Practical C++ Programming

Steve Oudlline

O'Rellly & Associates, Inc.
Beijing - Cambridge - K6ln - Paris - Sebastopol - Taipei - Tokyo

Pageiv

Practical C++ Programming
by Steve Oudline

Copyright © 1995 O'Rellly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Editors: Adrian Nye and Dae Dougherty
Production Editor: Nicole Gipson
Printing History:

August 1995 First Edition.
January 1997: Minor corrections.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered
trademarks and The Java Seriesis atrademark of O'Reilly & Associates, Inc.

Many of the designations used by manufacturers and sellersto distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O'Reilly &
Associates, Inc. was aware of atrademark claim, the designations have been printed in caps or
initial caps.

While every precaution has been taken in the preparation of this book, the publisher assumes no
responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

r’f:b

"1‘_‘_;:,_;”
This book is printed on acid-free paper with 85% recycled content, 15% post-consumer waste.
ORellly & Associatesis committed to using paper with the highest recycled content available
consistent with high quality.

ISBN. 1-56592-139-9 [12/98]

Pagev

Table of Contents

Preface XV
|: TheBasics 1
1. What IsC++?3 3
A Brief History of C++ 3
C++ Organization 4
How to Learn C++ 6
2. TheBasics of Program Writing 9
Programs from Conception to Execution 12
Creating a Real Program 13
Creating a Program Using a Command-Line Compiler 13
Creating a Program Using an Integrated Devel opment Environment 16
Getting Help in UNIX 32
Getting Help in an Integrated Development Environment 33
Programming Exercises 33
3 Syle 35
Comments 36
C++ Code 4 41
Naming Style 42
Coding Religion 43
Indentation and Code Format 43
Page Vi

Clarity 44

Simplicity

Consistency and Organization
Further Reading

Summary

Basic Declarations and Expressions
The Elements of a Program

Basic Program Structure

Simple Expressions

The cout Output Class

Variables and Storage

Variable Declarations

Integers

Assgnment Statements

Floating Point Numbers

Floating Point Versus Integer Divide
Characters

Programming Exercises

Answers Chapter Questions
Arrays, Qualifiers, and Reading Numbers
Arrays

Strings

Reading Data

Initializing Variables
Multidimensional Arrays

Types of Integers

Types of Floats

RREBBRAREBEBRIBEEEICEBGRIKTEZEBEE B EEEE &

6:

Constant and Reference Declarations
Qualifiers

Hexadecimal and Octal Constants
Operators for Performing Shortcuts
Side Effects

Programming Exercises

Answers to Chapter Questions

Decision and Control Statements
if Statement

else Statement

How Not to Use strcmp

Looping Statements

while Statement

Break Statement

continue Statement

The Assignment Anywhere Side Effect
Programming Exercises

Answers to Chapter Questions

The Programming Process
Setting Up

The Specification

Code Design

The Prototype

The Makefile

Page vii

85

R I8 I8 I8 19 IR

92
92

8 K 8 R

H|H
)
=

=
Q
N

o
@

Testing

Debugging

Maintenance

Revisions

Electronic Archaeology

Mark Up the Program

Use the Debugger

Use the Text Editor as a Browser
Add Comments
Programming Exercises
Simple Programming
More Control Statements
for Statement

switch Statement

switch, break, and continue
Programming Exercises

Answers to Chapter Questions

Variable Scope and Functions

Scope and Storage Class
Functions

Summary of Parameter Types
Structured Programming Basics

Recursion

105
106
108
108
109
109
110
110
110
113
115
117
117
120
125
127
128

Page vii

129
129
133
146
146
148

10.

11:

[1:
12:

Programming Exercises

Answers to Chapter Questions

The C++ Preprocessor

#define Statement

Conditional Compilation

#include Files

Parameterized Macros

Advanced Features

Summary

Programming Exercises

Answers to Chapter Questions

Bit Operations

Bit Operators

The AND Operator (&)

Bitwise OR (|)

The Bitwise Exclusive OR ()

The Ones Complement Operator (NOT) (-)
The Left and Right Shift Operators (<<, >>)
Setting, Clearing, and Testing Bits
Bitmapped Graphics

Programming Exercises

Answers to Chapter Questions
Advanced Types and Classes
Advanced Types

Structures

149
149
151
151
157
159
160
162
163
163
164
167
168
168
171
171
171
172
1/3
176
181
182
183
185
185

13:

14.

Unions

typedef

enum Type

Bit Fields or Packed Structures

Arrays of Structures

Programming Exercises

Simple Classes

Stacks

Improved Stack

Using aClass

Introduction to Constructors and Destructors
Automatically Generated Member Functions
Shortcuts

Style

Programming Exercises

More on Classes

Friends

Constant Functions

Constant Members

Static Member Variables

Static Member Functions

The Meaning of static

Programming Exercises

1838
190

Pageix
191
193
195
196
197
197
201
203
205
210
211
212
214
217
217
219
220
222
223
224
225

15:

16:

Simple Pointers
Constant Pointers

Pointers and Printing
Pointers and Arrays
Splitting Strings

Pointers and Structures
Command-Line Arguments
Programming Exercises

Answers to Chapter Questions

Advanced Programming Concepts

File Input/Output
C++ Filel/O

Conversion Routines

Binary and ASCII Files

The End-of-Line Puzzle
Binary 1/0

Buffering Problems
Unbuffered 1/0

Designing File Formats
C-Style 1/0O Routines
C-Style Conversion Routines
C-Style Binary 1/0

Programming Exercises

227
232
233
233
237
240
241
245
245

Page x
249
251
252
256
260
261
262
263
264
268

270
273
276
278

17:

18:

Answers to Chapter Questions

Debugging and Optimization

Debugging

Seria Debugging

Divide and Conquer

Debug-Only Code

Debug Command-Line Switch

Going Through the Output

Interactive Debuggers

Debugging a Binary Search

Runtime Errors

The Confessional Method of Debugging

Optimization

The Power of Powers of 2

How to Optimize

Case Study: Inline Functions Versus Norma Functions
Case Study: Optimizing a Color-Rendering Algorithm
Programming Exercises

Answers to Chapter Questions

Operator Overloading
Operator Functions
Operator Member Functions

Full Definition of the Complex Class

278
281
281
289
290
290
290
292
292
296
307
309
309
311
314
316
316
317

317

Page Xi
319
322
330
332

19:

20:

Programming Exercises
Answers to Chapter Questions
Floating Point
Floating-Point Format
Floating Additior/Subtraction
Multiplication

Division

Overflow and Underflow
Roundoff Error

Accuracy

Minimizing Roundoff Error
Determining Accuracy
Precision and Speed

Power Series

Programming Exercises
Advanced Pointers
Pointers, Structures, and Classes
delete Operator

Linked List

Ordered Linked Lists
Double-linked List

Trees

Printing a Tree

The Rest of the Program

Data Structures for a Chess Program

Programming Exercises

21:

22

23

Answers to Chapter Questions
Advanced Classes
Derived Classes

Virtual Functions

Virtual Classes

Function Hiding in Derived Classes
Constructors and Destructors in Derived Classes
Summary

Programming Exercises

Answers to Chapter Questions
Other Language Features
Exceptions

Stack Exceptions

Runtime Library Exceptions
Programming Exercises

Modular Programming
Modules

Public and Private

The extern Modifier

Headers

The Body of the Module

A Program to Use Infinite Arrays
The Makefile for Multiple Files

Using the Infinite Array

379
381
361
387

Page xii
393
395
396
398
399
399
401
403
405
410
410
413
413
414
414
416
418
418
420
424

24.

25:

Dividing a Task into Modules
Module Division Example: Text Editor
Compiler Construction
Spread sheet

Module Design Guidelines
Programming Exercises
Templates

What Is a Template?
Templates. The Hard Way
Function Specialization

Class Templates

Class Specialization

Implementation Difficulties

Summary

Programming Exercises
Portability Problems
Modularity

Word Size

Byte-Order Problem
Alignment Problerr
NUL L-Pointer Probler
Filename Problems

File Types

Page xiii

gEEEEEREE R

26:

27

28.

Summary

Answers to Chapter Questions
Putting It All Together
Requirements

Code Design

Coding

Functional Description
Testing

Revisions

A Fina Warning

Program Files

Programming Exercises
From C to C++

Overview

K&R-Style Functions

struct

malloc and free

Turning Structuresinto Classes
ssefjmp and longjmp

Summary

Programming Exercise

C++'sDustier Corners

do/while

2 BB R

2B EE R

B
=

491

N
=

Page xiv

493

29:

c 0o w >

goto

The ?.Construct

The Comma Operator
Overloading the ()Operator
Pointers to Members
Vampire Features

Answers to Chapter Questions
Programming Adages
General

Design

Declarations

switch Statement
Preprocessor

Style

Compiling

The Ten Commandments for C++ Programmers

Final Note

Answers to Chapter Questions
Appendixes

ASCII Table

Ranges

Operator Precedence Rules

Computing sine Using a Power Series

Glossary

I ndex

521

Page xv

Preface

This book is devoted to practical C++ programming. It teaches you not only the mechanics of
the language, but also style and debugging. The entire life cycle of a program is discussed,
including conception, design, writing, debugging, release, documentation, maintenance, and
revision.

Styleis emphasized. Creating a good program involves more than just typing code. It is an art
in which writing and programming skills blend to form a masterpiece. A well-written program
not only functions correctly, but also is simple and easy to understand. Comments allow
programmers to include descriptive text in their programs. Clearly written, well-commented
programs are highly prized.

A program should be as ssmple as possible. Avoid the use of clever tricks. Cleverness and
complexity can kill programs. This book stresses ssimple, practical rules. For example, the 15
operator-precedence rules in C++ can be simplified to 2:

1. Multiply and divide before you add and subtract.
2. Put parentheses around everything else.

Consider two programs. One was written by a clever programmer, using al the tricks. The
program contains no comments, but it works. The other is nicely commented and well
structured, but doesn't work. Which program is more useful ? In the long run, the "broken™ oneis
more useful because it can be fixed and maintained easily. Although the clever one works now,
sooner or later it will have to be modified. The hardest work you will ever haveto dois
modifying a cleverly written program.

Page xvi

Scope of This Handbook

This handbook is written for people with no previous programming experience, for
programmers who know C and want to upgrade their skillsto C++, and for those who already
know C++ and want to improve their programming style and reliability. Y ou should have
access to a computer and know how to use the basic functions such as the text editor and file
system.

Computer languages are best learned by writing and debugging programs. Sweating over a
broken program at two o'clock in the morning only to find that you typed = where you should
have typed == isavery effective teaching tool. Many programming examples are used
throughout this book. Most of them contain deliberate errors. Y ou are encouraged to enter the
examplesinto your computer and then run and debug them. This process introduces you to
common errors using short programs so you will know how to spot and correct such errorsin

your own larger programs. (Instructions for obtaining copies of the programs presented in this
book are located at the end of this chapter.)

Several dialects of C++ are presented:
A "generic" UNIX compiler that should work on most UNIX systems
The GNU C++ compiler, named g++ (available for most UNIX systems™)
Borland's Turbo C++ compiler for MS-DOS
Borland C++ for MS-DOS/Windows
Microsoft's Visual C++ for MS-DOS/Windows

Asfar as standard C++ is concerned there are only minor differences among the various
compilers. This book clearly indicates where compiler differences can affect the programmer.
Specific instructions are given for producing and running programs using each of these
compilers. The book also gives examples of using the programming utility make for automated
program production.

How This Book I's Organized

Y ou must crawl before you walk. In Part I: The Basics you learn how to crawl. These chapters
teach you enough to write very ssimple programs. Y ou start with the mechanics of programming
and programming style. Next, you learn how to use variables and very smple decision and
control statements.

* The GNU g++ compiler can be obtained by anonymous FTP from prep.al mit edu, or you can
contact the Free Software Foundation, Inc, at 675 Massachusetts Avenue, Cambridge, MA 02139,
(617) 876-3296.

Page xvii

At this point you will have learned enough to create very simple programs; therefore, in
Chapter 7, The Programming Process, you embark on a complete tour of the programming
process that shows you how real programs are created.

Chapter 1, What Is C++?, gives you an overvie ins the basic programming process and gives
you enough information to write a very simple program.w of C++, describesits history and
uses, and explains how the language is organized.

Chapter 2, The Basics of Program Writing, expla
Chapter 3, Style, discusses programming style. Ho

Chapter 4, Basic Declarations and Expressions, int w to comment a program is covered, as
well as how to write clear and simple code. roduces simple C++ statements. Basic variables
and the assignment statement are covered in detail along with the arithmetic operators. +, -,
*l, and%.

Chapter 5, Arrays, Qualifiers, and Reading Numbers, covers arrays and more complex

variables. The shorthand operators++, --, *=, = +=, -=, and % are described.

Chapter 6, Decision and Control Statements, explains simple decision statementsincluding if,
el se and for. The problem of == versus = is discussed.

Chapter 7, The Programming Process, takes you through the steps required for creating a
simple program, from specification through release. Structured programming, fast prototyping,
and debugging are discussed.

Part 11: Smple Programming, describes al the other simple statements and operators that are
used in programming. Y ou aso learn how to organize these statements into simple functions.

Chapter 8, More Control Statements, describes additional control statements. Included are
whi | e, break, andconti nue. The switch statement is discussed in detail.

Chapter 9, Variable Scope and Functions, introduces local variables, functions, and
parameters.

Chapter 10, The C++ Preprocessor, describes the C++ preprocessor, which gives you great
flexibility in creating code. It aso provides a tremendous number of ways for you to screw up.
Simple rules that help keep the preprocessor from becoming a problem are described.

Chapter 11, Bit Operations, discusses the logical C++ operators that work on bits.

In Part 111: Advanced Types and Classes, you learn how basic declarations and statements can
be used in the construction of advanced types such as structures, unions, and classes. Y ou also
learn about the concept of pointers.

Page xviii

Chapter 12, Advanced Types, explains structures and other advanced types. The si zeof
operator and the enum type are included.

Chapter 13, Smple Classes, introduces the concept of acl ass. Thisis one of the more
powerful features of C++. Classes allow you to group data and the operations that can be
performed on that data into one object.

Chapter 14, More on Classes, describes additiona operations that can be performed with
classes.

Chapter 15, Smple Pointers, introduces C++ pointer variables and shows some of their uses.

Advanced programming techniques are explored in Part IV: Advanced Programming
Concepts. In this section, you explore a number of C++ features that |et you create complex, yet
easy-to-use objects or classes.

Chapter 16, File Input/Output, describes both buffered and unbuffered input/output (1/0).
ASCII and binary files are discussed and you are shown how to construct asimple file. Old
C-style 1/0O operations are also included.

Chapter 17, Debugging and Optimization, describes how to debug a program, as well as how
to use an interactive debugger . You are shown not only how to debug a program, but also
how to write aprogram so that it is easy to debug. This chapter also describes many

optimization techniques to make your programs run faster and more efficiently.

Chapter 18, Operator Overloading, explainsthat C++ allows you to extend the language by
defining additional meanings for the language's operators. In this chapter, you create a complex
type and the operators that work onit.

Chapter 19. Floating Point, uses asmple decimal floating-point format to introduce the
problemsinherent in using floating points, such as roundoff errors, precision loss, overflow,
and underflow.

Chapter 20, Advanced Pointers, describes advanced use of pointers to construct dynamic
structures such as linked lists and trees.

Chapter 21, Advanced Classes, shows how to build complex, derived classes out of smple,
base ones.

Finally a number of miscellaneous features are described in V: Other Language Features.

Chapter 22, Exceptions, explains how to handle unexpected conditions within a program.

Page xix

Chapter 23, Modular Programming, shows how to split a program into several files and use
modular programming techniques. The make utility is explained in more detail.

Chapter 24, Templates, allows you to define a generic function or classthat generates afamily
of functions.

Chapter 25, Portability Problems, describes the problems that can occur when porting a
program (moving a program from one machine to ancther).

Chapter 26, Putting It All Together, details the steps necessary to take a complex program
from conception to completion. Information hiding and modular programming techniques, as
well as object-oriented programming, are stressed.

Chapter 27, From C to C++, describes how to turn C code into C++ code, and addresses
many of the traps lurking in C code that bite the C++ programmer.

Chapter 28, C++'s Dustier Corners, describesthe do/ whi | e statement, the comma operator,
and the ?: operators.

Chapter 29, Programming Adages, lists programming adages that will help you construct good
C++ programs.

Appendix A, ASCII Table, contains alist of character codes and their values.
Appendix B, Ranges, lists the numeric ranges of some C++ variable types.

Appendix C, Operator Precedence Rules, lists the rules that determine the order in which
operators are eval uated.

Appendix D, Computing sine Using a Power Series, contains a program that shows how the
computer can compute the value of the sine function.

How to Read ThisBook If You Already Know C

C++ isbuilt on the C language. If you know C, you will find much of the material presented in
Chapters 2 through 12 familiar.

C++ does introduce a number of new features, including:

An entirely new |I/O system. (The basics are described in Chapter 4, Basic Declarations
and Expressions. The new file system is discussed in detail in Chapter 16, File
Input/Output.)

Constant and reference variables. (Described in Chapter 5, Arrays, Qualifiers, and
Reading Numbers.)

Page xx

Function overloading, inline functions, reference parameters, and default parameters. (Read
Chapter 9, Variable Scope and Functions.)

Starting with Chapter 13, Smple Classes, you will begin to learn entirely new concepts.
Classes are unique to C++ and are one of the more powerful features of the language.

Font Conventions
The following conventions are used in this book:

Italic
isused for directories and to emphasize new terms and concepts when they are introduced.
Italic is aso used to highlight comments in exampl es.

Bold
isused for C keywords.

Constant Wdth
isused for programs and the elements of a program and in examples to show the contents of
files or the output from commands. A reference in text to aword or item used in an example
or code fragment is a so shown in constant width font.

Const ant Bol d
is used in examples to show commands or other text that should be typed literally by the
user. (For example, r m f 00 meansto type "rm foo" exactly asit gppearsin the text or the
example.)

Constant Italic
isused in examples to show variables for which a context-specific substitution should be
made. (Thevariablef i | enane, for example, would be replaced by some actual
filename.)

Quotes
are used to identify system messages or code fragments in explanatory text.

%

isthe UNIX C shell prompt.
isthe UNIX Bourne shell or Korn shell prompt.

isthe UNIX superuser prompt (either Bourne or C shell). We usualy use this for examples
that should be executed only by root.

Page xxi

[]

surround optional valuesin a description of program syntax. (The brackets themselves
should never by typed.)

stands for text (usually computer output) that's been omitted for clarity or to save space.

The notation CTRL-X or ~X indicates use of control characters. It means hold down the
"control" key while typing the character "x". We denote other keys similarly (e.g., RETURN
indicates a carriage return).

All examples of command lines are followed by a RETURN unless otherwise indicated.

Obtaining Sour ce Code

Y ou can obtain the source code for the programs presented in this book from O'Rellly &
Associates through their Internet server.

The example programs in this book are available electronically in a number of ways: by FTP,
Ftpmail, BITFTP, and UUCP. The cheapest, fastest, and easiest ways are listed first. If you
read from the top down, the first one that works for you is probably the best. Use FTPif you
are directly on the Internet. Use Ftpmail if you are not on the Internet, but can send and receive
electronic mail to Internet sites (thisincludes CompuServe users). Use BITFTP if you send
electronic mail viaBITNET. Use UUCP if none of the above works.

FTP

To use FTP, you need a machine with direct access to the Internet. A sample session is shown,
with what you should typein bol df ace.

% ftp ftp.uu. net

Connected to ftp.uu.nnet.

220 FTP server (Version 6.21 Tue Mar 10 22:09:55 EST 1992) ready.

Narme (ftp.uu.net:joe): anonynous

331 Guest login ok, send domain style e-mail address as password.

Password: joe@ra.con (use your user nane and host here)

230 Guest login ok, access restrictions apply.

ftp> cd /published/oreilly/nutshell/practcpp

250 OWD command successf ul

ftp> binary (Very inportant! You nust specify binary transferfor
conpressed files)

200 Type set to |

ftp> get exanples.tar.gz

200 PORT command successful
150 Openi ng BI NARY node data connection for exanples.tar.gz.
226 Transfer conplete.

Page xxii

ftp> quit
221 Goodbye.
%

Thefileisacompressed tar archive; extract the files from the archive by typing:
% gzcat exanples.tar.gz | tar xvf -
System V systems require the following tar command instead:
% gzcat exanples.tar.gz | tar xof -
If gzcat is not available on your system, use separate gunzip and tar or shar commands.

% gunzi p exanpl es.tar.gz
% tar xvf exanples.tar

Ftpmail

Ftpmail isamail server available to anyone who can send electronic mail to and receive it
from Internet sites. This includes any company or service provider that allows email
connections to the Internet. Here's how you do it.

Y ou send mail to ftpmail @online.ora.com. In the message body, give the FTP commands you
want to run. The server will run anonymous FTP for you and mail the files back to you. To get
acomplete help file, send a message with no subject and the single word "help" in the body.

The following is a sample mail session that should get you the examples. This command sends
you alisting of thefilesin the selected directory and the requested examplefiles. Thelisting is
useful if there's alater version of the examples you're interested in.

