
CHAPTER

13
Hard-Core Techniques

IN THIS CHAPTER
• Advanced Application Message

Handling 608

• Preventing Multiple Application
Instances 616

• Using BASM with Delphi 621

• Using Windows Hooks 626

• Using C/C++ OBJ Files 643

• Using C++ Classes 652

• Thunking 657

• Obtaining Package Information 677

• Summary 681

There comes a time when you must step off the beaten path to accomplish a particular goal.
This chapter teaches you some advanced techniques you can use in your Delphi applications.
You get much closer to the Win32 API in this chapter than you do in most of the other chap-
ters, and you explore some things that aren’t obvious or aren’t provided under the Visual
Component Library (VCL). You learn about concepts such as window procedures, multiple
program instances, Windows hooks, and sharing Delphi and C++ code.

Advanced Application Message Handling
As discussed in Chapter 5, “Understanding Windows Messaging,” a window procedure is a
function that Windows calls whenever a particular window receives a message. Because the
Application object contains a window, it has a window procedure that’s called to receive all
the messages sent to your application. The TApplication class even comes equipped with an
OnMessage event that notifies you whenever one of these messages comes down the pike.

Well…not exactly.

TApplication.OnMessage fires only when a message is retrieved from the application’s mes-
sage queue (again, refer to Chapter 5, for a discussion of all this message terminology).
Messages found in the application queue are typically those dealing with window management
(WM_PAINT and WM_SIZE, for example) and those posted to the window by using an API func-
tion such as PostMessage(), PostAppMessage(), or BroadcastSystemMessage(). The problem
arises when other types of messages are sent directly to the window procedure by Windows or
by the SendMessage() function. When this occurs, the TApplication.OnMessage event never
happens, and there’s no way to know whether the message occurred based on this event.

Subclassing
To know when a message is sent to your application, you must replace the Application win-
dow’s procedure with your own. In your window procedure, you should do whatever process-
ing or message handling you need to do before passing the message to the original window
procedure. This process is known as subclassing a window.

You can use the SetWindowLong() Win32 API function with the GWL_WNDPROC constant to set a
new window procedure function for a window. The window procedure function itself can have
one of two formats: It can follow the API definition of a window procedure, or you can take
advantage of some Delphi helper functions and make the window procedure a special method
referred to as a window method.

Advanced Techniques

PART II
608

A Win32 API Window Procedure
An API window procedure must have the following declaration:

function AWndProc(Handle: hWnd; Msg, wParam, lParam: Longint):
Longint; stdcall;

The Handle parameter identifies the destination window, the Msg parameter is the window mes-
sage, and the wParam and lParam parameters contain additional message-specific information.
This function returns a value that depends on the message received. Note carefully that this
function must use the stdcall calling convention.

You can use the SetWindowLong() function to set the window procedure of Application’s
window, as shown here:

var
WProc: Pointer;

begin
WProc := Pointer(SetWindowLong(Application.Handle, GWL_WNDPROC,
Integer(@NewWndProc)));

After this call, WProc will hold a pointer to the old window procedure. It’s necessary to save
this value because you must pass on any messages you don’t handle yourself to the old win-
dow procedure using the CallWindowProc() API function. The following code gives you an
idea of the implementation of the window procedure:

function NewWndProc(Handle: hWnd; Msg, wParam, lParam: Longint):
Longint; stdcall;

begin
{ Check value of Msg, and perform whatever type of action you’d }
{ like depending on the value of the message. For messages you }
{don’t explicitly handle, you must pass the message information }
{on to the original window procedure as shown below: }
Result := CallWindowProc(WProc, Application.Handle, Msg, wParam,
lParam);

end;

Hard-Core Techniques

CHAPTER 13
609

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

CAUTION

A problem that can arise when you subclass the window procedure of a VCL window
is that the handle of the window can be re-created beneath you, thus causing your
application to fail. Beware of using this technique if there’s a chance the window
handle of the window you’re subclassing will be re-created. A safer technique is to
use Application.HookMainWindow(), which is shown later in this chapter.

Listing 13.1 shows the ScWndPrc.pas unit, which subclasses Application’s window procedure
to handle a user-defined message called DDGM_FOOMSG.

LISTING 13.1 ScWndPrc.pas

unit ScWndPrc;

interface

uses Forms, Messages;

const
DDGM_FOOMSG = WM_USER;

implementation

uses Windows, SysUtils, Dialogs;

var
WProc: Pointer;

function NewWndProc(Handle: hWnd; Msg, wParam, lParam: Longint): Longint;
stdcall;

{ This is a Win32 API-level window procedure. It handles the messages }
{ received by the Application window. }
begin
if Msg = DDGM_FOOMSG then
{ If it’s our user-defined message, then alert the user. }
ShowMessage(Format(‘Message seen by WndProc! Value is: $%x’, [Msg]));

{ Pass message on to old window procedure }
Result := CallWindowProc(WProc, Handle, Msg, wParam, lParam);

end;

initialization
{ Set window procedure of Application window. }
WProc := Pointer(SetWindowLong(Application.Handle, gwl_WndProc,
Integer(@NewWndProc)));

end.

Advanced Techniques

PART II
610

CAUTION

Be sure to save the old window procedure returned by GetWindowLong(). If you don’t
call the old window procedure inside your subclassed window procedure for mes-
sages that you don’t want to handle, you’re likely to crash your application, and you
might even crash the operating system.

A Delphi Window Method
Delphi provides a function called MakeObjectInstance() that bridges the gap between an API
window procedure and a Delphi method. MakeObjectInstance() enables you to create a
method of type TWndMethod to serve as the window procedure. MakeObjectInstance() is
declared in the Forms unit as follows:

function MakeObjectInstance(Method: TWndMethod): Pointer;

TWndMethod is defined in the Forms unit as follows:

type
TWndMethod = procedure(var Message: TMessage) of object;

The return value of MakeObjectInstance() is a Pointer to the address of the newly created
window procedure. This is the value you pass as the last parameter to SetWindowLong(). You
should free any window methods created with MakeObjectInstance() by using the
FreeObjectInstance() function.

As an illustration, the project called WinProc.dpr demonstrates both techniques for subclassing
the Application window procedure and its advantages over Application.OnMessage. The
main form for this project is shown in Figure 13.1.

Hard-Core Techniques

CHAPTER 13
611

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

FIGURE 13.1
WinProc’s main form.

Listing 13.2 shows the source code for Main.pas, the main unit for the WinProc project.

LISTING 13.2 The Source Code for Main.pas

unit Main;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls;

type
TMainForm = class(TForm)
SendBtn: TButton;
PostBtn: TButton;

continues

LISTING 13.2 Continued

procedure SendBtnClick(Sender: TObject);
procedure PostBtnClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);

private
OldWndProc: Pointer;
WndProcPtr: Pointer;
procedure WndMethod(var Msg: TMessage);
procedure HandleAppMessage(var Msg: TMsg; var Handled: Boolean);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

uses ScWndPrc;

procedure TMainForm.HandleAppMessage(var Msg: TMsg;
var Handled: Boolean);

{ OnMessage handler for Application object. }
begin
if Msg.Message = DDGM_FOOMSG then
{ if it’s the user-defined message, then alert the user. }
ShowMessage(Format(‘Message seen by OnMessage! Value is: $%x’,
[Msg.Message]));

end;

procedure TMainForm.WndMethod(var Msg: TMessage);
begin
if Msg.Msg = DDGM_FOOMSG then
{ if it’s the user-defined message, then alert the user. }
ShowMessage(Format(‘Message seen by WndMethod! Value is: $%x’,
[Msg.Msg]));

with Msg do
{ Pass message on to old window procedure. }
Result := CallWindowProc(OldWndProc, Application.Handle, Msg, wParam,
lParam);

end;

procedure TMainForm.SendBtnClick(Sender: TObject);
begin
SendMessage(Application.Handle, DDGM_FOOMSG, 0, 0);

Advanced Techniques

PART II
612

end;

procedure TMainForm.PostBtnClick(Sender: TObject);
begin
PostMessage(Application.Handle, DDGM_FOOMSG, 0, 0);

end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
Application.OnMessage := HandleAppMessage; // set OnMessage handler
WndProcPtr := MakeObjectInstance(WndMethod); // make window proc
{ Set window procedure of application window. }
OldWndProc := Pointer(SetWindowLong(Application.Handle, GWL_WNDPROC,
Integer(WndProcPtr)));

end;

procedure TMainForm.FormDestroy(Sender: TObject);
begin
{ Restore old window procedure for Application window }
SetWindowLong(Application.Handle, GWL_WNDPROC, Longint(OldWndProc));
{ Free our user-created window procedure }
FreeObjectInstance(WndProcPtr);

end;

end.

When SendBtn is clicked, the SendMessage() API function is used to send the message
DDGM_FOOMSG to Application’s window handle. When PostBtn is clicked, the same message is
posted to Application using the PostMessage() API function.

The HandleAppMessage() is assigned to handle the Application.OnMessage event. This pro-
cedure simply uses ShowMessage() to invoke a dialog box indicating that it sees a message.
The OnMessage event is assigned in the OnCreate event handler for the main form.

Notice that the OnDestroy handler for the main form resets Application’s window procedure
to the original value (OldWndProc) before calling FreeObjectInstance() to free the procedure
created with MakeProcInstance(). If the old window procedure isn’t first reinstated, the effect
would be that of “unplugging” the window procedure from an active window—effectively
removing the window’s capability to handle messages. That’s bad news because doing so could
potentially crash the application or the OS.

Just for kicks, the ScWndPrc unit, shown earlier in this chapter, is included in Main. This means
that the Application window will be subclassed twice: once by ScWndPrc using the API tech-
nique and once by Main using the window method technique. There’s absolutely no danger in
doing this as long as you remember to use CallWindowProc() in the window procedure and
method to pass messages down to the old window procedures.

Hard-Core Techniques

CHAPTER 13
613

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

When you run this application, you’ll be able to see that the ShowMessage() dialog box is
shown from both the window procedure and method no matter which button is pushed. What’s
more, you’ll see that Application.OnMessage sees only the messages posted to the window.

HookMainWindow()
Another perhaps more VCL-friendly technique for intercepting messages meant for the
Application window is TApplication’s HookMainWindow() method. This method allows you
to insert your own message handler at the top of TApplication’s WndProc() method to per-
form special message processing or prevent TApplication from processing certain messages.
HookMainWindow() is defined as follows:

procedure HookMainWindow(Hook: TWindowHook);

The parameter for this method is of type TWindowHook, which is defined as this:

type
TWindowHook = function (var Message: TMessage): Boolean of object;

There isn’t much to using this method; just call HookMainWindow(), passing your own method
in the Hook parameter. This adds your method to a list of window hook methods that will be
called prior to the normal message processing that occurs in TApplication.WndProc(). If a
window hook method returns True, the message is considered handled, and the WndProc()
method will immediately exit.

When you’re through processing messages, call the UnhookMainWindow() method to remove
your method from the window hook method list. This method is similarly defined as follows:

procedure UnhookMainWindow(Hook: TWindowHook);

Listing 13.3 shows the main form for a simple one-form VCL project that employs this tech-
nique, and Figure 13.2 shows this application in action.

Advanced Techniques

PART II
614

FIGURE 13.2
Spying on the Application with the HookWnd project.

LISTING 13.3 Main.pas for the HookWnd Project

unit HookMain;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, ExtCtrls;

type
THookForm = class(TForm)
SendBtn: TButton;
GroupBox1: TGroupBox;
LogList: TListBox;
DoLog: TCheckBox;
ExitBtn: TButton;
procedure SendBtnClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure ExitBtnClick(Sender: TObject);

private
function AppWindowHook(var Message: TMessage): Boolean;

end;

var
HookForm: THookForm;

implementation

{$R *.DFM}

procedure THookForm.FormCreate(Sender: TObject);
begin
Application.HookMainWindow(AppWindowHook);

end;

procedure THookForm.FormDestroy(Sender: TObject);
begin
Application.UnhookMainWindow(AppWindowHook);

end;

function THookForm.AppWindowHook(var Message: TMessage): Boolean;
const
LogStr = ‘Message ID: $%x, WParam: $%x, LParam: $%x’;

begin

Hard-Core Techniques

CHAPTER 13
615

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

continues

LISTING 13.3 Continued

Result := True;
if DoLog.Checked then
with Message do
LogList.Items.Add(Format(LogStr, [Msg, WParam, LParam]));

end;

procedure THookForm.SendBtnClick(Sender: TObject);
begin
SendMessage(Application.Handle, WM_NULL, 0, 0);

end;

procedure THookForm.ExitBtnClick(Sender: TObject);
begin
Close;

end;

end.

Preventing Multiple Application Instances
Multiple instances means running more than one copy of your program simultaneously. The
capability to run multiple instances of an application independently from one another is a fea-
ture provided by the Win32 operating system. While this feature is great, there are cases that
arise when we only wish for the end user to be able to run one copy of a given application at a
time. An example of this type of application might be one that controls a unique resource on
the machine, such as a modem or the parellel port. In such cases, it becomes necessary to write
some code into your application to solve this problem by allowing only one copy of an appli-
cation to run at any given time.

This was a fairly simple task in the 16-bit Windows world: The hPrevInst system variable can
be used to determine whether multiple copies of an application are running simultaneously. If
the value of hPrevInst is nonzero, another instance of the application is active. However, as
explained in Chapter 3, “The Win32 API,” Win32 provides a thick layer of R32 insulation
between each process, which isolates each from the other. Because of this, the value for
hPrevInst is always zero for Win32 applications.

Another technique that works for both 16-bit and 32-bit Windows is to use the FindWindow()
API function to search for an already-active Application window. This solution has two dis-
advantages, however. First, FindWindow() allows you to search for a window based only on its
class name or caption. Depending on the class name isn’t a particularly robust solution because
there’s no guarantee that the class name of your form is unique throughout the system.

