
CHAPTER

14
Snooping System Information

IN THIS CHAPTER
• InfoForm: Obtaining General

Information 684

• Platform-Neutral Design 700

• Windows 95/98: Using ToolHelp32 701

• Windows NT/2000: PSAPI 727

• Summary 741

In this chapter, you’ll learn how to create a full-featured utility, called SysInfo, that’s designed
to browse the vital parameters of your system. Through the course of developing this applica-
tion, you’ll learn how to employ lesser-known APIs to gain access to low-level, systemwide
information on processes, threads, modules, heaps, drivers, and pages. This chapter also covers
how Windows 95/98 and Windows NT obtain this information differently. Additionally,
SysInfo provides you with techniques for obtaining information on free memory resources,
Windows version information, environment variable settings, and a list of loaded modules. Not
only do you learn to use these nuts-and-bolts API functions, but you also learn how to integrate
this information into a functional and aesthetically pleasing user interface. Additionally, you
learn which of the Windows 3.x API functions the Win32 functions in this chapter are designed
to replace.

You’d want to get such information from Windows for several reasons. Of course, the hacker in
each of us would argue that being able to snoop around the operating system’s backyard like
some kind of cyber-voyeur is its own reward. Perhaps you’re writing a program that needs to
access environment variables in order to find certain files. Maybe you need to determine which
modules are loaded in order to remove modules from memory manually. Possibly you need to
come up with a killer chapter for a book you’re writing. See, lots of valid reasons exist!

InfoForm: Obtaining General Information
To warm up, this section shows you how to obtain system information in an API that’s consis-
tent across Win32 versions. The code for this application will make a bit more sense if you
learn about its user interface first. You’ll learn about the user interface of this application a lit-
tle bit backward, though, because we’re going to explain one of the application’s child forms
first. This form, shown in Figure 14.1, is called InfoForm, and it’s used to display various sys-
tem and process settings, such as memory and hardware information, operating system (OS)
version and directory information, and environment variables.

Advanced Techniques

PART II
684

FIGURE 14.1
The InfoForm child form.

The contents of the form are quite simple. The form contains a THeaderListbox (a custom
component covered in Chapter 21, “Writing Delphi Custom Components”) and a TButton. To
refresh your memory, the THeaderListbox control is a combination of a THeader control and a
TListBox control. When the sections of the header are sized, the list box contents will also size

appropriately. The TheaderListbox control, called InfoLB, displays the information mentioned
earlier. The button dismisses the form.

Formatting the Strings
This application makes extensive use of the Format() function to format predefined strings
with data retrieved from the OS at runtime. The strings that will be used are defined in a const
section in the main unit:

const

{ Memory status strings }

SMemUse = ‘Memory in useq%d%%’;

STotMem = ‘Total physical memoryq$%.8x bytes’;

SFreeMem = ‘Free physical memoryq$%.8x bytes’;

STotPage = ‘Total page file memoryq$%.8x bytes’;

SFreePage = ‘Free page file memoryq$%.8x bytes’;

STotVirt = ‘Total virtual memoryq$%.8x bytes’;

SFreeVirt = ‘Free virtual memoryq$%.8x bytes’;

{ OS version info strings }

SOSVer = ‘OS Versionq%d.%d’;

SBuildNo = ‘Build Numberq%d’;

SOSPlat = ‘Platformq%s’;

SOSWin32s = ‘Windows 3.1x running Win32s’;

SOSWin95 = ‘Windows 95/98’;

SOSWinNT = ‘Windows NT/2000’;

{ System info strings }

SProc = ‘Processor Arhitectureq%s’;

SPIntel = ‘Intel’;

SPageSize = ‘Page Sizeq$%.8x bytes’;

SMinAddr = ‘Minimum Application Addressq$%p’;

SMaxAddr = ‘Maximum Application Addressq$%p’;

SNumProcs = ‘Number of Processorsq%d’;

SAllocGra = ‘Allocation Granularityq$%.8x bytes’;

SProcLevl = ‘Processor Levelq%s’;

SIntel3 = ‘80386’;

SIntel4 = ‘80486’;

SIntel5 = ‘Pentium’;

SIntel6 = ‘Pentium Pro’;

SProcRev = ‘Processor Revisionq%.4x’;

{ Directory strings }

SWinDir = ‘Windows directoryq%s’;

SSysDir = ‘Windows system directoryq%s’;

SCurDir = ‘Current directoryq%s’;

Snooping System Information

CHAPTER 14
685

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

You’re probably wondering about the conspicuous “q” in the middle of each of the strings.
When displaying these strings, the DelimChar property of InfoLB is set to q, which means that
the InfoLB component assumes that the character q defines the delimiter between each column
in the list box.

There are three primary reasons for using Format() with predefined strings rather than individ-
ually formatting string literals:

• Because Format() accepts various types as parameters, you don’t have to cloud your
code with a bunch of varied calls to functions (such as IntToStr() and IntToHex()),
which format different parameter types for display.

• Format() easily handles multiple data types. In this case, we use the %s and %d format
strings to format string and numeric data so that it’s more flexible.

• Keeping the strings in a separate location makes it easier to find, add, and change strings,
if necessary. It’s also more maintainable.

Advanced Techniques

PART II
686

NOTE

Use a double percent sign (%%) to display a single percent symbol in a formatted
string.

Obtaining Memory Status
The first bit of system information you can obtain to place in InfoLB is the memory status
obtained by the GlobalMemoryStatus() API call. GlobalMemoryStatus() is a procedure that
accepts one var parameter of type TMemoryStatus, which is defined as follows:

type

TMemoryStatus = record

dwLength: DWORD;

dwMemoryLoad: DWORD;

dwTotalPhys: DWORD;

dwAvailPhys: DWORD;

dwTotalPageFile: DWORD;

dwAvailPageFile: DWORD;

dwTotalVirtual: DWORD;

dwAvailVirtual: DWORD;

end;

• The first field in this record, dwLength, describes the length of the TMemoryStatus
record. You should initialize this value to SizeOf(TMemoryStatus) prior to calling

GlobalMemoryStatus(). Doing this allows Windows to change the size of this record in
future versions because it will be able to differentiate versions based on the value of the
first field.

• dwMemoryLoad provides a number from 0 to 100 that’s intended to give a general idea of
memory usage. 0 means that no memory is being used, and 100 means that all memory is
in use.

• dwTotalPhys indicates the total number of bytes of physical memory (the amount of
RAM installed on the computer), and dwAvailPhys indicates how much of that total is
currently unused.

• dwTotalPageFile indicates the total number of bytes that can be stored to hard disk page
file(s). This number is not the same as the size of a page file on disk. dwAvailPageFile
indicates how much of that total is available.

• dwTotalVirtual indicates the total number of bytes of usable virtual memory in the call-
ing process. dwAvailVirtual indicates how much of this memory is available to the call-
ing process.

The following code obtains the memory status and fills the list box with the status information:

procedure TInfoForm.ShowMemStatus;

var

MS: TMemoryStatus;

begin

InfoLB.DelimChar := ‘q’;

MS.dwLength := SizeOf(MS);

GlobalMemoryStatus(MS);

with InfoLB.Items, MS do

begin

Clear;

Add(Format(SMemUse, [dwMemoryLoad]));

Add(Format(STotMem, [dwTotalPhys]));

Add(Format(SFreeMem, [dwAvailPhys]));

Add(Format(STotPage, [dwTotalPageFile]));

Add(Format(SFreePage, [dwAvailPageFile]));

Add(Format(STotVirt, [dwTotalVirtual]));

Add(Format(SFreeVirt, [dwAvailVirtual]));

end;

InfoLB.Sections[0].Text := ‘Resource’;

InfoLB.Sections[1].Text := ‘Amount’;

Caption:= ‘Memory Status’;

end;

Snooping System Information

CHAPTER 14
687

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

Figure 14.2 shows InfoForm displaying memory status information at runtime.

Advanced Techniques

PART II
688

CAUTION

Don’t forget to initialize the dwLength field of the TMemoryStatus structure before
calling GlobalMemoryStatus().

FIGURE 14.2
Viewing memory status information.

Getting the OS Version
You can find out what version of Windows and the Win32 OS you’re running by making a call
to the GetVersionEx() API function. GetVersionEx() accepts as its only parameter a
TOSVersionInfo record, by reference. This record is defined as follows:

type

TOSVersionInfo = record

dwOSVersionInfoSize: DWORD;

dwMajorVersion: DWORD;

dwMinorVersion: DWORD;

dwBuildNumber: DWORD;

dwPlatformId: DWORD;

szCSDVersion: array[0..126] of AnsiChar; {Maintenance string for PSS usage}

end;

• The dwOSVersionInfoSize field should be initialized to SizeOf(TOSVersionInfo) prior
to calling GetVersionEx().

• dwMajorVersion indicates the major release number of the OS. In other words, if the OS
version number is 4.0, the value of this field will be 4.

• dwMinorVersion indicates the minor release number of the OS. In other words, if the OS
version number is 4.0, the value of this field will be 0.

• dwBuildNumber holds the build number of the OS in its low-order word.

• dwPlatformId describes the current Win32 platform. This parameter can have any one of
the values in the following table:

Value Platform

VER_PLATFORM_WIN32s Win32s on Windows 3.1

VER_PLATFORM_WIN32_WINDOWS Win32 on Windows 95 or Windows 98

VER_PLATFORM_WIN32_NT Windows NT or Windows 2000

• szCSDVersion contains additional arbitrary OS information. This value is often an empty
string.

The following procedure populates InfoLB with OS version information:

procedure TInfoForm.GetOSVerInfo;

var

VI: TOSVersionInfo;

begin

VI.dwOSVersionInfoSize := SizeOf(VI);

GetVersionEx(VI);

with InfoLB.Items, VI do

begin

Clear;

Add(Format(SOSVer, [dwMajorVersion, dwMinorVersion]));

Add(Format(SBuildNo, [LoWord(dwBuildNumber)]));

case dwPlatformID of

VER_PLATFORM_WIN32S: Add(Format(SOSPlat, [SOSWin32s]));

VER_PLATFORM_WIN32_WINDOWS: Add(Format(SOSPlat, [SOSWin95]));

VER_PLATFORM_WIN32_NT: Add(Format(SOSPlat, [SOSWinNT]));

end;

end;

end;

Snooping System Information

CHAPTER 14
689

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

NOTE

In Windows 3.x, the GetVersion() function obtained similar version information.
Because you’re now in Win32 land, you should use the GetVersionEx() function; it
provides more detailed information than GetVersion().

Obtaining Directory Information
The OS uses the Windows and System directories extensively to store shared DLLs, drivers,
applications, and INI files. Additionally, Win32 also maintains a current directory for each
process. Throughout the course of writing Win32 applications, it’s likely that you’ll encounter

a situation where you need to obtain the location of one of these directories. When this hap-
pens, you’ll be in luck because three functions in the Win32 API enable you to obtain that
directory information.

The functions—GetWindowsDirectory(), GetSystemDirectory(), and
GetCurrentDirectory()—are pretty straightforward. Each takes a pointer to a buffer where
the directory string is copied as the first parameter and the buffer size is copied as the second
parameter. The function copies into the buffer a null-terminated string containing the path.
Hopefully, you can tell which directory each function returns by the name of the function. If
not, well, let’s just say we hope you don’t rely on programming to eat.

