
CHAPTER

11
Writing Multithreaded
Applications

IN THIS CHAPTER
• Threads Explained 476

• The TThread Object 478

• Managing Multiple Threads 493

• A Sample Multithreaded
Application 510

• Multithreading Database Access 524

• Multithreaded Graphics 530

• Summary 535

The Win32 operating system provides you with the capability to have multiple threads of exe-
cution in your applications. Arguably the single most important benefit Win32 has over 16-bit
Windows, this feature provides the means for performing different types of processing simulta-
neously in your application. This is one of the primary reasons for upgrading to a 32-bit ver-
sion of Delphi, and this chapter gives you all the details on how to get the most out of threads
in your applications.

Threads Explained
As discussed in Chapter 3, “The Win32 API,” a thread is an operating system object that repre-
sents a path of code execution within a particular process. Every Win32 application has at least
one thread—often called the primary thread or default thread—but applications are free to cre-
ate other threads to perform other tasks.

Threads provide a means for running many distinct code routines simultaneously. Of course,
unless you have more than one CPU in your computer, two threads can’t truly run simultane-
ously. However, each thread is scheduled in fractions of seconds of time by the operating sys-
tem in such a way as to give the feeling that many threads are running simultaneously.

Advanced Techniques

PART II
476

TIP

Threads are not and never will be supported under 16-bit Windows. This means that
any 32-bit Delphi code you write using threads will never be backward-compatible to
Delphi 1.0. Keep this in mind if you develop applications for both platforms.

A New Type of Multitasking
The notion of threads is much different from the style of multitasking supported under 16-bit
Windows platforms. You might hear people talk about Win32 as a preemptive multitasking
operating system, whereas Windows 3.1 is a cooperative multitasking environment.

The key difference here is that under a preemptive multitasking environment the operating sys-
tem is responsible for managing which thread executes when. When execution of thread one is
stopped in order for thread two to receive some CPU cycles, thread one is said to have been
preempted. If the code that one thread is executing happens to put itself into an infinite loop,
it’s usually not a tragic situation because the operating system will continue to schedule time
for all the other threads.

Under Windows 3.1, the application developer is responsible for giving control back to
Windows at points during the application’s execution. Failure of an application to do so causes
the operating environment to appear locked up, and we all know what a painful experience that

can be. If you take a moment to think about it, it’s slightly amusing that the very foundation of
16-bit Windows depends on all applications behaving themselves and not putting themselves
into infinite loops, a recursion, or any other unneighborly situation. It’s because all applications
must cooperate for Windows to work correctly that this type of multitasking is referred to as
cooperative.

Using Multiple Threads in Delphi Applications
It’s no secret that threads represent a serious boon for Windows programmers. You can create
secondary threads in your applications anywhere that it’s appropriate to do some sort of back-
ground processing. Calculating cells in a spreadsheet or spooling a word processing document
to the printer are examples of situations where a thread would commonly be used. The goal of
the developer will most often be to perform necessary background processing while still pro-
viding the best possible response time for the user interface.

Most of VCL has a built-in assumption that it’s being accessed by only one thread at any given
time. While this limitation is especially apparent in the user interface portions of VCL, it’s
important to note that even many non-UI portions of VCL are not thread-safe.

Non-UI VCL
There are actually very few areas of VCL that are guaranteed to be thread-safe. Perhaps the
most notable among these thread-safe areas is VCL’s property streaming mechanism, which
ensures that component streams can be effectively read and written by multiple threads.
Remember that even very basic classes in VCL, such as TList, are not designed to be manipu-
lated from multiple simultaneous threads. In some cases, VCL provides thread-safe alternatives
that you can use in cases where you need them. For example, use a TThreadList in place of a
TList when the list will be subject to manipulation by multiple threads.

UI VCL
VCL requires that all user-interface control happens within the context of an application’s pri-
mary thread (the exception is the thread-safe TCanvas, which is explained later in this chapter).
Of course, techniques are available to update the user interface from a secondary thread (which
we discuss later), but this limitation essentially forces you to use threads a bit more judiciously
than you might do otherwise. The examples given in this chapter show some ideal uses for
multiple threads in Delphi applications.

Misuse of Threads
Too much of a good thing can be bad, and that’s definitely true in the case of threads. Even
though threads can help to solve some of the problems you may have from an application
design standpoint, they do introduce a whole new set of problems. For example, suppose
you’re writing an integrated development environment, and you want the compiler to execute

Writing Multithreaded Applications

CHAPTER 11
477

11
W

R
ITIN

G
M

U
LTITH

R
EA

D
ED

A
PPLIC

A
TIO

N
S

in its own thread so the programmer will be free to continue work on the application while the
program compiles. The problem here is this: What if the programmer changes a file that the
compiler is in the middle of compiling? There are a number of solutions to this problem, such
as making a temporary copy of the file while the compile continues or preventing the user from
editing not-yet-compiled files. The point is simply that threads are not a panacea; although they
solve some development problems, they invariably introduce others. What’s more, bugs due to
threading problems are also much, much harder to debug because threading problems are often
time-sensitive. Designing and implementing thread-safe code is also more difficult because you
have a lot more factors to consider.

The TThread Object
Delphi encapsulates the API thread object into an Object Pascal object called TThread.
Although TThread encapsulates almost all the commonly used thread API functions into one
discrete object, there are some points—particularly those dealing with thread synchroniza-
tion—where you have to use the API. In this section, you learn how the TThread object works
and how to use it in your applications.

TThread Basics
The TThread object is found in the Classes unit and is defined as follows:

type
TThread = class
private
FHandle: THandle;
FThreadID: THandle;
FTerminated: Boolean;
FSuspended: Boolean;
FFreeOnTerminate: Boolean;
FFinished: Boolean;
FReturnValue: Integer;
FOnTerminate: TNotifyEvent;
FMethod: TThreadMethod;
FSynchronizeException: TObject;
procedure CallOnTerminate;
function GetPriority: TThreadPriority;
procedure SetPriority(Value: TThreadPriority);
procedure SetSuspended(Value: Boolean);

protected
procedure DoTerminate; virtual;
procedure Execute; virtual; abstract;
procedure Synchronize(Method: TThreadMethod);
property ReturnValue: Integer read FReturnValue write FReturnValue;
property Terminated: Boolean read FTerminated;

public

Advanced Techniques

PART II
478

constructor Create(CreateSuspended: Boolean);
destructor Destroy; override;
procedure Resume;
procedure Suspend;
procedure Terminate;
function WaitFor: Integer;
property FreeOnTerminate: Boolean read FFreeOnTerminate
write FFreeOnTerminate;

property Handle: THandle read FHandle;
property Priority: TThreadPriority read GetPriority write
SetPriority;

property Suspended: Boolean read FSuspended write SetSuspended;
property ThreadID: THandle read FThreadID;
property OnTerminate: TNotifyEvent read FOnTerminate write
FOnTerminate;

end;

As you can tell from the declaration, TThread is a direct descendant of TObject and is there-
fore not a component. You might also notice that the TThread.Execute() method is abstract.
This means that the TThread class itself is abstract, meaning that you will never create an
instance of TThread itself. You will only create instances of TThread descendants. Speaking of
which, the most straightforward way to create a TThread descendant is to select Thread Object
from the New Items dialog box provided by the File, New menu option. The New Items dialog
box is shown in Figure 11.1.

Writing Multithreaded Applications

CHAPTER 11
479

11
W

R
ITIN

G
M

U
LTITH

R
EA

D
ED

A
PPLIC

A
TIO

N
S

FIGURE 11.1
The Thread Object item in the New Items dialog box.

After choosing Thread Object from the New Items dialog box, you’ll be presented with a dia-
log box that prompts you to enter a name for the new object. You could enter TTestThread, for
example. Delphi will then create a new unit that contains your object. Your object will initially
be defined as follows:

type
TTestThread = class(TThread)
private
{ Private declarations }

protected
procedure Execute; override;

end;

As you can see, the only method that you must override in order to create a functional descen-
dant of TThread is the Execute() method. Suppose, for example, that you want to perform a
complex calculation within TTestThread. In that case, you could define its Execute() method
as follows:

procedure TTestThread.Execute;
var
i: integer;

begin
for i := 1 to 2000000 do
inc(Answer, Round(Abs(Sin(Sqrt(i)))));

end;

Admittedly, the equation is contrived, but it still illustrates the point in this case because the
sole purpose of this equation is to take a relatively long time to execute.

You can now execute this sample thread by calling its Create() constructor. For now, you can
do this from a button click in the main form, as shown in the following code (remember to
include the unit containing TTestThread in the uses clause of the unit containing TForm1 to
avoid a compiler error):

procedure TForm1.Button1Click(Sender: TObject);
var
NewThread: TTestThread;

begin
NewThread := TTestThread.Create(False);

end;

If you run the application and click the button, you’ll notice that you can still manipulate the
form by moving it or resizing it while the calculation goes on in the background.

Advanced Techniques

PART II
480

NOTE

The single Boolean parameter passed to TThread’s Create() constructor is called
CreateSuspended, and it indicates whether to start the thread in a suspended state.
If this parameter is False, the object’s Execute() method will automatically be called
following Create(). If this parameter is True, you must call TThread’s Resume()

Thread Instances
Going back to the Execute() method for the TTestThread object, notice that it contains a local
variable called i. Consider what might happen to i if you create two instances of
TTestThread. Does the value for one thread overwrite the value for the other? Does the first
thread take precedence? Does it blow up? The answers are no, no, and no. Win32 maintains a
separate stack for each thread executing in the system. This means that as you create multiple
instances of the TTestThread object, each one keeps its own copy of i on its own stack.
Therefore, all the threads will operate independently of one another in that respect.

An important distinction to make, however, is that this notion of the same variable operating
independently in each thread doesn’t carry over to global variables. This topic is explored in
detail in the “Thread-Local Storage” and “Thread Synchronization” sections, later in this
chapter.

Thread Termination
A TThread is considered terminated when the Execute() method has finished executing. At
that point, the EndThread() Delphi standard procedure is called, which in turn calls the
ExitThread() API procedure. ExitThread() properly disposes of the thread’s stack and de-
allocates the API thread object. This cleans up the thread as far as the API is concerned.

You also need to ensure that the Object Pascal object is destroyed when you’re finished using a
TThread object. This will ensure that all memory occupied by that object has been properly
disposed of. Although this will automatically happen when your process terminates, you might
want to dispose of the object earlier so that your application doesn’t leak memory as it runs.
The easiest way to ensure that the TThread object is disposed of is to set its FreeOnTerminate
property to True. This can be done any time before the Execute() method finishes executing.
For example, you could do this for the TTestThread object by setting the property in the
Execute() method as follows:

Writing Multithreaded Applications

CHAPTER 11
481

11
W

R
ITIN

G
M

U
LTITH

R
EA

D
ED

A
PPLIC

A
TIO

N
S

method at some point to actually start the thread running. This will cause the
Execute() method to be invoked at that time. You would set CreateSuspended to
True if you need to set additional properties on your thread object before allowing
it to run. Setting the properties after the thread is running would be asking for
trouble.