Advanced Techniques

PART II
616

Searching based on the form caption has obvious drawbacks in that the solution breaks down if
you attempt to change the caption of the form while it runs (as do applications such as Delphi
and Microsoft Word). The second drawback to FindWindow() is that it tends to be slow
because it must iterate over all top-level windows.

The optimal solution for Win32, then, is to use some type of API object that’s persistent across
processes. As explained in Chapter 11, “Writing Multithreaded Applications,” several of the
thread-synchronization objects are persistent across multiple processes. Because of their sim-
plicity of use, mutexes provide an ideal solution to this problem.

The first time an application is run, a mutex is created using the CreateMutex() API function.
The lpName parameter of this function holds a unique string identifier. Subsequent instances of
this application should try to open the mutex by name using the OpenMutex() function.
OpenMutex() will succeed only when a mutex has already been created using the
CreateMutex() function.

Additionally, when you attempt to run a second instance of these applications, the first instance
of the application should come into focus. The most elegant approach to focusing the main
form of the previous instance is to use a registered window message obtained by the
RegisterWindowMessage() function to create a message identifier unique to your application.
You then can have the initial instance of your application respond to this message by returning
its main window handle, which can then be focused by the second instance. This approach is
illustrated in Listing 13.4, which shows the source for the MultInst.pas unit, and Listing 13.5,
OIMain.pas, which is the main unit of the OneInst project. The application is shown in all its
glory in Figure 13.3.

Hard-Core Techniques

CHAPTER 13
617

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

FIGURE 13.3
The main form for the OneInst project.

LISTING 13.4 The MultInst.pas Unit, Which Permits Only One Application Instance

unit MultInst;

interface

const
MI_QUERYWINDOWHANDLE = 1;

continues

LISTING 13.4 Continued

MI_RESPONDWINDOWHANDLE = 2;

MI_ERROR_NONE = 0;
MI_ERROR_FAILSUBCLASS = 1;
MI_ERROR_CREATINGMUTEX = 2;

// Call this function to determine if error occurred in startup.
// Value will be one or more of the MI_ERROR_* error flags.
function GetMIError: Integer;

implementation

uses Forms, Windows, SysUtils;

const
UniqueAppStr = ‘DDG.I_am_the_Eggman!’;

var
MessageId: Integer;
WProc: TFNWndProc;
MutHandle: THandle;
MIError: Integer;

function GetMIError: Integer;
begin
Result := MIError;

end;

function NewWndProc(Handle: HWND; Msg: Integer; wParam, lParam: Longint):
Longint; stdcall;

begin
Result := 0;
// If this is the registered message...
if Msg = MessageID then
begin
case wParam of
MI_QUERYWINDOWHANDLE:
// A new instance is asking for main window handle in order
// to focus the main window, so normalize app and send back
// message with main window handle.
begin
if IsIconic(Application.Handle) then
begin
Application.MainForm.WindowState := wsNormal;
Application.Restore;

Advanced Techniques

PART II
618

end;
PostMessage(HWND(lParam), MessageID, MI_RESPONDWINDOWHANDLE,
Application.MainForm.Handle);

end;
MI_RESPONDWINDOWHANDLE:
// The running instance has returned its main window handle,
// so we need to focus it and go away.
begin
SetForegroundWindow(HWND(lParam));
Application.Terminate;

end;
end;

end
// Otherwise, pass message on to old window proc
else
Result := CallWindowProc(WProc, Handle, Msg, wParam, lParam);

end;

procedure SubClassApplication;
begin
// We subclass Application window procedure so that
// Application.OnMessage remains available for user.
WProc := TFNWndProc(SetWindowLong(Application.Handle, GWL_WNDPROC,
Longint(@NewWndProc)));

// Set appropriate error flag if error condition occurred
if WProc = nil then
MIError := MIError or MI_ERROR_FAILSUBCLASS;

end;

procedure DoFirstInstance;
// This is called only for the first instance of the application
begin
// Create the mutex with the (hopefully) unique string
MutHandle := CreateMutex(nil, False, UniqueAppStr);
if MutHandle = 0 then
MIError := MIError or MI_ERROR_CREATINGMUTEX;

end;

procedure BroadcastFocusMessage;
// This is called when there is already an instance running.
var
BSMRecipients: DWORD;

begin
// Prevent main form from flashing
Application.ShowMainForm := False;
// Post message to try to establish a dialogue with previous instance

Hard-Core Techniques

CHAPTER 13
619

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

continues

LISTING 13.4 Continued

BSMRecipients := BSM_APPLICATIONS;
BroadCastSystemMessage(BSF_IGNORECURRENTTASK or BSF_POSTMESSAGE,
@BSMRecipients, MessageID, MI_QUERYWINDOWHANDLE,
Application.Handle);

end;

procedure InitInstance;
begin
SubClassApplication; // hook application message loop
MutHandle := OpenMutex(MUTEX_ALL_ACCESS, False, UniqueAppStr);
if MutHandle = 0 then
// Mutex object has not yet been created, meaning that no previous
// instance has been created.
DoFirstInstance

else
BroadcastFocusMessage;

end;

initialization
MessageID := RegisterWindowMessage(UniqueAppStr);
InitInstance;

finalization
// Restore old application window procedure
if WProc <> Nil then
SetWindowLong(Application.Handle, GWL_WNDPROC, LongInt(WProc));

if MutHandle <> 0 then CloseHandle(MutHandle); // Free mutex
end.

LISTING 13.5 OIMain.pas

unit OIMain;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;

type
TMainForm = class(TForm)
Label1: TLabel;
CloseBtn: TButton;
procedure CloseBtnClick(Sender: TObject);

Advanced Techniques

PART II
620

private
{ Private declarations }

public
{ Public declarations }

end;

var
MainForm: TMainForm;

implementation

uses MultInst;

{$R *.DFM}

procedure TMainForm.CloseBtnClick(Sender: TObject);
begin
Close;

end;

end.

Using BASM with Delphi
Because Delphi is based on a true compiler, one benefit you receive is the capacity to write
assembly code right in the middle of your Object Pascal procedures and functions. This capa-
bility is facilitated through Delphi’s built-in assembler (BASM). Before you learn about
BASM, you should learn when to use assembly language in your Delphi programs. It’s great to
have such a powerful tool at your disposal, but, like any good thing, BASM can be overdone. If
you follow these simple BASM rules, you can help yourself write better, cleaner, and more
portable code:

• Never use assembly language for something that can be done in Object Pascal. For
example, you wouldn’t write assembly language routines to communicate through the
serial ports because the Win32 API provides built-in functions for serial communications.

• Don’t over-optimize your programs with assembly language. Hand-optimized assembly
might run faster than Object Pascal code—but at the price of readability and maintain-
ability. Object Pascal is a language that communicates algorithms so naturally that it’s
a shame to have that communication muddled by a bunch of low-level register opera-
tions. In addition, after all your assembler toils, you might be surprised to find out that
Delphi’s optimizing compiler often compiles code that executes faster than handwritten
assembly code.

Hard-Core Techniques

CHAPTER 13
621

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

• Always comment your assembly code thoroughly. Your code will probably be read in the
future by another programmer—or even by you—and lack of comments can make it dif-
ficult to understand.

• Don’t use BASM to access machine hardware. Although Windows 95/98 will let you get
away with this in most cases, Windows NT/2000 won’t.

• Where possible, wrap your assembly language code in procedures or functions callable
from Object Pascal. This will make your code not only easier to maintain but also easier
to port to other platforms when the time comes.

Advanced Techniques

PART II
622

NOTE

This section doesn’t teach you assembler programming, but it shows you the Delphi
spin on assembler if you’re already familiar with the language.

Also, if you programmed in BASM with Delphi 1, bear in mind that in 32-bit Delphi,
BASM is a whole new ballgame. Because you must now write 32-bit assembly lan-
guage, almost all your 16-bit BASM code will have to be rewritten for the new plat-
form. The fact that BASM code can require so much care to maintain is yet another
reason to minimize your use of BASM in applications.

How Does BASM Work?
Using assembly code in your Delphi applications is easier than you might think. In fact, it’s so
simple that it’s scary. Just use the asm keyword followed by your assembly code and then an
end. The following code fragment demonstrates how to use assembly code inline:

var
i: integer;

begin
i := 0;
asm
mov eax, i
inc eax
mov i, eax

end;
{ i has incremented by one }

This snippet declares a variable i and initializes it to 0. It then moves the value of i into the
eax register, increments the register by one, and moves the value of the eax register back into
i. This illustrates not only how easy it is to use BASM, but, as the usage of the variable i
shows, how easily you can access your Pascal variables from BASM.

Easy Parameter Access
Not only is it easy to access variables declared globally or locally to a procedure, it’s just as
easy to access variables passed into procedures, as the following code illustrates:

procedure Foo(I: integer);
begin
{ some code }
asm
mov eax, I
inc eax
mov I, eax

end;
{ I has incremented by one }
{ some more code }

end;

The capability to access parameters by name is important because you don’t have to reference
variables passed into a procedure through the stack base pointer (ebp) register as you would in
a normal assembly program. In a regular assembly language procedure, you would have to
refer to the variable I as [ebp+4] (its offset from the stack’s base pointer).

Hard-Core Techniques

CHAPTER 13
623

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

NOTE

When you use BASM to reference parameters passed into a procedure, remember
that you can access those parameters by name, and you don’t have to access them by
their offset from the ebp register. Accessing by offset from ebp makes your code more
difficult to maintain.

var Parameters
Remember that when a parameter is declared as var in a function or procedure’s parameter list,
a pointer to that variable is passed instead of the value. This means that when you reference
var parameters within a BASM block, you must take into account that the parameter is a 32-bit
pointer to a variable and not a variable instance. To expand on the earlier sample snippet, the
following example shows how you would increment the variable I if it were passed in as a var
parameter:

procedure Foo(var I: integer);
begin
{ some code }
asm
mov eax, I
inc dword ptr [eax]

end;
{ I has now been incremented by one }
{ some more code }

end;

Register Calling Convention
Remember that the default calling convention for Object Pascal functions and procedures is
register. Taking advantage of this method of parameter passing can help you to optimize
your code. The register calling convention dictates that the first three 32-bit parameters are
passed in the eax, edx, and ecx registers. This means that for the function declaration

function BlahBlah(I1, I2, I3: Integer): Integer;

you can count on the fact that the value of I1 is stored in eax, I2 in edx, and I3 in ecx.
Consider the following method as another example:

procedure TSomeObject.SomeProc(S1, S2: PChar);

Here, the value of S1 will be passed in ecx, S2 in edx, and the implicit Self parameter will be
passed in eax.

All-Assembly Procedures
Object Pascal enables you to write procedures and functions entirely in assembly language
simply by beginning the function or procedure with the word asm, rather than begin, as shown
here:

function IncAnInt(I: Integer): Integer;
asm
mov eax, I
inc eax

end;

Advanced Techniques

PART II
624

NOTE

If you’re poring over 16-bit code, you should know that it’s no longer necessary to
use the assembler directive from Delphi 1 days. That directive is simply ignored by
the 32-bit Delphi compiler.

The preceding procedure accepts an integer variable I and increments it. Because the variable
value is placed in the eax register, that’s the value returned by the function. Table 13.1 shows
how different types of data are returned from a function in Delphi.

TABLE 13.1 How Values Are Returned from Delphi Functions

Return Type Return Method

Char, Byte al register.

SmallInt, Word ax register.

Integer, LongWord, AnsiString, eax register.
Pointer, class

Real48 eax contains a pointer to data on the stack.

Int64 edx:eax register pair.

Single, Double, Extended, Comp ST(0) on 8087’s register stack.

Hard-Core Techniques

CHAPTER 13
625

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

NOTE

A ShortString type is returned as a pointer to a temporary instance of a string on
the stack.

Records
BASM provides a slick shortcut for accessing the fields of a record. You can access the fields
of any record in a BASM block using the syntax Register.Type.Field. For example, consider
a record defined as follows:

type
TDumbRec = record
i: integer;
c: char;

end;

Also, consider a function that accepts a TDumbRec as a reference parameter, as shown here:

procedure ManipulateRec(var DR: TDumbRec);
asm
mov [eax].TDumbRec.i, 24
mov [eax].TDumbRec.c, ‘s’

end;

Notice the shortcut syntax for accessing the fields of a record. The alternative would be to
manually calculate the proper offset into the record to get or set the appropriate value. Use this
technique wherever you use records in BASM to make your BASM more resilient to potential
changes to data types.

Using Windows Hooks
Windows hooks give programmers the means to control the occurrence and handling of system
events. A hook offers perhaps the ultimate degree of power for an applications programmer
because it enables the programmer to preview and modify system events and messages as well
as to prevent system events and messages from occurring systemwide.

Setting the Hook
A Windows hook is set using the SetWindowsHookEx() API function:

function SetWindowsHookEx(idHook: Integer; lpfn: TFNHookProc; hmod: HINST;
dwThreadID: DWORD): HHOOK; stdcall;

Advanced Techniques

PART II
626

CAUTION

Use only the SetWindowsHookEx() function—not the SetWindowsHook() function—in
your applications. SetWindowsHook(), which existed in Windows 3.x, is not imple-
mented in the Win32 API.

The idHook parameter describes the type of hook to be installed. This can be any one of the
predefined hook constants shown in Table 13.2.

TABLE 13.2 Windows Hook Constants

Hook Constant Description

WH_CALLWNDPROC A window procedure filter. The hook procedure is called whenever a
message is sent to a window procedure.

WH_CALLWNDPROCRET* Installs a hook procedure that monitors messages after they’ve been
processed by the destination window procedure.

WH_CBT A computer-based training filter. The hook procedure is called before
processing most window-management, mouse, and keyboard
messages.

WH_DEBUG A debugging filter. The hook function is called before any other
Windows hook.

