
CHAPTER

12
Working with Files

IN THIS CHAPTER
• Dealing with File I/O 538

• The TTextRec and TFileRec Record
Structures 560

• Working with Memory-
Mapped Files 561

• Directories and Drives 580

• Using the SHFileOperation()
Function 604

• Summary 606

Working with files, directories, and drives is a common programming task that you’ll undoubt-
edly have to do at some time. This chapter illustrates how to work with the different file types:
text files, typed files, and untyped files. The chapter covers how to use a TFileStream to
encapsulate file I/O and how to take advantage of one of Win32’s nicest features: memory-
mapped files. You’ll create a TMemoryMappedFile class that you can use, which encapsulates
some of the memory-mapped functionality, and you’ll learn how to use this class to perform
text searches in text files. This chapter also demonstrates some useful routines to determine
available drives, walk directory trees to search for files, and obtain version information on files.
By the end of this chapter, you’ll have a strong feel for working with files, directories, and
drives.

Dealing with File I/O
You will probably need to deal with three types of files. These file types are text files, typed
files, and binary files. The next few sections cover file I/O with these types of files. Text files
are exactly what the name implies. They contain ASCII text that can be read by any text editor.
Typed files are files that contain programmer-defined data types. Binary files cover just about
anything else. This is a general name that covers any file that can contain data in any given for-
mat or no format at all.

Working with Text Files
This section shows you how to manipulate text files using the procedures and functions built
into Object Pascal’s Runtime Library. Before you can do anything with a text file, you must
open it. First, you must declare a variable of type TextFile:

var
MyTextFile: TextFile;

You can now use this variable to refer to a text file.

You need to know about two procedures in order to open the file. The first procedure is
AssignFile(). AssignFile() associates a filename with the file variable:

AssignFile(MyTextFile, ‘MyTextFile.txt’);

After you’ve associated the file variable with a filename, you can open the file. You can open a
text file in three ways. First, you can create and open a file using the Rewrite() procedure. If
you use Rewrite() on an existing file, it will be overwritten and a new one will be created
with the same name. You can also open a file for read-only access by using the Reset() proce-
dure. You can append to an existing file by using the Append() procedure.

Advanced Techniques

PART II
538

To close a file after you’ve opened it, you use the CloseFile() procedure. Take a look at the
following examples, which illustrate each procedure.

To open for read-only access, use this procedure:

var
MyTextFile: TextFile;

begin
AssignFile(MyTextFile, ‘MyTextFile.txt’);
Reset(MyTextFile);
try
{manipulate the file }

finally
CloseFile(MyTextFile);

end;
end;

To create a new file, do the following:

var
MyTextFile: TextFile;

begin
AssignFile(MyTextFile, ‘MyTextFile.txt’);
Rewrite(MyTextFile);
try
{manipulate the file }

finally
CloseFile(MyTextFile);

end;
end;

To append to an existing file, use this procedure:

var
MyTextFile: TextFile;

begin
AssignFile(MyTextFile, ‘MyTextFile.txt’);
Append(MyTextFile);
try
{manipulate the file }

finally

Working with Files

CHAPTER 12
539

12

W
O

R
K

IN
G

W
ITH

F
ILES

NOTE

Reset() opens typed and untyped files with read-write access.

CloseFile(MyTextFile);
end;

end;

Listing 12.1 shows how you would use Rewrite() to create a file and add five lines of text to it.

LISTING 12.1 Creating a Text File

var
MyTextFile: TextFile;
S: String;
i: integer;

begin
AssignFile(MyTextFile, ‘MyTextFile.txt’);
Rewrite(MyTextFile);
try
for i := 1 to 5 do
begin
S := ‘This is line # ‘;
Writeln(MyTextFile, S, i);

end;
finally
CloseFile(MyTextFile);

end;
end;

This file would now contain the following text:

This is line # 1
This is line # 2
This is line # 3
This is line # 4
This is line # 5

Listing 12.2 illustrates how you would add five more lines to that same file.

LISTING 12.2 Appending to a Text File

var
MyTextFile: TextFile;
S: String;
i: integer;

begin
AssignFile(MyTextFile, ‘MyTextFile.txt’);
Append(MyTextFile);
try
for i := 6 to 10 do

Advanced Techniques

PART II
540

begin
S := ‘This is line # ‘;
Writeln(MyTextFile, S, i);

end;
finally
CloseFile(MyTextFile);

end;
end;

This file’s contents are shown here:

This is line # 1
This is line # 2
This is line # 3
This is line # 4
This is line # 5
This is line # 6
This is line # 7
This is line # 8
This is line # 9
This is line # 10

Notice that in both listings, you were able to write both a string and an integer to the file. The
same is true for all numeric types in Object Pascal. To read from this same text file, you would
do as shown in Listing 12.3.

LISTING 12.3 Reading from a Text File

var
MyTextFile: TextFile;
S: String[15];
i: integer;
j: integer;

begin
AssignFile(MyTextFile, ‘MyTextFile.txt’);
Reset(MyTextFile);
try
while not Eof(MyTextFile) do
begin
Readln(MyTextFile, S, j);
Memo1.Lines.Add(S+IntToStr(j));

end;
finally
CloseFile(MyTextFile);

end;
end;

Working with Files

CHAPTER 12
541

12

W
O

R
K

IN
G

W
ITH

F
ILES

In Listing 12.3, you’ll notice that the string variable S is declared as String[15]. This was
required to prevent reading the entire line from the file into the variable, S. Not doing so would
have caused an error when attempting to read a value into the integer variable J. This illustrates
another important feature of text file I/O: You can write columns to text files. You can then read
these columns into strings of a specific length. It’s important that each column is set to a spe-
cific length even though the actual strings stored there might be of a different length. Also,
notice the use of the Eof() function. This function performs a test to determine whether the
file pointer is at the end of the file. If it is, you must break out of the loop because there’s no
more text to read.

To illustrate reading a columnar-formatted text file, we’ve created a text file named
USCaps.txt, which contains a list of U.S. capitals in a columnar arrangement. A portion of this
file is shown here:

Alabama Montgomery
Alaska Juneau
Arizona Phoenix
Arkansas Little Rock
California Sacramento
Colorado Denver
Connecticut Hartford
Delaware Dover

The state name column has exactly 20 characters. This way, the capitals line up vertically.
We’ve created a project that reads this file and stores the states into a Paradox table. You’ll find
this project on the CD as Capitals.dpr. Its source is shown in Listing 12.4.

Advanced Techniques

PART II
542

NOTE

Before you can run this demo, you will need to create the BDE alias, DDGData.
Otherwise, the program will fail. If you installed the software from this book’s CD,
this alias has already been created for you.

LISTING 12.4 Source Code for the Capitals Project

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Grids, DBGrids, DB, DBTables;

type

TMainForm = class(TForm)
btnReadCapitals: TButton;
tblCapitals: TTable;
dsCapitals: TDataSource;
dbgCapitals: TDBGrid;
procedure btnReadCapitalsClick(Sender: TObject);
procedure FormCreate(Sender: TObject);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.btnReadCapitalsClick(Sender: TObject);
var
F: TextFile;
StateName: String[20];
CapitalName: String[20];

begin
tblCapitals.Open;
// Assign the file to the columnar text file.
AssignFile(F, ‘USCAPS.TXT’);
// Open the file for read access.
Reset(F);
try
while not Eof(F) do
begin
{ Read a line of the file into the two strings each of whose length
matches the number of characters that make up the column. }

Readln(F, StateName, CapitalName);
// Now store both strings into separate columns in a Paradox table
tblCapitals.Insert;
tblCapitals[‘State_Name’] := StateName;
tblCapitals[‘State_Capital’] := CapitalName;
tblCapitals.Post;

end;
finally
CloseFile(F); // Close the file when finished.

end;
end;

Working with Files

CHAPTER 12
543

12

W
O

R
K

IN
G

W
ITH

F
ILES

continues

LISTING 12.4 Continued

procedure TMainForm.FormCreate(Sender: TObject);
begin
// Empty the table when project starts.
tblCapitals.EmptyTable;

end;

end.

Although this book hasn’t covered Delphi database programming yet, the preceding code is
straightforward. The point we’re trying to make here is that often, text file processing might
serve a very useful purpose. This text file just as well might have been a file containing bank
account information downloaded from a bank’s online banking service, for example.

Working with Typed Files (Files of Record)
You can store Object Pascal data structures in disk files. You can then read data from these files
directly into your data structures. This enables you to use typed files for storing and retrieving
information as though the data were records in a table. Files that store Pascal data structures
are referred to as files of record. To illustrate the use of such files, look at the record structure
defined here:

TPersonRec = packed record
FirstName: String[20];
LastName: String[20];
MI: String[1];
BirthDay: TDateTime;
Age: Integer;

end;

Advanced Techniques

PART II
544

NOTE

Records that contain ANSI strings, variants, class instances, interfaces, or dynamic
arrays may not be written to a file.

Now suppose you wanted to store one or more such records in a file. You’ve already seen how
you might do this using a text file in the previous section. However, you can also do this using
a file of record defined like this:

DataFile: File of TPersonRec;

To read a single record of the type TPersonRec, you would do the following:

var
PersonRec: TPersonRec;
DataFile: File of TPersonRec;

begin
AssignFile(DataFile, ‘PersonFile.dat’);
Reset(DataFile);
try
if not Eof(DataFile) then
read(DataFile, PersonRec);

finally
CloseFile(DataFile);

end;
end;

The following code illustrates how you would append a single record to a file:

var
PersonRec: TPersonRec;
DataFile: File of TPersonRec;

begin
AssignFile(DataFile, ‘PersonFile.dat’);
Reset(DataFile);
Seek(DataFile, FileSize(DataFile));
try
write(DataFile, PersonRec);

finally
CloseFile(DataFile);

end;
end;

Note the use of the Seek() procedure to move the file position to the end of the file before
writing the record to the file. This function usage is well documented in Delphi’s online help,
so we won’t go into detail on it here.

To illustrate the use of typed files, we’ve created a small application that stores information on
persons in an Object Pascal format. This application allows you to browse, add, and edit these
records. We also illustrate the use of a TFileStream descendant, which we use to encapsulate
the file I/O for such records.

Defining a TFileStream Descendant for Typed File I/O
TFileStream is a streaming class that can be used to store items that aren’t objects. Record
structures don’t have methods with which they can store themselves to disk or memory. One
solution would be to make the record an object instead. Then, you could attach the storage
functionality to that object. Another solution is to use storage functionality of a TFileStream to
store the records. Listing 12.5 shows a unit that defines a TPersonRec record and a
TRecordStream, a descendant of TFileStream, which handles the file I/O for storing and
retrieving records.

Working with Files

CHAPTER 12
545

12

W
O

R
K

IN
G

W
ITH

F
ILES

LISTING 12.5 The Source Code for PersRec.PAS: TRecordStream, a TFileStream
Descendant

unit persrec;

interface
uses Classes, dialogs, sysutils;

type

// Define the record that will hold the person’s information.
TPersonRec = packed record
FirstName: String[20];
LastName: String[20];
MI: String[1];
BirthDay: TDateTime;
Age: Integer;

end;

// Create a descendant TFileStream which knows about the TPersonRec

TRecordStream = class(TFileStream)
private
function GetNumRecs: Longint;
function GetCurRec: Longint;
procedure SetCurRec(RecNo: Longint);

protected
function GetRecSize: Longint; virtual;

public
function SeekRec(RecNo: Longint; Origin: Word): Longint;
function WriteRec(const Rec): Longint;
function AppendRec(const Rec): Longint;
function ReadRec(var Rec): Longint;
procedure First;
procedure Last;
procedure NextRec;
procedure PreviousRec;
// NumRecs shows the number of records in the stream
property NumRecs: Longint read GetNumRecs;

Advanced Techniques

PART II
546

NOTE

Streaming is a topic that we cover in greater depth in Chapter 22, “Advanced
Component Techniques.”