% mai|l ftpmail eonline.ora.comr

Subj ect :

reply-to janetvgxyz.com (Whrere you want files mail ed)
open

cd /published/oreilly/nutshell/practcpp

node bi nary

uuencode

get exanples.tar.gz

quit

A signature at the end of the message is acceptable aslong as it appears after "quit.”
BITFTP

Bl TFTPisamail server for Bl TNET users. You send it electronic mail messages requesting
files, and it sends you back the files by electronic mail. Bl TFTP currently

Page xxiii

serves only userswho send it mail from nodesthat are directly on BITNET, EARN, or
NetNorth. BITFTPisa public service of Princeton University. Here's how it works.

To use BITFTP, send mail containing your ftp commands to BITFTP@PUCC. For acomplete
help file, send HEL P as the message body.

The following is the message body you send to BITFTP:

FTP ftp.uu.net NETDATA

USER anonynous

PASS nyname@odunk. edu Putyour Internet email address here (not your BITNETaddress)
CD / publ i shed/oreilly/ nutshell/practcpp

DI R

Bl NARY

GET exanples.tar.gz

QT

Once you've got the desired file, follow the directions under FTP to extract the files from the
archive. Since you are probably not on a UNIX system, you may need to get versions of
uudecode, uncompress, atob, and tar for your system. VMS, DOS, and Mac versions are
available.

UUCP

UUCP is standard on virtually all UNIX systems and is available for IBM-compatible PCs and
Apple Macintoshes. The examples are available by UUCP via modem from UUNET; UUNET'S
connect-time charges apply.

Y ou can get the examples from UUNET whether you have an account there or not. If you or
your company has an account with UUNET, you have a system somewhere with a direct UUCP
connection to UUNET. Find that system, and type:

uucp uunet\ !~/ published/oreilly/nutshell/practcpp/exanples.tar.gz
your host\ ! ~/ your nane/

The backdashes can be omitted if you use the Bourne shell (sh) instead of csh. The file should
appear sometime later (up to aday or more) in the directory /usr/spool/uucppublic

your nane. If you don't have an account, but would like one so that you can get electronic
mail, contact UUNET at 703-204-8000.

It'sagood ideato get the file /published/oreilly/ls-IR.Z as a short test file containing the
filenames and sizes of all the files available.

Once you've got the desired file, follow the directions under FTP to extract the files from the
archive.
Page xxiv

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.

101 Morris Street
Sebastopol, CA 95472

1-800-998-9938 (in the U.S. or Canada)
1-707-829-0515 (international or local)
1-707-829-0104 (FAX)

Acknowledgments

Thanks to Peg Kovar for her proofreading and editing help. Specia thanks to Dale Dougherty
for ripping apart my first book and forcing me to put it together correctly. | greatly appreciate
the hard work put in by Phil Straite and Gregory Satir. | especially thank all those people who
reviewed and edited my book. My thanks also go to the production group at O'Reilly &
Associates—Nicole Gipson, project manager and production editor; John Files, Juliette
Muellner, and Jane EllIn, production assistants; and Mike Sierra, book design implementor.
Finally, special thanks go to al the hard-working programmers out there whose code has taught
me so much.

Page 1

I
The Basics

Page 3

1
What [sSC++?

In This Chapter:

- ABrief Histoty of
C++

- C++ Organization

- HowtoLearn C++

Profanity is the one language that all programmers under stand.
—Anonymous

The ability to organize and process information is the key to success in the modern age.
Computers are designed to handle and process large amounts of information quickly and
efficiently. However, they can't do anything until someone tells them what to do. That's where
C++ comesin. C++ isahigh-level programming language that allows a software engineer to
efficiently communicate with a computer.

C++ isahighly flexible and adaptable language. Since its creation in 1980, it has been used for
awide variety of programs including firmware for micro-controllers, operating systems,
applications, and graphics programming. C++ is quickly becoming the programming language
of choice. Thereis atremendous demand for people who can tell computers what to do, and
C++ letsyou do so quickly and efficiently.

A Brief History of C++

In 1970 two programmers, Brian Kernighan and Dennis Ritchie, created a new language called
C. (The name came about because C was preceded by the old programming language they were
using called B.) C was designed with one goal in mind: writing operating systems. The
language was extremely ssimple and flexible and soon was used for many different types of
programs. It quickly became one of the most popular programming languages in the world.

Page 4

C had one mgjor problem, however. It was a procedure-oriented language. This meant that in
designing atypical C program, the programmer would start by describing the data and then
write procedures to manipulate that data. Programmers eventually discovered that it made a
program clearer and easier to understand if they were able to take a bunch of data and group it
together with the operations that worked on that data. Such a grouping is called an object or
class. Designing programs by designing classes is known as object-oriented design (OOD).

In 1980 Bjarne Stroustrup started working on a new language, called "C with Classes." This
language improved on C by adding a number of new features, the most important of which was
classes. This language was improved, augmented, and finally became C++.

C++ owesits success to the fact that it alows the programmer to organize and process
information more effectively than most other languages. Also, it builds on the work already
done with the C language. In fact, most C programs can be transformed into C++ programs with
little trouble. These programs usually don't use al the new features of C++, but they do work.
In thisway, C++ allows programmers to build on an existing base of C code.

C++ Organization

C++ isdesigned as a bridge between the programmer and the raw computer. The ideaisto let
the programmer organize a program in away that he or she can easily understand. The compiler
then trand ates the language into something the machine can use.

Computer programs consist of two main parts. data and instructions. The computer imposes
little or no organization on these two parts. After all, computers are designed to be as general
aspossible. Theideaisfor the programmer to impose his or her own organization on the
computer and not the other way around.

The datain a computer is stored as a series of bytes. C++ organizes those bytes into useful
data. Data declarations are used by the programmer to describe the information he or sheis
working with. For example:

int total; /! Total nunber accounts

tells C++ that you want to use a section of the computer's memory to store an integer named
t ot al . You can let the compiler decide what particular bytes of memory to use; that's a minor
bookkeeping detail you don't need to worry about.

Page 5

Thevariablet ot al isasimplevariable. It can hold only one integer and describe only one
total. A series of integers can be organized into an array. Again, C++ will handle the details,
imposing that organization on the computer's memory.

i nt bal ance[100] ; /1 Balance (in cents) for all 100 accounts

Finally, there are more complex data types. For example, arectangle might have awidth, a
height, acolor, and afill pattern. C++ lets you organize these four attributes into one group
called a structure.

struct rectangle {

int wdth; /1 Wdth of rectangle in pixels
int height; /1 Height of rectangle in pixels
color _type color; // Color of the rectangle

fill _type fill; /1 Fill pattern

}s

However, datais only one part of a program. You aso need instructions. Asfar asthe
computer is concerned it knows nothing about the layout of the instructions. It knows only what
it's doing for the current instruction and where to get the next instruction.

C++ isahigh-level language. It lets you write a high-level statement such as:
area = (base * height) / 2.0; /1 Conpute area of triangle

The compiler trandates this statement into a series of cryptic machine instructions. This sort of
statement is called an assignment statement. It is used to compute and store the value of an
arithmetic expression.

Y ou can also use control statements to control the order of processing. Statements such asthe
i f andswi t ch statements enable the computer to make simple decisions. Statements can be
repeated by using looping statements such aswhi | e and f or .

Groups of statements can be wrapped to form functions. Thus you only need to write a
general-purpose function to draw arectangle once and then you can reuse that function
whenever you want to draw a new rectangle. C++ provides arich set of standardfunctions that
perform common functions such as searching, sorting, input, and outpui.

A set of related functions can be grouped together to form amodule, and modules are linked to
form programs.

One of the mgjor goals of the C++ language is to organize instructions into reusable
components. After al, you can write programs much faster if you "borrow" most of your code
from somewhere else. Groups of reusable modules can be combined into alibrary. For
example, if you need a sort routine, you can use the standard function gsor t from thelibrary
and link it into your program.

Page 6

A computer divides the world into data and instructions. For along time, highlevel languages
such as C kept that dividing line in place. In C you can define data or write instructions, but you
can't combine the two.

One of C++'s mgjor innovationsisthe idea of combining data and instructions together in a
construct called a class or object. Object-oriented programming allows you to group data with
the operations that can be performed on that data. This concept is taken one step further in C++
by allowing you to derive new classes from existing ones.

Thislast feature is extremely powerful. It allows you to build complex classes on top of
smaller, simpler ones. It also allows you to define a basic, abstract class and then derive
specific classes from it. For example, an abstract class of shape might be used to define the
shapes rectangl e, triangle,andcircle.

Organization is the key to writing good programs. In this book, you know that the table of
contentsisin the front and the index isin the back, because that's the way books are organized.
Organization makes this book easier to use.

The C++ language lets you organize your programs using asmple yet powerful syntax. This
book goes beyond the C++ syntax and teaches you style rules that enable you to create highly
readable and reliable programs. By combining a powerful syntax with a good programming
style you can create powerful programs that perform complex and wonderful operations.

How to Learn C++

The only way to learn how to program isto write programs. You'll learn alot more by writing
and debugging programs than you ever will by reading this book. This book contains many
programming exercises, and you should try to do as many of them as possible. When doing the
exercises keep good programming style in mind. Always comment your programs, even if
you're doing the exercises only for yourself. Commenting helpsyou organize your thoughts,
and commenting your own programs is good practice for when you go into the "real world.”

Don't let yourself be seduced by the ideathat, "I'm only writing these programs for myself, so |
don't need to comment them." First of al, code that looks obvious to you when you write it can
often be confusing and cryptic when you revisit it aweek later. Writing comments also helps
you organize your ideas. (If you can write out an ideain English, you are hafway to writing it
in C++.)

Finally, programs tend to be around far longer than expected. | once wrote a program that was
designed to work only on the computer at Caltech. The program was highly system dependent.
As| was the only one who would ever

Page 7

use the program, the program would print the following message if | got the command line
wrong:

PLSTU T User is a tw't

A few years later | was astudent at Syracuse University. The secretary at the School of
Computer Science needed a program that was similar to my Caltech listing program, o |
adapted my program for her use. Unfortunately, | had forgotten about my funny little error
message.

Imagine how horrified | was when | came into the Computer Science office and was accosted
by the chief secretary. Thislady had so much power she could make the dean cringe. She
looked at me and said, "User isatwit, huh?' Luckily she had a sense of humor, or | might not
be here today.

Sprinkled throughout this book are "broken™ programs. Spend the time to figure out why they
don't work. Often the problem is very subtle, such as a misplaced semicolon or using = instead
of ==. These programs let you learn how to spot mistakesin a small program. That way when
you make similar mistakes in abig program, and you will make mistakes, you will be trained to
spot them.

Page 9

2
The Basics of Program Writing

In This Chapter:

- Programsfrom
Conception to
Execution

- Creating a Real
Program

- Creating a Program
Using a Command-
Line Compiler

- Creating a Program
Using an I ntegrated
Devel opment
Environment

- Getting Help

- Programming
Exercises

Thefirst and most important thing of all, at least for writerstoday, isto
strip language clean, to lay it bare down to the bone
—Ernest Hemingway

Computers are very powerful toolsthat can store, organize, and process a tremendous amount
of information. However, they can't do anything until someone gives them detailed instructions.

Communicating with computersis not easy. They require instructions that are exact and

detailed. Wouldn't life be easier if we could write programsin English? Then we could tell the
computer, "Add up all my checks and deposits, and then tell me the total," and the machine
would balance our checkbooks.

But English is alousy language when you must write exact instructions. The language is full of
ambiguity and imprecision. Grace Hopper, the grand old lady of computing, once commented
on the instructions she found on a bottle of shampoo:

Wash
Rinse
Repeat

She tried to follow the directions, but she ran out of shampoo. (Wash-rinse-repeat.
Wash-rinse-repeat. Wash-rinse-repedt. . . .)

Of course, we can try to write in precise English. We'd have to be careful and make sure to
spell everything out and be sure to include instructions for every contingency. If we worked
really hard, we could write precise English instructions, right?

Page 10

Asit turns out, thereis agroup of people who spend their time trying to write precise English.
They're called the government, and the documents they write are called government regulations.
Unfortunately, in their effort to make the regulations precise, the government also has made the
documents almost unreadable. If you've ever read the instruction book that comes with your tax
forms, you know what precise English can be like.

Still, even with all the extra verbiage the government puts in, problems can occur. A few years
ago California passed alaw requiring all motorcycle riders to wear a helmet. Shortly after this
law went into effect a cop stopped a guy for not wearing a helret. The man suggested the
police officer take a closer look at the law.

The law had two requirements. 1) that motorcycle riders have an approved crash helmet and 2)
that it be firmly strapped on. The cop couldn't give the motorcyclist aticket because the man
did have a helmet firmly strapped on—to his knee.

So English, with al its problems, is out as a computer language. Now, how do we
communicate with a computer?

The first computers cost millions of dollars, while at the same time a good programmer cost
about $15,000 a year. Programmers were forced to program in alanguage where all the
instructions were reduced to a series of numbers, called machine language. This language
could be directly input into the computer. A typical machine-language program looks like:

1010 1111
0011 0111
0111 0110
. and so on for several hundred instructions

Whereas machines "think" in numbers, people don't. To program these ancient machines,
software engineers would write out their programs using a ssmple language where each word
would stand for asingle instruction. This was called assembly language because the

programmers had to manually trandate, or assemble, each line into machine code.

A typical program might look like:

Program Transl ati on
MOV A 47 1010 1111
ADD A B 0011 0111
HALT 0111 0110
and so on for several hundred instructions

Thisprocessisillustrated by Figure 2-1.

Trandation was a difficult, tedious, exacting task. One software engineer decided thiswas a
perfect job for a computer, so he wrote a program, called an assembler, that would do the job
automatically.

Page 11
Assembly Assemibly Machine Language
Language { Transiation) Program
MOV A, 47 1010 1111
ADD A.B ool1 0l11

HALT 0111 ©QL1o

Figure 2-1. Assembling a pngram

He showed his new creation to his boss and was immediately chewed out: "How dare you
even think of using such an expensive machine for amere 'clerical’ task?' Given the cost of an
hour of computer time versus the cost of an hour of programmer'stime, this was not an
unreasonabl e attitude.

Fortunately, as time passed the cost of programmers went up and the cost of computers went
down. So it became more cost-effective to et the programmers write programs in assembly
language and then use a program called an assembler to trandate the prograrrs into machine
language.

Assembly language organized programsin away that was easier for the programmers to
understand. However, the program was more difficult for the machine to use. The program had
to be trandlated before the machine could execute it. This was the start of a trend. Programming
languages became more and more convenient for programmers to use and started requiring
more and more computer time to trand ate them into something useful for computers.

Over the years a series of high-level languages has been devised. These languages are
attempts to let programmers write in something that is easy for them to understand and that is
also precise and ssimple enough for computers to understand.

Early high-level languages were designed to handle specific types of applications. FORTRAN
was designed for number crunching; COBOL, for writing business reports; and PASCAL, for
student use. (Many of these languages have far outgrown their initial uses. It is rumored that
Nicklaus Wirth has said, "If | had known that PASCAL was going to be so successful, | would

have been more careful in its design.")

Later on, Brian Kernighan and Dennis Ritchie developed C and Bjarne Stroustrup turned it into
C++.

Page 12

Programs from Conception to Execution

C++ programs are written in a high-level language using letters, numbers, and the other
symbols you find on acomputer keyboard. Computers actually execute avery low-level
language called machine code (a series of numbers). So, before a program can be used, it
must undergo severa transformations.

Programs start out as an ideain a programmer’s head. He writes down his thoughts in afile,
called a sourcefile or source code, usng atext editor. Thisfileistransformed by the compiler
into an objectfile. Next aprogram called the linker takes the object file, combines it with
predefined routines from a standard library, and produces an executable program (a set of
machine-language instructions). In the following sections, you'll see how these various forms of
the program work together to produce the final program.

Figure 2-2 shows the steps that must be taken to transform a program written in a high-level
language into an executable program.

High-leved Code

:

[_ Compiler]
}

] Asgembly Language Program
I

[_ Assembler)
}

| Object Codle
1

[Linker

I

Executable Program

Library

Figure 2-2 Transformation of a high-level languageinto a program

Wrappers

Fortunately you don't have to run the compiler, assembler, and linker individually. Most C++
compilers use "wrapper" programs, which determine which tools need to be run and then run
them.

Page 13

Some programming systems go even farther and provide the developer with an integrated
development environment (1DE). The IDE contains an editor, compiler, linker, project manager,
debugger, and more in one convenient package. Both Borland and Microsoft provide IDEs with
their compilers.

Creating a Real Program

Before you can actually start creating your own programs you need to know how to use the
basic programming tools. This section will take you step by step through the process of
entering, compiling, and running a s mple program.

This section describes how to use two different types of compilers. Thefirst typeisthe
standalone or command-line compiler. This type of compiler is operated in a batch mode from
the command line. In other words, you type a command and the compiler turns your source
code into an executable program. The other type of compiler is contained in an IDE.

Most uNix systems use command-line compilers. A few IDE-type compilers are available for
UNIX, but they are rare. On the other hand almost all the compilers used with ms-pos and
Windows contain an integrated development environment. For command-line die-hards, these
compilers do contain command-line compilers as well.

Creating a Program Using a Command-Line Compiler

In this section you'll go through the step-by-step process needed to create a program using a
command-line compiler. Instruction is given for using a generic unix compiler, the Free
Software Foundation's g++ compiler, Turbo-C++, Borland C++, and Microsoft Visua C++.

However, if you are using a Borland or Microsoft compiler, you might want to skip ahead to
the section on using the IDE.

Step 1. Create a Place for Your Program

It is easier to manage things if you create a separate directory for each program you are
working on. In this case you'll create a directory called hello to hold your hello program.

InuNIX, type:

% nkdir hello
% cd hello
Page 14
In Ms-DOS, type:

C. MKDI R HELLO
C CD HELLO

Step 2: Create the Program
A program starts out as atext file. Example 2-1 shows the hello program in source form.

Example 2-1 Source for the hello.cc program

#i ncl ude <i ostream h>
int main()

{
cout << "Hello Wrld\n";

return (0);

}

Use your favorite text editor to enter the program. In uNix your file should be named hello.cc
and in ms-pos/Windows the file should be named HELLO.CPP.

WARNING

ms-Dos/Windows users should not use a word-processing
program such as Microsoft Word or WordPerfect to write their
programs. Word-processing programs add formatting codes to
the file that confuse the compiler. You must use a text editor
such as the ms-Dos EDIT program that is capable of editing
ASCII files.

Step 3: Run the Compiler

The compiler changes the source file you just created into an executable program. Each
compiler has adifferent command line. The commands for the most popular compilers are
listed below.

UNIX CC Compiler (Generic UNIX)

Most uNix-based compilers follow the same generic standard. The C++ compiler is named cc.
To compile our hello program we need the following command:

% CC -g -ohello hello.cc

The - g option enables debugging. (The compiler adds extra information to the program to
make it easier to debug.) The switch - ohel | o tellsthe compiler that the program is to be
called hel | 0, and thefinal hel | 0. cc isthe name of the source file. See your compiler
manual for details on all the possible options. There are several different C++ compilers for
UNIX, S0 your command line may be dightly different.

Page 15
Free Software Foundation's g++ Compiler

The Free Software Foundation, the gNu people, publishes a number of high-quality programs.
(See the glossary entry "Free Software Foundation™ for information on how to get their
software.) Among their offeringsis a C++ compiler called g++.

To compile a program using the g++ compiler, use the following command line:
% g++ -g -Vall -ohello hello.cc

The additional switch - Wal | turnson al the warnings.

Borland's Turbo C++in MS-DOS

Borland International makes alow-cost ms-Dos C++ compiler called Turbo-C++. This
compiler isideal for learning. The command line for Turbo-C++ is:

C>tcc -m -v -N-P-w-ehello hello.cpp

The- m tells Turbo-C++ to use the large memory model. (This PC has alarge number of
different memory models that can be used when creating programs. This book discusses none
of them. Instead we take the attitude, "Use large and don't worry about it until you become an
expert programmer.")

The - v switch tells Turbo-C++ to put debugging information in the program. Warnings are
turned on by - w; stack checking by - N. The compiler will actually compile both C and C++.
We force a C++ compile using the - P switch. Finally, - ehel | o tells Turbo-C++ to create a
program named hello, and hel | 0. cpp isthe name of the source file. See the Turbo-C++
reference manual for acomplete list of options.

Borland C++ in MS-DOS and Windows

In addition to Turbo-C++, Borland International also makes afull-featured, professional
compiler for MS-DOS/Windows called Borland C++. Its command lineis:

C.>bcc -m -v -N-P -w-ehello hello.cpp
The command-line options are the same for both Turbo-C++ and Borland C++.

Microsoft Visual C++

Microsoft Visual C++ isanother C++ compiler for ms-pos/Windows. It is not as robust or full
featured asits Borland counterpart, but it will compile most of the programs in this book.
(Version 1.5 fails to handle templates and exceptions.)

To compile, use the following command line;

C>cl /IAL/Z /W hello.cpp

Page 16

The /AL option tells the program to use the large memory model. Debugging is turned on with
the /Zi option and warnings with the /\\L option.

