

Sam R. Alapati

Expert Oracle Database
10g Administration

4517FM.qxd 8/19/05 10:24 AM Page i

Expert Oracle Database 10g Administration

Copyright © 2005 by Sam R. Alapati

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-451-7

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Tony Davis
Technical Reviewer: John Watson
Development Editors: Robert Denn and Matthew Moodie
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis,

Jason Gilmore, Jonathan Hassell, Chris Mills, Dominic Shakeshaft, and Jim Sumser
Associate Publisher: Grace Wong
Project Manager: Beckie Stones and Tracy Brown Collins
Copy Edit Manager: Nicole LeClerc
Copy Editors: Andy Carroll, Marilyn Smith, and Susannah Pfalzer
Assistant Production Director: Kari Brooks-Copony
Production Editor: Ellie Fountain
Compositor: Dina Quan
Proofreaders: Lori Bring and Liz Welch
Indexer: John Collin
Interior Designer: Van Winkle Design Group
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indi-
rectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

4517FM.qxd 8/19/05 10:24 AM Page ii

To my grandfather, Alapati Pullayya, and grandmother, Bollu Seethamma,
for their love, affection, strength, and wisdom

4517FM.qxd 8/19/05 10:24 AM Page iii

4517FM.qxd 8/19/05 10:24 AM Page iv

Contents

About the Author . xxxiii

About the Technical Reviewer . xxxiv

Acknowledgments . xxxv

Introduction . xxxvii

PART 1 ■ ■ ■ Background, Data Modeling, and
UNIX/Linux

■CHAPTER 1 The Oracle DBA’s World . 3

The Oracle DBA’s Role . 3

Different DBA Job Classifications . 8

Types of Databases . 8

Background and Training . 9

The Daily Routine of a Typical Oracle DBA . 15

Some General Advice . 16

■CHAPTER 2 Relational Database Modeling and Database Design 19

Relational Databases: A Brief Introduction . 19

The Relational Database Model . 20

Relational Database Life Cycle . 23

Reverse-Engineering a Database . 38

Object-Relational and Object Databases . 38

■CHAPTER 3 Essential UNIX (and Linux) for the Oracle DBA 43

Overview of UNIX and Linux Operating Systems . 43

Understanding the UNIX Shell(s) . 45

Overview of Basic UNIX Commands . 48

Navigating Files and Directories in UNIX . 57

Writing and Editing Files with the vi Editor . 63

Extracting and Sorting Text . 65

Shell Scripting . 68

Dealing with UNIX Processes . 74

UNIX System Administration and the Oracle DBA . 75
v

4517FM.qxd 8/19/05 10:24 AM Page v

Disks and Storage in UNIX . 85

RAID Systems . 88

New Storage Technologies . 92

PART 2 ■ ■ ■ Oracle Database 10g Architecture,
Schema, and Transaction Management

■CHAPTER 4 Introduction to the Oracle Database 10g Architecture 99

Oracle Database Structures . 99

Oracle Processes . 113

Oracle Memory Structures . 119

A Simple Oracle Database Transaction . 130

Data Consistency and Data Concurrency . 131

Backup and Recovery Architecture . 133

The Oracle Data Dictionary and the Dynamic Performance Views 135

Talking to the Database . 137

Oracle Utilities . 139

Scheduling and Resource-Management Tools . 139

Automatic Database Management . 140

Common Manageability Infrastructure . 141

Efficient Managing and Monitoring . 143

■CHAPTER 5 Schema Management . 145

Types of SQL Statements . 145

Oracle Schemas . 148

Creating and Managing Tablespaces . 149

Oracle Tables . 175

Special Oracle Tables . 182

Oracle Indexes . 196

Managing Database Integrity Constraints . 202

Using Views . 207

Using Materialized Views . 209

Using the SQL Access Advisor . 214

Using Synonyms . 220

Using Sequences . 222

Using Triggers . 223

Viewing Object Information . 224

■CONTENTSvi

4517FM.qxd 8/19/05 10:24 AM Page vi

■CHAPTER 6 Oracle Transaction Management . 225

Oracle Transactions . 225

Transaction Properties . 228

Transaction Concurrency Control . 229

Isolation Levels and the ISO Transaction Standard . 231

Oracle’s Isolation Levels . 232

Implementing Oracle’s Concurrency Control . 235

Using Undo Data to Provide Read Consistency . 243

Flashback Error Correction Using Undo Data . 254

Flashback Using the DBMS_FLASHBACK Package . 256

Flashback Transaction Query . 261

Discrete Transactions . 267

Autonomous Transactions . 267

Resumable Space Allocation . 269

Managing Long Transactions . 273

PART 3 ■ ■ ■ Installing Oracle Database 10g, and
Creating and Upgrading Databases

■CHAPTER 7 Installing the Oracle Database 10g RDBMS 279

Installing Oracle . 279

Following the Optimal Flexible Architecture . 281

Performing Preinstallation Tasks . 288

A Final Checklist for the Installation . 300

After the Installation . 309

Uninstalling Oracle . 312

■CHAPTER 8 Upgrading to Oracle Database 10g . 315

Routes to Oracle Database 10g . 315

Upgrade Methods and Tools . 315

Upgrading with the DBUA . 318

Upgrading Manually . 322

After the Upgrade . 328

■CHAPTER 9 Creating an Oracle Database . 329

Getting Ready to Create the Database . 329

Creating the Parameter File . 333

Creating a New Database . 358

Using a Server Parameter File (SPFILE) . 374

Starting Up and Shutting Down the Database from SQL*Plus 378

■CONTENTS vii

4517FM.qxd 8/19/05 10:24 AM Page vii

PART 4 ■ ■ ■ Connectivity and User Management

■CHAPTER 10 Connectivity and Networking . 391

Oracle Networking and Database Connectivity . 391

Networking Concepts: How Oracle Networking Works . 393

Establishing Oracle Connectivity . 396

The Oracle Client . 397

The Instant Client . 399

The Listener and Connectivity . 400

Naming and Connectivity . 405

Oracle and Java Database Connectivity . 416

■CHAPTER 11 User Management and Database Security 421

Managing Users . 422

The Database Resource Manager . 431

Controlling Access to Data . 442

Auditing Database Usage . 461

Authenticating Users . 471

Enterprise User Security . 476

Database Security Dos and Don’ts . 482

■CHAPTER 12 Using SQL*Plus and iSQL*Plus . 491

Starting a SQL*Plus Session . 491

Exiting SQL*Plus . 495

SQL*Plus and SQL Commands . 496

Key SQL*Plus “Working” Commands . 508

Commands for Formatting SQL*Plus Output and Creating Reports 512

Creating Command Files in SQL*Plus . 514

Editing Within SQL*Plus . 519

Key SQL*Plus Database Administration Commands . 524

Using SQL to Generate SQL . 525

iSQL*Plus . 526

PART 5 ■ ■ ■ Data Loading, Backup, and Recovery

■CHAPTER 13 Loading and Transforming Data . 539

An Overview of Extraction, Transformation, and Loading 539

Using the SQL*Loader Utility . 541

Using External Tables to Load Data . 559

■CONTENTSviii

4517FM.qxd 8/19/05 10:24 AM Page viii

Transforming Data . 570

Using Oracle Streams for Replication and Information Sharing 583

■CHAPTER 14 Using Data Pump Export and Import . 589

Introduction to the Data Pump Technology . 589

Performing Data Pump Exports and Imports . 598

Monitoring a Data Pump Job . 621

Using the Data Pump API . 622

Transportable Tablespaces . 623

■CHAPTER 15 Backing Up Databases . 631

Backing Up Oracle Databases . 631

Examining the Flash Recovery Area . 640

The Recovery Manager (RMAN) . 648

Backing Up the Control File . 679

The Oracle Backup Tool . 680

User-Managed Backups . 686

Database Corruption Detection . 692

Enhanced Data Protection for Disaster Recovery . 695

■CHAPTER 16 Database Recovery . 699

Types of Database Failures . 699

The Oracle Recovery Process . 701

Performing Recovery with RMAN . 707

Typical Media Recovery Scenarios . 711

Cloning a Database . 726

Techniques for Granular Recovery . 730

Flashback Techniques and Recovery . 736

Using Restore Points . 750

Repairing Data Corruption and Trial Recovery . 752

Troubleshooting Recovery Errors . 754

PART 6 ■ ■ ■ Managing the Operational Oracle
Database

■CHAPTER 17 Automatic Management and Online Capabilities 759

The Automatic Database Diagnostic Monitor (ADDM) . 759

Automatic Shared Memory Management . 774

Automatic Optimizer Statistics Collection . 780

■CONTENTS ix

4517FM.qxd 8/19/05 10:24 AM Page ix

Automatic Storage Management . 783

Automatic Space Management . 799

Online Capabilities of Oracle Database 10g . 811

■CHAPTER 18 Managing and Monitoring the Operational Database 823

Types of Oracle Performance Statistics . 823

Server-Generated Alerts . 828

The Automatic Workload Repository (AWR) . 834

Active Session History (ASH) . 845

The Management Advisory Framework . 849

Working with the Undo and the MTTR Advisors . 854

Managing the Online Redo Logs . 855

Managing Database Links . 858

Copying Files with the Database Server . 860

Mapping Oracle Files to Physical Devices . 862

Using the Oracle Scheduler . 863

■CHAPTER 19 Using Oracle Enterprise Manager . 883

Oracle Enterprise Manager . 883

OEM Architecture and Components . 886

OEM Database Control . 886

OEM Grid Control . 899

■CHAPTER 20 Managing Oracle Databases on Windows and
Linux Systems . 909

Oracle Database 10g and Windows . 909

Essential Differences Between Managing Oracle on Windows and UNIX 912

Installing Oracle Database 10g on a Windows System . 919

The Windows Registry . 920

Managing Oracle on Windows Systems . 921

Uninstalling Oracle on Windows . 930

Oracle and Linux . 931

PART 7 ■ ■ ■ Performance Tuning

■CHAPTER 21 Improving Database Performance:
SQL Query Optimization . 937

An Approach to Oracle Performance Tuning . 937

Optimizing Oracle Query Processing . 939

Query Optimization and the Oracle Cost-Based Optimizer 943

■CONTENTSx

4517FM.qxd 8/19/05 10:24 AM Page x

Writing Efficient SQL . 957

How the DBA Can Help Improve SQL Processing . 967

SQL Performance Tuning Tools . 974

Using the EXPLAIN PLAN . 974

The SQL Tuning Advisor . 994

A Simple Approach to Tuning SQL Statements . 999

■CHAPTER 22 Performance Tuning: Tuning the Instance 1001

An Introduction to Instance Tuning . 1001

Automatic Performance Tuning vs. Dynamic Performance Views 1003

Tuning Oracle Memory . 1004

Evaluating System Performance . 1024

Measuring I/O Performance . 1030

Measuring Instance Performance . 1032

A Simple Approach to Instance Tuning . 1066

PART 8 ■ ■ ■ The Data Dictionary, Dynamic Views,
and the Oracle-Supplied Packages

■CHAPTER 23 The Oracle Data Dictionary and the
Dynamic Performance Views . 1083

The Oracle Data Dictionary . 1083

Using the Static Data Dictionary Views . 1084

Using the Dynamic Performance Views . 1115

■CHAPTER 24 Using Oracle PL/SQL Packages . 1145

Overview of the Oracle-Supplied PL/SQL Packages . 1145

DBMS_FILE_TRANSFER . 1146

DBMS_MONITOR . 1148

UTL_COMPRESS . 1148

UTL_MAIL . 1149

DBMS_TDB . 1150

DBMS_JOB . 1151

DBMS_APPLICATION_INFO . 1153

DBMS_CRYPTO . 1155

DBMS_SESSION . 1155

DBMS_SYSTEM . 1156

DBMS_OUTPUT . 1159

DBMS_REPAIR . 1160

DBMS_OUTLN and DBMS_OUTLN_EDIT . 1162

■CONTENTS xi

4517FM.qxd 8/19/05 10:24 AM Page xi

DBMS_SPACE . 1163

DBMS_SPACE_ADMIN . 1164

DBMS_PROFILER . 1165

DBMS_ERRLOG . 1167

UTL_FILE . 1168

UTL_SMTP . 1172

DBMS_SHARED_POOL . 1173

DBMS_WM . 1174

DBMS_RLMGR . 1175

Oracle Packages in Earlier Chapters . 1175

■APPENDIX A Oracle Database 10g SQL and PL/SQL: A Brief Primer 1183

The Oracle Database 10g Sample Schemas . 1183

Oracle Data Types . 1185

SQL . 1186

Abstract Data Types . 1201

PL/SQL . 1203

Using Cursors . 1207

Procedures, Functions, and Packages . 1209

Oracle XML DB . 1210

Oracle and Java . 1214

■INDEX . 1217

■CONTENTSxii

4517FM.qxd 8/19/05 10:24 AM Page xii

About the Author

■SAM R. ALAPATI is an experienced Oracle DBA who holds the Oracle OCP DBA
certification and the Hewlett-Packard UNIX System Administrator certification.
He currently manages Oracle databases at the Boy Scouts of America’s national
office in Los Colinas, Texas. Previously, Alapati worked for AMR Holdings
(Sabre) and the Blanch Company in Dallas. Alapati was a senior principal con-
sultant for Oracle Corporation in New York and worked at NBC and Lehman
Brothers on behalf of Oracle. Alapati’s other DBA experience, which includes
Sybase and DB2 databases, consists of assignments with Lewco Securities and
AT&T in New Jersey. Sam can be reached at salapati@netbsa.org.

About the Technical Reviewer
■JOHN WATSON was born, bred, and schooled in Oxford, England, and what he laughingly calls his
career has been in London, then Germany, and now he’s based in South Africa.

All John’s work has been in IT, starting with the PC revolution twenty years ago, but deep down
inside he’s still some sort of organic free-range hippy. John first came across Oracle with version 5,
but he couldn’t make it do anything, and it was only with version 7 that he really got to grips with it.
After seven years full time with Oracle Corporation, John now works for a small Oracle consulting
company and spends his time equally on teaching Oracle courses all over Africa and Europe; con-
sulting; and research and development. But what he really likes is to be at home with his wife, cats,
dogs, and vegetable patch; they live on two acres outside Johannesburg.

xiii

4517FM.qxd 8/19/05 10:24 AM Page xiii

Acknowledgments

My first debt in writing this book is to my father Dr. Alapati Appa Rao, who is responsible for my
love for education and books. This book is a direct outcome of the early scholarly interest nurtured
by him, as well as his support and encouragement for writing the Oracle 9i book, which is this
book’s predecessor.

John Watson, the Technical Reviewer for the book, did a superb job in not merely catching
technical errors, but also in prodding me to explain several concepts clearly and accurately. I’ve
gained immensely from John’s collaboration on this book.

I am indebted to the trailblazing Gary Cornell, Publisher of Apress, for taking the lead in pub-
lishing both the predecessor to this book as well as this one. Dominic Shakeshaft kindly helped sort
out various issues that came up during the writing of the book, and I appreciate his lending his con-
siderable talents to this project. I am fortunate to have had the highly accomplished Tony Davis as
the Lead Editor for this book. Tony has provided masterly editorial support and pulled many a
chestnut out of the fire during the last year. Tony has the knack for synthesizing complex issues and
suggesting solutions with admirable efficiency and grace. Beckie Stones, Project Manager, cheer-
fully and very efficiently planned and implemented the project plan. Beckie had the unenvious task
of guiding this long book through several iterations of writing and editing. Thanks Beckie, for saving
the project from my tendency to write incessantly, and for letting the book see the light of day now,
rather than a year or so later! Thanks are also due to Tracy Brown Collins, who was the Project
Manager during an early stage.

Several people contributed to the editing of various sections of this book, and I thank them all
for their help in improving the book’s quality. Robert Denn, Development Editor, worked admirably
to make sure that the contents of all the chapters flowed together in a coherent fashion. Matthew
Moodie pitched in to help at a critical time by ably editing a few chapters. All three Copy Editors—
Andy Carroll, Marilyn Smith, and Susannah Pfalzer—did a marvelous job in improving the quality
of the book. While it’s not fair to single out one of these three for special mention, I feel obliged to
offer my special thanks to Andy, for working on the vast majority of the chapters with great dili-
gence and acumen. Susannah worked extremely capably on several chapters as well, and I admire
her devotion to accuracy and quality. This book is a much better offering due to the conscientious
efforts of Andy and Susannah. Although I didn’t deal with them directly this time around, I’m sure
the book benefited in several ways from the contributions of Nicole LeClerc, Copy Edit Manager,
and Grace Wong, the Associate Publisher.

Ellie Fountain, the Production Editor, has been simply superb in the way she managed her
task. Ellie deserves thanks for enhancing the production quality of the book and working towards
minimizing errors. I’m very appreciative of the diligent efforts of Assistant Production Director Kari
Brooks-Copony, Compositor Dina Quan, and Indexer John Collin. The Proofreaders, Lori Bring and
Liz Welch, saved me from some particularly insidious errors. My thanks to Kurt Krames for design-
ing the beautiful cover, and to Manufacturing Director Tom Debolski, who is responsible for
numerous issues during the printing of the book.

My special thanks to my colleagues at the Boy Scouts of America national office in Texas. Nate
Langston, Director of the Information Systems Division, has consistently encouraged us to stay at
the forefront of technological change. By stressing the adoption of the most advanced technology
available (including Oracle Database 10g!) in his role as the CIO, Nate has propelled the Boy Scouts
into the ranks of the leading organizations in the United States in the use of information technology.
I am very thankful to Dave Cambell, Director of Technical Services, for his confidence in me and for

xiv

4517FM.qxd 8/19/05 10:24 AM Page xiv

consistent encouragement and support. David Jeffress, Manager of Operations, has always been
helpful and supportive regarding any issues. David’s great sense of humor has brightened many a
day for me during the long course of writing this book.

As usual, my colleague and friend Mark Potts has helped me during the course of the book, and
I appreciate his help during the last year. I’m also fortunate to be working with a very supportive
and friendly group at work, with my team members Lance Parkes, Rob Page, and Stan Galbraith.
I want to acknowledge help from Linda Almanza, who has been a friend and a source of support.
Thanks also to Myra Riggs, Sabrina Kirkpatrick, and Jan Haase, who’ve always been wonderful col-
leagues. Don Rios and Robert Hernandez are thoughtful friends who’ve helped me. I’m grateful for
the support shown by Dan Nelson and Jerry Hastings.

My family in India has been a source of strength and inspiration in writing this book. I am
thankful to my mother Swarna Kumari for her enormous love and kindness, and my brothers Hari
and Sivasankar for their affection and support. Thanks also to Aruna and Vanaja for all the support
over the years. My thanks to Ashwin, Teja, Aparna, and little Soumya for their affection and
generosity.

As before, much of the burden of writing this book has fallen on members of my immediate
family—Valerie, Shannon, Nina, and Nicholas. I don’t see how I could have written this book with-
out their sacrifices and support. My children Shannon, Nina, and Nicholas, as usual, have been very
graceful and kind about my absences during the long stretch of writing the book. I admire their
ability to understand and indulge my need to spend all my spare time on the book. They have made
for a lot of happy moments in the little time that I did manage to spend with them, and I’m most
grateful for those moments. My deepest thanks go to my wife, Valerie, who has carried a heavy
burden for the last year while I was writing my book. She consistently supported my efforts, and
nothing would have been possible without her selfless affection, love, and support.

■ACKNOWLEDGMENTS xv

4517FM.qxd 8/19/05 10:24 AM Page xv

GRATIANO
. . . As who should say “I am Sir Oracle,
And when I ope my lips, let no dog bark!”

—The Merchant of Venice, act 1, scene 1

Oracle Corporation used to print the preceding quotation from Shakespeare at the beginning of one
of its chapters in the Oracle database administrator (DBA) manual (Oracle 6). I always thought the
quote was interesting. If you proceed a little further in the play, you’ll find this quotation:

BASSANIO
Gratiano speaks an infinite deal of nothing, more
than any man in all Venice. His reasons are as two
grains of wheat hid in two bushels of chaff: you
shall seek all day ere you find them . . .

—The Merchant of Venice, act 1, scene 1

Bassanio counters that, in truth, Gratiano speaks too much: from two bushels of chaff, two
grains of wheat may be recovered. And that’s the raison d’être for this book: to separate the wheat
from the chaff. This second part of the quotation is more apt when you consider the difficulty of
extracting the right database management procedures from the tons of material available for the
Oracle Database 10g database. Oracle Corporation publishes copious material to help you manage
its increasingly complex databases. Oracle Corporation also conducts a variety of in-person and
Web-based classes to explain the vast amount of subject matter that you need to understand to
effectively work with the Oracle database today. Yet users will have a good deal of difficulty finding
the essential material for performing their jobs if they rely exclusively on Oracle’s voluminous
(albeit well-written) material in the form of manuals, class notes, Web-based seminars, and so on.

The goal of this book is to provide you with a single source for most of your day-to-day Oracle
database management tasks. Of course, it isn’t feasible to cover each and every DBA topic in detail.
What I’ve done in this book is focus on the topics that are common to most enterprises, such as
installing the Oracle Database 10g software, creating and upgrading databases, exporting and
importing data, backing up and recovering data, and performance tuning. I place a lot of emphasis
in this book on explaining all of Oracle’s automatic management solutions. Using Oracle’s auto-
matic management features will keep you from reinventing the wheel each time. It also turns out
that after several years of development, Oracle has finally placed in your hands a set of powerful
management advisors and other tools that make a lot of traditional DBA work obsolete.

How to Become an Oracle DBA
As you start out on your journey to become a proficient Oracle DBA, you have many sources of
information on the Oracle database:

xvi

Introduction

4517FM.qxd 8/19/05 10:24 AM Page xvi

xvii

• Oracle Database 10g database administration classes, which have now been boiled down to
a pair of five-day long classes

• Oracle manuals—there’s an entire library of manuals available on the Oracle web sites

• Books from other publishers that impart various pieces of the knowledge required to
become an accomplished Oracle DBA

You’ll also need to acquire the necessary operating system knowledge. Most of the large Oracle
databases are based on the UNIX (or Linux) operating system, so you’ll need to have a reasonably
good understanding of UNIX. Again, you have many sources of information available. You can
attend a class or two from the leading UNIX system vendors, such as Hewlett-Packard and Sun
Microsystems, you can read the manuals, or you can buy some books. Microsoft Windows is
another popular operating system for Oracle databases, so you need to have a basic understanding
of the Windows Server operating system as well.

As many of the new entrants to the Oracle Database 10g field find out, the Oracle DBA world is
exhilarating, but alas, it’s also exhaustive in its reach and scope. It isn’t uncommon for DBAs to have
an entire shelf full of books, all explaining various facets of the DBA profession—modeling books,
UNIX texts, DBA handbooks, backup and recovery guides, performance-tuning manuals, and net-
working and troubleshooting books. The amazing thing is, even after you run through the whole
gauntlet of courses and books, you aren’t really assured of being fully prepared to handle complex,
day-to-day database administration chores. There are many, many people who have taken all the
requisite classes to become an Oracle DBA who won’t or can’t be competent Oracle DBAs based
solely on their training. The reason? Refer back to that quotation from Shakespeare at the beginning
of this introduction: You need to separate the grain from the chaff, and all the coursework and man-
uals, while excellent in their content, can serve to muddy the waters further.

The experienced Oracle DBA can find his or her way through this baffling amount of material,
but how’s the neophyte DBA to cope with the overwhelming amount of information? That’s where
this book comes in. This text will not only educate you in the theory and principles involved in
managing relational databases, it will also help you translate that theory into the useful, practical
knowledge that will enable you to manage real-life Oracle Database 10g databases with real-life
data and real-life issues.

Oracle Database 10g
A recent article by one of Oracle Corporations’ senior executives refers to Oracle Database 10g as
a “revolution in database technology.” I would slightly amend the statement by saying that Oracle
Database 10g is more an “evolution” of database technology—a result of several improvements
Oracle has made in its flagship product over the past few years. Oracle Database 10g is the real
McCoy—it’s the culmination of a sustained effort on Oracle’s behalf to simplify and refine database
management. This is a vastly improved database product compared to its predecessors, and it can
truly lay claim to the title of a “self-managing” database.

The g in Oracle Database 10g stands for “grid.” The idea is to enable software to access spare
processing power across networks (grids) of inexpensive servers. Traditionally, database systems
have been run on large servers capable of running several very large databases at once. However,
there are distinct disadvantages inherent in the single-server model. For example, resources tied
up in the large servers cannot be redistributed among the various databases and other services to
ensure an optimal allocation of resources. If you need a massive amount of resources to handle
your database’s peak needs, chances are that you’ll run with identical resources throughout the day,
thus guaranteeing that you are going to waste critical resources during low-utilization periods.

The new model being strongly supported and recommended by Oracle Corporation is grid
computing, which provides a means of harnessing the power of a large number of cheaper servers

■INTRODUCTION

4517FM.qxd 8/19/05 10:24 AM Page xvii

to provide the computing power you need in a flexible manner. This hardware would be servers like
the Intel-based blade servers, and the software would include the free (or almost free) open-source
Linux operating system. By choosing small, generic servers, your system will cost much less than a
traditional large server system, and because you can dynamically reallocate or provision resources
based on actual needs, you’ll be using resources efficiently.

Grid computing (also referred to as computing on demand and utility computing) isn’t a new
innovation invented solely by Oracle. The idea of grid computing has been around for a while, pri-
marily in the academic world. In fact, grid computing arose out of the academic community’s need
for extremely fast and scalable computers to perform complex, massive research tasks. Another
overriding goal of the academic community was to permit the sharing of computing resources
among large numbers of researchers. Of course, the academics also aimed to keep the cost as low as
possible. Grid computing emerged out of these efforts as a viable way to create huge sharable com-
puting environments that are dynamically adjustable to changes in the demand for computing
power.

When we talk about harnessing the power of a number of commodity servers, realize that the
number of computers may not be limited to just a handful. We are talking about combining the
power of a fairly large number of small servers linked together to form a grid. Obviously, the key
idea here is that the sum is far greater than the individual components. Enterprise grid computing,
as envisioned by Oracle, uses large pools of modular storage and commodity servers. Underutiliza-
tion of resources will be cut down, because capacity could be altered from the centralized pool of
resources as necessary.

Here is a summary of the key benefits of grid computing:

• Flexibility: Since you are creating a single logical entity from a bunch of small servers, you
can, of course, add or remove individual components as your computing needs dictate.

• Efficiency: The concept of dynamic provisioning underlies grid computing. Dynamic provi-
sioning means that the allocation of resources for various services is not rigidly fixed, but
changes according to the need for resources and the availability of the resources. Ideally, a
well-run grid will channel resources to where they are needed the most by diverting them
from underutilized sources.

• Easy manageability: It is far easier to manage a single logical combination of your computing
resources (which may include several databases and application servers), rather than moni-
toring each one as a completely independent unit.

• Economy: The total cost of a grid environment could be considerably lower than a traditional
single, big server environment. Oracle strongly recommends the use of Linux-based com-
modity servers, which Oracle says offer the best price/performance ratio.

Key Components of Oracle Database 10g
While Oracle Corporation has focused its 10g marketing campaign around the support for grid
computing, several of the main features of Oracle Database 10g that support a grid-based system
have been in place from the 8i and 9i database versions. The 10g release refines existing features,
introduces a few new features, and generally pulls all of the grid-related features together in a coor-
dinated manner. These are the essential components of Oracle’s grid-based systems:

• Real Application Clusters (RAC)

• Information sharing

• Easy server manageability

xviii ■INTRODUCTION

4517FM.qxd 8/19/05 10:24 AM Page xviii

xix

• Extensive instrumentation

• The advisory framework

• Automatic performance tuning

• Automatic Storage Management (ASM)

• Automatic memory management

• Scheduling and resource management

Note that you most certainly don’t have to use a “grid” platform to be able to use the Oracle
Database 10g server. In either case, you can take advantage of all the new features of the database
system.

Real Application Clusters
Oracle has had a feature called the Oracle Parallel Server (OPS) for many years, which enabled people
to access the database from more than one instance, thus providing for scalability as well as high
availability. Oracle has refined the parallel server technology considerably over the years, eventually
renaming it Real Application Clusters (RAC) a few years ago. Real Application Clusters are at the
heart of the Oracle Database 10g technology, so much so that several analysts have remarked that
10g is mostly a marketing push to promote Oracle RAC technology.

■Note This book concerns itself exclusively with the “mainstream” Oracle Database 10g DBA concepts and
techniques. You’ll not find any discussion of the Oracle Real Application Clusters in this book. If you are interested
in RAC, you may want to take a look at Oracle manuals or refer to one of the many good books devoted to RAC.

Information Sharing
In order to efficiently share information over a grid spanning many heterogeneous systems, you
need to share information efficiently. Data exchange can be occasional (such as when you perform
data loads for a new system), or it could be regular and instantaneous (updating one part of the
system when something changes in another part). In order to facilitate either type of information
sharing, Oracle Database 10g provides transportable tablespaces and Oracle streams.

Transportable Tablespaces
The transportable tablespaces features enables high-speed transport of huge amounts of data from
one database to another, even if the databases are running on different operating systems. The abil-
ity to move huge amounts of data across platforms, and even to rename the tablespaces during the
process, makes information exchange far easier. In Oracle Database 10g Release 2, you can trans-
port tablespaces using RMAN backups as the source for the transported tablespaces.

Oracle Streams
Oracle Streams is a feature that enables you to effortlessly capture changes made in one database
and propagate them to subscriber nodes in the grid. The Oracle Streams feature can keep all the
copies in sync while the changes are being applied.

■INTRODUCTION

4517FM.qxd 8/19/05 10:24 AM Page xix

Easy Server Manageability
Through its new Database Control and Grid Control interfaces, Oracle Enterprise Manager enables
the management of either a single database or all databases, application servers, hosts, listeners,
HTTP servers, and web applications as well.

The prevailing view among IT organizations is that Oracle is a complex, difficult-to-manage
database, especially when compared with the Windows server database, SQL Server. Oracle Data-
base 10g makes a conscious effort to simplify management, right from the installation process
through to the daily monitoring and performance tuning. There is a new common infrastructure for
storing workload- and performance-related information. You can now use powerful SQL tuning
tools to determine ways to improve performance.

The Oracle Enterprise Manger (OEM) has been around for several years now, but it has reached
a new level of sophistication in Oracle Database 10g. The Database Control, and its enterprise-wide
counterpart, Grid Control, provide unsurpassed capabilities for managing the database. Tradition-
ally, Oracle DBAs relied on complex SQL scripts to monitor the database as well as diagnose and fix
performance problems. OEM now can help you do all those things and a lot more. Occasional use
of scripts is okay, but a heavy reliance on them today would be anachronous, and as needless as a
dependence on the horse and buggy in today’s modern world.

■Note I’ve reduced the use of DBA scripts to the bare minimum in this book. Instead, I show you how to use the
OEM Database Control effectively to perform all your tasks quickly and with far less effort.

Extensive Instrumentation
Oracle Database 10g, for the first time, provides much farther ranging instrumentation of its code
base, providing accurate metrics about database performance that weren’t available until now.
Oracle’s own instrumentation and metrics, since they are embedded in the database code, provide
better information without any measurable performance degradation, compared to third-party
performance-measurement tools.

The Advisory Framework
Oracle Database 10g contains several highly useful advisors to help you optimize the performance
of the various components of the database. Here are some of them:

• The Automatic Database Diagnostic Monitor (ADDM) helps you analyze current and past
instance performance.

• The SQL Tuning Advisor helps you tune SQL statements.

• The SQL Access Advisor tells you whether you should add (or drop) indexes and materialized
views.

• The Segment Advisor helps you figure out the necessary space for new tables and to reclaim
unused space assigned to segments, among other things.

• The Undo Advisor helps you configure the critical Undo tablespace.

• The Memory Advisor provides recommendations for memory related parameters.

• The MTTR Advisor helps you determine the ideal mean-time-to-recover settings.

xx ■INTRODUCTION

4517FM.qxd 8/19/05 10:24 AM Page xx

Each of these advisors has a similar look and feel, and this consistency will help you learn how
to use them effectively. Using the advisors isn’t mandatory, of course—you can also tune space and
memory by using Oracle-supplied packages and various dynamic performance views—but it’s more
efficient to simply invoke the necessary advisor.

Automatic Performance Tuning
Oracle Database 10g revolutionizes SQL performance tuning by providing you with automatic
performance diagnosis and tuning recommendations. A brand new expert diagnosis tool called
Automatic Database Diagnostic Monitor (ADDM) uses the new Automatic Workload Repository
contents to analyze instance performance. The ADDM’s analysis includes a summary of database
problems ranked according to the amount of database time they’re costing, as well as a list of
recommendations to eliminate these problems. The ADDM’s recommendations may include
modifying configuration settings or running one of the advisors listed in the previous section.

Automatic Storage Management
A significant component of the Oracle Database 10g push towards easier management is the new
Automatic Storage Management (ASM) feature. Traditionally, we have relied on third-party vendors,
such as Veritas and EMC, to provide storage-management tools for larger systems. The new ASM
feature enables the automatic management of disks without resorting to third-party logical volume
mangers (LVMs).

You can use Oracle’s new storage virtualization layer to automate and simplify the layout and
management of all Oracle database files, when you use ASM. Instead of directly managing numer-
ous files and disks, you can pay attention to a relatively small number of disk groups. If you need
additional storage, you simply add new physical disks to the logical disk groups.

Automatic Memory Management
The Oracle Database 10g server provides you with an easy way of managing the memory needs
of your databases. Automatic shared memory management and automatic program global area
management use information collected from the instance to efficiently allocate both the major
components of Oracle’s memory allocation—the system global area (SGA) and the program global
area (PGA).

Scheduling and Resource Management
It’s common for enterprise users to share computing resources, and there needs to be a way of
scheduling the users and sharing the enterprise’s resources efficiently. Oracle Database 10g DBAs
can use the Resource Manager feature to control and channel scarce database resources among the
various users of the grid. You can also use the new Scheduler feature to manage and monitor jobs as
well as prioritize them.

Why Read This Book?
What sets this book apart from the others on the market is the constant focus on the practical side
of the DBA’s work life. What does a new DBA need to know to begin work? How much and what SQL
does the new DBA need to know? What UNIX, Linux, and Windows commands and utilities does the
new DBA need to know? How does a DBA perform the basic UNIX administration tasks? How does a
DBA install the Oracle software from scratch? How does one use all the powerful new performance-

xxi■INTRODUCTION

4517FM.qxd 8/19/05 10:24 AM Page xxi

This book provides the conceptual background and operational details for all the topics a DBA
needs to be familiar with. The following sections outline other reasons to choose this Oracle Data-
base 10g book.

Delivers a One-Volume Reference
This book’s specific purpose is to serve as a one-volume handbook for professional Oracle DBAs—
as a book that covers both the theory and practice of the DBA craft. As I mentioned before, most
newcomers to the field are intimidated and bewildered by the sheer amount of material they’re
confronted with and the great number of administrative commands they need to have at their
fingertips. Well, everything you need to know to run your databases efficiently is right here in this
one book.

How did I manage to achieve the difficult feat of providing comprehensive instruction in just
one book? Well, although there’s a lot of terrain to cover if you want to learn all the DBA material,
you must learn to separate the critical from the mundane, so you can identify what matters most
and what you merely need to be aware of, at least in the beginning.

I’m definitely not suggesting that this one book will supplant all of the other Oracle material.
I strongly recommend that inquisitive readers make it a habit to refer to Oracle’s documentation
for the 10g database. You can obtain this documentation on the Web by getting a free membership
to the Oracle Technology Network (OTN), which you can access through the Oracle web site at
http://technet.oracle.com.

It’s extremely important to read the Oracle database manuals, and to understand how the
database works. However, nothing can replace working on an actual database when it comes to
mastering DBA techniques, so if you have a Windows desktop, you can easily install the freely
downloadable Oracle Database 10g software. If you want, you can do the same on a Linux system as
well. One of the great things about the Oracle database software is that it runs virtually identically
on each operating system. In fact, your production system will operate exactly the same as the free
“toy database” on your desktop machine, so go ahead and practice to your heart’s content on the
10g database.

READING THE ORACLE MANUALS

Whether you use this or some other DBA handbook, you will still need to refer to the Oracle database manuals fre-
quently to get the full details of complex database operations. I can’t overemphasize the importance of mastering
the fundamentals of Oracle Database 10g that are presented in the “Oracle Concepts” manual. Mastering this
volume is critical to understanding many advanced DBA procedures.

The Oracle manuals are invaluable if you need a lot of detail. For example, the chapters on backup and
recovery are good starting points in your attempt to master the Oracle procedures in those areas. Oracle has sev-
eral manuals covering the backup and recovery material. Once you finish the two relevant chapters in this book
(Chapters 15 and 16), you’ll find going through those manuals a pretty easy task, because you’ll already have a
good understanding of all the important concepts. This book provides a foundation on which you can build using
the Oracle manuals and other online help available from Oracle.

In addition to the online manuals, Oracle provides an excellent set of tutorials that contain step-by-step
instructions on how to perform many useful Oracle Database 10g tasks. You can access these tutorials, the Oracle
by Example series, by going to http://www.oracle.com/technology/obe/start/index.html.

xxii ■INTRODUCTION

4517FM.qxd 8/19/05 10:24 AM Page xxii

Emphasizes New Methods and When to Use Them
One of the fundamental difficulties for a neophyte in this field is determining the right strategy for
managing databases. Although the essential tasks of database management are pretty similar in
Oracle Database 10g compared to earlier versions of the software, the database contains several
innovative techniques that make a number of routine tasks easier to perform than in the past.
Oracle Corporation, however, has shied away from firmly recommending the adoption of the new
methods and techniques to manage databases. The reason for this is twofold. First, Oracle rarely
discards existing techniques abruptly between versions; features advertised as being destined for
obsolescence are made obsolete only after many years. Thus, old and new ways of performing simi-
lar tasks coexist in the same version. Second, Oracle isn’t very effective in clearly communicating its
guidelines concerning contending methods. Thus, when more than one method exists for perform-
ing a task, you as a DBA have to exercise caution when you select the appropriate methods to use.

In this book, I clearly emphasize the newer features of Oracle that have been refined in the last
few years and encourage you to move away from older techniques when the new innovations are
clearly superior. I help you in formulating a solid strategy when multiple choices are offered. A good
example is performance tuning: it was common to employ a traditional SQL-script approach to
guide performance-tuning efforts, but this book comes down squarely on the side of using the latest
Oracle Enterprise Manager (OEM) GUI techniques to perform all your performance tuning and
other DBA tasks.

Covers UNIX, SQL, PL/SQL, and Data Modeling
Some people who are motivated to become Oracle DBAs are stymied in their initial efforts to do so
by their lack of training in UNIX/Linux and SQL. Also, sometimes DBAs are confused by the whole
set of data modeling and the “logical DBA” techniques. This book is unique in that it covers all the
essential UNIX, SQL, PL/SQL, and data modeling that a DBA ought to know to perform his or her
job well.

As a DBA, you need to be able to use a number of UNIX tools and utilities to administer an Ora-
cle database. Unfortunately, up until now many books haven’t included coverage of these vital tools.
This book remedies this neglect by covering tools such as telnet, ftp, and the crontab. Many devel-
opers and managers want to have a better understanding of the UNIX system, including the use of
the vi file editor, file manipulation, and basic shell-script writing techniques. This book enables you
to start using the UNIX operating system right away and shows you how to write solid shell scripts
to perform various tasks. Of course, you can take a specialized class or study a separate book in
each of the previous areas, but that’s exactly what you’re trying to avoid by using this book.

In addition to learning all the UNIX you need to start working with the UNIX operating system
right away, you can get a good working knowledge of SQL and PL/SQL from a DBA’s perspective in
this book. Of course, I strongly recommend further study of both UNIX and SQL to strengthen your
skills as an Oracle DBA as you progress in your career.

■Note I understand that some of you may not really need the UNIX (or Linux) background or the introduction
to SQL and PL/SQL (presented in Appendix A). If this is the case, skip those chapters and get on to the main
database-management chapters.

Offers Hands-On Administrative Experience
Although a number of books have been published in the last decade on the subject of Oracle data-
base administration, there has been a surprising lack of the blending of the concepts of the Oracle
database with the techniques needed to perform several administrative tasks. A glaring example is

xxiii■INTRODUCTION

4517FM.qxd 8/19/05 10:24 AM Page xxiii

xxiv

the area of backup and recovery, where it’s difficult to find discussions of the conceptual underpin-
nings of Oracle’s backup and recovery process. Consequently, many DBAs end up learning backup
and recovery techniques without having a solid grasp of the underlying principles of backup and
recovery. As you can imagine, this split between theory and practice proves expensive in the middle
of a recovery operation, where fuzziness on the concepts could lead to simple mistakes.

The success of a DBA is directly related to the amount of hands-on experience he or she has,
and to their understanding of the concepts behind the operation of the database. To get this prac-
tice, readers can experiment with all the commands in this book on a UNIX- or a Windows-based
Oracle Database 10g database. Oracle Database 10g is loaded with features that make it the cutting-
edge database in the relational database market, and this book covers all the new additions and
modifications to database administration contained in the 10g version. It’s a lot of fun for an expe-
rienced DBA to have the opportunity to use all the wonderful features of the new database, but
beginning- and intermediate-level DBAs will have more fun, because they’re embarking on the
great endeavor that is the mastery of Oracle database management.

Focuses on Oracle Database 10g
This book was written with the Oracle Database 10g database specifically in mind—it doesn’t simply
add 10g features to a book written for earlier versions. The book was written for the express purpose
of taking advantage of Oracle Database 10g’s new powerful features for database administration and
making them an integral part of a working DBA’s toolkit.

You might be familiar with my Oracle 9i DBA book (Expert Oracle9i Database Administration).
Only two chapters made it in to this book more or less intact—those on data modeling and UNIX.
All the other chapters have been rewritten from scratch using the 10g database. All of Oracle Data-
base 10g’s key features pertaining to a DBA’s job have been thoroughly tested and verified, and they
are shown to you in this book. Unlike the current practice in the market, this book takes a clear
stand when alternative methods exist to perform the same task, and it advocates the use of the
newer Oracle Database 10g methods consistently. I consider it superfluous to continue to teach
the old methods along with the more sophisticated new techniques.

Who Should Read This Book?
This book is primarily intended for beginning- and intermediate-level Oracle Database 10g DBAs.
Prior experience with Oracle databases isn’t assumed, so if you’ve never managed databases and
intend to master the management of the new Oracle Database 10g database, you can do so with the
help of this book.

Oracle9i DBAs can also benefit from this book, but, as I mentioned in the previous section, this
book isn’t an Oracle9i book with a smattering of Oracle Database 10g features. Consequently, you
may not find any worthwhile discussion of some 9i features that have been supplanted by better
methods in the Oracle Database 10g release. If you’re using strictly the Oracle9i release databases,
you may wish to refer to my earlier book, Expert Oracle9i Database Administration.

More precisely, the audience for this book will fall into the following categories:

• Oracle DBAs who are just starting out

• Oracle developers and UNIX/Linux or Windows system administrators who intend to learn
Oracle DBA skills

• Managers who intend to get a hands-on feel for database management

• Anybody who wants to learn how to become a proficient Oracle DBA on his or her own

■INTRODUCTION

4517FM.qxd 8/19/05 10:24 AM Page xxiv

A Note About UNIX, Linux, and Windows
I personally like the UNIX operating system and use it at work. I’m familiar with the Windows plat-
form and I think it’s a good operating system for small enterprises, but my favorite operating system
remains UNIX, which stands out for its reliability, scalability, and speed. For medium and large
organizations, the UNIX system offers wonderful features and ease of use. As a result, you’ll find
this book heavily oriented toward the use of Oracle on UNIX systems.

If you happen to admire the Linux operating system, there isn’t a new learning curve involved,
as most of the operating system commands will work the same way in the UNIX and Linux systems.
If you need to find out how to use the Oracle Database 10g database on a Windows platform, here’s
some interesting news for you: the commands and methods work exactly the same way in both the
UNIX and Windows environments. There are minor changes in syntax in a very few cases, and
Chapter 20 summarizes these differences and covers basic Windows system administration as it
pertains to Oracle Database 10g database management.

How This Book Is Organized
I have organized the contents of this book with the new DBA in mind. My goal is to provide you with
a decent background in data modeling, SQL, and UNIX, while providing a thorough course in the
essentials of Oracle Database 10g database management skills. I know it’s unusual to provide UNIX
and SQL background in an Oracle DBA book, but this inclusion is in line with the goal I set when I
decided to write this book: there ought to be a single book or manual that has all the necessary
background for a reader to start working as an Oracle Database 10g DBA.

I strove to write the chapters to mirror real-life practical training. For example, you should
understand basic database modeling and fundamental UNIX operating system commands before
learning to manage Oracle databases. I therefore start with a discussion of database modeling and
UNIX (in Part One of the book). You’ll install the Oracle database software before you create an
actual database (Part Two). After you install the software, you can create databases, create users,
and establish connectivity (Part Three). You can load and back up data only after the database is
created (Part Four). As you can see, the chapters follow the real-life sequence of the tasks they cover.
The following sections briefly summarize the contents of the book.

I advise beginning DBAs to start at the beginning of the book and keep going. A more experi-
enced user, on the other hand, can pick the topics in any sequence he or she desires. The scripts
that accompany the book will keep a DBA in good stead during routine operation of the database
and during crisis situations when information needs to be communicated through paging. There’s
no reason why you can’t keep the pager from going off during those early morning hours if you
adopt the preventive maintenance scripts included in this book.

Throughout the book I’ve provided detailed, step-by-step, tested examples to illustrate the use
of data concepts and features of Oracle Database 10g. I strongly recommend that you set up an
Oracle Database 10g database server on your PC and follow along with these examples. Doing so
will teach you the relevant commands and help you build confidence in your skill level. Plus, the
examples are a whole lot of fun!

Part 1: Background, Data Modeling, and UNIX/Linux
Part 1 provides a background on the Oracle DBA profession and offers an introduction to data
modeling and the UNIX operating system. In Chapter 1 I discuss the role of the Oracle DBA in the
organization, and I offer some advice on improving your skill set as a DBA. I also discuss the basics
of relational databases. Chapter 2 provides an introduction to both logical and physical database
design, including the use of entity-relationship diagrams. You’ll learn about the Optimal Flexible
Architecture (OFA) with regard to disk layout. Chapter 3 provides a quick introduction to UNIX/Linux

xxv■INTRODUCTION

4517FM.qxd 8/19/05 10:24 AM Page xxv

operating systems, including the most common commands that you need as an Oracle DBA, the
rudiments of shell scripting, and how to use the vi text-processing commands. You’ll also explore
the essential UNIX system administration tasks for Oracle DBAs. This chapter finishes with cover-
age of disks and storage systems, including the popular RAID systems.

Part 2: Oracle Database 10g Architecture, Schema,
and Transaction Management
Part 2 is in many ways the heart of the book—it covers the important topics of Oracle Database 10g’s
architecture, schema management, and transaction management. In Chapter 4 you’ll learn about
the important components of the Oracle database architecture, such as how the database processes
and memory work. It also covers the conceptual foundations of the Oracle database. Chapter 5
covers schema management in Oracle Database 10g, and it contains a quick review of the impor-
tant types of Oracle objects, such as tables and indexes, and shows you how to manage them.
Chapter 6 provides you with a good understanding of how Oracle databases conduct transaction
processing.

Part 3: Installing Oracle Database 10g, and
Creating and Upgrading Databases
Part 3 includes three chapters that show you how to install the Oracle Database 10g software,
create Oracle databases, and upgrade databases. Chapter 7, which covers Oracle software installa-
tion, shows the interesting changes made to the Oracle installation process in the 10g version.
Chapter 8 shows you in detail how to upgrade to Oracle Database 10g from older versions of the
database server software. And Chapter 9 shows you how to create an Oracle database from scratch,
both manually as well as through the use of the Database Configuration Assistant (DBCA).

Part 4: Connectivity and User Management
Part 4 explains how to establish connectivity to the Oracle database from various types of users.
Chapter 10 covers connecting to Oracle databases, and Chapter 11 shows you how to manage users
and discusses ways of securing your production databases. Chapter 12 provides a thorough intro-
duction to the use of SQL*Plus and iSQL*Plus, the main interfaces to the Oracle database.

Part 5: Data Loading, Backup, and Recovery
Part 5 deals with loading data and performing backups and recovery. You’ll learn how to use
SQL*Loader in Chapter 13, and Chapter 14 covers the new Data Pump technology, which enables
you to load and unload Oracle data. Chapters 15 and 16 deal with the important topics of database
backups and recovery, respectively.

Part 6: Managing the Operational Oracle Database
Part 6 covers managing the operational Oracle Database 10g database. Chapter 17 focuses on
the important Oracle Database 10g automatic management features, as well as on several online
capabilities. Chapter 18 shows you how to manage data files, tablespaces, and Oracle redo logs, and
also how to perform undo management. The new Oracle storage solution, Automatic Storage Man-
agement, is discussed in this chapter as well. Chapter 19 describes how to use the powerful Oracle
Enterprise Manager (OEM) to monitor and manage your databases as well as your entire system.
You’ll learn how to install and use the Database Control, which you use for managing a single

xxvi ■INTRODUCTION

4517FM.qxd 8/19/05 10:24 AM Page xxvi

database, and the Grid Control, through which you can manage your enterprise, including applica-
tion servers and hosts. Chapter 20 discusses how to install the Oracle Database 10g software on
Windows system, and details the salient features of administering Oracle databases in a Windows
environment.

Part 7: Performance Tuning
Part 7 covers Oracle Database 10g performance tuning and troubleshooting issues. Chapter 21 dis-
cusses the Oracle Optimizer and provides tips on writing efficient SQL queries. You’ll also see how to
use Oracle’s new automatic SQL Tuning Advisor to improve query performance. In Chapter 22, you’ll
learn how to optimize the use of Oracle’s memory, disk I/O, and the operating system. You’ll also
learn about the Oracle wait interface in this chapter. A basic approach to performance analysis and
troubleshooting production databases is explained as well.

Part 8: The Data Dictionary, Dynamic Views,
and the Oracle-Supplied Packages
I discuss the all-important Oracle data dictionary in Chapter 23—one measure of how good a DBA
you are is how well you know the Oracle data dictionary. You can perform most important perform-
ance tasks by utilizing only the internal Oracle dynamic performance views, and I discuss these in
detail in this chapter. In Chapter 24 you will learn how to effectively use the most important pack-
ages supplied by Oracle.

Appendix A: Oracle Database 10g SQL and PL/SQL:
A Brief Primer
In the Appendix, I show you how to install the Oracle sample schemas, so you can practice and test
the Oracle database features on a test database. I also introduce Oracle SQL and PL/SQL, provide an
introduction to Oracle XML DB, which helps you deal with XML data, and include an introduction
to using the Java programming language with Oracle.

Salud!
I truly enjoy the Oracle database for its amazing range of capabilities and the intricate challenges it
throws my way as I explore its wide-ranging capabilities. I hope you derive as much satisfaction and
fulfillment from the Oracle database as I do. I leave you with the following observation, adapted
from the introduction to the famous textbook by Paul A. Samuelson, the great economist and Nobel
Laureate:1

I envy you, the beginning Oracle DBA, as you set out to explore the exciting world of Oracle
Database 10g database management for the first time. This is a thrill that, alas, you can expe-
rience only once in a lifetime. So, as you embark, I wish you bon voyage!

xxvii■INTRODUCTION

, seventeenth ed. (New York: McGraw-Hill, 1998).

4517FM.qxd 8/19/05 10:24 AM Page xxvii

4517FM.qxd 8/19/05 10:24 AM Page xxviii

Background,
Data Modeling,
and UNIX/Linux

P A R T 1

■ ■ ■

4517CH01.qxd 8/19/05 11:54 AM Page 1

4517CH01.qxd 8/19/05 11:54 AM Page 2

The Oracle DBA’s World

There are many types of Oracle databases, and there are many types of Oracle database adminis-
trators (DBAs)—this chapter discusses the role of the Oracle DBA as well as the training that Oracle
DBAs typically need to be successful. You’ll look at the daily routine of a typical DBA, which will
give you an idea of what to expect if you’re new to the field. This chapter also covers ways you can
improve your skill level as an Oracle DBA and prepare to keep the databases under your steward-
ship performing optimally. Toward the end of the chapter, you’ll find a list of resources and
organizations that will help you in your quest to become a top-notch DBA.

The Oracle DBA’s Role
The main responsibility of a DBA is to make corporate data available to the end users and the deci-
sion makers of an organization. All other DBA tasks are subordinate to that single goal, and almost
everything DBAs do on a day-to-day basis is aimed at meeting that single target. Without access to
data, many companies and organizations would simply cease to function.

■Note Imagine the chaos that would ensue if a company such as Amazon.com no longer had access to its cus-
tomer database, even for a short time. The entire company could cease to function. At a minimum, it would lose
perhaps thousands of online orders. As a DBA, your job is to ensure access to your organization’s data. You are
also responsible for protecting that data from unauthorized access—just think of the commotion caused by the
break-ins at leading data-based organizations like ChoicePoint in the United States.

That’s not to say that availability of data is the only thing DBAs have to worry about. DBAs are
also responsible for other areas, including these:

• Security: Ensuring that the data and access to the data are secure

• Backup: Ensuring that the database can be restored in the event of either human or systems
failure

• Performance: Ensuring that the database and its subsystems are optimized for performance

• Design: Ensuring that the design of the database meets the needs of the organization

• Implementation: Ensuring proper implementation of new database systems and applications

In a small organization a DBA could be managing the entire information technology (IT) infra-
structure, including the databases, whereas in a large organization there could be a number of
DBAs, each charged with managing a particular area of the system.

3

C H A P T E R 1

■ ■ ■

4517CH01.qxd 8/19/05 11:54 AM Page 3

You can put the tasks you’ll perform as an Oracle DBA in the following three categories:

• Security

• System management

• Database design

I discuss each of these broad roles in more detail in the following sections, outlining what you
could consider the bare minimum level of performance expected of a DBA. Although the lists in
each section may seem long and daunting, the tasks are really not that difficult in practice if you fol-
low certain guidelines. Proper planning and testing, as well as automating most of the routine tasks,
keep the drudgery to a minimum. All you’re left with to do on a daily basis are the really enjoyable
things, such as performance tuning or whatever else may appeal to you.

The DBA’s Security Role
As a DBA, you’ll be involved in many different areas of system security, mainly focusing on the data-
base and its data. Several potential security holes are possible when you implement a new Oracle
system out of the box, and you need to know how to plug these security holes thoroughly before the
databases go live in a production environment. In Chapter 11, which deals with user management,
you’ll find a fuller discussion of standard Oracle security guidelines and other Oracle security-
related issues.

Protecting the Database
For an Oracle DBA, no task is more fundamental and critical than protecting the database itself. The
Oracle DBA is the person the information departments entrust with safeguarding the organization’s
data, and this involves preventing unauthorized use of and access to the database. The DBA has
several means to ensure the database’s security, and based on the company’s security guidelines, he
or she needs to maintain the database security policy (and to create the policy if it doesn’t already
exist). A more complex issue is the authorization of users’ actions within the database itself, after
access has already been granted. I address this topic in depth in Chapter 11.

■Note Some organizations don’t have a general security policy in place. This is particularly true of smaller com-
panies. In that case, it’s usually up to the DBA to come up with the security policy and then enforce it within the
database.

Monitoring the System
Once a database is actually in production, the DBA is expected to monitor the system to ensure
uninterrupted service. The tasks involved in monitoring the system include the following:

• Monitoring space in the database to ensure it is sufficient for the system

• Checking to ensure that batch jobs are finishing as expected

• Monitoring log files on a daily basis for evidence of unauthorized attempts to log in
(something DBAs want to keep close tabs on)

Creating and Managing Users
Every database has users, and it’s the DBA’s job to create them based on requests from the appropri-
ate people. A DBA is expected to guide the users’ use of the database and ensure the database’s
security by using proper authorization schemes, roles, and privileges. Of course, when users are

CHAPTER 1 ■ THE ORACLE DBA’S WORLD4

4517CH01.qxd 8/19/05 11:54 AM Page 4

locked out of the database because of password expiration and related issues, the DBA needs to
take care of them. It’s also the responsibility of the DBA to monitor the resource usage by individual
users and to flag the heavy resource users.

The DBA’s System Management Role
Another of the DBA’s major roles is the day-to-day management of the database and its subsystems.
This daily monitoring is not limited to the database itself. As a DBA, you need to be aware of how
the system as a whole is performing. You need to monitor the performance of the servers that host
the database and of the network that enables connections to the database. The following sections
describe the various facets of the system management part of the Oracle DBA’s job.

Troubleshooting
One of the Oracle DBA’s main job responsibilities is troubleshooting the database to fix problems.
Troubleshooting is a catchall term, and it can involve several of the tasks I discuss in the following
sections. Two important aspects of troubleshooting are knowing how to get the right kind of help
from Oracle support personnel, and how to use other Oracle resources to fix problems quickly.

Ensuring Performance Tuning
Performance tuning is an omnipresent issue. It’s a part of the design stage, the implementation
stage, the testing stage, and the production stage of a database. In fact, performance tuning is an
ongoing task that constantly requires the attention of a good Oracle DBA. Depending on the organi-
zational setup, the DBA may need to perform database tuning, or application tuning, or both.
Generally, the DBA performs the database tuning and assists in the testing and implementation
stages of the application tuning performed by the application developers.

Performance requirements for a living database change constantly, and the DBA needs to con-
tinually monitor the database performance by applying the right indicators. For example, after my
firm migrated from Oracle8i to the new Oracle Database 10g, I found that several large batch pro-
grams weren’t completing within the allotted time. After much frustration, I realized that this was
because some of the code was using cost-based optimizer hints that were no longer optimal under
the new Oracle version. A quick revision of those hints improved the performance of the programs
dramatically. The moral of the story: make sure you test all the code under the new Oracle version
before you switch over to it.

You can say that all database tuning efforts can be grouped into two classes—proactive and
reactive tuning. Proactive tuning, as the name indicates, means that the DBA heads off potential
trouble by careful monitoring of necessary performance indices. As we all know, prevention is
always better than any cure, so proactive tuning will always trump reactive tuning efforts. However,
most Oracle DBAs in charge of production databases don’t have the luxury of proactively tuning—
they are too busy reacting to complaints about a slow-performing database or some similar problem.
You are likely to encounter both kinds of database tuning efforts in your day-to-day life as an
Oracle DBA.

Minimizing Downtime
Providing uninterrupted service by eliminating (or at least minimizing) downtime is an important
criterion by which you can judge a DBA’s performance. Of course, if the downtime is the result of a
faulty disk, the company’s service-level agreements (SLAs), if any, will determine how quickly the
disk is replaced. DBAs may or may not have control over the maximum time for service provided in
the SLAs. For their part, however, DBAs are expected to be proactive and prevent avoidable down-
time (such as downtime due to a process running out of space).

CHAPTER 1 ■ THE ORACLE DBA’S WORLD 5

4517CH01.qxd 8/19/05 11:54 AM Page 5

Estimating Requirements
Only the DBA can estimate the operating system, disk, and memory requirements for a new project.
The DBA is also responsible for coming up with growth estimates for the databases he or she is
managing and the consequent increase in resource requirements. Although some of the decisions
regarding physical equipment, such as the number of CPUs per machine and the type of UNIX
server, may be made independently by system administrators and managers, the DBA can help
during the process by providing good estimates of the database requirements.

In addition to estimating initial requirements, the DBA is responsible for planning for future
growth and potential changes in the applications. This is known as capacity planning, and the DBA’s
estimates will be the basis for funding requests by department managers.

Developing Backup and Recovery Strategies
Adequate backups can prevent the catastrophic loss of an organization’s vital business data. The
Oracle DBA needs to come up with a proper backup strategy and test the backups for corruption.
The DBA also needs to have recovery plans in place, and the best way to do this is to simulate sev-
eral types of data loss. Proper testing of backup and recovery plans is sorely neglected in many
companies, in spite of its critical importance for the company.

Loss of business data not only leads to immediate monetary damage in the form of lost rev-
enue, but it also costs customer goodwill in the long run. Unplanned database downtime reflects
poorly on the firm’s technical prowess and the competency of the management. A good example of
this was the repeated stoppage of the successful online auction firm eBay during 1998 and 1999,
which lost the company millions of dollars in revenue and cost them considerable embarrassment.

When disasters or technical malfunctions keep the database from functioning, the DBA can
fall back on backed-up copies of the database to resume functioning at peak efficiency. The DBA is
responsible for the formulation, implementation, and testing of fail-safe backup and restoration
policies for the organization. In fact, no other facet of the DBA’s job is as critical as the successful
and speedy restoration of the company’s database in an emergency. I’ve personally seen careers
made or broken based on one backup- and recovery-related emergency; an emergency can test the
true mettle of an Oracle DBA like no other job requirement can.

During those times when disaster strikes, the seasoned DBA is the one who is confident that
he or she has the necessary technical skills and can remain calm in an emergency. This calmness is
really the outcome of years of painstaking study and testing of the theoretical principles and the
operational commands necessary to perform sensitive tasks, such as the restoration and recovery
of damaged databases.

Loading Data
After the DBA has created database objects, schemas, and users, he or she needs to load the data,
usually from older legacy systems or sometimes from a data warehouse. If the data loads need to be
done on a periodic basis, the DBA needs to design, test, and implement the appropriate loading
programs.

Overseeing Change Management
Every application goes through changes over time to improve features and fix bugs in the software.
There is a constant cycle of development, testing, and implementation, and the DBA plays an
important role in that cycle. Change management is the process of properly migrating new code,
and the Oracle DBA needs to understand the process that’s in place in his or her organization.

In addition to updating application code, the Oracle DBA is also responsible for ensuring that
all the latest changes to the database software are also evaluated and adopted. These so-called
software patches are usually made available through Oracle’s MetaLink service. In fact, the latest
Oracle Enterprise Manager (OEM) enables you to connect directly to MetaLink and download and

CHAPTER 1 ■ THE ORACLE DBA’S WORLD6

4517CH01.qxd 8/19/05 11:54 AM Page 6

The DBA’s Database Design Role
Many Oracle DBAs spend at least part of their time helping design new databases. The DBA’s role
may include helping create entity-relationship diagrams and suggesting dependencies and candi-
dates for primary keys. In fact, having the DBA actively involved in designing new databases will
improve the performance of the databases down the road. It’s a well-known fact that an improperly
designed database thwarts all attempts to tune its performance.

Designing the Database
Although designing databases is probably not the first thing that comes to mind when you think of
a DBA’s responsibilities, design issues (whether concerning the initial design or design change) are a
fundamental part of the Oracle DBA’s job. Administrators who are particularly skilled in the logical
design of databases can be crucial members of a team that’s designing and building brand-new
databases. A talented DBA can keep the design team from making poor choices during the design
process.

Installing and Upgrading Software
The Oracle DBA plays an important role in evaluating the features of alternative products. The DBA
is the person who installs the Oracle database server software in most organizations; the UNIX sys-
tem administrator may also handle part of the installation process. Prior to actual installation, the
DBA is responsible for listing all the memory and disk requirements so that the Oracle software
and databases, as well as the system itself, can perform adequately. If the DBA wants the system
administrator to reconfigure the UNIX kernel so it can support the Oracle installation, the DBA is
responsible for providing the necessary information. Besides installing the Oracle database server
software, the DBA is also called upon to install any middleware, such as the Oracle Application
Server 10g and Oracle client software on client machines.

Creating Databases
The DBA is responsible for the creation of databases. Initially he or she may create a test database
and later, after satisfactory testing, move the database to a production version. The DBA plans
the logical design of the database structures, such as tablespaces, and implements the design by
creating the structures after the database is created. As the DBA plays a part in creating the new
database, he or she needs to work with the application team closely to come up with proper esti-
mates of the database objects, such as tables and indexes.

Creating Database Objects
An empty database doesn’t do anyone a whole lot of good, so the DBA needs to create the various
objects of the database, such as tables, indexes, and so on. Here, the developers and the DBA work
together closely, with the developers providing the tables and indexes to be created and the DBA
making sure that the objects are designed soundly. The DBA may also make suggestions and modi-
fications to the objects to improve their performance. Through proper evaluation, the DBA can
come up with alternative access methods for selecting data, which can improve performance.

■Note As a DBA, you can contribute significantly to your organization by explaining the alternatives available to
your application team in designing an efficient database. For example, if you explain to the application team the
Oracle partitioning option, including the various partitioning schemes and strategies, the team can make smarter
choices at the design stage. You can’t expect the application team to know the intricacies of many Oracle options
and features, especially in the new Oracle Database 10g software.

CHAPTER 1 ■ THE ORACLE DBA’S WORLD 7

4517CH01.qxd 8/19/05 11:54 AM Page 7

Finally, remember that the organization will look to the DBA for many aspects of information
management. The DBA may be called upon to not only assist in the design of the databases, but
also to provide strategic guidance as to the right types of databases (OLTP, DSS, and so forth) and
the appropriate architecture for implementing the organization’s database-driven applications.

Different DBA Job Classifications
Given the diverse nature of business, a DBA’s job description is not exactly the same in all organiza-
tions. There are several variations in the job’s classification and duties across organizations. In a
small firm, a single DBA might be the UNIX or NT administrator and the network administrator as
well as the Oracle DBA, with all job functions rolled into one. A large company might have a dozen
or more Oracle DBAs, each in charge of a certain database or a certain set of tasks.

Sometimes you’ll hear the terms “production DBA” and “development” (or “logical”) DBA.
Production DBA refers to database administrators in charge of production databases. Because a
production database is already in production (meaning it is already serving the business functions),
such DBAs aren’t required to have design or other such developmental skills. DBAs who are involved
in the preproduction design and development of databases are usually called development or
logical DBAs. Ideally, you should strive to acquire the relevant skill sets for both development and
production administration, but reality demands that you usually are doing more of one thing than
the other at any given time. In general, large establishments usually have a number of DBAs and
can afford to assign specialized tasks to their personnel. If you work for a small organization,
chances are you’ll be doing a little bit of everything.

Individual preference, the availability of financial and technical resources, and the necessary
skill sets determine whether a DBA is doing production or development work. A DBA who comes
up from the developer ranks or who’s happiest coding is usually more likely to be a development
or logical DBA. This same person also may not really want to carry a pager day and night and be
woken up in the dead of night to perform a database recovery. On the other hand, a person who
likes to do production work and to work with business analysts to understand their needs is less
likely to enjoy programming in SQL or in any other language.

Although all of the preceding is true, both development and production DBAs are well advised
to cross-train and learn aspects of the “other” side of Oracle database administration. Too often,
people who characterize themselves as production DBAs do not do much beyond performing back-
ups and restores and implementing the physical layout of databases. Similarly, development DBAs,
due to their preference for the programming and design aspects of the job, may not be fully
cognizant of the operational aspects of database management, such as storage and memory
requirements.

Types of Databases
In many organizations, you will be working with different types of databases daily, and thus with
different types of data and management requirements. You may find yourself working on simple SQL
queries with users and simultaneously wrestling with decision-support systems for management.

Databases perform a variety of functions, but you can group all of those functions into two
broad categories: online transaction processing (OLTP) and decision-support systems (DSSs; some-
times also called online analytical processing, or OLAP). Let’s take a quick look at some of the basic
classifications of Oracle databases.

CHAPTER 1 ■ THE ORACLE DBA’S WORLD8

4517CH01.qxd 8/19/05 11:54 AM Page 8

Online Transaction Processing and Decision-Support
System Databases
Online transaction processing (OLTP) databases are the bread and butter of most consumer- and
supplier-oriented databases. This category includes order entry, billing, customer, supplier, and
supply-chain databases. These databases are characterized by heavy transaction volume and a need
to be online continuously, which today (given the use of the Internet to access such systems) means
24/7/365 availability, short maintenance intervals, and low tolerance for breakdowns in the system.

Decision-support systems (DSSs) range from small databases to large data warehouses. These
are typically not 24/7 operations, and they can easily manage with regularly scheduled downtime
and maintenance windows. The extremely large size of some of these data warehouses necessitates
the use of special techniques both to load and to use the data.

There isn’t a whole lot of difference between the administration of a DSS-oriented data ware-
house and a transaction-oriented OLTP system from the DBA’s perspective. The backup and
recovery methodology is essentially the same, and database security and other related issues are
also very similar. The big difference between the two types of databases occurs at the design and
implementation stages. DSS systems usually involve a different optimization strategy for queries
and different physical storage strategies. Oracle Database 10g provides you with the choice of
implementing an OLTP database or a DSS database using the same database server software.

Performance design considerations that may work well with one type of database may be
entirely inappropriate for another type of database. For example, a large number of indexes can
help you query a typical data warehouse efficiently while you are getting some reports out of that
database. If you have the same number of indexes on a live OLTP system with a large number of
concurrent users, you may see a substantial slowing down of the database, because the many
updates, inserts, and deletes on the OLTP system require more work on the part of the database.

Development, Test, and Production Databases
Applications are developed, tested, and then put into production. A firm usually has development,
test, and production versions of the same database in use at any given time, although for smaller
companies the test and development versions of the database may be integrated in one database.

Development databases are usually owned by the development team, which has full privileges
to access and modify data and objects in those databases. The test databases are designed to simu-
late actual production databases and are used to test the functionality of code after it comes out of
the development databases. No new code is usually implemented in the “real” production databases
of the company unless it has been successfully tested in the test databases.

When a new application is developed, tested, and put into actual business use (production),
the development and production cycle does not end. Application software is always being modified
for two reasons: to fix bugs and to improve the functionality of the application. Although most
applications go through several layers of testing before they move into production, coding errors
and the pressure to meet deadlines contribute to actual errors in software, which are sometimes
not caught until the application is already in use. In addition, users continually request (or, more
appropriately, demand) modifications in the software to improve the application’s functionality.
Consequently, application code does not remain static; rather, developers and testers are always
working on it.

Background and Training
Your strength as an Oracle DBA is directly related to the amount of effort you put into understand-
ing the conceptual underpinnings of Oracle Database 10g. As you’re assimilating the database
concepts, it’s vital that you implement the various techniques to see if they work as advertised and
whether a particular technique is suitable for your organization.

CHAPTER 1 ■ THE ORACLE DBA’S WORLD 9

4517CH01.qxd 8/19/05 11:54 AM Page 9

■Tip There’s no substitute for hands-on playing with the database. Download the most recent Oracle Database
10g server software, install it, buy some good Oracle DBA books, access the Oracle manuals on Internet sites, and
just start experimenting. Create your own small test databases. Destroy them, bring them back to life, but above
all have fun. I had great trainers who lived and breathed databases; they made it fun to learn and always had the
time to show me new techniques and correct my errors. You’ll find database experts willing to share knowledge
and skills freely both in the workplace and on the Internet.

In this section, I discuss the help and services that professional organizations and other
resources can provide to enhance your credentials.

Background and Training for an Oracle DBA
There’s no ideal background for a DBA, but it’s highly desirable that a DBA have a real interest in
the hardware side of databases, and also have a decent knowledge of operating systems, UNIX and
NT servers, and disk and memory issues. It also helps tremendously to have a programming or
development background, because you’ll be working with developers frequently. The most com-
mon operating system for the Oracle database is UNIX, with the Hewlett-Packard (HP) and Sun
Microsystems (Sun) versions being the ones commonly adopted. IBM supplies the AIX variant of
the UNIX operating system, but it has its own proprietary database, the DB2 Universal Database.

If you’re taking classes from Oracle or another provider to become a full-fledged Oracle Data-
base 10g DBA, you need to take two classes:

• Oracle Database 10g: Administration Workshop I

• Oracle Database 10g: Administration Workshop II

Taking Workshop I will prepare you for the first level Oracle DBA certification, known as Oracle
Certified Associate (OCA). Workshop II will prepare you for the advanced Oracle Certified Profes-
sional (OCP) certification. As of November 15, 2004, all Oracle9i and Oracle Database 10g DBA
certification candidates are required to take one in-class or online class in order to meet the new
hands-on course requirement. If your firm uses Oracle Real Application Clusters (RAC) or distrib-
uted databases, you need to take additional, specialized courses. If your firm uses the UNIX
operating system and you don’t have experience using it, you may be better off taking a basic class
in UNIX (or Linux) from HP, Sun, Red Hat, or another vendor. You don’t need to take such a course
for Oracle DBA certification purposes, but it sure will help you if you’re new to the UNIX or Linux
environment. Of course, if your databases are going to use the Windows environment, you may get
away without a long and formal course in managing Windows, assuming you are relatively familiar
with the Windows operating system, unless you also happen to be a Windows System Administrator.

■Note Remember that Oracle Corporation is not the only source of Oracle classes. Although Oracle University is
a large entity with fine courses, other private vendors offer courses that are just as good or better than those that
Oracle University offers. As is true of all courses, the quality of the teaching depends directly on the teacher’s
experience and communication skills. And remember that you really don’t have to go anywhere to take a class;
you can purchase self-study CD-ROMs and learn by yourself, at a fraction (one-fifth) of the cost for the instructor-
led in-class training.

If you’re planning to take the Oracle courses, make sure you’re also working on a server with an actual data-
base. Oracle supplies very well-designed sample schemas that you can use to sharpen your SQL skills, whether
your database is a development version on a UNIX server or a free downloaded Windows version of Oracle Data-
base 10g Enterprise Edition on your desktop computer. You’ll go further in a shorter time with this approach.

CHAPTER 1 ■ THE ORACLE DBA’S WORLD10

4517CH01.qxd 8/19/05 11:54 AM Page 10

Once you get started as an Oracle Database 10g DBA, you will find that the real world of Oracle
databases is much wider and a lot more complex than that shown to you in the various courses you
attend. As each new facet of the database is revealed, you may find that you are digging more and
more into the heart of the software, why it works, and sometimes why it doesn’t work. It is at that
point that you will learn the most about the database and the software used to manage it. If you
really have read everything that Oracle and other private parties have to offer, do not worry—there
are always new versions coming out, with new features and new approaches, practically guarantee-
ing an endless supply of interesting new information.

After the first year or two of your DBA journey, you’ll know enough to competently adminis-
trate the databases and troubleshoot typical problems that occur. If you’ve also worked on your
programming skills during this time (mainly UNIX shell scripting and PL/SQL), you should be able
to write sophisticated scripts to monitor and tune your databases. At this stage, if you dig deeper,
you’ll find out a lot more about your database software that can enhance your knowledge and
thereby your contribution to your organization.

Oracle is constantly coming up with new features that you can adopt to improve the perform-
ance of your production databases. Although the developers, testers, and administrators are also
striving mightily in the organization’s cause, it is you, the Oracle DBA, who will ultimately lead the
way to new and efficient uses of the new features of the database.

Certification
In many IT fields, certification by approved authorities is a required credential for advancement
and sometimes even for initial hiring. Oracle has had the Oracle Certification Program (OCP) in
effect for a number of years now. The OCP is divided into three levels: Associate, Professional, and
Master (the Master level requires a lab test in addition to the other requirements). Traditionally, cer-
tification was not a big issue with most organizations, especially in the face of the severe shortages
of certified DBAs in the field for many years. In today’s environment, though, that certification will
help tremendously in underlining your qualifications for the job.

Oracle provides DBA certification at the following levels—Oracle Database 10g Administrator
Certified Associate (OCA), Oracle Database 10g Administrator Certified Professional (OCP), and
Oracle Database 10g Administrator Certified Master (OCM). Oracle provides the following descrip-
tions of their certification programs:

• OCA: The Oracle Certification Program begins with the Associate level. At this apprentice
skill level, Oracle Associates have a foundation knowledge that will allow them to act as jun-
ior team members working with database administrators or application developers. The
exam ensures knowledge of basic database administration tasks and an understanding of
the Oracle database architecture and how its components work and interact with one
another. The OCA is also a prerequisite to becoming an OCP. You must take the IZ0-042
Oracle Database 10g: Administration exam to get your Oracle Database 10g Administrator
Certified Associate (OCA) certificate.

• OCP: The exam ensures that the OCP with the 10g credential can competently address
critical database functions, such as manageability, performance, reliability, security, and
availability using the latest Oracle technology. The OCP is a prerequisite to becoming an
Oracle Certified Master (OCM).

■Note New Oracle Database 10g OCP candidates who wish to obtain the Oracle Database 10g DBA OCP cre-
dential must attend one instructor-led course either in-class or online, from the approved list of Oracle University
courses.

CHAPTER 1 ■ THE ORACLE DBA’S WORLD 11

4517CH01.qxd 8/19/05 11:54 AM Page 11

• OCM: The Oracle Database 10g OCM credential is for the Oracle database guru—the senior
database professional with both classroom and on-the-job experience. The prerequisites are
that candidates earn an Oracle Database 10g OCP credential and complete advanced-level
coursework. The final stage requires that candidates prove their skills through an intensive
two-day hands-on practical examination.

My views on certification are really very practical. Preparing for certification will force you to
learn all the little details that you’ve been ignoring for some reason or another, and it will clarify
your thinking regarding many concepts. Also, the need to certify will compel you to learn some
aspects of database administration that you either don’t like for some reason or currently don’t use
in your organization. So if you’re not already certified, by all means start on that path. You can get
all the information you need by going to Oracle’s certification Web site at http://www.oracle.com/
education/certification. Believe me, that certificate does look nice hanging in your cubicle, and it’s
a symbol of the vast amount of knowledge you’ve acquired in the field over time. You can rightfully
take pride in obtaining OCP-certified DBA status!

SYSTEM ADMINISTRATION AND THE ORACLE DBA

There’s a clear and vital connection between the Oracle DBA’s functions and those of the UNIX (or Windows) admin-
istrator in your organization. Your database and the database software will be running on a physical UNIX (or
Windows or Linux) server and a UNIX (or Windows or Linux) operating system. Depending on the size of your organ-
ization and your role within it, you may need anything from a basic to a thorough understanding of operating
system administration. In small firms where there’s no separate UNIX system administrator position, you may need
to know how to configure the UNIX server itself before you actually install and manage an Oracle server and the
data on it. Fortunately, this situation is very rare, and most organizations have one or more UNIX administrators in
charge of managing the UNIX servers and the data storage systems. Some small entities adopt Windows as an
operating system, as it isn’t quite as complex to manage as the UNIX operating system.

Although the system administrators usually are very helpful, it’s in your best interest to acquire as much skill
in this field as you can. This will help you in more ways than you can imagine. It will help you in working effectively
with the UNIX administrator, because you can both speak the same language when it comes to fancy topics such as
the logical volume manager and subnet masks. More important, a good understanding of the UNIX disk structure
will help you make the proper choice of disks when you design the physical layout of your database. By under-
standing concepts such as UNIX disk volumes and the usage of system memory, you can improve the performance
of your databases and avoid bottlenecks that slow databases down. You can also write excellent monitoring scripts
by being well steeped in the UNIX shell scripting and the related awk and sed programming languages.

You’ll find that UNIX is a fun operating system, with interesting commands and scripting languages that can
contribute to your being a highly effective Oracle DBA. One of the marks of an accomplished Oracle DBA is his or
her expertise in the way the operating system works. By acquiring system administration skills, you’ll become a
well-rounded professional who can contribute significantly to your organization’s IT needs. There are several web
UNIX (and Linux) shell accounts available. Get one of these free accounts and start practicing common UNIX com-
mands, if you think you need to practice your skills in this area.

CHAPTER 1 ■ THE ORACLE DBA’S WORLD12

4517CH01.qxd 8/19/05 11:54 AM Page 12

Resources and Organizations for Oracle DBAs
As you progress in your career as an Oracle DBA, you’ll need to refer to various sources for
troubleshooting information and general Oracle and database knowledge. I have a couple of rec-
ommendations for organizations you may want to make a part of your professional DBA practice:

• The Oracle Technology Network (OTN) at http://otn.oracle.com or http://technet.oracle.com
is highly useful for DBAs and Oracle developers, and even better, it’s free! You’ll find every-
thing from online documentation to copies of all Oracle software available freely for
download on the OTN. The site offers a complete set of Oracle documentation.

• The International Oracle Users Group (IOUG), which you can find on the Web at http://
www.ioug.org/. Membership to this organization will set you back $125 currently, an expen-
diture that most organizations will reimburse their DBAs for. The IOUG holds annual
conventions where practitioners in the field present literally hundreds of extremely useful
papers. IOUG makes these articles available to its members, and the organization also pub-
lishes a monthly magazine. In addition to the international group, there are several regional
Oracle user groups, where users meet in their hometowns and discuss relevant DBA topics.
For example, the group located in Dallas, Texas, is known as the Dallas Oracle Users Group
(http://www.doug.org/). Oracle Corporation also holds an annual Oracle OpenWorld confer-
ence, where several interesting and useful papers are presented. You can find session papers
from recent OpenWorld conferences by going to the Oracle OpenWorld Archives web site at
http://www.oracle.com/openworld/archive.

There are also dozens of sites on the Web today where you can find all kinds of useful informa-
tion and scripts for managing your databases, as well as help in certifying yourself as an OCP DBA.
Just go to your favorite search engine, type in the relevant keywords, and you’ll be amazed at the
amount of help you can get online in seconds. Before the proliferation of DBA-related web sites,
DBAs had to rely on printed materials or telephone conversations with experts for resolving several
day-to-day issues, but that’s not the case anymore.

A great way to enhance your knowledge is to maintain a network of other practicing Oracle
DBAs. It’s amazing how useful these contacts can be in the long run, as they provide a good way to
compare notes on new releases and difficult troubleshooting issues that crop up from time to time.
There’s really no need to reinvent the wheel every time you encounter a problem, and chances are
that most of the problems you face have already been fixed by someone else. Especially when you’re
starting out, your friendly Oracle DBA contacts will help you avoid disasters and get you (and your
databases) out of harm’s way.

You can find many excellent resources on the Internet to help you when you’re stuck or when
you need to learn about new features and new concepts. The Oracle DBA community has always
been a very helpful and cooperative group, and you’ll probably learn over time that you can resolve
many troublesome issues by getting on the Internet and visiting DBA-related sites. You can find
hundreds of useful scripts on the Internet, and you’re invited to use them. The following is a brief
list of excellent sites for Oracle DBAs. Of course, any omissions from this list are purely uninten-
tional—my sincere apologies to any other great sites that I either don’t know about yet or have just
plain forgotten about. These sites just happen to be some of the ones that I visit often:

CHAPTER 1 ■ THE ORACLE DBA’S WORLD 13

4517CH01.qxd 8/19/05 11:54 AM Page 13

• Hotsos (http://www.hotsos.com/): The redoubtable Cary Millsap, well-known creator of
the Optimal Flexible Architecture (OFA) guidelines and the main author of the best-selling
Oracle performance book, Optimizing Oracle Performance, is the person behind the Hotsos
site. Visit this site for sophisticated, cutting-edge discussions of performance tuning and
other issues.

• Oracle-Base (http://oracle-base.com/): This site contains extremely useful and very well
written Oracle DBA articles. The site provides free help for preparing for the Oracle DBA cer-
tification exams.

• Ixora (http://www.ixora.com.au): Oracle internals expert Steve Adams is the main force
behind this site. Ixora offers first-rate discussions about many Oracle and UNIX performance
issues, although not much new material has been put up on this web site in recent years.

• OraPub (http://www.orapub.com/): This is another top-notch site led by an ex-Oracle
employee. It provides consistently high-grade white papers on key database administration
topics.

• DBAsupport.com (http://www.dbasupport.com/): This is another useful site that offers
many scripts and a “how-to” series of articles on a variety of topics.

• Burleson Consulting (http://www.dba-oracle.com/): Popular Oracle writer and editor
Don Burleson runs this web site (and well-known author Mike Ault is a regular contributor).
This site is packed with terrific articles covering a broad range of DBA topics.

• The Pipelines (http://www.quest-pipelines.com/): Quest Software maintains this highly use-
ful site aimed not only at Oracle databases, but also at the DB2 and SQL Server databases.
The Pipelines has excellent white papers, scripts, and other goodies. Well-known authors,
including the prolific writer and Oracle PL/SQL expert Steven Feuerstein, contribute great
papers on this site.

• Oracle FAQ (http://www.orafaq.com/): The Oracle FAQ site, run by Frank Naude of South
Africa, provides a lot of question-and-answer–type discussions of relevant topics.

There are several other sites that are useful, including dbazine.com (http://dbazine.com/),
Mark Rittman’s Oracle Weblog (http://rittman.net/), and Database Journal (http://www.
databasejournal.com) whose authors, Steve Callum, Jim Czuprinski, and James Koopmann,
present solid articles on various Oracle features.

Oracle by Example
Oracle Corporation has been providing a highly useful (and absolutely free) set of step-by-step
implementations for many of the important features of the Oracle database (both 9i and 10g) server
software. I’m referring to the Oracle Corporation’s Oracle by Example (OBE) series (http://www.
oracle.com/technology/obe/start/index.html), which provides authoritative hands-on experience
with many features of the Oracle database, including installation. I strongly recommend that you go
through the OBE series carefully and save yourself quite a bit of frustration when installing and
using the database software. I was surprised that Oracle Corporation didn’t do more to publicize
this great feature in the previous version (Oracle 9i). For Oracle Database 10g, however, Oracle has
highlighted the existence of this great feature. Check it out!

Oracle MetaLink
When you buy the Oracle server software and licenses from Oracle, you can choose from various
levels of service support. Support that requires a quick response and round-the-clock attention
costs more. Years ago, the only way to get Oracle to help you was by calling and talking to an analyst
by phone. Once an analyst was assigned to your technical assistance request (TAR), you and the

CHAPTER 1 ■ THE ORACLE DBA’S WORLD14

4517CH01.qxd 8/19/05 11:54 AM Page 14

analyst would try to resolve the issue over the phone. If the analyst couldn’t fix the problem right
away, there would be a delay until the analyst found a solution to the problem.

For the last several years, Oracle has emphasized the use of a Web-based service called Meta-
Link to help resolve TARs from customers. The MetaLink service is of enormous importance to the
working DBA, as it not only facilitates the exchange of important files and other troubleshooting
information through the File Transfer Protocol (FTP), but it also provides access to the actual data-
base of previous customer issues and the solutions provided by Oracle for similar problems. Thus,
in many cases, when you are dealing with problems of a small to medium degree of complexity, you
can just log on to the MetaLink web site (http://metalink.oracle.com/) and resolve your problem in
minutes by typing in keywords or the Oracle error number.

If you have a real problem and need Oracle troubleshooters to help you out, MetaLink is the
usual way to get that help. In most cases, the Oracle troubleshooters will ask you to upload several
files that’ll help diagnose the problem. In some cases, they may ask you to send in quite a lot of
information using a tool they call the RDA (remote diagnostic assistant), which helps the profes-
sionals understand your system well. All this, of course, saves a bundle of money for Oracle, but
more important from the DBA’s point of view, it saves a tremendous amount of time that the DBA
would otherwise have to spend resolving garden-variety troubleshooting issues.

Oracle DirectConnect
Oracle Corporation provides remote online problem diagnostics and resolution now, through
its Oracle DirectConnect (ODC) global program. The DirectConnect program enables real-time
collaboration between your system and Oracle Corporation troubleshooting experts. One of the
advantages of the DirectConnect program, of course, is that you can have Oracle bring advanced
instrumentation technology to bear on your problem, and help you figure out and fix tricky prob-
lems much more quickly than is possible with the traditional MetaLink or phone mediation efforts.
Oracle DirectConnect offers both continuous connections to Oracle support personnel using a vir-
tual private network, as well as on-demand connections. Unlike the MetaLink service, you’ll have to
pay for all this extra support. For details about this program, please go to http://www.oracle.com/
support/direct_connect.html.

The Daily Routine of a Typical Oracle DBA
Many of the daily tasks DBAs perform on a database involve monitoring for problems. This can
mean running monitoring scripts or using the Oracle built-in tools, such as Enterprise Manager, to
keep track of what’s actually happening with the database.

A good example of something you’ll want to monitor closely is space in the database. If you
run out of space on a disk where a database table resides, you can’t insert any more new data into
the table, and the transactions will fail. Of course, you can fix the problem by adding the requisite
amount of space and rerunning the transaction. But if you were properly monitoring the database,
you would have been alerted through a page or an e-mail that the particular table was in danger of
running out of space, and you could have easily avoided the subsequent Oracle errors.

You’ll normally check the reports generated by your monitoring scripts on a daily basis to make
sure no problems are developing with regard to disk space, memory allocation, or disk input and
output. Enterprise Manager is a handy tool for getting a quick, visual idea about various issues,
such as memory allocation and other resource usage. The monitoring scripts, on the other hand,
can provide summarized information over a lengthy period of time; for example, they can provide
interval-based information for an entire night.

It’s also worthwhile to study the alert log (the log that Oracle databases maintain to capture
significant information about database activity) on a regular basis to see if it’s trapping any errors

CHAPTER 1 ■ THE ORACLE DBA’S WORLD 15

4517CH01.qxd 8/19/05 11:54 AM Page 15

reported by Oracle. You may do this alert log monitoring directly, by perusing the log itself, or you
could put a script in place that monitors and reports any errors soon after their occurrence in the
alert log.

You will need to take some action to fix the Oracle errors reported in the alert log. Based on
the nature of the error, you may change some parameters, add some space, or perform an adminis-
trative task to fix the problem. If the problem has no fix that you are aware of, you may search the
MetaLink database and then open a new TAR with Oracle to get help as soon as you can.

Oracle, like every other software company, is constantly improving its software by releasing
upgraded versions, which usually have newer and more sophisticated features. It’s your responsibil-
ity as a DBA to be on top of these changes and to plan the appropriate time for switching over to
new versions. Some of these switches might be to completely upgraded versions of software and
may require changes in both the applications and the DBA’s configuration parameters. Again, the
right approach is to allow plenty of time for testing the new software to avoid major interruptions
in serving your customers.

Some General Advice
As you progress in your journey as an Oracle DBA, you’ll have many satisfying experiences as well
as some very frustrating and nerve-racking moments. In the following sections, I make three impor-
tant suggestions that will help you when you are going through the latter.

Know When You Need Help
Although it’s always nice to figure out how to improve performance or recover an almost lost pro-
duction database on your own, know when to call for help. It doesn’t matter how much experience
you gain, there will always be times when you’re better off seeking advice and help from someone
else. I’ve seen people lose data as well as prolong their service disruption when they didn’t know
what they didn’t know. You can’t successfully manage production databases by basing your deci-
sions on incomplete knowledge or insufficient information.

Remember You Are Not Alone
I don’t mean this in any philosophical way—I just want to remind you that as an Oracle DBA, you’re
but one of the people who have the responsibility for supporting the applications that run on your
databases. You usually work within a group that may consist of UNIX and Windows administrators,
network administrators, storage experts, and application developers. Sometimes the solution to a
problem may lie in your domain, and other times it may not. You can’t take all the credit for your
application running well, just as you don’t deserve all the blame every time database performance
tanks. Today’s enterprises use very sophisticated servers, storage systems, and networks, and you
need the help of experts in all these areas to make your database deliver the goods. Oracle isn’t
always the cause of your problems—sometimes the system administrator or the network expert
can fix your problems in a hurry for you.

Think Outside the Box
Good DBAs constantly seek ways to improve performance, especially when users perceive that the
database response may be slow. Sometimes tinkering with your initialization parameters won’t help
you, no matter how long you try. You have to step back at times like this and ask yourself the follow-
ing question: Am I trying to fix today’s problems with yesterday’s solutions? There’s no guarantee
that things that worked well for you once upon a time will serve you equally well now. Databases
aren’t static—data changes over time, users’ expectations change, load factors increase with time,
and so on. As a DBA, it pays not to rest on your laurels when things are going fine; rather, you

CHAPTER 1 ■ THE ORACLE DBA’S WORLD16

4517CH01.qxd 8/19/05 11:54 AM Page 16

should always be looking at new database features that you can take advantage of. You can’t con-
stantly increase memory or CPU in order to fix a performance problem. For example, you may have
a situation where memory usage is very high, response times are slow, and the user count is going
up steadily. Maybe you should rethink your architectural strategies at times like this—how about
replacing the dedicated server approach with the Oracle multithreaded server? It’s a big switch in
terms of the way clients connect to your database, but if the new strategy has great potential, the
effort will pay off big.

Primum Non Nocere
The ancient medical admonition “first, do no harm” (primum non nocere) could also serve for us
DBAs, when we are confronted with a database that needs recovery or some such critical operation.

In critical situations, it’s better to gather vital facts and clarify the conceptual basis of your
impending changes before actually typing commands in a hurry. Your goal is to resolve the issue at
hand, of course, but at a minimum, you shouldn’t do any further harm! Slow down, make sure you
really understand what’s at stake, and then proceed further or call for additional help.

CHAPTER 1 ■ THE ORACLE DBA’S WORLD 17

4517CH01.qxd 8/19/05 11:54 AM Page 17

4517CH01.qxd 8/19/05 11:54 AM Page 18

Relational Database Modeling and
Database Design

Aside from dealing with tables and the queries that are based on them, many DBAs don’t have
a detailed understanding of database topics, such as normalization, functional dependency,
and entity-relationship modeling. However, a good database is the bedrock on which you can
create a good application. The ability to design a database is particularly useful to DBAs working
in smaller organizations, where they’ll need to know how to do everything from working with the
UNIX file system to resolving networking issues. Even if designing databases isn’t a part of your
job description, however, understanding database design will help you when performance tuning
the database.

Because the needs of organizations differ, you can’t take a “one size fits all” approach to data-
bases. This makes database design one of the most interesting and challenging areas available to
you when working with databases, and large corporate database systems in particular. Someone
in the organization needs to first model the needs of the organization on a conceptual level and
then use this conceptual design to physically design and build the database. Even though it’s not
absolutely necessary that you, as a DBA, be an expert in database design, your knowledge as a com-
petent Oracle DBA isn’t complete until you learn at least the rudiments of database modeling and
design.

In this chapter, you’ll first learn the conceptual basis of a relational database, which is what
an Oracle Database 10g database is. After you explore the basic elements of the relational database
life cycle, you’ll learn how to perform conceptual or logical data modeling. The topic of data nor-
malization is very important when dealing with relational databases, and this chapter discusses
normalization in detail. Finally, you’ll learn how to translate the logical data model into a design
you can physically implement. Oracle Corporation refers to its databases as “object-relational”
databases, so the chapter concludes with a brief discussion of object-relational databases.

Relational Databases: A Brief Introduction
Oracle Database 10g is a leading example of a relational database management system (RDBMS),
although Oracle prefers to call its database an object-relational database management system
(ORDBMS). (As you’ll see toward the end of this chapter, you derive the object-relational model
by combining object-oriented design with the traditional relational model.) Relational databases
have become the pervasive model of organizing data in the last three decades, and they have revo-
lutionized how companies manage their data. Relational database management systems use
relationships among data to answer complex queries.

19

C H A P T E R 2

■ ■ ■

4517CH02.qxd 8/19/05 10:27 AM Page 19

■Note Thanks to the many RDBMS wizards that walk users through the database creation process step by step,
even novices can set up a database; the very ease with which you can create a database sometimes contributes
to poorly designed databases. My own general rule of thumb is that if database design isn’t your forte, find a per-
son who is good at database design to help you. Putting some effort into good design up front will pay rich
dividends later on.

The relational model’s domination of the database market is expected to continue into the
foreseeable future, given the massive investment many large organizations have made in both the
databases themselves and the staff required to manage them. The powerful and easy-to-understand
relational databases are indeed the mainstay of a vast majority of organizations in today’s world
economy.

Relational databases are based on the precepts laid down by E.F. Codd in the 1970s, when he
was working for IBM. Codd’s paper, which outlined the model, “A Relational Model of Data for Large
Shared Data Banks,” was published in June 1970 in the Association of Computer Machinery (ACM)
journal, Communications of the ACM, and Codd’s model is accepted as the model for RDBMSs.
D.L. Childs presented a similar set-oriented relational model in 1968, but it is Codd’s exposition
that made relational databases popular.

There were (and still are) non-relational database models that preceded the relational model—
specifically, the hierarchical and the network models. Both the network model and the hierarchical
model use actual data links called pointers to process queries issued by users. These models,
although powerful as far as performance goes, lead to a very complex database, and they are no
longer adopted by most organizations. You can call relational databases second-generation database
management systems.

The Relational Database Model
Three key terms are used extensively in relational database models: relations, attributes, and
domains. A relation is a table with columns and rows. The named columns of the relation are
called the attributes, and the domain is the set of values the attributes are allowed to take.

The basic data structure of the relational model is the table, where information about the par-
ticular entity (say, an employee) is represented in columns and rows (also called tuples). Thus, the
“relation” in “relational database” refers to the various tables in the database; a relation is a set of
tuples. The columns enumerate the various attributes of the entity (the employee’s address or
phone number, for example), and the rows are actual instances of the entity (specific employees)
that is represented by the relation. As a result, each tuple of the employee table represents various
attributes of a single employee.

All relations (and thus tables) in a relational database have to adhere to some basic rules to
qualify as relations. First, the ordering of the columns is immaterial in a table. Second, there can’t
be identical tuples or rows in a table. And third, each tuple will contain a single value for each of its
attributes. (Remember that you can order the tuples and columns in any way you wish.)

Tables can have a single attribute or a set of attributes that can act as a “key,” which you can
then use to uniquely identify each tuple in the table. Keys serve many important functions. They are
commonly used to join or combine data from two or more tables. Keys are also critical in the cre-
ation of indexes, which facilitate fast retrieval of data from large tables. Although you can use as
many columns as you wish as part of the key, it is easier to handle small keys that are (ideally) based
on just one or two attributes.

CHAPTER 2 ■ RELATIONAL DATABASE MODELING AND DATABASE DESIGN20

4517CH02.qxd 8/19/05 10:27 AM Page 20

Database Schemas
The database schema, a set of related tables and other database objects, is a fundamental concept
in relational databases, and it is part of the logical database structure of an Oracle database. A
schema is always associated with a user, and it can be defined as a named collection of objects
owned by a user. That is why the terms “user” and “schema” are used almost synonymously in
Oracle databases.

A relational database schema consists of the definition of all relations with their specific attrib-
ute names, as well as a primary key. The schema further includes the definition of all the domains,
which are the ranges of values the attributes can take.

All work on a relational database is essentially performed through the use of a database lan-
guage called Structured Query Language (SQL).

Relational Algebra
Relational databases are founded on basic mathematical principles (set theory). The very first line
of E.F. Codd’s seminal paper that outlined the relational database model makes this clear:

This paper is concerned with the application of elementary relation theory to systems which
provide shared access to large banks of formatted data.1

Relational algebra consists of a set of operations for manipulating one or more relations without
changing the originals. The following are the basic operations that you can perform on a relational
database using relational algebra; these are called unary operations, because they involve the manip-
ulation of tuples in a single relation.

• Selection: A selection operation extracts (or eliminates) a set of tuples from a relation based
on the values of the attributes of the relation.

• Projection: A projection operation extracts (or eliminates) a specified set of columns of a
relation.

Besides these unary operations, relational algebra supports binary or set operations to manip-
ulate the relations themselves. (Remember that a relation is a set of tuples.) Binary operations
merge elements from two relations into a new relation. The set operations are as follows:

• Union: A union combines two relations to produce a new, larger relation.

• Intersection: Intersection creates a new relation that has only the common tuples in two
relations.

• Difference: Difference creates a new relation that has only the non-common tuples in two
relations.

• Cartesian product: The Cartesian product creates a new relation that concatenates every
tuple in relation A with every tuple in relation B. The Cartesian product is just one example
of a join operation.

CHAPTER 2 ■ RELATIONAL DATABASE MODELING AND DATABASE DESIGN 21

1. E.F. Codd, “A Relational Model of Data for Large Shared Data Banks,” Communications of the ACM, vol. 13,
no. 6 (June 1970): 377–87.

4517CH02.qxd 8/19/05 10:27 AM Page 21

■Note Join operations combine two or more relations to derive a new relation based on identical values in the
columns (join columns) on the basis they are joined. The resulting relation would be a Cartesian product if you
include all the tuples in both relations. However, you usually need only a part of this Cartesian product, based on
all tuples in both relations that share a common value for the join column. A natural join is where you combine
tuples from two relations, A and B, by combining all rows in A and B that have identical values for all common
attributes. A theta-join, on the other hand, pairs tuples in two relations, based on an arbitrary condition.

It looks as if relational algebra, which is based on set theory principles, should be sufficient to
retrieve information from relational databases, which are also based on set theory. The problem
with relational algebra is that though it’s based on correct mathematical principles, it relies on a
mathematical procedural language. So if you want to use it for anything but the simplest database
queries, you’re apt to run into quite complex, messy mathematical operations. Only highly skilled
professional programmers can use such a database. To avoid the complexity of relational algebra
and to focus on the queries without worrying about the procedural techniques, you use relational
calculus.

Relational Calculus
Relational calculus does not involve the mathematical complexity of relational algebra; it focuses
only on what the database is being queried for, rather than how to conduct the query. In other
words, it is a declarative language. You focus on the results you expect and the conditions to be sat-
isfied in the process, and you ignore the sequencing of the relational algebra concepts. Relational
calculus is based on a part of mathematical logic called propositional calculus or, more precisely,
first-order predicate calculus. Relational calculus involves the use of operators such as AND and OR
to manipulate relations in logical expressions.

SQL
Relational calculus is far easier to use than relational algebra, but it still is based on the principles of
logic and it is not easy for most people to use. You thus need an easy-to-use implementation of rela-
tional calculus. Structured Query Language (SQL) is one such implementation, and it has become
hugely popular as the predominant language for the relational database model. SQL is considered
a “relationally complete” language, in the sense that it can express any query that is supported by
relational calculus.

Structured English Query Language (SEQUEL), the precursor of SQL, was developed by IBM to
use Codd’s relational database model. Oracle introduced the first commercially available imple-
mentation of SQL in 1979 (when Oracle was known as Relational Software), and SQL has since
become the standard language for RDBMSs, although not all implementations adhere completely
to the official standards. Oracle has its own implementation of SQL, which is very close to the
American National Standards Institute (ANSI) standard (visit http://www.ansi.org/ for more
information).

SQL is an English-like language that enables you to manipulate data in a database. Using SQL,
you can derive any relation that can be derived using relational calculus. You can formulate queries
in easy-to-format structures, which are then processed by sophisticated database servers into com-
plex forms to get the queried data. Its intuitive appeal, ease of use, and tremendous power and
sophistication have made SQL the language of choice when working with any relational database.