To go a little deeper, the constructor of Create() calls the BeginThread() Delphi
Runtime Library (RTL) function, which calls the CreateThread() API function in order
to create the new thread. The value of the CreateSuspended parameter indicates
whether to pass the CREATE_SUSPENDED flag to CreateThread().

procedure TTestThread.Execute;
var
i: integer;

begin
FreeOnTerminate := True;
for i := 1 to 2000000 do
inc(Answer, Round(Abs(Sin(Sqrt(i)))));

end;

The TThread object also has an OnTerminate event that’s called when the thread terminates.
It’s also acceptable to free the TThread object from within a handler for this event.

Advanced Techniques

PART II
482

TIP

The OnTerminate event of TThread is called from the context of your application’s
main thread. This means that you can feel free to access VCL properties and methods
from within a handler for this event without using the Synchronize() method, as
described in the following section.

It’s also important to note that your thread’s Execute() method is responsible for checking the
status of the Terminated property to determine the need to make an earlier exit. Although this
means one more thing that you must worry about when working with threads, the flip side is
that this type of architecture ensures that the rug isn’t pulled out from under you, and that
you’ll be able to perform any necessary cleanup on thread termination. To add this code to the
Execute() method of TTestThread is rather simple, and the addition is shown here:

procedure TTestThread.Execute;
var
i: integer;

begin
FreeOnTerminate := True;
for i := 1 to 2000000 do begin
if Terminated then Break;
inc(Answer, Round(Abs(Sin(Sqrt(i)))));

end;
end;

CAUTION

In case of emergency, you can also use the Win32 API TerminateThread() function to
terminate an executing thread. You should do this only when no other options exist,
such as when a thread gets caught in an endless loop and stops responding. This
function is defined as follows:

Synchronizing with VCL
As mentioned several times earlier in this chapter, you should only access VCL properties or
methods from the application’s primary thread. This means that any code that accesses or
updates your application’s user interface should be executed from the context of the primary
thread. The disadvantages of this architecture are obvious, and this requirement might seem
rather limiting on the surface, but it actually has some redeeming advantages that you should
know about.

Advantages of a Single-Threaded User Interface
First, it greatly reduces the complexity of your application to have only one thread accessing
the user interface. Win32 requires that each thread that creates a window have its own message
loop using the GetMessage() function. As you might imagine, having messages coming into
your application from a variety of sources can make it extremely difficult to debug. Because an
application’s message queue provides a means for serializing input—fully processing one con-
dition before moving on to the next—you can depend in most cases on certain messages com-
ing before or after others. Adding another message loop throws this serialization of input out
the door, thereby opening you up to potential synchronization problems and possibly introduc-
ing a need for complex synchronization code.

Additionally, because VCL can depend on the fact that it will be accessed by only one thread
at any given time, the need for code to synchronize multiple threads inside VCL is obviated.

Writing Multithreaded Applications

CHAPTER 11
483

11
W

R
ITIN

G
M

U
LTITH

R
EA

D
ED

A
PPLIC

A
TIO

N
S

function TerminateThread(hThread: THandle; dwExitCode: DWORD);

The Handle property of TThread provides the API thread handle, so you could call this
function with syntax similar to that shown here:

TerminateThread(MyHosedThread.Handle, 0);

If you choose to use this function, you should be wary of the negative side effects it
will cause. First, this function behaves differently under Windows NT/2000 and
Windows 95/98. Under Windows 95/98, TerminateThread() disposes of the stack asso-
ciated with the thread; under Windows NT/2000, the stack sticks around until the
process is terminated. Second, on all Win32 operating systems, TerminateThread()
simply halts the execution, wherever it may be, and does not allow try..finally
blocks to clean up resources. This means that files opened by the thread would not
be closed, memory allocated by the thread would not be freed, and so forth. Also,
DLLs loaded by your process won’t be notified when a thread destroyed with
TerminateThread() goes away, and this may cause problems when the DLL closes.
See Chapter 9, “Dynamic Link Libraries,” for more information on thread notifications
in DLLs.

The net result of this is better overall performance of your application due to a more stream-
lined architecture.

The Synchronize() Method
TThread provides a method called Synchronize() that allows for some of its own methods to
be executed from the application’s primary thread. Synchronize() is defined as follows:

procedure Synchronize(Method: TThreadMethod);

Its Method parameter is of type TThreadMethod (which means a procedural method that takes
no parameter), which is defined as follows:

type
TThreadMethod = procedure of object;

The method you pass as the Method parameter is the one that’s then executed from the applica-
tion’s primary thread. Going back to the TTestThread example, suppose you want to display
the result in an edit control on the main form. You could do this by introducing to TTestThread
a method that makes the necessary change to the edit control’s Text property and calling that
method by using Synchronize().

In this case, suppose this method is called GiveAnswer(). Listing 11.1 shows the complete
source code for this unit, called ThrdU, which includes the code to update the edit control on
the main form.

LISTING 11.1 The ThrdU.PAS Unit

unit ThrdU;

interface

uses
Classes;

type
TTestThread = class(TThread)
private
Answer: integer;

protected
procedure GiveAnswer;
procedure Execute; override;

end;

implementation

Advanced Techniques

PART II
484

uses SysUtils, Main;

{ TTestThread }

procedure TTestThread.GiveAnswer;
begin
MainForm.Edit1.Text := InttoStr(Answer);

end;

procedure TTestThread.Execute;
var
I: Integer;

begin
FreeOnTerminate := True;
for I := 1 to 2000000 do
begin
if Terminated then Break;
Inc(Answer, Round(Abs(Sin(Sqrt(I)))));
Synchronize(GiveAnswer);

end;
end;

end.

You already know that the Synchronize() method enables you to execute methods from the
context of the primary thread, but up to this point you’ve treated Synchronize() as sort of a
mysterious black box. You don’t know how it works—you only know that it does. If you’d like
to take a peek at the man behind the curtain, read on.

The first time you create a secondary thread in your application, VCL creates and maintains a
hidden thread window from the context of its primary thread. The sole purpose of this window
is to serialize procedure calls made through the Synchronize() method.

The Synchronize() method stores the method specified in its Method parameter in a private
field called FMethod and sends a VCL-defined CM_EXECPROC message to the thread window,
passing Self (Self being the TThread object in this case) as the lParam of the message. When
the thread window’s window procedure receives this CM_EXECPROC message, it calls the method
specified in FMethod through the TThread object instance passed in the lParam. Remember,
because the thread window was created from the context of the primary thread, the window
procedure for the thread window is also executed by the primary thread. Therefore, the method
specified in the FMethod field is also executed by the primary thread.

To see a more visual illustration of what goes on inside Synchronize(), look at Figure 11.2.

Writing Multithreaded Applications

CHAPTER 11
485

11
W

R
ITIN

G
M

U
LTITH

R
EA

D
ED

A
PPLIC

A
TIO

N
S

FIGURE 11.2
A road map of the Synchronize() method.

Using Messages for Synchronization
As an alternative to the TThread.Synchronize() method, another technique for thread syn-
chronization is to use messages to communicate between threads. You can use the
SendMessage() or PostMessage() API function to send or post messages to windows operat-
ing in the context of another thread. For example, the following code could be used to set the
text in an edit control residing in another thread:

var
S: string;

begin
S := ‘hello from threadland’;
SendMessage(SomeEdit.Handle, WM_SETTEXT, 0, Integer(PChar(S)));

end;

A Demo Application
To fully illustrate how multithreading in Delphi works, you can save the current project as
EZThrd. Then you can also put a memo control on the main form so that it resembles what’s
shown in Figure 11.3.

Advanced Techniques

PART II
486

CM_EXECPROC
Message is processed by
window procedure of
thread window. IParam is
typecasted to TThread,
and call is made to
FMethod.

Set FMethod to Foo.
Sends CM_EXECPROC
messge to thread
window, passing Self as
IParam.

Hidden “thread window”Synchronize(Foo);

Primary ThreadSecondary Thread

FIGURE 11.3
The main form of the EZThrd demo.

The source code for the main unit is shown in Listing 11.2.

LISTING 11.2 The MAIN.PAS Unit for the EZThrd Demo

unit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, ThrdU;

type
TMainForm = class(TForm)
Edit1: TEdit;
Button1: TButton;
Memo1: TMemo;
Label1: TLabel;
Label2: TLabel;
procedure Button1Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.Button1Click(Sender: TObject);
var
NewThread: TTestThread;

begin
NewThread := TTestThread.Create(False);

end;

end.

Notice that after you click the button to invoke the secondary thread, you can still type in the
memo control as if the secondary thread doesn’t exist. When the calculation is completed, the
result will be displayed in the edit control.

Writing Multithreaded Applications

CHAPTER 11
487

11
W

R
ITIN

G
M

U
LTITH

R
EA

D
ED

A
PPLIC

A
TIO

N
S

Priorities and Scheduling
As mentioned earlier, the operating system is in charge of scheduling each thread some CPU
cycles in which it may execute. The amount of time scheduled for a particular thread depends
on the priority assigned to the thread. An individual thread’s overall priority is determined by a
combination of the priority of the process that created the thread—called the priority class—
and the priority of the thread itself—called the relative priority.

Process Priority Class
The process priority class describes the priority of a particular process running on the system.
Win32 supports four distinct priority classes: Idle, Normal, High, and Realtime. The default
priority class for any process, of course, is Normal. Each of these priority classes has a corre-
sponding flag defined in the Windows unit. You can or any of these flags with the
dwCreationFlags parameter of CreateProcess() in order to spawn a process with a specific
priority. Additionally, you can use these flags to dynamically adjust the priority class of a given
process, as shown in a moment. Furthermore, each priority class can also be represented by a
numeric priority level, which is a value between 4 and 24 (inclusive).

Advanced Techniques

PART II
488

NOTE

Modifying a process’s priority class requires special process privileges under Windows
NT/2000. The default settings allow processes to set their priority classes, but these
can be turned off by system administrators, particularly on high-load Windows
NT/2000 servers.

Table 11.1 shows each priority class and its corresponding flag and numeric value.

TABLE 11.1 Process Priority Classes

Class Flag Value

Idle IDLE_PRIORITY_CLASS $40

Below normal* BELOW_NORMAL_PRIORITY_CLASS $4000

Normal NORMAL_PRIORITY_CLASS $20Above normal*
ABOVE_NORMAL_PRIORITY_CLASS $8000

High HIGH_PRIORITY_CLASS $80

Realtime REALTIME_PRIORITY_CLASS $100

*Available only on Windows 2000, and flag constant is not present in the Delphi 5 version of
Windows.pas.

To get and set the priority class of a given process dynamically, Win32 provides the
GetPriorityClass() and SetPriorityClass() functions, respectively. These functions are
defined as follows:

function GetPriorityClass(hProcess: THandle): DWORD; stdcall;

function SetPriorityClass(hProcess: THandle; dwPriorityClass: DWORD): BOOL;
stdcall;

The hProcess parameter in both cases represents a handle to a process. In most cases, you’ll
be calling these functions in order to access the priority class of your own process. In that case,
you can use the GetCurrentProcess() API function. This function is defined as follows:

function GetCurrentProcess: THandle; stdcall;

The return value of these functions is a pseudo-handle for the current process. We say pseudo
because the function doesn’t create a new handle, and the return value doesn’t have to be
closed with CloseHandle(). It merely provides a handle that can be used to reference an exist-
ing handle.