This method uses a temporary array of char into which the directory information is stored.
From there, the string is added to InfoLB, as you can see for yourself in the following code:

procedure TInfoForm.GetDirInfo;

var

S: array[0..MAX_PATH] of char;

begin

{ Get Windows directory }

GetWindowsDirectory(S, SizeOf(S));

InfoLB.Items.Add(Format(SWinDir, [S]));

{ Get Windows system directory }

GetSystemDirectory(S, SizeOf(S));

InfoLB.Items.Add(Format(SSysDir, [S]));

{ Get Current directory for current process }

GetCurrentDirectory(SizeOf(S), S);

InfoLB.Items.Add(Format(SCurDir, [S]));

end;

Advanced Techniques

PART II
690

NOTE

The GetWindowsDir() and GetSystemDir() functions from the Windows 3.x API are
unavailable under Win32.

Getting System Information
The Win32 API provides a procedure called GetSystemInfo() that, in turn, provides some
very low-level details on the operating system. This procedure accepts one parameter of type
TSystemInfo by reference, and it fills the record with the proper values. The TSystemInfo
record is defined as follows:

type

PSystemInfo = ^TSystemInfo;

TSystemInfo = record

case Integer of

0: (

dwOemId: DWORD);

1: (

wProcessorArchitecture: Word;

wReserved: Word;

dwPageSize: DWORD;

lpMinimumApplicationAddress: Pointer;

lpMaximumApplicationAddress: Pointer;

dwActiveProcessorMask: DWORD;

dwNumberOfProcessors: DWORD;

dwProcessorType: DWORD;

dwAllocationGranularity: DWORD;

wProcessorLevel: Word;

wProcessorRevision: Word);

end;

• The dwOemId field is used for Windows 95. This value is always set to 0 or
PROCESSOR_ARCHITECTURE_INTEL.

• Under NT, the wProcessorArchitecture portion of the variant record is used. This field
describes the type of processor architecture under which you’re currently running.
Because Delphi is designed for Intel only, however, it’s the only type that matters at this
point. For the sake of completeness, this field can have any one of the following values:

PROCESSOR_ARCHITECTURE_INTEL

PROCESSOR_ARCHITECTURE_MIPS

PROCESSOR_ARCHITECTURE_ALPHA

PROCESSOR_ARCHITECTURE_PPC

• The wReserved field is unused at this time.

• The dwPageSize field holds the page size in kilobytes (KB) and specifies the granularity
of page protection and commitment. On Intel x86 machines, this value is 4KB.

• lpMinimumApplicationAddress returns the lowest memory address accessible to appli-
cations and DLLs. Attempts to access a memory address below this value is likely to
result in an access violation. lpMaximumApplicationAddress returns the highest memory
address accessible to applications and DLLs. Attempts to access a memory address above
this value are likely to result in an access violation.

• dwActiveProcessorMask returns a mask representing the set of processors configured
into the system. Bit 0 represents the first processor, and bit 31 represents the 32nd
processor. Wouldn’t having 32 processors be cool? Because Windows 95/98 supports
only one processor, only bit 0 will be set under that implementation of Win32.

Snooping System Information

CHAPTER 14
691

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

• dwNumberOfProcessors also returns the number of processors in the system. We’re not
sure why Microsoft bothered to put both this and the preceding field in the TSystemInfo
record, but here they are.

• The dwProcessorType field is no longer relevant. It was retained for backward compati-
bility. This field can have any one of the following values:

PROCESSOR_INTEL_386

PROCESSOR_INTEL_486

PROCESSOR_INTEL_PENTIUM

PROCESSOR_MIPS_R4000

PROCESSOR_ALPHA_21064

Of course, under Windows 95/98, only the PROCESSOR_INTEL_x values are possible,
whereas all are valid under Windows NT.

• dwAllocationGranularity returns the allocation granularity upon which memory will
be allocated. In previous implementations of Win32, this value was hard-coded as 64KB.
It’s possible, however, that other hardware architectures may require different values.

• The wProcessorLevel field specifies the system’s architecture-dependent processor level.
This field can hold a variety of values for different processors. For Intel processors, this
parameter can have any of the values in the following table:

Value Meaning

3 Processor is an 80386

4 Processor is an 80486

5 Processor is a Pentium

6 Processor is a Pentium Pro or higher

• wProcessorRevision specifies an architecture-dependent processor revision. Like
wProcessorLevel, this field can hold a variety of values for different processors. For
Intel architectures, this field holds a number in the format xxyy. For Intel 386 and 486
chips, xx + $0A is the stepping level and yy is the stepping (for example, 0300 is a D0
chip). For Intel Pentium or Cyrex/NextGen 486 chips, xx is the model number, and yy is
the stepping (for example, 0201 is Model 2, Stepping 1).

The procedure used to obtain and add the formatted system information strings to InfoLB is as
follows (note that this code is purposely slanted to display only Intel architecture information):

procedure TInfoForm.GetSysInfo;

var

SI: TSystemInfo;

begin

GetSystemInfo(SI);

Advanced Techniques

PART II
692

with InfoLB.Items, SI do

begin

Add(Format(SProc, [SPIntel]));

Add(Format(SPageSize, [dwPageSize]));

Add(Format(SMinAddr, [lpMinimumApplicationAddress]));

Add(Format(SMaxAddr, [lpMaximumApplicationAddress]));

Add(Format(SNumProcs, [dwNumberOfProcessors]));

Add(Format(SAllocGra, [dwAllocationGranularity]));

case wProcessorLevel of

3: Add(Format(SProcLevl, [SIntel3]));

4: Add(Format(SProcLevl, [SIntel4]));

5: Add(Format(SProcLevl, [SIntel5]));

6: Add(Format(SProcLevl, [SIntel6]));

else Add(Format(SProcLevl, [IntToStr(wProcessorLevel)]));

end;

end;

end;

Snooping System Information

CHAPTER 14
693

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

NOTE

The GetSystemInfo() function effectively replaces the GetWinFlags() function from
the Windows 3.x API.

Figure 14.3 shows InfoForm displaying system information, including OS version and direc-
tory information, at runtime.

FIGURE 14.3
Viewing system information.

Checking Out the Environment
Obtaining the list of environment variables—things such as sets, path, and prompt—for the
current process is an easy task, thanks to the GetEnvironmentStrings() API function. This
function takes no parameters and returns a null-separated list of environment strings. The for-
mat of this list is a string, followed by a null, followed by a string, followed by a null, and so
on until the entire string is terminated with a double null (#0#0). The following function is
used in the SysInfo application to retrieve the output from the GetEnvironmentStrings()
function and place it into InfoLB:

procedure TInfoForm.ShowEnvironment;

var

EnvPtr, SavePtr: PChar;

begin

InfoLB.DelimChar := ‘=’;

EnvPtr := GetEnvironmentStrings;

SavePtr := EnvPtr;

InfoLB.Items.Clear;

repeat

InfoLB.Items.Add(StrPas(EnvPtr));

inc(EnvPtr, StrLen(EnvPtr) + 1);

until EnvPtr^ = #0;

FreeEnvironmentStrings(SavePtr);

InfoLB.Sections[0].Text := ‘Environment Variable’;

InfoLB.Sections[1].Text := ‘Value’;

Caption:= ‘Current Environment’;

end;

Advanced Techniques

PART II
694

NOTE

The ShowEnvironment() method takes advantage of Object Pascal’s capability to per-
form pointer arithmetic on PChar-type strings. Notice how few lines of code are
required to traverse the list of environment strings.

A couple of comments on this method are in order. First, notice that the DelimChar property of
InfoLB is initially set to ‘=’. Because each of the environment variable and value pairs are
already separated by that character, it’s very easy to display them properly in InfoLB. Also,
when you’re finished using the environment strings, you should call the
FreeEnvironmentStrings() function to free the allocated block.

Figure 14.4 shows the InfoForm environment strings at runtime.

Snooping System Information

CHAPTER 14
695

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

TIP

You can’t obtain or set individual environment variables with the
GetEnvironmentStrings() function. For getting and setting individual environment
variables, see the GetEnvironmentVariable() and SetEnvironmentVariable() func-
tions in the Win32 API help.

FIGURE 14.4
Viewing environment strings.

Listing 14.1 shows the entire source code for the InfoU.pas unit.

LISTING 14.1 The Source Code for the InfoU.pas Unit

unit InfoU;

interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,

HeadList, StdCtrls, ExtCtrls, SysMain;

type

TInfoVariety = (ivMemory, ivSystem, ivEnvironment);

TInfoForm = class(TForm)

InfoLB: THeaderListbox;

Panel1: TPanel;

continues

LISTING 14.1 Continued

OkBtn: TButton;

private

procedure GetOSVerInfo;

procedure GetSysInfo;

procedure GetDirInfo;

public

procedure ShowMemStatus;

procedure ShowSysInfo;

procedure ShowEnvironment;

end;

procedure ShowInformation(Variety: TInfoVariety);

implementation

{$R *.DFM}

procedure ShowInformation(Variety: TInfoVariety);

begin

with TInfoForm.Create(Application) do

try

Font := MainForm.Font;

case Variety of

ivMemory: ShowMemStatus;

ivSystem: ShowSysInfo;

ivEnvironment: ShowEnvironment;

end;

ShowModal;

finally

Free;

end;

end;

const

{ Memory status strings }

SMemUse = ‘Memory in useq%d%%’;

STotMem = ‘Total physical memoryq$%.8x bytes’;

SFreeMem = ‘Free physical memoryq$%.8x bytes’;

STotPage = ‘Total page file memoryq$%.8x bytes’;

SFreePage = ‘Free page file memoryq$%.8x bytes’;

STotVirt = ‘Total virtual memoryq$%.8x bytes’;

Advanced Techniques

PART II
696

SFreeVirt = ‘Free virtual memoryq$%.8x bytes’;

{ OS version info strings }

SOSVer = ‘OS Versionq%d.%d’;

SBuildNo = ‘Build Numberq%d’;

SOSPlat = ‘Platformq%s’;

SOSWin32s = ‘Windows 3.1x running Win32s’;

SOSWin95 = ‘Windows 95/98’;

SOSWinNT = ‘Windows NT/2000’;

{ System info strings }

SProc = ‘Processor Arhitectureq%s’;

SPIntel = ‘Intel’;

SPageSize = ‘Page Sizeq$%.8x bytes’;

SMinAddr = ‘Minimum Application Addressq$%p’;

SMaxAddr = ‘Maximum Application Addressq$%p’;

SNumProcs = ‘Number of Processorsq%d’;

SAllocGra = ‘Allocation Granularityq$%.8x bytes’;

SProcLevl = ‘Processor Levelq%s’;

SIntel3 = ‘80386’;

SIntel4 = ‘80486’;

SIntel5 = ‘Pentium’;

SIntel6 = ‘Pentium Pro’;

SProcRev = ‘Processor Revisionq%.4x’;

{ Directory strings }

SWinDir = ‘Windows directoryq%s’;

SSysDir = ‘Windows system directoryq%s’;

SCurDir = ‘Current directoryq%s’;

procedure TInfoForm.ShowMemStatus;

var

MS: TMemoryStatus;

begin

InfoLB.DelimChar := ‘q’;

MS.dwLength := SizeOf(MS);

GlobalMemoryStatus(MS);

with InfoLB.Items, MS do

begin

Clear;

Add(Format(SMemUse, [dwMemoryLoad]));

Add(Format(STotMem, [dwTotalPhys]));

Snooping System Information

CHAPTER 14
697

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

continues

LISTING 14.1 Continued

Add(Format(SFreeMem, [dwAvailPhys]));

Add(Format(STotPage, [dwTotalPageFile]));

Add(Format(SFreePage, [dwAvailPageFile]));

Add(Format(STotVirt, [dwTotalVirtual]));