You can divide SQL statements into two major categories: data definition language (DDL) and
data manipulation language (DML). DDL statements are used to build and alter database struc-
tures, such as tables, and to define and construct database schemas. DML statements are used to

CHAPTER 2 ■ RELATIONAL DATABASE MODELING AND DATABASE DESIGN22

4517CH02.qxd 8/19/05 10:27 AM Page 22

manipulate data in the database tables; with DML statements, you can delete, update, and insert
tuples that are part of a relation.

The Appendix provides a quick introduction to the Oracle Database 10g SQL language as well
as to PL/SQL, Oracle’s procedural extension to standard SQL that provides the power of traditional
programming languages along with SQL’s ease of use.

Relational Database Life Cycle
The essential steps of a typical relational database life cycle are as follows:

1. Requirements gathering and analysis

2. Logical database design

3. Physical database design

4. Production implementation

I will examine each of these stages in detail in the rest of this chapter. You could, of course,
forget about using any methodology, and just design your database any way you want, create the
structures, load the data, and be in business. However, improper database design has serious long-
term performance implications, and you risk ending up with an inadequate database or simply with
one that is wrong for your company’s information and analysis needs.

One thing to bear in mind is that databases tend to grow, and the better the database, the
bigger it tends to get as more and more users rely on it. In addition, it won’t take long for your appli-
cation developers to begin to expand upon the core data, especially with today’s requirements to
make as much data as possible available on the Web.

Requirements Gathering and Analysis
The requirements-gathering stage is the first step in designing a new database. You must first find
out, through an iterative process, the requirements of the organization for the database. The prelim-
inary stage of the database life cycle addresses questions of this nature:

• Why is this new database necessary?

• What objective is this database going to help achieve?

• What current systems is the database going to replace?

• What systems (if any) will the database have to interact with?

• Who are the target users of the database?

This stage should yield a clear idea of the expectations of all concerned parties regarding the
new system to be supported by the yet-to-be-created database. Requirements analysis for the firm
involves extensive interviewing of users and management. The design team should also evaluate
both the data that will go into the database and the expected output of the database.

It’s common practice to use graphical representations of the application systems to better
understand the flow of data through the system. Data-flow diagrams (DFDs) or process models are
commonly used at this stage to capture the data processes within and outside the application.

Let’s use an educational institution as an example to identify the processes. Say that a college
has four processes: Manage Student Records, Manage Course Information, Manage Enrollment,
and Manage Class Schedules. The Manage Student Records process maintains all student records,
and it updates that information as necessary. The Manage Course Information process takes care
of collecting all future course information from the various departments of the college. It is also

CHAPTER 2 ■ RELATIONAL DATABASE MODELING AND DATABASE DESIGN 23

4517CH02.qxd 8/19/05 10:27 AM Page 23

responsible for making changes in the course list when departments add or drop courses for any
reason.

The Manage Enrollment process is more complex than others because it receives inputs from
several processes. For example, when a student attempts to enroll in a new course, the Manage
Enrollment process needs to first verify from the Manage Student Records process whether the stu-
dent is in good standing. Next, it has to find out from the Manage Course Information process
whether the course is indeed being offered. Then the Manage Enrollment process will enter this
new student and course information in its part of the data flow. Only after the successful comple-
tion of all these processes can the Manage Class Schedules process send the new schedule out to
the student.

As complex as the brief description of data flows and business processes sounds, the use of
sophisticated tools such as ERwin or the PowerDesigner makes it easy to come up with fancy DFDs
and process models with a minimum of frustration.

Logical Database Design
Database design is both an art and a science. The science part comes in the form of adherence to
certain rules and conditions, such as normalization (more about this later in the chapter). Database
design is also an art, because you need to model relationships using your understanding of the real-
world functioning of the organization.

You can formally define logical database design as the process of creating a model of the real
world for the database, independent of an actual database system or other physical considerations.
Accuracy and completeness are the keys to this activity. One of the best things about this stage is
that it’s easy to take a draft design, throw it away, and start again, or simply amend it. It’s a whole lot
easier to tinker at the design stage than to deal with the production headaches of an already imple-
mented database that isn’t designed well.

The logical design stage is sometimes broken up into a conceptual part and a logical part, but
that’s merely a distinction based on nomenclature. The conceptual database design is usually a pre-
cursor for the logical design phase and involves the modeling of the information without reference
to any underlying data model. The logical design phase explicitly uses a specific data model, like the
relational data model, for example—you focus on the logical relationships involved in your concep-
tual design at this stage. Logical design involves conceptually modeling the database and ensuring
that data in the tables passes integrity checks and isn’t redundant. To satisfy these requirements,
you need to implement data normalization principles, as you’ll see shortly.

Entity-relationship modeling (ER modeling) is a widely used methodology for logically repre-
senting and analyzing the components of the business system, and it is commonly used to model
the enterprise after the requirements analysis is completed. The entity-relationship models are easy
to construct, and their graphical emphasis makes them very easy to understand. However, you can’t
build a real-life RDBMS using the entity-relationship model of an enterprise. ER modeling’s utility
lies in designing databases, not implementing databases. ER modeling can’t form the basis of a
high-level data-manipulation language like SQL, so the model that designers build using the ER
modeling approach is translated to the relational model for implementation. By converting the
abstract entity-relationship design into a relational database schema, the relational model helps
convert the entity-relationship design into a relational DBMS.

Entity-Relationship Modeling
Before you can proceed to actually create databases, you need to conceptually model the organi-
zation’s information system so you can easily see the interrelationships among the various
components of the system. Data models are simple representations of complex real-world data
structures, and the models help you depict not only the data structures, but also the relationships

CHAPTER 2 ■ RELATIONAL DATABASE MODELING AND DATABASE DESIGN24

4517CH02.qxd 8/19/05 10:27 AM Page 24

among the components and any constraints that exist. Conceptual modeling of the enterprise leads
to clear indications regarding the tables to be built later on and the relationships that should exist
among those tables. ER modeling involves the creation of valid models of the business, using stan-
dard entity-relationship diagrams (ERDs). Note that the conceptual model is always independent of
both software and hardware considerations.

ER modeling was originally proposed by Peter Chen in 1976, and it is now the most widely used
technique for database design. (You can download Chen’s original proposal document as a PDF file
at http://bit.csc.lsu.edu/~chen/pdf/erd.pdf.) Nevertheless, there are several design methodologies
other than ER modeling available for you to use. For several years, researchers have struggled to
model the real world more realistically by using semantic data models, which try to go beyond the
traditional ER modeling methodology.

■Note The World Wide Web Consortium (W3C) is working on a specification related to data representation on
the Internet. The general idea is to try to bring some meaning to the massive amount of data and information
available. Information on the Web is designed for and presented to humans, but on the semantic Web, data and
information will be designed so that it can be understood and manipulated by computers as well as humans. On
the semantic Web, you will use software agents to go off in search of data and information on your behalf.

An excellent article on this new and exciting approach is “The Semantic Web,” by Tim Berners-Lee, James
Hendler, and Ora Lassila, available at http://www.scientificamerican.com/article.cfm?articleID=00048144-10D2-
1C70-84A9809EC588EF21&catID=2.

You can use the conceptual model of your organization as a communications tool to facilitate
cooperative work among your database designers, application programmers, and end users. Good
conceptual models can help resolve the differing conceptions of data among these groups. Concep-
tual models help define the constraints that your organization imposes on the data and help clarify
data processing needs, thus aiding in the creation of sound databases.

ER modeling views all objects of the business area being modeled as entities that have certain
attributes. An entity is anything of interest to the system that exists in the business world. An entity
can be real (for example, a student) or it can be conceptual (a student enrollment, which does not
actually exist until the entity’s student and course are combined when the student signs up for a
particular course). Conceptual entities are generally the hardest to discover, but ER modeling, as
you shall see, assists in their discovery.

Attributes of entities are simply properties of the entities that are of interest to you. For exam-
ple, a student entity may have attributes such as Student ID, Address, Phone Number, and so on.

ER modeling further describes the relationships among these business entities. Relationships
describe how the different entities are connected (or related) to one another. For example, an
employee is an entity that possesses attributes such as Name and Address, and he or she is, or may
be, related to another entity in the model called Department through the fact that the employee
works in that department. In this case, “works” is the relationship between the employee and the
department.

Types of Relationships

You can depict two or more entities in a relationship, and depending on the number of entities,
you may describe the degree of relationship as binary, ternary, quaternary, etc. The most common
degree of relationship in real life cases is binary, so let’s examine a binary relationship in more
detail.

The cardinality of a relationship indicates how many instances of one entity can be related to
an instance of another entity. Just because a binary relationship reflects a relationship between two
entities, it doesn’t mean that there is always a one-to-one relationship between them—cardinality

CHAPTER 2 ■ RELATIONAL DATABASE MODELING AND DATABASE DESIGN 25

4517CH02.qxd 8/19/05 10:27 AM Page 25

in ER modeling expresses the number of occurrences of one entity in relation to another entity.
Entity relationships can be one-to-one, one-to-many, many-to-many, or some other type. The most
common relationships are the following (assume there are two entities, A and B):

• One-to-many (1:M) relationship: In this case, each instance of an entity A is related to several
members of another entity, B. For example, an entity called Customer can check out many
books from a library, but one and only one Customer can borrow each book at a time. Thus,
the entity Customer and the entity Book have a one-to-many relationship. Of course, the
relationship may not exist if you have a Customer who has not yet borrowed a Book. So the
relation is actually “one Customer may borrow none, one, or many Books.”

• One-to-one (1:1) relationship: This relationship is a situation where only one instance of
either entity can be related to an instance of the other entity. For example, a person could
have only one legal social security number (SSN), and each SSN should refer to just one
person.

• Many-to-many (M:M) relationship: In this situation, each instance of entity A is related to
one or more instances of entity B, and an instance of entity B is related to one or more
instances of entity A. As an example, let’s take an entity called Movie Star and an entity called
Movie. Each Movie Star can star in several Movies, and each Movie may have several Movie
Stars. In real life, a many-to-many relationship is usually broken down into a simpler one-
to-many relationship, which happens to be the predominant form of “cardinality” in the
relationships among entities.

Accurately determining cardinalities of relationships is the key to a well-designed relational
database. Duplicated data, redundancy, and data anomalies are some of the problems that arise
when you don’t model relationship cardinalities correctly.

Candidate Keys and Unique Identifiers

Candidate keys are those attributes that can uniquely identify a row in a table, and a table can have
more than one candidate key. For example, it’s fairly common for an employee table to have both a
uniquely generated sequence number as well as another identifier, like an employee number (or
social security number). (Of course, any whole row, itself, could serve as a candidate key, because by
definition a relational model can’t have any duplicate tuples. However, a whole row is rarely used as
the key, since the point of a key is to easily access the row.)

The primary key is the candidate key that’s chosen to uniquely identify each row in a table. You
should always strive to select a key based on a single attribute rather than on multiple attributes, for
simplicity and efficiency.

Keys are vital when you come to the point of physically building the entity-relationship models.
A natural primary key is one that consists of data items or entity attributes. Almost all modern rela-
tional databases, including Oracle databases, also offer simple system numbers or sequenced
numbers that are generated and maintained by the RDBMS as an alternative to a natural primary
key (such as a sequence number to identify orders). Such keys are often referred to as surrogate or
artificial primary keys.

Whatever method you choose—a natural key or a surrogate key—certain rules apply:

• The primary key value must be unique.

• The primary key can’t be null (blank).

• The primary key can’t be changed (it must remain stable over the life of the entity).

• The primary key must be as concise as possible.

CHAPTER 2 ■ RELATIONAL DATABASE MODELING AND DATABASE DESIGN26

4517CH02.qxd 8/19/05 10:27 AM Page 26

■Note Later in this chapter, I provide some guidelines about selecting keys (primary keys in particular).

Step-by-Step: Building an Entity-Relationship Diagram
You can build logical diagrams by using tools such as the Oracle Designer, or the Oracle Warehouse
Builder if you are building a data warehouse. If you wish, you can create rudimentary logical
diagrams with nothing more than a pencil and paper. In this section, you’ll build a simple entity-
relationship diagram describing a university, using entities called Student, Class, and Professor.
You’ll use a rectangle to depict an entity, and a diamond shape to show relationships (as is common
practice), although you could use different notations.

Let’s assume the following relationship between two entities, Student and Class:

• A Student can enroll in one or more Classes.

• A Class has one or more Students enrolled.

Data modeling starts out easy and then rapidly gets complex as you begin to ask questions and
discover the various rules and constraints in force on the data.

Here are the steps you need to follow to create the entity-relationship diagram:

1. Define your entities—Student, Class, and Professor.

2. Draw the entities using a rectangle to represent each one.

3. For each of the entities in turn, look at its relationship with the others. It doesn’t matter
which entity you begin with. For example, look at the Student and the Professor. Is there a
relationship between these entities? Well, a Professor teaches a class, and a student attends
one or more classes, so at first glance there is a relationship between these entities. But in
this case it is an indirect relationship via the Class entity.

4. Examine the Student and Class entities. Is there a relationship? Yes, a Student may attend
one or more Classes. One or more Students may attend a Class. This is a many-to-many
relationship.

5. Now look at the Class and Professor entities. One Professor teaches each Class and each
Professor can teach many Classes. However, if a Professor is absent (due to illness, for exam-
ple), do you need to record the fact that a different Professor taught his or her Class on that
occasion? What if two Professors teach the same Class? Do you need to record that informa-
tion? As a modeler, you need to address all questions of this nature so that your model is
realistic and will serve you well.

6. Assign the following attributes to the various entities:

• Student: Student ID, First Name, Last Name, Address, Year

• Professor: Staff ID, Social Security Number, First Name, Last Name, Office Address,
Phone Number

• Class: Class ID, Classroom, Textbook, Credit Hours, Class Fee

Look at the Textbook attribute in the Class entity. You can use this attribute to illustrate an
important point. As the entity stands right now, you could assign only one Textbook per
Class. This could be the case, depending on the business rules involved, but what do you do
if you need to record the fact that there are several textbooks recommended for each Class?
The current model would not permit you to do this unless you stored multiple data items in

CHAPTER 2 ■ RELATIONAL DATABASE MODELING AND DATABASE DESIGN 27

4517CH02.qxd 8/19/05 10:27 AM Page 27

a single field. To resolve this, you could add a new entity called Textbooks, which could then
be related to the Class entity. This way, you could associate many different Textbooks with
each Class.

7. The cardinality of a relationship, as you saw earlier, dictates whether a relationship is one-
to-one, one-to-many, many-to-many, or something else. Define the cardinality of the
system at this point. Assign the one-to-many or many-to-one cardinality indicators. Break
down any many-to-many relationships to simpler relationships (such as two one-to-many
relationships). For example:

• A Student can enroll in one or more Classes.

• Each Class can have many Students enrolled.

This is a many-to-many relationship, which you must break down by using a link table. In
this case, the link table turns out to be an entity in its own right. This new entity contains
the individual enrollment record for each Class attended by a single Student.

8. Translate the relationships into an actual entity-relationship diagram by using rectangles for
entities, diamonds for relationships, and ovals for the attributes of the entities.

Your entity-relationship diagram should be able to address all the functional requirements of
the database in order for it to be adopted as a valid model. In the preceding example, I used some
straightforward relationships among the various entities, but in real life, you may encounter more
complex relationships like the recursive relationship, when data within an entity has a relationship
to itself. For example, in a Staff table, a member of the staff may report to a higher level member of
the staff. If this is the case, then the table is said to have a recursive relationship with itself.

I have barely scratched the surface of ER modeling, which is an art in itself—one at which you
will improve with practice. As with anything else, the more time you spend actually practicing data
modeling, the more proficient you will get at it.

■Tip The Internet is a great source for both simple and complex case studies you can use to try out your model-
ing skills. You can find anything from simple order processing databases to full-fledged personnel systems on the
Web. One of the best resources I’ve found is the web sites of major universities. Find the descriptions of computer
science courses and pay special attention to the contents of database design courses, many of which have tutori-
als on creating entity-relationship diagrams.

Normalization
Normalization is the procedure through which you break down and simplify the relations (tables) in
a database to achieve efficiency in retrieving and maintaining data. The most common reason for
normalizing table data is to avoid redundancy, which reduces data storage requirements and leads
to more efficient queries. Another reason to normalize data is to avoid data anomalies.

Why Normalize?

You’ve probably heard discussions about normalization that range from treating it like the Holy
Grail to viewing it as a feature that adversely affects performance. What is it about normalization
that gets people going so? You can put all your data somewhere in a table, and as long as you can
write SQL code to retrieve the necessary data, and you have a good RDBMS running on a machine
with plenty of fast processors, you shouldn’t have a slow-performing database, right? The truth is
that poorly designed relations and tables in a database can have serious effects, not only on the effi-
cacy of your database, but also on the validity of the data itself.

CHAPTER 2 ■ RELATIONAL DATABASE MODELING AND DATABASE DESIGN28

4517CH02.qxd 8/19/05 10:27 AM Page 28

Let’s look at an example of an ordering system in a warehouse. Imagine a simple table with
each customer’s information contained in a single tuple or row. What happens if customer A has
1,000 transactions and customer B has only one or two transactions? Either customer A’s transac-
tions will not all fit in the row, or customer B’s row will be mostly empty. Either you will not be able
to cater to the customer, or you will waste a tremendous amount of space in the database. Simple
queries turn into terrible resource wasters under this design.

You can try another variation on the previous design by creating a much more compact table
by allowing repeatable values of the attributes. That is, for each transaction, each customer’s com-
plete information would be repeated. Now you have just traded one set of problems for another.
If Customer A’s information changes, each of that customer’s rows in the table would need to be
updated. For such repeated groups, when you perform updates, you have to make sure to update
all occurrences of the particular customer’s data or you will end up with an inconsistent set of data.

Data Anomalies

You can see on an intuitive level that designing without a solid design strategy, based on sound
mathematical principles, will lead to several problems. Although it is easy to see the inefficiency
involved in the unnecessary consumption of storage space and longer query-execution times,
other, more serious problems occur with off-the-cuff design of tables in a database—these are the
so-called data anomaly problems.

Three types of data anomalies can result from improperly designed databases:

• The update anomaly: In this well-known anomaly, you could fail to update all the occur-
rences of a certain attribute because of the repeating values problem.

• The insertion anomaly: In this anomaly, you are prevented from inserting certain data
because you are missing other pieces of information. For example, you cannot insert a cus-
tomer’s data because that customer has not bought a product from your warehouse yet.

• The deletion anomaly: In this anomaly, you could end up losing data inadvertently because
you are trying to remove some duplicate attributes from a customer’s data.

■Note The debate between database developers and designers continues over denormalization. Many believe
it’s okay to break almost all design rules and denormalize for performance gains. However, others believe that this
isn’t correct and that the act of denormalization reduces the integrity of the database by removing the controls that
lie at the heart of RDBMS design.

The Normal Forms
Before you embark on the normalization process, it’s a good idea to understand the concept of
functional dependence, which is defined as follows:

Given a relation (table) R, a set of attributes, B, is functionally dependent on attribute A if at
any given time each value of attribute A is associated with a given value of B.

In simple terms, functional dependency is denoted symbolically as A ➔ B (meaning that entity
A determines the value of entity B), and it turns out to be crucial in understanding the normaliza-
tion process.

Normalization is nothing more than the simplification of tables into progressively simpler
forms to get rid of undesirable properties, such as data anomalies and data redundancy, without

CHAPTER 2 ■ RELATIONAL DATABASE MODELING AND DATABASE DESIGN 29

4517CH02.qxd 8/19/05 10:27 AM Page 29

sacrificing any information in the process. E.F. Codd laid out the normalization requirements suc-
cinctly by requiring the elimination of non-simple domains and then the removal of partial and
indirect dependencies. As the tables are taken through simpler normal forms, the preceding prob-
lems are eliminated.

You can take a table through several levels of simplification, called the first normal form (1NF),
second normal form (2NF), third normal form (3NF), Boyce-Codd normal form (BCNF), fourth nor-
mal form (4NF), and fifth normal form (5NF). Each successively higher stage of the normalization
process eliminates a particular type of undesirable dependency that you saw earlier.

Non-Normalized Data

In this and the following sections, I’ll show you a set of data that is non-normalized and then show
you how you can make it conform to various normal forms.

In the initial list of data shown in Table 2-1, each employee’s information is accompanied by
the skills that the employee has. Some employees may have a single skill, and some may have sev-
eral. In order to answer a simple question, such as “Does John Thomas have accounting skills?” you
have to first find John Thomas’s record and then scan the list of skills associated with that employee.
Obviously, this is inefficient and leads to the maintenance of redundant data.

Table 2-1. Non-Normalized Table

Employee Number

Employee Name

Department Number

Department Name

Department Location

Skill ID

Skill Name

Skill Level

First Normal Form (1NF)

A table is said to be in 1NF if it doesn’t contain any repeating groups; that is, no column should have
multiple values for any given row. This definition, of course, implies that a non-normalized table
contains one or more repeating groups. A repeating group occurs when there are multiple values for
a single occurrence of an attribute in a table.

To summarize, a table (relation) is in 1NF if

1. There are no duplicated rows in the table.

2. Each cell is single-valued (that is, there are no repeating groups or arrays).

3. Entries in a column (attribute, field) are of the same kind.

■Note The order of the rows and columns doesn’t matter. The requirement that there be no duplicated rows in
the table means that the table has a key (on one column or a combination of columns).

CHAPTER 2 ■ RELATIONAL DATABASE MODELING AND DATABASE DESIGN30

4517CH02.qxd 8/19/05 10:27 AM Page 30

Thus, to put your tables in 1NF, you must first eliminate repeating groups, which can generally
be identified by multiple values being stored at the intersection of a row and column. For example,
if an employee has several skills, you might have to specify multiple values in the Skill ID column for
that employee. Or you may be using several rows for the same employee, one for each skill. Neither
is an attractive option. The way to simplify this table into a 1NF table is to break it down so there
are only single, atomic values for each attribute or column. Create a separate table for each set of
related attributes, and give each table a primary key.

In our example, moving the skills attribute into a separate table helps considerably. Separating
the repeating groups of skills from the employee data results in two tables in first normal form. The
Employee Number in the Skills table matches the primary key in the Employees table, providing a
foreign key for relating the two tables with a join operation (see Tables 2-2 and 2-3).

Table 2-2. Employees Table in First Normal Form

Employee Number

Employee Name

Department Name

Department Location

Table 2-3. Skills Table in First Normal Form

Employee Number

Skill ID

Skill Name

Skill Level

Now we can answer our question about whether John Thomas has accounting skills with a
direct retrieval: look to see if John Thomas’s Employee Number and the Skill ID for accounting
appear together in the Skills table. Note that in the Skills table, the primary key is a multivalued,
or composite, key, consisting of both Employee Number and Skill ID.

Second Normal Form (2NF)

A table is said to be in 2NF if it is already in 1NF and every non-key attribute is fully functionally
dependent on the primary key. Since a partial dependency occurs when a non-key attribute
is dependent on only a part of the (composite) key, the definition of 2NF is sometimes phrased
as follows:

A table is in 2NF if it is in 1NF and it has no partial dependencies.

First, let’s look at a case where a table is in 1NF but not in 2NF. Table 2-4 satisfies 1NF, since it
contains no repeating groups. However, there is redundancy in the data, since the same Skill Name
(accounting, for example) appears for every employee who possesses that skill. Just the Skill ID col-
umn by itself will suffice to indicate the skill in this table. Recall from the previous section that in
the Skills table the primary key is a multivalued (composite) key that consists of both Employee
Number and Skill ID. However, Skill Name depends on only a part of the composite key (the Skill ID).

CHAPTER 2 ■ RELATIONAL DATABASE MODELING AND DATABASE DESIGN 31

4517CH02.qxd 8/19/05 10:27 AM Page 31

Table 2-4. Table in 1NF but Not in 2NF

Employee Number Skill ID Skill Name Skill Level

22 130 Accounting 9

23 140 Marketing 9

24 130 Accounting 7

In the Skills table in the previous section, the primary key is made up of the Employee Number
and the Skill ID. This makes sense for the Skill Level attribute, since it’ll be different for every
employee-skill combination. But the Skill Name depends only on the Skill ID. A partial dependency
is said to exist when a column depends on only a part of the primary key. Skill Name reflects a par-
tial dependency, because you can identify it with just the Skill ID, which is only a part of the primary
key—Skill Name doesn’t depend on the Employee Number, which is the other part of the primary
key. Therefore, the same Skill Name will appear redundantly every time its associated Skill ID
appears in the Skills table. This redundancy would lead to update and delete anomalies.

For example, suppose you want to reclassify a skill by giving it a different Skill ID. In this case,
you have the headache of ensuring that you make the change for every employee who has this skill.
If you miss some of the employees, you’ll end up with several employees having the same skill
under different IDs—this is an update anomaly. If only one employee has a certain skill, and this
employee happens to leave the organization, that employee’s data will be removed from the data-
base, and the skill will disappear entirely from your database—this is a delete anomaly.

To avoid problems such as these, you must put your tables in 2NF. Break down the table into
simpler versions to get rid of any partial key dependencies. That is, all non-key attributes should be
fully functionally dependent on the primary key. In order to do this, you must separate the attrib-
utes that depend on both parts of the key from those that depend only on the Skill ID. This results
in two tables: the Skills table, which lists the name for each Skill ID, and the Employee Skills table,
which lists the skills actually learned by each employee (see Tables 2-5 and 2-6). In the Employee
Skills table, the Skill Level attribute is clearly dependent on both parts of the key, since the attribute
is based not only on which particular skill is being referred to, but also on the particular employee’s
level in that skill.

Table 2-5. Skills Table in Second Normal Form

Skill ID

Skill Name

Table 2-6. Employee Skills Table in Second Normal Form

Employee Number

Skill ID

Skill Level

Now skills can exist in your database without any corresponding employees having that skill,
and you can reclassify a skill in a single operation—just look up the Skill ID in the Skills table and
change its name. You can also delete any information about employees without losing information
about the skills themselves.

CHAPTER 2 ■ RELATIONAL DATABASE MODELING AND DATABASE DESIGN32

4517CH02.qxd 8/19/05 10:27 AM Page 32

Third Normal Form (3NF)

A table is said to be in 3NF if it is already in 2NF and every non-key attribute is fully and directly
dependent on the primary key. To enforce 3NF, you must eliminate the columns that aren’t depend-
ent on the key. If an attribute doesn’t contribute to a description of the key, remove it to a separate
table.

The Employees table (Table 2-2) satisfies 1NF, since it contains no repeating groups. It satisfies
2NF, since it doesn’t have a composite key. However, the table’s key is Employee Number, and you
can see that the Department Name and Department Location columns aren’t dependent on the
Employee Number (the primary key for the table)—they are dependent on Department Number
column values. To achieve 3NF, you must now move the department information into a separate
table. You can make Department Number the key for your new Departments table.

The motivation for the decomposition of the Employees table is straightforward—you want
to avoid delete and update anomalies. Suppose there is no employee hired for a new department
yet. Under the present setup, you can’t have a record of the department in the Employees table.
Table 2-7 shows your tables in the third normal form.

Table 2-7. Tables in the Third Normal Form

Employees Table Departments Table Skills Table Employee Skills Table

Employee Number Department Number Skill ID Employee Number

Employee Name Department Name Skill Name Skill ID

Department Number Department Location Skill Level

If all of the preceding information seems a bit confusing to you initially, don’t lose heart. The
following is an easier way to remember and understand this whole process of putting a relation in
3NF:

A relation is said to be in the third normal form if all the non-key attributes are fully depend-
ent on the primary key, the whole primary key, and nothing but the primary key.

Although there are more advanced forms of normalization, it is commonly accepted that nor-
malization up to the 3NF is adequate for most business needs. For completeness, though, the other
popular normal forms are outlined briefly in the next sections.

Boyce-Codd Normal Form (BCNF)

The Boyce-Codd normal form (BCNF) is based on the functional dependencies that exist in the
relation. The BCNF is based on candidate keys.

A relation is said to be in BCNF if, and only if, every determinant is a primary key.

BCNF is a more strongly defined relationship than the 3NF. BCNF requires that if A determines
B, then A must be a candidate key.

CHAPTER 2 ■ RELATIONAL DATABASE MODELING AND DATABASE DESIGN 33

4517CH02.qxd 8/19/05 10:27 AM Page 33

Fourth Normal Form (4NF)

The 4NF is designed to take care of a special type of dependency called the multivalued dependency.
A multivalued dependency exists among attributes X, Y, and Z if X determines more than one value
of both Y and Z, and the values of Y and Z are independent of each other.

A relationship is defined as being in the 4NF if it is in the BCNF and contains no nontrivial,
multivalued dependencies.

Fifth Normal Form (5NF)

When a relation is decomposed into several relations, and then the subrelations are joined back
again, you are not supposed to lose any tuples. This property is defined as a lossless-join dependency.

5NF is defined as a relation that has no join dependency.

Even if you don’t know much about the concept of normalizing data, by following a set of sim-
ple rules, and with the help of ER modeling tools, you can design sound databases.

ER Modeling Tools
Although you can design the basics of a system without the help of any tools per se, for most real-
world systems it is better to use a modeling and designing tool. There are several excellent tools that
can help you in your data-modeling efforts. Oracle provides the Oracle Designer as part of the Oracle
Developer Suite 10g. ERwin (now owned by Computer Associates), PowerDesigner (now owned by
Sybase), and ER/Studio (from Embarcadero Technologies) are well-known ER modeling tools. As
mentioned earlier in this chapter, Quest Software (http://www.quest.com/) produces many useful
tools, including the well-known free TOAD software, both for Oracle developers and DBAs.

Physical Database Design
After you finalize the logical model, you can get down to designing the database itself. You first
review the logical data model and decide which data elements you’ll need for your physical data-
base. Next, you create a first-cut physical data model from your logical data model using a tool such
as ERwin or Oracle Designer. In the physical database design stage, your concern is about specify-
ing how you store the data and what methods you’ll use to access the data. You can work on tuning
this initial physical model for better performance later on. Remember that physical database design
is based on a specific DBMS (for example, Oracle Database 10g).

DENORMALIZATION

Should you always work toward normalizing all your tables to reduce redundancy and avoid data anomalies? Well,
theoretically yes, but in reality you don’t always have to be obsessed with the normalization process. When it comes
to actual practice, you’ll find that larger databases can easily deal with redundancy. In fact, the normalization
process can lead to inefficient query processing in very large databases, such as data warehouses, because there
will be more tables that need to be joined in order to retrieve information. Also, operations such as updates take
more time when you have a completely normalized table structure. Thus, you end up having to decide between
potential data anomalies and performance criteria.

CHAPTER 2 ■ RELATIONAL DATABASE MODELING AND DATABASE DESIGN34

4517CH02.qxd 8/19/05 10:27 AM Page 34

The purpose of physical database design is to implement your logical design. Following are
some of the key tasks in the physical design stage:

• Translating the logical database model to fit your specific DBMS

• Choosing the storage setup with an eye on maximizing efficiency

• Creating tables (by transforming entities into tables) and the columns for each of the tables

• Creating primary keys, foreign keys, and constraints (thus formalizing the relationships
among the objects)

Transforming Entities and Relationships
In the first stage of the physical design process, you transform the entity-relationship diagrams into
relational tables. You create the tables based on the different groups or types of information that
you have in the database. For example, you may create a table called People to hold information
about the members of an organization, a table called Payments to track membership payments,
and so on.

What if you want to ensure that the data in your tables is unique, which is a basic assumption
in most cases? How about establishing relationships among tables that hold related information?
You can use primary keys and foreign keys to ensure uniqueness and valid relationships in your
database. You’ll examine these two types of keys in detail in the following sections.

Primary Keys

A primary key is a column or a combination of columns that uniquely identifies each record (or row)
in a table. In tables that have records for different people, it is common to use social security num-
bers as primary keys because it’s obvious that every person has a unique social security number.
If there is no appropriate column you can choose as a primary key, you can use system-generated
numbers to uniquely identify your rows. A primary key must be unique and present in every row of
the table to maintain the validity of the data.

You must select the primary keys from among the list of candidate keys for all the tables in your
database. If you are using software to model the data, it is likely that you will already have defined
and created all the keys for each entity. The application team determines the best candidates for the
primary keys.

Foreign Keys

Suppose you have two tables, Employees and Departments, with the simple requirement that every
employee must be a member of a department. The way to ensure this is to check that all employees
have a Department column in the Employees table. Let’s say the Departments table has a primary
key named Department ID—you need to have this primary key column in the Employees table.
Remember that the Employees table will have its own primary key, such as SSN. However, the values
of the Department ID column in the Employees table must all be present in the Departments table.

This Department ID column in the Employees table is the primary key in the Departments
table, and you refer to it as a foreign key in the Employees table. Foreign keys ensure that only valid
data is entered in your tables.

Designing Different Types of Tables
You should determine which of your tables are going to be your main data tables and which will be
your lookup tables. A lookup table generally contains static data, such as the Departments table

CHAPTER 2 ■ RELATIONAL DATABASE MODELING AND DATABASE DESIGN 35

4517CH02.qxd 8/19/05 10:27 AM Page 35

discussed in the previous section. Usually when you have a foreign key in a table, the table from
which the foreign key comes will be your lookup table.

One of the ways to ensure good performance later on is to spend a lot of time at the design
stage thinking about how your users are going to use the database. For example, whereas normal-
ization may be a technically correct way to design a database, it may require reading more tables
for a single query. The more tables you need to join for any query, the higher the CPU and memory
usage, which may hurt database performance.

If you perform the appropriate amount of due diligence at the design stage, you can depict
your organization’s process flow accurately while you design your tables. When you consider the
cost and frustration involved in tuning poorly written SQL later on, it’s clear that it’s worth putting
some effort into carefully designing tables and fields.

Table Structures and Naming Conventions
The table structures and naming conventions for your database should be finalized during the
physical design stage. However, in many organizations, these elements are predetermined and you
may need to use a standard convention. It is important to give tables short, meaningful names—
this will save you a lot of grief later when you need to maintain the tables.

Column Specifications and Choosing Data Types
You should now have a good idea about the exact nature of the columns in all your tables. You
should also now determine which data types you’ll use for your column specifications. For example,
you need to specify whether the data in each column is going to be integers, characters, or some-
thing else.

The nature of your application will dictate the data types. For example, if you’re creating a hos-
pital visitor’s database, the number of visitors will always be an integer rather than a floating-point
number, since you can’t have a person visiting a hospital 2.5 times a year.

Business Rules and Data Integrity
Good database design should adhere faithfully to the company’s business rules. Your data design
must satisfy any business rules that will be enforced by your application, and incorporating these
rules into the design will help you model information that is usually not captured by database
models.

When you enforce data integrity, you are essentially ensuring that the data in the tables is cor-
rect, and that it doesn’t involve any inconsistencies, which can occur either during the data entry
process itself, or later, through modifications. The design should also ensure data integrity through
the proper use of constraints provided by the RDBMS. The entity-relationship model provides you
with an opportunity to note necessary constraints and plan ahead.

The following four methods are commonly used to enforce data integrity and business rules in
the entity-relationship model:

• You can use the primary keys to enforce uniqueness of data in the tables. Note that the pri-
mary key values should be unique as well as non-null. The primary key should also not
change its value over the life of the entity instance.

• You can use foreign keys to enforce referential integrity, thus guaranteeing the integrity and
consistency of data. Referential integrity refers to maintaining correct dependency relation-
ships between two tables. Declarative referential integrity refers to ensuring data integrity by
defining the relationship between two different tables.

CHAPTER 2 ■ RELATIONAL DATABASE MODELING AND DATABASE DESIGN36

4517CH02.qxd 8/19/05 10:27 AM Page 36

• You can ensure the validity and meaningfulness of data by enforcing domain constraints,
such as check constraints. Domain constraints ensure valid values for certain entities. For
example, in a banking-related database, you could have a constraint that states that the
withdrawal amount in any transaction is always less than or equal to the total balance of
the account holder.

• You can use database triggers, which will perform certain operations automatically when
predetermined actions occur, to ensure the validity of data.

A fifth way to enforce business rules is programmatically, through the use of built-in database
constraints. For example, a simple line of code could be used to require that an insert actually com-
plete a data field, rather than adding a not-null constraint on the column. You’ll learn details about
the various types of constraints in an Oracle database in Chapter 5.

Implementing the Physical Design
Implementation of the physical design involves creating the new database and allocating proper
space for it. It also involves creating all the tables, indexes, and stored program code (such as trig-
gers, procedures, and packages) to be stored on the server.

Database Sizing and Database Storage
You need to estimate the size of your tables, indexes, and other database objects at this stage so you
can allocate the proper space for them. You can follow some basic rules of thumb or use some fairly
elaborate sizing algorithms to size your database.

You also have to choose the type of storage. Although most systems today are based on hard
disks, you have several choices to make with regard to disk configuration and other issues, all of
which could have a significant impact on the database’s performance down the road. Chapter 3
discusses details of disk configuration and related issues.

Implementing Database Security
Before you actually implement your new system, you need to make sure you have a security policy
in place. There are several possible layers and levels of security, and you should ultimately ensure
that the system is indeed secure at all these levels.

Normally, you need to worry about security at the system and network levels, and you will
usually entrust the system and network administrators with this type of security. You also need to
ensure security at the database level, which includes locking up passwords and so forth. Finally, in
consultation with the application designers, you also have to come up with the right application
security scheme. This involves controlling the privileges and roles of the users of the database.
Chapter 10 discusses user management and database security in detail.

Moving to the New System
During this final implementation stage, you establish exact timings for the actual switch to the
new business system. You may be replacing an older system, or you may be implementing a
brand-new business system.

In either case, you need a checklist of the detailed steps to be undertaken to ensure a smooth
transition to the new system. This checklist should also include fallback options if things don’t go
quite as planned. Chapter 16 discusses recovery techniques that help you restore an older database
in case you need to scrap the new one for some reason. You can also run ad hoc queries at this stage
to fine-tune your system and find out where any bottlenecks lie.

CHAPTER 2 ■ RELATIONAL DATABASE MODELING AND DATABASE DESIGN 37

4517CH02.qxd 8/19/05 10:27 AM Page 37

Reverse-Engineering a Database
This chapter has provided you with an introduction to the art of database design and normaliza-
tion, and this information will help you when you are designing and implementing a database from
scratch. However, what do you do when you walk into a company to manage its databases and you
have no idea of the underlying physical data model or entity-relationship diagrams? Not to worry;
you can use any of the data-modeling tools discussed earlier in the chapter to reverse-engineer the
underlying database model.

The process of generating a logical model from an actual physical database is called reverse
engineering. By using the reverse-engineering feature in PowerDesigner or the Oracle Designer tool,
you can quickly generate the physical model or the entity-relationship model of your database.
Reverse-engineering a database can help you understand the underlying model. It can also serve to
provide documentation that may be missing in situations where the DBA or the lead developer has
left and nobody can find the entity-relationship diagram.

Reverse-engineering diagrams can be crucial in tracking the foreign key relationships in the
data model. Developers can also make good use of entity-relationship diagrams when making
improvements to the application.

Object-Relational and Object Databases
This chapter has dealt with the relational database model, where all the data is stored in the form
of tables. Relational databases have been accepted as the superior model for storing most kinds of
“simple” data, such as ordinary accounting data. For modeling complex data relationships, how-
ever, the object database management system (ODBMS) has been put forward as being more
appropriate. ODBMSs are still not at the point where they can seriously compete with traditional
relational databases.

The relational model and the object model can be seen as two different extremes in data mod-
eling, and a newer extension of the relational model has come forth to bridge the gap between the
two. This new model is the object-relational database management system (ORDBMS), and Oracle
has adopted this ORDBMS model since the Oracle8 version of its server software. Oracle defines the
10g version (as well as the 8i version) of its database server as an ORDBMS.

The following sections compare and contrast the three database management system cate-
gories: relational, object, and object-relational.

The Relational Model
The relational model has several limitations. One of its biggest problems is its limited capability
to represent real-world entities, which are much more complex than what can be represented in
tuples and relations. The model is especially weak when it comes to distinguishing among different
kinds of relationships between entities. You can’t represent and manipulate complex data in tradi-
tional relational databases—the set of operations you can perform in relational models isn’t
adequate for many real-world applications that include objects with non-numerical attributes.

The limitations of the traditional relational model in modeling several real-world entities led to
research into semantic data models and the so-called extended relational data models. Two data
models now compete for the mantle of successor to the relational model: the object-oriented data
model and the object-relational data model. Databases based on the first model are called object-
oriented database management systems (OODBMSs), and databases based on the second model
are called object-relational database management systems (ORDBMSs).

CHAPTER 2 ■ RELATIONAL DATABASE MODELING AND DATABASE DESIGN38

4517CH02.qxd 8/19/05 10:27 AM Page 38

The Object Model
Object (or object-oriented) databases are based primarily on object-oriented programming lan-
guages such as C++, Java, and Smalltalk. ODBMSs are created by combining database capabilities
with the functionality of object-oriented programming languages. In this sense, you can view an
ODBMS as an extension of the object-oriented language with data-concurrency and data-recovery
capabilities added on to it. The object-oriented language is used both for application development
and data storage. Object-oriented languages are used to create objects, which are the basic compo-
nents of the ODBMS.

Several terms have special meanings in object-oriented environments:

• Objects are defined as entities containing the attributes of a real-world object and its associ-
ated actions.

• Properties are the various attributes of an object.

• Methods are functions in the object world, and they define the behavior of the object.

• Objects communicate by means of messages.

• A class is a grouping of objects that have the same attributes.

• Instances are the actual incarnations of objects in the class.

• Classes can be divided into subclasses, with the parent class being called the superclass.

The following three concepts are fundamental to understanding object-oriented systems:

• Polymorphism: Polymorphism is the ability of objects to react differently when presented
with different sets of information (in the form of parameters). Object-oriented languages
allow different methods to be run depending on the set of parameters that you specify. In a
non-object-oriented programming language, the only way to complete two different tasks is
to have two functions with different names.

• Encapsulation: This term refers to objects including both information about what they are
(their properties) and what they can do (their methods). Thus, code and data are packaged
together. For example, if a person were an object in the model and there were a method to
calculate the person’s annual salary, the code (or method) for calculating the salary would be
“encapsulated” with the instance object, which is the person.

• Inheritance: Inheritance allows one class to extend another—to inherit some characteristics
from another class and to add more characteristics of its own. For example, a Student object
could be a subclass of a Person class.

The Object-Relational Model
Although pure object methodology is appealing, in actual practice it is quite difficult to implement.
ORDBMSs strive to combine the best that relational models have to offer while adding as much of
the object-oriented methodology as possible. Oracle says that its ORDBMS model seeks to put com-
plex business data in the basic relational database; the fundamental tabular form of the relational
model is retained. The basis for Oracle’s (and other vendors’) ORDBMS offerings is the SQL standard
named SQL-1999 (also called the SQL:99 standard).

The ORDBMS is somewhat of a hybrid between the traditional relational and the pure object-
oriented databases. It doesn’t quite achieve the implementation of all the key precepts of an
object-oriented database, such as encapsulation. The ORDBMS is really the relational model with
a few object-oriented features added on. You can choose to ignore the object-oriented features
completely and use the database as a purely traditional relational database. All the database infor-
mation is still in the form of tables.

CHAPTER 2 ■ RELATIONAL DATABASE MODELING AND DATABASE DESIGN 39

4517CH02.qxd 8/19/05 10:27 AM Page 39

ORDBMSs mainly depend on abstract types to bring object-oriented methodology to relational
databases. Objects are simplified abstractions of real-world objects, and they encompass both the
structure of the data and the methods of operating on data. An object type consists of its name,
attributes, and methods, which can be stored within the database or outside of it. Two more object-
oriented features, type inheritance and polymorphism, are also enabled in the new Oracle Database
10g ORDBMS.

Database vendors such as Informix have maintained for a while now that they have really
merged the relational and object-oriented databases and come up with an integral ORDBMS. This
claim is motivated mostly by marketing concerns and isn’t based on true technical criteria. Real
object-oriented databases are still far from becoming commercially viable on a large scale. For
the foreseeable future, the relational or the object-enhanced relational model (such as Oracle’s
ORDBMS) will hold sway as efficient, well-developed, and proven products. You can also expect
more and more object-oriented features to be gradually added to databases.

There is an ongoing debate over the merits of the relational database system versus the object-
oriented database system. It is accepted by all parties that relational databases do certain chores
extremely well, such as the business applications they are currently used for. Object-oriented data-
bases, though they are more realistic than relational databases, are quite difficult to implement and
are many years away from being as mature and sophisticated, operationally speaking, as relational
databases. Although object-oriented databases have been increasing in popularity over the years,
their market share is still miniscule. The real question is whether object-oriented databases can
supplant relational databases.

It seems unlikely, in the near future, that object-oriented databases can become as powerful
as well-established RDBMSs in performing most business operations. It seems more practical for
relational databases to be extended to make them more closely model the real world. ORDBMSs
attempt to bridge the gap between the relational and pure object-oriented systems by incorporating
object-oriented features such as encapsulation, inheritance, user-defined data types, and polymor-
phism into the relational model. Business processing involves a lot of data processing, and the new
hybrid will continue to support these activities while also serving the more complex data-modeling
needs. ORDBMSs seem like a smart way to progress into the object-oriented world, because their
adoption doesn’t involve abandoning the tremendous amount of RDBMS know-how developed
over the last 25 years or so. All that knowledge can be enhanced to incorporate more of the object-
oriented data model. In other words, you can get both higher operational efficiency and the benefits
of realistic object type modeling by using ORDBMSs.

Oracle Database 10g is an ORDBMS. It evolved over the years from a traditional pure relational
system to one with an increasing number of object-oriented features, such as these:

• User-defined data types: Oracle supports both object types and collections. Oracle provides a
built-in data type called REF to model relationships between row objects belonging to the
same type.

• Methods: Oracle implements methods in PL/SQL or Java.

• Collection types: The collection types include array types known as varrays and table types
known as nested tables.

• Large objects: Oracle supports the use of binary large objects (BLOBs) and character large
objects (CLOBs).

CHAPTER 2 ■ RELATIONAL DATABASE MODELING AND DATABASE DESIGN40

4517CH02.qxd 8/19/05 10:27 AM Page 40

Semistructured Data Models
The newest frontier in data models is the emphasis on “semistructured” data models. Semistructured
data models are much more flexible than traditional relational and object-relational models. This
inherent flexibility ensures a more realistic representation of the complex real-world phenomena
that DBAs deal with every day. Semistructured data modeling looks at schemas from a different
point of view than the relational and other models you saw earlier in the chapter. Semistructured
data models really aren’t based on any strict notions of traditional database schemas—rather, the
data in these models is self-describing. This type of data model is useful mainly for document-
based information systems. If you are trying to integrate data in several databases, each with its own
unique schema, you’ll appreciate the use of semistructured data modeling.

The use of Extensible Markup Language (XML) is but one of the new implementations of the
semistructured data models—XML implements semistructured data in document form. Oracle
Database 10g includes excellent XML capabilities that are better than those of any other commer-
cial database. XML uses tags to mark up documents, somewhat like the HTML pages we are all
familiar with now. However, XML tags are more critical from a semantic point of view than HTML
tags, which merely control the format and layout of a web page—XML tags tell the document what
the contents of the document mean. XML documents use Document Type Definitions (DTDs) to
find out what tags can be used and how.

Oracle Database 10g has powerful XML capabilities, which enable it to manage large amounts
of XML data. Of course, you can use all of Oracle’s features, including high performance and scala-
bility, while using the XML data stored within the database.

CHAPTER 2 ■ RELATIONAL DATABASE MODELING AND DATABASE DESIGN 41

4517CH02.qxd 8/19/05 10:27 AM Page 41

4517CH02.qxd 8/19/05 10:27 AM Page 42

Essential UNIX (and Linux)
for the Oracle DBA

If the only thing you needed to learn about were Oracle database administration, your life would
be so much easier. However, to ensure that your database performs efficiently, you’ll also need to
understand the operating system. In this chapter, you’ll examine UNIX.

The first part of the chapter covers the most important UNIX/Linux commands for you to know.
Most of the UNIX and Linux operating system commands are identical, but I’ll show you the differ-
ences where they exist. You’ll learn about files and directories and how to manage them, as well as
UNIX processes and how to monitor them. You’ll then learn how to edit files using the vi text editor
and how to write shell scripts.

As an Oracle DBA, you’ll need to know how to use UNIX services such as the File Transfer Pro-
tocol (FTP), which enables you to easily exchange files between computers; telnet, a program that
lets you enter commands on a remote computer from a local computer; and the remote login and
remote copy services. This chapter provides you with an introduction to these useful features. You’ll
also learn the key UNIX administrative tools for performing system backups and monitoring system
performance. There’s also some discussion of the basics of RAID systems and the use of the Logical
Volume Manager (LVM) to manage disk systems. Toward the end of the chapter, you’ll find some
coverage of data storage arrays and new techniques to enhance availability and performance.

Overview of UNIX and Linux Operating Systems
The UNIX and Linux operating systems are similar in many ways, and users can transition easily
from one to the other. From the DBA’s point of view, there are few differences in commands and utili-
ties when you migrate from one operating system to the other, since they all share common roots.

UNIX
UNIX became the leading operating system for commercial enterprises during the 1980s and 1990s.
Although IBM mainframes still perform well for extremely large (multiterabyte) databases, most
medium to large firms have moved to UNIX for its economy, versatility, power, and stability.

UNIX has a rich history, progressing through several versions before reaching its current popu-
lar place in the operating system market. I could spend quite a bit of time discussing the history and
variants of the UNIX system, but I’ll simplify the discussion by stating that, in reality, the particular
UNIX system variant that a DBA uses doesn’t make much difference. UNIX has become well known
as a multitasking, multiuser system and it is currently the most popular platform for major Oracle
implementations. The most popular UNIX flavors on the market as of this writing are Sun Solaris,

43

C H A P T E R 3

■ ■ ■

4517CH03.qxd 8/19/05 10:28 AM Page 43

HP-UX, and the IBM AIX versions. The basic commands don’t vary much between the UNIX vari-
ants, and the different flavors mainly distinguish themselves on the basis of the utilities that come
packaged with them.

Contrary to what newcomers to the field might imagine, UNIX is an easy operating system to
learn and use. What might put off many developers and others who were weaned on the graphical
Windows framework are the terse and cryptic commands commonly associated with the UNIX
operating system. Take heart, though, in the knowledge that the essential commands are limited in
number, and you can become proficient in a very short time.

Sun Microsystems (Sun), Hewlett-Packard (HP), and IBM sell the leading UNIX servers—the
machines that run each firm’s variation of the Berkeley UNIX system V. IBM is also a big UNIX sup-
plier with its AIX server. Sun and HP currently run the vast majority of UNIX-based Oracle
installations.

Linux
Developed by Linus Torvalds, Linux is constantly under development because it is released under an
open source license and is freely available for download from the Internet. Many users prefer to use
Linux because more programs and drivers are available, it’s free (or close to free, as the commercial
versions are fairly cheap), and bug fixes are released very quickly. A version of Oracle Database 10g
for Linux is available for download on the OTN web site. Oracle has certified and supports Red Hat
Enterprise Linux AS and ES (either the 3.0 or the 2.1 version), SUSE LINUX Enterprise Server, and
Asianux 1.0. Oracle will also continue to provide customer support for UnitedLinux 1.0 throughout
its life cycle for existing Oracle products.

■Note I used a Linux 3.0 distribution from Red Hat to run Oracle Database 10g on my Windows XP desktop.
I used the VMware virtual operating system tool (http://www.vmware.com) to run the Linux operating system
alongside Windows.

Oracle was the first company to offer a commercially available database for the Linux operat-
ing system. Oracle even offers a cluster file system for Linux, which makes it possible to use Oracle’s
Real Application Clusters (RAC) on Linux without the more costly and complex raw file systems.

Do all these moves toward the Linux operating system foreshadow the demise of the UNIX
operating system? Although the market for UNIX systems has dropped in recent years, you have to
interpret this fact cautiously; most of the movement toward the Linux operating system is intended
for low-end machines that serve network and other desktop applications. For the foreseeable
future, UNIX-based systems will continue to rule the roost when it comes to large, company-wide
servers that run large and complex databases such as Oracle Database 10g.

IT organizations are moving to Linux and open source software to solve a wide variety of busi-
ness problems. The Linux platform often plays the central role in establishing a low-cost computing
infrastructure. Oracle’s grid initiative relies on using massive numbers of cheap commodity servers
based on the Linux platform. Although Linux is growing very fast as a viable operating system for
Oracle databases, the consensus among the IT industry is still that Linux is mainly useful for services,
and not for mission-critical databases. This leaves UNIX and Windows as the two leading operating
systems for Oracle databases. Oracle provides support to the Linux community by offering code for
key products and itself uses the Linux platform extensively. Oracle’s clustered file systems link a
number of separate servers into a single system and low-cost Linux servers are an inexpensive
choice for these file systems.

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA44

4517CH03.qxd 8/19/05 10:28 AM Page 44

Midrange Systems
Even just four or five years ago, you had to invest in behemoths like the Sun E10K, with its hard par-
titions and multiple processors, if you wanted a system to support heavy workloads. Today, much
smaller midrange UNIX servers come with features like soft partitioning, high amounts of memory,
hot-spare processors, and capacity-on-demand features that were once the exclusive preserve of
the high-end systems.

The main competition among the midrange servers is between Intel-based servers like the
Windows Server 2003 and RISC-based (reduced instructor set computer) servers using the UNIX
or the Linux operating systems. The choice of the particular operating system will depend on the
workload you plan on supporting as well as on the availability, reliability, and response time
requirements.

The rest of the chapter, while formally oriented toward UNIX-based systems, applies almost
verbatim to any Linux-based operating system as well.

Understanding the UNIX Shell(s)
In UNIX systems, any commands you issue to the operating system are passed through a command
interpreter layer around the kernel called the shell. When you initially log in, you are communicating
with this shell. The kernel is the part of UNIX that actually interacts with the hardware to complete
tasks such as writing data to disk or printing to a printer. The shell translates your simple commands
into a form the kernel can understand and returns the results to you. Therefore, any commands you
issue as a user are shell commands, and any scripts (small programs of grouped commands) that you
write are shell scripts.

The UNIX shell has many variants, but they are fundamentally the same, and you can easily
migrate from one to another. Here’s a list of the main UNIX and Linux shell commands and the
shells they run:

• sh: The Bourne shell, which was written by Steven Bourne. It is the original UNIX shell, and is
quite simple in the range of its features.

• csh: The C shell, which uses syntax somewhat similar to the C programming language. It
contains advanced job control, aliasing, and file-naming features.

• ksh: The Korn shell, which is considered a superset of the Bourne shell. It adds several
sophisticated capabilities to the basic Bourne shell.

• bash: The “Bourne Again Shell,” which includes features of both the Bourne and the C shell.

For the sake of consistency, I use the Korn shell throughout this book, although I show a couple
of important C shell variations. Most UNIX systems can run several shells; that is, you can choose to
run your session or your programs in a particular shell, and you can easily switch among the shells.

The Linux default shell is BASH, the Bourne Again Shell, which includes features of the Bourne
shell as well as the Korn, C, and TCSH shells.

■Note Most of the basic commands I discuss in the following sections are the same in all the shells, but some
commands may not work, or may work differently, in different shells. You need to remember this when you switch
among shells.

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA 45

4517CH03.qxd 8/19/05 10:28 AM Page 45

Shells act as both command interpreters and high-level UNIX programming languages. As a
command interpreter, the Korn shell processes interactive user commands; as a programming lan-
guage, the Korn shell processes commands in shell scripts.

It is possible to invoke any available shell from within another shell. To start a new shell, you
simply type the name of the shell you want to run, ksh, csh, or sh. It is also possible to set the default
startup shell for all your future sessions. The default shell for your account is stored in the system
database /etc/passwd, along with the other information about your account. To change your
default shell, use the chsh command.

Accessing the UNIX System
You can manage the Oracle databases that run on UNIX systems in several ways:

• Directly from the server hosting the database

• Via a UNIX workstation

• Through a Windows NT Server front end

Most DBAs use the last approach, preferring to use their regular PCs to manage their data-
bases. If that’s what you choose, you again have several choices as to how exactly you interact with
the databases running on the remote server:

• Log directly into the server through the telnet service.

• Log into the server through a display framework such as Reflections X-Client, which provides
an X Window System that emulates the look and feel of a UNIX workstation.

• Connect through a GUI-based management console, such as the Oracle-supplied Oracle
Enterprise Manager (OEM) or through a tool from a third-party supplier, such as BMC
Software (http://www.bmc.com/) or Quest Software (http://www.quest.com/).

Regardless of whether you choose to log into the UNIX box through the server or another inter-
face, the first thing you will need is an account and the appropriate privileges to enable you to log in
and actually get something done. The UNIX system administrator, with whom you should become
very friendly, is the person who will perform this task and give you your password. The system
administrator will also assign you a home directory, which is where you will land inside the UNIX file
system when you initially log in.

You can log into a UNIX machine in several ways. You can always log into the server directly
by using the terminal attached to the machine itself. However, this is not a commonly used option
for day-to-day work. You can also use telnet to connect to the UNIX server, and you’ll learn about
this in the “Using Telnet” section later in this chapter. One of the most common ways to work with
UNIX, though, is through your own PC by using what’s called a terminal emulator—a program
that will enable your PC to mimic a UNIX terminal. Several vendors, including Hummingbird
(http://www.hummingbird.com/) and WRQ (http://www.wrq.com/), produce the popular
Hummingbird and Reflections emulators, respectively. These emulators, also called X Window
emulators, emulate the X Window System, which is the standard graphical user interface (GUI) for
UNIX systems. The emulators use special display protocols that will let you use your Windows ter-
minal as an X terminal to access a UNIX server.

The general idea behind many of these interfaces is to try and make working with UNIX as easy
as possible by providing a familiar GUI. Figure 3-1 shows a basic X session connected to the UNIX
operating system.

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA46

4517CH03.qxd 8/19/05 10:28 AM Page 46

Figure 3-1. An X session

For now, let’s assume you are equipped with a terminal emulator. You need to know a couple of
things before you can log in and use the system. First, you need to know the machine name, which
can be in either symbolic or numerical form.

■Note All UNIX machines (also called also called UNIX boxes or UNIX servers) have an Internet Protocol (IP)
address, usually in a form like this: 162.15.155.17. Each IP address is guaranteed to be unique. By using a special
system file (/etc/hosts), the UNIX administrator can give what’s called a symbolic name to the machine. For exam-
ple, the machine with the IP address 162.15.155.17 can be called prod1, for simplicity. In this case, you can
connect by using either the IP address or the symbolic name.

Next, the system will ask you for your password. A shell prompt indicates a successful login, as
shown here:

$

The shell prompt will be a dollar sign ($) if you are using the Bourne shell or the Korn shell. The
C shell uses the percent sign (%) as its command prompt.

Once you log into the system, you are said to be working in a UNIX session; you are automati-
cally working in what’s known as your home directory (more on this later on). You type your
commands at the shell prompt, and the shell interprets these commands and hands them over to
the underlying operating system.

The UNIX directory structure is hierarchical, starting with the root directory at the top, which is
owned by the UNIX system administrator. From the root directory, the other directories branch out
and the files are underneath them. Let’s say you are in the /u01/app/oracle directory when you log
in, and you want to refer to or execute a program file located in the directory /u01/app/oracle/
admin/dba/script. To specify this location in the hierarchy to the UNIX system, you must give it a
path. If you want, you can give the complete path from the root directory: /u01/app/oracle/admin/
dba/script. This is called the absolute path, because it starts with the root directory itself. You can
also specify a relative path, which is a path that starts from your current location. In this example,
the relative path for the file you need is admin/dba/script.

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA 47

4517CH03.qxd 8/19/05 10:28 AM Page 47

■Note Included among these directories and files are the system files, which are static, and user files. As a DBA,
your main concern will be the Oracle software files and database files.

You end your UNIX or Linux session by typing the word exit at the prompt, as follows:

$ exit

Overview of Basic UNIX Commands
You can execute hundreds of commands at the command prompt. Don’t get overwhelmed just yet,
though: of the many commands available to you, you’ll find that you’ll only use a handful on a day-
to-day basis. This section covers the basic commands you’ll need to operate in the UNIX
environment.

■Note If you need help using a command, you can type man at the command prompt, along with the name of
the topic you’re trying to get help with. For example, if you type in the expression man date, you’ll receive infor-
mation about the date command, examples of its use, and a lot of other good stuff. For more details, see the “Help
and Info: The man Command” section later in this chapter.

The UNIX shell has a few simple, built-in commands. The other commands are all in the form
of executable files that are stored in a special directory called bin (short for “binary”). Table 3-1
presents some of the more important UNIX commands that you’ll need to know. The UNIX com-
mands tend to be cryptic, but some should be familiar to Windows users. The commands cd and
mkdir in Windows, for example, have the same meaning in UNIX. Many UNIX commands have
additional options or switches (just like their MS-DOS counterparts) that extend the basic function-
ality of the command, and Table 3-1 shows the most useful command switches.

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA48

Table 3-1. Basic UNIX Commands

Command Description Example

cd $ cd /tmp
$

date $ date
Sat Mar 26 16:08:54 CST 2005
$

echo $ echo Buenos Dias
Buenos Dias
$

With the echo command, you can display
text on your screen.

The date command gives you the time and
date.

The cd command enables you to change
directories. The format is cd new-location.
The example shown here takes you to the
directory /tmp directory, from your current
working directory.

4517CH03.qxd 8/19/05 10:28 AM Page 48

Command Description Example

grep $ grep alapati test.txt
alapati

history $ history -3
4 vi trig.txt
5 grep alapati test.txt
6 date
7 history -3
[pasx] $

passwd $ passwd
Changing password for salapati
Old password:
New password:

pwd $ pwd
/u01/app/oracle
$

uname $ uname -a
HP-UX prod5 B.11.00 A 9000/800
190 two-user license
$

whereis $ whereis who
who: /usr/bin/who
/usr/share/man/man1.z/who.1
$

which $ which cat
/usr/bin/cat

Continued

The which command enables you to find
out which version (of possibly multiple
versions) of a command the shell is using.
You should run this command when you
run a common command, such as cat, and
receive somewhat different results than you
expect. The which command helps you
verify whether you are indeed using the
correct version of the command.

As the name of this command suggests,
whereis will give you the exact location of
the executable file for the utility in question.

In the example shown here, the uname
command tells you that the machine’s
symbolic name is prod5 and it’s an HP-UX
machine. The -a option tells UNIX to give
all the details of the system. If you omit
the -a option, UNIX will just respond with
HP-UX.

Use the pwd command to find out your
present working directory or to simply
confirm your current location in the file
system.

When you are first assigned an account,
you’ll get a username and password
combination. You are free to change your
password by using the passwd command.

The history command gives you the
commands entered previously by you
or other users. To see the last three
commands, type history -3. The default
number of commands shown depends
on the specific operating system, but
it is usually between 15 and 20. Each
command is preceded in the output by
a number, indicating how far back it was
used.

The grep command is a pattern-recognition
command. It enables you to see if a certain
word or set of words occurs in a file or the
output of any other command. In the
example shown here, the grep command is
checking whether the word “alapati” occurs
anywhere in the file test.txt. (The answer is
yes.) The grep command is very useful when
you need to search large file structures to
see if they contain specific information. If
the grepped word or words aren’t in the file,
you’ll simply get the UNIX prompt back, as
shown in the second example.

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA 49

4517CH03.qxd 8/19/05 10:28 AM Page 49

Table 3-1. Continued

Command Description Example

who $ who
salapati pts/0 Nov 8 08:31
rhudson pts/1 Nov 8 09:04
lthomas pts/3 Nov 9 15:54
dcampbel pts/7 Nov 8 16:27
dfarrell pts/16 Nov 5 07:00

whoami $ whoami
oracle
$

The whoami command indicates who you
are logged in as. This may seem trivial, but
as a DBA, there will be times when you
could be logged into the system using any
one of several usernames. It’s good to know
who exactly you are at a given point in
time, in order to prevent the execution of
commands that may not be appropriate,
such as deleting files or directories. The
example shown here indicates that you are
logged in as user Oracle, who is the owner
of Oracle software running on the UNIX
system.

If you are curious about who else besides
you is slogging away on the system, you
can find out with the who command. This
command provides you with a list of all the
users currently logged into the system.

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA50

■Tip It is always worthwhile to check that you are at the right place in the file structure before you press
the Enter key, to avoid running any destructive commands. The following commands will help you control your
input at the command line. Under the Korn shell, to retrieve the previous command all you have to do is press
the Esc key followed by the letter k. If you want an older command, continue typing the letter k, and you’ll
keep going back in the command sequence. If you have typed a long sequence of commands and wish to edit
it, press the Esc key followed by the letter h to go back, or press the letter l to go forward on the typed com-
mand line.

Help and Info: The man Command
There are many operating system commands, most with several options. Therefore, it’s convenient
to have a sort of help system embedded right within the operating system so you have the necessary
information at your fingertips. UNIX and Linux systems both come with a built-in feature called the
man pages, which provide copious information about all the operating system commands. You can
look up any command in more detail by typing the man command followed by the command you
want information on, as follows:

$ man who

This command will then display a great deal of information about the who command and all its
options, as well as several examples (see Figure 3-2).

4517CH03.qxd 8/19/05 10:28 AM Page 50

Figure 3-2. Output of the man command

In Linux-based systems, you can also use the nifty whatis command to find out what a certain
command does. Like the man command, the whatis command is followed by the name of the com-
mand you want information about. Here’s a simple example:

$ whatis whereis (1) -locate the binary, source, and manual page files
for a command

As you can see, the whatis command offers a quicker and easier way to locate summary infor-
mation about any command than the more elaborate man pages.

Changing the Prompt
Every shell has its own default prompt. The default prompt for the Korn shell is the dollar sign ($).
You can easily change it to something else by changing the value of the PS1 shell variable.

In the following example, I first check the value of the PS1 variable by issuing the command echo
$PS1. I then use the export command to set the value of the ORACLE_SID environment variable to my
database name, finance. Using the export command again, I set the value of the PS1 environment
variable to be the same as the value of the environment variable ORACLE_SID ($ORACLE_SID). Now the
shell prompt is changed to my database name, finance. Since I only exported the ORACLE_SID variable
value but didn’t place it in my environment files, the value I exported is good only for the duration of
the current session.

$ echo $PS1
$
$ export ORACLE_SID=finance
$ export PS1=[$ORACLE_SID]
[finance]

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA 51

4517CH03.qxd 8/19/05 10:28 AM Page 51

■Note If you add the PS1 variable to your .cshrc file (I explain how to do this later in the “Customizing Your Envi-
ronment” section), every time you open a new shell, it’ll have your customized prompt. The ability to change the
prompt is useful if you’re managing many different databases via UNIX. You can amend the prompt to reflect the
database you’re working on at any given time. For example, when you’re working in an inventory system, the
prompt can display invent>. That way, you won’t accidentally execute a command in the wrong database.

Finding Files and Directories
Sometimes you want to locate a file, but you aren’t sure where it might be located in the file system.
The whereis command, of course, is of help only if you are locating commands, not files. To find out
where a file or a directory is, you can use the find command, as shown here:

$ pwd
/u01/app/oracle
$ find . -name bill.sql -print
./dba/bill.sql
$

In this example, the find command informs you that the bill.sql file is located in the /u01/
app/oracle/dba directory. Note that there is a dot after the find keyword, indicating that a recursive
search is made from the present directory—every directory and subdirectory under the present
directory will be searched. If you want to search from a specific directory, you need to specify that
in the command. In the following example, the find command starts its search from the root (/)
file system and prints the location of the test.txt file to the screen, if it finds it:

$ find / -name test.txt -print

Controlling the Output of Commands
Sometimes a command will produce more output than can fit on the screen. You can control the
output of a command in a couple of ways.

The more command will show you the contents of a file, one screen at a time. Just press Enter to
see the next screen of the file:

$ more test.txt

The pipe command (|) enables you to pass the output of one command as input to another
command. In the following example, the | operator takes the ps -ef command’s output (which is
the list of all processes that are currently running on your system) and passes it to the grep com-
mand as a list, to search for all processes that contain the word “Oracle”:

$ ps -ef | grep Oracle

This example also demonstrates the use of multiple commands at once.

Showing the Contents of Files
As you know, you can use the vi editor to read a file as well as write to it. However, in some cases you
may want to just read the contents of a file. The cat command lets you do so, as shown here:

$ cat test.ksh
#!/bin/ksh
VAR1=1

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA52

4517CH03.qxd 8/19/05 10:28 AM Page 52

while [$VAR1 -lt 100]
do

echo "value of VAR1 is : $VAR1"
((VAR1=VAR1+1))

done
$

■Note You can also use the page command to peruse files.

Different or Same Files?
The diff command compares two files, returns the line(s) that are different, and tells you how to
make the files the same. Here’s an example:

$ diff test.one test.two
0a1
> New Test.

This diff command output tells you that if you add the line “New Test” to the test.one file, you
can make it identical to the test.two file. The first character, “0,” is the line number to edit in test.one;
the “a” indicates that the line should be added to test.one to match the first line, “1,” of test.two.

UNIX Variables
There are two main types of variables in a UNIX or Linux system: user-created variables and shell
variables. Let’s briefly look at how you use both kinds of variables.

User-Created Variables
A user can create a variable and initialize it by providing a value for it. The variable name must con-
sist of letters and numbers, and it must start with a letter. You can also use the export command to
export variables, so that any shell you create in your current session can make use of your variables.

Here’s an example of a user-created variable (note how echoing the variable itself prints just
the variable, not its value—to show the variable’s value, you must precede the variable’s name with
the $ sign in your echo command):

$ database=nicko
$ echo database
database
$ echo $database
nicko
$

In this example, I first created a new variable called database and assigned it the value of
“nicko”. I then used the echo command to print the value of the database variable, and the echo
command just prints the string “database”. The second time I used the echo command, I added the
dollar sign ($) in front of the name of the variable ($database). When I did this, the value of the vari-
able database was shown as “nicko”.

To remove the value of the database variable, simply set it to null, as shown here:

$ database=
$ echo $database
$

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA 53

4517CH03.qxd 8/19/05 10:28 AM Page 53

Shell Variables
Shell variables are variables whose values are set by the shell itself, instead of by a user. Shell vari-
ables are also called keyword variables, since short keywords are used to represent some of these
variables. When you first log into a UNIX system, you must make several bits of information avail-
able to the shell, such as the name of your home directory, the type of editor you prefer to use for
editing text, and the type of prompt you want the system to display while your session is active.
Each of these is determined by values assigned to shell variables. These are some common shell
variables:

• HOME: Identifies a user’s home directory.

• PATH: Specifies the directories in which the shell should look when it tries to execute any
command. It’s common to include both the binary (bin) directories for UNIX and Oracle
software as part of the PATH variable.

Fortunately, you don’t have to manually set up the environment every time you log into the
system. There is a file, named .profile or .login, depending on the type of UNIX shell you are using,
that automatically sets the environment variables for all users at login time. When you log in, the
shell will look in the appropriate file and establish the environment by setting the values of all shell
variables.

Using the export and setenv Commands
Both user-defined and shell variables are local to the process that declares them first. If you want
these variables to be accessible to a shell script that you want to execute from your login shell, you
need to explicitly make the variables available to the calling environment of the child process.

You can make a variable’s value available to child processes by using the export command in
the Korn and BASH shells. In the C shell, you use the setenv command to do the same thing. Here’s
an example that shows how to use the export command to make the value of a variable available to
a child process:

$ export ORACLE_HOME =/u03/app/oracle/product/10.2.0/orcl

The following sequence would achieve the same results as the preceding export command:

$ ORACLE_HOME =/u03/app/oracle/product/10.2.0/orcl
$ export ORACLE_HOME

In the C shell, you use the setenv command to set a variable’s value, as shown here:

$ setenv ORACLE_HOME= /u03/app/oracle/product/10.2.0/orcl

■Note UNIX programs and commands can be run in two entirely different ways: interactive mode is when you
log in and type your commands directly to the screen; batch mode is when you run your commands or an entire
program at once, usually by using executable shell scripts in the form of UNIX text files.

Displaying the Environment
Type env at the system prompt, and your entire set of environment variables will scroll by on the
screen. Here’s an example:

$ env
PATH=/usr/bin:/usr/ccs/bin:/user/config/bin

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA54

4517CH03.qxd 8/19/05 10:28 AM Page 54

ORACLE_PATH=/u01/app/oracle/admin/dba/sql
ORACLE_HOME=/u01/app/oracle/product/10.2.0/db_1
ORACLE_SID=prod1
TNS_ADMIN=/u01/app/oracle/product/network
TERM=vt100
$

To see the value of one specific environment variable, rather than the entire set (which can be
a fairly long list in a real-world production system), you can ask the shell to print the variable’s value
to the screen by using the echo command:

$ echo $ORACLE_HOME
/u01/app/oracle/product/10.2.0.0.0/db_1
$

Note that in the echo command, the $ precedes the environment name so that the command
will print the value of the variable, not the name of the variable itself.

Customizing Your Environment
Both the Bourne shell and the Korn shell use the .profile file to set the values for all shell variables.
The .profile file executes when you first log in to the UNIX or Linux system.

The C shell executes the .cshrc file every time you invoke a new C shell. The .cshrc file is a short
file with generic C shell commands that should work with any flavor of UNIX with only minor modi-
fications. This means that you could have essentially the same .cshrc file on all UNIX systems you
use. Your .cshrc file is executed whenever you open a terminal window in a UNIX or Linux environ-
ment, or when you execute a script. You can add commands in the .cshrc file (using a text editor like
vi) that will make your work in UNIX more productive. The C shell also executes the contents of the
.login file when you log in and start a new session. The .login file is located a user’s home directory;
for example, /home/oracle for the Oracle user on most UNIX systems.

Here’s a list of the various scripts executed under each of the main UNIX and Linux shells, to
set the shell’s environment:

• Bourne shell (sh): Only the .profile file is executed when a user logs in. The .profile file is
located in the user’s home directory.

• C shell (cshrc): The shell executes the .login file after it first executes the .cshrc file. When you
create a new shell after logging in, the .cshrc script is executed, but not the .login file.

• Korn shell (ksh): The .profile file in your home directory is executed.

• BASH shell (bash): The .bash_profile is executed at login time, and the .bashrc file is executed
when you start a new shell.

To change an environment variable permanently, you can edit the .profile or .login file and insert
the necessary values for a variable. For example, for the .login file you would add a line like this:

setenv VARIABLENAME value_of_variable

For the .profile file, you could add lines like the following:

VARIABLE=value_of_variable
EXPORT VARIABLE

The changes will come into effect the next time you log in or invoke an instance of the C shell.
You can change your environment immediately in the Bourne and Korn shells in order to effect
immediate environmental changes, by using the following command:

$. .profile

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA 55

4517CH03.qxd 8/19/05 10:28 AM Page 55

Similarly, you can use the source command in the C shell, to put the environment variable
changes into immediate effect:

$ source .cshrc

Input and Output Redirection in UNIX
When using a UNIX window on your PC or a UNIX workstation, the keyboard is the standard way to
input a command to the shell, and the terminal is the standard location for the output of the com-
mands. Any resulting errors are called standard errors and are usually displayed on the screen.

■Note It’s common to use the terms standard input, standard output, and standard error to refer to the standard
input and output locations in the UNIX shell.

However, you can also use a previously written file as input, or you can have UNIX send output
to a file instead of the screen. This process of routing your input and output through files is called
input and output redirection.

You can redirect output to a special location called /dev/null when you want to get rid of the
output. When you use /dev/null as the output location, all messages issued during the execution of
a program are simply discarded and not recorded anywhere on the file system. The following exam-
ple shows how redirecting a file’s output to /dev/null make its contents disappear.

$ cat testfile1
$ This is the first line of testfile1
$ cat testfile1 > /dev/null
$ cat /dev/null

In this example, the first cat command shows you the output of testfile1. However, after redi-
recting the cat command’s output to /dev/null, the output of the cat command disappears.

■Note Redirecting the output of the cat command tends to defeat the purpose of running the command in the
first place, but there will be other situations, such as when running a script, when you don’t want to see the output
of all the commands.

Table 3-2 summarizes the key redirection operators in most versions of UNIX.

Table 3-2. Input/Output Redirection in UNIX

Redirection Operator Description

< Redirects standard input to a command

> Redirects standard output to a file

>> Appends standard output to a file

<< Appends standard input to a file

2 > Redirects standard error

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA56

4517CH03.qxd 8/19/05 10:28 AM Page 56

In the following example, the date command’s output is stored in file1, and file2 in turn gets the
output of file1:

$ date > file1
$ file1 < file2

You can achieve the same result with the use of the UNIX pipe (|):

$ date | file2

The pipe command, which uses the pipe symbol (|), indicates that the shell takes the output of
the command before the | symbol and makes it the input for the command after the | symbol.

The noclobber Shell Variable
You can use the noclobber shell variable to avoid accidentally overwriting an existing file when you
redirect output to a file. It’s a good idea to include this variable in your shell start-up file, such as the
.cshrc file, as shown here:

set noclobber

Navigating Files and Directories in UNIX
As you might have inferred, files and directories in UNIX are pretty much the same as in the
Windows system. In this section, you’ll learn all about the UNIX file system and directory struc-
ture, and you’ll learn about the important UNIX directories. You’ll also learn some important
file-handling commands.

Files in the UNIX System
Files are the basic data storage unit on most computer systems, used to store user lists, shell scripts,
and so on. Everything in UNIX/Linux, including hardware devices, is treated as a file. The UNIX file
system is hierarchical, with the root directory, denoted by a forward slash (/), as the starting point at
the top.

■Tip In Oracle, everything is in a table somewhere; in UNIX, everything is in a file somewhere.

Files in a typical UNIX system can be one of the following three types:

• Ordinary files: These files can contain text, data, or programs. A file cannot contain another
file.

• Directories: Directories contain files. Directories can also contain other directories because
of the UNIX tree directory structure.

• Special files: These files are not used by ordinary users to input their data or text; rather, they
are for the use of input/output devices, such as printers and terminals. The special files are
called character special files if they contain streams of characters, and they are called block
special files if they work with large blocks of data.

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA 57

4517CH03.qxd 8/19/05 10:28 AM Page 57

Linking Files
You can use the link command to create a pointer to an existing file. When you do this, you aren’t
actually creating a new file as such; you are creating a virtual copy of the original by pointing a new
filename to an existing file. You use symbolic links when you want to conveniently refer to files from
a different directory, without having to provide their complete path. There are two types of links:
hard links and symbolic links. You can create hard links between files in the same directory, whereas
you can create symbolic links for any file residing in any directory. The previous example shows a
symbolic link. A hard link is usually employed to make a copy of a file, while a symbolic link merely
points to another file (or directory). When you manage Oracle databases, you often create symbolic
links for parameter files, so you can refer to them easily, without having to specify its complete path.

You use the following syntax when creating a symbolic link:

$ ln –s <current_filename> <link_name>

The following command creates a symbolic link called test.sql, which refers to the original file
called monitor.sql:

$ ln -s /u01/app/oracle/admin/dba/sql/monitor.sql /u01/app/oracle/test.sql

Once the test.sql symbolic link is created, the status of the new file can be checked from the
/u01/app/oracle directory, as shown here:

$ cd /u01/app/oracle
$ ls -altr test.sql
lrwxr-xr-x 1 oracle dba 41 Mar 30 10:13 test.sql ->
/u01/app/oracle/admin/dba/sql/monitor.sql
$

Managing Files
You can list files in a directory with the ls command. The command ls -al provides a long listing
of all the files, with permissions and other information. The command ls -altr gives you an
ordered list of all the files, with the newest or most recently edited files at the bottom. Here are
some examples:

$ ls
catalog.dbf1 tokill.ksh consumer
$ ll
total 204818
-rw-rw-r--- 1 oracle dba 104867572 Nov 19 13:23 catalog.dbf1
-rw-r------ 1 oracle dba 279 Jan 04 1999 tokill.ksh
drwrxr-xr-x 1 oracle dba 1024 Sep 17 11:29 consumer
$ ls -altr
-rw-r------ 1 oracle dba 279 Jan 04 1999 tokill.ksh
drwrxr-xr-x 1 oracle dba 1024 Sep 17 11:29 consumer
-rw-rw-r--- 1 oracle dba 104867572 Nov 19 13:23 catalog.dbf1
$

You can view the contents of a file by using the cat command, as shown in the following code
snippet. Later on, you’ll learn how to use the vi editor to view and modify files.

$ cat test.txt
This is a test file.
This file shows how to use the cat command.
Bye!
$

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA58

4517CH03.qxd 8/19/05 10:28 AM Page 58

But what if the file you want to view is very large? The contents would fly by on the screen in
an instant. You can use the more command to see the contents of a long file, one page at a time. To
advance to the next page, simply press the spacebar.

$ cat abc.txt | more

You can copy a file to a different location by using the cp command. Note that the cp command,
when used with the -I option, will prompt you before it overwrites a previously existing file of the
same name.

$ pwd
$ /u10/oradata
$ cp test.txt /u09/app/oracle/data
$ cp -i sqlnet.log output.txt
overwrite output.txt? (y/n) y

The mv command enables you to move the original file to a different location, change the file’s
name, or both. The following example uses the mv command to change the name of the test.txt file
to abc.txt:

$ ls
$ test.txt
$ mv test.txt abc.txt
$ ls
abc.txt

If you want to get rid of a file for whatever reason, you can use the rm command. Watch out,
though—the rm command will completely delete a file. To stay on the safe side, you may want to use
the rm command with the -i option, which gives you a warning before the file is permanently oblit-
erated. Be careful with the rm command, as it’s easy to inadvertently remove your entire file system
with it!

$ ls
abc.txt careful.txt catalog.txt sysinfo.txt
$ rm abc.txt
$ rm -i careful.txt
careful.txt: ? (y/n) y
$ ls
$ catalog.txt sysinfo.txt

Permissions: Reading from or Writing to Files in UNIX
A user’s ability to read from or write to files on a UNIX system depends on the permissions that have
been granted for that file by the owner of the file or directory—the user who creates a file is the
owner of that file.

Every file and directory comes with three types of permissions:

• Read: Lets you view the contents of the file only.

• Write: Lets you change the contents of the file. Write permission on a directory will let you
create, modify, or delete files in that directory.

• Execute: Lets you execute (run) the file if the file contains an executable program (script).

Read permission is the most basic permission. Having the execute permission without the read
permission is of no use—you can’t execute a file if you can’t read it in the first place.

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA 59

4517CH03.qxd 8/19/05 10:28 AM Page 59

Determining File Permissions
Use the ls -al command to list the file permissions along with the filenames in a directory. For
example, look at the (partial) output of the following command:

$ ls -al
-rwxrwxrwx 1 oracle dba 320 Jan 23 09:00 test.ksh
-rw-r---r- 1 oracle dba 152 Jul 18 13:38 updown.ksh
-rw-r---r- 1 oracle dba 70 Nov 22 01:30 tokill.ksh
$

You’ll notice that at the beginning of each line, each file has a combination of ten different
letters and the blank sign (-).

The first letter could be a blank or the letter d. If it is the letter d, then it’s a directory. If it’s a
blank, it’s a regular file.

The next nine spaces are grouped into three sets of the letters rwx. The rwx group refers to
the read, write, and execute permissions on that file. The first set of rwx indicates the permissions
assigned to the owner of the file. The second set lists the permissions assigned to the group the user
belongs to. The last set lists the permissions on that file granted to all the other users of the system.

For example, consider the access permissions on the following file:

$ -rwxr-x--x 1 oracle dba Nov 11 2001 test.ksh

Because the first character is a hyphen (-), this is a file, not a directory. The next three charac-
ters, rwx, indicate that the owner of the file test.ksh has all three permissions (read, write, and
execute) on the file. The next three characters, r-x, show that all the users who are in the same
group as the owner have read and execute permissions, but not write permissions. In other words,
they cannot change the contents of the file. The last set of characters, --x, indicates that all other
users on the system can execute the file, but they cannot modify it.

Setting and Modifying File Permissions
Any file that you create will first have the permissions set to -rw-r--r--. That is, everybody has
read permissions, and no user has permission to execute the file. If you put an executable program
inside the file, you’ll want to grant someone permission to execute the file. You can set the permis-
sions on the file by using the chmod command in one of two ways.

First, you can use the symbolic notation, with the letter o standing for owner, g for group, and u
for other users on the system. You grant a group or users specific permissions by first specifying the
entity along with a plus sign (+) followed by the appropriate symbol for the permission. In the fol-
lowing example, the notation go+x means that both the group and others are assigned the execute
(x) permission on the test.ksh shell script:

$ chmod go+x test.ksh

The next example shows how you can use symbolic notation to remove read and write permis-
sions on a file from the group:

$ chmod g-rw test.ksh

Second, you can use the octal numbers method to change file permissions. Each permission
carries different numeric “weights”: read carries a weight of 4, write a weight of 2, and execute a
weight of 1. To determine a permission setting, just add the weights for the permissions you want to
assign. The highest number that can be associated with each of the three different entities—owner,
group, and all others—is 7, which is the same as having read, write, and execute permissions on the
file. For example, consider the following:

$ ls

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA60

4517CH03.qxd 8/19/05 10:28 AM Page 60

$ chmod 777 test.txt
$ ls
$ -rwxrwxrwx 1 oracle dba 102 Nov 11 15:20 test.txt

The file test.txt initially had its file permissions set to 644 (rw, r, r.) The command chmod 777
assigned full permissions (read, write, and execute) to all three entities: owner, group, and all others.
If you want to change this so that only the owner has complete rights and the others have no per-
missions at all, set the octal number to 700 (read, write, and execute permissions for the owner, and
no permissions at all for the group or others) and use the chmod command as follows:

$ chmod 700 test.txt
$ ls -altr test.txt
-rwx------ 1 oracle dba 0 Mar 28 11:23 test.txt
$

Table 3-3 provides a short summary of the commands you can use to change file permissions.
By default, all files come with read and write privileges assigned, and directories come with read,
write, and execute privileges turned on.

Table 3-3. UNIX Permissions in Symbolic Notation and Octal Numbers

Symbolic Notation Octal Number Privilege Description

--- 0 No privileges

--x 1 Execute only

-w- 2 Write only

-wx 3 Write and execute, no read

r-- 4 Read only

r-x 5 Read and execute, no write

rw- 6 Read and write, no execute

rwx 7 Read, write, and execute (full privileges)

The UMASK environment variable determines the default file and directory permissions. Issue
the following command to see the current defaults on your server:

$ umask
022

When you create a new file, it’ll have the default permissions allowed by the UMASK variable. In
the preceding example, the UMASK is shown to be 022, meaning that the group and others don’t have
write permissions by default on any new file that you create.

Changing the Group
You can change the group a file belongs to by using the chgrp command. You must be the owner of
the file to change the group, and you can change the file’s group only to a group that you belong to.
Here’s how you use the chgrp command:

$ chgrp groupname filename

Directory Management
There are several important directory commands that enable you to create, move, and delete

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA 61

4517CH03.qxd 8/19/05 10:28 AM Page 61

The mkdir command lets you create a new directory:

$ mkdir newdir

You can use the mkdir command with the -p option to create any necessary intermediate direc-
tories if they don’t already exist. The following example creates the directory /u01/, the directory
/u01/app, and the directory /u01/app/oracle, all with a single command:

$ mkdir -p /u01/app/oracle

The command for removing directories is not the same as the command for removing files. To
remove a directory, you can use the rmdir command, as in the following example (but first make
sure you have removed all the files in the directory using the rm command):

$ rmdir testdir

The rmdir command only removes empty directories. To remove a directory that contains files,
use the rm command with the -R (or -r) option. This command will recursively delete the entire
contents of a directory before removing the directory itself:

$ rmdir -r newdir

To move around the UNIX hierarchical directory structure, use the cd command (which stands
for “change directory”).

$ pwd
/u01/app/oracle
$ cd /u01/app/oracle/admin
$ cd /u01/app/oracle
$ cd admin
$ pwd
/u01/app/oracle/admin
$

Notice that you can use the cd command with the complete absolute path or with the shorter
relative path. You can also use it to change to a directory that is indicated by an environment vari-
able. For example, cd $ORACLE_HOME will change your current directory to the directory that happens
to be the location for ORACLE_HOME.

Important UNIX Directories
There are several directories that you’ll regularly come across when you’re using the UNIX system as
a DBA:

• /etc: The /etc directory is where the system administrator keeps the system configuration
files. Important files here pertain to passwords (etc/passwd) and information concerning
hosts (etc/hosts).

• /dev: The /dev directory contains device files, such as printer configuration files.

• /tmp: The /tmp directory is where the system keeps temporary files, possibly including the
log files of your programs. Usually you’ll have access to write to this directory.

• home: The home directory is the directory assigned to you by your UNIX administrator when
he or she creates your initial account. This is where you’ll land first when you log in. You own
this directory and have the right to create any files you want here. To create files in other
directories, or even to read files in other directories, you have to be given permission by the
owners of those directories.

• root: The root directory, denoted simply by a forward slash (/), is owned by the system
eelike directory structure.

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA62

4517CH03.qxd 8/19/05 10:28 AM Page 62

Writing and Editing Files with the vi Editor
The vi editor is commonly used to write and edit files in the UNIX system. To the novice, the vi edi-
tor looks very cryptic and intimidating, but it need not be intimidating. In this section, you’ll learn
how to use the vi editor to create and save files. You’ll find that vi really is a simple text editor, with
many interesting and powerful features.

Creating and Modifying Files Using vi
You start vi by typing vi or, better yet, by typing vi filename to start up the vi editor and show the
contents of the filename file on the screen. If the file doesn’t exist, vi allocates a memory buffer for
the file, and you can later save the contents into a new file.

Let’s assume you want to create and edit a new file called test.txt. When you type the command
vi test.txt, the file will be created and the cursor will blink, but you can’t start to enter any text yet
because you aren’t in the input mode. All you have to do to switch to input mode is type the letter i,
which denotes the “insert” or “input” mode. You can start typing now just as you would in a normal
text processor.

■Note If you need to create a file but don’t want to enter any data into it, you can simply create a file with the
touch command. If you use the touch command with a new filename as the argument, touch simply creates an
empty file where none previously existed (unless you specify the -c flag). If you use an existing filename as the
argument to the touch command, the last-accessed time of the file is changed to the time when the touch
command was run. Here’s an example:

touch program.one

This command sets the last access and modification times of the program.one file to the current date and time.
If the program.one file does not exist, the touch command will create a file with that name.

Table 3-4 shows some of the most basic vi navigation commands, which enable you to move
around within files.

Table 3-4. Basic vi Navigation Commands

Command Description

h Move a character to the left.

l Move a character to the right.

j Move a line down.

k Move a line up.

w Go to the beginning of the next word.

b Go to the beginning of the previous word.

$ Go to the end of the current line.

^ Go to the start of the current line.

:G Go to the end of the file.

:1 Go to the top of the file.

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA 63

4517CH03.qxd 8/19/05 10:28 AM Page 63

In addition to the cursor-movement commands, there are numerous vi text-manipulation
commands, but unless you are a full-time system administrator or a UNIX developer, the average
DBA can get by nicely with the few text commands summarized in Table 3-5.

Table 3-5. Important vi Text-Manipulation Commands

Command Description

i Start inserting from the current character.

a Start inserting from the next character.

o Start inserting from a new line below.

O Start inserting from a new line above.

x Delete the character where the cursor is.

dd Delete the line where the cursor is.

r Replace the character where the cursor is.

/text Search for a text string.

:s/old/new/g Replace (substitute) a text string with a new string.

yy Yank or move a line.

p Paste a copied line after the current cursor.

P Paste a copied line above the current cursor.

:wq Save and quit.

:q Exit and discard changes.

For further information on vi navigation and text manipulation commands, you can always
look up a good reference, such as A Practical Guide to the UNIX System by Mark Sobell (Addison
Wesley).

Moving Around with the head and tail Commands
The head and tail UNIX file commands help you get to the top or bottom of a file. By default, they
will show you the first or last ten lines of the file, but you can specify a different number of lines in
the output, by specifying a number next to the head or tail command. The following example
shows how you can get the first five lines of a file (the /etc/group file, which shows all the groups
on the UNIX server):

$ head -5 /etc/group
root::0:root
other::1:root,hpdb
bin::2:root,bin
sys::3:root,uucp
adm::4:root
$

The tail command works in the same way, but it displays the last few lines of the file. The
tail command is very useful when you are performing a task like a database software installation,
because you can use it to display the progress of the installation process and see what’s actually
happening.

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA64

4517CH03.qxd 8/19/05 10:28 AM Page 64

OTHER EDITORS

In addition to the UNIX vi editor, there are several other alternatives you can use, including pico, sed, and Emacs.
Most are simple text editors that you can use in addition to the more popular vi editor. It’s worth noting that Emacs
works well in graphical mode when you use the X Window System, and there are also specific editors for X, such
as dtpad. Some useful information on the various UNIX editors can be found at http://www.helpdesk.umd.edu/
systems/wam/general/1235/.

Vim (or Vi improved) is an enhanced clone, if you will, of vi, and it is one of the most popular text editors
among Linux administrators. You can download Vim from http://www.vim.org/download.php. For an excellent
introduction to the Vim editor and its use with SQL*Plus, see David Kalosi’s article “Vimming With SQL*Plus” at
http://www.oracle.com/technology/pub/articles/kalosi_vim.html.

Extracting and Sorting Text
The cat and more utilities that you’ve seen earlier in the “Overview of Basic UNIX Commands” sec-
tion, dump the entire contents of a text file onto the screen. If you want to see only certain parts of a
file, however, you can use text-extraction utilities. Let’s look at how you can use some of the impor-
tant text-extraction tools.

Using grep to Match Patterns
I described the grep command briefly earlier in the chapter—you use the grep command to find
matches for certain patterns in a string, using regular expressions. (For a good introduction to
regular expressions, see the tutorial at http://www.regular-expressions.info/tutorial.html.) The
word grep is an acronym for “global regular expression print,” and it is derived from the following
vi command, which prints all lines matching the regular expression re.

g/re/p

You can think of regular expressions as the search criteria used for locating text in a file; grep is
thus similar to the find command in other operating systems. grep searches through each line of the
file (or files) for the first occurrence of the given string, and if it finds that string, it prints the line.
For example, to output all the lines that contain the expression “oracle database” in the file test.txt,
you use the grep command in the following way:

$ grep 'oracle database' test.txt

In order to output all lines in the test.txt file that don’t contain the expression “oracle database”,
you use the grep command with the -v option, as shown here:

$ grep -v 'oracle database' test.txt

In addition to the -v option, you can use the grep command with several other options:

-c Prints a count of matching lines for each input file

-l Prints the name of each input file

-n Supplies the line number for each line of output

-i Ignores the case of the letters in the expression

In addition to grep, you can use fgrep (fixed grep) to search files. The fgrep command doesn’t
use regular expressions. The command performs direct string comparisons, to find matches for a
fixed string, instead of a regular expression.

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA 65

4517CH03.qxd 8/19/05 10:28 AM Page 65

The egrep version of grep helps deal with complex regular expressions, and is faster than the
regular grep command.

Cutting, Pasting, and Joining Text
Often, you need to strip part of a file’s text or join text from more than one file. UNIX provides great
commands for performing these tasks, as I show in the following sections.

Outputting Columns with the cut Command
The cut command will output specified columns from a text file. Let’s say you have a file named
example.txt with the following text:

one two three
four five six
seven eight nine
ten eleven twelve

You can specify the fields you want to extract with the -f option. The following command will
return just the second column in the example.txt file:

$ cut -f2 example.txt
two
five
eight
eleven

You use the -c option with the cut command to specify the specific characters you want to
extract from a file. The following two commands extract the tenth character and then characters
10–12 from the password.txt file:

$ password.txt | cut -c10
$ password.txt | cut -c10-12

You can use the -d option in tandem with the -f option to extract characters up to a specified
delimiter. The following example specifies that the cut command extract the first field (f1) of the
passwd file, with the -d option specifying that the field is delimited by a colon (:). (The passwd
file, located in the /etc directory, is where UNIX and Linux systems keep their user account
information.)

$ cut -d":" -f1 /etc/passwd
root
daemon
bin
sys
adm
uucp
mail

Joining Files with the paste Command
The paste command takes one line from one source and combines it with another line from another
source. Let’s say you have two files: test1.txt contains the string “one two three” and test2.txt contains
“one four five six”. You can use the paste command to combine the two files as shown here:

$ paste test1.txt test2.txt
one two three one four five six

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA66

4517CH03.qxd 8/19/05 10:28 AM Page 66

Joining Files with the join Command
The join command will also combine the contents of two files, but it will work only if there is a
common field between the files you are joining. In the previous section, test1.txt and test2.txt don’t
have a common column, so using the join command with those two files won’t produce any out-
put. However, suppose you have two files, test.one and test.two, with their contents as follows:

test.one test.two
11111 Dallas 11111 High Tech
22222 Houston 22222 Oil and Energy

By default the join command looks only at the first fields for matches, so it will give you the fol-
lowing result, based on the common (first) column:

$ join test.one test.two
11111 Dallas High Tech
22222 Houston Oil and Energy

The -1 option lets you specify which field to use as the matching field in the first file, and the
-2 option lets you specify which field to use as the matching field in the second file. For example,
if the second field of the first file matches the third field of the second file, you would use the join
command as follows:

$ join -1 2 -2 3 test.one test.two

You use the -o option to specify output fields in the following format: file.field. Thus, to print
the second field of the first file and the third field of the second file on matching lines, you would
use the join command with the following options:

$ join -o 1.2 2.3 test.one test.two

Sorting Text with the sort Command
You can sort lines of text files, whether from a pipe or from a file, using the sort command. If you
use the -m option, sort simply merges the files without sorting them. Let’s say you have a file called
test.txt with the following contents:

$ cat test.txt
yyyy
bbbb
aaaa
nnnn

By using the sort command, you can output the contents of the test.txt file in alphabetical
order:

$ sort test.txt
aaaa
bbbb
nnnn
yyyy

By default, sort operates on the first column of the text.

Removing Duplicate Lines with the uniq Command
The uniq command removes duplicate lines from a sorted file. This command often follows the sort
command in a pipe. By using the -c option, it can be used to count the number of occurrences of a
line, or by using the -d option, it can report only the duplicate lines.

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA 67

4517CH03.qxd 8/19/05 10:28 AM Page 67

$ sort -m test.one test.two | uniq -c
1 New test.
2 Now testing
1 Only a test.

In the preceding example, the sort command merges the two files, test.one and test.two,
using the -m option. The output is piped to the uniq command with the -c option. What you get is
an alphabetized list, with all duplicate lines removed. You also get the frequency of occurrence of
each line.

Shell Scripting
Although the preceding commands and features are useful for day-to-day work with UNIX, the real
power of this operating system comes from the user’s ability to create shell scripts. In this section,
you’ll start slowly by building a simple shell program, and you’ll proceed to build up your confi-
dence and skill level as you move along into branching, looping, and all that good stuff.

What Is a Shell Program?
A shell script (or shell program) is simply a file containing a set of commands. The shell script looks
just like any regular UNIX file, but it contains commands that can be executed by the shell. Although
you’ll learn mostly about Korn shell programming here, Bourne and C shell programming are similar
in many ways. If you want to make the Korn shell your default shell, ask your system administrator to
set it up by changing the shell entry for your username in the /etc/passwd file.

Before you begin creating a shell program, you should understand that shell programs don’t
contain any special commands that you can’t use at the command prompt. In fact, you can type any
command in any shell script at the command prompt to achieve the same result. All the shell pro-
gram does is eliminate the drudgery involved in retyping the same commands every time you need
to perform a set of commands together. Shell programs are also easy to schedule on a regular basis.

Using Shell Variables
You learned earlier in this chapter how shell variables are used to set up your UNIX environment.
It’s common to set variables within shell programs, so that these variables will hold their values for
as long as the shell program executes.

If you’re running the shell program manually, you can set the shell variables in the session
you’re using, and there’s really no need for separate specification of shell variables in the shell pro-
gram. However, you won’t always run a shell program manually—that defeats the whole purpose of
using shell programs in the first place. Shell programs are often run as part of the cron job, and they
could be run from a session that doesn’t have all the environmental variables set correctly. By set-
ting shell variables in the program, you can make sure you’re using the right values for key variables
such as PATH, ORACLE_SID, and ORACLE_HOME.

Evaluating Expressions with the test Command
In order to write good shell scripts, you must understand how to use the test command. Most
scripts involve conditional (if-then, while-do, until-do) statements. The test command helps in
determining whether a certain condition is satisfied or not.

The test command evaluates an expression and returns a 0 value if the condition is true;
otherwise it returns a value greater than 0, usually 1.

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA68

4517CH03.qxd 8/19/05 10:28 AM Page 68

The syntax for the test command is as follows:

test expression

You can use the test command in conjunction with the if, while, or until constructs or use it
by itself to evaluate any expression you like. Here is an example:

$ test "ONE" = "one"

This statement asks the test command to determine whether the string “ONE” is the same as
the string “one”.

You can use the test command in the implicit form (with an alias), by using square brackets
instead of the test command, as shown here:

$ ["ONE" = "one"]

To find out whether the test command (or its equivalent, the square brackets) evaluated the
expression “ONE” = “one” to be true or false, remember that if the result code (same as exit code)
is 0, the expression is true, and otherwise it is false. To find the result code, all you have to do is use
the special variable ?$, which will show you the exit code for any UNIX or Linux command. In our
case, here is the exit code:

$ test "ONE" = "one"
$ echo $?
0

You can use exit codes in your shell scripts to check the execution status of any commands you
use in the script.

You can use the following relations with the test command while comparing integers:

-ne: not equal

-eq: equal

-lt: less than

-gt: greater than

-ge: greater than or equal to

-le: less than or equal to

Executing Shell Programs with Command-Line Arguments
It’s common to use arguments to specify parameters to shell programs. For example, you can run
the shell program example.ksh as follows:

$ example.ksh prod1 system

In this case, example.ksh is your shell script, and the command-line arguments are prod1, the
database name, and system, the username in the database. There are two arguments inside the shell
script referred to as $1 and $2, and these arguments correspond to prod1 and system.