To set the priority class of your application to High, use code similar to the following:

if not SetPriorityClass(GetCurrentProcess, HIGH_PRIORITY_CLASS) then
ShowMessage(‘Error setting priority class.’);

Writing Multithreaded Applications

CHAPTER 11
489

11
W

R
ITIN

G
M

U
LTITH

R
EA

D
ED

A
PPLIC

A
TIO

N
S

CAUTION

In almost all cases, you should avoid setting the priority class of any process to
Realtime. Because most of the operating system threads run in a priority class lower
than Realtime, your thread will receive more CPU time than the OS itself, and that
could cause some unexpected problems.

Even bumping the priority class of the process to High can cause problems if the
threads of the process don’t spend most of their time idle or waiting for external
events (such as file I/O). One high-priority thread is likely to drain all CPU time away
from lower-priority threads and processes until it blocks on an event, goes idle, or
processes messages. Preemptive multitasking can easily be defeated by abusing
scheduler priorities.

Relative Priority
The other thing that goes into determining the overall priority of a thread is the relative priority
of a particular thread. The important distinction to make is that the priority class is associated
with a process and the relative priority is associated with individual threads within a process. A
thread can have any one of seven possible relative priorities: Idle, Lowest, Below Normal,
Normal, Above Normal, Highest, or Time Critical.

TThread exposes a Priority property of an enumerated type TThreadPriority. There’s an
enumeration in this type for each relative priority:

type
TThreadPriority = (tpIdle, tpLowest, tpLower, tpNormal, tpHigher,
tpHighest, tpTimeCritical);

You can get and set the priority of any TThread object simply by reading from or writing to its
Priority property. The following code sets the priority of a TThread descendant instance
called MyThread to Highest:

MyThread.Priority := tpHighest.

Like priority classes, each relative priority is associated with a numeric value. The difference is
that the relative priority is a signed value that, when added to a process’s class priority, is used
to determine the overall priority of a thread within the system. For this reason, relative priority
is sometimes called delta priority. The overall priority of a thread can be any value from 1 to
31 (1 being the lowest). Constants are defined in the Windows unit that represents the signed
value for each priority. Table 11.2 shows how each enumeration in TThreadPriority maps to
an API constant.

TABLE 11.2 Relative Priorities for Threads

TThreadPriority Constant Value

tpIdle THREAD_PRIORITY_IDLE -15*

tpLowest THREAD_PRIORITY_LOWEST -2

tpBelow Normal THREAD_PRIORITY_BELOW_NORMAL -1

tpNormal THREAD_PRIORITY_NORMAL 0

tpAbove Normal THREAD_PRIORITY_ABOVE_NORMAL 1

tpHighest THREAD_PRIORITY_HIGHEST 2

tpTimeCritical THREAD_PRIORITY_TIME_CRITICAL 15*

The reason the values for the tpIdle and tpTimeCritical priorities are marked with asterisks
is that, unlike the others, these relative priority values are not truly added to the class priority
to determine overall thread priority. Any thread that has the tpIdle relative priority, regardless
of its priority class, has an overall priority of 1. The exception to this rule is the Realtime pri-
ority class, which, when combined with the tpIdle relative priority, has an overall value of 16.
Any thread that has a priority of tpTimeCritical, regardless of its priority class, has an overall
priority of 15. The exception to this rule is the Realtime priority class, which, when combined
with the tpTimeCritical relative priority, has an overall value of 31.

Advanced Techniques

PART II
490

Suspending and Resuming Threads
Recall when you learned about TThread’s Create() constructor earlier in this chapter. At the
time, you discovered that a thread could be created in a suspended state, and that you must call
its Resume() method in order for the thread to begin execution. As you might guess, a thread
can also be suspended and resumed dynamically. You accomplish this using the Suspend()
method in conjunction with the Resume() method.

Timing a Thread
Back in the 16-bit days when we programmed under Windows 3.x, it was pretty common to
wrap some portion of code with calls to GetTickCount() or timeGetTime() to determine how
much time a particular calculation may take (something like the following, for example):

var
StartTime, Total: Longint;

begin
StartTime := GetTickCount;
{ Do some calculation here }
Total := GetTickCount - StartTime;

In a multithreaded environment, this is much more difficult to do, because your application
may be preempted by the operating system in the middle of the calculation in order to provide
CPU cycles to other processes. Therefore, any timing you do that relies on the system time
can’t provide a true measure of how long it spends crunching the calculation in your thread.

To avoid such problems, Win32 under Windows NT/2000 provides a function called
GetThreadTimes(), which provides quite detailed information on thread timing. This function
is declared as follows:

function GetThreadTimes(hThread: THandle; var lpCreationTime, lpExitTime,
lpKernelTime, lpUserTime: TFileTime): BOOL; stdcall;

The hThread parameter is the handle to the thread for which you want to obtain timing infor-
mation. The other parameters for this function are passed by reference and are filled in by the
function. Here’s an explanation of each:

• lpCreationTime. The time when the thread was created.

• lpExitTime. The time when the thread was exited. If the thread is still running, this
value is undefined.

• lpKernelTime. The amount of time the thread has spent executing operating system code.

• lpUserTime. The amount of time the thread has spent executing application code.

Writing Multithreaded Applications

CHAPTER 11
491

11
W

R
ITIN

G
M

U
LTITH

R
EA

D
ED

A
PPLIC

A
TIO

N
S

Each of the last four parameters is of type TFileTime, which is defined in the Windows unit as
follows:

type
TFileTime = record
dwLowDateTime: DWORD;
dwHighDateTime: DWORD;

end;

The definition of this type is a bit unusual, but it’s a part of the Win32 API, so here goes:
dwLowDateTime and dwHighDateTime are combined into a quad word (64-bit) value that repre-
sents the number of 100-nanosecond intervals that have passed since January 1, 1601. This
means, of course, that if you wanted to write a simulation of English fleet movements as they
defeated the Spanish Armada in 1588, the TFileTime type would be a wholly inappropriate
way to keep track of time…but we digress.

Advanced Techniques

PART II
492

TIP

Because the TFileTime type is 64 bits in size, you can typecast a TFileTime to an
Int64 type in order to perform arithmetic on TFileTime values. The following code
demonstrates how to quickly tell whether one TFileTime is greater than another:

if Int64(UserTime) > Int64(KernelTime) then Beep;

In order to help you work with TFileTime values in a manner more native to Delphi, the fol-
lowing functions allow you to convert back and forth between TFileTime and TDateTime
types:

function FileTimeToDateTime(FileTime: TFileTime): TDateTime;
var
SysTime: TSystemTime;

begin
if not FileTimeToSystemTime(FileTime, SysTime) then
raise EConvertError.CreateFmt(‘FileTimeToSystemTime failed. ‘ +
‘Error code %d’, [GetLastError]);

with SysTime do
Result := EncodeDate(wYear, wMonth, wDay) +
EncodeTime(wHour, wMinute, wSecond, wMilliseconds)

end;

function DateTimeToFileTime(DateTime: TDateTime): TFileTime;
var
SysTime: TSystemTime;

begin
with SysTime do
begin
DecodeDate(DateTime, wYear, wMonth, wDay);
DecodeTime(DateTime, wHour, wMinute, wSecond, wMilliseconds);
wDayOfWeek := DayOfWeek(DateTime);

end;
if not SystemTimeToFileTime(SysTime, Result) then
raise EConvertError.CreateFmt(‘SystemTimeToFileTime failed. ‘ +
+ ‘Error code %d’, [GetLastError]);

end;

Writing Multithreaded Applications

CHAPTER 11
493

11
W

R
ITIN

G
M

U
LTITH

R
EA

D
ED

A
PPLIC

A
TIO

N
S

CAUTION

Remember that the GetThreadTimes() function is implemented only under Windows
NT/2000. The function always returns False when called under Windows 95 or 98.
Unfortunately, Windows 95/98 doesn’t provide any mechanism for retrieving thread-
timing information.

Managing Multiple Threads
As indicated earlier, although threads can solve a variety of programming problems, they’re
also likely to introduce new types of problems that you must deal with in your applications.
Most commonly, these problems revolve around multiple threads accessing global resources,
such as global variables or handles. Additionally, problems can arise when you need to ensure
that some event in one thread always occurs before or after some other event in another thread.
In this section, you learn how to tackle these problems by using the facilities provided by
Delphi for thread-local storage and those provided by the API for thread synchronization.

Thread-Local Storage
Because each thread represents a separate and distinct path of execution within a process, it
logically follows that you will at some point want to have a means for storing data associated
with each thread. There are three techniques for storing data unique to each thread: the first
and most straightforward involves local (stack-based) variables. Because each thread gets its
own stack, each thread executing within a single procedure or function will have its own copy
of local variables. The second technique is to store local information in your TThread descen-
dant object. Finally, you can also use Object Pascal’s threadvar reserved word to take advan-
tage of operating system–level thread-local storage.

TThread Storage
Storing pertinent data in the TThread descendant object should be your technique of choice for
thread-local storage. It’s both more straightforward and more efficient than using threadvar
(described later). To declare thread-local data in this manner, simply add it to the definition of
your TThread descendant, as shown here:

type
TMyThread = class(TThread)
private
FLocalInt: Integer;
FLocalStr: String;
.
.
.

end;

Advanced Techniques

PART II
494

TIP

It’s about 10 times faster to access a field of an object than to access a threadvar
variable, so you should store your thread-specific data in your TThread descendant, if
possible. Data that doesn’t need to exist for more than the lifetime of a particular
procedure or function should be stored in local variables, because those are faster
still than the fields of a TThread object.

threadvar: API Thread-Local Storage
Earlier we mentioned that each thread is provided with its own stack for storing local variables,
whereas global data has to be shared by all threads within an application. For example, say you
have a procedure that sets or displays the value of a global variable. When you call the proce-
dure passing a text string, the global variable is set, and when you call the procedure passing
an empty string, the global variable is displayed. Such a procedure might look like this:

var
GlobalStr: String;

procedure SetShowStr(const S: String);
begin
if S = ‘’ then
MessageBox(0, PChar(GlobalStr), ‘The string is...’, MB_OK)

else
GlobalStr := S;

end;

If this procedure is called from within the context of one thread only, there wouldn’t be any
problems. You’d call the procedure once to set the value of GlobalStr and call it again to dis-
play the value. However, consider what can happen if two or more threads call this procedure

at any given time. In such a case, it’s possible that one thread could call the procedure to set
the string and then get preempted by another thread that might also call the function to set the
string. By the time the operating system gives CPU time back to the first thread, the value of
GlobalStr for that thread will be hopelessly lost.

