design packages. Although it’s slightly more complex to deal with multiple
files, this solution is significantly more configurable, and the time required to rebuild
a package after adding a component is a fraction of the time it took to rebuild the
component library.

By default, new components are added to a package called DCLUSR50, but you can
create and install new design packages using the File, New, Package menu item. The
CD accompanying this book contains a prebuilt design package called DdgDsgn50.dpk
which includes the components from this book. The runtime package is named
DdgStd50.dpk.

If your design-time support involves anything more than a call to
RegisterComponents() (like property editors or component editors or expert registra-
tions), you should move the Register() procedure and the stuff it registers into a
separate unit from your component. The reason for this is that if you compile your
all-in-one unit into a runtime package, and your all-in-one unit’s Register procedure
refers to classes or procedures that exist only in design-time IDE packages, your run-
time package is unusable. Design-time support should be packaged separately from
runtime material.

continues

LISTING 21.9 Continued

Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, exmemo, ExtCtrls;

type

TMainForm = class(TForm)
btnCreateMemo: TButton;
btnGetRowCol: TButton;
btnSetRowCol: TButton;
edtColumn: TEdit;
edtRow: TEdit;
Panel1: TPanel;
procedure btnCreateMemoClick(Sender: TObject);
procedure btnGetRowColClick(Sender: TObject);
procedure btnSetRowColClick(Sender: TObject);

public
EMemo: TddgExtendedMemo; // Declare the component.
procedure OnScroll(Sender: TObject);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.btnCreateMemoClick(Sender: TObject);
begin
{ Dynamically create the component. Make sure to make the appropriate
property assignments so that the component can be used normally.
These assignments depend on the component being tested }

if not Assigned(EMemo) then
begin
EMemo := TddgExtendedMemo.Create(self);
EMemo.Parent := Panel1;
EMemo.ScrollBars := ssBoth;
EMemo.WordWrap := True;
EMemo.Align := alClient;
// Assign event handlers to untested events.
EMemo.OnVScroll := OnScroll;
EMemo.OnHScroll := OnScroll;

end;
end;

Component-Based Development

PART III
956

{ Write whatever methods are required to test the run-time behavior
of the component. This includes methods to access each of the
new properties and methods belonging to the component.

Also, create event handlers for user-defined events so that you can
test them. Since you’re creating the component at run-time, you
have to manually assign the event handlers as was done in the
above Create() constructor.

}
procedure TMainForm.btnGetRowColClick(Sender: TObject);
begin
if Assigned(EMemo) then
ShowMessage(Format(‘Row: %d Column: %d’, [EMemo.Row, EMemo.Column]));

EMemo.SetFocus;
end;

procedure TMainForm.btnSetRowColClick(Sender: TObject);
begin
if Assigned(EMemo) then
begin
EMemo.Row := StrToInt(edtRow.Text);
EMemo.Column := StrToInt(edtColumn.Text);
EMemo.SetFocus;

end;
end;

procedure TMainForm.OnScroll(Sender: TObject);
begin
MessageBeep(0);

end;

end.

Keep in mind that even testing the component at design time doesn’t mean that your compo-
nent is foolproof. Some design-time behavior can still raise havoc with the Delphi IDE, such as
not calling the inherited Create() constructor.

Writing Delphi Custom Components

CHAPTER 21
957

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS

NOTE

You cannot assume that your component has been created and set up by the design-
time environment. Your component must be fully usable after only the Create() con-
structor has executed. Therefore, you should not treat the Loaded() method as part
of the component construction process. The Loaded() method is called only when the

continues

Providing a Component Icon
No custom component would be complete without its own icon for the Component Palette. To
create one of these icons, use Delphi’s Image Editor (or your favorite bitmap editor) to create a
24×24 bitmap on which you will draw the component’s icon. This bitmap must be stored
within a DCR file. A file with a .dcr extension is nothing more than a renamed RES file.
Therefore, if you store your icon in a RES file, you can simply rename it to a DCR file.

Component-Based Development

PART III
958

component is loaded from a stream—such as when it is placed in a form built at
design time. Loaded() marks the end of the streaming process. If your component
was simply created (not streamed), Loaded() is not called.

TIP

Even if you have a 256 or higher color driver, save your Component Palette icon as a
16-color bitmap if you plan on releasing the component to others. Your 256-color
bitmaps most likely will look awful on machines running 16-color drivers.

After you create the bitmap in the DCR file, give the bitmap the same name as the class name
of your component—in ALL CAPS. Save the resource file as the same name as your compo-
nent’s unit with a .dcr extension. Therefore, if your component is named TXYZComponent, the
bitmap name is TXYZCOMPONENT. If the component’s unit name is XYZCOMP.PAS, name the
resource file XYZCOMP.DCR. Place this file in the same directory as the unit, and when you
recompile the unit, the bitmap automatically is linked into the component library.

Sample Components
The remaining sections of this chapter give some real examples of component creation. The
components created here serve two primary purposes. First, they illustrate the techniques
explained in the first part of this chapter. Secondly, you can actually use these components in
your applications. You might even decide to extend their functionality to meet your needs.

Extending Win32 Component Wrapper Capabilities
In some cases, you might want to extend the functionality of existing components, especially
those components that wrap the Win32 control classes. We’re going to show you how to do this
by creating two components that extend the behavior of the TMemo control and the TListBox
control.

TddgExtendedMemo: Extending the TMemo Component
Although the TMemo component is quite robust, there are a few features it doesn’t make avail-
able that would be useful. For starters, it’s not capable of providing the caret position in terms
of the row and column on which the caret sits. We’ll extend the TMemo component to provide
these as public properties.

Additionally, it is sometimes convenient to perform some action whenever the user touches the
TMemo’s scrollbars. You’ll create events to which the user can attach code whenever these
scrolling events occur.

The source code for the TddgExtendedMemo component is shown in Listing 21.10.

LISTING 21.10 ExtMemo.pas: The Source for the TddgExtendedMemo Component

unit ExMemo;

interface

uses
Windows, Messages, Classes, StdCtrls;

type

TddgExtendedMemo = class(TMemo)
private
FRow: Longint;
FColumn: Longint;
FOnHScroll: TNotifyEvent;
FOnVScroll: TNotifyEvent;
procedure WMHScroll(var Msg: TWMHScroll); message WM_HSCROLL;
procedure WMVScroll(var Msg: TWMVScroll); message WM_VSCROLL;
procedure SetRow(Value: Longint);
procedure SetColumn(Value: Longint);
function GetRow: Longint;
function GetColumn: Longint;

protected
// Event dispatching methods
procedure HScroll; dynamic;
procedure VScroll; dynamic;

public
property Row: Longint read GetRow write SetRow;
property Column: Longint read GetColumn write SetColumn;

published
property OnHScroll: TNotifyEvent read FOnHScroll write FOnHScroll;
property OnVScroll: TNotifyEvent read FOnVScroll write FOnVScroll;

Writing Delphi Custom Components

CHAPTER 21
959

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS

LISTING 21.10 Continued

end;

implementation

procedure TddgExtendedMemo.WMHScroll(var Msg: TWMHScroll);
begin
inherited;
HScroll;

end;

procedure TddgExtendedMemo.WMVScroll(var Msg: TWMVScroll);
begin
inherited;
VScroll;

end;

procedure TddgExtendedMemo.HScroll;
{ This is the OnHScroll event dispatch method. It checks to see
if OnHScroll points to an event handler and calls it if it does. }

begin
if Assigned(FOnHScroll) then
FOnHScroll(self);

end;

procedure TddgExtendedMemo.VScroll;
{ This is the OnVScroll event dispatch method. It checks to see
if OnVScroll points to an event handler and calls it if it does. }

begin
if Assigned(FOnVScroll) then
FOnVScroll(self);

end;

procedure TddgExtendedMemo.SetRow(Value: Longint);
{ The EM_LINEINDEX returns the character position of the first
character in the line specified by wParam. The Value is used for
wParam in this instance. Setting SelStart to this return value
positions the caret on the line specified by Value. }

begin
SelStart := Perform(EM_LINEINDEX, Value, 0);
FRow := SelStart;

end;

function TddgExtendedMemo.GetRow: Longint;
{ The EM_LINEFROMCHAR returns the line in which the character specified

Component-Based Development

PART III
960

by wParam sits. If -1 is passed as wParam, the line number at which
the caret sits is returned. }

begin
Result := Perform(EM_LINEFROMCHAR, -1, 0);

end;

procedure TddgExtendedMemo.SetColumn(Value: Longint);
begin
{ Get the length of the current line using the EM_LINELENGTH
message. This message takes a character position as WParam.
The length of the line in which that character sits is returned. }

FColumn := Perform(EM_LINELENGTH, Perform(EM_LINEINDEX, GetRow, 0), 0);
{ If the FColumn is greater than the value passed in, then set
FColumn to the value passed in }

if FColumn > Value then
FColumn := Value;

// Now set SelStart to the newly specified position
SelStart := Perform(EM_LINEINDEX, GetRow, 0) + FColumn;

end;

function TddgExtendedMemo.GetColumn: Longint;
begin
{ The EM_LINEINDEX message returns the line index of a specified
character passed in as wParam. When wParam is -1 then it
returns the index of the current line. Subtracting SelStart from this
value returns the column position }

Result := SelStart - Perform(EM_LINEINDEX, -1, 0);
end;

end.

First, we’ll discuss adding the capability to provide row and column information to
TddgExtendedMemo. Notice that we’ve added two private fields to the component, FRow and
FColumn. These fields will hold the row and column of the TddgExtendedMemo’s caret position.
Notice that we’ve also provided the Row and Column public properties. These properties are
made public because there’s really no use for them at design time. The Row and Column proper-
ties have both reader and writer access methods. For the Row property, these access methods are
GetRow() and SetRow(). The Column access methods are GetColumn() and SetColumn(). For
all practical purposes, you probably could do away with the FRow and FColumn storage fields
because the values for Row and Column are provided through access methods. However, we’ve
left them here because they offer the opportunity to extend this component.

The four access methods make use of various EM_XXXX messages. The code comments explain
what is going on in each method and how these messages are used to provide Row and Column
information for the component.