UNIX uses a positional system, meaning that the first argument after the shell script’s name is
the variable $1, the second argument is the value of the variable $2, and so on. Thus, whenever
there’s a reference to $1 inside the shell script, you know the variable is referring to the first argu-
ment (prod1, the database name, in this example).

By using command-line arguments, the script can be reused for several database and user-
name combinations—you don’t have to change the script.

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA 69

4517CH03.qxd 8/19/05 10:28 AM Page 69

Analyzing a Shell Script
Let’s look at a simple database-monitoring shell script, example.ksh. This script looks for a certain
file and lets you know if it fails to find it. The script uses one command-line argument to specify the
name of the database. You therefore will expect to find a $1 variable in the script.

When the shell program is created, UNIX has no way of knowing it’s an executable program.
You make your little program an executable shell script by using the chmod command:

$ ll example.ksh
-rw-rw-rw- 1 salapati dba 439 feb 02 16:51 example.ksh
$ chmod 766 example.ksh
$ ll example.ksh
4-rwxrw-rw- 1 salapati dba 439 feb 02 16:52 example.ksh
$

You can see that when the script was first created, it wasn’t executable, because it didn’t have
the execution permissions set for anyone. By using the chmod command, the execution permission
is granted to the owner of the program, salapati, and now the program is an executable shell script.

Here is the example.ksh shell script, which looks for a certain file in a directory and sends out
an e-mail to the DBA if the file is not found there:

#!/bin/ksh
ORACLE_SID=$1Export ORACLE_SID
PATH=/usr/bin:/usr/local/bin:/usr/contrib./bin:$PATH
export PATH
ORACLE_BASE=${ORACLE_HOME}/../..;
export ORACLE_BASE
export CURRDATE='date +%m%dY_%H%M'
export LOGFILE=/tmp/dba/dba.log
test -s $ORACLE_HOME/dbs/test${ORACLE_SID}.dbf
if ['echo $?' -ne 0]
then

echo "File not found!"
mailx -s "Critical: Test file not found!" dba@bankone.com < $LOGFILE
fi

Let’s analyze the example.txt shell script briefly. The first line in the program announces that
this is a program that will use the Korn shell—that’s what #!/bin/ksh at the top of the script indi-
cates. This is a standard line in all Korn shell programs (and programs for other shells have
equivalent lines).

In the next line, you see ORACLE_SID being assigned the value of the $1 variable. Thus, $1 will be
assigned the value of the first parameter you pass with the shell program at the time of execution,
and that value will be given to ORACLE_SID. The script also exports the value for the ORACLE_BASE
environment variable.

Next, the program exports the values of three environmental variables: PATH, CURRDATE, and
LOGFILE.

Then the script uses the file-testing command, test, to check for the existence of the file
testprod1.dbf (where prod1 is the value of ORACLE_SID) in a specific location. In UNIX, the success
of a command is indicated by a value of 0 and failure is indicated by 1; you’ll also recall that
echo $?variable_name will print the value of the variable on the screen. Therefore, the next line,
if ['echo $? ' -ne 0], literally means “if the result of the test command is negative” (which is
the same as saying, “if the file doesn’t exist”). If that’s the case, the then statement will write “File not
found” in the log file.

The then statement also uses the mail program to e-mail a message to the DBA saying that the
required file is missing. The mail program lets you send mail to user accounts on another UNIX
server or to a person’s e-mail address.

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA70

4517CH03.qxd 8/19/05 10:28 AM Page 70

All you have to do to run or execute this shell script is simply type the name of the script at the
command prompt, followed by the name of the database. For this simple method to work, however,
you must be in the Korn shell when you run the script.

Now that you’ve learned the basics of creating shell scripts, let’s move on to some powerful but
still easy techniques that will help you write more powerful shell programs.

Flow-Control Structures in Korn Shell Programming
The Korn shell provides several flow-control structures similar to the ones found in regular program-
ming languages, such as C or Java. These include the conditional structures that use if statements
and the iterative structures that use while and for statements to loop through several steps based on
certain conditions being satisfied. Besides these flow-control structures, you can use special com-
mands to interrupt or get out of loops when necessary.

Conditional Branching
Branching constructs let you instruct the shell program to perform alternative tasks based on
whether a certain condition is true or not. For example, you can tell the program to execute a par-
ticular command if a certain file exists and to issue an error message if it doesn’t. You can also use
the case structure to branch to different statements in the program depending on the value a vari-
able holds.

In the following sections, you’ll look at an example that shows the use of a simple conditional
branching expression, and you’ll look at another example that uses the case command.

The if-then-else Control Structure

The most common form of conditional branching in all types of programming is the if-then-else-fi
structure. This conditional structure will perform one of two or more actions, depending on the
results of a test.

The syntax for the if-then-else-fi structure is as follows:

if condition
then

Action a
else

Action b
fi

Make sure that the then is on the second line. Also, notice that the control structure ends in fi
(which is if spelled backwards).

Here’s an example of the if-then-else-fi structure:

#!/usr/bin/sh
LOGFILE= /tmp/dba/error.log
export LOGFILE
grep ORA- $LOGFILE > job.err

if [`cat job.err|wc -l` -gt 0]
then

mailx -s "Backup Job Errors" salapati@netbsa.org < job.err
else mailx -s " Backup Job Completed Successfully" salapati@netbsa.org

fi

This script checks to see whether there are any errors in an Oracle backup job log. The script
uses the mailx program, a UNIX-based mail utility, to send mail to the DBA. The -s option of the
mailx utility specifies the subject line for the e-mail. The contents of the job.err file will be sent as

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA 71

4517CH03.qxd 8/19/05 10:28 AM Page 71

Looping
In real-world programming, you may want to execute a command several times based on some
condition. UNIX provides several loop constructs to enable this, the main ones being the
while-do-done loop, which executes a command while a condition is true; the for-do-done loop,
which executes a command a set number of times; and the until-do-done loop, which performs
the same command until some condition becomes true.

The next sections examine these three loop structures in more detail.

A while-do-done Loop

The while-do-done loop tests a condition each time before executing the commands within the loop.
If the test is successful, the commands are executed. If the test is never successful, the commands
aren’t executed even once. Thus, the loop ensures that the commands inside the loop get executed
“while” a certain condition remains true.

Here’s the syntax for the while-do-done loop:

while condition
do

commands
done

In the following example of the while-do-done loop, note that the command inside the loop
executes 99 times (the lt relation ensures that as long as the value of the variable VAR1 is less than
100, the script will echo the value of the variable):

#!/usr/bin/ksh
VAR1=1
while [$VAR1 -lt 100]
do

echo "value of VAR1 is: $VAR1"
((VAR1 =VAR1+1))

done

A for-do-done Loop

You can use the for-do-done loop when you have to process a list of items. For each item in the list,
the loop executes the commands within it. Processing will continue until the list elements are
exhausted.

The syntax of the for-do-done loop is as follows:

for var in list
do

commands
done

Here’s an example of a for-do-done loop (the for command uses the letter F as a variable to
process the list of files in a directory):

#!/usr/bin/sh
this loop gives you a list of all files (not directories)
in a specified directory.
for F in /u01/app/oracle
do

if [-f $F]
then

ls $F
fi

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA72

4517CH03.qxd 8/19/05 10:28 AM Page 72

An until-do-done Loop

An until-do-done loop executes the commands inside the loop until a certain condition becomes
true. The loop executes as long as the condition remains false.

Here’s the general syntax for the until-do-done loop:

until condition
do

commands
done

The following is a simple example that shows how to use the until-do-done loop. The print
command outputs the sentence within the quotes on the screen. The -n option specifies that the
output should be placed on a new line. The UNIX command read will read a user’s input and place
it in the answer variable. The script then will continue to run until the user inputs the answer “YES”:

until [[$answer = "yes"]];do
print -n "Please accept by entering \"YES\": "
read answer
print ""

done

Branching with the case Command
The case structure is quite different from all the other conditional statements. This structure lets the
program branch to a segment of the program based on the value of a certain variable. The variable’s
value is checked against several patterns, and when the patterns match, the commands associated
with that pattern will be executed.

Here’s the general syntax of the case command:

case var in
pattern1)

commands
;;

pattern2)
commands
;;

...
patternn)

commands
;;

esac

Note that the end of the case statement is marked by esac (which is case spelled backwards).
Here’s a simple example that illustrates the use of the case command:

#!/usr/bin/sh
echo " Enter b to see the list of books"
echo " Enter t to see the library timings"
echo " Enter e to exit the menu"
echo
echo "Please enter a choice": \c"
read VAR
case $VAR in
b/B) book.sh

;;
t/T) times.sh

;;

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA 73

4517CH03.qxd 8/19/05 10:28 AM Page 73

e/E) logout.sh
;;

*) echo " "wrong Key entry: Please choose again"
esac

Dealing with UNIX Processes
When you execute your shell program, UNIX creates an active instance of your program, called the
process. UNIX also assigns your process a unique identification number, called the process ID (PID).
As a DBA, you need to know how to track the processes that pertain to your programs and the data-
base instance that you are managing.

Gathering Process Information with ps
The ps command, with its many options, is what you’ll use to gather information about the cur-
rently running processes on your system. The ps -ef command will let you know the process ID,
the user, the program the user is executing, and the length of the program’s execution.

In the following example, the ps -ef command is issued to display the list of processes, but
because the list is going to be very long, the pipe command is used to filter the results. The grep
command ensures that the list displays only those processes that contain the word “pmon”. The
pmon process is an essential Oracle background process, and I explain it in Chapter 4. The output
indicates that three different Oracle databases are currently running:

$ ps -ef | grep pmon
oracle 10703 1 0 09:05:39 ? 0.00 ora_pmon_test
oracle 18655 1 0 09:24:00 ? 0.00 ora_pmon_prod1
oracle 10984 1 0 09:17:50 ? 0.00 ora_pmon_finance
$

Running Processes after Logging Out
Sometimes, you may want to run a program from a terminal, but you then need to log out from it
after a while. When you log out, a “hangup” signal is sent to all the processes you started in that ses-
sion. To keep the programs you are executing from terminating abruptly when you disconnect, you
can run your shell programs with the nohup option, which means “no hang up.” You can then dis-
connect, but your (long) program will continue to run.

Here’s how you specify the nohup option for a process:

$ nohup test.ksh

Running Processes in the Background
You can start a job and then run it in the background, returning control to the terminal. The way
to do this is to specify the & parameter after the program name, as shown in the following example
(you can use the ps command to see if your process is still running, by issuing either the ps -ef or
ps -aux command):

$ test.ksh &
[1] 27149
$

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA74

4517CH03.qxd 8/19/05 10:28 AM Page 74

You can also put a currently running job in the background, by using the Ctrl+Z sequence. This
will suspend the job and run it in the background. You can then use the command fg%jobnumber to
move your backgrounded job back into the foreground.

Terminating Processes with the kill Command
Sometimes you’ll need to terminate a process because it’s a runaway or because you ran the wrong
program. In UNIX, signals are used to communicate with processes and to handle exceptions. To
bring a UNIX process to an abrupt stop, you can use the kill command to signal the shell to termi-
nate the session before its conclusion. Needless to say, mistakes in the use of the kill command
can prove disastrous.

■Note Although you can always kill an unwanted Oracle user session or a process directly from UNIX itself, you’re
better off always using Oracle’s methods for terminating database sessions. There are a couple of reasons for this.
First, you may accidentally wipe out the wrong session when you exit from the UNIX operating system. Second,
when you’re using the Oracle shared server method, a process may have spawned several other processes, and
killing the operating system session could end up wiping out more sessions than you had intended.

There is more than one kill signal that you can issue to terminate any particular process. The
general format of the kill command is as follows:

kill -[signal] PID

The signal option after the kill command specifies the particular signal the kill command
will send to a process, and PID is the process ID of the process to be killed. To kill a process grace-
fully, you send a SIGTERM signal to the process, using either the signal’s name or number. Either
of the following commands will kill the process with a PID of 21427:

$ Kill -SIGTERM 21427
$ Kill -15 21427

If your SIGTERM signal, which is intended to terminate a process gracefully, doesn’t succeed in
terminating the session, you can send a signal that will force the process to die. To do this, use the
kill -9 signal:

$ kill -9 21427

UNIX System Administration and the Oracle DBA
It isn’t necessary for you to be an accomplished system administrator to manage your database,
but it doesn’t hurt to know as much as possible about what system administration entails. Most
organizations hire UNIX system administrators to manage their systems, and as an Oracle DBA,
you’ll need to interact closely with those UNIX system administrators. Although the networking and
other aspects of the system administrator’s job may not be your kettle of fish, you do need to know
quite a bit about disk management, process control, and backup operations. UNIX system adminis-
trators are your best source of information and guidance regarding these issues.

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA 75

4517CH03.qxd 8/19/05 10:28 AM Page 75

UNIX Backup and Restore Utilities
Several utilities in UNIX make copies or restore files from copies. Of these, the dd command per-
tains mainly to the so-called raw files. Most of the time, you’ll be dealing with UNIX file systems,
and you’ll need to be familiar with two important archiving facilities—tar and cpio—to perform
backups and restores. Tar is an abbreviation for “tape file archiver,” and was originally designed to
write to tapes. Cpio stands for “copy input and output.” Other methods such as fbackup/frecover,
dump/restore, and xdump/vxrestore exist, but they are mainly of interest to UNIX administrators.
You most likely will use the tar and cpio commands to perform backups. The tar command can
copy and restore archives of files using a tape system or a disk drive. By default, tar output is placed
on /dev/rmt/Om, which refers to a tape drive.

The following tar command will copy the data01.dbf file to a tape, which is specified in the
format /dev/rmt/0m. The -cvf option creates a new archive (the hyphen is optional). The c option
asks tar to create a new archive file, and the v option stands for verbose, which specifies that the
files be listed as they are being archived:

$ tar -cvf /dev/rmt/0m /u10/oradata/data/data01.dbf

The following tar command will extract the backed-up files from the tape to the specified
directory:

$ tar -xvf/dev/rmt/0m /u20/oradata/data/data01.dbf

The x option asks tar to extract the contents of the specified file. The v and f options have the
same meanings as in the previous example.

The cpio command with the -o (copy out) option copies files to standard output, such as disk
or tape. The following command will copy the contents of the entire current directory (all the files)
to the /dev/rmt/0m tape:

$ ls | cpio -0 > /dev/rmt/0m

The cpio command with the -i (copy in) option extracts files from standard input. The follow-
ing command restores all the contents of the specified tape to the current directory:

$ cpio -i < /dev/rmt/0m

The crontab and Automating Scripts
Most DBAs will have to schedule their shell programs and other data-loading programs for regular
execution by the UNIX system. UNIX provides the cron table, or crontab, to schedule database
tasks. In this section, you’ll learn how to schedule jobs with this wonderful, easy-to-use utility.

You can invoke the crontab by typing in crontab -l. This will give you a listing of the contents
of crontab. To add programs to the schedule or change existing schedules, you need to invoke
crontab in the edit mode, as shown here:

$ crontab -e

Each line in the crontab is an entry for a regularly scheduled job or program, and you edit the
crontab the same way you edit any normal vi-based file. Each line in the /etc/crontab file represents
a job that you want to execute, and it has the following format:

Minute hour day month day of week command

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA76

4517CH03.qxd 8/19/05 10:28 AM Page 76

The items in the crontab line can have the following values:

• minute: Any integer from 0 to 59

• hour: Any integer from 0 to 23

• day: Any integer from 1 to 31 (this must be a valid date if a month is specified)

• month: Any integer from 1 to 12 (or the short name of the month, such as jan or feb)

• day of week: Any integer from 0 to 7, where 0 and 7 represent Sunday, 1 is Saturday, and so on

• command: The command you want to execute (this is usually a shell script)

Here’s a simple example of a crontab line:

#--
minute hour date month day of week command
30 18 * * 1-6 analyze.ksh
#---

The preceding code indicates that the program analyze.ksh will be run Monday through Sat-
urday at 6:30 PM. Once you edit the crontab and input the lines you need to run your commands,
you can exit out of cron by pressing Shift+wq, just as you would in a regular vi file. You now have
“cronned” your job, and it will run without any manual intervention at the scheduled time.

It’s common practice for DBAs to put most of their monitoring and daily data-load jobs in the
crontab for automatic execution. If crontab comes back with an error when you first try to edit it,
you need to talk to your UNIX system administrator and have appropriate permissions granted.

■Note You’ll use crontab for all your regularly scheduled database or operating system jobs, but if you want to
schedule a task for a single execution, you can use the at or batch command instead. Look up the man pages for
more information on these two scheduling commands.

Using Telnet
Telnet is an Internet protocol for accessing remote computers from your PC or from another UNIX
server or workstation. Your machine simply needs to be connected to the target machine through
a network, and you must have a valid user account on the computer you are connecting to. To use
telnet on your PC, for example, go to the DOS prompt and type telnet. At the telnet prompt, type
in either the UNIX server’s IP address or its symbolic name, and your PC will connect to the server.
Unless you are doing a lot of file editing, telnet is usually all you need to connect and work with a
UNIX server, in the absence of a terminal emulator.

The following example session shows a connection being made to and disconnection from a
server named hp50. Of course, what you can do on the server will depend on the privileges you have
on that machine.

$ telnet hp5
Trying...
Connected to hp5.netbsa.org.
Escape character is '^]'.
Local flow control on
Telnet TERMINAL-SPEED option ON
login: oracle
Password:
Last successful login for oracle: Tue Nov 5 09:39:45
CST6CDT 2002 on tty

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA 77

4517CH03.qxd 8/19/05 10:28 AM Page 77

Last unsuccessful login for oracle: Thu Oct 24 09:31:17
CST6CDT 2002 on tty
Please wait...checking for disk quotas
...
You have mail.
TERM = (dtterm)
oracle@hp5[/u01/app/oracle]
$

Once you log in, you can do everything you are able to do when you log directly into the server
without using telnet.

You log out from your telnet session in the following way:

$ exit
logout
Connection closed by foreign host.
$

Remote Login and Remote Copy
Rlogin is a UNIX service that’s very similar to telnet. Using the rlogin command, you can log in to
a remote system just as you would using the telnet utility. Here is how you can use the rlogin com-
mand to remotely log in to the server hp5:

$ rlogin hp5

You’ll be prompted for a password after you issue the preceding command, and upon the vali-
dation of the password, you’ll be logged in to the remote server.

To copy files from a server on the network, you don’t necessarily have to log in to that machine
or even use the FTP service. You can simply use the rcp command to copy the files. For example, to
copy a file named /etc/oratab from the server hp5 to your client machine (or to a different server),
you would use the rcp command as follows:

$ rcp hp5:/etc/oratab/ .

The dot in the command indicates that the copy should be placed in your current location.
To copy a file called test.txt from your current server to the /tmp directory of the server hp5,

you would use the rcp command as follows:

$ rcp /test/txt hp5:/tmp

Using SSH, the Secure Shell
The secure shell, SSH, is a protocol like Telnet that enables remote logins to a system. The big differ-
ence between the ssh command (which uses the SSH protocol) and rlogin is that SSH is a secure
way to communicate with remote servers—SSH uses encrypted communications to connect two
untrusted hosts over an insecure network. The plan is for ssh to eventually replace rlogin as a way
to connect to remote servers.

Here’s an example of using the ssh command to connect to the hp5 server:

$ ssh prod5
Password:
Last successful login for oracle: Thu Apr 7 09:46:52 CST6CDT 2005 on tty
Last unsuccessful login for oracle: Fri Apr 1 09:02:00 CST6CDT 2005
oracle@prod5 [/u01/app/oracle]
$

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA78

4517CH03.qxd 8/19/05 10:28 AM Page 78

Using FTP to Send and Receive Files
FTP, the File Transfer Protocol, is a popular way to transmit files between UNIX servers or between a
UNIX server and a PC. It’s a simple and fast way to send files back and forth.

The following is a sample FTP session between my PC and a UNIX server on my network. I am
getting a file from the UNIX server called prod5 using the ftp get command.

$ ftp prod5
connected to prod5
ready.
User (prod5:-(none)): oracle
331 Password required for oracle.
Password:
User oracle logged in.
ftp> pwd
'/u01/app/oracle" is the current directory.
ftp> cd admin/dba/test
CWD command successful.
ftp> get analyze.ksh
200 PORT command successful.
150 Opening ASCII mode data connection for analyze.ksh
(3299 bytes).
226 Transfer complete.
ftp: 3440 bytes received in 0.00Seconds 3440000.00Lbytes/sec.
ftp> bye
221 Goodbye.
$

If, instead of getting a file, I wanted to place a file from my PC onto the UNIX server I connected
to, I would use the put command, as in put analyze.ksh. The default mode of data transmission is
the ASCII character text mode; if you want binary data transmission, just type in the word binary
before you use the get or put command.

Of course, GUI-based FTP clients are an increasingly popular choice. If you have access to one
of those, transferring files is usually simply a matter of dragging and dropping files from the server
to the client, much like moving files in Windows Explorer.

UNIX System Performance Monitoring Tools
Several tools are available for monitoring the performance of the UNIX system. These tools check
on the memory and disk utilization of the host system and let you know of any performance bottle-
necks. In this section, you’ll explore the main UNIX-based monitoring tools and see how these tools
can help you monitor the performance of your system.

The Basics of Monitoring a UNIX System
A slow system could be the result of a bottleneck in processing (CPU), memory, disk, or bandwidth.
System monitoring tools help you to clearly identify the bottlenecks causing poor performance.
Let’s briefly examine what’s involved in the monitoring of each of these resources on your system.

Monitoring CPU Usage

As long as you are not utilizing 100 percent of the CPU capacity, you still have juice left in the sys-
tem to support more activity. Spikes in CPU usage are common, but your goal is to track down what,

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA 79

4517CH03.qxd 8/19/05 10:28 AM Page 79

if any, processes are contributing excessively to CPU usage. These are some of the key factors to
remember while examining CPU usage:

• User versus system usage: You can identify the percentage of time the CPU power is being
used for users’ applications as compared with time spent servicing the operating system’s
overhead. Obviously, if the system overhead accounts for an overwhelming proportion of
CPU usage, you may have to examine this in more detail.

• Runnable processes: At any given time, a process is either running or waiting for resources
to be freed up. A process that is waiting for the allocation of resources is called a runnable
process. The presence of a large number of runnable processes indicates that your system
may be facing a power crunch—it is CPU-bound.

• Context switches and interrupts: When the operating system switches between processes, it
incurs some overhead due to the so-called context switches. If you have too many context
switches, you’ll see deterioration in CPU usage. You’ll incur similar overhead when you have
too many interrupts, caused by the operating system when it finishes certain hardware- or
software-related tasks.

Managing Memory

Memory is one of the first places you should look when you have performance problems. If you
have inadequate memory (RAM), your system may slow down due to excessive swapping. Here are
some of the main factors to focus on when you are checking system memory usage:

• Page ins and page outs: If you have a high number of page ins and page outs in your memory
statistics, it means that your system is doing an excessive amount of paging, the moving of
pages from memory to the disk system due to inadequate available memory. Excessive pag-
ing could lead to a condition called thrashing, which just means you are using critical system
resources to move pages back and forth between memory and disk.

• Swap ins and swap outs: The swapping statistics also indicate how adequate your current
memory allocation is for your system.

• Active and inactive pages: If you have too few inactive memory pages, it may mean that your
physical memory is inadequate.

Monitoring Disk Storage

When it comes to monitoring disks, you should look for two things. First, check to make sure you
aren’t running out of room—applications add more data on a continuous basis, and it is inevitable
that you will have to constantly add more storage space. Second, watch your disk performance—are
there any bottlenecks due to slow disk input/output performance?

Here are the basic things to look for:

• Check for free space: Using simple commands, a system administrator or a DBA can check
the amount of free space left on the system. It’s good, of course, to do this on a regular basis
so you can head off a resource crunch before it’s too late. Later in this chapter, I’ll show you
how to use the df and the du commands to check the free space on your system.

• Reads and writes: The read/write figures give you a good picture of how hot your disks are
running. You can tell whether your system is handling its workload well, or if it’s experienc-
ing an extraordinary I/O load at any given time.

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA80

4517CH03.qxd 8/19/05 10:28 AM Page 80

Monitoring Bandwidth

By measuring bandwidth use, you can measure the efficiency of the transfer of data between
devices. Bandwidth is harder to measure than simple I/O or memory usage patterns, but it can
still be immensely useful to collect bandwidth-related statistics.

Your network is an important component of your system—if the network connections are slow,
the whole application may appear to run very slowly. Simple network statistics like the number of
bytes received and sent will help you identify network problems.

High network packet collision rates, as well as excessive data transmission errors, will lead to
bottlenecks. You need to examine the network using tools like netstat (discussed later) to see if the
network has any bottlenecks.

Monitoring Tools for UNIX Systems
In order to find out what processes are running, you’ll most commonly use the process command,
ps. For example, the following example checks for the existence of the essential pmon process, to
see if the database is up:

$ ps -ef | grep pmon

Of course, to monitor system performance, you’ll need more sophisticated tools than the
elementary ps command. The following sections cover some of the important tools available for
monitoring your system’s performance.

Monitoring Memory Use with vmstat

The vmstat utility helps you monitor memory usage, page faults, processes and CPU activity. The
vmstat utility’s output is divided into two parts: virtual memory (VM) and CPU. The VM section is
divided into three parts: memory, page, and faults. In the memory section, avm stands for “active
virtual memory” and free is short for “free memory.” The page and faults items provide detailed
information on page reclaims, pages paged in and out, and device interrupt rates.

The output gives you an idea about whether the memory on the system is a bottleneck during
peak times. The po (page outs) variable under the page heading should ideally be 0, indicating that
there is no swapping—that the system is not transferring memory pages to swap disk devices to free
up memory for other processes.

Here is some sample output from vmstat (note that I use the -n option to improve the format-
ting of the output):

$ vmstat -n
VM

memory page faults
avm free re at pi po fr de sr in sy cs
1822671 8443043 1052 113 2 0 0 0 0 8554 89158 5272
CPU

cpu procs
us sy id r b w
23 7 69 8 23 0
22 8 70
21 7 72
22 7 71
$

Under the procs subheading in the CPU part of the output, the first column, r, refers to the run
queue. If your system has 24 CPUs and your run queue shows 20, that means 20 processes are waiting
in the queue for a turn on the CPUs, and it is definitely not a bad thing. If the same r value of 24 occurs

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA 81

4517CH03.qxd 8/19/05 10:28 AM Page 81

on a machine with 2 CPUs, it indicates the system is CPU-bound—a large number of processes are
waiting for CPU time.

In the CPU part of vmstat’s output, us stands for the amount of CPU usage attributable to the users
of the system, including your database processes. The sy part shows the system usage of the CPU, and
id stands for the amount of CPU that is idle. In our example, roughly 70 percent of the CPU is idle for
each of the four processors, on average.

Viewing I/O Statistics with iostat

The iostat utility gives you input/output statistics for all the disks on your system. The output is dis-
played in four columns:

• device: The disk device whose performance iostat is measuring

• bps: The number of kilobytes transferred from the device per second

• sps: The number of disk seeks per second

• msps: The time in milliseconds per average seek

The iostat command takes two parameters: the number of seconds before the information
should be updated on the screen, and the number of times the information should be updated.
Here is an example of the iostat output:

$ iostat 4 5
device bps sps msps
c2t6d0 234 54.9 1.0
c5t6d0 198 42.6 1.0
c0t1d1 708 27.7 1.0
c4t3d1 608 19.0 1.0
c0t1d2 961 46.6 1.0
c4t3d2 962 46.1 1.0
c0t1d3 731 91.3 1.0
c4t3d3 760 93.5 1.0
c0t1d4 37 7.0 1.0

$

In the preceding output, you can see that the disks c0t1d2 and c4t3d2 are the most heavily used
disks on the system.

Analyzing Read/Write Operations with sar

The UNIX sar (system activity reporter) command offers a very powerful way to analyze how the
read/write operations are occurring from disk to buffer cache and from buffer cache to disk. By
using the various options of the sar command, you can monitor disk and CPU activity, in addition
to buffer cache activity.

The output for the sar command has the following columns:

• bread/s: The number of read operations per second from disk to the buffer cache

• lread/s: The number of read operations per second from the buffer cache

• %rcache: The cache hit ratio for read requests

• bwrit/s: The number of write operations per second from disk to the buffer cache

• lwrit/s: The number of write operations per second to the buffer cache

• %wcache: The cache hit ratio for write requests

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA82

4517CH03.qxd 8/19/05 10:28 AM Page 82

Here’s the output of a typical sar command which monitors your server’s CPU activity, using
the -u option (the 1 10 tells sar to refresh the output on the screen every second for a total of ten
times):

$ sar -u 1 10
HP-UX prod5 B.11.11 U 9000/800 04/07/05

16:11:21 %usr %sys %wio %idle
16:11:22 34 6 56 4
16:11:23 31 7 55 7
16:11:24 45 9 43 4
16:11:25 45 9 44 2
16:11:26 45 11 40 3
16:11:27 46 11 40 4
16:11:28 48 10 40 3
16:11:29 56 11 31 2
16:11:30 50 12 36 3
16:11:31 45 12 39 4

Average 44 10 42 4

$

In the preceding sar report, %usr shows the percentage of CPU time spent in the user mode,
%sys shows the percentage of CPU time spent in the system mode, %wio shows the percentage of
time the CPU is idle with some process waiting for I/O, and %idle shows the idle percentage of the
CPU. You can see that the percentage of CPU due to processes waiting for I/O is quite high in this
example.

Monitoring Performance with top

The top command is another commonly used performance-monitoring tool. Unlike some of the
other tools, the top command shows you a little bit of everything, such as the top CPU and memory
utilization processes, the percentage of CPU time used by the top processes, and the memory uti-
lization.

The top command displays information in the following columns:

• CPU: Specifies the processor

• PID: Specifies the process ID

• USER: Specifies the owner of the process

• PRI: Specifies the priority value of the process

• NI: Specifies the nice value (nice invokes a command with an altered scheduling priority)

. • SIZE: Specifies the total size of the process in memory

• RES: Specifies the resident size of the process

• TIME: Specifies the CPU time used by the process

• %CPU: Specifies the CPU usage as a percentage of total CPU

• COMMAND: Specifies the command that started the process

To invoke the top utility, you simply type the word top at the command prompt. To end the top
display, just use the Ctrl+C key combination.

Here’s an example of typical output of the top command on a four-processor UNIX machine.
The first part of the output (not shown here) shows the resource usage for each processor in the

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA 83

4517CH03.qxd 8/19/05 10:28 AM Page 83

system. The second part of the output, shown in the following snippet, gives you information about
the heaviest users of your system.

$ top
CPU PID USER PRI NI SIZE RES TIME %CPU COMMAND
21 2713 nsuser 134 0 118M 104M 173:31 49.90 ns-httpd
23 28611 oracle 241 20 40128K 9300K 2:20 46.60 oraclepasprod
20 6951 oracle 241 20 25172K 19344K 3:45 44.62 rwrun60
13 9334 oracle 154 20 40128K 9300K 1:31 37.62 oraclepasprod
22 24517 oracle 68 20 36032K 5204K 0:55 36.48 oraclepasprod
22 13166 oracle 241 20 40128K 9300K 0:41 35.19 oraclepasprod
12 14097 oracle 241 20 40128K 9300K 0:29 33.75 oraclepasprod
$

Monitoring the System with GlancePlus

Several UNIX operating systems have their own system-monitoring tools. For example, on the
HP-UX operating system, GlancePlus is a package that is commonly used by system administrators
and DBAs to monitor memory, disk I/O, and CPU performance.

Figure 3-3 shows a typical GlancePlus session in text mode, invoked with the following
command:

$ glance -m

The CPU, memory, disk, and swap usage is summarized in the top section. The middle of the
display gives you a detailed memory report, and at the bottom of the screen you can see a short
summary of memory usage again.

Figure 3-3. A typical GlancePlus session in text mode

Note that this session shows memory usage in detail because GlancePlus was invoked with the
-m option (glance -c would give you a report on CPU usage, and glance -d would give you a disk
usage report).

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA84

4517CH03.qxd 8/19/05 10:28 AM Page 84

GlancePlus also has an attractive and highly useful GUI interface, which you can invoke by
using the command gpm.

Monitoring the Network with Netstat

Besides monitoring the CPU and memory on the system, you need to monitor the network to make
sure there are no serious traffic bottlenecks. The netstat utility comes in handy for this purpose, and
it works the same way on UNIX as it does on the Windows servers.

Disks and Storage in UNIX
The topic of physical storage and using the disk system in UNIX is extremely important for the
DBA—the choice of disk configuration has a profound impact on the availability and the perform-
ance of the database. Some Oracle databases benefit by using “raw” disk storage instead of disks
controlled by the UNIX operating system. The Oracle Real Application Clusters (RACs) can only use
the raw devices; they can’t use the regular UNIX-formatted disks.

All the UNIX files on a system make up its file system, and this file system is created on a disk
partition, which is a “slice” of a disk, the basic storage device.

Disk Storage Configuration Choices
The choices you make about how you configure your disk storage will have a major impact on the
performance and the uptime of your database. It’s not a good idea to make storage device decisions
in a vacuum; rather, you should consider your database applications and the type of database that
is going to be located on the storage systems when making these decisions.

For example, if you have a data warehouse, you may want your system administrator to use
larger striping sizes for the disks. If you are going to have large numbers of writes to or reads from
the database, you need to choose the appropriate disk configuration. Compared to the technolo-
gies of only a few years ago, today’s ultra-sophisticated storage technologies make it possible to
have both a high level of performance and high availability of data simultaneously.

Still, you have plenty of choices to make that will have an impact on performance and availabil-
ity. The nature of the I/Os, database caches, read/write ratios, and other issues are fundamentally
different in OLTP and DSS systems. Also, response-time expectations are significantly different
between OLTP and DSS systems. Thus, a storage design that is excellent for one type of database may
be a terrible choice for another type, so you need to learn more about the operational needs of your
application at the physical design stage to make smart choices in this extremely critical area.

Monitoring Disk Usage
When setting up an Oracle system, you will typically make a formal request to the system administra-
tor for physical disk space based on your sizing estimates and growth expectations for the database.
Once the general space request is approved by the system administrator, he or she will give you the
location of the mount points where your space is located. Mount points are directories on the system
to which the file systems are mounted. You can then create all the necessary directories prior to the
installation of the Oracle software and the creation of the database itself.

Once space is assigned for your software and databases, it’s your responsibility to keep track of
its usage. If you seem to be running out of space, you will need to request more space from the sys-
tem administrator. Ideally, you should always have some extra free disk space on the mount points
assigned to you so you can allocate space to your database files if the need arises. There are a couple

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA 85

4517CH03.qxd 8/19/05 10:28 AM Page 85

of very useful commands for checking your disk space and seeing what has been used and what is
still free for future use.

The df (disk free) command indicates the total allocation in bytes for any mount point and how
much of it is currently being used. The df -k option gives you the same information in kilobytes,
which is generally more useful. The following example shows the use of the df command with the
-k option:

$df -k /finance09
/finance09 (/dev/vgxp1_0f038/lvol1) :
7093226 total allocated Kb
1740427 free allocated Kb
5352799 used allocated Kb
75% allocation used
$

The preceding output shows that out of a total of 7.09GB allocated to the /finance09 mount
point; about 5.35GB is currently allocated to various files and about 1.74GB of space is still free.

Another command that displays how the disks are being used is the du command, which indi-
cates, in bytes, the amount of space being used by the mount point.

$ du -k /finance09
/finance09/lost+found
/finance09/ffacts/home

. . .
5348701 /finance09
$

As you can see in the preceding example, the du command indicates the actual space used by
the various files and directories of the mount point (/finance09 in this case) and the total space
used up by it.

I prefer the df -k command over the du -k command, because I can see at a glance the per-
centages of free space and used space.

Disk Storage, Performance, and Availability
Availability and performance lie at the heart of all disk configuration strategies. The one thing you
can be sure of when you use disk-based storage systems is that a disk will fail at some point. All
disks come with a mean time between failures (MTBF) rating, which could run into hundreds of
thousands of hours, and you can expect an average disk with a high rating to last for many years. As
we all know, though, averages can be dangerous in situations like this because an individual disk
can fail at any time, regardless of its MTBF rating. Disk controllers manage the disks, and a con-
troller failure can doom your system operations. It is common now to build redundancy into your
disk systems (and other key components of the entire system) to provide continuous availability.

Performance is also an issue when you are considering the configuration of your storage devices.
In systems with highly intensive simultaneous reads and writes, you can quickly end up with disk
bottlenecks unless you plan the disk configuration intelligently from the beginning.

To improve performance, the common strategy employed is disk striping, which enables you to
create a single logical unit out of several physical disks. The single logical unit is composed of alter-
nating stripes from each disk in the set, and data is divided into equally sized blocks and written in
stripes to each disk at the same time. Reads are done in the same way, with the simultaneous use of
all the disks. Thus, you can enhance I/O operations dramatically, because you are now using the I/O
capacity of a set of disks rather than just one.

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA86

4517CH03.qxd 8/19/05 10:28 AM Page 86

Disk Partitioning
Raw disks aren’t amenable to easy data access—you need to impose a structure on these disks.
The first thing you need to do before using a hard disk is to partition, or slice, the disk. Partitioning
enables you to store system and application data in separate sections of the disk, as well as manage
space issues easily. Sometimes these partitions themselves are called disks, but they are all really
parts of a single physical disk. Once you partition a disk, you can create operating system file sys-
tems on it.

Creating File Systems
Even after partitioning the whole disk, you still don’t have a convenient way to access data or to
store it. You can further refine your access methods by using file systems. File systems provide you
with the following benefits:

• Individual ownership of files and directories

• Tracking of creation and modification times

• Data access control

• Accounting of space allocation and usage

Disk Striping
It’s important to realize that you can place the file system on a single physical disk or you can put it
across several “striped” physical disks. In the latter case, although the file system is on several disks,
the user will see the files as being on one so-called logical volume. UNIX systems offer several ways
of combining multiple disks into single logical volumes.

One way to create a logical device on many UNIX systems is to use a utility known as the Logi-
cal Volume Manager (LVM). Using an LVM, you can take, for example, ten physical disks of 4GB each
and create one 40GB logical disk. Thus, disk striping can also enable you to create a much larger
logical disk that can handle a larger file system. File systems can’t traverse disks, so logical disks
offer an easy way to create large volumes.

Logical Volumes and the Logical Volume Manager
Let’s briefly look at the two basic methods of configuring physical disks. Although you may never
have to do this yourself, it’s a good idea to have a basic understanding of how disks are managed
by system administrators. You can configure disks as whole disks or as logical volumes.

Whole disks are exactly what their name implies: each physical disk is taken as a whole and
a single file system is created on each disk. You can neither extend nor shrink the file system at a
later stage.

Logical volumes, on the other hand, are created by combining several hard disks or disk parti-
tions. System administrators usually employ the sophisticated LVM to combine physical disks. A set
of physical disks is combined into a volume group, which is then sliced up by the LVM into smaller
logical volumes. Most modern systems use the LVM approach because it is an extremely flexible
and easy way to manage disk space. For example, it’s no problem at all to add space and modify
partitions on a running system by using the LVM tool.

Once you create logical volumes, you can designate disk volumes as mount points, and indi-
vidual files can then be created on these mount points.

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA 87

4517CH03.qxd 8/19/05 10:28 AM Page 87

RAID Systems
A redundant array of independent disk (RAID) device is a popular way to configure large logical (or
virtual) disks from a set of smaller disks. The idea is simply to combine several small inexpensive
disks into an array in order to gain higher performance and data security. This allows you to
replace one very expensive large disk with several much cheaper small disks. Data is broken up
into equal-sized chunks (called the stripe size), usually 32KB or 64KB, and a chunk is written on
each disk, the exact distribution of data being determined by the RAID level adopted. When the
data is read back, the process is reversed, giving you the appearance that one large disk, instead of
several small disks, is being used.

RAID devices provide you with redundancy—if a disk in a RAID system fails, you can immedi-
ately and automatically reconstruct the data on the failed disk from the data on the rest of the
devices. RAID systems are ubiquitous, and most Oracle databases employ them for the several
performance and redundancy benefits they provide.

When it comes to the performance of disk systems, two factors are of interest: the transfer rate
and the number of I/O operations per second. The transfer rate refers to the efficiency with which
data can move through the disk system’s controller. As for I/O operations, the more a disk system
can handle in a specified period, the better.

Compared to traditional disks, which have an MTBF of tens of thousands of hours, disk arrays
have an MTBF of millions of hours. Even when a disk in a RAID system fails, the array itself contin-
ues to operate successfully. Most modern arrays automatically start using one of the spare disks,
called hot spares, to which the data from the failed drive is transferred. Most disk arrays also per-
mit the replacement of failed disks without bringing the system itself down (this is known as hot
swapping).

RAID Levels
The inherent trade-off in RAID systems is between performance and reliability. You can employ two
fundamental techniques, striping and mirroring the disk arrays, to improve disk performance and
enhance reliability.

Mirroring schemes involve complete duplication of the data, and while most of the nonmir-
rored RAID systems also involve redundancy, it is not as high as in the mirrored systems. The
redundancy in nonmirrored RAID systems is due to the fact that they store the necessary parity
information needed for reconstructing disks in case there is a malfunction in the array.

The following sections describe the most commonly used RAID classifications. Except for
RAID 0, all the levels offer redundancy in your disk storage system.

RAID 0: Striping
Strictly speaking, this isn’t really a RAID level, since the striping doesn’t provide you with any data
protection whatsoever. The data is broken into chunks and placed across several disks that make up
the disk array. The stripe here refers to the set of all the chunks.

Let’s say the chunk or stripe size is 8KB. If we have three disks in our RAID and 24KB of data to
write to the RAID system, the first 8KB would be written to the first disk, the second 8KB would be
written to the second disk, and the final 8KB would be written to the last disk.

Because input and output are spread across multiple disks and disk controllers, the throughput
of RAID 0 systems is quite high. For example, you could write an 800KB file over a RAID set of eight
disks with a stripe size of 100KB in roughly an eighth of the time it would take to do the same opera-
tion on a single disk. However, because there is no built-in redundancy, the loss of a single drive
could result in the loss of all the data, as data is stored sequentially on the chunks. RAID 0 is all about
performance, with little attention paid to protection. Remember that RAID 0 provides you with zero
redundancy.

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA88

4517CH03.qxd 8/19/05 10:28 AM Page 88

RAID 1: Mirroring
In RAID 1, all the data is duplicated, or mirrored, on one or more disks. The performance of a RAID
1 system is slower than a RAID 0 system because input transactions are completed only when all the
mirrored disks are successfully written to. The reliability of mirrored arrays is high, though, because
the failure of one disk in the set doesn’t lead to any data loss. The system continues operation under
such circumstances, and you have time to regenerate the contents of the lost disks by copying data
from the surviving disks. RAID 1 is geared toward protecting the data, with performance taking a
back seat. Nevertheless, of all the redundant RAID arrays, RAID 1 still offers the best performance.

It is important to note that RAID 1 means that you will pay for n number of disks, but you get to
allocate only n/2 disks for your system, because all the disks are duplicated.

Read performance improves under a RAID 1 system, because the data is scanned in parallel.
However, there is slower write performance, amounting to anywhere from 10 to 20 percent, since
both disks have to be written to each time.

RAID 2: Striping with Error Detection and Correction
RAID 2 uses striping with additional error detection and correction capabilities built in. The striping
guarantees high performance, and error-correction methods are supposed to ensure reliability.
However, the mechanism used to correct errors is bulky and takes up a lot of the disk space itself.
This is a costly and inefficient storage system.

RAID 3: Striping with Dedicated Parity
RAID 3 systems are also striped systems, with an additional parity disk that holds the necessary
information for correcting errors for the stripe. Parity involves the use of algorithms to derive values
that allow the lost data on a disk to be reconstructed on other disks.

Input and output are slower on RAID 3 systems than on pure striped systems, such as RAID 0,
because information also has to be written to the parity disk. RAID 3 systems can also only process
one I/O request at a time.

Nevertheless, RAID 3 is a more sophisticated system than RAID 2, and it involves less overhead
than RAID 2. You’ll only need one extra disk drive in addition to the drives that hold the data. If a sin-
gle disk fails, the array continues to operate successfully, with the failed drive being reconstructed
with the help of the stored error-correcting parity information on the extra parity drive.

RAID 5 arrays with small stripes can provide better performance than RAID 3 disk arrays.

RAID 4: Modified Striping with Dedicated Parity
The stripes on RAID 4 systems are done in much larger chunks than in RAID 3 systems, which
allows the system to process multiple I/O requests simultaneously. In RAID 4 systems, the individ-
ual disks can be independently accessed, unlike RAID 3 systems, which leads to much higher
performance when reading data from the disks.

Writes are a different story, however, under this setup. Every time you need to perform a write
operation, the parity data for the relevant disk must be updated before the new data can be written.
Thus, writes are very slow, and the parity disk could become a bottleneck.

RAID 5: Modified Striping with Interleaved Parity
Under this disk array setup, both the data and the parity information are interleaved across the disk
array. Writes under RAID 5 tend to be slower, but not as slow as under RAID 4 systems, because it
can handle multiple concurrent write requests. Several vendors have improved the write perform-
ance by using special techniques, such as using nonvolatile memory for logging the writes.

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA 89

4517CH03.qxd 8/19/05 10:28 AM Page 89

RAID 5 gives you virtually all the benefits of striping (high read rates), while providing the
redundancy needed for reliability, which RAID 0 striping does not offer.

RAID 0+1: Striping and Mirroring
These RAID systems provide the benefits of striped and mirrored disks. They tend to achieve a high
degree of performance because of the striping, while offering high reliability due to the fact that all
disks are mirrored (duplicated). You just have to be prepared to request double the number of disks
you actually need for your data, because you are mirroring all the disks.

Choosing the Ideal Disk Configuration
Table 3-6 outlines the basic conclusions you can draw about the various RAID systems described in
the preceding sections.

Table 3-6. Benefits and Disadvantages of Different RAID Systems

System Benefits Disadvantages

RAID 0 Not very reliable (no redundancy)

RAID 1 Provides 100 percent redundancy Expensive, and all writes must be
duplicated

RAID 2 Expensive and wastes a lot of space for
overhead; it is not commercially viable
because of special disk requirements

RAID 3 Expensive and has poor random access
performance

RAID 4 Expensive and leads to degraded write
performance as well as a potential parity
bottleneck

RAID 5 Involves a write penalty, though it is
smaller than in RAID 4 systems

RAID 0+1 Expensive (due to the mirroring of the
disks)

What’s the best strategy in terms of disk configuration? You, the DBA, and your system admin-
istrator should discuss your data needs, management’s business objectives, the impact and cost of
downtime, and available resources. The more complex the configuration, the more you need to
spend on hardware, software, and training.

The choice essentially depends upon the needs of your organization. If your database needs
the very highest possible performance and reliability at the same time, you may want to go first
class and adopt the RAID 0+1 system. This is an expensive way to go, but several companies in criti-
cal data-processing areas, such as airline reservations systems, have adopted this as a company
standard for data storage.

Offers great random access
performance as well as high
transfer rates

Offers high reliability and provides
the ability to reconstruct data when
only one disk fails (if two disks fail
at the same time, there will be data
loss)

Provides the ability to reconstruct
data when only one disk fails (if
two disks fail at the same time,
there will be data loss)

Provides the ability to reconstruct
data when only one disk fails (if
two disks fail at the same time,
there will be data loss)

Offers high read and write
performance and is cheap

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA90

4517CH03.qxd 8/19/05 10:28 AM Page 90

If data protection is your primary concern, however, and you can live with a moderate through-
put performance, you can go with the RAID 5 configuration and save a lot of money in the process.
This is especially true if read operations constitute the bulk of the work done by your database.

If you want complete redundancy and the resulting data protection, you can choose to use
the RAID 1 configuration, and if you are concerned purely with performance and your data can be
reproduced easily, you’ll be better off just using a plain vanilla RAID 0 configuration.

To make the right choice, find out the exact response-time expectations for your databases,
your finances, the nature of your applications, availability requirements, performance expectations,
and growth patterns.

■Caution Once you configure a certain RAID level on your disk, you can’t easily switch to a different configura-
tion. You have to completely reload all your applications and the databases if you decide to change configurations.

In general, the following guidelines will serve you well when you are considering the RAID
configuration for your disks:

• RAID 5 offers many advantages over the other levels of RAID. The traditional complaint
about the “write penalty” should be discounted because of sophisticated advances in write
caches and other strategies that make RAID 5 much more efficient than in the past. The
RAID 5 implementations using specialized controllers are far more efficient than software-
based RAID or RAID 5 implementations based on the server itself. Using write caches in
RAID 5 systems improves the overall write performance significantly.

• Allow for a lot more raw disk space than you figure you’ll need. This includes your expan-
sion estimates for storage space. Fault tolerance requires more disks under RAID systems
than other systems. If you need 400GB of disk space, and you are using a RAID 5 configura-
tion, you will need seven disks, each with 72GB storage capacity. One of the seven drives is
needed for writing parity information. If you want to have a hot spare on the system, you
would need a total of eight disks.

• Stripe widths depend on your database applications. If you are using OLTP applications, you
need smaller stripe sizes, such as 128KB per stripe. Data warehouses benefit from much
larger stripe sizes.

• Know your application. Having a good idea about what you are trying to achieve with the
databases you are managing will help you decide among competing RAID alternatives.

• Always have at least one or two hot spares ready on the storage systems.

Redundant Disk Controllers
If you have a RAID 5 configuration, you are still vulnerable to a malfunction of the disk controllers.
To avoid this, you can configure your systems in a couple of different ways. First, you can mirror the
disks on different controllers. Alternatively, you can use redundant pairs of disk controllers, where
the second controller takes over automatically by using an alternative path if the first controller fails
for some reason.

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA 91

4517CH03.qxd 8/19/05 10:28 AM Page 91

IMPLEMENTING RAID

You can implement RAID in a number of ways. You could make a fundamental distinction between software-based
and hardware-based RAID arrays.

Software RAID implementation uses the host server’s CPU and memory to send RAID instructions and I/O
commands to the arrays. Software RAID implementations impose an extra burden on the host CPU, and when disks
fail, the disks with the operating system may not be able to boot if you are using a software-based RAID system.

Hardware RAID uses a special RAID controller, which is usually external to the server—host-based controllers
can also be used to provide RAID functionality to a group of disks, but they are not as efficient as external RAID
controllers.

RAID and Backups
Suppose you have a RAID 0+1 or a RAID 5 data storage array, which more or less ensures that you
are protected adequately against disk failure. Do you still need database backups? Of course you do!

RAID systems mainly protect against one kind of failure involving disks or their controllers. But
what about human error? If you or your developers wipe out data accidentally, no amount of disk
mirroring is going to help you—you need those backups with the good data on them. Similarly,
when a disaster such as a fire destroys your entire computer room, you need to fall back upon reli-
able and up-to-date offsite backups. Do not neglect the correct and timely backing up of data, even
though you may be using the latest disk storage array solution.

RAID systems, it must be understood, do not guarantee nonstop access to your mission-critical
data. The way to ensure that is to go beyond the basic RAID architecture and build a system that is
disaster-tolerant.

RAID and Oracle
Oracle uses several different kinds of files as part of its database. You may need a combination of
several of the RAID configurations to optimize the performance of your database while keeping the
total cost of the disk arrays reasonable. An important thing to remember here is that when you use a
RAID 3 or RAID 5 system, there is no one-to-one correspondence between the physical disks in the
array and the logical disks, or logical unit numbers (LUNs), that are used by your system adminis-
trator to create logical volumes, which are in turn mounted for your file systems. Advise your system
administrator to try and create as many logical volumes on each LUN as there are physical drives in
the LUN. This way, the Oracle optimizer will have a more realistic idea about the physical disk setup
that the database is using. Logical volumes are deceptive and could mislead the optimizer.

New Storage Technologies
Today’s storage technologies are vastly superior to the technologies of even five years ago. Disk drives
themselves have gotten faster—it is not difficult to find disks with 10,000 RPM and 15,000 RPM spin-
dle speeds today. These disks have seek speeds of about 3.5 milliseconds.

In addition, advanced SCSI interfaces and the increasing use of fiber channel interfaces
between servers and storage devices have increased data transfer rates to 100MB per second and
faster. The capacity of individual disks has also risen considerably, with 180GB disks being fairly
common today. The average MTBF for these new-generation disks is also very high—sometimes
more than a million hours.

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA92

4517CH03.qxd 8/19/05 10:28 AM Page 92

New technological architectures for data storage take advantage of all the previous factors to
provide excellent storage support to today’s Oracle databases. Two such storage architectures are
Storage Area Networks (SANs) and Network Attached Storage Systems (NASs). Let’s take a closer
look at these storage architectures.

Storage Area Networks
Today, large databases are ubiquitous, with terabyte (1,000GB) databases not being a rarity any
longer. Organizations tend to not only have several large databases for their OLTP work, but also use
huge data warehouses and data marts for supporting management decision making. Storage Area
Networks (SANs) use high-performance connections and RAID storage techniques to achieve the
high performance and reliability that today’s information organizations demand.

Modern data centers use SANs to optimize performance and reliability. SANs can be very small
or extremely large, and they lend themselves to the latest technologies in disk storage and network
communications. Traditionally, storage devices were hooked up to the host computer through a
SCSI device. SANs can be connected to servers via high-speed fiber channel technology with the
help of switches and hubs. You can adapt legacy SCSI-based devices for use with a SAN, or you can
use entirely new devices specially designed for the SAN. A SAN is enabled by the use of fiber chan-
nel switches called brocade switches. By using hubs, you can use SANs that are several miles away
from your host servers.

The chances are that if you are not using one already, you’ll be using a SAN in the very near
future. SANs offer many benefits to an organization. They allow data to be stored independently of
the servers that run the databases and other applications. They enable backups that do not affect
the performance of the network. They facilitate data sharing among applications.

SANs are usually preconfigured, and depending on your company’s policy, they could come
mirrored or as a RAID 5 configuration. The individual disks in the SANs are not directly controllable
by the UNIX system administrator, who will see the LUN as a single disk—the storage array’s con-
trollers map the LUNs to the underlying physical disks. The administrator can use LVMs to create
file systems on these LUNs after incorporating them into volume groups first.

When you use RAID-based storage arrays, the RAID controllers on the SAN will send the server
I/O requests to the various physical drives, depending on the mirroring and parity level chosen.

Networked Attached Storage
Put simply, Networked Attached Storage (NAS) is a black box connected to your network, and it pro-
vides additional storage. The size of a NAS box can range from as small as 2GB up to terabytes of
storage capacity.

The main difference between a NAS and a SAN is that it is usually easier to scale up a SAN’s
base storage system using the software provided by your supplier. For example, you can easily com-
bine several disks into a single volume in a SAN. A NAS is set up with its own address, thus moving
the storage devices away from the servers onto the NAS box. The NAS communicates with and
transfers data to client servers using protocols such as the Network File System (NFS).

The NAS architecture is really not very suitable for large OLTP databases. One of the approaches
now being recommended by many large storage vendors for general storage as well as for some data-
bases is to combine the SAN and NAS technologies to have the best of both worlds.

■Note A good paper comparing the RAID and SAN technologies is “Comparison of Performance of Competing
Database Storage Technologies: NetApp Storage Networking vs. Veritas RAID,” by Dan Morgan and Jeff Browning
(http://www.netapp.com/tech_library/3105.html). This article is slightly dated, as the article’s authors used Oracle8
for the tests, but it still provides a useful comparison of the technologies.

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA 93

4517CH03.qxd 8/19/05 10:28 AM Page 93

InfiniBand
One of the latest network technologies is InfiniBand, a standards-based alternative to Ethernet
that seeks to overcome the limitations of TCP/IP-based networks. One of the driving forces behind
network storage is to reduce the I/O bottlenecks between the CPU and the disks. InfiniBand takes
another approach and works between a host channel controller on the server and a special adapter
on the storage machines or device, thereby not requiring an I/O bus. A single link can operate at
2.5GB per second. InfiniBand provides higher throughput, and lower latency and CPU usage than
normal TCP/IP and Ethernet solutions. You can find a full discussion of this new technology at
http://www.infinibandta.org/ibta/.

Given the high-profile companies involved in developing this concept (Microsoft, IBM, Sun,
HP, and some of the main storage vendors), you can expect to see considerable push in the storage
area. InfiniBand supports its own protocol, called Sockets Direct Protocol (SDP).

Oracle Database 10g and the New Automatic
Storage Management
Remember that whatever RAID configuration you use, or however you use the Logical Volume
Manger tools to stripe or mirror your disks, it’s the operating system that’s ultimately in charge of
managing your data files. Whenever you need to add or move your data files, you have to rely on
operating system file-manipulation commands. Oracle overcomes the raw device limits and parti-
tion limits by using its Clustered File System, while avoiding the performance hits associated with
SANs.

Oracle Database 10g introduces the innovative Automatic Storage Management (ASM) feature,
which for the first time provides the Oracle DBA with the option (option, because you don’t have to
use the ASM) of managing the database data files directly, bypassing the underlying operating sys-
tem. When you use ASM, you don’t have to manage disks and data files directly. You deal with disk
groups instead, which consist of several disk drives. Disk groups make it possible for you to avoid
having to deal with filenames when you manage the database.

Using ASM is like having Oracle’s own built-in logical manager manage your disks and file sys-
tems. ASM lets you dynamically reorganize your disk storage and perform rebalancing operations to
avoid I/O contention. If you’re spending a significant proportion of your time managing disks and
file systems, it’s time to switch to the far more efficient ASM system.

Chapter 17 shows you how to use the powerful ASM feature.

Oracle and Storage System Compatibility
Oracle Corporation actively works with vendors to ensure that the storage arrays and other tech-
nologies are compatible with its own architectural requirements. Oracle manages a vendor-oriented
certification program called the Oracle Storage Compatibility Program (OSCP). As part of the OSCP,
Oracle provides test suites for vendors to ensure their products are compatible with Oracle Data-
base 10g. In this certification program, vendors normally test their storage systems on several
platforms, including several variants of the UNIX operating system, Linux, and Windows.

Oracle has also been responsible for the Hardware Assisted Resilient Data (HARD) initiative.
HARD’s primary goal is to prevent data corruption and thus ensure data integrity. The program
includes measures to prevent the loss of data by validating the data in the storage devices. RAID
devices do help protect the physical data, but the HARD initiative seeks to protect the data further
by ensuring that it is valid and is not saved in a corrupted format. Availability and protection of data
are enhanced because data integrity is ensured through the entire pipeline, from the database to
the hardware. Oracle Database 10g does have its own corruption-detecting features, but the HARD
initiative is designed to prevent data corruption that could occur as you move data between various

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA94

4517CH03.qxd 8/19/05 10:28 AM Page 94

operating system and storage layers. For example, EMC Corporation’s solution to comply with the
HARD Initiative involves checking the checksums of data when they reach their storage devices,
and comparing them with the Oracle checksums. Data will be written to disk only if the two check-
sums are identical.

■Note New technologies have come to the fore in recent years that enable businesses to operate on a 24/7
basis as well as to provide data protection. Backup windows are considerably reduced by the use of these new
technologies, which enable nondisruptive backup operations. These backup technologies include the clone or
snapshot techniques, which enable a quick copy to be made of the production data onto a different server.
Compaq’s SANworks Enterprise Volume Manager, Hewlett-Packard’s Business Copy, Fujitsu’s Remote Equivalent
Copy, and Sun’s StorEdge Instant Image all allow data copying between Oracle databases at a primary site to data-
bases at remote locations. The key thing to remember is that these techniques take snapshots of live data in very
short time periods, so these techniques can be used for backup purposes as well as for disaster recovery.

CHAPTER 3 ■ ESSENTIAL UNIX (AND L INUX) FOR THE ORACLE DBA 95

4517CH03.qxd 8/19/05 10:28 AM Page 95

4517CH03.qxd 8/19/05 10:28 AM Page 96

P A R T #

■ ■ ■

Oracle Database 10g
Architecture, Schema, and
Transaction Management

P A R T 2

■ ■ ■

4517CH04.qxd 8/19/05 10:30 AM Page 97

4517CH04.qxd 8/19/05 10:30 AM Page 98

Introduction to the Oracle Database
10g Architecture

In the first three chapters, I set the stage for working with Oracle. It’s time now to learn about
the fundamental structures of Oracle Database 10g. Oracle uses a set of logical structures called
data blocks, extents, segments, and tablespaces as its building blocks. Oracle’s physical database
structure consists of data files and related files. Oracle memory structures and a set of database
processes constitute the Oracle instance, and are responsible for actually performing all the work
for you in the database.

To understand how the Oracle database works, you need to understand several concepts,
including transaction processing, backup and recovery, undo and redo data, the optimization
of SQL queries, and the importance of the data dictionary. Oracle’s key features include the Recov-
ery Manager, SQL*Plus and iSQL*Plus, Oracle Backup, the Oracle (job) Scheduler feature, the
Database Resource Manager, and the Oracle Enterprise Manager management tool. This chapter
provides an outline of the important Oracle automatic management features, as well as the sophis-
ticated built-in performance tuning features, including the new Automatic Workload Repository,
the Automatic Database Diagnostic Monitor, and the advisor-based Management Framework.

Before you delve deeply into the logical and physical structures that make up an Oracle data-
base, however, you need to be clear about a fundamental concept—the difference between an
Oracle instance and an Oracle database. It is very common for people to use the terms interchange-
ably, but they refer to different things altogether.

An Oracle database consists of files, both data files and Oracle system files. These files by them-
selves are useless unless you can interact with them somehow, and this requires the help of the
operating system, which provides processing capabilities and resources, such as memory, to enable
you to manipulate the data on the disk drives. When you combine the specific set of processes cre-
ated by Oracle on the server with the memory allocated to it by the operating system, you get the
Oracle instance.

You’ll often hear people remarking that the “database is up,” though what they really mean is
that the “instance is up.” The database itself, in the form of the set of physical files it’s composed of,
is of no use if the instance is not up and running. The instance performs all the necessary work for
the database.

Oracle Database Structures
In discussing the Oracle database architecture, you can make a distinction between the physical
and logical structures. You don’t take all the data from the tables of an Oracle database and just put
it on disk somewhere on the operating system storage system. Oracle uses a sophisticated logical
view of the internal database structures that helps in storing and managing data properly in the

99

C H A P T E R 4

■ ■ ■

4517CH04.qxd 8/19/05 10:30 AM Page 99

physical data files. By organizing space into logical structures and assigning these logical entities to
users of the database, Oracle databases logically separate the database users (who own the database
objects, such as tables) from the physical manifestations of the database (data files and so forth).

The following sections discuss the various logical and physical data structures.

The Logical Database Structures
Oracle databases use a set of logical database storage structures in order to manage the physical
storage that is allocated in the form of operating system files. These logical structures, which prima-
rily include tablespaces, segments, extents, and blocks, allow Oracle to control the use of the
physical space allocated to the Oracle database.

Taken together, a set of related logical objects in a database is called a schema. Remember that
Oracle database objects, such as tables, indexes, and packaged SQL code, are actually logical enti-
ties. Dividing a database’s objects among various schemas promotes ease of management and a
higher level of security.

Let’s look at the logical composition of an Oracle database from the bottom up, starting with
the smallest logical components and moving up to the largest entities:

• Data blocks: The Oracle data block is at the foundation of the database storage hierarchy and
is the basis of all database storage in an Oracle database. A data block consists of a number
of bytes of disk space in the operating system’s storage system. All Oracle’s space allocation
and usage is in terms of Oracle data blocks.

• Extents: An extent is two or more contiguous Oracle data blocks, and this is the unit of space
allocation.

• Segments: A segment is a set of extents that you allocate to a logical structure like a table or
an index (or some other object).

• Tablespaces: A tablespace is a set of one or more data files, and usually consists of related
segments. The data files contain the data of all the logical structures that are part of a table-
space, like tables and indexes.

The following sections explore each of these logical database structures in detail.

Data Blocks
The smallest logical component of an Oracle database is the data block. Data blocks are defined in
terms of bytes. For example, you can size an Oracle data block in units of 2KB, 4KB, 8KB, 16KB, or
32KB (or even larger chunks), and it is common to refer to the data blocks as Oracle blocks.

The storage disks on which the Oracle blocks reside are themselves divided into disk blocks,
which are areas of contiguous storage containing a certain number of bytes—for example, 4,096 or
32,768 bytes (4KB or 32KB; each kilobyte has 1,024 bytes).

How Big Should the Oracle Block Size Be?

You, as the DBA, have to decide how big your Oracle blocks should be and set the DB_BLOCK_SIZE
parameter in your Oracle initialization file (the init.ora file). Think of the block size as the minimum
unit for conducting Oracle’s business of updating, selecting, or inserting data. When a user selects
data from a table, the select operation will “read,” or fetch, data from the database files in units of
Oracle blocks.

If you choose the common Oracle block size of 8KB, your data block will have exactly 8,192
bytes. If you use an Oracle block size of 64KB (65,536 bytes), even if you just want to retrieve a name
that’s only four characters long, you’ll have to read in the entire block of 64KB that happens to con-
tain the four characters you’re interested in.

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE100

4517CH04.qxd 8/19/05 10:30 AM Page 100

■Tip If you’re coming to Oracle from SQL Server, you can think of the Oracle block size as being the same as the
SQL Server page size.

As was mentioned earlier, the operating system also has a disk block size, and the operating
system reads and writes information in whole blocks. Ideally, the Oracle block size should be a mul-
tiple of the disk block size; if not, you may be wasting time reading and writing whole disk blocks
while only making use of part of the data on each I/O. On an HP-UX system, for example, if you set
your Oracle block size to a multiple of the operating system block size, you gain 5 percent in per-
formance.

Oracle offers the following guidelines for choosing the database block size:

• Choose a smaller block size if your rows are small and access is predominantly random.

• Choose a larger block size if the rows are small and access is mostly sequential (or random
and sequential), or if you have large rows.

In Chapter 9, which discusses the creation of Oracle databases, you’ll learn a lot more about
Oracle database block size and the criteria for choosing an appropriate block size.

■Note The Oracle block size that you should choose depends on what you’re going to do with your database.
For example, a small block size is useful if you’re working with small rows and you’re doing a lot of index lookups.
Larger block sizes are useful in report applications when you’re doing large table scans. If you are unsure about
what block size to use, remember that Oracle recommends that you choose a block size of 8KB for most systems
that process a large number of transactions. Only if you are dealing with LOBs (large objects) do you need to have
a block size larger than 8KB.

Multiple Oracle Data Block Sizes

The DB_BLOCK_SIZE initialization parameter determines the standard block size in your Oracle data-
base, and it can range from 2KB to 32KB. The system tablespace is always created with the standard
block size, and Oracle lets you specify up to four additional nonstandard block sizes. For example,
you can have 2KB, 4KB, 8KB, 16KB, and 32KB block sizes all within the same database—the reasons
you might wish to do this are discussed shortly, in the “Tablespaces” section. If you choose to con-
figure multiple Oracle block sizes, you must also configure corresponding subcaches in the buffer
cache of the system global area (SGA), which is Oracle’s memory allocation, as you’ll learn in the
“Understanding Main Memory” section of this chapter.

Multiple data block sizes aren’t always necessary, and you’ll do just fine in most cases with one
standard Oracle block size. Multiple block sizes are useful primarily when transporting tablespaces
between databases with different database block sizes.

What’s Inside a Data Block?

All data blocks can be divided into two main parts: the row data portion and the free space portion.
(There are also other smaller areas, such as overhead and header space for maintenance purposes.)
The row data section of data blocks contains the data stored in the tables or their indexes. The free
space section is the space left in the Oracle block for new data to be inserted or for existing rows in
the block to be extended.

Sometimes it may be useful to find out exactly what data is in a particular block or to find out
which block contains a particular piece of data. You can actually “see” what’s inside a data block by

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE 101

4517CH04.qxd 8/19/05 10:30 AM Page 101

“dumping” the block contents. Oracle blocks can be dumped at the operating system level (referred
to as binary dumps), and you can also perform Oracle-formatted block dumps.

The most common reason for performing a block dump is to investigate block corruption,
which may be caused by operating system or Oracle software errors, hardware defects, or memory
or I/O caching problems. Oracle does have tools that can help you restore data from corrupted data
blocks, and you can adopt several other strategies to recover from data block corruption; you’ll
learn about these strategies in Chapter 16.

Let’s look at what’s actually in an Oracle data block. First, before you do a data dump, you need
to find out which data file and data block you want to dump. Listing 4-1 shows a query that enables
you to determine the file and block IDs.

Listing 4-1. Query to Identify File and Block IDs

SQL> SELECT segment_name,
file_id,
block_id
FROM dba_extents
WHERE owner = 'OE'
AND segment_name LIKE 'ORDERS%';

SEGMENT_NAME FILE_ID BLOCK_ID
------------------------- ---------- -------------------------------
ORDERS 397 32811
SQL>

You can alternatively use the following query to get the same information:

SQL> SELECT header_file,header_block FROM dba_segments
WHERE segment_name = 'PERSONS';

HEADER_FILE HEADER_BLOCK
----------- ------------

397 32811
SQL>

Next, you issue the following command, using the appropriate file and block numbers, to get a
dump of the block you need:

SQL> ALTER SYSTEM DUMP DATAFILE 397 BLOCK 32811;
System altered.
SQL>

The preceding command will produce a block dump in the default trace directory (UDUMP) of
the Oracle database. Listing 4-2 shows part of the output of this command.

Listing 4-2. A Sample Block Dump

Dump file /a03/app/oracle/admin/pasu/udump/pasu_ora_29673.trc
Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 - 64bit Production
With the Partitioning, OLAP and Data Mining options
*** 2005-05-01 10:59:05.905
*** ACTION NAME:() 2005-05-01 10:59:05.880
*** MODULE NAME:(SQL*Plus) 2005-05-01 10:59:05.880
*** SERVICE NAME:(SYS$USERS) 2005-05-01 10:59:05.880
*** SESSION ID:(207.10866) 2005-05-01 10:59:05.880
Start dump data blocks tsn: 110 file#: 397 minblk 32811 maxblk 32811
buffer tsn: 110 rdba: 0x6340802b (397/32811)
scn: 0x0001.610ac43d seq: 0x01 flg: 0x04 tail: 0xc43d2301

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE102

4517CH04.qxd 8/19/05 10:30 AM Page 102

frmt: 0x02 chkval: 0x882e type: 0x23=PAGETABLE SEGMENT HEADER
Extent Control Header

Extent Header:: spare1: 0 spare2: 0 #extents: 59 #blocks: 483328
last map 0x00000000 #maps: 0 offset: 2720

Highwater:: 0x63826009 ext#: 58 blk#: 8192 ext size: 8192
#blocks in seg. hdr's freelists: 0
#blocks below: 479093
mapblk 0x00000000 offset: 58

Unlocked
--

Low HighWater Mark :
Highwater:: 0x6381ef7e ext#: 4 blk#: 3957 ext size: 8192
#blocks in seg. hdr's freelists: 0
#blocks below: 36725
mapblk 0x00000000 offset: 4
Level 1 BMB for High HWM block: 0x63824028
Level 1 BMB for Low HWM block: 0x6381e018
--
Segment Type: 1 nl2: 0 blksz: 8192 fbsz: 0
L2 Array start offset: 0x00001438
First Level 3 BMB: 0x6340802a
L2 Hint for inserts: 0x63408029
Last Level 1 BMB: 0x63824028
Last Level II BMB: 0x63412029
Last Level III BMB: 0x6341202a

Map Header:: next 0x00000000 #extents:59 obj#:4916681 flag: 0x10000000
. . .
End dump data blocks tsn: 110 file#: 397 minblk 32811 maxblk 32811

It is possible to interpret and read dump data to find details about the information in a table or
index. Let’s look at a simple example that shows how you can get the table name from the preceding
block dump information. Take the obj# shown in second-to-last line, and run the following query:

SQL> SELECT name
2 FROM sys.obj$
3* WHERE obj#='4916681';

NAME

PERSONS
SQL>

The previous example is trivial, but it demonstrates how you can derive information straight
from a database block dump. Of course, if you need more significant data from the dumps, you’d
have to employ more rigorous techniques.

Extents
When several contiguous data blocks are combined, they are called an extent. When you create a
database object like a table or index, you allocate it an initial amount of space, called the initial
extent, and you also specify the size of the next and subsequent extents and the maximum number
of extents for that object. Once allocated to a table or index, the extents remain allocated to that
particular object, unless you drop the object from the database, in which case the space will revert
to the pool of allocatable free space in the database.

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE 103

4517CH04.qxd 8/19/05 10:30 AM Page 103

Segments
A set of extents forms the next higher unit of data storage, the segment. Oracle calls all the space
allocated to any particular database object a segment. So if you have a table called Customer, you
simply refer to the space allocated to it as the “Customer segment.” When you create an index, it will
have its own segment named after the index name. Data and index segments are the most common
type of Oracle segments. There are also temporary segments and rollback segments.

Tablespaces
Oracle databases are logically divided into one or more tablespaces. An Oracle tablespace is a logical
entity that contains the physical data files. Tablespaces store all the usable data of the database,
and the data in the tablespaces is physically stored in one or more data files. Data files are Oracle-
formatted operating system files.

The tablespace is a purely logical construct and is the primary logical storage structure of an
Oracle database. You usually should keep related tables together in the same tablespace, since the
tablespace also acts as the logical container for logical segments such as tables.

How big you make your tablespaces depends on the size of your tables and indexes and the
total amount of data in the database—there are no rules about the minimum or maximum size of
tablespaces (the maximum size is too large to be of any practical consequence). It is quite common
to have tablespaces that are 100GB in size coexisting in the same database with tablespaces as small
as 1GB or even much smaller.

The data files that contain the data for the tablespaces in a database together constitute the
total amount of physical space assigned to a particular database. (The size of a tablespace is the
sum of the sizes of the data files that contain its data, and if you add up the sizes of the tablespaces
or the sizes of all the data files, you will get the size of the database itself.) If you’re running out of
space in your database because you’re adding new data, you need to create more tablespaces with
new data files, add new data files to existing tablespaces, or make the existing data files of a table-
space larger. You’ll learn how to perform each of these tasks in Chapter 5.

There is no hard and fast rule regarding the number of tablespaces you can have in an Oracle
database. The following five tablespaces are generally the default tablespaces that all databases
must have, even though it’s possible to create and use a database with just the first two:

• System tablespace

• Sysaux tablespace

• Undo tablespace

• Temporary tablespace

• Default permanent tablespace

Traditionally, Oracle DBAs have used dozens and sometimes even hundreds of tablespaces to
store all their application tables and indexes, and if you really think you need a large number of
tablespaces to group all related application tables and indexes together, that’s okay. However, you
aren’t required to use a large number of tablespaces. Today, most organizations use logical volume
managers (which were discussed in Chapter 3) to stripe the logical volumes and the data files over a
number of physical disks. Thus, a large tablespace could span several physical disks. Previously, it
was necessary to create tablespaces on different physical disks to avoid I/O contention, but with
today’s disk organization structures you don’t have that problem, and you can make do with fewer
tablespaces if you wish. You can use just one tablespace for all your application data if you wish,
since the data files that are part of the tablespace are going to be spread out over several disks any-
way. This is also why the traditional requirement to separate tables and index data in different
tablespaces isn’t really valid anymore.

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE104

4517CH04.qxd 8/19/05 10:30 AM Page 104

WHY TABLESPACES?

Tablespaces perform a number of key functions in an Oracle database, but the concept of a tablespace is not com-
mon to all relational databases. For instance, the Microsoft SQL Server database doesn’t use this concept at all.
Here’s a brief list of the benefits of using tablespaces:

• Tablespaces make it easier to allocate space quotas to various users in the database.

• Tablespaces enable you to perform partial backups and recoveries based on the tablespace as a unit.

• Because a large object like a data warehouse partitioned table can be spread over several tablespaces, you
can increase performance by spanning the tablespace over several disks and controllers.

• You can take a tablespace offline without having to bring down the entire database.

• Tablespaces are an easy way to allocate database space.

• You can import or export specific application data by using the import and export utilities at the tablespace
level.

Tablespaces are now used mainly to separate related groups of tables and indexes. This may
be important for you if you need to transport tablespaces across different databases and platforms
using the Oracle Data Pump utility, or if you use different database block sizes for different table-
spaces. If you don’t think you’ll be performing these administrative tasks using tablespaces, you can
conceivably use just a couple of tablespaces to store all the data in your database.

Block Sizes and Tablespaces

Each tablespace uses the default block size for the database, unless you create a tablespace with a
different nonstandard block size. As you’ve already seen, Oracle lets you have multiple block sizes in
addition to the default block size. Because tablespaces ultimately consist of Oracle data blocks, this
means that you can have tablespaces with different Oracle block sizes in the same database. This is
a great feature, and it gives you the opportunity to pick the right block size for a tablespace based on
the data structure of the tables it contains.

The customization of the block size for a tablespace provides several benefits:

• Optimal disk I/O: Remember that the Oracle server has to read the table data from mechani-
cal disks into the buffer cache area for processing. One of your primary goals as a DBA is to
optimize the expensive I/O involved in reading from and writing to disk. If you have tables
with very long rows, you are better off with a larger block size—each read will fetch more
data than you’d get with a smaller block size, and you’ll need fewer read operations to get the
same amount of data. Tables with large object (LOB) data will also benefit from a very large
block size. On the other hand, tables with small row lengths can use a small block size as the
building block for the tablespace. If you have large indexes in your database, you will need a
large block size for their tablespace, so that each read will fetch a larger number of index
pointers.

• Optimal caching of data: Oracle provides separate pools for the various block sizes, and this
leads to a better use of Oracle’s memory. I discuss this in the following sections.

• Easier transport of tablespaces: If you have tablespaces with multiple block sizes, it’s easier to
use Oracle’s “transport tablespaces” feature. In Chapter 13, you’ll find examples showing you
how to transport tablespaces between databases.

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE 105

4517CH04.qxd 8/19/05 10:30 AM Page 105

■Note Each Oracle tablespace consists of one or more operating system data files, and a data file can only
belong to one tablespace. At database creation time, the only two tablespaces you must have are the System
tablespace (the key Oracle tablespace, which contains Oracle’s data dictionary), and the Sysaux tablespace (which
is auxiliary to the System tablespace and contains data used by various Oracle products and features). Oracle will
automatically create the System tablespace first, followed by the Sysaux tablespace, but you provide a data file
for each. Later on, you can add and drop tablespaces as you wish, but you can’t drop or rename the System and
Sysaux tablespaces.

Temporary Tablespaces

Users need a temporary location to perform certain activities, such as sorting, and if you don’t pro-
vide a designated temporary tablespace for them, they end up using the System tablespace. Given the
importance of the System tablespace, which contains the data dictionary tables, along with other
important information, it is obvious why you must have a temporary tablespace. Oracle allows you to
create this temporary tablespace at database creation time, and all users will automatically use this
as their default temporary tablespace. In addition, if you choose the Oracle-recommended Auto-
matic Undo Management over the manual rollback-segment management mode, you’ll also need to
create an undo tablespace at database creation time.

Thus, although only the System and Sysaux tablespaces are absolutely mandatory, your data-
base should also have a temporary and an undo tablespace when you initially create it. The System,
Sysaux, temporary, and undo tablespaces all help manage Oracle system activity. The only table-
spaces that Oracle creates automatically are the System and Sysaux tablespaces, though. Oracle
creates these two tablespaces as part of the new database creation process.

Of course, you must ultimately also create separate application tablespaces to store your data
and indexes. It is these tablespaces that will constitute the bulk of the total database size.

Dictionary-Managed vs. Locally Managed Tablespaces

You have a choice between two kinds of tablespaces: dictionary-managed tablespaces and locally
managed tablespaces, which differ in how Oracle allocates extents in the tablespace.

In the case of dictionary-managed tablespaces, every time a table or other object needs to
grow, Oracle checks its data dictionary to ensure that there’s free disk space to allocate to the object,
and then updates its free-space information after allocating a new extent to the object. Therefore,
when you execute a SQL statement that inserts a large number of rows, for example, Oracle may
well execute some additional SQL in the background in order to allocate more space to the table
you are inserting data into. (SQL operations that occur when you consult the data dictionary are
referred to as recursive SQL.) In addition to activity taking place in the data dictionary when addi-
tional extents are required, there’s also activity in the undo segments, since the update activity in
the data dictionary tables needs to be recorded in those segments. This extra activity when an
object is trying to grow could occasionally lead to a performance slowdown.

Locally managed tablespaces keep the space-management information in the data files them-
selves, and the tablespaces automatically track the free or used status of blocks in each data file. The
information about the free and used space in the data files is kept in bitmaps within the data file
headers—bitmaps are maps that use bits to keep track of the space in a block or a group of blocks.
Remember that when an object needs to grow, Oracle will assign new space in units of extents, not
in terms of individual data blocks. So when a new extent needs to be allocated to an object, Oracle
will select the first free data file and look up its bitmap to see if it has enough free contiguous data
blocks. If so, Oracle will allocate the extent and then change the bitmap in that data file to show the
new used status of the blocks in the extent.

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE106

4517CH04.qxd 8/19/05 10:30 AM Page 106

During this process, the data dictionary isn’t used in any way, so recursive SQL operations are
significantly reduced. Rollback information is not generated during this updating of the bitmaps in
the data files. Thus, the use of bitmaps in locally managed tablespaces leads to performance gains
when compared to dictionary-managed tablespaces.

■Tip Locally managed tablespaces are the default in Oracle Database 10g.

Create locally managed tablespaces to take advantage of their superior space-management
abilities. The benefits are especially significant if your database is an OLTP database with numerous
inserts, deletes, and updates taking place on a continuous basis.

Commonly Used Tablespaces

Besides the System and Sysaux tablespaces, you’ll most likely also have undo and temporary table-
spaces. You’ll also use several other “permanent” tablespaces to hold your data and indexes.

Here’s a summary of the key types of tablespaces you’re likely to encounter:

• Bigfile tablespaces are tablespaces with a single large data file, whose size can range from
8 to 128 terabytes, depending on the database block size. Thus, your database could conceiv-
ably be stored in just one bigfile tablespace.

• Smallfile tablespaces can contain multiple data files, but the files cannot be as large as a big-
file data file. Smallfile tablespaces, which are the traditional tablespaces, are the default in
Oracle Database 10g, and Oracle creates both System and Sysaux tablespaces as smallfile
tablespaces.

• Temporary tablespaces contain data that persists only for the duration of a user’s session.
Usually Oracle uses these tablespaces for sorting and similar activities for users.

• Permanent tablespaces include all the tablespaces that aren’t designated as temporary table-
spaces.

• Undo tablespaces contain undo records, which Oracle uses to roll back, or undo, changes to
the database.

• Read-only tablespaces don’t allow write operations on the data files in the tablespace. You
can convert any normal (read/write) tablespace to a read-only tablespace in order to protect
data or to eliminate the need to perform backup and recovery of large data files that don’t
change.

Physical Database Structures
The Oracle database consists of the following three main types of files:

• Data files: These files store the table and index data.

• Control files: These files record changes to all database structures.

• Redo log files: These online files contain the changes made to table data.

In addition to these three types of files, an Oracle database makes use of several other operat-
ing system files to manage its operations. These include initialization files (like init.ora and the
SPFILE), network administration files (like tnsnames.ora and listener.ora), alert log files, trace files,
and the password file. Although these are referred to as physical files, to distinguish them from the

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE 107

4517CH04.qxd 8/19/05 10:30 AM Page 107

logical entities they contain, understand that from an operating system point of view, even these
files are not really physical, but rather are logical components of the actual physical disks used by
the operating system.

Oracle Data Files
Oracle data files make up the largest part of the physical storage of your database. A data file can
belong to only one database, and one or more data files constitute the logical entity called the table-
space, which I described earlier in this chapter. Oracle data files constitute most of a database’s
total space.

When the database instance needs to read table or index data, it reads that from the data files
on disk, unless that data is already cached in Oracle’s memory. Similarly, any new table or index
data or updates to existing data will be written to the data files for permanent storage.

The Control File
The control file is a file that the Oracle DBMS maintains to manage the state of the database, and it
is probably the single most important file in the Oracle database. Every database has one control
file, but due to the file’s importance, multiple identical copies (usually three) are maintained—when
the database writes to the control file, all copies of the file get written to. The control file is critical
to the functioning of the database, and recovery is difficult without access to an up-to-date control
file. Oracle creates the control file (and the copies) during the initial database creation process.

The control file contains the names and locations of the data files, redo log files, current log
sequence numbers, backup set details, and the all-important system change number (SCN), which
indicates the most recent version of committed changes in the database—information that is not
accessible by users even for reading purposes. Only Oracle can write information to the control
file, and the Oracle server process continually updates the control file during the operation of the
database.

Control files are vital when the Oracle instance is operating. When you turn the instance on,
Oracle reads the control file for the location of the data and log files. During the normal operation of
the database, the control file is consulted periodically for necessary information regarding virtually
every structure of the database.

The control file is also important in verifying the integrity of the database and when recovering
the database. The checkpoint process instructs the database writer to write data to the disk when
some specific conditions are met, and the control file notes all checkpoint information from the
online redo log files. This information comes in handy during a recovery—the checkpoint informa-
tion in the control file enables Oracle to decide how far back it needs to go in recovering data from
the online redo log files. The checkpoint indicates the SCN up to which the data files are already
written to the data files, so the recovery process will disregard all the information in the online redo
log files before the checkpoint noted in the control file.

When you start an Oracle instance, the control file is consulted first, to identify all the data files
and the redo log files that must be opened for database operations.

■Note The checkpoint process is discussed in more detail in the “The Checkpoint” section later in this chapter.

Due to its obvious importance, Oracle recommends that you keep multiple copies of the con-
trol file.

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE108

4517CH04.qxd 8/19/05 10:30 AM Page 108

The Redo Log Files
The Oracle redo log files record all the changes made to the database, and they are vital during the
recovery of a database. If you need to restore your database from a backup, you can recover the lat-
est changes made to the database from the redo log files. The set of redo log files that are currently
being used to record the changes to the database are called online redo log files. These logs can be
archived or copied to a different location before being reused, and the saved logs are called archived
redo logs.

Oracle writes all final changes made to data (committed data) first to the redo log files, before
applying those changes to the actual data files themselves. Thus, if a system failure prevents these
data changes from being written to the permanent data files, Oracle will use the redo logs to recover
all transactions that committed but couldn’t be applied to the data files. Thus, redo log files guaran-
tee that no committed data is never lost. If you have all the archived redo logs since the last
database backup, and a set of the current redo logs as well, you can always bring a database up
to date.

■Note Current redo log files are often referred to as online redo logs to distinguish them from the older saved or
archived redo log files.

Redo log files consist of redo records, which are groups of change vectors, each referring to a
specific change made to a data block in the Oracle database. A single transaction may involve multi-
ple changes to data blocks, so it may have more than one redo record. Initially, the contents of the
log are kept in the redo log buffer (a memory area), but they are transferred to disk very quickly. If
your database comes down without warning, the redo log can help you determine whether all
transactions were committed before the crash or if some were still incomplete.

Oracle redo log files contain the following information about database changes made by trans-
actions:

• Indicators specifying when the transaction started

• The name of the transaction

• The name of the data object that was being updated (e.g., an application table)

• The “before image” of the transaction (the data as it was before the changes were made)

• The “after image” of the transaction (the data as it was after the transaction made the
changes)

• Commit indicators that indicate whether and when the transaction completed

When a database crashes, all transactions, both uncommitted as well as committed, have to be
applied to the data files on disk, using the information in the redo log files. All redo log transactions
that have both a begin and a commit entry must be redone, and all transactions that have a begin
entry but no commit entry must be undone. (Redoing a transaction in this context simply means
that you apply the information in the redo log files to the database; you do not rerun the transaction
itself.) Committed transactions are thus re-created by applying the “after image” records in the redo
log files to the database, and incomplete transactions are undone by using the “before image”
records in the undo tablespace. Redo log files are an essential part of database management, and
they are one of the main ways you enforce database consistency.

Oracle requires that every database have at least two redo log groups, each group consisting of
at least one individual log file member. Oracle writes to one redo log file until it gets to the end of
the redo log file, at which point it performs a log switch and starts writing to the second log file (and
then to the third, if it exists).

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE 109

4517CH04.qxd 8/19/05 10:30 AM Page 109

By default, Oracle will write over the contents of a redo log file, unless you choose to archive
your redo files. Oracle recommends that you archive the filled-up redo log files, so you can maintain
a complete record of all the changes made to the database since the last backup. If you archive your
redo log files, you are said to be running your database in the archivelog mode. Otherwise, you’re
running in noarchivelog mode.

Because of the critical importance of the redo log files in helping recover from database crashes,
Oracle recommends multiplexing (maintaining multiple copies of) the redo log files. Multiplexing
the online redo log files by placing two or more copies of the redo logs on different disk drives will
ensure that you won’t easily lose data changes that haven’t been recorded in your data files.

The SPFILE
When you create a new database, you specify the initialization parameters for the Oracle instance
in a special configuration file called the server parameter file (SPFILE). You can also use an older ver-
sion of the configuration file called the init.ora file, but Oracle recommends the use of the more
sophisticated SPFILE. In the SPFILE, you specify the memory limits for the instance, the locations of
the control files, whether and where the archived logs are saved, and other settings that determine
the behavior of the Oracle database server. You can’t, however, edit the SPFILE manually, as you
could the init.ora file, since the SPFILE is a binary file.

The SPFILE is always stored on the database server, thus preventing the proliferation of
parameter files that sometimes occurs with the use of the init.ora file. By default, the SPFILE
(and the init.ora file) is placed in the ORACLE_HOME/dbs directory in UNIX systems and the
ORACLE_HOME\database directory in Windows systems. The ORACLE_HOME directory is the
standard location for the Oracle executables.

■Note You’ll find a detailed discussion of the SPFILE, including how to create one from your init.ora file, in
Chapter 9, where you will learn about creating Oracle databases.

Oracle allows you to change a number of the initialization parameters after you start up the
instance; these are called dynamic initialization parameters. Unlike the traditional init.ora initial-
ization file, the SPFILE can automatically and dynamically record the new values of dynamic
parameters after you change them, ensuring that you don’t forget to incorporate the changes. The
rest of the parameters can’t be changed dynamically, and you’ll have to restart your instance if you
need to modify any of those parameters.

You can use the V$SPPARAMETER data dictionary view to look at the initialization parameter
values you have explicitly set in the SPFILE for your database. (The analogous view, if you are using
the init.ora file, is the V$PARAMETER view.) In addition to the parameter values you set explicitly
in the SPFILE, the V$SPPARAMETER view shows all the default values for all database configuration
parameters (the values in effect in the instance right now).

Chapter 9 has a more complete discussion of the SPFILE.

■Caution Sometimes you’ll see references to undocumented or hidden Oracle parameters. These parameters
usually have an underscore (_) prefix. Don’t use them unless you’re requested to do so by Oracle support experts
or other trustworthy sources.

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE110

4517CH04.qxd 8/19/05 10:30 AM Page 110

The Password File
The password file is an optional file in which you can specify the names of database users who have
been granted the special SYSDBA or SYSOPER administrative privileges, which enable them to per-
form privileged operations, such as starting, stopping, backing up, and recovering databases.
Chapter 10 shows you how to create and maintain the password file.

The Alert Log File
Every Oracle database has an alert log named alertdb_name.log (where db_name is the name of the
database). The alert log captures major changes and events that occur during the running of the
Oracle instance, including log switches, any Oracle-related errors, warnings, and other messages. In
addition, every time you start up the Oracle instance, Oracle will list all your initialization parame-
ters in the alert log, along with the complete sequence of the start-up process. You can also use the
alert log to automatically keep track of tablespaces that are created and data files that are added or
resized.

The alert log can come in handy during troubleshooting—it is usually the first place you should
check to get an idea about what was happening inside the database when a problem occurred. In
fact, Oracle support may ask you for a copy of the pertinent sections of the alert log during their
analysis of database problems.

Oracle puts the alert log in the location specified for the BACKGROUND_DUMP_DEST initialization
parameter. If you don’t specify a value for this parameter, Oracle places the alert log in a default loca-
tion. For example, on HP-UX machines, the default location for the alert log is $ORACLE_HOME/
rdbms/log. Commonly, it is located in a directory called bdump, which stands for background
dump directory. To find out where the alert log is located, issue the following command:

SQL> SHOW PARAMETER background dump
NAME TYPE VALUE

background_core_dump string partial
background_dump_dest string /u01/app/oracle/product/10.2.0/db_1/orcl/bdump

To see if there are any Oracle-related errors in your alert log, simply issue the following com-
mand (finance is the database name in this example):

$ grep ORA- alert_finance.log
ORA-1503 signalled during: CREATE CONTROLFILE SET DATABASE "FINANCE" RESETLOGS...
ORA-1109 signalled during: ALTER DATABASE CLOSE NORMAL...
ORA-00600: internal error code, arguments:[12333], [0], [0], [0], [], [], [], []

As you can see, several Oracle errors are listed in the alert log for the database finance. A regular
scan of your database for all kinds of Oracle errors should be one of your daily database manage-
ment tasks. You can easily schedule a script to scan the alert log and then e-mail you the results. You
can also use the OEM Database Control (or Grid Control) interface to quickly review any errors in
your alert log files.

Trace Files
Oracle requires that you specify three different trace file directories in your initialization file: the
background dump directory, the core dump directory, and the user dump directory.

You specify the background dump directory using the BACKGROUND_DUMP_DEST parameter. This
directory holds the debugging trace files for the background processes (LGWR, DBWn, and so on)
that Oracle writes during instance operation. The background dump directory also contains the
alert log file for the database instance (discussed in the previous section).

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE 111

4517CH04.qxd 8/19/05 10:30 AM Page 111

You specify the location of the core dump directory with the CORE_DUMP_DEST parameter. The
core dump directory holds any core files generated during major errors such as the ORA-600 inter-
nal Oracle software errors.

You specify the location of the user dump directory using the USER_DUMP_DEST initialization
parameter. The Oracle server will write all debugging trace files on behalf of a user process to the
user dump directory. All trace files you generate using Oracle’s SQL tracing features (explained in
Chapters 21 and 22) will show up here.

Data Files and Tablespaces
To be able to use the disk for storing your data, directories and a file system must be created for
you by the system administrator. You also need all the proper rights to read from and write to these
directories and files. Then, when you create a tablespace, you assign it these data files. Before you
create a database, your system administrator will assign a certain amount of disk space for the data-
base based on your initial sizing estimates. All the administrator gives you are the assigned mount
points for the various disks (for example, /prod01, /prod02, /prod03, and so on). You then need to
create your directory structure under the mount points. After you install your software and create
the Oracle administrative directories, you can use the remaining file system space for storing data-
base objects, such as tables and indexes.

Oracle-managed files, which were introduced in Oracle8i (and which we’ll discuss shortly),
simplify the administration of Oracle databases. The Oracle Managed Files (OMF) feature elimi-
nates the need for you to manage operating system files. You simply specify your database
operations in terms of database objects, without using filenames.

For example, suppose you create a tablespace called customer01 with a 500MB data file. As
you load more data into your database, Oracle will allocate new extents to the database tables by
allocating space from the data file. When the table uses up almost all of the initial 500MB space allo-
cation, you need to enlarge the tablespace by adding a new data file to it. You may alternatively
increase the size of the existing data file by resizing it as well. If you don’t, the table can’t increase
in size, and any attempts to add data to it will result in an error.

Although the data itself is placed in actual data files, there is no direct link between the tables
and indexes and the data files they are placed in. These objects are only linked to the logical table-
space; it is the tablespace that is linked to the data files. Thus, Oracle maintains a separation
between the logical objects (such as tables) and the physical data files. In other words, there is no
direct connection during object creation or growth between the object and the data files it resides
in. You can create or move an existing table or index by specifically declaring the tablespace, but
you can’t specify a data file directly.

Oracle Managed Files
The OMF feature aims at relieving DBAs of their traditional file-management tasks. When you
use the OMF feature, you don’t have to worry about the names and locations of the physical files.
Instead, you can focus on the objects you’re creating. Oracle will automatically create and delete
files on the operating system as needed.

The OMF-based files are ideal for test and small databases, but if you have a terabyte-sized
database with a large number of archived logs and redo logs, you need flexibility, which the OMF
file system can’t provide.

OMF drastically simplifies both the initial database creation as well as the management tasks.
If you want to use OMF with your database, read the discussion of OMF in Chapter 18, where you’ll
learn how to create and manage OMF-based files.

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE112

4517CH04.qxd 8/19/05 10:30 AM Page 112

Oracle Processes
Oracle server processes running under the operating system perform all the database operations,
such as inserting and deleting data. These Oracle processes, together with the memory structures
allocated to Oracle by the operating system, form the working Oracle instance. There is a set of
mandatory Oracle processes that need to be up and running for the database to function at all.
Other Oracle processes are necessary only if you are using certain specialized features of Oracle
(such as replicated databases).

A process is essentially a connection or thread to the operating system that performs a task or
job. The Oracle processes you’ll encounter in this section are continuous, which means that they
come up when the instance starts, and they stay up for the duration of the instance’s life. Thus,
they act like Oracle’s hooks into the operating system’s resources. A process on a UNIX system is
analogous to a thread on a Windows system.

■Note A “process” on a Windows Oracle installation is somewhat different from a “process” on a UNIX system.
Please refer to the discussion on managing Oracle on Windows in Chapter 20 for a full explanation of Windows-
based Oracle installations.

Oracle processes are divided into two general types both for efficiency and to keep client
processes separate from the database server’s tasks:

• User processes: These processes are responsible for running the application that connects the
user to the database instance.

• Oracle processes: These processes perform the Oracle server’s tasks, and you can divide
them into two major categories: server processes and background processes. Together, these
processes perform all the actual work of the database, from managing connections to writing
to logs and data files to monitoring the user processes.

Interaction Between the User and Oracle Processes
User processes run application programs and Oracle tools, such as SQL*Plus. The user processes
communicate with the server processes through the user interface and request that the Oracle
server processes perform work on their behalf. Oracle responds by having its server processes serv-
ice the user processes’ requests. It’s the job of the server processes to monitor user connections,
accept requests for data, and return the results to the users. All SELECT requests, for example, involve
reading data from the database, and it’s the server processes that return the output of the SELECT
statement back to the users.

You’ll examine the two types of Oracle processes—the server processes and the background
processes—in detail in the following sections.

The Server Process
When you run an Oracle tool, such as the OEM Database Control or the SQL*Plus interface, Oracle
creates a user process for you. An Oracle session is defined as a specific connection of a user to the
Oracle instance through the Oracle user process. The session duration lasts from the time you con-
nect to the database by providing a username/password combination until you log out.

The server process is the process that services an individual user process. Each user connected
to the database has a separate server process created for the duration of the session. The server
process is created to service the user’s process and is used by the user process to communicate with

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE 113

4517CH04.qxd 8/19/05 10:30 AM Page 113

the Oracle database server. When the user submits a request to select data, for example, the server
process created for that user’s application checks the syntax of the code and executes the SQL code.
It then reads the data from the data files into the memory blocks. (If another user intends to read
the same data, the second user’s server process will read it not from disk again, but from Oracle’s
memory, where the data usually remains for a while.) Finally, the server process returns the
requested data to the user.

The most common configuration for the server process is to assign each user a dedicated
server process. However, Oracle provides for a more sophisticated means of servicing several users
through the same server process, called the shared server architecture, which you’ll learn about in
more detail in Chapter 10.

Under the dedicated server process approach, each user has a one-to-one connection to the
database through a dedicated server process. When you use the shared server architecture, several
users connect through a dispatcher and use a shared server process. Even though the dedicated
server approach is most commonly used, is easier to set up and tune, and is fine in most cases, it’s
better under some circumstances to use a shared server process, which helps conserve critical sys-
tem resources, such as memory.

You can also configure shared server connection pooling. Connection pooling lets you reuse
existing timed-out connections to service other active sessions. You can also configure shared
server session multiplexing, which combines multiple sessions for transmission over the same net-
work connection.

The Background Processes
The background processes are the real workhorses of the Oracle instance—they enable large num-
bers of users to concurrently and efficiently use information stored in database files. Oracle creates
these processes automatically when you start an instance, and by being continuously hooked into
the operating system, these processes relieve the Oracle software from having to repeatedly start
numerous, separate processes for the various tasks that need to be done on the operating system’s
server. Each of the Oracle background processes is in charge of a separate task, thus increasing the
efficiency of the database instance. These processes are automatically created by Oracle when you
start the database instance, and they terminate when the database is shut down.

Table 4-1 lists the mandatory background processes that run in all Oracle databases. There are
other specialized background processes that you’ll need to use only if you’re implementing certain
advanced Oracle features.

Table 4-1. Key Oracle Background Processes

Background Process Function

Database writer Writes modified data from the buffer cache to disk (data files)

Log writer Writes redo log buffer contents to the online redo log files

Checkpoint Updates the headers of all data files to record the checkpoint
details

Process monitor Cleans up after finished and failed processes

System monitor Performs crash recovery and coalesces extents

Archiver Archives filled online redo log files

Manageability Monitor Performs database-manageability-related tasks

Manageability Monitor Light Performs tasks like capturing session history and metrics

Memory manager Coordinates the sizing of the SGA components

Job queue coordination process Coordinates job queues to expedite job processes

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE114

4517CH04.qxd 8/19/05 10:30 AM Page 114

I briefly discuss the main Oracle background processes in the following sections.

The Database Writer
Oracle doesn’t modify data directly on the disks—all modifications of data take place in Oracle
memory. The database writer (DBWn) process is then responsible for writing the “dirty” (modified)
data from the memory areas known as database buffers to the actual data files on disk.

It is the database writer process’s job to monitor the use of the database buffer cache, and if the
free space in the database buffers is getting low, the database writer process makes room available
by writing some of the data in the buffers to the disk files. The database writer process uses the least
recently used (LRU) algorithm (or a modified version of it), which retains data in the memory buffers
based on how long it has been since someone asked for that data. If a piece of data has been
requested very recently, it’s more likely to be retained in the memory buffers.

The database writer process writes dirty buffers to disk under the following conditions:

1. When the database issues a checkpoint

2. When a server process can’t find a clean reusable buffer after checking a threshold number
of buffers

3. Every 3 seconds

■Note Just because a user commits a transaction, it is not made permanent by the database writer process
with an immediate write to the database files. Oracle conserves physical I/O by waiting to perform a more efficient
write of batches of committed transactions at once.