// CurRec reflects the current record in the stream
property CurRec: Longint read GetCurRec write SetCurRec;

end;

implementation

function TRecordStream.GetRecSize:Longint;
begin
{ This function returns the size of the record that this stream
knows about (TPersonRec) }

Result := SizeOf(TPersonRec);
end;

function TRecordStream.GetNumRecs: Longint;
begin
// This function returns the number of records in the stream
Result := Size div GetRecSize;

end;

function TRecordStream.GetCurRec: Longint;
begin
{ This function returns the position of the current record. We must
add one to this value because the file pointer is always at the
beginning of the record which is not reflected in the equation:
Position div GetRecSize }
Result := (Position div GetRecSize) + 1;

end;

procedure TRecordStream.SetCurRec(RecNo: Longint);
begin
{ This procedure sets the position to the record in the stream
specified by RecNo. }

if RecNo > 0 then
Position := (RecNo - 1) * GetRecSize

else
Raise Exception.Create(‘Cannot go beyond beginning of file.’);

end;

function TRecordStream.SeekRec(RecNo: Longint; Origin: Word): Longint;
begin
{ This function positions the file pointer to a location
specified by RecNo }

{ NOTE: This method does not contain error handling to determine if this
operation will exceed beyond the beginning/ending of the streamed
file }

Working with Files

CHAPTER 12
547

12

W
O

R
K

IN
G

W
ITH

F
ILES

continues

LISTING 12.5 Continued

Result := Seek(RecNo * GetRecSize, Origin);
end;

function TRecordStream.WriteRec(Const Rec): Longint;
begin
// This function writes the record Rec to the stream
Result := Write(Rec, GetRecSize);

end;

function TRecordStream.AppendRec(Const Rec): Longint;
begin
// This function writes the record Rec to the stream
Seek(0, 2);
Result := Write(Rec, GetRecSize);

end;

function TRecordStream.ReadRec(var Rec): Longint;
begin
{ This function reads the record Rec from the stream and
positions the pointer back to the beginning of the record }

Result := Read(Rec, GetRecSize);
Seek(-GetRecSize, 1);

end;

procedure TRecordStream.First;
begin
{ This function positions the file pointer to the beginning

of the stream }
Seek(0, 0);

end;

procedure TRecordStream.Last;
begin
// This procedure positions the file pointer to the end of the stream
Seek(0, 2);
Seek(-GetRecSize, 1);

end;

procedure TRecordStream.NextRec;
begin
{ This procedure positions the file pointer at the next record
location }

{ Go to the next record as long as it doesn’t extend beyond the

Advanced Techniques

PART II
548

end of the file. }
if ((Position + GetRecSize) div GetRecSize) = GetNumRecs then
raise Exception.Create(‘Cannot read beyond end of file’)

else
Seek(GetRecSize, 1);

end;

procedure TRecordStream.PreviousRec;
begin
{ This procedure positions the file pointer to the previous record
in the stream }

{ Call this function as long as we don’t extend beyond the
beginning of the file }

if (Position - GetRecSize >= 0) then
Seek(-GetRecSize, 1)

else
Raise Exception.Create(‘Cannot read beyond beginning of the file.’);

end;

end.

In this unit, you first declare the record that you want to store, TPersonRec. TRecordStream is
the TFileStream descendant you use to perform the file I/O for TPersonRec. TRecordStream
has two properties: NumRecs, which indicates the number of records in the stream, and CurRec,
which indicates the current record that the stream is viewing.

The GetNumRecs() method, which is the access method for the NumRecs property, determines
how many records exist in the stream. It does this by dividing the total size of the stream in
bytes, as determined from the TStream.Size property, by the size of the TPersonRec record.
Therefore, given that the TPersonRec record is 56 bytes, if the Size property has the value of
162, there would be four records in the stream. Note, however, that the record is guaranteed to
be 56 bytes only if it’s packed. The reason behind this is that structured types, such as records
and arrays, are aligned on word or double-word boundaries to allow for faster access. This can
mean that the record consumes more space than it actually needs. By using the reserved word
packed before the record declaration, you can ensure compressed and accurate data storage.
Not using the packed keyword might cause inaccurate results from the GetNumRecs() method.

The GetCurRec() method determines which record is the current record. You do this by divid-
ing the TStream.Position property by the size of the TPersonRec property and adding 1 to the
value. The SetCurRec() method places the file pointer at the position in the stream at the
beginning of the record specified by the RecNo property.

Working with Files

CHAPTER 12
549

12

W
O

R
K

IN
G

W
ITH

F
ILES

The SeekRec() method allows the caller to place the file pointer at a position determined by
the RecNo and Origin parameters. This method moves the file pointer forward or backward in
the stream from the beginning, ending, or current position of the file pointer, as specified by
the value of the Origin property. This is done by using the Seek() method of the TStream
object. The use of the TStream.Seek() method is explained in the online “Component Writers
Guide” help file.

The WriteRec() method writes the contents of the TPersonRec parameter to the file at the cur-
rent position, which will be the position of an existing record, so that it will overwrite that
record.

The AppendRec() method adds a new record to the end of the file.

The ReadRec() method reads the data from the stream into the TPersonRec parameter. It then
repositions the file pointer at the beginning of the record by using the Seek() method. The rea-
son for this is that in order to use the TRecordStream object in a database manner, the file
pointer must always be at the beginning of the current record (that is, the record being viewed).

The First() and Last() methods place the file pointer at the beginning and ending of the file,
respectively.

The NextRec() method places the file pointer at the beginning of the next record provided that
it’s not already sitting at the last record in the file.

The PreviousRec() method places the file pointer at the beginning of the preview record pro-
vided that the file pointer is not already at the first record in the file.

Using a TFileStream Descendant for File I/O
Listing 12.6 is the source code for the main form of an application that uses the
TRecordStream object. This project is FileOfRec.dpr on the CD.

LISTING 21.6 The Source Code for the Main Form of the FileOfRec.dpr Project

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, Mask, Persrec, ComCtrls;

const
// Declare the file name as a constant
FName = ‘PERSONS.DAT’;

type

Advanced Techniques

PART II
550

TMainForm = class(TForm)
edtFirstName: TEdit;
edtLastName: TEdit;
edtMI: TEdit;
meAge: TMaskEdit;
lblFirstName: TLabel;
lblLastName: TLabel;
lblMI: TLabel;
lblBirthDate: TLabel;
lblAge: TLabel;
btnFirst: TButton;
btnNext: TButton;
btnPrev: TButton;
btnLast: TButton;
btnAppend: TButton;
btnUpdate: TButton;
btnClear: TButton;
lblRecNoCap: TLabel;
lblRecNo: TLabel;
lblNumRecsCap: TLabel;
lblNoRecs: TLabel;
dtpBirthDay: TDateTimePicker;
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure FormShow(Sender: TObject);
procedure btnAppendClick(Sender: TObject);
procedure btnUpdateClick(Sender: TObject);
procedure btnFirstClick(Sender: TObject);
procedure btnNextClick(Sender: TObject);
procedure btnLastClick(Sender: TObject);
procedure btnPrevClick(Sender: TObject);
procedure btnClearClick(Sender: TObject);

public
PersonRec: TPersonRec;
RecordStream: TRecordStream;
procedure ShowCurrentRecord;

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.FormCreate(Sender: TObject);

Working with Files

CHAPTER 12
551

12

W
O

R
K

IN
G

W
ITH

F
ILES

continues

LISTING 21.6 Continued

begin
{ If the file does not exist, then create it, otherwise, open it for
both read and write access. This is done by instantiating
a TRecordStream }

if FileExists(FName) then
RecordStream := TRecordStream.Create(FName, fmOpenReadWrite)

else
RecordStream := TRecordStream.Create(FName, fmCreate);

end;

procedure TMainForm.FormDestroy(Sender: TObject);
begin
RecordStream.Free; // Free the TRecordStream instance

end;

procedure TMainForm.ShowCurrentRecord;
begin
// Read the current record.
RecordStream.ReadRec(PersonRec);
// Copy the data from the PersonRec to the form’s controls
with PersonRec do
begin
edtFirstName.Text := FirstName;
edtLastName.Text := LastName;
edtMI.Text := MI;
dtpBirthDay.Date := BirthDay;
meAge.Text := IntToStr(Age);

end;
// Show the record number and total records on the main form.
lblRecNo.Caption := IntToStr(RecordStream.CurRec);
lblNoRecs.Caption := IntToStr(RecordStream.NumRecs);

end;

procedure TMainForm.FormShow(Sender: TObject);
begin
// Display the current record only if one exists.
if RecordStream.NumRecs <> 0 then

ShowCurrentRecord;
end;

procedure TMainForm.btnAppendClick(Sender: TObject);
begin
// Copy the contents of the form controls to the PersonRec record
with PersonRec do

Advanced Techniques

PART II
552

begin
FirstName := edtFirstName.Text;
LastName := edtLastName.Text;
MI := edtMI.Text;
BirthDay := dtpBirthDay.Date;
Age := StrToInt(meAge.Text);

end;
// Write the new record to the stream
RecordStream.AppendRec(PersonRec);
// Display the current record.
ShowCurrentRecord;

end;

procedure TMainForm.btnUpdateClick(Sender: TObject);
begin
{ Copy the contents of the form controls to the PersonRec and write
it to the stream }

with PersonRec do
begin
FirstName := edtFirstName.Text;
LastName := edtLastName.Text;
MI := edtMI.Text;
BirthDay := dtpBirthDay.Date;
Age := StrToInt(meAge.Text);

end;
RecordStream.WriteRec(PersonRec);

end;

procedure TMainForm.btnFirstClick(Sender: TObject);
begin
{ Go to the first record in the stream and display it as long as
there are records that exist in the stream }

if RecordStream.NumRecs <> 0 then
begin
RecordStream.First;
ShowCurrentRecord;

end;
end;

procedure TMainForm.btnNextClick(Sender: TObject);
begin
// Go to the next record as long as records exist in the stream
if RecordStream.NumRecs <> 0 then
begin
RecordStream.NextRec;
ShowCurrentRecord;

Working with Files

CHAPTER 12
553

12

W
O

R
K

IN
G

W
ITH

F
ILES

continues

LISTING 21.6 Continued

end;
end;

procedure TMainForm.btnLastClick(Sender: TObject);
begin
{ Go to the last record in the stream as long as there are records
in the stream }

if RecordStream.NumRecs <> 0 then
begin
RecordStream.Last;
ShowCurrentRecord;

end;
end;

procedure TMainForm.btnPrevClick(Sender: TObject);
begin
{ Go to the previous record in the stream as long as there are records
in the stream }

if RecordStream.NumRecs <> 0 then
begin
RecordStream.PreviousRec;
ShowCurrentRecord;

end;
end;

procedure TMainForm.btnClearClick(Sender: TObject);
begin
// Clear all controls on the form
edtFirstName.Text := ‘’;
edtLastName.Text := ‘’;
edtMI.Text := ‘’;
meAge.Text := ‘’;

end;

end.

Figure 12.1 shows the main form for this sample project.

The main form contains both a TPersonRec field and a TRecordStream class. The TPersonRec
field holds the contents of the current record. The TRecordStream instance is created in the
form’s OnCreate event handler. If the file does not exist, it is created. Otherwise, it is opened.

Advanced Techniques

PART II
554

FIGURE 12.1
The main form for the TRecordStream example.

The ShowCurrentRecord() method is used to extract the current record from the stream by
calling the RecordStream.ReadRec() method. Recall that the RecordStream.ReadRec()
method first reads the record, which positions the file pointer to the end of the record after it’s
read. It then repositions the file pointer at the beginning of the record.

Most of the functionality of this application is discussed in the source commentary. We’ll
briefly discuss the important points here.

The btnAppendClick() adds a new record to the file.

The btnUpdateClick() method writes the contents of the form’s controls to the file at the
position of the current record, thus modifying the contents at that position.

The remaining methods reposition the file pointer to the next, previous, first, and last records
in the file, thus enabling you to browse the records in the file.

This example illustrates how you can use typed files to perform simple database operations
using standard file I/O. It also illustrates how to make use of the TFileStream object to wrap
the I/O functionality of the records in the file.

Working with Untyped Files
Up to this point, you’ve seen how to manipulate both text and typed files. Text files are used to
store ASCII character sequences. Typed files store data where each element of that data follows
the defined format of a Pascal record structure. In both cases, each file stores a number of
bytes that can be interpreted accordingly by applications.

Many files don’t follow an ordered format. For example, RTF files, although they do contain
text, also contain information about the various attributes of the text within that file. You can-
not load these files into any text editor to view them. You must use a view that’s capable of
interpreting rich text–formatted data.

The next few paragraphs illustrate how to manipulate untyped files.

Working with Files

CHAPTER 12
555

12

W
O

R
K

IN
G

W
ITH

F
ILES

The following line declares an untyped file:

var
UntypedFile: File;

This declares a file consisting of a sequence of blocks, each having 128 bytes of data.

To read data from an untyped file, you would use the BlockRead() procedure. To write data to
an untyped file, you use the BlockWrite() procedure. These procedures are declared as follows:

procedure BlockRead(var F: File; var Buf;
➥Count: Integer [; var Result: Integer]);

procedure BlockWrite(var f: File; var Buf;
➥Count: Integer [; var Result: Integer]);

Both BlockRead() and BlockWrite() take three parameters. The first parameter is an untyped
file variable, F. The second parameter is a variable buffer, Buf, which holds the data read from
or written to the file. The parameter Count contains the number of records to read from the file.
The optional parameter Result contains the number of records read from the file in a read
operation. In a write operation, Result contains the number of complete records written. If this
value does not equal Count, it’s possible that the disk has run out of space.

We’ll explain what we’re referring to when we say that these procedures read or write Count
records. When you declare an untyped file as follows, by default, this defines a file whose
records each consist of 128 bytes of data:

UntypedFile: File;

This has nothing to do with any particular record structure. It just specifies the size of the
block of data that’s read in for a single record. Listing 12.7 illustrates how to read one record
of 128 bytes from a file:

LISTING 12.7 Reading from an Untyped File

var
UnTypedFile: File;
Buffer: array[0..128] of byte;
NumRecsRead: Integer;

begin
AssignFile(UnTypedFile, ‘SOMEFILE.DAT’);
Reset(UnTypedFile);
try
BlockRead(UnTypedFile, Buffer, 1, NumRecsRead);

finally
CloseFile(UnTypedFile);

end;
end;

Advanced Techniques

PART II
556

Here, you open the file SOMEFILE.DAT and read 128 bytes of data (one record or block) into
the buffer appropriately named Buffer. To write 128 bytes of data to a file, take a look at
Listing 12.8.