Writing Delphi Custom Components

CHAPTER 21
961

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS

The TddgExtendedMemo component also provides two new events: OnHScroll and OnVScroll.
The OnHScroll event occurs whenever the user clicks the horizontal scrollbar of the control.
Likewise, the OnVScroll occurs when the user clicks the vertical scrollbar. To surface such
events, you have to capture the WM_HSCROLL and WM_VSCROLL Win32 messages that are passed
to the control whenever the user clicks either scrollbar. Thus, you’ve created the two message
handlers: WMHScroll() and WMVScroll(). These two message handlers call the event-dispatch-
ing methods HScroll() and VScroll(). These methods are responsible for checking whether
the component user has provided event handlers for the OnHScroll and OnVScroll events and
then calling those event handlers. If you’re wondering why we didn’t just perform this check in
the message handler methods, it’s because you'll often want to be able to invoke an event han-
dler as a result of a different action, such as when the user changes the caret position.

You can install and use the TddgExtendedMemo with your applications. You might even con-
sider extending this component; for example, whenever the user changes the caret position, a
WM_COMMAND message is sent to the control’s owner. The HiWord(wParam) carries a notification
code indicating the action that occurred. This code would have the value of EN_CHANGE, which
stands for edit-notification message change. It is possible to have your component subclass its
parent and capture this message in the parent’s window procedure. It can then automatically
update the FRow and FColumn fields. Subclassing is an altogether different and advanced topic
that is discussed later.

TddgTabbedListBox: Extending the TListBox Component
VCL’s TListbox component is merely an Object Pascal wrapper around the standard Win32
API LISTBOX control. Although it does do a fair job encapsulating most of that functionality,
there is a little bit of room for improvement. This section takes you through the steps in creat-
ing a custom component based on TListbox.

The Idea
The idea for this component, like most, was born out of necessity. A list box was needed with
the capability to use tab stops (which is supported in the Win32 API, but not in a TListbox),
and a horizontal scrollbar was needed to view strings that were longer than the list box width
(also supported by the API but not a TListbox). This component will be called a
TddgTabListbox.

The plan for the TddgTabListbox component isn’t terribly complex; we did this by creating a
TListbox descendant component containing the correct field properties, overridden methods,
and new methods to achieve the desired behavior.

The Code
The first step in creating a scrollable list box with tab stops is to include those window styles
in the TddgTabListbox’s style when the listbox window is created. The window styles needed

Component-Based Development

PART III
962

are lbs_UseTabStops for tabs and ws_HScroll to allow a horizontal scrollbar. Whenever you
add window styles to a descendant of TWinControl, do so by overriding the CreateParams()
method, as shown in the following code:

procedure TddgTabListbox.CreateParams(var Params: TCreateParams);
begin
inherited CreateParams(Params);
Params.Style := Params.Style or lbs_UseTabStops or ws_HScroll;

end;

Writing Delphi Custom Components

CHAPTER 21
963

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS

CreateParams()
Whenever you need to modify any of the parameters—such as the style or window
class—that are passed to the CreateWindowEx() API function, you should do so in the
CreateParams() method. CreateWindowEx() is the function used to create the win-
dow handle associated with a TWinControl descendant. By overriding
CreateParams(), you can control the creation of a window on the API level.

CreateParams accepts one parameter of type TCreateParams, which follows:

TCreateParams = record
Caption: PChar;
Style: Longint;
ExStyle: Longint;
X, Y: Integer;
Width, Height: Integer;
WndParent: HWnd;
Param: Pointer;
WindowClass: TWndClass;
WinClassName: array[0..63] of Char;

end;

As a component writer, you will override CreateParams() frequently—whenever you
need to control the creation of a component on the API level. Make sure that you call
the inherited CreateParams() first in order to fill up the Params record for you.

To set the tab stops, the TddgTabListbox performs an lb_SetTabStops message, passing the
number of tab stops and a pointer to an array of tabs as the wParam and lParam (these two vari-
ables will be stored in the class as FNumTabStops and FTabStops). The only catch is that list-
box tab stops are handled in a unit of measure called dialog box units. Because dialog box
units don’t make sense for the Delphi programmer, you will surface tabs only in pixels. With
the help of the PixDlg.pas unit shown in Listing 21.11, you can convert back and forth
between dialog box units and screen pixels in both the X and Y planes.

LISTING 21.11 The Source Code for PixDlg.pas

unit Pixdlg;

interface

function DialogUnitsToPixelsX(DlgUnits: word): word;
function DialogUnitsToPixelsY(DlgUnits: word): word;
function PixelsToDialogUnitsX(PixUnits: word): word;
function PixelsToDialogUnitsY(PixUnits: word): word;

implementation
uses WinProcs;

function DialogUnitsToPixelsX(DlgUnits: word): word;
begin
Result := (DlgUnits * LoWord(GetDialogBaseUnits)) div 4;

end;

function DialogUnitsToPixelsY(DlgUnits: word): word;
begin
Result := (DlgUnits * HiWord(GetDialogBaseUnits)) div 8;

end;

function PixelsToDialogUnitsX(PixUnits: word): word;
begin
Result := PixUnits * 4 div LoWord(GetDialogBaseUnits);

end;

function PixelsToDialogUnitsY(PixUnits: word): word;
begin
Result := PixUnits * 8 div HiWord(GetDialogBaseUnits);

end;

end.

When you know the tab stops, you can calculate the extent of the horizontal scrollbar. The
scrollbar should extend at least to the end of the longest string in the listbox. Luckily, the
Win32 API provides a function called GetTabbedTextExtent() that retrieves just the informa-
tion you need. When you know the length of the longest string, you can set the scrollbar range
by performing the lb_SetHorizontalExtent message, passing the desired extent as the
wParam.

You also need to write message handlers for some special Win32 messages. In particular, you
need to handle the messages that control inserting and deleting, because you need to be able to

Component-Based Development

PART III
964

measure the length of any new string or know when a long string has been deleted. The mes-
sages you’re concerned with are lb_AddString, lb_InsertString, and lb_DeleteString.
Listing 21.12 contains the source code for the LbTab.pas unit, which contains the
TddgTabListbox component.

LISTING 21.12 LbTab.pas, the TddgTabListBox

unit Lbtab;

interface

uses
SysUtils, Windows, Messages, Classes, Controls, StdCtrls;

type

EddgTabListboxError = class(Exception);

TddgTabListBox = class(TListBox)
private
FLongestString: Word;
FNumTabStops: Word;
FTabStops: PWord;
FSizeAfterDel: Boolean;
function GetLBStringLength(S: String): word;
procedure FindLongestString;
procedure SetScrollLength(S: String);
procedure LBAddString(var Msg: TMessage); message lb_AddString;
procedure LBInsertString(var Msg: TMessage); message lb_InsertString;
procedure LBDeleteString(var Msg: TMessage); message lb_DeleteString;

protected
procedure CreateParams(var Params: TCreateParams); override;

public
constructor Create(AOwner: TComponent); override;
procedure SetTabStops(A: array of word);

published
property SizeAfterDel: Boolean read FSizeAfterDel write FSizeAfterDel

➥default True;
end;

implementation

uses PixDlg;

constructor TddgTabListBox.Create(AOwner: TComponent);

Writing Delphi Custom Components

CHAPTER 21
965

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS

continues

LISTING 21.12 Continued

begin
inherited Create(AOwner);
FSizeAfterDel := True;
{ set tab stops to Windows defaults... }
FNumTabStops := 1;
GetMem(FTabStops, SizeOf(Word) * FNumTabStops);
FTabStops^ := DialogUnitsToPixelsX(32);

end;

procedure TddgTabListBox.SetTabStops(A: array of word);
{ This procedure sets the listbox’s tabstops to those specified
in the open array of word, A. New tabstops are in pixels, and must
be in ascending order. An exception will be raised if new tabs
fail to set. }

var
i: word;
TempTab: word;
TempBuf: PWord;

begin
{ Store new values in temps in case exception occurs in setting tabs }
TempTab := High(A) + 1; // Figure number of tabstops
GetMem(TempBuf, SizeOf(A)); // Allocate new tabstops
Move(A, TempBuf^, SizeOf(A));// copy new tabstops }
{ convert from pixels to dialog units, and... }
for i := 0 to TempTab - 1 do
A[i] := PixelsToDialogUnitsX(A[i]);

{ Send new tabstops to listbox. Note that we must use dialog units. }
if Perform(lb_SetTabStops, TempTab, Longint(@A)) = 0 then
begin
{ if zero, then failed to set new tabstops, free temp
tabstop buffer and raise an exception }

FreeMem(TempBuf, SizeOf(Word) * TempTab);
raise EddgTabListboxError.Create(‘Failed to set tabs.’)

end
else begin
{ if nonzero, then new tabstops set okay, so
Free previous tabstops }

FreeMem(FTabStops, SizeOf(Word) * FNumTabStops);
{ copy values from temps... }
FNumTabStops := TempTab; // set number of tabstops
FTabStops := TempBuf; // set tabstop buffer
FindLongestString; // reset scrollbar
Invalidate; // repaint

end;

Component-Based Development

PART III
966

end;

procedure TddgTabListBox.CreateParams(var Params: TCreateParams);
{ We must OR in the styles necessary for tabs and horizontal scrolling
These styles will be used by the API CreateWindowEx() function. }

begin
inherited CreateParams(Params);
{ lbs_UseTabStops style allows tabs in listbox
ws_HScroll style allows horizontal scrollbar in listbox }

Params.Style := Params.Style or lbs_UseTabStops or ws_HScroll;
end;

function TddgTabListBox.GetLBStringLength(S: String): word;
{ This function returns the length of the listbox string S in pixels }
var
Size: Integer;

begin
// Get the length of the text string
Canvas.Font := Font;
Result := LoWord(GetTabbedTextExtent(Canvas.Handle, PChar(S),

StrLen(PChar(S)), FNumTabStops, FTabStops^));
// Add a little bit of space to the end of the scrollbar extent for looks
Size := Canvas.TextWidth(‘X’);
Inc(Result, Size);

end;

procedure TddgTabListBox.SetScrollLength(S: String);
{ This procedure resets the scrollbar extent if S is longer than the }
{ previous longest string }
var
Extent: Word;

begin
Extent := GetLBStringLength(S);
// If this turns out to be the longest string...
if Extent > FLongestString then
begin
// reset longest string
FLongestString := Extent;
//reset scrollbar extent
Perform(lb_SetHorizontalExtent, Extent, 0);

end;
end;

procedure TddgTabListBox.LBInsertString(var Msg: TMessage);
{ This procedure is called in response to a lb_InsertString message.
This message is sent to the listbox every time a string is inserted.

