
CHAPTER

17
Sharing Information with the
Clipboard

IN THIS CHAPTER
• In the Beginning, There Was the

Clipboard 824

• Creating Your Own Clipboard
Format 827

• Summary 836

Once upon a time, humankind struggled just to survive. People lived in dark caves, hunted for
food with spears and rocks, and communicated with grunt-like sounds and hand motions. They
worshipped fire because it gave them light under which they worked on their very slow com-
puters. Computers back then could run only one application at a time due to hardware and soft-
ware limitations. The only way to share information was to save it on disk and to pass the disk
along for others to copy to their machines.

Nowadays, at least the equipment and software have improved. With operating systems such as
Windows 95/98 and Windows NT/2000, multiple applications can be run simultaneously,
which makes life much easier and more productive for the computer user. One of the advan-
tages gained from Windows is that information can be shared between applications on the
same machine. Two of the earlier technologies for sharing information are the Win32
Clipboard and Dynamic Data Exchange (DDE). You can make it possible for your users to
copy information from one application to another with little effort using either
of these.

This chapter shows you how to use Delphi’s encapsulation of the Win32 Clipboard. Previous
editions of this book covered DDE as well. However, with powerful interprocess communica-
tion technologies such as COM, we can’t, in all good conscience, refer you back to a dead
technology. Later, in Chapter 23, “COM and ActiveX,” we’ll discuss COM in greater depth.
For simple implementations of sharing information between applications, the Clipboard is still
a very solid solution.

In the Beginning, There Was the Clipboard
If you’re an experienced Windows programmer, you might already be familiar with the Win32
Clipboard—at least in functionality. If you’re new to Windows programming but have been
using Windows, you’ve probably been using the Clipboard all along but never really under-
stood how it’s implemented.

Almost any application that has an Edit menu makes use of the Clipboard. So what exactly is
the Clipboard? It’s simply an area of memory and a set of Win32 API functions that enable
applications to store and retrieve information to and from that area in memory. You can copy a
portion of your source code from the Delphi editor, for example, and paste that same code into
the Windows Notepad or any other editor.

Why does Win32 require a special set of functions and messages in order to use the Clipboard?
Copying data to the Clipboard is more than just allocating an area of memory and placing data
in that area. Other applications have to know how to retrieve that data and whether the data is
in a format that the application supports. Win32 takes care of the memory management and
enables you to copy, paste, and query about the information on the Clipboard.

Advanced Techniques

PART II
824

Before Delphi, you had to call various Clipboard functions directly and were responsible for
ensuring that your application didn’t do anything ill-advised with the Clipboard’s contents.
With Delphi, you just use the global variable Clipboard. Clipboard is a Delphi class that
encapsulates the Win32 Clipboard.

Using the Clipboard with Text
We already showed you how to use the Clipboard with text in Chapter 16, “MDI Applications.”
Specifically, this had to do with the text editor in the MDI application. We created menu items
for cutting, copying, pasting, deleting, and selecting text.

In the MDI application, the editor, a TMemo component, covers the client area of the form. The
TMemo component has its own functions that interact with the global Clipboard object. These
functions are CutToClipBoard(), CopyToClipBoard(), and PasteFromClipBoard(). The meth-
ods ClearSelection() and SelectAll() aren’t necessarily Clipboard interface routines, but
they enable you to select the text you want to copy to the Clipboard. Listing 17.1 shows the
event handlers for the Edit menu items.

LISTING 17.1 Clipboard Operations on Text

procedure TMdiEditForm.mmiCutClick(Sender: TObject);
begin
inherited;
memMainMemo.CutToClipBoard;

end;

Sharing Information with the Clipboard

CHAPTER 17
825

17

S
H

A
R

IN
G

IN
FO

R
M

A
TIO

N
Clipboard Formats
Win32 supports 25 predefined formats that applications can copy to or paste from
the Clipboard. The most common formats are as follows:

CF_BITMAP Specifies bitmap data.

CF_DIB Specifies bitmap data along with the bitmap’s palette infor-
mation.

CF_PALETTE Specifies a color palette.

CF_TEXT Specifies a character array where each line ends with a car-
riage return/linefeed. This is the most commonly used format.