LISTING 12.8 Writing Data to an Untyped File

var
UnTypedFile: File;
Buffer: array[0..128] of byte;
NumRecsWritten: Integer;

begin
AssignFile(UnTypedFile, ‘SOMEFILE.DAT’);
// If file doesn’t exist, create it. Otherwise,
// just open it for read/write access
if FileExists(‘SOMEFILE.DAT’) then
Reset(UnTypedFile)

else
Rewrite(UnTypedFile);

try
// Position the file pointer to the end of the file
Seek(UnTypedFile, FileSize(UnTypedFile));
FillChar(Buffer, SizeOf(Buffer), ‘Y’);
BlockWrite(UnTypedFile, Buffer, 1, NumRecsWritten);

finally
CloseFile(UnTypedFile);

end;
end;

A problem in using the default block size of 128 bytes when reading from a file is that its size
must be a multiple of 128 to avoid reading beyond the end of the file. You can get around this
by specifying a record size of one byte with the Reset() procedure. If you pass a record size
of one byte, reading blocks of any size will always be a multiple of one byte. As an example,
Listing 12.9 illustrates a simple file-copy routine using the Blockread() and BlockWrite()
procedures.

LISTING 12.9 A File-Copy Demo

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ComCtrls, Gauges;

Working with Files

CHAPTER 12
557

12

W
O

R
K

IN
G

W
ITH

F
ILES

continues

LISTING 12.9 Continued

type
TMainForm = class(TForm)
prbCopy: TProgressBar;
btnCopy: TButton;
procedure btnCopyClick(Sender: TObject);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.btnCopyClick(Sender: TObject);
var
SrcFile, DestFile: File;
BytesRead, BytesWritten, TotalRead: Integer;
Buffer: array[1..500] of byte;
FSize: Integer;

begin
{ Assign both the source and destination files to their
respective file variables }

AssignFile(SrcFile, ‘srcfile.tst’);
AssignFile(DestFile, ‘destfile.tst’);
// Open the source file for read access.
Reset(SrcFile, 1);
try
// Open destination file for write access.
Rewrite(DestFile, 1);
try
{ Encapsulate this into a try..except so that we can erase the file if
an error occurs. }

try
// Initialize total bytes read to zero.
TotalRead := 0;
// Obtain the filesize of the source file
FSize := FileSize(SrcFile);
{ Read SizeOf(Buffer) bytes from the source file
and add these bytes to the destination file. Repeat this
process until all bytes have been read from the source
file. A progress bar is provided to show the progress of the
copy operation. }

repeat
BlockRead(SrcFile, Buffer, SizeOf(Buffer), BytesRead);

Advanced Techniques

PART II
558

if BytesRead > 0 then
begin
BlockWrite(DestFile, Buffer, BytesRead, BytesWritten);
if BytesRead <> BytesWritten then
raise Exception.Create(‘Error copying file’)

else begin
TotalRead := TotalRead + BytesRead;
prbCopy.Position := Trunc(TotalRead / Fsize) * 100;
prbCopy.Update;

end;
end

until BytesRead = 0;
except
{ On an exception, erase the destination file as it may be
corrupt. Then re-raise the exception. }

Erase(DestFile);
raise;

end;
finally
CloseFile(DestFile); // Close the destination file.

end;
finally
CloseFile(SrcFile); // Close the source file.

end;
end;

end.

Working with Files

CHAPTER 12
559

12

W
O

R
K

IN
G

W
ITH

F
ILES

NOTE

One of the demos that ships with Delphi 5 comes with several useful file-handling
functions, including a function to copy a file. This demo is in the \DEMOS\DOC\FIL-
MANEX\ directory. Here are the functions contained in the FmxUtils.PAS file:

procedure CopyFile(const FileName, DestName: string);
procedure MoveFile(const FileName, DestName: string);
function GetFileSize(const FileName: string): LongInt;
function FileDateTime(const FileName: string): TDateTime;
function HasAttr(const FileName: string; Attr: Word): Boolean;
function ExecuteFile(const FileName, Params,
DefaultDir: string; ShowCmd: Integer): THandle;

Also, later in this chapter we show you how to copy files and entire directories using
the ShFileOperation() function.

First, the demo opens a source file for input and creates a destination file to which the source
file’s data will be copied. The variables TotalRead and FSize are used in updating a
TProgressBar component to indicate the status of the copy operation. Inside the repeat loop
is where the copy operation is actually performed. First, SizeOf(Buffer) bytes are read from
the source file. The variable BytesRead determines the actual number of bytes read. Then, an
attempt is made to copy BytesRead to the destination file. The number of actual bytes written
is stored in the variable BytesWritten. At this point, if no error has occurred, BytesRead and
BytesWritten will have the same values. This process is continued until all bytes of the file
have been copied. If an error occurs, an exception is raised and the destination file is erased
from the disk.

A sample application illustrating the preceding code exists on the CD as FileCopy.dpr.

The TTextRec and TFileRec Record Structures
Most file-management functions are really operating system functions or interrupts that have
been wrapped up in Object Pascal routines. The Reset() function, for example, is really a
Pascal wrapper to CreateFileA(), a Win32 function of the KERNEL32 dynamic link library.
By wrapping up these Win32 functions into Object Pascal functions, you do not have to worry
about the implementation details of these file operations. However, it also obscures how to
access certain file details when needed (such as the file handle) because these are hidden for
Object Pascal’s usage.

When using nonnative Object Pascal functions that require a file handle, such as LZCopy(),
you can get the file handle by typecasting your text file and binary file variables as TTextRec
and TFileRec, respectively. These record types contain the file handle as well as other file
details. Other than the file handle, you rarely will (and probably shouldn’t) access the other
data fields. The correct procedure for getting to the handle follows:

TFileRec(MyFileVar).Handle

The definition of the TTextRec record is shown here:

PTextBuf = ^TTextBuf;
TTextBuf = array[0..127] of Char; // Buffer definition for first 127

// characters in the file.
TTextRec = record

Handle: Integer; // File handle
Mode: Integer; // File mode
BufSize: Cardinal; // The following 4 parameters are
BufPos: Cardinal; // used for memory buffering.
BufEnd: Cardinal;
BufPtr: PChar;
OpenFunc: Pointer; // The XXXXFunc are points to file

Advanced Techniques

PART II
560

InOutFunc: Pointer; // access functions. They can be
FlushFunc: Pointer; // modified when writing certain
CloseFunc: Pointer; // file device drivers.
UserData: array[1..32] of Byte; // Not used.
Name: array[0..259] of Char; // File’s full path name
Buffer: TTextBuf; // Buffer containing the

➥first 127 characters of the file
end;

Here’s the definition of the TFileRec record structure:

TFileRec = record
Handle: Integer; // File Handle
Mode: Integer; // File mode
RecSize: Cardinal; // Size of each file record
Private: array[1..28] of Byte; // Used internally by Object Pascal
UserData: array[1..32] of Byte; // Not used.
Name: array[0..259] of Char; // File’s full path name

end;

Working with Memory-Mapped Files
Probably one of the most convenient features of the Win32 environment is the ability to access
files on disk as if you were accessing the file’s contents in memory. This capability is provided
through memory-mapped files.

Memory-mapped files enable you to avoid having to perform all the I/O operations on the file.
Instead, you reserve a range of virtual address space and commit the physical storage of the
file on disk to the address of this reserved memory space. You then reference the contents of
the file through a pointer into this reserved region. Shortly, we’ll show you how you can use
this capability to create a useful text-searching utility for text files, made simple through the
use of memory-mapped files.

Purposes for Memory-Mapped Files
Typically, there are three uses for memory-mapped files:

• The Win32 system loads and executes EXE and DLL files by using memory-mapped
files. This conserves paging file space and therefore decreases the load time for such
files.

• Memory-mapped files can be used to access data residing in the mapped file through a
pointer to the mapped memory region. This not only simplifies data access, but also
relieves you from having to code various file-buffering schemes.

• Memory-mapped files can be used to provide the ability to share data among different
processes running on the same machine.

Working with Files

CHAPTER 12
561

12

W
O

R
K

IN
G

W
ITH

F
ILES

We won’t discuss the first purpose for memory-mapped files because this really applies to the
system behavior. In this chapter, we discuss the second purpose of memory-mapped files
because this is a use that you, as a developer, will most likely need at some point. Chapter 9,
“Dynamic Link Libraries,” shows you how to share data with other processes by using mem-
ory-mapped files. You might want to look back at this example after reading this section so that
you fully understand what we showed you.

Using Memory-Mapped Files
When you create a memory-mapped file, you’re essentially associating the file to an area in the
process’s virtual memory address space. To create this association, you must create a file-map-
ping object. To view/edit the contents of a file, you must have a file view for the file-mapping
object. This enables you to access the contents of the file through a pointer as though you were
accessing an area of memory.

When you write to the file view, the system handles the caching, buffering, writing and loading
of the file’s data, as well as memory allocation and deallocation. As far as you’re concerned,
you’re editing data residing in an area of memory. The file I/O is handled entirely by the system.
This is the beauty of using memory-mapped files. Your task of file manipulation is greatly sim-
plified over the standard file I/O techniques discussed previously and is usually faster as well.

The following sections cover the steps required to create/open a memory-mapped file.

Creating/Opening the File
The first step in creating/opening a memory-mapped file is to obtain the file handle for the file
to be mapped. You can do this by using either the FileCreate() or FileOpen() functions.
FileCreate() is defined in the SysUtils.pas unit as follows:

function FileCreate(const FileName: string): Integer;

This function creates a new file with the filename specified by its FileName string parameter. If
the function is successful, a valid file handle is returned. Otherwise, the value defined by the
constant INVALID_HANDLE_VALUE is returned.

FileOpen() opens an existing file using a specified access mode. This function, when success-
ful, will return a valid file handle. Otherwise, it will return the value defined by the constant
INVALID_HANDLE_VALUE. FileOpen() is defined in the SysUtils.pas unit as follows:

function FileOpen(const FileName: string; Mode: Word): Integer;

The first parameter is the full path name of the file to which the mapping is to be applied. The
second parameter is one of the file-access modes described in Table 12.1.

Advanced Techniques

PART II
562

TABLE 12.1 fmOpenXXXX File Access Modes

Access Mode Meaning

fmOpenRead Enables you to read only from the file

fmOpenWrite Enables you to write only to the file

fmOpenReadWrite Enables you to read from and write to the file

If you specify a value of 0 as the Mode parameter, you won’t be able to read from or write to
the specified file. You might use this when all you want is to obtain various file attributes. You
can specify how a file can be shared with different applications by applying the bitwise or
operation using the access modes specified in Table 12.1 with one of the fmShareXXXX modes.
The fmShareXXXX modes are listed in Table 12.2.

TABLE 12.2 fmShareXXXX File Share Modes

Share Mode Meaning

fmShareCompat The file-sharing mechanism is compatible with DOS 1.x and 2.x file
control blocks. This is used in conjunction with other FmShareXXXX
modes.

fmShareExclusive No sharing allowed.

fmShareDenyWrite Other attempts to open the file with fmOpenWrite access fail.

fmShareDenyRead Other attempts to open the file with fmOpenRead access fail.

fmShareDenyNone Other attempts to open the file with any mode succeed.

After a valid file handle is obtained, it’s possible to obtain a file-mapping object.

Creating the File-Mapping Object
To create named or unnamed file-mapping objects, you use the CreateFileMapping() func-
tion. This function is defined as follows:

function CreateFileMapping(
hFile: THandle;
lpFileMappingAttributes: PSecurityAttributes;
flProtect,
dwMaximumSizeHigh,
dwMaximumSizeLow: DWORD;
lpName: PChar) : THandle;

The parameters passed to CreateFileMapping() give the system the necessary information
required to create the file-mapping object. The first parameter, hFile, is the file handle

Working with Files

CHAPTER 12
563

12

W
O

R
K

IN
G

W
ITH

F
ILES

obtained from the previous call to FileOpen() or FileCreate(). It’s important that the file be
opened with the protection flags compatible with the flProtect parameter, which we’ll dis-
cuss momentarily. Another method is to use CreateFileMapping() to create a file-mapping
object backed by the system paging file. This technique is used to enable the sharing of data
among separate processes that we illustrate in Chapter 9, “Dynamic Link Libraries.”

The lpFileMappingAttributes parameter is a PSecurityAttributes pointer, which refers to
the security attributes for the file-mapping object. This parameter will almost always be null.

The flProtect parameter specifies the type of protection applied to the file view. As we men-
tioned before, this value must be compatible with the attributes under which the file was
opened to obtain a file handle. Table 12.3 lists the various attributes that can be assigned to the
flProtect parameter.