Writing Delphi Custom Components

CHAPTER 21
967

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS

continues

LISTING 21.12 Continued

Msg.lParam holds a pointer to the null-terminated string being
inserted. This will cause the scrollbar length to be adjusted if
the new string is longer than any of the existing strings. }

begin
inherited;
SetScrollLength(PChar(Msg.lParam));

end;

procedure TddgTabListBox.LBAddString(var Msg: TMessage);
{ This procedure is called in response to a lb_AddString message.
This message is sent to the listbox every time a string is added.
Msg.lParam holds a pointer to the null-terminated string being
added. This Will cause the scrollbar length to be adjusted if the
new string is longer than any of the existing strings.}

begin
inherited;
SetScrollLength(PChar(Msg.lParam));

end;

procedure TddgTabListBox.FindLongestString;
var
i: word;
Strg: String;

begin
FLongestString := 0;
{ iterate through strings and look for new longest string }
for i := 0 to Items.Count - 1 do
begin
Strg := Items[i];
SetScrollLength(Strg);

end;
end;

procedure TddgTabListBox.LBDeleteString(var Msg: TMessage);
{ This procedure is called in response to a lb_DeleteString message.
This message is sent to the listbox everytime a string is deleted.
Msg.wParam holds the index of the item being deleted. Note that
by setting the SizeAfterDel property to False, you can cause the
scrollbar update to not occur. This will improve performance
if you’re deleting often. }

var
Str: String;

begin
if FSizeAfterDel then

Component-Based Development

PART III
968

begin
Str := Items[Msg.wParam]; // Get string to be deleted
inherited; // Delete string
{ Is deleted string the longest? }
if GetLBStringLength(Str) = FLongestString then
FindLongestString;

end
else
inherited;

end;

end.

One particular point of interest in this component is the SetTabStops() method, which accepts
an open array of word as a parameter. This enables users to pass in as many tab stops as they
want. Here is an example:

ddgTabListboxInstance.SetTabStops([50, 75, 150, 300]);

If the text in the listbox extends beyond the viewable window, the horizontal scrollbar will
appear automatically.

TddgRunButton: Creating Properties
If you wanted to run another executable program in 16-bit Windows, you could use the
WinExec() API function. Although these functions still work in Win32, it is not the recom-
mended approach. Now you should use the CreateProcess() or ShellExecute() functions to
launch another application. CreateProcess() can be a somewhat daunting task when needed
just for that purpose. Therefore, we’ve provided the ProcessExecute() method, which we’ll
show in a moment.

To illustrate the use of ProcessExecute(), we’ve created the component TddgRunButton. All
that is required of the user is to click the button and the application executes.

The TddgRunButton component is an ideal example of creating properties, validating property
values, and encapsulating complex operations. Additionally, we’ll show you how to grab the
application icon from an executable file and how to display it in the TddgRunButton at design
time. One other thing; TddgRunButton descends from TSpeedButton. Because TSpeedButton
contains certain properties that you don’t want accessible at design time through the Object
Inspector, we’ll show you how you can hide (sort of) existing properties from the component
user. Admittedly, this technique is not exactly the cleanest approach to use. Typically, you
would create a component of your own if you want to take the purist approach—of which the
authors are advocates. However, this is one of those instances where Borland, in all its infinite

Writing Delphi Custom Components

CHAPTER 21
969

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS

wisdom, did not provide an intermediate component in between TSpeedButton and
TCustomControl (from which TSpeedButton descends), as Borland did with its other compo-
nents. Therefore, the choice was either to roll our own component that pretty much duplicates
the functionality you get from TSpeedButton, or borrow from TSpeedButton’s functionality
and hide a few properties that aren’t applicable for your needs. We opted for the latter, but only
out of necessity. However, this should clue you in to practice careful forethought as to how
component writers might want to extend your own components.

The code to TddgRunButton is shown in Listing 21.13.

LISTING 21.13 RunBtn.pas, the Source to the TddgRunButton Component

{
Copyright © 1999 by Delphi 5 Developer’s Guide - Xavier Pacheco and Steve
Teixeira
}

unit RunBtn;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, Buttons;

type

TCommandLine = type string;

TddgRunButton = class(TSpeedButton)
private
FCommandLine: TCommandLine;
// Hiding Properties from the Object Inspector
FCaption: TCaption;
FAllowAllUp: Boolean;
FFont: TFont;
FGroupIndex: Integer;
FLayOut: TButtonLayout;
procedure SetCommandLine(Value: TCommandLine);

public
constructor Create(AOwner: TComponent); override;
procedure Click; override;

published
property CommandLine: TCommandLine read FCommandLine write SetCommandLine;
// Read only properties are hidden

Component-Based Development

PART III
970

property Caption: TCaption read FCaption;
property AllowAllUp: Boolean read FAllowAllUp;
property Font: TFont read FFont;
property GroupIndex: Integer read FGroupIndex;
property LayOut: TButtonLayOut read FLayOut;

end;

implementation

uses ShellAPI;

const
EXEExtension = ‘.EXE’;

function ProcessExecute(CommandLine: TCommandLine; cShow: Word): Integer;
{ This method encapsulates the call to CreateProcess() which creates
a new process and its primary thread. This is the method used in
Win32 to execute another application, This method requires the use
of the TStartInfo and TProcessInformation structures. These structures
are not documented as part of the Delphi 5 online help but rather
the Win32 help as STARTUPINFO and PROCESS_INFORMATION.

The CommandLine parameter specifies the pathname of the file to
execute.

The cShow parameter specifies one of the SW_XXXX constants which
specifies how to display the window. This value is assigned to the
sShowWindow field of the TStartupInfo structure. }

var
Rslt: LongBool;
StartUpInfo: TStartUpInfo; // documented as STARTUPINFO
ProcessInfo: TProcessInformation; // documented as PROCESS_INFORMATION

begin
{ Clear the StartupInfo structure }
FillChar(StartupInfo, SizeOf(TStartupInfo), 0);
{ Initialize the StartupInfo structure with required data.
Here, we assign the SW_XXXX constant to the wShowWindow field
of StartupInfo. When specifying a value to this field the
STARTF_USESSHOWWINDOW flag must be set in the dwFlags field.
Additional information on the TStartupInfo is provided in the Win32
online help under STARTUPINFO. }

with StartupInfo do
begin
cb := SizeOf(TStartupInfo); // Specify size of structure
dwFlags := STARTF_USESHOWWINDOW or STARTF_FORCEONFEEDBACK;
wShowWindow := cShow

Writing Delphi Custom Components

CHAPTER 21
971

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS

continues

LISTING 21.13 Continued

end;

{ Create the process by calling CreateProcess(). This function
fills the ProcessInfo structure with information about the new
process and its primary thread. Detailed information is provided
in the Win32 online help for the TProcessInfo structure under
PROCESS_INFORMATION. }

Rslt := CreateProcess(PChar(CommandLine), nil, nil, nil, False,
NORMAL_PRIORITY_CLASS, nil, nil, StartupInfo, ProcessInfo);

{ If Rslt is true, then the CreateProcess call was successful.
Otherwise, GetLastError will return an error code representing the
error which occurred. }

if Rslt then
with ProcessInfo do
begin
{ Wait until the process is in idle. }
WaitForInputIdle(hProcess, INFINITE);
CloseHandle(hThread); // Free the hThread handle
CloseHandle(hProcess);// Free the hProcess handle
Result := 0; // Set Result to 0, meaning successful

end
else Result := GetLastError; // Set result to the error code.

end;

function IsExecutableFile(Value: TCommandLine): Boolean;
{ This method returns whether or not the Value represents a valid
executable file by ensuring that its file extension is ‘EXE’ }

var
Ext: String[4];

begin
Ext := ExtractFileExt(Value);
Result := (UpperCase(Ext) = EXEExtension);

end;

constructor TddgRunButton.Create(AOwner: TComponent);
{ The constructor sets the default height and width properties
to 45x45 }

begin
inherited Create(AOwner);
Height := 45;
Width := 45;

end;

procedure TddgRunButton.SetCommandLine(Value: TCommandLine);

Component-Based Development

PART III
972

{ This write access method sets the FCommandLine field to Value, but
only if Value represents a valid executable file name. It also
set the icon for the TddgRunButton to the application icon of the
file specified by Value. }

var
Icon: TIcon;

begin
{ First check to see that Value *is* an executable file and that
it actually exists where specified. }

if not IsExecutableFile(Value) then
Raise Exception.Create(Value+’ is not an executable file.’);

if not FileExists(Value) then
Raise Exception.Create(‘The file: ‘+Value+’ cannot be found.’);

FCommandLine := Value; // Store the Value in FCommandLine

{ Now draw the application icon for the file specified by Value
on the TddgRunButton icon. This requires us to create a TIcon
instance to which to load the icon. It is then copied from this
TIcon instance to the TddgRunButton’s Canvas.

We must use the Win32 API function ExtractIcon() to retrieve the
icon for the application. }

Icon := TIcon.Create; // Create the TIcon instance
try
{ Retrieve the icon from the application’s file }
Icon.Handle := ExtractIcon(hInstance, PChar(FCommandLine), 0);
with Glyph do
begin
{ Set the TddgRunButton properties so that the icon held by Icon
can be copied onto it. }

{ First, clear the canvas. This is required in case another
icon was previously drawn on the canvas }

Canvas.Brush.Style := bsSolid;
Canvas.FillRect(Canvas.ClipRect);
{ Set the Icon’s width and height }
Width := Icon.Width;
Height := Icon.Height;
Canvas.Draw(0, 0, Icon); // Draw the icon to TddgRunButton’s Canvas

end;
finally
Icon.Free; // Free the TIcon instance.

end;
end;

procedure TddgRunButton.Click;

Writing Delphi Custom Components

CHAPTER 21
973

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS

continues

LISTING 21.13 Continued

var
WERetVal: Word;

begin
inherited Click; // Call the inherited Click method
{ Execute the ProcessExecute method and check it’s return value.
if the return value is <> 0 then raise an exception because
an error occurred. The error code is shown in the exception }

WERetVal := ProcessExecute(FCommandLine, sw_ShowNormal);
if WERetVal <> 0 then begin
raise Exception.Create(‘Error executing program. Error Code:; ‘+

IntToStr(WERetVal));
end;

end;

end.