For situations such as these, Win32 provides a facility known as thread-local storage that
enables you to create separate copies of global variables for each running thread. Delphi nicely
encapsulates this functionality with the threadvar clause. Just declare any global variables you
want to exist separately for each thread within a threadvar (as opposed to var) clause, and the
work is done. A redeclaration of the GlobalStr variable is as simple as this:

threadvar
GlobalStr: String;

The unit shown in Listing 11.3 illustrates this very problem. It represents the main unit to a
Delphi application that contains only a button on a form. When the button is clicked, the proce-
dure is called to set and then to show GlobalStr. Next, another thread is created, and the value
internal to the thread is set and shown again. After the thread creation, the primary thread again
calls SetShowStr to display GlobalStr.

Try running this application with GlobalStr declared as a var and then as a threadvar. You’ll
see a difference in the output.

LISTING 11.3 The MAIN.PAS Unit for Thread-Local Storage Demo

Done. -sunit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;

type
TMainForm = class(TForm)
Button1: TButton;
procedure Button1Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
MainForm: TMainForm;

Writing Multithreaded Applications

CHAPTER 11
495

11
W

R
ITIN

G
M

U
LTITH

R
EA

D
ED

A
PPLIC

A
TIO

N
S

continues

LISTING 11.3 Continued

implementation

{$R *.DFM}

{ NOTE: Change GlobalStr from var to threadvar to see difference }
var
//threadvar
GlobalStr: string;

type
TTLSThread = class(TThread)
private
FNewStr: String;

protected
procedure Execute; override;

public
constructor Create(const ANewStr: String);

end;

procedure SetShowStr(const S: String);
begin
if S = ‘’ then
MessageBox(0, PChar(GlobalStr), ‘The string is...’, MB_OK)

else
GlobalStr := S;

end;

constructor TTLSThread.Create(const ANewStr: String);
begin
FNewStr := ANewStr;
inherited Create(False);

end;

procedure TTLSThread.Execute;
begin
FreeOnTerminate := True;
SetShowStr(FNewStr);
SetShowStr(‘’);

end;

procedure TMainForm.Button1Click(Sender: TObject);
begin
SetShowStr(‘Hello world’);
SetShowStr(‘’);
TTLSThread.Create(‘Dilbert’);

Advanced Techniques

PART II
496

Sleep(100);
SetShowStr(‘’);

end;

end.

Writing Multithreaded Applications

CHAPTER 11
497

11
W

R
ITIN

G
M

U
LTITH

R
EA

D
ED

A
PPLIC

A
TIO

N
SNOTE

The demo program calls the Win32 API Sleep() procedure after creating the thread.
Sleep() is declared as follows:

procedure Sleep(dwMilliseconds: DWORD); stdcall;

The Sleep() procedure tells the operating system that the current thread doesn’t
need any more CPU cycles for another dwMilliseconds milliseconds. Inserting this call
into the code has the effect of simulating system conditions where more multitasking
is occurring and introducing a bit more “randomness” into the application as to
which threads will be executing when.

It’s often acceptable to pass zero in the dwMilliseconds parameter. Although that
doesn’t prevent the current thread from executing for any specific amount of time, it
does cause the operating system to give CPU cycles to any waiting threads of equal
or greater priority.

Be careful of using Sleep() to work around mysterious timing problems. Sleep()
may work around a particular problem on your machine, but timing problems that
are not solved conclusively will pop up again on somebody else’s machine, especially
when the machine is significantly faster or slower or has a different number of
processors than your machine.

Thread Synchronization
When working with multiple threads, you’ll often need to synchronize the access of threads to
some particular piece of data or resource. For example, suppose you have an application that
uses one thread to read a file into memory and another thread to count the number of charac-
ters in the file. It goes without saying that you can’t count all the characters in the file until the
entire file has been loaded into memory. However, because each operation occurs in its own
thread, the operating system would like to treat them as two completely unrelated tasks. To fix
this problem, you must synchronize the two threads so that the counting thread doesn’t execute
until the loading thread finishes.

These are the types of problems that thread synchronization addresses, and Win32 provides a
variety of ways to synchronize threads. In this section, you’ll see examples of thread synchro-
nization techniques using critical sections, mutexes, semaphores, and events.

In order to examine these techniques, first take a look at a problem involving threads that need
to be synchronized. For the purpose of illustration, suppose you have an array of integers that
needs to be initialized with ascending values. You want to first go through the array and set the
values from 1 to 128 and then reinitialize the array with values from 128 to 255. You’ll then
display the final thread in a list box. An approach to this might be to perform the initializations
in two separate threads. Consider the code in Listing 11.4 for a unit that attempts to perform
this task.

LISTING 11.4 A Unit That Attempts to Initialize an Array in Threads

unit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;

type
TMainForm = class(TForm)
Button1: TButton;
ListBox1: TListBox;
procedure Button1Click(Sender: TObject);

private
procedure ThreadsDone(Sender: TObject);

end;

TFooThread = class(TThread)
protected
procedure Execute; override;

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

const
MaxSize = 128;

var
NextNumber: Integer = 0;

Advanced Techniques

PART II
498

DoneFlags: Integer = 0;
GlobalArray: array[1..MaxSize] of Integer;

function GetNextNumber: Integer;
begin
Result := NextNumber; // return global var
Inc(NextNumber); // inc global var

end;

procedure TFooThread.Execute;
var
i: Integer;

begin
OnTerminate := MainForm.ThreadsDone;
for i := 1 to MaxSize do
begin
GlobalArray[i] := GetNextNumber; // set array element
Sleep(5); // let thread intertwine

end;
end;

procedure TMainForm.ThreadsDone(Sender: TObject);
var
i: Integer;

begin
Inc(DoneFlags);
if DoneFlags = 2 then // make sure both threads finished
for i := 1 to MaxSize do
{ fill listbox with array contents }
Listbox1.Items.Add(IntToStr(GlobalArray[i]));

end;

procedure TMainForm.Button1Click(Sender: TObject);
begin
TFooThread.Create(False); // create threads
TFooThread.Create(False);

end;

end.

Because both threads will execute simultaneously, what happens is that the contents of the
array are corrupted as it’s initialized. As proof, take a look at the output of this code, as shown
in Figure 11.4.

Writing Multithreaded Applications

CHAPTER 11
499

11
W

R
ITIN

G
M

U
LTITH

R
EA

D
ED

A
PPLIC

A
TIO

N
S

FIGURE 11.4
Output from unsynchronized array initialization.

The solution to this problem is to synchronize the two threads as they access the global array
so that they don’t both dive in at the same time. You can take any of a number of valid
approaches to this problem.

Critical Sections
Critical sections provide one of the most straightforward ways to synchronize threads. A criti-
cal section is some section of code that allows only one thread to execute through it at a time.
If you wrap the code used to initialize the array in a critical section, other threads will be
blocked from entering the code section until the first finishes.

Prior to using a critical section, you must initialize it using the InitializeCriticalSection()
API procedure, which is declared as follows:

procedure InitializeCriticalSection(var lpCriticalSection:
TRTLCriticalSection); stdcall;

lpCriticalSection is a TRTLCriticalSection record that’s passed by reference. The exact
definition of TRTLCriticalSection is unimportant, because you’ll rarely (if ever) actually look
at the contents of one. You’ll pass an uninitialized record in the lpCriticalSection parameter,
and the record will be filled by the procedure.

Advanced Techniques

PART II
500

NOTE

Microsoft deliberately obscures the structure of the TRTLCriticalSection record
because the contents vary from one hardware platform to another, and because tin-
kering with the contents of this structure can potentially wreak havoc on your
process. On Intel-based systems, the critical section structure contains a counter, a
field containing the current thread handle, and (potentially) a handle of a system
event. On Alpha hardware, the counter is replaced with an Alpha-CPU data structure
called a spinlock, which is more efficient than the Intel solution.

When the record is filled, you can create a critical section in your application by wrapping
some block of code with calls to EnterCriticalSection() and LeaveCriticalSection().
These procedures are declared as follows:

procedure EnterCriticalSection(var lpCriticalSection:
TRTLCriticalSection); stdcall;

procedure LeaveCriticalSection(var lpCriticalSection:
TRTLCriticalSection); stdcall;

As you might guess, the lpCriticalSection parameter you pass these guys is the same one
that’s filled in by the InitializeCriticalSection() procedure.

When you’re finished with the TRTLCriticalSection record, you should clean up by calling
the DeleteCriticalSection() procedure, which is declared as follows:

procedure DeleteCriticalSection(var lpCriticalSection:
TRTLCriticalSection); stdcall;

Listing 11.5 demonstrates the technique for synchronizing the array-initialization threads with
critical sections.

LISTING 11.5 Using Critical Sections

unit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;

type
TMainForm = class(TForm)
Button1: TButton;
ListBox1: TListBox;
procedure Button1Click(Sender: TObject);

private
procedure ThreadsDone(Sender: TObject);

end;

TFooThread = class(TThread)
protected
procedure Execute; override;

end;

var
MainForm: TMainForm;

Writing Multithreaded Applications

CHAPTER 11
501

11
W

R
ITIN

G
M

U
LTITH

R
EA

D
ED

A
PPLIC

A
TIO

N
S

continues

LISTING 11.5 Continued

implementation

{$R *.DFM}

const
MaxSize = 128;

var
NextNumber: Integer = 0;
DoneFlags: Integer = 0;
GlobalArray: array[1..MaxSize] of Integer;
CS: TRTLCriticalSection;

function GetNextNumber: Integer;
begin
Result := NextNumber; // return global var
inc(NextNumber); // inc global var

end;

procedure TFooThread.Execute;
var
i: Integer;

begin
OnTerminate := MainForm.ThreadsDone;
EnterCriticalSection(CS); // CS begins here
for i := 1 to MaxSize do
begin
GlobalArray[i] := GetNextNumber; // set array element
Sleep(5); // let thread intertwine

end;
LeaveCriticalSection(CS); // CS ends here

end;

procedure TMainForm.ThreadsDone(Sender: TObject);
var
i: Integer;

begin
inc(DoneFlags);
if DoneFlags = 2 then
begin // make sure both threads finished
for i := 1 to MaxSize do
{ fill listbox with array contents }
Listbox1.Items.Add(IntToStr(GlobalArray[i]));

DeleteCriticalSection(CS);
end;

Advanced Techniques

PART II
502

end;

procedure TMainForm.Button1Click(Sender: TObject);
begin
InitializeCriticalSection(CS);
TFooThread.Create(False); // create threads
TFooThread.Create(False);

end;

end.

After the first thread passes through the call to EnterCriticalSection(), all other threads are
prevented from entering that block of code. The next thread that comes along to that line of
code is put to sleep until the first thread calls LeaveCriticalSection(). At that point, the sec-
ond thread is awakened and allowed to take control of the critical section. Figure 11.5 shows
the output of this application when the threads are synchronized.

Writing Multithreaded Applications

CHAPTER 11
503

11
W

R
ITIN

G
M

U
LTITH

R
EA

D
ED

A
PPLIC

A
TIO

N
S

FIGURE 11.5
Output from synchronized array initialization.

Mutexes
Mutexes work very much like critical sections except for two key differences: First, mutexes
can be used to synchronize threads across process boundaries. Second, mutexes can be given a
string name, and additional handles to existing mutex objects can be created by referencing
that name.