For very large databases or for databases performing intensive operations, a single database
writer process may be inadequate to perform all the writing to the database files. Oracle provides
for the use of multiple database writer processes to share heavy data modification workloads. You
can have a maximum of 20 database writer processes (DBW0 through DBW9, and DBWa through
DBWj). Oracle recommends using multiple database writer processes, provided you have multiple
processors.

You can specify the additional database writer processes by using the DB_WRITER_PROCESSES ini-
tialization parameter in the SPFILE Oracle configuration file. If you don’t specify this parameter,
Oracle allocates the number of database writer processes based on the number of CPUs and
processor groups on your server. For example, on my 32-processor HP-UX server, the default is
four database writers (one database writer per eight processors), and in another 16-processor
server, the default is two database writers.

Oracle further recommends that you first ensure that your system is using asynchronous I/O
before deploying additional database writer processes beyond the default number—you may not
need multiple database writer processes if so. (Even when a system is capable of asynchronous I/O,
that feature may not be enabled.) If your database writer can’t keep up with the amount of work
even after asynchronous I/O is enabled, you should consider increasing the number of database
writers.

The Log Writer
The job of the log writer (LGWR) process is to transfer the contents of the redo log buffer to disk.
Whenever you make a change to a database table (whether an insertion, update, or deletion), Oracle
writes the committed and uncommitted changes to a redo log buffer (memory buffer). The log
writer process then transfers these changes from the redo log buffer to the redo log files on disk.

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE 115

4517CH04.qxd 8/19/05 10:30 AM Page 115

The log writer writes a commit record to the redo log buffer and writes it to the redo log on disk
immediately, whenever a user commits a transaction.

The log writer writes all redo log buffer entries to the redo logs under the following circum-
stances:

• Every 3 seconds.

• When the redo log buffer is one-third full.

• When the database writer signals that redo records need to be written to disk. Under Oracle’s
write-ahead protocol, all redo records associated with changes in the block buffers must be
written to disk (that is, to the redo log files on disk) before the data files on disk can be modi-
fied. While writing dirty buffers from the buffer cache to the storage disks, if the database
writer discovers that certain redo information has not been written to the redo log files, it
signals the log writer to first write that information, so it can write its own data to disk.

The redo log files, as you learned earlier, are vital during the recovery of an Oracle database
from a lost or damaged disk.

The Checkpoint
The checkpoint (CKPT) process is charged with telling the database writer process when to write
the dirty data in the memory buffers to disk. After telling the database writer process to write the
changed data, the checkpoint process updates the data file headers and the control file to indicate
when the checkpoint was performed. The purpose of the checkpoint process is to synchronize the
buffer cache information with the information on the database disks.

Each checkpoint record consists of a list of all active transactions and the address of the most
recent log record for those transactions. A checkpointing process involves the following steps:

1. Flushing the contents of the redo log buffers to the redo log files

2. Writing a checkpoint record to the redo log file

3. Flushing the contents of the database buffer cache to disk

4. Updating the data file headers and the control files after the checkpoint completes

There is a close connection between how often Oracle checkpoints and the recovery time after
a database crash. Because database writer processes write all modified blocks to disk at check-
points, the more frequent the checkpoints, the less data will need to be recovered when the instance
crashes. However, checkpointing involves an overhead cost. Oracle lets you configure the database
for automatic checkpoint tuning, whereby the database server tries to write out the dirty buffers in
the most efficient way possible, with the least amount of adverse impact on throughput and per-
formance. If you use automatic checkpoint tuning, you don’t have to set any checkpoint-related
parameters.

The Process Monitor
When user processes fail, the process monitor (PMON) process cleans up after them, ensuring that
the database frees up the resources that the dead processes were using. For example, when a user
process dies while holding certain table locks, the PMON process releases those locks so other users
can use the tables without any interference from the dead process. In addition, the PMON process
restarts failed server processes and dispatcher processes. The PMON process sleeps most of the
time, waking up at regular intervals to see if it is needed. Other processes will also wake up the
PMON process if necessary.

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE116

4517CH04.qxd 8/19/05 10:30 AM Page 116

The PMON process automatically performs dynamic service registration. When you create a
new database instance, the PMON process registers the instance information with the listener,
which is the entity that manages requests for database connections (Chapter 10 discusses the lis-
tener in detail). This dynamic service registration eliminates the need to register the new service
information in the listener.ora file, which is the configuration file for the listener.

The System Monitor
The system monitor (SMON) process, as its name indicates, performs system-monitoring tasks for
the Oracle instance, such as these:

• Upon restarting an instance that crashed, SMON determines whether the database is
consistent.

• SMON coalesces free extents if you use dictionary-managed tablespaces, which enables you
to assign larger contiguous free areas on disk to your database objects.

• SMON cleans up unnecessary temporary segments.

Like the PMON process, the SMON process sleeps most of the time, waking up to see if it is
needed. Other processes will also wake up the SMON process if they detect a need for it.

The File Mapping Monitor
File systems are increasingly complex, and to help you in monitoring I/O, Oracle provides the file
mapping monitor (FMON) process to map files to immediate storage layers and physical devices.
This will help you understand exactly how your data files are stored in a disk system managed by a
Logical Volume Manager (LVM).

The FMON process interacts with mapping libraries provided by the operating system to per-
form the file mapping. The results are in the DBMS_STORAGE_MAP view.

The Archiver
The archiver (ARCn) process is used when the system is being operated in an archivelog mode—
that is, the changes logged to the redo log files are being saved and not being overwritten by new
changes. If you run your database in the no archivelog mode, Oracle will overwrite the redo log files
with new redo log records. When you choose to run the instance in an archivelog mode, no such
overwriting can take place—each filled log will be saved or archived in a special location.

The archiver process will archive the redo log files to the location you specify. You usually copy
these archived logs to tape and send them to an offsite storage location to ensure you have a com-
plete set of backups and archived redo logs so that you can perform a database recovery if the need
arises.

If a huge number of changes are being made to your database, and your logs are consequently
filling up very quickly, you can use multiple archiver processes up to a maximum of ten (ARC0
through ARC9). The LOG_ARCHIVE_MAX_PROCESSES parameter in the initialization file will determine
how many archiver processes Oracle will start. If the log writer process is writing logs faster than the
default single archiver process can archive them, the LGWR process automatically starts a new
ARCn process, thus raising the number of processes from their default value of 1.

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE 117

4517CH04.qxd 8/19/05 10:30 AM Page 117

■Tip If you aren’t sure what new background processes are actually running in your database, just check the
processes by issuing the ps –eaf | grep ora command in UNIX and Linux systems. For each active process,
the process name and database name will be listed. For example, the log writer process will show up as
ora_lgwr_pasprod, where pasprod is the name of the database. You can get a complete list of all the background
processes (running and not running) by querying the V$BGPROCESS view.

The Manageability Monitor
The manageability monitor (MMON) process collects several types of statistics to help the database
manage itself. For example, MMON collects the Automatic Workload Repository (AWR) snapshot
information, which is the basis for the performance diagnostics capability of the Automatic Data-
base Diagnostic Monitor (ADDM). MMON also issues alerts when database metrics violate their
threshold values.

The Manageability Monitor Light
The manageability monitor light (MMNL) process shows up as the Manageability Monitor Process 2
when you query the V$BGPROCESS view. The process flushes data from the Active Session History
(ASH) to disk whenever the buffer is full. The MMNL process also performs other manageability-
related tasks, such as capturing session history data and computing database metrics.

The Memory Manager
The memory manager (MMAN) process coordinates the sizing of the memory components. MMAN
keeps track of the sizes of the memory components and the pending resize operations. It observes
the system and workload in order to determine the ideal distribution of memory, and it ensures that
the needed memory is available.

The Job Queue Coordination Process
Oracle uses the job queue coordination (CJQO) process to schedule and run user jobs. The coordina-
tor process dynamically spawns job queue slave processes (J000 through J999), which run the user
jobs.

The Rebalance Master

The rebalance master (RBAL) process coordinates disk rebalancing activity when you use an Auto-
matic Storage Management (ASM) storage system.

The ASM Rebalance

The ASM rebalance (ARBn) processes perform the disk rebalancing activity in an ASM instance.

The ASM Background

The ASM background (ASMB) process is present in all Oracle databases that use an ASM storage
system. The ASMB process communicates with the ASM instance by logging into the ASM instance
as a foreground process.

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE118

4517CH04.qxd 8/19/05 10:30 AM Page 118

■Note The RBAL and ORBn processes are used only if you use Oracle’s Automatic Storage Management. When
you use ASM, you must create an ASM instance, and that instance will use these processes to perform disk stor-
age management. The OSMB process acts as the mediator between your database (when you’re using ASM-based
disk storage) and the ASM instance. I discuss ASM in detail in Chapter 17.

The Recovery Writer

There’s a new type of log known as a flashback log, and it logs the before images of Oracle blocks
from the new flashback buffers, which are located in the system global area (SGA), which is the
name for Oracle’s memory allocation. (I discuss the SGA in the “The System Global Area (SGA)” sec-
tion, later in this chapter.) When you enable the new flashback database feature (which is explained
in Chapter 16), Oracle starts the recovery writer (RVWR) process to write the flashback data from the
flashback buffer to the flashback logs. In a sense, the RVWR’S job is analogous to that of the LGWR
background process.

The Change Tracking Writer

Oracle tracks the physical location of database changes in a new file called the change-tracking file.
Oracle’s backup utility, the Recovery Manager (RMAN), uses the change-tracking file to determine
which data blocks to read during an incremental backup, making the incremental backups faster
by avoiding reading entire data files. The change-tracking writer (CTWR) process is the new Oracle
background process that writes change information to the change-tracking file. You’ll learn more
about the CTWR process in Chapter 15, which discusses database backups.

Miscellaneous Background Processes

In addition to the background processes already described, there are other processes as well, such
as the Queue Monitor Coordinator (QMNC), which spawns and coordinates queue slave processes,
and the recoverer (RECO) process, which is used to coordinate distributed databases and other spe-
cialized processes.

■Note Besides the processes discussed here, other Oracle background processes that perform specialized tasks
may be running in your system. For example, if you use Oracle Real Application Clusters, you’ll see a background
process called the lock (LCKn) process, which is responsible for performing inter-instance locking.

Oracle Memory Structures
Oracle uses a part of its memory allocation to hold both program code and data, which makes pro-
cessing much faster than if it had to fetch data from the disks constantly. These memory structures
enable Oracle to share executable code among several users without having to go through all the
preexecution processing every time a user invokes a piece of code.

The Oracle server doesn’t always write changes to disk directly. It writes database changes to
the memory area, and when it’s convenient, it writes the changes to disk. Because accessing mem-
ory is many times faster than accessing physical disks (memory access is measured in nanoseconds,
whereas disk access is measured in milliseconds), Oracle is able to overcome the I/O limitations of
the disk system. The more your database performs its work in memory rather than in the physical
disk storage system, the faster the response will be. Of course, as physical I/O decreases, CPU usage

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE 119

4517CH04.qxd 8/19/05 10:30 AM Page 119

THE HIGH COST OF DISK I/O

Although secondary storage (usually magnetic disks) is significantly larger than main memory, it’s also significantly
slower. A disk I/O involves either moving a data block from disk to memory (a disk read) or writing a data block to
disk from memory (a disk write). Typically, it takes about 10–40 milliseconds (0.01–0.04 seconds) to perform a
single disk I/O.

Suppose your update transaction involves 25 I/Os—you could spend up to 1 second just waiting to read or
write data. In that same second, your CPUs could have performed millions of instructions—the update takes a neg-
ligible amount of time compared to the disk reads and disk writes. If you already have the necessary data in
Oracle’s memory, the retrieval time would be much faster, as memory read/writes take only a few nanoseconds.
This is why avoiding or minimizing disk I/Os plays such a big role in providing high performance in Oracle data-
bases.

Understanding Main Memory
All computers use memory, which actually consists of a hierarchy of different levels of memory.
The heart of this hierarchy is main memory, which contains all the instruction executions and data
manipulations. All main memories are random access memory (RAM), which means that you can
read any byte in memory in the same amount of time. Typically, you can access main memory data
in the 10–100 nanosecond range.

An important part of the information Oracle stores in the RAM allocated to it is the program
code that is executing currently or that has been executed recently. If a new user process needs to
use the same code, it’s available in memory in a compiled form, making the processing time a
whole lot faster. The memory areas also hold information about which users are locking a certain
table, thereby helping different sessions communicate effectively. Most important, perhaps, the
memory areas help in processing data that’s stored in permanent disk storage. Oracle doesn’t make
changes directly to the data on disk: data is always read from the disks, held in memory, and
changed there before being transferred back to disk.

It’s common to use the term buffers to refer to units of memory. Memory buffers are page-sized
areas of memory into which Oracle transfers the contents of the disk blocks. If the database wants
to read (select) or update data, it copies the relevant blocks from disk to the memory buffers. After it
makes any necessary changes, Oracle transfers the contents of the memory buffers to disk.

Oracle uses two kinds of memory structures, one shared and the other process-specific. The
system global area (SGA) is the part of total memory that all server processes (including background
processes) share. The process-specific part of the memory is known as the program global area
(PGA), or process-private memory. The following sections examine these two components of Oracle’s
memory in more detail.

The System Global Area (SGA)
The SGA is the most important memory component in an Oracle instance. In large OLTP databases,
especially, the SGA is a much larger and more important memory area than the PGA. In data ware-
housing environments, on the other hand, the PGA can be the more important Oracle memory
area, because it critically influences the efficiency of large data sorts and hashes, which are com-
monly part of analytic computations in data warehouses.

The SGA’s purpose is to speed up query performance and to enable a high amount of concur-
rent database activity. Because processing in memory is much faster than disk I/O, the size of the
SGA is one of the more important configuration issues when you’re tuning the database for optimal
performance. When you start an instance in Oracle, the instance takes a certain amount of memory

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE120

4517CH04.qxd 8/19/05 10:30 AM Page 120

from the operating system’s RAM—the amount is based on the size of the SGA component in the
initialization file. When the instance is shut down, the memory used by the SGA goes back to the
host system.

The SGA isn’t a homogeneous entity; rather, it’s a combination of several memory structures.
The following are the main components of the SGA:

• Database buffer cache: Holds copies of data blocks read from data files.

• Shared pool: Contains the library cache for storing SQL and PL/SQL parsed code in order to
share it among users. It also contains the data dictionary cache, which holds key data dic-
tionary information.

• Redo log buffer: Contains the information necessary to reconstruct changes made to the
database by DML operations. This information is then recorded in the redo logs by the log
writer.

• Java pool: Keeps the state of Java program execution.

• Large pool: Stores large memory allocations, such as RMAN backup buffers.

• Streams pool: Supports the Oracle Streams feature.

When you start the Oracle instance, Oracle allocates memory as needed until it reaches the size
set in the SGA_TARGET initialization parameter, which sets the limit for the total memory allocation.
If your total memory allocation is already at the SGA_TARGET limit, you can’t dynamically increase
memory to any SGA component without decreasing some other component’s memory allocation.
Oracle does allow you to exchange the memory from one dynamically sizable memory component
to another.

For example, you can increase the memory assigned to the buffer cache by taking it from the
shared pool. If you have certain jobs run only at specified times of the day, you can write a simple
script that runs before the job executes and modifies the allocation of memory among the various
components. After the job completes, you can have another script run that changes the memory
allocation back to the original settings.

The next few sections discuss the various components of the SGA. You can manage the SGA
yourself, by calibrating the memory you make available to the Oracle instance with the changing
memory requirements of the running instance. However, the best way to manage the SGA is simply
by using automatic shared memory management, which I introduce in the “Automatic Shared
Memory Management” section, later in this chapter.

The Database Buffer Cache
The database buffer cache consists of the memory buffers that Oracle uses to hold the data read by
the server process from data files on disk in response to user requests. Buffer cache access is, of
course, much faster than reading the data from disk storage. When the users modify data, those
changes are made in the database buffer cache as well. The buffer cache thus contains both the
original blocks read from disk and the changed blocks that have to be written back to disk.

You can group the memory buffers in the database buffer cache into three components:

• Free buffers: These are buffers that do not contain any useful data, and, thus, the database
can reuse them to hold new data it reads from disk.

• Dirty buffers: These contain data that was read from disk and then modified, but hasn’t yet
been written to the data files on disk.

• Pinned buffers: These are data buffers that are currently in active use by user sessions.

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE 121

4517CH04.qxd 8/19/05 10:30 AM Page 121

When a user process requests data, Oracle will first check whether the data is already available
in the buffer cache. If it is, the server process will read the data from the SGA directly and send it to
the user. If the data isn’t found in the buffer cache, the server process will read the relevant data
from the data files on disk and cache it in the database buffer cache. Of course, there must be free
buffers available in the buffer cache for the data to be read into them. If the server process can’t find
a free buffer after searching through a threshold number of buffers, it asks the database writer
process to write some of the dirty buffers to disk, thus freeing them up for writing the new data it
wants to read into the buffer cache.

Oracle maintains a least recently used (LRU) list of all free, pinned, and dirty buffers in mem-
ory. It’s the database writer process’s job to write the dirty buffers back to disk to make sure there are
free buffers available in the database buffer cache at all times. To determine which dirty blocks get
written to disk, Oracle uses a modified LRU algorithm, which ensures that only the most recently
accessed data is retained in the buffer cache. Writing data that isn’t being currently requested to disk
enhances the performance of the database.

The larger the buffer cache, the fewer the disk reads and writes needed and the better the per-
formance of the database. Therefore, properly sizing the buffer cache is very important for the
proper performance of your database. Of course, simply assigning an extremely large buffer cache
can hurt performance, because you may end up taking more memory than necessary and causing
paging and swapping on your server.

Using Multiple Database Buffer Cache Pools

Generally, a single default buffer cache is sufficient to serve the instance’s memory needs. Assigning
the same database buffer cache for all the database objects may not be very efficient at times,
because different objects and various types of data may have different requirements as to how long
they should be retained in the data cache. For example, table A may be accessed a hundred thou-
sand times during a day, whereas table B may be accessed only twice during the same day. Clearly,
it makes sense here to retain table A in the buffer cache throughout the day, so as to increase the
speed of access, while table B can be removed after each use, to conserve space in the cache.

Oracle gives you flexibility in the use of the buffer cache by allowing you to configure the data-
base buffer cache into multiple buffer pools. A buffer pool in this context is simply a part of the total
buffer cache that is subject to different retention criteria for database objects like tables. For exam-
ple, you can take a total buffer cache of 500MB and divide it into three pools, with 200MB in the first
two pools and 100MB in the third. Once you have created separate buffer pools, you can assign a
table exclusively to that buffer pool when you create that table. You can also use the ALTER TABLE or
ALTER INDEX command to modify the type of buffer pool that a table or index should use. Table 4-2
lists the main types of buffer pools that you can configure.

Note that any database objects that you haven’t assigned to the keep or the recycle buffer pool
will be assigned to the default buffer pool, which is sized according to the value you provide for the
DB_CACHE_SIZE initialization parameter. The keep and the recycle buffer pools are purely optional,
while the default buffer pool is mandatory.

Remember that the main goal in assigning objects to multiple buffer pools is to minimize the
misses in the data cache and thus minimize your disk I/O. In fact, all buffer caching strategies have
this as their main goal. If you aren’t sure which objects in your database belong to the different
types of buffer caches, just let the database run for a while with some best-guess multiple cache
sizes and query the data dictionary view V$DB_CACHE_ADVICE to get some advice from Oracle itself.

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE122

4517CH04.qxd 8/19/05 10:30 AM Page 122

Table 4-2. Main Buffer Pool Types

Buffer Pool Initialization Parameter Description

Keep buffer pool DB_KEEP_CACHE_SIZE Keeps the data blocks always in memory. You
may have small tables that are frequently
accessed, so to prevent them from being aged
out of the database buffer cache, you can
assign the tables to the keep buffer cache when
they are created.

Recycle buffer pool DB_RECYCLE_CACHE_SIZE Removes the data from the cache immediately
after use. You need to use this buffer pool
carefully, if you decide to use it at all. The
recycle buffer pool will cycle out the object
from the cache as soon as the transaction is
over. Obviously, you would use the recycle
buffer pool only for large tables that are
infrequently accessed and that do not need to
be retained in the buffer cache indefinitely.

Default buffer pool DB_CACHE_SIZE Contains all data and objects that are not
assigned to the keep and recycle buffer pools.

Multiple Database Block Sizes and the Buffer Cache
As was mentioned earlier, you can have multiple block sizes for your database. You have to choose a
standard block size first, and then you can choose up to four other nonstandard cache sizes.

The DB_BLOCK_SIZE parameter in your initialization parameter file determines the size of your
standard block size in the database and frequently is the only block size for the entire database.
The DB_CACHE_SIZE parameter in your initialization parameter file specifies the size (in bytes) of the
cache of the standard block sized buffers. Notice that you don’t set the number of database buffers;
rather, you specify the size of the buffer cache itself in the DB_CACHE_SIZE parameter.

You can have up to five different database block sizes in your databases. That is, you can create
your tablespaces with any one of the five allowable database block sizes. Although most databases
use only a single standard block size (such as 4KB, 8KB, or 16KB), you can choose to use some or
all of the four nonstandard block sizes as well. For example, you may have some data warehouse–
type tables that will benefit from a high database block size, such as 32KB. However, most of the
other tables in the database may serve online processing needs, and should use the standard block
size of 4KB. If you happen to be using all four of the allowable nonstandard block sizes besides the
standard block size buffers, you can create tablespaces with all five block sizes. However, before you
can create these nonstandard block size tablespaces, you must configure nonstandard subcaches in
the buffer caches for each nonstandard block size you wish to use. You can specify the nonstandard
buffer cache subcaches by using the DB_nK_CACHE_SIZE initialization parameter, where n is the block
size in kilobytes—it can take a value of 2, 4, 8, 16, or 32.

As you’ve seen, the database buffer cache can be divided into three pools: the default, keep,
and recycle buffer pools. The total size of the buffer cache is the sum of memory blocks assigned to
all the components of the database buffer cache. The keep and recycle buffer pools can only be cre-
ated with the standard block size, but you can use up to five different nonstandard block sizes to
configure the default buffer pool.

Here’s an example that shows how you can specify different values for each of the buffer cache’s
subcaches in your initialization parameter file. In the example, the numbers on the right show the
memory allocated to a particular type of buffer cache.

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE 123

4517CH04.qxd 8/19/05 10:31 AM Page 123

DB_KEEP_CACHE_SIZE = 48MB
DB_RECYCLE_CACHE_SIZE = 24MB
DB_CACHE_SIZE = 128MB /* standard 4KB block size */
DB_2k_CACHE_SIZE =48MB /* 2KB non-standard block size */
DB_8k_CACHE_SIZE =192MB /* 8KB non-standard block size */
DB_16k_CACHE_SIZE = 384MB /* 16KB non-standard block size */

The total buffer cache size in this example will be the sum of all the above subcaches, which
comes to about 824MB.

The Buffer Cache Hit Ratio

Buffer reads are much faster than reads from disk. The all-important principle in appropriately siz-
ing the buffer cache is summarized in the phrase “touch as few blocks as possible,” since disk I/Os
necessary for reading data from Oracle blocks on disk are more time-consuming than reading the
data from the SGA. This is why the buffer cache hit ratio, which measures the percentage of time
users accessed the data they needed from the buffer cache (rather than requiring a disk read), is
such an important indicator of performance of the Oracle instance.

You derive the buffer cache hit ratio as follows:

hit rate = (1 – (physical reads)/(logical reads)) * 100

In this calculation, the physical and logical reads (reads from disk and from memory, respec-
tively) are accumulated from the start of the Oracle instance. So if you calculate the ratio on
Monday morning after a restart on Sunday night, it will show a very low hit ratio. As the week pro-
gresses, the hit ratio could increase dramatically, because as more read requests come in, Oracle
satisfies them with the data that is already in memory.

Unfortunately, Oracle does not give you any reliable rules or guidelines to indicate how much
memory you should allocate for your buffer cache ratio or the SGA. Some trial and error with data
loads should give you a good idea about the right size.

In Chapter 22, I present much more information on the proper tuning of the database buffer
cache. A high buffer cache hit ratio doesn’t always correlate with superior database performance.
It is entirely possible for your database to have a very high hit ratio—say, in the high 90s—and still
have a performance problem. For example, even if your total logical reads and hit ratio are high,
your SQL queries could still be inefficient.

The Shared Pool
The shared pool is a very important part of the Oracle SGA, and sizing it appropriately for your
instance will help avoid several types of Oracle instance bottlenecks. Unlike the database buffer
cache, which holds actual data blocks, the shared pool holds executable PL/SQL code and SQL
statements, as well as information regarding the data dictionary tables. The data dictionary is a set
of key tables that Oracle maintains, and it contains crucial metadata about the database tables,
users, privileges, and so forth.

Proper sizing of the shared pool area benefits you in a couple of ways. First, your response
times will be better because you’re reducing processing time—if you don’t have to recompile the
same Oracle code each time a user executes a query, you save time. Oracle will reuse the previously
compiled code if it encounters the same code again. Second, more users can use the system
because the reuse of code makes it possible for the database to serve more users with the same
resources. Both the I/O rates and the CPU usage will diminish when your database uses its shared
pool memory effectively.

The following sections discuss the library cache and the data dictionary cache, both of which
are components of the shared pool.

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE124

4517CH04.qxd 8/19/05 10:31 AM Page 124

The Library Cache

All application code, whether it is pure SQL code or code embedded in the form of PL/SQL program
units, such as procedures and packages, is parsed first and executed later. Oracle stores all compiled
SQL statements in the library cache component of the shared pool. The library cache component of
the shared pool memory is shared by all users of the database. Each time you issue a SQL statement,
Oracle first checks the library cache to see if there is an already parsed and ready-to-execute form
of the statement in there. If there is, Oracle uses the library cache version, reducing the processing
time considerably—this is called a soft parse.

If Oracle doesn’t find an execution-ready version of the SQL code in the library cache, the exe-
cutable has to be built fresh—this is called a hard parse. Oracle uses the library cache part of the
shared pool memory for storing newly parsed code. If there isn’t enough free memory in the shared
pool, Oracle will jettison older code from the shared pool to make room for your new code.

All hard parses involve the use of critical system resources, such as processing power and inter-
nal Oracle structures, such as latches; you must make every attempt to reduce their occurrence.
High hard-parse counts will lead to resource contention and a consequent slowdown of the data-
base when responding to user requests.

You should make decisions about the library cache size based on hit and miss ratios on the
library cache as discussed in Chapter 22. If your system is showing more than the normal amount of
misses (meaning that code is being reparsed or re-executed often), it is time to increase the library
cache memory. The way to do this is to increase the total memory allocated to the shared pool.

The Data Dictionary Cache

The data dictionary cache component of the shared pool primarily contains object definitions,
usernames, roles, privileges, and other such information. When you run a segment of SQL code,
Oracle first has to ascertain whether you have the privileges to perform the planned operation. It
checks the data dictionary cache to see whether the pertinent information is there, and if not, Ora-
cle has to read the information from the data dictionary into the data dictionary cache. Obviously,
the more often you find the necessary information in the cache, the shorter the processing time. In
general a data dictionary cache miss, which occurs when Oracle doesn’t find the information it
needs in the cache, tends to be more expensive than a library cache miss.

There is no direct way to adjust the data dictionary cache size. You can only increase or
decrease the entire shared pool size. Therefore, the solution to a low data dictionary cache hit
ratio or a low library cache hit ratio is the same: increase the shared pool size.

■Tip A cache miss on either the data dictionary cache or the library cache component of the shared pool has
more impact on database performance than a miss on the buffer pool cache. For example, a decrease in the data
dictionary cache hit ratio from 99 percent to 89 percent leads to a much more substantial deterioration in perform-
ance than a similar drop in the buffer cache hit ratio.

The Redo Log Buffer
The redo log buffer, usually less than a couple of megabytes in size, and thus nowhere near the size
of the database buffer cache and the shared pool cache, is nonetheless a crucial component of the
SGA. When a server process changes data in the data buffer cache (via an insert, a delete, or an
update), it generates redo data, which is recorded in the redo log buffer. The log writer process
writes redo information from the redo log buffer in memory to the redo log files on disk.

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE 125

4517CH04.qxd 8/19/05 10:31 AM Page 125

You use the LOG_BUFFER initialization parameter to set the size of the redo log buffer, and it stays
fixed for the duration of the instance. That is, you can’t adjust the redo log buffer size dynamically,
unlike the other components of the SGA.

The log writer process writes the contents of the redo log buffer to disk under any of the follow-
ing circumstances:

• The redo log buffer is one-third full.

• Users commit a transaction.

• The database buffer cache is running low on free space and needs to write changed data to
the redo log. The database writer instructs the log writer process to flush the log buffer’s con-
tents to disk to make room for the new data.

The redo log buffer is a circular buffer—the log writer process writes the redo entries from the
redo log buffer to the redo log files, and server processes write new redo log entries over the entries
that have been written to the redo log files. You only need to have a small redo log buffer, about 1MB
or so. Large redo log buffers will reduce your log file I/O (especially if you have large or many trans-
actions), but your commits will take longer as well.

The log writer process usually writes to the redo log files very quickly, even when its workload
is quite heavy. You’ll run into more problems if your redo log buffer size is too small than if it is too
large. A redo log buffer that is too small will keep the log writer process excessively busy—it will be
constantly writing to disk. Furthermore, if the log buffer is too small, it will frequently run out of
space to accommodate new redo entries.

Oracle provides an option called nologging that lets you bypass the redo logs almost com-
pletely and thus avoid contention during certain operations (such as a large data load). You can
also batch the commits in a long job, thus enabling the log writer process to more efficiently write
the redo log entries.

The Large Pool and the Java Pool
The large pool is a purely optional memory pool, and Oracle manages it quite differently from the
shared pool. Oracle uses the large pool mostly for accommodating Recovery Manager (RMAN)
operations. You set the size of this pool in the initialization file by using the LARGE_POOL_SIZE param-
eter. The large pool memory component is important if you’re using the shared server architecture.

The Java pool (set by using the JAVA_POOL_SIZE parameter) is designed for databases that con-
tain a lot of Java code, so that the regular SGA doesn’t have to be allocated to components using
Java-based objects. Java pool memory is reserved for the Java Virtual Machine (JVM) and for your
Java-based applications. The default size for this memory pool is 20MB, but if you’re deploying
Enterprise JavaBeans or using CORBA, you could potentially need a Java pool size greater than 1GB.

The Streams Pool
Oracle Streams is a technology for enabling data sharing among different databases and among
different application environments. The Streams pool is the memory allocated to support
Streams activity in your instance. If you manually set the Streams pool component by using the
STREAMS_POOL_SIZE initialization parameter, memory for this pool is transferred from the buffer
cache after the first use of Streams. If you use automatic shared memory management (discussed
next), the memory for the Streams pool comes from the global SGA pool. The amount transferred
is up to 10 percent of the shared pool size.

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE126

4517CH04.qxd 8/19/05 10:31 AM Page 126

Automatic Shared Memory Management
In previous versions of Oracle, DBAs spent quite a bit of time pondering the sizing of the SGA. It
wasn’t uncommon for them to recalibrate the SGA size quite often as part of their instance-tuning
efforts. In Oracle Database 10g, you can configure automatic shared memory management by using
the new SGA_TARGET initialization parameter. All you need to do is assign a certain value for the
SGA_TARGET parameter, and Oracle will automatically manage the distribution of this memory
among the various components of the SGA. Oracle’s allocation of the SGA memory to the various
components isn’t static, but changes with the changing workload of the database. Oracle can auto-
matically manage the following five components of the SGA (the relevant Oracle initialization
parameter is in parentheses):

• Database buffer cache (DB_CACHE_SIZE)

• Shared pool (SHARED_POOL_SIZE)

• Large pool (LARGE_POOL_SIZE)

• Java pool (JAVA_POOL_SIZE)

• Streams pool (STREAMS_POOL_SIZE)

As you can see, Oracle automatically tunes five components of the SGA, which are referred to
as the automatically sized SGA parameters. You must still manage the rest of the SGA components
yourself, even under automatic shared memory management. The following are the manually tun-
able components of the SGA:

• Keep buffer cache (DB_KEEP_CACHE_SIZE)

• Recycle buffer cache (DB_RECYCLE_CACHE_SIZE)

• Any nonstandard block size buffer caches (DB_nK_CACHE_SIZE)

• Redo log buffer (LOG_BUFFER)

Note that the first three components in this list are optional. As the DBA, you must set the value
for each of the manual SGA components.

You can set up automatic shared memory management simply by setting the SGA_TARGET
parameter to a positive value. Once you do this, Oracle will automatically tune the five auto-tuned
SGA parameters, but not all of the SGA_TARGET’s total size can be taken by the auto-tuned parame-
ters—Oracle will first deduct the memory necessary for the manual SGA parameters from the
SGA_TARGET size, and it will allocate the remainder for the auto-tuned parameters.

When you set the SGA_TARGET parameter to a positive value, the default value for the five
auto-tuned SGA parameters will be zero, but if you set a specific value for any of the auto-tuned
parameters, that value becomes the lower bound for that parameter. If there isn’t enough memory
left in the SGA to satisfy any values you select for the auto-tuned parameters, Oracle will just reduce
the lower bound of those parameters to fit within the available memory.

The total size of the SGA will be the sum of the memory allocated to the auto-tuned SGA para-
meters, memory allocated to the manual SGA parameters, and fixed SGA and internal allocations.

■Note If the SGA_TARGET parameter is set to zero (the default), the auto-tuned SGA parameters behave as in
previous versions of Oracle.

You can learn more about automatic shared memory management in Chapter 22.

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE 127

4517CH04.qxd 8/19/05 10:31 AM Page 127

The Program Global Area (PGA)
Oracle creates a program global area (PGA) for each user when the user starts a session. This area
holds data and control information for the dedicated server process that Oracle creates for each
individual user. Unlike the SGA, the PGA is for the exclusive use of each server process and can’t be
shared by multiple processes. A session’s logon information and persistent information, such as
bind variable information and data type conversions, are still a part of the SGA, unless you’re using
a shared server configuration, but the runtime area used while SQL statements are executing is
located in the PGA.

For example, a user’s process may have some cursors (which are handles to memory areas
where you store the values for variables) associated with it. Because these are the user’s cursors,
they are not automatically shared with other users, so the PGA is a good place to save those private
values. Another major use of the PGA is for performing memory-intensive SQL operations that
involve sorting, such as queries involving ORDER BY and GROUP BY clauses. These sort operations
need a working area, and the PGA provides that memory area.

■Note For most OLTP databases, where transactions are very short, the PGA use is quite low. On the other
hand, complex, long-running queries, which are more typical of DSS environments, require larger amounts of
PGA memory.

You can classify the PGA memory into the following types:

• Private SQL area: This area of memory holds SQL variable bind information and runtime
memory structures. Each session that executes a SQL statement will have its own private
SQL area.

• Runtime area: The runtime area is created for a user session when the session issues a
SELECT, INSERT, UPDATE, or DELETE statement. After an INSERT, DELETE, or UPDATE statement is
run, or after the output of a SELECT statement is fetched, the runtime area is freed by Oracle.

If a user’s session uses complex joins or heavy sorting (grouping and ordering) operations, the
session uses the runtime area to perform all those memory-intensive operations.

■Note A cursor is a handle to a private SQL area in memory, and the OPEN_CURSORS initialization parameter
determines the number of cursors in your instance.

To reduce response time, all the sorts that are performed in the PGA should be performed
completely in the cache of the work area—this is known as an optimal mode operation, since all
work is done in memory, with no disk I/O whatsoever. If the sort operation spills onto the disk
because the memory areas aren’t adequate, that will slow down the sort operation. A SQL operation
that is forced to use the disk area in a limited fashion is a single-pass operation, and it leads to
slower performance than when the operation executes entirely in the memory cache. However, if
your runtime memory area is too small relative to the sorting operation, Oracle will have to conduct
multiple passes over the data being sorted, which is very disk intensive, and will result in extremely
slow response times for the user. Thus, there is a direct correlation between the PGA size and query
performance.

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE128

4517CH04.qxd 8/19/05 10:31 AM Page 128

■Caution Many Oracle manuals suggest that you can allocate up to half of the total system memory for the
Oracle SGA. This guideline assumes that the PGA memory will be fairly small. However, if the number of users is
very large and the queries are complex, your PGA component may end up being even larger than the SGA. You
should estimate the total memory requirements by projecting both SGA and PGA needs.

You can tune the size of these private work areas, but this is a hit-or-miss approach that
involves weighing a number of complex Oracle configuration parameters related to the work areas.
The parameters that you need to manually configure include the SORT_AREA_SIZE, HASH_AREA_SIZE,
and BITMAP_AREA_SIZE parameters.

The sum of all the PGA memory used by all sessions makes up the PGA used by the instance.
Oracle recommends that you use automatic PGA management, which automates the allocation of
PGA memory. This helps you use the memory allocated to your database more efficiently. The fea-
ture performs especially well when you have varying workloads, because it dynamically adjusts its
available memory bounds and the work profiles on a continuous basis. Manual management of
PGA could easily lead either to too little or too much memory being allocated, which causes severe
performance problems.

You automate PGA memory allocation by ensuring that the WORKAREA_SIZE_POLICY initialization
parameter is set to its default value of auto. If you set the parameter value to manual, you’ll have to
specify all the PGA work area–related parameters mentioned previously. The WORKAREA_SIZE_POLICY
parameter ensures the automation of PGA memory. However, you must also set the size of the total
PGA memory allocation by specifying a value for the PGA_AGGREGATE_TARGET initialization parameter.
For example, if you set PGA_AGGREGATE_TARGET=5000000000 in your initialization parameter file, Oracle
uses the 5GB PGA allocation as a global target for the instance. Oracle will try to keep the total PGA
memory used by all server processes attached to the instance under this target value.

If you don’t set a value for the PGA_AGGREGATE_TARGET parameter, you’ll be using the manual
mode to manage the work areas. Alternatively, you can activate the manual mode by setting the
WORKAREA_SIZE_POLICY parameter to manual. Oracle strongly recommends using automatic PGA
management because it enables much more efficient use of memory. For users, this means better
throughput and faster response time for queries in general.

■Note In a manual management mode, any PGA memory that isn’t being used isn’t automatically returned to
the system. Every session that logs into the database is allocated a specific amount of PGA memory, which it
holds until it logs off, no matter whether it’s performing SQL operations or not. Under automatic PGA management,
the Oracle server returns all unused PGA memory to the operating system. On a busy system, this makes a huge
difference in database and system performance. Suppose you set the PGA_AGGREGATE_TARGET parameter to
5GB. Oracle will not immediately grab all of the 5GB when you start the instance, as it does in the case of the
SGA_TARGET parameter. It will only take the memory as necessary from the system, subject to the limit of 5GB. As
soon as a session releases the run-area memory, the memory is automatically released to the operating system.

When you use automatic PGA memory management by setting the PGA_AGGREGATE_TARGET
parameter, Oracle will do its best to assign enough memory to all work areas so they work in an
optimal manner, executing all memory-intensive SQL operations in the cache memory. At
worst, some work areas will use the disk areas in a single-pass mode. However, if you set the
PGA_AGGREGATE_TARGET parameter too low relative to the work area needs of your instance, Oracle
will be forced to conduct multi-pass executions of the sort- or hash-intensive SQL operations,
with disastrous results for your instance performance.

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE 129

4517CH04.qxd 8/19/05 10:31 AM Page 129

I discuss PGA management in more detail in Chapter 22, which deals with tuning instance
performance, and I show how to determine the optimal size for your PGA_AGGREGATE_TARGET initial-
ization parameter.

A Simple Oracle Database Transaction
So far in this chapter, you’ve seen the components of the Oracle database system: the necessary
files and memory allocations and how you can adjust them. It’s time now to look into how Oracle
processes users’ queries and how it makes changes to data. It’s important to understand the
mechanics of SQL transaction processing because all interaction with an Oracle database occurs
either in the form of SQL queries that read data or SQL (or PL/SQL) operations that modify, insert,
or delete data.

A transaction is a logical unit of work in an Oracle database, and consists of one or more SQL
statements. A transaction begins with the first executable SQL statement and terminates when you
commit or roll back the transaction. Committing a transaction will make your changes permanent,
and rolling back the changes will, of course, undo them. Once you commit the transaction, all other
users’ transactions that start subsequently will be able to see the changes made by your transactions.

When a transaction fails to execute completely (say, due to a power failure), the entire transac-
tion must be undone. Oracle will roll back any changes made by earlier SQL statements in the
transaction, leaving the data in its original (pre-transaction) state. The whole process is designed
to maintain data consistency—a transaction is an all or nothing concept.

The following simple example of a row being inserted outlines how Oracle processes transac-
tions:

1. A user requests a connection to the Oracle server through a 3-tier or an n-tier web-based
client using Oracle Net Services.

2. Upon validating the request, the server starts a new dedicated server process for that user.

3. The user executes a statement to insert a new row into a table.

4. Oracle checks the user’s privileges to make sure the user has the necessary rights to perform
the insertion. If the user’s privilege information isn’t already in the library cache, it will have
to be read from disk into that cache.

5. If the user has the requisite privileges, Oracle checks whether a previously executed SQL
statement that’s similar to the one the user just issued is already in the shared pool. If there
is, Oracle executes this version of the SQL; otherwise Oracle parses and executes the user’s
SQL statement. Oracle then creates a private SQL area in the user session’s PGA.

6. Oracle first checks whether the necessary data is already in the data buffer cache. If not, the
server process reads the necessary table data from the data files on disk.

7. Oracle immediately applies row-level locks, where needed, to prevent other processes from
trying to change the same data simultaneously.

8. The server writes the change vectors to the redo log buffer.

9. The server modifies the table data (inserts the new row) in the data buffer cache.

10. The user commits the transaction, making the insertion permanent. Oracle releases the row
locks after the commit is issued.

11. The log writer process immediately writes out the changed data in the redo log buffers to
the online redo log file.

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE130

4517CH04.qxd 8/19/05 10:31 AM Page 130

12. The server process sends a message to the client process to indicate the successful comple-
tion of the INSERT operation. (If it couldn’t complete the request successfully, it sends a
message indicating the failure of the operation.)

13. Changes made to the table by the insertion may not be written to disk right away. The
database writer process writes the changes in batches, so it may be some time before the
inserted information is actually written permanently to the database files on disk.

■Note In the previous example, since a new row is being inserted, there is no undo information to record in the
undo tablespace. If the user had updated a row instead, Oracle would have had to record the before-update row in
the undo records. Until the original transaction commits the update, all other users will see the original data values
of the row.

Data Consistency and Data Concurrency
Databases aren’t very useful if a large number of users can’t access and modify data simultaneously.
Data concurrency refers to the capability of the database to handle this concurrent use by many
users. To provide consistent results, the database also needs a mechanism within it that ensures
users don’t step on each other’s changes. Data consistency refers to the ability of a user to get a
meaningful and consistent view of the data, including all the changes made to it by other users.

Oracle uses special structures called undo segments to ensure data consistency. For example,
when you’re reading a set of data for a transaction, Oracle ensures that the data you read is
transaction-set consistent; that is, it guarantees that the data you see reflects a single set of commit-
ted transactions. Oracle also provides read consistency of data, meaning that all the data selected by
your queries comes from a single point in time. Oracle’s undo segments are part of the undo table-
space mentioned earlier in this chapter.

Oracle uses locking mechanisms to ensure data concurrency. By allowing one user to lock indi-
vidual rows or entire tables, that user is guaranteed exclusive use of the table for updating purposes.
An important feature of the Oracle locking mechanisms is that they are, for the most part, auto-
matic. You don’t need to concern yourself with the details of how to lock the objects you want to
modify—Oracle will take care of it for you behind the scenes.

Oracle uses two basic modes of locking. The exclusive lock mode is used for updates, and the
share lock mode is used for SELECT operations on tables. The share lock mode enables several users
to simultaneously read the same rows in a table. The exclusive lock mode, because it involves
updates to the table, can only be used by one user at any given time. Exclusive locks are almost
always applied to the specific rows being updated, permitting simultaneous use of the database by
several users. Oracle releases the locks it holds on the tables and other internal resources automati-
cally after the issue of a COMMIT, SAVEPOINT, or ROLLBACK command.

Oracle locking is complex, and you’ll learn about it in detail in Chapter 6, along with how Oracle
ensures data consistency and concurrency.

The Database Writer and the Write Ahead Protocol
The database writer, as you saw earlier, is responsible for writing all modified buffers in the data-
base buffer cache to the data files. Further, it has the responsibility of ensuring there is free space in
the buffer cache so the server process can read in new data from the data files when necessary. The

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE 131

4517CH04.qxd 8/19/05 10:31 AM Page 131

(log) write ahead protocol also requires that the redo records in the redo log buffer associated with
the changed data in the data buffer cache are written to the redo log data files before the changes
are recorded in the data files themselves. The importance of the redo log contents makes it impera-
tive that Oracle write the contents of the redo log file to permanent storage before it writes the
changes to the data files on disk.

When users commit their transactions, the log writer process immediately writes only a single
commit record to the redo log files. The entire set of records affected by the committed transaction
may not be written simultaneously to the data files. This fast commit mechanism, along with the
write ahead protocol, ensures that the database is not kept waiting for all the physical writes to be
completed after each transaction. As you can well imagine, a huge OLTP database with numerous
changes throughout the day cannot function optimally if it has to write to disk after every commit-
ted data change.

■Note If there are a large number of transactions and, therefore, a large number of commit requests, the log
writer process may not write each committed transaction’s redo entries to the redo log immediately. It may batch
multiple commit requests if it is busy writing previously issued commit records. This batched writing of redo
entries from multiple committed transactions is known as group commits.

The System Change Number
The system change number (SCN) is an important quantifier that the Oracle database uses to keep
track of its state at any given point in time. When you read (SELECT) the data in the tables, you don’t
affect the state of the database, but when you modify, insert, or delete a row, the state of the data-
base is different from what it was before. Oracle uses the SCN to keep track of all the changes made
to the database over time. The SCN is a logical time stamp that is used by Oracle to order events that
occur within the database. The SCN is very important for several reasons, not the least of which is
the recovery of the database after a crash.

SCNs are like increasing sequence numbers, and Oracle increments them in the SGA. When a
transaction modifies or inserts data, Oracle first writes a new SCN to the rollback segment. The log
writer process then writes the commit record of the transaction immediately to the redo log, and
this commit record will have the unique SCN of the new transaction. In fact, the writing of this SCN
to the redo log file denotes a committed transaction in an Oracle database.

The SCN helps Oracle determine whether crash recovery is needed after a sudden termination
of the database instance or after a SHUTDOWN ABORT command is issued. Every time the database
checkpoints, Oracle writes a START SCN command to the data file headers. The control file maintains
an SCN value for each data file, called the STOP SCN, which is usually set to infinity, and every time
the instance is stopped normally (with the SHUTDOWN NORMAL or SHUTDOWN IMMEDIATE command), Ora-
cle copies the START SCN number in the data file headers to the STOP SCN numbers for the data files
in the control file. When you restart the database after a graceful shutdown, there is no need for any
kind of recovery because the SCNs in the data files and the control files match. On the other hand,
abrupt instance termination does not leave time for this matching of SCNs, and Oracle recognizes
that instance recovery is required because of the varying SCN numbers in the data files on the one
hand and the control file on the other. As you’ll learn in Chapter 16, they play a critical role during
database recovery. Oracle determines how far back you should apply the archived redo logs during a
recovery based on the SCN.

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE132

4517CH04.qxd 8/19/05 10:31 AM Page 132

Undo Management
When you make a change to a table, you should be able to undo or roll back the change if necessary.
The information needed to undo or roll back changes in transactions, which mostly consists of the
pre-change table row information, is called undo data (the change vectors), and it is stored in undo
records. When you issue a ROLLBACK command, Oracle uses these undo records to replace the
changed data with the original versions. As Chapter 6 explains in detail, the undo records are vital
during database recovery when all unfinished or uncommitted transactions must be discarded to
make the database consistent.

In earlier versions of the Oracle database (up to Oracle8i), it was the DBA’s job to manage what
are known as rollback segments by explicitly allocating a regular, permanent tablespace for them.
In fact, the management of the rollback segments used to be a vexing and time-consuming part of
the job for many DBAs who managed large databases, especially if they had frequent, long-running
transactions. Oracle wrote (and still writes) to the rollback segments in a circular fashion, and it
wasn’t uncommon to find that information needed by a transaction for read consistency had been
overwritten by a newer transaction. Many DBAs used to find the sizing of the rollback segments a
tricky issue: if you had several small rollback segments, a large transaction might fail, and if you had
a small number of very large rollback segments, your transactions might encounter contention for
the rollback segment transaction tables.

The manual mode of undo management is deprecated in Oracle Database 10g. Oracle strongly
recommends the use of the Automatic Undo Management (AUM) feature, where the Oracle server
itself will maintain and manage the undo (rollback) segments. All you need to do is provide a dedi-
cated undo tablespace and set the initialization parameter UNDO_MANAGEMENT to auto. The default
setting of the UNDO_MANAGEMENT parameter is still manual in Oracle Database 10g—Oracle will create
the necessary number of undo segments, which are structurally similar to the traditional rollback
segments, and it’ll size and extend them as necessary. It’s not uncommon for new undo segments to
be created and old ones to be deactivated based on the amount of transactions going on in the
database. Chapter 6 provides further information about the AUM feature.

Because Oracle will do the sizing of the individual undo segments for you, the two decisions
you have to make are the size of the undo tablespace and the setting for the UNDO_RETENTION initial-
ization parameter (which determines how long Oracle will try to retain undo records in the undo
tablespace). Remember that your undo tablespace should not only be able to accommodate all the
long-running transactions, but it also has to be big enough to accommodate any flashback features
you may implement in your database—Oracle’s flashback features let you undo changes to data at
various levels. Several flashback features, such as Flashback Query, Flashback Versions Query, and
Flashback Table, utilize undo data. I discuss the undo-related Flashback features in Chapter 6.

You can use Oracle’s Undo Advisor through the OEM to figure out the ideal size for your undo
tablespaces and the ideal duration to specify for the UNDO_RETENTION parameter. Using the current
undo space consumption statistics, you can estimate future undo generation rates for the instance.

Backup and Recovery Architecture
You must perform regular backups of any database that contains useful information. All databases
depend on mechanical components like disk drives, and they are also subject to unexpected events
like power failures and natural catastrophes. Programmatic and user errors also necessitate protect-
ing data through a strong backup system. Recovery involves two main objectives: first, you must
return the database to a normal operating state with as little downtime as possible. Second, you
mustn’t lose any useful data.

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE 133

4517CH04.qxd 8/19/05 10:31 AM Page 133

It’s important to understand the basics of how Oracle manages its backup and recovery opera-
tions. You’ve seen some of the components previously, but I put it all together here. The following
Oracle structures ensure that you can recover your databases after a problem:

• The control file: The control file contains data file and redo log information, as well as the
latest system change number, which is key to the recovery process.

• Database backups: These are file or tape backups of the database data files. Since these back-
ups are made periodically, they most likely won’t contain all the data needed to bring the
database up to date.

• The redo logs: The redo logs, as you’ve seen earlier in this chapter, contain all changes made
to the database, including uncommitted and committed changes.

• The undo records: These records contain the before-images of blocks changed in uncommitted
transactions.

Recovery involves restoring all backups first. Since the backups can’t bring you up to date, you
apply the redo logs next, to bring the database up to date. Since the redo logs may contain some
uncommitted data that shouldn’t really be in the database, however, Oracle uses the undo records
to roll back all the uncommitted changes. When the recovery process is complete, your database
will not have lost any committed or permanent data.

User-Managed Backup and Recovery
You can perform all backup and recovery procedures by issuing direct commands through SQL*Plus
and operating system commands. However, Oracle strongly recommends that you use the Oracle-
provided Recovery Manager (RMAN) to perform your backup and restore work.

RMAN
RMAN is Oracle’s main backup and recovery tool. You can use RMAN from the command line as
well as through a GUI interface. RMAN enables various types of backup and recovery techniques,
and several of these techniques are unique to the tool. For example, a big benefit of using RMAN
is that it automatically maintains all records of existing database backups, without you having to
maintain that information somewhere.

The Automatic Disk-Based Backup and Recovery feature uses a flash recovery area to help you
automate the management of backup-related files. Oracle recommends that you use such a flash
recovery area, which is a location on disk where the database stores and manages all recovery-
related files, like archived redo logs and other files for your database. Files no longer needed in the
flash recovery area are deleted automatically when RMAN needs to reclaim space for new files. If
you don’t use a flash recovery area, you must manually manage disk space for your backup-related
files.

Oracle Backup
RMAN can’t back up files directly to tape devices, and in previous versions of Oracle you had to use a
third-party tool (for example, NetWorker from Legato) to manage tape backups. In Oracle Database
10g Release 2, you have access to the exciting Oracle Backup feature, which is an out-of-the-box
backup and recovery solution for Oracle customers. Oracle Backup copies data files directly to tape
and manages the archiving of those tapes as well. Chapter 15 provides an introduction to Oracle
Backup.

You can easily configure the Backup Manager through OEM. By using OEM and Oracle Backup
together, you can easily back up and recover databases enterprise-wide.

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE134

4517CH04.qxd 8/19/05 10:31 AM Page 134

Flashback Recovery Techniques
Quite often, you may be called upon to help recover from a logical corruption of the database,
rather than from a hardware failure. You can use the following flashback techniques in Oracle Data-
base 10g to recover from logical errors:

• Flashback Database: Takes the entire database back to a specific point in time

• Flashback Table: Returns individual tables to a past state

• Flashback Drop: Undoes a DROP TABLE command and recovers the dropped table

• Flashback Query, Flashback Version Query, and Flashback Transaction Query: Retrieve data
from a time (or interval) in the past

The Flashback Database and Flashback Drop features are discussed in Chapter 16, which
deals with recovery techniques. The Flashback Table, Flashback Query, Flashback Version Query,
and Flashback Transaction Query features rely on undo data, and are covered in Chapter 6.

The Oracle Data Dictionary and the Dynamic
Performance Views
Oracle provides a huge number of internal tables to aid you in tracking changes to database objects
and to fix problems that will occur from time to time. Mastering these key internal tables is vital if
you want to become a savvy Oracle DBA. All the GUI tools, such as OEM, depend on these key inter-
nal tables (and views) to gather information for monitoring Oracle databases. Although you may
want to rely on GUI tools to perform your database administration tasks, it is important to learn as
much as you can about these internal tables. Knowledge of these tables helps you understand what
is actually happening within the database.

You can divide the internal tables into two broad types: the static data dictionary tables and the
dynamic performance tables. You won’t access these tables directly; rather, you’ll access the infor-
mation through views based on these tables. Chapter 23 is dedicated to a discussion of these views,
and you can get a complete list of all the data dictionary views by issuing the following simple query:

SQL> SELECT * FROM dict;

The following sections examine the role of these two important types of tables (and views).

The Oracle Data Dictionary
Oracle maintains a set of tables within the database called the data dictionary. You access these
read-only data dictionary tables through views built on them. Views are like logical tables built on
an underlying Oracle table, and I discuss them in detail in Chapter 5. The data that the data dic-
tionary maintains is also known as metadata. DBAs and developers depend heavily on the data
dictionary for information about the various components of the database—these tables contain
information such as the list of tables, table columns, users, user privileges, file and tablespace
names, and so on. A simple query, such as the following, necessitates several calls to the data dic-
tionary before Oracle can execute it:

SQL> SELECT employee_name
FROM emp
WHERE city = 'NEW YORK';

It’s important to note that the data dictionary tables don’t report on aspects of the running
instance. The data dictionary holds only information about the database, such as the database files,

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE 135

4517CH04.qxd 8/19/05 10:31 AM Page 135

tables, functions, and procedures, as well as user-related information. Another set of views, called
the dynamic performance views, records information about the currently running instance.

■Tip The data dictionary tables describe the entire database: its logical and physical structure, its space usage,
its objects and their constraints, and user information. You can’t access the data dictionary tables directly; instead,
you’re given access to views built on them. You also can’t change any of the information in the data dictionary
tables yourself. Only Oracle has the capability to change data in the data dictionary tables. When you issue a query
involving the CITIES column in a table named EMPLOYEES, for example, the database will consult various data
dictionary tables to verify that the table and the column exist, and to confirm that the user has the rights to exe-
cute that statement. As you can imagine, a heavily used OLTP database will require numerous queries on its data
dictionary tables during the course of a day.

The Oracle super user SYS owns most of the data dictionary tables (though some are created
under the system username), and they are stored in the System tablespace.

■Tip Oracle recommends that you analyze both the data dictionary and the dynamic performance tables (also
referred to as fixed tables) on a regular basis to improve performance. Chapter 21 shows you how to analyze these
tables.

The Dynamic Performance (V$) Views
In addition to the data dictionary, Oracle maintains an important set of dynamic performance
tables. These tables maintain information about the current instance, and Oracle continuously
updates these tables.

The set of virtual dynamic tables is referred to as the X$ tables. Oracle doesn’t allow you to
access the X$ tables directly; rather, Oracle creates views on all these tables and then creates syn-
onyms for these views. You’ll be accessing these views, called the V$ views, to get information about
various aspects of a running instance. The V$ views are the foundation of all Oracle database per-
formance tuning. If you wish to master the Oracle database, you must master the V$ dynamic views,
because they are the wellspring of so much knowledge about the Oracle instance.

The dynamic performance views, like the data dictionary views, are based on read-only tables
that only Oracle can update. Some of the tables capture session-wide information, and some of
them capture system-wide information. You’ll find the dynamic views extremely useful in session
management, backup operations and, most important, in performance tuning. Remember, though,
that the dynamic performance tables are only populated for the duration of the instance and are
cleaned out when you shut down the instance.

The Oracle Optimizer
In most cases, when users issue a query against the database, there’s more than one way to access
the tables and retrieve the data. Because there are many ways to execute the same statement, Oracle
uses a cost-based optimizer (CBO) to choose the best execution plan for queries, based on the cost
of the query in terms of resource use.

Query optimizing is at the heart of modern relational databases and is an essential part of how
Oracle conducts its operations. The query optimizer is transparent to users and Oracle will auto-
matically apply the best access and join methods to your queries before it starts processing.

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE136

4517CH04.qxd 8/19/05 10:31 AM Page 136

■Note To choose the best execution plans, Oracle uses statistics on tables and indexes, which include counts of
the number of rows and the data distribution of “data skew” in the tables within the database. (The physical stor-
age statistics and the data distribution statistics for all database tables and indexes, columns, and partitions are
stored in various data dictionary tables.) Armed with this information, the optimizer usually succeeds in finding the
best path to access the necessary data for executing a SQL statement. Oracle also lets you use hints to override
the optimizer’s choice of an execution path. This is because in some instances the application developer’s knowl-
edge of the data enables the use of more efficient execution plans than the optimizer can come up.

I discuss the Oracle optimizer in detail in Chapter 21, in the context of performance tuning.

■Tip In Oracle Database 10g, you can also use the Oracle optimizer in an enhanced tuning mode, as shown in
Chapter 21. The Oracle optimizer in the tuning mode is the basis of the new SQL Tuning Advisor feature, also
explained in Chapter 21.

Talking to the Database
In order for a user to communicate with the database, he or she must first connect to the database
by creating a user session. The user communication with the database is done through one of sev-
eral interfaces. This section will quickly review Oracle database connectivity aspects and the main
communication interfaces, including SQL*Plus, iSQL*Plus, and the OEM Database Control and Grid
Control interfaces, which serve as the main DBA management consoles.

Connecting to Oracle
You can connect to the Oracle database from the server on which the Oracle RDBMS is running.
However, DBAs as well as application developers and users generally connect to the database
through the network using Oracle Net, a component of Oracle Net Services. Oracle Net enables net-
work sessions from a client application to an Oracle database server. It acts as the data courier for
the clients and the database server, and it is in charge of establishing and maintaining the connec-
tion as well as transmitting messages between client and server. Oracle Net is installed on each
computer in the network.

■Note Oracle Net Services is Oracle’s mechanism for interfacing with the communication protocols (TCP/IP, FTP,
and so on) that define the way data is transmitted and received on a network.

For a connection to succeed, the client application must specify the location of the database.
On the database side, the Oracle Net listener, known simply as the listener, is the process that listens
for incoming client connection requests. You configure the listener in the listener.ora file, where you
provide the database address. The listener.ora file also defines the protocol the listener is listening
on, and related information. On the client side, you can either use the tnsnames.ora file to list the
database server connection details, which include the database name, server name, and the con-
nection protocol, or you can use the newer and much simpler easy connect method in Oracle
Database 10g.

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE 137

4517CH04.qxd 8/19/05 10:31 AM Page 137

Oracle Enterprise Manager (OEM)
Oracle Enterprise Manager (OEM) is Oracle’s GUI-based management tool that lets you manage
one or more databases efficiently. OEM enables security management, backups, and routine user
and object management. Because OEM is GUI-based, you don’t have to know a lot of SQL to use the
tool. However, understanding the V$ and dynamic performance views will enhance your knowledge
of how the database works—OEM will be an even more powerful tool in your hands after you mas-
ter the management of the database using the data dictionary–based and dynamic performance
table–based SQL queries. Oracle has really improved OEM in its most recent versions, and all seri-
ous practitioners of the trade should master the use of the tool for both daily database management
as well as scheduling routine database administration tasks and troubleshooting. Chapter 19
explains the configuration and use of the OEM tool set.

In Oracle Database 10g, you have the option of using either the Database Control or Grid Con-
trol version of Enterprise Manager. Enterprise Manager Database Control is automatically installed
along with the Oracle software and is designed to run as a stand-alone application. In order to man-
age several databases, however, you need to separately install the Enterprise Manager Grid Control
software on your server and the OEM Agent software on all the targets you wish to monitor.

The Oracle Enterprise Manager tool always looked promising in previous versions, but it deliv-
ered inconsistent performance. This hard reality, plus the fact that many DBAs are comfortable with
manual commands and scripts based on the database dictionary and the dynamic (V$) views, led
to a low acceptance rate of the tool. In Oracle Database 10g, the OEM tool has gone through a sea
change and delivers high-level performance. I strongly recommend using the Database Control or
the Grid Control tool to monitor and manage your databases. You can invoke all the new manage-
ment advisors and tools, like the ADDM from the OEM toolset, without having to use complex
Oracle PL/SQL packages. I show OEM examples throughout this book.

■Note Traditionally, all GUI tools relied on the same V$ performance views that are used in database queries. In
Oracle Database 10g Release 2, however, OEM can access key performance data directly from the SGA, without
making any SQL queries. This is done by attaching directly to the SGA and reading the statistics from the shared
memory. When your database is performing extremely slowly or hangs, you can’t rely on the dynamic V$ views to
troubleshoot the problem—doing so may actually end up making matters worse! This is one more reason why you
should make the OEM your main means of monitoring and managing the Oracle instance.

SQL*Plus
SQL*Plus is an Oracle tool that lets you enter and run SQL statements and PL/SQL (a procedural
extension to the Oracle SQL language) blocks. As a DBA, you can perform all your tasks right from
the SQL*Plus interface itself. However, as I explain in the previous “Oracle Enterprise Manager” sec-
tion, you may want to make the SQL*Plus interface your secondary, rather than primary, tool for
accessing the Oracle RDBMS. SQL*Plus is discussed more in Chapter 12.

iSQL*Plus
iSQL*Plus is a browser-based interface to the Oracle database, and it is very similar to SQL*Plus. It
generates its output in the form of HTML tables, and you don’t need to install or configure anything
for the iSQL*Plus user interface other than a web browser. On the server side, only an Oracle HTTP
server with the iSQL*Plus Server is needed. Chapter 12 shows how to use the iSQL*Plus interface.

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE138

4517CH04.qxd 8/19/05 10:31 AM Page 138

Oracle Utilities
Oracle provides several powerful tools to help with loading and unloading of data and similar activi-
ties. The following sections describe the main ones.

Data Pump Export and Import
The Data Pump Export and Import utilities are the successors to the traditional export and import
utilities; they help with fast data loading and unloading operations. The original export and
import utilities are still available, but Oracle recommends the use of the newer and more sophisti-
cated tools. Chapter 14 discusses the Data Pump utility in detail.

SQL*Loader
The SQL*Loader is a powerful and fast utility that loads data from external files into tables of an
Oracle database. Chapter 13 discusses SQL*Loader in detail.

External Tables
You use the SQL*Loader to load external data into an Oracle table. Sometimes, though, you need to
use some external data but don’t want to go to the trouble of loading the data into a table. The exter-
nal tables feature offers some of the SQL*Loader utility’s functionality.

External tables let you use data that resides in external text files as if it were in a table in an
Oracle database. In Oracle Database 10g, you can write to external tables as well as read from them.
External tables are dealt with in detail in Chapter 13.

LogMiner
The LogMiner utility lets you query online and archived redo log files through a SQL interface. As
you know, redo log files hold the history of all changes made to the database. Thus, you can use the
LogMiner to see exactly which transaction and what SQL statement caused a change, and if neces-
sary, undo it. Chapter 16 shows you how to use the LogMiner tool for precision recovery.

Scheduling and Resource-Management Tools
Oracle Database 10g provides several utilitarian tools for scheduling jobs and managing database
and server resource usage, and they’re outlined in the following sections.

The Scheduler
The new Scheduler facility lets DBAs schedule tasks from within the Oracle database, without hav-
ing to write shell scripts and scheduling them through the operating system. The Oracle Scheduler
feature uses functions and procedures of the new DBMS_SCHEDULER package.

The basic components of the Oracle Scheduler are jobs, programs, and schedules. The Oracle
Scheduler offers much more functionality than using the old DBMS_JOBS package. You can now
create common jobs and schedules that you can share across users. You can also group similar jobs
into job classes and use resource plans to prioritize resources among resource consumer groups.
You can schedule PL/SQL and Java programs as well as operating system shell scripts through the
Scheduler.

You’ll find a complete treatment of the Oracle Scheduler in Chapter 18.

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE 139

4517CH04.qxd 8/19/05 10:31 AM Page 139

Database Resource Manager
The Database Resource Manager lets you exercise control over how the server resources, especially
CPU resources, are allocated among your users. You first group the users according to common
resource requirements, and you then create directives that dictate how resources are to be allocated
to these groups. The Database Resource Manager controls how long the sessions run, thus ensuring
that resource usage matches the stated objectives. I discuss the Database Resource Manager in
detail in Chapter 11.

Automatic Database Management
Traditionally, Oracle DBAs had to exercise great care in setting numerous initialization parameters,
and they would spend quite a bit of their time tweaking those parameters, trying to achieve an ideal
database configuration. Oracle started a major push toward a self-managing database with the 9i
version, and Oracle Database 10g takes that effort further, offering a more complete set of self-
managing features, especially in the performance-tuning area. In the long run, the goal is to auto-
mate all routine tasks and free up the DBAs and other professionals to use their time to further the
strategic interests of their businesses.

The following sections summarize the main automatic management features in Oracle Data-
base 10g.

Automatic Database Diagnostic Monitor (ADDM)
The Automatic Database Diagnostic Monitor (ADDM) is probably the most revolutionary aspect of
the new self-managing Oracle database. The ADDM is a diagnostic engine built right into the data-
base kernel—it is a rule-based expert system that encapsulates decades of Oracle’s performance-
tuning expertise. It analyzes performance data frequently and either makes a recommendation by
itself, or suggests that you invoke one of the other Oracle advisory components, such as the SQL
Tuning Advisor.

The ADDM proactively performs automatic monitoring of the database at regular intervals
throughout the day, performs a top-down analysis of performance data and bottlenecks, and pre-
sents a set of findings that include the root causes of problems and the recommendations to fix
them. In addition, it provides the rationale behind its recommendations. Because the ADDM quan-
tifies the identified problems in terms of their impact on overall performance, you can focus on
fixing problems that will give you the biggest performance gains.

You can also run the ADDM manually through the Enterprise Manager or the command line.
The ADDM’s diagnostic abilities can be used during the development phase of applications, reduc-
ing potential problems in production. The ADDM will enable developers to perform “what-if” tests
very easily.

Chapter 17 explains the ADDM in detail.

Automatic Memory Management
You can turn on automatic shared memory management and have the database manage the SGA
for you; simply set the SGA_TARGET initialization parameter to a nonzero value. Oracle will manage
the shared pool, buffer cache, large pool, Java pool, and streams pool memory components auto-
matically. This will eliminate the trial and error method of determining optimal SGA allocation.

Similarly, you can enable automatic PGA management and have Oracle determine the optimal
PGA memory allocation; set the PGA_AGGREGATE_TARGET initialization parameter. When your data-
base performs a lot of sorting and hashing operations, automatic PGA management is critical in
achieving peak performance. I discuss automatic PGA management in more detail in Chapter 22.

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE140

4517CH04.qxd 8/19/05 10:31 AM Page 140

Automatic Undo Retention Tuning
Setting the UNDO_RETENTION parameter to zero or just leaving it out of your SPFILE will instruct Oracle
to perform proactive automatic undo retention tuning, thus reducing the occurrence of the well-
known “snapshot too old” errors that lead to the failure of many an overnight production batch job.
Under automatic undo retention tuning, Oracle will figure out the ideal retention period for undo
data, based on the length of the transactions and other related factors. I discuss automatic undo
retention tuning in Chapter 6.

Automatic Checkpoint Tuning
By setting the FAST_START_MTTR_TARGET initialization parameter to a nonzero value, or by not setting
it at all, you can automate checkpoint tuning. This means that you won’t have to set any checkpoint
initialization parameters, telling Oracle how frequently it should perform database checkpointing.
This will help your database recover in a reasonable length of time following a crash. Chapter 17
reviews automatic checkpoint tuning.

Automatic Optimizer Statistics Collection
Oracle Database 10g automatically gathers statistics for the cost-based optimizer through a regu-
larly scheduled job. The job gathers statistics on all objects in the database that have missing or
stale statistics. Oracle creates this job automatically at database creation time, and the Scheduler
automatically manages it. Chapter 17 discusses the automatic collection of optimizer statistics.

Automatic Storage Management (ASM)
Automatic Storage Management (ASM) is the new Oracle Database 10g feature that integrates your
file system with a volume manager that’s designed for Oracle files. ASM divides Oracle data files into
extents, which it distributes evenly across the disk system. ASM automatically redistributes I/O load
across all available disks whenever storage configuration changes, avoiding manual disk tuning.
ASM also provides mirroring and striping, thus enhancing protection and performance, as in RAID
systems. ASM is dealt with in detail in Chapter 17.

Automatic Segment Advisor Operation
In Oracle Database 10g Release 2, the Segment Advisor runs automatically during the nightly main-
tenance job of the Oracle Scheduler, and checks whether your database has any wasted space that
can be reclaimed by shrinking segments such as tables and indexes. The advisor may recommend
either a segment shrink or a reorganization operation, depending on whether the tablespace is
locally managed or not (it will recommend shrinking the object if it is locally managed and reorgan-
izing it otherwise). DBAs spend a lot of time reorganizing their database objects, and this is a
wonderful way to cut back on all that effort and time. Chapter 17 shows you how to use the Segment
Advisor.

Common Manageability Infrastructure
In order to be self-tuning and self-managing, a database must have the ability to automatically
“learn” how it is being used. To this end, Oracle provides a common manageability infrastructure,
which captures workload information and uses it to make sophisticated self-management deci-
sions. The heart of the manageability infrastructure is the new Automatic Workload Repository

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE 141

4517CH04.qxd 8/19/05 10:31 AM Page 141

(AWR), which serves as a repository for all the other server components that aid automatic manage-
ment of the database.

Oracle has built instrumentation into the various layers of its technology stack to capture the
metadata that helps in diagnosing performance. It stores this data in the AWR and utilizes a com-
prehensive suite of management advisors to provide guidance on optimizing database operations.
In the following sections, I briefly explain the various components of the common manageability
infrastructure of Oracle Database 10g. You’ll fully explore all of these in later chapters.

Automatic Workload Repository (AWR)
The AWR plays the role of the “data warehouse of the database,” and it is the basis for most of
Oracle’s self-management functionality. The AWR collects and maintains performance statistics
for problem-detection and self-tuning purposes. By default, every 60 minutes the database collects
statistical information from the SGA and stores it in the AWR, in the form of snapshots.

Several database components, such as the ADDM and other management advisors, use the
AWR data to detect problems and for tuning the database. Like the ADDM, the AWR is automatically
active upon starting the instance. You’ll learn more about the AWR in Chapter 18.

Active Session History (ASH)
In Oracle Database 10g, active sessions are sampled every second, and the session information is
stored in a circular buffer in SGA. A session that’s either waiting for a non-idle event or that was on
the CPU is considered an active session.

Even though the ADDM provides you with detailed instance information by periodically ana-
lyzing the AWR data, you are at a loss if you want to know what’s happened in the database in a
recent time period (such as in the past five minutes). Active Session History (ASH) and its related
historical views provide you with insight into current activity in the database. Chapter 18 discusses
ASH in detail.

Server-Generated Alerts
Oracle now sends out proactive server-generated alerts to warn you about problems like a table-
space running out of space. You can configure server-generated alerts by setting warning and
critical thresholds on database metrics. The Oracle server automatically alerts you, for example,
when the physical database reads per second cross a preset threshold value, or when a tablespace
is low on free space. Server-generated alerts are discussed in Chapter 18.

Automated Tasks Feature
Oracle automatically performs certain maintenance tasks, such as collecting optimizer statistics, by
using the new Scheduler feature. Oracle keeps track of which database objects don’t have statistics
or have stale statistics, and automatically refreshes statistics for these objects. In previous versions
of Oracle, the DBA was responsible for collecting up-to-date statistics on all objects in the database.
Now the database itself manages the collection of these statistics. Automated tasks are discussed in
detail in Chapter 18.

■Note The manageability infrastructure, as well as all the automatic management features, are installed when
you install the Oracle Database 10g software.

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE142

4517CH04.qxd 8/19/05 10:31 AM Page 142

Advisory Framework
Oracle Database 10g comes with several management advisors, which help tune your SQL queries,
size your memory and undo configuration parameters, and figure out the right indexes and materi-
alized views for your database. The advisors use a uniform interface—the Advisor Central in the
OEM, or the DBMS_ADVISOR package, when you invoke them manually. All the advisors use the
Automatic Workload Repository as the source of their data and as a repository for their reports.
Chapter 18 introduces the advisory framework in detail. Here’s a brief description of the main man-
agement advisors, which you’ll see in detail in later chapters.

SQL Tuning Advisor
The SQL Tuning Advisor provides recommendations for running SQL statements faster, by replacing
manual tuning with tuning suggested by the Automatic Tuning Optimizer, which is the Cost Opti-
mizer in a tuning mode. The advisor calls the Automatic Tuning Optimizer (ATO) to perform
optimizer statistics analysis, SQL profiling, access-path analysis, and SQL structure analysis. The
SQL Tuning Advisor is discussed in detail in Chapter 21.

SQL Access Advisor
The SQL Access Advisor provides advice on materialized views, indexes, and materialized view logs,
in order to design the most appropriate access structures to optimize SQL queries. Chapter 5 shows
you how to use the SQL Access Advisor.

Segment Advisor
Often, table segments become fragmented over time. The Segment Advisor checks database object
space usage and helps you regain excess space in segments by performing segment-shrinking
operations. The advisor also helps in predicting the size of new tables and indexes and analyzing
database-object growth trends. Chapter 17 shows you how to use the Segment Advisor.

Undo Advisor
The Undo Advisor can recommend the correct size for your undo tablespaces and undo retention
parameter, both of which are based on transaction volume and length. The advisor also can take
into account undo requirements for supporting flashback features for a given length of time. Chap-
ter 6 shows you how to use the Undo Advisor to get recommendations about the undo tablespace
and the undo retention period.

SGA and PGA Memory Advisors
The SGA Memory Advisor recommends the ideal SGA size. The PGA Memory Advisor provides rec-
ommendations for the PGA parameter, based on the workload characteristics of the instance.
Chapter 17 provides examples of the use of the SGA and PGA Memory Advisors.

Efficient Managing and Monitoring
You’ve seen a bewildering number of tools and components of management infrastructure for
monitoring and managing your Oracle databases. Traditionally, DBAs used a variety of methods to
manage and monitor their databases, and complaints about frequent midnight pages and weekend
work were common. You can avoid all that by taking a proactive approach and by automating man-
agement as much as you can—and with Oracle Database 10g, you can automate quite a bit!

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE 143

4517CH04.qxd 8/19/05 10:31 AM Page 143

My advice is not to reinvent the wheel by using outmoded monitoring scripts and management
techniques. Here’s a suggested way to use Oracle’s variety of tools to maximum benefit:

• Make the OEM Database Control or Grid Control your main DBA tool. You can access all the
monitoring and performance tools through the OEM. Configure the OEM to send you event-
based pages or e-mails.

• Use RMAN and Oracle Backup as your main database backup solutions.

• Configure the flash recovery area so you can automate backup and recovery.

• Use the Scheduler to automate your job system.

• Use locally managed tablespaces (automatic segment space management is the default,
starting with Oracle Database 10g Release 2).

• Change your export and import scripts to the new Data Pump technology, both to save time
and to take advantage of the new features.

• Wherever possible, use the Database Configuration Assistant (DBCA) to create new data-
bases and the Database Upgrade Assistant (DBUA) to upgrade to Oracle Database 10g from
earlier versions.

• Let Oracle automatically collect statistics—don’t bother using the DBMS_STATS tool to man-
ually collect optimizer statistics.

• Make sure you collect system statistics in addition to the automatic optimizer statistics col-
lected by Oracle.

• Let Oracle manage the SGA and the PGA automatically.

• Automate both the undo management as well as checkpointing.

• Use Oracle’s alert system to prevent space-related problems.

• Make use of the SQL Access Advisor to recommend new indexes and materialized views.

• Let the Segment Advisor, which runs automatically in Oracle Database 10g Release 2, recom-
mend objects to shrink. Shrinking objects will reclaim unused and fragmented space, as well
as decrease query response time.

• Use the SQL Tuning Advisor to tune problem SQL code.

Each of these topics is explained in detail in the rest of this book.

CHAPTER 4 ■ INTRODUCTION TO THE ORACLE DATABASE 10G ARCHITECTURE144

4517CH04.qxd 8/19/05 10:31 AM Page 144

Schema Management

An important part of the Oracle DBA’s job is to support developers in creating database objects
and, later on, to manage these objects in production systems. This chapter will give you a thorough
understanding of objects such as tables, indexes, views, sequences, and triggers, which will help
in the development process and also in troubleshooting problems during data loads and other
situations.

To create a table, index, or other object, you first need to create tablespaces in your databases.
The first part of this chapter devotes considerable attention to creating and managing tablespaces.
Oracle Database 10g introduced several new tablespace concepts, including temporary tablespace
groups and bigfile tablespaces. You’ll learn about these types of tablespaces, as well as default tem-
porary and permanent tablespaces.

Several special types of tables, such as the temporary tables and external tables, are very useful
to the DBA in performing specialized tasks. Both of these special tables, as well as index-organized
tables and clusters, are discussed in detail in this chapter.

In this chapter, I also introduce the topic of table partitioning in Oracle Database 10g, which is
useful when dealing with large amounts of data. I follow this discussion with coverage of index cre-
ation and management. Indexes have a significant bearing on the performance of database queries,
and I provide basic guidelines for creating good Oracle indexes in this chapter. You’ll find more
information on index management in Chapter 21, which deals with performance tuning.

When loading data into tables, an important part of an Oracle DBA’s job is managing database
constraints and troubleshooting problems caused by table constraints. In this chapter, I also pro-
vide a summary of all the major types of constraints, constraint states, and their implications.

Managing other database objects, such as views, sequences, and synonyms, is another impor-
tant part of the Oracle DBA’s skill set. I explore these topics in detail before concluding the chapter
with a discussion of creating and managing materialized views, which are a powerful feature of the
Oracle database. You’ll also learn how to use the new SQL Access Advisor to figure out the proper
materialized views for your database.

You use a particular type of SQL statements called data definition language (DDL) statements,
to create and manage Oracle database objects, including tables and indexes. As an Oracle DBA,
you’ll be using DDL SQL statements quite frequently to manage your database. However, there are
other important types of Oracle SQL statements as well, and I start the chapter by introducing these
main types of Oracle SQL statements.

Types of SQL Statements
Structured Query Language (SQL) is a relational database access language well known for its ease
of use and powerful data-manipulation features. SQL is certified as the standard language for rela-
tional database systems by the American National Standards Institute (ANSI) and the International
Organization for Standardization (ISO) groups. ANSI introduced the first industry SQL standard in

145

C H A P T E R 5

■ ■ ■

4517CH05.qxd 8/19/05 10:34 AM Page 145

1986, and there are now several versions of the language. Oracle conforms to the SQL-1999 core
specification (often called SQL:99), which is the current minimum level for conforming to official
SQL standards. Oracle extends the basic ANSI/ISO standard in several ways, making its own
“Oracle SQL” far more powerful than the minimum acceptable SQL standards for the relational
database industry.

Relational database principles underlie SQL. You need only instruct the language what to do,
not how to do it. In addition to working with traditional relational data, Oracle’s new XML-centric
extensions to its SQL language enable you to manage XML, full text, multimedia, and objects. Oracle
Database 10g integrates XML query, storage, and update functionality in the database engine. No
matter which tool you use to access the Oracle database, ultimately you’ll be using Oracle SQL to
perform your transactions. Your application program or the Oracle tool you use may allow you
access to the database without your using SQL, but the tools and applications themselves have to
use SQL to process your requests.

SQL includes commands for data modeling, data definition, data access, data security, and
data administration. SQL statements used by Oracle can be broadly divided into several groups
based on whether they change the table data, the table structures, or some other session or instance
characteristic. The SQL statement types are as follows:

• System control

• Session control

• Embedded SQL

• Data manipulation

• Transaction control

• Data definition

The following sections examine each of these broad types of SQL statements in detail.

System-Control Statements
You can use the system-control statement ALTER SYSTEM to alter the properties of a running data-
base instance. For example, you can use ALTER SYSTEM to modify certain initialization parameters,
such as the shared pool component of the system global area (SGA). At present, the ALTER SYSTEM
command is the only system-control SQL statement in Oracle.

Here’s an example of the ALTER SYSTEM command:

SQL> ALTER SYSTEM KILL SESSION '25,9192';
Session killed
SQL>

Session-Control Statements
Session-control statements dynamically alter the properties of an individual user’s session. For
example, if you intend to trace what your SQL session is doing in the database, you can use the
ALTER SESSION SET SQL_TRACE=TRUE SQL statement to trace your session alone. The session-control
statements also come in handy when you’re changing several initialization parameters just for your
session.

■Note PL/SQL (Oracle’s procedural extension of the SQL language) doesn’t support session-control statements.

CHAPTER 5 ■ SCHEMA MANAGEMENT146

4517CH05.qxd 8/19/05 10:34 AM Page 146

Common session-control statements include the ALTER SESSION and SET ROLE commands.
Here’s an example of the use of the ALTER SESSION statement, wherein the ALTER SESSION command
is used to set the data format for the duration of the session:

SQL> ALTER SESSION SET NLS_DATE_FORMAT = 'MM-DD-YYYY HH:MI:SS';
Session altered.
SQL>

Embedded SQL Statements
Embedded SQL statements incorporate DDL, DML, and transaction-control statements (such as
OPEN, CLOSE, FETCH, and EXECUTE) used in a procedural language program, such as the statements
used with the Oracle precompilers.

Data-Manipulation Statements
The data manipulation language (DML) statements are statements that either query (retrieve) or
manipulate (change) data in a table. For the most part, DML statements modify the data in the
schema objects. In most online transaction processing (OLTP) systems, the bulk of Oracle’s work
consists of accepting requests from users that contain DML statements and returning the results
of those statements.

You’ll deal with four important DML statements most of the time: SELECT, INSERT, UPDATE, and
DELETE. Note that in addition to these four common DML statements, there are others that facilitate
the execution of the four basic DML statements. For example, the MERGE statement deals with condi-
tional inserts and deletes, and the LOCK TABLE statement is used to prevent other transactions from
modifying the same data while a transaction is still running.

SELECT Statements
SELECT statements are queries that retrieve data from a table or a set of tables (or views). Oracle pro-
vides set operators, such as union, minus, and intersection, that enable you to combine the results
of several queries to get one final result set of data. You can use the ORDER BY command to sort the
results provided by Oracle; otherwise, the results will not be in any particular order. When you need
data from several tables, you need to join the tables in your SELECT statements. You can limit the
result set when you join tables by providing a join condition.

You can also use subqueries as part of the main or top query. A subquery in the WHERE clause of
a SELECT statement is called a nested subquery. A subquery that is part of the FROM clause of a SELECT
statement is called an inline view. The Appendix provides examples of subqueries, nested sub-
queries, and inline views.

INSERT, DELETE, and UPDATE Statements
The INSERT statement inserts new rows into existing tables, and the DELETE statement removes
entire rows from tables. The UPDATE command modifies one or more columns of a single row, or
multiple rows within a table. Although optimizing the writing of SELECT statements that address
large tables is an important part of performance tuning, it’s the SQL statements that modify, delete,
or add data that cause more frustration for the DBA when dealing with an OLTP database. Design-
ing proper tables and indexes is important if the database is to efficiently process a large number of
concurrent inserts, deletes, and updates to tables. In addition, the DBA needs to properly size the
undo tablespace and the online redo logs to efficiently process these types of statements.

CHAPTER 5 ■ SCHEMA MANAGEMENT 147

4517CH05.qxd 8/19/05 10:34 AM Page 147

Transaction-Control Statements
Transaction-control statements are used to control the changes made by data-manipulation SQL
statements, such as INSERT, UPDATE, and DELETE. These are the four transaction-control statements:

• COMMIT: When this statement follows a set of DML statements, the changes will be made
permanent.

• ROLLBACK: When this statement follows one or more DML statements, the changes made by
the preceding statement or statements will be undone. If there are no save points, all state-
ments from the beginning of the transaction will be rolled back.

• SAVE POINT: This statement allows flexibility in your transactions, helping you set intermedi-
ate points in the transaction to which you can roll back (undo) your transactions.

• SET TRANSACTION: This rarely used statement denotes the start of a transaction and is used in
statements like SET TRANSACTION READ ONLY.

Data-Definition Statements
Data definition language (DDL) statements enable you to define the structure of the various schema
objects in the Oracle database. DDL statements enable you to create, alter, and remove database
objects, such as tables and indexes. These are some of the main uses of DDL statements:

• Creating tables, indexes, and other schema objects

• Creating and modifying procedures, functions, and packages

• Dropping and modifying database objects

• Creating and managing users of the database

• Granting and revoking privileges on objects

• Analyzing the data within a table or index

• Creating and altering tablespaces

• Creating and modifying database links

Oracle Schemas
In Oracle, a schema is defined as a collection of logical structures of data, or schema objects,
although it is used mostly as a synonym for the database user (specifically, the application owner)
that owns the schema pertaining to a specific application. Thus, the accounting schema within a
company database would own all the tables and code pertaining to the accounting department. In
addition to containing tables, a schema contains other database objects, such as PL/SQL proce-
dures, functions and packages, views, sequences, synonyms, and clusters. This logical separation of
the objects within the database allows you considerable flexibility in managing and securing your
Oracle databases.

Although the DBA can use the CREATE SCHEMA statement to create a specific schema, more often
the application owner creates the database objects and is referred to as the schema owner. The user
who creates the objects owns database objects such as tables, views, procedures, functions, and
triggers. The owner of the object has to explicitly assign specific rights to other users, such as SELECT
or UPDATE, if those other users are to use the objects.

CHAPTER 5 ■ SCHEMA MANAGEMENT148

4517CH05.qxd 8/19/05 10:34 AM Page 148

USER-DEFINED OBJECT TYPES

Oracle Database 10g is an object-relational database and, as such, it allows users to define several types of data
other than the standard relational data types. These user-defined data types include the following:

• Object types: These complex types are an abstraction of real-world entities.

• Array types: These types are used to create ordered sets of data elements of the same type.

• Table types: These types are used to create an unordered set of data elements of the same data type.

• XML schema: This is a new object type that is used to create types and storage elements for XML docu-
ments based on the XML schema.

The Appendix provides examples of how to create various kinds of user-defined object types. In this chapter,
the focus is on the traditional relational objects.

In addition, the owner may also create synonyms, which are aliases for the various objects for
other users in the database. Synonyms, which are explained in the “Using Synonyms” section, later
in this chapter, serve multiple purposes, including masking the ownership of data objects and sim-
plifying SQL statements for users by eliminating the need for them to specify the schema owner’s
name each time they access a database object not owned by themselves.

There are two basic ways to create a schema in an Oracle database. The common way is to log
in as the schema owner and create all the tables, indexes, and other objects that you plan to include
in your schema. Since the objects are all created by the same schema owner, they’ll automatically be
part of the schema.

The second way to create a schema is to explicitly create it by using the CREATE SCHEMA state-
ment. The CREATE SCHEMA statement lets you create multiple tables and views, as well as grant users
privileges on those tables and views, all in a single SQL statement.

Here’s an example of the CREATE SCHEMA statement, which creates a schema named oe, creates a
table (product) and a view (product_view) in that schema, and grants a SELECT privilege on the new
view to the hr user:

SQL> CREATE SCHEMA AUTHORIZATION oe
CREATE TABLE product
color VARCHAR2(10) PRIMARY KEY, quantity NUMBER)
CREATE VIEW product_view
AS SELECT color, quantity FROM new_product WHERE color = 'RED'
GRANT SELECT ON product_view TO hr;

Note that the preceding CREATE SCHEMA statement must succeed in its entirety for the schema to
be created.

Creating and Managing Tablespaces
In the following sections, you’ll learn how Oracle DBAs create and manage the schema objects,
which include tables, indexes, views, materialized views, synonyms, triggers, database links, and so
on. Before we look at the various schema objects, though, you need to learn how to manage the all-
important Oracle tablespaces. As you learned in Chapter 4, tablespaces are logical entities—each
of an application’s tables and indexes are stored as a segment, and the segments are stored in the
data files that are parts of tablespaces. A tablespace is thus a logical allocation of space for Oracle
schema objects. There is, however, no one-to-one correspondence between a schema object like a
table or index and a tablespace.

CHAPTER 5 ■ SCHEMA MANAGEMENT 149

4517CH05.qxd 8/19/05 10:34 AM Page 149

When you use the word tablespace, you’re actually referring to a permanent tablespace, which
is where you store your schema objects. The data dictionary is stored in a special permanent system
tablespace called the System tablespace. There is also a mandatory auxiliary system tablespace,
called the Sysaux tablespace. (If you’re migrating from an older Oracle database, you must create
the Sysaux tablespace before upgrading, as explained in Chapter 8.) All permanent tablespaces are
created by using Oracle data files. In addition to permanent tablespaces, you have the following
important types of Oracle tablespaces:

• Temporary tablespaces are used to store objects for the duration of a user’s session only.
You use tempfiles to create a temporary tablespace, instead of data files.

• Undo tablespaces are a type of permanent tablespace that are used to store undo data,
which is used to undo changes to data.

Every Oracle tablespace must have the mandatory System and Sysaux tablespaces. The System
tablespace is permanent and contains vital data dictionary information that helps the database
function. The Sysaux tablespace is an auxiliary System tablespace, and it stores the metadata for
various Oracle applications, like XDB, as well as operational data for internal performance tools like
the Automatic Workload Repository.

Before you can create tables or indexes, you should create the tablespaces to hold the data.
Tablespaces consist of one or more data files (or tempfiles, if you are creating a temporary table-
space). Although your data and objects reside in operating system files, the organization of these
files into Oracle tablespaces makes it easy for you to group related information.

You must first ensure that you have the necessary directory structure created on the host sys-
tem, so you can create data files. Oracle will format the operating system files and allocate them to
the tablespaces when you specify a data file size and a fully specified filename during tablespace
creation.

■Note Tablespaces are not unique to Oracle. DB2 databases also have tablespaces, although Microsoft SQL
Server databases don’t use them. The tempdb database in a SQL Server database corresponds to the temporary
tablespace in an Oracle database.

You can create two basic types of tablespaces in an Oracle database, which differ by how they
manage the database extents: locally managed and dictionary-managed tablespaces. Both types are
described in the following section. And before you actually create a tablespace, you must be aware
of two other important concepts: extent sizing and segment space management. These are discussed
in the two subsequent sections.

Locally and Dictionary-Managed Tablespaces
Extents, as you know, are the basic unit of space allocation in Oracle databases, and dictionary-
managed tablespaces store extent information in the data dictionary. Locally managed tablespaces,
on the other hand, manage extents by referring to the bitmaps kept in each physical data file header
for all the blocks within that data file. Remember that a tablespace, which is a logical concept, is
actually made up of one or more operating system files.

For example, if a locally managed tablespace is made up of 128KB extents, each 128KB extent is
represented by a bit in the extent bitmap for this file. The bitmaps indicate whether the blocks are
free or occupied. If Oracle needs to allocate an extent to an object, the bitmap values are updated to
show the latest status of the availability of data blocks. This takes the burden of free-space manage-
ment from the data dictionary.

CHAPTER 5 ■ SCHEMA MANAGEMENT150

4517CH05.qxd 8/19/05 10:34 AM Page 150

■Note If you create your database with a locally managed System tablespace, any tablespaces that you create
later on must also be locally managed.

Locally managed tablespaces have several advantages over the traditional dictionary-managed
tablespaces. Dictionary-managed tablespaces have to constantly check the data dictionary during
the course of extent management—whenever an extent is allocated to an object or reclaimed from
an object, Oracle will update the relevant tables in the data dictionary. If you have an OLTP system
with heavy inserts and deletes, this could lead to contention for the data dictionary objects used to
manage extents.

In Oracle Database 10g, local tablespaces are the default. Since locally managed tablespaces
offer superior performance, I use them exclusively in this book and ignore the management of
dictionary-managed tablespaces.

Allocating the Extent Size: Autoallocate vs. Uniform
Any time an Oracle object needs to grow in size, space is added to the object in terms of extents.
When you create locally managed tablespaces, you have two options for managing the extent sizes:
you can let the database automatically choose the extent size (by selecting the AUTOALLOCATE option)
or you can specify that the tablespace be managed with uniform-sized extents (the UNIFORM option).

If you choose the UNIFORM option, you specify the actual size of the extents by using the SIZE
clause. If you omit the SIZE clause, Oracle will create all extents with a uniform size of 1MB, but you
can choose a much larger uniform extent size if you wish.

You can’t change the extent size once you create the tablespace. If you think that all the seg-
ments in a tablespace are approximately of the same size, and that they’ll grow in a similar fashion,
you can choose the UNIFORM extent size option. If you do this, you can select a few extent sizes,
create all your tablespaces with one of these uniform extent sizes, and allocate objects to the table-
spaces based on their size.

Traditionally, Oracle DBAs worried about the number of extents in a segment. You should be
more concerned about the size of the extents, though, since extent size has a bearing on the read
and write performance of a segment. For example, if you choose a very small UNIFORM extent size,
the database can’t prefetch data or do multiblock reads, thus adversely impacting performance.
Oracle suggests the following extent size guidelines, if you wish to set the extent sizes yourself:

• 64KB for small segments

• 1MB or medium segments

• 64MB for large segments

Under the AUTOALLOCATE option, Oracle will manage the extent size automatically. The extent
size starts at 64KB and is progressively increased to 64MB by the database. The database automati-
cally decides what size the new extent for an object should be, based on the segment’s growth
pattern. Interestingly, Oracle will increase the extent size for an object automatically as the object
grows! Autoallocate is especially useful if you aren’t sure about the growth rate of an object and you
would like Oracle to deal with it.

■Note The default for tablespace extent management is the AUTOALLOCATE option.

CHAPTER 5 ■ SCHEMA MANAGEMENT 151

4517CH05.qxd 8/19/05 10:34 AM Page 151

If you know the exact space requirements for your objects, you can choose the UNIFORM extents
option, which leads to efficient use of all available space. For example, say you know that your
largest tables will consume a lot of space and will therefore need a very high extent size. Create a
tablespace with a very large uniform size for such tables.

If you aren’t sure what extent size will be best, AUTOALLOCATE will let the database determine the
extent size but it may waste some space due to the varying size of extents.

■Tip Oracle recommends that unless all the objects in a tablespace are of the same size, you should use the
AUTOALLOCATE feature. In addition to the simplicity of management, the AUTOALLOCATE option for extent sizing
can potentially save you a significant amount of disk space, compared to the UNIFORM extent size option.

Automatic vs. Manual Segment Space Management
You can use the space in an Oracle block for two purposes: inserting fresh data or updating existing
data in the blocks. When you delete data from a block, or an update statement changes the
existing data length to a smaller size, there will be an increase in free space in the block. Segment
space management is how Oracle manages this free space within the individual Oracle data blocks.

If you specify manual segment space management (by using the keyword MANUAL), the database
manages the free space of segments in the tablespace using entities known as free lists and a pair of
storage parameters, PCTFREE and PCTUSED. Oracle keeps track of how much free space is in its data
blocks by maintaining freelists. Every table and index maintains a list of all its data blocks with free
space greater than PCTUSED. That is, freelists contain the list of all blocks eligible for data insertion.
Oracle first checks the appropriate freelist before making any insertions into tables or indexes.
The Oracle database has to do a lot of work to maintain the freelists, as blocks reach their PCTUSED
threshold after insertions and fall below the threshold due to deletions.

The PCTFREE parameter lets you reserve a percentage of space in each data block for future
updates to existing data. For example, you may have some data on a person’s address in a certain
block. If you update that address later, so that it is larger, there should ideally be room in the exist-
ing block for the enlarged address. This is exactly what the PCTFREE parameter provides: room for
the existing rows to grow. The PCTUSED parameter, on the other hand, deals with the threshold below
which the used space must fall before new data can be placed in the blocks. For example, if the
PCTUSED parameter is set at 40 percent, Oracle can’t insert new data into the block until the amount
of used space falls below this threshold level.

You can see easily how the PCTFREE and PCTUSED parameters together optimize the use of space
within an Oracle block. Suppose 80 percent of the space in a block is filled with data. This will be
the maximum amount of data that you can insert inside the block if the PCTFREE parameter is set to
20 percent. If some deletes take place in this block, there will be potential room to insert new rows,
but Oracle uses the PCTUSED parameter in a clever way to keep any newly available free space from
automatically being used for new inserts. Oracle incurs an overhead when it tries to use newly avail-
able free space in data blocks, so Oracle waits until the used space falls below the PCTUSED setting
before using that free space. Until then, although there may be free spaces in partially used blocks,
Oracle ignores them and goes to new data blocks to insert data.

The PCTFREE and PCTUSED parameters and the freelists comprise a manual way of checking for
space, because you are making Oracle continually check for blocks with the right amount of free
space. In a database with heavy updates, inserts, and deletes, this could lead to a slowdown of your
transactions.

If you choose automatic segment space management when creating a tablespace (by specify-
ing AUTO), which is the default in Oracle Database 10g Release 2, Oracle ignores any specification for
the free lists, free list groups, and PCTUSED parameters. Instead, the database will use bitmaps to

CHAPTER 5 ■ SCHEMA MANAGEMENT152

4517CH05.qxd 8/19/05 10:34 AM Page 152

track free space availability in a segment. A bitmap, which is contained in a bitmap block, indicates
whether free space in a data block is below 25 percent, between 25 and 50 percent, between 50 and
75 percent, or above 75 percent. For an index block, the bitmaps can tell you whether the blocks are
empty or formatted.

MIGRATING FROM DICTIONARY-MANAGED TO LOCALLY MANAGED TABLESPACES

If you are upgrading an older database to the Oracle Database 10g release, you may want to migrate your table-
spaces from being dictionary managed to locally managed. You can simply create new tablespaces, which will be
locally managed by default, and then migrate all your tables to the new tablespaces using the ALTER TABLE com-
mand, as shown here:

SQL> ALTER TABLE emp MOVE TABLESPACE tbsp_new;

In order to move your indexes, use the ALTER INDEX REBUILD command, as shown here:

SQL> ALTER INDEX emp_pk_idx REBUILD
TABLESPACE tbsp_idx_new

Once you finish migrating all your objects to the new locally managed tablespaces, drop your old tablespaces
to reclaim the space.

If you don’t want to create new tablespaces and go through the trouble of migrating all tables and indexes,
you can use the PL/SQL package DBMS_SPACE_ADMIN, which enables you to perform the tablespace migration.
You first need to migrate all the other tablespaces to a local management mode before you migrate the System
tablespace. If you migrate your System tablespace from dictionary-managed to locally managed first, all other
tablespaces become read-only. Make sure that you first take a cold backup of the database before performing
the tablespace migration. Here’s an example of how you can migrate a dictionary-managed tablespace (USERS)
to a locally managed tablespace:

SQL> EXECUTE dbms_space_admin.tablespace_migrate_to_local ('USERS');

The TABLESPACE_MIGRATE_TO_LOCAL procedure can be used online, while users are selecting and modify-
ing data. However, if the DML operations need a new extent to be allocated, the operations will be blocked until the
migration is completed.

Once you’ve migrated all your other tablespaces to locally managed tablespaces, you can move the System
tablespace. Here’s the command (you’ll have to perform a few housekeeping chores beforehand, like making other
tablespaces read only, etc.):

SQL> EXECUTE dbms_space_admin.tablespace_migrate_to_local ('SYSTEM');

Note that if you use the DBMS_SPACE_ADMIN package to migrate from dictionary-managed to locally man-
aged tablespaces, you won’t have the option of switching to the new Automatic Segment Space Management. All
dictionary-managed tablespaces use the older manual segment space management by default, and you can’t
change to Automatic Segment Space Management when you migrate to locally managed tablespaces. Since Auto-
matic Segment Space Management offers so many benefits (such as the ability to use the Online Segment Shrink
capability of the Segment Advisor), you probably are better off biting the bullet and planning the migration of all your
objects to newly created locally managed tablespaces. By default, Oracle creates all new tablespaces as locally
managed with automatic segment space management.