WH_GETMESSAGE A message filter. The hook function is called whenever a message is
retrieved from the application queue.

WH_HARDWARE A hardware message filter. The hook function is called whenever a
hardware message is retrieved from the application queue.

Hook Constant Description

WH_JOURNALPLAYBACK The hook function is called whenever a message is retrieved from the
system queue. Typically used to insert system events into the queue.

WH_JOURNALRECORD The hook function is called whenever an event is requested from the
system queue. Typically used to “record” system events.

WH_KEYBOARD A keyboard filter. The hook function is called whenever a WM_KEY-
DOWN or WM_KEYUP message is retrieved from the application queue.

WH_KEYBOARD_LL* A low-level keyboard filter.

WH_MOUSE A mouse message filter. The hook function is called whenever a
mouse message is retrieved from the application queue.

WH_MOUSE_LL* A low-level mouse message filter.

WH_MSGFILTER A special message filter. The hook function is called whenever an
application’s dialog box, menu, or message box is about to process a
message.

WH_SHELL A shell application filter. The hook function is called when top-level
windows are created and destroyed as well as when the shell applica-
tion needs to become active.

* = available only on Windows NT 4.0 and Windows 2000

The lpfn parameter is the address of the callback function to act as the Windows hook func-
tion. This function is of type TFNHookProc, which is defined as follows:

TFNHookProc = function (code: Integer; wparam: WPARAM; lparam: LPARAM):
LRESULT stdcall;

The contents of each of the hook function’s parameters vary according to the type of hook
installed; the parameters are documented in the Win32 API help.

The hMod parameter should be the value of hInstance in the EXE or DLL containing the hook
callback.

The dwThreadID parameter identifies the thread with which the hook is to be associated. If this
parameter is zero, the hook will be associated with all threads.

The return value is a hook handle that you must save in a global variable for later use.

Windows can have multiple hooks installed at one time, and it can even have the same type of
hook installed multiple times.

Note also that some hooks operate with the restriction that they must be implemented from a
DLL. Check the Win32 API documentation for details on each specific hook.

Hard-Core Techniques

CHAPTER 13
627

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

Using the Hook Function
The values of the hook function’s Code, wParam, and lParam parameters vary depending on the
type of hook installed, and they’re documented in the Windows API help. These parameters all
have one thing in common: Depending on the value of Code, you’re responsible for calling the
next hook in the chain.

To call the next hook, use the CallNextHookEx() API function:

Result := CallNextHookEx(HookHandle, Code, wParam, lParam);

Advanced Techniques

PART II
628

CAUTION

One serious limitation for system hooks is that new instances of the hook DLL are
loaded into each process address space separately. Because of this, the hook DLL
cannot communicate directly with the host application that set the hook. You have
to go through messages or shared memory areas (such as the memory mapped files
described in Chapter 12, “Working with Files”) to communicate with the host
application.

CAUTION

When calling the next hook in the chain, don’t call DefHookProc(). This is another
unimplemented Windows 3.x function.

Using the Unhook Function
When you want to release the Windows hook, you just need to call the
UnhookWindowsHookEx() API function, passing it the hook handle as a parameter. Again, be
careful not to call UnhookWindowsHook() here because it’s another old-style function:

UnhookWindowsHookEx(HookHandle);

Using SendKeys: A JournalPlayback Hook
If you come to Delphi from an environment such as Visual Basic or Paradox for Windows, you
might be familiar with a function called SendKeys(). SendKeys() enables you to pass it a
string of characters that it then plays back as if they were typed from the keyboard, and all the
keystrokes are sent to the active window. Because Delphi doesn’t have a function like this built
in, creating one proves a great opportunity to add a powerful feature to Delphi as well as to
demonstrate how to implement a wh_JournalPlayback hook from within Delphi.

Deciding Whether to Use a JournalPlayback Hook
There are a number of reasons why a hook is the best way to send keystrokes to your applica-
tion or another application. You might wonder, “Why not just post wm_KeyDown and wm_KeyUp
messages?” The primary reason is that you might not know the handle of the window to which
you want to post messages, or that the handle for that window might periodically change. And,
of course, if you don’t know the window handle, you can’t send a message. Also, some appli-
cations call API functions to check the state of the keyboard in addition to looking at messages
to obtain information on keystrokes.

Understanding How SendKeys Works
The declaration of the SendKeys() function looks like this:

function SendKeys(S: String): TSendKeyError; export;

The TSendKeyError return type is an enumerated type that indicates the error condition. It can
be any one of the values shown in Table 13.3.

TABLE 13.3 Sendkey Error Codes

Value Meaning

sk_None The function was successful.

sk_FailSetHook The Windows hook couldn’t be set.

sk_InvalidToken An invalid token was detected in the string.

sk_UnknownError Some other unknown but fatal error occurred.

sk_AlreadyPlaying The hook is currently active, and keystrokes are already being played
back.

S can include any alphanumeric character or @ for the Alt key, ^ for the Ctrl key, or ~ for the
Shift key. SendKeys() also enables you to specify special keyboard keys in curly braces, as
depicted in the KeyDefs.pas unit in Listing 13.6.

LISTING 13.6 KeyDefs.pas: Special Key Definitions for SendKeys()

unit KeyDefs;

interface

uses Windows;

const
MaxKeys = 24;

Hard-Core Techniques

CHAPTER 13
629

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

continues

LISTING 13.6 Continued

ControlKey = ‘^’;
AltKey = ‘@’;
ShiftKey = ‘~’;
KeyGroupOpen = ‘{‘;
KeyGroupClose = ‘}’;

type
TKeyString = String[7];

TKeyDef = record
Key: TKeyString;
vkCode: Byte;

end;

const
KeyDefArray : array[1..MaxKeys] of TKeyDef = (
(Key: ‘F1’; vkCode: vk_F1),
(Key: ‘F2’; vkCode: vk_F2),
(Key: ‘F3’; vkCode: vk_F3),
(Key: ‘F4’; vkCode: vk_F4),
(Key: ‘F5’; vkCode: vk_F5),
(Key: ‘F6’; vkCode: vk_F6),
(Key: ‘F7’; vkCode: vk_F7),
(Key: ‘F8’; vkCode: vk_F8),
(Key: ‘F9’; vkCode: vk_F9),
(Key: ‘F10’; vkCode: vk_F10),
(Key: ‘F11’; vkCode: vk_F11),
(Key: ‘F12’; vkCode: vk_F12),
(Key: ‘INSERT’; vkCode: vk_Insert),
(Key: ‘DELETE’; vkCode: vk_Delete),
(Key: ‘HOME’; vkCode: vk_Home),
(Key: ‘END’; vkCode: vk_End),
(Key: ‘PGUP’; vkCode: vk_Prior),
(Key: ‘PGDN’; vkCode: vk_Next),
(Key: ‘TAB’; vkCode: vk_Tab),
(Key: ‘ENTER’; vkCode: vk_Return),
(Key: ‘BKSP’; vkCode: vk_Back),
(Key: ‘PRTSC’; vkCode: vk_SnapShot),
(Key: ‘SHIFT’; vkCode: vk_Shift),
(Key: ‘ESCAPE’; vkCode: vk_Escape));

function FindKeyInArray(Key: TKeyString; var Code: Byte): Boolean;

implementation

Advanced Techniques

PART II
630

uses SysUtils;

function FindKeyInArray(Key: TKeyString; var Code: Byte): Boolean;
{ function searches array for token passed in Key, and returns the }
{ virtual key code in Code. }
var
i: word;

begin
Result := False;
for i := Low(KeyDefArray) to High(KeyDefArray) do
if UpperCase(Key) = KeyDefArray[i].Key then begin
Code := KeyDefArray[i].vkCode;
Result := True;
Break;

end;
end;

end.

After receiving the string, SendKeys() parses the individual key presses out of the string and
adds each of the key presses to a list in the form of message records containing wm_KeyUp and
wm_KeyDown messages. These messages then are played back to Windows through a
wh_JournalPlayback hook.

Creating Key Presses
After each key press is parsed out of the string, the virtual key code and message (the message
can be wm_KeyUp, wm_KeyDown, wm_SysKeyUp, or wm_SysKeyDown) are passed to a procedure
called MakeMessage(). MakeMessage() creates a new message record for the key press and
adds it to a list of messages called MessageList. The message record used here isn’t the stan-
dard TMessage that you’re familiar with, or even the TMsg record discussed in Chapter 5. This
record is called a TEvent message, and it represents a system queue message. The definition
is as follows:

type
{ Message Structure used in Journaling }
PEventMsg = ^TEventMsg;
TEventMsg = packed record
message: UINT;
paramL: UINT;
paramH: UINT;
time: DWORD;
hwnd: HWND;

end;

Hard-Core Techniques

CHAPTER 13
631

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

Table 13.4 shows the values for TEventMsg’s fields.

TABLE 13.4 Values for TEventMsg Fields

Field Value

message The message constant. Can be wm_(Sys)KeyUp or wm_SysKeyDown for a key-
board message. Can be wm_XButtonUp, wm_XButtonDown, or wm_MouseMove
for a mouse message.

paramL If message is a keyboard message, this field holds the virtual key code. If
message is a mouse message, wParam contains the x coordinate of the mouse
cursor (in screen units).

paramH If message is a keyboard message, this field holds the scan code of the key. If
it’s a mouse message, lParam contains the y coordinate of the mouse cursor.

time The time, in system ticks, that the message occurred.

hwnd Identifies the window to which the message is posted. This parameter isn’t
used for wh_JournalPlayback hooks.

Because the table in the KeyDefs unit maps only to the virtual key code, you must find a way
to determine the scan code of the key given the virtual key code. Luckily, the Windows API
provides a function called MapVirtualKey() that does just that. The following code shows the
source for the MakeMessage() procedure:

procedure MakeMessage(vKey: byte; M: Cardinal);
{ procedure builds a TEventMsg record that emulates a keystroke and }
{ adds it to message list }
var
E: PEventMsg;

begin
New(E); // allocate a message record
with E^ do begin
message := M; // set message field
paramL := vKey; // vk code in ParamL
paramH := MapVirtualKey(vKey, 0); // scan code in ParamH
time := GetTickCount; // set time
hwnd := 0; // ignored

end;
MessageList.Add(E);

end;

After the entire message list is created, the hook can be set to play back the key sequence. You
do this through a procedure called StartPlayback(). StartPlayback primes the pump by
placing the first message from the list into a global buffer. It also initializes a global buffer that
keeps track of how many messages have been played and the flags that indicate the state of the

Advanced Techniques

PART II
632

Ctrl, Alt, and Shift keys. This procedure then sets the hook. StartPlayBack() is shown in the
following code:

procedure StartPlayback;
{ Initializes globals and sets the hook }
begin
{ grab first message from list and place in buffer in case we }
{ get an hc_GetNext before an hc_Skip }

MessageBuffer := TEventMsg(MessageList.Items[0]^);
{ initialize message count and play indicator }
MsgCount := 0;
{ initialize Alt, Control, and Shift key flags }
AltPressed := False;
ControlPressed := False;
ShiftPressed := False;
{ set the hook! }
HookHandle := SetWindowsHookEx(wh_JournalPlayback, Play, hInstance, 0);
if HookHandle = 0 then
raise ESKSetHookError.Create(‘Couldn’’t set hook’)

else
Playing := True;

end;

As you might notice from the SetWindowsHookEx() call, Play is the name of the hook func-
tion. The declaration for Play is as follows:

function Play(Code: integer; wParam, lParam: Longint): Longint; stdcall;

Table 13.5 shows its parameters.

TABLE 13.5 Parameters for Play(), the Windows Hook Function

Value Meaning

Code A value of hc_GetNext indicates that you should prepare the next message in
the list for processing. You do this by copying the next message from the list
into your global buffer. A value of hc_Skip means that a pointer to the next
message should be placed into the lParam parameter for processing. Any other
value means that you should call CallNextHookEx() and pass on the parame-
ters to the next hook in the chain.

wParam Unused.

lParam If Code is hc_Skip, you should place a pointer to the next TEventMsg record
in the lParam parameter.

Return value Returns zero if Code is hc_GetNext. If Code is hc_Skip, returns the amount
of time (in ticks) before this message should be processed. If zero is returned,
the message is processed. Otherwise, the return value should be the return
value of CallNextHookEx().

Hard-Core Techniques

CHAPTER 13
633

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

Listing 13.7 shows the complete source code to the SendKey.pas unit.