TABLE 12.3 Protection Attributes

Protection Attribute Meaning

PAGE_READONLY You can read the file’s contents. The file must have been created with
the FileCreate() function or opened with FileOpen() and an
access mode of fmOpenRead.

PAGE_READWRITE You can read and write to the file. The file must have been opened
with the fmOpenReadWrite access mode.

PAGE_WRITECOPY You can read and write to the file. However, when you write to the
file, a private copy of the modified page is created. The significance
of this is that memory-mapped files that are shared between
processes do not consume twice the resources in system memory or
swap file usage. Only the memory required for the pages that are dif-
ferent is duplicated. The file must have been opened with the
fmOpenWrite or fmOpenReadWrite access.

You can also apply section attributes to the flProtect parameter by using the bitwise or oper-
ator. Table 12.4 explains the meaning of these attributes.

TABLE 12.4 Section Attributes

Section Attribute Meaning

SEC_COMMIT Allocates physical storage in memory or in the paging file for all
pages in a section. This is the default value.

SEC_IMAGE File-mapping information and attributes are taken from the file
image. This applies to executable image files only. (Note that this
attribute is ignored under Windows 95/98.)

Advanced Techniques

PART II
564

Section Attribute Meaning

SEC_NOCACHE No memory-mapped pages are cached. Therefore, the system applies
all file writes directly to the file’s data on disk. This mainly applies to
device drivers and not to applications. (Note that this attribute is
ignored under Windows 95/98.)

SEC_RESERVE Reserves pages of a section without allocating physical storage.

The dwMaximumSizeHigh parameter specifies the high-order 32 bits of the file-mapping object’s
maximum size. Unless you’re accessing files larger than 4GB, this value will always be zero.

The dwMinimumSizeLow parameter specifies the low-order 32 bits of the file-mapping object’s
maximum size. A value of zero for this parameter would indicate a maximum size for the file-
mapping object equal to the size of the file being mapped.

The lpName parameter specifies the name of the file-mapping object. This value may contain
any character except a backslash character (\). If this parameter matches the name of an exist-
ing file-mapping object, this function requests access to that same file-mapping object using
the attributes specified by the flProtect parameter. It’s valid to pass nil as this parameter,
which creates a nameless file-mapping object.

If CreateFileMapping() is successful, it returns a valid handle to a file-mapping object. If this
file-mapping object happens to refer to an already existing file-mapping object, the value
ERROR_ALREADY_EXISTS will be returned from the GetLastError() function. If
CreateFileMapping() fails, it returns a nil value. You must call the GetLastError() function
to determine the reason for failure.

Working with Files

CHAPTER 12
565

12

W
O

R
K

IN
G

W
ITH

F
ILES

CAUTION

Under Windows 95/98, do not use file I/O functions on file handles that have been
used to create file mappings. The data in such files may not be coherent. It is there-
fore recommended that you open the file with exclusive access. See the section
“Memory-Mapped File Coherence.”

After you’ve obtained a valid file-mapping object, you can map the file’s data into the
process’s address space.

Mapping a View of the File into the Process’s Address Space
The MapViewOfFile() function maps a view of the file into the process’s address space. This
function is defined as follows:

function MapViewOfFile(
hFileMappingObject: THandle;
dwDesiredAccess: DWORD;
dwFileOffsetHigh,
dwFileOffsetLow,
dwNumberOfBytesToMap: DWORD): Pointer;

hFileMappingObject is the handle to an open file-mapping object that was opened with a call
to either the CreateFileMapping() or OpenFileMapping() function.

The dwDesiredAccess parameter indicates how the file data is to be accessed and may be one
of the values specified in Table 12.5.

TABLE 12.5 Desired Access to File View

dwDesiredAccess Value Meaning

FILE_MAP_WRITE Allows read-write access to the file data. The PAGE_READ_WRITE
attribute must have been used with the CreateFileMapping()
function.

FILE_MAP_READ Allows read-only access to the file data. The PAGE_READ_WRITE or
PAGE_READ attribute must have been used with the
CreateFileMapping() function.

FILE_MAP_ALL_ACCESS Same access provided by using FILE_MAP_WRITE.

FILE_MAP_COPY Enables copy-on-write access. When you write to the file, a private
copy of the page written to is created. CreateFileMapping() must
have been used with the PAGE_READ_ONLY, PAGE_READ_WRITE, or
PAGE_WRITE_COPY attributes.

The dwFileOffsetHigh parameter specifies the high-order 32 bits of the file offset where the
file mapping begins.

The dwFileOffsetLow parameter specifies the lower-order 32 bits of the file offset where map-
ping begins.

The dwNumberOfBytesToMap parameter indicates how many bytes of the file to map. A zero
value indicates the entire file.

MapViewOfFile() returns the starting address of the mapped view. If it’s unsuccessful, nil is
returned and you must call the GetLastError() function to determine the cause of the error.

Unmapping the View of the File
The UnmapViewOfFile() function unmaps the view of the file from the calling process’s
address space. This function is defined as follows:

Advanced Techniques

PART II
566

function UnmapViewOfFile(lpBaseAddress: Pointer): BOOL;

This function’s single parameter lpBaseAddress must point to the base address of the mapped
region. This is the same value returned from the MapViewOfFile() function.

You need to call UnmapViewOfFile() when you’ve finished working with the file; otherwise, the
mapped region of memory will not get released by the system until your process terminates.

Closing the File-Mapping and File Kernel Objects
The calls to FileOpen() and CreateFileMapping() are both open kernel objects that you’re
responsible for closing. This is done by using the CloseHandle() function. CloseHandle() is
defined as follows:

function CloseHandle(hObject: THandle): BOOL;

If the call to CloseHandle() is successful, it will return True. Otherwise, it will return False,
and you’ll have to examine the result of GetLastError() to determine the cause of the error.

A Simple Memory-Mapped File Example
To illustrate the use of the memory-mapped file functions, examine Listing 12.10. You can find
this project on the CD as TextUpper.dpr.

LISTING 12.10 A Simple Memory-Mapped File Example

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls;

const
FName = ‘test.txt’;

type

TMainForm = class(TForm)
btnUpperCase: TButton;
memTextContents: TMemo;
lblContents: TLabel;
btnLowerCase: TButton;
procedure btnUpperCaseClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure btnLowerCaseClick(Sender: TObject);

Working with Files

CHAPTER 12
567

12

W
O

R
K

IN
G

W
ITH

F
ILES

continues

LISTING 12.10 Continued

public
UCase: Boolean;
procedure ChangeFileCase;

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.btnUpperCaseClick(Sender: TObject);
begin
UCase := True;
ChangeFileCase;

end;

procedure TMainForm.btnLowerCaseClick(Sender: TObject);
begin
UCase := False;
ChangeFileCase;

end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
memTextContents.Lines.LoadFromFile(FName);
// Change to upper case by default.
UCase := True;

end;

procedure TMainForm.ChangeFileCase;
var
FFileHandle: THandle; // Handle to the open file.
FMapHandle: THandle; // Handle to a file-mapping object
FFileSize: Integer; // Variable to hold the file size.
FData: PByte; // Pointer to the file’s data when mapped.
PData: PChar; // Pointer used to reference the file data.

begin

{ First obtain a file handle to the file to be mapped. This code
assumes the existence of the file. Otherwise, you can use the
FileCreate() function to create a new file. }

if not FileExists(FName) then

Advanced Techniques

PART II
568

raise Exception.Create(‘File does not exist.’)
else
FFileHandle := FileOpen(FName, fmOpenReadWrite);

// If CreateFile() was not successful, raise an exception
if FFileHandle = INVALID_HANDLE_VALUE then
raise Exception.Create(‘Failed to open or create file’);

try
{ Now obtain the file size which we will pass to the other file-
mapping functions. We’ll make this size one byte larger as we
need to append a null-terminating character to the end of the
mapped-file’s data.}

FFileSize := GetFileSize(FFileHandle, Nil);

{ Obtain a file-mapping object handle. If this function is not
successful, then raise an exception. }

FMapHandle := CreateFileMapping(FFileHandle, nil,
PAGE_READWRITE, 0, FFileSize, nil);

if FMapHandle = 0 then
raise Exception.Create(‘Failed to create file mapping’);

finally
// Release the file handle
CloseHandle(FFileHandle);

end;

try
{ Map the file-mapping object to a view. This will return a pointer
to the file data. If this function is not successful, then raise
an exception. }

FData := MapViewOfFile(FMapHandle, FILE_MAP_ALL_ACCESS, 0, 0, FFileSize);

if FData = Nil then
raise Exception.Create(‘Failed to map view of file’);

finally
// Release the file-mapping object handle
CloseHandle(FMapHandle);

end;

try
{ !!! Here is where you would place the functions to work with
the mapped file’s data. For example, the following line forces
all characters in the file to uppercase }
PData := PChar(FData);

Working with Files

CHAPTER 12
569

12

W
O

R
K

IN
G

W
ITH

F
ILES

continues

LISTING 12.10 Continued

// Position the pointer to the end of the file’s data
inc(PData, FFileSize);

// Append a null-terminating character to the end of the file’s data
PData^ := #0;

// Now set all characters in the file to upper-case
if UCase then
StrUpper(PChar(FData))

else
StrLower(PChar(FData));

finally
// Release the file mapping.
UnmapViewOfFile(FData);

end;
memTextContents.Lines.Clear;
memTextContents.Lines.LoadFromFile(FName);

end;

end.

You’ll see in Listing 12.10 that the first step is to obtain a handle to the file to be mapped to
the process’s region of memory. This is done by calling the FileOpen() function. You pass the
fmOpenReadWrite file-access mode to this function to give you read/write access to the file’s
contents.

Next, you obtain the size of the file and change the last character to a null terminator. This
should actually be the end-of-file marker, which is the same byte value as the null-terminator.
You do it here for clarity. The point is that because you’re manipulating the file’s data as a
null-terminating string, you need to ensure that a null-terminator is present.

The following step obtains the memory-mapping file object by calling CreateFileMapping().
If this function fails, you raise an exception. Otherwise, you go on to the next step to map the
file-mapping object to a view. Again, you raise an exception if this function fails.

You then change the case of the data in the file. If you were to view the file in a text editor
after executing this routine, you would see that the file’s characters have all been converted to
the selected case. Lastly, you unmap the view of the file by calling the UnMapViewOfFile()
function.

You might have noticed that in this code, you release both the file handle and the file-mapping
object’s handle before you even manipulate the file’s data after it has been mapped to a view.

Advanced Techniques

PART II
570

This is possible because the system keeps a usage count on the file handle and file-mapping
object when the call to MapViewOfFile() is made. Therefore, you can close the object up front
by calling CloseHandle(), thus reducing the chances of causing a resource leak. Later, you’ll
see a more elaborate use of memory-mapped files as you build a TMemoryMapFile class and
use it to perform text searches through text files.

Memory-Mapped File Coherence
The Win32 system ensures that multiple views of a file remain coherent as long as they’re
mapped using the same file-mapping object. This means that if one view modifies the contents
of a file, a second view will realize those modifications. Keep in mind, however, that this is
only true when using the same file-mapping objects. When you’re using different file-mapping
objects, multiple views are not guaranteed to be coherent. This particular problem exists only
with files that are mapped for write access. Read-only files are always coherent. Also, files
shared over a network are not kept coherent in write-file mappings in different machines.

The Text-File Search Utility
To illustrate a practical use of memory-mapped files, we’ve created a project that performs a
text search on text files in the current directory. The filenames, along with the number of times
a string is found in the file, are added to a list box on the main form. The main form for this
project is shown in Figure 12.2. You can find this project on the CD as FileSrch.dpr.

Working with Files

CHAPTER 12
571

12

W
O

R
K

IN
G

W
ITH

F
ILES

FIGURE 12.2
The main form for the text search project.

This project also illustrates how to encapsulate the functionality of memory-mapped files into
an object. To show this, we’ve created the TMemMapFile class.

The TMemMapFile Class
The unit containing the TMemMapFile class is shown in Listing 12.11.

LISTING 12.11 The Source Code for MemMap.pas, the Unit Defining the TMemMapFile Class

unit MemMap;

interface

uses Windows, SysUtils, Classes;

type
EMMFError = class(Exception);

TMemMapFile = class
private
FFileName: String; // File name of the mapped file.
FSize: Longint; // Size of the mapped view
FFileSize: Longint; // Actual File Size
FFileMode: Integer; // File access mode
FFileHandle: Integer; // File handle
FMapHandle: Integer; // Handle to the file mapping object.
FData: PByte; // Pointer to the file’s data
FMapNow: Boolean; // Determines whether or

// not to map view of immediately.
procedure AllocFileHandle;
{ Retrieves a handle to the disk file. }
procedure AllocFileMapping;
{ Retrieves a file-mapping object handle }
procedure AllocFileView;
{ Maps a view to the file }
function GetSize: Longint;
{ Returns the size of the mapped view }

public
constructor Create(FileName: String; FileMode: integer;

Size: integer; MapNow: Boolean); virtual;
destructor Destroy; override;
procedure FreeMapping;
property Data: PByte read FData;
property Size: Longint read GetSize;
property FileName: String read FFileName;
property FileHandle: Integer read FFileHandle;
property MapHandle: Integer read FMapHandle;

end;

implementation

Advanced Techniques

PART II
572

constructor TMemMapFile.Create(FileName: String; FileMode: integer;
Size: integer; MapNow: Boolean);

{ Creates Memory Mapped view of FileName file.
FileName: Full pathname of file.
FileMode: Use fmXXX constants.
Size: size of memory map. Pass zero as the size to use the

file’s own size.
}
begin

{ Initialize private fields }
FMapNow := MapNow;
FFileName := FileName;
FFileMode := FileMode;

AllocFileHandle; // Obtain a file handle of the disk file.
{ Assume file is < 2 gig }

FFileSize := GetFileSize(FFileHandle, Nil);
FSize := Size;

try
AllocFileMapping; // Get the file mapping object handle.

except
on EMMFError do
begin
CloseHandle(FFileHandle); // close file handle on error
FFileHandle := 0; // set handle back to 0 for clean up
raise; // re-raise exception

end;
end;
if FMapNow then
AllocFileView; // Map the view of the file

end;

destructor TMemMapFile.Destroy;
begin

if FFileHandle <> 0 then
CloseHandle(FFileHandle); // Release file handle.