TIP

Semantics aside, the biggest difference between critical sections and event objects
such as mutexes is performance: Critical sections are very lightweight—as few as

continues

The function used to create a mutex is appropriately called CreateMutex(). This function is
declared as follows:

function CreateMutex(lpMutexAttributes: PSecurityAttributes;
bInitialOwner: BOOL; lpName: PChar): THandle; stdcall;

lpMutexAttributes is a pointer to a TSecurityAttributes record. It’s common to pass nil in
this parameter, in which case the default security attributes will be used.

bInitialOwner indicates whether the thread creating the mutex should be considered the
owner of the mutex when it’s created. If this parameter is False, the mutex is unowned.

lpName is the name of the mutex. This parameter can be nil if you don’t want to name the
mutex. If this parameter is non-nil, the function will search the system for an existing mutex
with the same name. If an existing mutex is found, a handle to the existing mutex is returned.
Otherwise, a handle to a new mutex is returned.

When you’re finished using a mutex, you should close it using the CloseHandle() API function.

Listing 11.6 again demonstrates the technique for synchronizing the array-initialization
threads, except this time it uses mutexes.

LISTING 11.6 Using Mutexes for Synchronization

Done. -sunit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;

type
TMainForm = class(TForm)
Button1: TButton;
ListBox1: TListBox;

Advanced Techniques

PART II
504

10–15 clock cycles to enter or leave the critical section when there are no thread colli-
sions. As soon as there is a thread collision for that critical section, the system creates
an event object (a mutex, probably). The cost of using event objects such as mutexes
is that it requires a roundtrip into the kernel, which requires a process context switch
and a change of ring levels, which piles up to 400 to 600 clock cycles each way. All
this overhead is incurred even if your app doesn’t currently have multiple threads, or
if no other threads are contending for the resource you’re protecting.

procedure Button1Click(Sender: TObject);
private
procedure ThreadsDone(Sender: TObject);

end;

TFooThread = class(TThread)
protected
procedure Execute; override;

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

const
MaxSize = 128;

var
NextNumber: Integer = 0;
DoneFlags: Integer = 0;
GlobalArray: array[1..MaxSize] of Integer;
hMutex: THandle = 0;

function GetNextNumber: Integer;
begin
Result := NextNumber; // return global var
Inc(NextNumber); // inc global var

end;

procedure TFooThread.Execute;
var
i: Integer;

begin
FreeOnTerminate := True;
OnTerminate := MainForm.ThreadsDone;
if WaitForSingleObject(hMutex, INFINITE) = WAIT_OBJECT_0 then
begin
for i := 1 to MaxSize do
begin
GlobalArray[i] := GetNextNumber; // set array element
Sleep(5); // let thread intertwine

end;
end;

Writing Multithreaded Applications

CHAPTER 11
505

11
W

R
ITIN

G
M

U
LTITH

R
EA

D
ED

A
PPLIC

A
TIO

N
S

continues

LISTING 11.6 Continued

ReleaseMutex(hMutex);
end;

procedure TMainForm.ThreadsDone(Sender: TObject);
var
i: Integer;

begin
Inc(DoneFlags);
if DoneFlags = 2 then // make sure both threads finished
begin
for i := 1 to MaxSize do
{ fill listbox with array contents }
Listbox1.Items.Add(IntToStr(GlobalArray[i]));

CloseHandle(hMutex);
end;

end;

procedure TMainForm.Button1Click(Sender: TObject);
begin
hMutex := CreateMutex(nil, False, nil);
TFooThread.Create(False); // create threads
TFooThread.Create(False);

end;

end.

You’ll notice that in this case the WaitForSingleObject() function is used to control thread
entry into the synchronized block of code. This function is declared as follows:

function WaitForSingleObject(hHandle: THandle; dwMilliseconds: DWORD):
DWORD; stdcall;

The purpose of this function is to sleep the current thread up to dwMilliseconds milliseconds
until the API object specified in the hHandle parameter becomes signaled. Signaled means dif-
ferent things for different objects. A mutex becomes signaled when it’s not owned by a thread,
whereas a process, for example, becomes signaled when it terminates. Apart from an actual
period of time, the dwMilliseconds parameter can also have the value 0, which means to
check the status of the object and return immediately, or INFINITE, which means to wait for-
ever for the object to become signaled. The return value of this function can be any one of the
values shown in Table 11.3.

Advanced Techniques

PART II
506

TABLE 11.3 WAIT constants used by WaitForSingleObject() API function.

Value Meaning

WAIT_ABANDONED The specified object is a mutex object, and the thread owning the mutex was
exited before it freed the mutex. This circumstance is referred to as an aban-
doned mutex; in such a case, ownership of the mutex object is granted to the
calling thread, and the mutex is set to nonsignaled.

WAIT_OBJECT_0 The state of the specified object is signaled.

WAIT_TIMEOUT The timeout interval elapsed, and the object’s state is nonsignaled.

Again, when a mutex isn’t owned by a thread, it’s in the signaled state. The first thread to call
WaitForSingleObject() on this mutex is given ownership of the mutex, and the state of the
mutex object is set to nonsignaled. The thread’s ownership of the mutex is severed when the
thread calls the ReleaseMutex() function, passing the mutex handle as the parameter. At that
point, the state of the mutex again becomes signaled.

Writing Multithreaded Applications

CHAPTER 11
507

11
W

R
ITIN

G
M

U
LTITH

R
EA

D
ED

A
PPLIC

A
TIO

N
S

NOTE

In addition to WaitForSingleObject(), the Win32 API also has functions called
WaitForMultipleObjects() and MsgWaitForMultipleObjects(), which enable you to
wait for the state of one or more objects to become signaled. These functions are
documented in the Win32 API online help.

Semaphores
Another technique for thread synchronization involves using semaphore API objects.
Semaphores build on the functionality of mutexes while adding one important feature: They
offer the capability of resource counting so that a predetermined number of threads can enter
synchronized pieces of code at one time. The function used to create a semaphore is
CreateSemaphore(), and it’s declared as follows:

function CreateSemaphore(lpSemaphoreAttributes: PSecurityAttributes;
lInitialCount, lMaximumCount: Longint; lpName: PChar): THandle;stdcall;

Like CreateMutex(), the first parameter to CreateSemaphore() is a pointer to a
TSecurityAttributes record to which you can pass Nil for the defaults.

lInitialCount is the initial count of the semaphore object. This is a number between 0 and
lMaximumCount. A semaphore is signaled as long as this parameter is greater than zero. The
count of a semaphore is decremented whenever WaitForSingleObject() (or one of the other
wait functions) releases a thread. A semaphore’s count is increased by using the
ReleaseSemaphore() function.

lMaximumCount specifies the maximum count value of the semaphore object. If the semaphore
is used to count some resources, this number should represent the total number of resources
available.

lpName is the name of the semaphore. This parameter behaves the same as the parameter of the
same name in CreateMutex().

Listing 11.7 demonstrates using semaphores to perform synchronization of the array-initializa-
tion problem.

LISTING 11.7 Using Semaphores for Synchronization

Done. -sunit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;

type
TMainForm = class(TForm)
Button1: TButton;
ListBox1: TListBox;
procedure Button1Click(Sender: TObject);

private
procedure ThreadsDone(Sender: TObject);

end;

TFooThread = class(TThread)
protected
procedure Execute; override;

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

const
MaxSize = 128;

var
NextNumber: Integer = 0;

Advanced Techniques

PART II
508

DoneFlags: Integer = 0;
GlobalArray: array[1..MaxSize] of Integer;
hSem: THandle = 0;

function GetNextNumber: Integer;
begin
Result := NextNumber; // return global var
Inc(NextNumber); // inc global var

end;

procedure TFooThread.Execute;
var
i: Integer;
WaitReturn: DWORD;

begin
OnTerminate := MainForm.ThreadsDone;
WaitReturn := WaitForSingleObject(hSem, INFINITE);
if WaitReturn = WAIT_OBJECT_0 then
begin
for i := 1 to MaxSize do
begin
GlobalArray[i] := GetNextNumber; // set array element
Sleep(5); // let thread intertwine

end;
end;
ReleaseSemaphore(hSem, 1, nil);

end;

procedure TMainForm.ThreadsDone(Sender: TObject);
var
i: Integer;

begin
Inc(DoneFlags);
if DoneFlags = 2 then // make sure both threads finished
begin
for i := 1 to MaxSize do
{ fill listbox with array contents }
Listbox1.Items.Add(IntToStr(GlobalArray[i]));

CloseHandle(hSem);
end;

end;

procedure TMainForm.Button1Click(Sender: TObject);
begin
hSem := CreateSemaphore(nil, 1, 1, nil);
TFooThread.Create(False); // create threads

Writing Multithreaded Applications

CHAPTER 11
509

11
W

R
ITIN

G
M

U
LTITH

R
EA

D
ED

A
PPLIC

A
TIO

N
S

continues

LISTING 11.7 Continued

TFooThread.Create(False);
end;

end.

Because you allow only one thread to enter the synchronized portion of code, the maximum
count for the semaphore is 1 in this case.

The ReleaseSemaphore() function is used to increase the count for the semaphore. Notice that
this function is a bit more involved than its cousin, ReleaseMutex(). The declaration for
ReleaseSemaphore() is as follows:

function ReleaseSemaphore(hSemaphore: THandle; lReleaseCount: Longint;
lpPreviousCount: Pointer): BOOL; stdcall;

The lReleaseCount parameter enables you to specify the number by which the count of the
semaphore will be increased. The old count will be stored in the longint pointed to by the
lpPreviousCount parameter if its value is not Nil. A subtle implication of this capability is
that a semaphore is never really owned by any thread in particular. For example, suppose the
maximum count of a semaphore is 10, and 10 threads call WaitForSingleObject() to set the
count of the thread to 0 and put the thread in a nonsignaled state. All it takes is one of those
threads to call ReleaseSemaphore() with 10 as the lReleaseCount parameter in order to not
only make the thread signaled again, but to increase the count back to 10. This powerful capa-
bility can introduce some hard-to-track-down bugs into your applications, so you should use it
with care.

Be sure to use the CloseHandle() function to free the semaphore handle allocated with
CreateSemaphore().

A Sample Multithreaded Application
To demonstrate the usage of TThread objects within the context of a real-world application,
this section focuses on creating a file-search application that performs its searches in a special-
ized thread. The project is called DelSrch, which stands for Delphi Search, and the main form
for this utility is shown in Figure 11.6.

The application works like this. The user chooses a path through which to search and provides
a file specification to indicate the types of files to be searched. The user also enters a token to
search for in the appropriate edit control. Some option check boxes on one side of the form
enable the user to tailor the application to suit his or her needs for a particular search. When
the user clicks the Search button, a search thread is created and the appropriate search informa-
tion—such as token, path, and file specification—is passed to the TThread descendant object.

Advanced Techniques

PART II
510

When the search thread finds the search token in certain files, information is appended to the
list box. Finally, if the user double-clicks a file in the list box, the user can browse it with a
text editor or view it from its desktop association.

Writing Multithreaded Applications

CHAPTER 11
511

11
W

R
ITIN

G
M

U
LTITH

R
EA

D
ED

A
PPLIC

A
TIO

N
S

FIGURE 11.6
The Main form for the DelSrch project.