In addition, if your current dictionary-managed tablespaces have a space fragmentation problem, the
problem won’t disappear when you convert to locally managed tablespaces by using an in-place migration with the
DBMS_SPACE_ADMIN package. Again, you’re better off creating a new locally managed tablespace and moving
your objects into it. Chapter 17 shows how to perform such migrations easily, using Oracle’s online table reorgani-
zation features.

CHAPTER 5 ■ SCHEMA MANAGEMENT 153

4517CH05.qxd 8/19/05 10:34 AM Page 153

Oracle recommends using automatic segment management and notes that it is scalable as well
as efficient when it comes to space management. The performance gains are particularly striking if
the database objects have varying row sizes. Maintenance of these bitmaps will consume space, but
it is less than 1 percent for most large objects.

■Note The segment space management that you specify at tablespace creation time applies to all segments
you later create in the tablespace.

Specifying the Flashback Mode Clause
The Flashback Database feature helps you take the database back to a previous point in time, and
is useful when you wish to undo errors. The Flashback Database feature is a new Oracle innovation
and is explained in detail in Chapter 16. When you run your database with the Flashback Database
feature enabled, the database will create Flashback log data for all tablespaces, and it’s this data that
allows you to revert back to a point in time if necessary.

By default, all tablespaces are enabled for the Oracle Flashback Database feature. However,
there may be times when you don’t wish the database to collect Flashback logs for certain table-
spaces. You can use FLASHBACK_MODE_CLAUSE when creating these tablespaces to specify that they not
be part of a Flashback Database operation. To remove a tablespace from the purview of Flashback
Database, you must add the following clause to your tablespace creation statement:

FLASHBACK OFF

When you specify the FLASHBACK OFF option for a certain tablespace, prior to any subsequent
Flashback Database operation, you must take this tablespace offline, either by taking all of its indi-
vidual data files offline, or by taking the entire tablespace itself offline. You can alternatively drop all
data files of the tablespace before the Flashback Database operation. I show how to take data files
and tablespaces offline, as well as how to drop tablespaces, in the following sections.

Creating Tablespaces
Although it is possible to create dictionary-managed tablespaces in Oracle Database 10g, I only
cover locally managed tablespaces in the following discussion. Oracle strongly recommends the
use of locally managed tablespaces and will eventually stop supporting dictionary-managed table-
spaces. In Oracle Database 10g, locally managed tablespaces are the default for new permanent
tablespaces.

Data Files and Tablespaces
A tablespace can have one or more data files, and a data file can belong to only one tablespace.
Oracle creates a data file for a tablespace by specifying the keyword DATAFILE during tablespace cre-
ation. The data file that is created will be allocated a certain amount of physical disk space from the
operating system disks. When Oracle first creates a data file, it’s empty but is allocated exclusively
for Oracle’s use, and the free space shown by the df -k command shows it as used space from the
operating system’s point of view.

As a segment grows in size, Oracle allocates extents to it from the free space in its data files.
When the tablespace starts to fill up, you can either add new data files to it or extend the size of the
existing data files by using the RESIZE command.

CHAPTER 5 ■ SCHEMA MANAGEMENT154

4517CH05.qxd 8/19/05 10:34 AM Page 154

In light of the benefits they offer, you should always create locally managed tablespaces with
the default AUTOALLOCATE option, unless you expect the tablespace to contain objects of the same
size requiring same-sized extents. Similarly, choose the default automatic segment space manage-
ment (by specifying SEGMENT SPACE MANAGEMENT AUTO when creating a tablespace) for managing
segments, because it gives better performance and space utilization than manual segment space
management. (As mentioned previously, AUTOALLOCATE is the default for extent management, and
automatic segment space management is the default for segment space management in Oracle
Database 10g Release 2.)

Let’s create a (permanent) tablespace by using the CREATE TABLESPACE command. Note that you
must use a DATAFILE clause before the file specification, since this is a permanent tablespace. For a
temporary tablespace, you must use the clause TEMPFILE instead.

SQL> CREATE TABLESPACE test01
2 DATAFILE '/pasx02/oradata/pasx/test01.dbf'
3* SIZE 500M;

Tablespace created.
SQL>

■Note Non-DBA users must have the CREATE TABLESPACE system privilege granted in order to be able to
create a tablespace.

In the previous tablespace creation statement, I didn’t specify any choices for extent manage-
ment (local or dictionary), extent size (uniform or autoallocate), or segment space management
(auto or manual).

Now, let’s execute the following query to determine the Oracle Database 10g Release 2 defaults
for extent management, extent allocation type, and segment space management:

SQL> SELECT extent_management,
2 allocation_type,
3 segment_space_management
4 FROM dba_tablespaces
5* WHERE tablespace_name='TEST01';

EXTENT_MAN ALLOCATIO SEGMEN
---------- --------- -------
LOCAL SYSTEM AUTO
SQL>

Note the defaults in Oracle Database 10g Release 2 carefully:

• Extent management: LOCAL

• Allocation of extent sizes: AUTOALLOCATE (shows up as SYSTEM in the preceding output)

• Segment space management: AUTO

I could create an identical tablespace by explicitly specifying all of these choices, as shown here:

SQL> CREATE TABLESPACE test02
2 DATAFILE '/pasx02/oradata/pasx/test02.dbf' size 500M
3 EXTENT MANAGEMENT local
4 AUTOALLOCATE 500M
5* SEGMENT SPACE MANAGEMENT auto;

Tablespace created.
SQL>

CHAPTER 5 ■ SCHEMA MANAGEMENT 155

4517CH05.qxd 8/19/05 10:34 AM Page 155

You can use the same query that I used in the case of the test01 tablespace to verify that the
two tablespaces, test01 and test02, have identical extent management (LOCAL), allocation type
(AUTOALLOCATE), and segment space management (AUTO).

■Note By default, Oracle Database 10g tablespaces are locally managed, with automatic segment space man-
agement. When you create this type of tablespace, you can’t specify default storage parameters, like INITIAL,
NEXT, PCTINCREASE, MINEXTENTS, or MAXEXTENTS.

Extent Allocation and Deallocation
An Oracle extent consists of a set of contiguous data blocks, which are the smallest unit of space
allocation in Oracle. Each Oracle data block corresponds to a specific number of bytes of disk space.
Each of your database tables and indexes is called a segment, which is a set of extents allocated for a
specific data structure. Note that extents are always contiguous in an operating system file, but not
necessarily so on the disk itself. Extents help performance by enhancing Oracle’s ability to prefetch
data required for queries. Each partition of a table or index has its own segment (and besides table
and index segments, you also have rollback, temporary, and undo segments in an Oracle database).

When Oracle needs to allocate an extent to a segment, it first selects a candidate data file and
searches the data file’s bitmap for the required number of adjacent free blocks. If it can’t find the
necessary free space in that data file, Oracle will look in another data file, or if there are no more, it
will issue an error stating that it is out of free space.

Once Oracle allocates space to a segment by allocating a certain number of extents to it, that
space will remain with the extent unless you make an effort to deallocate it. If you truncate a table
with the DROP STORAGE option (TRUNCATE TABLE table_name DROP STORAGE), for example, Oracle
deallocates the allocated extents. You can also manually deallocate unused extents using the
following command:

SQL> ALTER TABLE table_name DEALLOCATE UNUSED;

When Oracle frees extents, it automatically modifies the bitmap in the data file where the
extents are located, to indicate that they are free and available again.

■Note Even though the default tablespace type is locally managed in Oracle Database 10g, Oracle still creates a
dictionary-managed System tablespace by default. You must specify the EXTENT MANAGEMENT LOCAL clause in
your CREATE DATABASE statement to ensure a locally managed System tablespace. The System tablespace cre-
ated thereby will have AUTOALLOCATE enabled by default.

When you create a locally managed System tablespace, it can’t be used as a default temporary tablespace if
you fail to create a temporary tablespace (by using the DEFAULT TEMPORARY TABLESPACE clause). Oracle will
automatically create a default temporary tablespace in this case. Similarly, you must explicitly create an undo
tablespace (using the UNDO TABLESPACE clause), or Oracle will create a locally managed undo tablespace by
default.

Storage Parameters
Remember that extents are the units of space allocation when you create tables and indexes in
tablespaces. Here is how Oracle determines extent sizing and extent allocation when you create
tablespaces:

CHAPTER 5 ■ SCHEMA MANAGEMENT156

4517CH05.qxd 8/19/05 10:34 AM Page 156

• The default number of extents is 1. You can override it by specifying MINEXTENTS during table-
space creation.

• You don’t have to provide a value to the MAXEXTENTS parameter when you use locally man-
aged tablespaces. Under locally managed tablespaces, the MAXEXTENTS parameter is set to
UNLIMITED, and you don’t have to configure it at all.

• If you choose UNIFORM extent size, the size of all extents, including the first, will be deter-
mined by the extent size you choose.

Three examples of tablespace creation with various specifications for extent management are
shown in Listings 5-1 through 5-3, and in the queries that follow the creation statements, you’ll see
the following headings:

• Initial extent: This storage parameter determines the initial amount of space that is allocated
to any object you create in this tablespace. For example, if you specify a UNIFORM extent size
of 10MB and specify an INITIAL_EXTENT value of 20MB, Oracle will create two 10MB-sized
extents, to start with, for a new object. The example in Listing 5-1 shows an initial extent size
of 5,242,880 bytes, based on the UNIFORM SIZE value, which is 5MB for this tablespace.

• Next extent: The NEXT_EXTENT storage parameter determines the size of the subsequent
extents after the initial extent is created.

• Extent management: This column can show a value of LOCAL or DICTIONARY, for locally
managed and dictionary-managed tablespaces, respectively.

• Allocation type: This column refers to the extent allocation, which can have a value of
UNIFORM for uniform extent allocation, or SYSTEM for the AUTOALLOCATE option for
sizing extents.

• Segment space management: This column shows the segment space management for the
tablespace, which can be AUTO (the default) or MANUAL.

Listing 5-1. Creating a Tablespace with Uniform Extents Using the UNIFORM SIZE Clause

SQL> CREATE TABLESPACE test01
DATAFILE '/pasx02/oradata/pasx/test01_01.dbf' SIZE 100M
UNIFORM SIZE 5M;

Tablespace created.
SQL>

SQL> SELECT initial_extent,next_extent,
extent_management, allocation_type,segment_space_management
FROM dba_tablespaces;

INITIAL_EXTENT NEXT_EXTENT EXTENT_MAN ALLOCATION_TYPE SEGMENT_MAN

5242880 5242880 LOCAL UNIFORM AUTO
SQL>

If you choose to use the UNIFORM option for extent allocation but don’t specify the additional
SIZE clause, Oracle will create uniform extents of size 1MB by default, as shown in Listing 5-2.

Listing 5-2. Creating a Tablespace with Uniform Extents Using the UNIFORM Clause

SQL> CREATE TABLESPACE test01
DATAFILE '/u09/oradata/test/test01.dbf' SIZE 100M
UNIFORM;

Tablespace created.

CHAPTER 5 ■ SCHEMA MANAGEMENT 157

4517CH05.qxd 8/19/05 10:34 AM Page 157

SQL> SELECT initial_extent,next_extent,
extent_management,allocation_type,segment_space_management
FROM dba_tablespaces;

INITIAL_EXTENT NEXT_EXTENT EXTENT_MAN ALLOCATION_TYPE SEGMENT_MAN
--
1048576 1048576 LOCAL UNIFORM AUTO
SQL>

If you choose the AUTOALLOCATE method of sizing extents, Oracle will size the extents starting
with a 64KB (65536 bytes) minimum extent size. Note that you can specify the autoallocate method
for extent sizing either by explicitly specifying it with the AUTOALLOCATE keyword, or by simply leav-
ing out the keyword altogether, since by default, Oracle uses the AUTOALLOCATE method anyway.
Listing 5-3 shows an example that creates a tablespace with system-managed (automatically allo-
cated) extents:

Listing 5-3. Creating a Tablespace with Automatically Allocated Extents

SQL> CREATE TABLESPACE test01
DATAFILE '/pasx02/oradata/pasx/test01_01.dbf' SIZE 100M;

Tablespace created.
SQL>

SQL> SELECT initial_extent,next_extent,
extent_management,allocation_type,segment_space_management
FROM dba_tablespaces;

INITIAL_EXTENT NEXT_EXTENT EXTENT_MAN ALLOCATION_TYPE SEGMENT_MAN

65536 LOCAL SYSTEM AUTO
SQL>

Note that there is no value for the autoallocated tablespace for NEXT_EXTENT in Listing 5-3.
When you choose the AUTOALLOCATE option (here it is chosen by default) rather than UNIFORM, Oracle
allocates extent sizes starting with 64KB for the first extent. The next extent size will depend entirely
upon the requirements of the segment (table, index, etc.) that you create in this tablespace.

Storage Allocation to Database Objects
You create tablespaces so that you can create various types of objects, such as tables and indexes, in
them. When you create a new table or index segment, Oracle will use certain storage parameters to
allocate the initial space and to alter allocations of space as the object grows in size.

If you’re using locally managed tablespaces, which happen to be the recommended type of
tablespaces in Oracle Database 10g, you can omit the specification of storage parameters, such as
INITIAL, NEXT, MINEXTENTS, MAXEXTENTS, and PCTINCREASE, when you create objects like tables and
indexes in the tablespaces. For locally managed tablespaces, Oracle will manage the storage extents,
so there is very little for you to specify in terms of storage allocation parameters. Oracle retains the
storage parameters for backward compatibility only.

You don’t have to set the PCTUSED parameter if you’re using locally managed tablespaces. If you
set it, your object creation statement won’t error out, but Oracle ignores the parameter. However,
you can use the PCTFREE parameter to specify how much free space Oracle should leave in each
block for future updates to data. The default is 10, which is okay if you don’t expect the existing rows
to get longer with time. If you do, you can change the PCTFREE parameter upward, say to 20 or 30
percent. Of course, there is a price to pay for this—the higher the PCTFREE parameter, the more
space you will “waste” in your database.

CHAPTER 5 ■ SCHEMA MANAGEMENT158

4517CH05.qxd 8/19/05 10:34 AM Page 158

CREATING TABLESPACES WITH NONSTANDARD BLOCK SIZES

The default block size for all tablespaces is determined by the DB_BLOCK_SIZE initialization parameter for your
database. You have the option of creating tablespaces with block sizes that are different from the standard data-
base block size. In order to create a tablespace with a nonstandard block size, you must have already set the
DB_CACHE_SIZE initialization parameter, and at least one DB_nK_CACHE_SIZE initialization parameter. For
example, you must set the DB_16K_CACHE_SIZE parameter, if you wish to create tablespaces with a 16KB
block size.

By using a nonstandard block size, you can customize a tablespace for the types of objects it contains. For
example, you can allocate a large table that requires a large number of reads and writes to a tablespace with a
large block size. Similarly, you can place smaller tables in tablespaces with a smaller block size.

Here are some points to keep in mind if you’re considering using the multiple block size feature for table-
spaces:

• Multiple buffer pools enable you to configure up to a total of five different pools in the buffer cache, each
with a different block size. (This is discussed in Chapter 4.)

• The System tablespace always has to be created with the standard block size specified by the
DB_BLOCK_SIZE parameter in the init.ora file.

• You can have up to four nonstandard block sizes.

• You specify the block size for tablespaces in the CREATE TABLESPACE statement by using the BLOCKSIZE
clause.

• The nonstandard block sizes must be 2KB, 4KB, 8KB, 16KB, or 32KB. One of these sizes, of course, will have
to be chosen as the standard block size by using the DB_BLOCK_SIZE parameter in the init.ora file.

• If you’re transporting tablespaces between databases, using tablespaces with multiple block sizes makes it
easier to transport tablespaces of different block sizes.

You use the BLOCKSIZE keyword when you create a tablespace, to specify a nonstandard block size. The
following statement creates a tablespace with a nonstandard block size of 16KB (the standard block size in this
example is only 4KB, which is determined by the value you specify for the DB_BLOCK_SIZE initialization parameter):

SQL> CREATE TABLESPACE test01 datafile '/u09/oradata/testdb/test01.dbf'
BLOCKSIZE 8K;

Removing Tablespaces
Sometimes you may want to get rid of a tablespace. You can remove a tablespace from the database
by issuing this simple command:

SQL> DROP TABLESPACE test01;

If the test01 tablespace includes tables or indexes when you issue a DROP TABLESPACE com-
mand, you’ll get an error. You can either move the objects to a different tablespace or, if the objects
are dispensable, you can use the following command, which will drop the tablespace and all the
objects that are part of the tablespace:

SQL> DROP TABLESPACE test01 INCLUDING CONTENTS;

CHAPTER 5 ■ SCHEMA MANAGEMENT 159

4517CH05.qxd 8/19/05 10:34 AM Page 159

■Caution In Oracle Database 10g, database objects such as tables aren’t dropped right away when you issue a
DROP TABLE command. Instead, they go to the recycle bin (discussed in Chapter 16), from which you can reclaim
the table you “dropped.”

When you use the DROP TABLESPACE . . . INCLUDING CONTENTS command, the objects in the table-
space are dropped right away, bypassing the recycle bin! Any objects belonging to this tablespace that are in the
recycle bin are also purged permanently when you issue this command. If you omit the INCLUDING CONTENTS
clause and the tablespace contains objects, the statement will fail, but any objects in the recycle bin will be
dropped.

The DROP TABLESPACE . . . INCLUDING CONTENTS command will not release the data files back
to the operating system’s file system. To do so, you have to either manually remove the data files that
were a part of the tablespace or issue the following command to remove both the objects and the
physical data files at once:

SQL> DROP TABLESPACE test01 INCLUDING CONTENTS AND DATAFILES;

The preceding statement will automatically drop the data files along with the tablespace.
If there are referential integrity constraints in other tables that refer to the tables in the table-

space you intend to drop, you need to use the following command:

SQL> DROP TABLESPACE test01 CASCADE CONSTRAINTS;

The one tablespace you can’t drop, of course, is the System tablespace. You also can’t drop the
Sysaux tablespace during normal database operation. However, provided you have the SYSDBA
privilege and you have started the database in the MIGRATE mode, you’ll be able to drop the Sysaux
tablespace.

Of course, there aren’t many reasons why you would want to drop your Sysaux tablespace. If
you simply want to move certain users out of this tablespace, you can always use the appropriate
move procedure specified in the V$SYSAUX_OCCUPANTS view.

Adding Space to a Tablespace
When your tablespace is filling up with table and index data, you need to expand its size. You do this
by adding more physical file space with the ALTER TABLESPACE command:

SQL> ALTER TABLESPACE test01
ADD DATAFILE '/finance10/app/oracle/finance/test01.dbf'
SIZE 1000M;

You can also increase or decrease the size of the tablespace by increasing or decreasing the size
of the tablespace’s data files with the RESIZE option. You usually use the RESIZE option to correct
data-file sizing errors. Note that you can’t decrease a data file’s size beyond the space that is already
occupied by objects in the data file.

The following example shows how you can manually resize a data file. Originally, the file was
250MB, and the following command doubles the size of the file to 500MB. Note that you need to use
the ALTER DATABASE command, not the ALTER TABLESPACE command, to resize a data file.

SQL> ALTER DATABASE DATAFILE '/finance10/oradata/data_09.dbf'
RESIZE 500m;

You can use the AUTOEXTEND provision when you create a tablespace or when you add data files
to a tablespace to tell Oracle to automatically extend the size of the data files in the tablespace to a
specified maximum. Here’s the syntax for using the AUTOEXTEND feature:

CHAPTER 5 ■ SCHEMA MANAGEMENT160

4517CH05.qxd 8/19/05 10:34 AM Page 160

SQL> ALTER TABLESPACE data01
ADD DATAFILE '/finance10/oradata/data01.dbf' SIZE 200M
AUTOEXTEND ON
NEXT 10M
MAXSIZE 1000M;

SQL>

In the preceding example, 10MB extents will be added to the tablespace when space is required,
as specified by the AUTOEXTEND parameter. The MAXSIZE parameter limits the tablespace to 1,000MB.
If you wish, you can also specify MAXSIZE UNLIMITED, in which case there is no set maximum size for
this data file and hence for the tablespace. However, you must ensure that you have enough operat-
ing system disk space to accommodate this.

Oracle also offers the Resumable Space Allocation feature, which temporarily suspends opera-
tions that might otherwise fail for lack of space, and then resumes the operations after you add
space to the database object. This makes the use of the AUTOEXTEND feature less attractive. The
Resumable Space Allocation feature is discussed in detail in Chapter 6.

Number of User Tablespaces
Oracle DBAs have traditionally used a large number of tablespaces for managing database objects.
Unfortunately, the larger the number of tablespaces in your database, the more time you’ll have to
spend on mundane tasks, such as monitoring space and allocating space to the tablespaces. Disk
contention between indexes and tables and other objects were pointed out as the reason for creat-
ing large numbers of tablespaces, but with the types of disk management used today in most
places, where Logical Volume Managers stripe operating system files over several disk spindles,
traditional tablespace-creation rules don’t apply. You’re better off using a very small number of
tablespaces—perhaps just four or five—to hold all your data.

Tablespace Quotas
You can assign a user a tablespace quota, thus limiting the user to a certain amount of storage space
in the tablespace. You can do this when you create the user, or by using the ALTER USER statement at
a later time. Chapter 11 shows you how to assign tablespace quotas to users.

In Chapter 6, I discuss Oracle’s Resumable Space Allocation feature. User-quota-exceeded
errors are an important type of resumable statement. When a user exceeds the assigned quota,
Oracle will automatically raise a space-quota-exceeded error.

Proactive Tablespace Space Alerts
If a segment needs to be extended to accommodate the insertion of new data, there must be free
space available in the tablespace that the segment belongs to. If not, the new data can’t be inserted,
and you’ll get an Oracle error indicating that the operation failed due to the lack of space in the
tablespace.

You can write scripts to alert you that a tablespace is about to run out of space, but in Oracle
Database 10g the database itself sends you proactive space alerts for all locally managed table-
spaces, including the undo tablespace. The Oracle database stores information on tablespace space
usage in its system global area (SGA). The new Oracle background process MMON checks table-
space usage every ten minutes and raises alerts when necessary.

The database will send out two types of tablespace out-of-space alerts: a warning alert and a
critical alert. The warning alert cautions you that a tablespace’s free space is running low, and the
critical alert tells you that you should immediately take care of the free space problem so the data-
base doesn’t issue “out of space” errors. Both of these alerts are based on threshold values called
warning and critical thresholds, which you can modify.

CHAPTER 5 ■ SCHEMA MANAGEMENT 161

4517CH05.qxd 8/19/05 10:34 AM Page 161

■Tip When you upgrade to Oracle Database 10g, by default, both the percent full and the bytes remaining alerts
are disabled. You must explicitly set both alerts yourself. For a given tablespace, you can use either or both types
of alerts.

There are two ways to set alert thresholds: you can specify that the database alert be based on
the percent of space used or on the number of free bytes left in the tablespace:

• Percent full: The database issues an alert when the space used in a tablespace reaches or
crosses a preset percentage of total space. For a new database, 85 percent full is the threshold
for the warning alerts, and 97 percent full is the threshold for the critical alerts. You can, if
you wish, change these values and set, for example, 90 and 98 percent as the warning and
critical thresholds.

• Bytes remaining: When the free space falls below a certain amount (specified in KB), Oracle
issues an alert. For example, you can use a warning threshold of 10,240KB and a critical
threshold of 4,096KB for a tablespace. By default, the “bytes remaining alerts” (both warning
and critical) in a new database are disabled, since the defaults for both types of bytes-
remaining thresholds are set to zero. You can set them to a size you consider appropriate
for each tablespace.

■Tip You can disable the warning or critical threshold tablespace alerts by setting the threshold values to zero.

Setting the Alert Thresholds
The easiest way to set and modify tablespace space alerts is by using the Oracle Enterprise Manager
(OEM). Just go to the OEM Home Page ➤ Administration ➤ Related Links ➤ Manage Metrics ➤ Edit
Thresholds. From the Edit Thresholds page, you can set warning and critical thresholds for your
tablespaces. You can also specify a response action when an alert is received, in the form of a com-
mand or script that is made accessible to the Management Agent.

You can also use the Oracle-provided PL/SQL package DBMS_SERVER_ALERT to set warning
and critical space alerts. Listing 5-4 shows how you can set a “bytes remaining” alert threshold using
the warning value and the critical value attributes.

Listing 5-4. Setting a Tablespace Alert Threshold

SQL> BEGIN
DBMS_SERVER_ALERT.SET_THRESHOLD(
metrics_id => DBMS_SERVER_ALERT.TABLESPACE_BYT_FREE,
warning_operator => DBMS_SERVER_ALERT.OPERATOR_LE,
warning_value => '10240',
critical_operator => DBMS_SERVER_ALERT.OPERATOR_LE,
critical_value => '2048',
observation_period => 1,
consecutive_occurrences => 1,
instance_name => NULL,
object_type => DBMS_SERVER_ALERT.OBJECT_TYPE_TABLESPACE,
object_name => 'USERS');
END;

SQL>

CHAPTER 5 ■ SCHEMA MANAGEMENT162

4517CH05.qxd 8/19/05 10:34 AM Page 162

In Listing 5-4, note that the warning_value attribute sets the bytes-remaining alert warning
threshold at 10MB and the critical_value attribute sets the critical threshold at 2MB.

You can always add a data file to a tablespace to get it out of the low-free-space situation.
However, one easy way to avoid this problem altogether, in most cases, is to use autoextensible
tablespaces. Autoextensible tablespaces will automatically grow in size when table or index data
grows over time. For a new database, this may prove to be an excellent solution, saving you from
out-of-space errors if you create tablespaces that are too small and from wasting space if you create
too large a tablespace. It’s very easy to create an autoextensible tablespace—all you have to do is
include the AUTOEXTEND clause for the data file when you create or alter a tablespace. Just make sure
that you have enough free storage to accommodate the autoextensible data file.

Renaming Tablespaces
In previous versions of Oracle, you couldn’t rename tablespaces, which meant that you had to drop
and re-create tablespaces when you performed operations like migrating from dictionary-managed
to locally managed tablespaces. Oracle Database 10g lets you rename tablespaces by using the
ALTER TABLESPACE command, as shown here:

SQL> ALTER TABLESPACE test01 RENAME TO test02;
Tablespace altered.
SQL>

You can rename both permanent and temporary tablespaces, but there are a few restrictions:

• You can’t rename the System and Sysaux tablespaces.

• The tablespace being renamed must have all its data files online.

• If the tablespace is read-only, renaming it doesn’t update the file headers of its data files.

Sometimes, you may need to rename a data file. The process for this is straightforward:

1. Take the data file offline by taking its tablespace offline. Use the following command:

SQL> ALTER TABLESPACE test01 OFFLINE NORMAL;
Tablespace altered.
SQL>

2. Rename the file using an operating system utility such as cp or mv in UNIX, or copy in
Windows.

$ cp /u01/app/oracle/test01.dbf /u02/app/oracle/test01.dbf

3. Rename the data file in the database by using the following command:

SQL> ALTER TABLESPACE test01
2 RENAME DATAFILE
3 '/u01/app/oracle/test01.dbf'
4 TO
5* '/u02/app/oracle/test01.dbf';

Tablespace altered.
SQL>

Read-Only Tablespaces
By default, all Oracle tablespaces are both readable and writable when created. However, you can
specify that a tablespace cannot be written to by making it a read-only tablespace. The command to
do so is simple:

CHAPTER 5 ■ SCHEMA MANAGEMENT 163

4517CH05.qxd 8/19/05 10:34 AM Page 163

SQL> ALTER TABLESPACE test01 READ ONLY;

If you want to make this read-only tablespace writable again, you can use the following
command:

SQL> ALTER TABLESPACE test01 READ WRITE;

Taking Tablespaces Offline
Except for the System tablespace, you can take any or all of the tablespaces offline—that is, you can
make them temporarily unavailable to users. You usually need to take tablespaces offline when a
data file within a tablespace contains errors or you are changing code in an application that
accesses one of the tablespaces being taken offline.

Four modes of offlining are possible with Oracle tablespaces: normal, temporary, immediate,
and for recovery. Except for the normal mode, which is the default mode of taking tablespaces
offline, all the other modes can involve recovery of the included data files or the tablespace itself.
You’ll see these non-default methods discussed in Chapter 15, but for now, just keep in mind that
you can take any tablespace offline with no harm by using the following command:

SQL> ALTER TABLESPACE index_01 OFFLINE NORMAL;

Oracle will ensure the checkpointing of all the data files in the tablespace (index_01 in this
example) before it takes the tablespace offline. Thus, there is no need for recovery when you later
bring the tablespace back online.

To bring the tablespace online, use the following command:

SQL> ALTER TABLESPACE index_01 ONLINE;

Temporary Tablespaces
Oracle uses temporary tablespaces as work areas for tasks such as sort operations for users and
sorting during index creation. Oracle doesn’t allow users to create objects in a temporary tablespace
for permanent use in the database. By definition, the temporary tablespace holds data only for the
duration of a user’s session, and the data can be shared by all users. The performance of temporary
tablespaces is extremely critical when your application uses sort- and hash-intensive queries, which
need to store transient data in the temporary tablespace.

■Note Oracle writes data in the program global area (PGA) in 64KB chunks. Therefore, Oracle advises you to
create temporary tablespaces with extent sizes that are multiples of 64KB. For large data warehousing and
decision-support system databases, which make extensive use of temporary tablespaces, the recommended
extent size is 1MB.

As mentioned earlier, you must use the TEMPFILE clause when specifying the files that are part
of any temporary tablespace. There is really no difference, as far as you are concerned, between a
DATAFILE clause that you specify for permanent tablespaces and the TEMPFILE clause you specify for
temporary tablespaces. However, Oracle distinguishes between the two types of files. Tempfiles
have little or no redo data associated with them.

You create a temporary tablespace the same way as you do a permanent tablespace, with the
difference being that you specify the TEMPORARY clause in the CREATE TABLESPACE statement and sub-
stitute the TEMPFILE clause for the DATAFILE clause. Here’s an example:

CHAPTER 5 ■ SCHEMA MANAGEMENT164

4517CH05.qxd 8/19/05 10:34 AM Page 164

SQL> CREATE TEMPORARY TABLESPACE temp_demo
TEMPFILE 'temp01.dbf' SIZE 500M
AUTOEXTEND ON;

In the preceding statement, the AUTOEXTEND ON clause will automatically extend the size of the
temporary file, and thus the size of the temporary tablespace.

■Tip You use the TEMPFILE clause, not the DATAFILE clause, when you allocate space to a temporary
tablespace.

You may have multiple temporary tablespaces in an Oracle Database 10g database, in order to
support heavy database sorting operations. You can view the amount of sort space usage in your
database by using the V$SORT_SEGMENT and V$TEMPSEG_USAGE views.

In order to drop a default temporary tablespace, you must first use the ALTER TABLESPACE com-
mand to create a new default tablespace for the database. You can then drop the previous default
temporary tablespace like any other tablespace.

■Note Oracle recommends that you use a locally managed temporary tablespace with a 1MB uniform extent
size as your default temporary tablespace.

Default Temporary Tablespace
When you create database users, you must assign a default temporary tablespace in which they can
perform their temporary work, such as sorting. If you neglect to explicitly assign a temporary table-
space, the users will use the critical System tablespace as their temporary tablespace, which could
lead to fragmentation of that tablespace, besides filling it up and freezing database activity. You can
avoid these undesirable situations by creating a default temporary tablespace for the database
when creating a database by using the DEFAULT TEMPORARY TABLESPACE clause. Oracle will then use
this as the temporary tablespace for all users for whom you don’t explicitly assign a temporary
tablespace. I show the creation of the default temporary tablespace in Chapter 9, where I explain
how to create a new Oracle database.

Note that if you didn’t create a default temporary tablespace while creating your database, it
isn’t too late to do so later. You can just create a temporary tablespace, as shown in the preceding
example, and make it the default temporary tablespace for the database, with a statement like this:

SQL> ALTER TABLESPACE DEFAULT TEMPORARY TABLESPACE temptbs02;

■Note You can’t use the AUTOALLOCATE clause for temporary tablespaces. By default, all temporary tablespaces
are created with locally managed extents of a uniform size. The default extent size is 1MB, as for all other table-
spaces, but you can use a different extent size if you wish when creating the temporary tablespace.

Temporary Tablespace Groups
Large transactions can sometimes run out of temporary space. Large sort jobs, especially those
involving tables with many partitions, lead to heavy use of the temporary tablespaces, thus poten-
tially leading to a performance hit. Oracle Database 10g introduces the concept of a temporary

CHAPTER 5 ■ SCHEMA MANAGEMENT 165

4517CH05.qxd 8/19/05 10:34 AM Page 165

tablespace group, which allows a user to utilize multiple temporary tablespaces simultaneously in
different sessions.

Here are some of the main characteristics of a temporary tablespace group:

• A temporary tablespace group must consist of at least one tablespace. There is no explicit
maximum number of tablespaces.

• If you delete all members from a temporary tablespace group, the group is automatically
deleted as well.

• A temporary tablespace group has the same namespace as the temporary tablespaces that
are part of the group.

• The name of a temporary tablespace cannot be the same as the name of any tablespace
group.

• When you assign a temporary tablespace to a user, you can use the temporary tablespace
group name instead of the actual temporary tablespace name. You can also use the tempo-
rary tablespace group name when you assign the default temporary tablespace for the
database.

Benefits of Temporary Tablespace Groups
Using a temporary tablespace group, rather than the usual single temporary tablespace, provides
several benefits:

• SQL queries are less likely to run out of sort space because the query can now simultane-
ously use several temporary tablespaces for sorting.

• You can specify multiple default temporary tablespaces at the database level.

• Parallel execution servers in a parallel operation will efficiently utilize multiple temporary
tablespaces.

• A single user can simultaneously use multiple temporary tablespaces in different sessions.

Creating a Temporary Tablespace Group
When you assign the first temporary tablespace to a tablespace group, you automatically create the
temporary tablespace group. To create a tablespace group, simply specify the TABLESPACE GROUP
clause in the CREATE TABLESPACE statement, as shown here:

SQL> CREATE TEMPORARY TABLESPACE temp01
TEMPFILE '/u01/oracle/oradata/temp01_01.dbf'
SIZE 500M TABLESPACE GROUP tmpgrp1;

The preceding SQL statement will create a new temporary tablespace, temp01, along with the
new tablespace group named tmpgrp1. Oracle creates the new tablespace group because the key
clause TABLESPACE GROUP was used while creating the new temporary tablespace.

You can also create a temporary tablespace group by specifying the same TABLESPACE GROUP
clause in an ALTER TABLESPACE command, as shown here:

SQL> ALTER TABLESPACE temp02
TABLESPACE GROUP tmpgrp1

Tablespace altered.
SQL>

CHAPTER 5 ■ SCHEMA MANAGEMENT166

4517CH05.qxd 8/19/05 10:34 AM Page 166

The preceding statement will cause Oracle to create a new group named tmpgrp1, since there
wasn’t a prior temporary tablespace group with that name.

If you specify a pair of quotes ('') for the tablespace group name, you are implicitly telling
Oracle not to allocate that temporary tablespace to a tablespace group. Here’s an example:

SQL> CREATE TEMPORARY TABLESPACE temp02
TEMPFILE '/u01/oracle/oradata/temp02_01.dbf' SIZE 500M
TABLESPACE GROUP '';

The preceding statement creates a temporary tablespace called temp02, which is a regular
temporary tablespace and doesn’t belong to a temporary tablespace group.

If you completely omit the TABLESPACE GROUP clause, you’ll create a regular temporary table-
space, which is not part of any temporary tablespace group:

SQL> CREATE TEMPORARY TABLESPACE temp03
TEMPFILE '/u01/oracle/oradata/temp03_01.dbf' SIZE 500M;

Tablespace created.
SQL>

Adding a Tablespace to a Temporary Tablespace Group
As shown in the preceding section, you can add a temporary tablespace to group by using the ALTER
TABLESPACE command. You can also change which group a temporary tablespace belongs to by
using the ALTER TABLESPACE command. For example, you can specify that the tablespace temp02
belongs to the tmpgrp2 group by issuing the following command:

SQL> ALTER TABLESPACE temp02 TABLESPACE GROUP tmpgrp2;

The database will create a new group with the name tmpgrp2 if there is no such group already.

Setting a Group as the Default Temporary Tablespace for the Database
You can use a temporary tablespace group as your default temporary tablespace for the database.
If you issue the following command, all users without a default tablespace can use any temporary
tablespace in the tmpgrp1 group as their default temporary tablespaces:

SQL> ALTER TABLESPACE DEFAULT TEMPORARY TABLESPACE tmpgrp1;

The preceding ALTER TABLESPACE statement assigns all the tablespaces in tmpgrp1 as the
default temporary tablespaces for the database.

Using Temporary Tablespace Groups When You Create and Alter Users
When you create new users, you can assign them to a temporary tablespace group instead of to the
usual single temporary tablespace. Here’s an example:

SQL> CREATE USER salapati IDENTIFIED BY sammyy1
DEFAULT TABLESPACE users
TEMPORARY TABLESPACE tmpgrp1;

User created.
SQL>

Once you create a user, you can also use the ALTER USER statement to change the temporary
tablespace group of the user. Here’s a SQL statement that does this:

SQL> ALTER USER salapati TEMPORARY TABLESPACE tmpgrp2;

CHAPTER 5 ■ SCHEMA MANAGEMENT 167

4517CH05.qxd 8/19/05 10:34 AM Page 167

Viewing Temporary Tablespace Group Information
You can use the new DBA_TABLESPACE_GROUPS data dictionary view to manage the temporary
tablespace groups in your database. Here is a simple query on the view that shows the names of all
tablespace groups:

SQL> SELECT group_name, tablespace_name
FROM dba_tablespace_groups;

GROUP_NAME TABLESPACE_NAME

TMPGRP1 TEMP01
SQL>

You can also use the DBA_USERS view to find out which temporary tablespaces or temporary
tablespace groups are assigned to each user. Here’s an example:

SQL> SELECT username, temporary_tablespace
FROM dba_users;

USERNAME TEMPORARY_TABLESPACE
------------------------------ ---------
SYS TEMP
SYSTEM TEMP
SAM TMPGRP1
SCOTT TEMP
. . .
SQL>

Default Permanent Tablespaces
Prior to the Oracle Database 10g release, the System tablespace was the default permanent table-
space for any users you created if you neglected to assign the user to a default tablespace. In Oracle
Database 10g, you can create a default permanent tablespace to which a new user will be assigned if
you don’t assign a specific default tablespace when you create the user.

■Note You can’t drop a default permanent tablespace without first creating and assigning another tablespace as
the new default tablespace.

To find out what the current permanent tablespace for your database is, use the following
query:

SQL> SELECT property_value FROM database_properties
WHERE property_name='DEFAULT_PERMANENT_TABLESPACE';

PROPERTY_VALUE

USERS
SQL>

You can create a default permanent tablespace when you first create a database, as shown here:

CREATE DATABASE
DATAFILE '/u01/app/oracle/test/system01.dbf' SIZE 500M
SYSAUX DATAFILE '/u01/app/oracle/syaux01.dbf' SIZE 500M

CHAPTER 5 ■ SCHEMA MANAGEMENT168

4517CH05.qxd 8/19/05 10:34 AM Page 168

DEFAULT TABLESPACE users
DATAFILE '/u01/app/oracle/users01.dbf' SIZE 250M
. . .

The previous CREATE DATABASE statement results in the creation of a default permanent table-
space named users, created by using the DEFAULT TABLESPACE clause (shown in the last two lines of
the statement).

■Note The database creation process is explained in detail in Chapter 9.

You can also create or reassign a default permanent tablespace after database creation, by
using the ALTER DATABASE command, as shown here:

SQL> ALTER DATABASE DEFAULT TABLESPACE users;

Bigfile Tablespaces
Oracle Database 10g can contain up to 8 exabytes (8 million terabytes) of data. Don’t panic, how-
ever, thinking how many millions of data files you need to manage in order to hold this much data.
You now have the option of creating really big tablespaces called, appropriately, bigfile tablespaces.
A bigfile tablespace (BFT) contains only one very large data file. If you’re creating a bigfile-based
permanent tablespace, it’ll be a single data file, and if it’s a temporary tablespace, it will be a single
temporary file.

Depending on the block size, a bigfile tablespace can be as large as 128 terabytes. In previous
versions of Oracle, you always had to keep in mind the distinction between data files and table-
spaces. Now, using the bigfile concept, Oracle has made a tablespace logically equal to a data file by
creating the new one-to-one relationship between tablespaces and data files. With Oracle Managed
Files, data files are completely transparent to you when you use a BFT, and you can directly deal
with the tablespace in many kinds of operations.

■Note The traditional tablespaces are now referred to as smallfile tablespaces. Smallfile tablespaces are the
default tablespaces in Oracle Database 10g. You can have both smallfile and bigfile tablespaces in the same data-
base.

Here’s a summary of the benefits offered by using BFTs:

• You only need to create as many data files as there are tablespaces.

• You don’t have to constantly add data files to your tablespaces.

• Data file management in large databases is simplified—you deal with a few tablespaces
directly, not many data files.

• Storage capacity is significantly increased because you don’t reach the maximum-files
limitation quickly when you use BFTs.

Restrictions on Using Bigfile Tablespaces
There are few restrictions on using BFTs. You can use them only if you use a locally managed table-
space with automatic segment space management. By now, you know that locally managed
tablespaces with automatic segment space management are the default in Oracle Database 10g

CHAPTER 5 ■ SCHEMA MANAGEMENT 169

4517CH05.qxd 8/19/05 10:34 AM Page 169

Release 2. Oracle also recommends that you use BFTs along with a Logical Volume Manager or
Automated Storage Management feature that supports striping and mirroring. Otherwise, you can’t
really support the massive data files that underlie the BFT concept. Both parallel query execution
and RMAN backup parallelization would be adversely impacted if you used BFTs without striping.

To avoid creating millions of extents when you use a BFT in a very large (greater than one
terabyte) database, Oracle recommends that you change the extent allocation policy from
AUTOALLOCATE, which is the default, to UNIFORM and set a very high extent size. In databases that
aren’t very large, Oracle recommends that you stick to the default AUTOALLOCATE policy and simply
let Oracle take care of the extent sizing.

Creating Bigfile Tablespaces
You can create bigfile tablespaces in three different ways. You can either specify them at database
creation time and thus make them the default tablespace type, you can use the CREATE BIGFILE
statement, or you can use the ALTER DATABASE statement to set the default type to a BFT tablespace.
Let’s look into each of these methods in the following sections.

Using Bigfile Tablespaces as Default Tablespaces

You can specify BFTs as the default tablespace type during database creation. If you don’t explicitly
specify BFT as your default tablespace type, your database will have the traditional smallfile table-
space as the default.

Here’s a portion of the CREATE DATABASE statement, showing how you specify a BFT:

SQL> CREATE DATABASE
SET DEFAULT BIGFILE tablespace
. . .

Once you set the default tablespace type to bigfile tablespaces, all tablespaces you create sub-
sequently will be BFTs unless you manually override the default setting, as shown shortly.

Using the CREATE TABLESPACE Statement

Irrespective of which default tablespace type you choose—bigfile or smallfile—you can always
create a bigfile tablespace by specifying the type explicitly in the CREATE TABLESPACE statement,
as shown here:

SQL> CREATE BIGFILE TABLESPACE bigtbs_01
DATAFILE '/u01/oracle/data/bigtbs_01.dbf' SIZE 100G
. . .

In the preceding statement, the explicit specification of the BIGFILE clause will override the
default tablespace type, if it was a smallfile type. Conversely, if your default tablespace type is
BIGFILE, you can use the SMALLFILE keyword to override the default type when you create a table-
space.

When you specify the CREATE BIGFILE TABLESPACE clause, Oracle will automatically create a
locally managed tablespace with automatic segment space management. You can specify the data
file size in kilobytes, megabytes, gigabytes, or terabytes.

■Tip On operating systems that don’t support large files, the bigfile size will be limited by the maximum file size
that the operating system can support.

CHAPTER 5 ■ SCHEMA MANAGEMENT170

4517CH05.qxd 8/19/05 10:34 AM Page 170

Changing the Default Tablespace Type

You can dynamically change the default tablespace type to bigfile or smallfile, thus making all table-
spaces you subsequently create either bigfile or smallfile type tablespaces. Here’s an example that
shows how to set the default tablespace type in your database to bigfile:

SQL> ALTER TABLESPACE SET DEFAULT BIGFILE TABLESPACE;

You can also migrate database objects from a smallfile tablespace to a bigfile tablespace, or vice
versa, after changing a tablespace’s type. You can migrate the objects using the ALTER TABLE . . .
MOVE or the CREATE TABLE AS SELECT commands. Or you can use the Data Pump Export and Import
tools to move the objects between the two types of tablespaces.

Altering a Bigfile Tablespace
You can use the RESIZE and AUTOEXTEND clauses in the ALTER TABLESPACE statement to modify the
size of a BFT. Note that both these space-extension clauses can be used directly at the tablespace,
not the file, level. Thus, both of these clauses provide data file transparency—you deal directly with
the tablespaces and ignore the underlying data files.

Here are more details about the two clauses:

• RESIZE: The RESIZE clause lets you resize a BFT directly, without using the DATAFILE clause, as
shown here:

SQL> ALTER TABLESPACE bigtbs RESIZE 120G;

• AUTOEXTEND: The AUTOEXTEND clause enables automatic file extension, again without referring
to the data file. Here’s an example:

SQL> ALTER TABLESPACE bigtbs AUTOEXTEND ON NEXT 20G;

Viewing Bigfile Tablespace Information
You can gather information about the BFTs in your database by using the following data dictionary
views:

• DBA_TABLESPACES

• USER_TABLESPACES

• V$TABLESPACE

All three views have the new BIGFILE column, whose value indicates whether a tablespace is of
the BFT type (YES) or smallfile type (NO).

You can also use the DATABASE_PROPERTIES data dictionary view, as shown in the following
query, to find out what the default tablespace type for your database is:

SQL> SELECT property_value
FROM database_properties
WHERE property_name='DEFAULT_TBS_TYPE';

PROPERTY_VALUE

SMALLFILE
SQL>

CHAPTER 5 ■ SCHEMA MANAGEMENT 171

4517CH05.qxd 8/19/05 10:34 AM Page 171

Managing the Sysaux Tablespace
Oracle Database 10g mandates the creation of the Sysaux tablespace, which serves as an auxiliary
tablespace to the System tablespace. Until now, the System tablespace was the default location for
storing objects belonging to components like the Workspace Manager, Logical Standby, Oracle Spa-
tial, Logminer, and so on. The more features the database offered, the greater was the demand for
space in the System tablespace. In addition, several features had to be accommodated in their own
repositories, like the Enterprise Manager and its Repository. On top of all this, you had to create a
special tablespace for the Statspack Repository.

To alleviate this pressure on the System tablespace and to consolidate all the repositories for
the various Oracle features, Oracle Database 10g offers the Sysaux tablespace as a centralized single
storage location for various database components. Using the Sysaux tablespace offers the following
benefits:

• There are fewer tablespaces to manage because you don’t have to create a separate table-
space for many database components. You just assign the Sysaux tablespace as the default
location for all the components.

• There is reduced pressure on the System tablespace.

• There are fewer raw devices to manage if you are using Real Application Clusters (RAC) with
raw devices, since every tablespace under RAC requires at least one raw device.

The size of the Sysaux tablespace depends on the size of the database components that you’ll
store in it. Therefore, you should base your Sysaux tablespace sizing on the components and fea-
tures that your database will use. Oracle recommends that you create the Sysaux tablespace with a
minimum size of 240MB. Generally, the OEM repository tends to be the largest user of the Sysaux
tablespace.

Creating the Sysaux Tablespace
If you use the Oracle Database Configuration Assistant (DBCA), you can automatically create the
Sysaux tablespace when you create a new database, whether it is based on the seed database or a
completely new, built-from-scratch, user-defined database. During the course of creating a data-
base, the DBCA asks you to select the file location for the Sysaux tablespace. When you upgrade a
database to Oracle Database 10g, the Database Upgrade Assistant will similarly prompt you for the
file information for creating the new Sysaux tablespace.

■Tip The Sysaux tablespace is mandatory, whether you create a new Oracle Database 10g database or migrate
to Oracle Database 10g.

You can create the Sysaux tablespace manually at database creation time. Here is the syntax for
creating the Sysaux tablespace:

CREATE DATABASE mydb
USER sys IDENTIFIED BY abc1def
USER system IDENTIFIED BY uvw2xyz
...
SYSAUX DATAFILE '/u01/oracle/oradata/mydb/sysaux01.dbf' SIZE 500M REUSE
. . .

If you omit the SYSAUX creation clause from the CREATE DATABASE statement, Oracle will create
both the System and Sysaux tablespaces automatically, with their data files being placed in system-
determined default locations. If you are using Oracle Managed Files (OMF), the data file location

CHAPTER 5 ■ SCHEMA MANAGEMENT172

4517CH05.qxd 8/19/05 10:34 AM Page 172

will be dependent on the OMF initialization parameters. If you include the DATAFILE clause for the
System tablespace, you must use the DATAFILE clause for the Sysaux tablespace as well, unless you
are using OMF.

You can only set the data file location when you create the Sysaux tablespace during database
creation, as shown in the preceding example. Oracle sets all the other attributes, which are manda-
tory and not changeable, with the ALTER TABLESPACE command. Once you provide the data file
location and size, Oracle creates the Sysaux tablespace with the following attributes:

• Permanent

• Read/write

• Locally managed

• Automatic segment space management

You can alter the Sysaux tablespace using the same ALTER TABLESPACE command that you use
for other tablespaces. Here’s an example:

SQL> ALTER TABLESPACE sysaux ADD DATAFILE
'/u01/app/oracle/prod1/oradata/sysaux02.dbf' SIZE 500M;

Usage Restrictions for the Sysaux Tablespace
Although using the ALTER TABLESPACE command to change the Sysaux tablespace may make it seem
as if the Sysaux tablespace is similar to the other tablespaces in your database, several usage features
set the Sysaux tablespace apart. Here are the restrictions:

• You can’t drop the Sysaux tablespace by using the DROP TABLESPACE command during normal
database operation.

• You can’t rename the Sysaux tablespace during normal database operation.

• You can’t transport a Sysaux tablespace like other tablespaces.

Oracle Managed Files
The previous sections have dealt with operating system file management, where you, the DBA,
manually create, delete, and manage the data files. Oracle Managed Files (OMF) enables you to
bypass dealing with operating system files directly.

As you’ve learned in Chapter 4, you deal with various type of database files, including data files,
control files, and redo log files. In addition, you also have to manage temporary files for use with
temporary tablespaces, archived redo logs, RMAN backup files, and files for storing flashback logs.
Normally, you’d have to set the complete file specification for each of these files when you create
one of them. Under an OMF setup, however, you specify the locations for all the previously men-
tioned types of Oracle files by specifying three initialization parameters: DB_CREATE_FILE_DEST,
DB_CREATE_ONLINE_LOG_DEST_n, and DB_RECOVERY_FILE_DEST. Oracle will then automatically create
the files in the specified locations without your having to provide the actual location for it.

OMF offers a simpler way of managing the file system—you don’t have to worry about specify-
ing long file specifications when you’re creating tablespaces or redo log groups or control files.

When you want to create a tablespace or add data files when using OMF, you don’t have to give
a location for the data files. Oracle will automatically create the file or add the data file in the loca-
tion you specified in the init.ora file for data files. Note that you don’t have to use a DATAFILE or
TEMPFILE clause when creating a tablespace when you use the OMF-based file system.

Here are a couple of examples showing how simple it is to create a tablespace and add space to
it under an OMF system:

CHAPTER 5 ■ SCHEMA MANAGEMENT 173

4517CH05.qxd 8/19/05 10:34 AM Page 173

SQL> CREATE TABLESPACE finance01;
SQL> ALTER TABLESPACE finance01 ADD DATAFILE 500M;

Similarly, when you want to drop a tablespace, you just need to issue the DROP TABLESPACE
command and the OMF data files are automatically removed by Oracle, along with the tablespace
definition:

SQL> DROP TABLESPACE finance01;

OMF files are definitely easier to manage than the traditional manually created operating sys-
tem files. However, there are some limitations:

• OMF files can’t be used on raw devices, which offer superior performance to operating sys-
tem files for certain applications (such as Oracle Real Application Clusters).

• All the OMF data files have to be created in one directory. It’s hard to envision a large data-
base fitting into this one file system.

• You can’t choose your own names for the data files created under OMF. Oracle will use a
naming convention that includes the database name and unique character strings to name
the data files.

• Oracle recommends using OMF for small and test databases.

You’ll find a find a detailed discussion of OMF in Chapter 17.

Data Dictionary Views for Managing Tablespaces
In order to manage tablespaces in an Oracle database, you’ll want to get familiar with a few key dic-
tionary views:

• DBA_DATA_FILES

• DBA_TABLESPACES

• DBA_FREE_SPACE

• DBA_SEGMENTS

DBA_DATA_FILES
The DBA_DATA_FILES dictionary view contains useful information for determining the size of the
data files. You can get the names of the data files, the tablespaces they belong to, their sizes in bytes,
and the status of the data files (online or offline) from this view.

DBA_TABLESPACES
The DBA_TABLESPACES view is a very important dictionary view for managing tablespaces. Using
this view, you can find out various things about tablespaces, such as whether they are offline or
online; whether they are undo, permanent, or temporary; what the extent management type, the
allocation type, and the segment space management type are; and whether they are made up of
smallfiles or a bigfile. You’ve already seen how to use this view in the “Creating Tablespaces” section
of this chapter.

CHAPTER 5 ■ SCHEMA MANAGEMENT174

4517CH05.qxd 8/19/05 10:34 AM Page 174

DBA_FREE_SPACE
The main columns of interest in the DBA_FREE_SPACE view are the tablespace name and the bytes
of free space in each tablespace. For example, you can use the following query to see how much free
space there is in each of the tablespaces in a database:

SQL> SELECT tablespace_name, SUM(bytes)
2 FROM dba_free_space
3* GROUP BY tablespace_name

SQL>

DBA_SEGMENTS
The DBA_SEGMENTS data dictionary view shows the segment name and type and the tablespace
the segment belongs to, among other things. For example, the following query shows that there are
no permanent objects being created in the TEMP temporary tablespace:

SQL> SELECT segment_name, segment_type, tablespace_name
2 FROM dba_segments
3* WHERE tablespace_name='TEMP';

Oracle Tables
So far in this chapter, we’ve looked at tablespace management. Now, let’s turn to the creation and
management of the most important objects that use tablespaces—Oracle tables.

Tables are the basic units of data storage in an Oracle database. A table is a logical entity that
makes the reading and manipulation of data intuitive to users. A table consists of columns and
rows, and a table row corresponds to a single record. When you create a table, you give it a name
and define the set of columns that belong to it. Each column has a name, and a specific data type
(such as VARCHAR2 or DATE). You may have to specify the width or the precision and scale for certain
columns, and some of the table columns can be set to contain default values.

■Note You can create either relational tables or object tables in Oracle databases. Relational tables are the basic
table structures with rows and columns to hold data. Object tables use object types for their column definitions
and are used to hold object instances of a particular type. In this chapter, we exclusively use relational tables.

WHAT’S THE DUAL TABLE?

The dual table belongs to the sys schema and is created automatically when the data dictionary is created. The
dual table has one column called “dummy” and one row, and it enables you to use the Oracle SELECT command to
compute a constant expression. As you have seen, everything in Oracle has to be in a table somewhere. Even if
something isn’t in a table, such as the evaluation of an arithmetical expression, a query that retrieves those results
needs to use a table, and the dual table serves as a catchall table for those expressions. For example, to compute
the product of 9 and 24,567, you can issue the following SQL command: SELECT 9*24567 FROM dual.

CHAPTER 5 ■ SCHEMA MANAGEMENT 175

4517CH05.qxd 8/19/05 10:34 AM Page 175

There are four basic ways in which you can organize tables in an Oracle database:

• Heap-organized tables: A heap-organized table is nothing but the normal Oracle table, where
data is stored in no particular order.

• Index-organized tables: An index-organized table stores data sorted in a B-tree indexed
structure.

• Clustered tables: A clustered table is part of a group of tables that shares the same data
blocks, because columns of the clustered tables are often requested together.

• Partitioned tables: A partitioned tables lets you divide a large amount of data into subtables,
called partitions, according to various criteria. Partitioning is especially useful in a data
warehouse environment.

This section of the chapter will discuss the standard (heap-organized) Oracle tables. The other
types of tables will be discussed in the “Special Oracle Tables” section, later in the chapter.

Creating a Simple Table
Before you create a new table, it’s a good idea to estimate the size of the table you’ll need now and
the size you expect in the future. Knowing the size of the table allows you to make the right deci-
sions about space allocation.

Algorithms are available for figuring out the potential size of tables and indexes—they take the
row size in bytes and multiply it by the estimated number of rows in the table. Estimation of table
size is more an art than a precise science, and you don’t need to agonize over coming up with
“accurate” figures. Just use common sense and make sure you are not wildly off the mark.

In Oracle Database 10g, you can simplify table-size estimation by using the OEM Database
Control or by using the new CREATE_TABLE_COST procedure of the DBMS_SPACE package. The fol-
lowing sections illustrate both approaches to sizing a new table.

Using Database Control to Estimate Table Size
Let’s look at the steps you need to follow to derive size estimates for a new table using the Database
Control interface:

1. From the Database Control home page, click on the Administration tab.

2. Click on Tables in the Schema list.

3. Click on the Create button at the bottom-right corner.

4. Select Standard or the Index Organized type.

5. On the Create Table page, enter the new table name and the column data types in the
columns section. Click the Estimate Table Size button.

6. In the Estimate Table Size page, enter the estimated number of rows in your table
(see Figure 5-1).

Once you finish all the steps, OEM will quickly tell you how much space you’ll need to accom-
modate the new table. It will also tell you how much space you need to allocate to the tablespace in
which you’re going to create your new table.

CHAPTER 5 ■ SCHEMA MANAGEMENT176

4517CH05.qxd 8/19/05 10:34 AM Page 176

Figure 5-1. Using OEM Database Control to estimate table size

■Note The following discussion of table operations deals with the “normal” or “regular” heap-organized Oracle
tables, whose rows are stored in the order they are inserted into the table. Most of the table operations discussed
are common to all types of Oracle tables, but with some syntax modifications or limitations.

Using the DBMS_SPACE Package to Estimate
Space Requirements
The DBMS_SPACE package enables you to analyze segment growth and space requirements. In
Oracle Database 10g, you can use a procedure from this package to estimate size requirements for
table indexes. If you know the approximate length of a new table’s rows and the estimated number
of rows, the DBMS_SPACE package will tell you the estimated space you need to create the table,
given the storage attributes of the tablespace in which you plan to create it. You can use either the
column information of the table or its row size to output the estimated table size. Listing 5-5 shows
a simple example.

Listing 5-5. Using the DBMS_SPACE Package to Estimate Space Requirements

SQL> DECLARE
2 l_used_bytes NUMBER;
3 l_allocated_bytes NUMBER;
4 BEGIN
5 DBMS_SPACE.CREATE_TABLE_COST (
6 tablespace_name => 'PERSON_D',
7 avg_row_size => 120,
8 row_count => 1000000,

CHAPTER 5 ■ SCHEMA MANAGEMENT 177

4517CH05.qxd 8/19/05 10:34 AM Page 177

9 pct_free => 10,
10 used_bytes => l_used_bytes,
11 alloc_bytes => l_allocated_bytes);
12 DBMS_OUTPUT.PUT_LINE ('used = ' || l_used_bytes || ' bytes'
13 || 'allocated = ' || l_allocated_bytes || ' bytes');
14*END;

SQL> /
used = 138854400 bytes allocated = 167772160 bytes
PL/SQL procedure successfully completed.
SQL>

Note that the DBMS_SPACE package also contains the SPACE_USAGE procedure, which helps
you deallocate unused space allocated to tables, indexes, and other objects. Here’s the syntax for
using this procedure to deallocate space allocated to a table:

SQL> ALTER TABLE persons DEALLOCATE UNUSED;
Table altered.
SQL>

To create a table in your own schema, you must have the CREATE TABLE system privilege; to
create a table in another user’s schema, you must have the CREATE ANY TABLE system privilege.
Always specify a tablespace for the table creation—if you don’t, the table will be created in the user’s
default tablespace. You must have either enough space quota in the tablespace where you are going
to create your tables, or you must have the UNLIMITED TABLESPACE system privilege. Listing 5-6
gives the syntax for creating a simple table.

■Tip If your database consists of large read-only tables, consider using the Oracle table compression feature to
save storage space.

Listing 5-6. Creating a Simple Table

SQL> CREATE TABLE emp (
empno NUMBER(5) PRIMARY KEY,
ename VARCHAR2(15) NOT NULL,
ssn NUMBER(9),
job VARCHAR2(10),
mgr NUMBER(5),
hiredate DATE DEFAULT (SYSDATE),
sal NUMBER(7,2),
comm NUMBER(7,2),
deptno NUMBER(3) NOT NULL

CONSTRAINT dept_fkey REFERENCES hr.dept(dept_id))
TABLESPACE admin_tbs01

SQL>

In the CREATE TABLE statement in Listing 5-6, there are several integrity constraints, including a
primary key and a foreign key defined on various columns of the table. Constraints are discussed in
the “Managing Database Integrity Constraints” section, later in this chapter.

CHAPTER 5 ■ SCHEMA MANAGEMENT178

4517CH05.qxd 8/19/05 10:34 AM Page 178

■Note In Oracle Database 10g Release 2, you can use the ENCRYPT clause to transparently encrypt column
data. You can encrypt columns of type CHAR, NCHAR, VARCHAR2, NVARCHAR2, NUMBER, DATE, and RAW. The user who
encrypts the column will see the data in its unencrypted format. Encryption involves setting an encryption key and
some other details—see the Oracle manual titled Oracle Advanced Security Administrator’s Guide, accessible
through http://tahiti.oracle.com, for additional information on encryption.

Here’s how you would encrypt the ssn column in the previous table creation statement:

ssn NUMBER(9) ENCRYPT

Once you create a new table, you can populate the table with data in several ways: you can use
an INSERT command to insert data or use a SQL*Loader (see Chapter 13) to load data into an empty
table. Or, you may decide to create a new table and have data come from an existing table in the
same or a different database. This uses the well-known CREATE TABLE AS SELECT (CTAS) technique,
which I explain shortly, in the “Creating a New Table with the CTAS Option” section. You can also
use the SQL MERGE command to insert data from another table based on specific conditions. The use
of the MERGE command is explained in the Appendix.

■Note If you are creating your database objects in a locally managed tablespace, you don’t have to set storage
parameters for any objects you create in that tablespace.

Adding a Column to a Table
Adding a column to a table is a very straightforward operation. You simply use the ALTER TABLE
command to add a column to a table, as shown here:

SQL> ALTER TABLE emp
ADD (retired char(1));

Table altered.
SQL>

Dropping a Column from a Table
You can drop an existing column from a table by using the following command:

SQL> ALTER TABLE emp
DROP (retired);

Table altered.
SQL>

If the table from which you’re dropping the column contains a large amount of data, you can
ask Oracle to merely mark the column as unused, without trying to remove the data at all. You won’t
see the column in any queries or views, and all dependent objects, such as constraints and indexes,
defined on the column are removed. For all practical purposes, you can “drop” a large column this
way very quickly.

Here’s an example that marks as unused the hiredate and mgr columns in the emp table:

SQL> ALTER TABLE emp SET UNUSED (hiredate, mgr);

CHAPTER 5 ■ SCHEMA MANAGEMENT 179

4517CH05.qxd 8/19/05 10:34 AM Page 179

During a maintenance window, you can then permanently drop the two columns by using the
following command:

SQL> ALTER TABLE emp DROP UNUSED COLUMNS;

If you think that the large number of rows in a table could potentially exhaust the undo space,
you can drop a column with the optional CHECKPOINT clause. This will reduce the generation of undo
data while dropping the column by applying checkpoints after every so many rows. Here’s an exam-
ple that makes the database apply a checkpoint each time it removes 10,000 rows in the emp table:

SQL> ALTER TABLE emp DROP UNUSED COLUMNS CHECKPOINT 10000;

Renaming a Table Column
You can easily rename table columns using the RENAME COLUMN command. For example, the follow-
ing command will rename the retired column in the emp table to non_active. Note that you can
also rename the column constraints, if you wish.

SQL> ALTER TABLE emp
RENAME COLUMN retired TO non_active;

Table altered.
SQL>

■Tip You can rename tempfiles as well as data files and the redo log file, using the ALTER DATABASE command.

Renaming a Table
On occasion, an application developer may want to rename a table. Renaming a table is straight-
forward:

SQL> ALTER TABLE emp
RENAME TO emp;

Table altered.
SQL>

Removing All the Data from a Table
To remove all the rows from a table, you can use the TRUNCATE command, which, contrary to its
name, doesn’t abbreviate or shorten anything—it summarily removes all the rows very quickly.
TRUNCATE is a DDL command, so it can’t be undone by using the ROLLBACK command.

You can also remove all the rows in a table with the DELETE * FROM TABLE command, and
because this is a DML command, you can roll back the deletion if you desire. However, because the
DELETE command writes all changes to the undo segments, it takes a much longer time to execute.
Because the TRUNCATE command doesn’t have to bother with the undo segments, it executes in a few
seconds, even for the largest tables.

Here’s an example of the TRUNCATE command in action:

SQL> SELECT COUNT(*) FROM test;
COUNT(*)

31

CHAPTER 5 ■ SCHEMA MANAGEMENT180

4517CH05.qxd 8/19/05 10:34 AM Page 180

SQL> TRUNCATE TABLE test;
Table truncated.

SQL> SELECT COUNT(*) FROM test;
COUNT(*)

0

SQL>

Creating a New Table with the CTAS Option
To create a new table that is identical to an existing table, or to create a new table that includes
only some rows and columns from another table, you can use the CREATE TABLE AS SELECT * FROM
(CTAS) command. With this command, you can load a portion of an existing table into a new table
by using WHERE conditions, or you can load all the data of the old table into the newly created table
by simply using SELECT * FROM clause, as shown in the following code snippet:

SQL> CREATE TABLE emp_new
AS
SELECT * FROM emp;

Table created.
SQL>

If the table has millions of rows, and your time is too limited to use the simple CTAS method,
there are a couple of ways to speed up the creation of new tables that contain large amounts of data.
If the table you’re creating is empty, you don’t need to be concerned with the speed with which it’s
created—it’s created immediately. But if you’re loading the new table from an existing table, you can
benefit from using the PARALLEL and NOLOGGING options, which speed up the loading of large tables.

The PARALLEL option enables you to do your data loading in parallel by several processes, and
the NOLOGGING option instructs Oracle not to bother logging the changes to the redo log files and
rollback segments (except the very minimum necessary for housekeeping purposes). Here’s an
example:

SQL> CREATE TABLE employee_new
2 AS SELECT * FROM employees
3 PARALLEL DEGREE 4
4*NOLOGGING;

Table created.
SQL>

The other method you can use to save time during table creation is to simply move a table from
one tablespace to another. You can take advantage of the moving operation to change any storage
parameters you wish. Here’s an example of the ALTER TABLE . . . MOVE command, which enables
you to move tables between tablespaces rapidly. In this example, the employee table is moved from
its present tablespace to a new tablespace:

SQL> ALTER TABLE employee MOVE new_tablespace;

When you move a table, the ROWIDs of the rows change, thus making the indexes on the table
unusable. You must either re-create the indexes or rebuild them after you move the table.

Dropping Tables
You can drop a table by using the DROP TABLE table_name command. In order to be able to drop a
table, the user must own the table (it must be in your schema), or the user must have the DROP ANY
TABLE privilege.

CHAPTER 5 ■ SCHEMA MANAGEMENT 181

4517CH05.qxd 8/19/05 10:34 AM Page 181

When you use the DROP TABLE command, however, the table doesn’t go away immediately—
Oracle simply renames the table and stores it in the recycle bin, which is in reality simply a data
dictionary table. Thus, you can bring back a table you dropped accidentally by using the following
command:

SQL> FLASHBACK TABLE emp TO BEFORE DROP;

The ability to bring back a dropped table is known as the Flashback Drop feature. Chapter 16
explains this feature in detail, and provides information about managing the recycle bin.

If you are sure that you’ll never need the table, you can get rid of it permanently by using the
PURGE option with your DROP TABLE command, as shown here:

SQL> DROP TABLE emp PURGE;

When you use the preceding PURGE command, the emp table is dropped immediately, and you
can’t get it back! Again, you’ll see a lot more about this command in Chapter 16.

■Note The DROP TABLE table_name PURGE command is equivalent to the old DROP TABLE table_name
command.

When you drop a table, all indexes you had defined on the table will be dropped as well. If the
table you want to drop contains any primary or unique keys referenced by foreign keys of other
tables, you must include the CASCADE clause in the DROP TABLE statement, in order to drop those
constraints as well:

SQL> DROP TABLE emp CASCADE CONSTRAINTS;

Special Oracle Tables
The simple tables you saw in the previous sections satisfy most of the data needs of an application,
but these aren’t the only kind of tables Oracle allows you to create. You can create several kinds of
specialized tables, such as temporary tables, external tables, and index-organized tables. In the fol-
lowing sections we’ll examine these important types of tables.

Temporary Tables
Oracle allows you to create temporary tables to hold data just for the duration of a session or even
a transaction. After the session or the transaction ends, the table is truncated (the rows are auto-
matically removed). Temporary tables are handy when you are dealing with complex queries or
transactions that require transitory row information to be stored briefly before it is written to a
permanent table.

The data in temporary tables cannot be backed up like that in other permanent tables. No data
or index segments are automatically allotted to temporary tables or indexes upon their creation, as
is the case for permanent tables and indexes. Space is allocated in temporary segments for the tem-
porary tables only after the first INSERT command is used for the tables.

Temporary tables increase the performance of transactions that involve complex queries. One
of the traditional responses to complex queries is to use a view to make the complex queries sim-
pler to handle, but the view needs to execute each time you access it, thereby negating its benefits
in many cases. Temporary tables are an excellent solution for cases like this, because they can be
created as the product of complex SELECT statements used for the particular session or transaction,
and they are automatically purged of data after the session.

CHAPTER 5 ■ SCHEMA MANAGEMENT182

4517CH05.qxd 8/19/05 10:34 AM Page 182

■Note Although Oracle doesn’t analyze the temporary table data to gather the data distribution, that’s not a
problem for efficient query processing, because the temporary tables can keep constantly accessed join and other
information in one handy location. You can repeatedly access this table rather than having to repeatedly execute
complex queries.

Temporary tables are created in the user’s temporary tablespace and are assigned temporary
segments only after the first INSERT statement is issued for the temporary table. They are deallo-
cated after the completion of the transaction or the end of the session, depending on how the
temporary tables were defined.

Here are some attractive features of temporary tables from the Oracle DBA’s point of view:

• Temporary tables drastically reduce the amount of redo activity generated by transactions.
Redo logs don’t fill up as quickly if temporary tables are used extensively during complex
transactions.

• Temporary tables can be indexed to improve performance.

• Sessions can update, insert, and delete data in temporary tables just as in normal permanent
tables.

• The data is automatically removed from the temporary table after a session or a transaction.

• Table constraints can be defined on temporary tables.

• Different users can access the same temporary table, with each user seeing only his or her
session data.

• Temporary tables provide efficient data access because complex queries need not be exe-
cuted repeatedly.

• The minimal amount of locking of temporary tables means more efficient query processing.

• The structure of the table persists after the data is removed, so future use is facilitated.

Creating a Session Temporary Table
Here is an example of a temporary table that lasts for an entire session. You use the ON COMMIT
DELETE ROWS option to ensure that the data remains in the table only for the duration of the session.

SQL> CREATE GLOBAL TEMPORARY TABLE flight_status(
destination VARCHAR2(30),
startdate DATE,
return_date DATE,
ticket_price NUMBER)
ON COMMIT PRESERVE ROWS;

The ON COMMIT PRESERVE ROWS option in the preceding example indicates that the table data is
saved for the entire session, not just for the length of the transaction.

Creating a Transaction Temporary Table
Unlike session temporary tables, transaction temporary tables are specific to a single transaction.
As soon as the transaction is committed or rolled back, the data is deleted from the temporary table.
Here’s how you create a transaction temporary table:

CHAPTER 5 ■ SCHEMA MANAGEMENT 183

4517CH05.qxd 8/19/05 10:34 AM Page 183

SQL> CREATE GLOBAL TEMPORARY TABLE sales_info
(customer_name VARCHAR2(30),
transaction_no NUMBER,
transaction_date DATE)
ON COMMIT DELETE ROWS;

The ON COMMIT DELETE ROWS option makes it clear that the data in this table should be retained
only for the duration of the transaction that used this temporary table.

Index-Organized Tables
Index-organized tables (IOTs) are somewhat of a hybrid, because they possess features of both
indexes and tables. IOTs are tables in which the data is stored in a B-tree index structure, but they
are unlike regular or heap-organized tables because regular tables do not order data. They are
unlike regular indexes because while indexes consist only of the indexed columns, IOTs include
both the key and the non-key columns. Oracle uses the B-tree index structures to store its data by
sorting it by the primary key.

When you update an IOT, it is the index structure that really gets updated. Data access is much
faster because you only have to perform one I/O to access the index/table. There is no need to
access the index and the real table separately, as is the case with traditional indexed tables. The
actual row data, and not merely the ROWID, is held in the index leaf block along with the indexed
column value. IOTs are especially well suited for cases where you need to issue queries based on the
values of the primary key. IOTs are convenient for very large databases (VLDBs) and OLTP applica-
tions. IOTs can also be reorganized without rebuilding the indexes separately, which means that the
reorganization time is less than it would be if you used regular heap-based tables. The major differ-
ences between normal tables and IOTs are shown in Table 5-1.

Table 5-1. Differences Between Regular Oracle Tables and Index-Organized Tables

Regular Oracle Tables Index-Organized Tables

Logical ROWIDs Physical ROWIDs

Uniquely identified by primary key Uniquely identified by ROWID

Unique constraints not allowed Unique constraints allowed

Can’t contain LONG data Can contain LONG and LOB data

Not allowed in table clusters Allowed in table clusters

Larger space requirements Smaller space requirements

Slow data access Fast data access

Listing 5-7 shows how to create an IOT.

Listing 5-7. Creating an Index-Organized Table

SQL> CREATE TABLE employee_new(
employee_id NUMBER,
dept_id NUMBER,
name VARCHAR2(30),
address VARCHAR2(120),
CONSTRAINT pk_employee_new PRIMARY KEY (employee_id))
ORGANIZATION INDEX TABLESPACE empindex_01
PCTTHRESHOLD 25
OVER FLOW TABLESPACE overflow_tables;

CHAPTER 5 ■ SCHEMA MANAGEMENT184

4517CH05.qxd 8/19/05 10:34 AM Page 184

A few keywords in the previous CREATE TABLE statement are worth reviewing carefully. The key
phrase ORGANIZATION INDEX indicates that this table is an IOT rather than a regular heap-organized
table. The PCTTHRESHOLD keyword indicates the percentage of space reserved in the index blocks
for the employee_new IOT. Any part of a row in the table that does not fit the 25 percent threshold
value in each data block is saved in an overflow area. The CREATE TABLE statement assigns the
overflow_tables tablespace to hold the overflow of data from the index blocks.

Remember that index entries in IOTs can be large because they contain not just a key value, but
all the row values. So IOTs do not necessarily have all of their data stored in the index blocks. It is
quite possible for the key and part of the row to be saved in the index blocks and for the rest to be in
some other tablespace. If the PCTTHRESHOLD parameter is too low, there is a risk of a chaining prob-
lem in which parts of the row reside in different data blocks, leading to a slowdown of your queries.

External Tables
Databases in general, and data warehouses in particular, need to regularly extract data from various
sources and transform it into a more useful form. For example, a data warehouse may collect data
from the OLTP data sources and transform it according to some business rules to make it useful for
management.

Traditionally, the way to load a data warehouse has been to first load staging tables with the
raw data. Sometimes the data would be transformed outside of the database and loaded directly in
one pass to the warehouse tables. Either method is usually very cumbersome, even when you use
state-of-the-art extraction and transformation tools or custom scripts.

Oracle allows the use of external tables—that is, tables that use data that resides in external
operating system files. External tables don’t need any storage in terms of extents in the Oracle data-
base—the definition of an external table merely makes an entry in the data dictionary, which
enables you to load data into other Oracle database tables from the external tables. If you drop an
external table in Oracle, you’ll only be removing its definition from the data dictionary—the data
itself remains safe in the external source files.

External tables are commonly used as intermediate staging tables during data transformations.
External tables enable you to view externally stored data as if it were inside a table in the Oracle
database. You can perform queries and joins on external tables, but you can’t update, insert, or
delete from these tables; no DML operations are permissible on external tables.

■Note Chapter 13 provides a detailed example of using external tables and discusses them in more depth.

Partitioned Tables
Oracle databases can be quite large, and it’s not uncommon to encounter tables that hold several
gigabytes worth of data. Partitioning is a way of logically dividing a large table into smaller chunks
to facilitate query processing, DML operations, and database management. All the partitions share
the same logical definition, column definitions, and constraints.

Improvements in query response times are startling when you partition a 500-million-row
table into a dozen or more partitions. Partitioning leads directly to better query performance
because the database needs to search only the relevant partitions of the table during a query. This
avoidance of unneeded partitions when querying is called partition pruning; the availability of one
partition is independent of the availability of the other partitions.

Data I/O can also be enhanced by using partitions because you can keep the partitions of a
heavily accessed table on different disk drives. If you are using the Oracle parallel DML features,
partitioned tables provide you with better performance.

CHAPTER 5 ■ SCHEMA MANAGEMENT 185

4517CH05.qxd 8/19/05 10:34 AM Page 185

Partitioning a table also provides partition independence, meaning, among other things, that
you can perform your backup and recovery operations, data loading, and index creation on parti-
tions of a large table instead of the whole table. For example, you can copy a single partition’s data
using the Data Pump Export utility, reducing export and import times dramatically when you only
need part of the entire data set. The ability to perform tasks on partitions instead of entire tables
means that your database downtime will be reduced drastically.

■Note Although partitioned tables generally improve query performance in very large tables, they aren’t a
panacea for poor coding or other design problems in the application. Partitioning also carries a price in terms
of additional work to maintain the partitions and their indexes.

Partitioning tables is also an effective way of purging or archiving older data that is not cur-
rently needed. It is very common for large data warehouses to archive data that is older than a
certain date, and partitioned tables make archiving easy. For example, each quarter you can drop
the oldest partition and replace it with a new partition. The partitioned table in this case will end up
having roughly the same amount of data, and it will cover the same length of time (a quarterly col-
lection of company data for three years will always have 12 partitions in the table). In addition, large
table exports can be performed more quickly when you partition the table into smaller chunks and
export each partition separately.

Oracle offers five different ways to partition your table data: range partitioning, hash partition-
ing, list partitioning, composite range-hash partitioning, and composite range-list partitioning. No
matter which partitioning method you use, you must specify the following information when
creating a partitioned table:

• Partitioning method: This is one of the five types of partitioning.

• Partitioning column (or columns): This is the column or columns on the basis of which you
want to partition the table (for example, transaction_date). The range or set of values of the
partitioning columns are called the partitioning keys.

• The partition descriptions: These descriptions specify the criteria for the inclusion of the
actual partitioning keys in each partition. You use a partition bound for range partitioning
and use the clause VALUES LESS THAN, to limit the partitioning key values in each partition.
In list partitioning, you specify a list of literal values that tell Oracle what partitioning key
values qualify for inclusion in a partition.

The following sections discuss the different types of partitioning and show how to partition a
table.

Range Partitioning
Range partitioning is a popular way to partition Oracle tables, and it was the first type of partition-
ing introduced by Oracle. Range partitioning is used for data that can be separated into ranges
based on some criterion. You get the best results from range partitioning if the data falls evenly into
the different ranges that you create. Your ranges can be based on a sequence number or a part num-
ber, but the range-partitioning technique is usually based on time (monthly or quarterly data, for
example).

Let’s say you need to create a table to hold three years of quarterly sales data for a major airline.
This could easily add up to several hundreds of million transactions. If you partition the sales table
by a range of quarters and decide to hold no more than three years’ worth of data at any given time,
you could have 12 partitions in the table, partitioned by quarters. Each time you enter a new quar-
ter, you can archive the oldest quarter’s data, thus keeping the number of partitions constant. By

CHAPTER 5 ■ SCHEMA MANAGEMENT186

4517CH05.qxd 8/19/05 10:34 AM Page 186

partitioning the huge table, which might have a total of 480 million rows, for example, any queries
you run would only have to deal with one-twelfth of the table—that is, about 40 million rows—
which makes a big difference. Partitioning thus provides you with a divide-and-conquer technique
for dealing efficiently with massive amounts of table data.

Listing 5-8 shows the DDL for creating a range-partitioned table, with each year’s worth of data
divided into four partitions. With each new quarter, you can add another partition. Thus, you’ll end
up with 12 partitions over a three-year period.

Listing 5-8. Creating a Range-Partitioned Table

SQL> CREATE TABLE sales_data
2 (ticket_no NUMBER,
3 sale_year INT NOT NULL,
4 sale_month INT NOT NULL,
5 sale_day INT NOT NULL)
6 PARTITION BY RANGE (sale_year, sale_month, sale_day)
7 (PARTITION sales_q1 VALUES LESS THAN (2004, 04, 01)
8 TABLESPACE ts1,
9 PARTITION sales_q2 VALUES LESS THAN (2004, 07, 01)
10 TABLESPACE ts2,
11 PARTITION sales_q3 VALUES LESS THAN (2004, 10, 01)
12 TABLESPACE ts3,
13 PARTITION sales_q4 VALUES LESS THAN (2005, 01, 01)
14* TABLESPACE ts4);
Table created.
SQL>

The table creation statement in Listing 5-8 will create four partitions, each stored in a separate
tablespace. Notice how the partitions are based on date ranges. The first partition, sales_q1, will
include all transactions that took place in the first three months (one quarter) of the year 2004. The
second quarter, sales_q2, will include transactions that occurred between April and June of 2004
(months 4, 5, and 6 of the year), and so on.

It is common in range-partitioned tables to use a catchall partition as the very last one. When
this is the case, the last partition will contain values less than a value called maxvalue, which is sim-
ply any value higher than the values in the second-to-last partition. Note that each partition has a
specific name and is stored in a separate tablespace.

In the partitioned sales_data table, the sales data for June 10, 2004 (sale_year=2004,
sale_month=6, and sale_day=10) has a partitioning key of (2004, 6, 10) and would be stored
in partition sales_q2. When a query requests data for June 10, 2004, the Oracle query zooms in
on partition sales_q2 and completely ignores the rest of the table data.

Hash Partitioning
Suppose the transaction data in the previous example were not evenly distributed among the quar-
ters. What if, due to business and cyclical reasons, an overwhelming number of sales occurred in the
last two quarters, with the earlier quarters contributing relatively negligible sales? Range partition-
ing will be good only in theory, because the last two quarters could end up each having almost half
of the original nonpartitioned table’s data.

In such cases, it’s better to use the hash-partitioning scheme. All you have to do is decide on
the number of partitions, and Oracle’s hashing algorithms will assign a hash value to each row’s par-
titioning key and place it in the appropriate partition. You don’t have to know anything about the
distribution of the data in the table, other than that the data doesn’t fall into some easily deter-
mined ranges. All you need to do is provide a partition key, which in the hash-partitioning scheme
shown next is the ticket_no column:

CHAPTER 5 ■ SCHEMA MANAGEMENT 187

4517CH05.qxd 8/19/05 10:34 AM Page 187

SQL> CREATE TABLE sales_data
2 (ticket_no NUMBER,
3 sale_year INT NOT NULL,
4 sale_month INT NOT NULL,
5 sale_day INT NOT NULL)
6 PARTITION BY HASH (ticket_no)
7 PARTITIONS 4
8* STORE IN (ts1,ts2,ts3,ts4);

Table created.
SQL>

In the preceding example, four hash partitions are created in four tablespaces. We won’t know
in which partition the data for June 10, 2004, is stored. Oracle determines the storage based on a
hashing algorithm, and you have no control whatsoever over the row-to-partition mapping.

List Partitioning
There may be times when you’ll want to partition the data not on the basis of a time range or
evenly distributed hashing scheme, but rather by known values, such as city, territory, or some such
attribute. List partitioning is preferable to range or hash partitioning when your data is distributed
among a set number of discrete values. For example, you may want to group a company’s sales
data according to regions rather than quarters. List partitioning enables you to group your data on
the same lines as real-world groupings of data, rather than arbitrary ranges of time or some such
criterion.

For example, when you’re dealing with state-wide totals in the United States, you’ll be dealing
with 50 different sets of data. It makes more sense in this situation to partition your data into four or
five regions, rather than use the range method to partition the data alphabetically. Listing 5-9 shows
how to use list partitioning to partition the ticket_sales table. The partitions are made up of groups
of flight-originating cities, shown by the start_city column.

Listing 5-9. Creating a List-Partitioned Table

SQL> CREATE TABLE sales_data
2 (ticket_no NUMBER,
3 sale_year INT NOT NULL,
4 sale_month INT NOT NULL,
5 sale_day INT NOT NULL,
6 destination_city CHAR(3),
7 start_city CHAR(3),
8 PARTITION BY LIST (start_city)
9 (PARTITION northeast_sales values ('NYC','BOS','PEN') TABLESPACE ts1,
10 PARTITION southwest_sales values ('DFW','ORL','HOU') TABLESPACE ts2,
11 PARTITION pacificwest_sales values('SAN','LOS','WAS') TABLESPACE ts3,
12* PARTITION southeast_sales values ('MIA','CHA','ATL') TABLESPACE ts4);

Table created.
SQL>

In the previous list partitioning example, the partition description specifies a list of values for
the start_city column. Our table creation statement created four list partitions. Only cities that fall
in this list will be included in the partition. A ticket with the information: 9999, 2004, 06, 01, DFW,
HOU will be stored in the southwest_sales partition.

CHAPTER 5 ■ SCHEMA MANAGEMENT188

4517CH05.qxd 8/19/05 10:34 AM Page 188

Composite Partitioning
Sometimes, merely partitioning on range, hash, or list schemes may not be enough. You can further
break down a large table into subpartitions for more control over data placement and performance.
Oracle offers two types of composite partitioning:

• Composite range-hash partitioning: You first partition the table using range partitioning and
then subpartition each of those partitions using a hash scheme.

• Composite range-list partitioning: You first partition the table using range partitioning and
then subpartition those partitions using list partitioning.

Composite Range-Hash Partitioning

Sometimes you may partition a table range-wise, but the distribution may not be very equal. You
can make this a better partitioning scheme by hash partitioning after the range partitioning is done.
This will allow you to store the data more efficiently, although it becomes more complex to manage.

Composite range-hash partitioning combines the best of the range and hash partitioning
schemes. Range partitioning, as you’ve already seen, is easy to implement, and hash partitioning
provides you benefits such as striping and parallelism.

Listing 5-10 shows a simple example showing how to create a range-hash-partitioned table.

Listing 5-10. Creating a Range-Hash-Partitioned Table

SQL> CREATE TABLE scout_gear (equipno NUMBER,equipname VARCHAR(32),price NUMBER)
2 PARTITION BY RANGE (equipno) SUBPARTITION BY HASH(equipname)
3 SUBPARTITIONS 8 STORE IN (ts1, ts2, ts3, ts4)
4 (PARTITION p1 VALUES LESS THAN (1000),
5 PARTITION p2 VALUES LESS THAN (2000),
6 PARTITION p3 VALUES LESS THAN (3000),
7* PARTITION p4 VALUES LESS THAN (MAXVALUE));

Table created.
SQL>

In this example, the scout_gear table is first partitioned by range on the equipno column—
four range-based partitions are created. These four partitions are then subpartitioned on the
equipname column using a hash-partitioning scheme, resulting in 32 subpartitions altogether.
Note the SUBPARTITIONS clause in line 3.

Composite Range-List Partitioning

In the range-list-partitioning method, you first partition the data based on a range of values.
You then use list partitioning to break up the first set of partitions, using a list of discrete values.
Listing 5-11 shows an example of how to create a range-list-partitioned table.

Listing 5-11. Creating a Range-List-Partitioned Table

SQL> CREATE TABLE quarterly_regional_sales
2 (ticket_no NUMBER,
3 sale_year INT NOT NULL,
4 sale_month INT NOT NULL,
5 sale_day DATE,
6 destination_city CHAR(3),
7 start_city CHAR(3))
8 PARTITION BY RANGE(sale_day)
9 SUBPARTITION BY LIST (start_city)

CHAPTER 5 ■ SCHEMA MANAGEMENT 189

4517CH05.qxd 8/19/05 10:34 AM Page 189

10 (PARTITION q1_2004 VALUES LESS THAN (TO_DATE('1-APR-2004','DD-MON-YYYY'))
11 TABLESPACE t1
12 (SUBPARTITION q12004_northeast_sales VALUES ('NYC','BOS','PEN'),
13 SUBPARTITION q12004_southwest_sales VALUES ('DFW','ORL','HOU'),
14 SUBPARTITION q12004_pacificwest_sales VALUES ('SAN','LOS','WAS'),
15 SUBPARTITION q12004_southeast_sales VALUES ('MIA','CHA','ATL')
16),
17 PARTITION q2_2004 VALUES LESS THAN (TO_DATE('1-JUL-2004','DD-MON-YYYY'))
18 TABLESPACE t2
19 (SUBPARTITION q22004_northeast_sales VALUES ('NYC','BOS','PEN'),
20 SUBPARTITION q22004_southwest_sales VALUES ('DFW','ORL','HOU'),
21 SUBPARTITION q22004_pacificwest_sales VALUES ('SAN','LOS','WAS'),
22 SUBPARTITION q22004_southeast_sales VALUES ('MIA','CHA','ATL')
23),
24 PARTITION q3_2004 VALUES LESS THAN (TO_DATE('1-OCT-2004','DD-MON-YYYY'))
25 TABLESPACE t3
26 (SUBPARTITION q32004_northeast_sales VALUES ('NYC','BOS','PEN'),
27 SUBPARTITION q32004_southwest_sales VALUES ('DFW','ORL','HOU'),
28 SUBPARTITION q32004_pacificwest_sales VALUES ('SAN','LOS','WAS'),
39 SUBPARTITION q32004_southeast_sales VALUES ('MIA','CHA','ATL')
30),
31 PARTITION q4_2004 VALUES LESS THAN (TO_DATE('1-JAN-2005','DD-MON-YYYY'))
32 TABLESPACE t4
33 (SUBPARTITION q42004_northeast_sales VALUES ('NYC','BOS','PEN'),
34 SUBPARTITION q42004_southwest_sales VALUES ('DFW','ORL','HOU'),
35 SUBPARTITION q42004_pacificwest_sales VALUES ('SAN','LOS','WAS'),
36 SUBPARTITION q42004_southeast_sales VALUES ('MIA','CHA','ATL')
37)
38*);
Table created.
SQL>

A total of 16 subpartitions will be created in the range-list-partitioned table created in
Listing 5-11, with four subpartitions in each tablespace (t1, t2, t3, t4). Each time you insert a row of
data into the quarterly_regional_sales table, Oracle will first check whether the value of the parti-
tioning column for a row falls within a specific partition range. Oracle will then map the row to
a subpartition within that partition, by mapping the subpartition column value to the appropriate
subpartition based on the values in the subpartition’s list. For example, the row with the column
values (9999, 2004, 10, 1, 'DAL', 'HOU') maps to subpartition q32004_southwest_sales.

Partition Maintenance Operations
After you initially create partitioned tables, you can perform a number of maintenance operations
on the partitions. For example, you can add and drop partitions to maintain a fixed number of par-
titions based on a quarterly time period.

In this section, I illustrate the use of these maintenance operations by assuming a range-
partitioning scheme. These maintenance operations apply to all types of partitioning schemes,
with a few exceptions, like the following:

• Range and list partitions can’t be coalesced.

• Hash partitions can’t be dropped, split, or merged.

• Only list partitions allow the modification of partitions by adding and dropping the partition
values.

CHAPTER 5 ■ SCHEMA MANAGEMENT190

4517CH05.qxd 8/19/05 10:34 AM Page 190

Adding Partitions

You can add a new partition to the ticket_sales table to include a new quarter, as follows:

SQL> ALTER TABLE ticket_sales
ADD PARTITION sales_quarter5 VALUES LESS THAN
(TO_DATE('1-JAN-2005','DD-MON-YYYY'))
TABLESPACE ticket_sales05;

This example adds a new quarterly partition for the first quarter of the year 2005, which comes
after the last quarter in the original table.

Splitting a Partition

The ADD PARTITION statement will add partitions only to the upper end of the existing table. But
what if you need to insert some new data into the middle of a table? What if an existing partition
becomes too large, and you would rather have smaller partitions? Splitting a partition takes the
data in an existing partition and distributes it between two partitions.

You can use the SPLIT PARTITION clause to break up a partition, as shown here:

SQL> ALTER TABLE ticket_sales
SPLIT PARTITION ticket_sales01 AT (2000) INTO
(PARTITION ticket_sales01A, ticket_sales01B);

Merging Partitions

You can use the MERGE PARTITIONS command to combine the contents of two adjacent partitions.
For example, you can merge the first two partitions of the ticket_sales table in the following way:

SQL> ALTER TABLE ticket_sales
MERGE PARTITIONS ticket_sales01, ticket_sales02 INTO PARTITION
ticket_sales02;

Renaming Partitions

You can rename partitions in the same way you rename a table. Here is an example:

SQL> ALTER TABLE
RENAME PARTITION fight_sales01 TO quarterly_sales01;

Exchanging Partitions

The EXCHANGE PARTITION command enables you to convert a regular nonpartitioned table into a
partition of a partitioned table. Here’s an example:

SQL> ALTER TABLE ticket_sales
EXCHANGE PARTITION ticket_sales02 WITH ticket_sales03;

Dropping Partitions

Dropping partitions is fairly easy if you don’t have any data in the partitions. Here’s an example:

SQL> ALTER TABLE ticket_sales
DROP PARTITION ticket_sales01;

If you do have data in the partitions that you intend to drop, you need to be careful to use the
additional UPDATE GLOBAL INDEXES clause with the preceding DROP PARTITION syntax. Otherwise, all
globally created indexes will be invalidated. Local indexes will still be okay, because they’re mapped
directly to the affected partitions only.

CHAPTER 5 ■ SCHEMA MANAGEMENT 191

4517CH05.qxd 8/19/05 10:34 AM Page 191

Coalescing Partitions

The hash-partitioned and list-partitioned tables enable you to coalesce their partitions, which
amounts to shrinking the number of partitions. In a hash-partitioned table, the COALESCE command
will reorganize the data of the removed partition into the remaining partitions based on a hash
function. The database chooses a specific partition for coalescing, and drops it after reorganizing its
data among the remaining partitions. In range-hash partitioning, you can coalesce subpartitions.

Here’s an example of coalescing a hash-partitioned table, which will reduce the number of par-
titions by one:

SQL> ALTER TABLE ticket_sales
COALESCE PARTITION;

■Note I’ve only presented a bare introduction to the vast and complex topic of Oracle table partitioning. Please
refer to the Oracle documentation for a complete discussion of this powerful feature, including restrictions on the
numerous partition-maintenance operations.

Data Dictionary Views for Managing Tables
Several data dictionary views can help in managing Oracle tables. The most important one is the
DBA_TABLES view—it gives you the owner, the number of rows, the tablespace name, space infor-
mation, and a number of other details about all the tables in the database. Listing 5-12 shows a
sample query.

Listing 5-12. Using the DBA_TABLES Data Dictionary View

SQL> SELECT tablespace_name, table_name, num_rows
FROM dba_tables
WHERE owner='HR';

TABLESPACE_NAME TABLE_NAME NUM_ROWS
--
EXAMPLE DEPARTMENTS 27
EXAMPLE EMPLOYEES 107
EXAMPLE JOBS 19
EXAMPLE JOB_HISTORY 10
EXAMPLE LOCATIONS 23
EXAMPLE REGIONS 4
6 rows selected.
SQL>

Use the DBA_TAB_PARTITIONS view to find out detailed information about partitioned tables.
Listing 5-13 shows an example of this view that summarizes information about a partitioned table
from an earlier example in this chapter.

Listing 5-13. Using the DBA_TAB_PARTITIONS Data Dictionary View

SQL> SELECT table_name, partition_name, subpartition_count
2 FROM dba_tab_partitions
3* WHERE last_analyzed IS NULL;

TABLE_NAME PARTITION_NAME SUBPARTITION_COUNT
------------------------------ ----------------------------------
SALES_DATA SALES_Q1 0
SALES_DATA SALES_Q2 0
SALES_DATA SALES_Q3 0

CHAPTER 5 ■ SCHEMA MANAGEMENT192

4517CH05.qxd 8/19/05 10:34 AM Page 192

SALES_HASH SYS_P3161 0
SALES_HASH SYS_P3162 0
SALES_HASH SYS_P3163 0
SALES_HASH SYS_P3164 0
SALES_LIST NORTHEAST_SALES 0
SALES_LIST SOUTHWEST_SALES 0
SALES_LIST PACIFICWEST_SALES 0
SALES_LIST SOUTHEAST_SALES 0
SCOUT_GEAR P1 8
SCOUT_GEAR P2 8
SCOUT_GEAR P3 8
SCOUT_GEAR P4 8
QUARTERLY_REGIONAL_SALES Q1_2004 4
QUARTERLY_REGIONAL_SALES Q2_2004 4
QUARTERLY_REGIONAL_SALES Q3_2004 4
QUARTERLY_REGIONAL_SALES Q4_2004 4
20 rows selected.
SQL>

The DBA_TAB_COLUMNS view is another useful data dictionary view that provides a lot of
information about table columns. Listing 5-14 shows a simple query using this view.

Listing 5-14. Using the DBA_TAB_COLUMNS Data Dictionary View

SQL> SELECT column_name, data_type,
nullable
FROM dba_tab_columns
WHERE owner='HR'
AND table_name = 'EMPLOYEES';

COLUMN_NAME DATA_TYPE NULLABLE

EMPLOYEE_ID NUMBER N
FIRST_NAME VARCHAR2 Y
LAST_NAME VARCHAR2 N
EMAIL VARCHAR2 N
PHONE_NUMBER VARCHAR2 Y
HIRE_DATE DATE N
JOB_ID VARCHAR2 N
SALARY NUMBER Y
8 rows selected.
SQL>

Of course, you could have obtained this type of information easily by using the DESCRIBE com-
mand. Listing 5-15 shows how to use this command.

Listing 5-15. Using the DESCRIBE Command

SQL> DESCRIBE new_employees
Name Null? Type
--------------------------- -------- --------------
EMPLOYEE_ID NOT NULL NUMBER(6)
FIRST_NAME NOT NULL VARCHAR2(20)
LAST_NAME NOT NULL VARCHAR2(25)
HIRE_DATE NOT NULL DATE
JOB_ID NOT NULL VARCHAR2(10)
SALARY NUMBER(8,2)

CHAPTER 5 ■ SCHEMA MANAGEMENT 193

4517CH05.qxd 8/19/05 10:34 AM Page 193

EXTRACTING OBJECT DDL USING THE DBMS_METADATA PACKAGE

Often you’ll want to re-create a table or create a similar table in a different database, and it would be nice to have
the DDL for the original table handy. If you’re using a third-party tool, such as the SQL Navigator from TOAD, all you
have to do is click a few buttons and your table DDL statements will be shown on the screen.

But what commands can you use to get the CREATE statement that created a table? You could get this infor-
mation from the DBA_TABLES and DBA_TAB_COLUMNS views, but you would have to write lengthy SQL statements
to do so. Alternatively, you can use the Oracle-supplied DBMS_METADATA package to quickly get the DDL state-
ments for your tables and indexes.

As an example, let’s get the DDL for the employee table using this package. Here is the output of the package
execution:

SQL> CONNECT hr/hr
Connected.SQL> SET LONG 100000
SQL> SELECT dbms_metadata.get_ddl('TABLE','EMPLOYEE') from dual;

DBMS_METADATA.GET_DDL('TABLE','EMPLOYEE')

CREATE TABLE "HR"."EMPLOYEES"
("EMPLOYEE_ID" NUMBER(6,0),
"FIRST_NAME" VARCHAR2(20),
"LAST_NAME" VARCHAR2(25) CONSTRAINT "EMP_LAST_NAME_NN" NOT NULL ENABLE,
"HIRE_DATE" DATE CONSTRAINT "EMP_HIRE_DATE_NN" NOT NULL ENABLE,
"SALARY" NUMBER(8,2),
"COMMISSION_PCT" NUMBER(2,2),
"MANAGER_ID" NUMBER(6,0),
"DEPARTMENT_ID" NUMBER(4,0),
CONSTRAINT "EMP_SALARY_MIN" CHECK (salary > 0) ENABLE NOVALIDATE,
USING INDEX PCTFREE 10 INITRANS 2 MAXTRANS 255

STORAGE(INITIAL 65536 NEXT 1048576
MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0
FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT) TABLESPACE
"EXAMPLE" ENABLE,
CONSTRAINT "EMP_EMP_ID_PK" PRIMARY KEY ("EMPLOYEE_ID")
USING INDEX PCTFREE 10 INITRANS 2 MAXTRANS 255
STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS

2147483645 PCTINCREASE 0
FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT) TABLESPACE

"EXAMPLE" ENABLE,
CONSTRAINT "EMP_DEPT_FK" FOREIGN KEY ("DEPARTMENT_ID")
REFERENCES "HR"."DEPARTMENTS" ("DEPARTMENT_ID") ENABLE NOVALIDATE,

DBMS_METADATA.GET_DDL('TABLE','EMPLOYEES')
STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS

2147483645 PCTINCREASE 0
FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT) TABLESPACE "EXAMPLE"

SQL>

■Tip The output of the GET_DDL procedure in the DBMS_METADATA package spits out its DDL text in long
format. If you don’t have the LONG variable set in your SQL*Plus session, you may not see the entire DDL
statement.