TddgRunButton has one property, CommandLine, which is defined to be of the type String. The
private storage field for CommandLine is FCommandLine.

Component-Based Development

PART III
974

TIP

It is worth discussing the special definition of TCommandLine. Here is the syntax used:

TCommandLine = type string;

By defining TCommandLine as such, you tell the compiler to treat TCommandLine as a
unique type that is still compatible with other string types. The new type will get its
own runtime type information and therefore can have its own property editor. This
same technique can be used with other types as well. Here is an example:

TMySpecialInt = type Integer;

We will show you how we use this to create a property editor for the CommandLine
property in the next chapter. We do not show you this technique in this chapter
because creating property editors is an advanced topic that we want to talk about in
more depth.

The write access method for CommandLine is SetCommandLine(). We’ve provided two helper
functions: IsExecutableFile() and ProcessExecute().

IsExecutableFile() is a function that determines whether a filename passed to it is an exe-
cutable file based on the file’s extension.

Creating and Executing a Process
ProcessExecute() is a function that encapsulates the CreateProcess() Win32 API function
that enables you to launch another application. The application to launch is specified by the
CommandLine parameter, which holds the filename path. The second parameter contains one of
the SW_XXXX constants that indicates how the process’s main windows are to be displayed. Table
21.4 lists the various SW_XXXX constants and their meanings, as explained in the online help.

Table 21.4 SW_XXXX Constants

SW_XXXX Constant Meaning

SW_HIDE Hides the window. Another window will become active.

SW_MAXIMIZE Displays the window as maximized.

SW_MINIMIZE Minimizes the window.

SW_RESTORE Displays a window at its size before it was maximized/minimized.

SW_SHOW Displays a window at its current size/position.

SW_SHOWDEFAULT Shows a window at the state specified by the TStartupInfo structure
passed to CreateProcess().

SW_SHOWMAXIMIZED Activates/displays the window as maximized.

SW_SHOWMINIMIZED Activates/displays the window as minimized.

SW_SHOWMINNOACTIVE Displays the window as minimized but the currently active window
remains active.

SW_SHOWNA Display the window at its current state. The currently active window
remains active.

SW_SHOWNOACTIVATE Displays the window at the most recent size/position. The currently
active window remains active.

SW_SHOWNORMAL Activates/displays the window at its more recent size/position. This posi-
tion is restored if the window was previously maximized/minimized.

ProcessExecute() is a handy utility function that you might want to keep around in a separate
unit that may be shared by other applications.

TddgRunButton Methods
The TddgRunButton.Create() constructor simply sets a default size for itself after calling the
inherited constructor.

The SetCommandLine() method, which is the writer access method for the CommandLine para-
meter, performs several tasks. First, it determines whether the value being assigned to
CommandLine is a valid executable filename. If not, it raises an exception.

Writing Delphi Custom Components

CHAPTER 21
975

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS

If the entry is valid, it is assigned to the FCommandLine field. SetCommandLine() then extracts
the icon from the application file and draws it to TddgRunButton’s canvas. The Win32 API
function ExtractIcon() is used to do this. The technique used is explained in the commentary.

TddgRunButton.Click() is the event-dispatching method for the TSpeedButton.OnClick
event. It is necessary to call the inherited Click() method that will invoke the OnClick event
handler if assigned. After calling the inherited Click(), you call ProcessExecute() and exam-
ine its result value to determine whether the call was successful. If not, an exception is raised.

TddgButtonEdit—Container Components
Occasionally you might like to create a component that is composed of one or more other com-
ponents. Delphi’s TDBNavigator is a good example of such a component, as it consists of a
TPanel and a number of TSpeedButton components. Specifically, this section illustrates this
concept by creating a component that is a combination of a TEdit and a TSpeedButton compo-
nent. We will call this component TddgButtonEdit.

Design Decisions
Considering that Object Pascal is based upon a single-inheritance object model,
TddgButtonEdit will need to be a component in its own right, which must contain both a
TEditl and a TSpeedButton. Furthermore, because it’s necessary that this component contain
windowed controls, it will need to be a windowed control itself. For these reasons, we chose to
descend TddgButtonEdit from TWinControl. We created both the TEdit and TSpeedButton in
TddgButtonEdit’s constructor using the following code:

constructor TddgButtonEdit.Create(AOwner: TComponent);
begin
inherited Create(AOwner);
FEdit := TEdit.Create(Self);
FEdit.Parent := self;
FEdit.Height := 21;

FSpeedButton := TSpeedButton.Create(Self);
FSpeedButton.Left := FEdit.Width;
FSpeedButton.Height := 19; // two less then TEdit’s Height
FSpeedButton.Width := 19;
FSpeedButton.Caption := ‘...’;
FSpeedButton.Parent := Self;

Width := FEdit.Width+FSpeedButton.Width;
Height := FEdit.Height;

end;

Component-Based Development

PART III
976

The challenge when creating a component that contains other components is surfacing the
properties of the “inner” components from the container component. For example, the
TddgButtonEdit will need a Text property. You also might want to be able to change the font
for the text in the control; therefore, a Font property is needed. Finally, there needs to be an
OnClick event for the button in the control. You wouldn’t want to attempt to implement this
yourself in the container component when it is already available from the inner components.
The goal, then, is to surface the appropriate properties of the inner controls without rewriting
the interfaces to these controls.

Surfacing Properties
This usually boils down to the simple but time-consuming task of writing reader and writer
methods for each of the inner component properties you want to resurface through the con-
tainer component. In the case of the Text property, for example, you might give the
TddgButtonEdit a Text property with read and write methods:

TddgButtonEdit = class(TWinControl)
private
FEdit: TEdit;
protected
procedure SetText(Value: String);
function GetText: String;

published
property Text: String read GetText write SetText;

end;

The SetText() and GetText() methods directly access the Text property of the contained
TEdit control, as shown here:

function TddgButtonEdit.GetText: String;
begin
Result := FEdit.Text;

end;

procedure TddgButtonEdit.SetText(Value: String);
begin
FEdit.Text := Value;

end;

Surfacing Events
In addition to properties, it’s also quite likely that you might want to resurface events that exist
in the inner components. For example, when the user clicks on the TSpeedButton control, you
would want to surface its OnClick event. Resurfacing events is just as straightforward as resur-
facing properties—after all, events are properties.

Writing Delphi Custom Components

CHAPTER 21
977

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS

You need to first give the TddgButtonEdit its own OnClick event. For clarity, we named this
event OnButtonClick. The read and write methods for this event simply redirect the assign-
ment to the OnClick event of the internal TSpeedButton.

Listing 21.14 shows the TddgButtonEdit container component.

LISTING 21.14 TddgButtonEdit, a Container Component

unit ButtonEdit;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, Buttons;

type
TddgButtonEdit = class(TWinControl)
private
FSpeedButton: TSpeedButton;
FEdit: TEdit;

protected
procedure WMSize(var Message: TWMSize); message WM_SIZE;
procedure SetText(Value: String);
function GetText: String;
function GetFont: TFont;
procedure SetFont(Value: TFont);
function GetOnButtonClick: TNotifyEvent;
procedure SetOnButtonClick(Value: TNotifyEvent);

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

published
property Text: String read GetText write SetText;
property Font: TFont read GetFont write SetFont;
property OnButtonClick: TNotifyEvent read GetOnButtonClick

write SetOnButtonClick;
end;

implementation

procedure TddgButtonEdit.WMSize(var Message: TWMSize);
begin
inherited;
FEdit.Width := Message.Width-FSpeedButton.Width;
FSpeedButton.Left := FEdit.Width;

Component-Based Development

PART III
978

end;

constructor TddgButtonEdit.Create(AOwner: TComponent);
begin
inherited Create(AOwner);
FEdit := TEdit.Create(Self);
FEdit.Parent := self;
FEdit.Height := 21;

FSpeedButton := TSpeedButton.Create(Self);
FSpeedButton.Left := FEdit.Width;
FSpeedButton.Height := 19; // two less than TEdit’s Height
FSpeedButton.Width := 19;
FSpeedButton.Caption := ‘...’;
FSpeedButton.Parent := Self;

Width := FEdit.Width+FSpeedButton.Width;
Height := FEdit.Height;

end;

destructor TddgButtonEdit.Destroy;
begin
FSpeedButton.Free;
FEdit.Free;
inherited Destroy;

end;

function TddgButtonEdit.GetText: String;
begin
Result := FEdit.Text;

end;

procedure TddgButtonEdit.SetText(Value: String);
begin
FEdit.Text := Value;

end;

function TddgButtonEdit.GetFont: TFont;
begin
Result := FEdit.Font;

end;

procedure TddgButtonEdit.SetFont(Value: TFont);
begin
if Assigned(FEdit.Font) then
FEdit.Font.Assign(Value);

Writing Delphi Custom Components

CHAPTER 21
979

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS

continues

LISTING 21.14 Continued

end;

function TddgButtonEdit.GetOnButtonClick: TNotifyEvent;
begin
Result := FSpeedButton.OnClick;

end;

procedure TddgButtonEdit.SetOnButtonClick(Value: TNotifyEvent);
begin
FSpeedButton.OnClick := Value;

end;

end.

TddgDigitalClock—Creating Component Events
TddgDigitalClock illustrates the process of creating and making available user-defined events.
We will use the same technique discussed earlier when we discussed creating events with the
TddgHalfMinute component.

TddgDigitalClock descends from TPanel. We decided that TPanel was an ideal component
from which TddgDigitalClock could descend because TPanel has the BevelXXXX properties.
This enables you to give the TddgDigitalClock a pleasing visual appearance. Also, you can
use the TPanel.Caption property to display the system time.

TddgDigitalClock contains the following events to which the user can assign code:

OnHour Occurs on the hour, every hour.

OnHalfPast Occurs on the half-hour.

OnMinute Occurs on the minute.

OnHalfMinute Occurs every 30 seconds: on the minute and on the half minute.

OnSecond Occurs on the second.

TddgDigitalClock uses a TTimer component internally. Its OnTimer event handler performs
the logic to display the time information and to invoke the event-dispatching methods for the
previously listed events accordingly. Listing 21.15 shows the source code for DdgClock.pas.