Step 4. Execute the Program

Now, when you run the program by typing, for example:
hell o

a the UNIX or MS-DOS prompt, the message:
Hello World

will appear on the screen.

Creating a Program Using an Integrated Development Environment

Integrated development environments provide a one-stop shop when it comes to programming.

They take a compiler, editor, and debugger and wrap them into one neat package for the
programme.

Since devel opment environments tend to change, the particular version you use may require
dightly different keystrokes.

Step 1. Create a Place for Your Program

It is easier to manage things if you create a separate directory for each program you are
working on. In this case you'll create a directory called HELLC to hold your hello program.

In Ms-DOS, type:

C. MKDI R HELLO
C. CD HELLO

Step 2: Enter, Compile, and Run Your Program
Each iDE isalittle different, so we've included separate instructions for each one.
Turbo-C++

1. Start the Turbo-C++ IDE with the command:

C TC

2. Usethe Options | Compiler | Code Generation command to pull up the Code Generation
dialog box as seen in Figure 2-3. Change the memory model to large.

3. Use the Options | Compiler | Entry/Exit command to turn stack checking on, as shown in
Figure 2-4.

Page 17

& File Edit Search Hun Conpile Debug Froject Options Window Help |
~la1

Code Generation

1 Hord aligmment

1 Duplicate strings merged
1 Unsigned characters

1 Pre-conpi led headers

-.1 Default for memory model
} Hever

1 Aluays

Figure 2-3. Code Generatlon dialog box

File Edit Search Bun Compile Debug Project Options Window Help

(=) -"u'm{ard
(lﬁu:; lay

Calling Convent ion
(=) C

{) Pazcal

stack Options

[X] Standard stack Frame
[X] Tezt stack owerl low

Gepcrate standard OS5 pr :
Figure 2-4. Entry/Exit Code Generatlon dialog box

4. Use the Options | Compiler | Messages | Display command to bring up the Compiler
Messages dialog box as seen in Figure 2-5. Select All to display all the warning messages.

5. Use the Options | Save command to save al the options you've used so far.

Page 18

= File Edit Bearch PAun Conpile Debugy Project Options Mindou Help |

atop Al ter

Stop After

S el N el

Figure 2-5 Compller M essages dial og box

6. Use the Open Project File dialog box to select a project file. In this case your project fileis
called HELLO.PRJ. The screen should look like Figure 2-6 when you're finished.

File Edit Search PBun Compile Debug FProject Optioms Windew Help

Ll

pen Project
R Ly

Directory Sep 20,1980 12:45am

Figure 2 6 Open Proj ect F|Ied|alog box

7. Pressthe Insert key to add afile to the project. The file you want to add isHELLO.CPP as
seen in Figure 2-7.

Page 19

2 File Edit Search Bun Compile Debugy FProject Options Himdow Help

e
hello.cpp

Figure 2-7. Add to Project List dialog box

8. Press ESC to get out of the "add file" cycle.

9. Press the up-arrow key to go up one line. The line with hello.cpp should now, be highlighted
asseen in Figure 2-8

8 File Fdit Search Run Compile Debug Project Options Windou Help

dit F18 Hewo

Figure 2-8 "Hello g project
10. Press Return to edit thisfile.

11. Enter the following code.

#i ncl ude <i ostream h>
int main()

{

cout << "Hello World\n";
return (0);

}
The results should look like Figure 2-9.

"= File EAIt Search Aun Conpile Debuy Project Options Mindow Help |
" FLLD . C 2

Binclude <{iostream.h:

int main()

{
cout << "Hello World.sn™:
return (0);

1

File name
+ HELLD.CFFP

F1 Help FZ Save F3 Open ALE-FD Compile F9 Hake F18 Hem
Figure 2-9. Finished project

12. Use the Run | Run command to execute the program.

Page 20

13. After the program runs, control returns to the IDE. This means that you can't see what your
program output. To see the results of the program you must switch to the user screen using

the command Window | User. Pressing any key will return you to the iDe. Figure 2-10
shows the output of the program.

14. When you are finished you can save your program with the File | Save command.

15. To exit the IpE use the File | Quit command.

Page 21

CiSHELLD Gt
Hello Borld.

Figure 2-10. User screen

Borland C++

1. Create adirectory called HELLO to hold the files for our hello program. Y ou can create a

directory using the Windows' File Manager Program or by typing the following command at
the Mms-Dos prompt:

nmkdi r \ HELLO

. From Windows, double-click on the Borland C++ icon to start the IDE The program begins

execution and displays a blank workspace as seen in Figure 2-11.

3. Select the Project | New Project item to create a project for our program. Fill in the "Project

Path and Name:" blank with c:\hello\hello.ide. For the Target Type select EasyWin[.exe].
The Target Model is set to Large. The results are shown in Figure 2-12.

4. Click on the Advanced button to bring up the Advanced Options dialog. Clear the. r ¢ and

. def itemsas shown in Figure 2-13.

5. Click on OK to return to the New Target diaog.

6.

Press Al t - F10 to bring up node sub-menu shown in Figure 2-14.

7. Select Edit Node Attributes to bring up the dialog shown in Figure 2-15. In the Style Sheet

blank, select the item "Debug Info and Diagnostics." Click on OK to return to the main
window.

Page 22

EI;Ill: L dit El:ur;h !11:\': Eroject u:hug Tool _E,pﬂum Yindow J'_'lclp

e ez e e — g

Figure 2-11 Borland C++ initial screen

i o |- R W]
rile Edit | :

E_E Project Path and Name: = P
{e-\hellothello ide | V‘ﬂc -

Targed Home:
Corvel
helly | x
Toaget Type: Standard Libtasios: | B2
|_Erowse. | g
faie: I Iru.] H
Lifa]
Shalic Li-rm [Foe .dil] [85] bl
Lkb]
7 |

Target Expert

Figure 2-12. New Target dialog box

Page 23

— . e —— : -1-

[File Edit| = Mew Target

_| TargetExpert

1 =etoninsd B T
Figure 2-13 Advanced Options dialog box

Bordand G+ - hello

Add node
Delete node

| % Make node

[Build node

1 Link

i Special
TargetExpert...
Edit pode attributes...
| Editlocal gptians...

L= Virw nntinns hirrarchr

Figure 2-14. Tafget Options sub-menu

e

Page 24

..:[. - UurlandCﬂ -helle) |- ﬁi-

Lile Edit &ur-:h 'I{Inr E’Tujccl | Dchug [nnl i thl-urm Window Htlp___

[imkTasget

Mode Tppa: [eu:)

| Assiona s -M hl‘ﬁ IO I-I:J...!Tll'l...l:lﬂl

Figure 2-15 Node Attributesdialogbox

8. Go to the Project Options dialog by selecting the Options | Project Options item. Go down to
the Compiler item and click on the "+" to expand the options.

Turn on the Test stack overflow option shown in Figure 2-16. Click on OK to save these
options.

9. Click on OK to return to the main window. Press the down arrow to select the hello[.cpp]
item in the project (seein Figure 2-17).

10. Press Return to start editing the file hello.cpp. Typein the following code:

#i ncl ude <i ostream h>
int main()

{
cout << "Hello World\n";

return (0);

}
When you have finished, your screen will look like Figure 2-18.

11. Compile and run the program by selecting the Debug | Run menu item. The program will
run and display "Hello World" in awindow, as shown in Figure 2-19.

Page 25

| Borland Co+ - hello [=fa]
1 G Dab el [
.bm;a. Elpf_i'ung —
Topics: Debugging
+ Ducctosics | PP BRI L
P oyl ¥ Standard slack hame
* Code E‘w-lhm ¢ Teal stack oyedion
* Flaatindg Peand ¥ Dut-of-fine infine lunctions
[m 'h-F‘
g Lime pumbes
*Debugeeng ¥ Debug infosmation in DBJz
* Py heendhers: n i s
1 6 it Compedes . ¥ Browsed rolevence mformation in OB):
K2 32-bit Compiles
Ko Lo s Oiplione
L (b ks
ke s ages
irknt
* Libw asian
* Resowces
* Busld Abtoibates
= bake

" Project : chellothello.ide

Figure 2-17. Hello Project

Page 26

= . Borland C++- helle
| File Ldll hcan:h View Fmp:cr Debug Tool Iapliulm ‘Window Help

Gl L T B 1E
BE

cihellothello.cpp

~ Project: ctheliothetiodde |<|a

¥ Insert Modted
Figure 2-18 "Hello World"program

| Borland Cee - hello BE
1 Eile l;'_dlt S:an:h 'l[ltw Pmiu:t D:hug]nu-l Qpﬂnna 'ﬂ'rnduw Ht|p

: S B - "j"‘
;I‘E Hilln borld El
] masn |
1

‘:' cout -~

| relurm |

1

1

el et
-T Projed : chhellothello.ide -

o [= haolbo [exe]
PR] hello [.cpp] code tize=38 beei=5 data nee=13

i Program runnang

Figure 2-19 "Hello World " after execution

Page 27
Microsoft Visual C++

1. Create adirectory called HELLO to hold the files for our hello program. Y ou can create a

directory using the Windows File Manager Program or by typing the following command at
the Ms-DOS prompt:

nkdi r \ HELLO

2. From Windows, double-click on the Visual C++ icon to start the IDE. A blank workspace
will be displayed as shown in Figure 2-20.

* Microsoft Visual C++

. YEY
Figure 2-20 Microsoft Visual C++ initial screen

3. Click on Project | New to bring up the New Project dialog shown in Figure 2-21.

Fill in the Project Name blank with \hello\hello.mak. Change the Project Type to QuickWin
application [.EXE].

4. Visual C++ goesto the Edit dialog to allow you to name the source filesin this project (see
Figure 2-22). In this case we have only file hello.cpp. Click on Add to enter the name in the
project and then click on Close to tell Visua C++ that there are no morefilesin the

program.

5. Select Options | Project Options to bring up the Project Options dialog shown in Figure
2-23.

Click on the Compiler button to change the compiler options.

Page 28

.- .Hll‘'f.ﬂh)ﬂ 'H'.i;ual Ce N

FII: Edlrt “View l'mjrn:t Hrmn'se Debug Tools Options Window Help

| O EE [E S 00 O

Project Nome: [\hello\hello. mask | | Browse... | | ok |

I LR Tl G uickWin apphcation (EXE) | |
i 1] Use Microsoft Foundation Clastes TR

|
i FerHelp, press F1 NUM I

Figure 2-21 Project create screen

Mll:rusuh Visual G4+ - HELLOMAK,

Ll|¢ Ldit Yiew I-‘ru;cd Drowse _Debug Tools Options Window MHelp ._

L EL

Fila Hame: Dinectosies:
m T a.é:\.._....— [el]

= hella

| |

' List Files of Trpe: Driyes:
Sowcs eteppiems) 4] [Elcimidas 6 (#)
Biles in Project:
P -
i I Add Al t
l o Doiate

MU

Figure 2-22 Project edit dialog box

Page 29

= T T T on
| File Edit Wiew Project Hrowse Debug Tools Opfions Window Help

TS = 85 e O Ml

== Project Options I
Projact Type: [(2 AT
|] U Mecrosol Foundstson Clazses | Cancel
“Customize Build Opton:] [Busd Mode f
| @ Dobug e
= UI'*H ! | Rokeats
|
|
| ‘
i i
| |
] |
| [For Help, prezs Fi MM "

Figure 2-23 Project Options dialog box

6. Go down to the Custom Optionsitem in the Category and change the warning level to 4 as
shown in Figure 2-24.

7. Change to the Memory Model category and change the memory model to large (see Figure
2-25).

8. Close the diaog by clicking on the OK button. This brings you back to the Project Options
dialog. Click on OK to dismissthis dialog as well.

9. Select "File | New" to start a new program file. Typein the following lines:

#i ncl ude <i ostream h>

int main()

{
cout << "Hello Wrld\n";
return (0);

}

Y our results should look like Figure 2-26.
10. Usethe File | Save As menu item to save the file under the name hello.cpp.

11. Use the Project | Build command to compile the program. The compiler will output
messages as it builds. When it is finished your screen should look like Figure 2-27.

Page 30

Buid Oplions: @ Debug Specitic O Rebesse Specific O CommontoBoth [0k
ey o]
fnologa fG2 MMg MW S8 PAM D D _DEBUG™ JFR SFACHELLD PDE™ [t

|

i
3] [Use Project Defauts

Categoys FCabegory Seblings: Custom Options

Code Gianeralion

Custom Dptsona [Ces)

Dobug Dptions [[] Enstie Function-Level Linking

Lizting Files i

Hemony Model [l HuickWin Suppart

Ogptmizat

:F-'Em ﬁEﬁdhn [Epsinste Duphicate Strings

et 24et® || Warming Levet [EXNIM 8] [Wasnings as Enors

.thnme:S:;¥phq [¥] Suporess Display of Sign-0n Banner

Oither Dptions: {FdHELLD. PDE™ |

For Help, preas F1 S Rt By viad St I VP et r

Figure 2-24 Compiler Options dialog box

. Microsoft Visunl Ceb - HELLOMAK.
File Edit View Project Hrowse [Debug Tools Options Window Help |

Bl 1@ cleks (1) Enlw]] i

- _<1» CAHELLOWELLOCPP [~

M
{ [Ematzalizing
Compilimg. .
k= “hello~halle. cpp
Linking
inding rescurces
reating brovser database. .
EEE = 0 errer(s). 0 varning(s)

_ |
[Cmi uﬂ

HELLD EXE - 0 arrars), 0 -warning(s) READ NUM 00008 001
Figure 2-25 Memory Model options

Page 31

| Tile

Microsoft Visual Coé - HELLOMAK,

Edit Wiew Project Browse Debug Tools

Options Window Help

S | 1 @) Sleks 1 HEe]

<iostrean. b

oot ‘Hells Vorld-n®
£ A

LE)

3|

HUN 00005 D02

. Microsoft Visusl Co+ - HELLOMAK.
File Edit View Project Browse

Figure 2-26 Visual C++ with "Hello World" entered

Debug Tools Options Window Help ¥

Bl L] [® ek T Ee@L]

M
{ [Ematzalizing
Compilimg. .
k= “hello~halle. cpp
} Emﬁ.:m
inding rescurces
Creating brovser database. .

ELLO EXE - O errer(s). 0 varning(s)

=1

- _<1» CAHELLOWELLOCPP [~

=

HELLO EXE -0 arrar(s), 0 warning(s) READ

Figure 2-27. Visua C++ build screen

NUM D0OCE 001

Page 32

12. The program can now be started with the Debug | Go command. The results appear in

Figure 2-28.

e Edit View PFroject Hrowse [Debug Teols Options ‘Window Help

[:' ' * Microsoft Visual Co+ [run] - HELLO.EXE Tefs]
i
| @l []l) Bte] G0 Clolulo)

T CAHELLOWMELLO.CPR ==
€2 Qutput ' w|a]

fFile Edit ¥iew State ‘Window Help
i -] SudinfStdoulStderr

= L e s e o

" [Finished |

HUK BIOM M

Figure 2-28 "Hello World" results

Getting Help in UNIX

Most uNix systems have an online documentation system called the "man pages.”" These can be
accessed with the man command. (UNIx uses man as an abbreviation for "manual.") To get
information about a particular subject, use the command:

man subj ect

For example, to find out about the classes defined in the i ost r ean package, you would type:

man i ostream

The command also has a keyword search mode:

man -k keyword

To determine the name of every man page with the word "output” in itstitle, use the command:

man -k out put

Page 33

Getting Help in an Integrated Development Environment

Integrated development environments such as Turbo-C++, Borland C++, and Microsoft C++
have a Help menu item. Thisitem activates a hypertext-based Help system.

Programming Exercises
Exercise 2-1. On your computer, typeinthehel | o program and execute it.

Exercise 2-2: Take severa programming examples from any source, enter them into the
computer, and run them.

Page 35

3
Style

In This Chapter:

- Comments

- C++ Code

- Naming Style

- Coding Religion

- Indentation and Code
Format

- Clarity

- Simplicity

- Consistency and
Organization

- Further Reading

- Summary

Thereis no programming language, no matter how structured, that will
prevent programmer s fromwriting bad programs
—L. Fon

It isthe nobiliy, of their style which will make our writers of 1840
unreadabl e forty years from now
—Stendhal

This chapter discusses how to use good programming style to create a smple. easy-to-read
program. It may seem backward to discuss style before you know how to program, but styleis
the most important part of programming. Style is what separates the gems from the junk. It is
what separates the programming artist from the butcher. Y ou must learn good programming
stylefirst, before typing in your first line of code, so everything you write will be of the highest
quality.

Contrary to popular belief, programmers do not spend most of their time writing programs. Far
more time is spent maintaining, upgrading, and debugging existing code than is ever spent on
creating new work. The amount of time spent on maintenance is skyrocketing. From 1980 to
1990 the average number of linesin atypica application went from 23,000 to 1.2 million. The
average system age has gone from 4.75 to 9.4 years.

To make mattersworse, 74% of the managers surveyed at the 1990 Annual Meeting and
Conference of the Software Maintenance A ssociation reported that they "have systemsin their
department that have to be maintained by specific individuals because no one else understands
them."

Page 36

Most software is built on existing software. | recently completed coding for 12 new programs.
Only one of these was created from scratch; the other 11 are adaptations of existing programs.

Programmers believe that the purpose of a program isonly to present the computer with a
compact set of instructions. Thisis not true. Programs written only for the machine have two
problems:

They are difficult to correct because sometimes even the author does not understand them.

Modifications and upgrades are difficult to make because the maintenance programmer
must spend a considerable amount of time figuring out what the program does from its code.

Comments

Ideally, a program serves two purposes: First, it presents the computer with a set of
instructions and, second, it provides the programmer with a clear, easy-to-read description of
what the program does.

Example 2-1 contains aglaring error. It isan error that many programmers still make and one
that causes more trouble than any other problem. The program contains no comments.

A working but uncommented program is atime bomb waiting to explode. Sooner or later
someone will have to modify or upgrade the program, and the lack of comments will make the
job ten times more difficult. A well-commented, simple program isawork of art. Learning
how to comment is as important as learning how to code properly.

C++ hastwo flavors of comments. The first type startswith / * and endswith */ . This type of
comment can span multiple lines as shown:

/[* This is a single-line coment. */
/*

* This is a nultiline comrent.

*/

The other form of comment begins with // and goes to the end of the line:

/1 This is another form of comment.
/1 The // must begin each line that is to be a comment.

Page 37

The advantage of the/ * */ comment styleisthat you can easily span multiple lines,
whereaswiththe/ / style you have to keep putting the/ / on each line. The disadvantage of
[* *[isthat forgetting a*/ can realy screw up your code.

Which flavor should you use? Whichever one makes your program as clear and as easy to read
as possible. Mostly, it's a matter of taste. In thisbook weusethe/ * */ style comments for
big, multiline comments while the // style is reserved for comments that take up only asingle
line.

Whatever comment style you decide to use, you must comment your programs. Example 3-1
shows how the "hello world" program looks after comments are added.

Example 3-1. hello2/hello2.cc

/***

* hello -- programto print out "Hello World".
* Not an especially earth-shattering program

Aut hor: Steve Qualline
Pur pose: Denonstration of a sinple program

Usage:
Run the program and t he nessage appears

*
*
*
*
*
*
*
*
*
khkkhkkhkhkhhhkhhhkhhhkhhhkhhhhhkhhhkhdhkhhhkhhhkhhhhhhhhkhhkhkhdhkhdkhr*xk **x%

*
*
*
*
*
*
*
*

/
#i ncl ude <i ostream h>
main ()

{
/] Tell the world hello

cout << "Hello World\n";
return (0);

}

In this program, the beginning comments are in a box of asterisks (*) called a comment box.
Thisis done to emphasize the more important comments, much like bold characters are used for
the headings in this book. Less important comments are not boxed. For example:

/1l Tell the world hello
cout << "Hello World\n";

To write aprogram, you must have a clear idea of what you are going to do. One of the best
ways to organize your thoughts is to write them down in alanguage that is clear and easy to
understand. Once the process has been clearly stated, it can be trandated into a computer

program.

Understanding what you are doing is the most important part of programming. | once wrote two
pages of comments describing a complex graphics algorithm. The comments were revised
twice before | even started coding. The actual instructions

Page 38

Poor Person's Typesetting

In typesetting you can use font style and size, bold, and italic to make different parts of your
text stand out. In programming, you are limited to a single, monospaced font. However, people
have come up with ingenious ways to get around the limitations of the typeface.

Some of the various commenting tricks are;

/**

khkkhkkhkhkhhhkhhhkhhhkhhhkhhhkhhhhhhkhhhhhhhhhhhdhdhkhdhkrdhkrdd rkk **x%

*xxxxxxk WARNING This is an exanple of a i
*ok kR k ok kK war ni ng nessage that grabs the *okok ok ok k
*ok kR k ok kK attention of the progranmer. *okok ok ok k

khkkhkkhkhkhhhkhhhkhhhkhhhkhhhkhhhhhhkhhhhhdhhhhhhdhhhhdhkrdhkhdk hkk **x%

khkhkkhkhkhhhkhhhkhhhkhhhkhhhkhhhhhhkhhhhhhhhhhhdhdhkhdhkrdhkhdk r*k **x%

N > Anot her, less inportant warning<---------

[[>>>>>>>>>>>> Maj or section header <<<<<<<<<<<LLLLL<L<L

/**

* W use boxed coments in this book to denote the *
* begi nning of a section or program *

**I

/* __ *
* This is another way of draw ng boxes
L2 */
/*

* This is the beginning of a section

* ANANNANN NN NANN NANNANNNANNNAN AN N NANNANNNAN

*

* In the paragraph that foll ows we explain what

* the section does and how it worKks.