LISTING 13.7 The SendKey.pas Unit

unit SendKey;

interface

uses
SysUtils, Windows, Messages, Classes, KeyDefs;

type
{ Error codes }
TSendKeyError = (sk_None, sk_FailSetHook, sk_InvalidToken,
sk_UnknownError, sk_AlreadyPlaying);

{ first vk code to last vk code }
TvkKeySet = set of vk_LButton..vk_Scroll;

{ exceptions }
ESendKeyError = class(Exception);
ESKSetHookError = class(ESendKeyError);
ESKInvalidToken = class(ESendKeyError);
ESKAlreadyPlaying = class(ESendKeyError);

function SendKeys(S: String): TSendKeyError;
procedure WaitForHook;
procedure StopPlayback;

var
Playing: Boolean;

implementation

uses Forms;

type
{ a TList descendant that know how to dispose of its contents }
TMessageList = class(TList)
public
destructor Destroy; override;

end;

const
{ valid “sys” keys }
vkKeySet: TvkKeySet = [Ord(‘A’)..Ord(‘Z’), vk_Menu, vk_F1..vk_F12];

destructor TMessageList.Destroy;

Advanced Techniques

PART II
634

var
i: longint;

begin
{ deallocate all the message records before discarding the list }
for i := 0 to Count - 1 do
Dispose(PEventMsg(Items[i]));

inherited Destroy;
end;

var
{ variables global to the DLL }
MsgCount: word = 0;
MessageBuffer: TEventMsg;
HookHandle: hHook = 0;
MessageList: TMessageList = Nil;
AltPressed, ControlPressed, ShiftPressed: Boolean;

procedure StopPlayback;
{ Unhook the hook, and clean up }
begin
{ if Hook is currently active, then unplug it }
if Playing then
UnhookWindowsHookEx(HookHandle);

MessageList.Free;
Playing := False;

end;

function Play(Code: integer; wParam, lParam: Longint): Longint; stdcall;
{ This is the JournalPlayback callback function. It is called by }
{ Windows when Windows polls for hardware events. The code parameter }
{ indicates what to do. }
begin
case Code of
HC_SKIP:
{ HC_SKIP means to pull the next message out of our list. If we }
{ are at the end of the list, it’s okay to unhook the }
{ JournalPlayback hook from here. }
begin
{ increment message counter }
inc(MsgCount);
{ check to see if all messages have been played }
if MsgCount >= MessageList.Count then StopPlayback
{ otherwise copy next message from list into buffer }
else MessageBuffer := TEventMsg(MessageList.Items[MsgCount]^);
Result := 0;

end;

Hard-Core Techniques

CHAPTER 13
635

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

continues

LISTING 13.7 Continued

HC_GETNEXT:
{ HC_GETNEXT means to fill the wParam and lParam with the proper }
{ values so that the message can be played back. DO NOT unhook }
{ hook from within here. Return value indicates how much time }
{ until Windows should playback message. We’ll return 0 so that }
{ it is processed right away. }
begin
{ move message in buffer to message queue }
PEventMsg(lParam)^ := MessageBuffer;
Result := 0 { process immediately }

end
else
{ if Code isn’t HC_SKIP or HC_GETNEXT, call next hook in chain }
Result := CallNextHookEx(HookHandle, Code, wParam, lParam);

end;
end;

procedure StartPlayback;
{ Initializes globals and sets the hook }
begin
{ grab first message from list and place in buffer in case we }
{ get a hc_GetNext before and hc_Skip }
MessageBuffer := TEventMsg(MessageList.Items[0]^);
{ initialize message count and play indicator }
MsgCount := 0;
{ initialize Alt, Control, and Shift key flags }
AltPressed := False;
ControlPressed := False;
ShiftPressed := False;
{ set the hook! }
HookHandle := SetWindowsHookEx(wh_JournalPlayback, Play, hInstance, 0);
if HookHandle = 0 then
raise ESKSetHookError.Create(‘Failed to set hook’);

Playing := True;
end;

procedure MakeMessage(vKey: byte; M: Cardinal);
{ procedure builds a TEventMsg record that emulates a keystroke and }
{ adds it to message list }
var
E: PEventMsg;

begin
New(E); // allocate a message record
with E^ do

Advanced Techniques

PART II
636

begin
message := M; // set message field
paramL := vKey; // vk code in ParamL
paramH := MapVirtualKey(vKey, 0); // scan code in ParamH
time := GetTickCount; // set time
hwnd := 0; // ignored

end;
MessageList.Add(E);

end;

procedure KeyDown(vKey: byte);
{ Generates KeyDownMessage }
begin
{ don’t generate a “sys” key if the control key is pressed }
{ (This is a Windows quirk) }
if AltPressed and (not ControlPressed) and (vKey in vkKeySet) then
MakeMessage(vKey, wm_SysKeyDown)

else
MakeMessage(vKey, wm_KeyDown);

end;

procedure KeyUp(vKey: byte);
{ Generates KeyUp message }
begin
{ don’t generate a “sys” key if the control key is pressed }
{ (This is a Windows quirk) }
if AltPressed and (not ControlPressed) and (vKey in vkKeySet) then
MakeMessage(vKey, wm_SysKeyUp)

else
MakeMessage(vKey, wm_KeyUp);

end;

procedure SimKeyPresses(VKeyCode: Word);
{ This function simulates keypresses for the given key, taking into }
{ account the current state of Alt, Control, and Shift keys }
begin
{ press Alt key if flag has been set }
if AltPressed then
KeyDown(vk_Menu);

{ press Control key if flag has been set }
if ControlPressed then
KeyDown(vk_Control);

{ if shift is pressed, or shifted key and control is not pressed... }
if (((Hi(VKeyCode) and 1) <> 0) and (not ControlPressed)) or
ShiftPressed then
KeyDown(vk_Shift); { ...press shift }

Hard-Core Techniques

CHAPTER 13
637

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

continues

LISTING 13.7 Continued

KeyDown(Lo(VKeyCode)); { press key down }
KeyUp(Lo(VKeyCode)); { release key }
{ if shift is pressed, or shifted key and control is not pressed... }
if (((Hi(VKeyCode) and 1) <> 0) and (not ControlPressed)) or
ShiftPressed then
KeyUp(vk_Shift); { ...release shift }

{ if shift flag is set, reset flag }
if ShiftPressed then begin
ShiftPressed := False;

end;
{ Release Control key if flag has been set, reset flag }
if ControlPressed then begin
KeyUp(vk_Control);
ControlPressed := False;

end;
{ Release Alt key if flag has been set, reset flag }
if AltPressed then begin
KeyUp(vk_Menu);
AltPressed := False;

end;
end;

procedure ProcessKey(S: String);
{ This function parses each character in the string to create the }
{ message list }
var
KeyCode: word;
Key: byte;
index: integer;
Token: TKeyString;

begin
index := 1;
repeat
case S[index] of
KeyGroupOpen:
{ It’s the beginning of a special token! }
begin
Token := ‘’;
inc(index);
while S[index] <> KeyGroupClose do begin
{ add to Token until the end token symbol is encountered }
Token := Token + S[index];
inc(index);
{ check to make sure the token’s not too long }

Advanced Techniques

PART II
638

if (Length(Token) = 7) and (S[index] <> KeyGroupClose) then
raise ESKInvalidToken.Create(‘No closing brace’);

end;
{ look for token in array, Key parameter will }
{ contain vk code if successful }
if not FindKeyInArray(Token, Key) then
raise ESKInvalidToken.Create(‘Invalid token’);

{ simulate keypress sequence }
SimKeyPresses(MakeWord(Key, 0));

end;
AltKey: AltPressed := True; // set Alt flag
ControlKey: ControlPressed := True; // set Control flag
ShiftKey: ShiftPressed := True; // set Shift flag
else begin
{ A normal character was pressed }
{ convert character into a word where the high byte contains }
{ the shift state and the low byte contains the vk code }
KeyCode := vkKeyScan(S[index]);
{ simulate keypress sequence }
SimKeyPresses(KeyCode);

end;
end;
Inc(index);

until index > Length(S);
end;

procedure WaitForHook;
begin
repeat Application.ProcessMessages until not Playing;

end;

function SendKeys(S: String): TSendKeyError;
{ This is the one entry point. Based on the string passed in the S }
{ parameter, this function creates a list of keyup/keydown messages, }
{ sets a JournalPlayback hook, and replays the keystroke messages. }
begin
Result := sk_None; // assume success
try
if Playing then raise ESKAlreadyPlaying.Create(‘’);
MessageList := TMessageList.Create; // create list of messages
ProcessKey(S); // create messages from string
StartPlayback; // set hook and play back messages

except
{ if an exception occurs, return an error code, and clean up }
on E:ESendKeyError do
begin

Hard-Core Techniques

CHAPTER 13
639

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

continues

LISTING 13.7 Continued

MessageList.Free;
if E is ESKSetHookError then
Result := sk_FailSetHook

else if E is ESKInvalidToken then
Result := sk_InvalidToken

else if E is ESKAlreadyPlaying then
Result := sk_AlreadyPlaying;

end
else
Result := sk_UnknownError; // Catch-all exception handler

end;
end;

end.

Using SendKeys()
In this section, you’ll create a small project that demonstrates the SendKeys() function. Start
with a form that contains two TEdit components and several TButton components, as shown in
Figure 13.4. This project is called TestSend.dpr.

Advanced Techniques

PART II
640

FIGURE 13.4
The TestSend main form.

Listing 13.8 shows the source code for TestSend’s main unit, Main.pas. This unit includes
event handlers for the button-click events.

LISTING 13.8 The Source Code for Main.pas

unit Main;

interface

uses

SysUtils, Windows, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, Menus;

type
TForm1 = class(TForm)
Edit1: TEdit;
Edit2: TEdit;
Button1: TButton;
Button2: TButton;
MainMenu1: TMainMenu;
File1: TMenuItem;
Open1: TMenuItem;
Exit1: TMenuItem;
Button4: TButton;
Button3: TButton;
procedure Button1Click(Sender: TObject);
procedure Button2Click(Sender: TObject);
procedure Open1Click(Sender: TObject);
procedure Exit1Click(Sender: TObject);
procedure Button4Click(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure Button3Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

{$R *.DFM}

uses SendKey, KeyDefs;

procedure TForm1.Button1Click(Sender: TObject);
begin
Edit1.SetFocus; // focus Edit1
SendKeys(‘^{DELETE}I love...’); // send keys to Edit1
WaitForHook; // let keys playback
Perform(WM_NEXTDLGCTL, 0, 0); // move to Edit2
SendKeys(‘~delphi ~developer’’s ~guide!’); // send keys to Edit2

end;

Hard-Core Techniques

CHAPTER 13
641

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

continues

LISTING 13.8 Continued

procedure TForm1.Button2Click(Sender: TObject);
var
H: hWnd;
PI: TProcessInformation;
SI: TStartupInfo;

begin
FillChar(SI, SizeOf(SI), 0);
SI.cb := SizeOf(SI);
{ Invoke notepad }
if CreateProcess(nil, ‘notepad’, nil, nil, False, 0, nil, nil, SI,
PI) then

begin
{ wait until notepad is ready to receive keystrokes }
WaitForInputIdle(PI.hProcess, INFINITE);
{ find new notepad window }
H := FindWindow(‘Notepad’, ‘Untitled - Notepad’);
if SetForegroundWindow(H) then // bring it to front
SendKeys(‘Hello from the Delphi Developer’’s Guide SendKeys ‘ +
‘example!{ENTER}’); // send keys!

end
else
MessageDlg(Format(‘Failed to invoke Notepad. Error code %d’,
[GetLastError]), mtError, [mbOk], 0);

end;

procedure TForm1.Open1Click(Sender: TObject);
begin
ShowMessage(‘Open’);

end;

procedure TForm1.Exit1Click(Sender: TObject);
begin
Close;

end;

procedure TForm1.Button4Click(Sender: TObject);
begin
WaitForInputIdle(GetCurrentProcess, INFINITE);
SendKeys(‘@fx’);

end;

procedure TForm1.FormDestroy(Sender: TObject);
begin
WaitForHook;

end;

Advanced Techniques

PART II
642

procedure TForm1.Button3Click(Sender: TObject);
begin
WaitForInputIdle(GetCurrentProcess, INFINITE);
SendKeys(‘@fo’);

end;

end.

After you click Button1, SendKeys() is called, and the following key presses are sent:
Shift+Del deletes the contents of Edit1; “I love...” then is typed into Edit1; a tab character
is sent, which moves the focus to Edit2, where Shift+D, “elphi “, Shift+D, “evelopers “,
Shift+G, “uide!” is sent.

The OnClick handler for Button2 is also interesting. This method uses the CreateProcess()
API function to invoke an instance of Notepad. It then uses the WaitForInputIdle() API
function to pause until Notepad’s process is ready for input. Finally, it types a message in the
Notepad window.

Using C/C++ OBJ Files
Delphi provides you with the capability for linking object (OBJ) files created using another
compiler directly into your Delphi programs. You can link an object file into your Object
Pascal code by using the $L or $LINK directives. The syntax for this is as follows:

{$L filename.obj}

After the object file is linked, you must define each function you want to call out of the object
file in your Object Pascal code. Use the external directive to indicate that the Pascal compiler
should wait until link time to attempt to resolve the function name. For example, the following
line of code defines an external function called Foo that neither takes nor returns any parameters:

procedure Foo; external;

Although this capability might seem powerful on the surface, it comes with a number of limita-
tions that make this feature difficult to implement in many cases:

• Object Pascal can directly access only code, not data, contained in object files (although
there is a trick to getting at data in an OBJ, which you’ll see later). However, Pascal data
can be accessed from object files.

• Object Pascal can’t link with LIB (static library) files.

• Object files containing C++ classes will not link due to the implicit references to C++
RTL. Although it might be possible to resolve these references by pulling apart the C++
RTL into OBJs, it’s generally more trouble than it’s worth.

Hard-Core Techniques

CHAPTER 13
643

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

• Object files must be in the Intel OMF format. This is the output format of the Borland
C++ compilers, but not the Microsoft C++ compilers, which produce COFF-format OBJ
files.

Advanced Techniques

PART II
644

NOTE

One previously stifling limitation that has recently been addressed by the Delphi com-
piler is the capability to resolve OBJ-to-OBJ references. In earlier versions of Delphi,
object files couldn’t contain references to code or data stored in other object files.

Calling a Function
Suppose you had a C++ object file called ccode.obj that includes a function with the follow-
ing prototype:

int __fastcall SAYHELLO(char * hellostr)

To call this function from a Delphi application, you must first link the object file into the EXE
using either the $L or $LINK directive:

{$L ccode.obj}

After that, you must create an Object Pascal definition for the function, as shown here:

function SayHello(Text: PChar): integer; external;

CAUTION

Notice the use of the __fastcall directive in C++, which serves to ensure that the
calling conventions used in the C++ and Object Pascal code are the same. Heinous
crash errors can occur if you don’t correctly match calling conventions between the
C++ prototype and the Object Pascal declaration, and calling convention problems
are the most common obstacle for developers trying to share code between the two
languages. To help clear things up, the following table shows the correspondence
between Object Pascal and C++ calling convention directives.

Object Pascal C++

register* __fastcall

pascal __pascal

cdecl __cdecl*

stdcall __stdcall

*Indicates the default calling convention for the language.