LISTING 21.15 DdgClock.pas: Source for the TddgDigitalClock Component

{
Copyright © 1999 by Delphi 5 Developer’s Guide - Xavier Pacheco and Steve
Teixeira
}

Component-Based Development

PART III
980

{$IFDEF VER110}
{$OBJEXPORTALL ON}
{$ENDIF}

unit DDGClock;

interface

uses
Windows, Messages, Controls, Forms, SysUtils, Classes, ExtCtrls;

type

{ Declare an event type which takes the sender of the event, and
a TDateTime variable as parameters }

TTimeEvent = procedure(Sender: TObject; DDGTime: TDateTime) of object;

TddgDigitalClock = class(TPanel)
private
{ Data fields }
FHour,
FMinute,
FSecond: Word;
FDateTime: TDateTime;
FOldMinute,
FOldSecond: Word;
FTimer: TTimer;
{ Event handlers }
FOnHour: TTimeEvent; // Occurs on the hour
FOnHalfPast: TTimeEvent; // Occurs every half-hour
FOnMinute: TTimeEvent; // Occurs on the minute
FOnSecond: TTimeEvent; // Occurs every second
FOnHalfMinute: TTimeEvent; // Occurs every 30 seconds
{ Define OnTimer event handler for internal TTimer, FTimer }
procedure TimerProc(Sender: TObject);

protected
{ Override the Paint methods }
procedure Paint; override;

{ Define the various event dispatching methods }
procedure DoHour(Tm: TDateTime); dynamic;
procedure DoHalfPast(Tm: TDateTime); dynamic;
procedure DoMinute(Tm: TDateTime); dynamic;
procedure DoHalfMinute(Tm: TDateTime); dynamic;
procedure DoSecond(Tm: TDateTime); dynamic;

Writing Delphi Custom Components

CHAPTER 21
981

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS

continues

LISTING 21.15 Continued

public
{ Override the Create constructor and Destroy destructor }
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

published
{ Define event properties }
property OnHour: TTimeEvent read FOnHour write FOnHour;
property OnHalfPast: TTimeEvent read FOnHalfPast write FOnHalfPast;
property OnMinute: TTimeEvent read FOnMinute write FOnMinute;
property OnHalfMinute: TTimeEvent read FOnHalfMinute

write FOnHalfMinute;
property OnSecond: TTimeEvent read FOnSecond write FOnSecond;

end;

implementation

constructor TddgDigitalClock.Create(AOwner: TComponent);
begin
inherited Create(AOwner); // Call the inherited constructor
Height := 25; // Set default width and height properties
Width := 120;
BevelInner := bvLowered; // Set Default bevel properties
BevelOuter := bvLowered;
{ Set the inherited Caption property to an empty string }
inherited Caption := ‘’;
{ Create the TTimer instance and set both its Interval property and
OnTime event handler. }

FTimer:= TTimer.Create(self);
FTimer.interval:= 200;
FTimer.OnTimer:= TimerProc;

end;

destructor TddgDigitalClock.Destroy;
begin
FTimer.Free; // Free the TTimer instance.
inherited Destroy; // Call inherited Destroy method

end;

procedure TddgDigitalClock.Paint;
begin
inherited Paint; // Call the inherited Paint method
{ Now set the inherited Caption property to current time. }
inherited Caption := TimeToStr(FDateTime);

Component-Based Development

PART III
982

end;

procedure TddgDigitalClock.TimerProc(Sender: TObject);
var
HSec: Word;

begin
{ Save the old minute and second for later use }
FOldMinute := FMinute;
FOldSecond := FSecond;
FDateTime := Now; // Get the current time.
{ Extract the individual time elements }
DecodeTime(FDateTime, FHour, FMinute, FSecond, Hsec);

refresh; // Redraw the component so that the new time is displayed.

{ Now call the event handlers depending on the time }
if FMinute = 0 then
DoHour(FDateTime);

if FMinute = 30 then
DoHalfPast(FDateTime);

if (FMinute <> FOldMinute) then
DoMinute(FDateTime);

if FSecond <> FOldSecond then
if ((FSecond = 30) or (FSecond = 0)) then
DoHalfMinute(FDateTime)

else
DoSecond(FDateTime);

end;

{ The event dispatching methods below determine if component user has
attached event handlers to the various clock events and calls them
if they exist }

procedure TddgDigitalClock.DoHour(Tm: TDateTime);
begin
if Assigned(FOnHour) then
TTimeEvent(FOnHour)(Self, Tm);

end;

procedure TddgDigitalClock.DoHalfPast(Tm: TDateTime);
begin
if Assigned(FOnHalfPast) then
TTimeEvent(FOnHalfPast)(Self, Tm);

end;

procedure TddgDigitalClock.DoMinute(Tm: TDateTime);

Writing Delphi Custom Components

CHAPTER 21
983

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS

continues

LISTING 21.15 Continued

begin
if Assigned(FOnMinute) then
TTimeEvent(FOnMinute)(Self, Tm);

end;

procedure TddgDigitalClock.DoHalfMinute(Tm: TDateTime);
begin
if Assigned(FOnHalfMinute) then
TTimeEvent(FOnHalfMinute)(Self, Tm);

end;

procedure TddgDigitalClock.DoSecond(Tm: TDateTime);
begin
if Assigned(FOnSecond) then
TTimeEvent(FOnSecond)(Self, Tm);

end;

end.

The logic behind this component is explained in the source commentary. The methods used are
no different than those that were previously explained when we discussed creating events.
TddgDigitalClock only adds more events and contains logic to determine when each event is
invoked.

Adding Forms to the Component Palette
Adding forms to the Object Repository is a convenient way to give forms a starting point. But
what if you develop a form that you reuse often that does not need to be inherited and does not
require added functionality? Delphi 5 provides a way you can reuse your forms as components
on the Component Palette. In fact, the TFontDialog and TOpenDialog components are exam-
ples of forms that are accessible from the Component Palette. Actually, these dialogs are not
Delphi forms; these are dialogs provided by the CommDlg.dll. Nevertheless, the concept is the
same.

To add forms to the Component Palette, you must wrap your form with a component to make it
a separate, installable component. The process as described here uses a simple password dialog
whose functionality will verify your password automatically. Although this is a very simple
project, the purpose of this discussion is not to show you how to install a complex dialog as a
component, but rather to show you the general method for adding dialog boxes to the
Component Palette. The same method applies to dialog boxes of any complexity.

Component-Based Development

PART III
984

First, you must create the form that is going to be wrapped by the component. The form we
used is defined in the file PwDlg.pas. This unit also shows a component wrapper for this form.

Listing 21.16 shows the unit defining the TPasswordDlg form and its wrapper component,
TddgPasswordDialog.

LISTING 21.16 PwDlg.pas—TPasswordDlg Form and Its Component Wrapper
TddgPasswordDialog

unit PwDlg;

interface

uses Windows, SysUtils, Classes, Graphics, Forms, Controls, StdCtrls,
Buttons;

type

TPasswordDlg = class(TForm)
Label1: TLabel;
Password: TEdit;
OKBtn: TButton;
CancelBtn: TButton;

end;

{ Now declare the wrapper component. }
TddgPasswordDialog = class(TComponent)
private
PassWordDlg: TPasswordDlg; // TPassWordDlg instance
FPassWord: String; // Place holder for the password

public
function Execute: Boolean; // Function to launch the dialog

published
property PassWord: String read FPassword write FPassword;

end;

implementation
{$R *.DFM}

function TddgPasswordDialog.Execute: Boolean;
begin
{ Create a TPasswordDlg instance }
PasswordDlg := TPasswordDlg.Create(Application);
try
Result := False; // Initialize the result to false

Writing Delphi Custom Components

CHAPTER 21
985

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS

continues

LISTING 21.16 Continued

{ Show the dialog and return true if the password
is correct. }

if PasswordDlg.ShowModal = mrOk then
Result := PasswordDlg.Password.Text = FPassword;

finally
PasswordDlg.Free; // Free instance of PasswordDlg

end;
end;

end.

The TddgPasswordDialog is called a wrapper component because it wraps the form with a
component that can be installed into Delphi 5’s Component Palette.

TddgPasswordDialog descends directly from TComponent. You might recall from the last chap-
ter that TComponent is the lowest-level class that can be manipulated by the Form Designer in
the IDE. This class has two private variables: PasswordDlg of type TPasswordDlg and
FPassWord of type string. PasswordDlg is the TPasswordDlg instance that this wrapper com-
ponent displays. FPassWord is an internal storage field that holds a password string.

FPassWord gets its data through the property PassWord. Thus, PassWord doesn’t actually store
data; rather, it serves as an interface to the storage variable FPassWord.

TddgPassWordDialog’s Execute() function creates a TPasswordDlg instance and displays it as
a modal dialog box. When the dialog box terminates, the string entered in the password TEdit
control is compared against the string stored in FPassword.

The code here is contained within a try..finally construct. The finally portion ensures that
the TPasswordDlg component is disposed of, regardless of any error that might occur.

After you have added TddgPasswordDialog to the Component Palette, you can create a project
that uses it. As with any other component, you select TddgPasswordDialog from the
Component Palette and place it on your form. The project created in the preceding section con-
tains a TddgPasswordDialog and one button whose OnClick event handler does the following:

procedure TForm1.Button1Click(Sender: TObject);
begin
if ddgPasswordDialog.Execute then // Launch the PasswordDialog
ShowMessage(‘You got it!’) // Correct password

else
ShowMessage(‘Sorry, wrong answer!’); // Incorrect password

end;

Component-Based Development

PART III
986

The Object Inspector contains three properties for the TddgPasswordDialog component: Name,
Password, and Tag. To use the component, you must set the Password property to some string
value. When you run the project, TddgPasswordDialog prompts the user for a password and
compares it against the password you entered for the Password property.

Component Packages
Delphi 3 introduced packages, which enable you to place portions of your application into sep-
arate modules that can be shared across multiple applications. Packages are similar to dynamic
link libraries (DLLs) but differ in their usage. Packages are primarily used to store collections
of components in a separate, shareable module (a Borland Package Library, or .bpl file). As
you or other developers create Delphi applications, the packages you create can be used by the
application at runtime instead of being directly linked at compile/link time. Because the code
for these units resides in the .bpl file, rather than in your .exe or .dll, the size of your .exe
or .dll can become very small.