*

* A nedium |l evel comment explaining the next

dozen or so lines of code. Even though we don't have
* the bold typeface we can **enphasi ze** words.
*/

/1 A sinple comrent explaining the next |ine

took only half a page. Because | had organized my thoughts well (and was lucky), the program

worked the first time.

Y our program should read like an essay. It should be as clear and easy to understand as
possible. Good programming style comes from experience and practice. The style described in
the following pagesis the result of many years of programming experience. It can be used asa
starting point for developing your own style. These are not rules, but only suggestions. The only

rules are: Make your program as clear, concise, and simple as possible.

At the beginning of the program is a comment block that contains information about the
program. Boxing the comments makes them stand out. The list that follows contains some of the
sections that should be included at the beginning of your program. Not al programs will need
all sections, so use only those that apply.

Heading
The first comment should contain the name of the program. Also include a short description
of what it does. Y ou may have the most amazing program, one that dices, dices, and solves
al the world's problems, but it isuselessif no one knows what it does.

Author
You've goneto alot of trouble to create this program. Take credit for it. Also, if someone
else must later modify the program, he or she can come to you for information and help.

Purpose
Why did you write this program? What does it do?

Usage
In this section give a short explanation of how to run the program. In an ideal world, every
program comes with a set of documents describing how to use it. The world is not ideal.
Oualline's law of documentation states: 90% of the time the documentation islost. Out of the
remaining 10%, 9% of the time the revision of the documentation is different from the
revision of the program and therefore completely useless. The 1% of the time you actually
have documentation and the correct revision of the documentation, the documentation will
be written in Japanese.

To avoid falling prey to Oualline's law of documentation, put the documentation in the
program.

References
Creative copying is alegitimate form of programming (if you don't break the copyright laws
in the process). In the real world, it doesn't matter how you get aworking program, aslong
asyou get it; but, give credit where credit is due. In this section you should reference the
original author of any work you copied.

Page 40

File formats
List the filesthat your program reads or writes and a short description of their format.

Restrictions
List any limits or restrictions that apply to the program, such as: The data file must be
correctly formatted; the program does not check for input errors.

Revision history
This section contains a list indicating who modified the program and when and what
changes have been made. Many computers have a source control system (uUNix: Rcs and
sccs; Ms-Dog/Windows: MKS-RCs, Peve) that will keep track of thisinformration for you.

Error handling
If the program detects an error, what does it do with the error?

Notes
Include special comments or other information that has not aready been covered.

The format of your beginning comments will depend on what is needed for the environment in
which you are programming. For example, if you are a student, the instructor may ask you to
include in the program heading the assignment number, your name, student identification
number, and other information. In industry, a project number or part number might be included.

Comments should explain everything the programmer needs to know about the program, but no
more. It is possible to overcomment a program. (Thisisrare, but it does happen.) When
deciding on the format for your heading comments, make sure there is areason for everything
you include.

I nserting Comments—The Easy Way

If you are using the unix editor vi , put the following in your .exrc file to make it
easier to construct boxes.

. abbr #b /**

: abbr #e **/

Thesetwo linesdefinevi abbreviations #b and #e, so that typing #b<r e
t ur n> at the beginning of ablock will cause the string:

/**

to appear (for beginning a comment box). Typing #e<r et ur n> will end a box.
The number of stars was carefully selected so the end of the box isaligned on a
tab stop.

Page 41

C++ Code

The actual code for your program consists of two parts. variables and executable instructions.
Variables are used to hold the data used by your program. Executable instructionstell the

computer what to do with the data. C++ classes are a combination of data and the instructions
that work on the data. They provide a convenient way of packaging both instructions and data.

A variable is aplace in the computer's memory for storing avalue. C++ identifies that place by
the variable name. Names can be any length and should be chosen so their meaning is clear.
(Actuadly, alimit does exist, but it is so large that you probably will never encounter it.) Every
variable in C++ must be declared. (Variable declarations are discussed in Chapter 9, Variable
Scope and Functions.) The following declaration tells C++ that you are going to use three
integer (i nt) variablesnamed p, q, andr :

int p,q,r;

But what are these variables for? The reader has no idea. They could represent the number of
angels on the head of apin, or the location and acceleration of a plasmabolt in a game of
Space Invaders. Avoid abbreviations. Exs. abb. are diff. to rd. and hd. to ustnd. (Excess

abbreviations are difficult to read and hard to understand.)

Now consider another declaration:

i nt account _nunber;
i nt bal ance_owed,;

Now we know that we are dealing with an accounting program, but we could still use some
more information. For example, isthebal ance_owed in dollars or cents? It would be much
better if we added a comment after each declaration explaining what we are doing.

i nt account _nunber; /1 1Index for account table
i nt bal ance_owed,; /1 Total owed us (in pennies)

By putting a comment after each declaration we, in effect, create a mini-dictionary where we
define the meaning of each variable name. Since the definition of each variableisin aknown
place, it's easy to look up the meaning of a name. (Programming tools, such as editors,
cross-referencers, and gr ep, can also help you quickly find a variable's definition.)

Units are very important. | was once asked to modify a program that converted plot datafiles
from one format to another. Many different units of length were used throughout the program
and none of the variable declarations was

Page 42

commented. | tried very hard to figure out what was going on, but it was impossible to
determine what units were being used in the program. Finally, | gave up and put the following
comment in the program:

/**

* Note: | have no idea what the input units are, nor *
* do | have any idea what the output units are, *
* but | have discovered that if | divide by 3 *
* the plots | ook about the right size. *

**I

One problem many beginning programmers have is that they describe the code, not the variable.
For example:

int top_limt; /1 Top limt is an integer [bad commrent]

It'sobviousfromthecodethat t op_| i m t isaninteger. What | want to know iswhat is
top limt.Tel me

int top_limt; /1 Nunber of itens we can | oad before |osing data

Y ou should take every opportunity to make sure your program is clear and easy to understand.
Do not be clever. Cleverness makes for unreadable and unmaintainable programs. Programs,
by their nature, are extremely complex. Anything you can to do to cut dowr on this complexity
will make your programs better. Consider the following code, written by avery clever
programme.

while ("\n'" I'= *p++ = *q++);

It isalmost impossible for the reader to tell at a glance what this mess does. Properly written

thiswould be;

while (1) {
*destination_ptr = *source_ptr;
++destinati on_ptr;
++source_ptr;
if (*(destination_ptr-1) == "'\n")
break; // exit the loop if done

}

Although the second version is longer, it is much clearer and easier to understand. Even a
novice programmer who does not know C++ well can tell that this program has something to
do with moving data from a source to a destination.

The computer doesn't care which version is used. A good compiler will generate the same
machine code for both versions. It is the programmer who benefits from the verbose code.

Naming Style

Names can contain both uppercase and lowercase letters. In this book we use all lowercase
names for variables (e.g., source_ptr, current i ndex). All uppercase

Page 43

isreserved for constants (e.g., MAX_| TEMS, SCREEN_W DTH). This convention isthe
classic convention followed by most C and C++ programs.

Many newer programs use mixed-case names (e.g., Recor dsl nFi | e). Sometimes they use
the capitalization of the first |etter to indicate information about the variable. For example,
recor dsl nFi | e might be used to denote alocal variable while Recor dsl nFi | e would
denote aglobal variable. (See Chapter 9, Variable Scope and Functions, for information about
local and global variables.)

Which naming convention you useis up to you. It is more a matter of religion than of style.
However, using a consistent naming style is extremely important. In this book we have chosen
thefirst style, lowercase variable names and uppercase constants, and we use it throughout the
book.

Coding Réligion

Computer scientists have devised many programming styles. These include structured
programming, top-down programming, and goto-less programming. Each of these styles hasits
own following or cult. | use the term "religion” because people are taught to follow the rules
blindly without knowing the reasons behind them. For example, followers of the goto-less cult
will never use a goto statement, even when it is natural to do so.

The rules presented in this book are the result of years of programming experience. | have
discovered that by following these rules, | can create better programs. Y ou do not have to
follow them blindly. If you find a better system, by all meansuseit. (If it really works, drop me
aline. I'd like to useit, too.)

Indentation and Code For mat

To make programs easier to understand, most programmers indent their programs. The general
rule for a C++ program isto indent one level for each new block or conditional. In Example
3-1there are three levels of logic, each with its own indentation level. Thewhi | e statement is
outermost. The statements inside thewhi | e are at the next level. The statement inside thei f
(br eak) isat theinnermost level.

There are two styles of indentation, and a vast religious war is being waged in the
programming community asto which is better. The first isthe short form:

while (! done) {
cout << "Processing\n";
next _entry();

Page 44

if (total <= 0) {
cout << "You owe not hi ng\n";
total = 0;
} else {
cout << "You owe " << total << " dollars\n";
all totals = all totals + total

}

In this case, most of the curly braces are put on the same line as the statements. The other style
puts the curly braces on lines by themselves:

while (! done)

{
cout << "Processing\n";
next _entry();
}
if (total <= 0)
{
cout << "You owe not hi ng\n";
total = O;
}
el se
cout << "You owe " << total << " dollars\n";
all totals = all totals + total
}

Both formats are commonly used. Y ou should use the format you feel most comfortable with.
This book uses the short form.

The amount of indentation is left to the programmer. Two, four, and eight spaces are common.
Studies have shown that a four-space indent makes the most readable code. Y ou can choose
any indent size aslong as you are consistent.

Clarity
A program should read like atechnical paper. It should be organized into sections and

paragraphs. Procedures form a natural section boundary. Y ou should organize your code into
paragraphs. It isagood ideato begin a paragraph with atopic sentence comment and separate
it from other paragraphs by a blank line. For example:

/1 poor progranm ng practice
tenp = box_xl;

box xI = box_x2;
box_x2 = tenp;
tenp = box_yl;
box_yl = box_y2;
box_y2 = tenp;

Page 45
A better version would be:

/*
* Swap the two corners
*/

/* Swap X coordi nate */
tenp = box_x1

box_xI = box_x2;

box_x2 = tenp;

/* Swap Y coordinate */

tenp = boxyl;

box_yl = boxy2;

box_y2 = tenp;
Simplicity

Y our program should be smple. Some general rules of thumb are;

- A single function should not be longer than one or two pages. (See Chapter 9, Variable
Scope and Functions.) If it getslonger, it can probably be split into two simpler functions.
This rule comes about because the human mind can hold only so much in short-term memory.
Three pages is about the most the human mind can wrap itself around in one sitting.

- Avoid complex logic such as multiple nested i f s. The more complex your code, the more
indentation levels you will need. About the time you start running into the right margin, you
should think about splitting your code into multiple procedures and thus decreasing the level
of complexity.

- Did you ever read a sentence, like this one, where the author went on and on, stringing
together sentence after sentence with the word "and,” and didn't seem to understand the fact
that several shorter sentences would do the job much better, and didn't it bother you?

C++ statements should not go on forever. Long statements should be avoided. If an equation
or formulalooks like it is going to be longer than one or two lines, you probably should split
it into two shorter equations.

- Split large single code files into multiple smaller ones. (See Chapter 23, Modular
Programming, for more information about programming with multiple files.) In general |

like to keep my files smaller than 1,500 lines. That way they aren't too difficult to edit and
print.

- When using classes (see Chapter 13, Smple Classes), put one class per module.

- Findly, the most important rule: Make your program as smple and easy to understand as
possible, even if it means breaking some of the rules. The goal

Page 46

isclarity, and the rules given in this chapter are designed to help you accomplish that goal.
If the rules get in the way, get rid of them. | have seen one program with a single statement
that spanned more than 20 pages. However, because of the specialized nature of the
program, this statement was ssimple and easy to understand.

Consistency and Organization

Good styleis only one element in creating a high-quality program. Consistency is aso afactor.
This book is organized with the table of contents at the front and the index at the back. Almost
every book printed has a similar organization. This consistency makesit easy to look up a
word in the index or find a chapter title in the table of contents.

Unfortunately the programming community has developed a variety of coding styles. Each has
its own advantages and disadvantages. The trick to efficient programming in agroup isto pick
one style and then use it consistently. That way you can avoid the problems and confusion that
arise when programs written in different styles are combined.

Good styleis nice, but consistency is better.

Further Reading
In this chapter we have touched only the basics of style. Later chapters expand
on this base, adding new stylistic elements as you learn new elements of the

language.

Summary

A program should be concise and easy to read. It must serve as a set of computer instructions,
but also as areference work describing the algorithms and data used inside it. Everything
should be documented with comments. Comments serve two purposes. First, they describe your
program to any maintenance programmer who has to fix it and, second, comments help you
remember what you did.

Classdiscussion 1: Cregate a style sheet for class assignments. Discuss what comments should
go into the programs and why.

Classdiscussion 2: Analyze the style of an existing program. Is the program written in a
manner that is clear and easy to understand? What can be done to improve the style of the
program?

Page 47

Exercise 3-1: Go through al the other programming exercises in this book and write comment
blocks for them. Thiswill serve several purposes. First, it will give you practice commenting.
Second, it will short-circuit the old programmer's excuse, "But | didn't have time to put in the
comments.”

Page 49

4
Basic Declarations and Expressions

In This Chapter:

- TheElementsof a
Program
Simple Expressions
The cout Output
Class
Basic Program
Structure
Variablesand
Storage
Variable
Declarations
Integers
Assignment
Statements
Floating Point
Numbers
Programming
Exercises
Answersto Chapter
Questions

A journey of a thousand miles must begin with a single step
—Lao-Zi

If carpenters made buildings the way programmers make programs, the
first woodpecker to come along would destroy all of civilization
—Anonymous

The Elements of a Program

If you are going to construct a building, you need two things: the bricks and a blueprint that tells
you how to put them together. In computer programming you also need two things. data
(variables) and instructions (code). Variables are the basic building blocks of a program.

Instructions tell the computer what to do with the variables,

Comments are used to describe the variables and instructions. They are notes by the author
documenting the program so it is clear and easy to read. Comments are ignored by the
computer.

In construction, before we can start we must order our materials: "We need 500 large bricks,
80 half-size bricks, and 4 flagstones." Similarly, in C++ you must declare all variables before
you can use them. Y ou must name each one of your "bricks' and tell C++ what type of "brick"
to use.

After the variables are defined you can begin to use them. In construction the basic structureis
aroom. By combining many rooms we form abuilding. In C++ the basic structure is a function.
Functions can be combined to form a program.

Page 50

An apprentice builder does not start out building the Empire State Building. He startson a
one-room house. In this chapter you will concentrate on constructing simple, one-function
programs.

Basic Program Structure

The basic elements of aprogram are the data declarations, functions, and comments. Let's see
how these can be organized into a smple C++ program.

The basic structure of a one-function programis.

/***************************************

* Headi ng comments *

***************************************/

dat a decl arati ons
mai n()

{

execut abl e statenents
return(0);

}

The heading commentstell the programmer al about the program. The data declarations
describe the data that the program is going to use.

Our single function isnamed mai n. Thename mai n isspecial, because it is the first function
called. Any other functions are called directly or indirectly from rmai n. Thefunction mai n
begins with:

mai n()

{
and ends with:

return(0);

}
Thelinereturn (0);isusedtotell the operating system (uNix or Mmspos/Windows) that

the program exited normally (status=0). A nonzero status indicates an error—the bigger the
return value, the more severe the error. Typically 1 isused for most ssmple errors, such as a
missing file or bad command-line syntax.

Now let'stake alook at the "Hello World" program (Example 3-1).

At the beginning of the program is acomment box enclosed in /* and */. Following thisis the
line:

#i ncl ude <i ostream h>

Page 51

This statement signals C++ that you are going to use a set of standard classes called the I/0
stream classes. Thisisatype of datadeclaration.” Later you usethe classcout from this
package. (We define a class more completely in Chapter 13, Smple Classes, but until we
know more well treat cout asa"black box" that sends data to the console.)

The nmai n routine contains the instruction:

cout << "Hello Wrld\n";

which is an executable statement instructing C++ to print the message"Hel | o Wér | d" onthe
screen. C++ uses a semicolon to end a statement in much the same way we use a period to end
a sentence. Unlike with line-oriented languages such as BASIC, the end of aline does not end a
statement. The sentencesin this book can span severa lines—the end of alineistreated asa
space separating words. C++ works the same way. A single statement can span severa lines.
Similarly, you can put severa sentences on the same line, just as you can put several C++
statements on the same line. However, most of the time your program is more readable if each
statement starts on a separate line.

We are using the standard class cout (console out) to output the message. A standard classis
ageneraly useful C++ object that has already been defined and put in the standard library. A
library is acollection of classes, functions, and data that have been grouped together for reuse.
The standard library contains classes and functions for input, output, sorting, advanced math,
and file manipulation. See your C++ reference manual for a complete list of library functions
and standard classes.

"Hello World" is one of the simplest C++ programs. It contains no computations, merely
sending a single message to the screen. It is a starting point. Once you have mastered this
simple program, you have done a great deal of things right. The program isnot as simple as it
looks. But once you get it working, you can move on to create more complex code.

Simple Expressions

Computers can do more than just print strings. They can also perform calculations.
Expressions are used to specify simple computations. C++ has the five simple operators listed
in Table 4-1.

* Technically, the statement causes a set of data declarations to be taken from an include file Chapter
10, The C++ Preprocessor, discussesincludefiles.

Page 52

Table 4-1. Smple Operators

Operator Meaning

* Multiply

/ Divide

+ Add

- Subtract

% Modulus (remainder after division)

Multiply (*), divide (/), and modulus (%) have precedence over addition (+) and subtraction
(-). Parentheses may be used to group terms. Thus:

(1 +2) * 4
yields 12. while:
1+2* 4
yields 9.
The program in Example 4-1 computes the value of the expression (1 + 2) * 4.
Example 4-1 Smple Expression
mai n()
{

(1 +2) * 4
return(0);

Although we calcul ate the answer, we don't do anything with it. (This program will generate a
"null effect" warning to indicate that there is a correctly written, but useless, statement in the
program.)

If we were constructing a building, think about how confused a worker would be if we said,
"Take your wheelbarrow and go back and forth between the truck and the building site.”

"Do you want me to carry bricks in the wheelbarrow?"
"No. Just go back and forth."

Y ou need to output the results of your calculations.

Page 53

The cout Output Class

The standard cl ass variable cout isused to output data to the console. We'll learn what a
classislater in Chapter 13, Smple Classes. But for now all we have to know isthat the
operator <<* tells C++ what to output. So the statement:

cout << "Hello World\n";

tells C++ to takethe string "Hel | o Wor | d\ n" and write it to the console. Multiple <<
operators may be used together. For example, both the following lines output the same

message:

cout << "Hello World\n";
cout << "Hello " << "World\n";

Expressions can aso be output this way, such as:

cout << "Half of " << 64 << " is " << (64 / 2) << "\n";
When thisis executed it will write:

Hal f of 64 is 32

on the console. Note that we had to put a space after the "of" in "Half of.” There also is a space
on either side of the "is" string. These spaces are needed in the output to separate the numbers
from the text. Suppose we didn't put the spaces in and the code looked like:

/1 Probl em code
cout << "Half of" << 64 << "is" << (64 / 2) << "\n";

At first glance this code |ooks perfectly normal. There are spaces around each of the numbers.
But these spaces are not inside any string, so they will not be output. The result of this codeis:

Hal f of 64i s32

Omitting needed spaces is a common first-time programming mistake. Remember, only the text
inside the quotation marks will be outpuit.

Variables and Storage
C++ alowsyou to store valuesin variables. Each variable is identified by avariable name.

Additionally, each variable has a variable type. The type tells C++ how the variable is going
to be used and what kind of numbers (real, integer) it can hold.

* Technically << isthe left shift operator; however, thecout class has overloaded this operator and
made it the output operator (See Chapter 16, File Input/Output, for a complete discussion of 10
classes and Chapter 18. Operator Overloading, for adefinition of overloading.)

Page 54

Names start with aletter or underscore (_) followed by any number of letters, digits, or
underscores. Uppercase is different from lowercase, so the names "sam,” "Sam," and "SAM"
specify three different variables. To avoid confusion, it is better to use different names for
variables and not depend on case differences.

Most C++ programmers use all lowercase variable names. Some names, such asi nt
whi l e, for,andfl| oat , have a special meaning to C++ and are considered reserved
words. They cannot be used for variable names.