Although this is a fairly full-featured application, we’ll focus mainly on explaining the applica-
tion’s key search features and how they relate to multithreading.

The User Interface
The main unit for the application is called Main.pas. Shown in Listing 11.8, this unit is respon-
sible for managing the main form and the overall user interface. In particular, this unit contains
the logic for owner-drawing the list box, invoking a viewer for files in the list box, invoking the
search thread, printing the list box contents, and reading and writing UI settings to an INI file.

LISTING 11.8 The Main.pas Unit for the DelSrch Project

unit SrchU;

interface

uses Classes, StdCtrls;

type
TSearchThread = class(TThread)
private

continues

LISTING 11.8 Continued

LB: TListbox;
CaseSens: Boolean;
FileNames: Boolean;
Recurse: Boolean;
SearchStr: string;
SearchPath: string;
FileSpec: string;
AddStr: string;
FSearchFile: string;
procedure AddToList;
procedure DoSearch(const Path: string);
procedure FindAllFiles(const Path: string);
procedure FixControls;
procedure ScanForStr(const FName: string; var FileStr: string);
procedure SearchFile(const FName: string);
procedure SetSearchFile;

protected
procedure Execute; override;

public
constructor Create(CaseS, FName, Rec: Boolean; const Str, SPath,
FSpec: string);

destructor Destroy; override;
end;

implementation

uses SysUtils, StrUtils, Windows, Forms, Main;

constructor TSearchThread.Create(CaseS, FName, Rec: Boolean; const Str,
SPath, FSpec: string);

begin
CaseSens := CaseS;
FileNames := FName;
Recurse := Rec;
SearchStr := Str;
SearchPath := AddBackSlash(SPath);
FileSpec := FSpec;
inherited Create(False);

end;

destructor TSearchThread.Destroy;
begin
FSearchFile := ‘’;
Synchronize(SetSearchFile);
Synchronize(FixControls);

Advanced Techniques

PART II
512

inherited Destroy;
end;

procedure TSearchThread.Execute;
begin
FreeOnTerminate := True; // set up all the fields
LB := MainForm.lbFiles;
Priority := TThreadPriority(MainForm.SearchPri);
if not CaseSens then SearchStr := UpperCase(SearchStr);
FindAllFiles(SearchPath); // process current directory
if Recurse then // if subdirs, then...
DoSearch(SearchPath); // recurse, otherwise...

end;

procedure TSearchThread.FixControls;
{ Enables controls in main form. Must be called through Synchronize }
begin
MainForm.EnableSearchControls(True);

end;

procedure TSearchThread.SetSearchFile;
{ Updates status bar with filename. Must be called through Synchronize }
begin
MainForm.StatusBar.Panels[1].Text := FSearchFile;

end;

procedure TSearchThread.AddToList;
{ Adds string to main listbox. Must be called through Synchronize }
begin
LB.Items.Add(AddStr);

end;

procedure TSearchThread.ScanForStr(const FName: string; var FileStr: string);
{ Scans a FileStr of file FName for SearchStr }
var
Marker: string[1];
FoundOnce: Boolean;
FindPos: integer;

begin
FindPos := Pos(SearchStr, FileStr);
FoundOnce := False;
while (FindPos <> 0) and not Terminated do
begin
if not FoundOnce then
begin
{ use “:” only if user doesn’t choose “filename only” }

Writing Multithreaded Applications

CHAPTER 11
513

11
W

R
ITIN

G
M

U
LTITH

R
EA

D
ED

A
PPLIC

A
TIO

N
S

continues

LISTING 11.8 Continued

if FileNames then
Marker := ‘’

else
Marker := ‘:’;

{ add file to listbox }
AddStr := Format(‘File %s%s’, [FName, Marker]);
Synchronize(AddToList);
FoundOnce := True;

end;
{ don’t search for same string in same file if filenames only }
if FileNames then Exit;

{ Add line if not filename only }
AddStr := GetCurLine(FileStr, FindPos);
Synchronize(AddToList);
FileStr := Copy(FileStr, FindPos + Length(SearchStr), Length(FileStr));
FindPos := Pos(SearchStr, FileStr);

end;
end;

procedure TSearchThread.SearchFile(const FName: string);
{ Searches file FName for SearchStr }
var
DataFile: THandle;
FileSize: Integer;
SearchString: string;

begin
FSearchFile := FName;
Synchronize(SetSearchFile);
try
DataFile := FileOpen(FName, fmOpenRead or fmShareDenyWrite);
if DataFile = 0 then raise Exception.Create(‘’);
try
{ set length of search string }
FileSize := GetFileSize(DataFile, nil);
SetLength(SearchString, FileSize);
{ Copy file data to string }
FileRead(DataFile, Pointer(SearchString)^, FileSize);

finally
CloseHandle(DataFile);

end;
if not CaseSens then SearchString := UpperCase(SearchString);
ScanForStr(FName, SearchString);

except
on Exception do

Advanced Techniques

PART II
514

begin
AddStr := Format(‘Error reading file: %s’, [FName]);
Synchronize(AddToList);

end;
end;

end;

procedure TSearchThread.FindAllFiles(const Path: string);
{ procedure searches Path subdir for files matching filespec }
var
SR: TSearchRec;

begin
{ find first file matching spec }
if FindFirst(Path + FileSpec, faArchive, SR) = 0 then
try
repeat
SearchFile(Path + SR.Name); // process file

until (FindNext(SR) <> 0) or Terminated; // find next file
finally
SysUtils.FindClose(SR); // clean up

end;
end;

procedure TSearchThread.DoSearch(const Path: string);
{ procedure recurses through a subdirectory tree starting at Path }
var
SR: TSearchRec;

begin
{ look for directories }
if FindFirst(Path + ‘*.*’, faDirectory, SR) = 0 then
try
repeat
{ if it’s a directory and not ‘.’ or ‘..’ then... }
if ((SR.Attr and faDirectory) <> 0) and (SR.Name[1] <> ‘.’) and
not Terminated then

begin
FindAllFiles(Path + SR.Name + ‘\’); // process directory
DoSearch(Path + SR.Name + ‘\’); // recurse

end;
until (FindNext(SR) <> 0) or Terminated; // find next directory

finally
SysUtils.FindClose(SR); // clean up

end;
end;

end.

Writing Multithreaded Applications

CHAPTER 11
515

11
W

R
ITIN

G
M

U
LTITH

R
EA

D
ED

A
PPLIC

A
TIO

N
S

Several things worth mentioning happen in this unit. First, you’ll notice the fairly small
PrintStrings() procedure that’s used to send the contents of TStrings to the printer. To
accomplish this, the procedure takes advantage of Delphi’s AssignPrn() standard procedure,
which assigns a TextFile variable to the printer. That way, any text written to the TextFile is
automatically written to the printer. When you’re finished writing to the printer, be sure to use
the CloseFile() procedure to close the connection to the printer.

Also of interest is the use of the ShellExecute() Win32 API procedure to launch a viewer for
a file that will be shown in the list box. ShellExecute() not only enables you to invoke exe-
cutable programs but also to invoke associations for registered file extensions. For example, if
you try to invoke a file with a .pas extension using ShellExecute(), it will automatically load
Delphi to view the file.

Advanced Techniques

PART II
516

TIP

If ShellExecute() returns a value indicating an error, the application calls
RaiseLastWin32Error(). This procedure, located in the SysUtils unit, calls the
GetLastError() API function and Delphi’s SysErrorMessage() in order to obtain
more detailed information about the error and to format that information into a
string. You can use RaiseLastWin32Error() in this manner in your own applications
if you want your users to obtain detailed error messages on API failures.

The Search Thread
The searching engine is contained within a unit called SrchU.pas, which is shown in Listing
11.9. This unit does a number of interesting things, including copying an entire file into a
string, recursing subdirectories, and communicating information back to the main form.

LISTING 11.9 The SrchU.pas Unit

unit SrchU;

interface

uses Classes, StdCtrls;

type
TSearchThread = class(TThread)
private
LB: TListbox;
CaseSens: Boolean;
FileNames: Boolean;

Recurse: Boolean;
SearchStr: string;
SearchPath: string;
FileSpec: string;
AddStr: string;
FSearchFile: string;
procedure AddToList;
procedure DoSearch(const Path: string);
procedure FindAllFiles(const Path: string);
procedure FixControls;
procedure ScanForStr(const FName: string; var FileStr: string);
procedure SearchFile(const FName: string);
procedure SetSearchFile;

protected
procedure Execute; override;

public
constructor Create(CaseS, FName, Rec: Boolean; const Str, SPath,
FSpec: string);

destructor Destroy; override;
end;

implementation

uses SysUtils, StrUtils, Windows, Forms, Main;

constructor TSearchThread.Create(CaseS, FName, Rec: Boolean; const Str,
SPath, FSpec: string);

begin
CaseSens := CaseS;
FileNames := FName;
Recurse := Rec;
SearchStr := Str;
SearchPath := AddBackSlash(SPath);
FileSpec := FSpec;
inherited Create(False);

end;

destructor TSearchThread.Destroy;
begin
FSearchFile := ‘’;
Synchronize(SetSearchFile);
Synchronize(FixControls);
inherited Destroy;

end;

procedure TSearchThread.Execute;

Writing Multithreaded Applications

CHAPTER 11
517

11
W

R
ITIN

G
M

U
LTITH

R
EA

D
ED

A
PPLIC

A
TIO

N
S

continues

LISTING 11.9 Continued

begin
FreeOnTerminate := True; // set up all the fields
LB := MainForm.lbFiles;
Priority := TThreadPriority(MainForm.SearchPri);
if not CaseSens then SearchStr := UpperCase(SearchStr);
FindAllFiles(SearchPath); // process current directory
if Recurse then // if subdirs, then...
DoSearch(SearchPath); // recurse, otherwise...

end;

procedure TSearchThread.FixControls;
{ Enables controls in main form. Must be called through Synchronize }
begin
MainForm.EnableSearchControls(True);

end;

procedure TSearchThread.SetSearchFile;
{ Updates status bar with filename. Must be called through Synchronize }
begin
MainForm.StatusBar.Panels[1].Text := FSearchFile;

end;

procedure TSearchThread.AddToList;
{ Adds string to main listbox. Must be called through Synchronize }
begin
LB.Items.Add(AddStr);

end;

procedure TSearchThread.ScanForStr(const FName: string;
var FileStr: string);

{ Scans a FileStr of file FName for SearchStr }
var
Marker: string[1];
FoundOnce: Boolean;
FindPos: integer;

begin
FindPos := Pos(SearchStr, FileStr);
FoundOnce := False;
while (FindPos <> 0) and not Terminated do
begin
if not FoundOnce then
begin
{ use “:” only if user doesn’t choose “filename only” }
if FileNames then
Marker := ‘’

Advanced Techniques

PART II
518

else
Marker := ‘:’;

{ add file to listbox }
AddStr := Format(‘File %s%s’, [FName, Marker]);
Synchronize(AddToList);
FoundOnce := True;

end;
{ don’t search for same string in same file if filenames only }
if FileNames then Exit;