Add(Format(SFreeVirt, [dwAvailVirtual]));

end;

InfoLB.Sections[0].Text := ‘Resource’;

InfoLB.Sections[1].Text := ‘Amount’;

Caption:= ‘Memory Status’;

end;

procedure TInfoForm.GetOSVerInfo;

var

VI: TOSVersionInfo;

begin

VI.dwOSVersionInfoSize := SizeOf(VI);

GetVersionEx(VI);

with InfoLB.Items, VI do

begin

Clear;

Add(Format(SOSVer, [dwMajorVersion, dwMinorVersion]));

Add(Format(SBuildNo, [LoWord(dwBuildNumber)]));

case dwPlatformID of

VER_PLATFORM_WIN32S: Add(Format(SOSPlat, [SOSWin32s]));

VER_PLATFORM_WIN32_WINDOWS: Add(Format(SOSPlat, [SOSWin95]));

VER_PLATFORM_WIN32_NT: Add(Format(SOSPlat, [SOSWinNT]));

end;

end;

end;

procedure TInfoForm.GetSysInfo;

var

SI: TSystemInfo;

begin

GetSystemInfo(SI);

with InfoLB.Items, SI do

begin

Add(Format(SProc, [SPIntel]));

Add(Format(SPageSize, [dwPageSize]));

Add(Format(SMinAddr, [lpMinimumApplicationAddress]));

Advanced Techniques

PART II
698

Add(Format(SMaxAddr, [lpMaximumApplicationAddress]));

Add(Format(SNumProcs, [dwNumberOfProcessors]));

Add(Format(SAllocGra, [dwAllocationGranularity]));

case wProcessorLevel of

3: Add(Format(SProcLevl, [SIntel3]));

4: Add(Format(SProcLevl, [SIntel4]));

5: Add(Format(SProcLevl, [SIntel5]));

6: Add(Format(SProcLevl, [SIntel6]));

else Add(Format(SProcLevl, [IntToStr(wProcessorLevel)]));

end;

end;

end;

procedure TInfoForm.GetDirInfo;

var

S: array[0..MAX_PATH] of char;

begin

{ Get Windows directory }

GetWindowsDirectory(S, SizeOf(S));

InfoLB.Items.Add(Format(SWinDir, [S]));

{ Get Windows system directory }

GetSystemDirectory(S, SizeOf(S));

InfoLB.Items.Add(Format(SSysDir, [S]));

{ Get Current directory for current process }

GetCurrentDirectory(SizeOf(S), S);

InfoLB.Items.Add(Format(SCurDir, [S]));

end;

procedure TInfoForm.ShowSysInfo;

begin

InfoLB.DelimChar := ‘q’;

GetOSVerInfo;

GetSysInfo;

GetDirInfo;

InfoLB.Sections[0].Text := ‘Item’;

InfoLB.Sections[1].Text := ‘Value’;

Caption:= ‘System Information’;

end;

procedure TInfoForm.ShowEnvironment;

var

EnvPtr, SavePtr: PChar;

Snooping System Information

CHAPTER 14
699

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

continues

LISTING 14.1 Continued

begin

InfoLB.DelimChar := ‘=’;

EnvPtr := GetEnvironmentStrings;

SavePtr := EnvPtr;

InfoLB.Items.Clear;

repeat

InfoLB.Items.Add(StrPas(EnvPtr));

inc(EnvPtr, StrLen(EnvPtr) + 1);

until EnvPtr^ = #0;

FreeEnvironmentStrings(SavePtr);

InfoLB.Sections[0].Text := ‘Environment Variable’;

InfoLB.Sections[1].Text := ‘Value’;

Caption:= ‘Current Environment’;

end;

end.

Platform-Neutral Design
SysInfo is designed to function under both Windows 95/98 and Windows NT, even though the
different versions of Win32 have very different ways of accessing low-level information such
as processes and memory. The approach we took to enable platform-neutrality is to define an
interface that contains methods that can obtain system information. This interface is then
implemented for the two different operating systems. The interface is called IWin32Info; it’s
pretty simple and is shown here:

type

IWin32Info = interface

procedure FillProcessInfoList(ListView: TListView; ImageList: TImageList);

procedure ShowProcessProperties(Cookie: Pointer);

end;

• FillProcessInfoList() is responsible for filling a TListView and TImageList compo-
nent with a list of running processes and their associated icons, if any.

• ShowProcessProperties() is called to obtain more information for a particular process
selected in TListView.

In the SysInfo project, you’ll find a unit called W95Info that contains a TWin95Info class that
implements IWin32Info for Windows 95/98 using the ToolHelp32 API. Likewise, the project
contains a WNTInfo unit with a TWinNTInfo class that takes advantage of PSAPI to implement
IWin32Info. The following code segment, SysMain (which was taken from the project’s main
unit), shows how the proper class is created depending on the operating system:

Advanced Techniques

PART II
700

if Win32Platform = VER_PLATFORM_WIN32_WINDOWS then

FWinInfo := TWin95Info.Create

else if Win32Platform = VER_PLATFORM_WIN32_NT then

FWinInfo := TWinNTInfo.Create

else

raise Exception.Create(‘This application must be run on Win32’);

Windows 95/98: Using ToolHelp32
ToolHelp32 is a collection of functions and procedures, part of the Win32 API, which enables
you to see the status of some of the operating system’s low-level operations. In particular,
functions enable you to obtain information on all processes currently executing in the system
and the threads, modules, and heaps that go with each of the processes. As you might guess,
most of the information obtainable from ToolHelp32 is primarily used by applications that
must look “inside” the OS, such as debuggers, although going through these functions gives
even the average developer a better idea of how Win32 is put together.

Snooping System Information

CHAPTER 14
701

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

NOTE

The ToolHelp32 API is available only under the Windows 95/98 implementation of
Win32. This type of functionality would violate NT’s robust process-protection and
security features. Therefore, applications that use ToolHelp32 functions will function
only under Windows 95/98 and not under Windows NT.

We say ToolHelp32 to differentiate it from the 16-bit version of ToolHelp that was included in
Windows 3.1x. Most of the functions in the previous version of ToolHelp no longer apply to
Win32 and are therefore no longer supported. Also, under Windows 3.1x, the ToolHelp func-
tions were physically located in a DLL called TOOLHELP.DLL, whereas ToolHelp32 functions
reside in the kernel under Win32.

ToolHelp32 types and function definitions are located in the TlHelp32 unit, so be sure to have
that in your uses clause when working with these functions. To ensure that you receive a solid
overview, the application you build in this chapter uses every function defined in the TlHelp32
unit.

Figure 14.5 shows the main form for SysInfo. The user interface consists primarily of
TheaderListbox, a custom control explained in detail in Chapter 11, “Writing Multithreaded
Applications.” The list contains important information for a given process. By double-clicking
a process in the list, you can obtain more detailed information about it. This detail is shown in
a child form similar to the main form.

FIGURE 14.5
SysInfo’s main form, TMainForm.

Snapshots
Due to the multitasking nature of the Win32 environment, objects such as processes, threads,
modules, and heaps are constantly being created, destroyed, and modified. Because the status
of the machine is constantly in a state of flux, system information that might be meaningful
now may have no meaning a second from now. For example, suppose you want to write a pro-
gram to enumerate through all the modules loaded systemwide. Because the operating system
might preempt the thread executing your program at any time in order to provide time slices to
other threads in the system, modules theoretically can be created and destroyed even as you
enumerate through them.

In this dynamic environment, it would make more sense if you could freeze the system in time
for a moment in order to obtain such system information. Although ToolHelp32 doesn’t pro-
vide a means for freezing the system in time, it does provide a function that enables you to
take a snapshot of the system at a particular moment. CreateToolhelp32Snapshot() is that
function and is declared as follows:

function CreateToolhelp32Snapshot(dwFlags, th32ProcessID: DWORD): THandle;

stdcall;

• The dwFlags parameter indicates what type of information should be included in the
snapshot. This parameter can have any one of the values shown in the following table:

Value Meaning

TH32CS_INHERIT Indicates that the snapshot handle will be inheritable

TH32CS_SNAPALL Equivalent to specifying the TH32CS_SNAPHEAPLIST,
TH32CS_SNAPMODULE, TH32CS_SNAPPROCESS, and
TH32CS_SNAPTHREAD values

TH32CS_SNAPHEAPLIST Includes the heap list of the specified Win32 process in the
snapshot

Advanced Techniques

PART II
702

TH32CS_SNAPMODULE Includes the module list of the specified Win32 process in
the snapshot

TH32CS_SNAPPROCESS Includes the Win32 process list in the snapshot

TH32CS_SNAPTHREAD Includes the Win32 thread list in the snapshot

• The th32ProcessID parameter identifies the process for which you want to obtain infor-
mation. Pass 0 in this parameter to indicate the current process. This parameter affects
only module and heap lists because they are process-specific. The process and thread
lists provided by ToolHelp32 are systemwide.

• The CreateToolhelp32Snapshot() function returns the handle to a snapshot or -1 in
case of an error. The handle returned works just as other Win32 handles do regarding the
processes and threads for which they’re valid.

The following code creates a snapshot handle that contains information on all processes cur-
rently loaded systemwide (EToolHelpError is a programmer-defined exception):

var

Snap: THandle;

begin

Snap := CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);

if Snap = -1 then

raise EToolHelpError.Create(‘CreateToolHelp32Snapshot failed’);

end;

Snooping System Information

CHAPTER 14
703

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

NOTE

When you’re done using the handle, use the Win32 API CloseHandle() function to
free resources associated with a handle created by CreateToolHelp32Snapshot().

Process Walking
Given a snapshot handle that includes process information, ToolHelp32 defines two functions
that provide you with the capability of enumerating over (walking) processes. The functions,
Process32First() and Process32Next(), are declared as follows:

function Process32First(hSnapshot: THandle;

var lppe: TProcessEntry32): BOOL; stdcall;

function Process32Next(hSnapshot: THandle;

var lppe: TProcessEntry32): BOOL; stdcall;

The first parameter to these functions, hSnapshot, is the snapshot handle returned by
CreateToolHelp32Snapshot().

The second parameter, lppe, is a TProcessEntry32 record that’s passed by reference. As you
go through the enumeration, the functions will fill this record with information on the next
process. The TProcessEntry32 record is defined as follows:

type

TProcessEntry32 = record

dwSize: DWORD;

cntUsage: DWORD;

th32ProcessID: DWORD;

th32DefaultHeapID: DWORD;

th32ModuleID: DWORD;

cntThreads: DWORD;

th32ParentProcessID: DWORD;

pcPriClassBase: Longint;

dwFlags: DWORD;

szExeFile: array[0..MAX_PATH - 1] of Char;

end;

• The dwSize field holds the size of the TProcessEntry32 record. This should be initial-
ized to SizeOf(TProcessEntry32) prior to using the record.

• The cntUsage field indicates the reference count of the process. When the reference
count is zero, the operating system will unload the process.

• The th32ProcessID field contains the identification number of the process.

• The th32DefaultHeapID field contains an identifier for the process’s default heap. The ID
has meaning only within ToolHelp32, and it can’t be used with other Win32 functions.

• The thModuleID field identifies the module associated with the process. This field has
meaning only within ToolHelp32 functions.

• The cntThreads field indicates how many threads of execution the process has started.

• The th32ParentProcessID identifies the parent process to this process.

• The pcPriClassBase field holds the base priority of the process. The operating system
uses this value to manage thread scheduling.

• The dwFlags field is reserved; don’t use it.

• The szExeFile field is a null-terminated string that contains the pathname and filename
of the EXE or driver associated with the process.