Thefollowing is an example of some variable names:

aver age /1 average of all grades

pi [/l pi to 6 decinal places

nunmber _of _students // nunber of students in this class
The following are not variable names:

3rd_entry // Begins with a nunber

al | $done // Contains a "$"

the end /1 Contains a space

i nt /! Reserved word

Avoid variable names that are similar. For example the following illustrates a poor choice of
variable names:

t ot al /] total nunber of itens in current entry
total s /]l total of all entries
A much better set of namesis:

entry total // total nunber of itens in current entry

all_total // total of all entries

Variable Declar ations

Before you can use avariablein C++, it must be defined in a declaration statement. A
variable cannot be used unlessit is declared.

A variable declaration serves three purposes.
1. It defines the name of the variable.
2. It defines the type of the variable (integer, real, character, etc.).
3. It gives the programmer a description of the variable.
The declaration of avariable answer can be:
int answer; /1 the result of our expression

The keyword int tells C++ that this variable contains an integer value. (Integers are defined
below.) The variable nameisanswer . The semicolon is used to indi-

Page 55
cate the statement end, and the comment is used to define this variable for the programmer.

The general form of avariable declaration is:

type nane; /1 conment

Typeisone of the C++ variabletypes (i nt, fl oat, etc.) Nameisany validvariable
name. The comment explains what the variable is and what it will be used for. Variable
declarations come just before the mai n() line at the top of a program. (In Chapter 9, Variable
Scope and Functions, you will see how local variables may be declared elsewhere.)

Integers

One variable typeisinteger. Integers (also known as whole numbers) have no fractional part or
decimal point. Numbers such as 1, 87, and -222 are integers. The number 8.3 is not an integer
because it contains a decimal point. The general form of an integer declaration is:

int nane; /] comrent

A calculator with an eight-digit display can only handle numbers between 99,999,999 and
-99,999,999. If you try to add 1 to 99,999,999, you will get an overflow error. Computers
have smilar limits. The limits on integers are implementation dependent, meaning they
change from computer to computer.

Calculators use decimal digits (0-9). Computers use binary digits (0-1) called bits. Eight bits
make abyte. The number of bits used to hold an integer varies from machine to machine.
Numbers are converted from binary to decimal for printing.

On most UNIX machines integers are 32 bits (4 bytes), providing arange of 2,147,483,647
(2%- 1) to -2,147,483,648 (-2%). On the PC in Turbo C++, only 16 bits (2 bytes) are used, so
therangeis 32,767 (2*- 1) to -32,768 (-2%).

Question 4-1: The following will work on a UNIX machine but willfail on a PC

int zip; /1 zip code for current address
zip = 92126;

Why does this fail? What will be the result when run on a PC?

Page 56

Assignment Statements

Variables are given a value through the use of assignment statements. Before a variable can be
used it must be declared. For example:

int answer; /1l Result of a sinple conputation
The variable may then be used in an assignment statement, such as:
answer = (1 + 2) * 4;

The variable answer on the left side of the equals sign (=) is assigned the value of the
expression (1 + 2) * 4 ontheright sSde. The semicolon ends the statement.

When you declare avariable, C++ allocates storage for the variable and puts an unknown
value insideit. Y ou can think of the declaration as creating a box to hold the data. When it
startsout it is amystery box containing an unknown quantity. Thisisillustrated in Figure 4-1A.
The assignment statement computes the value of the expression and drops that value into the
box as shown in Figure 4-1B.

J Q int answer;

| -~ | The variable answer has not been assigned a
| value. (Sowe puta "?" in it fo indicate that it's
in an unknown state.)

The variable answer is assigned the value of
the expression {1+2) =4. The box is shown
containing the value 12,

Figure 4-1. Declaration and assignment statements
The genera form of the assignment statement is:
vari abl e = expression;

The equals sign (=) is used for assignment, not equality.

Page 57

In Example 4-2 the variable t er i is used to store an integer value that is used in two later
expressions. Variables, like expressions, can be output using the output operator <<, so we use
this operator to check the results.

Example 4-2 tterm/tterrm.cc

#i ncl ude <i ostream h>

int term /1 termused in two expressions
mai n()
{
term= 3 * 5;
cout << "Twi ce << term<< " is "<< 2*term<< "\n";
cout << "Three tines " << term<< " is " << 3*term<< "\n";
return (0);
}

Floating Point Numbers

Real numbers are numbers that have afractional part. Because of the way they are stored
internally, real numbers are also known as floating point numbers. The numbers 5.5, 8.3, and

-12.6 are dl floating point numbers. C++ uses the decimal point to distinguish between floating
point numbers and integers, so a number such as 5.0 is afloating point number while5isan
integer. Floating point numbers must contain a decimal point. Numbers such as 3.14159, 0.5,
1.0, and 8.88 are floating point numbers.

Although it is possible to omit digits before the decimal point and specify anumber as .5
instead of 0.5, the extra 0 makesit clear that you are using afloating point number. A similar
rule appliesto 12. versus 12.0. Floating point zero should be written as 0.0.

Additionally, afloating point number may include an exponent specification of the form etexp.
For example, 1.2e34 is shorthand for 1.2*10%.
The form of afloating point declaration is:

float variabl e; /1 commrent

Again, thereisalimit on the range of floating-point numbers the computer can handle. The
range varies widely from computer to computer. Floating point accuracy is discussed further in
Chapter 19, Floating Point.

Floating point numbers may be output using cout . For example:

cout << "The answer is " << (1.0 / 3.0) << "\n";

Page 58

Floating Point Versus Integer Divide

The division operator is special. Thereis avast difference between an integer divide and a
floating-point divide. In an integer divide, the result is truncated (any fractiona part is
discarded). For example, the integer divide value of 19/10is 1.

If either the divisor or the dividend is a floating-point number, afloating point divideis
executed. In this case 19.0/10.0is 1.9. (19/10.0 and 19.0/10 are a so floating-point divides,
however, 19.0/10.0 ispreferred for clarity.) There are several examplesin Table 4-2.

Table 4-2 Expression Examples

Expression Result Result Type
1+2 3 Integer
1.0+20 3.0 Floating point
19/10 1 Integer
19.0/10.0 19 Floating point

C++ allows the assignment of an integer expression to afloating-point variable. It will
automatically perform the integer-to-floating-point conversion and then make the assignment. A
similar conversion is performed when assigning a floating point number to an integer. Floating
point numbers are truncated when assigned to integer variables.

Example 4-3 float/float1c

i nt integer; // an integer
float floating; // a floating point nunber

mai n()

{
floating = 1.0 / 2.0; /1 assign floating 0.5
integer = 1/ 3; /1 assign integer O
floating = (1/ 2) + (1/ 2); // assign floating 0.0
floating = 3.0 / 2.0; /1 assign floating 1.5
integer = floating; /] assign integer 1
return (0);

}

Notice that the expression 1/ 2 isan integer expression resulting in an integer divide and an
integer result of O.

Page 59

Question 4-2: Why does Example 4-4 print "The value of 1/3is0"? What must be done to this
program to fix it?

Example 4-4. float2/float2.cc

#i ncl ude <i ostream h>
float answer; // the result of the divide

main ()

{

answer = 1/3;
cout << "The value of 1/3 is " << answer << "\n";
return (0);

}

Characters

The type char represents single characters. The form of a character declaration is:
char vari abl e; /| comrent

Characters are enclosed in single quotationmarks (). "A', 'a' and ' ! ' are
character constants. The backslash character (\) is called the escape character. It isused to
signal that a special character follows. For example, the character \'t can beusedto
represent the single character "tab." \n is the new-line character. It causes the output device to
go to the beginning of the next line, smilar to areturn key on atypewriter. The character \ \ is
the backdash itself. Finally, characters can be specified by \nnn where nnn is the octal code
for the character. Table 4-3 summarizes these special characters. For afull list of ASCII
character codes, see Appendix A.

Table 4-3. Special Characters

Character Name Meaning

\b Backspace Move the cursor to the left one character

\ f Form feed Go to top of anew page

\'n New line Gotothe next line

\r Return Go to the beginning of the current line

\t Tab Advance to the next tab stop (eight-column
boundary)

\' Apostrophe or single The character '

quotation mark

\" Double quote The character"
\nnn The character nnn The character number nnn (octal)
\NN The character NN The character number NN (hexadecimal)
Page 60
NOTE

While characters are enclosed in single quotes (), a
different data type, the string, is enclosed in double
quotes ("). A good way to remember the difference
between these two types of quotes is that single
characters are enclosed in single quotes Strings can have
any number of characters (including double quote
characters), and they are enclosed in double quotes.

Example 4-5 reverses three characters.

Example 4-5 print3/print3 cc

#i ncl ude <i ostream h>

char char1; [/l first character
char char2; /! second character
char char 3; /! third character

mai n()
{
charl
char 2 'B';
char 3 'C;
cout << charl << char2 << char3 << " reversed is "<<
char3 << char2 << charl << "\n";
return (0);

A

}

When executed, this program prints:

ABC reversed is CBA
Boolean

The C++ Draft Standard defines a boolean type, bool, that can have the value true or false.
Most compilers do not yet support this new type, so we will not discussit here. Instead, it can
be found in Chapter 28, C++'s Dustier Corners, under the section "Vampire Features."

Programming Exer cises
Exercise 4-1: Write aprogram to print your name, Social Security number, and date of birth.

Exercise 4-2: Write aprogram to print ablock E using asterisks (*), wherethe Eis7
characters high and 5 characters wide.

Page 61

Exer cise 4-3. Write a program to compute the area and circumference of arectangle 3 inches
wide by 5 incheslong. What changes must be made to the program so it works for arectangle
6.8 inches wide by 2.3 incheslong?

Exercise 4-4: Write aprogram to print "HELLO" in big block letters where each letter is 7
characters high and 5 characters wide.

Answersto Chapter Questions

Answer 4-1: The largest number that can be stored in an int on a UNIX machineis
2,147,483,647. When using Turbo-C++ the limit is 32,767. The zip code 92126 is larger than
32,767, so it ismangled and the result is 26,590.

This problem can be fixed by using alongint instead of just an i nt . The various types of
integers are discussed in Chapter 5, Arrays. Qualifiers, and Reading Numbers.

Answer 4-2: The problem concernsthe division: 1/3. The number 1 and the number 3 are both
integers, so thisis an integer divide. Fractions are truncated in an integer divide. The
expression should be written as:

answer = 1.0/ 3.0

Page 63

5
Arrays, Qualifiers, and Reading Numbers

In This Chapter:

- Arrays
Strings
Reading Data
Initializing
Variables
Multidimensional
Arrays
Types of | ntegers
Types of Floats
Declarations
Qualifiers
Hexadecimal and
Octal Constants
Operatorsfor
Performing
Shortcuts
Programming
Exercises

That mysterious independent variable of political calculations, Public
Opinion.
—Thomas Henery Huxley

Arrays

So far in constructing our building we have named each brick (variable). That isfinefor a
small number of bricks, but what happens when we want to construct something larger? We
would like to point to a stack of bricks and say, "That's for the left wall. That's brick 1, brick 2,
brick 3...."

Arrays alow usto do something similar with variables. An array is a set of consecutive
memory locations used to store data. Each item in the array is called an element. The number
of elementsin an array is called the dimension of the array. A typical array declarationis:

/1 List of data to be sorted and averaged
i nt data_list[3];

Thisdeclaresdat a_| i st to bean array of thethreeelementsdata_| i st[0],

data list [1],anddata_I|ist[2], whichareseparate variables. To reference an
element of an array, you use anumber called the index (the number inside the square brackets
[1). C++ isafunny language and likesto start counting at O, so these three elements are
numbered O0-2.

Page 64
NOTE

Common sense tells you that when

you declare dat a_| i st to be three
elements long, data |ist[3]
would be valid. Common sense is
wrong and data |ist[3] is
illegal.

Example 5-1 computes the total and average of five numbers.

Example 5-1. fivefive cc

#i ncl ude <i ostream h>

float data[5]; /] data to average and total
float total; /] the total of the data itens
fl oat average; /1 average of the itens
main ()
{

data[0] = 34.0;

data[1] = 27.0;

data[2] = 46.5;

data[3] = 82.0;

data[4] = 22.0;

total = data[0] + data[l] + data[2] + data[3] + data[4];
average = total / 5.0;

cout << "Total "<< total << " Average " << average << '\n';
return (0);

}
This program outputs:

Total 211.5 Average 42.3

Strings

Srings are arrays of characters. The special character ' \O' (NUL) is used to indicate the end of
astring.

Example:

char name[4] ;

main ()

{
namg[0] ='S';
namg[1] = 'a';
name[2] = 'ni;
namg[3] = '\0';
return (0);

}

Page 65

This creates a character array four e ements long. Note that we had to allocate one character
for the end-of-string marker.

String constants consist of text enclosed in double quotes (*). Y ou may have already noticed
that we've used string constants extensively for output with the cout standard class. C++ does
not allow one array to be assigned to another, so you can't write an assgnment of the form:

namre = "Sant'; /1 1llegal

Instead you must use the standard library function st r cpy to copy the string constant into the
variable. (st r cpy copiesthe whole string including the end-of string character.) To initiaize
the variable nane to "San™ you would write:

#i ncl ude <string. h>
char nare[4] ;
mai n()

{
strcpy(nane, "Sam'); /1 Legal

return (0);
NOTE

The line #i ncl ude <string. h> is needed to
inform C++ that you are using the string function
library.

C++ uses variable-length strings. For example, the declaration:
#i ncl ude <string. h>
char string[50];
mai n()
{
strepy(string, "Sanl);

createsan array (st r i ng) that can contain up to 50 characters. The size of the array is 50, but
the length of the string is 3. Any string up to 49 characterslong can be stored in st r i ng. (One
character isreserved for the NULL that indicates the end of the string.)

There are several standard routines that work on string variables. These are listed in Table
5-1.

Table 5-1 String Functions

Function Description

strcpy(stringl, string2) | Copiesstring2into stringl
strcat(stringl, string2) | Concatenatesstring2 onto theend of stringl

(Table 5-1 continued on next page)

Page 66
Table 5-1 String Functions (Continued from previous page)

Function Description

length = strlen(string) Getsthe length of astring

strenp(stringl, string2) | Oifstringlequal s_string2; otherwise, nonzero

Example 5-2 illustrates how st r cpy isused.

Example 5-2 str/sam cc

#i ncl ude <i ostream h>
#i ncl ude <string. h>

char nane[30]; // First nane of soneone

mai n()

{
strcpy(nane, "Sam');

cout << "The nane is " << nane << '\n';
return (0);

}

Example 5-3 takes afirst name and a last name and combines the two strings. The program
works by initializing the variablef i r st to the first name (Steve). The last name (Oualline) is
put inthe variablel ast . To congtruct the full name, the first name is copied into

full _name.Thenstrcat isusedtoadd aspace. Wecall st r cat again to tack on the last
name.

The dimension of the string variablesis 100 because we know that no one we are going to
encounter has a name more than 99 characters long. (If we get a name more than 99 characters
long, our program will screw up and split the namein two.)

Example 5-3 name2/man2 cc

#i ncl ude <string. h>
#i ncl ude <i ostream h>

char first[100]; /1 first nane
char last[100]; /1 last name
char full_nane[100]; /1 full version of first and | ast nane
main ()
{
strepy(first, "Steve"); /1 Initialize first nane
strcpy(last, "Qualline"); /1 Initialize |last nane
strepy(full _nane, first); /] full = "Steve"
/1 Note: strcat not strcpy
strcat (full _name, " "); /1 full " St eve"

strcat (full _name, last); /1 full "Steve Qualline"

Page 67

Example 5-3. name2/man2.cc (Continued)

cout << "The full nanme is " << full _nane << '\n';
return (0);

}
The output of this programiis:

The full nane is Steve Qualline

Reading Data

So far you've learned how to compute expressions and output the results. Y ou need to have
your programs read numbers as well. The output class variable cout uses the operator << to
write numbers. The input class variable ci n uses the operator >> to read them. For example,
the code:

cin >> price >> nunbero_on_hand;

reads two numbers. pri ce and nunber _on_hand. Theinput to this program should be two
numbers, separated by white space. For example, if you type:

325
thenpri ce getsthevaue 32 and nunber _on_hand getsb5.
NOTE

This does not give you very precise control over
your input. C++ does a reasonable job for simple
input. If your program expects a number and you
type <ent er > instead, the program will skip the
<ent er > (it's white space) and wait for you to
type a number. Sometimes this may lead you to think
your program'’s stuck.

In Example 5-4, we use ci n to get anumber from the user and then we double it:

Example 5-4 double/double.cc

#i ncl ude <i ostream h>

char l'i ne[100]; [/ input line fromconsole
i nt val ue; /1 a value to double

main ()

{

cout << "Enter a val ue:

cin >> val ue;

cout << "Twice " << value << " is " << value * 2 << '\n';
return (0);

Page 68

This program asks the user for a single number and doubles it. Notice that thereis no \n at the
endof Ent er a val ue: . Thisisbecause we do not want the computer to print a newline
after the prompt. For example, a sample run of the program might look like:

Enter a value: 12
Twice 12 is 24

If wereplaced Ent er a val ue: withEnter a val ue: \n theresult would be:

Enter a val ue:
12
Twice 12 is 24

Question 5-1: Example 5-5 is designed to compute the area of a triangle, given itswidth
and height. For some strange reason, the compiler refuses to believe that we declared the
variablew dt h. The declaration isright there on line two, just after the definition of
height. Why isn't the compiler seeing it?

Example 5-5 comment/comment.cc

#i ncl ude <i ostream h>

i nt hei ght ; /* the height of the triangle
i nt wi dt h; /* the width of the triangle */
i nt ar ea; /* area of the triangle (conputed) */
mai n()
{

cout << "Enter width height? ";

cin >> width >> height;

area = (width * height) / 2;

cout << "The area is " << area << '\n';

return (0);
}

The genera form of aci n statement is.
cin >> variabl e;
Thisworksfor all types of ssimple variablessuchasi nt, fl oat, andchar.
Reading strings is alittle more difficult. To read a string, use the statement:
cin.getline(string, sizeof(string));
For example:
char nane[100] ; /1 The nane of a person
cin.getline(nane, sizeof(name));

Wediscusstheget | i ne andsi zeof functionsin Chapter 16, File Input/Output.

Page 69

When reading a string, the ci n class considers anything up to the end-of-line part of the string.

Example 5-6 reads a line from the keyboard and reports the line's length.

Example 5-6 len/len cc

#i ncl ude <string. h>
#i ncl ude <i ostream h>

char line[100]; // Aline of data

mai n()

{
cout << "Enter a line:";
cin.getline(line, sizeof(line));

cout << "The length of the line is: " << strlen(line) << '\n';
return (0);

}
When we run this program we get:

Enter a line:test
The length of the line is: 4

Initializing Variables

C++ alows variablesto beinitialized in the declaration statement. For example. the following
statement declares the integer count er and initializesit to 0.

int counter(0); /1 nunber cases counted so far
The older C style syntax is also supported:
int counter = O; /'l nunber cases counted so far

Arrays can also be initialized in asimilar manner. The element list must be enclosed in curly
braces ({}). For example:

/1 Product nunbers for the parts we are making
int product_codes[3] = {10, 972, 45);

Thisis equivalent to:

product codes[0] = 10;
product codes[1] = 972;
product codes[2] = 45;

The number of elementsin the curly braces ({}) does not have to match the array size. If too
many numbers are present, awarning will beissued. If there are not enough numbers, the extra
elementswill beinitialized to 0.

Page 70

If no dimension is given, C++ will determine the dimension from the number of elementsin the
initialization list. For example, we could have initialized our variable pr oduct _codes with
the statement:

/1 Product nunbers for the parts we are naking
int product_codes[] = {10, 972, 45};

Strings can be initialized in asimilar manner. To initialize the variable nane to the string
"Sam" we use the statement:

char nanme[] = {'S, 'a", 'm, "\0'};

C++ has aspecia shorthand for initializing strings, by using double quotes (*) to simplify the
initialization. The previous example could have been written:

char nane[] = "Sani;

The dimension of nane is 4, because C++ allocates a place for the \O' character that ends the
string.

C++ uses variable-length strings. For example, the declaration:
char string[50] = "Sant;

createsan array (st r i ng) that can contain up to 50 characters. The size of the array is 50, and
the length of the string is 3. Any string up to 49 characterslong can be stored in st r i ng. (One
character isreserved for the NUL that indicates the end of the string.)

NOTE

Our statement initialized only 4 of the 50 values
in string. The other 46 elements are not
initialized and may contain random data.

Multidimensional Arrays

Arrays can have more than one dimension. The declaration for atwo-dimensional array is:
type vari abl e[si zel] [size2]; // coment

Example:

/1 a typical matrix
int matrix[2][4];

Notice that C++ does not follow the notation used in other languagesof matri x [10, 12].

To access an dement of themat r i X we use the notation:

matrix[1][2] = 10;

Page 71

C++ alows you to use as many dimensions as needed (only limited by the amount of memory
available). Additional dimensions can be tacked on.

four _di nensi ons[10][12][9][5];

Initidlizing multidimensional arrays is similar to initializing single-dimension arrays. A set
of curly braces{} encloses each element. The declaration:

/] a typical matrix
int matrix[2][4];

can be thought of as a declaration of an array of dimension 2 whose elements are arrays of
dimension 4. Thisarray isinitialized as follows:

/] a typical matrix
int matrix[2][4] =

{1, 2, 3, 4},
{10, 20, 30, 40}
b
Thisis shorthand for:
matri x[0][0] = 1;
matrix[0][1] = 2;
matrix[0][2] = 3;
matri x[0][3] = 4;
matrix[1][0] = 10;
matrix[1][1] = 20;
matrix[1][2] = 30;
matrix[1][3] = 40;

Question 5-2: Why does the following program print incorrect answers?