You can refer to the Win32 API online help under “SetClipboardData” if you’re curi-
ous about less-common formats. Additionally, Win32 enables you to define your own
private Clipboard formats, as illustrated later in this chapter.

continues

LISTING 17.1 Continued

procedure TMdiEditForm.mmiCopyClick(Sender: TObject);
begin
inherited;
memMainMemo.CopyToClipBoard;

end;

procedure TMdiEditForm.mmiPasteClick(Sender: TObject);
begin
inherited;
memMainMemo.PasteFromClipBoard;

end;

As illustrated in Listing 17.1, you need only call the TMemo methods to perform the Clipboard
functions. You also can place text on the Clipboard manually by using the Clipboard.AsText
property. Back in the 16-bit environment, the AsText property was limited to 255 characters
and you had to use the SetTextBuf() and GetTextBuf() methods to copy larger strings to the
Clipboard. This is no longer the case in 32-bit Delphi because the AsText property’s string
type now means long strings. You’ll notice that SetTextBuf() and GetTextBuf() are still sup-
ported as well.

Clipboard.AsText := ‘Delphi Rules’;

Advanced Techniques

PART II
826

NOTE

The Clipboard function’s GetTextBuf() and SetTextBuf() methods use
Pascal PChar types as buffers to pass and retrieve data from the Clipboard.
When using such methods, you can typecast long strings as PChar types so
that you don’t have to do any converting of String types to PChar types.

Using the Clipboard with Images
The Clipboard can also copy and paste images. You saw how this can be done in the same
MDI sample program. The event handlers that performed the Clipboard operations are shown
in Listing 17.2.

LISTING 17.2 Clipboard Operations on a Bitmap

procedure TMdiBMPForm.mmiCopyClick(Sender: TObject);
begin
inherited;
ClipBoard.Assign(imgMain.Picture);

end;

procedure TMdiBMPForm.mmiPasteClick(Sender: TObject);
{ This method copies the contents from the clipboard into imgMain }
begin
inherited;
// Copy clipboard content to imgMain
imgMain.Picture.Assign(ClipBoard);
ClientWidth := imgMain.Picture.Width;
{ Adjust clientwidth to adjust the scollbars }
VertScrollBar.Range := imgMain.Picture.Height;
HorzScrollBar.Range := imgMain.Picture.Width;

end;

Sharing Information with the Clipboard

CHAPTER 17
827

17

S
H

A
R

IN
G

IN
FO

R
M

A
TIO

N

TIP

In order to access the Clipboard global variable, you must include ClipBrd in the
uses clause of the unit that will be using Clipboard.

In Listing 17.2, the mmiCopyClick() event handler uses the Clipboard.Assign() method to
copy the image to the Clipboard. Using this approach, you can paste the image into another
Win32 application that supports the CF_BITMAP format, such as Windows Paint (PBrush.EXE).

mmiPasteClick() uses the Image.Assign() method to copy the image from the Clipboard and
readjusts the scrollbars accordingly.

NOTE

CF_PICTURE is not a standard Win32 Clipboard format. Instead, it’s a private format
used by Delphi applications to determine whether the Clipboard data is in a TPicture-
compatible format, such as bitmaps and metafiles. If you were to register your own
graphic format, TPicture will support that format as well. Look up TPicture in
Delphi’s online help for further information on TPicture-compatible formats.

Creating Your Own Clipboard Format
Imagine working with an address entry program. Suppose that you’re entering a record that
differs only slightly from the record previously entered. It would be convenient if you could
copy the contents from the previous record and paste them to the current record, instead of
having to enter each field again. You might want to use the same information in other applica-
tions as well, perhaps as the address in a letter. The next example shows you how to create an
object that knows about the Win32 Clipboard and can save its special formatted data to the

Clipboard. You also learn how to store your information as CF_TEXT format so that you can
retrieve the same data in other applications that support the CF_TEXT format.

Creating a Clipboard-Aware Object
You might be thinking that one way to define custom Clipboard formats would be to create a
descendant TClipboard class that knows about the newly defined format. This special
TClipboard class could contain the specialized methods for dealing with the custom format.
Although such a class would suffice in an isolated case, it would become tedious to maintain
as you continue to need additional formats or as you need to redefine your data. If 70 different
vendors came up with their own TClipboard descendant classes for their custom Clipboard
formats, you’d have a major problem trying to use just two of the formats. The TClipboard
descendants would conflict with each other.

A better approach would be to define an object around your data and then make the object
aware of the TClipboard object, rather than the reverse. This singleton pattern to the Clipboard
is the approach that Borland uses with its Delphi components. A TMemo component knows how
to place its data on the Clipboard, just as a TImage component knows how to place its data on
the Clipboard. All components use the same TClipboard object, so there’s no conflict. This is
the approach we’ll show you in this section to define a custom Clipboard format, which is
basically a record with a person’s name, age, and birth date information. The unit for defining
the data, along with the Clipboard methods to copy and paste the data to and from the
Clipboard, is shown in Listing 17.3.