Name Mangling
By default, the C++ compiler will mangle the names of functions not explicitly declared using
the extern “C” modifier. The Object Pascal compiler, of course, doesn’t mangle the names of
functions. For example, Delphi’s TDUMP utility reveals the exported symbol name of the SAY-
HELLO function shown earlier in ccode.obj as @SAYHELLO$qqrpc, whereas the name of the
imported function according to Object Pascal is SAYHELLO (Object Pascal forces symbols to
uppercase).

On the surface, this would seem to be a problem: How can the Delphi linker resolve the exter-
nal if the function name isn’t even the same? The answer is that the Delphi linker simply
ignores the mangled portion (the @ and everything after the $) of the symbol, but this can have
some pretty nasty side effects.

The whole reason C++ mangles names is to allow function overloading (functions having the
same names and different parameter lists). If you have a function that has several overloaded
definitions and Delphi ignores the mangling portion of the symbol, you’ll never know for sure
whether Delphi is calling the overloaded function you want to call. Because of these complexi-
ties, we recommend that you don’t attempt to call overloaded functions through object files.

Hard-Core Techniques

CHAPTER 13
645

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

NOTE

Functions in a C++ source file (.CPP) will always be mangled unless the prototypes
are combined with the extern “C” modifier or the proper command-line switch is
used on the C++ compiler to suppress name mangling.

Sharing Data
As mentioned earlier, it’s possible to access Delphi data from the object file. The first step is to
declare a global variable in your Object Pascal source similar to the variable shown here (note
the underscore):

var
_GLOBALVAR: PChar = ‘This is a Delphi String’;

Note that although the variable is initialized, this isn’t a requirement.

In the C++ module, declare a variable of the same name using the external modifier, as shown
here:

extern char * GLOBALVAR;

Although it’s not possible to directly share data declared in an OBJ file with Object Pascal
code, it is possible to trick Object Pascal into accessing OBJ-based data. The first step is to
declare the data you want to export in your C++ code using the __export directive. For exam-
ple, you would make a char array available for export like this:

char __export C_VAR[128];

Next (here comes part one of the trick), you declare this data as an external procedure in your
Object Pascal code as follows (note, again, the underscore):

procedure _C_VAR; external; // trick to import OBJ data

This will allow the linker to resolve references to _C_VAR in your Pascal code. Finally (here’s
the second part of the trick), you can use _C_VAR in your Pascal code as a pointer to the data.
For example, the following code can be used to get the value of the array:

type
PCharArray = ^TCharArray;
TCharArray = array[0..127] of char;

function GetCArray: string;
var
A: PCharArray;

begin
A := PCharArray(@_C_VAR);
Result := A^;

end;

And the following code can be used to set the value of the array:

procedure SetCArray(const S: string);
var
A: PCharArray;

begin

Advanced Techniques

PART II
646

CAUTION

The default behavior of the Borland C++ compiler is to prepend external variables
with an underscore when generating the external symbol (that is, GLOBALVAR
becomes _GLOBALVAR). You can get around this in one of two ways:

• Use the command-line switch to disable the addition of the underscore (-u- with
Borland C++ compilers).

• Place an underscore in front of the variable name in the Object Pascal code.

A := PCharArray(@_C_VAR);
StrLCopy(A^, PChar(S), SizeOf(TCharArray));

end;

Using the Delphi RTL
It can be difficult to link an object file to your Delphi application if the object file contains ref-
erences to the C++ RTL. This is because the C++ RTL generally lives in LIB files, and Delphi
doesn’t have the capability to link with LIB files.

How do you get around this problem? One way is to cut the definitions of the external func-
tions you use out of the C++ RTL source code and place it in your object file. However, unless
you’re calling only one or two external functions, this type of solution will get mighty com-
plex—not to mention the fact that your object file will become huge.

A more elegant solution to this problem is to create one or more header files that redeclare all
the RTL functions you call using the external modifier and actually implement these func-
tions inside your Object Pascal code. For example, let’s say you want to call the MessageBox()
API function from your C++ code. Normally, this would require you to use the #include pre-
processor directive to include windows.h and link with the necessary Win32 libraries.
However, redefining MessageBox() in your C++ code like this

extern int __stdcall MessageBox(long, char *, char *, long);

will cause the Object Pascal linker to search for a function of its own called MessageBox when
it builds the executable. Of course, there’s a function of that name defined in the Windows unit.
Now your application will happily compile and link without a hitch.

Listing 13.9 shows a complete example of everything we’ve talked about so far. It’s a fairly
simple C module called ccode.c.

LISTING 13.9 A Simple C++ Module: ccode.c

#include “PasStng.h”

// globals
extern char * GLOBALVAR;

// exported data
char __export C_VAR[128];

#ifdef __cplusplus
extern “C” {
#endif

Hard-Core Techniques

CHAPTER 13
647

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

continues

LISTING 13.9 Continued

//externals
extern int __stdcall MessageBox(long, char *, char *, long);

//functions
int __export __cdecl SAYHELLO(char * hellostr)
{
char a[64];
memset(a, 64, 0);
strcat(a, hellostr);
strcat(a, “ from Borland C++Builder”);
MessageBox(0, a, GLOBALVAR, 0);
return 0;

}

#ifdef __cplusplus
} // end of extern “C”
#endif

In addition to MessageBox(), notice the calls that this module makes to the memset() and str-
cat() C++ RTL functions. These functions are handled similarly in the PasStng.h header file,
which contains some of the more common functions from the string.h header. This file is
shown in Listing 13.10.

LISTING 13.10 PasStng.h, C++ string.h Emulation for Pascal

// PasStng.h
// This module externalizes a portion of the string.h C++ RTL header so
// that the Object Pascal RTL can instead handle the calls.

#ifndef PASSTNG_H
#define PASSTNG_H

#ifndef _SIZE_T
#define _SIZE_T
typedef unsigned size_t;
#endif

#ifdef __cplusplus
extern “C” {
#endif

extern char * __cdecl strcat(char *dest, const char *src);
extern int __cdecl stricmp(const char *s1, const char *s2);
extern size_t __cdecl strlen(const char *s);

Advanced Techniques

PART II
648

extern char * __cdecl strlwr(char *s);
extern char * __cdecl strncat(char *dest, const char *src,
size_t maxlen);

extern void * __cdecl memcpy(void *dest, const void *src, size_t n);
extern int __cdecl strncmp(const char *s1, const char *s2,
size_t maxlen);

extern int __cdecl strncmpi(const char *s1, const char *s2, size_t n);
extern void * __cdecl memmove(void *dest, const void *src, size_t n);
extern char * __cdecl strncpy(char *dest, const char *src,
size_t maxlen);

extern void * __cdecl memset(void *s, int c, size_t n);
extern int __cdecl strnicmp(const char *s1, const char *s2,
size_t maxlen);

extern void __cdecl movmem(const void *src, void *dest, unsigned length);
extern void __cdecl setmem(void *dest, unsigned length, char value);
extern char * __cdecl stpcpy(char *dest, const char *src);
extern int __cdecl strcmp(const char *s1, const char *s2);
extern char * __cdecl strstr(char *s1, const char *s2);
extern int __cdecl strcmpi(const char *s1, const char *s2);
extern char * __cdecl strupr(char *s);
extern char * __cdecl strcpy(char *dest, const char *src);

#ifdef __cplusplus
} // end of extern “C”
#endif

#endif // PASSTNG_H

Because these functions don’t exist in the Object Pascal RTL, we can work around the problem
by creating an Object Pascal unit to include in our project that maps these functions to their
Object Pascal counterparts. This unit, PasStrng.pas, is shown in Listing 13.11.

LISTING 13.11 PasStrng.pas, an Implementation of string.h Emulation Functions

unit PasStrng;

interface

uses Windows;

function _strcat(Dest, Source: PChar): PChar; cdecl;
procedure _memset(P: Pointer; Count: Integer; value: DWORD); cdecl;
function _stricmp(P1, P2: PChar): Integer; cdecl;
function _strlen(P1: PChar): Integer; cdecl;
function _strlwr(P1: PChar): PChar; cdecl;

Hard-Core Techniques

CHAPTER 13
649

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

continues

LISTING 13.11 Continued

function _strncat(Dest, Source: PChar; MaxLen: Integer): PChar; cdecl;
function _memcpy(Dest, Source: Pointer; Len: Integer): Pointer;
function _strncmp(P1, P2: PChar; MaxLen: Integer): Integer; cdecl;
function _strncmpi(P1, P2: PChar; MaxLen: Integer): Integer; cdecl;
function _memmove(Dest, Source: Pointer; Len: Integer): Pointer;
function _strncpy(Dest, Source: PChar; MaxLen: Integer): PChar; cdecl;
function _strnicmp(P1, P2: PChar; MaxLen: Integer): Integer; cdecl;
procedure _movmem(Source, Dest: Pointer; MaxLen: Integer); cdecl;
procedure _setmem(Dest: Pointer; Len: Integer; Value: Char); cdecl;
function _stpcpy(Dest, Source: PChar): PChar; cdecl;
function _strcmp(P1, P2: PChar): Integer; cdecl;
function _strstr(P1, P2: PChar): PChar; cdecl;
function _strcmpi(P1, P2: PChar): Integer; cdecl;
function _strupr(P: PChar): PChar; cdecl;
function _strcpy(Dest, Source: PChar): PChar; cdecl;

implementation

uses SysUtils;

function _strcat(Dest, Source: PChar): PChar;
begin
Result := SysUtils.StrCat(Dest, Source);

end;

function _stricmp(P1, P2: PChar): Integer;
begin
Result := StrIComp(P1, P2);

end;

function _strlen(P1: PChar): Integer;
begin
Result := SysUtils.StrLen(P1);

end;

function _strlwr(P1: PChar): PChar;
begin
Result := StrLower(P1);

end;

function _strncat(Dest, Source: PChar; MaxLen: Integer): PChar;
begin
Result := StrLCat(Dest, Source, MaxLen);

end;

Advanced Techniques

PART II
650

function _memcpy(Dest, Source: Pointer; Len: Integer): Pointer;
begin
Move(Source^, Dest^, Len);
Result := Dest;

end;

function _strncmp(P1, P2: PChar; MaxLen: Integer): Integer;
begin
Result := StrLComp(P1, P2, MaxLen);

end;

function _strncmpi(P1, P2: PChar; MaxLen: Integer): Integer;
begin
Result := StrLIComp(P1, P2, MaxLen);

end;

function _memmove(Dest, Source: Pointer; Len: Integer): Pointer;
begin
Move(Source^, Dest^, Len);
Result := Dest;

end;

function _strncpy(Dest, Source: PChar; MaxLen: Integer): PChar;
begin
Result := StrLCopy(Dest, Source, MaxLen);

end;

procedure _memset(P: Pointer; Count: Integer; Value: DWORD);
begin
FillChar(P^, Count, Value);

end;

function _strnicmp(P1, P2: PChar; MaxLen: Integer): Integer;
begin
Result := StrLIComp(P1, P2, MaxLen);

end;

procedure _movmem(Source, Dest: Pointer; MaxLen: Integer);
begin
Move(Source^, Dest^, MaxLen);

end;

procedure _setmem(Dest: Pointer; Len: Integer; Value: Char);
begin
FillChar(Dest^, Len, Value);

end;

Hard-Core Techniques

CHAPTER 13
651

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

continues

LISTING 13.11 Continued

function _stpcpy(Dest, Source: PChar): PChar;
begin
Result := StrCopy(Dest, Source);

end;

function _strcmp(P1, P2: PChar): Integer;
begin
Result := StrComp(P1, P2);

end;

function _strstr(P1, P2: PChar): PChar;
begin
Result := StrPos(P1, P2);

end;

function _strcmpi(P1, P2: PChar): Integer;
begin
Result := StrIComp(P1, P2);

end;

function _strupr(P: PChar): PChar;
begin
Result := StrUpper(P);

end;

function _strcpy(Dest, Source: PChar): PChar;
begin
Result := StrCopy(Dest, Source);

end;

end.

Advanced Techniques

PART II
652

TIP

Using the technique shown here, you could externalize more of the C++ RTL and
Win32 API into header files that map to Object Pascal units.

Using C++ Classes
Although it’s impossible to use C++ classes contained in an object file, it’s possible to get
some limited use from C++ classes contained in DLLs. By “limited use,” we mean that you’ll
be able to call the virtual functions exposed by the C++ class only from the Delphi side. This

is possible because both Object Pascal and C++ follow the COM standard for virtual interfaces
(see Chapter 23, “COM and ActiveX”).

Listing 13.12 shows the source code for cdll.cpp, a C++ module that contains a class defini-
tion. Notice in particular the standalone functions—one of which creates and returns a refer-
ence to a new object, and another of which frees a given reference. These functions are the
conduits through which we’ll share the object between the languages.

LISTING 13.12 cdll.cpp: A C++ Module That Contains a Class Definition

#include <windows.h>

// objects
class TFoo
{
virtual int function1(char *);
virtual int function2(int);

};

//member functions
int TFoo::function1(char * str1)
{
MessageBox(NULL, str1, “Hello from C++ DLL”, MB_OK);
return 0;

}

int TFoo::function2(int i)
{
return i * i;

}

#ifdef __cplusplus
extern “C” {
#endif

//prototypes
TFoo * __declspec(dllexport) ClassFactory(void);
void __declspec(dllexport) ClassKill(TFoo *);

TFoo * __declspec(dllexport) CLASSFACTORY(void)
{
TFoo * Foo;
Foo = new TFoo;
return Foo;

}

Hard-Core Techniques

CHAPTER 13
653

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

continues

LISTING 13.12 Continued

void __declspec(dllexport) CLASSKILL(TFoo * Foo)
{
delete Foo;

}

int WINAPI DllEntryPoint(HINSTANCE hinst, unsigned long reason, void*)
{

return 1;
}

#ifdef __cplusplus
}
#endif

To use this object from a Delphi application, you must do two things. First, you must import
the functions that create and destroy class instances. Second, you must define a virtual abstract
Object Pascal class definition that wraps the C++ class. Here’s how to do that:

type
TFoo = class
function Function1(Str1: PChar): integer; virtual; cdecl; abstract;
function Function2(i: integer): integer; virtual; cdecl; abstract;

end;

function ClassFactory: TFoo; cdecl; external ‘cdll.dll’
name ‘_CLASSFACTORY’;

procedure ClassKill(Foo: TFoo); cdecl; external ‘cdll.dll’ name
‘_CLASSKILL’;

Advanced Techniques

PART II
654

NOTE

When defining the Object Pascal wrapper for a C++ class, you don’t need to worry
about the names of the functions because they’re unimportant in determining how
the function is called internally. Because all calls will be dispatched through the Virtual
Method Table, the order in which the functions are declared is key. Make sure that
the order of the functions is the same in both the C++ and Object Pascal definitions.