{ Release file mapping object handle }
if FMapHandle <> 0 then
CloseHandle(FMapHandle);

FreeMapping; { Unmap the file mapping view . }

Working with Files

CHAPTER 12
573

12

W
O

R
K

IN
G

W
ITH

F
ILES

continues

LISTING 12.11 Continued

inherited Destroy;
end;

procedure TMemMapFile.FreeMapping;
{ This method unmaps the view of the file from this process’s address
space. }

begin
if FData <> Nil then
begin
UnmapViewOfFile(FData);
FData := Nil;

end;
end;

function TMemMapFile.GetSize: Longint;
begin
if FSize <> 0 then
Result := FSize

else
Result := FFileSize;

end;

procedure TMemMapFile.AllocFileHandle;
{ creates or opens disk file before creating memory mapped file }
begin
if FFileMode = fmCreate then
FFileHandle := FileCreate(FFileName)

else
FFileHandle := FileOpen(FFileName, FFileMode);

if FFileHandle < 0 then
raise EMMFError.Create(‘Failed to open or create file’);

end;

procedure TMemMapFile.AllocFileMapping;
var
ProtAttr: DWORD;

begin
if FFileMode = fmOpenRead then // obtain correct protection attribute
ProtAttr := Page_ReadOnly

else
ProtAttr := Page_ReadWrite;

{ attempt to create file mapping of disk file.
Raise exception on error. }

FMapHandle := CreateFileMapping(FFileHandle, Nil, ProtAttr,

Advanced Techniques

PART II
574

0, FSize, Nil);
if FMapHandle = 0 then
raise EMMFError.Create(‘Failed to create file mapping’);

end;

procedure TMemMapFile.AllocFileView;
var
Access: Longint;

begin
if FFileMode = fmOpenRead then // obtain correct file mode
Access := File_Map_Read

else
Access := File_Map_All_Access;

FData := MapViewOfFile(FMapHandle, Access, 0, 0, FSize);
if FData = Nil then
raise EMMFError.Create(‘Failed to map view of file’);

end;

end.

The commentary lists the purpose of the various fields and methods for the TMemMapFile class.

The class contains the methods AllocFileHandle(), AllocFileMapping(), and
AllocFileView() to retrieve the file handle, file-mapping object handle, and a view to the
specified file, respectively.

The Create() constructor is where the fields get initialized and the methods to allocate the
various handles get called. Failure of any of those methods results in an exception being raised.
The Destroy() destructor ensures that the view gets unmapped by calling the
UnMapViewOfFile() method.

Using the TMemMapFile Class
The main form for the file-search project is shown in Listing 12.12.

LISTING 12.12 The Source Code for the Main Form for the File-Search Project

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Buttons, FileCtrl;

type

Working with Files

CHAPTER 12
575

12

W
O

R
K

IN
G

W
ITH

F
ILES

continues

LISTING 12.12 Continued

TMainForm = class(TForm)
btnSearch: TButton;
lbFilesFound: TListBox;
edtSearchString: TEdit;
lblSearchString: TLabel;
lblFilesFound: TLabel;
memFileText: TMemo;
btnFindNext: TButton;
FindDialog: TFindDialog;
dcbDrives: TDriveComboBox;
dlbDirectories: TDirectoryListBox;
procedure btnSearchClick(Sender: TObject);
procedure lbFilesFoundClick(Sender: TObject);
procedure btnFindNextClick(Sender: TObject);
procedure FindDialogFind(Sender: TObject);
procedure edtSearchStringChange(Sender: TObject);
procedure memFileTextChange(Sender: TObject);

public
end;

var
MainForm: TMainForm;

implementation
uses MemMap, Search;

{$R *.DFM}

procedure TMainForm.btnSearchClick(Sender: TObject);
var
MemMapFile: TMemMapFile;
SearchRec: TSearchRec;
RetVal: Integer;
FoundStr: PChar;
FName: String;
FindString: String;
WordCount: Integer;

begin
memFileText.Lines.Clear;
btnFindNext.Enabled := False;
lbFilesFound.Items.Clear;

{ Retrieve each text file on which the text search is to be
performed. Use the FindFirst/FindeNext sequence on this search. }

RetVal := FindFirst(dlbDirectories.Directory+’*.txt’, faAnyFile, SearchRec);

Advanced Techniques

PART II
576

try
while RetVal = 0 do
begin
FName := SearchRec.Name;

// Open the memory mapped file for read-only access.
MemMapFile := TMemMapFile.Create(FName, fmOpenRead, 0, True);
try

{ Use a temporary storage for the search string }
FindString := edtSearchString.Text;

WordCount := 0; // Initialize the WordCount to zero
{ Get the first occurrence of the search string }
FoundStr := StrPos(PChar(MemMapFile.Data), PChar(FindString));

if FoundStr <> nil then
begin
{ Continue to search through the remaining text of the file
for occurrences of the search string. On each find,
increment the WordCount variable }

repeat
inc(WordCount);
inc(FoundStr, Length(FoundStr));

{ Retrieve the next occurrence of the search string. }
FoundStr := StrPos(PChar(FoundStr), PChar(FindString));

until FoundStr = nil;
{ Add the file’s name to the list box }
lbFilesFound.Items.Add(SearchRec.Name +

‘ - ‘+IntToStr(WordCount));
end;
{ Retrieve the next file on which to perform the search }
RetVal := FindNext(SearchRec);

finally
MemMapFile.Free; { Free the memory mapped file instance }

end;
end;

finally
FindClose(SearchRec);

end;
end;

procedure TMainForm.lbFilesFoundClick(Sender: TObject);
var
FName: String;

Working with Files

CHAPTER 12
577

12

W
O

R
K

IN
G

W
ITH

F
ILES

continues

LISTING 12.12 Continued

B: Byte;
begin
with lbFilesFound do
if ItemIndex <> -1 then
begin
B := Pos(‘ ‘, Items[ItemIndex]);
FName := Copy(Items[ItemIndex], 1, B);
memFileText.Clear;
memFileText.Lines.LoadFromFile(FName);

end;
end;

procedure TMainForm.btnFindNextClick(Sender: TObject);
begin
FindDialog.FindText := edtSearchString.Text;
FindDialog.Execute;
FindDialog.Top := Top+Height;
FindDialogFind(FindDialog);

end;

procedure TMainForm.FindDialogFind(Sender: TObject);
begin
with Sender as TFindDialog do
if not SearchMemo(memFileText, FindText, Options) then
ShowMessage(‘Cannot find “‘ + FindText + ‘“.’);

end;

procedure TMainForm.edtSearchStringChange(Sender: TObject);
begin
btnSearch.Enabled := edtSearchString.Text <> EmptyStr;

end;

procedure TMainForm.memFileTextChange(Sender: TObject);
begin
btnFindNext.Enabled := memFileText.Lines.Count > 0;

end;

end.

This project performs a case-sensitive search on text files in the current directory.

btnSearchClick() contains the code that performs the actual search, determines the number of
times the specified string is found in each file, and adds the files containing the search string to
lbFilesFound.

Advanced Techniques

PART II
578

It first uses a FindFirst()/FindNext() sequence of calls to find each file with a .txt exten-
sion in the current directory. Both these functions are discussed later in this chapter. The
method then uses a TMemMapFile class on the temporary file to get access to the file’s data.
This file is opened with read-only access because you won’t be modifying it. The following
lines of code perform the logic required to obtain a count of the number of times the search
string occurs in the file:

if FoundStr <> nil then
begin
repeat
inc(WordCount);
inc(FoundStr, length(FoundStr));
FoundStr := StrPos(PChar(FoundStr), PChar(FindString))

until FoundStr = nil;

Both the filename and number of occurrences of the search string in the file are added to
lbFilesFound.

When the user double-clicks a TListBox item, the file is loaded into the TMemo control, where
the user can locate each occurrence of the search string by clicking the Find Next button.

The btnFindNext() event handler initializes the FindDialog.FindText property to the string
in edtSearchString. It then invokes FindDialog.

When the user clicks the Find Next button on FindDialog, its OnFind event handler gets
invoked. This event handler is FindDialogFind(). FindDialogFind() uses the function
SearchMemo(), which is defined in the unit Search.pas.

SearchMemo() scans the text of any TCustomEdit descendant and selects that text, which
brings it into view.

Working with Files

CHAPTER 12
579

12

W
O

R
K

IN
G

W
ITH

F
ILES

NOTE

The Search.pas unit is a file that ships with Borland Delphi 1.0 as one of its demos.
We obtained permission to include this file on the CD-ROM accompanying this book
from Borland. This unit does not make use of various string-handling features
because it was designed for Delphi 1.0. We did, however, make a minor change to
allow a TMemo control to bring the caret into view, which was done automatically in
Windows 3.1. In Win32, you must pass an EM_SCROLLCARET message to the TMemo con-
trol after setting its SelStart property. Read the comments in Search.pas for further
information.

Directories and Drives
You can perform several tasks that you might find useful in your applications with the drives
installed on a system and the directories on those drives. The next several sections cover some
of these tasks.

Obtaining a List of Available Drives and Drive Types
To obtain a list of available drives on your system, you use the GetDriveType() Win32 API
function. This function takes a PChar parameter and returns an integer value representing one
of the drive types specified in Table 12.6.

TABLE 12.6 GetDriveType() Return Values

Return Value Meaning

0 Cannot determine the drive type.

1 Root directory does not exist.

DRIVE_REMOVABLE Drive is removable.

DRIVE_FIXED Drive is not removable.

DRIVE_REMOTE Drive is a remote (network) drive.

DRIVE_CDROM Drive is a CD-ROM drive.

DRIVE_RAMDISK Drive is a RAM disk.

Listing 12.13 illustrates how you would use the GetDriveType() function.

LISTING 12.13 Use of the GetDriveType() Function

procedure TMainForm.btnGetDriveTypesClick(Sender: TObject);
var
i: Integer;
C: String;
DType: Integer;
DriveString: String;

begin
{ Loop from A..Z to determine available drives }
for i := 65 to 90 do
begin
C := chr(i)+’:\’; // Format a string to represent the root directory.
{ Call the GetDriveType() function which returns an integer
value representing one of the types shown in the case statement
below }

DType := GetDriveType(PChar(C));

Advanced Techniques

PART II
580

{ Based on the drive type returned, format a string to add to
the listbox displaying the various drive types. }

case DType of
0: DriveString := C+’ The drive type cannot be determined.’;
1: DriveString := C+’ The root directory does not exist.’;
DRIVE_REMOVABLE: DriveString :=

C+’ The drive can be removed from the drive.’;
DRIVE_FIXED: DriveString :=

C+’ The disk cannot be removed from the drive.’;
DRIVE_REMOTE: DriveString :=

C+’ The drive is a remote (network) drive.’;
DRIVE_CDROM: DriveString := C+’ The drive is a CD-ROM drive.’;
DRIVE_RAMDISK: DriveString := C+’ The drive is a RAM disk.’;

end;
{ Only add drive types that can be determined. }
if not ((DType = 0) or (DType = 1)) then
lbDrives.Items.AddObject(DriveString, Pointer(i));

end;

end;

Listing 12.13 is a simple routine that loops through all characters in the alphabet and passes
them to the GetDriveType() function as root directories to determine whether they are valid
drive types. If so, GetDriveType() will return which type of drive they are, which is deter-
mined by the case statement. A descriptive string is created and added to a list box along with
the number representing the drive letter in the list box’s Objects array. Only those drives that
are valid are added to the list box. By the way, Delphi 5 does come with a TDriveComboBox
component that enables you to select a drive. You’ll find this on the Win 3.1 page of the
Component Palette.

Obtaining Drive Information
In addition to determining the available drives and their types, you can obtain useful informa-
tion on a particular drive. This information includes the following:

• Sectors per cluster

• Bytes per sector

• Number of free clusters

• Total number of clusters

• Total bytes of free disk space

• Total bytes of disk size

Working with Files

CHAPTER 12
581

12

W
O

R
K

IN
G

W
ITH

F
ILES

The first four items can be obtained by calling the GetDiskFreeSpace() Win32 API function.
The last two items can be calculated from the information provided by GetDiskFreeSpace().
Listing 12.14 illustrates how you would use GetDiskFreeSpace().