Once a snapshot containing process information has been taken, iterating over all processes is a
matter of calling Process32First() and then calling Process32Next() until it returns False.

The process-walking code is encapsulated in the TWin95Info class, which implements the
IWin32Info interface. The following code shows the private Refresh() method of the
TWin95Info class, which iterates over the system processes and adds each to a list:

Advanced Techniques

PART II
704

procedure TWin95Info.Refresh;

var

PE: TProcessEntry32;

PPE: PProcessEntry32;

begin

FProcList.Clear;

if FSnap > 0 then CloseHandle(FSnap);

FSnap := CreateToolHelp32Snapshot(TH32CS_SNAPPROCESS, 0);

if FSnap = -1 then

raise Exception.Create(‘CreateToolHelp32Snapshot failed’);

PE.dwSize := SizeOf(PE);

if Process32First(FSnap, PE) then // get process

repeat

New(PPE); // create new PPE

PPE^ := PE; // fill it

FProcList.Add(PPE); // add it to list

until not Process32Next(FSnap, PE); // get next process

end;

The Refresh() method is called by the FillProcessInfoList() method. As explained earlier,
this method fills a TListView and TImageList component with information on all the running
processes. It’s shown here:

procedure TWin95Info.FillProcessInfoList(ListView: TListView;

ImageList: TImageList);

var

I: Integer;

ExeFile: string;

PE: TProcessEntry32;

HAppIcon: HIcon;

begin

Refresh;

ListView.Columns.Clear;

ListView.Items.Clear;

for I := Low(ProcessInfoCaptions) to High(ProcessInfoCaptions) do

with ListView.Columns.Add do

begin

if I = 0 then Width := 285

else Width := 75;

Caption := ProcessInfoCaptions[I];

end;

for I := 0 to FProcList.Count - 1 do

begin

Snooping System Information

CHAPTER 14
705

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

PE := PProcessEntry32(FProcList.Items[I])^;

HAppIcon := ExtractIcon(HInstance, PE.szExeFile, 0);

try

if HAppIcon = 0 then HAppIcon := FWinIcon;

ExeFile := PE.szExeFile;

if ListView.ViewStyle = vsList then

ExeFile := ExtractFileName(ExeFile);

// insert new item, set its caption, add subitems

with ListView.Items.Add, SubItems do

begin

Caption := ExeFile;

Data := FProcList.Items[I];

Add(IntToStr(PE.cntThreads));

Add(IntToHex(PE.th32ProcessID, 8));

Add(IntToHex(PE.th32ParentProcessID, 8));

if ImageList <> nil then

ImageIndex := ImageList_AddIcon(ImageList.Handle, HAppIcon);

end;

finally

if HAppIcon <> FWinIcon then DestroyIcon(HAppIcon);

end;

end;

end;

Figure 14.6 shows this code in action, displaying process information on a Windows 98 machine.

Advanced Techniques

PART II
706

FIGURE 14.6
Viewing processes under Windows 98.

Not to be ignored is the code that obtains an icon for each process. Displaying the icon along
with the application name gives the application a more professional appearance and a more
native Windows feel. The ExtractIcon() API function from the ShellAPI unit attempts to
extract the icon from the application file. If ExtractIcon() fails, HWinIcon is used instead.
HWinIcon is the standard Windows icon, and it has been preloaded in the OnCreate event han-
dler for this form using the LoadImage() API function:

FWinIcon := LoadImage(0, IDI_WINLOGO, IMAGE_ICON, LR_DEFAULTSIZE,

LR_DEFAULTSIZE, LR_DEFAULTSIZE or LR_DEFAULTCOLOR or LR_SHARED);

When the user double-clicks one of the processes in the main form (refer to Figure 14.6), the
ShowProcessProperties() method of IWin32Info is called, and the implementation of this
method passes the parameter on to a method in the Detail9x unit called
ShowProcessDetails():

procedure TWin95Info.ShowProcessProperties(Cookie: Pointer);

begin

ShowProcessDetails(PProcessEntry32(Cookie));

end;

ShowProcessDetails() must take another snapshot with CreateToolHelp32Snapshot() in
order to obtain a snapshot of information for the selected process. This is done by passing the
Cookie parameter, which holds the process (ID in this case) to the chosen process as the
th32ProcessID field for CreateToolHelp32Snapshot(). The TH32CS_SNAPALL flag is passed as
the dwFlags parameter to put all the information into the snapshot, as shown in the following
snippet:

{ Create a snapshot for the current process }

FCurSnap := CreateToolhelp32Snapshot(TH32CS_SNAPALL, P^.th32ProcessID);

if FCurSnap = -1 then

raise EToolHelpError.Create(‘CreateToolHelp32Snapshot failed’);

The TDetailForm object displays only one list at a time. An enumerated type keeps track of
which list is which:

type

TListType = (ltThread, ltModule, ltHeap);

TDetailForm also maintains three separate TStringList components for each of the threads,
modules, and heaps. These lists are defined as part of an array called DetailLists:

DetailLists: array[TListType] of TStringList;

Thread Walking
To walk a process’s thread list, ToolHelp32 provides two functions similar to those for process
walking: Thread32First() and Thread32Next(). These functions are declared as follows:

Snooping System Information

CHAPTER 14
707

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

function Thread32First(hSnapshot: THandle;

var lpte: TThreadEntry32): BOOL; stdcall;

function Thread32Next(hSnapshot: THandle;

var lpte: TThreadENtry32): BOOL; stdcall;

In addition to the usual hSnapshot parameter, these functions also accept a parameter by refer-
ence of type TThreadEntry32. As for the process functions, the calling function fills in this
record. The TThreadEntry32 record is defined as follows:

type

TThreadEntry32 = record

dwSize: DWORD;

cntUsage: DWORD;

th32ThreadID: DWORD;

th32OwnerProcessID: DWORD;

tpBasePri: Longint;

tpDeltaPri: Longint;

dwFlags: DWORD;

end;

• dwSize is the size of the record, and it should be initialized to SizeOf(TThreadEntry32)
prior to using the record.

• cntUsage is the reference count of the thread. When this value reaches zero, the thread is
unloaded by the operating system.

• th32ThreadID is the identification number of the thread. This value has meaning only
within the ToolHelp32 functions.

• th32OwnerProcessID is the identifier of the process that owns this thread. This ID can be
used with other Win32 functions.

• tpBasePri is the base priority class of the thread. This value is the same for all threads
of a given process. The possible values for this field are usually in the range of 4 through
24. The following table lists the meaning of each value:

Value Meaning

4 Idle

8 Normal

13 High

24 Real time

• tpDeltaPri is the delta (change in) priority from tpBasePri. It’s a signed number that,
when combined with the base priority class, reveals the overall priority of the thread. The
following table shows the constants defined for each possible value:

Advanced Techniques

PART II
708

Constant Value

THREAD_PRIORITY_IDLE -15

THREAD_PRIORITY_LOWEST -2

THREAD_PRIORITY_BELOW_NORMAL -1

THREAD_PRIORITY_NORMAL 0

THREAD_PRIORITY_ABOVE_NORMAL 1

THREAD_PRIORITY_HIGHEST 2

THREAD_PRIORITY_TIME_CRITICAL 15

• dwFlags is currently reserved and shouldn’t be used.

The WalkThreads() method of TDetailForm is used to walk the thread list. As the thread list is
traversed, important information about the thread is added to the thread element of the
DetailLists array. Here’s the code for this method:

procedure TWin95DetailForm.WalkThreads;

{ Uses ToolHelp32 functions to walk list of threads }

var

T: TThreadEntry32;

begin

DetailLists[ltThread].Clear;

T.dwSize := SizeOf(T);

if Thread32First(FCurSnap, T) then

repeat

{ Make sure thread is for current process }

if T.th32OwnerProcessID = FCurProc.th32ProcessID then

DetailLists[ltThread].Add(Format(SThreadStr, [T.th32ThreadID,

GetClassPriorityString(T.tpBasePri),

GetThreadPriorityString(T.tpDeltaPri), T.cntUsage]));

until not Thread32Next(FCurSnap, T);

end;

Snooping System Information

CHAPTER 14
709

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
NNOTE

The following line of code in the WalkThreads() method is important because
ToolHelp32 thread lists are not process-specific:

if T.th32OwnerProcessID = FCurProc.th32ProcessID then

You must therefore do a manual comparison as you iterate through the threads to
determine which threads are associated with the process in question.

Figure 14.7 shows the detail form with the thread list visible.

Advanced Techniques

PART II
710

FIGURE 14.7
Viewing threads in the detail form under Windows 98.

Module Walking
Module walking works much the same as process and thread walking. ToolHelp32 provides
two functions that do the work: Module32First() and Module32Next(). These functions are
declared as follows:

function Module32First(hSnapshot: THandle;

var lpme: TModuleEntry32): BOOL; stdcall;

function Module32Next(hSnapshot: THandle;

var lpme: TModuleEntry32): BOOL; stdcall;

Again, the snapshot handle is the first parameter to the functions. The second var parameter,
lpme, is a TModuleEntry32 record. This record is defined as follows:

type

TModuleEntry32 = record

dwSize: DWORD;

th32ModuleID: DWORD;

th32ProcessID: DWORD;

GlblcntUsage: DWORD;

ProccntUsage: DWORD;

modBaseAddr: PBYTE;

modBaseSize: DWORD;

hModule: HMODULE;

szModule: array[0..MAX_MODULE_NAME32 + 1] of Char;

szExePath: array[0..MAX_PATH - 1] of Char;

end;

• dwSize is the size of the record, and it should be initialized to SizeOf(TModuleEntry32)
prior to using the record.

• th32ModuleID is the identifier of the module. This value has meaning only with
ToolHelp32 functions.

• th32ProcessID is the identifier of the process being examined. This value can be used
with other Win32 functions.

• GlblcntUsage is the global reference count of the module.

• ProccntUsage is the reference count of the module within the context of the owning
process.

• modBaseAddr is the base address of the module in memory. This value is valid only
within the context of th32ProcessID’s context.

• modBaseSize is the size in bytes of the module in memory.

• hModule is the module handle. This value is valid only within th32ProcessID’s context.

• szModule is a null-terminated string containing the module name.

• szExepath is a null-terminated string containing the full path of the module.

The WalkModules() method of TDetailForm is very similar to its WalkThreads() method. As
shown in the following code, this method traverses the module list and adds it to the module
list portion of the DetailLists array:

procedure TWin95DetailForm.WalkModules;

{ Uses ToolHelp32 functions to walk list of modules }

var

M: TModuleEntry32;

begin

DetailLists[ltModule].Clear;

M.dwSize := SizeOf(M);

if Module32First(FCurSnap, M) then

repeat

DetailLists[ltModule].Add(Format(SModuleStr, [M.szModule, M.ModBaseAddr,

M.ModBaseSize, M.ProcCntUsage]));

until not Module32Next(FCurSnap, M);

end;

Figure 14.8 shows the detail form with the module list visible.

Snooping System Information

CHAPTER 14
711

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

FIGURE 14.8
Viewing modules in the detail form under Windows 98.

Heap Walking
Heap walking is slightly more complicated than the other types of enumeration you’ve learned
about in this chapter. ToolHelp32 provides four functions that enable heap walking. The first
two functions, Heap32ListFirst() and Heap32ListNext(), enable you to iterate over each of
a process’s heaps. The other two functions, Heap32First() and Heap32Next(), enable you to
obtain more detailed information on all the blocks within an individual heap.