Listing 13.13 shows Main.pas, the main unit for the CallC.dpr project, which demonstrates all
the C++ techniques shown so far in this chapter. The main form for this project is shown in
Figure 13.5.

FIGURE 13.5
The main form for the CallC project.

LISTING 13.13 Main.pas, the Main Unit for the CallC Project

unit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, ExtCtrls;

type
TMainForm = class(TForm)
Button1: TButton;
Button2: TButton;
FooData: TEdit;
Button3: TButton;
Button4: TButton;
SetCVarData: TEdit;
GetCVarData: TEdit;
procedure Button1Click(Sender: TObject);
procedure Button2Click(Sender: TObject);
procedure Button3Click(Sender: TObject);
procedure Button4Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
MainForm: TMainForm;
_GlobalVar: PChar = ‘This is a Delphi String’;

implementation

Hard-Core Techniques

CHAPTER 13
655

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

continues

LISTING 13.13 Continued

uses PasStrng;

{$R *.DFM}

{$L ccode.obj}

type
TFoo = class
function Function1(Str1: PChar): integer; virtual; cdecl; abstract;
function Function2(i: integer): integer; virtual; cdecl; abstract;

end;

PCharArray = ^TCharArray;
TCharArray = array[0..127] of char;

// import from OBJ file:
function _SAYHELLO(Text: PChar): Integer; cdecl; external;
procedure _C_VAR; external; // trick to import OBJ data

// imports from DLL file:
function ClassFactory: TFoo; cdecl; external ‘cdll.dll’
name ‘_CLASSFACTORY’;

procedure ClassKill(Foo: TFoo); cdecl; external ‘cdll.dll’
name ‘_CLASSKILL’;

procedure TMainForm.Button1Click(Sender: TObject);
begin
_SayHello(‘hello world’);

end;

procedure TMainForm.Button2Click(Sender: TObject);
var
Foo: TFoo;

begin
Foo := ClassFactory;
Foo.Function1(‘huh huh, cool.’);
FooData.Text := IntToStr(Foo.Function2(10));
ClassKill(Foo);

end;

function GetCArray: string;
var
A: PCharArray;

begin

Advanced Techniques

PART II
656

A := PCharArray(@_C_VAR);
Result := A^;

end;

procedure SetCArray(const S: string);
var
A: PCharArray;

begin
A := PCharArray(@_C_VAR);
StrLCopy(A^, PChar(S), SizeOf(TCharArray));

end;

procedure TMainForm.Button3Click(Sender: TObject);
begin
SetCArray(SetCVarData.Text);

end;

procedure TMainForm.Button4Click(Sender: TObject);
begin
GetCVarData.Text := GetCArray;

end;

end.

Hard-Core Techniques

CHAPTER 13
657

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

TIP

Although the technique demonstrated here does allow a limited means for commu-
nicating with C++ classes from Object Pascal, if you want to do this type of thing on
a large scale, we recommend you use COM objects to communicate between lan-
guages, as described in Chapter 23.

Thunking
At some point in your development of Windows and Win32 applications, you’ll need to call
16-bit code from a 32-bit application or even 32-bit code from a 16-bit application. This
process is known as thunking. Although the different varieties of Win32 provide various facili-
ties to make this possible, it remains one of the more difficult tasks to accomplish when devel-
oping Windows applications.

Win32 provides three different types of thunking: universal, generic, and flat. Each of these
techniques has its advantages and drawbacks:

• Universal thunking is available only under the Win32s platform (Win32s is the Win32
API subset available under 16-bit Windows). It allows 16-bit applications to load and call
Win32 DLLs. Because this variety of thunking is supported only for Win32s, a platform
not officially supported by Delphi, we won’t devote any more discussion to this topic.

• Generic thunking enables 16-bit Windows applications to call Win32 DLLs under
Windows 95, 98, NT, and 2000. This is the most flexible type of thunking because it’s
available on all major Win32 platforms and is API-based. We’ll discuss this option in
detail shortly.

• Flat thunking allows Win32 applications to call 16-bit DLLs and 16-bit applications to
call Win32 DLLs. Unfortunately, this type of thunking is available only under Windows
95/98; it also requires the use of a thunk compiler to create object files, which must be
linked to both the 32-bit and 16-bit sides. Because of the lack of portability and require-
ment for additional tools, we won’t cover flat thunking here.

In addition, there’s a way to share data between 32-bit and 16-bit processes by using the
WM_COPYDATA Windows message. In particular, WM_COPYDATA provides a straightforward means
for accessing 16-bit code from Windows NT/2000 (where thunking can be a headache), so
we’ll also cover that in this section.

Generic Thunking
Generic thunking is facilitated through a set of APIs that sit on both the 16-bit and 32-bit sides.
These APIs are known as WOW16 and WOW32, respectively. From 16-bit land, WOW16 provides
functions that allow you to load the Win32 DLL, get the address of functions in the DLL, and
call those functions. The source code for the WOW16.pas unit is shown in Listing 13.14.

LISTING 13.14 WOW16.pas, Functions to Load a 32-bit DLL from a 16-bit Application

unit WOW16;
// Unit which provides an interface to the 16-bit Windows on Win32 (WOW)
// API from a 16-bit application running under Win32.

Advanced Techniques

PART II
658

TIP

Aside from thunking, you should know that Automation (described in Chapter 23)
provides a reasonable alternative for crossing 16/32-bit boundaries. This capability is
built into Automation’s IDispatch interface.

// These functions allow 16-bit applications to call 32-bit DLLs.
// Copyright (c) 1996, 1999 Steve Teixeira and Xavier Pacheco

interface

uses WinTypes;

type
THandle32 = Longint;
DWORD = Longint;

{ Win32 module management.}

{ The following routines accept parameters that correspond directly }
{ to the respective Win32 API function calls that they invoke. Refer }
{ to the Win32 reference documentation for more detail. }
function LoadLibraryEx32W(LibFileName: PChar; hFile, dwFlags: DWORD):
THandle32;

function FreeLibrary32W(LibModule: THandle32): BOOL;
function GetProcAddress32W(Module: THandle32; ProcName: PChar): TFarProc;

{ GetVDMPointer32W converts a 16-bit (16:16) pointer into a }
{ 32-bit flat (0:32) pointer. The value of FMode should be 1 if }
{ the 16-bit pointer is a protected mode address (the normal }
{ situation in Windows 3.x) or 0 if the 16-bit pointer is real }
{ mode. }
{ NOTE: Limit checking is not performed in the retail build }
{ of Windows NT. It is performed in the checked (debug) build }
{ of WOW32.DLL, which will cause 0 to be returned when the }
{ limit is exceeded by the supplied offset. }
function GetVDMPointer32W(Address: Pointer; fProtectedMode: WordBool):
DWORD;

{ CallProc32W calls a proc whose address was retrieved by }
{ GetProcAddress32W. The true definition of this function }
{ actually allows for multiple DWORD parameters to be passed }
{ prior to the ProcAddress parameter, and the nParams parameter }
{ should reveal the number of params passed prior to ProcAddress. }
{ The AddressConvert parameter is a bitmask which indicates which }
{ of the params are 16-bit pointers in need of conversion before }
{ the 32-bit function is called. Since this function doesn’t lend }
{ itself to being defined in Object Pascal, you may want to use }
{ the simplified Call32BitProc function instead. }
function CallProc32W(Params: DWORD; ProcAddress, AddressConvert,

nParams: DWORD): DWORD;

Hard-Core Techniques

CHAPTER 13
659

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

continues

LISTING 13.14 Continued

{ Call32BitProc accepts a constant array of Longints as the parameter }
{ list for the function given by ProcAddress. This procedure is }
{ responsible for packaging the parameters into the correct format }
{ and calling the CallProc32W WOW function. }
function Call32BitProc(ProcAddress: DWORD; Params: array of Longint;

AddressConvert: Longint): DWORD;

{ Converts a 16-bit window handle to 32-bit for use by Windows NT. }
function HWnd16To32(Handle: hWnd): THandle32;

{ Converts a 32-bit window handle to 16-bit. }
function HWnd32To16(Handle: THandle32): hWnd;

implementation

uses WinProcs;

function HWnd16To32(Handle: hWnd): THandle32;
begin
Result := Handle or $FFFF0000;

end;

function HWnd32To16(Handle: THandle32): hWnd;
begin
Result := LoWord(Handle);

end;

function BitIsSet(Value: Longint; Bit: Byte): Boolean;
begin
Result := Value and (1 shl Bit) <> 0;

end;

procedure FixParams(var Params: array of Longint; AddConv: Longint);
var
i: integer;

begin
for i := Low(Params) to High(Params) do
if BitIsSet(AddConv, i) then
Params[i] := GetVDMPointer32W(Pointer(Params[i]), True);

end;

function Call32BitProc(ProcAddress: DWORD; Params: array of Longint;
AddressConvert: Longint): DWORD;

Advanced Techniques

PART II
660

var
NumParams: word;

begin
FixParams(Params, AddressConvert);
NumParams := High(Params) + 1;
asm
les di, Params { es:di -> Params }
mov cx, NumParams { loop counter = num params }

@@1:
push es:word ptr [di + 2] { push hiword of param x }
push es:word ptr [di] { push loword of param x }
add di, 4 { skip to next param }
loop @@1 { iterate over all params }
mov cx, ProcAddress.Word[2] { cx = hiword of ProcAddress }
mov dx, ProcAddress.Word[0] { dx = loword of ProcAddress }
push cx { push hi ProcAddress }
push dx { push lo ProcAddress }
mov ax, 0
push ax { push dummy hi AddressConvert }
push ax { push dummy lo AddressConvert }
push ax { push hi NumParams }
mov cx, NumParams
push cx { push lo Number of Params }
call CallProc32W { call function }
mov Result.Word[0], ax
mov Result.Word[2], dx { store return value }

end
end;

{ 16-bit WOW functions }
function LoadLibraryEx32W; external ‘KERNEL’ index 513;
function FreeLibrary32W; external ‘KERNEL’ index 514;
function GetProcAddress32W; external ‘KERNEL’ index 515;
function GetVDMPointer32W; external ‘KERNEL’ index 516;
function CallProc32W; external ‘KERNEL’ index 517;

end.

All the functions in this unit are simply exports from the 16-bit kernel except for the
Call32BitProc() function, which employs some assembly code to allow the user to pass a
variable number of parameters in an array of Longint.

The WOW32 functions make up the WOW32.pas unit, which is shown in Listing 13.15.

Hard-Core Techniques

CHAPTER 13
661

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

LISTING 13.15 WOW32.pas, Interface for WOW32.dll, Which Provides Access to 16-bit
code from Win32 Applications

unit WOW32;
// Import of WOW32.DLL, which provides utilities for accessing
// 16-bit code from Win32.
// Copyright (c) 1996, 1999 Steve Teixeira and Xavier Pacheco

interface

uses Windows;

//
// 16:16 -> 0:32 Pointer translation.
//
// WOWGetVDMPointer will convert the passed in 16-bit address
// to the equivalent 32-bit flat pointer. If fProtectedMode
// is TRUE, the function treats the upper 16 bits as a selector
// in the local descriptor table. If fProtectedMode is FALSE,
// the upper 16 bits are treated as a real-mode segment value.
// In either case the lower 16 bits are treated as the offset.
//
// The return value is 0 if the selector is invalid.
//
// NOTE: Limit checking is not performed in the retail build
// of Windows NT. It is performed in the checked (debug) build
// of WOW32.DLL, which will cause 0 to be returned when the
// limit is exceeded by the supplied offset.
//
function WOWGetVDMPointer(vp, dwBytes: DWORD; fProtectedMode: BOOL):
Pointer; stdcall;

//
// The following two functions are here for compatibility with
// Windows 95. On Win95, the global heap can be rearranged,
// invalidating flat pointers returned by WOWGetVDMPointer, while
// a thunk is executing. On Windows NT, the 16-bit VDM is completely
// halted while a thunk executes, so the only way the heap will
// be rearranged is if a callback is made to Win16 code.
//
// The Win95 versions of these functions call GlobalFix to
// lock down a segment’s flat address, and GlobalUnfix to
// release the segment.
//
// The Windows NT implementations of these functions do *not*
// call GlobalFix/GlobalUnfix on the segment, because there
// will not be any heap motion unless a callback occurs.