LISTING 12.14 Use of the GetDiskFreeSpace() Function

procedure TMainForm.lbDrivesClick(Sender: TObject);
var
RootPath: String; // Holds the drive root path
SectorsPerCluster: DWord; // Sectors per cluster
BytesPerSector: DWord; // Bytes per sector
NumFreeClusters: DWord; // Number of free clusters
TotalClusters: DWord; // Total clusters
DriveByte: Byte; // Drive byte value
FreeSpace: Int64; // Free space on drive
TotalSpace: Int64; // Total drive space.
DriveNum: Integer; // Drive number 1 = A, 2 = B, etc.

begin
with lbDrives do
begin
{ Convert the ascii value for the drive letter to a valid drive number:

1 = A, 2 = B, etc. by subtracting 64 from the ascii value. }
DriveByte := Integer(Items.Objects[ItemIndex])-64;
{ First create the root path string }
RootPath := chr(Integer(Items.Objects[ItemIndex]))+’:\’;
{ Call GetDiskFreeSpace to obtain the drive information }
if GetDiskFreeSpace(PChar(RootPath), SectorsPerCluster,
BytesPerSector, NumFreeClusters, TotalClusters) then

begin
{ If this function is successful, then update the labels to
display the disk information. }

lblSectPerCluster.Caption := Format(‘%.0n’, [SectorsPerCluster*1.0]);
lblBytesPerSector.Caption := Format(‘%.0n’, [BytesPerSector*1.0]);
lblNumFreeClust.Caption := Format(‘%.0n’, [NumFreeClusters*1.0]);
lblTotalClusters.Caption := Format(‘%.0n’, [TotalClusters*1.0]);
// Obtain the available disk space
FreeSpace := DiskFree(DriveByte);
TotalSpace := DiskSize(DriveByte);
lblFreeSpace.Caption := Format(‘%.0n’, [FreeSpace*1.0]);
{ Calculate the total disk space }
lblTotalDiskSpace.Caption := Format(‘%.0n’, [TotalSpace*1.0]);

end
else begin
{ Set labels to display nothing }

Advanced Techniques

PART II
582

lblSectPerCluster.Caption := ‘X’;
lblBytesPerSector.Caption := ‘X’;
lblNumFreeClust.Caption := ‘X’;
lblTotalClusters.Caption := ‘X’;
lblFreeSpace.Caption := ‘X’;
lblTotalDiskSpace.Caption := ‘X’;
ShowMessage(‘Cannot get disk info’);

end;
end;

end;

Listing 12.14 is the OnClick event handler for a list box. In fact, a sample project illustrating
both the GetDriveType() and GetDiskFreeSpace() functions exists on the CD as
DrvInfo.dpr.

In Listing 12.14, when the user clicks one of the available items in lbDrives, a string repre-
senting the root directory for that drive is created and passed to the GetDiskFreeSpace() func-
tion. If the function is successful in determining the drive information, various labels on the
form are updated to reflect that information. An example of the form for the sample project
just mentioned is shown in Figure 12.3.

Note that you don’t use the values returned from GetDiskFreeSpace() to determine the drive’s
size or its free space. Instead, you use the DiskFree() and DiskSize() functions that are
defined in SysUtils.pas. The reason for this is that GetDiskFreeSpace() is flawed in
Windows 95 in that it does not report drive sizes larger then 2GB, and it reports altered sector
sizes for drives larger then 1GB. The DiskSize() and DiskFree() functions use a new Win32
API to obtain the information if it’s available from the operating system.

Working with Files

CHAPTER 12
583

12

W
O

R
K

IN
G

W
ITH

F
ILES

FIGURE 12.3
The main form showing drive information for available drives.

Obtaining the Location of the Windows Directory
To obtain the location of the Windows directory, you must use the GetWindowsDirectory()
Win32 API function. This function is defined as follows:

function GetWindowsDirectory(lpBuffer: PChar; uSize: UINT): UINT;

The first parameter is a null-terminated string buffer that will hold the Windows directory loca-
tion. The second parameter indicates the size of the buffer. The following code fragment illus-
trates how you would use this function:

var
WDir: String;

begin
SetLength(WDir, 144);
if GetWindowsDirectory(PChar(WDir), 144) <> 0 then
begin
SetLength(WDir, StrLen(PChar(WDir)));
ShowMessage(WDir);

end
else
RaiseLastWin32Error;

end;

Notice that because we used a long-string variable, we were able to typecast it as a PChar type.
The GetWindowsDirectory() function returns an integer value representing the length of the
directory path. Otherwise, it returns zero, indicating that an error occurred, in which case you
must call RaiseLastWin32Error to determine the cause.

Advanced Techniques

PART II
584

NOTE

You’ll notice in the preceding code that we added the following line after the call to
GetWindowsDirectory():

SetLength(WDir, StrLen(PChar(WDir)));

Whenever you pass a long string to a function by first typecasting it as a PChar,
Delphi doesn’t know that the string has been manipulated and therefore cannot
update its length information. You must explicitly do this by using the technique
shown, which uses StrLen() to search for the null-terminator to determine the
string’s length. It then resizes the string through SetLength().

Obtaining the Location of the System Directory
You can also obtain the location of the system directory by calling the GetSystemDirectory()
Win32 API function. GetSystemDirectory() works just like GetWindowsDirectory() except

that it returns the full path to the Windows system directory as opposed to the Windows direc-
tory. The following code fragment illustrates how you would use this function:

var
SDir: String;

begin
SetLength(SDir, 144);
if GetSystemDirectory(PChar(SDir), 144) <> 0 then
begin
SetLength(SDir, StrLen(PChar(SDir)));
ShowMessage(SDir);

end
else
RaiseLastWin32Error;

end;

The return value of this function represents the same values from the GetWindowsDirectory()
function.

Obtaining the Name of the Current Directory
Often, you need to obtain the current directory (that is, the directory from which your applica-
tion was executed). To do this, you call the GetCurrentDirectory() Win32 API function. If
you guess that the GetCurrentDirectory() operates just like the last two functions mentioned,
you’re absolutely right (well, sort of). There’s one slight catch—the parameters are reversed.
The following code fragment illustrates the use of this function:

var
CDir: String;

begin
SetLength(CDir, 144);
if GetCurrentDirectory(144, PChar(CDir)) <> 0 then
begin
SetLength(CDir, StrLen(PChar(CDir)));
ShowMessage(CDir);

end
else
RaiseLastWin32Error;

end;

Working with Files

CHAPTER 12
585

12

W
O

R
K

IN
G

W
ITH

F
ILES

NOTE

Delphi provides the functions CurDir() and ChDir() in the System unit as well as the
GetCurrentDir() and SetCurrentDir() functions in SysUtils.pas.

TABLE 12.7 Delphi File/Directory Information Function

Function Result of Passing “C:\Delphi\Bin\Project.exe”

ExtractFileDir() C:\Delphi\Bin

ExtractFileDrive() C:

ExtractFileExt() .exe

ExtractFileName() Project1.exe

ExtractFilePath() C:\Delphi\Bin\

Searching for a File Across Directories
You might at some time need to search for or perform some process on files, given a file mask
across a directory and its subdirectories. Listing 12.15 illustrates how you can do this using a
procedure that gets called recursively so that the subdirectories can be searched as well as the
current directory. This demo exists on the CD as DirSrch.dpr.

Advanced Techniques

PART II
586

NOTE

Delphi comes with its own set of routines to obtain directory information on a given
file. For example, the TApplication.ExeName property holds the full path and file-
name for the running process. Assuming that this parameter holds the value
“C:\Delphi\Bin\Project.exe”, Table 12.7 shows the values returned from the vari-
ous Delphi functions when passing the TApplication.ExeName property.

NOTE

You can use the Win32 API function SearchPath() to search across a specified direc-
tory, the system directories, directories in the environment variable PATH, or a semi-
colon-delimited list of directories. This function doesn’t search across subdirectories
of a given directory, however.

LISTING 12.15 Example of Searching Across Directories to Perform a File Search

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, StdCtrls, FileCtrl, Grids, Outline, DirOutln;

type
TMainForm = class(TForm)
dcbDrives: TDriveComboBox;
edtFileMask: TEdit;
lblFileMask: TLabel;
btnSearchForFiles: TButton;
lbFiles: TListBox;
dolDirectories: TDirectoryOutline;
procedure btnSearchForFilesClick(Sender: TObject);
procedure dcbDrivesChange(Sender: TObject);

private
FFileName: String;
function GetDirectoryName(Dir: String): String;
procedure FindFiles(APath: String);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

function TMainForm.GetDirectoryName(Dir: String): String;
{ This function formats the directory name so that it is a valid
directory containing the back-slash (\) as the last character. }

begin
if Dir[Length(Dir)]<> ‘\’ then
Result := Dir+’\’

else
Result := Dir;

end;

procedure TMainForm.FindFiles(APath: String);
{ This is a procedure which is called recursively so that it finds the
file with a specified mask through the current directory and its
sub-directories. }

var
FSearchRec,
DSearchRec: TSearchRec;
FindResult: integer;

function IsDirNotation(ADirName: String): Boolean;
begin

Working with Files

CHAPTER 12
587

12

W
O

R
K

IN
G

W
ITH

F
ILES

continues

LISTING 12.15 Continued

Result := (ADirName = ‘.’) or (ADirName = ‘..’);
end;

begin
APath := GetDirectoryName(APath); // Obtain a valid directory name
{ Find the first occurrence of the specified file name }
FindResult := FindFirst(APath+FFileName,faAnyFile+faHidden+

faSysFile+faReadOnly,FSearchRec);
try
{ Continue to search for the files according to the specified
mask. If found, add the files and their paths to the listbox.}

while FindResult = 0 do
begin
lbFiles.Items.Add(LowerCase(APath+FSearchRec.Name));
FindResult := FindNext(FSearchRec);

end;

{ Now search the sub-directories of this current directory. Do this
by using FindFirst to loop through each subdirectory, then call
FindFiles (this function) again. This recursive process will
continue until all sub-directories have been searched. }

FindResult := FindFirst(APath+’*.*’, faDirectory, DSearchRec);

while FindResult = 0 do
begin
if ((DSearchRec.Attr and faDirectory) = faDirectory) and not
IsDirNotation(DSearchRec.Name) then
FindFiles(APath+DSearchRec.Name); // Recursion here

FindResult := FindNext(DSearchRec);
end;

finally
FindClose(FSearchRec);

end;
end;

procedure TMainForm.btnSearchForFilesClick(Sender: TObject);
{ This method starts the searching process. It first changes the cursor
to an hourglass since the process may take awhile. It then clears the
listbox and calls the FindFiles() function which will be called
recursively to search through sub-directories }

begin
Screen.Cursor := crHourGlass;
try
lbFiles.Items.Clear;
FFileName := edtFileMask.Text;
FindFiles(dolDirectories.Directory);

Advanced Techniques

PART II
588

finally
Screen.Cursor := crDefault;

end;
end;

procedure TMainForm.dcbDrivesChange(Sender: TObject);
begin
dolDirectories.Drive := dcbDrives.Drive;

end;

end.

In the FindFiles() method, the first while..do construct searches for files in the current
directory specified by the APath parameter and then adds the files and their paths to lbFiles.
The second while..do construct finds the subdirectories in the current directory and appends
them to the APath variable. The FindFiles() method then passes APath, now with a subdirec-
tory name, to itself, resulting in a recursive call. This process continues until all subdirectories
have been searched through.

Figure 12.4 shows the results of a file search for all PAS files in the Delphi 5 Code directory.

Working with Files

CHAPTER 12
589

12

W
O

R
K

IN
G

W
ITH

F
ILES

FIGURE 12.4
The result of a file search across directories.

Two Object Pascal structures and two functions merit mention here. First, we’ll talk about the
TSearchRec structure and the FindFirst() and FindNext() functions. Then, we’ll discuss the
TWin32FindData structure.

Copying and Deleting a Directory Tree
Before Win32, you were required to parse a directory tree and use the
FindFirst()/FindNext() pairs to copy a directory to another location. Now you can use the

ShFileOperation() Win32 function, which greatly simplifies the process. The following code
illustrates a function that uses the ShFileOperation() API to perform a directory copy opera-
tion. This function is well documented in the Win32 online help, so we won’t repeat that infor-
mation here. Instead, we suggest that you give it a readthrough. Note the inclusion of the
ShellAPI unit in the uses clause. Here’s the code:

uses
ShellAPI;

procedure CopyDirectoryTree(AHandle: THandle; AFromDir, AToDir: String);
var
SHFileOpStruct: TSHFileOpStruct;

Begin
with SHFileOpStruct do
begin
Wnd := AHandle;
wFunc := FO_COPY;
pFrom := PChar(AFromDir);
pTo := PChar(AToDir);
fFlags := FOF_NOCONFIRMATION or FOF_RENAMEONCOLLISION;
fAnyOperationsAborted := False;
hNameMappings := nil;
lpszProgressTitle := nil;

end;
ShFileOperation(SHFileOpStruct);

end;

The ShFileOperation() function can also be used to move a directory to the Recycle Bin, as
illustrated here:

uses ShellAPI;

procedure ToRecycle(AHandle: THandle; AFileName: STring);
var
SHFileOpStruct: TSHFileOpStruct;

begin
with SHFileOpStruct do
begin
Wnd := AHandle;
wFunc := FO_DELETE;
pFrom := PChar(AFileName);
fFlags := FOF_ALLOWUNDO;

end;
SHFileOperation(SHFileOpStruct);

end;

We will discuss the SHFileOperation() in greater detail later in this chapter.