Example 5-7 array/array.cc

#i ncl ude <i ostream h>

int array[3][5] = { /1 Two di nensional array
{o 1, 2, 3, 4},
{10, 11, 12, 13, 14},
{20, 21, 22, 23, 24}

b

mai n()

{
cout << "Last elenment is " << array[2,4] << '\n';
return (0);

}

When run on a Sun 3/50 this program generates:

Last elenent is 0x201e8

Y our answers may vary.

Page 72

Types of Integers

C++ is considered a medium-level language because it allows you to get very close to the
actual hardware of the machine. Some languages, such as BASIC, go to great lengths to
completely isolate the user from the details of how the processor works. This consistency

comes at agreat loss of efficiency. C++ lets you give detailed information about how the
hardware is to be used.

For example, most machines let you use different-length numbers. Simple BASIC alowsthe
programmer to use only one number type. This smplifies the programming, but BASIC
programs are extremely inefficient. C++ allows the programmer to specify many different kinds
of integers, so the programmer can make best use of the hardware.

The type specifier int tells C++ to use the most efficient size (for the machine you are using) for
the integer. This can be 2 to 4 bytes depending on the machine. Sometimes you need extra digits
to store numbers larger than are allowed in anormal int. The declaration:

[ong int answer; /1 the answer of our calcul ations

isused to alocate along integer. The long quantifier informs C++ that you wish to allocate
extra storage for the integer. If you are going to use small numbers and wish to reduce storage,
use the quantifier short.

short int year; /1 Year including the 19xx part

C++ guarantees that the storage for short <= int <=long. In actua practice, short amost
always alocates 2 bytes; long, 4 bytes; and int, 2 or 4 bytes. (See Appendix B for numeric
ranges.)

Long integer constants end with the character "L." For example:
long int var = 1234L; /1 Set up a long variable

Actually you can use either an uppercase or alowercase "L." Uppercase is preferred since
lowercase easily gets confused with the digit "1."

long int funny = 121; /1 1s this 12<l ong> or one hundred twenty-one?

Thetypeshort i nt uses2 bytes, or 16 bits. Fifteen bits are used normally for the number
and 1 bit for the sign. This givesit arange of -32,768 (-2%°) to 32,767 (2*° - 1). An unsi gned
short i nt usesal 16 bitsfor the number, giving it the range of 0 to 65,535 (2 - 1). All

i nt declarations default to si gned, so that the declaration:

signed long int answer; // final result

Page 73
isthe same as:
[ong int answer /1 final result

Finally thereisthe very short integer, the type char . Character variables take up 1 byte. They
can aso be used for numbers in the range of-128 to 127 or 0 to 255. Unlike integers, they do
not default to signed; the default is compiler dependent.”

Question: Isthe following character variable signed or unsigned?
char foo

ANSWers:

a It'ssigned.
b. It'sunsigned.
c. It'scompiler dependent.

d. If you aways specify si gned or unsi gned you don't have to worry about problems like
this.

Reading and writing very short integersisalittle tricky. If you try to useachar variablein an
output statement, it will be written, as a character. Y ou need to trick C++ into believing that
thechar variableisan integer. This can be accomplished with thei nt operator. Example
5-8 shows how to write out a very short integer as a number.

Example 5-8 two2/tuo2 cc

#i ncl ude <i ostream h>

signed char ch; // Very short integer
/1l Range is -128 to 127

int main()

{
ch = 37,
cout << "The nunber is " << int(ch) << '\n';
return (0);

}

We start by declaring a character variable ch. Thisvariableis assigned the value 37. Thisis
actually an integer, not a character, but C++ doesn't care. On the next line we write out the
value of the variable. If we tried to write ch directly, C++ would treat it as a character. The
codei nt (ch) tels C++, "Treat this character as an integer."

* Turbo-C++ even has a command-line switch to make the default for typechar either signed or
unsigned
Page 74

Reading a very short integer is not possible. You must first read it asashor t i nt and then
assign it to avery short integer.

Summary of Integer Types

| ong i nt declarations allow the programmer to explicitly specify extra precision whereitis
needed (at the expense of memory). short i nt numbers save space but have amore limited
range. The most compact integers have type char . They also have the most limited range.

unsi gned numbers provide away of doubling the range at the expense of eliminating
negative numbers. The kind of number you use will depend on your program and storage
requirements. The range of the various types of integersislisted in Appendix B.

Types of Floats

Thef | oat typealso comesin various flavors. float denotes normal precision (usually 4
bytes). doubl e indicates double precision (usually 8 bytes). Double precision gives the
programmer twice the range and precision of single-precision (f | oat) variables.

The quantifier | ong doubl e denotes extended precision. On some systems thisis the same
asdoubl e; on others, it offers additional precision. All types of floating-point numbers are
aways signed.

On most machines, single-precision floating-point instructions execute faster (but less
accurately) than double precision. Double precision gains accuracy at the expense of time and
storage. In most casesf | oat isadequate; however, if accuracy is a problem, switch to
doubl e (see Chapter 19, Floating Point).

Constant and Reference Declar ations

Sometimes you want to use a value that does not change, such as p. The keyword const
indicates a variable that never changes. To declare avalue for pi we use the statement:

const float Pl = 3.1415926; /!l The classic circle constant
NOTE

By convention variable names use lowercase only while constants use
uppercase only. However, there is nothing in the language that requires this,
and severa programming systems use a different convention.

Page 75

Constants must be initialized at declaration time and can never be changed. For example, if we
tried to reset the value of Pl to 3.0 we would generate an error message:

PI = 3.0; /1 1llega
Integer constants can be used as a size parameter when declaring an array:

const int TOTAL_MAX = 50; /1 Max. nunber of elements in total |ist
float total |ist[TOTAL_MAX]; /1 Total values for each category

NOTE

C++ allows you to use integer expressions when declaring an array. For
example,youcansaytotal |ist[10] ortotal |ist[7+3].
However, some compilers, such as Borland-C++ Version 3.1, won't allow
integer constantsin this type of expression. For example:

const int first_part = 3;
const int second part = 7;

float total [3+7]; /1 Works even in Borland C++ Version

float total 2[first_part + 7]; // Fails in Borland C++ version 3.1
float total 3[firstpart + secondpart]; // Also fails

Another special variable typeisther ef er ence type. A typical reference declaration is:

int count; /1 Nunber of itens so far
int &ctual _count = count; // Another nane for count

The special character "&" isused to tell C++ that act ual _count isareference. The
declaration causes the names count and act ual _count to refer to the same variable. For
example, the following two statements are equivalent:

count = 5;
actual _count = 5;

/1 "Actual count" changes too
/1 "Count" changes too

In other words, a simple variable declaration declares a box to put datain. A reference
variable slaps another name on the box, asillustrated in Figure 5-1.

count
actual_ count

Figure 5-1. Reference variables

Page 76

Thisform of the reference variable is not very useful. In fact, in actual programming it is
almost never used. In Chapter 9, Variable Scope and Functions, you'll see how another form
of the reference variable can be very useful.

Qualifiers

Asyou've seen, C++ allows you to specify a number of qualifiersfor variable
declarations. Qualifiers may be thought of as adjectives that describe the type that
follows. Table 5-2 summarizes the various qualifiers.

Table 5-2 Qualifiers and Smple Types

Special Class Sze Sign Type

volatile register long signed int

<blank> static short unsigned float
extern double <blank> char
auto <blank> <blank>
<blank>

Special

Thevol ati | e keyword isused for specialized programming such as I/O drivers and shared
memory applications. It is an advanced modifier whose use is far beyond the scope of this

book.

vol atile
Indicates a special variable whose value may change at any time

<blank>
Normal variable

Class

The class of avariableisdiscussed in detail in Chapter 9, Variable Scope and Functions. A
brief description of the various classes follows:

register
Thisindicates a frequently used variable that should be kept in a machine register. See
Chapter 17, Debugging and Optimization.

static
The meaning of this word depends on the context. This keyword is described in Chapter 9,
Variable Scope and Functions, and Chapter 23, Modular Programming.

Page 77

extern
The variable is defined in another file. See Chapter 23 for more information.

auto
A variable allocated from the stack. This keyword is hardly ever used.

<blank>
Indicates that the default class (aut 0) is selected.

Size
The size quaifier allows you to select the most efficient size for the variable.

| ong
Indicates alarger than normal integer. (Some nonstandard compilers use long double to
indicate avery large floating-point variable.)

short
A smadller than normal integer.

doubl e
A double-size floating-point number.

<blank>
Indicates a normal size number.

Sign
Numbers can be si gned or unsi gned. Thisqualifier appliesonly to char andi nt types.
Floating-point numbers are always signed. The default issi gned for i nt and undefined for

characters.

Type
This specifies the type of the variable. Simple typesinclude:
i nt

Integer

fl oat
Floating-point number

char
Single characters, but can also be used for very short integers

Page 78

Hexadecimal and Octal Constants

Integer numbers are specified as a string of digits, such as 1234, 88, -123, and so on. These are
decimal (base 10) numbers: 174 or 17410. Computers deal with binary (base 2) numbers:
101011102. The octal (base 8) system easily converts to and from binary. Each group of three
digits (22 = 8) can be transformed into asingle octal digit. Thus 10101110z can be written as
10 101 1102 and changed to the octal 256s. Hexadecimal (base 16) numbers have asimilar
conversion, but 4 bits at atime are used. For example, 100101002 is 1000 0100, or 84s.

The C++ language has conventions for representing octal and hexadecimal values. Leading
zeros are used to signal an octal constant. For example, 0123 is 123 (octal) or 83 (decimal).
Starting a number with "Ox" indicates a hexadecimal (base 16) constant. So Ox15is 21
(decimal). Table 5-3 shows several numbersin all three bases.

Table 5-3 Integer Examples

Base 10 Base 8 Base 16
6 06 0x6
9 011 0x9
15 017 OxF

Question 5-3: Why does the following program fail to print the correct zip code? What does
it print instead?

long int zip; /1 Zip code

mai n()

{
zip = 02137L; /1l Use the zip code for Canbridge MA

cout << "New York's zip code is: " << zip << '\n';
return(0);

}

Operatorsfor Performing Shortcuts

C++ not only provides you with arich set of declarations, but also gives you alarge number of
special-purpose operators. Frequently a programmer wants to increment (add 1 to) avariable.
Using anormal assignment statement, this would look like:

total _entries = total _entries + 1;

Page 79

C++ provides you a shorthand for performing this common task. The ++ operator is used for
incrementing.

++total _entries;

A similar operator, - - , can be used for decrementing (subtracting 1 from) avariable.
--nunber | eft;
/1 |Is the sane as
nunber | eft = nunber left - 1;

But suppose you want to add 2 instead of 1. Then you can use the following notation:
total _entries += 2;

Thisisequivaent to:

total _entries = total _entries + 2;

Each of the simple operators shown in Table 5-4 can be used in this manner.

Table 5-4 Shorthand Operators

Operator Shorthand Equivalent Statement
4= X += 2; X =X + 2

.= X -= 2; X =X - 2

*= X *= 2; X =X * 2

/= X /=2 X =x 1/ 2;

O X % 2; X = X %2;

Side Effects

Unfortunately, C++ allows the programmer to use side effects. A side effect is an operation that
is performed in addition to the main operation executed by the statement. For example, the
followingislegal C++ code:

size = 5;
result = ++size;

The first statement assigns si ze the value of 5. The second statement:
1. Incrementssi ze (side effect)
2. Assignsr esul t thevalueof si ze (main operation)
But in what order? There are four possible answers:
1l.resul t isassignedthevalueof si ze (5), and then si ze isincremented.

result isbandsi ze is6.

Page 80
2. si ze isincremented, and then r esul t isassigned thevalue of si ze (6).
result is6andsi ze is6.
3. The answer is compiler dependent and varies from computer to computer.
4. 1f you don't write code like this, you don't have to worry about these sorts of questions.

The correct answer is 2: The increment occurs before the assignment. However, 4 isamuch
better answer. The main effects of C++ are confusing enough without having to worry about
side effects.

NOTE

Some programmers highly value compact code. This is a holdover
from the early days of computing when storage cost a significant
amount of money. It is my view that the art of programming has
evolved to the point where clarity is much more vauable than
conrpactness. (Great novels, which alot of people enjoy reading, are
not written in shorthand.)

C++ actually provides two forms of the ++ operator. Oneisvariable ++ and the other is
++variable. Thefirst:

nunber
resul t

5;
nunber ++;

evaluates the expression and then increments the number, sor esul t is5. The second:

5.

nunber ;
++nunber ;

resul t

increments first and then evaluates the expression. In thiscaser esul t is6. However, using
++ or -- in thisway can lead to some surprising code:

0=--0- 0--;

The problem with thisis that it looks like someone is writing Morse code. The programmer
doesn't read this statement, he decodesiit. If you never use ++ or - - as part of any other

statement, but always put them on aline by themselves, the difference between the two forms of
these operatorsis not noticeable.

NOTE

The prefix form ++variable is preferred over the suffix form
variable ++ because it allows the compiler to generate dlightly
simpler code.

Page 81

More complex side effects can confuse even the C++ compiler. Consider the following code
fragment:

val ue = 1,
result = (value++ * 5) + (value++ * 3);

This expression tells C++ to perform the steps:
1. Multiply val ue by 5and add 1 toval ue.
2. Multiply val ue by 3and add 1 toval ue.
3. Add the results of the two mulltiples together.

Steps 1 and 2 are of equal priority, unlike the previous example, so the compiler can execute
themin any order it wants to. Suppose it decides to execute step 1 first, as shown in Figure
5-2.

result = (value++ * 5) + (value++ * 3);

.+ 0PI,
Evaluale 157 expression OPesation .

1

Figure 5-2. Expression evaluation, method 1

But it may execute step 2 first, as shown in Figure 5-3.

By using the first method, we get aresult of 11; using the second method the result is 13. The
result of this expression is ambiguous. By using the operator ++ in the middle of alarger
expression, we created a problem. (Thisis not the only problem that ++ and - - can cause. We
will get into more trouble in Chapter 10, The C++ Preprocessor.)

To avoid trouble and keep the program simple, always put ++ and - - on aline by themselves.

Page 82

result = (value++ * 5) 4+ (value++ * 3);
++ operabion
-) Fuatuale 15t engrossion
Fuaivate ond pipression. »". o
" 1 [+ 2
- o _ .= o
) | x5 value |
H 1. o’ ‘ P
| value |~ S
N A
P s ':-‘l
]-Il + ad
AN 4

13

Programming Exer cises

Exercise 5-1: Write aprogram that converts Celsius to Fahrenheit.
F=9,C+32

Exer cise 5-2: Write a program to calculate the volume of a sphere, 4/5pre.

Exer cise 5-3: Write a program to print out the perimeter of arectangle given its height and
width.

perimeter = 2 (width+height)
Exercise 5-4: Write a program that converts kilometers per hour to miles per hour.
miles = (kilometers -0.6213712)

Exercise 5-5: Write a program that takes hours and minutes as input and outputs the total
number of minutes (1 hour 30 minutes = 90 minutes).

Exercise 5-6: Write a program that takes an integer as the number of minutes and outputs the
total hours and minutes (90 minutes = 1 hour 30 minutes).

Answersto Chapter Questions

Answer 5-1: The programmer accidentally omitted the end-comment symbol (*/) after the
comment for height. The comment continues onto the next line and

Page 83

engulfs the width variable declaration. Example 5-9 shows the program with the comments
underlined.

Example 5-9. tempconv ¢

#i ncl ude <i ostream h>

i nt hei ght ; /* The height of the triangle

i nt Wi dt h; /* The width of the triangle*/

i nt ar ea; /* Area of the triangle (conputed) */
mai n()

{

cout << "Enter width and height? "

cin >> width >> height;

area = (width * height) / 2;

cout << "The area is " << area << '\n';
return (0);

}

Answer 5-2: The problem iswith the way we specified the element of the array: ar r ay[2,4].
This should have been written: ar r ay[2] [4].

The reason that the specification ar r ay[2, 4] does not generate asyntax error isthat it is
lega (but strange) C++. Thereis acomma operator in C++ (See C++'s Darker Corners) so the
expression 2, 4 evaluatesto4. Soarr ay[2, 4] isthesameasar r ay[4] . C++ treats this
as a pointer (See Simple pointers) and written shows up as a memory address.

Answer 5-3: The problem isthat the zip code 02137 begins with a zero. That tells C++ that
02137 isan octal constant. When we print it, we print in decimal. Because 021378 is 111910
the program prints.

New York's zip code is: 1119

Page 85

6
Decision and Control Statements

In This Chapter:

- if Statement
€lse Statement
How Not to Use
strcmp
L ooping Statements
while Statement
Break Statement
continue Statement
The Assignment
Anywhere Side
Effect
Programming
Exercises
Answersto Chapter
Questions

Once a decision was made, | did not worry about it afteruard
—Harry Truman

Calculations and expressions are only asmall part of computer programming. Decision and
control statements also are needed, to specify the order in which statements are to be executed.

So far you have congtructed linear programs, which are programs that execute in a straight
line, one statement after another. In this chapter you will see how to change the control flow of
aprogram with branching statements and looping statements. Branching statements cause one
section of code to be executed or not, depending on a conditional clause. Looping statements
are used to repeat a section of code a number of times or until some condition occurs.

if Statement

Thei f statement allows you to put some decision making into your programs. The general
formof thei f statement is:

if (condition)
st at enent ;

If the expression is true (nonzero) the statement will be executed. If the expression is zero, the
statement will not be executed. For example, suppose you are writing a billing program. At the
end, if the customer owes nothing or if he has credit (owes a negative amount) you want to print
amessage. In C++ thisis written:

if (total _owed <= 0)
cout << "You owe nothing.\n";
Page 86

The operator <= isarelational operator that represents less than or equal to. This statement
reads "if thet ot al _owed islessthan or equal to zero, print the message." The complete list
of relational operatorsisfoundin Table 6-1.

Table 6-1. Relational Operators

Operator M eaning

<= Lessthan or equa to

< Lessthan

> Greater than

>= Greater than or equal to
== Equa

I= Not equal

Multiple relational expressions may be grouped together with logical operators. For example,
the statement:

if ((oper_char == 'Q) || (oper_char == "'q"))
cout << "Quit\n";

usesthe logical OR operator (| |) to cause theif statement to print "Quit" if oper _char is
either alowercase """ or an uppercase "Q." Table 6-2 lists the logical operators.

Table 6-2 Logical Operators

Operator Usage M eaning

Logical OR (||) (exprl) | | (expr2) Trueif exprl or expr2 istrue

Logical AND (&&) | (exprl) && (expr2) Trueif exprl and expr2 aretrue

Logicd NOT (!) I(expr) Returnsfalseif expr istrue or
returnstrueif exprisfase

Multiple statements after the if may be grouped by putting them inside curly braces ({}). For
example:

if (total _owed <= 0) {
++zero_count;
cout << "You owe nothing.\n";

}

For readability, the statements enclosed in curly braces are usually indented. This allows the
programmer to quickly tell which statements are to be conditionally executed. Asyou will see
later, mistakes in indentation can result in programs that are misleading and hard to read.

Page 87

else Statement

An dternative form of theif statement is:

if (condition)
st at enent ;
el se
st at enent ;

If the condition istrue, the first statement is executed. If it isfalse, the second statement is
executed. In our accounting example, we wrote out a message only if nothing was owed. In rea
life we probably want to tell the customer how much he owesif there is a balance due.

if (total _owed <= 0)
cout << "You owe nothing.\n";
el se
cout << "You owe " << total owed << dol lars\n";

Note to PASCAL programmers. Unlike PASCAL, C++ requires you to put a semicolon at the

end of the satement beforethe el se.

Now consider this program fragment:

if (count < 10) [1f #1
if ((count %4) == 2) [1f #2
cout << "Condition: Wiite\n";
else // (Indentation is wong)
cout << "Condition: Tan\n";

Therearetwoi f statementsand oneel se. Towhichi f doestheel se belong? Pick one:
1. Itbelongstoi f #1.
2. Itbelongstoi f #2.
3. You don't have to worry about this situation if you never write code like this.

The correct answer is 3. According to the C++ syntax rules, the el se goeswith the nearest

i f,s02issyntactically correct. But writing code like this violates the KISS principle (Keep It
Simple, Stupid). It is best to write your code as clearly and ssimply as possible. This code
fragment should be written as:

if (count < 10) { [1f #1
if ((count %4) ==2) /] If #2
cout << "Condition: Wite\n";
el se
cout << "Condition: Tan\n";

Page 88

From our original example, it was not clear which i f statement had the el se clause; however,
adding an extra set of braces improves readability, understanding, and clarity.