Heap32ListFirst() and Heap32ListNext() are defined as follows:

function Heap32ListFirst(hSnapshot: THandle;

var lphl: THeapList32): BOOL; stdcall;

function Heap32ListNext(hSnapshot: THandle;

var lphl: THeapList32): BOOL; stdcall;

Again, the first parameter is the customary snapshot handle. The second parameter, lphl, is a
THeapList32 record that’s passed by reference. This record is defined as follows:

type

THeapList32 = record

dwSize: DWORD;

th32ProcessID: DWORD;

th32HeapID: DWORD;

dwFlags: DWORD;

end;

• dwSize is the size of the record, and it should be initialized to SizeOf(THeapList32)
prior to using the record.

Advanced Techniques

PART II
712

• th32ProcessID is the identifier of the owning process.

• th32HeapID is the identifier of the heap. This value has meaning only for the specified
process and within ToolHelp32.

• dwFlags holds a flag that determines the heap type. The value of this field can be either
HF32_DEFAULT, which means that the current heap is the process’s default heap, or
HF32_SHARED, which means that the current heap is a normal shared heap.

The Heap32First() and Heap32Next() functions are defined as follows:

function Heap32First(var lphe: THeapEntry32; th32ProcessID,

th32HeapID: DWORD): BOOL; stdcall;

function Heap32Next(var lphe: THeapEntry32): BOOL; stdcall;

Notice that the parameter lists of these functions are a bit of a departure from the process,
thread, module, and heap list enumeration functions that you’ve learned about in this chapter.
These functions are designed to enumerate the blocks of a given heap in a given process rather
than enumerating over some properties of just a process. When calling Heap32First(), the
th32ProcessID and th32HeapID parameters should be set to the values of the field of the same
name of the THeapList32 record filled by Heap32ListFirst() or Heap32ListNext(). The
lphe var parameter of Heap32First() and Heap32Next() is of type THeapEntry32. This
record contains descriptive information pertaining to the heap block and is defined as follows:

type

THeapEntry32 = record

dwSize: DWORD;

hHandle: THandle; // Handle of this heap block

dwAddress: DWORD; // Linear address of start of block

dwBlockSize: DWORD; // Size of block in bytes

dwFlags: DWORD;

dwLockCount: DWORD;

dwResvd: DWORD;

th32ProcessID: DWORD; // owning process

th32HeapID: DWORD; // heap block is in

end;

• dwSize is the size of the record, and it should be initialized to SizeOf(THeapEntry32)
prior to using the record.

• hHandle is the handle of the heap block.

• dwAddress is the linear address of the start of the heap block.

• dwBlockSize is the size, in bytes, of this heap block.

• dwFlags describes the type of heap block. This field can have any of the values shown in
the following table:

Snooping System Information

CHAPTER 14
713

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

Value Meaning

LF32_FIXED The memory block has a fixed (unmovable) location.

LF32_FREE The memory block is not used.

LF32_MOVEABLE The memory block location can be moved.

• dwLockCount is the lock count of the memory block. This value is increased by one every
time the process calls GlobalLock() or LocalLock() on this block.

• dwResvd is reserved at this time and shouldn’t be used.

• th32ProcessID is the identifier of the owning process.

• th32HeapID is the identifier of the heap to which the block belongs.

Because you must first walk the list of heap lists before you can walk the heap block list, the
code for heap block walking is a bit—but not much—more complex than what you’ve seen so
far. As you see in the TDetailForm.WalkHeaps() method that follows, the trick is to nest the
Heap32First()/Heap32Next() loop within the Heap32ListFirst()/Heap32ListNext() loop.
The method adds an additional level of complexity by adding a PHeapEntry32 record pointer
to the objects in the heap list portion of the DetailLists array. This is done so that informa-
tion on the heap is available later when viewing heap contents:

procedure TWin95DetailForm.WalkHeaps;

{ Uses ToolHelp32 functions to walk list of heaps }

var

HL: THeapList32;

HE: THeapEntry32;

PHE: PHeapEntry32;

begin

DetailLists[ltHeap].Clear;

HL.dwSize := SizeOf(HL);

HE.dwSize := SizeOf(HE);

if Heap32ListFirst(FCurSnap, HL) then

repeat

if Heap32First(HE, HL.th32ProcessID, HL.th32HeapID) then

repeat

New(PHE); // need to make copy of THeapList32 record so we

PHE^ := HE; // have enough info to view heap later

DetailLists[ltHeap].AddObject(Format(SHeapStr, [HL.th32HeapID,

Pointer(HE.dwAddress), HE.dwBlockSize,

GetHeapFlagString(HE.dwFlags)]), TObject(PHE));

until not Heap32Next(HE);

until not Heap32ListNext(FCurSnap, HL);

HeapListAlloc := True;

end;

Advanced Techniques

PART II
714

FIGURE 14.9
Viewing Windows heap blocks in the detail form under Windows 98.

Heap Viewing
Up to this point, you’ve learned about every function in the ToolHelp32 API except for one:
ToolHelp32ReadProcessMemory(). To make sure you finish this chapter with a warm, fuzzy
feeling, you’ll also learn about this function.

ToolHelp32ReadProcessMemory() is declared this way:

function Toolhelp32ReadProcessMemory(th32ProcessID: DWORD;

lpBaseAddress: Pointer; var lpBuffer; cbRead: DWORD;

var lpNumberOfBytesRead: DWORD): BOOL; stdcall;

This function is arguably the most powerful and definitely the most fun in ToolHelp32 because
it actually allows you to peek into the memory space of another process. The parameters for
this function are as follows:

• th32ProcessID is the identifier of the process whose memory you want to read. You can
obtain this value by any of the ToolHelp32 enumeration functions. You can pass zero in
this parameter to indicate the current process.

• lpBaseAddress is the linear address of the first byte of memory you want to read in
process th32ProcessID. You need to use the right process with the right address because
any given linear address is meaningful only to a particular process.

• lpBuffer is the buffer to which you want to copy process th32ProcessID’s memory. You
must ensure that memory is allocated for this buffer.

• cbRead is the number of bytes to read from process th32ProcessID, starting at
lpBaseAddress.

• lpNumberOfBytesRead is filled in by the function before it returns. This is the number of
bytes actually read from process th32ProcessID.

Snooping System Information

CHAPTER 14
715

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

Figure 14.9 shows the detail form with the heap block list visible.

Once the memory of a particular process is copied to a local buffer using this function, SysInfo
shows another modal form, HeapViewForm, which formats the memory dump for viewing. To
handle the formatting, HeapViewForm makes use of a custom component called TMemView for
viewing a memory dump. Because discussing the internals of the TMemView control is beyond
the focus of this chapter (and because the control isn’t terribly complex), you can browse the
source code for the control on this book’s CD-ROM. The following method of TDetailForm,
DetailLBDblClick(), is called when the user double-clicks in the THeaderListbox compo-
nent’s DetailLB:

procedure TWin95DetailForm.DetailLBDblClick(Sender: TObject);

{ This procedure is called when the user double clicks on an item }

{ in DetailLB. If the current tab page is heaps, a heap view }

{ form is presented to the user. }

var

NumRead: DWORD;

HE: THeapEntry32;

MemSize: integer;

begin

inherited;

if DetailTabs.TabIndex = 2 then

begin

HE := PHeapEntry32(DetailLB.Items.Objects[DetailLB.ItemIndex])^;

MemSize := HE.dwBlockSize; // get heap size

{ if heap is too big, use ProcMemMaxSize }

if MemSize > ProcMemMaxSize then MemSize := ProcMemMaxSize;

ProcMem := AllocMem(MemSize); // allocate a temp buffer

Screen.Cursor := crHourGlass;

try

{ Copy heap into temp buffer }

if Toolhelp32ReadProcessMemory(FCurProc.th32ProcessID,

Pointer(HE.dwAddress), ProcMem^, MemSize, NumRead) then

{ point HeapView control at temp buffer }

ShowHeapView(ProcMem, MemSize)

else

MessageDlg(SHeapReadErr, mtInformation, [mbOk], 0);

finally

Screen.Cursor := crDefault;

FreeMem(ProcMem, MemSize);

end;

end;

end;

This method first checks to see whether the current tab page is the heap list page. If so, it allo-
cates a temporary buffer and passes it to the ToolHelp32ReadProcessMemory() function to be

Advanced Techniques

PART II
716

filled. Once the buffer is filled, it’s displayed in the TMemView control HeapView, and
HeapViewForm is shown modally. When the form returns from the ShowModal() call, the buffer
is freed. Figure 14.10 shows a heap view in action.

Snooping System Information

CHAPTER 14
717

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

FIGURE 14.10
Viewing the heap of another Windows 98 process.

The Source
Listings 14.2 and 14.3 show the complete source for the W9xInfo.pas and Detail9x.pas units,
respectively.

LISTING 14.2 W9xInfo.pas, Obtaining Process Information Under Windows 95/98

unit W9xInfo;

interface

uses Windows, InfoInt, Classes, TlHelp32, Controls, ComCtrls;

type
TWin9xInfo = class(TInterfacedObject, IWin32Info)
private
FProcList: TList;
FWinIcon: HICON;
FSnap: THandle;
procedure Refresh;

public
constructor Create;
destructor Destroy; override;
procedure FillProcessInfoList(ListView: TListView; ImageList: TImageList);

continues

LISTING 14.2 Continued

procedure ShowProcessProperties(Cookie: Pointer);
end;

implementation

uses ShellAPI, CommCtrl, SysUtils, Detail9x;

const
ProcessInfoCaptions: array[0..3] of string = (
‘ProcessName’, ‘Threads’, ‘ID’, ‘ParentID’);

{ TProcList }

type
TProcList = class(TList)
procedure Clear; override;

end;

procedure TProcList.Clear;
var
I: Integer;

begin
for I := 0 to Count - 1 do Dispose(PProcessEntry32(Items[I]));
inherited Clear;

end;

{ TWin95Info }

constructor TWin9xInfo.Create;
begin
FProcList := TProcList.Create;
FWinIcon := LoadImage(0, IDI_WINLOGO, IMAGE_ICON, LR_DEFAULTSIZE,
LR_DEFAULTSIZE, LR_DEFAULTSIZE or LR_DEFAULTCOLOR or LR_SHARED);

end;

destructor TWin9xInfo.Destroy;
begin
DestroyIcon(FWinIcon);
if FSnap > 0 then CloseHandle(FSnap);
FProcList.Free;
inherited Destroy;

end;

procedure TWin9xInfo.FillProcessInfoList(ListView: TListView;
ImageList: TImageList);

Advanced Techniques

PART II
718

var
I: Integer;
ExeFile: string;
PE: TProcessEntry32;
HAppIcon: HIcon;

begin
Refresh;
ListView.Columns.Clear;
ListView.Items.Clear;
for I := Low(ProcessInfoCaptions) to High(ProcessInfoCaptions) do
with ListView.Columns.Add do
begin
if I = 0 then Width := 285
else Width := 75;
Caption := ProcessInfoCaptions[I];

end;
for I := 0 to FProcList.Count - 1 do
begin
PE := PProcessEntry32(FProcList.Items[I])^;
HAppIcon := ExtractIcon(HInstance, PE.szExeFile, 0);
try
if HAppIcon = 0 then HAppIcon := FWinIcon;
ExeFile := PE.szExeFile;
if ListView.ViewStyle = vsList then
ExeFile := ExtractFileName(ExeFile);

// insert new item, set its caption, add subitems
with ListView.Items.Add, SubItems do
begin
Caption := ExeFile;
Data := FProcList.Items[I];
Add(IntToStr(PE.cntThreads));
Add(IntToHex(PE.th32ProcessID, 8));
Add(IntToHex(PE.th32ParentProcessID, 8));
if ImageList <> nil then
ImageIndex := ImageList_AddIcon(ImageList.Handle, HAppIcon);

end;
finally
if HAppIcon <> FWinIcon then DestroyIcon(HAppIcon);

end;
end;

end;

procedure TWin9xInfo.Refresh;
var
PE: TProcessEntry32;
PPE: PProcessEntry32;

Snooping System Information

CHAPTER 14
719

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

continues

LISTING 14.2 Continued

begin
FProcList.Clear;
if FSnap > 0 then CloseHandle(FSnap);
FSnap := CreateToolHelp32Snapshot(TH32CS_SNAPPROCESS, 0);
if FSnap = INVALID_HANDLE_VALUE then
raise Exception.Create(‘CreateToolHelp32Snapshot failed’);

PE.dwSize := SizeOf(PE);
if Process32First(FSnap, PE) then // get process
repeat
New(PPE); // create new PPE
PPE^ := PE; // fill it
FProcList.Add(PPE); // add it to list

until not Process32Next(FSnap, PE); // get next process
end;

procedure TWin9xInfo.ShowProcessProperties(Cookie: Pointer);
begin
ShowProcessDetails(PProcessEntry32(Cookie));

end;

end.