CHAPTER 5 ■ SCHEMA MANAGEMENT194

4517CH05.qxd 8/19/05 10:34 AM Page 194

This is the most elegant and the easiest way to get the DDL for your tables and indexes using SQL*plus. If you
need the DDL statements for your database objects, you should use the DBMS_METADATA package. Of course, you
can always use the OEM Database Control to extract all types of DDL for your database objects.

Clusters
Clusters are two or more tables that are physically stored together to take advantage of similar
columns between the tables. If two tables have an identical column and you frequently need to join
the two tables, for example, it is advantageous to store the common column values in the same data
block. The goal is to reduce disk I/O and thereby increase access speed when you join related tables.
However, clusters will reduce the performance of your INSERT statements, because more blocks are
needed to store the data of multiple tables.

In order to create clustered tables, you must first create a cluster. The following example creates
a cluster named emp_dept that will store the emp and dept tables, clustered by the deptno column:

SQL> CREATE CLUSTER emp_dept(deptno NUMBER(3))
2 TABLESPACE users;

Cluster created.
SQL>

You can create the two tables, emp and dept, that are part of the cluster, as shown here:

SQL> CREATE TABLE dept(
2 deptno NUMBER(3) PRIMARY KEY)
3* CLUSTER emp_dept (deptno);

Table created.
SQL>

SQL> CREATE TABLE emp(
2 empno NUMBER(5) PRIMARY KEY,
3 ename VARCHAR2(15) NOT NULL,
4 deptno NUMBER(3) REFERENCES dept)
5* CLUSTER emp_dept(deptno);

Table created.
SQL>

Hash Clusters
You can create a hash cluster and store tables in the cluster. Rows are retrieved according to the
results of a hash function. To find any row value, all you need to do is find the hash value for a clus-
ter’s key value, which you can get by using the hash function. The hash values point to data blocks
in the hash cluster, so a single I/O will get you the row data and lead to more efficient performance.

Here’s a simple example of how you create a hash cluster:

SQL> CREATE CLUSTER emp_dept(deptno NUMBER(3))
2 TABLESPACE users
3* HASH IS deptno HASHKEYS 200;

Cluster created.
SQL>

CHAPTER 5 ■ SCHEMA MANAGEMENT 195

4517CH05.qxd 8/19/05 10:34 AM Page 195

Once you create the hash cluster, you create the cluster tables just as you would in a regular
cluster. The HASHKEYS value specifies the number of unique hash values that can be generated by
the hash function.

Oracle Indexes
Oracle indexes provide speedy access to table rows by storing sorted values of specified columns,
and using those sorted values to easily look up the associated table rows, much the same way you
use a book’s index to quickly find a particular item you’re interested in. Indexes enable you to find a
row with a certain column value without your having to look at more than a small fraction of the
total rows in the table. Thus, the proper use of indexes will reduce your expensive disk I/Os to a bare
minimum. Indexes are purely optional database structures, and they’re maintained completely by
Oracle.

Using an index involves a tradeoff between speedy retrieval of query results and slower updates
and insertions. The first part of the tradeoff, the speedy execution of queries, is quite apparent: if
you look up a sorted index rather than performing a full table scan, your queries will be faster.
But every time you update, insert, or delete a row in a table with indexes, the indexes have to be
updated, inserted, or deleted as well. This makes these processes more time consuming on a table
with indexes. In addition, don’t forget that large tables will have large indexes, and you need a large
disk to accommodate these indexes in addition to the table data.

In general, if your tables are mostly used for reading (selecting) data, as in a data warehouse,
you are better off with more indexes. If your database is more of an OLTP type, with heavy inserts,
updates, and deletes, you are better off with fewer indexes.

Unless you need to access most of the rows of a table, indexed queries often provide results
much more quickly than queries that do not use indexes. There is no limit to the number of indexes
you can have on a single Oracle table but, as mentioned previously, there are performance implica-
tions. An index is completely transparent to the user—that is, the user’s SQL statement does not
have to be changed when you create indexes. However, it is incumbent upon application developers
to be well versed in the subject of indexes and how they work, so that they can build efficient
queries.

■Note You’ll find a detailed discussion on appropriate indexing strategies in Chapter 21.

Oracle indexes can be of several types, the most important of which are listed here:

• Unique and nonunique indexes: Unique indexes are those based on a unique column, usu-
ally something like the social security number of an employee. Although you can explicitly
create unique indexes, Oracle recommends that you not do so. Oracle advises you to use
unique constraints instead. When you place a unique constraint on a table’s column, Oracle
will automatically create unique indexes on those columns.

• Primary and secondary indexes: Primary indexes are the unique indexes in a table that must
always possess a value; they can’t be null. Secondary indexes are other indexes in the same
table that may not be unique.

• Composite indexes: Composite indexes are indexes that contain two or more columns from
the same table. They’re also known as concatenated indexes. Composite indexes are espe-
cially useful for enforcing uniqueness in a table’s columns in cases where there’s no single
column that can uniquely identify a row.

CHAPTER 5 ■ SCHEMA MANAGEMENT196

4517CH05.qxd 8/19/05 10:34 AM Page 196

Guidelines for Creating Indexes
Although it is well known that indexes will enhance database performance, you will need to under-
stand how to make them work well for you. Placing unnecessary or inappropriate indexes on your
table may prove to be detrimental to performance.

Here are some guidelines for creating efficient indexes for your Oracle tables:

• Index only if you need to access no more than 10 or 15 percent of the data in a table. The
alternative to using an index to access row data in a table is to read the entire table sequen-
tially from top to bottom, which is called a full table scan. Full table scans are better for
queries that require a high percentage of the data in a table. Remember that using indexes
to retrieve rows requires two reads: an index read followed by a table read.

• Avoid indexes on relatively small tables. Full table scans are just fine for small tables. There’s
no need to store both table and index data for small tables.

• Create primary keys for all tables. When you designate a column as a primary key, Oracle
automatically creates an index on the column.

• Index the columns that are involved in multi-table join operations.

• Index columns that are used frequently in WHERE clauses.

• Index the columns that are involved in ORDER BY and GROUP BY operations, or other opera-
tions, such as UNION and DISTINCT, that involve sorting. Because indexes are already sorted,
the sorting necessary to perform the previously mentioned operations will be considerably
reduced.

• Columns that consist of long character strings are usually poor candidates for indexing.

• Columns that are frequently updated should ideally not be indexed because of the overhead
involved.

• Index tables with high selectivity only. That is, choose to index tables where few rows have
similar values.

• Keep the number of indexes small.

• Composite indexes may need to be used where single-column values may not be unique by
themselves. In composite indexes, the driving or the first column should be the most selec-
tive column.

Always keep in mind the golden rule of indexing a table: The index on a table should be based
on the types of queries you expect to occur against the table’s columns. You can create more than
one index on a table; you can choose to create an index on column X, or column Y, or both, and
you can also create a composite index on both columns X and Y. You will make the right decisions
about which index to create by thinking about the most frequent types of queries involving the
table’s data.

Oracle Index Schemes
Oracle provides several indexing schemes to suit the requirements of different types of applications.
During the design phase, you should select the right index type after you conduct a careful analysis
of the particular requirements of your application.

The B-tree index implementation uses the concept of a balanced (which is what the “B” stands
for) binary search tree as the basis of an index’s structure. Oracle uses its own variation on the B-tree
called the “B*tree” for implementing B-tree indexes. These are the regular default indexes created
when you use a CREATE INDEX statement in Oracle. The term “B*tree index” isn’t generally used to
refer to Oracle regular indexes—they are just called “indexes.”

CHAPTER 5 ■ SCHEMA MANAGEMENT 197

4517CH05.qxd 8/19/05 10:34 AM Page 197

B-tree indexes are structured in the form of an inverse tree, with top-level blocks called branch
blocks and lower-level blocks called leaf blocks. In the hierarchy of nodes, all nodes except the top or
root node have one parent node and may have zero or more nodes beneath them called child nodes.
If the depth of the tree structure—that is, the number of levels—is the same from each leaf block to
the root node, the tree is called a balanced tree or B-tree.

B-trees automatically maintain the necessary level of index for the size of the table. B-trees
also ensure that the index blocks are always between half used and full. B-trees permit select, insert,
update, and delete operations with very few I/Os per statement. Most B-trees have only three or
fewer levels. When you use a B-tree, you need to read only the B-tree blocks, so the number of disk
I/Os will be the number of B-tree levels (say, three) plus the I/Os for performing an update or delete
(two: one to read and one to write). To search through a B-tree, you would only need three or fewer
disk I/Os.

Oracle’s implementation of the B-tree, the B*tree, always keeps the tree balanced. The leaf
blocks contain two items: the indexed column values and the corresponding ROWID for the row
that contains the particular column value. The ROWID is a unique Oracle pointer that identifies the
physical location of the row in question, and it is the fastest way to access a row in an Oracle data-
base. Scanning the index will quickly get you the ROWID of the row, and from there it’s a quick hop
to the row itself. If the query just wanted the value of the indexed column itself, of course, the latter
step is omitted because you don’t have to fetch any more data for the query.

Estimating the Size of an Index
As in the case of tables, you can use the DBMS_SPACE package to estimate the size of a new index.
You must provide the DDL statement that creates the index as an attribute to the CREATE_INDEX_COST
procedure of the package, as shown in Listing 5-16.

Listing 5-16. Using the DBMS_SPACE Package to Estimate a New Index’s Space Requirements

SQL> SET SERVEROUTPUT ON
SQL> declare
2 l_index_ddl VARCHAR2(1000);
3 l_used_bytes NUMBER;
4 l_allocated_bytes NUMBER;
5 BEGIN
6 DBMS_SPACE.CREATE_INDEX_COST (
7 ddl => 'create index persons_idx on persons(person_id)',
8 used_bytes => l_used_bytes,
9 alloc_bytes => l_allocated_bytes);
10 DBMS_OUTPUT.PUT_LINE ('used = ' || l_used_bytes || 'bytes'
11 || ' allocated = ' || l_allocated_bytes || 'bytes');
12* END;
SQL> /
used = 154414918bytes allocated = 427720704bytes

PL/SQL procedure successfully completed.
SQL>

Note the interesting difference between the two size-related attributes of the
CREATE_INDEX_COST procedure:

• used_bytes shows the number of bytes that the index data actually represents.

• alloc_bytes shows the number of bytes the index will take up in the tablespace when you
actually create it.

CHAPTER 5 ■ SCHEMA MANAGEMENT198

4517CH05.qxd 8/19/05 10:34 AM Page 198

■Tip The table on which you are planning to create the new index must, of course, exist, and the database
should have the latest statistics on that table, in order to use the DBMS_SPACE package to estimate index sizes.

Creating an Index
You create an index using the CREATE INDEX statement, as follows:

SQL> CREATE INDEX employee_id ON employee(employee_id)
TABLESPACE emp_index_01;

Bitmap Indexes
Bitmap indexes use bitmaps to indicate the value of the column being indexed. This is an ideal
index for a column with a low cardinality and a large table size. These indexes are not usually appro-
priate for tables with heavy updates and are well suited for data warehouse applications.

Bitmap indexes consist of a bit stream (0 or 1) for each column in the index. Bitmap indexes are
very compact compared to the normal B-tree indexes. Table 5-2 presents a comparison of B-tree
indexes and bitmap indexes.

Table 5-2. B-tree Indexes vs. Bitmap Indexes

B-tree Indexes Bitmap Indexes

Good for high-cardinality data Good for low-cardinality data

Good for OLTP databases Good for data warehousing applications

Use a large amount of space Use relatively little space

Easy to update Difficult to update

To create a bitmap index, you use the CREATE INDEX statement with the BITMAP keyword added
to it:

SQL> CREATE BITMAP INDEX gender_idx ON employee(gender)
TABLESPACE emp_index_05;

I’ve seen query performance significantly improve when ordinary B*tree indexes were replaced
with bitmap indexes in some very large tables. However, each bitmap index entry covers a large
number of rows in the table, so when data is updated, inserted, or deleted in the table, the neces-
sary bitmap index updates are very large, and the index can increase substantially in size. The only
way around this increase in bitmap index size, and the consequent drop in performance, is to main-
tain the bitmap index by regularly rebuilding the index. You may decide that a bitmap index is not a
smart alternative for tables that involve large numbers of inserts, deletes, and updates.

Reverse-Key Indexes
Reverse-key indexes are fundamentally the same as B-tree indexes, except that the bytes of key col-
umn data are reversed during indexing. The column order is kept intact; only the bytes are reversed.
The biggest advantage to using reverse-key indexes is that they tend to avoid hot spots when you do
sequential insertion of values into the index. Here’s how to create one:

SQL> CREATE INDEX reverse_idx ON employee(emp_id) REVERSE;

CHAPTER 5 ■ SCHEMA MANAGEMENT 199

4517CH05.qxd 8/19/05 10:34 AM Page 199

Function-Based Indexes
Function-based indexes precompute functions on a given column and store the results in an index.
When WHERE clauses include functions, function-based indexes are an ideal way to index the column.
Here’s how to create a function-based index, using the LOWER function:

SQL> CREATE INDEX lastname_idx ON employee(LOWER(l_name));

This CREATE INDEX statement will create an index on the employee column. However, this index
will be a function-based index, since the index will actually be created on the employee column after
first using the LOWER function to convert the employee column values to lowercase.

Partitioned Indexes
Partitioned indexes are used to index partitioned tables. Oracle provides two types of indexes
for partitioned tables: local and global.

The essential difference between the two is that local indexes are based on the underlying table
partitions. If the table is partitioned 12 ways using date ranges, the indexes are also distributed over
the same 12 partitions. There is a one-to-one correspondence, in other words, between data parti-
tions and index partitions. There is no such one-to-one correspondence between global indexes
and the underlying table partitions—a global index is partitioned independently of the base tables.

The following sections cover the important differences between managing globally partitioned
indexes and locally partitioned indexes.

Global Indexes
Global indexes on a partitioned table can be either partitioned or nonpartitioned. The globally non-
partitioned indexes are similar to the regular Oracle indexes for nonpartitioned tables. You just use
the regular CREATE INDEX syntax to create these globally nonpartitioned indexes.

Here’s an example of a global index on the ticket_sales table:

SQL> CREATE INDEX ticketsales_idx ON ticket_sales(month)
GLOBAL PARTITION BY range(month)
(PARTITION ticketsales1_idx VALUES LESS THAN (3)
PARTITION ticketsales1_idx VALUES LESS THAN (6)
PARTITION ticketsales2_idx VALUES LESS THAN (9)
PARTITION ticketsales3_idx VALUES LESS THAN (MAXVALUE);

Note that there’s substantial maintenance involved in the management of globally partitioned
indexes. Whenever there is DDL activity on a partitioned table, its global indexes need to be rebuilt.
DDL activity on the underlying table will mark the associated global indexes as unusable. By
default, any table maintenance operation on a partitioned table will invalidate (mark as unusable)
global indexes.

Let’s use the ticket_sales table as an example to see why this is so. Let’s assume that you drop
the oldest partition each quarter, in order to make room for the new partition for the new quarter.
When a partition belonging to the ticket_sales table gets dropped, the global indexes could be
invalidated, because some of the data the index is pointing to isn’t there anymore. To prevent this
invalidation due to the dropping of a partition, you have to use the UPDATE GLOBAL INDEXES option
along with your DROP PARTITION statement, as shown here:

SQL> ALTER TABLE ticket_sales
DROP PARTITION sales_quarter01
UPDATE GLOBAL INDEXES;

CHAPTER 5 ■ SCHEMA MANAGEMENT200

4517CH05.qxd 8/19/05 10:34 AM Page 200

■Note If you don’t include the UPDATE GLOBAL INDEXES statement, the entire global index will be invalidated.
You can also use the UPDATE GLOBAL INDEX option when you add, coalesce, exchange, merge, move, split, or
truncate partitioned tables. Of course, you can use the ALTER INDEX . . . REBUILD option to rebuild any index
that becomes unusable, but this option also involves additional time and maintenance.

When you have a small number of index leaf blocks leading to high contention, Oracle recom-
mends using hash-partitioned global indexes. The syntax for creating a hash-partitioned global
index is similar to that used for a hash-partitioned table. For example, the following statement cre-
ates a hash-partitioned global index:

SQL> CREATE INDEX hgidx ON tab (c1,c2,c3) GLOBAL
PARTITION BY HASH (c1,c2)
(PARTITION p1 TABLESPACE tbs_1,
PARTITION p2 TABLESPACE tbs_2,
PARTITION p3 TABLESPACE tbs_3,
PARTITION p4 TABLESPACE tbs_4);

Local Indexes
Locally partitioned indexes, unlike globally partitioned indexes, have a one-to-one correspondence
with the table partitions. You can create locally partitioned indexes to match partitions or even sub-
partitions. The database constructs the index so that it is equipartitioned with the underlying table.
Any time you modify the underlying table partition, the index partition is maintained automatically.
This is probably the biggest advantage to using locally partitioned indexes—Oracle will automati-
cally rebuild the locally partitioned indexes whenever a partition gets dropped, or any other DDL
activity occurs on a partition.

Here is a simple example of creating a locally partitioned index on a partitioned table:

SQL> CREATE INDEX ticket_no_idx ON
ticket_sales(ticket__no) LOCAL
TABLESPACE localidx_01;

■Tip You can use the new SQL Access Advisor tool to get recommendations on which indexes to create. The
Advisor will also tell you which of your indexes aren’t being used and, hence, are candidates for removal. I show
how to use the SQL Access Advisor in the “Using the SQL Access Advisor” section, later in this chapter.

Monitoring Index Usage
Oracle offers the EXPLAIN PLAN and SQL Trace tools to help you see the path followed by your
queries on the way to their execution. You can use the EXPLAIN PLAN output or the results of a
SQL Trace to see what the execution path of the query looks like and thus determine whether your
indexes are being used. Chapter 18 covers EXPLAIN PLAN and SQL Trace in detail.

Oracle also provides an easier way to monitor index usage in your database. If you are doubtful
as to the usefulness of a particular index, you can ask Oracle to monitor the index usage. This way, if
the index turns out to be redundant, you can drop it and save the storage space and the overhead
during DML operations.

Here’s what you have to do to monitor index usage in your database. Assume you’re trying to
find out whether the p_key_sales index is being used by certain queries on the sales table. Make
sure you use a representative time period to gauge index usage. For an OLTP database, this period

CHAPTER 5 ■ SCHEMA MANAGEMENT 201

4517CH05.qxd 8/19/05 10:34 AM Page 201

could be relatively short. For a data warehouse, you may need to run the monitoring test for several
days to accurately check index usage.

To start monitoring the index use, log in as the owner of the p_key_sales index and run this
command:

SQL> ALTER INDEX p_key_sales MONITORING USAGE;
Index altered.

SQL>

Now, run some queries on the sales table. End the monitoring by using the following com-
mand:

SQL> ALTER INDEX p_key_sales NOMONITORING USAGE;
Index altered.

SQL>

You can now query the V$OBJECT_USAGE dictionary view to find out whether the p_key_sales
index is being used. The following results confirm that the index is indeed being used:

SQL> SELECT * FROM v$object_usage
WHERE index_name='P_KEY_SALES';

INDEX_NM TABLE_NM MON USED START_MONITORING END_MONITORING

P_KEY_SALES SALES NO YES 05/20/2005 16:19:54 05/20/2005 16:21:26

In the preceding output, Oracle placed a YES value in the USED column, thus indicating that the
index in question was being used by the database. If the index had been ignored during the moni-
toring period, the column would contain NO instead.

Index Maintenance
Index data constantly changes due to the underlying table’s DML activity. Indexes often become too
large if there are many deletions, because the space used by the deleted values is not reused auto-
matically by the index. You can use the REBUILD command on a periodic basis to reorganize indexes
to make them more compact and thus more efficient. You can also use the REBUILD command to
alter the storage parameters you set during the initial creation of the index. Here’s an example:

SQL> ALTER INDEX sales_idx REBUILD;
Index altered
Sql>

Rebuilding indexes is better than dropping and re-creating a bad index, because users will
continue to have access to the index while you’re rebuilding it. However, indexes in the process of
rebuilding do impose many limits on users’ actions. An even more efficient way to rebuild indexes is
to do them online, as shown in the following example. You can perform all DML operations, but not
any DDL operations, while the online rebuild of the index is going on.

SQL> ALTER INDEX p_key_sales REBUILD ONLINE;
Index altered.
SQL>

Managing Database Integrity Constraints
Integrity constraints in relational databases enable easy and automatic enforcement of important
business rules in the database tables. For example, in a human resources–related table, you can’t
have an employee without assigning him or her to a supervisor. When you create the relevant tables,

CHAPTER 5 ■ SCHEMA MANAGEMENT202

4517CH05.qxd 8/19/05 10:34 AM Page 202

you can declare the necessary integrity constraints, which must be satisfied each time data is
entered or modified in the table.

You can also use application logic to enforce business rules, but integrity constraints are usu-
ally simpler to enforce than application logic, and they usually do their job by making sure that
inserts, updates, and deletes of table data conform to certain rules. Application logic, on the other
hand, has the advantage that it can reject or approve data without having to check the entire table’s
contents. Thus, you have to determine which method you’ll use to enforce the business rules—
application logic or integrity constraints—based on the needs of your application. In any case,
integrity constraints are so fundamental to the operation of relational databases that you are
bound to use them in your database.

By default, Oracle allows null values in all columns. If null values are not permissible for some
columns in a table, you need to use the NOT NULL constraint when specifying the column. Note that
you can impose the database constraints on tables either at table creation time or later by using the
ALTER TABLE command. Obviously, however, if you already have null columns or duplicate data, it is
not possible to alter the table to impose a NOT NULL or UNIQUE constraint on the table.

You can enforce several types of constraints in an Oracle table. For simplicity’s sake, you can
divide the constraints into five different types:

• Primary key constraints

• Not null constraints

• Check constraints

• Unique constraints

• Referential integrity constraints

I discuss each of these types of constraints in the following sections. In addition, I also present
a brief discussion of integrity constraint states.

Primary Key Constraints
The primary key is a very important kind of constraint on a table. When you want a column’s values
to be identified uniquely, you can do this by creating a primary key on the column value. A column
on which a primary key has been defined has to be unique as well as not null.

A table can have only one primary key. You can create a primary key when creating the table, as
shown in the following example:

SQL> CREATE TABLE dept
(dept_id number(9) PRIMARY KEY);

You can also add a constraint to an existing table in the following way:

SQL> ALTER TABLE dept
ADD PRIMARY KEY(dept_id);

Since the constraint wasn’t assigned a name in the preceding example, Oracle will assign a
system-generated constraint name. If you want to give your own name to the constraint, you can
use the following command, which names the constraint dept_pk:

SQL> ALTER TABLE emp
ADD CONSTRAINT
dept_pk PRIMARY KEY(dept_id);

Table altered.
SQL>

CHAPTER 5 ■ SCHEMA MANAGEMENT 203

4517CH05.qxd 8/19/05 10:34 AM Page 203

Note that if the primary key will have more than one column in it (meaning that it will be a
composite key), you can’t specify the primary key designation against the column name during
table creation. You have to specify the primary key columns as a separate item at the end of the
CREATE TABLE command, after listing all the columns.

■Note In both of the preceding examples, Oracle automatically creates an index on the column you designate as
the primary key.

Not Null Constraints
A table usually has one or more columns that can’t be allowed to be left null—that is, with no values.
A good example is the last_name column in the employee table. You can force users to always put a
value in this column at table creation time by using the NOT NULL option for the column you don’t
want to be null:

SQL> CREATE TABLE employee
(last_name VARCHAR(30) NOT NULL);

If the table has already been created and you want to modify a column from a nullable to a
non-nullable constraint, you can use the following statement:

SQL> ALTER TABLE employee MODIFY last_name NOT NULL;

Check Constraints
You use check constraints to ensure that data in a column is within some parameters that you spec-
ify. For example, say the salary for an employee in a firm can’t be equal to or exceed $100,000 under
any circumstances. You can enforce this condition by using the following statement, which uses the
CHECK constraint on the salary column:

SQL> CREATE TABLE employee
(employee_id NUMBER,
last_name VARCHAR2(30),
first_name VARCHAR2(30),
department_id NUMBER,
salary NUMBER CHECK(salary < 100000));

Unique Constraints
Unique constraints are very common in relational databases. These constraints ensure the unique-
ness of the rows in a relational table. You may have more than one unique constraint on a table. For
example, a unique constraint on the employee_id column ensures that no employee is listed twice in
the employee table.

In the following example, the first statement specifies a unique constraint on the combination
of the dept_name and location columns:

SQL> CREATE TABLE dept(
dept_no NUMBER(3),
dept_name VARCHAR2(15),
location VARCHAR2(25),
CONSTRAINT dept_name_ukey UNIQUE(dept_Name,location);

CHAPTER 5 ■ SCHEMA MANAGEMENT204

4517CH05.qxd 8/19/05 10:34 AM Page 204

You can also create a unique constraint on the department table by using the ALTER TABLE
syntax:

SQL> ALTER TABLE dept
ADD CONSTRAINT dept_idx UNIQUE(dept_no);

Table altered.
SQL>

Referential Integrity Constraints
Referential integrity constraints ensure that values for certain important columns make sense. Sup-
pose you have a parent table that refers to values in another table, as in the case of the dept and
employee tables. You shouldn’t be able to assign an employee to a department in the employee table
if the department doesn’t exist in the department table.

You can ensure the existence of a valid department by using a referential integrity constraint.
In this case, the department_id column is the dept table’s primary key, and the dept_id column
in the employee table, which refers to the corresponding column in the department table, is called
the foreign key. The table containing the foreign key is usually referred to as the child table, and the
table containing the referenced key is called the parent table. As with all the other types of con-
straints, the referential integrity constraint can be created at table creation time or later on, with
the help of the ALTER TABLE command:

SQL> CREATE TABLE employee
(employee_id NUMBER(7),
last_name VARCHAR2(30),
first name VARCHAR2(30),
job VARCHAR2(15),
dept_id NUMBER(3) NOT NULL
CONSTRAINT dept_fkey REFERENCES dept(dept_id));

The dept_id column of this employee table has been designated as a foreign key because it
refers to the dept_id column in the dept table. Note that for a column to serve as the referenced
column, it must be unique or be a primary key in the reference table.

Integrity Constraint States
As you saw in the previous section, integrity constraints are defined on tables to ensure that data
that violates preset rules doesn’t enter the tables. However, during times like data loading, you can’t
keep the integrity constraints in a valid state, as this will lead to certain problems. Oracle lets you
disable constraints when necessary and enable them when you want. Let’s examine the various
ways you can alter the states of table constraints.

Disabling Integrity Constraints
During large data loads, using either the SQL*Loader or the Import utility, it may take a consider-
ably longer time to load the data if you have to check for integrity violations for each row inserted
into the table. A better strategy would be to disable the constraint, load the data, and worry about
any possible insertion of bad data later on. After the load is completed, the constraints are brought
into effect again by enabling them.

■Note The enabled state is Oracle’s default constraint state.

CHAPTER 5 ■ SCHEMA MANAGEMENT 205

4517CH05.qxd 8/19/05 10:34 AM Page 205

You can disable constraints in two ways: you can specify either the disable validate or the
disable no validate constraint state, using the DISABLE VALIDATE or DISABLE NO VALIDATE command,
respectively. The next sections briefly discuss these two ways of disabling constraints.

Disable Validate State

When you use the DISABLE VALIDATE command, you’re doing the following two things at once.
First, by using the VALIDATE command, you’re ensuring that all the data in the table satisfies the
constraint. Second, by using the DISABLE command, you’re doing away with the requirements of
maintaining the constraint. Oracle drops the index on the constraint, but keeps it valid. Here’s an
example:

SQL> ALTER TABLE sales_data
ADD CONSTRAINT quantity_unique
UNIQUE (prod_id,customer_id) DISABLE VALIDATE;

When you issue the preceding SQL statement, Oracle ensures that only unique combinations
of the unique key prod_id and customer_id exist in the table, but it will not maintain a unique index.
Note that because I have chosen to keep the constraint in a disabled state, no DML is possible
against the table. This option is really ideal for large data warehouse tables, which are normally
used only for querying purposes.

Disable No Validate State

Under the disable no validate constraint state, the constraint is disabled and there is no guarantee
of the data meeting the constraint requirements, because Oracle does not perform constraint vali-
dation. This is essentially the same as a DISABLE constraint command.

Enable Validate State

This constraint state will have an enabled constraint that ensures that all data is checked to ensure
compliance with the constraint. This state is exactly the same as the plain enabled state. The follow-
ing example shows the use of this state:

SQL> ALTER TABLE sales_data ADD CONSTRAINT sales_region_fk
FOREIGN KEY (sales_region) REFERENCES region(region_id)
ENABLE VALIDATE;

Enable No Validate State

Under this constraint state, all new inserts and updates will be checked for compliance. Because the
existing data won’t be checked for compliance, there’s no assurance that the data already in the
table meets the constraint requirements. You’ll usually use this option when you’re loading large
tables and you have reason to believe that the data will satisfy the constraint. Here’s an example:

SQL> ALTER TABLE sales ADD CONSTRAINT sales_region_fk
FOREIGN KEY (sales_region_id) REFERENCES time(time_id)
ENABLE NOVALIDATE;

Rely Constraints
Data extraction, transformation, loading (ETL) steps are usually undertaken before loading data into
data warehouse tables. If you have reason to believe that the data is good, you can save time during
loading by disabling and not validating the constraints. You can use the ALTER TABLE command to
disable the constraints with the RELY DISABLE NOVALIDATE option, as shown in the following example:

CHAPTER 5 ■ SCHEMA MANAGEMENT206

4517CH05.qxd 8/19/05 10:34 AM Page 206

SQL> ALTER TABLE sales ADD CONSTRAINT sales_region_fk
FOREIGN KEY (sales_region_id) REFERENCES time(region_id)
RELY DISABLE NOVALIDATE;

Deferrable and Immediate Constraints
In addition to specifying the type of validation of a constraint, you can specify when exactly this
constraint is checked during the loading process.

If you want the constraint to be checked immediately after each data modification occurs,
choose the not deferrable option, which is, in fact, the default behavior in Oracle databases. If you
want a one-time check of a constraint after the whole transaction is committed, choose the
deferrable option. All constraints and foreign keys may be declared deferrable or not deferrable.

If you choose the deferrable option, you have two further options. You can specify that the
deferrable constraint is either initially deferred or initially immediate. In the former case, the data-
base will defer checking until the transaction completes. If you choose the initially immediate
option, the database checks the constraint before any data is changed.

The following example shows how to specify this kind of constraint in the employee table:

SQL> CREATE TABLE employee
employee_id NUMBER,
last_name VARCHAR2(30),
first_name VARCHAR2(30),
dept VARCHAR2(30) UNIQUE
REFERENCES department(dept_name)
DEFERRABLE INITIALLY DEFERRED;

Oracle also provides a way of changing a deferrable constraint from immediate to deferred or
vice versa with the following statements:

SQL> SET CONSTRAINT constraint_name DEFERRED;
SQL> SET CONSTRAINT constraint_name IMMEDIATE;

Using Views
A view is a virtual table—it’s a specific representation of a table or set of tables, and it is defined by
using a SELECT statement. A view doesn’t physically exist, like regular tables, as part of a tablespace.
A view, in effect, creates a virtual table or subtable with only those rows and/or columns that you
want the user to access (or that you want to see).

A view is the product of a stored query, so only the view definition is stored in the data diction-
ary. When you export the database, you’ll see the statement “exporting views,” but that’s referring
only to the view definitions and not to any physical objects such as tables and indexes.

You can query views and even change their data using UPDATE, DELETE, or INSERT statements,
provided you have the SELECT ANY TABLE, INSERT ANY TABLE, UPDATE ANY TABLE, or DELETE
ANY TABLE system privileges.

Views are used in applications for several reasons, including the following:

• Reduce complexity

• Improve security

• Increase convenience

• Rename table columns

• Customize the data for users

• Protect data integrity

CHAPTER 5 ■ SCHEMA MANAGEMENT 207

4517CH05.qxd 8/19/05 10:34 AM Page 207

You create views by using a SQL statement that describes the composition of the view. When
you invoke the view, the query by which the view is defined is executed, and the results are pre-
sented to you. A query on a view looks exactly like a regular query, but the database converts the
query on the view into an identical query on the underlying tables. In order to create a view, you
must have the CREATE VIEW system privilege, and to create a view in any schema, rather than just
in your own, you need the CREATE ANY VIEW system privilege. In addition, you must either own
the underlying tables or must be granted the SELECT, INSERT, UPDATE, and DELETE object privileges
on all the tables underlying the view.

You can use a view to add column-level or value-based security to a table. Column-level
security is provided by creating views that provide access to selected columns of base tables. Value-
based security involves using a WHERE clause in the view definition, which displays only selected
rows of base tables. In order to use a view, a user needs privileges on the view itself, and not on the
base tables underlying the view.

The following statement creates a view called my_employees that gives a specific manager
information only on the employees managed directly by her:

SQL> CREATE VIEW my_employees AS
SELECT employee_id, first_name, last_name, salary
FROM employees
WHERE manager_id=122;

View created.
SQL>

Now the manager with the ID 122 can query the my_employees view just as she would a nor-
mal table, but it gives her information on her employees only. Listing 5-17 shows the output of a
query on the view.

Listing 5-17. Selecting Data from a View

SQL> SELECT * FROM my_employees;
EMPLOYEE_ID FIRST_NAME LAST_NAME SALARY
----------- -------------------- ----------

133 Jason Mallin 3300
134 Michael Rogers 2900
135 Ki Gee 2400
136 Hazel Philtanker 2200
188 Kelly Chung 3800
189 Jennifer Dilly 3600
190 Timothy Gates 2900
191 Randall Perkins 2500

8 rows selected
SQL>

Although you use views mostly for querying purposes, under some circumstances you can also
use INSERT, DELETE, and UPDATE views. For example, you can perform a DML operation on a view if it
doesn’t have any GROUP BY, START WITH, or CONNECT BY clauses, or any subqueries in its SELECT clause.
However, since a view doesn’t really exist, you’ll be modifying the underlying table data, and the
view will therefore be subject to the same integrity constraints as the underlying base tables.

You can drop a view by simply using the DROP VIEW command, as shown here:

SQL> DROP VIEW my_employees;
View dropped.

CHAPTER 5 ■ SCHEMA MANAGEMENT208

4517CH05.qxd 8/19/05 10:34 AM Page 208

Using Materialized Views
Every time you need to access a view, Oracle must execute the query that defines the view in ques-
tion and get you the results. This process of populating the view is called view resolution, and it
must be done afresh each time a user refers to the view. If you’re dealing with views with multiple
JOIN and GROUP BY clauses, this process of view resolution could take a very long time. If you need
to access a view frequently, it is very inefficient to have to constantly resolve the view each time.

Oracle’s materialized views offer a way out of this predicament. You can think of materialized
views as specialized views that have a physical representation, unlike normal views. They occupy
space and need storage just like your regular tables. You can even partition materialized views and
create indexes on them if necessary.

■Note A view is always computed on the fly, and its data isn’t stored separately from the tables on which it’s
defined. Thus, queries using views, by definition, guarantee that up-to-the-minute data will be returned. Any
change in the source tables on which the view is defined will be reflected by the view instantaneously. Material-
ized views, on the other hand, are static objects that derive their data from the underlying base tables. If you
refresh your materialized views infrequently, the data in them may be at odds with the data in the underlying
tables.

Traditionally, data warehousing and other similar large databases have needed summary tables
or aggregate tables to perform their work. Defining these summary tables and constantly maintain-
ing them was a complex task. Any time you added data to the underlying detail table, you had to
manually update all the summary tables and their indexes. Oracle’s materialized views offer a way
to simplify summary management in large databases. Materialized views in these environments are
also called summaries because they store summarized data.

You can use tables, views, or other materialized views as the source for a materialized view. The
source tables are called master tables, and it’s common to refer to the master tables as detail tables
in a data warehousing environment. When you create a new materialized view, Oracle will automat-
ically create an internal table to hold the data of this materialized view. Thus, a materialized view
will take up physical space in your database, whereas a regular view doesn’t, since a view is only the
output of a SQL query. Oracle will also automatically create at least one index on the materialized
view and may create a view as well.

You can do the following with a materialized view:

• Create indexes on a materialized view

• Create a materialized view on partitioned tables

• Partition a materialized view

■Tip You can use an index to access a materialized view directly, as you would a table. Similarly, you can also
access a materialized view directly in an INSERT, UPDATE, or DELETE statement. However, Oracle recommends
that you not do so, and that you let the Oracle cost-based optimizer (CBO) make the decision about whether to
rewrite your normal queries to take advantage of a materialized view. If the execution plan using the materialized
view has a lower cost of accessing it compared to accessing the tables directly, Oracle will automatically do so.

You can use various types of aggregations like SUM, COUNT(*), AVG, MIN, and MAX in a materialized
view. You can also use multiple table joins in the materialized view definition.

CHAPTER 5 ■ SCHEMA MANAGEMENT 209

4517CH05.qxd 8/19/05 10:34 AM Page 209

Creating a materialized view is pretty straightforward, but optimizing it can be tricky. Optimiz-
ing a materialized view involves both ensuring that the Oracle cost-based optimizer rewrites users’
queries to use the materialized views that you have created, and keeping the data in the material-
ized views current. Let’s briefly look at these two aspects of optimizing materialized views.

Query Rewriting
The beauty of Oracle’s materialized view facility is that once the views are created, they are auto-
matically updated by the database whenever there are changes in the underlying base tables on
which the view is defined. The materialized views are completely transparent to users. If users write
queries using the underlying table, Oracle will automatically rewrite those queries to use the mate-
rialized views—this query-optimization technique is known as query rewrite. The Oracle cost-based
optimizer (CBO) will automatically recognize that it should rewrite a user’s query to use the materi-
alized view rather than the underlying tables if the estimated query cost of using the materialized
views is lower. Query cost here refers to the I/O, CPU, and memory costs involved in processing a
SQL query. Complex joins involve a lot of I/O and CPU expense, and the use of materialized views
will avoid incurring this cost each time you need to perform such joins. Because the materialized
views already have the summary information precomputed in them, your queries will cost much
less in terms of resource usage, and hence run much more quickly.

The automatic query rewrite optimization technique is at the heart of materialized view usage.
The QUERY_REWRITE_ENABLED initialization parameter determines whether Oracle will rewrite a query
or not. The default value for this parameter is FALSE, which means that Oracle doesn’t use the
rewrite feature automatically. If you set the parameter to a value of TRUE, Oracle will cost the query
both with and without a rewrite and will choose the one with the lesser processing cost. When you
enable query rewriting by setting QUERY_REWRITE_ENABLED = TRUE in your initialization parameter
file, query rewriting is enabled system-wide, for the entire database. Since the default is FALSE, you
must explicitly specify the ENABLE QUERY REWRITE clause when you create a materialized view, so the
materialized view you’re creating is eligible for a query rewrite by the Oracle optimizer.

The REWRITE_OR_ERROR Hint
Let’s say you create a new materialized view and find out that the intended queries aren’t being
rewritten to take advantage of your new materialized view. If the queries take too long to complete
without the materialized view, you can force Oracle to stop executing the query without the materi-
alized view. You can use a hint (a user-created directive that provides guidance to the CBO; I discuss
hints in detail in Chapter 21) to tell Oracle to issue an error instead of executing the unrewritten
query. The hint is called the REWRITE_OR_ERROR hint, and here’s how you use it:

SQL> SELECT /*+ REWRITE_OR_ERROR */
prod_id
SUM(quantity_sold) AS sum_sales_qty
FROM sales_data
GROUP BY prod_id

SQL>

If the query fails to rewrite, you’ll see the following error:

ORA-30393: a query block in the statement did not write.

Once you get the preceding error, you can use the DBMS_MVIEW.EXPLAIN_REWRITE procedure to
figure out why the query didn’t rewrite, and fix the problem so it will rewrite as planned and take
advantage of your materialized view.

CHAPTER 5 ■ SCHEMA MANAGEMENT210

4517CH05.qxd 8/19/05 10:34 AM Page 210

Rewrite Integrity
When you set up query rewrite, Oracle will use only fresh data from the materialized views by
default. Further, it only utilizes ENABLED VALIDATED primary, unique, or foreign key constraints.
The QUERY_REWRITE_INTEGRITY initialization parameter determines the optimizer’s behavior in
this regard. The default behavior is known as the ENFORCED mode. Besides this mode, the
QUERY_REWRITE_INTEGRITY parameter can take two other values:

• TRUSTED: In this mode, the optimizer will accept several relationships other than those
accepted under the ENFORCED mode. The optimizer will accept, for example, unenforced rela-
tionships as well as declared but not ENABLED VALIDATED primary or unique key constraints.
Since you are allowing the optimizer to accept relationships on trust (not on an enforced
basis), more queries will be eligible for a query rewrite.

• STALE_TOLERATED: The optimizer will accept fresh and stale data, as long as the data is valid.
Of course, you’ll rewrite more queries in this mode, but you also run a higher risk of getting
incorrect results if the stale data doesn’t accurately represent the true nature of the current
table.

Refreshing Materialized View Data
Since a materialized view is defined on underlying master tables, when the data in the master tables
changes, the materialized view becomes outdated. To take care of this problem, materialized views
are updated, thus keeping them in sync with the master tables. The following sections present the
materialized view refresh options.

Refresh Mode
You can choose between the ON COMMIT and ON DEMAND modes of data refresh.

• ON COMMIT: In this mode, whenever a data change in one of the master tables is committed,
the materialized view is refreshed automatically to reflect the change.

• ON DEMAND: In this mode, you must execute a procedure like DBMS_MVIEW.REFRESH to update
the materialized view.

The default refresh mode is ON DEMAND.

Refresh Type
You can choose from the following four refresh types:

• COMPLETE: This refresh option will completely recalculate the query underlying the material-
ized view. Thus, if the materialized view originally took you 12 hours to build, it’ll take about
the same time to rebuild it. Obviously, you wouldn’t want to use this option each time a few
rows are modified, dropped, or inserted into your master tables.

• FAST: Under the fast refresh mechanism, Oracle will use a materialized view log to log all
changes to the master tables. It’ll then use the materialized view log to update the master
tables, thus avoiding a complete refresh of the view. You can use other techniques to
perform a fast refresh, but the materialized view log is the most frequently used device
for this purpose.

The materialized view log is a table based on the associated materialized view. Each of the
tables involved in the join in the materialized view needs its own materialized view log to
capture changes to the tables.

CHAPTER 5 ■ SCHEMA MANAGEMENT 211

4517CH05.qxd 8/19/05 10:34 AM Page 211

• FORCE: If you choose this option, Oracle will try to use the FAST refresh mechanism. If it isn’t
able to use it for some reason, it’ll use the COMPLETE refresh method.

• NEVER: This refresh option never refreshes a materialized view. Obviously, this isn’t a viable
option for a materialized view whose master tables undergo significant change over time.

The default refresh type is FORCE.

Using the DBMS_MVIEW Package
Even after you specify the query rewrite mechanism, the Oracle cost-based optimizer may not
always automatically rewrite a query, accessing the master tables instead of the materialized view.
Thus, even though you have a materialized view, the optimizer ignores it, defeating the purpose of
creating and maintaining the materialized view. The Oracle optimizer does this because some con-
ditions for query rewrite may not have been met. You can use the Oracle-supplied DBMS_MVIEW
package, to diagnose this and other materialized view problems.

You can use the DBMS_MVIEW package’s procedures in the following way:

• Use the EXPLAIN_MVIEW procedure to see what types of query rewrite are possible.

• Use the EXPLAIN_REWRITE procedure to see why a particular query is not being rewritten to
use the materialized view.

• Use the TUNE_MVIEW procedure to enable a query rewrite. This procedure will suggest how you
can rewrite a materialized view to make it eligible for a query rewrite. The TUNE_MVIEW proce-
dure also tells you how to satisfy the requirements for a fast refreshable materialized view.
The procedure will take your input and produce a materialized view creation script (and any
necessary materialized view logs) that is ready to implement.

I discuss the DBMS_MVIEW package in more detail in Chapter 24.

Creating Materialized Views
In this section, I’ll show you how to create a basic materialized view, using some of the options that
I described in the previous sections. If you aren’t sure about which materialized views to create, you
can take advantage of Oracle’s SQL Access Advisor, which can make specific recommendations
regarding the use of indexes and materialized views. The SQL Access Advisor can design a material-
ized view and tell you whether it’s eligible for a query rewrite. The “Using the SQL Access Advisor”
section, later in this chapter, covers the SQL Access Advisor in detail.

There are three steps required to get the materialized views going, although the creation itself
is simple:

1. Grant the necessary privileges.

2. Create the materialized view log (assuming you’re using the FAST refresh option).

3. Create the materialized view.

Granting the Necessary Privileges
You must first grant the necessary privileges to the user who is creating the materialized views. The
main privileges are those that enable the user to create a materialized view. In addition, you must
grant the QUERY REWRITE privilege to the user, either by using the GLOBAL QUERY REWRITE priv-
ilege or specific QUERY REWRITE privileges on each object that is not part of the user’s schema.
Here are the GRANT statements that enable a user to create a materialized view in the user’s schema:

CHAPTER 5 ■ SCHEMA MANAGEMENT212

4517CH05.qxd 8/19/05 10:34 AM Page 212

SQL> GRANT CREATE MATERIALIZED VIEW TO salapati;
SQL> GRANT QUERY REWRITE TO salapati;

In addition, if the user doesn’t already have it, you must grant the ability to create tables, by
using the following GRANT statement:

SQL> GRANT CREATE ANY TABLE TO salapati;

If the user doesn’t own any of the master tables that are part of the materialized view definition,
you must grant the user the SELECT privilege on those individual tables, or just make the following
grant:

SQL> GRANT SELECT ANY TABLE TO salapati

Creating the Materialized View Log
Let’s use the FAST refresh mechanism for our materialized view. This will require the creation of two
materialized logs, of course, to capture the changes to the two master tables that are going to be the
basis for our materialized view. Here’s how you create the materialized view logs:

Here’s how you create the materialized view log:

SQL> CREATE MATERIALIZED VIEW LOG ON products;
Materialized view log created.
SQL> CREATE MATERIALIZED VIEW LOG ON sales;
Materialized view log created.

Creating the Materialized View
Now you are ready to create your materialized view. The example, shown in Listing 5-18, uses the
REFRESH COMPLETE clause, to specify the COMPLETE refresh option.

■Tip If you already have a table containing some type of aggregates or summary results in your database, you
can use the CREATE MATERIALIZED VIEW statement with the ON PREBUILT TABLE clause to register the existing
summary table as a materialized view.

Listing 5-18. Creating a Materialized View

SQL> CREATE MATERIALIZED VIEW test_mv
2 BUILD IMMEDIATE
3 REFRESH FAST ON COMMIT
4 ENABLE QUERY REWRITE
5 AS
6 SELECT sh.products.prod_category,
7 SUM(sh.sales.quantity_sold),
8 COUNT(sh.sales.quantity_sold), count(*)
10 FROM sh.sales, sh.products
11 WHERE sh.products.prod_id = sh.sales.prod_id
12 AND sh.products.prod_category <= 'Women'
13 AND sh.products.prod_category >= 'Boys'
14 GROUP BY sh.products.prod_category;
Materialized view created.
SQL>

CHAPTER 5 ■ SCHEMA MANAGEMENT 213

4517CH05.qxd 8/19/05 10:34 AM Page 213

Let’s look at some of the important clauses of the CREATE MATERIALIZED VIEW statement:

• BUILD IMMEDIATE will populate the materialized view right away, and this is the default
option. The alternative is to use the BUILD DEFERRED option, which will actually load the
materialized view with data later on, at a specified time.

• REFRESH FAST ON COMMIT specifies that the materialized view should use the FAST refresh
method, which requires using the two materialized logs that you created in the previous
step, to capture all changes to the master tables. The ON COMMIT part of the REFRESH clause
specifies that all committed changes to the master tables should be propagated to the
materialized view immediately upon the committing of the changes.

• ENABLE QUERY REWRITE means that the Oracle optimizer will transparently rewrite your
queries to use the newly created materialized views instead of the underlying master tables.

• The AS subquery defines the materialized view. Oracle will store the output of this subquery
in the materialized view you’re creating. You can use any valid SQL subquery you wish here.

• Lines 6–14 contain the actual query defining the materialized view; it retrieves the output
from the master tables and makes it part of the materialized view.

■Note Due to space limitations, I presented a simple example of creating a materialized view and materialized
view log here. In reality, you may have to satisfy additional requirements to be able to create these objects. For
example, to enable a fast-refreshable materialized view with materialized view logs, there are specific conditions
that you must satisfy. Refer to the Oracle manuals (especially the Data Warehousing Guide) for the full requirements.

Note that you can enable query rewrite by specifying ENABLE_QUERY_REWRITE when you create
the materialized view itself (as shown in Listing 5-18) or by specifying the option after the material-
ized view is created, by using the ALTER MATERIALIZED VIEW statement.

Instead of using the EXPLAIN_REWRITE procedure of the DBMS_MVIEW package, you can use the
EXPLAIN PLAN tool to see the proposed execution plan for the query. Your EXPLAIN PLAN should not
show any references to the underlying base tables. It should show that the materialized view is
being referred to instead, to convince you that the query rewrite is indeed forcing queries to use
the new materialized view.

■Tip Collect optimizer statistics (see Chapter 21) for a materialized view immediately after you create it. This
helps the Oracle optimizer optimize the query-rewriting process.

If you think you don’t need a materialized view, you can drop it by simply using the DROP
MATERIALIZED VIEW statement, as shown here:

SQL> DROP MATERIALIZED VIEW sales_sum_mv;

Using the SQL Access Advisor
As you realize by now, materialized views are very helpful, but creating and maintaining them is no
trivial task. It’s not easy to figure out the optimal or best materialized views to create. In Oracle
Database 10g, you can use the SQL Access Advisor to help determine which materialized views,
materialized view logs, and indexes to create. Besides materialized views and indexes, the Advisor
can also recommend materialized view logs and the removal of certain indexes.

CHAPTER 5 ■ SCHEMA MANAGEMENT214

4517CH05.qxd 8/19/05 10:34 AM Page 214

■Note In addition to making recommendations for creating new materialized views (and indexes as well) and
helping to implement those recommendations, the SQL Access Advisor also helps you optimize your materialized
views by showing you how to ensure query rewriting and to make a materialized view fast-refreshable.

The SQL Access Advisor can use one of the following sources of SQL to determine ideal materi-
alized views and indexes:

• A hypothetical database workload

• An actual workload you provide

• SQL cache

You can also filter the workloads according to criteria such as queries containing only a certain
table or tables.

You can use the SQL Access Advisor tool manually, by invoking various procedures that belong
to the DBMS_ADVISOR package. Or, you can take a smart shortcut by invoking the SQL Access
Advisor wizard through the OEM Database Control (or Grid control) interface.

You can also use the DBMS_ADVISOR’s QUICK_TUNE procedure, if you want to get quick recom-
mendations for a single SQL statement. The following sections explain all three methods, with the
easiest method, using OEM Database Control, being first.

Using the OEM
The SQL Access Advisor works the same way when you invoke it using the OEM Database Control
(or Grid Control) as it does when you invoke it directly through the DBMS_ADVISOR package. The
reason for this is that the OEM internally relies on the DBMS_ADVISOR package for its functionality.
You can provide a SQL workload as input to the SQL Access Advisor, and you can use a user-defined
workload, current and recent SQL statements in the database’s SQL cache, or a SQL repository as
the source for this SQL workload.

When you use the SQL Access Advisor through the OEM, you create tasks and view the
recommendations with the help of an intuitive SQL Access Advisor wizard. You provide the SQL
statements that are going to use the materialized views during several steps presented by the
wizard. You can access this wizard through the Advisor Central link on the Database Control Home
page (under the Related Links section at the bottom of the page). You can also access it through
links provided on individual alerts or performance pages.

■Tip You can also use the SQL Access Advisor in an evaluation mode, where the advisor evaluates existing
indexes and materialized views and tells you which of those are being utilized by the database.

Follow these steps to use the SQL Access Advisor through Database Control:

1. Clear the SQL cache.

2. Grant the necessary privileges.

3. Create the SQL cache.

4. Get the SQL Access Advisor recommendations.

5. Review the recommendations.

6. Implement the recommendations.

CHAPTER 5 ■ SCHEMA MANAGEMENT 215

4517CH05.qxd 8/19/05 10:34 AM Page 215

Clearing the Cache
The first step is to flush the shared pool to clear the cache of older SQL statements:

SQL> ALTER SYSTEM FLUSH SHARED_POOL;
System altered.
SQL>

Granting Necessary Privileges
The SH user needs to be granted the ADVISOR privilege in order to use the SQL Access Advisor:

SQL> GRANT ADVISOR TO sh;
Grant succeeded.
SQL>

Creating the SQL Cache
In order to provide a SQL workload, you can use any one of the methods mentioned previously. In
this example, the workload is created by providing three SQL statements that become part of the
SQL cache. Connect as the SH user, and run the SQL statements shown in Listing 5-19.

Listing 5-19. Providing a SQL Workload for the SQL Access Advisor

SQL> SELECT c.cust_last_name, SUM(s.amount_sold),
SUM(s.quantity_sold)
FROM sales s, customers c, products p
WHERE c.cust_id = s.cust_id
AND s.prod_id = p.prod_id
AND c.cust_state_province IN ('Texas','New Jersey')

SQL> SELECT c.cust_id, SUM(amount_sold)
FROM sales s, customers c
WHERE s.cust_id= c.cust_id GROUP BY c.cust_id;

SQL> SELECT SUM(unit_cost)
FROM costs
GROUP BY prod_id;

■Tip The SQL Access Advisor can be resource-hungry and thus adversely affect your production database per-
formance. To avoid this, simply collect the necessary workload-related data from the production database and use
one of your test databases to run the SQL Access Advisor’s analysis and recommendation steps.

Getting the SQL Access Advisor Recommendations
The previous step created the SQL workload. Using this workload, the SQL Access Advisor will rec-
ommend the necessary materialized views. Log into the OEM Database Control with SYSDBA
privileges, and then follow these steps to use the SQL Access Advisor:

CHAPTER 5 ■ SCHEMA MANAGEMENT216

4517CH05.qxd 8/19/05 10:34 AM Page 216

1. Go the OEM Home Page ➤ Advisor Central (under the Related Links section) ➤ SQL Access
Advisor.

2. The Initial Options page will be displayed. You can choose between the following:

• Default options: Your task will use the Oracle recommended options.

• Inherit options: Your task will inherit the options from the selected task or template.

For our example, select the Use Default Options choice and click Next.

3. The Workload Source page is displayed. In this page, you must select one of the following as
the source for your SQL workload:

• Current and Recent SQL Activity

• Import Workload from SQL Repository

• User-Defined Workload; Import SQL from a Table or View

• Create a Hypothetical Workload from the Following Schemas and Tables

You’ve already executed the three SQL statements you want to use as your workload, so
select the Current and Recent SQL Activity option.

4. Click on Filter Options, to fine-tune the scope of the SQL workload. Select Filter Workload
under Filter Options. Under the USERS section, select the option that states Include Only
SQL Statements Executed by These Users. Enter SH in the Users field.

5. The Recommendation Options page is displayed. There are two sections: Recommendation
Types and Advisor Mode.

In the Recommendation Types section, you must select one of the following:

• Indexes

• Materialized Views

• Both Indexes and Materialized Views

• Evaluation Only

Since our goal is to create materialized views, select the second option.

In the Advisor Mode section, choose one of the following two modes for the SQL Access
Advisor:

• Limited: This mode is quicker and only processes statements with the highest cost.

• Comprehensive: This mode takes longer to finish, but it performs an exhaustive analy-
sis. The Comprehensive mode is very resource-intensive, so you may not want to run it
during the day in a production database.

Select the Limited mode option.

6. The Schedule page is displayed. This page lets you run the analysis immediately or schedule
it for a later time. You can also enter a task name for your SQL Access Advisor job in the Task
Name box at the top of the page. Go all the way to the bottom of the page and select Imme-
diately under the Start options. Click Next.

7. The Review page appears next, and you can confirm all your choices before the Advisor
starts its run (see Figure 5-2).

CHAPTER 5 ■ SCHEMA MANAGEMENT 217

4517CH05.qxd 8/19/05 10:34 AM Page 217

Figure 5-2. The SQL Access Advisor’s review page

8. You’ll see the Advisor Central page next, with a confirmation note saying that your SQL
Access Advisor job was created successfully.

Reviewing the Recommendations
Once the SQL Access Adviser job successfully completes, you can review the recommendations and
decide whether you want to implement them. Follow these steps:

1. On the Advisor Central page (see step 7 in the previous section), navigate to the Results sec-
tion at the bottom of the page and select your task name. Click View Result.

2. The Results for Task: Task Number page appears next. Click on Recommendation ID 1 to see
the recommendation details.

3. Change the Schema Name for the Create Materialized View to SH, and click OK.

4. On the next page, click Show SQL to view the materialized view generation script, and
click OK.

Implementing the Recommendations
To implement the recommendations, follow these steps:

1. Click Schedule Implementation on the Results for Task page.

2. Enter your task name and click Submit.

3. Click View to see if your job is running.

4. Review the summary, click Materialized View, enter SH in the schema field, and click Go.

CHAPTER 5 ■ SCHEMA MANAGEMENT218

4517CH05.qxd 8/19/05 10:34 AM Page 218

Using the DBMS_ADVISOR Package
Since the OEM Database Control offers such an intuitive interface for using the SQL Access Advisor
to generate recommendations regarding indexes and materialized views, I won’t discuss the labori-
ous steps you need to use when invoking the Advisor through the DBMS_ADVISOR package. I’ll
merely summarize the approach here:

1. Run some SQL statements so you can use them for your task later on.

2. Create a task using the CREATE_TASK procedure.

3. Create a workload using the CREATE_SQLWKLD procedure.

4. Link your task to the workload by using the ADD_SQLWKLD_REF procedure.

5. Use the appropriate procedure for loading either a hypothetical workload, a SQL cache
workload, or a SQL tuning set.

6. Set the task parameters by using the SET_TASK_PARAMETER procedure.

7. Generate recommendations by using the EXECUTE_TASK procedure, using your task name.

8. View the recommendations using the USER_ADVISOR_RECOMMENDATIONS view.

Here’s a query using the USER_ADVISOR_ACTIONS view that shows the SQL Access Advisor’s
recommendations:

SQL> SELECT rec_id, action_id, SUBSTR(command,1,30) AS command
FROM user_advisor_actions WHERE task_name = :task_name
ORDER BY rec_id, action_id;
REC_ID ACTION_ID COMMAND

---------- ---------- -----------------------------
1 5 CREATE MATERIALIZED VIEW LOG
1 8 ALTER MATERIALIZED VIEW LOG
1 9 CREATE MATERIALIZED VIEW LOG
1 19 CREATE INDEX

SQL>

Using the QUICK_TUNE Procedure
You can use the QUICK_TUNE procedure of the DBMS_ADVISOR package when you have a single SQL
statement to tune. You need to supply a task name and a SQL statement as inputs to the procedure.
Here’s an example:

VARIABLE task_name VARCHAR2(255);
VARIABLE sql_stmt VARCHAR2(4000);
EXECUTE :sql_stmt := 'SELECT COUNT(*) FROM customers

WHERE cust_state_province=''TX''';
EXECUTE :task_name := 'MY_QUICKTUNE_TASK';
EXECUTE DBMS_ADVISOR.QUICK_TUNE(DBMS_ADVISOR.SQLACCESS_ADVISOR, -

:task_name, :sql_stmt);

This will produce identical results as when you use all the steps shown in the “Using the
DBMS_ADVISOR Package” section.

CHAPTER 5 ■ SCHEMA MANAGEMENT 219

4517CH05.qxd 8/19/05 10:34 AM Page 219

Using Synonyms
Synonyms are aliases for objects in the database, and they are used mainly to make it easy for users
to access database objects owned by other users, and for security purposes. Synonyms hide the
underlying object’s identity and can be either private or public. Public synonyms are accessible by
all the users in the database, and private synonyms are part of the individual user’s schema—access
rights have to be individually granted to specific users before they can use the private synonyms.
Oracle synonyms can be created for tables, views, materialized views, and stored code, such as
packages and procedures.

Synonyms are very powerful from the point of view of allowing users access to objects that do
not lie within their schemas. All synonyms have to be created explicitly with the CREATE SYNONYM
command, and the underlying objects can be located in the same database or in other databases
that are connected by database links.

There are two major uses of synonyms:

• Object transparency: Synonyms can be created to keep the original object transparent to the
user.

• Location transparency: Synonyms can be created as aliases for tables and other objects that
belong to a database other than the local database.

■Note Keep in mind that even if you know the synonym for a schema table, you can’t necessarily access it.
You must also have been granted the necessary privileges on the table for you to be able to access the table.

When you create a table or procedure, it is created in your schema, and other users can access
it only by using your schema name as a prefix to the object’s name. Listing 5-20 shows a couple of
examples that illustrate this point.

Listing 5-20. Using Schema Names to Access Tables

SQL> SHOW USER
USER is "SYSTEM"

SQL> DESC employees
ERROR:
ORA-04043: object employees does not exist

SQL> DESC hr.employees
Name Null? Type
----------------------- -------- -------------
EMPLOYEE_ID NOT NULL NUMBER(6)
FIRST_NAME VARCHAR2(20)
LAST_NAME NOT NULL VARCHAR2(25)
EMAIL NOT NULL VARCHAR2(25)
PHONE_NUMBER VARCHAR2(20)
HIRE_DATE NOT NULL DATE
JOB_ID NOT NULL VARCHAR2(10)
SALARY NUMBER(8,2)
COMMISSION_PCT NUMBER(2,2)
MANAGER_ID NUMBER(6)
DEPARTMENT_ID NUMBER(4)
SQL>

CHAPTER 5 ■ SCHEMA MANAGEMENT220

4517CH05.qxd 8/19/05 10:34 AM Page 220

As you can see, when the user SYSTEM tried to describe the table without the schema prefix,
Oracle issued an error stating that the table “does not exist.” The way around this is for the schema
owner to create a synonym with the same name as the table name. Once the user SYSTEM uses the
schema.table notation, the table’s contents can be seen.

Creating a Public Synonym
Public synonyms are owned by a special schema in the Oracle database called PUBLIC. As men-
tioned earlier, public synonyms can be referenced by all users in the database. Public synonyms are
usually created by the application owner for tables and other objects such as procedures and pack-
ages so the users of the application can see the objects.

The following code shows how to create a public synonym for the employee table:

SQL> CREATE PUBLIC SYNONYM employees FOR hr.employees;
Synonym created.
SQL>

Now any user can see the table by just typing the original table name.
If you wish, you could provide a different name for the table in the CREATE SYNONYM statement.

Remember that the DBA must explicitly grant the CREATE PUBLIC SYNONYM privilege to user HR
before HR can create any public synonyms.

Just because you can see a table through a public (or private) synonym doesn’t mean that you
can also perform SELECT, INSERT, UPDATE, or DELETE operations on the table. To be able to perform
those operations, a user needs specific privileges for the underlying object, either directly or
through roles, from the application owner. The topic of granting privileges and roles is discussed
in Chapter 11.

Creating a Private Synonym
Private synonyms, unlike public synonyms, can be referenced only by the schema that owns the
table or object. You may want to create private synonyms when you want to refer to the same table
by different aliases in different contexts. You create private synonyms the same way you create pub-
lic synonyms, but you omit the PUBLIC keyword in the CREATE statement.

The following example shows how to create a private synonym called addresses for the loca-
tions table. Note that once you create the private synonym, you can refer to the synonym exactly as
you would the original table name.

SQL> CREATE SYNONYM addresses FOR hr.locations;
Synonym created.
SQL> SELECT * FROM addresses;

Dropping a Synonym
Synonyms, both private and public, are dropped in the same manner by using the DROP SYNONYM
command, but there is one important difference. If you are dropping a public synonym, you need
to add the keyword PUBLIC after the keyword DROP.

Here’s an example of dropping a private synonym:

SQL> DROP SYNONYM addresses;
Synonym dropped.
SQL>

The DBA_SYNONYMS view provides information on all synonyms in your database.

CHAPTER 5 ■ SCHEMA MANAGEMENT 221

4517CH05.qxd 8/19/05 10:34 AM Page 221

Switching to a Different Schema
If you have to constantly use tables owned by a different schema and there aren’t any synonyms on
the table, you may be forced to use the schema qualifier in front of every table name. For example,
you might need to use scott.emp to refer to the emp table owned by the user scott. To avoid this,
you can simply use the ALTER SESSION SET SCHEMA statement, as shown here:

SQL> CONNECT samalapati/sammyy1
SQL> ALTER SESSION SET CURRENT_SCHEMA = scott;
SQL> SELECT * FROM emp;

The use of the ALTER SESSION statement here doesn’t confer any automatic object privileges. In
order to query the emp table without any schema qualifier, as shown in the preceding example, the
user must have SELECT privileges on the emp table.

Using Sequences
Oracle uses a sequence generator to automatically generate a unique sequence of numbers that
users can use in their operations. Sequences are commonly used to create a unique number to
generate a unique primary key for a column. We’ll look at using an Oracle sequence to generate
employee numbers during a data insert.

■Note If users were to use programmatically created sequence numbers instead, Oracle would have to con-
stantly lock and unlock records holding the maximum value of those sequences to ensure an orderly incrementing
of the sequence. This locking would result in users waiting for the next value in the sequence to be issued to their
transactions. Oracle’s automatic generation of sequences increases database concurrency.

You have several options to choose from to create a sequence. We will use a plain vanilla
sequence that starts at 10,000 and is incremented by 1 each time. The sequence is never recycled
or reused, because we want distinct sequence numbers for each employee.

■Note There are two pseudo-columns called currval and nextval that you can use to query sequence values.
The currval pseudo-column provides you with the current value of the sequence, and the nextval pseudo-
column gets you the new or next sequence number.

First, create a sequence as shown in the following example. This is usually the way you use a
sequence to generate a unique primary key for a column.

SQL> CREATE SEQUENCE employee_seq
START WITH 10000
INCREMENT BY 1
NO MAXVALUE
NO CYCLE;

Sequence created.
SQL>

Second, select the current sequence number by using the following statement:

SQL> SELECT employee_seq.currval FROM dual;

CHAPTER 5 ■ SCHEMA MANAGEMENT222

4517CH05.qxd 8/19/05 10:34 AM Page 222

Third, insert a new row into the employee table using nextval from the employee_seq sequence:

SQL> INSERT INTO employees(employee_id, first_name, last_name, email,
2 phone_number, hire_date)
3 VALUES
4* (employee_seq.nextval,'sam','alapati','salapati.tnt.org'

,345-555-5555,to_char('21-JUN-2005');
1 row created.

SQL> COMMIT;
Commit complete.

Finally, check to make sure the employee_id column is being populated by the employee_seq
sequence:

SQL> SELECT employee_id, first_name, last_name
FROM employees
WHERE last_name = 'alapati';

EMPLOYEE_ID FIRST_NAME LAST_NAME
--

10011 sam alapati
SQL>

■Tip When you use sequences, make sure that you drop them before performing a table import to avoid incon-
sistent data.

Note that you can have an Oracle sequence that is incremented continuously, but there may
be occasional gaps in the sequence numbers. This is because Oracle always keeps 20 values (by
default) in memory, and that’s where it gets the nextval from. If there should be a database crash,
the numbers stored in memory will be lost, and there will be a gap in that particular sequence.

Using Triggers
Oracle triggers are similar to PL/SQL procedures, but they are automatically fired by the database
based on specified events. For DBAs, triggers come in handy in performing audit- and security-
related tasks. Besides the standard Oracle triggers, which fire before or after DML statements, there
are powerful triggers based on system events, such as database startup and shutdown and the users
logging on and logging off. Chapter 11 shows you how to use triggers to enhance database security.

You create a trigger with the CREATE TRIGGER statement. You can choose to have the trigger fire
BEFORE, AFTER, or INSTEAD OF the triggering event.

The following example shows the structure of the CREATE TRIGGER statement for a BEFORE event
trigger. Before a DML statement can delete, insert, or update a row in the employee table, Oracle
automatically fires this trigger:

SQL> CREATE TRIGGER scott.emp_permit_changes
BEFORE DELETE
OR INSERT
OR UPDATE
ON emp

. . .
/* Your SQL or PL/SQL code here

CHAPTER 5 ■ SCHEMA MANAGEMENT 223

4517CH05.qxd 8/19/05 10:34 AM Page 223

When you create a trigger, it is enabled by default. If you want to temporarily disable a trigger
for some reason, you use the following statement:

SQL> ALTER TRIGGER test DISABLE;

You can re-enable this trigger by using the following command:

SQL> ALTER TRIGGER test ENABLE;

Viewing Object Information
There are several important data dictionary views you can use to find out detailed information
about any of the database objects discussed in this chapter. DBAs also make heavy use of data dic-
tionary views to manage various schema objects. I provide a brief list of the important views here,
some of which were explained earlier in the chapter. To get complete information about the types
of information you can glean from each of these views, use the SQL command DESCRIBE (as in
DESCRIBE DBA_CATALOG). In Chapter 23, I provide usage examples for all of these views.

• DBA_CATALOG shows the names and owners of all tables, indexes, views, synonyms,
sequences, and clusters in a database.

• DBA_OBJECTS shows all objects in the database and includes their creation time as well as
when they were last altered.

• DBA_TABLESPACES shows all tablespaces and provides information on the type of extent
management, space allocation, and segment space management used in a tablespace.

• DBA_TABLES shows all tables, their owners, and the tablespace they belong to. From this
view, you can find out details like the last time the table was analyzed, the average row
length, and the number of rows in a table.

• DBA_INDEXES shows all indexes and the tables on which they are defined.

• DBA_PART_TABLES shows details about all partitioned tables, including the table name and
the partitioning and subpartitioning types.

• DBA_SYNONYMS shows all synonyms and the table names and the owners of the tables on
which the synonyms are defined.

• DBA_TRIGGERS shows all triggers and tells you the triggering events that set off the triggers.
The view also stores the actual trigger definitions in the TRIGGER_BODY column.

• DBA_SEQUENCES shows all sequences and includes the minimum, maximum, and last
values for a sequence.

• DBA_CONSTRAINTS shows all constraints and constraint types. It also tells you whether a
constraint is deferred or validated.

• DBA_CONS_COLUMNS shows all the constraints in your database, and what columns in a
table they are defined on.

• DBA_TAB_COLUMNS provides detailed information on every column in every table, includ-
ing the average column length, the data type, the density of the column, and when it was last
analyzed.

CHAPTER 5 ■ SCHEMA MANAGEMENT224

4517CH05.qxd 8/19/05 10:34 AM Page 224

Oracle Transaction Management

Transaction management is at the heart of database processing. In order for a large number of
users to run concurrent transactions, the DBMS must manage the transactions with the least
amount of conflict while ensuring the consistency of the database. Transaction management
ensures that a database is accessible to many users simultaneously, and that users can’t undo
each other’s work.

A transaction is a logical unit of work consisting of one or more SQL statements. Transactions
may encompass all of your program or just a part of it. A transaction may perform one operation or
an entire series of operations on the database objects, either interactively or as part of a program.
Transactions are begun implicitly whenever data is read or written, and they are ended by a COMMIT
or ROLLBACK statement.

In this chapter, I cover the basics of transaction management. I start with an explanation of a
transaction in the context of a relational database, I explain the main types of data anomalies, and I
explain the standard transaction isolation levels and Oracle’s implementation of the read-committed
isolation level for maintaining consistency and concurrency.

The concept of serializability is crucial in transaction processing. Concurrency of usage gives
relational databases their great strength, and serializability conditions ensure the concurrency of
database transactions. In this chapter, I explain how Oracle uses the twin techniques of transaction
locking and multiversion concurrency control using undo records to enforce serializability in trans-
actions. The other component in Oracle’s transaction management is its automatic locking feature,
which helps Oracle increase concurrency.

Undo space management is an important part of transaction management, and in this chapter
you’ll learn about the automatic undo management feature. Oracle Database 10g has taken the
Flashback features further, and you’ll learn about the Flashback Query, Flashback Versions Query,
the Flash Transaction Query, and the powerful Flashback Table features, which help in auditing and
correcting logical data errors. All of these Flashback features rely on the use of undo data in your
undo tablespace.

Longer transactions can run the risk of failing to complete due to space errors. You’ll learn how
to use Oracle’s new Resumable Space Allocation feature to resume transactions that are suspended
due to a space-related error. You’ll also learn how to use autonomous transactions. This chapter
also provides an introduction to the Oracle Workspace Manager feature, which offers version con-
trol for table data.

Oracle Transactions
DDL statements issued by a DBA usually aren’t very complex to process. The DDL commands alter
the schema (which means changing the data dictionary), which contains object definitions and
other related metadata for the database. DML language (also called query language) operations are
a different kettle of fish altogether. The majority of DML statements retrieve data from the database,

225

C H A P T E R 6

■ ■ ■

4517CH06.qxd 8/19/05 10:36 AM Page 225

and the rest modify data or insert new data. DML transaction processing involves compiling and
executing SQL statements in the most efficient manner with the least contention among multiple
transactions, while preserving the consistency of the database.

A transaction starts implicitly when the first executable SQL statement begins, and it continues
as the following SQL statements are processed until one of the following events occurs:

• COMMIT: If a transaction encounters a COMMIT statement, all the changes to that point are
made permanent in the database.

• ROLLBACK: If a transaction encounters a ROLLBACK statement, all changes made up to that
point are cancelled.

• DDL statement: If a user issues a DDL statement, such as CREATE, DROP, RENAME, or ALTER,
Oracle first commits any current DML statements that are part of the transaction, before
executing and committing the results of the DDL statement. This is called an implicit
commit, since the committing of the DML statements immediately preceding the DDL
statements isn’t explicitly done by the user.

• Normal program conclusion: If a program ends without errors, all changes are implicitly
committed by the database.

• Abnormal program failure: If the program crashes or is terminated, all changes made by it
are implicitly rolled back by the database.

When a transaction begins, Oracle will assign the transaction a rollback segment, where the
original data is recorded whenever data is modified by an update or delete. The first statement after
the completion of a transaction will mark the beginning of a new transaction. In the sections that
follow, you’ll look at the COMMIT and ROLLBACK transaction control statements in detail.

COMMIT Statement
The COMMIT statement ends a transaction successfully. All changes made by all SQL statements since
the transaction began are recorded permanently in the database. Before the COMMIT statement is
issued, the changes may not be visible to other transactions.

You can commit a transaction by using either of the following statements, which make the
changes permanent:

SQL> COMMIT;
SQL> COMMIT WORK;

Before Oracle can issue a COMMIT statement, the following things happen in the database:

• Oracle generates undo records in the undo segment buffers in the SGA. As you know, the
undo records contain the old values of the updated and deleted table rows.

• Oracle generates redo log entries in the redo log buffers in the SGA.

• Oracle modifies the database buffers in the SGA.

■Note The modified database buffers may be written to the disk before a COMMIT statement is issued. Similarly,
the redo log entries may be written to the redo logs before a COMMIT statement is ever issued.

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT226

4517CH06.qxd 8/19/05 10:36 AM Page 226

When an Oracle transaction is committed, the following three things happen:

1. The transaction tables in the redo records are tagged with the unique system change num-
ber (SCN) of the committed transaction.

2. The log writer writes the redo log information for the transaction from the redo log buffer to
the redo log files on disk, along with the transaction’s SCN. This is the point at which a com-
mit is considered complete in Oracle.

3. Any locks that Oracle holds are released, and Oracle marks the transaction as complete.

■Note If you set the SQL*Plus variable AUTOCOMMIT to ON, Oracle will automatically commit transactions, even
without an explicit COMMIT statement.

The default behavior for the COMMIT statement, which is generally the only type you’ll
encounter, is to use the IMMEDIATE and WAIT options:

• IMMEDIATE vs. BATCH: With the IMMEDIATE option, the log writer writes the redo log records for
the committing transaction immediately to disk. If you’d rather the log writer write the redo
records by buffering them in memory until it’s convenient to write them, you can use the
alternative BATCH option.

• WAIT vs. NOWAIT: With the WAIT option, the COMMIT statement doesn’t return as successful until
the redo records are successfully written to the redo logs. If you’d rather have the COMMIT
statement return without waiting for the writing of the redo records, you can use the NOWAIT
option.

As you can see, the default behavior means that there is a disk I/O after each commit, and con-
sequently, a slight delay in finishing the transaction. For certain types of long transactions, you may
want to avoid the delay resulting from frequent writing of redo log records and waiting for the con-
firmation of those writes.

You can modify this default behavior by using the COMMIT_WRITE initialization parameter at
either the system or the session level. To specify the BATCH and NOWAIT options by default, you can
use the COMMIT_WRITE initialization parameter in the following way:

COMMIT_WRITE = BATCH, NOWAIT

You can also set particular commit options at the session level in the following way:

SQL> ALTER SESSION SET COMMIT_WRITE = BATCH, NOWAIT

You can directly specify alternate commit options in the COMMIT statement itself, in the follow-
ing way, without using the COMMIT_WRITE initialization parameter:

SQL> COMMIT WRITE BATCH NOWAIT

ROLLBACK Statement
The ROLLBACK statement undoes, or rolls back, the changes made by SQL statements within a
transaction, so long as you didn’t already commit the transaction. Once you issue the ROLLBACK
statement, none of the changes made to the tables by SQL statements since the transaction began
are recorded to the database permanently. You can roll back an entire transaction by rolling back all

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT 227

4517CH06.qxd 8/19/05 10:36 AM Page 227

changes made by all the SQL statements within that transaction by simply using the ROLLBACK com-
mand as follows:

SQL> ROLLBACK;

You can also partially roll back the effects of a transaction by using save points in the transaction.
Using a save point, you can roll back to the last SAVEPOINT command in the transaction, as follows:

SQL> ROLLBACK TO SAVEPOINT POINT A;

The SAVEPOINT statement acts like a bookmark for the uncommitted statements in the transac-
tion. In the second of the preceding examples, the rollback is only up to point A in the transaction.
Everything before point A is still committed.

Oracle uses the undo records in the undo tablespace to roll back the transactions after a
ROLLBACK command. It also releases any locks that are held, and it marks the transaction as com-
plete. If the rollback is to a save point, the transaction is deemed incomplete, and you can continue
the transaction.

If a SQL statement errors out during its execution, all the changes made by it to that point are
automatically rolled back. This is known as a statement-level rollback. A deadlock is a condition
that occurs when SQL statements from two sessions contend for the same piece of data. In that sit-
uation, Oracle automatically rolls back one of the SQL statements to resolve deadlocks.

Transaction Properties
Transactions in RDBMSs must possess four important properties, symbolized by the ACID
acronym, which stands for atomicity, consistency, isolation, and durability of transactions. Transac-
tion management, in general, means supporting database transactions so the ACID properties are
maintained.

Let’s look at the transaction properties in more detail:

• Atomicity: Either a transaction should be performed entirely or none of it should be per-
formed. That is, you can’t have the database performing only a part of a transaction. For
example, if you issue a SQL statement that should delete 1,000 records, your entire transac-
tion should abort (roll back) if your database crashes after the transaction deletes 999
records.

• Consistency: The database is supposed to ensure that it’s always in a consistent state. For
example, in a banking transaction that involves debits from your savings account and credits
to your checking account, the database can’t just credit your checking account and stop.
This will lead to inconsistent data, and the consistency property of transactions ensures that
the database doesn’t leave data in an inconsistent state. All transactions must preserve the
consistency of the database. For example, if you wish to delete a department ID from the
Department table, the database shouldn’t permit your action if some employees in the
Employees table belong to the department you’re planning on eliminating.

• Isolation: Isolation means that although there’s concurrent access to the database by multi-
ple transactions, each transaction must appear to be executing in isolation. The isolation
property of transactions ensures that a transaction is kept from viewing changes made by
another transaction before the first transaction commits. This property is upheld by the
database’s concurrency control mechanisms, as you’ll see in the following sections. Although
concurrent access is a hallmark of the relational database, isolation techniques make it
appear as though users are executing transactions serially, one after another. This chapter
discusses how Oracle implements concurrency control—the assurance of atomicity and iso-
lation of individual transactions in a concurrently accessed database.

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT228

4517CH06.qxd 8/19/05 10:36 AM Page 228

• Durability: The last ACID property, durability, ensures that the database saves commit trans-
actions permanently. Once a transaction completes, the database should ensure that the
transaction’s changes are not lost. This property is enforced by the database recovery
mechanisms, which make sure that all committed transactions are retrieved. As you saw
in Chapter 4, Oracle uses the write-ahead protocol, which ensures that all changes are first
written to the redo logs on disk before they’re transferred to the database files on disk.

■Note Users can name a transaction to make it easier to monitor it, and there are several advantages to giving a
meaningful name to a long-running transaction. For example, using the LogMiner utility, you can look for details of
the specific transaction you’re interested in. Chapter 16 shows how to use the LogMiner utility to help undo DML
changes. Assigning names to transactions also makes it easier for the user to query the transaction details using
the name column of the V$TRANSACTION view.

Transaction Concurrency Control
To ensure data consistency, each user must see a consistent set of data that includes all changes
made by that user’s transactions as well as all the other users’ transactions. In a single-user data-
base, it’s a trivial matter to achieve data consistency. However, real-life databases need to allow
simultaneous operations by numerous users, a requirement that’s known as data concurrency.
Improper interactions among transactions can cause data to become inconsistent.

Transaction concurrency is achieved by managing various users’ simultaneous transactions
without permitting any interference among them. If you’re the only user of the database, you don’t
need to worry about concurrency control of transactions. However, in most cases, databases enable
thousands of users to perform simultaneous select, update, insert, and delete transactions against
the same table.

One solution to concurrency control is to lock the entire table for the duration of each opera-
tion, so one user’s transactions do not impact another’s. Thus, each user would be operating in
isolation, thereby sacrificing data concurrency. However, this would mean that access to the table
would be severely reduced. As you’ll see, Oracle does use locking mechanisms to keep the data con-
sistent, but the locking is done in the least restrictive fashion, with the goal of maintaining the
maximum amount of concurrency.

Concurrency no doubt increases the throughput of an RDBMS, but it brings along its own spe-
cial set of problems, which we’ll look at next.

Concurrency Problems
Concurrent access to the database by multiple users introduces several problems. Some of the most
important problems potentially encountered in concurrent transaction processing are dirty reads,
phantom reads, lost updates, and nonrepeatable reads.

The Dirty-Read Problem
A dirty read occurs when a transaction reads data that has been updated by an ongoing transaction
but has not been committed permanently to the database. For example, say transaction A has just
updated the value of a column, and it is now read by transaction B. What if transaction A rolls back
its changes, whether intentionally or because it aborts for some reason? The value of the updated
column will also be rolled back as a result. Unfortunately, transaction B has already read the new
value of the column, which is now incorrect because of the rolling back of transaction A.

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT 229

4517CH06.qxd 8/19/05 10:36 AM Page 229

■Tip The problem described in this section could be avoided by imposing a simple rule: Don’t let any transaction
read the intermediate results of another transaction before the other transaction is either committed or rolled back.
This way, the reads are guaranteed to be consistent.

The Phantom-Read Problem
Say you’re reading data from a table (using a SELECT statement). You re-execute your query after
some time elapses, and in the meantime, some other user has inserted new data into the table.
Because your second query will come up with extra rows that weren’t in the first read, they’re
referred to as “phantom” reads, and the problem is termed a phantom read. Phantom-read
problems are caused by the appearance of new data in between two database operations in a
transaction.

The Lost-Update Problem
The lost-update problem is caused by transactions trying to read data while it is being updated by
other transactions. Say transaction A is reading a table’s data while it is being updated by transac-
tion B, and transaction B completes successfully and is committed. If transaction A has read the
data before transaction B has fully completed, it might end up with intermediate data. The lost
update anomaly occurs because two users have updated the same row, and since the second
update overwrites the first, the first update is lost. Allowing transactions to read and update a
table before the completion of another transaction causes the problem in this case.

The Nonrepeatable-Read (Fuzzy-Read) Problem
When a transaction finds that data it has read previously has been modified by some other transac-
tion, you have a nonrepeatable-read (or fuzzy-read) problem. Suppose you access a table’s data at a
certain point in time, and then you try to access the same data a little later, only to find that the data
values are different the second time around. This inconsistent data during the same transaction
causes a nonrepeatable-read problem.

Schedules and Serializability
As you can see, all the data problems are due to concurrent access—you can safely assume that a
transaction executed in isolation will always leave the database in a consistent state when the
transaction completes. If the database permits concurrent access, then you need to consider the
cumulative effect of all the transactions on database consistency.

To do this, the database uses a schedule, which is a sequence of operations from one or more
transactions. If all the transactions executed serially, one after another, the schedule would also be
serial. If the database can produce a schedule that is equivalent in its effect to a serial schedule,
even though it may be derived from a set of concurrent transactions, it is called a serializable
schedule. The serializable schedule consists of a series of intermingled database operations drawn
from several transactions, the final outcome of which is a consistent database.

As you can surmise, deriving a schedule is not easy in practice. However, users don’t have to
concern themselves with the mechanics of serialization when they use their transactions. The
Oracle database automatically derives serializable schedules through the use of isolation levels
and the management of undo data. Let’s look at these important concepts next.

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT230

4517CH06.qxd 8/19/05 10:36 AM Page 230

Isolation Levels and the ISO Transaction Standard
You know that one way to avoid data anomalies is to prevent more than one user from viewing or
changing data at the same time. However, this defeats our main purpose of providing concurrent
access to users. To control this trade-off between concurrency and isolation, you specify an isola-
tion level for each transaction.

The ISO (http://www.iso.ch) standard for transactions rests on the two key transaction-ending
statements: COMMIT and ROLLBACK. All transactions, according to the ISO standard, begin with a
SELECT, UPDATE, INSERT, or DELETE statement. No transaction can view another transaction’s interme-
diate results. Results of a second transaction are available to the first transaction only after the
second transaction completes.

The ISO transaction standards are meant to ensure the compliance of transactions with the
atomic and isolation properties, and to avoid the concurrency problems explained in the previous
section. All transactions must ensure that they preserve database consistency. A database is
consistent before a transaction begins, and it must be left in a consistent state at the end of the
transaction. If you can devise a method to avoid the problems mentioned in the previous section,
you can ensure a high degree of concurrent interactions among transactions in the database. There
is a price to pay for this, however. Attempts to reduce the anomalies will result in reduced concur-
rency.

You can achieve consistency by enforcing serial use of the database, but it’s impractical. There-
fore, the practical goal is to find those types of concurrent transactions that don’t interfere with each
other—in other words, to find transactions that guarantee a serializable schedule. Proper ordering
of the transactions becomes very important, unless they’re all read-only transactions.

THE MAIN STAGES OF SQL PROCESSING

SQL statements pass through several stages during their processing: parsing, binding, and executing. Oracle uses
cursors, private SQL areas, to store parsed statements and other information relating to the statements it’s currently
processing. Oracle automatically opens a cursor for all SQL statements.

Parsing

During the parsing stage, Oracle does several things to check your SQL statements:

• Oracle checks that your statements are syntactically correct. The server consults the data dictionary to
check whether the tables and column specifications are correct.

• Oracle ensures that you have the privileges to perform the actions you are attempting through your SQL
statements.

• Oracle draws up the execution plan for the statement, which involves selecting the best access methods for
the objects in the statement.

After it checks the privileges, Oracle assigns a number called the SQL hash value to the SQL statement for
identification purposes. If the SQL hash value already exists in memory, Oracle will look for an existing execution
plan for the statement, which details the ideal way it should access the various database objects, among other
things. If the execution plan exists, Oracle will proceed straight to the actual execution of the statement using that
execution plan. This is called a soft parse, and it is the preferred technique for statement processing. Because it
uses previously formed execution plans, soft parsing is fast and efficient.

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT 231

4517CH06.qxd 8/19/05 10:36 AM Page 231

The opposite of a soft parse is a hard parse, and Oracle has to perform this type of parse when it doesn’t find
the SQL hash value in memory for the statement it wants to execute. Hard parses are tough on system memory and
other resources. Oracle has to create a fresh execution plan, which means that it has to evaluate the numerous
possibilities and choose the best plan from among them. During this process, Oracle needs to access the library
cache and dictionary cache numerous times to check the data dictionary, and each time it accesses these com-
monly used areas, Oracle needs to use latches, which are low-level serialization control mechanisms, to protect
shared data structures in the SGA. Thus, hard parsing contributes to an increase in latch contention.

Any time there’s a severe contention for resources during statement processing, the execution time will
increase. Remember that too many hard parses will lead to a fragmentation of the shared pool, making the con-
tention worse.

After the parsing operation is complete, Oracle allots a shared SQL area for the statement. Other users can
access this parsed version as long as it is retained in memory.

Binding

During the binding stage, Oracle retrieves the values for the variables used in the parsing stage. Note that the vari-
ables are expanded to literal values only after the parsing stage is over.

Execution

Once Oracle completes the parsing and binding, it executes the statement. Note that Oracle will first check whether
there is a parsed representation of the statement in memory already. If there is, the user can execute this parsed
representation directly, without going through the parsing process all over again.

It’s during the execution phase that the database reads the data from the disk into the memory buffers (if it
doesn’t find the data there already). The database also takes out all the necessary locks and ensures that it logs
any changes made during the SQL execution. After the execution of the SQL statement, Oracle automatically closes
the cursors.

■Note It’s important for you as a DBA to fully understand the nature of transactions in relational databases. A
good reference is the book by Jim Gray (a leading expert on database and transaction processing) and Andreas
Reuter, Transaction Processing: Concepts and Techniques (Morgan Kaufmann, 1993).

Oracle’s Isolation Levels
The ISO transaction standards use the term isolation level to indicate the extent to which a data-
base allows interaction among transactions. Isolation of transactions keeps concurrently executing
database transactions from viewing incomplete results of other transactions. The main isolation
levels are the serializable, repeatable read, read-uncommitted, and read-committed isolation levels.
Here’s what the different levels of transaction isolation levels mean:

• Serializable: Under the serializable level of isolation, the transaction will lock all the tables it
is accessing, thereby preventing other transactions from updating any of the tables under-
neath it until it has completed its transaction by using a COMMIT or ROLLBACK command.

• Repeatable read: The repeatable-read isolation level guarantees read consistency—a transac-
tion that reads the data twice from a table at two different points in time will find the same
values each time. You avoid both the dirty-read problem and the nonrepeatable-read prob-

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT232

4517CH06.qxd 8/19/05 10:36 AM Page 232

• Read uncommitted: The read-uncommitted level, which allows a transaction to read another
transaction’s intermediate values before it commits, will result in the occurrence of all the
problems of concurrent usage.

• Read committed: Oracle’s default isolation level is the read-committed level of isolation at
the statement level. Oracle queries see only the data that was committed at the beginning of
the query. Because the isolation level is at the statement level, each statement is allowed to
see only the data that was committed before the commencement of that statement. The
read-committed level of isolation guarantees that the row data won’t change while you’re
accessing a particular row in an Oracle table.

■Note If you’re in the process of updating a row that you fetched into a cursor, you can rest assured that no one
else is updating the same row simultaneously. However, if you’re executing queries, you may get different values
each time if other transactions have updated data successfully in between your queries. Remember that Oracle
only guarantees statement-level isolation here, not transaction-level isolation.

Practical real-world databases need a compromise between concurrency access and serializ-
able modes of operation. The key issue here is that by specifying a high degree of isolation, you can
keep one transaction from affecting another, but at the cost of significant deterioration in database
performance. On the other hand, a low level of transaction isolation will introduce the data prob-
lems outlined earlier in the chapter, but it leads to better performance. A transaction running at a
serializable isolation level will appear as if it’s running in isolation—it’s as if all the other concurrent
transactions run either before or after this transaction.

Three of the four main ISO isolation levels allow for some deviation from the theoretical con-
cept of serializable transactions. Table 6-1 shows the extent to which each of the four main levels of
isolation suffers from the concurrency problems listed earlier. Note that a value of Yes in the table
means that the particular problem is possible under that isolation level, and a value of No means
that the problem isn’t possible for that isolation level.

Table 6-1. Preventable Concurrency Problems Under Various Isolation Levels

Isolation Level Dirty Read Nonrepeatable Read Phantom Read

Read uncommitted Yes Yes Yes

Read committed No Yes Yes

Repeatable read No No Yes

Serializable No No No

As you can see, the last isolation level in Table 6-1, serializable, avoids all concurrency prob-
lems, but unfortunately, it’s not a practical option because it doesn’t allow any concurrent use of the
database. Oracle’s default read-committed isolation level will get rid of the dirty-read and the lost-
update problems. You won’t have the dirty-read problem because your queries will read only data
that was committed at the beginning of the query, thereby avoiding reading data that may later be
rolled back by a different transaction. In addition, you’ll avoid the lost-update problem because
transactions can’t read data that’s currently being modified until the updates have been completed.

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT 233

4517CH06.qxd 8/19/05 10:36 AM Page 233

Transaction- and Statement-Level Consistency
Oracle automatically provides statement-level read consistency by default. That is, all data that a
query sees comes from a single point in time. This means that a query will see consistent data when
it begins. The query sees only data committed before it starts, and no data committed during the
course of the query is visible to it. Queries in this context don’t have to be SELECT statements. An
INSERT with a subquery or an UPDATE or DELETE will also involve an implicit query, and they all return
consistent data.

Oracle can also provide transaction-level read consistency, though this is not the default.
Oracle can use pre-change data images stored in undo segments to provide the transaction- and
statement-level read consistency.

Changing the Default Isolation Level
Oracle’s read-committed level of isolation provides protection against dirty reads and lost updates
because queries read data only after the COMMIT statement is executed. The transactions are all con-
sistent on a per-statement basis. Readers will not block writers of transactions, and vice versa. As
you can see, Oracle’s default read-committed isolation level doesn’t guarantee you’ll avoid the
nonrepeatable-read and phantom-read problems. Oracle guarantees only statement-level, not
transaction-level, read consistency. However, Oracle allows you to explicitly change the default
read-committed isolation level by selecting the serializable isolation level as an alternative.

■Note Oracle also offers a read-only isolation level that isn’t part of the SQL:99 standards. The read-only isola-
tion level isn’t practical for most production databases, since it doesn’t permit changes to the data—you can only
read (SELECT) data from the tables.

The read-committed level of isolation provides a great deal of concurrency and consistency
in the database. However, this mode does not provide transaction-level consistency. Because it’s a
statement-level isolation, changes made in between statements in a transaction may not be seen
by a query, and for this reason you’ll continue to have the nonrepeatable-read problem; you simply
can’t be guaranteed the same results if you repeat your queries. The phantom-read problem also
still lurks because the model doesn’t prevent other transactions from updating tables in between
your queries.

The serializable isolation level will treat the database as a single-user database, thus eliminat-
ing the data anomalies caused by simultaneous use and modification of the data. By using the
ALTER SESSION statement, you can serialize the isolation level, thus avoiding the concurrency prob-
lems. You can change the isolation level from the default level of read-committed to a serializable
isolation level using the following statement:

SQL> ALTER SESSION SET ISOLATION LEVEL SERIALIZABLE;

Once you execute this statement, any DML statements you execute in a serializable transaction
will fail if they attempt to update rows currently being updated by another uncommitted transac-
tion at the start of the serializable transaction.

A serializable level of isolation is suited for databases where multiple consistent queries need
to be issued during an update transaction. However, serialization isn’t a simple choice, because it
seriously reduces your concurrency. These are some of the problems involved in setting the serializ-
able isolation level:

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT234

4517CH06.qxd 8/19/05 10:36 AM Page 234

• Serialization involves locking tables for exclusive use by transactions, thereby slowing down
transaction concurrency.

• You have to set the INITTRANS parameter for tables at creation time to at least 3 in order for
the serialization level of isolation to take effect. The INITTRANS parameter determines the
number of concurrent transactions on a table.

• Throughput in the serialization isolation level is much lower than in the read-committed
isolation level, especially in high-concurrency databases with many transactions accessing
the same tables for updates.

• You must incorporate error-checking code in the application if you want to use the serializ-
able mode of isolation.

• Serializable transactions are more prone to deadlocks, a situation in which transactions are
stuck waiting for each other to release locks over data objects. Deadlocks lead to costly roll-
backs of transactions.

In general, it’s safest to stick with Oracle’s default read-committed level of transaction isolation,
although it isn’t perfect. Oracle recommends that you stick with the default read-committed level
of isolation, which produces the maximum throughput with only a slight risk of running into the
nonrepeatable-read and phantom-read anomalies.

The read-committed transaction level provides a good trade-off between data concurrency and
data consistency. Also, the throughput is much higher with this mode of isolation than with the
purer serialization mode. If getting a repeatable read is your objective in using a serializable isola-
tion level, you can always use explicit locks in situations where that is necessary.

For standard OLTP applications, in particular, with their high-volume, concurrent, short-lived
transactions that are unlikely to conflict with each other, this mode is ideal from a performance
point of view. Very few transactions in an OLTP database issue the same query multiple times, so
phantom reads and nonrepeatable reads are rare. Serializable modes of concurrency are more
appropriate for databases with mostly read-only transactions that run for a long time.

Implementing Oracle’s Concurrency Control
A database may use one or more methods to implement concurrency of use. These include locking
mechanisms to guarantee exclusive use of a table by a transaction, time-stamping methods that
enable serialization of transactions, and the validation-based scheduling of transactions. Locking
methods are called pessimistic because they assume that transactions will violate the serializable
schedules unless they’re prevented explicitly from doing so. The time-stamping and validation
methods, on the other hand, are called optimistic because they don’t assume that transactions are
bound to violate the serializable schedules.

As you might guess, locking methods cause more delays than the optimistic methods because
they keep conflicting transactions waiting for access to the locked database objects. On the positive
side, however, locking methods don’t have to abort transactions because they prevent potentially
conflicting transactions from interacting with other transactions. The optimistic methods usually
have to abort transactions when they might violate a serializable schedule.

Time-stamping methods assign time stamps to each transaction and enforce serializability
by ensuring that the transaction time stamps match the schedule for the transactions. Validation
methods maintain a record of transaction activity. Before committing a transaction, the changed
data is validated against the changed items of all currently active transactions to eliminate any
unserialized schedules.

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT 235

4517CH06.qxd 8/19/05 10:36 AM Page 235

Oracle uses a combination of the available methods. It uses locks along with what is called the
multiversion concurrency control system (a variation of the time-stamping method) to manage
concurrency.

Oracle locks prevent destructive interaction between transactions that are trying to access the
same resource. The resource could be an application table or row, or it could be a shared system
data structure in memory. It could also be a data dictionary table or row. Locks ensure data consis-
tency while allowing data concurrency by letting multiple users simultaneously access the
database.

Oracle does its locking implicitly; you don’t have to worry about which table to lock or how to
lock it, as Oracle will automatically place locks on your transaction’s behalf when necessary. By
default, Oracle uses row-level locking, which involves the least restrictive amount of locking, thus
guaranteeing the highest amount of concurrency. By default, Oracle stores the locked row informa-
tion in the data blocks. Also, Oracle never uses lock escalation—that is, it doesn’t go from a lower-
level granularity like row-level locking to a higher level of granularity like table-level locking.

Oracle’s multiversion concurrency control system is a variation of the time-stamp approach to
concurrency control; it maintains older versions of table data to ensure that any transaction can
read the original data even after it has been changed by other transactions. Unlike locking, no waits
are involved here; transactions use different versions of the same table instead of waiting for other
transactions to complete. When transactions want to update a row, Oracle first writes the original
before-image to an undo record in the undo tablespace. Queries then have a consistent view of the
data, which provides read consistency—they only see data from a single point in time. Using the
same mechanism, Oracle is also capable of providing transaction-level read consistency, meaning
that all the separate statements in a transaction see data from a single point in time. The multiver-
sion concurrency control system used by Oracle enables you to get by with the less-stringent
read-committed mode of isolation instead of having to use the slower but safer serializable isolation
level.

Here are some important features of Oracle locking:

• Oracle implements locks by setting a bit in the data item being locked. The locking informa-
tion is stored in the data block where the row lives.

• Locks are held for the entire length of a transaction and are released when a COMMIT or a
ROLLBACK statement is issued.

• Oracle doesn’t use lock escalation. Oracle doesn’t need to escalate locks, as it stores the lock-
ing information in the individual data blocks. Lock escalation—for example, an escalation
from the row level to the table level—reduces concurrency.

• Oracle does use lock conversion, which involves changing the restrictiveness of a lock while
keeping the granularity of the lock the same. For example, a row share table lock is converted
into a more restrictive row exclusive table lock when a SELECT FOR UPDATE statement starts
updating the previously locked rows in the table. I explain locking granularity and Oracle
locking types in more detail in the following sections.

In the next few sections, you’ll learn more about the locking methods and lock types used by
Oracle’s concurrency control mechanism.

Oracle Locking Methods
Oracle uses locks to control access to two broad types of objects: user objects, which include tables,
and system objects, which may include shared memory structures and data dictionary objects.
Oracle follows a pessimistic locking approach, which anticipates potential conflicts and will block
some transactions from interfering with others in order to avoid conflicts between concurrent
transactions.

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT236

4517CH06.qxd 8/19/05 10:36 AM Page 236

Granularity, in the context of locking, is the size of the data unit locked by the locking mecha-
nism. Oracle uses row-level granularity to lock objects, which is finest level of granularity (exclusive
table locking is the most coarse level). Several databases, including Microsoft SQL Server, provide
only page-level, not row-level, locking. A page is somewhat similar to an Oracle data block, and it
can have a bunch of rows, so page-level locking means that during an update, several rows in addi-
tion to the rows of interest are locked; if other users need the locked rows that are not part of the
update, they have to wait for the lock on the page to be released. For example, if your page size is
8KB, and the average row length in a table is 100 bytes, about 80 rows can fit in that one page. If one
of the rows is being updated, a block-level lock limits access to the other 79 rows in the block. Lock-
ing at a level larger than the row level would reduce data concurrency.

■Note Remember, the coarser the locking granularity, the more serializable the transactions, and thus the fewer
the concurrency anomalies. The flip side of this is that the coarser the granularity level, the lower the concurrency
level. Oracle locks don’t prevent other users from reading a table’s data, and queries never place locks on tables.

All locks acquired by statements in a transaction are held by Oracle until the transaction com-
pletes. When an explicit or implicit COMMIT or ROLLBACK is issued by a transaction, Oracle releases any
locks that the statements within the transaction have been holding. If Oracle rolls back to a save
point, it releases any locks acquired after the save point.