Advanced Techniques

PART II
590

The TSearchRec Record
The TSearchRec record defines data returned by the FindFirst() and FindNext() functions.
Object Pascal defines this record as the following:

TSearchRec = record
Time: Integer;
Size: Integer;
Attr: Integer;
Name: TFileName;
ExcludeAttr: Integer;
FindHandle: THandle;
FindData: TWin32FindData;

end;

TSearchRec’s fields are modified by the aforementioned functions when the file is found.

The Time field contains the file time of creation or modification. The Size field contains the
size of the file in bytes. The Name field holds the name of the file. The Attr field contains one
or more of the file attributes shown in Table 12.8.

TABLE 12.8 File Attributes

Attribute Value Description

faReadOnly $01 Read-only file

faHidden $02 Hidden file

faSysFile $04 System file

faVolumeID $08 Volume ID file

faDirectory $10 Directory

faArchive $20 Archive file

faAnyFile $3F Any file

The FindHandle and ExcludeAttr fields are used internally by FindFirst() and FindNext().
You need not concern yourself with these fields.

Both FindFirst() and FindNext() take a path as a parameter that can contain wildcard char-
acters—for example, C:\DELPHI 5\BIN*.EXE means all files with an .EXE extension in the
C:\DELPHI 5\BIN\ directory. The Attr parameter specifies the file attributes on which to
search. Suppose that you want to search on system files only; you would invoke FindFirst()
and/or FindNext(), as in this code:

FindFirst(Path, faSysFile, SearchRec);

Working with Files

CHAPTER 12
591

12

W
O

R
K

IN
G

W
ITH

F
ILES

The TWin32FindData Record
The TWin32FindData record contains information about the found file or subdirectory. This
record is defined as follows:

TWin32FindData = record
dwFileAttributes: DWORD;
ftCreationTime: TFileTime;
ftLastAccessTime: TFileTime;
ftLastWriteTime: TFileTime;
nFileSizeHigh: DWORD;
nFileSizeLow: DWORD;
dwReserved0: DWORD;
dwReserved1: DWORD;
cFileName: array[0..MAX_PATH - 1] of AnsiChar;
cAlternateFileName: array[0..13] of AnsiChar;

end;

Table 12.9 shows the meaning of TWin32FindData’s fields.

TABLE 12.9 TWin32FindData Field Meanings

Field Meaning

dwFileAttributes The file attributes for the found file. See the online help under
WIN32_FIND_DATA for more information.

FtCreationTime The time the file was created.

FtLastAccessTime The time the file was last accessed.

FtLastWriteTime The time the file was last modified.

NFileSizeHigh The high-order DWORD of the file size in bytes. This value is zero
unless the file is larger than MAXDWORD.

NFileSizeLow The low-order DWORD of the file size in bytes.

DwReserved0 Not currently used (reserved).

DwReserved1 Not currently used (reserved).

CFileName Null-terminated filename.

CAlternateFileName An 8.3 formatted name, a truncation of the long filename.

Getting File Version Information
It’s possible to extract version information from EXE and DLL files that contain the version
information resource. In the following sections, you create a class that encapsulates the func-
tionality to extract the version information resource, and you use that class in a sample project.

Advanced Techniques

PART II
592

Defining the TVerInfoRes Class
The TVerInfoRes class encapsulates three Win32 API functions for extracting version informa-
tion from files that contain version information. These functions are
GetFileVersionInfoSize(), GetFileVersionInfo() and VerQueryValue(). Version informa-
tion on a file may include data such as company name, file description, version, and comments,
just to name a few. The data that TVerInfoRes retrieves is as follows:

• Company name. The name of the company that created the file

• Comments. Any additional comments that may be attached to the file

• File description. A description of the file

• File version. A version number

• Internal name. An internal name as defined by the company generating the file

• Legal copyright. All copyright notices that apply to the file

• Legal trademarks. Legal trademarks that apply to the file

• Original filename. The original filename (if any)

The unit that defines the TVerInfoRes class, VERINFO.PAS, is shown in Listing 12.16.

LISTING 12.16 The Source Code for VERINFO.PAS, the TVerInfoRes Class Definition

unit VerInfo;

interface

uses SysUtils, WinTypes, Dialogs, Classes;

type
{ define a generic exception class for version info, and an exception
to indicate that no version info is available. }

EVerInfoError = class(Exception);
ENoVerInfoError = class(Exception);
eNoFixeVerInfo = class(Exception);

// define enum type representing different types of version info
TVerInfoType =
(viCompanyName,
viFileDescription,
viFileVersion,
viInternalName,
viLegalCopyright,
viLegalTrademarks,
viOriginalFilename,

Working with Files

CHAPTER 12
593

12

W
O

R
K

IN
G

W
ITH

F
ILES

continues

LISTING 12.16 Continued

viProductName,
viProductVersion,
viComments);

const

// define an array constant of strings representing the pre-defined
// version information keys.
VerNameArray: array[viCompanyName..viComments] of String[20] =
(‘CompanyName’,
‘FileDescription’,
‘FileVersion’,
‘InternalName’,
‘LegalCopyright’,
‘LegalTrademarks’,
‘OriginalFilename’,
‘ProductName’,
‘ProductVersion’,
‘Comments’);

type

// Define the version info class
TVerInfoRes = class
private
Handle : DWord;
Size : Integer;
RezBuffer : String;
TransTable : PLongint;
FixedFileInfoBuf : PVSFixedFileInfo;
FFileFlags : TStringList;
FFileName : String;
procedure FillFixedFileInfoBuf;
procedure FillFileVersionInfo;
procedure FillFileMaskInfo;

protected
function GetFileVersion : String;
function GetProductVersion: String;
function GetFileOS : String;

public
constructor Create(AFileName: String);
destructor Destroy; override;
function GetPreDefKeyString(AVerKind: TVerInfoType): String;
function GetUserDefKeyString(AKey: String): String;
property FileVersion : String read GetFileVersion;

Advanced Techniques

PART II
594

property ProductVersion : String read GetProductVersion;
property FileFlags : TStringList read FFileFlags;
property FileOS : String read GetFileOS;

end;

implementation

uses Windows;

const
// strings that must be fed to VerQueryValue() function
SFInfo = ‘\StringFileInfo\’;
VerTranslation: PChar = ‘\VarFileInfo\Translation’;
FormatStr = ‘%s%.4x%.4x\%s%s’;

constructor TVerInfoRes.Create(AFileName: String);
begin
FFileName := aFileName;
FFileFlags := TStringList.Create;
// Get the file version information
FillFileVersionInfo;
//Get the fixed file info
FillFixedFileInfoBuf;
// Get the file mask values
FillFileMaskInfo;

end;

destructor TVerInfoRes.Destroy;
begin
FFileFlags.Free;

end;

procedure TVerInfoRes.FillFileVersionInfo;
var
SBSize: UInt;

begin
// Determine size of version information
Size := GetFileVersionInfoSize(PChar(FFileName), Handle);
if Size <= 0 then { raise exception if size <= 0 }
raise ENoVerInfoError.Create(‘No Version Info Available.’);

// Set the length accordingly
SetLength(RezBuffer, Size);
// Fill the buffer with version information, raise exception on error

Working with Files

CHAPTER 12
595

12

W
O

R
K

IN
G

W
ITH

F
ILES

continues

LISTING 12.16 Continued

if not GetFileVersionInfo(PChar(FFileName), Handle, Size,
➥PChar(RezBuffer)) then

raise EVerInfoError.Create(‘Cannot obtain version info.’);

// Get translation info, raise exception on error
if not VerQueryValue(PChar(RezBuffer), VerTranslation, pointer(TransTable),
SBSize) then
raise EVerInfoError.Create(‘No language info.’);

end;

procedure TVerInfoRes.FillFixedFileInfoBuf;
var
Size: Longint;

begin
if VerQueryValue(PChar(RezBuffer), ‘\’, pointer(FixedFileInfoBuf),

➥Size) then begin
if Size < SizeOf(TVSFixedFileInfo) then

raise eNoFixeVerInfo.Create(‘No fixed file info’);
end
else
raise eNoFixeVerInfo.Create(‘No fixed file info’)

end;

procedure TVerInfoRes.FillFileMaskInfo;
begin
with FixedFileInfoBuf^ do begin
if (dwFileFlagsMask and dwFileFlags and VS_FF_PRERELEASE) <> 0then
FFileFlags.Add(‘Pre-release’);

if (dwFileFlagsMask and dwFileFlags and VS_FF_PRIVATEBUILD) <> 0 then
FFileFlags.Add(‘Private build’);

if (dwFileFlagsMask and dwFileFlags and VS_FF_SPECIALBUILD) <> 0 then
FFileFlags.Add(‘Special build’);

if (dwFileFlagsMask and dwFileFlags and VS_FF_DEBUG) <> 0 then
FFileFlags.Add(‘Debug’);

end;
end;

function TVerInfoRes.GetPreDefKeyString(AVerKind: TVerInfoType): String;
var
P: PChar;
S: UInt;

begin
Result := Format(FormatStr, [SfInfo, LoWord(TransTable^),HiWord(TransTable^),
VerNameArray[aVerKind], #0]);

// get and return version query info, return empty string on error

Advanced Techniques

PART II
596

if VerQueryValue(PChar(RezBuffer), @Result[1], Pointer(P), S) then
Result := StrPas(P)

else
Result := ‘’;

end;

function TVerInfoRes.GetUserDefKeyString(AKey: String): String;
var
P: Pchar;
S: UInt;

begin
Result := Format(FormatStr, [SfInfo, LoWord(TransTable^),HiWord(TransTable^),
aKey, #0]);

// get and return version query info, return empty string on error
if VerQueryValue(PChar(RezBuffer), @Result[1], Pointer(P), S) then
Result := StrPas(P)

else
Result := ‘’;

end;

function VersionString(Ms, Ls: Longint): String;
begin
Result := Format(‘%d.%d.%d.%d’, [HIWORD(Ms), LOWORD(Ms),

HIWORD(Ls), LOWORD(Ls)]);
end;

function TVerInfoRes.GetFileVersion: String;
begin
with FixedFileInfoBuf^ do
Result := VersionString(dwFileVersionMS, dwFileVersionLS);

end;

function TVerInfoRes.GetProductVersion: String;
begin
with FixedFileInfoBuf^ do
Result := VersionString(dwProductVersionMS, dwProductVersionLS);

end;

function TVerInfoRes.GetFileOS: String;
begin
with FixedFileInfoBuf^ do
case dwFileOS of
VOS_UNKNOWN: // Same as VOS__BASE
Result := ‘Unknown’;

VOS_DOS:

Working with Files

CHAPTER 12
597

12

W
O

R
K

IN
G

W
ITH

F
ILES

continues

LISTING 12.16 Continued

Result := ‘Designed for MS-DOS’;
VOS_OS216:
Result := ‘Designed for 16-bit OS/2’;

VOS_OS232:
Result := ‘Designed for 32-bit OS/2’;

VOS_NT:
Result := ‘Designed for Windows NT’;

VOS__WINDOWS16:
Result := ‘Designed for 16-bit Windows’;

VOS__PM16:
Result := ‘Designed for 16-bit PM’;

VOS__PM32:
Result := ‘Designed for 32-bit PM’;

VOS__WINDOWS32:
Result := ‘Designed for 32-bit Windows’;

VOS_DOS_WINDOWS16:
Result := ‘Designed for 16-bit Windows, running on MS-DOS’;

VOS_DOS_WINDOWS32:
Result := ‘Designed for Win32 API, running on MS-DOS’;

VOS_OS216_PM16:
Result := ‘Designed for 16-bit PM, running on 16-bit OS/2’;

VOS_OS232_PM32:
Result := ‘Designed for 32-bit PM, running on 32-bit OS/2’;

VOS_NT_WINDOWS32:
Result := ‘Designed for Win32 API, running on Windows/NT’;

else
Result := ‘Unknown’;

end;
end;

end.

TVerInfoRes contains the required fields and encapsulates the appropriate Win32 API routines
to obtain version information from any file. The file from which the version information is to
be obtained is specified by passing the filename as AFileName to the TVerInfoRes.Create()
constructor. This filename is assigned to the field FFileName, which is used in another routine
to actually extract the version information. The constructor then calls three methods,
FillFileVersionInfo(), FillFixedFileInfoBuf(), and FillFileMaskInfo().