LISTING 17.3 A Unit That Defines Custom Clipboard Data

unit cbdata;
interface
uses
SysUtils, Windows, clipbrd;

const

DDGData = ‘CF_DDG’; // constant for registering the clipboard format.
type

// Record data to be stored to the clipboard
TDataRec = packed record
LName: string[10];
FName: string[10];
MI: string[2];
Age: Integer;
BirthDate: TDateTime;

end;

Advanced Techniques

PART II
828

{ Define an object around the TDataRec that contains the methods
for copying and pasting the data to and from the clipboard }

TData = class
public
Rec: TDataRec;
procedure CopyToClipBoard;
procedure GetFromClipBoard;

end;

var
CF_DDGDATA: word; // Receives the return value of RegisterClipboardFormat().

implementation

procedure TData.CopyToClipBoard;
{ This function copies the contents of the TDataRec field, Rec, to the
clipboard as both binary data, as text. Both formats will be
available from the clipboard }

const
CRLF = #13#10;

var
Data: THandle;
DataPtr: Pointer;
TempStr: String[50];

begin
// Allocate SizeOf(TDataRec) bytes from the heap
Data := GlobalAlloc(GMEM_MOVEABLE, SizeOf(TDataRec));
try
// Obtain a pointer to the first byte of the allocated memory
DataPtr := GlobalLock(Data);
try
// Move the data in Rec to the memory block
Move(Rec, DataPtr^, SizeOf(TDataRec));
{ Clipboard.Open must be called if multiple clipboard formats are
being copied to the clipboard at once. Otherwise, if only one
format is being copied the call isn’t necessary }

ClipBoard.Open;
// First copy the data as its custom format
ClipBoard.SetAsHandle(CF_DDGDATA, Data);
// Now copy the data as text format
with Rec do
TempStr := FName+CRLF+LName+CRLF+MI+CRLF+IntToStr(Age)+CRLF+

DateTimeToStr(BirthDate);
ClipBoard.AsText := TempStr;
{ If a call to Clipboard.Open is made you must match it
with a call to Clipboard.Close }

Sharing Information with the Clipboard

CHAPTER 17
829

17

S
H

A
R

IN
G

IN
FO

R
M

A
TIO

N

continues

LISTING 17.3 Continued

Clipboard.Close
finally
// Unlock the globally allocated memory
GlobalUnlock(Data);

end;
except
{ A call to GlobalFree is required only if an exception occurs.
Otherwise, the clipboard takes over managing any allocated
memory to it.}

GlobalFree(Data);
raise;

end;
end;

procedure TData.GetFromClipBoard;
{ This method pastes memory saved in the clipboard if it is of the
format CF_DDGDATA. This data is stored in the TDataRec field of
this object. }

var
Data: THandle;
DataPtr: Pointer;
Size: Integer;

begin
// Obtain a handle to the clipboard
Data := ClipBoard.GetAsHandle(CF_DDGDATA);
if Data = 0 then Exit;
// Obtain a pointer to the memory block referred to by Data
DataPtr := GlobalLock(Data);
try
// Obtain the size of the data to retrieve
if SizeOf(TDataRec) > GlobalSize(Data) then
Size := GlobalSize(Data)

else
Size := SizeOf(TDataRec);

// Copy the data to the TDataRec field
Move(DataPtr^, Rec, Size)

finally
// Free the pointer to the memory block.
GlobalUnlock(Data);

end;
end;

initialization
// Register the custom clipboard format
CF_DDGDATA := RegisterClipBoardFormat(DDGData);

end.

Advanced Techniques

PART II
830

This unit performs several tasks. First, it registers the new format with the Win32 Clipboard by
calling the RegisterClipboardFormat() function. This function returns a value that identifies
this new format. Any application that registers this same format, as specified by the string para-
meter, will obtain the same value when calling this function. The new format is also available
on the ClipBoard’s list of formats, which can be accessed by the Clipboard.Formats property.

The unit also defines the record containing the data to be placed onto the Clipboard and the
object that encapsulates this record. The record, TDataRec, has string fields to hold a person’s
name, an integer field to hold the person’s age, and a TDataTime field to hold the person’s birth
date.