LISTING 14.3 Detail9x.pas, Obtaining Process Details Under Windows 95/98

unit Detail9x;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ComCtrls, HeadList, TlHelp32, Menus, SysMain, DetBase;

type
TListType = (ltThread, ltModule, ltHeap);

TWin9xDetailForm = class(TBaseDetailForm)
procedure DetailTabsChange(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure DetailLBDblClick(Sender: TObject);

private
FCurSnap: THandle;
FCurProc: TProcessEntry32;
DetailLists: array[TListType] of TStringList;

Advanced Techniques

PART II
720

ProcMem: PByte;
HeapListAlloc: Boolean;
procedure FreeHeapList;
procedure ShowList(ListType: TListType);
procedure WalkThreads;
procedure WalkHeaps;
procedure WalkModules;

public
procedure NewProcess(P: PProcessEntry32);

end;

procedure ShowProcessDetails(P: PProcessEntry32);

implementation

{$R *.DFM}

uses ProcMem;

const
{ Array of strings which goes into the header of each respective list. }
HeaderStrs: array[TListType] of TDetailStrings = (

(‘Thread ID’, ‘Base Priority’, ‘Delta Priority’, ‘Usage Count’),
(‘Module’, ‘Base Addr’, ‘Size’, ‘Usage Count’),
(‘Heap ID’, ‘Base Addr’, ‘Size’, ‘Flags’));

{ Array of strings which goes into the footer of each list. }
ACountStrs: array[TListType] of string[31] = (

‘Total Threads: %d’, ‘Total Modules: %d’, ‘Total Heaps: %d’);

TabStrs: array[TListType] of string[7] = (‘Threads’, ‘Modules’, ‘Heaps’);

SCaptionStr = ‘Details for %s’; // form caption
SThreadStr = ‘%x’#1’%s’#1’%s’#1’%d’; // id, base pri, delta pri, usage
SModuleStr = ‘%s’#1’$%p’#1’%d bytes’#1’%d’; // name, addr, size, usage
SHeapStr = ‘%x’#1’$%p’#1’%d bytes’#1’%s’; // ID, addr, size, flags
SHeapReadErr = ‘This heap is not accessible for read access.’;

ProcMemMaxSize = $7FFE; // max size of heap view

procedure ShowProcessDetails(P: PProcessEntry32);
var
I: TListType;

begin
with TWin9xDetailForm.Create(Application) do
try

Snooping System Information

CHAPTER 14
721

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

continues

LISTING 14.3 Continued

for I := Low(TabStrs) to High(TabStrs) do
DetailTabs.Tabs.Add(TabStrs[I]);

NewProcess(P);
Font := MainForm.Font;
ShowModal;

finally
Free;

end;
end;

function GetThreadPriorityString(Priority: Integer): string;
{ Returns string describing thread priority }
begin
case Priority of
THREAD_PRIORITY_IDLE: Result := ‘%d (Idle)’;
THREAD_PRIORITY_LOWEST: Result := ‘%d (Lowest)’;
THREAD_PRIORITY_BELOW_NORMAL: Result := ‘%d (Below Normal)’;
THREAD_PRIORITY_NORMAL: Result := ‘%d (Normal)’;
THREAD_PRIORITY_ABOVE_NORMAL: Result := ‘%d (Above Normal)’;
THREAD_PRIORITY_HIGHEST: Result := ‘%d (Highest)’;
THREAD_PRIORITY_TIME_CRITICAL: Result := ‘%d (Time critical)’;

else
Result := ‘%d (unknown)’;

end;
Result := Format(Result, [Priority]);

end;

function GetClassPriorityString(Priority: DWORD): String;
{ returns string describing process priority class }
begin
case Priority of
4: Result := ‘%d (Idle)’;
8: Result := ‘%d (Normal)’;
13: Result := ‘%d (High)’;
24: Result := ‘%d (Real time)’;

else
Result := ‘%d (non-standard)’;

end;
Result := Format(Result, [Priority]);

end;

function GetHeapFlagString(Flag: DWORD): String;
{ Returns a string describing a heap flag }
begin
case Flag of

Advanced Techniques

PART II
722

LF32_FIXED: Result := ‘Fixed’;
LF32_FREE: Result := ‘Free’;
LF32_MOVEABLE: Result := ‘Moveable’;

end;
end;

procedure TWin9xDetailForm.ShowList(ListType: TListType);
{ Shows appropriate thread, heap, or module list in DetailLB }
var
i: Integer;

begin
Screen.Cursor := crHourGlass;
try
with DetailLB do
begin
for i := 0 to 3 do
Sections[i].Text := HeaderStrs[ListType, i];

Items.Clear;
Items.Assign(DetailLists[ListType]);

end;
DetailSB.Panels[0].Text := Format(ACountStrs[ListType],
[DetailLists[ListType].Count]);

if ListType = ltHeap then
DetailSB.Panels[1].Text := ‘Double-click to view heap’

else
DetailSB.Panels[1].Text := ‘’;

finally
Screen.Cursor := crDefault;

end;
end;

procedure TWin9xDetailForm.WalkThreads;
{ Uses ToolHelp32 functions to walk list of threads }
var
T: TThreadEntry32;

begin
DetailLists[ltThread].Clear;
T.dwSize := SizeOf(T);
if Thread32First(FCurSnap, T) then
repeat
{ Make sure thread is for current process }
if T.th32OwnerProcessID = FCurProc.th32ProcessID then
DetailLists[ltThread].Add(Format(SThreadStr, [T.th32ThreadID,
GetClassPriorityString(T.tpBasePri),
GetThreadPriorityString(T.tpDeltaPri), T.cntUsage]));

until not Thread32Next(FCurSnap, T);

Snooping System Information

CHAPTER 14
723

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

continues

LISTING 14.3 Continued

end;

procedure TWin9xDetailForm.WalkModules;
{ Uses ToolHelp32 functions to walk list of modules }
var
M: TModuleEntry32;

begin
DetailLists[ltModule].Clear;
M.dwSize := SizeOf(M);
if Module32First(FCurSnap, M) then
repeat
DetailLists[ltModule].Add(Format(SModuleStr, [M.szModule, M.ModBaseAddr,
M.ModBaseSize, M.ProcCntUsage]));

until not Module32Next(FCurSnap, M);
end;

procedure TWin9xDetailForm.WalkHeaps;
{ Uses ToolHelp32 functions to walk list of heaps }
var
HL: THeapList32;
HE: THeapEntry32;
PHE: PHeapEntry32;

begin
DetailLists[ltHeap].Clear;
HL.dwSize := SizeOf(HL);
HE.dwSize := SizeOf(HE);
if Heap32ListFirst(FCurSnap, HL) then
repeat
if Heap32First(HE, HL.th32ProcessID, HL.th32HeapID) then
repeat
New(PHE); // need to make copy of THeapList32 record so we
PHE^ := HE; // have enough info to view heap later
DetailLists[ltHeap].AddObject(Format(SHeapStr, [HL.th32HeapID,
Pointer(HE.dwAddress), HE.dwBlockSize,
GetHeapFlagString(HE.dwFlags)]), TObject(PHE));

until not Heap32Next(HE);
until not Heap32ListNext(FCurSnap, HL);

HeapListAlloc := True;
end;

procedure TWin9xDetailForm.FreeHeapList;
{ Since special allocation of PHeapList32 objects are added to the list, }
{ these must be freed. }
var
i: integer;

Advanced Techniques

PART II
724

begin
for i := 0 to DetailLists[ltHeap].Count - 1 do
Dispose(PHeapEntry32(DetailLists[ltHeap].Objects[i]));

end;

procedure TWin9xDetailForm.NewProcess(P: PProcessEntry32);
{ This procedure is called from the main form to show the detail }
{ form for a particular process. }
begin
{ Create a snapshot for the current process }
FCurSnap := CreateToolhelp32Snapshot(TH32CS_SNAPALL, P^.th32ProcessID);
if FCurSnap = INVALID_HANDLE_VALUE then
raise Exception.Create(‘CreateToolHelp32Snapshot failed’);

HeapListAlloc := False;
Screen.Cursor := crHourGlass;
try
FCurProc := P^;
{ Include module name in detail form caption }
Caption := Format(SCaptionStr, [ExtractFileName(FCurProc.szExeFile)]);
WalkThreads; // walk ToolHelp32 lists
WalkModules;
WalkHeaps;
DetailTabs.TabIndex := 0; // 0 = thread tab
ShowList(ltThread); // show thread page first

finally
Screen.Cursor := crDefault;
if HeapListAlloc then FreeHeapList;
CloseHandle(FCurSnap); // close snapshot handle

end;
end;

procedure TWin9xDetailForm.DetailTabsChange(Sender: TObject);
{ OnChange event handler for tab set. Sets visible list to jive with tabs. }
begin
inherited;
ShowList(TListType(DetailTabs.TabIndex));

end;

procedure TWin9xDetailForm.FormCreate(Sender: TObject);
var
LT: TListType;

begin
inherited;
{ Dispose of lists }
for LT := Low(TListType) to High(TListType) do
DetailLists[LT] := TStringList.Create;

Snooping System Information

CHAPTER 14
725

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

continues

LISTING 14.3 Continued

end;

procedure TWin9xDetailForm.FormDestroy(Sender: TObject);
var
LT: TListType;

begin
inherited;
{ Dispose of lists }
for LT := Low(TListType) to High(TListType) do
DetailLists[LT].Free;

end;

procedure TWin9xDetailForm.DetailLBDblClick(Sender: TObject);
{ This procedure is called when the user double clicks on an item }
{ in DetailLB. If the current tab page is heaps, a heap view }
{ form is presented to the user. }
var
NumRead: DWORD;
HE: THeapEntry32;
MemSize: integer;

begin
inherited;
if DetailTabs.TabIndex = 2 then
begin
HE := PHeapEntry32(DetailLB.Items.Objects[DetailLB.ItemIndex])^;
MemSize := HE.dwBlockSize; // get heap size
{ if heap is too big, use ProcMemMaxSize }
if MemSize > ProcMemMaxSize then MemSize := ProcMemMaxSize;
ProcMem := AllocMem(MemSize); // allocate a temp buffer
Screen.Cursor := crHourGlass;
try
{ Copy heap into temp buffer }
if Toolhelp32ReadProcessMemory(FCurProc.th32ProcessID,
Pointer(HE.dwAddress), ProcMem^, MemSize, NumRead) then
{ point HeapView control at temp buffer }
ShowHeapView(ProcMem, MemSize)

else
MessageDlg(SHeapReadErr, mtInformation, [mbOk], 0);

finally
Screen.Cursor := crDefault;
FreeMem(ProcMem, MemSize);

end;
end;

end;

end.