{ Add line if not filename only }
AddStr := GetCurLine(FileStr, FindPos);
Synchronize(AddToList);
FileStr := Copy(FileStr, FindPos + Length(SearchStr),
Length(FileStr));

FindPos := Pos(SearchStr, FileStr);
end;

end;

procedure TSearchThread.SearchFile(const FName: string);
{ Searches file FName for SearchStr }
var
DataFile: THandle;
FileSize: Integer;
SearchString: string;

begin
FSearchFile := FName;
Synchronize(SetSearchFile);
try
DataFile := FileOpen(FName, fmOpenRead or fmShareDenyWrite);
if DataFile = 0 then raise Exception.Create(‘’);
try
{ set length of search string }
FileSize := GetFileSize(DataFile, nil);
SetLength(SearchString, FileSize);
{ Copy file data to string }
FileRead(DataFile, Pointer(SearchString)^, FileSize);

finally
CloseHandle(DataFile);

end;
if not CaseSens then SearchString := UpperCase(SearchString);
ScanForStr(FName, SearchString);

except
on Exception do
begin
AddStr := Format(‘Error reading file: %s’, [FName]);

Writing Multithreaded Applications

CHAPTER 11
519

11
W

R
ITIN

G
M

U
LTITH

R
EA

D
ED

A
PPLIC

A
TIO

N
S

continues

LISTING 11.9 Continued

Synchronize(AddToList);
end;

end;
end;

procedure TSearchThread.FindAllFiles(const Path: string);
{ procedure searches Path subdir for files matching filespec }
var
SR: TSearchRec;

begin
{ find first file matching spec }
if FindFirst(Path + FileSpec, faArchive, SR) = 0 then
try
repeat
SearchFile(Path + SR.Name); // process file

until (FindNext(SR) <> 0) or Terminated; // find next file
finally
SysUtils.FindClose(SR); // clean up

end;
end;

procedure TSearchThread.DoSearch(const Path: string);
{ procedure recurses through a subdirectory tree starting at Path }
var
SR: TSearchRec;

begin
{ look for directories }
if FindFirst(Path + ‘*.*’, faDirectory, SR) = 0 then
try
repeat
{ if it’s a directory and not ‘.’ or ‘..’ then... }
if ((SR.Attr and faDirectory) <> 0) and (SR.Name[1] <> ‘.’) and
not Terminated then

begin
FindAllFiles(Path + SR.Name + ‘\’); // process directory
DoSearch(Path + SR.Name + ‘\’); // recurse

end;
until (FindNext(SR) <> 0) or Terminated; // find next directory

finally
SysUtils.FindClose(SR); // clean up

end;
end;

end.

Advanced Techniques

PART II
520

When created, this thread first calls its FindAllFiles() method. This method uses
FindFirst() and FindNext() to search for all files in the current directory matching the file
specification indicated by the user. If the user has chosen to recurse subdirectories, the
DoSearch() method is then called in order to traverse down a directory tree. This method again
makes use of FindFirst() and FindNext() to find directories, but the twist is that it calls itself
recursively in order to traverse the tree. As each directory is found, FindAllFiles() is called
to process all matching files in the directory.

Writing Multithreaded Applications

CHAPTER 11
521

11
W

R
ITIN

G
M

U
LTITH

R
EA

D
ED

A
PPLIC

A
TIO

N
S

TIP

The recursion algorithm used by the DoSearch() method is a standard technique for
traversing a directory tree. Because recursive algorithms are notoriously difficult to
debug, the smart programmer will make use of ones that are already known to
work. It’s a good idea to save this method so that you can use it with other applica-
tions in the future.

To process each file, you’ll notice that the algorithm for searching for a token within a file
involves using the TMemMapFile object, which encapsulates a Win32 memory-mapped file. This
object is discussed in detail in Chapter 12, “Working with Files,” but for now you can just
assume that this provides an easy way to map the contents of a file into memory. The entire
algorithm works like this:

1. When a file matching the file spec is found by the FindAllFiles() method, the
SearchFile() method is called and the file contents are copied into a string.

2. The ScanForStr() method is called for each file-string. ScanForStr() searches for
occurrences of the search token within each string.

3. When an occurrence is found, the filename and/or the line of text is added to the list box.
The line of text is added only when the user unchecks the File Names Only check box.

Note that all the methods in the TSearchThread object periodically check the status of the
StopIt flag (which is tripped when the thread is told to stop) and the Terminated flag (which
is tripped when the TThread object is to terminate).

CAUTION

Remember that any methods within a TThread object that modify the application’s
user interface in any way must be called through the Synchronize() method, or the
user interface must be modified by sending messages.

Adjusting the Priority
Just to add yet another feature, DelSrch enables the user to adjust the priority of the search
thread dynamically. The form used for this purpose is shown in Figure 11.7, and the unit for
this form, PRIU.PAS, is shown in Listing 11.10.

Advanced Techniques

PART II
522

FIGURE 11.7
The thread priority form for the DelSrch project.

LISTING 11.10 The PriU.pas Unit

unit PriU;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, ComCtrls, Buttons, ExtCtrls;

type
TThreadPriWin = class(TForm)
tbrPriTrackBar: TTrackBar;
Label1: TLabel;
Label2: TLabel;
Label3: TLabel;
btnOK: TBitBtn;
btnRevert: TBitBtn;
Panel1: TPanel;
procedure tbrPriTrackBarChange(Sender: TObject);
procedure btnRevertClick(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure FormShow(Sender: TObject);
procedure btnOKClick(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
{ Private declarations }
OldPriVal: Integer;

public
{ Public declarations }

end;

var
ThreadPriWin: TThreadPriWin;

implementation

{$R *.DFM}

uses Main, SrchU;

procedure TThreadPriWin.tbrPriTrackBarChange(Sender: TObject);
begin
with MainForm do
begin
SearchPri := tbrPriTrackBar.Position;
if Running then
SearchThread.Priority := TThreadPriority(tbrPriTrackBar.Position);

end;
end;

procedure TThreadPriWin.btnRevertClick(Sender: TObject);
begin
tbrPriTrackBar.Position := OldPriVal;

end;

procedure TThreadPriWin.FormClose(Sender: TObject;
var Action: TCloseAction);

begin
Action := caHide;

end;

procedure TThreadPriWin.FormShow(Sender: TObject);
begin
OldPriVal := tbrPriTrackBar.Position;

end;

procedure TThreadPriWin.btnOKClick(Sender: TObject);
begin
Close;

end;

procedure TThreadPriWin.FormCreate(Sender: TObject);
begin
tbrPriTrackBarChange(Sender); // initialize thread priority

end;

end.

Writing Multithreaded Applications

CHAPTER 11
523

11
W

R
ITIN

G
M

U
LTITH

R
EA

D
ED

A
PPLIC

A
TIO

N
S

The code for this unit is fairly straightforward. All it does is set the value of the SearchPri
variable in the main form to match that of the track bar position. If the thread is running, it also
sets the priority of the thread. Because TThreadPriority is an enumerated type, a straight
typecast maps the values 1 to 5 in the track bar to enumerations in TThreadPriority.

Multithreading Database Access
Although database programming isn’t really discussed until Chapter 28, “Writing Desktop
Database Applications,” this section is intended to give you some tips on how to use multiple
threads in the context of database development. If you’re unfamiliar with database programming
under Delphi, you might want to look through Chapter 28 before reading on in this section.

The most common request for database applications developers in Win32 is for the capability
to perform complex queries or stored procedures in a background thread. Thankfully, this type
of thing is supported by the 32-bit Borland Database Engine (BDE) and is fairly easy to do in
Delphi.

There are really only two requirements for running a background query through, for example, a
TQuery component:

• Each threaded query must reside within its own session. You can provide a TQuery with
its own session by placing a TSession component on your form and assigning its name
to the TQuery’s SessionName property. This also implies that, if your TQuery uses a
TDatabase component, a unique TDatabase must also be used for each session.

• The TQuery must not be attached to any TDataSource components at the time the query
is opened from the secondary thread. When the query is attached to a TDataSource, it
must be done through the context of the primary thread. TDataSource is only used to
connect datasets to user interface controls, and user interface manipulation must be per-
formed in the main thread.

To illustrate the techniques for background queries, Figure 11.8 shows the main form for a
demo project called BDEThrd. This form enables you to specify a BDE alias, user name, and
password for a particular database and to enter a query against the database. When the Go! but-
ton is clicked, a secondary thread is spawned to process the query and the results are displayed
in a child form.

The child form, TQueryForm, is shown in Figure 11.9. Notice that this form contains a TQuery,
TDatabase, TSession, TDataSource, and TDBGrid component. Therefore, each instance of
TQueryForm has its own instances of these components.

Advanced Techniques

PART II
524

FIGURE 11.8
The main form for the BDEThrd demo.

Writing Multithreaded Applications

CHAPTER 11
525

11
W

R
ITIN

G
M

U
LTITH

R
EA

D
ED

A
PPLIC

A
TIO

N
S

FIGURE 11.9
The child query form for the BDEThrd demo.

Listing 11.11 shows Main.pas, the application’s main unit.

LISTING 11.11 The Main.pas Unit for the BDEThrd Demo

Fixed. -sunit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, Grids, StdCtrls, ExtCtrls;

type
TMainForm = class(TForm)
pnlBottom: TPanel;
pnlButtons: TPanel;
GoButton: TButton;
Button1: TButton;
memQuery: TMemo;

continues

LISTING 11.11 Continued

pnlTop: TPanel;
Label1: TLabel;
AliasCombo: TComboBox;
Label3: TLabel;
UserNameEd: TEdit;
Label4: TLabel;
PasswordEd: TEdit;
Label2: TLabel;
procedure Button1Click(Sender: TObject);
procedure GoButtonClick(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

uses QryU, DB, DBTables;

var
FQueryNum: Integer = 0;

procedure TMainForm.Button1Click(Sender: TObject);
begin
Close;

end;

procedure TMainForm.GoButtonClick(Sender: TObject);
begin
Inc(FQueryNum); // keep querynum unique
{ invoke new query }
NewQuery(FQueryNum, memQuery.Lines, AliasCombo.Text, UserNameEd.Text,
PasswordEd.Text);

end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
{ fill drop-down list with BDE Aliases }

Advanced Techniques

PART II
526

Session.GetAliasNames(AliasCombo.Items);
end;

end.

As you can see, there’s not much to this unit. The AliasCombo combobox is filled with BDE
aliases in the OnCreate handler for the main form using TSession’s GetAliasNames() method.
The handler for the Go! button OnClick event is in charge of invoking a new query by calling
the NewQuery() procedure that lives in a second unit, QryU.pas. Notice that it passes a new
unique number, FQueryNum, to the NewQuery() procedure with every button click. This number
is used to create a unique session and database name for each query thread.

Listing 11.12 shows the code for the QryU unit.