Oracle Lock Types
Locks, as you have seen, prevent destructive interaction between transactions by allowing orderly
access to resources. These resources could be database objects such as tables, or other shared data-
base structures in memory. Oracle locks can be broadly divided into the following types, according
to the type of object that is locked: DML locks, DDL locks, latches, internal locks, and distributed
locks. These lock types are described in the following sections.

DML Locks
DML locks are locks placed by Oracle to protect data in tables and indexes. Whenever a DML state-
ment seeks to modify data in a table, Oracle automatically places a row-level lock on the rows in the
table that are being modified. (This makes it impossible, for example, for a group of booking clerks
to sell the “last” ticket to more than one customer.) Row-level DML locks guarantee that readers of
data don’t wait for writers of data, and vice versa. Writers will only have to wait when they want to
update the same rows that are currently being modified by other transactions.

Any Oracle lock mode will permit queries on the table. A query will never block an update,
delete, or insert, and vice versa. An exclusive lock only permits queries on a table, and prevents
users from performing any other activity on it, like updating or deleting data. A row exclusive lock,
on the other hand, allows concurrent access to a table for updating, deleting, and inserting data, but
prevents any user from locking the entire table for exclusive use. There are other lock modes as well,
but for our purposes, it’s enough to focus on these two basic Oracle lock modes.

Any query that a transaction issues won’t interfere with any other transaction, because all they
do is read data—they don’t modify it. Queries include transactions using the SELECT statement, as
well as transactions such as INSERT, UPDATE, and DELETE if they happen to use an implicit SELECT
statement. Queries never need locks, and they never need to wait for any other locks to be released.

Any INSERT, DELETE, UPDATE, or SELECT FOR UPDATE statements will automatically issue an exclu-
sive row-level lock on the rows affected by the transaction. This exclusive row-level lock means that
other transactions can’t modify the affected rows until the original transaction commits or rolls
back, thereby releasing the exclusive locks.

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT 237

4517CH06.qxd 8/19/05 10:36 AM Page 237

A simultaneous DDL table lock is held for operations that include the INSERT, UPDATE, DELETE,
and the SELECT FOR UPDATE DML operations. DML operations need DDL table locks to ensure that
some other transaction isn’t changing the table definition while modifying data. This means that a
table can’t be altered or dropped while an uncommitted transaction is still holding a table lock on
the table.

Table locks can range from being very restrictive to minimally restrictive. Oracle acquires a row
exclusive table lock, which indicates that a transaction holding the lock has updated one or more
rows in the table. Other transactions are allowed to select, insert, update, delete, or lock rows in the
same table concurrently. However, other transactions can’t lock the table exclusively for their own
reads or writes. All INSERT, UPDATE, and DELETE statements impose row exclusive locks.

Table 6-2 summarizes the row-level and table-level DML locks that are acquired for the most
common database operations.

Table 6-2. DML Row- and Table-Level Locks Held for Common Operations

Operation Row-Level Lock Table-Level Lock

SELECT . . . FROM table None None

INSERT INTO table Exclusive Row exclusive

UPDATE table Exclusive Row exclusive

INSERT INTO table Exclusive Row exclusive

DELETE FROM table Exclusive Row exclusive

Here’s a brief summary of how Oracle’s transactions most commonly use the Oracle locking
features:

• The transaction that contains a DML statement acquires exclusive row locks on the rows
modified by a statement within the transaction. Until this transaction commits or rolls back,
other transactions can’t update or delete these rows.

• A query in a transaction can see only committed changes made by earlier statements in the
same transaction, but won’t be able to see data committed by other transactions after it
started.

• In addition to the exclusive row locks, a transaction that contains a DML statement acquires
at least a row exclusive table lock on the table that contains the rows. If it’s already holding a
more restrictive table-level DML lock, it retains the more restrictive lock.

Oracle offers other kinds of table locks besides the row exclusive lock described previously, but
they are not important for our purposes here. All you need to understand is that Oracle uses row-
level locking for updates, inserts, and deletes, and that it also automatically imposes a row exclusive
table lock during these operations.

DDL Locks
As you’ve seen, Oracle automatically places DML locks on tables that are in the process of having
some of their rows modified by a transaction. In addition, such a transaction simultaneously holds
a table-level DDL lock on the table, which will prevent other transactions from altering or dropping
the table while its DML transactions aren’t yet completed.

You can also place DDL locks on tables when you are conducting a purely DDL operation,
without any accompanying DML transaction.

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT238

4517CH06.qxd 8/19/05 10:36 AM Page 238

Latches, Internal Locks, and Distributed Locks
Latches are internal mechanisms that protect shared data structures in the SGA. For example, data
dictionary entries are accessed in the buffer by many processes, and latches control the processes’
access to these memory structures. The data structures that list the blocks currently in memory are
also frequently consulted during the running of the Oracle instance, and server and background
processes that need to change or read the data in critical data structures such as these would
acquire a very short lock (called a latch, in this instance) on the object. The implementation of
latches, including the specification of how long a process will wait for it, is usually specific to the
operating system.

Data dictionary locks are used by Oracle whenever the dictionary objects are being modified.
Distributed locks are specialized locking mechanisms used in a distributed database system or in
the Oracle Real Application Clusters (RAC) environment. Internal locks are used by Oracle to protect
access to structures such as data files, tablespaces, and rollback segments.

Explicit Locking in Oracle
Oracle automatically applies the necessary locks to the tables and other objects based on the trans-
actions that are coded in the applications. Oracle’s locking mechanism works automatically to
ensure statement-level read consistency and concurrency. For the most part, Oracle’s default,
behind-the-scenes locking operations should suffice, but there occasionally may be situations
when the application developer will be better off manually locking tables. Sometimes when the
transaction needs to see consistent data across many joined tables, the application developer can
use explicit locking. In addition, when you don’t want the data values changed during long transac-
tions, it may sometimes be necessary for the application developer to apply explicit locks.

Oracle provides explicit locking features to override the implicit locks placed by Oracle on
behalf of transactions. You can override Oracle’s default (implicit) locking mechanism at the trans-
action level or the session level. If you want to override all Oracle’s default locking mechanisms, you
can do so by using the SET TRANSACTION ISOLATION LEVEL SERIALIZABLE statement at the session
level. The same statement will also override the default locking modes at the transaction level. In
addition, you can manually lock a table by explicitly using a table lock or by using the SELECT FOR
UPDATE command.

Blocking Locks
A blocking lock occurs when a lock placed on an object by a user prevents or blocks other users
from accessing the same object or objects. The DBA_BLOCKERS table is useful in getting this infor-
mation—it tells you which sessions are currently holding locks on objects for which some other
object is presently waiting. You can combine the information in the DBA_BLOCKERS table with that
in the V$SESSION tables, to find out who is holding the blocking session. Here is the SQL statement:

SQL> SELECT a.username, a.program, a.sid, a.serial#
2 FROM v$session a, dba_blockers b
3 WHERE a.sid = b.holding_session;

SQL>

The following is a simple example of a blocking session: user nick alapati issues the following
DML statement, but doesn’t commit it:

SQL> DELETE FROM emp
WHERE name='samalapati';

1 row deleted.
SQL>

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT 239

4517CH06.qxd 8/19/05 10:36 AM Page 239

User nina alapati, in the meanwhile, issues an identical statement, but when she executes it,
it hangs:

SQL> DELETE FROM emp
WHERE name='samalapati';

The second user’s DML statement will hang because the first user hasn’t committed yet, and
thus holds a row-level lock on the row the second user is trying to change. When the first user rolls
back or commits, the second user’s session automatically moves forward and finishes.

You can use the V$SESSION view to find out which sessions are blocking other sessions.
Here’s a simple query using the view that shows the blocking lock caused by the previous two SQL
statements:

SQL> SELECT username, blocking_session
blocking_session_status
FROM V$SESSION WHERE blocking_session_status='VALID';

When you do find a blocking session, and it is blocking another session from doing its job, you
may have to terminate the blocking session by using the ALTER SYSTEM KILL SESSION command. If
the process or the session still won’t go away, go to the operating system level and kill the process or
the thread that spawned the Oracle session.

Deadlocks
Deadlocks occur in any RDBMS when two sessions block each other while each waits for a resource
that the other session is holding. This is a catch-22 situation, because the stalemate can’t be broken
by either session unilaterally. In such circumstances, Oracle steps in, kills one of the sessions, and
rolls back its transaction. Oracle quickly recognizes that two sessions are deadlocked and termi-
nates the transaction that holds the most recently applied lock. This will release the object locks
that the other session is waiting for. You don’t really need to do anything when there are deadlocks,
although you’ll see messages in your dump directory that deadlocks are currently in the database.

When Oracle encounters a deadlock between transactions, it records in the trace file (in
the directory location specified by the USER_DUMP_DEST initialization parameter) the session IDs
involved, the SQL statements issued in the transactions, and the specific object name and the rows
on which locks are held in each session involved in the deadlock. Oracle further informs you that
the deadlock is not an Oracle error, but is due to errors in application design or is a result of issuing
ad hoc SQL. Application designers must write exception handlers in the code to roll back the
aborted transaction and restart it.

You can avoid deadlocks by paying attention in the design phase and ensuring the proper
locking order of the objects. Given that writers block other writers, deadlocks in Oracle are a rare
phenomenon.

Managing Oracle Locks
As I mentioned in the previous sections, locking in Oracle is usually done implicitly by Oracle itself,
at the least restrictive level. Users can override Oracle’s default locking behavior, but you probably
won’t find too many cases where you’re dealing with user-managed locks. Most of your lock man-
agement on a live database will involve checking whether any active locks are actually blocking
users from conducting their DML operations. You can use either a script-based approach or the
Oracle Enterprise Manager to analyze locks in your instance.

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT240

4517CH06.qxd 8/19/05 10:36 AM Page 240

Using SQL to Analyze Locks
It’s possible to examine the current locking situation in your instance by using SQL scripts. You may
have to first run the catblock.sql script, located in the $ORACLE_HOME/rdbms/admin directory,
before executing any locking-related SQL scripts for the first time in a database. This script will
create several important locking-related views, such as DBA_LOCKS, DBA_WAITERS, and
DBA_BLOCKERS.

Oracle provides a script called utllockt.sql that gives you a lock wait-for graph in a tree-structured
format showing sessions that are holding locks that are affecting other sessions. Using this script,
you can see what locks a session may be waiting for and which session is holding the lock. The
script is located in the $ORACLE_HOME/rdbms/admin directory. Here’s a sample execution of the
utllockt.sql script:

SQL> @$ORACLE_HOME/rdbmsa/admin/utllockt.sql
Waiting session Type Mode requested Mode Held Lock Id1

682 None None None 0
363 TX Share (S) Exclusive (X)

■Note The utllockt.sql script prints the sessions in the system that are waiting for locks, and the locks that they
are waiting for. The printout is tree-structured. If a session ID is printed immediately below and to the right of
another session, then it is waiting for that session. The session IDs printed at the left side of the page are the ses-
sions everyone is waiting for.

In the preceding example, the session ID on the left side, 682, is what session 363 is waiting for.
The information printed to the right of each session shows information about the lock it’s waiting
for. Thus, session 682, although it’s holding a lock, doesn’t show anything (None) in the lock-
information columns because it isn’t waiting for any lock. Session 363, however, tells you that it
has requested a share (S) lock and is waiting for session 682 to release its exclusive (X) lock on the
table row.

In the following example from the utllockt.sql script, session 9 is waiting for session 8, session 7
is waiting for session 9, and session 10 is waiting for session 9 as well.

* WAITING SESSION TYPE MODE REQUESTED MODE HELD LOCK ID1 LOCK ID2
* ----------------- ---- ----------------- ----------------- -------- --------
* 8 NONE None None 0 0
* 9 TX Share (S) Exclusive (X) 65547 16
* 7 RW Exclusive (X) S/Row-X (SSX) 33554440 2
* 10 RW Exclusive (X) S/Row-X (SSX) 33554440 2

The lock information to the right of the session ID describes the lock that the session is waiting
for (not the lock it is holding).

The V$LOCK and the V$LOCK_HOLDERS views are very helpful in analyzing locks in your
instance, but sometimes they take a long time to run. The V$SESSION view can provide a quick idea
about the blocking sessions in your database. The BLOCKING_SESSION column of the V$SESSION view
reveals the identity of the user who is holding the lock. The BLOCKING_SESSION_STATUS column shows
whether the BLOCKING_SESSION data is valid or not. For example, if you find the value VALID in the
BLOCKING_SESSION_STATUS column, it means that you’ll find the SID of the blocking user under the
BLOCKING_SESSION column.

Here’s a simple query that shows how to use the V$SESSION view to find out who is blocking a
certain session:

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT 241

4517CH06.qxd 8/19/05 10:36 AM Page 241

SQL> SELECT sid, blocking_session, username, event
2 FROM v$session
3* WHERE blocking_session_status = 'VALID';

SID BLOCKING_SESSION USERNAME EVENT
--- ---------------- -------- ----------------------------------
24 32 SALAPATI enq: TX - row lock contention
SQL>

The previous query shows that the user with the SID 24 is being blocked by user with the SID
32. The event column shows the type of lock that the blocking session holds.

■Note The data dictionary tables that you need to look at to find locking information are the DBA_LOCKS,
DBA_BLOCKERS, and DBA_WAITERS views. If, for some reason, you don’t see the DBA_BLOCKERS view, run
the catblock.sql script, located in the $ORACLE_HOME/rdbms/admin directory, to create it.

Using Database Control to Manage Session Locks
The most efficient way to see what locks currently exist within your instance is to use the OEM
Database Control (or Grid Control). You can get to this page by going to Database Control Home
Page ➤ Performance ➤ Additional Monitoring Links ➤ Instance Locks. The Instance Locks page
shows all locks, both blocking and non-blocking. Most of the locks you’ll see are harmless; they are
routine non-blocking locks Oracle uses to maintain concurrency.

To see locks that are causing contention in your system, choose the Blocking Sessions option
from the drop-down list in the Instance Locks page. The Blocking Session page will show you all
the sessions that are currently blocking other sessions. You can also go directly to the Blocking
Sessions page by going to Database Control Home Page ➤ Performance ➤ Additional Monitoring
Links ➤ Blocking Sessions.

The Blocking Sessions page shows the session IDs of both the blocking and the blocked ses-
sions (see Figure 6-1). You can terminate a blocking session by selecting the appropriate session and
clicking the Kill Session button.

Figure 6-1 shows that the user nick_alapati is holding an exclusive lock (on a certain row in the
test01 table, which you can’t see in the figure), thereby blocking the user nina_alapati from getting
an exclusive lock on the same row. The blocking session is identified by a value of 1 or greater under
the Sessions Blocked column on the Blocking Sessions page (see Figure 6-1). The session that’s
being blocked is indicated by a value of zero.

You can also use OEM’s Hang Analysis page (go to Database Control Home Page ➤

Performance ➤ Additional Monitoring Links ➤ Hang Analysis) to find out the exact wait status
of the blocking and waiting sessions. The Hang Analysis page will show you the following:

• Instantaneously blocked sessions

• Sessions in a prolonged wait state

• Sessions that are hung

When there is a severe contention for locks in the instance, the Hang Analysis page will help
you identify the problems much more quickly than running a SQL script, which might actually
worsen the locking problems.

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT242

4517CH06.qxd 8/19/05 10:36 AM Page 242

Figure 6-1. Using Database Control to identify blocking and waiting sessions

■Note Be prepared to wait for a very long time when you run most of the SQL scripts that relate to locking situa-
tions. Also, be aware that some of the scripts might sometimes make matters worse. The utllockt.sql script, for
example, creates a table to store locking information, and it needs to acquire locks to create this table, which
might exacerbate the locking problems that you are trying to diagnose in the first place! It’s smarter to schedule
these scripts using a scheduling tool or the Oracle Enterprise Manager (OEM) and arrange for database alerts
when there are problem locks in the system, so you can take action to fix the problem.

Using Undo Data to Provide Read Consistency
Oracle uses special structures called undo records to help provide automatic statement-level read
consistency. All data for a single query will come from a single point in time. Only data committed
when a query begins will be seen by the query—any changes made by other transactions after a
query begins won’t be seen by the query once it begins executing.

If a transaction is modifying data, Oracle will write a before-image of the table data to its
undo records. For example, if you update the salary of an employee from 10,500 to 11,000, the undo
record will store the old salary value of 10,500. When a query begins execution, Oracle will deter-
mine the current system change number (SCN), which identifies the order in which transactions
occurred in the database. When data blocks are read for this query, Oracle will only use data blocks
with the SCN that it determined for this query. When it encounters data blocks for the query with a
more recent SCN, Oracle will automatically go to the undo segments and reconstruct the data from
the undo records stored there. Any changes made by other transactions during the query’s execu-
tion will have more recent SCNs, and are disregarded, guaranteeing that only consistent data is
returned for the query at hand.

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT 243

4517CH06.qxd 8/19/05 10:36 AM Page 243

Oracle’s undo records are stored in the undo tablespace specified at database creation time.
The undo tablespace will always hold the before-image of table data for users if other transactions
have updated it since a query began. Undo data is used for the following purposes:

• Providing read consistency for SQL queries

• Rolling back unwanted active transactions

• Recovering terminated transactions

• Analyzing older data by using Flashback Query

• Recovering from logical corruptions using the Flashback features

■Note Although you can use manual undo management (which involves rollback segments) in Oracle Database
10g, Oracle recommends using the newer Automatic Undo Management (AUM) feature (which involves undo table-
spaces). Besides freeing you from the traditional chores of managing numerous rollback segments, use of the AUM
feature is a necessary prerequisite for several highly useful features, including the Flashback features that you’ll
see later in this chapter.

Remember that the undo data remains in the undo tablespace even after a database shutdown.
This makes Oracle’s undo management valuable for activities beyond providing read consistency
and rolling back transactions. By using the Flashback features and undo data together, you can fix
logical errors and query past data.

Automatic Undo Management (AUM)
Oracle Database 10g provides two ways of allocating and managing undo (rollback) space among
the various transactions occurring in the database. If you want to control the undo space manually,
you can do so by creating traditional rollback segments. However, it is much more efficient and eas-
ier to let Oracle worry about managing the undo space by choosing Automatic Undo Management
(AUM). AUM takes the entire issue of sizing and allocation of undo segments from the DBA’s hands
and makes it Oracle’s responsibility. As the DBA, all you have to do is create an adequately sized
tablespace (the undo tablespace) for storing undo information. Oracle will dynamically create undo
(rollback) segments and adjust their number to match the instance’s workload requirements. The
database will automatically allocate and deallocate undo segments to match the transaction
throughput in the instance.

■Tip Proper undo management means that necessary undo information is not overwritten by newer undo data.
By setting the appropriate size for the undo tablespace and the UNDO_RETENTION interval, you can increase the
chance that long-running queries can complete without receiving the "snapshot too old" error. It also ensures that
critical Flashback features can retrieve the older data they are seeking.

Advantages of AUM
There are many advantages to using AUM, including facilitating the Oracle Flashback Query feature
and avoiding many of the vexing errors associated with the older technique of managing undo data
by using rollback segments. Traditionally, DBAs had to contend with regular ORA_1555 (“snapshot
too old”) errors because the rollback segments were being written over with new information too
quickly for some transactions. When a DBA uses traditional rollback segments, he or she has the

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT244

4517CH06.qxd 8/19/05 10:36 AM Page 244

responsibility of monitoring the rollback segments for contention and may also need to change the
number and size of the rollback segments. AUM eliminates most of the undo-block and consistent-
read contention.

Traditional rollback segments would sometimes be slow to relinquish the space they occupied,
even after their transactions completed. Undo segments use space much more efficiently by
exchanging space dynamically with other segments. Oracle will create, bring online, and take offline
the undo segments automatically as needed. When the undo segments are no longer necessary,
Oracle will reclaim the space used by the segments. It is common practice for DBAs to assign a
transaction to a specific rollback segment using the SET TRANSACTION command. AUM removes the
need to do this manual assignment of rollback segments—Oracle manages all undo space alloca-
tion automatically behind the scenes.

In Oracle Database 10g, you have more reasons than ever before to adopt AUM. Several of the
Flashback recovery features, like Flashback Query, Flashback Versions Query, Flashback Transaction
Query, and Flashback Table, require the use of AUM.

Setting Up AUM
To enable the automatic management of your undo space, you first need to specify the automatic
undo mode in the init.ora file or your SPFILE. Second, you need to create a dedicated tablespace
to hold the undo information. This will guarantee that you don’t end up storing the undo informa-
tion in the System tablespace, which isn’t a great idea. You also must choose an interval for undo
retention.

If you want to choose AUM when you create a new database, you need to configure the follow-
ing three initialization parameters:

• UNDO_MANAGEMENT

• UNDO_TABLESPACE

• UNDO_RETENTION

The UNDO_MANAGEMENT Parameter

You specify AUM in your initialization parameter file by adding the following line:

UNDO_MANAGEMENT = auto

This is the only mandatory parameter for setting up AUM. When you use the value AUTO for the
UNDO_MANAGEMENT initialization parameter, the database will start in the automatic undo manage-
ment mode. (The default for undo management in Oracle Database 10g is still the manual mode,
which is the older method of utilizing rollback segments to store undo data.)

■Tip Use the Database Resource Manager to set up undo quotas for users, if you think any users are monopoliz-
ing undo tablespace usage.

The UNDO_TABLESPACE Parameter

The UNDO_TABLESPACE parameter isn’t mandatory—if you only have a single undo tablespace, you
don’t have to specify this parameter in your initialization parameter file, because Oracle will use the
one available undo tablespace automatically. If you specify AUM and don’t have an undo tablespace
in your database at all, Oracle will be forced to use the System tablespace (the System rollback seg-
ment, to be more specific) for storing the undo data. You should avoid using the System tablespace

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT 245

4517CH06.qxd 8/19/05 10:36 AM Page 245

for storing the undo data, since that tablespace also stores the data dictionary, and you don’t want
to use up space there and cause problems such as fragmentation. Note that you can’t create appli-
cation tables and indexes in an undo tablespace, since it’s exclusively reserved for undo data.

■Note If you use the Database Configuration Assistant (DBCA) to create your databases, or choose the creation
of the default database when you install Oracle Database 10g, Oracle will use AUM by default. This is contrary to
what happens when you manually create a new database; in that case the default mode for undo management is
MANUAL, which means you have to manage undo data using rollback segments.

If you have multiple undo tablespaces in your database, however, you must specify which undo
tablespace you want the database to use, by specifying the UNDO_TABLESPACE parameter in the initial-
ization parameter file. You can have multiple tablespaces in your database, but only one of them
can be active at any given time. You activate an undo tablespace by using the ALTER SYSTEM SET
UNDO_TABLESPACE command, which you’ll see shortly.

You create an undo tablespace when you create your database. The following database creation
statement shows how to create the undo tablespace during database creation:

SQL> CREATE DATABASE cust_prod
...
UNDO TABLESPACE undotbs_01 datafile
DATAFILE '/u10/orcl/oradata/undotbs01_01.dbf' size 750M;
...

■Note I also explain the creation of the undo tablespace in Chapter 9, which deals with creating an Oracle
database.

You may choose not to create the undo tablespace when you create a new database, and even
if you create an undo tablespace at database creation time, you may choose to add another undo
tablespace later on. Creating an undo tablespace is like creating any other tablespace, except that
you use the keyword UNDO in the CREATE TABLESPACE statement. To create an undo tablespace by
itself, in an existing database, use this statement:

SQL> CREATE UNDO TABLESPACE undotbs_02
DATAFILE 'c:\oracle10g\oradata\finance\undotbs01_01.dbf'
SIZE 500M;

Tablespace created.
SQL>

You can add space to an existing undo tablespace by using the ALTER TABLESPACE statement, as
shown here:

SQL> ALTER TABLESPACE undotbs_01
ADD DATAFILE '/u09/oradata/test/undo01dbf' 500M;

You can create several undo tablespaces for your database, but the instance can only use a
single undo tablespace at any given time. Let’s say you are using the undo tablespace undotbs_01 as
your current undo tablespace. The following ALTER SYSTEM SQL statement will dynamically change
the undo tablespace for your database:

SQL> ALTER SYSTEM SET UNDO_TABLESPACE = undotbs_02;

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT246

4517CH06.qxd 8/19/05 10:36 AM Page 246

If you want Oracle to continue to use the new undo tablespace you just created, undotbs_02,
you need to specify this in the init.ora file. Otherwise, Oracle will always use the default undo table-
space, which is the tablespace you specified for the UNDO_TABLESPACE parameter in the database
creation statement.

In the preceding example, I used a fixed-size undo tablespace, where there is a hard limit on
the undo tablespace size. If the undo data uses up all the assigned space, however, you’ll have prob-
lems. To avoid this, you should create auto-extensible undo tablespaces. Especially when you are
creating a new database and implementing it in production, you may not be sure how big you
should size your undo tablespace. The best course of action is to let the undo tablespace automati-
cally increase in size, based on the undo requirements. You can enable the automatic growth of the
undo tablespace by using the AUTOEXTEND keyword when you create a new undo tablespace, as
shown here:

SQL> CREATE UNDO TABLESPACE undotbs_01
DATAFILE '/u10/oradata/prod/undo0101.dbf' SIZE 100M AUTOEXTEND ON;

If you’ve already created the undo tablespace, you can make it auto-extensible by simply
adding an auto-extensible data file to the undo tablespace, as shown here:

SQL> ALTER TABLESPACE undotbs_01
ADD DATAFILE '/u01/oradata/prod/undo0102.dbf' AUTOEXTEND ON NEXT 5M
MAXSIZE UNLIMITED;

If, for some reason, you decide that you have to create a fixed-size undo tablespace, you can
use the Undo Advisor to get recommendations about the ideal size. The Undo Advisor uses the data
collected by the Automatic Workload Repository (AWR) as the basis for its analysis, so you should let
the instance run for a good while after you start it, so that the Undo Advisor has enough data to fig-
ure out its recommendations. The Undo Advisor takes two inputs—the estimated length of the
longest query in the database, and how far you want to go back in time for your Flashback opera-
tions that depend on undo data. Using the larger of these as a guide, you can look up the ideal size
for your undo tablespace on an Undo Advisor graph. I explain how to use the Undo Advisor later in
this chapter, in the “Using the OEM to Manage Undo Data” section.

■Note Sometimes when you start an instance or switch an undo tablespace, it takes several minutes for the
undo segments to come online. To avoid this problem, Oracle Database 10g uses the data in the Automatic
Workload Repository to determine the number of undo segments to bring online upon an instance restart or the
switching of an undo tablespace. This feature is also known as the fast ramping up of undo segments.

The UNDO_RETENTION Parameter

When a transaction commits, the undo data for that transaction isn’t needed any more. That undo
data will stay in the undo tablespace, however, until space is needed to record undo data for newer
transactions. When the newer transactions’ undo data comes in, it may overwrite the old undo data
(from the committed transactions) if there isn’t enough free space left in the undo tablespace. For a
long-running query that needs to retain older undo data for consistency purposes, there is a possi-
bility that some of the undo data it needs has been overwritten by other, newer transactions. In this
case, you could get an error message (“snapshot too old”) from the database indicating that the
before-image of the transaction has been overwritten.

To prevent this, Oracle provides the UNDO_RETENTION configuration parameter, which you can
set to the interval you wish. Note that in the older manual undo management mode, DBAs don’t
have the option of determining how long Oracle retains undo information.

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT 247

4517CH06.qxd 8/19/05 10:36 AM Page 247

Let’s briefly review how undo information is managed in an undo segment. Undo information
can be classified in two broad types:

• If a transaction that has generated the undo data is still active, the undo data is said to be
active (uncommitted). Oracle will always retain active undo data to support ongoing uncom-
mitted transactions.

• If the transaction that generated the undo data is inactive (committed), then the undo data
is said to be committed. The committed undo data can be either expired or unexpired.
Expired data can be overwritten by new transactions. Oracle will try to save the unexpired
data as long as it can, subject to undo space limitations. When there is no more room in the
undo tablespace for newer transactions, Oracle will finally overwrite the unexpired data,
depending on how you configure the UNDO_RETENTION parameter.

The UNDO_RETENTION parameter lets you control the reuse of the committed undo space. By set-
ting the UNDO_RETENTION parameter, you can specify the lower limit for how long the database will
retain uncommitted undo data as unexpired data, so that it is available for read consistency and
Flashback purposes.

Note that setting the UNDO_RETENTION interval is not a guarantee that Oracle will always retain
undo information for at least that time period. If there is no free space left in the undo tablespace
for a new transaction, Oracle will use an unexpired undo extent—a transaction can’t be stopped,
after all. This is a last-resort event, but you should be aware that it is a possibility. The key is to make
the undo tablespace big enough so that it can support your undo retention interval, thus helping
Oracle retain undo information for the specified period.

You can set the undo retention size by specifying it in the initialization file as follows:

UNDO_RETENTION = 1800 /* (30 minutes)

The default for the UNDO_RETENTION parameter is 900 seconds.

■Tip Your undo tablespace must be able to accommodate any increase in the undo retention period. If the undo
tablespace can’t keep undo records for the required time, you run the risk of queries failing with the snapshot-too-
old error.

If you wish to change the amount of time the database should retain the undo information,
you can dynamically change the UNDO_RETENTION parameter as follows:

SQL> ALTER SYSTEM SET UNDO_RETENTION = 7200 /* two hours

There is no one ideal UNDO_RETENTION time interval. Your retention time interval will depend on
how long you estimate your longest transactions may run. Based on the information about the max-
imum length of transactions in your database, you can arrive at an approximate time to assign for
the UNDO_RETENTION parameter.

The V$UNDOSTAT table provides an indicator for helping figure out the undo retention inter-
val. Query the V$UNDOSTAT view as follows:

SQL> SELECT MAX(maxquerylen) FROM v$undostat;
MAX(MAXQUERYLEN)

210

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT248

4517CH06.qxd 8/19/05 10:36 AM Page 248

The MAXQUERYLEN column of the V$UNDOSTAT view tells you the length of the longest executed
query (in seconds) during the past 24 hours. The time set in the UNDO_RETENTION parameter should
be at least as long as the time indicated in the MAXQUERYLEN column. This, by itself, won’t guarantee
that a new long-running query will definitely be accommodated, but you’ll have a reasonable
chance that your longest transactions will have read consistency when using the undo tablespace.

Oracle provides the following guidelines for setting the undo retention interval for a new
database:

• OLTP: 15 minutes

• Mixed: 1 hour

• DSS: 3 hours

• Flashback Query: 24 hours

If you think all of this undo retention business is too much work, take the easy way out and let
Oracle automatically tune undo in your database. Oracle automatically tunes the undo retention
period for the longest-running query and collects query-duration information every 30 seconds.
Depending on your workload characteristics, Oracle will adjust the length of the undo retention
period. For example, during the day, shorter transactions may mean a shorter undo retention
period, and during the nightly batch jobs, you’d need a much longer undo retention period to avoid
the snapshot-too-old errors. If you don’t set a value for the UNDO_RETENTION parameter (or if you set a
value of 0), Oracle automatically tunes undo with 900 seconds as the minimum value.

Here’s a summary of automatic undo retention in Oracle Database 10g Release 2:

• If you use an auto-extensible undo tablespace (using an AUTOEXTEND data file), Oracle will
treat any UNDO_RETENTION value you specify as the low threshold value and retain undo for at
least this time period. If you set an undo retention period of 30 minutes, Oracle will adjust
the retention period upward of 30 minutes if needed, but never let it go below 30 minutes
(unless faced with a lack of space in the undo tablespace). The database will tune the undo
retention to take care of the undo needs of the longest queries in your database. Thus, in the
case of auto-extensible undo tablespaces, Oracle will

• Retain undo data a little longer than the longest query in your database, if space
allows it

• Retain undo data at least as long as the low threshold of undo retention, subject to
space limitations

• If you use a fixed-size undo tablespace, Oracle will ignore any UNDO_RETENTION value you may
have set. The database will automatically tune undo with the goal of achieving the maxi-
mum possible retention period, given the undo tablespace size and its usage history. Of
course, if you use the GUARANTEED RETENTION feature, as explained later in this chapter, Oracle
will have to honor any UNDO_RETENTION period you set. If you’ve specified any Flashback
requirements, Oracle will satisfy them as well.

• If you’re considering a fixed size and an auto-extensible tablespace of the same size, know
that the fixed-size tablespace will provide you with a slightly longer undo retention period.

• Even if you do set a value for the UNDO_RETENTION parameter, Oracle will still auto-tune undo,
with the value you specified as the minimum value. Note that the value you assign for the
UNDO_RETENTION parameter is treated by Oracle as a requested minimum. If Oracle deter-
mines, through its automatic tuning, that the undo retention period should be longer than
this requested minimum to accommodate long transactions, it will retain undo data for the
longer retention period.

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT 249

4517CH06.qxd 8/19/05 10:36 AM Page 249

■Tip By default, Oracle Database 10g automatically tunes the undo retention period. Oracle recommends that
you not set a value for the UNDO_RETENTION parameter unless your system has Flashback or LOB retention
requirements.

In automatic undo management, the database is in charge of creating, allocating, and deallo-
cating the undo segments as necessary. You can query the DBA_ROLLBACK_SEGS view to find out
which of your undo segments are online, as shown here:

SQL> SELECT segment_name, tablespace_name, status
FROM dba_rollback_segs;

The undo segments created under automatic undo management are structurally similar to the
traditional rollback segments. The big difference, of course, is that Oracle will automatically create
them and drop them as necessary. Oracle creates a predetermined number of undo segments when
you create the undo tablespace, and it may bring all or some of them online when you start up the
instance. Oracle will always try to assign each transaction its own undo segment, and it will create
more undo segments if necessary, based on the transactions in the database. During a day’s time,
it’s common for Oracle to increase and decrease the number of undo segments based on its own
internal algorithms and the level of database activity.

If the UNDO_MANAGEMENT parameter is set to AUTO and you fail to create a specific undo tablespace
for storing undo information, Oracle will still create undo records in a default tablespace named
SYS_UNDOTBS, with a default size of around 200MB.

The following SQL script will tell you the location and size of the undo tablespace in your
database:

SQL> SELECT file_name, bytes
2 FROM dba_data_files
3 WHERE tablespace_name='UNDOTBS';

FILE_NAME BYTES
--
/u01/orcl/oradata/undotbs01_01.dbf 209715200
SQL>

Sizing the Undo Tablespace
Oracle recommends that you size your undo tablespace with the help of the Undo Advisor. How-
ever, if you’ve just created your database, the Undo Advisor won’t have enough historical data about
undo requirements to help you. Oracle makes the following recommendations for a new database.

Initially, create a small-sized (approximately 500MB) undo tablespace, with the AUTOEXTEND
data file attribute set to ON, thus allowing an automatically extensible tablespace. The tablespace
will automatically grow, both to support a growing number of active transactions as well as the
growing length of transactions in the database.

After the database has run for a reasonable length of time, use the Undo Advisor to get recom-
mendations for sizing the undo tablespace. Use the maximum time allowed in the Analysis Time
Period field. You can use the Longest-Running Query length shown in the OEM Undo Management
page for this purpose. You must also specify a value for the New Undo Retention field based on your
Flashback requirements. If you wish to be able to flash back your tables, for example, for a period of
24 hours in the past, use 24 hours as the value for this field.

■Tip The main reason for fixing the size of the undo tablespace (rather than keeping it auto-extensible) is to
prevent a single runaway query from taking up all the free space in the database.

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT250

4517CH06.qxd 8/19/05 10:36 AM Page 250

Using these two values (those in the Analysis Time Period field and the New Undo Retention
field), the Undo Advisor will recommend the appropriate undo tablespace size. You can then add
about 20 percent to the size you arrive at as a safety margin, and make the undo tablespace a fixed-
size tablespace by disabling the AUTOEXTEND attribute.

■Note Please read the excellent article, “The Do’s and Don’ts of Space and Undo Management: Best Practices
for Oracle Database 10g,” by Sujatha Muthulingam and Mughees A. Minhas (http://www.oracle.com/technology/
products/manageability/database/pdf/ow04/1241_minhas.pdf), which explains Oracle’s undo management in
great depth.

Guaranteed Undo Retention
Under AUM, the Oracle database collects undo data and stores it in the undo segments. Tradition-
ally, Oracle has used data in the undo segments to provide read consistency for queries, to roll back
transactions, and to recover terminated transactions. Starting with Oracle9i, undo data has been
used for even farther-reaching purposes—to query past data and recover from logical errors in the
data. In Oracle Database 10g, undo data also supports the new Flashback features at the row and
table levels.

The UNDO_RETENTION initialization parameter enables you to specify the length of time undo
information must be saved in the undo segments. Oracle Database 10g automatically tunes undo
information by collecting statistics on the longest-running queries and the undo generation rate in
your database. If you don’t set the UNDO_RETENTION parameter or specify a zero value for the parame-
ter, Oracle automatically tunes undo, using 900 seconds as the default value for the UNDO_RETENTION
parameter. By setting a higher value than the default of 900 seconds, you can keep undo records
longer and go back further in the past. Since several Flashback features in Oracle Database 10g rely
on undo data, you should set the UNDO_RETENTION parameter much higher than the default value. (In
addition to enabling more effective Flashback features, this will reduce the probability of snapshot-
too-old errors.)

Guaranteed undo retention simply means that Oracle will retain undo data for the entire length
of the undo retention period you specify, no matter what. That is, if you specify half an hour as the
undo retention interval, Oracle will retain the undo data for the full 30 minutes, under all circum-
stances. If you run out of room for recording the undo information generated by new transactions,
any new DML transactions will fail, since Oracle won’t be able to store the undo information for
those changes. Thus, there is a trade-off between guaranteeing undo information and the potential
failure of some DML statements.

■Tip By default, Oracle doesn’t guarantee undo retention; the default retention time is 900 seconds (15 minutes)
if you decide to guarantee undo retention.

You can specify undo guarantee for the undo tablespace when you create the database, or by
specifying the RETENTION GUARANTEE clause while creating a new undo tablespace, as shown here:

SQL> CREATE UNDO TABLESPACE undotbs01
2 DATAFILE
3 '/u01/orcl/oradata/undotbs01_01.dbf'
4 SIZE 10M AUTOEXTEND ON
5* RETENTION GUARANTEE;

Tablespace created.
SQL>

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT 251

4517CH06.qxd 8/19/05 10:36 AM Page 251

You can also use the ALTER TABLESPACE command to guarantee undo retention in your data-
base, as shown here:

SQL> ALTER TABLESPACE undotbs01 RETENTION GUARANTEE;

You can use the RETENTION NOGUARANTEE clause to turn off the guaranteed retention of undo
information, as shown in the following example:

SQL> ALTER TABLESPACE undotbs01 RETENTION NOGUARANTEE;

■Caution A high value for the UNDO_RETENTION parameter doesn’t guarantee the retention of undo data for the
duration specified by the UNDO_RETENTION parameter. You must use the RETENTION GUARANTEE clause to guar-
antee undo retention for a specified time.

Let’s say you’ve configured guaranteed undo retention in your database by using the RETENTION
GUARANTEE clause. If your undo tablespace is too small to accommodate all the active transactions
that are using it, the following will happen:

• Oracle will issue an automatic tablespace warning alert when the undo tablespace is 85 per-
cent full (if you haven’t disabled the automatic tablespace alert feature).

• Oracle will also issue an automatic tablespace critical alert when the undo tablespace is
97 percent full.

• All DML statements will be disallowed and will receive an out-of-space error.

• DDL statements will continue to be allowed.

Managing Undo Tablespaces
Managing undo tablespaces is similar to managing any other tablespaces in your database. You add
space to an undo tablespace by adding a data file, and you decrease the size of an undo tablespace
by reducing the size of the data file(s) in it with the ALTER DATABASE DATAFILE . . . RESIZE com-
mand.

You drop an undo tablespace with the normal DROP TABLESPACE command. (If the undo table-
space contains any outstanding transactions, you can’t drop it.) The DROP TABLESPACE command,
since it removes all contents of the undo tablespace, is similar to using the DROP TABLESPACE . . .
WITH CONTENTS command. If you need to switch undo tablespaces for some reason, you can drop the
old one after you create a new undo tablespace.

The Snapshot-Too-Old Error
Occasionally, a long-running transaction can’t find the undo data it needs, and consequently fails
with the well-known Oracle snapshot-too-old error. Here’s an example:

SQL> begin
2 purge_data_pkg.main_driver(1502,2005,'N','B','N','N');
3 end;
4 /

begin
*
ERROR at line 1:
ORA-01555: snapshot too old: rollback segment number 9 with name "_SYSSMU9$"

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT252

4517CH06.qxd 8/19/05 10:36 AM Page 252

too small
ORA-06512: at "APPOWNER.PURGE_DATA_PKG", line 2040
ORA-06512: at "APPOWNER.PURGE_DATA_PKG", line 4318
ORA-06512: at line 2

SQL>

Even when you use Automatic Undo Management, as the previous example shows, you can
get this error, since the UNDO_RETENTION parameter is set too low. This happens even when there is
plenty of free space in the undo tablespace. Your best bet is to raise the value of the UNDO_RETENTION
parameter so the necessary undo data isn’t overwritten before your long transaction finishes. The
only certain way to avoid the snapshot-too-old error is to enable guaranteed undo retention in your
database.

Managing Undo Space Information
You can use the SHOW PARAMETER UNDO command in SQL*Plus to see what the configured options are
for undo space management, as shown here:

SQL> SHOW PARAMETER UNDO
NAME TYPE VALUE
---------------------------- -------------
undo_management string AUTO
undo_retention integer 900
undo_tablespace string UNDOTBS_01
SQL>

■Note If you used older versions of Oracle, you are most likely familiar with the SET TRANSACTION USER
ROLLBACK SEGMENT . . . statement, which enabled you to assign large rollback segments to a transaction to
avoid the snapshot-too-old error. You can use this statement only under manual undo management. If you’re using
the Oracle-recommended automatic undo management, the database will ignore this statement if you use it—
however, no errors are generated.

If you use the Database Resource Manager to create consumer groups in your database, which
are a convenient way to group your users based on their usage of database resources (see Chapter 11),
you can easily prevent a single transaction from taking up most of the undo space, thus hindering
new transactions from acquiring undo space. You can set a special parameter called UNDO_POOL to
limit the maximum undo space a resource consumer group can use. Once this UNDO_POOL limit is
reached, any transactions that need more undo room will error out. Only after some of the currently
running transactions in the resource consumer group finish can more undo space be granted to
that group.

The following data dictionary views are useful in managing undo space information:

• V$UNDOSTAT: This is the view Oracle uses to tune undo space allocation in the database.
This view can indicate whether your current allocation of space in the undo tablespace is
enough. It also indicates whether you have set the UNDO_RETENTION parameter correctly. The
TUNED_UNDORETENTION column in the V$UNDOSTAT view tells you the length of time undo is
retained in your undo tablespace.

• DBA_ROLLBACK_SEGS: You can use this view to find out the undo segment name, initial,
next, and maximum extents, and other related information.

• DBA_TABLESPACES: This view will show whether the guaranteed undo retention feature is

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT 253

4517CH06.qxd 8/19/05 10:36 AM Page 253

• V$TRANSACTION: You can get transaction information from this view.

• V$ROLLSTAT: You can join V$ROLLSTAT and V$ROLLNAME to get a lot of information on the
behavior of the undo segments.

• DBA_UNDO_EXTENTS: This view provides detailed information on the undo extents within
the undo tablespace.

Using the OEM to Manage Undo Data
You can use OEM to help you correctly size your undo tablespace and set the right UNDO_RETENTION
parameter value. OEM provides the Undo Advisor to help you determine the space required for
your undo tablespace, based on average and peak-level undo generation rates.

To get to the Undo Advisor page, go to the OEM Home Page ➤ Advisor Central ➤ Undo Man-
agement and click on the Undo Advisor button. (You can also get to the Undo Advisor by going to
the OEM Home Page ➤ Performance Page ➤ Advisor Central ➤ Undo Management and clicking on
the Undo Advisor button.)

The Undo Advisor shows you the best undo retention possible for a given undo tablespace size.
It can also advise you about the correct size for the undo tablespace, based on an undo retention
value that you specify, by analyzing the impact of various hypothetical undo retention values.

You can also use the Undo Management page (OEM Home Page ➤ Administration ➤
Instance ➤ Undo Management) to perform the following tasks:

• Change and edit the undo tablespace

• View system activity and undo tablespace usage statistics, including the average and maxi-
mum undo generation rates and the length (in minutes) of the longest running query

• Get recommendations for both undo retention length and undo tablespace size

Figure 6-2 shows the Undo Generation Rate and Tablespace Usage graph from the bottom of
the OEM Undo Management page. This graph is color-coded so you can see at a glance how the
undo tablespace is handling the amount of undo information generated in your instance.

Flashback Error Correction Using Undo Data
Up until the Oracle9i database version, the only way to correct user errors was to perform point-in-
time recovery, which is tedious and somewhat complex. The Oracle9i database introduced the first
Flashback features in the database. Flashback features enable you to query past versions of data, as
well as retrieve the history of changes made to a table’s data. You can use the historical information
either to query past data or to recover from logical corruption in the data.

Oracle Database 10g provides several error-correction techniques that depend on undo data.
However, all these great features are only available if you use Automatic Undo Management. The
following Flashback features in Oracle Database 10g depend on undo data:

• Flashback Query: Retrieves data from a past point in time.

• Flashback Versions Query: Shows you the different versions of table rows, and provides meta-
data, such as the start and end time of the particular transaction that created the row
version.

• Flashback Transaction Query: Lets you retrieve historical data for a given transaction, along
with the SQL code to undo the changes made to particular rows.

• Flashback Table: Recovers a table quickly to its state at a past point in time, without having to
perform point-in-time recovery.

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT254

4517CH06.qxd 8/19/05 10:36 AM Page 254

■Note There are other flashback features, like Flashback Drop and Flashback Database, but they don’t use undo
data. I’ll discuss these features in Chapter 16, which deals with database recovery.

In the following sections, we’ll look at each of these important Flashback features in detail.

■Tip If you want to make serious use of the new Flashback features, make sure that you provide sufficiently
sized undo tablespaces. Preferably, you must use autoextensible undo tablespaces, so that Oracle retains undo
data longer than the longest query duration. In addition, you should specify RETENTION GUARANTEE for the
undo data. Simply setting a large UNDO_RETENTION value doesn’t guarantee that Oracle won’t discard
unexpired undo data (as was discussed previously).

Querying Old Data with Flashback Query
Using the Flashback Query feature simply involves using the SELECT statement with an AS OF clause.
This type of query lets you retrieve committed data as it existed at some time in the past. You can
select data from the past based on a time stamp or SCN.

It is common for an application to need older data for analysis purposes. A company’s sales
force, for example, may need older sales data but may find that it has been modified already. Even
more important, sometimes a user error or faulty application code may require the restoration of
older data. Right now, the most common way to go back in time is for the DBA to perform a labori-
ous and time-consuming point-in-time database recovery, which may involve some disruption in
service and a loss of critical business data. The Flashback Query feature provides you an easy way to

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT 255

Figure 6-2. The Undo Generation and Tablespace Usage graph

4517CH06.qxd 8/19/05 10:36 AM Page 255

Flashback Query with the AS OF Clause
Here’s a simple example that shows how to use Flashback Query. Suppose you find that a user was
accidentally deleted from your employees table around noon. The only thing you know for sure is
that the employee was in the database at 8 AM. You can use a SELECT statement with the AS OF
clause to find the lost data.

■Tip How far back in time you can go with a Flashback Query depends on your UNDO_RETENTION parameter
setting.

First, you must grant the necessary privileges. A user needs to have the privilege to issue a
Flashback Query on the table if the user doesn’t own the table. Note that you don’t need this privi-
lege to execute the DBMS_FLASHBACK package or any of its component procedures.

Here’s how the DBA can grant the object privileges to enable a user to issue a Flashback Query:

SQL> GRANT FLASHBACK ON emp TO salapati
Grant succeeded.

Or you could use a statement like this:

SQL> GRANT FLASHBACK ANY TABLE TO salapati;
Grant succeeded.
SQL>

You can grant the Flashback Query object privilege (GRANT FLASHBACK ANY TABLE) on a table,
view, or a materialized view.

Next, use the SELECT . . . AS OF query to retrieve Flashback data from the past.

SQL> SELECT * FROM employees AS OF TIMESTAMP
TO_TIMESTAMP ('2005-09-02 08:00:00', 'YYYY-MM-DD HH:MI:SS')
WHERE last_name = 'Alapati';

Once you confirm the validity of the accidentally deleted data, it’s easy to reinsert the data by
using the previous query as part of an INSERT statement, as shown here:

SQL> INSERT INTO employees
SELECT * FROM employees AS OF TIMESTAMP
TO_TIMESTAMP('2004-09-02 08:00:00', 'YYYY-MM-DD HH:MI:SS')
WHERE last_name = 'Alapati';

The previous two examples use a time stamp to pinpoint the exact time the data was acciden-
tally dropped. You could use the SCN for the transaction instead of time stamps. Just note that an
SCN will only put you within 3 seconds of the actual occurrence of the event. If you need to be very
specific regarding the time point, use the time-stamp method to specify the time.

Flashback Using the DBMS_FLASHBACK Package
Oracle provides a special package called DBMS_FLASHBACK that allows you to see a consistent
version of the database at a time (or SCN) that you specify. A big advantage of using the DBMS_
FLASHBACK package over the other Flashback features is that you can use existing PL/SQL code
with it to retrieve older data without having to add the AS OF and VERSIONS BETWEEN clauses, which
you have to do if you wish to use the other types of Flashback features.

You can specify either a time stamp or an SCN number as the starting point for your query. In
the simple example that follows, you’ll see how you can query for the number of rows that existed in
a table before they were deleted permanently from the table.

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT256

4517CH06.qxd 8/19/05 10:36 AM Page 256

In the following trivial example that illustrates the use of the DBMS_FLASHBACK package, the
following query is first used to get the number of rows that currently exist in the emp table:

SQL> SELECT COUNT(*) FROM emp;
COUNT(*)

495

Suppose you’re interested in finding out the number of rows that existed in this table on
December 11, 2004. You can call the DBMS_FLASHBACK.ENABLE_AT_TIME procedure, as shown in
the following code, to specify the specific past point in time you are interested in:

SQL> EXECUTE DBMS_FLASHBACK.ENABLE_AT_TIME (TO_TIMESTAMP '11-DEC-
2004:10:00:00',
-'DD-MON-YYYY:hh24:MI:SS');

PL/SQL procedure successfully completed.
SQL>

If you’d rather use an SCN instead of a time stamp, you must use the DBMS_FLASHBACK.
ENABLE_AT_SYSTEM_CHANGE_NUMBER procedure instead. To get the correct SCN, you can use the
DBMS_FLASHBACK.GET_SYSTEM_CHANGE procedure first.

Next, issue the same query as before. Now, the results of the output will reflect the contents of
the emp table on December 11, 2004, not the current time. Note that you don’t have to use the AS OF
formulation in your query, since you’re using the DBMS_FLASHBACK package.

Here’s the query that gets you the output as of December 11, 2004:

SQL> SELECT COUNT(*) FROM emp;
COUNT(*)

525

Once you’ve finished executing your query to fetch the results from a past point in time, dis-
able the DBMS_FLASHBACK package as follows:

SQL> EXECUTE DBMS_FLASHBACK.DISABLE ();
PL/SQL procedure successfully completed.
SQL>

Enabling the Flashback Query feature in the preceding example allowed you to see how many
rows were in a table at a time in the past. You found out from your simple query that the emp table
had 525 rows at the time in the recent past that you specified. If you want, you can use cursors to
retrieve the past data in order to either compare it to present data in the emp table, or, if necessary,
insert it into the emp table. You must open the cursor before you disable the DBMS_FLASHBACK
feature, and store the results so you can do the comparisons or inserts.

Use the DBMS_FLASHBACK package in cases where you can’t touch the code, as is the case
with packaged applications. The package comes in handy when you have to specify the past point
in time several times, to retrieve older data. You can recover lost data using other methods, as you
will see in Chapter 16, which discusses database recovery. However, the Flashback Query feature
gives you a chance to just analyze or verify old data, even in cases where you are not interested in
restoring that data.

■Tip To ensure data consistency, make sure you issue a COMMIT or a ROLLBACK statement before using a Flash-
back operation of any kind.

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT 257

4517CH06.qxd 8/19/05 10:36 AM Page 257

Flashback Versions Query
The Flashback Versions Query feature provides you with row history by letting you retrieve all the
versions of a row between either two points in time or two SCNs. Oracle creates a new version of a
row each time a COMMIT statement is executed. If you insert a row and subsequently update or delete
the row, only the latest version of the row will be preserved in your table. If you wish to find out
exactly what changes a row went through over a certain interval of time, you can use the Flashback
Versions Query feature. The Flashback Versions Query will return one row for each version of every
row in the table. The feature is ideal when you’re trying to audit table data or undo erroneous
changes to data.

Here are some things to keep in mind about the Flashback Versions query feature:

• You can retrieve only the committed versions of a row.

• The query will retrieve all deleted rows as well as current rows.

• The query will retrieve any rows that were deleted and reinserted later on.

• The query result is in the form of a table and contains a row for each version of a row during
the time or SCN interval you specify.

By reviewing the history of the rows in a table you can audit the changes and find out which
transactions changed the rows.

Syntax of the Flashback Versions Query
The Flashback Versions Query feature enables you to retrieve all committed versions of a table’s
data between two time points. If you’ve updated a table row ten different times, for example, the
Flashback Versions Query will get you all ten versions of that row over time.

The complete syntax for the Flashback Versions Query is as follows:

SQL> SELECT [pseudocolumns] . . . /* provide details about the row history
FROM . . . /* table name goes here
VERSIONS BETWEEN
{SCN|TIMESTAMP {expr|MINVALUE} AND

{expr|MAXVALUE}}
[AS OF{SCN|TIMESTAMP expr}]
WHERE [pseudocolumns . . .] . . .

Using the VERSIONS clause in a query will get you multiple versions of the rows returned by the
query. In the preceding syntax statement, you can use the VERSIONS clause as a part of your normal
SELECT statement, with a BETWEEN clause appended to it. You can also specify an SCN or a TIMESTAMP
clause. You must specify the start and end expressions by using MINVALUE and MAXVALUE, which indi-
cate the start time and end time of the interval for which you are seeking the different row versions.
The MINVALUE and the MAXVALUE are resolved to the time stamp or the SCN of the oldest and the most
recent data that’s available in the database, respectively.

■Note The begin and end interval, framed by either SCNs or time stamps, can’t go back beyond the time speci-
fied by the UNDO_RETENTION parameter.

Note that the AS OF clause is optional, and when you use it, the database will retrieve all the
rows as of that particular SCN or time stamp. If the VERSIONS clause is used by itself, as in VERSIONS

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT258

4517CH06.qxd 8/19/05 10:36 AM Page 258

BETWEEN SCN MINVALUE AND MAXVALUE, without using the optional AS OF clause, the data is retrieved
as of the current session. If you add the AS OF clause, as shown next, the data is retrieved as of a
specified SCN or clock time:

VERSIONS BETWEEN SCN MINVALUE and MAXVALUE AS OF SCN 56789

■Note You may also use the VERSIONS clause in subqueries of DML and DDL statements.

Flashback Versions Query Pseudo-Columns
The output of a Flashback Versions Query is unlike the output of your typical SELECT statement. The
output can show multiple versions of the same row, with a row representing each time the particu-
lar row was inserted, updated, or deleted. In addition to the column values you specify in the SELECT
statement, Oracle will provide you with values for a set of pseudo-columns for each row version.
These pseudo-columns provide metadata about the various row versions, including the type of
operation, the begin and end time of the transaction, and so on. It is these pseudo-columns that
tell you exactly when a row was modified and what was done to the row at that time.

Here is a brief explanation of each pseudo-column in the Flashback Versions Query output:

• VERSIONS_STARTSCN and VERSIONS_STARTTIME: These pseudo-columns tell you the SCN and
time stamp when this particular row was first created. If the VERSIONS_STARTTIME is null, the
row was created before the lower time boundary of the query.

• VERSIONS_ENDSCN and VERSIONS_ENDTIME: These pseudo-columns tell you when this particular
row expired. If the VERSIONS_ENDTIME column value is null, it means that the row is either cur-
rent or that it has been deleted.

• VERSIONS_OPERATION: This pseudo-column provides you with information about the type
of DML activity that was performed on the particular row. The column has three possible
values: I represents an insert, D a delete operation, and U an update operation.

• VERSIONS_XID: This pseudo-column displays the unique transaction identifier of the transac-
tion that resulted in this row version.

■Note An index-organized table (IOT) will show an update operation as a delete and an insert operation. Your
Flashback Versions Query would produce both the deleted and inserted rows as two independent versions. The
first version would show a D for the delete operation under the VERSIONS_OPERATION pseudo-column, and the
subsequent insert column would show an I for the same pseudo-column.

If the version of a row was created before the MINVALUE or the beginning of the query, you
can’t capture the value for the starting time stamp or SCN, and your VERSIONS_STARTSCN and
VERSIONS_STARTTIME pseudo-columns will be null—there won’t be any history for this row in
your undo segments.

The VERSIONS_ENDSCN and VERSIONS_ENDTIME pseudo-columns tell you when the row version
expired. If the row version is still current at the time of your Flashback Versions Query, the
VERSIONS_ENDSCN and VERSIONS_ENDTIME pseudo-columns will be null. Similarly, if the row version
has been deleted from the table, you’ll see a null value for these two pseudo-columns.

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT 259

4517CH06.qxd 8/19/05 10:36 AM Page 259

Using Flashback Versions Query
To understand the capabilities and power of the Flashback Versions Query feature, let’s look at the
simple example shown in Listing 6-1.

Listing 6-1. Using the Flashback Versions Query Feature

SQL> SELECT versions_xid AS XID, versions_startscn AS START_SCN,
versions_endscn AS END_SCN,
versions_operation AS OPERATION,
empname FROM EMPLOYEES
VERSIONS BETWEEN SCN MINVALUE AND MAXVALUE
AS OF SCN 7920
WHERE emp_id = 222;

XID START_SCN END_SCN OPERATION EMPNAME SALARY
---------------- ---------- --------- ---------- ---------- ------------------
0003002F00038BA9 2266 I Nick 19000
0004002D0002B366 0864 D Sam 20000
000400170002B366 0827 0864 I Sam 20000
SQL>

The example in Listing 6-1 retrieves three versions of a row for employee number (emp_id) 222.
The AS OF SCN of the query is 7920. That is, we want to know what versions of the row existed at this
SCN. Although you see three versions in the output, only one of the row versions is true as of the
SCN you’re interested in. So, which version is it?

Let’s read the query output from top to bottom. Pay particular attention to the START_SCN and
the END_SCN columns. All rows will have a START_SCN, but they may have a null value for the END_SCN
if the version of the row still exists at the current SCN.

The first row, which inserted (OPERATION I) empname Nick at SCN 2266, is the latest version of
the row. Since the END_SCN is null for the first row, you know that this row still existed at SCN 7920. If
you look under the OPERATION column, you see the letter D for the second version (START_SCN 0864),
indicating that the middle row was deleted (probably accidentally), and the row didn’t exist at SCN
7920. The first row thus reflects the fact that the row was reinserted, with a different employee’s
name. The bottom or third row has an END_SCN number, so clearly this row expired at SCN 0864.
This was the originally inserted version of this row, as indicated by the value I (insert) under the
OPERATION column.

■Note You must substitute VERSIONS BETWEEN TIMESTAMP . . . for the VERSIONS BETWEEN SCN nn AND
nn clause to use time stamps to specify the time interval for retrieving the various versions of a row instead of
using SCNs.

Restrictions and Observations on the Flashback Versions Query
Here are the main limitations of the Flashback Versions Query feature:

• You can only use the feature to query actual tables, not views.

• You can’t apply the VERSIONS clause across DDL operations.

• The query will ignore purely physical row changes as happen, for example, during a segment
shrink operation.

• You can’t use this feature if you’re dealing with external or temporary tables.

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT260

4517CH06.qxd 8/19/05 10:36 AM Page 260

If you want to query past data at a precise time, you must use an SCN, since the actual time
might be up to three seconds earlier or later than the time you specify with a time stamp. Oracle
Database 10g uses SCNs internally and maps them to time stamps with a granularity of three sec-
onds. This potential gap between an SCN and a time stamp may cause problems when you’re trying
to flash back to an exact time that immediately follows a DDL operation. Suppose you created a
new table. If you use a time stamp, your Flashback Versions Query might start a little before the
exact time the table was created and miss the new table entirely. You’ll end up with an error in this
case instead of the Flashback Version Query results. By using an SCN instead of a time stamp, you
can avoid this problem.

Flashback Transaction Query
The FLASHBACK_TRANSACTION_QUERY view lets you identify which transaction or transactions
were responsible for a certain change in a table’s data during a specified interval. A Flashback Trans-
action Query is simply a query on the FLASHBACK_TRANSACTION_QUERY view, and it can provide
transaction information, including the SQL statements needed to undo all the changes made by either
a single transaction, or a set of transactions during a specified interval of time. This feature enables
you not only to correct logical errors, but also to conduct transaction audits in your database.

Flashback Transaction Query gets all its transaction information from the undo segments.
Thus, the value of your UNDO_RETENTION parameter detemines how far back you can go to retrieve
undo data.

When you use Oracle’s LogMiner tool to undo SQL statements, Oracle has to serially read entire
redo log files to get the necessary information. The Flashback Transaction Query feature lets you
use an indexed access path to get to the required undo data directly, instead of traversing an entire
redo log file. You can also undo a single transaction or a set of bad transactions during an interval
of time.

Using the Flashback Transaction Query Feature
You need the SELECT ANY TRANSACTION system privilege to query the FLASHBACK_TRANSAC-
TION_QUERY view. This view contains columns that let you identify a transaction’s time stamp, the
identity of the user who made the transaction, the type of operations done during the transaction,
and the undo statements necessary to retrieve the original row. Listing 6-2 shows the structure of
the FLASHBACK_TRANSACTION_QUERY view:

Listing 6-2. The Flashback Transaction Query View

SQL> DESC flashback_transaction_query
Name Null? Type

XID RAW(8)
START_SCN NUMBER
START_TIMESTAMP DATE
COMMIT_SCN NUMBER
COMMIT_TIMESTAMP DATE
LOGON_USER VARCHAR2(30)
UNDO_CHANGE# NUMBER
OPERATION VARCHAR2(32)
TABLE_NAME VARCHAR2(256)
TABLE_OWNER VARCHAR2(32)
ROW_ID VARCHAR2(19)
UNDO_SQL VARCHAR2(4000)
SQL>

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT 261

4517CH06.qxd 8/19/05 10:36 AM Page 261

The FLASHBACK_TRANSACTION_QUERY view contains the following columns:

• START_SCN and START_TIMESTAMP identify when a certain row was created.

• COMMIT_SCN and COMMIT_TIMESTAMP tell you when a transaction was committed.

• XID, ROW_ID, and UNDO_CHANGE# identify the transaction, the row, and the undo change
number, respectively.

• OPERATION tells you whether the DML operation was an insert, update, or delete operation.

■Note If you see a value of UNKNOWN under the OPERATION column, it means that there isn’t sufficient undo
information in your undo tablespace to correctly identify the transaction’s exact operation type.

• LOGON_USER, TABLE_NAME, and TABLE_OWNER provide the username, table name, and schema
name.

• UNDO_SQL gives you the exact SQL statement required to undo the transaction. Here’s an
example of the type of data you would find under the UNDO_SQL column:

delete from "APPOWNER"."PERSONS" where ROWID = 'AAAP84AAGAAAAA1AAB';

Oracle recommends that if any of the tables that are part of the Flashback Transaction Query
operation contained chained rows, or if you’re using clustered tables, you must turn on supple-
mental logging in your database before using the Flashback Transaction Query. You can turn
supplemental logging on at the database level, using the following SQL statement:

SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

The following query will display all transactions, both committed and active, in all the undo
segments:

SQL> SELECT operation, undo_sql, table_name
FROM flashback_transaction_query;

The query in Listing 6-3 shows how to determine the operation that will undo a transaction
and the specific SQL statement that will undo it.

Listing 6-3. Identifying SQL Statements to Undo Data Changes

SQL> SELECT operation, undo_sql, table_name
2 FROM flashback_transaction_query
3 WHERE start_timestamp >= TO_TIMESTAMP
4 ('2005-02-15 05:00:00', 'YYYY-MM-DD HH:MI:SS')
5 AND commit_timestamp <= TO_TIMESTAMP('2005-02-15 06:30:00', 'YYYY-MM-DD

HH:MI:SS')
6* AND table_owner='PASOWNER';

OPERATION UNDO_SQL TABLE_NAME

INSERT delete from "APPOWNER"."FR_DETAILS" FR_DETAILS

where ROWID = 'AAQXXZAC8AAAB+zAAb';
INSERT delete from "APPOWNER"."FR_DETAILS" FR_DETAILS

where ROWID = 'AAQXXZAC8AAAB +zAAa';
SQL>

The OPERATION column in Listing 6-3 indicates that two inserts were made during the time
period specified in the query. The UNDO_SQL column shows the exact SQL statement you must run

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT262

4517CH06.qxd 8/19/05 10:36 AM Page 262

to undo the changes—this is information the query fetched for you from the undo segments. In this
simple example, there are only two delete statements that you’ll have to execute if you wish to undo
the inserts displayed by your query. However, transactions usually contain several DML statements,
in which case you’ll have to apply the undo changes in the sequence that the query returns them to
correctly recover the data to its original state.

■Tip Consider using the RETENTION GUARANTEE setting for your undo tablespace if you’re going to issue an
Oracle Flashback Query or an Oracle Flashback Transaction Query to resolve a critical data error. This will ensure
that the database preserves the necessary unexpired undo data in all undo segments.

Flashback Transaction Query Considerations
Keep the following points in mind concerning the Flashback Transaction Query feature:

• Turn on minimal supplemental logging if your operations involve chained rows and special
storage structures, such as clustered tables.

• When querying index-organized tables, an update operation is always shown as a two-step
delete/insert operation.

• If the query involves a dropped table or a dropped user, it returns object numbers and user
IDs instead of the object names and usernames.

Using Flashback Transaction Query and Flashback
Versions Query Together
The Flashback Versions Query feature lets you retrieve the various versions of a row, along with their
unique version IDs, row version time stamps, SCNs, and so on. It tells you what was in the row and
what happened to it. The Flashback Transaction Query feature, on the other hand, identifies not
only the type of operations performed on each version of a row, but also provides the necessary
undo SQL to put the rows back in their original state. It tells you how to get back to a previous ver-
sion of the row.

You can combine the capabilities of these two features by using them in sequence, to perform
auditing and related activities. Let’s look at an example that shows how you can combine the Flash-
back Versions Query and the Flashback Transaction Query features to undo undesirable changes to
your data.

First, use the Flashback Versions Query feature to identify all the row versions in a certain table
that have changed in a certain time period, as shown in Listing 6-4 (which is identical to Listing 6-1).

Listing 6-4. Using the Flashback Versions Query to Identify Changed Row Versions

SQL> SELECT versions_xid AS XID, versions_startscn AS START_SCN,
versions_endscn AS END_SCN,
versions_operation AS OPERATION,
empname FROM EMPLOYEES
VERSIONS BETWEEN SCN MINVALUE AND MAXVALUE
AS OF SCN 7920
WHERE emp_id = 222;

XID START_SCN END_SCN OPERATION EMPNAME SALARY
---------------- ---------- --------- ---------- ---------- ------------------
0003002F00038BA9 2266 I Nick 19000

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT 263

4517CH06.qxd 8/19/05 10:36 AM Page 263

0004002D0002B366 0864 D Sam 20000
000400170002B366 0827 0864 I Sam 20000

SQL>

In Listing 6-4, let’s say we identified the second row, which indicates a delete operation (D) as
the culprit. By mistake, one of our users incorrectly deleted the row. All you need to do in order to
extract the correct SQL to undo this delete operation is to take the transaction ID (XID) from this
Flashback Versions Query and search for it in the FLASHBACK_TRANSACTION_QUERY view.
Listing 6-5 shows the query you’ll need to execute.

Listing 6-5. Selecting Undo SQL Based on a Transaction ID

SQL> SELECT xid, start_scn START, commit_scn COMMIT,
operation OPERATION, logon_user USER,
undo_sql
FROM flashback_transaction_query
WHERE xid = HEXTORAW('0004002D0002B366');

XID START COMMIT OPERATION USER UNDO_SQL

00020030002D 195243 195244 DELETE HR insert into "HR"."EMP"

("EMPNO","EMPNAME","SALARY")
values ('222','Mike','20000');

1 row selected.
SQL>

The query in Listing 6-5 gives you the exact undo SQL statement to undo the deletion opera-
tion performed by the transaction with XID 0020030002D. As you can see, the Flashback Versions
Query and the Flashback Transaction Query provide complementary features. You can use the two
together not only to undo logical data errors, but also to audit transactions in your database. By
using the two features, you can tell exactly how a certain row came to have a certain set of values
and then get the exact SQL statements you need to undo the changes if necessary.

The Flashback Table Feature
Oracle’s Flashback Table feature lets you recover a table to a previous point in time. This feature
relies on undo information in the database undo segments to perform the point-in-time recovery
without restoring any data files or applying any archived redo log files, as needed to be done for tra-
ditional point-in-time recovery. You can use the Flashback Table feature to roll back changes to a
previous point in time defined by either a time stamp or an SCN.

Since you rely on undo data to flash back a table (rather than restoring your backup files), you
don’t have to take your database or tablespaces offline during a Flashback Table operation. Oracle
acquires exclusive DML locks on the table or tables that it is recovering, but the tables continue to
remain online.

■Note There are two distinct table-related Flashback features in Oracle Database 10g. The first, Flashback
Table, lets you flash back a table to a past point in time. This feature depends entirely on the availability of the
necessary undo data, and is discussed in this chapter. The second feature, Flashback Drop (FLASHBACK TABLE
table_name TO BEFORE DROP), lets you retrieve a table that has been dropped altogether. This feature is helpful
in performing a point-in-time recovery and relies on the Recycle Bin, not undo data. I’ll discuss the Flashback Drop
feature in Chapter 16, which deals with database recovery.

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT264

4517CH06.qxd 8/19/05 10:36 AM Page 264

How the Flashback Table Feature Works
Flashback Table uses undo information to restore data rows in changed blocks of tables with DML
statements like INSERT, UPDATE, and DELETE. Let’s review the steps in a Flashback Table operation.

■Note You can’t flash back any of the SYS user’s objects.

First, you need to make sure the user performing the Flashback Table operation has all privi-
leges, which could be either FLASHBACK ANY TABLE or the more specific FLASHBACK object
privilege on the table to be flashed back. The user must also have SELECT, INSERT, DELETE, and
ALTER privileges on the table.

The flashback operation doesn’t preserve Oracle ROWIDs when it restores rows in the changed
data blocks of the table, since it uses DML operations to perform its work. These DML operations
change the row IDs of the affected rows, so you must ensure that you have enabled row movement
in the tables you are using for the Flashback Table feature, as shown here:

SQL> ALTER TABLE emp ENABLE ROW MOVEMENT;
Table altered.
SQL>

Once you enable row movement in the table, you are ready to flash back the table to any time
or any SCN in the past, providing you have the necessary undo information in your undo table-
space.

Before you use the Flashback Table feature, note its complete syntax:

SQL> FLASHBACK TABLE
[schema.]table
[,[schema.]table] . . .
TO {{SCN|TIMESTAMP} expr
[{ENABLE|DISABLE}TRIGGERS]
|BEFORE DROP[RENAME TO table]
};

In this chapter, you’ll only see the FLASHBACK TABLE . . . TO SCN|TIMESTAMP part of the
FLASHBACK TABLE statement. The last line, BEFORE DROP refers to the FLASHBACK DROP feature, which,
is discussed in Chapter 16 in the discussion of database recovery techniques.

Here’s an example that shows how to flashback a table to a past SCN:

SQL> FLASHBACK TABLE emp TO SCN 5759290864;
Flashback complete.
SQL>

■Tip When a Flashback Table operation completes, all indexes that belong to the tables in the Flashback Table
list will have their indexes reverted to the time to which the tables are flashed back. However, the optimizer statis-
tics will still reflect the current data in the table.

You can also specify a time to flash back to, using a time stamp instead of an SCN, as shown
here:

SQL> FLASHBACK TABLE persons TO TIMESTAMP TO_TIMESTAMP
('2005-04-05 10:00:00', 'YYYY-MM-DD HH24:MI:SS');

The preceding FLASHBACK TABLE command restores the persons table to 10:00 AM on April 5,
2005.

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT 265

4517CH06.qxd 8/19/05 10:36 AM Page 265

You can use the following statement to flash back a table by one day:

SQL> FLASHBACK TABLE persons to TIMESTAMP (SYDATE -1);

You can flash back more than one table at a time, as shown in the following example (but first
make sure you enable row movement for both tables):

SQL> FLASHBACK TABLE persons,person_orgs TO TIMESTAMP (SYSDATE -1)

The Flashback Table operation is an in-place, online operation and thus doesn’t involve taking
data files or tablespaces offline, unlike traditional point-in-time recovery. Oracle disables all rele-
vant triggers by default and re-enables them upon completing the table recovery, though you can
override this by appending the ENABLE TRIGGERS clause to your FLASHBACK TABLE statement, as
shown here:

SQL> FLASHBACK TABLE persons to TIMESTAMP TO_TIMESTAMP
('2005-04-05 10:00:00', 'YYYY-MM-DD HH24:MI:SS')
ENABLE TRIGGERS;

If you don’t have sufficient undo data to flash back the table, you’ll get the error shown in
Listing 6-6, which means that part of the undo information was overwritten. Unfortunately, the
Flashback Table feature can’t help you here, as it relies entirely on the presence of adequate undo
information. The only solution is to use a larger undo tablespace or enable the guaranteed undo
retention feature as explained in the “The UNDO_RETENTION Parameter” section, earlier in this
chapter.

Listing 6-6. Failure of a Flashback Table Operation

SQL> FLASHBACK TABLE emp,dept to TIMESTAMP (SYSDATE -1);
flashback table emp, dept to TIMESTAMP (SYSDATE -1)

*
ERROR at line 1:
ORA-00604: error occurred at recursive SQL level 1
ORA-12801: error signaled in parallel query server P005
ORA-01555: snapshot too old: rollback segment number 108 with name
"_SYSSMU108$" too small
01555, 00000, "snapshot too old: rollback segment number %s with name \"%s\" too
small"
// *Cause: rollback records needed by a reader for consistent read are
// overwritten by other writers
// *Action: If in Automatic Undo Management mode, increase undo_retention
// setting.

Undoing a Flashback Table Operation
If it turns out that your Flashback Table results aren’t to your liking, you can use the FLASHBACK
TABLE statement again to go back to just before you first issued the FLASHBACK TABLE statement.

It’s important to always note your current SCN before running a Flashback Table operation so
that you can undo it with the FLASHBACK TABLE . . . TO SCN statement if necessary. You can find
out the current SCN in your database by using the following query:

SQL> SELECT current_scn from V$DATABASE;
CURRENT_SCN

5581746576
SQL>

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT266

4517CH06.qxd 8/19/05 10:36 AM Page 266

Restrictions on the Flashback Table Feature
Several restrictions apply to the Flashback Table feature. Here are the important ones:

• You can’t flash back a table owned by SYS, recovered objects, or a remote table.

• You can’t flash back a table to a time preceding any DDL operation involving a change in
table structure, such as modifying or dropping a column, truncating a table, adding a con-
straint, or performing any partition-related operations, such as adding or dropping a
partition.

• The FLASHBACK statement involves a single transaction, and the Flashback operation suc-
ceeds entirely or it fails. If the flashback operation involves multiple tables, all of the tables
must be flashed back or none.

• If Oracle discovers any constraint violations during the Flashback operation, it abandons the
operation, leaving the tables in their original state.

• If you shrink a table or change any nonstorage attributes of a table (other than attributes
such as PCTFREE, INITTRANS, and MAXTRANS), you won’t be able to flash back to a time before
these changes were made.

■Note The entire flashback table operation executes as a single transaction.

Discrete Transactions
To enhance the speed of transactions, Oracle enables the explicit use of discrete transactions. When
you specify a transaction as a discrete transaction, Oracle skips certain routine processing over-
head, such as writing the undo records, thereby speeding up the transaction. Oracle doesn’t modify
the data blocks until the transaction commits.

You use the BEGIN_DISCRETE_TRANSACTION procedure, which is supplied by Oracle, to implement
the discrete transaction strategy. Short transactions run faster when you use this procedure, but if
discrete transactions occur during the course of long queries, and these queries request data modi-
fied by the discrete transactions, there could be problems. Because discrete transactions skip the
undo writing process, it isn’t possible for a long-running query to get a consistent view of the data.
Oracle doesn’t generate undo records for discrete transactions because the data blocks aren’t modi-
fied until the discrete transaction commits.

■Note Discrete transaction management doesn’t imply the elimination of redo information. Oracle doesn’t write
the redo information to the redo log buffers—it writes it straight to the redo logs after the transactions commit.
Oracle applies the changes to the database blocks directly, thus saving time.

Autonomous Transactions
A transaction can run as part of another transaction. In such cases, the parent transaction is called
the main transaction, and the independent child transaction is called the autonomous transaction.
An autonomous transaction is formally defined as an independent transaction that can be called
from another transaction. Notice that although the child transaction is called from the parent trans-
action, it is independent of the parent transaction.

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT 267

4517CH06.qxd 8/19/05 10:36 AM Page 267

Packages, procedures, functions, and triggers could all include transactions marked as
autonomous. You have to include a directive in the main transaction so that Oracle will know you
intend to use an autonomous transaction within the main transaction. The autonomous transac-
tion can have its own ROLLBACK and COMMIT statements, just like normal transactions. The main
transaction, by using an autonomous transaction, can pause and execute the autonomous transac-
tion, and then continue from where it stopped. In other words, you leave the calling transaction’s
context, execute SQL statements that are part of the autonomous transaction, either commit or roll
back your transaction, and resume the parent transaction upon returning to the calling transac-
tion’s context. Note that the autonomous transaction does not share transaction resources, such as
locks, with the parent transaction.

Autonomous transactions provide developers with the ability to create more fine-grained
transactions, where a transaction will not be an all-or-nothing affair. You can have the nested
autonomous transactions commit or roll back their transactions independent of the calling parent
transaction.

■Note If you don’t use an autonomous transaction, all the changes in your session will be committed or rolled
back at once (when you issue a COMMIT or ROLLBACK statement). The autonomous transactions give you the ability
to commit or roll back the subprogram’s changes independent of the main program. Also note that if you don’t
commit or roll back an autonomous transaction, Oracle will issue an error message.

Listing 6-7 provides a simple example of an autonomous transaction. Note that the PRAGMA (a
compiler directive) AUTONOMOUS TRANSACTION statement is instructing Oracle to mark the attached
piece of code, the loans function, as autonomous.

Listing 6-7. A Simple Autonomous Transaction

SQL> CREATE OR REPLACE package lending AS function loans
(user_id integer) return real;
-- add additional functions and/or packages
END lending;
CREATE OR REPLACE PACKAGE BODY lending AS
function loans (user_id integer) return REAL IS
PRAGMA AUTONOMOUS_TRANSACTION;
loan_bal REAL;
BEGIN
--the code goes here
END;
-- any additional functions and/or packages go here
END lending;

SQL>

Autonomous transactions provide you with a lot of flexibility. You can suspend the main trans-
action, run the autonomous transaction, and resume the processing of the main transaction. The
autonomous transaction’s committed changes are visible to the main transaction, because the
default isolation level in Oracle is read committed, meaning that a transaction will see all the com-
mitted data.

There can be many uses for autonomous transactions. For example, you can use the transac-
tions to send error-logging messages. You can have a single procedure that will write error messages
to an error log table and invoke this procedure as an autonomous transaction from a regular trans-
action. Listing 6-8 shows how to write error messages to a table.

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT268

4517CH06.qxd 8/19/05 10:36 AM Page 268

Listing 6-8. Writing Error Messages to a Table

SQL> CREATE OR REPLACE PROCEDURE error_log(error__msg in varchar2,
procedure_name IN VARCHAR2 IS
PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
INSERT INTO log_table (error_msg, procedure_name)
VALUES (error_msg,procedure_name));
COMMIT;
EXCEPTION
WHEN OTHERS THEN ROLLBACK;
END;

SQL>

Autonomous transactions can serve other purposes in the Oracle database. For example, they
can enable the handling of nonstandard PL/SQL coding issues, such as using DDL statements in
triggers. Autonomous transactions also are useful in performing an audit of database queries and
failed (unauthorized) database activity.

Listing 6-9 shows an example in which the autonomous transaction feature is used to audit
(presumably) unauthorized update activity. Even when a user is unsuccessful in the update
attempt, the user’s name can be successfully logged into an audit table if you code a simple pair
of triggers that use the autonomous transaction feature.

Listing 6-9. Using an Autonomous Transaction to Audit Database Activity

SQL> CREATE OR REPLACE TRIGGER aud_bef_trig
BEFORE INSERT ON emp FOR EACH ROW
DECLARE
PRAGMA AUTONOMOUS_TRANSACTION
BEGIN
INSERT INTO audit_employee VALUES (
:new.username, 'before insert', sysdate);
COMMIT;
END;

SQL> CREATE OR REPLACE TRIGGER aud_aft_trig
AFTER INSERT ON emp FOR EACH ROW
DECLARE
PRAGMA AUTONOMOUS TRANSACTION
BEGIN
INSERT INTO audit_emp VALUES (
:new.username, 'after insert', sysdate);
COMMIT;
END;

SQL>

Note that you can’t always just use a pair of normal triggers to audit database activity because
auditing data provided by the triggers won’t be recorded if the triggering statement is rolled back.

Resumable Space Allocation
Imagine you’re running a very long batch job and it runs out of space for some reason, whether
because of an unexpected amount of data or because of a failure to notice that the space was run-
ning out for the objects involved in the DML transactions. Or perhaps there was a “maximum
number of extents reached” error. What are your options when this sort of thing happens (as it
inevitably will)?

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT 269

4517CH06.qxd 8/19/05 10:36 AM Page 269

Most of the time, you must correct the space problem or other condition that caused the error
in the first place, and then restart your transactions. More often than not, you will roll back the
whole operation, which will take quite a bit of time. Sometimes you have to restart at the very
beginning of the program, which is a waste of time. In any case, your actions as a DBA are limited to
playing catch-up after the fact to rectify the error and redo the operation. Oracle’s Resumable Space
Allocation feature will suspend database operations that run into problems due to lack of space,
and it restarts those operations automatically when the space problems are fixed. The Resumable
Space Allocation feature comes in handy when you’re trying to ensure that key batch jobs or data
loads run within the window of operation they are allotted when they encounter space-related
issues.

■Tip To take full advantage of the Resumable Space Allocation feature, you should use locally managed table-
spaces coupled with Automatic Undo Management.

You can explicitly make operations run in the Resumable Space Allocation mode by using the
ALTER SESSION command. The Resumable Space Allocation feature will just suspend operations
until the problem is fixed (such as by you adding a data file to extend space) and it will resume auto-
matically after that.

Resumable Operations
The following types of database operations are resumable:

• Queries: These operations can always be resumed after they run out of temporary sorting
space.

• DML operations: Insert, update, and delete operations can be resumed after an error is
issued.

• DDL operations: Index operations involving creating, rebuilding, and altering are resumable,
as are CREATE TABLE AS SELECT operations and several other DDL operations.

• Import and export operations: SQL*Loader data load jobs that run out of space are resum-
able. You must use the RESUMABLE parameter when you specify the SQL*Loader job, to make
the operation resumable. Two other resumable operation parameters, RESUMABLE_TIMEOUT
and RESUMABLE_NAME, can be set only if you set the RESUMABLE parameter.

Common Resumable Errors
You can resume operations after fixing any of the following types of errors during the execution of
any operation:

• Out of space errors: Typically, operations fail when you can’t add extents to your tables or
indexes because the tablespace is full. You need to add a data file to your tablespace to
enable the objects to throw a new extent and continue to grow. The typical error message
is ORA-01653.

• Maximum extents errors: When a table or a rollback segment reaches the maximum extents
specified, it can’t grow any further, even if you have space in the tablespace. You end up with
errors such as ORA-01628.

• User’s space quota errors: If the user’s quota on a tablespace is exceeded, your operations on
that tablespace will come to a halt. The typical Oracle error is ORA-01536.

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT270

4517CH06.qxd 8/19/05 10:36 AM Page 270

Using the Resumable Space Allocation Feature
To use the Resumable Space Allocation feature, a user must have the appropriate privileges:

SQL> GRANT RESUMABLE TO salapati;
Grant succeeded.
SQL>

When you wish to revoke the privilege, use the following command:

SQL> REVOKE RESUMABLE FROM salapati;
Revoke succeeded.
SQL>

You can enable a session for Resumable Space Allocation in one of two ways—set the
RESUMABLE_TIMEOUT initialization parameter, or use the ALTER SESSION command to enable and
disable resumable space allocation. The following sections discuss these methods.

Using the RESUMABLE_TIMEOUT Initialization Parameter
Using the RESUMABLE_TIMEOUT initialization parameter, you can enable the resumable space alloca-
tion features across the entire system. For example, to enable all database sessions for Resumable
Space Allocation for a period of two hours, you’d set the parameter this way:

RESUMABLE_TIMEOUT=7200

You can change the RESUMABLE_TIMEOUT parameter dynamically using the ALTER SYSTEM com-
mand. You can also dynamically disable the feature by setting the parameter to 0.

Using the ALTER SESSION Statement
You can enable Resumable Space Allocation in your session simply by using the following state-
ment, regardless of whether you’ve set the RESUMABLE_TIMEOUT initialization parameter:

SQL> ALTER SESSION ENABLE RESUMABLE;
Session altered.
SQL>

Similarly, you can disable the feature by using the ALTER SESSION DISABLE TIMEOUT statement.

Providing a Timeout Interval

You can also use the optional TIMEOUT clause with the ALTER SESSION ENABLE RESUMABLE statement
to specify a time interval within which you need to fix the problem that caused the operation to be
suspended. If you don’t respond within the allotted time interval, the program will error out with
the ORA-30032 error (“the statement has timed out”) and you can’t resume it from where it stopped.

In the following example, the TIMEOUT parameter is set to 18,000 seconds (5 hours). The Oracle
default timeout is set for 7,200 seconds. If you don’t want to change the default timeout period, all
you have to do is issue the simpler ALTER SESSION ENABLE RESUMABLE command.

SQL> ALTER SESSION ENABLE RESUMABLE TIMEOUT 18000;
Session altered.
SQL>

■Note By default, the Resumable Space Allocation feature is disabled for all sessions unless you’ve set the
RESUMABLE_TIMEOUT initialization parameter to a nonzero value.

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT 271

4517CH06.qxd 8/19/05 10:36 AM Page 271

You can also set the timeout interval using the DBMS_RESUMABLE package, as follows:

SQL> EXECUTE DBMS_RESUMABLE.set_session_timeout(4349,18000);
PL/SQL procedure successfully completed.
SQL>

In the preceding example, the first number in the parentheses, 4349, is the SID of the session
for which you want the timeout to be enforced. You can omit the SID if you’re setting the timeout for
the current session. The second number, 18000, is the timeout period.

Naming a Resumable Operation

You may sometimes want to name an operation to help track it later on. The NAME parameter is
optional and has no real operational significance.

You can name any resumable operation in the following manner:

SQL> ALTER SESSION ENABLE RESUMABLE
NAME 'resumable_test';

Session altered.
SQL>

■Caution If an operation is suspended, any locks that are held by Oracle on various database objects will not
be released automatically. The locks and other resources will be released only after the transaction either com-
pletes successfully upon resumption or ends and throws an exception.

A Resumable Operation Example

Let’s look at a simple example of the Resumable Space Allocation feature.
First, the alert log showed the following message, indicating that a DML statement was sus-

pended because the undo tablespace ran out of space. Instead of erroring out immediately, the
statement is merely suspended.

Tue Feb 8 11:15:00 2005
statement in resumable session 'User PASOWNER(11), Session 173, Instance 1' was
suspended due to

ORA-30036: unable to extend segment by 8 in undo tablespace 'UNDOTBS_01'

One the problem was corrected by adding space to the undo tablespace (UNDOTBS_01), the
alert log showed the following message, indicating that the suspended statement was resumed after
the problem was cleared:

Tue Feb 8 11:21:52 2005
statement in resumable session 'User PASOWNER(11), Session 173, Instance 1' was
resumed

If space wasn’t added to the undo tablespace within the timeout interval, the suspended state-
ment would be aborted. The following entry from the alert log shows that situation:

Fri Feb 4 10:29:34 2005
Errors in file /a03/app/oracle/admin/pasx/bdump/pasx_smon_7091.trc:
ORA-30036: unable to extend segment by 8 in undo tablespace 'UNDOTBS_01'
Fri Feb 4 10:33:07 2005
statement in resumable session 'User PASOWNER(11), Session 184, Instance 1' was
aborted

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT272

4517CH06.qxd 8/19/05 10:36 AM Page 272

Notification of Suspended Operations
Upon suspending an operation for a space-related problem, Oracle will automatically generate an
AFTER SUSPEND system event. If you want automatic notification, you can write a trigger that will be
set off by this event, as shown here:

SQL> CREATE OR REPLACE TRIGGER page_dba
AFTER SUSPEND ON DATABASE
DECLARE
PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
/* Code here that'll page the DBA */
COMMIT;
END;

Trigger created.
SQL>

Note that the trigger must always be declared as an autonomous transaction.

Operation-Suspended Alert
When Oracle suspends a resumable session, it automatically issues an operation-suspended alert
through the automatic Server Generated Alerts feature in Oracle Database 10g. Once you fix the
problem by allocating the necessary resources and the operation completes, Oracle will automati-
cally clear this alert.

Monitoring Resumable Space Allocation
You can monitor resumable operations by using the DBA_RESUMABLE view. This view provides the
name of the operation, the user’s SID, the start time of the statement, the error message encoun-
tered, the suspend and resume times, and the text and current status of the SQL statements. The
V$SESSION_WAIT view also provides information about suspended resumable statements. The
EVENT column of this view shows you that a statement is suspended, pending the clearance of a
“wait error.”

The DBMS_RESUMABLE package contains procedures to help you manage suspended ses-
sions. The SET_SESSION_TIMEOUT procedure, for example, allows you to specify the time a suspended
session will wait before failing.

Managing Long Transactions
Suppose you’re running transactions in your database that are extremely long—maybe even as long
as a whole day. Oracle primarily uses locks to ensure concurrency and atomicity, but locks on a
long-running transaction can reduce concurrency dramatically because other users are forced to
wait for the long-running transaction to complete.

Fortunately, Oracle provides the Workspace Manager, a feature you can use to version-enable
tables, so different users can maintain different versions of the data. During long-running transac-
tions, changes can be made to the same table in different workspaces, and these versions are finally
reconciled and the results are stored permanently in the original table. You can think of a workspace
as a virtual environment shared by several users making changes to the same data.

In addition to facilitating long transactions, the Workspace Manager enables you to create mul-
tiple data scenarios for what-if analyses. It can also help you track the history of all the changes to a
set of tables. The feature is especially useful in collaborative projects because it allows teams to
share content.

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT 273

4517CH06.qxd 8/19/05 10:36 AM Page 273

The Workspace Manager enables simultaneous read and write access to production data dur-
ing long transactions. It uses multiple versioning of tables to enable the simultaneous reading and
writing of data. Consistency is guaranteed because the final, permanent version of the table will not
have any conflicts within the data. All the users see their own virtual version of the database—that
is, different versions of the rows in the same tables. But the versions each user sees from his or her
workspace are guaranteed to be transactionally consistent; the user’s versions will have the original
data the user started with, plus all the changes he or she made to the original data.

Benefits of Using the Workspace Manager
Among other things, the Workspace Manager enables you to try out various scenarios with your
data (such as the effects of different marketing campaigns) before you finally settle on one accept-
able version that you can make permanent by merging all the virtual versions of the table data.
Merging, in effect, incorporates the child workspace data with the original (parent workspace) data.
If, after analysis, you decide to nullify all the child workspace’s data, you can do so by rolling it back,
just like you would roll back a transaction under normal circumstances.

■Note Although the Workspace Manager provides you with the capability to create multiple versions of one
table, or even of all the tables in your database, it doesn’t impose a severe storage cost because only the changed
rows in each workspace are versioned, and these new versions are saved in the original table (and in the original
tablespace). In other words, you don’t need to make any special storage allocations for the database tables that
belong to different versions.

The Workspace Manager offers the following features:

• You can maintain multiple versions of data, which you can keep or discard as necessary.

• Multiple users can simultaneously access and modify the same data.

• The updates made by several users over time are isolated in workspaces until they’re merged
into the production database.

• Conflicts between multiple versions are resolved automatically by the Workspace Manager.

Table Versioning and Workspaces
The concepts of table versioning and workspaces are the foundation of the Workspace Manager fea-
ture. Table versioning enables you to have different sets of rows sharing the same table name. The
amazing thing about table versioning is that users can continue to change data through DML oper-
ations on a day-to-day basis. The Workspace Manager maintains the structure of the versioned
tables using views based on the original production table. This ability to version-enable even pro-
duction tables makes the Workspace Manager very powerful in performing what-if analyses.

You can use the WM$VERSIONED_TABLES and WM$VERSION_TABLE tables to find out details
about the versioned tables. The WMSYS schema owns both of these tables, so first make sure that
you have the WMSYS schema in your database.

Workspaces enable users to make changes to versions of a table, and the workspaces isolate the
versioned tables until they’re finally discarded or merged with the original table. This ability of the
workspaces to save the versioned tables means that access to the original tables isn’t impeded. You
can assign each workspace to one or several users, and they can see a consistent view of the data-
base, including the rows in their versions of the tables in the workspace, plus all the other tables at
the time the workspaces were either created or refreshed, whichever is later.

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT274

4517CH06.qxd 8/19/05 10:36 AM Page 274

Note that when versioned tables are created in a database, the original table is renamed
tableName_LT. Oracle also creates a new table called tableName_AUX and a view with an identical
name as the original table. When users log in, they are placed, by default, in the LIVE workspace.
All other workspaces that exist in the database are children of the LIVE workspace. Whenever you
refresh your workspace, you can see the latest changes made in the parent workspace, which also
includes any changes merged from other child workspaces. The merging of a workspace with the
parent LIVE tablespace makes the changes in the child workspace public. The MERGE statement fol-
lows the resolution of any conflicts.

The Workspace Manager feature is provided with the Oracle software, but it won’t be automati-
cally installed in a database that you create manually. If you use the DBCA to create a new database,
and you let Oracle create a seed database as part of the Oracle software installation, the Workspace
Manager feature is automatically installed.

An easy way to find out whether the Workspace Manager is already installed is to look for the
WMSYS user using the DBA_USERS view, since WMSYS owns the Workspace Manager tables. If
that user is already there, you can go ahead and use the feature. Otherwise you’ll need to install
the Oracle Workspace Manager in your database.

The easiest way to use the Workspace Manager is by accessing it through OEM. OEM lets you
create and manage workspaces, as well as enable and disable table versioning.

CHAPTER 6 ■ ORACLE TRANSACTION MANAGEMENT 275

4517CH06.qxd 8/19/05 10:36 AM Page 275

4517CH06.qxd 8/19/05 10:36 AM Page 276

P A R T #

■ ■ ■

Installing Oracle Database
10g, and Creating and
Upgrading Databases

P A R T 3

■ ■ ■

4517CH07.qxd 8/19/05 10:40 AM Page 277

4517CH07.qxd 8/19/05 10:40 AM Page 278

Installing the Oracle Database
10g RDBMS

This chapter will give you a good understanding of the procedure for correctly installing the Oracle
Database 10g server software, and it includes an example of an installation of Oracle Database 10g
on a server using the Red Hat Enterprise Linux WS 3 operating system. Chapter 20 contains a dis-
cussion of installing Oracle on Windows servers.

There are some variations in the installation procedure for the different flavors of UNIX, such
as Sun’s Solaris, Hewlett Packard’s HP-UX, IBM’s AIX, and so on, but the steps are essentially the
same. Several steps need to be performed before and after the installation of the Oracle software,
both by you and the Linux/UNIX system administrator, and this chapter explains those steps. The
software must be installed according to a sensible plan, and this chapter shows you how to install
Oracle by following the well-known Optimal Flexible Architecture (OFA) guidelines.

Note that you’ll be going through the main features of a generic Oracle installation in this
chapter. It’s important that you have access to the Oracle installation manuals for your specific
operating system before you begin installing the Oracle Database 10g software. The installation
manuals are all available on the Oracle Technology Network web site.

Of course, if you’re configuring Oracle Real Application Clusters (RAC) or some such advanced
architecture, you’ll need more time to finish the installation. Complex as the Oracle database server
software is, the actual time you need to install the software is trivial compared to the time you need
to spend to ensure that all the preinstallation steps have been completed correctly. If you follow all
the recommended steps, the installation process should work the first time around.

Installing Oracle
When it comes to the mechanics of the process, installing the Oracle server software is really a sim-
ple affair. Installing all the software will probably not take you more than a couple of hours. All the
real effort goes into the proper planning of such things as the physical space and memory alloca-
tion, and the operating system configuration you need for your Oracle databases to function
optimally.

■Note This chapter deals with the installation of Oracle Database 10g server software on a Red Hat Linux
server. The installation process is virtually the same on all the UNIX variants, like HP-UX, Sun Solaris, and so on.
I also show a Windows installation in Chapter 20.

Installing the Oracle client is a much simpler task. When you invoke the Oracle installer, simply choose the
client installation option instead of the server installation option.

279

C H A P T E R 7

■ ■ ■

4517CH07.qxd 8/19/05 10:40 AM Page 279

I’m assuming that you, or your organization, have bought the necessary software from Oracle
Corporation. If that’s the case, the software CDs will have been sent to you by Oracle. If you just
want to try the Oracle database software, however, you don’t have to purchase a thing. You can
download the Oracle server software freely from the Oracle Technology Network (OTN) web site at
http://technet.oracle.com/. The OTN site has complete enterprise versions of the server software
for all UNIX, Linux, and Windows servers. In addition, you can check out the operating system
installation and administration manuals at http://tahiti.oracle.com.

Reviewing the Documentation
You can save yourself a lot of grief during the installation process by carefully reviewing the Oracle
installation manuals for your particular operating system. These manuals are very clear and provide
you with a detailed map of the installation process. You’ll need to review three sets of installation
documents:

• Oracle Installation Guide for your operating system: This document will provide you with
information about the system requirements, UNIX users and groups, and other require-
ments, and it will step you through the installation and post-installation processes.

• Release Notes and Release Notes Addendums: The Release Notes and any related Addendums
are very important, and they cover the most recent changes to the installation and upgrade
procedures for many components of the Oracle database server and client. The last-minute
changes that are covered in the Release Notes (and related Addendums) may make the dif-
ference between a successful installation of the various components and an error-prone
installation.

• README files: The README files are usually in the \doc\readmes directory on the first
product CD-ROM.

The Release Notes and the README files inform you about any potential restrictions, limita-
tions concerning the installation, and the use of new Oracle Database 10g software.

■Note The Installation Guides and the Release Notes are available at the OTN site (http://technet.oracle.com/),
or you can access them by going to http://docs.oracle.com/ or http://tahiti.oracle.com/.

Determining Disk and Memory Requirements
You should focus on two key operating system resources when you are planning a new Oracle
installation: disk storage and the amount of memory (RAM) that your systems need on the server
machine.

The amount of total physical space (disk storage) will depend on the size of your applications
and data. The Oracle software itself takes approximately 1.5–2 gigabytes of disk space, depending
on the operating system. You also have to run one or more databases with this software, so the total
space you need will depend on the requirements for all the databases considered together. You need
to determine the sizes of the tables and indexes and the number of stored procedures you will have
in the database. You also need to find out as much as you can about the growth expectations for
your data over time. If you have a database that you anticipate will grow quickly, you need to make
allowances for that. Plan ahead, because disk space is something that needs to be budgeted for, and
you may find yourself scrambling for space if you are way off the mark.

CHAPTER 7 ■ INSTALLING THE ORACLE DATABASE 10g RDBMS280

4517CH07.qxd 8/19/05 10:40 AM Page 280

■Tip For larger databases, the size of the tables and indexes will be the predominant component of total data-
base size. Fortunately, you can easily find out your database’s size by using database-sizing spreadsheets. One
such sizing spreadsheet is available from Blue Hills Technology Corporation at http://bhtech.com/. Although the
spreadsheet is for an older version of Oracle, the idea behind it remains the same, and you can derive meaningful
estimates of the size of your tables and indexes using this spreadsheet.

Chapter 4 discussed the components of Oracle memory; the total amount of memory that you
need will depend on the size and nature of your applications. Oracle does provide a rule of thumb
for memory requirements, and you can follow this rule when you are in the initial stages of plan-
ning your system. Later on, you can adjust these initial estimates.

The minimum requirement that Oracle imposes for memory is 256MB, but this is not enough
for serious applications. Depending on your application’s size and the number of users, your mem-
ory requirements may run to several gigabytes of RAM. In addition, Oracle requires that you allocate
swap space that is about two to three times your Oracle RAM allocation. The requirements of the
applications that your system will be running will determine the total memory you need. At the very
least, your system shouldn’t be memory-bound, because inadequate memory leads to excessive
swapping and paging, and your system could slow to a crawl. In Chapter 22, you’ll learn how to
monitor memory usage and determine when you may need to increase it.

Following the Optimal Flexible Architecture
Although the Oracle database server software and the databases managed by the server will func-
tion even if they’re installed on a single disk or a set of disks without any organization, as such,
you’ll lose performance and endanger the safety of the databases if you don’t follow a well-thought-
out strategy regarding disk allocation. Oracle strongly recommends a disk layout methodology
formally called the Optimal Flexible Architecture (OFA), for efficiency as well as many other reasons.