Advanced Techniques

PART II
726

Windows NT/2000: PSAPI
As we mentioned earlier, the ToolHelp32 API does not exist under Windows NT/2000. The
Windows Platform SDK, however, provides a DLL called PSAPI.DLL from which you can
obtain the same types of information as with ToolHelp32 under Windows NT/2000, including

• Running processes

• Modules loaded per process

• Loaded device drivers

• Process memory information

• Files memory mapped per process

Later versions of Windows NT and all versions of Windows 2000 include PSAPI.DLL, although
you can redistribute this file if you wish to deploy it to the users of your applications. Delphi
provides an interface unit for this DLL called PSAPI.pas, which loads all its functions dynami-
cally. Therefore, applications that use this unit will run on machines with or without PSAPI.DLL
(of course, the functions won’t work without PSAPI.DLL installed, but the application will run).

The first step in obtaining process information using PSAPI is to call EnumProcesses(), which
is defined as follows:

function EnumProcesses(lpidProcess: LPDWORD; cb: DWORD;

var cbNeeded: DWORD): BOOL;

• lpidProcess is a pointer to an array of DWORDs that will be filled in with process IDs
by the function.

• cb contains the number of DWORDs in the array passed in lpidProcess.

• Upon return, cbNeeded will hold the number of bytes copied into lpidProcess. The
expression cbNeeded div SizeOf(DWORD) will provide the number of elements copied
into the array and therefore the number of running processes.

After calling this function, the array passed in lpidProcess will contain a bunch of process
IDs. Process IDs aren’t particularly useful on their own, but you can pass a process ID to the
OpenProcess() API function in order to obtain a process handle. Once you have a process han-
dle, you can call other PSAPI functions or even other Win32 API functions that call for process
handles.

PSAPI provides a similar function for obtaining information on loaded device drivers called—
we’ll give you one guess—EnumDeviceDrivers(). This method is defined as follows:

function EnumDeviceDrivers(lpImageBase: PPointer; cb: DWORD;

var lpcbNeeded: DWORD): BOOL;

• lpImageBase is a pointer to an array of Pointers that will be filled with the base address
of each device driver.

Snooping System Information

CHAPTER 14
727

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

• cb contains the number of Pointers in the array passed in lpImageBase.

• Upon return, lpcbNeeded will hold the number of bytes copied to lpImageBase.

In the SysInfo project ID is a unit called WNTInfo.pas, which contains a class called
TWinNTInfo that implements IWin32Info. This class contains a private method called
Refresh(), which obtains process and device driver information:

procedure TWinNTInfo.Refresh;

var

Count: DWORD;

BigArray: array[0..$3FFF - 1] of DWORD;

begin

// Get array of process IDs

if not EnumProcesses(@BigArray, SizeOf(BigArray), Count) then

raise Exception.Create(SFailMessage);

SetLength(FProcList, Count div SizeOf(DWORD));

Move(BigArray, FProcList[0], Count);

// Get array of Driver addresses

if not EnumDeviceDrivers(@BigArray, SizeOf(BigArray), Count) then

raise Exception.Create(SFailMessage);

SetLength(FDrvList, Count div SizeOf(DWORD));

Move(BigArray, FDrvList[0], Count);

end;

This method initially passes a local called BigArray to EnumProcesses() and
EnumDeviceDrivers() and then moves the data from BigArray into dynamic arrays called
FProcList and FDrvList. The reason for this ungainly implementation of these functions is
that neither EnumProcesses() nor EnumDeviceDrivers() provide a means for determining how
many elements will be returned before allocating an array. We are therefore stuck passing a
large array (that we hope is large enough) to the methods and copying the result to an appro-
priately sized dynamic array.

The FillProcessInfoList() method for TWinNTInfo calls two helper methods—
FillProcesses() and FillDrivers()—to fill the contents of the TListView on the main
form. FillProcesses() is shown here:

procedure TWinNTInfo.FillProcesses(ListView: TListView;

ImageList: TImageList);

var

I: Integer;

Count: DWORD;

ProcHand: THandle;

ModHand: HMODULE;

Advanced Techniques

PART II
728

HAppIcon: HICON;

ModName: array[0..MAX_PATH] of char;

begin

for I := Low(FProcList) to High(FProcList) do

begin

ProcHand := OpenProcess(PROCESS_QUERY_INFORMATION or PROCESS_VM_READ,

False, FProcList[I]);

if ProcHand > 0 then

try

EnumProcessModules(Prochand, @ModHand, 1, Count);

if GetModuleFileNameEx(Prochand, ModHand, ModName,

SizeOf(ModName)) > 0 then

begin

HAppIcon := ExtractIcon(HInstance, ModName, 0);

try

if HAppIcon = 0 then HAppIcon := FWinIcon;

with ListView.Items.Add, SubItems do

begin

Caption := ModName; // file name

Data := Pointer(FProcList[I]); // save ID

Add(SProcName); // “process”

Add(IntToStr(FProcList[I])); // process ID

Add(‘$’ + IntToHex(ProcHand, 8)); // process handle

// priority class

Add(GetPriorityClassString(GetPriorityClass(ProcHand)));

// icon

if ImageList <> nil then

ImageIndex := ImageList_AddIcon(ImageList.Handle,

HAppIcon);

end;

finally

if HAppIcon <> FWinIcon then DestroyIcon(HAppIcon);

end;

end;

finally

CloseHandle(ProcHand);

end;

end;
end;

This method uses OpenProcess() to convert each process ID into a process handle. Several
flags can be passed to this method in the first parameter, but for purposes of querying informa-
tion with PSAPI, PROCESS_QUERY_INFORMATION and PROCESS_VM_READ together work best.

Snooping System Information

CHAPTER 14
729

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

Given a process handle, the code then calls EnumProcessModules() to obtain the filename for
the process. This method is defined as follows:

function EnumProcessModules(hProcess: THandle; lphModule: LPDWORD;

cb: DWORD; var lpcbNeeded: DWORD): BOOL;

This method works in a manner similar to the other PSAPI functions: hProcess is a process
handle, lphModule is a pointer to an array of module handles, cb indicates the number of ele-
ments in the array, and the final parameter returns the number of bytes copied to lphModule.

Because we’re only interested in the primary module for this process right now, we only pass
an array of one element. The first module returned by EnumProcessModules() is the primary
module for the process. All the process information is then added to the TListView component
in a manner similar to that shown in TWin9xInfo.

FillDrivers() functions in a like manner, except that it uses the
GetDeviceDriverFileName() method shown here:

function GetDeviceDriverFileName(ImageBase: Pointer; lpFileName: PChar;

nSize: DWORD): DWORD;

This method takes the image base of the device driver as the first parameter, a pointer to a
string buffer as the second parameter, and the size of the buffer in the last parameter. Upon
successful return, lpFileName will contain the filename of the device driver. Our use of this
method is shown in the following code:

procedure TWinNTInfo.FillDrivers(ListView: TListView;

ImageList: TImageList);

var

I: Integer;

DrvName: array[0..MAX_PATH] of char;

begin

for I := Low(FDrvList) to High(FDrvList) do

if GetDeviceDriverFileName(FDrvList[I], DrvName, SizeOf(DrvName)) > 0 then

with ListView.Items.Add do

begin

Caption := DrvName;

SubItems.Add(SDrvName);

SubItems.Add(‘$’ + IntToHex(Integer(FDrvList[I]), 8));

end;

end;

Figure 14.11 shows the SysInfo application running on a Windows NT 4.0 machine.

Advanced Techniques

PART II
730

FIGURE 14.11
Browsing Windows NT processes and drivers.

Like TWin95Info’s implementation of ShowProcessProperties(), TWinNTInfo calls out to
another unit to display a form containing more process information. In particular, the addi-
tional information pertains to process modules and memory usage. The method that does the
work of obtaining this information resides in the TWinNTDetailForm class in the DetailNT unit,
and it’s shown in the following code:

procedure TWinNTDetailForm.NewProcess(ProcessID: DWORD);

const

AddrMask = DWORD($FFFFF000);

var

I, Count: Integer;

ProcHand: THandle;

WSPtr: Pointer;

ModHandles: array[0..$3FFF - 1] of DWORD;

WorkingSet: array[0..$3FFF - 1] of DWORD;

ModInfo: TModuleInfo;

ModName, MapFileName: array[0..MAX_PATH] of char;

begin

ProcHand := OpenProcess(PROCESS_QUERY_INFORMATION or PROCESS_VM_READ, False,

ProcessID);

Snooping System Information

CHAPTER 14
731

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

if ProcHand = 0 then

raise Exception.Create(‘No information available for this process/driver’);

try

EnumProcessModules(ProcHand, @ModHandles, SizeOf(ModHandles), Count);

for I := 0 to (Count div SizeOf(DWORD)) - 1 do

if (GetModuleFileNameEx(ProcHand, ModHandles[I], ModName,

SizeOf(ModName)) > 0) and GetModuleInformation(ProcHand,

ModHandles[I], @ModInfo, SizeOf(ModInfo)) then

with ModInfo do

DetailLists[ltModules].Add(Format(SModuleStr, [ModName, lpBaseOfDll,

SizeOfImage, EntryPoint]));

if QueryWorkingSet(ProcHand, @WorkingSet, SizeOf(WorkingSet)) then

for I := 1 to WorkingSet[0] do

begin

WSPtr := Pointer(WorkingSet[I] and AddrMask);

GetMappedFileName(ProcHand, WSPtr, MapFileName, SizeOf(MapFileName));

DetailLists[ltMemory].Add(Format(SMemoryStr, [WSPtr,

MemoryTypeToString(WorkingSet[I]), MapFileName]));

end;

finally

CloseHandle(ProcHand);

end;

end;

As you can see, this method makes calls to OpenProcess() and EnumProcessModules(), about
which you’ve already learned. This method also calls a PSAPI function called
QueryWorkingSet(), however, to obtain memory information for a process. This function is
defined as follows:

function QueryWorkingSet(hProcess: THandle; pv: Pointer; cb: DWORD): BOOL;

hProcess is the process handle. pv is a pointer to an array of DWORDs, and cb holds the num-
ber of elements in the array. Upon return, pv will point to an array of DWORDs. The upper 20
bits of this DWORD hold the base address of a memory page, and the lower 12 bits of each
DWORD hold flags that indicate whether the page is readable, writable, executable, and so on.

Figures 14.12 and 14.13 show module and memory details under Windows NT. Listings 14.4
and 14.5 show the WNTInfo.pas and DetailNT.pas units, respectively.

Advanced Techniques

PART II
732

FIGURE 14.12
Viewing Windows NT process modules.

Snooping System Information

CHAPTER 14
733

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

FIGURE 14.13
Viewing Windows NT process memory details.