Advanced Techniques

PART II
662

// If your thunk does callback to the 16-bit side, be sure
// to discard flat pointers and call WOWGetVDMPointer again
// to be sure the flat address is correct.
//
function WOWGetVDMPointerFix(vp, dwBytes: DWORD; fProtectedMode: BOOL):
Pointer; stdcall;

procedure WOWGetVDMPointerUnfix(vp: DWORD); stdcall;

//
// Win16 memory management.
//
// These functions can be used to manage memory in the Win16
// heap. The following four functions are identical to their
// Win16 counterparts, except that they are called from Win32
// code.
//
function WOWGlobalAlloc16(wFlags: word; cb: DWORD): word; stdcall;
function WOWGlobalFree16(hMem: word): word; stdcall;
function WOWGlobalLock16(hMem: word): DWORD; stdcall;
function WOWGlobalUnlock16(hMem: word): BOOL; stdcall;

//
// The following three functions combine two common operations in
// one switch to 16-bit mode.
//
function WOWGlobalAllocLock16(wFlags: word; cb: DWORD; phMem: PWord):
DWORD; stdcall;

function WOWGlobalLockSize16(hMem: word; pcb: PDWORD): DWORD; stdcall;
function WOWGlobalUnlockFree16(vpMem: DWORD): word; stdcall;

//
// Yielding the Win16 nonpreemptive scheduler
//
// The following two functions are provided for Win32 code called
// via Generic Thunks which needs to yield the Win16 scheduler so
// that tasks in that VDM can execute while the thunk waits for
// something to complete. These two functions are functionally
// identical to calling back to 16-bit code which calls Yield or
// DirectedYield.
//
procedure WOWYield16;
procedure WOWDirectedYield16(htask16: word);

//
// Generic Callbacks.
//

Hard-Core Techniques

CHAPTER 13
663

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

continues

LISTING 13.15 Continued

// WOWCallback16 can be used in Win32 code called
// from 16-bit (such as by using Generic Thunks) to call back to
// the 16-bit side. The function called must be declared similarly
// to the following:
//
// function CallbackRoutine(dwParam: Longint): Longint; export;
//
// If you are passing a pointer, declare the parameter as such:
//
// function CallbackRoutine(vp: Pointer): Longint; export;
//
// NOTE: If you are passing a pointer, you’ll need to get the
// pointer using WOWGlobalAlloc16 or WOWGlobalAllocLock16
//
// If the function called returns a word instead of a Longint, the
// upper 16 bits of the return value is undefined. Similarly, if
// the function called has no return value, the entire return value
// is undefined.
//
// WOWCallback16Ex allows any combination of arguments up to
// WCB16_MAX_CBARGS bytes total to be passed to the 16-bit routine.
// cbArgs is used to properly clean up the 16-bit stack after calling
// the routine. Regardless of the value of cbArgs, WCB16_MAX_CBARGS
// bytes will always be copied from pArgs to the 16-bit stack. If
// pArgs is less than WCB16_MAX_CBARGS bytes from the end of a page,
// and the next page is inaccessible, WOWCallback16Ex will incur an
// access violation.
//
// If cbArgs is larger than the WCB16_MAX_ARGS which the running
// system supports, the function returns FALSE and GetLastError
// returns ERROR_INVALID_PARAMETER. Otherwise the function
// returns TRUE and the DWORD pointed to by pdwRetCode contains
// the return code from the callback routine. If the callback
// routine returns a WORD, the HIWORD of the return code is
// undefined and should be ignored using LOWORD(dwRetCode).
//
// WOWCallback16Ex can call routines using the PASCAL and CDECL
// calling conventions. The default is to use the PASCAL
// calling convention. To use CDECL, pass WCB16_CDECL in the
// dwFlags parameter.
//
// The arguments pointed to by pArgs must be in the correct
// order for the callback routine’s calling convention.
// To call the routine SetWindowText,
//

Advanced Techniques

PART II
664

// SetWindowText(Handle: hWnd; lpsz: PChar): Longint;
//
// pArgs would point to an array of words:
//
// SetWindowTextArgs: array[0..2] of word =
// (LoWord(Longint(lpsz)), HiWord(Longint(lpsz)), Handle);
//
// In other words, the arguments are placed in the array in reverse
// order with the least significant word first for DWORDs and offset
// first for FAR pointers. Further, the arguments are placed in the
// array in the order listed in the function prototype with the least
// significant word first for DWORDs and offset first for FAR pointers.
//
function WOWCallback16(vpfn16, dwParam: DWORD): DWORD; stdcall;

const
WCB16_MAX_CBARGS = 16;
WCB16_PASCAL = $0;
WCB16_CDECL = $1;

function WOWCallback16Ex(vpfn16, dwFlags, cbArgs: DWORD; pArgs: Pointer;
pdwRetCode: PDWORD): BOOL; stdcall;

//
// 16 <—> 32 Handle mapping functions.
//
type
TWOWHandleType = (
WOW_TYPE_HWND,
WOW_TYPE_HMENU,
WOW_TYPE_HDWP,
WOW_TYPE_HDROP,
WOW_TYPE_HDC,
WOW_TYPE_HFONT,
WOW_TYPE_HMETAFILE,
WOW_TYPE_HRGN,
WOW_TYPE_HBITMAP,
WOW_TYPE_HBRUSH,
WOW_TYPE_HPALETTE,
WOW_TYPE_HPEN,
WOW_TYPE_HACCEL,
WOW_TYPE_HTASK,
WOW_TYPE_FULLHWND);

function WOWHandle16(Handle32: THandle; HandType: TWOWHandleType): Word;
stdcall;

Hard-Core Techniques

CHAPTER 13
665

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

continues

LISTING 13.15 Continued

function WOWHandle32(Handle16: word; HandleType: TWOWHandleType):
THandle; stdcall;

implementation

const
WOW32DLL = ‘WOW32.DLL’;

function WOWCallback16;
external WOW32DLL name ‘WOWCallback16’;

function WOWCallback16Ex;
external WOW32DLL name ‘WOWCallback16Ex’;

function WOWGetVDMPointer;
external WOW32DLL name ‘WOWGetVDMPointer’;

function WOWGetVDMPointerFix;
external WOW32DLL name ‘WOWGetVDMPointerFix’;

procedure WOWGetVDMPointerUnfix;
external WOW32DLL name ‘WOWGetVDMPointerUnfix’

function WOWGlobalAlloc16;
external WOW32DLL name ‘WOWGlobalAlloc16’

function WOWGlobalAllocLock16;
external WOW32DLL name ‘WOWGlobalAllocLock16’;

function WOWGlobalFree16;
external WOW32DLL name ‘WOWGlobalFree16’;

function WOWGlobalLock16;
external WOW32DLL name ‘WOWGlobalLock16’;

function WOWGlobalLockSize16;
external WOW32DLL name ‘WOWGlobalLockSize16’;

function WOWGlobalUnlock16;
external WOW32DLL name ‘WOWGlobalUnlock16’;

function WOWGlobalUnlockFree16;
external WOW32DLL name ‘WOWGlobalUnlockFree16’;

function WOWHandle16;
external WOW32DLL name ‘WOWHandle16’;

function WOWHandle32;
external WOW32DLL name ‘WOWHandle32’;

procedure WOWYield16;
external WOW32DLL name ‘WOWYield16’;

procedure WOWDirectedYield16;
external WOW32DLL name ‘WOWDirectedYield16’;

end.

To illustrate generic thunking, we’ll create a small 32-bit DLL that will be called from a 16-bit
executable. The 32-bit DLL project, TestDLL.dpr, is shown in Listing 13.16.

Advanced Techniques

PART II
666

LISTING 13.16 TestDLL.dpr, DLL Project for Testing Generic Thunking. -s

library TestDLL;

uses
SysUtils, Dialogs, Windows, WOW32;

const
DLLStr = ‘I am in the 32-bit DLL. The string you sent is: “%s”’;

function DLLFunc32(P: PChar; CallBackFunc: DWORD): Integer; stdcall;
const
MemSize = 256;

var
Mem16: DWORD;
Mem32: PChar;
Hand16: word;

begin
{ Show string P }
ShowMessage(Format(DLLStr, [P]));
{ Allocate some 16-bit memory }
Hand16 := WOWGlobalAlloc16(GMem_Share or GMem_Fixed or GMem_ZeroInit,

MemSize);
{ Lock the 16-bit memory }
Mem16 := WOWGlobalLock16(Hand16);
{ Convert 16-bit pointer to 32-bit pointer. Now they point to the }
{ same place. }
Mem32 := PChar(WOWGetVDMPointer(Mem16, MemSize, True));
{ Copy string into 32-bit pointer }
StrPCopy(Mem32, ‘I REALLY love DDG!!’);
{ Call back into the 16-bit app, passing 16-bit pointer }
Result := WOWCallback16(CallBackFunc, Mem16);
{ clean up allocated 16-bit memory }
WOWGlobalUnlockFree16(Mem16);

end;

exports
DLLFunc32 name ‘DLLFunc32’ resident;

begin
end.

This DLL exports one function that takes a PChar and a callback function as parameters. The
PChar is immediately displayed in a ShowMessage(). The callback function allows the function
to call back into the 16-bit process, passing some specially allocated 16-bit memory.

Hard-Core Techniques

CHAPTER 13
667

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

The code for the 16-bit application, Call32.dpr, is shown in Listing 13.17. The main form is
shown in Figure 13.6.

Advanced Techniques

PART II
668

FIGURE 13.6
The Call32 main form.

LISTING 13.17 Main.pas, the Main Unit for the 16-bit Portion of the Generic Thunking
Test Application

unit Main;
{$C FIXED DEMANDLOAD PERMANENT}

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls;

type
TMainForm = class(TForm)
CallBtn: TButton;
Edit1: TEdit;
Label1: TLabel;
procedure CallBtnClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

uses WOW16;

const
ExeStr = ‘The 32-bit DLL has called back into the 16-bit EXE. ‘ +

‘The string to the EXE is: “%s”’;

function CallBackFunc(P: PChar): Longint; export;
begin
ShowMessage(Format(ExeStr, [StrPas(P)]));
Result := StrLen(P);

end;

procedure TMainForm.CallBtnClick(Sender: TObject);
var
H: THandle32;
R, P: Longint;
AStr: PChar;

begin
{ load 32-bit DLL }
H := LoadLibraryEx32W(‘TestDLL.dll’, 0, 0);
AStr := StrNew(‘I love DDG.’);
try
if H > 0 then
begin
{ Retrieve address of proc from 32-bit DLL }
TFarProc(P) := GetProcAddress32W(H, ‘DLLFunc32’);
if P > 0 then
begin
{ Call proc in 32-bit DLL }
R := Call32BitProc(P, [Longint(AStr), Longint(@CallBackFunc)],
1);

Edit1.Text := IntToStr(R);
end;

end;
finally
StrDispose(AStr);
if H > 0 then FreeLibrary32W(H);

end;
end;

end.

This application passes a 16-bit PChar and function address to the 32-bit DLL.
CallBackFunc() is eventually called by the 32-bit DLL. In fact, if you look closely, the return
value of DLLFunc32() is the value returned by CallBackFunc().

Hard-Core Techniques

CHAPTER 13
669

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

WM_COPYDATA
Windows 95/98 supports flat thunks to call 16-bit DLLs from Win32 applications. Windows
NT/2000 doesn’t provide a means to directly call 16-bit code from a Win32 application. Given
this limitation, the question that follows is, what’s the best way to communicate data between
32-bit and 16-bit processes on NT? What’s more, that leads us to another question: Is there an
easy way to share data in such a way that it runs under all the major Win32 platforms,
Windows 95, 98, NT, and 2000?

The answer to both questions is WM_COPYDATA. The WM_COPYDATA Windows message provides a
means for transferring binary data between processes—whether 32-bit or 16-bit processes.
When a WM_COPYDATA message is sent to a window, the wParam of this message identifies the
window passing the data, and the lParam holds a pointer to a TCopyDataStruct record. This
record is defined as follows:

type
PCopyDataStruct = ^TCopyDataStruct;
TCopyDataStruct = packed record
dwData: DWORD;
cbData: DWORD;
lpData: Pointer;

end;

The dwData field holds 32 bits of user-defined information. cbData contains the size of the
buffer pointed to by lpData. lpData is a pointer to a buffer of information you want to pass
between applications. If you send this message between a 32-bit and a 16-bit application,
Windows will automatically convert the lpData pointer from a 0:32 pointer to a 16:16 pointer,
or vice versa. Additionally, Windows will ensure that the data pointed to by lpData is mapped
into the receiving process’s address space.

Advanced Techniques

PART II
670

NOTE

WM_COPYDATA works great for relatively small amounts of information, but if you have
a lot of information that you must communicate across the 16/32-bit boundary, you
may wish to do so using Automation, which has the built-in ability to marshal across
process boundaries. Automation is described in Chapter 23.

TIP

It should be clear that, although NT doesn’t support direct usage of 16-bit DLLs from
Win32 applications, you can create a 16-bit executable that encapsulates the DLL and
can communicate with that executable by using WM_COPYDATA.

To show how WM_COPYDATA works, we’ll create two projects, the first being a 32-bit applica-
tion. This application will have a memo control into which you can type some text.
Additionally, this application will provide a means for communicating with the second project,
a 16-bit application, to transfer memo text. To provide a means whereby the two applications
can begin communication, take the following steps:

1. Register a window message to obtain a unique message ID for interapplication communi-
cation.

2. Broadcast the message system-wide from the Win32 application. In the wParam of this
message, store the handle to the main window of the Win32 application.

3. When the 16-bit application receives the broadcast message, it will answer by sending
the registered message back to the sending application and pass its own main form’s win-
dow handle as the wParam.

4. After receiving the response, the 32-bit application now has the handle to the main form
of the 16-bit application. The 32-bit application can now send a WM_COPYDATA message to
the 16-bit application so that the sharing can begin.

The code for the RegMsg.pas unit, which is shared by the two projects, is shown in Listing
13.18.

LISTING 13.18 RegMsg.pas, the Unit Which Registers the Handshaking Message

unit RegMsg;

interface

var
DDGM_HandshakeMessage: Cardinal;

implementation

uses WinProcs;

const
HandshakeMessageStr: PChar = ‘DDG.CopyData.Handshake’;

initialization
DDGM_HandshakeMessage := RegisterWindowMessage(HandshakeMessageStr);

end.