LISTING 11.12 The QryU.pas Unit

unit QryU;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Grids,

DBGrids, DB, DBTables, StdCtrls;

type
TQueryForm = class(TForm)
Query: TQuery;
DataSource: TDataSource;
Session: TSession;
Database: TDatabase;
dbgQueryGrid: TDBGrid;
memSQL: TMemo;
procedure FormClose(Sender: TObject; var Action: TCloseAction);

private
{ Private declarations }

public
{ Public declarations }

end;

procedure NewQuery(QryNum: integer; Qry: TStrings; const Alias, UserName,
Password: string);

implementation

{$R *.DFM}

Writing Multithreaded Applications

CHAPTER 11
527

11
W

R
ITIN

G
M

U
LTITH

R
EA

D
ED

A
PPLIC

A
TIO

N
S

continues

LISTING 11.12 Continued

type
TDBQueryThread = class(TThread)
private
FQuery: TQuery;
FDataSource: TDataSource;
FQueryException: Exception;
procedure HookUpUI;
procedure QueryError;

protected
procedure Execute; override;

public
constructor Create(Q: TQuery; D: TDataSource); virtual;

end;

constructor TDBQueryThread.Create(Q: TQuery; D: TDataSource);
begin
inherited Create(True); // create suspended thread
FQuery := Q; // set parameters
FDataSource := D;
FreeOnTerminate := True;
Resume; // thread that puppy!

end;

procedure TDBQueryThread.Execute;
begin
try
FQuery.Open; // open the query
Synchronize(HookUpUI); // update UI from main thread

except
FQueryException := ExceptObject as Exception;
Synchronize(QueryError); // show exception from main thread

end;
end;

procedure TDBQueryThread.HookUpUI;
begin
FDataSource.DataSet := FQuery;

end;

procedure TDBQueryThread.QueryError;
begin
Application.ShowException(FQueryException);

end;

procedure NewQuery(QryNum: integer; Qry: TStrings; const Alias, UserName,
Password: string);

Advanced Techniques

PART II
528

begin
{ Create a new Query form to show query results }
with TQueryForm.Create(Application) do
begin
{ Set a unique session name }
Session.SessionName := Format(‘Sess%d’, [QryNum]);
with Database do
begin
{ set a unique database name }
DatabaseName := Format(‘DB%d’, [QryNum]);
{ set alias parameter }
AliasName := Alias;
{ hook database to session }
SessionName := Session.SessionName;
{ user-defined username and password }
Params.Values[‘USER NAME’] := UserName;
Params.Values[‘PASSWORD’] := Password;

end;
with Query do
begin
{ hook query to database and session }
DatabaseName := Database.DatabaseName;
SessionName := Session.SessionName;
{ set up the query strings }
SQL.Assign(Qry);

end;
{ display query strings in SQL Memo }
memSQL.Lines.Assign(Qry);
{ show query form }
Show;
{ open query in its own thread }
TDBQueryThread.Create(Query, DataSource);

end;
end;

procedure TQueryForm.FormClose(Sender: TObject; var Action: TCloseAction);
begin
Action := caFree;

end;

end.

The NewQuery() procedure creates a new instance of the child form TQueryForm, sets up the
properties for each of its data-access components, and creates unique names for its TDatabase
and TSession components. The query’s SQL property is filled from the TStrings passed in the
Qry parameter, and the query thread is then spawned.

Writing Multithreaded Applications

CHAPTER 11
529

11
W

R
ITIN

G
M

U
LTITH

R
EA

D
ED

A
PPLIC

A
TIO

N
S

The code inside the TDBQueryThread itself is rather sparse. The constructor merely sets up
some instance variables, and the Execute() method opens the query and calls the HookupUI()
method through Synchronize() to attach the query to the data source. You should also take
note of the try..except block inside the Execute() procedure, which uses Synchronize() to
show exception messages from the context of the primary thread.

Multithreaded Graphics
We mentioned earlier that VCL isn’t designed to be manipulated simultaneously by multiple
threads, but this statement isn’t entirely accurate. VCL has the capability to have multiple
threads manipulate individual graphics objects. Thanks to new Lock() and Unlock() methods
introduced in TCanvas, the entire Graphics unit has been made thread-safe. This includes the
TCanvas, TPen, TBrush, TFont, TBitmap, TMetafile, TPicture, and TIcon classes.

The code for these Lock() methods is similar in that it uses a critical section and the
EnterCriticalSection() API function (described earlier in this chapter) to guard access to
the canvas or graphics object. After a particular thread calls a Lock() method, that thread is
free to exclusively manipulate the canvas or graphics object. Other threads waiting to enter the
portion of code following the call to Lock() will be put to sleep until the thread owning the
critical section calls Unlock(), which calls LeaveCriticalSection() to release the critical
section and let the next waiting thread (if any) into the protected portion of code. The follow-
ing portion of code shows how these methods can be used to control access to a canvas object:

Form.Canvas.Lock;
// code which manipulates canvas goes here
Form.Canvas.Unlock;

To further illustrate this point, Listing 11.13 shows the unit Main of the MTGraph project—an
application that demonstrates multiple threads accessing a form’s canvas.

LISTING 11.13 The Main.pas Unit of the MTGraph Project

unit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Menus;

type
TMainForm = class(TForm)
MainMenu1: TMainMenu;
Options1: TMenuItem;
AddThread: TMenuItem;
RemoveThread: TMenuItem;

Advanced Techniques

PART II
530

ColorDialog1: TColorDialog;
Add10: TMenuItem;
RemoveAll: TMenuItem;
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure AddThreadClick(Sender: TObject);
procedure RemoveThreadClick(Sender: TObject);
procedure Add10Click(Sender: TObject);
procedure RemoveAllClick(Sender: TObject);

private
ThreadList: TList;

public
{ Public declarations }

end;

TDrawThread = class(TThread)
private
FColor: TColor;
FForm: TForm;

public
constructor Create(AForm: TForm; AColor: TColor);
procedure Execute; override;

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

{ TDrawThread }

constructor TDrawThread.Create(AForm: TForm; AColor: TColor);
begin
FColor := AColor;
FForm := AForm;
inherited Create(False);

end;

procedure TDrawThread.Execute;
var
P1, P2: TPoint;

procedure GetRandCoords;
var
MaxX, MaxY: Integer;

Writing Multithreaded Applications

CHAPTER 11
531

11
W

R
ITIN

G
M

U
LTITH

R
EA

D
ED

A
PPLIC

A
TIO

N
S

continues

LISTING 11.13 Continued

begin
// initialize P1 and P2 to random points within Form bounds
MaxX := FForm.ClientWidth;
MaxY := FForm.ClientHeight;
P1.x := Random(MaxX);
P2.x := Random(MaxX);
P1.y := Random(MaxY);
P2.y := Random(MaxY);

end;

begin
FreeOnTerminate := True;
// thread runs until it or the application is terminated
while not (Terminated or Application.Terminated) do
begin
GetRandCoords; // initialize P1 and P2
with FForm.Canvas do
begin
Lock; // lock canvas
// only one thread at a time can execute the following code:
Pen.Color := FColor; // set pen color
MoveTo(P1.X, P1.Y); // move to canvas position P1
LineTo(P2.X, P2.Y); // draw a line to position P2
// after the next line executes, another thread will be allowed
// to enter the above code block
Unlock; // unlock canvas

end;
end;

end;

{ TMainForm }

procedure TMainForm.FormCreate(Sender: TObject);
begin
ThreadList := TList.Create;

end;

procedure TMainForm.FormDestroy(Sender: TObject);
begin
RemoveAllClick(nil);
ThreadList.Free;

end;

procedure TMainForm.AddThreadClick(Sender: TObject);
begin
// add a new thread to the list... allow user to choose color

Advanced Techniques

PART II
532

if ColorDialog1.Execute then
ThreadList.Add(TDrawThread.Create(Self, ColorDialog1.Color));

end;

procedure TMainForm.RemoveThreadClick(Sender: TObject);
begin
// terminate the last thread in the list and remove it from list
TDrawThread(ThreadList[ThreadList.Count - 1]).Terminate;
ThreadList.Delete(ThreadList.Count - 1);

end;

procedure TMainForm.Add10Click(Sender: TObject);
var
i: Integer;

begin
// create 10 threads, each with a random color
for i := 1 to 10 do
ThreadList.Add(TDrawThread.Create(Self, Random(MaxInt)));

end;

procedure TMainForm.RemoveAllClick(Sender: TObject);
var
i: Integer;

begin
Cursor := crHourGlass;
try
for i := ThreadList.Count - 1 downto 0 do
begin
TDrawThread(ThreadList[i]).Terminate; // terminate thread
TDrawThread(ThreadList[i]).WaitFor; // make sure thread terminates

end;
ThreadList.Clear;

finally
Cursor:= crDefault;

end;
end;

initialization
Randomize; // seed random number generator

end.

This application has a main menu containing four items, as shown in Figure 11.10. The first
item, Add thread, creates a new TDrawThread instance, which paints random lines on the main
form. This option can be selected repeatedly in order to throw more and more threads into the
mix of threads accessing the main form. The next item, Remove thread, removes the last thread

Writing Multithreaded Applications

CHAPTER 11
533

11
W

R
ITIN

G
M

U
LTITH

R
EA

D
ED

A
PPLIC

A
TIO

N
S

added. The third item, Add 10, creates 10 new TDrawThread instances. Finally, the fourth item,
Remove all, terminates and destroys all TDrawThread instances. Figure 11.10 also shows the
results of 10 threads simultaneously drawing to the form’s canvas.

Canvas-locking rules dictate that as long as every user of a canvas locks it before drawing and
unlocks it afterwards, multiple threads using that canvas will not interfere with each other.
Note that all OnPaint events and Paint() method calls initiated by VCL automatically lock
and unlock the canvas for you; therefore, existing, normal Delphi code can coexist with new
background thread graphics operations.

Using this application as an example, examine the consequences or symptoms of thread colli-
sions if you fail to properly perform canvas locking. If thread one sets a canvas’s pen color to
red and then draws a line, and thread two sets the pen color to blue and draws a circle, and
these threads do not lock the canvas before starting these operations, the following thread colli-
sion scenario is possible: Thread one sets the pen color to red. The OS scheduler switches exe-
cution to thread two. Thread two sets the pen color to blue and draws a circle. Execution
switches to thread one. Thread one draws a line. However, the line is not red, it is blue,
because thread two had the opportunity to slip in between the operations of thread one.

Note also that it only takes one errant thread to cause problems. If thread one locks the canvas
and thread two does not, the scenario just described is unchanged. Both threads must lock the
canvas around their canvas operations to prevent that thread collision scenario.

Advanced Techniques

PART II
534

FIGURE 11.10
The MTGraph main form.

Summary
By now you’ve had a thorough introduction to threads and how to use them properly in the
Delphi environment. You’ve learned several techniques for synchronizing multiple threads, and
you’ve learned how to communicate between secondary threads and a Delphi application’s pri-
mary thread. Additionally, you’ve seen examples of using threads within the context of a real-
world file-search application, you’ve gotten the lowdown on how to leverage threads in
database applications, and you’ve learned about drawing to a TCanvas with multiple threads. In
the next chapter, “Working with Files,” you’ll learn a multitude of techniques for working with
different types of files in Delphi.

Writing Multithreaded Applications

CHAPTER 11
535

11
W

R
ITIN

G
M

U
LTITH

R
EA

D
ED

A
PPLIC

A
TIO

N
S