Packages differ from DLLs in that they are specific to Delphi VCL; that is, applications written
in other languages can’t use packages created by Delphi (with the exception of CBuilder). One
of the reasons behind packages is to get around a limitation of Delphi 1 and 2. In these prior
versions of Delphi, the VCL added a minimum of 150KB to 200KB of code to every exe-
cutable. Therefore, even if you were to separate a piece of your application into a DLL, both
the DLL and the application would contain redundant code. This is especially a problem if you
are providing a suite of applications on one machine. Packages enable you to reduce the foot-
print of your applications and provide a convenient way for you to distribute your component
collections.

Why Use Packages?
There are several reasons why you might want to use packages. Three are discussed in the fol-
lowing sections.

Code Reduction
A primary reason behind using packages is to reduce the size of your applications and DLLs.
Delphi already ships with several predefined packages that break up the VCL into logical
groupings. In fact, you can choose to compile your application so that it assumes the existence
of many of these Delphi packages.

A Smaller Distribution of Applications—Application Partitioning
You’ll find that many applications are available over the Internet as full-blown applications,
downloadable demos, or updates to existing applications. Consider the benefit of giving users

Writing Delphi Custom Components

CHAPTER 21
987

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS

the option of downloading smaller versions of the application when pieces of the application
might already exist on their system, such as when they have a prior installation.

By partitioning your applications using packages, you also allow your users to obtain updates
to only those parts of the application that they need. Note, however, that there are some ver-
sioning issues that you’ll have to take into account. We’ll cover versioning issues momentarily.

Component Containment
Probably one of the most common reasons for using packages is the distribution of third-party
components. If you are a component vendor, you must know how to create packages. The rea-
son for this is that certain design-time elements—such as component and property editors, wiz-
ards, and experts—are all provided by packages.

Why Not to Use Packages
You shouldn’t use runtime packages unless you are sure that other applications will be using
these packages. Otherwise, these packages will end up using more disk space than if you were
just compiling the source code into your final executable. Why is this so? If you create a pack-
aged application resulting in a code reduction from 200KB to roughly 30KB, it might seem
like you’ve saved quite a bit of space. However, you still have to distribute your packages and
possibly even the Vcl50.dcp package, which is roughly 2MB in size. You can see that this isn’t
quite the saving you had hoped for. Our point is that you should use packages to share code
when that code will be used by multiple executables. Note that this only applies to runtime
packages. If you are a component writer, you must provide a design package that contains the
component you want to make available to the Delphi IDE.

Types of Packages
There are four types of packages available for you to create and use:

• Runtime package. Runtime packages contain code, components, and so on needed by an
application at runtime. If you write an application that depends on a particular runtime
package, the application won’t run in the absence of that package.

• Design package. Design packages contain components, property/component editors,
experts, and so on necessary for application design in the Delphi IDE. This type of pack-
age is used only by Delphi and is never distributed with your applications.

• Runtime and design package. A package that is both design- and runtime-enabled is typi-
cally used when there are no design-specific elements such as property/component edi-
tors and experts. You can create this type of package to simplify application development
and deployment. However, if this package does contain design elements, its runtime use
will carry the extra baggage of the design support in your deployed applications. We

Component-Based Development

PART III
988

recommend creating both a design and runtime package to separate design-specific ele-
ments when they are present.

• Neither runtime nor design package. This rare breed of package is intended to be used
only by other packages and is not intended to be referenced directly by an application or
used in the design environment. This implies that packages can use or include other
packages.

Package Files
Table 21.5 lists and describes the package-specific files based on their file extensions.

Table 21.5 Package Files

File Extension File Type Description

.dpk Package source file This file is created when you invoke the Package Editor.
You can think of this as you might think of the .dpr
file for a Delphi project.

.dcp Runtime/design This is the compiled version of the package that
package symbol contains the symbol information for the package and
file its units. Additionally, there is header information

required by the Delphi IDE.

.dcu Compiled unit A compiled version of a unit contained in a package.
One .dcu file will be created for each unit contained in
the package.

.bpl Runtime/design This is the runtime or design package, equivalent to a
package library Windows DLL. If this is a runtime package, you will

distribute the file along with your applications (if they
are enabled for runtime packages). If this file represents
a design package, you will distribute it along with its
runtime partner to programmers that will use it to write
programs. Note that if you aren’t distributing source
code, you must distribute the corresponding .dcp files.

Package-Enable Your Delphi 5 Applications
Package-enabling your Delphi applications is easy. Simply check the Build with Runtime
Packages check box found in the Project, Options dialog on the Packages page. The next time
you build your application after this option is selected, your application will be linked dynami-
cally to runtime packages, instead of having units linked statically into your .exe or .dll. The

Writing Delphi Custom Components

CHAPTER 21
989

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS

result will be a much more svelte application (although bear in mind that you will have to
deploy the necessary packages with your application).

Installing Packages into Delphi’s IDE
Installing packages into the Delphi IDE is simple. You might need to do this if you obtain a
third-party set of components. First, however, you need to place the package files in their
appropriate location. Table 21.6 shows where package files are typically located.

Table 21.6 Package File Locations

Package File Location

Runtime packages (*.bpl) Runtime package files should be placed in the
\Windows\System\ directory (Windows 95/98) or
\WinNT\System32\ directory (Windows NT).

Design packages (*.bpl) Because it is possible that you will obtain several packages from
various vendors, design packages should be placed in a common
directory where they can be properly managed. For example, cre-
ate a \PKG directory off your \Delphi 5\ directory and place
design packages in that location.

Package symbol files (*.dcp) You can place package symbol files in the same location as design
package files (*.bpl).

Compiled units (*.dcu) You must distribute compiled units if you are distributing design
packages. We recommend keeping DCUs from third-party ven-
dors in a directory similar to the \Delphi 5\Lib directory. For
example, you can create the directory \Delphi 5\3PrtyLib in
which third-party components’ *.dcus will reside. Your search
path will have to point to this directory.

To install a package, you simply invoke the Packages page of the Project Options dialog by
selecting Component, Install Packages from the Delphi 5 menu.

By selecting the Add button, you can select the specific .bpl file. Upon doing so, this file will
become the selected file on the Project page. When you click OK, the new package is installed
into the Delphi IDE. If this package contains components, you will see the new Component
page on the Component Palette along with any newly installed components.

Designing Your Own Packages
Before creating a new package, you’ll need to decide on a few things. First, you need to know
what type of package you’re going to create (runtime, design, and so on). This will be based on

Component-Based Development

PART III
990

one or more of the scenarios that we present momentarily. Second, you need to know what you
intend on naming your newly created package and where you want to store the package pro-
ject. Keep in mind that the directory where your deployed package exists will probably not be
the same as where you create your package. Finally, you need to know which units your pack-
age will contain and which other packages your new package will require.

The Package Editor
Packages are most commonly created using the Package Editor, which you invoke by selecting
the Packages icon from the New Items dialog. (Select File, New from the Delphi main menu.)
You’ll notice that the Package Editor contains two folders: Contains and Requires.

The Contains Folder
In the Contains folder, you specify units that need to be compiled into your new package.
There are a few rules for placing units into the Contains page of a package:

• The package must not be listed in the contains clause of another package or in the uses
clause of a unit within another package.

• The units listed in the contains clause of a package, either directly or indirectly (they
exist in uses clauses of units listed in the package’s contains clause), cannot be listed in
the package’s requires clause. This is because these units are already bound to the pack-
age when it is compiled.

• You cannot list a unit in a package’s contains clause if it is already listed in the con-
tains clause of another package used by the same application.

The Requires Page
In the Requires page, you specify other packages that are required by the new package. This is
similar to the uses clause of a Delphi unit. In most cases, any packages you create will have
VCL50—the package that hosts Delphi’s standard VCL components—in its requires clause.
The typical arrangement here, for example, is that you place all your components into a run-
time package. Then you create a design package that includes the runtime package in its
requires clause. There are a few rules for placing packages on the Requires page of another
package:

• Avoid circular references: Package1 cannot have Package1 in its requires clause, nor
can it contain another package that has Package1 in its requires clause.

• The chain of references must not refer back to a package previously referenced in the
chain.

The Package Editor has a toolbar and context-sensitive menus. Refer to the Delphi 5 online
help under “Package Editor” for an explanation of what these buttons do. We won’t repeat that
information here.

Writing Delphi Custom Components

CHAPTER 21
991

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS

Package Design Scenarios
Earlier we said that you must know what type of package you want to create based on a partic-
ular scenario. In this section, we’re going to present three possible scenarios in which you
would use design and/or runtime packages.

Scenario 1—Design and Runtime Packages for Components
The design and runtime packages for components scenario is the case if you are a component
writer and one or both of the following conditions apply:

• You want Delphi programmers to be able to compile/link your components right into
their applications or to distribute them separately along with their applications.

• You have a component package, and you don’t want to force your users to have to com-
pile design features (component/property editors and so on) into their application code.

Given this scenario, you would create both a design and runtime package. Figure 21.4 depicts
this arrangement. As the figure illustrates, the design package (DDGDsgn50.dpk) encompasses
both the design features (property and component editors) and the runtime package
(DDGStd50.dpk). The runtime package (DDGStd50.dpk) includes only your components. This
arrangement is accomplished by listing the runtime package in the requires section of the
design package, as shown in Figure 21.4.

Component-Based Development

PART III
992

DDGDsgn50.dpk
DdgReg.pas
Component editors
Property editors

DDGDsgn50.dpk
TddgButtonEdit
TddgDigitalClock
TddgLaunchPad
TddgRunButton

FIGURE 21.4
Design packages host design elements and runtime packages.

You must also apply the appropriate usage options for each package before compiling that
package. You do this from the Package Options dialog. (You access the Package Options dia-
log by right-clicking within the Package Editor to invoke the local menu. Select Options to get

to the dialog.) For the runtime package, DDGStd50.dpk, the usage option should be set to
Runtime Only. This ensures that the package cannot be installed in the IDE as a design pack-
age (see the sidebar “Component Security” later in this chapter). For the design package,
DDGDsgn50.dpk, the usage option Design Time Only should be selected. This enables users to
install the package into the Delphi IDE, yet prevents them from using the package as a runtime
package.