The source code for CopyMain.pas, the main unit of the 32-bit CopyData.dpr project, is shown
in Listing 13.19. This is the unit that establishes the conversation and sends the data.

Hard-Core Techniques

CHAPTER 13
671

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

LISTING 13.19 CopyMain.pas, the Main Unit for the 32-bit Portion of the WM_COPYDATA
Demonstration

unit CopyMain;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, ExtCtrls, Menus;

type
TMainForm = class(TForm)
DataMemo: TMemo;
BottomPnl: TPanel;
BtnPnl: TPanel;
CloseBtn: TButton;
CopyBtn: TButton;
MainMenu1: TMainMenu;
File1: TMenuItem;
CopyData1: TMenuItem;
N1: TMenuItem;
Exit1: TMenuItem;
Help1: TMenuItem;
About1: TMenuItem;
procedure CloseBtnClick(Sender: TObject);
procedure FormResize(Sender: TObject);
procedure About1Click(Sender: TObject);
procedure CopyBtnClick(Sender: TObject);

private
{ Private declarations }

protected
procedure WndProc(var Message: TMessage); override;

public
{ Public declarations }

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

uses AboutU, RegMsg;

// The following declaration is necessary because of an error in
// the declaration of BroadcastSystemMessage() in the Windows unit

Advanced Techniques

PART II
672

function BroadcastSystemMessage(Flags: DWORD; Recipients: PDWORD;
uiMessage: UINT; wParam: WPARAM; lParam: LPARAM): Longint; stdcall;
external ‘user32.dll’;

var
Recipients: DWORD = BSM_APPLICATIONS;

procedure TMainForm.WndProc(var Message: TMessage);
var
DataBuffer: TCopyDataStruct;
Buf: PChar;
BufSize: Integer;

begin
if Message.Msg = DDGM_HandshakeMessage then begin
{ Allocate buffer }
BufSize := DataMemo.GetTextLen + (1 * SizeOf(Char));
Buf := AllocMem(BufSize);
{ Copy memo to buffer }
DataMemo.GetTextBuf(Buf, BufSize);
try
with DataBuffer do begin
{ Fill dwData with registered message as safety check }
dwData := DDGM_HandshakeMessage;
cbData := BufSize;
lpData := Buf;

end;
{ NOTE: WM_COPYDATA message must be *sent* }
SendMessage(Message.wParam, WM_COPYDATA, Handle,
Longint(@DataBuffer));

finally
FreeMem(Buf, BufSize);

end;
end
else
inherited WndProc(Message);

end;

procedure TMainForm.CloseBtnClick(Sender: TObject);
begin
Close;

end;

procedure TMainForm.FormResize(Sender: TObject);
begin
BtnPnl.Left := BottomPnl.Width div 2 - BtnPnl.Width div 2;

end;

Hard-Core Techniques

CHAPTER 13
673

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

continues

LISTING 13.19 Continued

procedure TMainForm.About1Click(Sender: TObject);
begin
AboutBox;

end;

procedure TMainForm.CopyBtnClick(Sender: TObject);
begin
{ Call for any listening apps }
BroadcastSystemMessage(BSF_IGNORECURRENTTASK or BSF_POSTMESSAGE,
@Recipients, DDGM_HandshakeMessage, Handle, 0);

end;

end.

The source for ReadMain.pas, the main unit for the 16-bit ReadData.dpr project, is shown in
Listing 13.20. This is the unit that communicates with the CopyData project and receives the
data buffer.

LISTING 13.20 ReadMain.pas, the Main Unit for the 16-bit Portion of the WM_COPYDATA
Demonstration

unit Readmain;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, Menus, StdCtrls;

{ The WM_COPYDATA Windows message is not defined in the 16-bit Messages }
{ unit, although it is available to 16-bit applications running under }
{ Windows 95 or NT. This message is discussed in the Win32 API online }
{ help. }
const
WM_COPYDATA = $004A;

type
TMainForm = class(TForm)
ReadMemo: TMemo;
MainMenu1: TMainMenu;
File1: TMenuItem;
Exit1: TMenuItem;
Help1: TMenuItem;
About1: TMenuItem;

Advanced Techniques

PART II
674

procedure Exit1Click(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure About1Click(Sender: TObject);

private
procedure OnAppMessage(var M: TMsg; var Handled: Boolean);
procedure WMCopyData(var M: TMessage); message WM_COPYDATA;

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

uses RegMsg, AboutU;

type
{ The TCopyDataStruct record type is not defined in WinTypes unit, }
{ although it is available in the 16-bit Windows API when running }
{ under Windows 95 and NT. The lParam of the WM_COPYDATA message }
{ points to one of these. }
PCopyDataStruct = ^TCopyDataStruct;
TCopyDataStruct = record
dwData: DWORD;
cbData: DWORD;
lpData: Pointer;

end;

procedure TMainForm.OnAppMessage(var M: TMsg; var Handled: Boolean);
{ OnMessage handler for Application object. }
begin
{ The DDGM_HandshakeMessage message is received as a broadcast to }
{ all applications. The wParam of this message contains the handle }
{ of the window which broadcasted the message. We respond by posting }
{ the same message back to the sender, with our handle in the wParam. }
if M.Message = DDGM_HandshakeMessage then begin
PostMessage(M.wParam, DDGM_HandshakeMessage, Handle, 0);
Handled := True;

end;
end;

procedure TMainForm.WMCopyData(var M: TMessage);
{ Handler for WM_COPYDATA message }
begin
{ Check wParam to ensure we know WHO sent us the WM_COPYDATA message }

Hard-Core Techniques

CHAPTER 13
675

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

continues

LISTING 13.20 Continued

if PCopyDataStruct(M.lParam)^.dwData = DDGM_HandshakeMessage then
{ When WM_COPYDATA message is received, the lParam points to}
ReadMemo.SetTextBuf(PChar(PCopyDataStruct(M.lParam)^.lpData));

end;

procedure TMainForm.Exit1Click(Sender: TObject);
begin
Close;

end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
Application.OnMessage := OnAppMessage;

end;

procedure TMainForm.About1Click(Sender: TObject);
begin
AboutBox;

end;

end.

Figure 13.7 shows the two applications working in harmony.

Advanced Techniques

PART II
676

FIGURE 13.7
Communicating with WM_COPYDATA.

Obtaining Package Information
Packages are great. They provide a convenient means to logically and physically divide your
application into separate modules. Packages are compiled binary modules consisting of one or
more units, and they can reference units contained in other compiled packages. Of course, if
you have the source code for a particular package, it’s very easy to figure out what units are
contained in that package and what other packages it requires. But what happens when you
need to obtain that information for a package for which you have no source code? Fortunately,
this is not terribly difficult if you don’t mind writing a few lines of code. In fact, you can
obtain this information with a call to only one procedure: GetPackageInfo(), which is con-
tained in the SysUtils unit. GetPackageInfo() is declared as follows:

procedure GetPackageInfo(Module: HMODULE; Param: Pointer; var Flags: Integer;
InfoProc: TPackageInfoProc);

Module is the Win32 API module handle of the package file, such as the handle returned by the
LoadLibrary() API function.

Param is user-defined data that will be passed to the procedure specified by the InfoProc para-
meter.

Upon return, the Flags parameter will hold information about the package. This will become a
combination of the flags shown in Table 13.6.

TABLE 13.6 GetPackageInfo() Flags

Flag Value Meaning

pfNeverBuild $00000001 This is a “never build” package.

pfDesignOnly $00000002 This is a design package.

pfRunOnly $00000004 This is a run package.

pfIgnoreDupUnits $00000008 Ignores multiple instances of the same unit in
this package.

pfModuleTypeMask $C0000000 The mask used to identify the module type.

pfExeModule $00000000 The package module is an EXE (not used).

pfPackageModule $40000000 The package module is a package file.

pfProducerMask $0C000000 The mask used to identify the product that
created this package.

pfV3Produced $00000000 The package produced by Delphi 3 or BCB 3.

pfProducerUndefined $04000000 The producer of this package is not defined.

pfBCB4Produced $08000000 The packages were produced by BCB 4.

pfDelphi4Produced $0C000000 The package was produced by Delphi 4.

pfLibraryModule $80000000 The package module is a DLL.

Hard-Core Techniques

CHAPTER 13
677

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

The InfoProc parameter identifies a callback method that will be called once for each package
this package requires and for each unit contained in this package. This parameter is of type
TPackageInfoProc, which is defined as follows:

type
TNameType = (ntContainsUnit, ntRequiresPackage);
TPackageInfoProc = procedure (const Name: string; NameType: TNameType;
Flags: Byte; Param: Pointer);

In this method type, Name identifies the name of the package or unit, NameType indicates
whether this file is a package or a unit, Flags provides some additional information for the file,
and Param contains the user-defined data originally passed to GetPackageInfo().

To demonstrate the GetPackageInfo() procedure, what follows is a sample application used to
obtain information for any package. This project is called PackInfo, and the project file is
shown in Listing 13.21.

LISTING 13.21 PackInfo.dpr, the Project File for the Application

program PkgInfo;

uses
Forms,
Dialogs,
SysUtils,
PkgMain in ‘PkgMain.pas’ {PackInfoForm};

{$R *.RES}

var
OpenDialog: TOpenDialog;

begin
if (ParamCount > 0) and FileExists(ParamStr(1)) then
PkgName := ParamStr(1)

else begin
OpenDialog := TOpenDialog.Create(Application);
OpenDialog.DefaultExt := ‘*.bpl’;
OpenDialog.Filter := ‘Packages (*.bpl)|*.bpl|Delphi 3 Packages ‘ +
‘(*.dpl)|*.dpl’;

if OpenDialog.Execute then PkgName := OpenDialog.FileName;
end;
if PkgName <> ‘’ then
begin
Application.Initialize;
Application.CreateForm(TPackInfoForm, PackInfoForm);
Application.Run;

end;
end.

Advanced Techniques

PART II
678

If no command-line parameters are passed to this application, it immediately presents the user
with a File Open dialog box in which the user can select a package file. If a package file is
passed on the command line or if a file is selected in the dialog box, that filename is assigned
to PkgName, and the application then runs normally.

The main unit for this application is shown in Listing 13.22. This is the unit that performs the
call to GetPackageInfo().

LISTING 13.22 PkgMain.pas, Obtaining Package Information

unit PkgMain;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, ExtCtrls;

type
TPackInfoForm = class(TForm)
GroupBox1: TGroupBox;
DsgnPkg: TCheckBox;
RunPkg: TCheckBox;
BuildCtl: TRadioGroup;
GroupBox2: TGroupBox;
GroupBox3: TGroupBox;
Button1: TButton;
Label1: TLabel;
DescEd: TEdit;
memContains: TMemo;
memRequires: TMemo;
procedure FormCreate(Sender: TObject);
procedure Button1Click(Sender: TObject);

end;

var
PackInfoForm: TPackInfoForm;
PkgName: string; // This is assigned in project file

implementation

{$R *.DFM}

procedure PackageInfoCallback(const Name: string; NameType: TNameType;
Flags: Byte; Param: Pointer);

var

Hard-Core Techniques

CHAPTER 13
679

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

continues

LISTING 13.22 Continued

AddName: string;
Memo: TMemo;

begin
Assert(Param <> nil);
AddName := Name;
case NameType of
ntContainsUnit: Memo := TPackInfoForm(Param).memContains;
ntRequiresPackage: Memo := TPackInfoForm(Param).memRequires;

else
Memo := nil;

end;
if Memo <> nil then
begin
if Memo.Text <> ‘’ then AddName := ‘, ‘ + AddName;
Memo.Text := Memo.Text + AddName;

end;
end;

procedure TPackInfoForm.FormCreate(Sender: TObject);
var
PackMod: HMODULE;
Flags: Integer;

begin
// Since we only need to get into the package’s resources,
// LoadLibraryEx with LOAD_LIBRARY_AS_DATAFILE provides a speed-
// efficient means for loading the package.
PackMod := LoadLibraryEx(PChar(PkgName), 0, LOAD_LIBRARY_AS_DATAFILE);
if PackMod = 0 then Exit;
try
GetPackageInfo(PackMod, Pointer(Self), Flags, PackageInfoCallback);

finally
FreeLibrary(PackMod);

end;
Caption := ‘Package Info: ‘ + ExtractFileName(PkgName);
DsgnPkg.Checked := Flags and pfDesignOnly <> 0;
RunPkg.Checked := Flags and pfRunOnly <> 0;
if Flags and pfNeverBuild <> 0 then
BuildCtl.ItemIndex := 1;

DescEd.Text := GetPackageDescription(PChar(PkgName));
end;

procedure TPackInfoForm.Button1Click(Sender: TObject);

Advanced Techniques

PART II
680

begin
Close;

end;

end.

It seems as though there’s a disproportionately small amount of code for this unit, considering
the low-level information it obtains. When the form is created, the package is loaded,
GetPackageInfo() is called, and some UI is updated. The PackageInfoCallback() method is
passed in the InfoProc parameter of GetPackageInfo(). PackageInfoCallback() adds the
package or unit name to the appropriate TMemo control. Figure 13.8 shows the PackInfo appli-
cation displaying information for one of the Delphi packages.

Hard-Core Techniques

CHAPTER 13
681

13

H
A

R
D-C

O
R

E
T

EC
H

N
IQ

U
ES

FIGURE 13.8
Viewing package information with PackInfo.

Summary
Whew, this was an in-depth chapter! Step back for a moment and take a look at all you
learned: subclassing window procedures, preventing multiple instances, windows hooks,
BASM programming, using C++ object files, using C++ classes, thunking, WM_COPYDATA, and
getting information for compiled packages. I don’t know about you, but we’ve covered so
much hacker stuff in this chapter that I’m hungry for Cheetos and Jolt Cola! Since we’re on a
roll with low-level programming, the next chapter, “Snooping System Information,” details
how to get inside the OS to obtain information about processes, threads, and modules.