How Not to Use strcmp

Thefunction st r cnp compares two strings and returns zero if they are equa and nonzero if
they are different. To check whether two strings are equal, we use the code:

/1 Check for equa

if (strenp(stringl, string2) == 0)
cout << "Strings equal\n";

el se
cout << "Strings not equal\n";

Some programmers omit the comment and the == 0 clause, leading to the following, confusing
code:

if (strcnp(stringl, string2))
cout << "...... "

At first glance, this program obviously compares two strings and executes the cout statement
if they are equal. Unfortunately, the obviousiswrong. If the strings are equal st r cnp returns
zero, and the cout isnot executed. Because of this backwards behavior of st r cnp, you
should be very careful in your use of st r cnp and always comment its use.

L ooping Statements

Computers not only do calculations, but also will do them over and over and over. To get a
computer to repeat its work, you need aloop statement. Looping statements have many uses.
For example, loops are used to count the number of words in a document or to count the number
of accounts that have past due balances.

while Statement

Thewhi | e statement is used when the program needs to perform repetitive tasks. The general
form of awhi | e statement is:

whil e (condition)
st at enent ;

The program will repeatedly execute the statement inside the whi | e until the condition
becomes false (0). (If the conditionisinitially false, the statement will not be executed.)

Page 89

For example, Example 6-1 computes all the Fibonacci numbers that are less than 100. The
Fibonacci sequenceis.

112358,
The terms are computed from the equations:

1
1
2=1+1
3=2+1
5=3+2
etc.
In general termsthisis:
fn="Fna +fho

Thisisamathematical equation using math-style variable names (f n). Mathematicians use this
very terse style of naming variables. In programming, terse is dangerous, so we trandate these
names into something verbose for C++.

f, trandatesto nextnumber
f.1 trandatesto current_number
f., trandatesto old _number

So in C++ code, the equation is expressed as.
next nunber = current nunber + ol d _nunber;
We want to loop until our current termis 100 or larger. Thewhi | e loop:

while (current_nunber < 100)

will repeat our computation and printing until we reach this limit.

In our whi | e loop we compute the value of cur r ent _nunber and print it Next we need to
advance one term.

This completes the body of the loop. The first two terms of the Fibonacci sequence are 1 and 1.
We initialize our first two terms to these values.

Figure 6-1 shows what happens to the variables during the execution of the program. At the
beginning cur r ent _nunber andol d_nunber are 1. We print the value of the current
term. Then the variable next _nunber iscomputed (value 2). Next we advance one term by
putting next _nunber intocurrent _nunber andcurrent nunber into

ol d_nunber . Thisisrepeated until we compute the last term and the whi | e loop exits.

Page 90
Example 6-1 shows this written as C++ code.
Example 6-1 fib/fib cc

#i ncl ude <i ostream h>

i nt ol d_nunber; [/ previous Fibonacci nunber
i nt current _nunber; /1 current Fibonacci nunber

i nt next _nunber; /1 next nunber in the series
mai n()

{
/1 start things out

ol d_nunber = 1;
current _nunber = 1

cout << "I\n"; // Print first nunber
while (current _nunmber < 100) {

cout << current_nunber << '\n';
next _nunber = current _nunber + ol d_nunber;

ol d_nunber = current_nunber;
current _nunber = next_nunber;

}

return (0);

— cout << current_number << '\n‘;
| | next number = current_number + old_number;

. 2. ¥

old_number = current_number; current number = next_ number;

Figure 6-1 Fibonacci execution

Page 91

Break Statement

We have used awhi | e statement to compute Fibonacci numbers less than 100. The loop exits
when the condition at the beginning becomes false. Loops aso can be exited at any point
through theuse of 8 br eak statement.

Suppose you want to add a series of numbers and you don't know how many numbers are to be
added together. Y ou need some way of |etting the program know it has reached the end of the
list. In Program 6-2 you use the number zero (0) to signa the end of thelist.

Note that the whi | e statement begins with:
while (1) {

The program will loop forever because the whi | e will exit only when the expression 1is
zero. The only way to exit thisloop isthrough abr eak statement.

When we see the end-of-list indicator (zero), we use the statement:

if (item==0)
br eak;

to exit the loop.
Example 6-2 total/total .cc

#i ncl ude <i ostream h>

i nt total; /1 Running total of all numbers so far
i nt item /] next itemto add to the |ist
mai n()
{
total = 0;
while (1)

cout << "Enter # to add \n";

cout << " or O to stop:";
cin >> item

if (item==0)
br eak;

total += item

cout << "Total: " << total << '\n';
}
cout << "Final total " << total << '\n';
return (0);

Page 92

continue Statement

Thecont i nue statement isvery smilar to the br eak statement, except that instead of
terminating the loop, it starts executing the body of the loop over from the top. For example, if
you modify the previous program to total only numbers larger than O, you get Example 6-3.

Example 6-3. total 2/total 2 cc

#i ncl ude <i ostream h>

i nt total; /1 Running total of all nunbers so far
i nt item /1 next itemto add to the |ist

i nt mnus_itens; // nunber of negative itens

main ()
{
total = O;
mnus_itens = 0;
while (1) {
cout << "Enter # to add\n";
cout << " or O to stop:";
cin >> item

if (item==0)
br eak;

if (item< 0) {
++m nus_i t ens;
conti nue;
}
total += item
cout << "Total: " << total << '\n';

}
cout << "Final total " << total << '\n';

cout << "with << mnus_itens << " negative itens omtted\n";
return (0);

}
The Assignment Anywher e Side Effect

C++ dlows the use of assignment statements almost anyplace. For example, you can put

assignment statements inside another assignment statement:

/1 don't programlike this
average = total value / (nunber_of _entries = last - first);

Page 93
Thisis the equivaent of saying:

/1 programlike this
nunmber _of _entries = last - first;

average = total _value / nunberofentries;

Thefirst version buries the assignment of nunber _of _ent ri es insde the expression.
Programs should be clear and simple and should not hide anything. The most important rule of
programming is KEEP IT SMPLE.

C++ aso dlows you to put assignment statementsin thewhi | e conditional. For example:

/1 do not programlike this
while ((current_nunber = [ast_nunber + ol d_nunber) < 100)
cout << "Term" << current_nunber << '\n';

Avoid thistype of programming. Notice how much clearer the logic isin the following
version:

/1 programlike this
while (1) {
current _nunber = | ast_nunber + ol d _nunber;

if (current_nunber >= 100)
br eak;

cout << "Term" << current_nunber << '\n';

}

Question 6-1: For some strange reason, the program in Example 6-4 thinks that everyone
owes a balance of O dollars. Why?

Example 6-4. balance/balance cc

#i ncl ude <i ostream h>
i nt bal ance_owed; /1 anmount owed

main ()

{
cout << "Enter nunber of dollars owed:";
cin >> bal ance_owed;

i f (balance_owed = 0)
cout << "You owe nothing.\n";
el se
cout << "You owe " << balance owed << " dollars.\n";

return (0);

Page 94

Sample output:

Enter nunber of dollars owed: 12
You owe O dol |l ars.

Programming Exer cises

Exercise 6-1:. Write aprogram to find the square of the distance between two points. Find the
distance only if you want to do the independent research needed to perform a square root in

CH++.

Exercise 6-2: A professor generates letter grades using Table 6-3.

Table 6-3 Grade Values

% Correct

0-60

61-70

71-80

81-90

91-100

Grade

F

D
C

vy}

Given anumeric grade, print the |etter.

Exer cise 6-3: Modify the previous program to print out a+ or - after the letter grade based on
the last digit of the score. The modifiers are listed in Table 6-4.

Table 6-4 Grade-Modification Values

Last digit Modifier
1-3 -

4-7 <blank>
8-0 +

For example, 81=B-, 94=A, and 68=D+. Note: An Fisonly an F. Thereisno F+ or F-.

NOTE

Programmers frequently have to modify code that someone else
wrote. A good exerciseis to take someone else's Exercise 6-2 and
modify it.

Exer cise 6-4: Given an amount (less than $1.00), compute the number of quarters, dimes,
nickels, and pennies needed.

Exercise 6-5: A leap year isany year divisible by 4 unlessit isdivisible by 100, but not 400.
Write aprogram to tell whether ayear isaleap year.

Page 95

Exercise 6-6: Write aprogram that, given the number of hours an employee worked and his
hourly wage, computes his weekly pay. Count any hours over 40 as overtime at
time-and-a-half.

Answersto Chapter Questions

Answer 6-1: This program illustrates the most common C++ error and one of the most
frustrating. The problem is that C++ allows assignment statements inside of if conditionals. The
Statement:

if (bal ance_owed = 0)

uses asingle equal sign instead of the double equal. C++ will assign bal ance_owed the
value 0 and then test the result (which is zero). If the result were nonzero (true), thei f clause
would be executed. Since theresult is zero (false). the el se clause is executed and the
program prints the wrong answer.

The statement
i f (balance_owed = 0)
isequivalent to

bal ance_owed = O;

if (balanced_owed != 0)
The statement should be written:
i f (balance_owed == 0)

Thisisthe most common error that beginning programmers make. It is aso one of the most
difficult and frustrating to find.

| once taught a course in C programming. One day about a month after the course had ended |
saw one of my former students on the street. He greeted me and said, "Steve, | have to tell you
the truth. During the class | thought you were going a bit overboard on this=vs. == bug, until
now. You see, | just wrote the first C program for my job, and guess what mistake | made.”

Onetrick many programmers use isto put the constant first in any == statement. For example:
if (0 == bal anced_owed)

In thisway, if the programmer makes a mistake and putsin = instead of ==, the result is:
if (0 = bal ancedowed)

which causes acompiler error. (You can't assign bal ance_owed to 0.)

Page 97

7
The Programming Process

In This Chapter:

- Setting Up
The Specification
Code Design
The Prototype
The Makefile
Testing
Debugging
Maintenance
Revisions
Electronic
Archaeol ogy
Mark Up the
Program
Programming
Exercises

It'sjust a simple matter of programming.
—Any Boss Who Has Never Written a Program

Programming is more than just writing code. Software has alife cycle. It is born, grows up,
becomes mature, and finally dies, only to be replaced by a newer, younger product.
Understanding this cycle is important because as a programmer you will spend only asmall
amount of time actually writing new code. Most programming time is spent modifying and
debugging existing code. Software does not exist in avacuum; it must be documented,
maintained, enhanced, and sold. In this section we take alook at a small programming project
using one programmer. Larger projects that involve many people are discussed in Chapter
23, Modular Programming. Although the final code is fewer than a hundred lines, the
principles used in its construction can be applied to progranrs with thousands of lines of code.
Figure 7-1 illustrates the software life cycle.

The mgjor stepsin making a program are:

- Requirements. Programs start when someone gets an idea and assigns you to implement it.
The requirement document describes, in very general terms, what is wanted.

- Specification. A description of what the program does. In the beginning, a Preliminary
Specification is used to describe what the program is going to do. L ater, as the program
becomes more refined, so does the specification. Finally, when the program i< finished, the
specification serves as a complete description of what the program does.

Page 98

.;) Ruris.l'm

Figure 7-1. Softwarelife cycle

- Code design. The programmer does an overall design of the program. The design should
include major agorithms, class definitions, module specifications, file formats, and data
structures.

- One thing cannot be over-stressed; " Think before you act." Studies have shown that a good
design can result in aprogram that is 1/10 of the size of a poorly designed one. Thisis
especiadly true when using C++, where design-

Page 99

ing good objectsis critical to writing agood program. (Y ou will find out what objects are
in Chapter 13, Smple Classes.) Note: "Think before you act" is good advice not only for
coding, but also for lifein general.

Coding. The next step iswriting the program. Thisinvolves first writing a prototype and
then filling it in to create the full program.

Testing. The programmer should design atest plan and use it to test the program. It isa
good idea, when possible, to have someone else test the program.

Debugging. Unfortunately, very few programs work the first time. They must be corrected
and tested again.

Release. The program is packaged, documented, and sent out into the world to be used.
Maintenance. Programs are never perfect. Bugs will be found and will need correction.

Revisng and updating. After aprogram has been working for awhile, the users will want
changes, such as more features or more intelligent algorithms. At this point a new
specification is created and the process starts again.

Setting Up

The operating system allows you to group filesin directories. Just asfile folders serve asa
way of keeping paperstogether in afiling cabinet, directories serve as away of keeping files
together. In this chapter you will be creating a simple calculator program. All the filesfor this
program will be stored in adirectory named cal c. To create adirectory in uNix, execute the
following commands:

% cd -
% nkdir calc

In MS-DOS, type:

C\>cd\
C\> nkdir calc

To tell the operating system which directory you want to use, in uNix type the command:
% cd ~/calc
In Ms-DOS, type:

C\>cd \calc
C \CALC>

Page 100

More information on how to organize directories can be found in your operating system
documentation.

The Specification

For this chapter we are going to assume that you have been given the assignment to "write a
program that acts like afour-function calculator." Typically, the specification you are givenis
vague and incomplete. It is up to you to refine it into something that exactly defines the program
you are going to produce.

The first step isto write a document called The Preliminary Users' Specification, which
describes what your program is going to do and how to useit. This document does not describe
the internal structure of the program or the algorithm you plan to use. A sample specification
for the four-function calculator is:

Cal c
A four-function cal cul at or
Prelimnary Specification

Dec. 10, 1994 Steve CQual line

Warning: This is a prelimnary specification. Any resenbl ance to any
software living or dead is purely coincidental

Calc is a programthat allows the user to turn his $10, 000 conputer
into a $1.98 four-function cal cul ator. The program adds, subtracts,
nmul tiplies, and divides sinple integers.

When the programis run, it zeros the result register and displays its
contents. The user can then type in an operator and nunber. The result
i s updated and displayed. The foll owi ng operators are valid:

Qper at or Meani ng

+ Addi tion
- Subtracti on
* Mul tiplication

/ Di vi si on

Example (user input isin boldface)

calc

Result: O

Enter operator and nunber: + 123
Result: 123

Enter operator and nunber: - 23
Result: 100

Page 101
Enter operator and nunber: / 25
Result: 4
Enter operator and nunber: * 4
Result: 16

The preliminary specification serves two purposes. First, you should give it to your boss (or
customer) to make sure that what he thought he said and what you thought he said agree.
Second, you can circulate it among your colleagues to see whether they have any suggestions or
corrections.

This preliminary specification was circulated and received the comments: 1) "How are you

going to get out of the program?' and 2) "What happens when you try to divide by 07"
So anew operator is added:

q- quit
and we add another paragraph:

Dividing by O results in an error message and the result register is
| eft unchanged.

IV + 111 =VII

A collegeinstructor once gave his students an assignment to "write a
four-function calculator.” One of his students noticed that thiswas a pretty
loose specification and decided to have alittle fun. The professor didn't say
what sort of numbers had to be used, so the student created a program that
worked only with Roman numeras (1V + 11l = VII). The program came with a
complete user manual—written in Latin.

Code Design

After the preliminary specification has been approved, you can start designing code. In the
code-design phase, you plan your work. In large programming projects involving many people,
the code would be broken up into modules for each programmer. At this stage, file formats are
planned, data structures are designed, and major algorithms are decided upon.

This ssimple calculator uses no files and requires no fancy data structures. What's left for this

phase is to design the mgor agorithm. Outlined in pseudo-code, a shorthand halfway between
English and real code, itis:

Loop
Read an operator and nunber
Do the cal cul ation

Page 102

Di splay the result
End- Loop

The Prototype

Once the code design is completed, you can begin writing the program. But rather than try to
write the entire program at once and then debug it, you will use a method called fast
prototyping. This consists of writing the smallest portion of the specificati on you can
implement that will still do something. In our case, you will cut the four functions down to a
one-function calculator. Once you get this small part working, you can build the rest of the
functions onto this stable foundation. Also, the prototype gives the boss something to look at
and play around with so he has a good idea of the direction the project is taking. Good
communication is the key to good programming, and the more you can show someone, the
better. The code for the first version of the four-function calculator is found in Example 7-1.

Example 7-1 calc/calc cc

#i ncl ude <i ostream h>

i nt result; /1 the result of the calcul ations
char oper_char; // the user-specified operator
i nt val ue; /1 value specified after the operator
int main()
{
result =0; // initialize the result
/1 Loop forever (or till we hit the break statenent)
while (1) {
cout << "Result: " << result << '\n';
cout << "Enter operator and nunber: ";
cin >> oper_char
cin >> val ue;
if (oper_char ="'+")
result += val ue;
} else {
cout << "Unknown operator " << oper_char << '\n';
}
}
return (0);
}

The program begins by initializing the variable r esul t to zero. The main body of the
program is aloop starting with:

while (1) {

Page 103

Thiswill loop until abr eak statement is reached. The code:

cout << "Enter operator and nunber: ";
cin >> oper_char >> val ue;

asks the user for an operator and number. These are parsed and stored in the variables

oper _char andval ue. (Thefull set of 1/O operations such as << and >> are described in
Chapter 16, File Input/Output.) Finally, you start checking the operators. If the operator isa
plus (+), you perform an addition using the line:

if (oper_char ="'+") {
result += val ue;

So far you only recognize the plus operator. As soon as this works, you will add more
operators by adding morei f statements.

Finaly, if anillegal operator is entered, the line:

} else {
cout << "Unknown operator " << oper_char << '\n';

}

writes an error message telling the user he made a mistake.

The Makefile

Once the source has been entered, it needs to be compiled and linked. Up to now we have been
running the compiler manually. Thisis somewhat tedious and proneto error. Also, larger
programs consist of many modules and are extremely difficult to compile by hand. Fortunately,
both uNix and Turbo-C++ have a utility called make that handles the details of compilation.

For now, just use this example as a template and substitute the name of your program in place
of cal c. The make program is discussed in detail in Chapter 23, Modular Programming.
Basically, make looks at the file called Makefile for a description of how to compile your

program and runs the compiler for you.

For aunix system using the generic CC compiler, the Makefile should be:

[File: calcl/makefile.unx]
#
Makefile for many UN X conpil ers using the
"standard" command nanme CC

#

Ccc=CC
CFLAGS=-¢g
all: calc

calc: calc.cc

$(CO $(CFLAGS) -0 calc calc.cc

cl ean:
rmcal c

If you are using the Free Software Foundation's g++ compiler, the Makefileis:

[File: calcl/makefile.gnu]

#

Makefile for the Free Software Foundations g++ conpiler
#

CC=g++

CFLAGS=-g -wal

all: calc

calc: calc.cc
$(CO $(CFLAGS) -0 calc calc.cc

cl ean:
rmcal c

For Turbo-C++, the Makefile should be:

[File: calcl/makefile.tcc]
#

Page 104

Makefile for Borland' s Turbo-C++ conpil er

#

CC=t cc

#

Fl ags

-N -- Check for stack overfl ow
-v -- Enabl e debuggi ng

-w -- Turn on all warnings

-m -- Large node

#

CFLAGS=-N -v -w -ni
all: calc.exe

cal c. exe: calc.cpp
$(CC) $(CFLAGS) -ecalc calc.cpp

cl ean:
erase cal c. exe

For Borland C++, the Makefile is the same except the compiler is named bcc.

Finaly, for Microsoft Visual C++, the Makefileis:

[File: calcl/makefile.nsc]

#

Makefile for Mcrosoft Visual C++
#

CC=cl

#

Fl ags

AL -- Conpile for |arge nodel
Zi -- Enabl e debuggi ng

WL -- Turn on warni ngs

#

CFLAGS=/ AL /Zi IW
all: calc.exe

cal c. exe: calc.cpp
$(CO $(CFLAGS) calc.cpp

cl ean:
erase cal c. exe

NOTE

Microsoft Visual C++ does supply anake program
as part of its package; however, the make command
has been renamed to nmake.

Page 105

To compile the program, just execute the command make. (Under Microsoft Visual C++ use
the command nmake.) make determines what compilation commands are needed and execute

them.

mak e uses the modification dates of the files to determine whether or not a compilation is

necessary. Compilation creates an object file. The modification date of the object fileis later
than the modification date of its source. If the source is edited, its modification date is updated,
making the object file out of date. make checks these dates and, if the source was modified
after the object, mak e recompiles the object.

Testing

Once the program is compiled without errors, you can move on to the testing phase. Now isthe
time to start writing atest plan. This document issmply alist of the steps you perform to make
sure the program works. It iswritten for two reasons.

If abug isfound, you want to be able to reproduceit.

If you ever change the program, you will want to retest it to make sure new code did not
break any of the sections of the program that were previoudy working.

The test plan starts out as:

Try the foll owi ng operations

+ 123 Result should be 123
+ 52 Result should be 175
x 37 Error message shoul d be out put

Page 106
Running the program you get:

Result: O

Enter operator and nunber: + 123
Result: 123

Enter operator and nunber: + 52
Result: 175

Enter operator and nunber: x 37
Resul t: 212

Something is clearly wrong. The entry "x 37" should have generated an error message but
didn't. Thereisabug in the program, so you begin the debugging phase. One advantage to
making a small working prototype isthat you can isolate errors early.

Debugging

First you inspect the program to seeif you can detect the error. In such asmall program it is not
difficult to spot the mistake. However, let's assume that instead of a 21-line program, you have
amuch larger one containing 5,000 lines. Such a program waould make inspection more
difficult, so you need to proceed to the next step.