LISTING 14.4 WNTInfo.pas, Obtaining Process Information Under Windows NT/2000

unit WNTInfo;

interface

uses InfoInt, Windows, Classes, ComCtrls, Controls;

type

TWinNTInfo = class(TInterfacedObject, IWin32Info)

private

continues

LISTING 14.4 Continued

FProcList: array of DWORD;

FDrvlist: array of Pointer;

FWinIcon: HICON;

procedure FillProcesses(ListView: TListView; ImageList: TImageList);

procedure FillDrivers(ListView: TListView; ImageList: TImageList);

procedure Refresh;

public

constructor Create;

destructor Destroy; override;

procedure FillProcessInfoList(ListView: TListView;

ImageList: TImageList);

procedure ShowProcessProperties(Cookie: Pointer);

end;

implementation

uses SysUtils, PSAPI, ShellAPI, CommCtrl, DetailNT;

const

SFailMessage = ‘Failed to enumerate processes or drivers. Make sure ‘+

‘PSAPI.DLL is installed on your system.’;

SDrvName = ‘driver’;

SProcname = ‘process’;

ProcessInfoCaptions: array[0..4] of string = (

‘Name’, ‘Type’, ‘ID’, ‘Handle’, ‘Priority’);

function GetPriorityClassString(PriorityClass: Integer): string;

begin

case PriorityClass of

HIGH_PRIORITY_CLASS: Result := ‘High’;

IDLE_PRIORITY_CLASS: Result := ‘Idle’;

NORMAL_PRIORITY_CLASS: Result := ‘Normal’;

REALTIME_PRIORITY_CLASS: Result := ‘Realtime’;

else

Result := Format(‘Unknown ($%x)’, [PriorityClass]);

end;

end;

{ TWinNTInfo }

constructor TWinNTInfo.Create;

Advanced Techniques

PART II
734

begin

FWinIcon := LoadImage(0, IDI_WINLOGO, IMAGE_ICON, LR_DEFAULTSIZE,

LR_DEFAULTSIZE, LR_DEFAULTSIZE or LR_DEFAULTCOLOR or LR_SHARED);

end;

destructor TWinNTInfo.Destroy;

begin

DestroyIcon(FWinIcon);

inherited Destroy;

end;

procedure TWinNTInfo.FillDrivers(ListView: TListView;

ImageList: TImageList);

var

I: Integer;

DrvName: array[0..MAX_PATH] of char;

begin

for I := Low(FDrvList) to High(FDrvList) do

if GetDeviceDriverFileName(FDrvList[I], DrvName,

SizeOf(DrvName)) > 0 then

with ListView.Items.Add do

begin

Caption := DrvName;

SubItems.Add(SDrvName);

SubItems.Add(‘$’ + IntToHex(Integer(FDrvList[I]), 8));

end;

end;

procedure TWinNTInfo.FillProcesses(ListView: TListView;

ImageList: TImageList);

var

I: Integer;

Count: DWORD;

ProcHand: THandle;

ModHand: HMODULE;

HAppIcon: HICON;

ModName: array[0..MAX_PATH] of char;

begin

for I := Low(FProcList) to High(FProcList) do

begin

ProcHand := OpenProcess(PROCESS_QUERY_INFORMATION or PROCESS_VM_READ,

False, FProcList[I]);

Snooping System Information

CHAPTER 14
735

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

continues

LISTING 14.4 Continued

if ProcHand > 0 then

try

EnumProcessModules(Prochand, @ModHand, 1, Count);

if GetModuleFileNameEx(Prochand, ModHand, ModName,

SizeOf(ModName)) > 0 then

begin

HAppIcon := ExtractIcon(HInstance, ModName, 0);

try

if HAppIcon = 0 then HAppIcon := FWinIcon;

with ListView.Items.Add, SubItems do

begin

Caption := ModName; // file name

Data := Pointer(FProcList[I]); // save ID

Add(SProcName); // “process”

Add(IntToStr(FProcList[I])); // process ID

Add(‘$’ + IntToHex(ProcHand, 8)); // process handle

// priority class

Add(GetPriorityClassString(GetPriorityClass(ProcHand)));

// icon

if ImageList <> nil then

ImageIndex := ImageList_AddIcon(ImageList.Handle,

HAppIcon);

end;

finally

if HAppIcon <> FWinIcon then DestroyIcon(HAppIcon);

end;

end;

finally

CloseHandle(ProcHand);

end;

end;

end;

procedure TWinNTInfo.FillProcessInfoList(ListView: TListView;

ImageList: TImageList);

var

I: Integer;

begin

Refresh;

ListView.Columns.Clear;

ListView.Items.Clear;

for I := Low(ProcessInfoCaptions) to High(ProcessInfoCaptions) do

Advanced Techniques

PART II
736

with ListView.Columns.Add do

begin

if I = 0 then Width := 285

else Width := 75;

Caption := ProcessInfoCaptions[I];

end;

FillProcesses(ListView, ImageList); // Add processes to listview

FillDrivers(ListView, ImageList); // Add device drivers to listview

end;

procedure TWinNTInfo.Refresh;

var

Count: DWORD;

BigArray: array[0..$3FFF - 1] of DWORD;

begin

// Get array of process IDs

if not EnumProcesses(@BigArray, SizeOf(BigArray), Count) then

raise Exception.Create(SFailMessage);

SetLength(FProcList, Count div SizeOf(DWORD));

Move(BigArray, FProcList[0], Count);

// Get array of Driver addresses

if not EnumDeviceDrivers(@BigArray, SizeOf(BigArray), Count) then

raise Exception.Create(SFailMessage);

SetLength(FDrvList, Count div SizeOf(DWORD));

Move(BigArray, FDrvList[0], Count);

end;

procedure TWinNTInfo.ShowProcessProperties(Cookie: Pointer);

begin

ShowProcessDetails(DWORD(Cookie));

end;

end.

LISTING 14.5 DetailNT.pas, Obtaining Process Details Under Windows NT/2000

unit DetailNT;

interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,

Snooping System Information

CHAPTER 14
737

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

continues

LISTING 14.5 Continued

DetBase, ComCtrls, HeadList;

type

TListType = (ltModules, ltMemory);

TWinNTDetailForm = class(TBaseDetailForm)

procedure FormCreate(Sender: TObject);

procedure FormDestroy(Sender: TObject);

procedure DetailTabsChange(Sender: TObject);

private

FProcHand: THandle;

DetailLists: array[TListType] of TStringList;

procedure ShowList(ListType: TListType);

public

procedure NewProcess(ProcessID: DWORD);

end;

procedure ShowProcessDetails(ProcessID: DWORD);

implementation

uses PSAPI;

{$R *.DFM}

const

TabStrs: array[0..1] of string[7] = (‘Modules’, ‘Memory’);

{ Array of strings that goes into the footer of each list. }

ACountStrs: array[TListType] of string[31] = (

‘Total Modules: %d’, ‘Total Pages: %d’);

{ Array of strings that goes into the header of each respective list. }

HeaderStrs: array[TListType] of TDetailStrings = (

(‘Module’, ‘Base Addr’, ‘Size’, ‘Entry Point’),

(‘Page Addr’, ‘Type’, ‘Mem Map File’, ‘’));

SCaptionStr = ‘Details for %s’; // form caption

SModuleStr = ‘%s’#1’$%p’#1’%d bytes’#1’$%p’; // name, addr, size, entry pt

SMemoryStr = ‘$%p’#1’%s’#1’%s’; // addr, type, mem map file

procedure ShowProcessDetails(ProcessID: DWORD);

Advanced Techniques

PART II
738

var

I: Integer;

begin

with TWinNTDetailForm.Create(Application) do

try

for I := Low(TabStrs) to High(TabStrs) do

DetailTabs.Tabs.Add(TabStrs[I]);

NewProcess(ProcessID);

ShowList(ltModules);

ShowModal;

finally

Free;

end;

end;

function MemoryTypeToString(Value: DWORD): string;

const

TypeMask = DWORD($0000000F);

begin

Result := ‘’;

case Value and TypeMask of

1: Result := ‘Read-only’;

2: Result := ‘Executable’;

4: Result := ‘Read/write’;

5: Result := ‘Copy on write’;

else

Result := ‘Unknown’;

end;

if Value and $100 <> 0 then

Result := Result + ‘, Shareable’;

end;

procedure TWinNTDetailForm.FormCreate(Sender: TObject);

var

LT: TListType;

begin

inherited;

{ Dispose of lists }

for LT := Low(TListType) to High(TListType) do

DetailLists[LT] := TStringList.Create;

end;

procedure TWinNTDetailForm.FormDestroy(Sender: TObject);

Snooping System Information

CHAPTER 14
739

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

continues

LISTING 14.5 Continued

var

LT: TListType;

begin

inherited;

{ Dispose of lists }

for LT := Low(TListType) to High(TListType) do

DetailLists[LT].Free;

end;

procedure TWinNTDetailForm.NewProcess(ProcessID: DWORD);

const

AddrMask = DWORD($FFFFF000);

var

I, Count: Integer;

ProcHand: THandle;

WSPtr: Pointer;

ModHandles: array[0..$3FFF - 1] of DWORD;

WorkingSet: array[0..$3FFF - 1] of DWORD;

ModInfo: TModuleInfo;

ModName, MapFileName: array[0..MAX_PATH] of char;

begin

ProcHand := OpenProcess(PROCESS_QUERY_INFORMATION or PROCESS_VM_READ, False,

ProcessID);

if ProcHand = 0 then

raise Exception.Create(‘No information available for this process/driver’);

try

EnumProcessModules(ProcHand, @ModHandles, SizeOf(ModHandles), Count);

for I := 0 to (Count div SizeOf(DWORD)) - 1 do

if (GetModuleFileNameEx(ProcHand, ModHandles[I], ModName,

SizeOf(ModName)) > 0) and GetModuleInformation(ProcHand,

ModHandles[I], @ModInfo, SizeOf(ModInfo)) then

with ModInfo do

DetailLists[ltModules].Add(Format(SModuleStr, [ModName, lpBaseOfDll,

SizeOfImage, EntryPoint]));

if QueryWorkingSet(ProcHand, @WorkingSet, SizeOf(WorkingSet)) then

for I := 1 to WorkingSet[0] do

begin

WSPtr := Pointer(WorkingSet[I] and AddrMask);

GetMappedFileName(ProcHand, WSPtr, MapFileName, SizeOf(MapFileName));

DetailLists[ltMemory].Add(Format(SMemoryStr, [WSPtr,

MemoryTypeToString(WorkingSet[I]), MapFileName]));

end;

Advanced Techniques

PART II
740

finally

CloseHandle(ProcHand);

end;

end;

procedure TWinNTDetailForm.ShowList(ListType: TListType);

var

I: Integer;

begin

Screen.Cursor := crHourGlass;

try

with DetailLB do

begin

for I := 0 to 3 do

Sections[I].Text := HeaderStrs[ListType, i];

Items.Clear;

Items.Assign(DetailLists[ListType]);

end;

DetailSB.Panels[0].Text := Format(ACountStrs[ListType],

[DetailLists[ListType].Count]);

finally

Screen.Cursor := crDefault;

end;

end;

procedure TWinNTDetailForm.DetailTabsChange(Sender: TObject);

begin

inherited;

ShowList(TListType(DetailTabs.TabIndex));

end;

end.

Summary
This chapter demonstrated techniques for accessing system information from within your
Delphi programs. It focused on the proper usage of the ToolHelp32 functions provided by
Windows 95/98 and the PSAPI functions found on Windows NT. You learned how to use a few
Win32 API functions to obtain other types of system information, including memory informa-
tion, environment variables, and version information. Additionally, you learned how to incor-
porate the TListView, TImageList, THeaderListbox, and TMemView custom components into
your applications. The next chapter, “Porting to Delphi 5,” discusses migrating your applica-
tions from previous versions of Delphi.

Snooping System Information

CHAPTER 14
741

14

S
N

O
O

PIN
G

S
Y

STEM
IN

FO
R

M
A

TIO
N