Adding the runtime package to the design package doesn’t make the components contained in
the runtime package available to the Delphi IDE yet. You must still register your components
with the IDE. As you already know, whenever you create a component, Delphi automatically
inserts a Register() procedure into the component unit, which in turn calls the
RegisterComponents() procedure. RegisterComponents() is the procedure that actually reg-
isters your component with the Delphi IDE when you install the component. When working
with packages, the recommended approach is to move the Register() procedure from the
component unit into a separate registration unit. This registration unit registers all your compo-
nents by calling RegisterComponents(). This not only makes it easier for you to manage the
registration of your components, but it also prevents anyone from being able to install and use
your runtime package illegally because the components won’t be available to the Delphi IDE.

As an example, the components used in this book are hosted by the runtime package
DDGStd50.dpk. The property editors, component editors, and registration unit (DdgReg.pas) for
our components exist in the design package DDGDsgn50.dpk. DDGDsgn50.dpk also includes
DDGStd50.dpk in its requires clause. Listing 21.17 shows what our registration unit looks like.

LISTING 21.17 Registration Unit for Delphi 5 Developer’s Guide Components

unit DDGReg;

interface

procedure Register;

implementation

uses Classes, ExptIntf, DsgnIntf, TrayIcon, AppBars, ABExpt, Worthless,
RunBtn, PwDlg, Planets, LbTab, HalfMin, DDGClock, ExMemo, MemView,
Marquee, PlanetPE, RunBtnPE, CompEdit, DefProp, Wavez,
WavezEd, LnchPad, LPadPE, Cards, ButtonEdit, Planet, DrwPnel;

procedure Register;
begin

// Register the components.

Writing Delphi Custom Components

CHAPTER 21
993

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS

continues

LISTING 21.17 Continued

RegisterComponents(‘DDG’,
[TddgTrayNotifyIcon, TddgDigitalClock, TddgHalfMinute, tddgButtonEdit,
TddgExtendedMemo, TddgTabListbox, TddgRunButton, TddgLaunchPad,
TddgMemView, TddgMarquee, TddgWaveFile, TddgCard, TddgPasswordDialog,
TddgPlanet, TddgPlanets, TddgWorthLess, TddgDrawPanel,
TComponentEditorSample, TDefinePropTest]);

// Register any property editors.
RegisterPropertyEditor(TypeInfo(TRunButtons), TddgLaunchPad, ‘’,
TRunButtonsProperty);

RegisterPropertyEditor(TypeInfo(TWaveFileString), TddgWaveFile, ‘WaveName’,
TWaveFileStringProperty);

RegisterComponentEditor(TddgWaveFile, TWaveEditor);
RegisterComponentEditor(TComponentEditorSample, TSampleEditor);
RegisterPropertyEditor(TypeInfo(TPlanetName), TddgPlanet,
‘PlanetName’, TPlanetNameProperty);
RegisterPropertyEditor(TypeInfo(TCommandLine), TddgRunButton, ‘’,
TCommandLineProperty);

// Register any custom modules, library experts.
RegisterCustomModule(TAppBar, TCustomModule);
RegisterLibraryExpert(TAppBarExpert.Create);

end;

end.

Component-Based Development

PART III
994

Component Security
It is possible for someone to register your components, even though he has only your
runtime package. He would do this by creating his own registration unit in which he
would register your components. He would then add this unit to a separate package
that would also have your runtime package in the requires clause. After he installs
this new package into the Delphi IDE, your components will appear on the
Component Palette. However, it is still not possible to compile any applications using
your components because the required *.dcu files for your component units will be
missing.

Package Distribution
When distributing your packages to component writers without the source code, you must dis-
tribute both compiled packages, DDGDsgn50.bpl and DDGStd50.bpl, both *.dcp files, and any

compiled units (*.dcu) necessary to compile your components. Programmers using your com-
ponents who want their applications’ runtime packages enabled must distribute the
DDGStd50.bpl package along with their applications and any other runtime package that they
might be using.

Scenario 2—Design Package Only for Components
The design package only for components scenario is when you want to distribute components
that you don’t want to be distributed in runtime packages. In this case, you will include the
components, component editors, property editors, component registration unit, and so on in one
package file.

Package Distribution
When distributing your package to component writers without the source code, you must dis-
tribute the compiled package, DDGDsgn50.bpl, the DDGDsgn50.dcp file, and any compiled units
(*.dcu) necessary to compile your components. Programmers using your components must
compile your components into their applications. They will not be distributing any of your
components as runtime packages.

Scenario 3—Design Features Only (No Components) IDE Enhancements
The design features only (no components) IDE enhancements scenario is the case if you are
providing enhancements to the Delphi IDE, such as experts. For this scenario, you will register
your expert with the IDE in your registration unit. The distribution for this scenario is simple;
you only have to distribute the compiled *.bpl file.

Scenario 4—Application Partitioning
The application partitioning scenario is the case if you want to partition your application into
logical pieces, each of which can be distributed separately. There are several reasons why you
might want to do this:

• This scenario is easier to maintain.

• Users can purchase only the needed functionality when they need it. Later, when they
need added functionality, they can download the necessary package only, which will be
much smaller than downloading the entire application.

• You can provide fixes (patches) to parts of the application more easily without requiring
users to obtain a new version of the application altogether.

In this scenario, you will provide only the *.bpl files required by your application. This sce-
nario is similar to the last with the difference being that instead of providing a package for the
Delphi IDE, you will be providing a package for your own application. When partitioning your
applications as such, you must pay attention to the issues regarding package versioning that we
discuss in the next section.

Writing Delphi Custom Components

CHAPTER 21
995

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS

Package Versioning
Package versioning is a topic that is not well understood. You can think of package versioning
in much the same way as you think of unit versioning. That is, any package that you provide
for your application must be compiled using the same Delphi version used to compile the
application. Therefore, you cannot provide a package written in Delphi 5 to be used by an
application written in Delphi 4. The Inprise developers refer to the version of a package as a
code base. So a package written in Delphi 5 has a code base of 5.0. This concept should influ-
ence the naming convention that you use for your package files.

Package Compiler Directives
There are some specific compiler directives that you can insert into the source code of your
packages. Some of these directives are specific to units that are being packaged; others are spe-
cific to the package file. These directives are listed and described in Tables 21.7 and 21.8.

Table 21.7 Compiler Directives for Units Being Packaged

Directive Meaning

{$G} or {IMPORTEDDATA OFF} Use this when you want to prevent the unit from being pack-
aged—when you want it to be linked directly to the applica-
tion. Contrast this to the {$WEAKPACKAGEUNIT} directive,
which allows a unit to be included in a package but whose
code gets statically linked to the application.

{$DENYPACKAGEUNIT} Same as {$G}.

{$WEAKPACKAGEUNIT} See the section “More on the {$WEAKPACKAGEUNIT}
Directive.”

Table 21.8 Compiler Directives for the Package .dpk File

Directive Meaning

{$DESIGNONLY ON} Compiles package as a design-time only package.

{$RUNONLY ON} Compiles package as a runtime only package.

{$IMPLICITBUILD OFF} Prevents the package from being rebuilt later. Use this option
when the package is not changed frequently.

More on the {$WEAKPACKAGEUNIT} Directive
The concept of a weak package is simple. Basically, it is used where your package may be ref-
erencing libraries (DLLs) that may not be present. For example, Vcl40 makes calls to the core

Component-Based Development

PART III
996

Win32 API included with the Windows operating system. Many of these calls exist in DLLs
that aren’t present on every machine. These calls are exposed by units that contain the {$WEAK-
PACKAGEUNIT} directive. By including this directive, you keep the unit’s source code in the
package but place it into the DCP file, rather than in the BPL file (think of a DCP as a DCU
and a BPL as a DLL). Therefore, any references to functions of these weakly packaged units
get statically linked to the application, rather than dynamically referenced through the package.

The {$WEAKPACKAGEUNIT} directive is one that you will rarely use, if at all. It was created out
of necessity by the Delphi developers to handle a specific situation. The problem exists if there
are two components, each in a separate package that reference the same interface unit of a
DLL. When an application uses both of the components, this causes two instances of the DLL
to be loaded, which raises havoc with initialization and global variable referencing. The solu-
tion is to include the interface unit in one of the standard Delphi packages, such as Vcl50.bpl.
However, this raises the other problem for specialized DLLs that may not be present, such as
PENWIN.DLL. If Vcl50.bpl contains the interface unit for a DLL that isn’t present, it will render
Vcl50.bpl, and Delphi for that matter, unusable. The Delphi developers addressed this by
allowing Vcl50.bpl to contain the interface unit in a single package, but to make it statically
linked when used and not dynamically loaded whenever Vcl50 is used with the Delphi IDE.

As stated, you’ll most likely never have to use this directive, unless you anticipate a similar
scenario that the Delphi developers faced or if you want to make certain that a particular unit is
included with a package but statically linked to the using application. A reason for the latter
might be for optimization purposes. Note that any units that are weakly packaged cannot have
global variables or code in their initialization/finalization sections. You must also distribute any
*.dcu files for weakly packaged units along with your packages.

Package-Naming Conventions
Earlier we said that the package-versioning issue should influence how you name your pack-
ages. There isn’t a set rule as to how you name your packages, but we suggest using a naming
convention that incorporates the code base into the package’s name. For example, the compo-
nents for this book are contained in a runtime package whose name contains the 50 qualifier
for Delphi 5 (DDGStd50.dpk). The same goes for the design package (DDGDsgn50.dpk). A pre-
vious version of the package would be DdgStd40.dpk. By using such a convention, you will
prevent any confusion for your package users as to which version of the package they have and
as to which version of the Delphi compiler applies to them. Note that our package name starts
with a three-character author/company identifier, followed by Std to indicate a runtime pack-
age and Dsgn to signify a design package. You can follow whatever naming convention you
like. Just be consistent and use the recommended inclusion of the Delphi version into your
package name.

Writing Delphi Custom Components

CHAPTER 21
997

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS

Add-In Packages
Add-in packages allow you to partition your applications into pieces or modules and to distrib-
ute those modules separately from the main application. This scheme is especially attractive
because it allows you to extend the functionality of your application without having to recom-
pile/redesign the entire application. This requires careful architectural design planning, how-
ever. It is beyond the scope of this book to go into such design issues. For a more detailed
discussion of add-in packages and how they relate to application frameworks and design pat-
terns, you will find articles at http://www.xapware.com.

Our example is a simple illustration of this technique. We will show how to add a form to an
application without having to rewrite the application entirely. You can obtain a more elaborate
example from the URL mentioned in the preceding paragraph.