The object encapsulating TDataRec, TData, defines the methods CopyToClipboard() and
GetFromClipboard().

TData.CopyToClipboard() places the contents of the field TData.Rec onto the Clipboard as
two formats: CF_DDGDATA and CF_TEXT. CF_TEXT, which, as you know, is an already-defined
Clipboard format. The text version of TData.Rec’s contents are placed on the Clipboard by
concatenating its fields as strings separated by carriage return/line feed characters. The non-
string fields are converted to strings before formulating the final string that gets saved to the
Clipboard. ClipBoard.SetAsHandle() first places a given handle onto the Clipboard in the for-
mat specified by its parameter. In this case, the parameter is the newly defined Clipboard for-
mat CF_DDGDATA.

Before calling Clipboard.SetAsHandle(), however, the method prepares a valid THandle that
it must pass to SetAsHandle(). This handle represents the block of memory that contains the
data being sent to the Clipboard. See the sidebar titled “Working with THandles.” The follow-
ing line tells the Win32 system to allocate Sizeof(TDataRec) bytes of memory that may be
moved, if necessary, and to return a handle to that memory to the variable Data:

Data := GlobalAlloc(GMEM_MOVEABLE, SizeOf(TDataRec));

A pointer to the memory is obtained with the following statement:

DataPtr := GlobalLock(Data);

The data is then moved to the memory block with the Move() function. In the remaining lines
of code, the ClipBoard.Open() method opens the Clipboard to prevent other applications from
using it while it’s being given data:

ClipBoard.Open;
try
ClipBoard.SetAsHandle(CF_DDGDATA, Data);
with Rec do
TempStr := FName+CRLF+LName+CRLF+MI+CRLF+IntToStr(Age)+CRLF+
DateTimeToStr(BirthDate);

ClipBoard.AsText := TempStr;

Sharing Information with the Clipboard

CHAPTER 17
831

17

S
H

A
R

IN
G

IN
FO

R
M

A
TIO

N

finally
Clipboard.Close

End;

Typically, it’s not necessary to call Open() unless you’re sending multiple formats to the
Clipboard, as you’re doing here. This is because each assignment to the Clipboard using one of
its methods (such as ClipBoard.SetTextBuf()) or properties (such as ClipBoard.AsText)
causes the Clipboard to erase its previous contents because they, too, call Open() and Close()
internally. By calling ClipBoard.Open() first, you prevent this from happening and therefore
can assign multiple formats simultaneously. Had you not called the Open() method, only the
CF_TEXT format would be available on the Clipboard after executing this method. The lines
after the call to Open() simply assign the data to the Clipboard and then call the
ClipBoard.Close() method accordingly.

At this point, the Win32 system is responsible for managing memory allocated for the
Clipboard with the GlobalAlloc() function. A call to GlobalFree() would be necessary only
if an exception occurred during the copy process. Don’t call GlobalFree() otherwise because
Win32 has taken over that memory management for the Clipboard.

With both CF_DDGDATA and CF_TEXT formats available on the Clipboard, you can paste the data
back into either this sample program or other applications, as we’ll illustrate momentarily.

TData.GetFromClipboard() does just the opposite—it retrieves data from the Clipboard in the
CF_DDGDATA format and places that data in the TData.Rec field. The commentary in the listing
explains how this method operates. The sample application that we’ll show next illustrates how
to use this unit. Notice that this Clipboard object can be easily modified to store any type of
record you might define.

Advanced Techniques

PART II
832

NOTE

Do not free the handle returned from GetAsHandle(); it doesn’t belong to your
application—it belongs to the Clipboard. Therefore, the data that the handle refer-
ences should be copied.

Working with THandles
A THandle is nothing more than a 32-bit variable that represents an index of a table
where the Win32 system maintains information about a memory block. There are
many types of THandles, and Delphi encapsulates most of them with TIcons,
TBitmaps, TCanvas, and so on.

Certain Win32 functions, like the various Clipboard functions, use the heap to manip-
ulate Clipboard data. To get access to heap memory, you make use of the memory
allocation function shown in the following list:

GlobalAlloc() Allocates a number of bytes specified from the heap and
returns a THandle to that memory object

GlobalFree() Frees the memory allocated with GlobalAlloc()

GlobalLock() Returns a pointer to a global memory object received
from GlobalAlloc()

GlobalUnlock() Unlocks memory previously locked with GlobalLock()

Sharing Information with the Clipboard

CHAPTER 17
833

17

S
H

A
R

IN
G

IN
FO

R
M

A
TIO

N

Using the Custom Clipboard Format
The main form for the project that illustrates the use of the custom Clipboard format is shown
in Figure 17.1.