Advanced Techniques

PART II
598

The FillFileVersionInfo() Method
The FillFileVersionInfo() method performs the initial work of loading the version informa-
tion before you can start to examine the version information specifics. This method first deter-
mines whether the file even has version information and, if so, its size. The size is necessary to
determine how much memory to allocate to hold this information when it’s retrieved. The
Win32 API function GetFileVersionInfoSize() determines the size of the version informa-
tion contained in a file. This function is declared as follows:

function GetFileVersionInfoSize(lptstrFilename: PChar;
var lpdwHandle: DWORD): DWORD; stdcall;

The lptstrFileName parameter refers to the file from which the version information is to be
obtained. The lpdwHandle parameter is a DWORD variable that’s set to zero when the function is
called. As far as we can determine, this variable serves no other purpose.

FillFileVersionInfo() passes FFileName to GetFileVersionInfoSize(); if the return value,
stored in the Size variable, is greater than zero, a buffer, RezBuffer, is allocated to store Size
bytes.

After memory for RezBuffer has been allocated, it’s passed to the function
GetFileVersionInfo(), which actually fills RezBuffer with the version information.
GetFileVersionInfo() is declared as follows:

function GetFileVersionInfo(lptstrFilename: PChar; dwHandle,
dwLen: DWORD; lpData: Pointer): BOOL; stdcall;

The lptstrFileName parameter takes the filename of the file, FFileName. DwHandle is ignored.
DwLen is the return value from GetFileVersionInfoSize(), which was stored in the variable
Size. LpData is a pointer to the buffer that holds the version information. If
GetFileVersionInfo() does not succeed in retrieving the version information, it returns
False; otherwise, True is returned.

Finally, the FillFileVersionInfo() method calls the API function VerQueryValue(), which
is used to return selected version information from the version information resource. In this
instance, VerQueryValue() is called to retrieve a pointer to the language and character set
identifier array. This array is used in subsequent calls to VerQueryValue() to access version
information in the language-specific StringTable in the version information resource.

VerQueryValue() is declared as follows:

function VerQueryValue(pBlock: Pointer; lpSubBlock: PChar;
var lplpBuffer: Pointer; var puLen: UINT): BOOL; stdcall;

The parameter pBlock refers to the lpData parameter, which was passed to
GetFileVersionInfo(). LpSubBlock is a null-terminated string that specifies which version

Working with Files

CHAPTER 12
599

12

W
O

R
K

IN
G

W
ITH

F
ILES

information value to retrieve. You might take a look at the online help for VerQueryValue(),
which describes the various strings that can be passed to VerQueryValue(). In the case of the
preceding example, the string “\VarFileInfo\Translation” is passed as the lpSubBlock
parameter to retrieve the language and character set translation information. The lplpBuffer
parameter points to the buffer that holds the version information value. The puLen parameter
contains the length of the data retrieved.

The FillFixedFileInfoBuf() Method
The FillFixedFileInfoBuf() method illustrates how to use VerQueryValue() to obtain a
pointer to the VS_FIXEDFILEINFO structure, which contains the version information about the
file. This is done by passing the string “\” as the lpSubBlock parameter to the
VerQueryValue() function. This pointer is stored in the TVerInfoRes.FixedFileInfoBuf field.

The FillFileMaskInfo() Method
The FillFileMaskInfo() method illustrates how to obtain module attributes. This is handled
by performing the appropriate bitmask operation on the dwFileFlagsMask and dwFileFlags
fields of FixedFileInfoBuf as well as on the specific flag being evaluated. We won’t get into
the specifics as to the meaning of these flags. If you’re interested, the online help for the
Version Info page of the Project Options dialog box explains this in detail.

The GetPreDefKeyString() and GetUserDefKeyString() Methods
The GetPreDefKeyString() and GetUserDefKeyString() methods illustrate how to use the
VerQueryValue() function to retrieve the version information strings that are entered into the
Key table on the Version Info page of the Project Options dialog box. By default, the Win32
API provides 10 predefined strings that we’ve placed into the VerNameArray constant. To
retrieve a specific string, you must pass as the lpSubBlock parameter of VerQueryValue() the
string “\StringFileInfo\lang-charset\string-name”. The lang-charset string refers to
the language and character set identifier previously retrieved in the FillFileVersionInfo()
method and referred to by the TransTable field. The string-name string refers to one of the
predefined string constants in VerNameArray. GetPreDefKeyString() handles retrieving the
predefined version information strings.

GetUserDefKeyString() is similar in functionality to GetPreDefKeyString() except that the
key string must be passed in as a parameter. The value of the lpSubBlock string is constructed
in this method, using the AKey parameter as the key.

Getting the Version Numbers
The GetFileVersion() and GetProductVersion() methods illustrate how to obtain the file
and product version numbers for a file.

Advanced Techniques

PART II
600

The FixedFileInfoBuf structure contains fields that refer to the version number of the file
itself as well as the version number of the product with which the file may be distributed.
These version numbers are stored in a 64-bit number. The most significant and least significant
32 bits are retrieved separately by using different fields.

The file’s binary version number is stored in the fields dwFileVersionMS and
dwFileVersionLS. The version number for the product with which a file is distributed is stored
in the dwProductVersionMS and dwProductVersionLS fields.

The GetFileVersion() and GetProductVersion() methods return a string representing the
version number for a given file. They both use a helper function, VersionString(), to properly
format the string.

Getting the Operating System Information
The GetFileOS() method illustrates how to determine for which operating system the file was
designed. This is accomplished by examining the dwFileOS field of the FixedFileInfoBuf
structure. For more information on the meaning of the various values that can be assigned to
dwFileOS, examine the online API help for VS_FIXEDFILEINFO.

Using the TVerInfoRes Class
We created the project VerInfo.dpr to illustrate the use of the TVerInfoRes class. Listing
12.17 shows the source for this project’s main form.

LISTING 12.17 The Source Code for the Version Information Demo Main Form

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, FileCtrl, StdCtrls, verinfo, Grids, Outline, DirOutln,
ComCtrls;

type
TMainForm = class(TForm)
lvVersionInfo: TListView;
btnClose: TButton;
procedure FormDestroy(Sender: TObject);
procedure FormShow(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure btnCloseClick(Sender: TObject);

Working with Files

CHAPTER 12
601

12

W
O

R
K

IN
G

W
ITH

F
ILES

continues

LISTING 12.17 Continued

private
VerInfoRes: TVerInfoRes;

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure AddListViewItem(const aCaption, aValue: String; aData: Pointer;
aLV: TListView);

// This method is used to add a TListItem to the TListView, aLV
var
NewItem: TListItem;

begin
NewItem := aLV.Items.Add;
NewItem.Caption := aCaption;
NewItem.Data := aData;
NewItem.SubItems.Add(aValue);

end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
VerInfoRes := TVerInfoRes.Create(Application.ExeName);

end;

procedure TMainForm.FormDestroy(Sender: TObject);
begin
VerInfoRes.Free;

end;

procedure TMainForm.FormShow(Sender: TObject);
var
VerString: String;
i: integer;
sFFlags: String;

begin
for i := ord(viCompanyName) to ord(viComments) do begin
VerString := VerInfoRes.GetPreDefKeyString(TVerInfoType(i));
if VerString <> ‘’ then
AddListViewItem(VerNameArray[TVerInfoType(i)], VerString, nil,
lvVersionInfo);

Advanced Techniques

PART II
602

end;
VerString := VerInfoRes.GetUserDefKeyString(‘Author’);
if VerString <> EmptyStr then

AddListViewItem(‘Author’, VerString, nil, lvVersionInfo);

AddListViewItem(‘File Version’, VerInfoRes.FileVersion, nil,
lvVersionInfo);

AddListViewItem(‘Product Version’, VerInfoRes.ProductVersion, nil,
lvVersionInfo);

for i := 0 to VerInfoRes.FileFlags.Count - 1 do begin
if i <> 0 then
sFFlags := SFFlags+’, ‘;

sFFlags := SFFlags+VerInfoRes.FileFlags[i];
end;
AddListViewItem(‘File Flags’,SFFlags, nil, lvVersionInfo);
AddListViewItem(‘Operating System’, VerINfoRes.FileOS, nil, lvVersionInfo);

end;

procedure TMainForm.btnCloseClick(Sender: TObject);
begin
Close;

end;

end.

The version information demo is straightforward. It simply displays the version information for
itself. Figure 12.5 shows the project running and displaying this information.

Working with Files

CHAPTER 12
603

12

W
O

R
K

IN
G

W
ITH

F
ILES

FIGURE 12.5
Version information for demo application.

Using the SHFileOperation() Function
A very useful Windows API function is SHFileOperation(). This function uses a SHFILEOP-
STRUCT structure to perform copy, move, rename, or delete operations on any file system
object, such as files and directories. The Win32 API help file documents this structure well, so
we won’t repeat that information here. We will, however, show a few useful and frequently
requested techniques on using this function to copy an entire directory to another location and
to delete a file so that it’s placed into the Windows Recycle Bin.

Copying a Directory
Listing 12.18 is a procedure we wrote to copy a directory tree from one location to another.

LISTING 12.18 The CopyDirectoryTree() Procedure

procedure CopyDirectoryTree(AHandle: THandle;
const AFromDirectory, AToDirectory: String);

var
SHFileOpStruct: TSHFileOpStruct;
FromDir: PChar;
ToDir: PChar;

begin

GetMem(FromDir, Length(AFromDirectory)+2);
try
GetMem(ToDir, Length(AToDirectory)+2);
try

FillChar(FromDir^, Length(AFromDirectory)+2, 0);
FillChar(ToDir^, Length(AToDirectory)+2, 0);

StrCopy(FromDir, PChar(AFromDirectory));
StrCopy(ToDir, PChar(AToDirectory));

with SHFileOpStruct do
begin
Wnd := AHandle; // Assign the window handle
wFunc := FO_COPY; // Specify a file copy
pFrom := FromDir;
pTo := ToDir;
fFlags := FOF_NOCONFIRMATION or FOF_RENAMEONCOLLISION;
fAnyOperationsAborted := False;
hNameMappings := nil;
lpszProgressTitle := nil;
if SHFileOperation(SHFileOpStruct) <> 0 then
RaiseLastWin32Error;

Advanced Techniques

PART II
604

end;
finally
FreeMem(ToDir, Length(AToDirectory)+2);

end;
finally
FreeMem(FromDir, Length(AFromDirectory)+2);

end;
end;

The CopyDirectoryTree() procedure takes three parameters. The first, AHandle, is the handle
of a dialog box owner that would display any status information about the file operation. The
remaining two parameters are the source and destination directory locations. Since Windows
API functions work with PChars, we simply copy these two locations into PChar variables after
we allocate memory for the PChars. Then, we assign these values to the pFrom and pTo mem-
bers of the SHFileOpStruct structure. Note the assignment to the wFunc member as FO_COPY.
This is what instructs SHFileOperation of the type of operation to perform. The remaining
members are explained in the online help. On the call to SHFileOperation(), the source direc-
tory would be moved to the destination specified by the AToDirectory parameter.

Moving Files and Directories to the Recycle Bin.
Listing 12.19 shows a similar technique to that preceding listing, except that this shows how
you might move a file to the Windows Recycle Bin.

LISTING 12.19 The ToRecycle() Procedure

procedure ToRecycle(AHandle: THandle; const ADirName: String);
var
SHFileOpStruct: TSHFileOpStruct;
DirName: PChar;
BufferSize: Cardinal;

begin
BufferSize := Length(ADirName) +1 +1;
GetMem(DirName, BufferSize);
try
FillChar(DirName^, BufferSize, 0);
StrCopy(DirName, PChar(ADirName));

with SHFileOpStruct do
begin
Wnd := AHandle;
wFunc := FO_DELETE;
pFrom := DirName;
pTo := nil;

Working with Files

CHAPTER 12
605

12

W
O

R
K

IN
G

W
ITH

F
ILES

continues

LISTING 12.19 Continued

fFlags := FOF_ALLOWUNDO;

fAnyOperationsAborted := False;
hNameMappings := nil;
lpszProgressTitle := nil;

end;

if SHFileOperation(SHFileOpStruct) <> 0 then
RaiseLastWin32Error;

finally
FreeMem(DirName, BufferSize);

end;
end;

You’ll notice that there’s not much of a difference between this procedure and the previous
except that the wFunc member is assigned FO_DELETE and the pTo member is set to nil. The
pTo member is ignored by the SHFileOperation() function on a delete operation. Also,
because the FOF_ALLOWUNDO flag is added to the fFlags member, the function will move the
file to the Recycle Bin to allow for undoing the operation.

Examples of both of these operations are included on the CD in the SHFileOp.dpr project.

Summary
This chapter gave you a substantial amount of information on working with files, directories,
and drives. You learned how to manipulate different file types. The chapter illustrated the tech-
nique of descending from Delphi’s TFileStream class to encapsulate record-file I/O. It even
showed you how to use Win32’s memory-mapped files. You created a TMemMapFile class to
encapsulate the memory-mapped functionality. Finally, the chapter demonstrated how to
retrieve version information from a file containing such information.

Advanced Techniques

PART II
606