Generating Add-In Forms
In Chapter 4, “Application Frameworks and Design Concepts,” you learned about application
frameworks. We developed an application whose forms were descendants of a base class
(TChildForm). We’ll use this same application to illustrate how you can create a shell applica-
tion that knows only of the TChildForm class but can work with any descendent of that class.
The descendants will be provided in thorough add-in packages.

Component-Based Development

PART III
998

NOTE

If you installed the forms used in the application framework demo from Chapter 4 to
your Object Repository, you will have to remove them from the Repository before
loading the project from this application.

The application is partitioned into three logical pieces: the main application (ChildTest.exe),
the TChildForm package (AIChildForm50.bpl), and the concrete TChildForm descendant
classes, each residing in its own package.

The main application is basically the same as that from Chapter 4 with some modification. The
package AIChildForm50.bpl contains the abstract TChildForm class. The other packages con-
tain descendant TChildForm classes or concrete TChildForms. We will refer to these packages
as the abstract package and concrete packages, respectively.

The main application uses the abstract package (AIChildForm50.bpl). Each concrete package
also uses the abstract package. For this to work properly, the main application must be com-
piled with runtime packages, including the AIChildForm50.dcp package. Likewise, each con-
crete package must require the AIChildForm50.dcp package. We will not list the TChildForm

source or the concrete descendants to TChildForm, because they are not much different from
those shown in Chapter 4. The only difference is that each TChildForm descendant unit must
include initialization and finalization blocks that look like this:

initialization
RegisterClass(TCF2Form);

finalization
UnRegisterClass(TCF2Form);

The call to RegisterClass() is necessary to make the TChildForm descendant class available
to the main application’s streaming system when the main application loads its package. This
is similar to how RegisterComponents() makes components available to the Delphi IDE.
When the package is unloaded, the call to UnRegisterClass() is required to remove the regis-
tered class. Note that RegisterClass() only makes the class available to the main application,
however. The main application still does not know of the class name. So how does the main
application create an instance of a class whose class name is unknown? Isn’t the intent of this
exercise to make these forms available to the main application without having to hard code
their class names into the main application’s source? Listing 21.18 shows the source code to
the main application’s main form where we will highlight how we accomplish add-in forms
with add-in packages.

LISTING 21.18 The Main Form of the Main Application Using Add-In Packages

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls, ChildFrm, Menus;

const
{ Child form registration location in the Windows Registry. }
cCFRegLocation = ‘Software\Delphi 5 Developer’’s Guide’;
cCFRegSection = ‘ChildForms’; // Module initialization data section

FMainCaption = ‘Delphi 5 Developer’’s Guide Child Form Demo’;

type

TChildFormClass = class of TChildForm;

TMainForm = class(TForm)
pnlMain: TPanel;

Writing Delphi Custom Components

CHAPTER 21
999

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS

continues

LISTING 21.18 Continued

Splitter1: TSplitter;
pnlParent: TPanel;
mmMain: TMainMenu;
mmiFile: TMenuItem;
mmiExit: TMenuItem;
mmiHelp: TMenuItem;
mmiForms: TMenuItem;
procedure mmiExitClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);

private
// reference to the child form.
FChildForm: TChildForm;
// a list of available child forms used to build a menu.
FChildFormList: TStringList;
// Index to the Close Form menu which shifts position.
FCloseFormIndex: Integer;
// Handle to the currently loaded package.
FCurrentModuleHandle: HModule;
// method to create menus for available child forms.
procedure CreateChildFormMenus;
// Handler to load a child form and its package.
procedure LoadChildFormOnClick(Sender: TObject);
// Handler to unload a child form and its package.
procedure CloseFormOnClick(Sender: TObject);
// Method to retrieve the classname for a TChildForm descendant
function GetChildFormClassName(const AModuleName: String): String;

public
{ Public declarations }

end;

var
MainForm: TMainForm;

implementation
uses Registry;

{$R *.DFM}

function RemoveExt(const AFileName: String): String;
{ Helper function to remove the extension from a filename. }
begin
if Pos(‘.’, AFileName) <> 0 then
Result := Copy(AFileName, 1, Pos(‘.’, AFileName)-1)

Component-Based Development

PART III
1000

else
Result := AFileName;

end;

procedure TMainForm.mmiExitClick(Sender: TObject);
begin
Close;

end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
FChildFormList := TStringList.Create;
CreateChildFormMenus;

end;

procedure TMainForm.FormDestroy(Sender: TObject);
begin
FChildFormList.Free;
// Unload any loaded child forms.
if FCurrentModuleHandle <> 0 then
CloseFormOnClick(nil);

end;

procedure TMainForm.CreateChildFormMenus;
{ All available child forms are registered in the Windows Registry.
Here, we use this information to create menu items for loading each of the
child forms. }

var
IniFile: TRegIniFile;
MenuItem: TMenuItem;
i: integer;

begin
inherited;

{ Retrieve a list of all child forms and build a menu based on the
entries in the registry. }

IniFile := TRegIniFile.Create(cCFRegLocation);
try
IniFile.ReadSectionValues(cCFRegSection, FChildFormList);

finally
IniFile.Free;

end;

{ Add Menu items for each module. NOTE THE mmMain.AutoHotKeys property must
be set to maAutomatic }

Writing Delphi Custom Components

CHAPTER 21
1001

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS

continues

LISTING 21.18 Continued

for i := 0 to FChildFormList.Count - 1 do
begin
MenuItem := TMenuItem.Create(mmMain);
MenuItem.Caption := FChildFormList.Names[i];
MenuItem.OnClick := LoadChildFormOnClick;
mmiForms.Add(MenuItem);

end;

// Create Separator
MenuItem := TMenuItem.Create(mmMain);
MenuItem.Caption := ‘-’;
mmiForms.Add(MenuItem);

// Create Close Module menu item
MenuItem := TMenuItem.Create(mmMain);
MenuItem.Caption := ‘&Close Form’;
MenuItem.OnClick := CloseFormOnClick;
MenuItem.Enabled := False;
mmiForms.Add(MenuItem);

{ Save a reference to the index of the menu item required to
close a child form. This will be referred to in another method. }

FCloseFormIndex := MenuItem.MenuIndex;
end;

procedure TMainForm.LoadChildFormOnClick(Sender: TObject);
var
ChildFormClassName: String;
ChildFormClass: TChildFormClass;
ChildFormName: String;
ChildFormPackage: String;

begin

// The menu caption represents the module name.
ChildFormName := (Sender as TMenuItem).Caption;
// Get the actual Package filename.
ChildFormPackage := FChildFormList.Values[ChildFormName];

// Unload any previously loaded packages.
if FCurrentModuleHandle <> 0 then
CloseFormOnClick(nil);

try
// Load the specified package

Component-Based Development

PART III
1002

FCurrentModuleHandle := LoadPackage(ChildFormPackage);

// Return the classname that needs to be created
ChildFormClassName := GetChildFormClassName(ChildFormPackage);

{ Create an instance of the class using the FindClass() procedure. Note,
this requires that the class already be registered with the streaming
system using RegisterClass(). This is done in the child form
initialization section for each child form package. }

ChildFormClass := TChildFormClass(FindClass(ChildFormClassName));
FChildForm := ChildFormClass.Create(self, pnlParent);
Caption := FChildForm.GetCaption;
FChildForm.Show;

mmiForms[FCloseFormIndex].Enabled := True;
except
on E: Exception do
begin
CloseFormOnClick(nil);
raise;

end;
end;

end;

function TMainForm.GetChildFormClassName(const AModuleName: String): String;
{ The Actual class name of the TChildForm implementation resides in the
registry. This method retrieves that class name. }

var
IniFile: TRegIniFile;

begin
IniFile := TRegIniFile.Create(cCFRegLocation);
try
Result := IniFile.ReadString(RemoveExt(AModuleName), ‘ClassName’,
EmptyStr);

finally
IniFile.Free;

end;
end;

procedure TMainForm.CloseFormOnClick(Sender: TObject);
begin
if FCurrentModuleHandle <> 0 then
begin
if FChildForm <> nil then
begin
FChildForm.Free;

Writing Delphi Custom Components

CHAPTER 21
1003

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS

continues

LISTING 21.18 Continued

FChildForm := nil;
end;

// Unregister any classes provided by the module
UnRegisterModuleClasses(FCurrentModuleHandle);
// Unload the child form package
UnloadPackage(FCurrentModuleHandle);

FCurrentModuleHandle := 0;
mmiForms[FCloseFormIndex].Enabled := False;
Caption := FMainCaption;

end;
end;

end.

The application’s logic is actually very simple. It uses the system registry to determine which
packages are available, the menu captions to use when building menus for loading each pack-
age, and the class name of the form contained in each package.

Component-Based Development

PART III
1004

NOTE

We’ve included a file called D5DG.Reg on which you can double-click in Windows
Explorer. This imports the registry settings in order for the add-in package demo to
run properly.

The LoadChildFormOnClick() event handler is where most of the work is performed. After
determining the package filename, the method loads the package using the LoadPackage()
function. The LoadPackage() function is basically the same thing as LoadLibrary() for DLLs.
The method then determines the class name for the form contained in the loaded package.

To create a class, you need a class reference such as TButton or TForm1. However, this main
application does not have the hard-coded class name of the concrete TChildForms. This is why
we retrieve the class name from the system registry. The main application can pass this class
name to the FindClass() function to return a class reference for the specified class that
already has been registered with the streaming system. Remember that we did this in the ini-
tialization section of the concrete form’s unit, which is called when the package is loaded. We
then create the class with these lines:

ChildFormClass := TChildFormClass(FindClass(ChildFormClassName));
FChildForm := ChildFormClass.Create(self, pnlParent);

The variable ChildFormClass is a predeclared class reference to TChildForm and can refer to a
class reference for a TChildForm descendant.

The CloseFormOnClick() event handler simply closes the child form and unloads its package.
The rest of the code basically is set up to create the package menus and to read the information
from the system registry.

Further study on this technique will enable you to create very extensible and loosely coupled
application frameworks.

Summary
Knowing how components work is fundamental to understanding Delphi, and you will work
with many more custom components later in the book. Now that you can see what happens
behind the scenes, components will no longer be such a mystery. The next chapter goes beyond
component creation into more advanced component-building techniques.

Writing Delphi Custom Components

CHAPTER 21
1005

21
W

R
ITIN

G
D

ELPH
I

C
U

STO
M

C
O

M
PO

N
EN

TS