FIGURE 17.1
The main form for the custom Clipboard format example.

As shown, this form contains the controls required to fill the TDataRec field of the TData
object. Listing 17.4 shows the source code for this form. The project resides on the CD as
Ddgcbp.dpr.

LISTING 17.4 Source Code for the Custom Clipboard Format Example

unit MainFrm;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, clipbrd, Mask, ComCtrls;

type

continues

LISTING 17.4 Continued

TMainForm = class(TForm)
edtFirstName: TEdit;
edtLastName: TEdit;
edtMI: TEdit;
btnCopy: TButton;
btnPaste: TButton;
meAge: TMaskEdit;
btnClear: TButton;
lblFirstName: TLabel;
lblLastName: TLabel;
lblMI: TLabel;
lblAge: TLabel;
lblBirthDate: TLabel;
memAsText: TMemo;
lblCustom: TLabel;
lblText: TLabel;
dtpBirthDate: TDateTimePicker;
procedure btnCopyClick(Sender: TObject);
procedure btnPasteClick(Sender: TObject);
procedure btnClearClick(Sender: TObject);

end;

var
MainForm: TMainForm;

implementation
uses cbdata;

{$R *.DFM}

procedure TMainForm.btnCopyClick(Sender: TObject);
// This method copies the data in the form’s controls onto the clipboard
var
DataObj: TData;

begin
DataObj := TData.Create;
try
with DataObj.Rec do
begin
FName := edtFirstName.Text;
LName := edtLastName.Text;
MI := edtMI.Text;
Age := StrToInt(meAge.Text);
BirthDate := dtpBirthDate.Date;
DataObj.CopyToClipBoard;

end;

Advanced Techniques

PART II
834

finally
DataObj.Free;

end;
end;

procedure TMainForm.btnPasteClick(Sender: TObject);
{ This method pastes CF_DDGDATA formatted data from the clipboard to
the form’s controls. The text version of this data is copied to the
form’s TMemo component. }

var
DataObj: TData;

begin
btnClearClick(nil);
DataObj := TData.Create;
try
// Check if the CF_DDGDATA format is available
if ClipBoard.HasFormat(CF_DDGDATA) then
// Copy the CF_DDGDATA formatted data to the form’s controls
with DataObj.Rec do
begin
DataObj.GetFromClipBoard;
edtFirstName.Text := FName;
edtLastName.Text := LName;
edtMI.Text := MI;
meAge.Text := IntToStr(Age);
dtpBirthDate.Date := BirthDate;

end;
finally
DataObj.Free;

end;
// Now copy the text version of the data to form’s TMemo component.
if ClipBoard.HasFormat(CF_TEXT) then
memAsText.PasteFromClipBoard;

end;

procedure TMainForm.btnClearClick(Sender: TObject);
var
i: integer;

begin
// Clear the contents of all controls on the form
for i := 0 to ComponentCount - 1 do
if Components[i] is TCustomEdit then
TCustomEdit(Components[i]).Text := ‘’;

end;

end.

Sharing Information with the Clipboard

CHAPTER 17
835

17

S
H

A
R

IN
G

IN
FO

R
M

A
TIO

N

When the user clicks the Copy button, it copies the data contained in the TEdit,
TDateTimePicker, and TMaskEdit controls to the TDataRec field of a TData object. It then
invokes the TData.CopyToClipboard() method, which places the data onto the Clipboard.

When the Paste button is clicked, the opposite happens. First, if the data in the Clipboard is of
the type CF_DDGDATA, it’s copied from the Clipboard and placed into the edit controls on the
form. The text representation of the data is also copied and placed into the main form’s TMemo
component. The result of a paste operation is shown in Figure 17.2. You can also paste the text
representation of the data into another Windows application, such as Notepad.

Advanced Techniques

PART II
836

FIGURE 17.2
Pasted data on the main form.

The Clear button empties the contents of all controls on the main form.

Summary
Sharing data with other applications is an extremely useful technique. By enabling your appli-
cations to share data with other applications, you make it more usable and your users more
productive. This chapter shows you how to use the Clipboard’s built-in functions to work with
Delphi controls. It also demonstrates how to create your own custom Clipboard formats.
Another even more powerful method of interprocess communication is COM, which we’ll
cover in depth in later chapters.