Most systems have C++ debugging programs, but each debugger is different. Some systems
have no debugger. In that case you must resort to a diagnostic print statement. (More advanced
debugging techniques are discussed in Chapter 17, Debugging and Optimization.) The
techniqueis simple: Put acout where you're sure the datais good (just to make sureit really
isgood). Then put acout wherethe datais bad. Run the program and keep putting in

cout ' s until you isolate the area in the program that contains the mistake. The program, with

diagnostic cout lines added, looks like:

cout << "Enter operator and nunber: ";
cin >> val ue;
cin >> oper_char

cout << "## after cin" << operator << '\n';

if (oper_char ="'+") {
cout << "## after if " << operator << '\n';
result += val ue;

NOTE

The ## a the beginning of each cout lineflagsthe
line asadebug line. Thismakesit easy to tell the
temporary debug output from the real program outpui.
Also, when you finally find the bug the ## makesiit
easy to find and remove the debug lines with your
editor.

Page 107

Running the program again resultsin:

Result: O
Enter operator and nunber: + 123
Resul t: 123

Enter operator and nunber: + 52
after cin +

after if +

Result: 175

Ent er operator and nunber: x 37
after cin x

after if +

Result: 212

From this you see that something is going wrong with thei f statement. Somehow the variable
operator isan x going in and a+ coming out. Closer inspection reveals that you have the old
mistake of using = instead of ==. After you fix this bug, the program runs correctly. Building on
this working foundation, you add in the code for the other operators, -, *,and /, to create
Example 7-2.

Example 7-2 calc3/calc3.c

#i ncl ude <i ostream h>

i nt result; /1 the result of the calcul ations
char oper_char; // the user-specified operator

i nt val ue; /1 val ue specified after the operator
main ()

{

result = 0; // initialize the result

/1 loop forever (or until break reached)
while (1) {
cout << "Result: " << result << '\n';

cout << "Enter operator and nunber: ";
cin >> oper_char

if ((oper_char == "'q") || (oper_char == "'Q))
br eak;

cin >> val ue;

if (oper_char == "+")
result += val ue;
} else if (oper_char == "'-") {
result -= val ue;
} else if (oper_char == "'*")
result *= val ue;
} else if (oper_char =="'/")
if (value == 0)
cout << "Error: Dyvide by zero\n";
cout << " operation ignored\n";
} else
result /= val ue;
} else {

cout << "Unknown operator " << oper_char << '\n';

Page 108
Example 7-2. calc3/cal c3.c (Continued)
}
}
return (0);

}
Y ou expand the test plan to include the new operators and try it again.

+ 123 Result should be 123

+ 52 Result should be 175

x 37 Error message shoul d be out put
- 175 Result shoul d be zero

+ 10 Result should be 10

/5 Result shoul d be 2

/ 0 Di vide by zero error

* 8 Result should be 16

q Program shoul d exit

Testing the program, you find much to your surprise that it works. The word "Preliminary” is
removed from the specification and the program, test plan, and specification are rel eased.

M aintenance

Good programmers put their programs through along and rigorous testing process before
releasing it to the outside world. Then the first user tries the program and amost immediately
finds a bug. This starts the maintenance phase. Bugs are fixed, the program istested (to make
sure the fixes didn't break anything), and the program is released again.

Revisons

Although the program is officialy finished, you are not finished with it. After itisin usefor a
few months, someone will come to us and ask, "Can you add a modulus operator?' So you
revise the specifications, add the change to the program, update the test plan, test the program,
and release it again.

As time passes, more people will come to you with additional requests for changes. Soon the
program has trig functions, linear regressions, statistics, binary arithmetic, and financia
calculations. The design is based on the idea of one-character operators. Soon you find
yoursalf running out of charactersto use. At this point the program is doing work far beyond
what it was initially designed to do. Sooner or later you reach the point where the program
needs to be scrapped and a new one written from scratch. At this point you write a new
Preliminary Specification and start the process over again.

Page 109

Electronic Archaeology

Unfortunately, most programmers don't start a project at the design step. Instead they are
immediately thrust into the maintenance or revision stage. This means the programmer is faced
with the worst possible job: understanding and modifying someone else's code.

Contrary to popular belief, most C++ programs are not written by disorganized orangutans
using Zen programming techniques and poorly commented in Esperanto. They just look that
way. Electronic archeology isthe art of digging through old code to discover amazing things
(like how and why the code works).

Y our computer can aid greatly in your search to discover the true meaning of someone else's
code. Many tools are available for examining and formatting code. (Be careful with your
selection of tools, however. Many C tools have yet to be upgraded for C++. See earlier
sections on revisions.) Some of these tools include:

Cross-refer ences. These programs have nameslikexr ef , cxref ,and cr oss. System
V uNix hasthe utility cscope. They print out alist of variables and where the variables
are used.

Program indenters. Programs such ascb and indent i ndent aprogram "correctly"
(correct indentation is something defined by the tool maker).

Pretty printers. A pretty printer suchasvgri nd or cpri nt typesets source code for
printing on alaser printer.

Call graphs. On Sysem V unix theprogram cf | ow analyzes the structure of the program.
On other systems there is a public domain utility, cal | s, that produces call graphs,
showing who calls whom and who is called by whom.

Classbrowsers. A class browser allows you to display the class hierarchy so you can tell
what components went into building the class aswell asits structure. You'll learn what a
classisin Chapter 13, Smple Classes.

Which tools should you use? Whichever ones work for you. Different programmers work in

different ways. Some techniques for examining code are listed below. Choose the ones that
work for you and use them.

Mark Up the Program

Take a printout of the program and make notes all over it. Usered or blueink so you can tell
the difference between the printout and the notes. Use a highlighter to emphasize important
sections. These notes are useful; put them in the program as comments, and then make a new
printout and start the process over again.

Page 110

Use the Debugger

The debugger isagreat tool for understanding how something works. Most debuggers allow
you to step through the program one line at atime, examining variables and discovering how
things really work. Once you find out what the code does, make notes and put them in as
comments.

Usethe Text Editor as a Browser

One of the best tools for going through someone else's code is your text editor. Suppose you
want to find out what the variable sc is used for. Use the search command to find the first
place sc isused. Search again and find the second. Continue searching until you know what the
variable does.

Suppose you find out that sc is used as a sequence counter. Since you're already in the editor,
you can easily do aglobal search-and-replace to change the variable sc to
sequence_count er . (Disaster warning: Make sure sequence_count er isnot already
defined as a variable before you make the change. Also make sure you do aword replacement
or you'll find you replaced sc in places you didn't intend.) Comment the declaration and you're
on your way to creating an understandable program.

Add Comments

Don't be afraid to put any information you have, no matter how little, into the comments. Some
of the comments I've used include:

int state; /!l Controls sone sort of state nachine
int rnxy; /1 Something to do with color correction?

Finaly, thereis acatch-al comment:
int idn; [l 2?7

which means, "I have no idea what this variable does." Even though the purpose is unknown, it
is now marked as something that needs more work.

As you go through someone else's code adding comments and improving style, the structure
will become clearer to you. By inserting notes (comments), you make the code better and easier
to understand for future programmers.

Suppose you are confronted with the following program written by someone from the "The
Terser the Better" school of programming. Y our assignment is to figure out what this program
does. First you pencil in some comments as shown in Figure 7-2.

#include <icstream. h=
#include <stdlib.h=

maini(}

/*Hot Really*/

feturn (o) ;

int = h, c, n;

char line[80];

[__T______H,,,aa*" lJibd
while (1)

cout << *Bingoin®:

Yol 1" as var name

trll

7

g = rand{) % 100 + 1;
1 = 0; . w
h = 100; it vars
c = 0;
while (1} [
cout << "Bounds * << 1 << " = ®* << h << "hp';

cout << *Valuel® << c =< *]% &;

L2 Tat
cin =» n; :Wofmm
if (n == g)
break;
if (m < g} '
1 = n; ad st bound £
elae -
h = n: L = Lovser
! h - higher

Figure 7-2. A terse program

Page 111

This mystery program requires some work. After going through it and applying the principles
described in this section, you get the well-commented, easy-to-understand version shown in

Example 7-3.

Example 7-3 guess/good.cc

/**

* guess -- a sinple guessing gane *
* *
* Usage: *
* guess *
* *
* A random nunber is chosen between 1 and 100. *
* The player is given a set of bounds and *
* nust choose a nunber between them *
* I f the player chooses the correct nunber, he w ns*
* O herwi se, the bounds are adjusted to reflect *
* the players guess and the gane conti nues *
* *
* Restrictions: *
* The random nunber is generated by the statnent *
* rand() % 100. Because rand() returns a nunber *
* *

0 <= rand() <= maxint

this slightly favors

Page 112
Example 7-3 guess/good cc (Continued)

* t he | ower nunbers. *

**I

#i ncl ude <i ostream h>
#i ncl ude <stdlib. h>
i nt nunber _to_guess; // Random nunber to be guessed

i nt low limt; /1 Current lower limt of player's range
i nt high limt; /1 CQurrent upper limt of player's range
i nt guess_count; /1 Nunber of times player guessed
i nt pl ayer _nunber; /1 Nunber gotten fromthe player
char 1ine[80]; /1 Input buffer for a single line
mai n()
while (1)
/*
* Not a pure random nunber; see restrictions
*/

nunber _to_guess = rand() % 100 + 1

/1 Initialize variables for |oop
low limt = 0;

high_limt = 100;

guess_count = O;

while (1) {
/1 Tell user what the bounds are and get his guess
cout << "Bounds " << lowlimt << " - " << high_limt << '\n';

cout << "Value[" << guess_count << "]? "
++guess_count;
cin >> player_nunber;

/1 Did he guess right?
i f (player_nunber == nunber_to_guess)
br eak;

/1 Adjust bounds for next guess

i f (player_nunber < nunber_to_guess)
low limt = player_nunber;

el se
high limt = player_nunber;

{

cout << "Bingo\n";
{
return (0);

Page 113

Programming Exer cises

For each assignment, follow the software life cycle from specification through release.

Exercise 7-1. Write aprogram to convert English units to metric (e.g., milesto kilometers,
galonsto liters, etc.). Include a specification and a code design.

Exercise 7-2: Write a program to perform date arithmetic, such as how many days there are
between 6/1/90 and 8/3/92. Include a specification and a code design.

Exercise 7-3: A seria transmission line can transmit 960 characters a second. Write a
program that will calculate how long it will taketo send afile, giventhefile'ssize. Try itona
400MB (419,430,400 byte) file. Use appropriate units. (A 400MB file takes days.)

Exercise 7-4: Write aprogram to add an 8% sales tax to a given amount and round the result to
the nearest penny. Exercise 7-5: Write a program to tell whether anumber is prime.

Exer cise 7-6: Write a program that takes a series of numbers and counts the number of positive
and negative values.

Page 115

|l Simple Programming

Page 117

8
More Control Statements

In This Chapter:

- for Statement
switch Statement
switch, break, and
continue
Programming
Exercises
Answersto Chapter
Questions

Grammar, which knows how to control even kings
—Moliére

for Statement

Thef or statement allows you to execute a block of code a specified number of times. The
genera form of thef or statement is:

for (initial-statenment; condition; iteration-statenent)
body- st at enent ;

thisisequivaent to:

initial-statenent;

while (condition) {
body- st at enent ;
iteration-statenent;

}

For example, Example 8-1 usesawhi | e loop to add five numbers.

Example 8-1 total 6/total 6w cc

#i ncl ude <i ostream h>

int total; /]l Total of all the nunbers
int current; /!l Current value fromthe user
int counter; /1 While | oop counter
mai n() {

total = O;

counter = O;
while (counter < 5)

Example 8-1. total6/total 6w.cc (Continued)

cout << "Nunber? ";

cin >> current;
total += current;

++count er;

}

cout << "The grand total is " << total << '\n';
return (0);

}

The same program can be rewritten using af or statement as seen in Example 8-2.

Example 8-2 total 6/total 6 cc

#i ncl ude <i ostream h>

int total; /!l Total of all the nunbers
int current; /!l Current value fromthe user
int counter; /1 For | oop counter
mai n() {

total = O;

for (counter = 0; counter < 5; ++counter) {
cout << "Nunber? ";

Page 118

cin >> current;
total += current;

}
cout << "The grand total is " << total << '\n';
return (0);

}

Notethat count er goesfrom 0to 4. Normally you count fiveitemsas 1, 2, 3, 4, 5. Y ou will
get along much better in C++ if you change your thinking to zero-based counting and count five
itemsasO, 1, 2, 3, 4. (One-based counting is one of the main causes of array overflow errors.
See Chapter 5, Arrays, Qualifiers, and Reading Numbers.)

Careful examination of the two flavors of this program reveals the similarities between the two
versions, as shown in Figure 8-1.

Many older programming languages do not alow you to change the control variable (in this
case count er) inside theloop. C++ is not so picky. Y ou can change the control variable
anytime you wish—you can jump into and out of the loop and generally do things that would
make a PASCAL or FORTRAN programmer cringe. (Even though C++ gives you the freedom
to do such insane things, that doesn't mean you should do them.)

Page 119

main{l {

L

counter = 0;
H while {counter < 5)

Ao

| ++oountery——
| »
l cout << "The grand total 3z " < total << "‘\n’;
H return (0);

fore{counter = 0; countar < 5; ++counter) |
0o,

H

coub << "The grand total is * << total << '‘\n';

return (0] ;

Figure 8-1. Similarities between while and for
Question 8-1: Example 8-3 containsan error.

Example 8-3. cent/cent.cc

#i ncl ude <i ostream h>
/*
* This program produces a Cel sius to Fahrenheit conversion
chart for the nunmbers 0 to 100

*

*

* Restrictions:
* This programdeals with integers only, so the
* cal cul ati ons may not be exact.

*/

/1 The current Celsius tenperature we are working with
int celsius;

mai n() {
for (celsius = 0; celsius <= 100; ++cel sius);
cout << "Celsius: " << celsius <<
Fahrenheit: " << ((celsius * 9) / 5 + 32) << '\n';
return (0);
}

When run, this program prints out:
Cel sius: 101 Fahrenheit: 213

and nothing more. Why?

Page 120

Question 8-2: Example 8-4 reads a list of five numbers and counts the number of threes and
sevensin the data. Why does it give us the wrong answers?

Example 8-4 seven/seven.cc.

i ncl ude <i ostream h>

i nt seven_count; /1 Nunber of sevens in the data
int data[5]; /1 The data to count 3 and 7 in
int three count; /1 Nunber of threes in the data
i nt index; /1 Index into the data

mai n() {

seven_count

0;
t hree_count 0

cout << "Enter 5 nunbers\n";
cin >> data[1l] >> data[2] >> data[3] >>
data[4] >> data[5];

for (index = 1; index <= 5; ++index)
if (data[index] == 3)
++t hr ee_count ;
if (data[index] == 7)
++seven_count;

cout << "Threes " << three_count << " Sevens " << seven _count << '\n';
return (0);

}
When we run this programwith the data 3 73 0 2, the results are:

Threes 4 Sevens 1

(Your results may vary.)

switch Statement

Thesw t ch statementissimilartoachainof i f - el se statements. The general form of a
SW t ch statement is:

swi tch (expression)
case constantl:
st at enent

br eak;
case constant 2:
st at enent

/1 Fall through

defaul t:

Page 121

st at enent
br eak;

case constant 3:
st at enent

br eak;
}
Thesw t ch statement evaluates the value of an expression and branchesto one of thecase

labels. Duplicate labels are not allowed, so only one case will be selected. The expression
must evaluate to a integer, character, or enumeration.

case labels can bein any order and must be constants. The def aul t label can be put
anywhereintheswi t ch.

When C++ seesaswi t ch statement, it evaluates the expression and then looks for a matching
case labdl. If noneisfound, thedef aul t label isused. If nodef aul t isfound, the
statement does nothing.

A br eak statement insideaswi t ch tells the computer to continue the execution after the
swi t ch. If thebr eak isnot there, execution continues with the next statement.

NOTE

Thesw t ch statement isvery smilar to the PASCAL case
statement. The main differences are that while PASCAL alows only
one statement after the label, C++ allows many. C++ keeps
executing until it hitsabr eak statement. In PASCAL you can't "fall
through" from one case to another. In C++ you can.

The calculator program in Chapter 7, The Programming Process, contains a series of
i f-el se gatements.

if (operator == "+) {

result += val ue;

} else if (operator == "-') {
result -= val ue;

} else if (operator == "*")
result *= val ue;

} else if (operator =="/")
if (value == 0)

cout << "Error: Dyvide by zero\n";
cout <<" operation ignored\n";
} else
result /= val ue;
} else {
cout << Unknown operator " << operator << '\n';

Page 122

This section of code can easily be rewritten asaswi t ch statement. Inthisswi t ch, we use a
different case for each operation. Thedef aul t clause takes care of all the illegal operators.

Rewriting the program using aswi t ch statement makes it not only smpler, but also easier to
read as seen in Example 8-5.

Example 8-5 calc-swi/calc3.cc

#i ncl ude <i ostream h>

i nt result; /1 The result of the cal cul ations
char oper_char; [// The user-specified operator
i nt val ue; /1 Value specified after the operator
main ()
{

result = 0; /1 Initialize the result

/1 Loop forever (or until break reached)
while (1) {
cout << "Result: " << result << '\n';
cout << "Enter operator and nunber: ";
cin >> oper_char >> val ue;

if ((oper_char == 'q') || (oper_char == "'Q))
br eak;

switch (oper_char)
case '+':
result += val ue;
br eak;
case '-'
result -= val ue;
br eak;
case '*':
result *= val ue;
br eak;
case '/’
if (value == 0)
cout << "Error: Divide by zero\n";
cout << " operation ignored\n";

} else
result /= val ue;

br eak;
defaul t:
cout << "Unknown operator " << oper_char << '\n';
br eak;
}
}
return (0);

Page 123

A br eak statement is not required at the end of acase. If the br eak isnot there, execution
will continue with the next statement.

For example:

control = O;

/1 A not so good exanpl e of progranm ng
switch (control)

case O:
cout << "Reset\n";
case 1:
cout << "Initializing\n";
br eak;
case 2:
cout "Wbrking\n";
}
In this case, when cont r ol == 0, the program prints:
Reset

Initializing

Case 0 does not end with abr eak statement. After printing "Reset " the program falls
through to the next statement (case 1) and prints”l ni ti al i zi ng."

But there is a problem with this syntax. Y ou can't be sure that the program is supposed to fall
through from case 0 to case 1, or if the programmer forgot to put in abr eak statement. To
clear up this confusion, acase section should aways end with abr eak statement or the
comment”/ / fal | through."

/1 A better exanple of progranm ng
switch (control) {
case O:
cout << "Reset\n";
/1 Fall through
case 1:
cout << "Initializing\n";
br eak;
case 2:
cout << "Wrking\n";

}

Because case 2 islast, it doesn't absolutely need abr eak statement. A br eak would cause

the program to skip to the end of theswi t ch, but we're already there,
But suppose we modify the program dightly and add another case totheswi t ch:

// W have a little problem
switch (control)
case O:
cout << "Reset\n";

Page 124
/1 Fall through
case 1:
cout << "Initializing\n";
br eak;
case 2:
cout << "Working\n";
case 3:

cout << "d osing down\n";

}
Now when control == 2 the program prints:

Wor ki ng
C osi ng down

Thisisan unpleasant surprise. The problem is caused by the fact that case 2 is no longer the
last case. Wefall through. (Unintentionally, or otherwise we would haveincluded a/ /

Fal | through comment.) A br eak isnow necessary. If you dwaysput inabr eak statement,
you don't have to worry about whether or not it isreally needed.

/1 A nost there
switch (control) {

case O:

cout << "Reset\n";
/1 Fall through

case 1:
cout << "Initializing\n";
br eak;

case 2:
cout << "Wbrking\n";
br eak;

}
Finally, we ask the question: What happenswhen cont r ol == 57?Inthiscase, sincethere

isno matching case or adef aul t clause, theentireswi t ch statement is skipped.

In this example, the programmer did not include adef aul t statement because control will
never be anything but O, 1, or 2. However, variables can get assigned strange values, so we
need alittle more defensive programming.

/!l The final version
switch (control) {
case O:
cout << "Reset\n";
/1 Fall through
case 1:

cout << "Initializing\n";

br eak;
case 2:

cout << "Working\n";

br eak;

Page 125
defaul t:
cout << "Internal error, control value" << control <<
' i npossi bl e\ n";

br eak;

}

Although adef aul t isnot required, it should be put in every swi t ch. Even though the
def aul t may bejust:

defaul t:
/1 Do not hing
br eak;

it should be included. This indicates that you want to ignore out-of-range data.

switch, break, and continue

The br eak statement has two uses. Used insideaswi t ch it causes the program to exit the
swi t ch statement. Insde of af or or whi | e loop, it causes aloop exit. Thecont i nue
statement is only valid inside aloop and causes the program to go to the top of the loop.

To illustrate how these statements work, we've produced a new version of the cal culator
program. The new program prints the result only after valid datais input and has aHelp
command.

The Help command is special. We don't want to print the result after the Help command, so
instead of ending the Help case withabr eak weend it withacont i nue. Thecont i nue
forces execution to go to the top of the loop.

When an unknown ope