Before you start any installation of the Oracle software itself, it is absolutely necessary for you
to be familiar with the OFA recommendations regarding proper disk layout. The OFA is a set of rec-
ommendations from Oracle Corporation aimed at simplifying management of complex software
and databases often running under multiple versions of software. The OFA essentially imposes a
standardized way of naming the different physical components of Oracle and places them on the
file system according to a logical plan.

■Note The OFA guidelines were formulated at Oracle in 1990 in an internal paper by Cary Millsap. Millsap
revised them in 1995 and published them under the title “OFA Standard: Oracle for Open Systems.” You can find
this paper and many other excellent white papers at http://www.hotsos.com/.

The OFA guidelines are only Oracle’s recommendations, and you do not have to follow them in
their entirety, but OFA was designed to achieve minimize disk contention, to provide for operating
more than one database without administrative confusion, and to improve database performance.
Laying out the UNIX directories according to the OFA guidelines leads to a clear and efficient distri-
bution of Oracle’s various files, even with several databases simultaneously running under different
Oracle versions. You can consider the OFA guidelines a set of best practices regarding two important
issues—disk layout and naming conventions—based on extensive field experience by Oracle pro-
fessionals. Although originally intended only for internal Oracle use, the OFA is now the standard
by which all Oracle installations should be measured.

CHAPTER 7 ■ INSTALLING THE ORACLE DATABASE 10g RDBMS 281

4517CH07.qxd 8/19/05 10:40 AM Page 281

If you’ve ever walked into an organization and taken over a database installation that had files
stored all over the place, you’ll immediately recognize the benefits of the OFA. If the previous DBA
has adhered to the OFA guidelines, any new hire can easily go to the standard directories and look
for various types of information. If your database is growing and needs more space, following the
OFA guidelines will ensure that space will be added in the right directories with the standard naming
convention. The standardization of directory and file placement leads to minimal administrative
overhead and helps create more efficient databases. When you separate categories of files into inde-
pendent UNIX subdirectories, files in one category are minimally affected by operations on files in
other categories.

The usefulness of the OFA guidelines becomes particularly clear when you are trying to man-
age multiple databases on the same server. You can simplify administration by using the structured
OMF system for maintaining your files. Creating new databases won’t pose any problems, because
each database is separated into its own directories, simplifying user administration and the creation
of new databases. The OFA guidelines contribute to database reliability, because your hard drive
failures won’t propagate to whole applications—they help in balancing the load efficiently across
the disk drives, thereby enhancing performance and minimizing contention. The OFA guidelines
also promote the efficient separation of administrative files from several databases by using stan-
dard naming conventions. Another big benefit in using the OFA guidelines is that they enable you to
simultaneously run multiple versions of Oracle software. You thus can run your production and test
databases using different versions of Oracle on the same server.

Before plunging into a detailed discussion of the OFA concepts and the implementation
details, you should be familiar with the following terms:

Mount points: These are directories in the UNIX file system that are used to access mounted file
systems.

Product files: These are the many sets of configuration and binary executable files that come
with the Oracle software.

Versions: These can refer to entirely different releases or to point upgrades (patch upgrades).
For example, 9.2.0.1.0 and 10.1.0.2.0 are different versions of the server software.

Oracle data files: These are the UNIX files that hold Oracle table and index data.

Oracle administrative files: These include the database log files, error logs, and so forth.

Tablespaces: These refer to the logical allocation of space within Oracle and are discussed in
detail in Chapters 4 and 5.

■Tip If you are using NFS file systems, you should know that these can’t guarantee that writes always complete
successfully, leaving open the possibility of file corruption. Unless your storage vendor is listed in the Oracle Stor-
age Compatibility Program (OSCP) member list, don’t install the software on NFS file systems.

Mount Points
Mount points are the directory names under which file systems are mounted by the UNIX operating
system. That is, the mount point refers to the top-level directory of a file system. Oracle recom-
mends that all your Oracle mount points be named according to the convention /pm, where p is a
string constant to distinguish itself from other mount points, and m is a two-digit number. This
means you can name your mount points /u01, /u02, /u03, and so on. Keep the mount point names
simple, and don’t include any hardware-related information in the mount point name. That way,
changing your disk system hardware will not affect the mount point names.

CHAPTER 7 ■ INSTALLING THE ORACLE DATABASE 10g RDBMS282

4517CH07.qxd 8/19/05 10:40 AM Page 282

Oracle recommends that you have four mount points to fully comply with the OFA guidelines.
The first of these is for locating the Oracle Database 10g server binaries, and the other three are for
holding the database files. Let’s say you’re creating mount points for a database named prod. In this
case, the three mount points designated for the data files can be clearly named as follows: /u01/
oradata/prod, /u02/oradata/prod, and /u03/oradata/prod. This nomenclature makes it clear that
these file systems are meant for Oracle databases and that the data for different databases is stored
on separate mount points.

Directory and File Naming Conventions
In Linux and UNIX systems, a home directory is the directory that a user lands in when he or she
first logs in. All home directories should follow the naming convention /pm/h/u, where pm is the
mount point name, h is a standard directory name, and u refers to the directory owner. For example,
the /u01/app/oracle directory could be the home directory for the user named oracle. Note that the
entire home directory for each user (e.g., /u01/app/oracle) is denoted by the letter h for the pur-
poses of the following discussion.

Directory Structure
During the installation, you’ll be prompted for the path for several key Oracle directories, and I’ll
briefly discuss these in this section. You can use any directory structure you wish for these directo-
ries, but, as you’ll see, following the standard directory structures recommended here makes it easy
to administer multiple databases and software versions on the same server.

Oracle Base

At the root of the Oracle directory structure is the directory called Oracle base, denoted by the
environmental variable ORACLE_BASE. The Oracle base directory is the top directory for all Oracle
software installations. Oracle recommends that you use the form /pm/h/u. In the standard Oracle
base directory syntax, this is what these variables stand for:

pm: The mount point name

h: The name of a standard directory

u: The directory’s owner’s name

The default owner of the Oracle base directory is usually a user named oracle (you’ll learn more
about this user later on), and the standard directory is usually named app. Therefore, the Oracle
base directory usually has the form of /pm/app/oracle (for example, /u01/app/oracle).

The Oracle installer will take this as the default Oracle base and install all the software under
this base directory. You can create the Oracle base directory by using the following commands
(assuming that u01 is your mount point and user oracle is the Oracle software owner):

mkdir -p /u01/app/oracle
chown -R oracle:oinstall /u01/app/oracle
chmod -R 775 /u01/app/oracle

Oracle Home

The Oracle home directory, denoted by the ORACLE_HOME environment variable, is very important,
since the Oracle server software executable files and other configuration files are located under this
directory. For example, the $ORACLE_HOME/bin directory holds the executables for the Oracle
products, and the $ORACLE_HOME/network directory holds the Oracle Net Services files.

CHAPTER 7 ■ INSTALLING THE ORACLE DATABASE 10g RDBMS 283

4517CH07.qxd 8/19/05 10:40 AM Page 283

In Oracle Database 10g, the OFA-recommended Oracle home directory path has changed. In
order to comply with the OFA requirement of enabling the simultaneous running of multiple ver-
sions of Oracle software, you need to install Oracle software in a directory with the following path:
/pm/h/u/product/v/type_[n], where the variables in the Oracle home directory path have the fol-
lowing meanings:

pm: The mount point name

h: The standard directory name

u: The owner of the directory, usually named oracle

v: The version of the software

type: The type of installation, such as database (db), client (client) or companion (companion)

n: An optional counter, which enables you to install the same product multiple times under the
same Oracle base directory

In the preceding syntax for the Oracle home, /pm/h/u/product/v_type_[n], the first part,
/pm/h/u, is nothing but the Oracle base directory. Thus the Oracle home directory is always
located underneath the Oracle base directory, and it can also be specified as $ORACLE_BASE/
product/v/type_[n].

Using the preceding OFA-based Oracle home path, you can install different products—the
server and the client with the same release number (Oracle 10.2.0 here)—in the same Oracle base
directory.

■Note The formal name for the Oracle database server version in this book is Oracle Database 10g Release 2.
However, you’ll occasionally see references to 10.2, 10.2.0, or Oracle 10.2, all of which are alternative names for
the same software.

/u01/app/oracle/product/10.2.0/db_1
/u01/app/oracle/product/10.2.0/client_1

The db_1 and client_1 at the end of the paths indicate that these are the Oracle home directo-
ries for the first installation of the Oracle database and the Oracle client software, respectively.

Oracle supports multiple Oracle homes, but you can’t install products from one release of Oracle
into an Oracle home directory of a different release. You must install the Oracle Database 10.2 soft-
ware into a new Oracle home directory. For example, you can’t install release 10.2 software into an
existing Oracle9i Oracle home directory. You can install this release more than once on the same
system, however, as long as you choose a separate Oracle home directory for each release. It’s also
okay to install the same product multiple times in the Oracle home directory, as shown here:

/u01/app/oracle/product/10.2.0/db_1
/u01/app/oracle/product/10.2.0/db_2

Once you finish your Oracle software installation, set your ORACLE_HOME environment variable
to specify your Oracle home directory.

Oracle Inventory Directory

Oracle uses a special directory called the Oracle Inventory Directory, also known as OraInventory, to
store an inventory of all the Oracle software on a server. Multiple Oracle installations can share the
same Oracle Inventory Directory. You need to specify the path for this directory only the first time
you install an Oracle product on a server. The usual format of this directory is as follows:

CHAPTER 7 ■ INSTALLING THE ORACLE DATABASE 10g RDBMS284

4517CH07.qxd 8/19/05 10:40 AM Page 284

$ORACLE_BASE/ora_inventory

For example, if /u01/app/oracle is your ORACLE_BASE directory location, then the Oracle Inven-
tory Directory will be:

/u01/app/oracle/ora_inventory

The first time you install Oracle software, the installer prompts for the OraInventory directory
path, and creates the directory itself.

Administrative Files
Every Oracle database has several administrative files associated with it. Among these files are con-
figuration files, core dump files, trace files, export files, and other related log files. You need to store
these files under separate directories for ease of maintenance. Assuming you have about ten or so of
these directories for each database, you can see why it’s imperative that you have a simple means of
organizing them. Oracle recommends the following directory structure for clarity: /h/admin/d/a,
where h is the Oracle base directory (e.g., /u01/app/oracle), admin indicates that this directory
holds administration-related files, d refers to the specific database, and a refers to the subdirecto-
ries for each specific type of administrative files. For example, the /u01/app/oracle/admin/prod1/
bdump directory will contain all background process trace files as well as the all-important alert.log
files for the prod1 database.

Table 7-1 lists the standard administrative directories that you’ll need in most cases. Of course,
you may add to the recommended list or modify it to fit your circumstances.

Table 7-1. Typical Administrative Directories

Directory Contents

adhoc Contains ad hoc SQL files

arch Contains archived redo log files

adump Contains any audit files

bdump Contains background process trace files

create Contains SQL scripts that you can use for creating your databases

cdump Contains core dump files

dpdump Contains the Data Pump Export files

pfile Contains instance parameter files (such as init.ora)

udump Contains SQL trace files for user processes

If you follow the OFA guidelines, and your database is called prod1, you’ll end up with the fol-
lowing directories for your administrative files:

$ pwd
/u01/app/oracle/admin/prod1
$ ls
adhoc adump bdump cdump dpdump pfile udump
$

■Note The dpdump directory is new to Oracle Database 10g and holds the logs and other files for the Data
Pump Export and Import utilities.

CHAPTER 7 ■ INSTALLING THE ORACLE DATABASE 10g RDBMS 285

4517CH07.qxd 8/19/05 10:40 AM Page 285

Product Files
The whole idea behind properly naming and placing the product files is to be able to implement
multiple versions of the Oracle server software simultaneously. This is necessary because when you
migrate between versions, it is normal to retain the older software versions until you switch over to
the new version. Different applications on the system may have different timeframes within which
they want to migrate to the new version. Consequently, in most cases, you’ll end up having to sup-
port multiple versions of the Oracle server software simultaneously.

Oracle recommends that you keep each version of the software in a separate directory distin-
guished by the naming convention /h/product/v, where h is the home directory, product indicates
that the software versions are under this directory, and v is the version of the product. For example,
I have a directory on my system called /u01/app/oracle/product/10.1.0.2.0 under which I save all
the Oracle server software subdirectories during installation. If I decide to install the 10.2.0 version,
I’ll do so under the directory /u01/app/oracle/product/10.2.0. You can see that this type of naming
convention makes it very easy to install and manage multiple versions of the Oracle software.

Database Files
The administrative and product files are generic files. Oracle databases contain another set of key
files called database files. These include the data files that contain the table and index data and cer-
tain operational files called control files and redo log files. Control files are crucial to the operation
of the database, and redo log files hold information necessary to recover the database during an
instance crash and similar situations.

The OFA recommendation for control and redo files is to follow the naming conventions
/pm/q/d/controln.ctl and /pm/q/d/redon.log, respectively. In this notation, pm is the mount point;
q is an indicator, such as “oradata”, denoting that the files contain Oracle-related data; d is the data-
base name (provided by the DB_NAME initialization parameter, which is the same as the SID for the
database), and n is a two-digit number.

Since Oracle recommends that you have multiple control files and duplexed online redo log
files, it’s common to see the following naming structure for redo log files and control files:

/u01/oradata/prod1/control01.ctl
/u05/oradata/prod1/control02.ctl
/u02/oradata/prod1/redo01.log
/u04/oradata/prod1/redo02.log

Oracle recommends that all tablespaces be named with no more than eight characters, with
the format tn, where t is a descriptive name for the tablespace and n is a two-digit number. For data
files, the recommended notation is /pm/q/d/tn.dbf, where pm is the mount point; q is an indicator,
usually “oradata”, d is the database name, t is the descriptive name for the tablespace that contains
this data file, and n is a two-digit number. Thus, a typical data file under the OFA guidelines would
have a name like /u20/oradata/prod/system01.dbf, which refers to a data file in the System table-
space.

OFA file-naming conventions are designed to achieve the following goals:

• Show which tablespace a data file belongs to

• Distinguish database files from other files on the system

• Distinguish between database files belonging to various databases

• Identify control files, redo log files, and data files easily

Table 7-2 clearly shows how an OFA-compliant database enables you to easily manage files
belonging to several database versions. The example also shows two Oracle home directories, one
for Oracle 9.2 and the other for Oracle 10.2. There are a total of four mount points. The Oracle

CHAPTER 7 ■ INSTALLING THE ORACLE DATABASE 10g RDBMS286

4517CH07.qxd 8/19/05 10:40 AM Page 286

software is on mount point /u01 and the database files are distributed across three mount points:
/u02, /u03, and /u04.

Table 7-2. Directory Structure for an OFA-Compliant Oracle Database

Directory Format Description

/ Root directory

/u01 User data mount point 1

/u01/app/ Subdirectory for application software

/u01/app/oracle/ Oracle base directory

/u01/app/oracle/admin Directory for the Oracle administrative files

/u01/app/oracle/admin/nina/ Admin subdirectory for the nina database

/u01/app/oracle/flash_recovery_area/ Subdirectory for recovery files

/u01/app/oracle/flash_recovery_area/nina Recovery files for the nina database

/u01/app/oracle/product/ Distribution files

/u01/app/oracle/product/9.2.0 Oracle home directory for Oracle9i Release 2 (9.2.0)

/u01/app/oracle/product/10.2.0/db_1 Oracle home directory for Oracle Database 10g
Release 2 (10.2.0)

/u02 User data mount point 2

/u02/oradata/ Subdirectory for Oracle data

/u02/oradata/nina/ Subdirectory for database files for the nina
database

/u03 User data mount point 3

/u03/oradata/ Subdirectory for Oracle data

/u03/oradata/nina/ Subdirectory for database files for the nina
database

/u04 User data mount point 4

/u04/oradata/ Subdirectory for Oracle data

/u04/oradata/nina/ Subdirectory for database files for the nina
database

Creating Directories for Oracle Database Files
Although our concern in this chapter is with installing Oracle server software, the storage space
necessary for database files (which includes the files for tables and indexes, as well as the files for
the redo logs and the undo tablespace and so on) will, in most cases, dwarf the space needed for
the installation files.

Although nothing prevents you from placing all your database files on one storage device,
Oracle recommends that you use a logical volume spread over several disks or use a RAID system.
Oracle further recommends that you use the SAME (stripe-and-mirror-everything) technique (see
Chapter 3). For each of the mount points you select for your database files, you need to issue the
following commands as root in order to set the owner, group, and permissions:

mkdir /mount_point/oradata
chown oracle:oinstall /mount_point/oradata
chmod 775 /mount_point/oradata

Using the preceding command structure, you can create as many subdirectories for your data
files as necessary; for example, /u10/oradata, /u11/oradata, and so on.

CHAPTER 7 ■ INSTALLING THE ORACLE DATABASE 10g RDBMS 287

4517CH07.qxd 8/19/05 10:40 AM Page 287

Creating the Flash Recovery Area
Oracle Database 10g introduces the new flash recovery area, which is a disk area set apart for stor-
ing all the recovery-related files. It’s a good idea to create it on entirely different storage devices from
where you have your data files. You also need to set another parameter, DB_RECOVERY_FILE_DEST, to
indicate the location of the flash recovery area. You can set the physical size of the flash recovery
area by using the DB_RECOVERY_FILE_DEST_SIZE initialization parameter.

Here is how you create the flash recovery area directory:

mkdir /mount_point/flash_recovery_area
chown oracle:oinstall /mount_point/flash_recovery_area
chmod 775 /mount_point/flash_recovery_area

For example, you can designate /u20/flash_recovery_area as your flash recovery area, and set
the DB_RECOVERY_FILE_DEST_SIZE parameter to 5GB.

Performing Preinstallation Tasks
The installation of the Oracle software, as I mentioned earlier, is a straightforward exercise. You do
the bulk of your work before the installation of the software. Your crucial partner in this process is
the Linux/UNIX system administrator.

To estimate the total disk space you need, you have to add the space required for the Oracle
Database 10g installation to the total space you expect the database files to consume. For example,
for an Oracle Database 10g installation on the HP UNIX system, Oracle recommends that you allo-
cate around 2GB of space for your software. You must add this 2GB to whatever space estimates
you’ve come up with for your database files in the previous section.

You can also estimate memory requirements by following some basic guidelines. Most small
OLTP systems require about 500MB of RAM, medium installations require about 1GB, and larger
installations require more RAM. A more important issue at software installation time is that you
allocate enough swap space for your system.

■Note The Oracle Universal Installer, which comes with the software distribution, will let you install a seed data-
base. This might be a good idea if you are a complete beginner. If you already have some experience, you’re better
off configuring your own customized database.

Checking the Preinstallation Requirements
The preinstallation tasks depend on your operating system, but the steps are similar. In this discus-
sion, I show you how to install the Oracle software on a Red Hat 3.0 WS Linux operating system. You
will need to consult your specific documentation from Oracle for the exact installation procedures
for your operating system.

The installation process for Oracle Database 10g is much more automated than were previous
versions. The installation process automatically checks the following prerequisites:

• Platform version: The installation process checks to make sure the operating system is
appropriate for the Oracle installation. If you were using an HP-UX system, for example, you
would need to have at least the HP-UX-11.11 operating system version. In this chapter, since
we’re using a Linux-based server for the Oracle installation, we can use one of the following
Linux distributions, which are certified for Oracle Database 10g:

CHAPTER 7 ■ INSTALLING THE ORACLE DATABASE 10g RDBMS288

4517CH07.qxd 8/19/05 10:40 AM Page 288

• Red Hat Enterprise Linux AS/ES 3 (Update 2)

• SUSE Linux Enterprise Server 9

• Operating system patches: The installation process checks to ensure that you’ve applied the
latest operating system patches.

• Kernel parameters: The installation process verifies that your OS kernel settings are ade-
quate. It also verifies that you have installed the necessary OS system packages.

• Space: The installation process checks to ensure that you have the minimum amount of
temporary space in your /tmp directory before starting the installation. It also checks for
adequate swap space.

• ORACLE_HOME directory: The installation process checks that you have either a non-empty
Oracle home directory or one that qualifies for the installation because it contains a release
on top of which Oracle Database 10g can be installed.

■Note If you aren’t sure whether your operating system is certified for a certain Oracle release, you can check
the latest Oracle product and platform certification matrices on the Oracle web site: http://www.oracle.com/
technology/support/metalink/content.html.

Although it’s true that the Oracle installer software checks to ensure that all the prerequisites
are satisfied, you shouldn’t wait until installation time to find out. You must diligently check each
necessary component, to make sure your installation will be a smooth process, instead of erroring
out several times. You can divide the checking of the prerequisites into tasks that fall into the
domain of the UNIX or Linux (or Windows) system administrator those that are the responsibility
of the Oracle DBA.

System Administrator’s Preinstallation Tasks
The UNIX/Linux system administrator needs to perform several steps before you can install your
Oracle software. First, the system administrator should make sure that the latest operating system
patch sets are applied, per Oracle’s installation recommendations. The other important tasks are
creating separate mount points for the Oracle software, reconfiguring the kernel (if necessary), cre-
ating the necessary users and groups on the UNIX/Linux server, and making sure that the Oracle
users have the right file and directory permissions.

All these system administrator tasks are covered in some detail in the following sections. The
tasks are discussed in general, but the examples are all based on an actual installation on a Red Hat
Linux 3 system.

Verifying Operating System Software
The system administrator must check several things regarding the compatibility of the operating
system software for the Oracle installation, such as checking the OS and kernel versions and making
sure necessary packages are present and patches applied.

CHAPTER 7 ■ INSTALLING THE ORACLE DATABASE 10g RDBMS 289

4517CH07.qxd 8/19/05 10:40 AM Page 289

Checking Operating System Version

The system administrator must also make sure that the server on which you’re installing Oracle is
using the correct operating system version for Oracle Database 10g. On a Linux system, for example,
the operating system must be one of the following:

• Red Hat Enterprise Linux AS/ES 3 (Update 2)

• SUSE Linux Enterprise Server (SLES) 9

The correct version of Linux must be installed on a platform certified for it. To find out what OS
version is installed on a UNIX or Linux server, use the following command:

cat /etc/issue
Red Hat Enterprise Linux WS Release 3 (Taroon Update 4)
Kernel \r on an \m

Checking Kernel Version

Once the system administrator has ensured that one of the approved operating system versions is
indeed being used, the next step is to check to ensure that the OS is using the correct kernel version.
The Oracle Universal Installer performs checks on your system to verify that it meets the require-
ments. If you don’t have the necessary OS version, the installation will fail, however, so it is a good
idea to verify the requirements before you start Oracle Universal Installer.

On my Red Hat Linux 3 OS, the kernel version must be at least at the 2.4.21-27 EL level. The sys-
tem administrator can verify the kernel version by using the following command:

uname –r
2.4.21.-27. ELsmp

You can also use the command cat /proc/version, to find out your kernel version.
In this case, the kernel version is exactly what is required. If it turns out that you need kernel

updates or a newer OS version, the system administrator will have to download the updates and
install them, in most cases.

Checking for Required Packages

The installation process also requires that certain operating system packages be installed. For
example, my Linux 3 OS must have the following packages:

make-3.79.1
gcc-3.2.3-34
glibc-2.3.2-95.20
compat-db-4.0.14-5
compat-gcc-7.3-2.96.128
compat-gcc-c++-7.3-2.96.128
compat-libstdc++-7.3-2.96.128
compat-libstdc++-devel-7.3-2.96.128
openmotif21-2.1.30-8
setarch-1.3-1

The system administrator can verify whether a particular required package is installed by using
the following command:

rpm -q package_name

If a package is not installed, the system administrator can copy it from the OS software installa-
tion CDs or download it from the Linux vendor.

CHAPTER 7 ■ INSTALLING THE ORACLE DATABASE 10g RDBMS290

4517CH07.qxd 8/19/05 10:40 AM Page 290

Applying Necessary OS Patches

The system administrator must ensure that all required operating system patches are installed
before performing the Oracle software installation. Oracle’s operating system–specific guides will
provide you with the required and recommended patches for your operating system.

Checking Physical OS Requirements for Oracle Installation
Check that you have at least the following memory and physical space:

• A minimum of 1,024MB of physical random access memory (RAM).

• 1GB of swap space, or twice the size of the physical RAM if your RAM is between 256M and
512M. Oracle provides a matrix that shows the amount of swap space for varying RAM sizes.

• At least 400MB of free space in the /tmp directory.

• From 1.5GB to 3GB of disk space for the Oracle software, depending on the installation type.

The root user should run the following two commands to check the amount of RAM and swap
space:

grep MemTotal /proc/meminfo
MemTotal: 1203934 kB
grep SwapTotal /proc/meminfo
SwapTotal: 2040244 kB

To check the available disk space, run the following command:

df -h
Filesystem Size Used Avail Used% Mounted on
/dev/sda3 11G 8.7G 1.7G 85% /
/dev/sda1 99M 15M 79M 16% /boot
none 588M 0 588M 0% /dev/shm

To find out how much space you have in your /tmp directory, the system administrator can run
the following command:

$ df –k /tmp

Based on the physical disk storage requirements, the Oracle DBA will need to prepare an
installation-requirements document, identifying the resources required and the preferred layout
of the disks. Once the DBA’s requirements pass through any necessary approvals, the system admin-
istrator will allocate the memory and disk space. The system administrator will also provide the
location of all your mount points.

Creating Mount Points for the Installation
Oracle recommends a minimum of four mount points for an OFA-compatible Oracle installation.
You absolutely must have at least two mount points: one for the software and the other for the data-
base files. However, you actually need more than that for a database with several large data files. A
minimum OFA-compatible installation requires four mount points: one for the Oracle software and
three for the various database files.

The number of mount points you need depends on your total space requirements. If your
computations indicate that you need around 200GB of total space, and each of your mount points
supports 7GB, you would need roughly 30 mount points for your applications.

It is important that the UNIX administrator name the mount points in accordance with the
OFA guidelines discussed earlier in this chapter.

CHAPTER 7 ■ INSTALLING THE ORACLE DATABASE 10g RDBMS 291

4517CH07.qxd 8/19/05 10:40 AM Page 291

Reconfiguring the Kernel
Oracle requires huge amounts of shared memory segments, which are usually not configured by
default in the Linux (or UNIX) operating system. There is a good possibility that the system admin-
istrator will need to change certain kernel parameters, such as the ones dealing with memory and
semaphores (structures that control access to the operating system’s memory).

■Note It is extremely important for the kernel to be reconfigured at the outset. If enough memory resources
aren’t configured per Oracle’s guidelines, either your installation will not succeed or you will encounter an error
when you try to create a database after the installation of the Oracle software. The kernel reconfiguration is a very
simple task for the administrator. All he or she has to do is change the kernel configuration file and regenerate a
new kernel file using the appropriate command. The system administrator then needs to restart the system with
the new kernel file replacing the older version.

Each UNIX or Linux operating system may have a different set of kernel requirements for an
Oracle installation. Table 7-3 shows the kernel requirements for the Red Hat Linux 3 operating sys-
tem I am using for the Oracle software installation.

Table 7-3. Sample Linux Kernel Requirements for an Oracle Installation

Parameter Value

semmsl semmns semopm semmni 250 32000 100 128

shmall 2097152

shmmax Half the size of physical memory

shmmni 4096

file-max 65536

ip_local_port_range 1024 65000

To view the current kernel configuration, issue this command:

$ cat /etc/sysctl.conf

During the operating system prerequisite checks, the Oracle installer might show errors that
can be fixed by reconfiguring the UNIX or Linux kernel. If the kernel needs reconfiguring, the sys-
tem administrator will need to add the following lines to the kernel configuration file:

kernel.shmall = 2097152
kernel.shmmax = 2147483648 /*or half the size of physical memory, in bytes
kernel.shmmni = 4096
kernel.sem = 250 32000 100 128
fs.file-max = 65536
net.ipv4.ip_local_port_range = 1024 65000

On my Linux server, I modified the /etc/sysctl.conf file, but this may vary depending on your
OS. After reconfiguring the kernel parameter settings and generating a new kernel, the system
administrator must reboot the system using the new kernel for the new settings to take effect.

The system administrator can also use the following command on Red Hat Linux to dynami-
cally change the current values of the kernel parameters, without a need to reboot the system (this
will only change the values temporarily and they’ll revert to their original values upon rebooting):

/sbin/sysctl –p

CHAPTER 7 ■ INSTALLING THE ORACLE DATABASE 10g RDBMS292

4517CH07.qxd 8/19/05 10:40 AM Page 292

After the kernel parameters have been changed, the system administrator can verify the set-
tings by running the following commands as root:

/sbin/sysctl -a | grep shm
/sbin/sysctl -a | grep sem
/sbin/sysctl -a | grep file-max
/sbin/sysctl -a | grep ip_local_port_range

■Note Oracle uses the shared memory segments of the operating system to share data among its various
processes.

In addition to modifying the kernel parameters, the system administrator must also check lim-
its on user processes as well as certain user login shell scripts, and change them if necessary. The
following sections discuss these additional changes to be made by the system administrator.

Changing Shell Limits

Oracle recommends setting limits on the number of processes and open files each Linux account
may use. To improve the performance of Oracle software on Linux systems, the system administra-
tor must increase certain shell limits for the oracle user by adding the following lines to the /etc/
security/limits.conf file:

oracle soft nproc 2047
oracle hard nproc 16384
oracle soft nofile 1024
oracle hard nofile 65536

You must also add the following line to the /etc/pam.d/login file:

session required /lib/security/pam_limits.so

Changing Login Scripts

The system administrator must also make changes to the Oracle users’ login shell. The changes
depend on the default shell type.

For the Bourne, BASH, or Korn shell, add the following lines to the /etc/profile file below:

if [$USER = "oracle"];
then

if [$SHELL = "/bin/ksh"]; then
ulimit -p 16384
ulimit -n 65536

else
ulimit -u 16384 -n 65536
fi

fi

For the C shell (csh or tcsh), add the following lines to the /etc/csh.login file:

if ($USER == "oracle") then
limit maxproc 16384
limit descriptors 65536

endif

CHAPTER 7 ■ INSTALLING THE ORACLE DATABASE 10g RDBMS 293

4517CH07.qxd 8/19/05 10:40 AM Page 293

Creating Necessary Groups
Operating system groups consist of a set of users who perform related tasks and have similar privi-
leges. Oracle recommends that you create three operating system groups for both Linux and UNIX
operating systems: OSDBA, OSOPER, and ORAINVENTORY (Oracle Inventory group). The default
name for the OSDBA group is dba, for the OSOPER group is oper, and for ORAINVENTORY is
oinstall. You can find out whether each of these three groups already exists in your system by
checking the /etc/group file.

Members of the OSDBA (dba) group will have the SYSDBA Oracle database privilege, which lets
them perform privileged actions such as starting up and shutting down the database. The ORAIN-
VENTORY group (oinstall) is mandatory when you install Oracle software for the first time on any
server. The Oracle Inventory Group owns all Oracle inventory, which is a catalog of all the Oracle
software installed on a server. All new installations and upgrades are performed by users belonging
to the ORAINVENTORY (oinstall) group.

The OSOPER (oper) group is optional, and you need to create it only if you plan to grant any
users the OSOPER Oracle privilege to perform a limited set of administrative tasks, such as backing
up databases. All database users with the OSOPER privilege will be members of the OSOPER group
at the OS level.

■Note Users belonging to the ORAINVENTORY group must be given read, write, and execute privileges on the
ORAINVENTORY directory only. The group shouldn’t be given write permissions for any other directories.

Creating the Oracle Inventory Group

The Oracle Inventory group (ORAINVENTORY) needs to be created only if it doesn’t already exist in
your system. Here’s the command to create it, with the default name for the group:

/usr/sbin/groupadd oinstall

The Oracle installer creates the oraInst.loc file when you install Oracle software on a server for
the first time. This file tells you the name of the Oracle Inventory group and the path of the Oracle
Inventory directory. Use the following command to determine whether the Oracle Inventory group
already exists on your server:

more /etc/oraInst.loc

If the oraInst.loc file exists, you’ll see the following, which means you don’t have to create the
Oracle Inventory group (oinstall):

inventory_loc=/u01/app/oracle/oraInventory
inst_group=oinstall

Creating the OSDBA Group

Create this group only if one doesn’t exist, or if you want to give a new group of users DBA privileges
in a new Oracle installation. Use the following command to create the OSDBA group:

/usr/sbin/groupadd dba

Creating the OSOPER Group

The OSOPER group is optional—it should be created only if you’re planning to create one or more
Oracle users with limited administrative privileges. Here’s how you create the OSOPER group:

CHAPTER 7 ■ INSTALLING THE ORACLE DATABASE 10g RDBMS294

4517CH07.qxd 8/19/05 10:40 AM Page 294

Creating the Oracle Software Owner User
After the system administrator has created the necessary groups, he or she needs to create the all-
important user that owns the Oracle software, usually named “oracle” (you can choose any name,
but “oracle” is used by convention). The oracle user is the owner of the Oracle software, and this
user’s default or primary group will be the newly created Oracle Inventory group (oinstall).

You need to install Oracle software as the Oracle software owner (the oracle user), rather than
as root. The oracle user’s secondary group should be the OSDBA group (dba), and if necessary, the
OSOPER (oper) group as well. The oracle user will have a home directory like all the other users
(usually something like /u01/app/oracle), under which you’ll create the rest of the directory struc-
ture for holding the Oracle Database 10g server software.

■Caution Don’t use the root account to install or modify Oracle software. Only the oracle user should perform
the Oracle software installation operations.

Under an HP UNIX system, you can use the administrative tool SAM to create the users. In any
UNIX or Linux system, you can create the users manually, with the following command:

/usr/sbin/useradd –g oinstall –G dba –d /home/oracle -p oracle1 oracle

In the preceding command,

g denotes the primary group of the user oracle, which is the oinstall group

G is the secondary group, which is the dba group

d denotes the home directory for the new user

p is the password for the oracle user

You may use the following command to set the password for the oracle user, if you wish:

/usr/bin/passwd oracle

Refer to Chapter 3 for more details about the passwd command.
Note that the default home directory of the oracle user should be similar to that of the normal

users of the system. The ORACLE_HOME directory is not meant for the oracle user; it’s the location
for the Oracle software binaries and similar files.

■Note The oracle user should be given read, write, and execute privileges on all files and directories that are
part of the Oracle Database 10g installation.

Setting File Permissions
The next step is to set the default Linux/UNIX file permissions. To do this, the system administrator
must first check the existing default permissions by issuing the umask command. If the umask is set
to anything but 022, change it to 022 by issuing the umask 022 command. The system administrator
can simply open the default login shell (which, for the BASH shell on Red Hat Linux, is .bash_profile)
and add this line:

umask 022

CHAPTER 7 ■ INSTALLING THE ORACLE DATABASE 10g RDBMS 295

4517CH07.qxd 8/19/05 10:40 AM Page 295

As you saw in Chapter 3, the default permissions for a newly created file system are 666 under
the octal notation. That is, everyone is able to read and write any file. By using a default file permis-
sion of 644 (by using the umask of 022), you are granting any users other than the oracle user read
permission only on the file systems. Of course, the system administrator must make sure the oracle
user has write permissions to create files in all the user’s directories.

The UNIX administrator must ensure that a local bin directory exists, such as /user/local/bin
or /opt/bin. The administrator must further ensure that this directory is included in the PATH envi-
ronment variable used by the oracle user and that the oracle user has execute permission on this
directory.

The system administrator must also create a directory with the name /var/opt/oracle that is
owned by the oracle user. This directory will contain files that describe various components of the
Oracle server software installation. The following commands will create the directory and assign it
the necessary privileges:

$ mkdir /var/opt/oracle
$ chown oracle:dba /var/opt/oracle
$ chmod 755 /var/opt/oracle

Creating Necessary Directories
The system administrator (root) must also create the Oracle base directory, which acts as a top-level
directory for Oracle software installations, and its ownership must be assigned to the oracle user.
Assuming you choose the standard /u01/app/oracle directory as your Oracle base directory, you
can create it and assign the necessary ownership and file permissions with these commands:

$ mkdir -p /u01/app/oracle
$ chown -R oracle:oinstall /u01/app/oracle
$ chmod -R 775 /u01/app/oracle

During the installation, you must set the ORACLE_BASE environment variable to specify the full
path to this directory (/u01/app/oracle).

Oracle Inventory Directory

The Oracle Inventory directory is usually the /$ORACLE_BASE/oraInventory directory, and it con-
tains an inventory of all Oracle software installed on the system. You don’t need to explicitly create
this directory. The Oracle Universal Installer will prompt you for its location the first time it installs
software on your server. The installer creates the directory and assigns the Oracle user the necessary
rights.

Oracle Home Directory

As mentioned earlier in this chapter, the Oracle home directory is the key directory where the
installer actually installs all the Oracle executables. The Oracle home directory must be a subdirec-
tory of the Oracle base directory you just created. You don’t have to explicitly create the Oracle
home directory—the installer prompts you for a symbolic name as well as the direct location for it.
The installer will then automatically create this directory and assigns the Oracle user the necessary
privileges.

This is an example of the correct format for the Oracle home directory (first installation of the
database software):

$ORACLE_BASE/product/10.2.0/db_1

CHAPTER 7 ■ INSTALLING THE ORACLE DATABASE 10g RDBMS296

4517CH07.qxd 8/19/05 10:40 AM Page 296

Database Directories (for Data Storage)

Of course, the Oracle home directory is only for the Oracle binaries. The DBA must also create
separate database directories for locating the data files, control files, redo logs, and other files.
The Oracle installer suggests a subdirectory of the Oracle base directory for locating these files.

However, the system administrator must create separate directories for the database-related
files. Ideally, these directories must be created on separate physical devices. This way, you can dis-
tribute physical I/O as well as have different devices for locating your duplexed control files and
redo log files. Although same drive can be used for creating all the directories, it won’t be possible
to fully implement the OFA guidelines.

Create multiple database directories using the following format (adjusted for your require-
ments), and make sure that the oracle user has write permissions on them:

$ mkdir -p /prod10/oradata/prod
$ chown -R oracle:oinstall /prod10/oradata/prod
$ chmod -R 775 /prod10/oradata/prod

Flash Recovery Area

As I mentioned earlier in this chapter, Oracle strongly recommends that you maintain a flash recov-
ery area for storing all recovery-related files. You must place the recovery files on a different physical
disk from the database files, to prevent a disk failure from affecting both the current database files
and the recovery files.

Here’s an example showing how to create and set the appropriate owner, group, and permis-
sions on the directory for the flash recovery area. I named the subdirectory flash_recovery_area,
but it could be anything that you specify using the DB_RECOVERY_FILE_DEST parameter:

$ mkdir -p /prod20/oradata/prod/flash_recovery_area
$ chown -R oracle:oinstall /prod20/oradata/prod/flash_recovery_area
$ chmod -R 775 /prod20/oradata/prod/flash_recovery_area

Oracle Owner’s Preinstallation Tasks
As was mentioned in the “Creating the Oracle User” section, the system administrator must create
an account for the owner of the Oracle software. Usually, this is an account with the name “oracle.”
The Oracle owner—in our case, the oracle user—needs to set the environment variables before the
installation of the software.

Setting the Environment Variables
You need to log in as the oracle user and set a number of environment variables. Although all of the
environment variables can be set manually, you are better off editing the default shell startup file,
which, on my Red Hat Linux server is the .bash_profile file in the home directory of the oracle user
(the /home/oracle directory by default). By editing the shell startup file, you will ensure that the
environment will always be set appropriately each time you log in. Here are the main environment
variables that you need to set:

• ORACLE_BASE: The ORACLE_BASE variable is the starting directory for all Oracle installations. All
the software files and other files are placed in directories underneath the ORACLE_BASE direc-
tory. In our example, the directory is /u01/app/oracle.

• ORACLE_HOME: When you’re installing the Oracle server, the ORACLE_HOME variable should be set
to oracle_base/product/10.2.0/db_1. In our case, this will be /u01/app/oracle/product/
10.2.0/db_1. The Oracle installer prompts you for the value of the ORACLE_HOME variable dur-
ing the installation of the software.

CHAPTER 7 ■ INSTALLING THE ORACLE DATABASE 10g RDBMS 297

4517CH07.qxd 8/19/05 10:40 AM Page 297

■Caution Your environment variables may be slightly different from the ones listed here, depending on your
operating system and its version. Always check the operating system–specific installation guides—it’s well worth
the effort to read them. The specifics in this chapter are based on a Red Hat Linux operating system.

■Note You can identify existing ORACLE_HOME directories by looking at the contents of the oratab file:

cat /etc/oratab

If the oratab file exists, it contains lines similar to the following:

prod1:/a03/app/oracle/product/9.2.0:Y
prod2:/a04/app/oracle/product/10.1.0:Y

The oratab’s contents reveal that there is one 9.2 and one 10.1 version of Oracle home on this server.

• PATH: The PATH variable should be set to the following:

$ export PATH=$ORACLE_HOME/bin:/usr/bin:/usr/ccs/bin:
/etc:/usr/binx11:/usr/local/bin

• DISPLAY: You may or may not have to set the DISPLAY environment variable. See the “Setting
the DISPLAY Variable” sidebar for details.

■Note An easy way to check whether you need to set the DISPLAY variable is to run an x11 base program such
as xclock. Simply type the following command in a new xterm, dtterm, or xconsole at the very outset:

$ xclock

You can also specify the complete path to the xclock program this way:

$ /usr/bin/x11/xclock

If the DISPLAY variable is set, you’ll see a small analog clock displayed on your screen. If the DISPLAY vari-
able isn’t set correctly, you’ll see the following message:

$ xclock
Error: Can't open display:
$

• TNS_ADMIN: The TNS_ADMIN variable is used to set the location of the Oracle Net configuration
files. By default, the network configuration file, called tnsnames.ora, is located in the
$ORACLE_HOME/network/admin directory.

• ORACLE_SID: The important ORACLE_SID variable need not be set if you are not planning to
create a database right now.

CHAPTER 7 ■ INSTALLING THE ORACLE DATABASE 10g RDBMS298

4517CH07.qxd 8/19/05 10:40 AM Page 298

• ORAENV_ASK: In addition to the environment variables in the .profile file, you need to add
another line to source the oraenv file, so all user sessions will automatically read the oraenv
file upon logging in as the oracle software user. The oraenv file will prompt the oracle user
for the correct SID of the database he or she wants to use. On a system with several database
instances, the oraenv file comes in handy in making this choice as soon as you log in. Here’s
the line you must add to the .profile file:

. /usr/local/bin/oraenv

If you set the value of the ORAENV_ASK variable to NO, the current value of ORACLE_SID will be
assumed to be the SID you want to use.

SETTING THE DISPLAY VARIABLE

If you’re performing the Oracle installation directly from an X Window System workstation or X terminal connected
to the server on which you’re installing the software, just start an X terminal window. No other changes are neces-
sary. If you’re installing the software on a remote system, you must set the DISPLAY environment variable so the X
applications will display on your local PC or workstation window.

If you’re using the Bourne, BASH, or Korn shell, enter this command:

$ DISPLAY=local_host:0.0; export DISPLAY

If you’re using the C shell, enter this command:

% setenv DISPLAY local_host:0.0

In both of the preceding commands, replace local_host with the IP address or symbolic name of the host PC
or workstation where you want to run the Oracle installer. Here’s an example that sets the DISPLAY variable using
an IP address of 174:16.14.15:

$ export DISPLAY=174:16:15:15:0.0

If you’re getting errors when trying to run the Oracle installer (even after setting your DISPLAY environment
variable), you may have to use the xhost program to add your local host name to the list of hosts allowed to make
connections to the X server on the host where you’re running the Oracle installer. The xhost program is a server
access-control program for X windows, and you can add your local host name to the access list for the X window
system as follows:

$ xhost +localhost

Or you can use the following variation, to enable access for anyone, by essentially turning access control off:

$ xhost +
access control disabled, clients can connect from any host
$

Once you finish installing the Oracle software, you can turn access control on again by using the xhost com-
mand with the - option (xhost -).

CHAPTER 7 ■ INSTALLING THE ORACLE DATABASE 10g RDBMS 299

4517CH07.qxd 8/19/05 10:40 AM Page 299

■Tip It may be a good idea to incorporate as many of the environment variables as possible in the shell startup
file in the oracle user’s home directory. This way, when you log in as the oracle user, the variables will already be in
force in your shell.

You must also edit the /home/oracle/.bash_profile file as follows, so the environment variables
are set correctly each time the user oracle logs ins:

umask 022
PATH=/bin:/usr/bin:/usr/local/bin:/usr/X11R6/bin
ORACLE_BASE=/u01/app/oracle
ORACLE_HOME=$ORACLE_BASE/product/10.2.0/db_1
PATH=$ORACLE_HOME/bin:$PATH
LD_LIBRARY_PATH=$ORACLE_HOME/lib
export ORACLE_BASE ORACLE_HOME
export PATH LD_LIBRARY_PATH

■Tip If you’re installing the Oracle 10.2 software on a server where you already have other Oracle databases,
make sure you back up those databases first. Delete the ORACLE_HOME environment variable that you’re currently
using, and stop all running services if you’re installing software in an already existing Oracle Database 10g
Release 2 (10.2) home.

A Final Checklist for the Installation
To ensure that your Oracle installation won’t abort in the middle, make sure you satisfy the follow-
ing requirements:

• Make sure you have enough temporary space. There is usually only a small amount of tem-
porary space on most UNIX servers—something like 100MB or so. If this is the case on your
system, your Oracle installation will fail midway through, because Oracle uses the temporary
directory on the server heavily during the installation process. You have two ways to get
around this problem. You can either ask your system administrator to increase the size of
the temporary directory on the server, or you can change the environment variable for the
temporary directory. Usually, you do this by setting the TMPDIR environment variable to
something other than /tmp and making sure that there is at least 400MB of space under this
temporary directory. Here’s how I changed my temporary space during the Oracle installation:

$ export TMPDIR=/test01/app/oracle/tmp
$ export TMP=/test01/app/oracle/tmp

• Make sure the swap space is set to a high amount, at least satisfying Oracle’s requirements
specified in the operating system–specific installation guide. Oracle provides a matrix rec-
ommending varying swap space requirements based on the size of the available RAM. Make
sure you allocate about 500MB to avoid any swapping or paging problems on the server.

• Make sure your Oracle kernel is modified to meet your installation requirements. Even if you
install the server software correctly, if kernel parameters such as SHMMAX and SEMMNS are not
set high enough and you have a large number of processes in your initialization file, your
database creation will fail.

CHAPTER 7 ■ INSTALLING THE ORACLE DATABASE 10g RDBMS300

4517CH07.qxd 8/19/05 10:40 AM Page 300

• Set the DISPLAY variable properly so the Oracle installer will come up correctly. If you’re
installing the Oracle software directly on the server, you need to change the DISPLAY variable
on the server; if you’re installing remotely from a client, you need to set the variable on the
client. In most cases, a command such as the following will set up your display correctly:

$ export DISPLAY=<Your IP address or hostname>:0.0

• Sometimes when you are working on a workstation, you will be unable to use the X Window
System emulation on the machine, which means the Oracle Universal Installer cannot func-
tion in the GUI mode. In these circumstances, use the xhost command in a window on the
workstation. Here’s an example:

$ xhost +localhost

• Make sure that you mount the installation CD correctly, if you’ve chosen to use it to install
the software. Just follow your operating system–specific installation guide for the correct CD
installation commands.

Accessing the Installation Software
Once you have finished all the preinstallation work, you are ready to install the Oracle Database 10g
software. In this chapter, I install Oracle Database 10g Release 2 software on a Linux server as an
example. You can install directly from the Oracle software distribution available on CD or DVD.
You can also download the software for free, from the Oracle Technology Network web site (http://
technet.oracle.com).

Using Oracle Software Packages
The following are the important CDs that are part of the Oracle Enterprise Edition software CD
pack:

• Oracle Database 10g CD: This is the only CD you’ll need to install the Oracle Database 10g
server software.

• Companion CD: This CD contains additional software that you may want to install for prod-
ucts like Oracle JVM, Oracle interMedia, and Oracle Text.

• Oracle Database 10g Client CD: Contains the client software you may need to install on your
users’ or developers’ servers.

• Oracle Enterprise Manager CD: Contains the Enterprise Manager Grid Control software,
which lets you manage all the databases, servers, and other components from a centralized
location. The local OEM Database Control is automatically installed when you create a new
Oracle database.

■Caution Make sure you are logged in as the Oracle software owner, oracle, and not as root, when you perform
the various installation procedures. Otherwise, your installation process will fail. There are only a couple of times
during the installation process when you’ll need to log in as root to perform certain tasks.

In several versions of Linux and UNIX, the Oracle CDs load automatically, but sometimes you
may have to use an explicit command, such as the following to mount the CD (make sure you log in
as the root user to run these commands):

CHAPTER 7 ■ INSTALLING THE ORACLE DATABASE 10g RDBMS 301

4517CH07.qxd 8/19/05 10:40 AM Page 301

$ umount /dev/cdrom
$ mount /dev/cdrom /mnt/cdrom
mount: block device /dev/cdrom is write-protected, mounting read-only
$

Your Oracle software CD is now mounted for your use, and you should see its files under the
CD mount point, which is /mnt/cdrom in our case.

You can move to the /mnt/cdrom directory to view the files on the CD, as shown here:

$ cd /mnt/cdrom
$ ls
doc install response runInstaller stage welcome.htm

The runInstaller file is the executable you must run to invoke the Oracle Universal Installer,
which helps you install the Oracle server software.

■Note In the installation example that follows, I used the Linux x86-specific Oracle Database 10g version 10.2
(Beta Version) software.

Downloading Oracle Software
The Oracle software download site (http://technet.oracle.com) gives clear instructions on how to
download and install the software on various operating systems. Once you download the software,
you usually need to use either the gunzip (gzip) utility on UNIX and Linux systems (or the WinZip
utility on Windows) to unzip the compressed installation files before you can install the software.

Here’s a brief summary of the Oracle software downloading process: First download the zipped
Linux x86 file by FTP. The file name is ship.db.cpio.gz. Once the file is downloaded, the following
two steps will extract the software files. The following command unzips the original ship.db.cpio.gz
file that I downloaded:

$ gunzip ship.db.cpio.gz

The next command extracts the installation files:

$ cpio -idmv < ship.db.cpio

Once you have extracted the zipped file, you’ll see a new directory named Disk1, which is cre-
ated as a subdirectory in the directory from which you extracted the zipped file. The Disk1 directory
contains several directories and one binary file, runInstaller, which is the executable for invoking
the Oracle Universal Installer.

You can use the runInstaller script and invoke the Oracle Universal Installer not just for the ini-
tial installation of the Oracle Database 10g software, but also for modifications and additions to the
initial software configuration. Ensure your system administrator is nearby, because you may need
help with setting the DISPLAY variable for the installer GUI, or you may run into unforeseen space or
file privilege problems. You’ll also need the administrator to run the root.sh script (discussed in the
next section) as the root user, toward the end of the installation process.

■Tip Make sure you have enough space in the temporary directory, as the Oracle installer creates a lot of files in
this directory. Your installation may stop in the middle, and you’ll have to restart it if this happens. About 400MB to
500MB of space in the /tmp directory should be available for the Oracle installer’s use during the installation
process.

CHAPTER 7 ■ INSTALLING THE ORACLE DATABASE 10g RDBMS302

4517CH07.qxd 8/19/05 10:40 AM Page 302

You can install the Oracle software in the following ways:

• Install directly from the Oracle product CDs

• Install from software downloaded from the OTN site

• Copy the software from the product CDs to disk, and install it from disk

In the next section I show you how to copy the software from the Oracle product CDs to disk,
and to install from there.

Installing the Software
You can install the Oracle server software from the software CD or the downloaded files directly, but
Oracle recommends that you perform the installation from a staging directory on your system. If
you’re installing Oracle from the CD, first create a staging directory, such as /staging. You can then
copy the contents of the CD to your staging directory, as shown here:

$ cp –r /mnt/cdrom /staging

The previous command will recursively copy all the directories on the installation CD to the
/staging directory. Installing from disk is slightly faster than installing from the CD. Saving the
installation files on disk in this manner will also help you down the road, when you need to invoke
the Oracle installer to perform installation-related tasks—you won’t need to locate the CD.

In this section, I detail the interactive installation method, which involves your responding to
the installer’s prompts from the command line. I also briefly discuss the less-frequently employed
automated installation method using response files in the sidebar entitled “Using Response Files to
Install Oracle Software.”

To begin the installation process, switch to the appropriate directory and execute the
runInstaller script as the oracle user. (If you’re using the extracted files, you’ll start from the
Disk1 directory. If you’re using the CD staging area, it’ll be the /staging directory.)

To start from the /staging directory, first go to the directory:

$ cd /staging

Check to make sure the runInstaller executable script is there:

$ ls
doc install response runInstaller stage welcome.htm

Invoke the Oracle Universal Installer by executing the runInstaller script:

$./runInstaller
[pasu] $./runInstaller
Starting Oracle Universal Installer ...
Checking Installer requirements...
Checking operating system version: must be redhat 2.1, UnitedLinux-1.0 or redhat-3

Passed
Preparing to launch Oracle Universal Installer from /tmp/OraInstall2005-05-20_06-01-38AM.
Please wait ...

At this point, assuming there are no problems with the DISPLAY variable settings, the GUI ver-
sion of the Oracle Universal Installer should show up. (If the GUI doesn’t show up on your screen,
you probably have to adjust your DISPLAY variable or use the xhost command, as explained earlier.)
The following series of windows and prompts will be displayed during the Oracle Database 10g
Release 2 server software installation:

CHAPTER 7 ■ INSTALLING THE ORACLE DATABASE 10g RDBMS 303

4517CH07.qxd 8/19/05 10:40 AM Page 303

1. You’ll see the Welcome to the Oracle Database 10g Installation window, as shown in Fig-
ure 7-1. In Oracle Database 10g Release 2 you can choose between Basic Installation and
Advanced Installation. Basic Installation is the default method, and it quickly installs the
Oracle software and, optionally, also creates a general-purpose database for you. The
Advanced Installation option will let you upgrade databases to the 10g version, use raw
devices or the Automatic Storage Management options for storage, specify different pass-
words for administrators (like SYS and SYSTEM schemas), configure automatic database
backups and Oracle Enterprise Manager (OEM) notifications, and other options.

Choose Advanced Installation and click Next, which will start up the installer in the
advanced mode.

Figure 7-1. The Oracle Universal Installer’s welcome window

2. Oracle offers you a choice of installation types in the Select Installation Type window. You
can choose one of the following installation types when installing Oracle Database 10g:

• Enterprise Edition: Installs the Oracle database with all of its performance, high avail-
ability, and security features to enable the running of mission-critical applications

• Standard Edition: Installs a scaled-down offering suitable for small businesses and
departments within a large organization

• Custom: Allows you to choose individual components to install

Choose the Enterprise Edition option (1.28GB) and click Next.

3. The Specify Home Details window is next. You specify the Oracle home name and provide
the complete path to the Oracle home directory. If this is the first installation of Oracle
Database 10g software on this server, I recommend the following path:

/u01/app/oracle/product/10.2.0/db_1

Click Next after you specify the Oracle home path.

CHAPTER 7 ■ INSTALLING THE ORACLE DATABASE 10g RDBMS304

4517CH07.qxd 8/19/05 10:40 AM Page 304

■Caution Oracle recommends that you specify an empty or nonexistent directory for the Oracle home location.
Otherwise, Oracle will warn you before letting you proceed further.

4. Oracle will perform Product-Specific Prerequisite Checks at this point. Note that the earlier
OS-compatibility checks were purely for determining whether Oracle could run the Univer-
sal Installer successfully. At this point, the installer verifies that your system meets the
minimum necessary operating system requirements for the Oracle Database 10g server
software installation. The installer checks the following:

• Operating system

• Operating system packages

• Operating system kernel

• Physical memory

• Swap space

• Network configuration

• Oracle home setting (for compatibility and space)

The installer may simply issue a warning if some minor requirements aren’t met, or it may
ask you to bring the system up to par before proceeding further. If your kernel parameters
or OS level aren’t correct, for example, there will be a warning that the particular component
failed the check and that you need to cancel the installation at this point. Once you fix the
kernel parameters or whatever it was that the installer objected to, you can restart the
installation process by running the runInstaller script once again.

5. Once you pass the checks without getting any error messages from the installer, as shown in
Figure 7-2, click Next.

s prerequisite checks

CHAPTER 7 ■ INSTALLING THE ORACLE DATABASE 10g RDBMS 305

4517CH07.qxd 8/19/05 10:40 AM Page 305

6. The installer displays the Select Configuration Options window. Here, you’re presented with
three options, as shown in Figure 7-3:

• Create a database

• Configure Automatic Storage Management (ASM)

• Install database software only

Choose the last option to just install the database software, and click Next.

Figure 7-3. Selecting a configuration for the Oracle installation

7. You’ll be shown a Summary window as a final confirmation. Click Install to begin the actual
installation of the Oracle binaries.

8. The Install window appears and shows the components as they are installed on your server.
At the bottom of this screen, you’ll also see the directory name to which the installation log
is being written. It can sometimes be nerve-wracking to watch the installer seemingly stall
on some action, but you can monitor what the installer is doing on the server by using the
tail command and monitoring the installation log file in a separate window.

9. The install process will pause briefly to ask you to run a privileges script named root.sh as
the system administrator (root). Open a different window and run the /u01/app/oracle/
product/10.2.0/db_1/root.sh script as root. The root.sh script sets the values for the
ORACLE_OWNER and ORACLE_HOME environment variables. The script adds the appropriate
values to the /etc/oratab file.

In addition, if you’re installing Oracle software for the first time on this server, the installer
also asks the root user to run the orainstRoot.sh, located in the /u01/app/oracle/
oraInventory directory.

CHAPTER 7 ■ INSTALLING THE ORACLE DATABASE 10g RDBMS306

4517CH07.qxd 8/19/05 10:40 AM Page 306

10. Once you’ve run one or both scripts as required, click OK. You’ll immediately see the End of
Installation window, as shown in Figure 7-4, which signifies the successful end of the Oracle
Database 10g software installation.

Figure 7-4. Successful completion of the Oracle Database 10g installation

11. Click Exit and confirm the choice to end the Oracle Universal Installer session.

Your Oracle Database 10g server installation is now complete.

■Note Oracle Database 10g supports multiple Oracle homes, meaning that you can install the server software in
different Oracle directories.

Using Response Files to Install Oracle Software
By creating a response file and specifying this file when you start the Oracle Universal Installer, you
can automate some or all of the Oracle Database installation. When you use a response file, you can
run the Oracle Universal Installer in one of the following modes, depending on whether you specify
all of the required information or not:

• Silent mode: Oracle Universal Installer runs in silent mode if you use a response file that
specifies all the required information. None of the Oracle Universal Installer windows are
displayed.

• Suppressed mode: Oracle Universal Installer runs in suppressed mode if you do not specify
all the required information in the response file. Oracle Universal Installer displays only the
windows that prompt you for the information that you did not specify.

CHAPTER 7 ■ INSTALLING THE ORACLE DATABASE 10g RDBMS 307

4517CH07.qxd 8/19/05 10:40 AM Page 307

The silent mode is useful when you can’t be physically present for an installation—the
response file will contain the responses to the questions asked by the installer. This method can be
very useful for client installations when you can’t physically visit and install the software on all the
different client servers. It is also particularly useful when you need to perform multiple installations
on similarly configured systems, because the response file will ensure uniformity and consistency
in the product installation. For example, suppose you’re working in an organization that has multi-
ple geographical locations and client installations are required, but there are no skilled database
personnel at some of the locations—the silent mode is the simplest way to install Oracle in such as
situation. The silent mode is also useful if your server doesn’t have the X Window System software.

Oracle supplies different response files for the installation of various types of software. I pro-
vide a list of the important response files Oracle provides, later in this section.

Before you can run the Oracle installation in either silent or suppressed mode, you need to cre-
ate the oraInst.loc file, which lists the Oracle products on your server, and then create the response
files themselves.

Creating the oraInst.loc File
If you have never had an Oracle installation on your server, you must create the oraInst.loc file in
the /etc directory as the root user. If you had an older Oracle installation (even one that has been
uninstalled), you’ll have this file already. The file provides the installer with the location of the
inventory of Oracle products installed on your server.

To create the oraInst.loc file, follow these steps:

1. Log in as the root user and change to the /etc directory:

cd /etc

2. Create the oraInst.loc file with the following two lines:

inventory_loc=ORACLE_BASE/oraInventory
inst_group= oinstall

3. Enter the following commands to set the appropriate owner, group, and permissions on the
oraInst.loc file:

chown oracle:oinstall oraInst.loc
chmod 664 oraInst.loc

Creating the Response Files
The easiest way to create a response file is to edit one of the Oracle-provided response file tem-
plates, located in the /db/response directory on the CD. If you create a staging directory, the
response files will be in the /staging/response directory. If you don’t create a staging directory,
they’ll be in the /Disk1/response directory. These are the response file templates provided by
Oracle, with each one meant for a specific purpose:

• enterprise.rsp: Oracle Database 10g Enterprise version

• standard.rsp: Oracle Database 10g Standard version

• netca.rsp: Oracle Net Configuration Assistant

• custom.rsp: Custom installation of Oracle Database 10g

• emca.rsp: Enterprise Manager Configuration Assistant

• dbca.rsp: Database Configuration Assistant

CHAPTER 7 ■ INSTALLING THE ORACLE DATABASE 10g RDBMS308

4517CH07.qxd 8/19/05 10:40 AM Page 308

The response file for the Enterprise edition installation is copied from the CD during installa-
tion, along with the other files and scripts. It’s located in a separate directory called response, which
is located in the same directory as the runInstaller executable file. You need to copy the response file
to a directory on your own system and edit it according to your needs. The editing of the response
file may take some time, but it’s well worth it if you’re planning multiple installations.

Once you’ve edited the response file, you can start the automatic silent installation. Make sure
you set your DISPLAY variable correctly before using the silent mode for installation. When you’re
ready to start, run this command:

$ cd $CDROM_mount_directory
$./runInstaller -silent –response[Response File Name]

The preceding command will run the Oracle Universal Installer in the silent mode. You must
include responses for all the prompts in the response file in order to specify the -silent option. You
won’t see any installer screens—only the progress information in the terminal.

If you include responses for some of the prompts in the response file, and just use the
runInstaller command without the -silent option, the Oracle Universal Installer will run in sup-
pressed mode. During this type of installation, the installer displays only those screens for which
you didn’t specify any information.

When Oracle finishes a silent installation, it will display the following message on the screen:

The installation of Oracle Database 10g was successful.
Please check /u01/app/oracle/oraInventory/logs
/silentInstall.log for more details.

At this point, you need to manually run the root.sh script, just as you would in the normal
manual installation procedure. You’ll find the root.sh script in the /u01/app/oracle/product/
10.2.0.0.0 directory. After the root.sh script runs successfully, you’re done with the silent installation
of Oracle. Of course, you still have to create your database and configure the networking compo-
nents.

Oracle provides a whole set of response files for several types of installations, including server
and client installations. You’ll probably use the Oracle client response file more frequently, because
it makes it unnecessary for you to physically visit all the client stations for a new installation

After the Installation
After you’ve installed the Oracle Database 10g server software, you still have some chores left to do.
You need to perform several post-installation steps carefully to make sure that the software func-
tions correctly. As with the installation procedures, the system administrator and the oracle user are
responsible for specific tasks. Let’s look at the important tasks that the system administrator and
the Oracle software owner (user oracle here) must perform after the server software installation is
finished.

System Administrator’s Post-Installation Tasks
The UNIX/Linux administrator has to perform the following tasks after the installation of Oracle
software is complete:

• Update the database shutdown and startup scripts

• Create additional operating system accounts

CHAPTER 7 ■ INSTALLING THE ORACLE DATABASE 10g RDBMS 309

4517CH07.qxd 8/19/05 10:40 AM Page 309

Updating Shutdown and Start-up Scripts
The Oracle software comes with sample scripts that automatically start up and shut down the data-
base, and the system administrator must add them to the system startup and shutdown scripts.
When installed, these scripts will start up and shut down the Oracle database whenever the server is
booted up or shut down, ensuring that the database is always closed cleanly and that you don’t have
to manually bring up the database after system crashes. These sample scripts are located in the
$ORACLE_HOME/bin directory. To start a database automatically upon system reboot, use the
dbstart.sh script. To stop a database upon system shutdown, use the dbshut.sh script. Both these
files are designed to be run as part of the system boot procedure.

In most versions of UNIX and Linux, the contents of the /etc/oratab file will determine
whether your database will automatically start up or shut down each time the server starts up and
shuts down. The /etc/oratab file is simply a list of the databases running on a server, each with a yes
or no indicator for automatic startup and shutdown. If you’re creating a new database named
finance1, and you want to automate the startup and shutdown process for it, here’s what you would
need to add to the oratab file:

finance1:/u01/app/oracle/product/10.2.0/db_1:Y

The entry in the /etc/oratab file has three components separated by colons: the database
name, the Oracle home location, and a Y or N indicating whether the database should automatically
start and stop when the host starts up or shuts down. If you want automatic startup and shutdown,
specify Y at the end of the line; otherwise specify N.

The UNIX or Linux administrator must add the database startup and shutdown scripts to the
system startup and shutdown scripts. For example, on an HP UNIX system, the rc scripts (in the
/sbin directory) are run automatically whenever the system moves from one run level to the other.
When the system moves to run level 0 (shutdown), the rc script halts the UNIX system by stopping
certain daemons and server processes. Similarly, when the run level changes from 0 to 1, the rc
script starts the system by starting the necessary daemons and server processes. The system admin-
istrator has to include Oracle-related information in the /sbin/rc script to automate the shutdown
and startup of the Oracle databases whenever the UNIX server stops and starts for any reason.

Following is an example of the startup information that the system administrator needs to add
to the rc script (you must modify the generic dbstart.sh and dbshut.sh scripts to reflect particular
database names):

/u01/app/oracle/product/10.1.0.2.0/bin/dbstart_finance
/u01/app/oracle/product/10.1.0.2.0/bin/lsnrctl start

And here is an example of the shutdown information:

/u01/app/oracle/product/10.1.0.2.0/bin/dbshut_finance
/u01/app/oracle/product/10.1.0.2.0/bin/lsnrctl stop

The script will determine whether to use the startup or shutdown scripts after testing the sys-
tem run level. The first lines in the preceding startup and shutdown information will start and stop
the database (named finance in our example). The second lines will start and stop the Oracle lis-
tener process, which helps you establish communication with the database server (the Oracle
listener is discussed in detail in Chapter 11).

Creating Additional Operating System Accounts
After the installation is complete, the system administrator must create any other necessary user
accounts. All the DBA users must be part of the OSDBA group.

CHAPTER 7 ■ INSTALLING THE ORACLE DATABASE 10g RDBMS310

4517CH07.qxd 8/19/05 10:40 AM Page 310

Oracle Owner’s Post-Installation Tasks
The oracle user has a set of tasks to perform after the Oracle server software is installed. These
include setting the correct environment, applying any necessary Oracle patches, and setting the
initialization parameters.

Setting the Environment
Before you can create a database on your system, you need to set some environment variables. The
most important of these are the ORACLE_HOME, ORACLE_SID, TNS_ADMIN, CLASS_PATH, TWO_TASK, and
LD_LIBRARY_PATH variables. Please refer to your operating system–specific guidelines before you set
these and other environment variables.

As the oracle user, you also need to initialize the oraenv script (the coraenv script if you’re
using the C shell). This script lets you ensure a common environment for all Oracle users. The
oraenv script is initialized by including it in the .login or .profile file. For example, for a single-
instance database in the Korn shell, this is what you’d need to add to your .login or .profile file:

ORAENV_ASK=NO
. /usr/local/bin/oraenv

Miscellaneous Tasks
You need to perform some additional tasks as the oracle user. Make sure you check the patch direc-
tory on your CD and apply any available patches. You also need to ensure that your databases are a
part of the /etc/oratab file, so they can be automatically started up and shut down.

■Tip Back up the root.sh script, as it may be overwritten during additional Oracle product installations.

Setting Initialization Parameters
You also have to edit the sample initialization file and modify it for your needs. After you create the
database, make sure you create an SPFILE, which is a more sophisticated way of managing your ini-
tialization parameters than the traditional init.ora file. Creating SPFILEs is discussed in detail in
Chapter 9.

THE ORATAB FILE

The oratab file, which is usually located in the /etc directory on UNIX systems, is useful for several reasons. First,
you can use this file to specify whether you want automatic start/stop procedures in place for your databases.
Second, oraenv reads the contents of the /etc/oratab file during the setting of the environment variables. If you want
to back up all the databases on the server in sequence, you can use the oratab file to provide a list of all the data-
bases the backup script must include.

CHAPTER 7 ■ INSTALLING THE ORACLE DATABASE 10g RDBMS 311

4517CH07.qxd 8/19/05 10:40 AM Page 311

Configuring Oracle Net Services
To enable connectivity to the database, you must configure Oracle Net Services. The configuration
tasks include starting the listener process or, if the listener is already running on the server, making
sure your databases are registered with it. All databases automatically register with the listener
when they are created.

We haven’t covered creating databases yet, so you probably won’t have to configure the net-
work connections at this point. You’ll learn all about connectivity in Chapter 10, which discusses
Oracle Net Services.

Uninstalling Oracle
Sometimes, your installation process may get messed up in the middle, or a lack of disk space may
force you to abort the installation abruptly. In this case, the best thing is to simply uninstall all the
components that you have already installed. You can install again from scratch when you are ready.
There may also be times when you need to remove Oracle software from your server. Before you
remove the software, make sure you remove the databases from the server.

Prior to Oracle Database 10g, you couldn’t always count on a clean Oracle server uninstallation
if you needed to remove the server software. This isn’t true anymore. With Oracle Database 10g, you
can perform an easy and clean uninstallation, marked by the following new features:

• Oracle automatically removes all files, including files that belong to configuration assistants
and patch sets, during the uninstallation process.

• The installer automatically cleans up all the Windows registry entries.

The following two sections list the simple steps you need to follow to uninstall first the Oracle
databases and then the Oracle software.

Removing All Oracle Databases Running on Your Server
Before you remove the Oracle software, first remove all databases from the server, using the Data-
base Configuration Assistant (DBCA). Log in as the oracle user, and get the list of databases from a
file such as /etc/oratab. Here’s an example:

$ cat /etc/oratab
prod1:/a03/app/oracle/product/8.1.7:N
prod2:/a03/app/oracle/product/8.1.7:Y
test1:/a03/app/oracle/product/8.1.7:N
test2:/a03/app/oracle/product/8.1.7:Y
$

For each database listed in the /etc/oratab file, follow these steps:

1. Use the oraenv or the coraenv script to set up the environment correctly for the particular
database you want to remove. Here’s an example that removes the database named prod1
from the server:

$. oraenv
ORACLE_SID = [prod2] ? prod1
$

2. Start the DBCA by issuing the following command:

$ dbca

3. Click Next when you see the Welcome window.

CHAPTER 7 ■ INSTALLING THE ORACLE DATABASE 10g RDBMS312

4517CH07.qxd 8/19/05 10:40 AM Page 312

4. Select Delete a Database in the Operations window that appears. Click Next.

5. Select the database you want to remove, click Finish, and confirm your choice in the next
window.

6. After the database is removed, you are prompted to click Yes to go back to the Operations
window and delete more databases or No to exit the DBCA session.

Removing the Oracle Software
To remove the Oracle software, log in as the oracle user and follow these steps:

1. Set the ORACLE_HOME environment variable to specify the path of your Oracle home directory,
as shown here:

$ export ORACLE_HOME=/u01/app/oracle/product/10.2.0/db_1

2. Stop all Oracle processes that may be running, using the appropriate commands, as shown
here:

• Database Control: $ORACLE_HOME/bin/emctl stop dbconsole

• Oracle Net listener: $ORACLE_HOME/bin/lsnrctl stop

• iSQL*Plus: $ORACLE_HOME/bin/isqlplusctl stop

3. Start the Oracle installer by using the following command:

$ /staging/runInstaller

4. Click Installed Products in the Welcome window.

5. The Inventory Contents tab is displayed, showing you all Oracle homes in your database.
Select the Oracle home you wish to remove, and click the Remove button. If there are any
dependencies, the installer may not allow you to uninstall the products right away. Click Yes
in the Confirmation dialog that appears next.

When the uninstallation is over, click Cancel to exit, and click Yes. Note that no files will remain
in the Oracle home directory after a complete uninstallation of the software.

CHAPTER 7 ■ INSTALLING THE ORACLE DATABASE 10g RDBMS 313

4517CH07.qxd 8/19/05 10:40 AM Page 313

4517CH07.qxd 8/19/05 10:40 AM Page 314

Upgrading to Oracle Database 10g

This chapter shows you how to upgrade an Oracle8i or Oracle9i database to Oracle Database 10g.
The chapter first reviews the available methods of upgrading to the new version and then explains
how to use the new Database Upgrade Assistant (DBUA) tool as well as how to upgrade manually,
which includes the use of Oracle’s new Pre-Upgrade Information Tool and the Post-Upgrade
Status Tool.

Routes to Oracle Database 10g
Oracle has made the process of upgrading from Oracle8i or Oracle9i databases simple by automat-
ing a large portion of the upgrade process. Here are the upgrade paths that you can take to move up
to Oracle Database 10g Release 2 (10.2):

• If you are moving from Oracle 7.3.3 or lower, or Oracle 7.3.4, 8.0.3, 8.0.4, 8.0.5, 8.0.6, 8.1.5, or
8.1.6, you can’t upgrade directly to Oracle Database 10g.

• If you are using an Oracle 8.1.7, 9.0.1, 9.2, or 10.1 database, you can upgrade directly.

Upgrade Methods and Tools
There are two ways for you to upgrade: the traditional manual method or the Database Upgrade
Assistant (DBUA) method, which automates the upgrade process. The DBUA is an improved
version of the Oracle Data Migration Assistant, which was a tool provided in previous versions
of the database.

■Note The Oracle Database 10g upgrade process is somewhat automatic even if you do it manually. The fol-
lowing sections will show how the manual process uses the STARTUP UPGRADE command. After running this
command, you have to run the main upgrade script, which upgrade your installation without causing dependency
problems. The database determines the order in which it should upgrade components by querying the DBA_
SERVER_REGISTRY data dictionary view. It will also query this view for the upgrade status of each component after
the conclusion of the database upgrade. The new Post-Upgrade Status Tool, which I discuss later in this chapter,
also uses the DBA_SERVER_REGISTRY view.

The DBA_REGISTRY or the DBA_SERVER_REGISTRY view both contain the upgrade status of individual
database components. These views are almost identical, except that the DBA_REGISTRY view has the extra name-
space column. If you set the namespace to SERVER, you get identical results using either data dictionary view.

315

C H A P T E R 8

■ ■ ■

4517CH08.qxd 8/19/05 10:41 AM Page 315

In the past, the upgrade process required you to run various scripts throughout the process,
but the Oracle Database 10g upgrade process only requires a single upgrade script (there’s an exam-
ple of the use of this script in the “Upgrading Manually” section later).

The Manual Upgrade Process
If you use the manual upgrade process, you must perform due diligence: this means removing or
changing all your obsolete initialization parameters and running all the Oracle-provided database
upgrade scripts. This method’s advantage is that you control the whole upgrade process. There are
drawbacks to the manual method, however: you must back up the database yourself, you must use
the correct initialization parameters, and you must give the System tablespace adequate free space.

■Note The old Export and Import utilities are still available, should you wish to use them, though they've been
supplanted by the Data Pump Export and Import utilities. They are still pretty useful if you have a very small
database.

The Database Upgrade Assistant (DBUA)
If you use the DBUA, it does the preinstallation checks for you and automatically manages the
upgrade process by performing the following tasks:

• Performs initialization checks, including for invalid data types, unsupported character sets,
invalid user accounts, and sufficient free space in the tablespaces

• Backs up the database

• Creates any necessary objects

• Invokes the correct upgrade script

• Shows the progress of the upgrade process

• Creates the parameter and listener files in the new Oracle home

■Tip The DBUA uses a GUI, but you can also use it in the silent mode.

The Pre-Upgrade Information Tool
Before you start an upgrade, you have to check your system for any necessary changes. Luckily, we
have the Pre-Upgrade Information Tool, which does this for us. The Pre-Upgrade Information Tool,
which is implemented by executing an Oracle-supplied script, helps you collect various critical
pieces of information before the upgrade process begins. Too often in the past, DBAs have needed
to restart the upgrade process because of initialization features that were incompatible or table-
space sizes that were too small, and this new tool helps avoid that situation.

■Note The manual process and the DBUA both use the same Pre-Upgrade Information Tool. The DBUA automati-
cally runs it as part of this initial check.

CHAPTER 8 ■ UPGRADING TO ORACLE DATABASE 10g316

4517CH08.qxd 8/19/05 10:41 AM Page 316

The Pre-Upgrade Information Tool provides information about the following:

• The Sysaux tablespace: Before you run the upgrade script, you have to create the Sysaux
tablespace. The Pre-Upgrade Information Tool will recommend the correct settings for this.

• Log files: The new version of Oracle needs redo log files to be at least 4MB. If your existing
log files are smaller than this, the Pre-Upgrade Information Tool will tell you to increase
their size.

• Tablespace sizes: If your existing tablespaces lack the free space required, the Pre-Upgrade
Information Tool will tell you so you can increase their size.

• Initialization parameters: The Pre-Upgrade Information Tool tells you which initialization
parameters you should remove (because they are deprecated and obsolete) and which you
should add before you can upgrade.

• Database versions and compatibility level: The Pre-Upgrade Information Tool lets you know
whether you need to change the compatibility level of your database with the COMPATIBLE
initialization parameter.

• Time estimates: The Pre-Upgrade Information Tool will give you an estimate of how long the
upgrade will take.

The Pre-Upgrade Information Tool will do a lot of the work for you. Just make sure that you
implement the recommended changes and you will be ready to upgrade to Oracle Database 10g.

The Pre-Upgrade Information Tool is actually a SQL script, called utlu102i.sql (in $ORACLE_
HOME/rdbms/admin). Here’s how you invoke the Pre-Upgrade Information Tool:

SQL> @ $ORACLE_HOME/rdbms/admin/utlu102i.sql
Oracle Database 10.2 Upgrade Information Tool

02-20-2005 16:45:48
Database:

--> name: FINANCE
--> version: 8.1.7.0.0
--> compatibility: 8.1.0
WARNING: Database compatibility must be set to 9.2.0 prior to upgrade.
. . .
PL/SQL procedure successfully completed.
SQL>

The Post-Upgrade Status Tool
The new Post-Upgrade Status Tool gives you an accurate summary of the upgrade process and
lists any necessary corrective steps that need to be taken. No error messages during the upgrade
process doesn’t guarantee that you upgraded successfully—the Post-Upgrade Status Tool looks
in DBA_SERVER_REGISTRY to ascertain the status of every database component. If one or more
components didn’t upgrade correctly, the Post-Upgrade Status Tool will show the details.

■Tip The Post-Upgrade Status Tool runs automatically when you use the DBUA. You have to run it yourself if you
are doing a manual upgrade.

CHAPTER 8 ■ UPGRADING TO ORACLE DATABASE 10g 317

4517CH08.qxd 8/19/05 10:41 AM Page 317

The Post-Upgrade Status Tool provides you with the following information:

• The name and status (VALID or INVALID) of each database component

• The version compatibility of the component with the current database version

• Suggestions for corrective action if it finds invalid components (such as the names of appro-
priate scripts to run)

The Post-Upgrade Status Tool is also a SQL script, called utlu102s.sql and located in the
$ORACLE_HOME/rdbms/admin directory.

While manual upgrades are easy, the burden of due diligence is on you, and you can lose a lot
of time if you make any mistakes.

■Tip Which of the two upgrade methods (DBUA or manual upgrade) is superior? The underlying scripts and
upgrade procedures are identical for both methods—choose the method you’re most comfortable with.

Upgrading with the DBUA
The DBUA combines the work of the Pre-Upgrade Information Tool and the manual upgrade
process. The DBUA performs the following pre-upgrade steps automatically:

• Sets ORACLE_HOME to the new Oracle Database 10g locations.

• Changes the oratab file entries to the new location.

• Copies your current init.ora file to the new Oracle Database 10g default init.ora location
($ORACLE_HOME/dbs in UNIX and Linux systems).

• Checks that your tablespaces have adequate space before the upgrade process begins. These
checks also cover the undo tablespace and the rollback segments.

• Checks for unsupported character sets and invalid data types and usernames, and so on.

• Performs backups, if you choose.

• Updates obsolete initialization parameters.

CHAPTER 8 ■ UPGRADING TO ORACLE DATABASE 10g318

DATABASE COMPATIBILITY

The database compatibility level is set by the value of the COMPATIBLE initialization parameter—the compatibility
level specifies the release with which the database must maintain compatible. This is important because the
COMPATIBLE parameter helps you guarantee backward compatibility with an earlier release. The parameter’s
default value in Oracle Database 10g Release 2 is 10.0.0, and the minimum value is 9.2. When you are upgrading
to Oracle Database 10g, and you set the COMPATIBLE parameter to 9.2, it means that you can undo the changes
made by the upgrade process and go back to the older release if the upgrade doesn’t pan out. Otherwise, the only
way to go back to the older release is to restore from a backup.

Oracle recommends that you set the COMPATIBLE parameter to 9.2 before you upgrade to Oracle Database
10g, which ensures that you can always revert to the Oracle9i release if necessary. However, the price you pay for
this convenience is that you can only use a limited subset of the new Oracle Database 10g features. After you've
upgraded your database and are sure that you want to continue further, you can set the COMPATIBLE initialization
parameter in your SPFILE to match the new release number (10.2.0).

4517CH08.qxd 8/19/05 10:41 AM Page 318

• Configures the database with the Enterprise Manager, if you choose.

• Writes detailed trace and log files, as well as showing the upgrade progress.

The DBUA can upgrade not only a single instance configuration, but also Oracle Real Applica-
tion Clusters and standby database configuration as well.

Starting the DBUA
Start the DBUA by simply typing dbua at the operating system prompt. You have to log in as the
oracle user first. On a Windows server, you start the DBUA tool by going to Start ➤ All Programs ➤
Oracle ➤ Configuration and Migration Tools ➤ Database Upgrade Assistant.

As mentioned previously, you can do a silent upgrade using the DBUA if you don't want to use
the GUI. This means you won’t see any prompts when you invoke the DBUA.

Here’s how you would invoke the DBUA in the silent mode for a database called nina:

$ dbua -silent –dbName nina

That’s it. Your current database will be migrated to the Oracle Database 10g release.

Running the DBUA
Let’s take a look at the steps in the automatic upgrade process using the DBUA from the command
line.

1. Invoke the DBUA with this command:

$ dbua

2. The DBUA GUI Welcome window is displayed, as shown in Figure 8-1. Click Next.

Figure 8-1. The DBUA Welcome window

CHAPTER 8 ■ UPGRADING TO ORACLE DATABASE 10g 319

4517CH08.qxd 8/19/05 10:41 AM Page 319

3. In the Selecting a Database Instance window, first ensure that the database you want to
upgrade is running. Then select the instance you want to upgrade, and click Next.

4. In the Sysaux Tablespace window, shown in Figure 8-2, let Oracle create the required Sysaux
tablespace (an auxiliary System tablespace) for you. Click Next.

Figure 8-2. Creating the SYSAUX tablespace

■Note Oracle stores the data for several Oracle features in the Sysaux tablespace. When you upgrade with
the DBUA, Oracle automatically creates the Sysaux tablespace, but you must do it if you manually upgrade, as
described in the “Upgrading Manually” section.

5. In the Recompile Invalid Objects window, select the option to recompile invalid objects.
The upgrade process always invalidates several database objects, and you have the option
of letting the DBUA automatically recompile invalid database objects as soon as the
upgrade is over.

■Tip Telling Oracle to recompile invalid objects as part of the upgrade process is the same as running the
utlrp.sql script as part of a manual upgrade.

6. In the next window, Choosing a Database Backup Procedure, you can select the option to
do a cold backup of your database. If you have already made backups, choose the “I Have
Already Backed Up My Database” option.

CHAPTER 8 ■ UPGRADING TO ORACLE DATABASE 10g320

4517CH08.qxd 8/19/05 10:41 AM Page 320

■Tip If the upgrade process doesn’t go well, and you need to go back to the pre-upgrade database, the DBUA-
created database backup makes it easy to do so. You can also make a backup manually, prior to starting the
upgrade process. If you choose the option to let the DBUA do the backup, it will back up the database files to the
file location you specify in the Backup Directory field before it starts the upgrade of the database to the 10.2
release. The DBUA will also create a file called db_name_restore.sh (db_name_restore.bat in a Windows system),
which enables you to easily restore the current database files if necessary.

7. In the Management Options window, you can choose to configure the OEM. The options for
database control are the Grid Control or Database Control version of the OEM. The Data-
base Control component is bundled with the installation package, and Oracle automatically
installs it; the Grid Control must be installed separately. If you haven’t installed the Grid
Control software, choose the Database Control option at this point.

8. In the Database Credentials window, you have to choose passwords for the default Oracle
users, such as SYSMAN and DBSNMP.

9. In the Recovery Configuration window, you can choose to specify a flash recovery area as
well as to enable archiving.

10. In the Network Configuration window, you can use the Listener tab to choose whether you
want to register the upgraded database with selected listeners or all the listeners. If you have
directory services configured in the new Oracle home, you must use the Directory Service
tab and choose either to register the upgraded database with your directory service or not.

11. In the Upgrade Summary window, the names of the source and target databases and the
database versions are displayed, along with a list of all obsolete and new initialization
parameters. An estimate of the time it’ll take to upgrade the database is also provided. The
DBUA automatically shuts down the database that is being upgraded before it starts the
upgrade process. Click Finish to begin.

12. When the database upgrade is finished, you’ll see the results in the Upgrade Results window
for you to review, as shown in Figure 8-3. You have three options at this point:

• Configure database passwords.

• Restore the database to what it was before the upgrade and revert all changes made to
the database.

• Close the window to finish the installation.

Restoring the Pre-Upgrade Database
If you aren’t sure you want to upgrade to the new version at the conclusion of the DBUA upgrade
process, you can simply click the Restore button to revert to previous database version (see Fig-
ure 8-3). If the DBUA backed up your database, then Oracle will automatically restore the original
database and the original database settings. If the DBUA didn’t do the backup, the DBUA can’t auto-
matically revert the database to the previous version. You’ll have to use your backups to manually
restore the database from the earlier version.

You can also run an Oracle-provided script at a later time to go back to the previous database.
Oracle automatically creates this script when you select to back up the database during the begin-
ning of the upgrade process.

CHAPTER 8 ■ UPGRADING TO ORACLE DATABASE 10g 321

4517CH08.qxd 8/19/05 10:41 AM Page 321

Figure 8-3. The Upgrade Results window

Upgrading Manually
Let’s step through the manual database upgrade process in this section so you understand what
happens during a database upgrade. Recall that the DBUA does a lot of the following steps for you.

The steps for a manual upgrade to the Oracle Database 10g database version are briefly listed
here, and they are discussed in more detail in the following sections:

1. Create a spool file.

2. Log in as a user with the SYSDBA privilege, and run the Pre-Upgrade Information Tool.
Make any changes it recommends.

3. Back up the database you’re going to upgrade.

4. Copy the current init.ora file to the new Oracle Database 10g init.ora file location.

5. Shut down the database and restart it under the new Oracle 10g home in the STARTUP
UPGRADE mode.

6. Create the required Sysaux tablespace.

7. Run the catupgrd.sql upgrade script.

8. Check to see if any objects became invalidated during the database upgrade.

9. Run the utlrp.sql script to recompile any objects that became invalid during the database
upgrade.

10. Run the Post-Upgrade Status Tool.

11. End the spool file.

CHAPTER 8 ■ UPGRADING TO ORACLE DATABASE 10g322

4517CH08.qxd 8/19/05 10:41 AM Page 322

Creating a Spool File
Create a spool file to record the upgrade process so that you can easily review it later.

SQL> SPOOL upgrade.log

Starting the Pre-Upgrade Information Tool
To start the Pre-Upgrade Information Tool, run the following:

SQL> @$ORACLE_HOME\rdbms\admin\utlu102i.sql

To see the results of the pre-upgrade check, turn spooling off with the following command:

SQL> spool off

Check the upgrade.log spool file to see if you meet all upgrade requirements. Listing 8-1 shows
part of the output from a sample run. Note that I was upgrading an Oracle 8.17 database to Oracle
Database 10g.

Listing 8-1. Partial Output of the Pre-Upgrade Information Tool

Database:
--> name: FINANCE
--> version: 8.1.7.0.0
--> compatibility: 8.1.0
WARNING: Database compatibility must be set to 9.2.0 prior to upgrade.

Update Parameters: [Update Oracle Database 10.2 init.ora or spfile]
WARNING: --> "shared_pool_size" needs to be increased to at least "150944944"

Obsolete Parameters: [Update Oracle Database 10.2 init.ora or spfile]
--> "job_queue_interval"
--> "max_enabled_roles"

Components: [The following database components will be upgraded or installed]
--> Oracle Catalog Views [upgrade]
--> Oracle Packages and Types [upgrade]
...

SYSAUX Tablespace: [Create tablespace in Oracle Database 10.2 environment]
--> New "SYSAUX" tablespace
.... minimum required size for database upgrade: 500 MB
Please create the new SYSAUX Tablespace AFTER the Oracle Database
10.2 server is started and BEFORE you invoke the upgrade script.

Make all the changes pointed out by the Pre-Upgrade Information Tool before proceeding with
the upgrade.

Backing Up Your Database
Backup the database you are upgrading, either by using RMAN or by using your own backup
techniques.

CHAPTER 8 ■ UPGRADING TO ORACLE DATABASE 10g 323

4517CH08.qxd 8/19/05 10:41 AM Page 323

■Tip At this point, make sure you’ve set your ORACLE_HOME variable to the new Oracle home using the format
ORACLE_BASE/product/10.2.0/db_name.

Copying Your init.ora File
Copy your current init.ora file to its default location in the new Oracle Database 10g Release 2 home
($ORACLE_HOME/dbs). You should also make the changes that the Pre-Upgrade Information Tool
recommended. Remove all obsolete and deprecated parameters and add the new parameters, such
as SGA_TARGET, which automates shared memory management.

Starting Up the New Database
Shut down the current database if it’s running, and start it up again with the updated init.ora
parameter file under the new Oracle Database 10g home. You must use the new STARTUP UPGRADE
command to start up your database under the Oracle 10.2 version, which tells Oracle to modify
those initialization parameters that would otherwise cause errors during the upgrade (for example,
the new startup mode will set the JOB_QUE_PROCESSES parameter to 0). The startup upgrade mode
starts a restricted session and prepares the environment for the upgrade.

Listing 8-2 shows how to start the database using the STARTUP UPGRADE command. Note that if
you’re storing your initialization parameter in the default location ($ORACLE_HOME/dbs), you
don’t need to specify its path when you use the STARTUP UPGRADE command.

Listing 8-2. Starting the Database with the STARTUP UPGRADE Command

[oracle@localhost admin]$ sqlplus /nolog
SQL*Plus: Release 10.2.0.0.0 - Beta on Mon Feb21 16:43:14 2005
Copyright (c) 1982, 2004, Oracle. All rights reserved.
SQL> CONNECT sys/sammyy1 AS SYSDBA
Connected to an idle instance.
SQL> STARTUP UPGRADE
ORACLE instance started.

Total System Global Area 314572800 bytes
Fixed Size 1236756 bytes
Variable Size 99164396 bytes
Database Buffers 213909504 bytes
Redo Buffers 262144 bytes
Database mounted.
Database opened.
SQL>

Creating the Sysaux Tablespace
Once you have brought up the database instance, you can create the Sysaux tablespace:

SQL> CREATE TABLESPACE sysaux DATAFILE '/u10/oradata/prod/sysaux01.dbf'
SIZE 500M REUSE
EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AUTO;

CHAPTER 8 ■ UPGRADING TO ORACLE DATABASE 10g324

4517CH08.qxd 8/19/05 10:41 AM Page 324

The database is now technically converted into an Oracle Database 10g version, as shown by
the following query:

SQL> SELECT * FROM V$VERSION
BANNER
--
Oracle Database 10g Enterprise Edition Release 10.2.0.0.0 - Beta
PL/SQL Release 10.2.0.0.0 - Beta
CORE 10.2.0.0.0 Beta
TNS for Linux: Version 10.2.0.0.0 - Beta
NLSRTL Version 10.2.0.0.0 - Beta
SQL>

In the next step, you actually upgrade the current database to the 10.2 version.

■Note As of this writing, the Oracle Database 10g Release 2 (10.2) production version hasn’t been officially
released. The output from the previous SQL query notes that I used the 10.2 Beta version. While there could be
changes in the final production version of the software, such changes will be focused on fixing bugs encountered
during the Beta testing phase and won’t introduce substantive functional modifications.

Running the Upgrade Script
Although the database is opened and a query to V$VERSION reveals that your database is now an
Oracle Database 10g database, you will have to run the upgrade script, which is your next task.

Previously, each version of the Oracle server had a separate upgrade script. For Oracle 10.2,
you need to use the same script to upgrade a database, no matter what its version, as long as it is in
the upgrade-eligible list of database versions. This brand-new upgrade script is called catupgrd.sql,
and it can be found in $ORACLE_HOME/rdbms/admin. This script automatically runs the appro-
priate upgrade script for the database version you’re upgrading and uses procedures from the
DBMS_REGISTRY package to execute various component upgrades.

Make sure you’re logged in as a user with SYSDBA privileges, and run the upgrade script from
the new environment:

SQL> @$ORACLE_HOME/rdbms/admin/catupgrd.sql

Checking for Invalid Objects
Oracle will create, drop, and alter some database objects as the upgrade process progresses, thus
invalidating some internal Oracle packages and procedures. After the upgrade script has finished,
you need to check for invalid objects:

SQL> SELECT count(*) FROM DBA_OBJECTS
2 WHERE status = 'INVALID';

Recompiling and Validating Invalidated Objects
By running the Oracle-provided utlrp.sql script, you can do a recompilation and validation of all
the objects invalidated during the upgrade process. During this process, utlrp.sql calls utlprp.sql
(a wrapper based on the UTL_RECOMP package). Note that Oracle will dynamically compile each
of the invalidated objects when they are accessed if you don’t do it now. However, this runtime
compilation of invalidated objects could slow down your database’s performance.

CHAPTER 8 ■ UPGRADING TO ORACLE DATABASE 10g 325

4517CH08.qxd 8/19/05 10:41 AM Page 325

You can recompile all invalidated Oracle database objects using the utlrp.sql script:

SQL> @$ORACLE_HOME/rdbms/admin/utlrp.sql
. . .
PL/SQL procedure successfully completed.

TIMESTAMP

COMP_TIMESTAMP UTLRP_END 2005-2-21 15:20:49
PL/SQL procedure successfully completed.
SQL>

To check that there aren’t any invalid objects left, you should run the check again:

SQL> SELECT count(*) FROM dba_objects
2 WHERE status = 'INVALID';
COUNT(*)

0

1 row selected.
SQL>

Once it has validated all the invalid objects, the utlrp.sql script validates each individual com-
ponent in the database and updates the DBMS_SERVER_REGISTRY view.

■Note You can revert to the older database as long as you have a backup of the database made before starting
the upgrade process. It’s vital to have a backup, since the upgrade process may fail before it’s completed, leaving
you with a database that won’t be functional under the pre- or post-upgrade version of Oracle.

Running the Post-Upgrade Status Tool
After the upgrade process completes, you must run the Post-Upgrade Status Tool, using the follow-
ing script:.

SQL> @utlu102s.sql

The Post-Upgrade Status Tool summarizes the upgrade process, which should look similar to
Listing 8-3, if everything went okay during the database upgrade.

Listing 8-3. Partial Output from the Post-Upgrade Status Tool

Oracle Database 10.2 Upgrade Status Utility 5-02-2005 11:26:50
. . .
Component Status Version HH:MM:SS
Oracle Database Server VALID 10.2.0.0.0 00:35:54
JServer JAVA Virtual Machine VALID 10.2.0.0.0 00:12:01
Oracle XDK VALID 10.2.0.0.0 00:03:56
Oracle Database Java Packages VALID 10.2.0.0.0 00:01:27
Oracle XML Database VALID 10.2.0.0.0 00:04:05
Oracle Workspace Manager VALID 10.2.0.0.0 00:03:18
Oracle Data Mining VALID 10.2.0.0.0 00:00:24
Messaging Gateway VALID 10.2.0.0.0 00:00:20
OLAP Analytic Workspace VALID 10.2.0.0.0 00:00:43

CHAPTER 8 ■ UPGRADING TO ORACLE DATABASE 10g326

4517CH08.qxd 8/19/05 10:41 AM Page 326

OLAP Catalog VALID 10.2.0.0.0 00:02:54
Oracle OLAP API VALID 10.2.0.0.0 00:00:50
Oracle interMedia VALID 10.2.0.0.0 00:05:10
Spatial VALID 10.2.0.0.0 00:07:02
Oracle Text VALID 10.2.0.0.0 00:01:51
Oracle Ultra Search VALID 10.2.0.0.0 00:02:04
Oracle Label Security VALID 10.2.0.0.0 00:00:37
. . .
Total Upgrade Time: 01:27:32

The Post-Upgrade Status Tool determines the upgrade status of each database component by
querying the DBA_SERVER_REGISTRY view. You can also query the DBA_SERVER_REGISTRY view,
as shown in Listing 8-4.

Listing 8-4. Querying the DBA_SERVER_REGISTRY View for Post-Upgrade Information

SQL> SELECT comp_id, comp_name, version, status
FROM DBA_SERVER_REGISTRY;

COMP_ID COMP_NAME- VERSION STATUS
------------------------------ --
CATALOG Oracle Database Catalog Views 10.2.0.0.0 VALID
CATPROC Oracle Database Packages and Types 10.2.0.0.0 VALID
JAVAVM JServer JAVA Virtual Machine 10.2.0.0.0 VALID
CATJAVA Oracle Database Java Packages 10.2.0.0.0 VALID
CONTEXT Oracle Text 10.2.0.0.0 VALID
SQL>

The Post-Upgrade Status Tool will tell you how the upgrade went. If you didn’t cleanly upgrade
a component, the Post-Upgrade Status Tool will tell you what you have to do to fix the problem, as
the bold section in Listing 8-5 illustrates.

Listing 8-5. Output from the Post-Upgrade Status Tool Pointing Out a Problem with a Component

Oracle Database 10.2 Upgrade Status Tool 14-APR-2005 04:59:46
--> Oracle Database Catalog Views Normal successful completion
--> Oracle Database Packages and Types Problem(s) detected
WARNING:
----> component status is not valid
----> version is correct
----> check upgrade log file for errors
----> script="re-run base update "u" script"
--> JServer JAVA Virtual Machine Normal successful completion
--> Oracle XDK Normal successful completion
--> Oracle Database Java Packages Normal successful completion
--> Oracle interMedia Normal successful completion
--> Spatial Normal successful completion
--> Oracle Text Normal successful completion
PL/SQL procedure successfully completed.
SQL>

■Caution Don’t start the newly upgraded database under the old Oracle home—this corrupts your database.

CHAPTER 8 ■ UPGRADING TO ORACLE DATABASE 10g 327

4517CH08.qxd 8/19/05 10:41 AM Page 327

Ending the Spool File
After the upgrade script had finished, you can turn off the spooling of the upgrade process:

SQL> SPOOL OFF

Shutting Down and Starting Up the New Database
You can now shut down and restart the instance so you’re ready for normal database operations:

SQL> SHUTDOWN IMMEDIATE
SQL> STARTUP

After the Upgrade
After the upgrade, you have a brand-new Oracle Database 10g (10.2.0.0.0) instance. Of course, at
this point, all your old application code continues to remain at the Oracle8i, Oracle9i, or Oracle 10.1
version level. You may want to test the new database features as well as your old applications, to see
that they run in the upgraded database without problems.

It’s a good idea to promptly back up the new database. You must also change the passwords for
the Oracle-supplied user accounts if you manually upgraded the database. You may also need to
modify the listener.ora file, as well as migrate to the SPFILE from your init.ora file.

Several of Oracle Database 10g’s new features expect you to use locally managed tablespaces.
You may, at this point, choose to migrate all your dictionary-managed tablespaces to locally man-
aged tablespaces by using the DBMS_SPACE_ADMIN package. Chapter 5 shows you how to convert
dictionary-managed tablespaces to locally managed tablespaces. You can also start migrating data-
base jobs to the new Oracle Scheduler and check out the Automatic Jobs feature, the Automatic
Database Diagnostic Monitor, and many other goodies you have available in your new Oracle Data-
base 10g Release 2 database.

CHAPTER 8 ■ UPGRADING TO ORACLE DATABASE 10g328

4517CH08.qxd 8/19/05 10:41 AM Page 328

Creating an Oracle Database

You can install an Oracle database as part of the Oracle software installation process in both
Windows and UNIX versions. The Oracle Universal Installer provides several templates for database
creation, including the decision-support system (DSS) and online transaction processing (OLTP)
templates. You can also invoke the Oracle Database Configuration Assistant (DBCA), a GUI tool,
which will guide you through the installation process.

Until you become very well versed in the installation of databases, however, you may be better
off using the tedious but more flexible manual mode to create databases. I recommend that you
manually type in the database creation SQL statements line by line from SQL*Plus; this will give you
insight into the various steps involved in creating a database and the potential problems at every
stage. Later on, when you’re more comfortable with the process, you can just enter all the com-
mands into a script and run the whole script to create other databases, or just use the DBCA.

Before you start creating an Oracle database, there are some steps you need to take: ensuring
that you have the right permissions, checking that the file structures are in place, and determining
whether you have sufficient resources to start up your new database. Next you need to set up the
initialization parameters for the database. This chapter covers all of these topics and provides a
summary of the important Oracle configuration (initialization) parameters, with guidelines for
their use in your database.

After you create a new database, there are some more steps you need to take, all of which are
covered in this chapter: running the necessary post–database creation scripts, changing the pass-
words, and configuring the database for archive logging. You’ll need to know the various modes in
which you can start an Oracle instance, as well as how to stop it in different modes and how to
restrict access to just the DBAs when necessary. To round out your basic knowledge, we’ll look at
how to quiesce and suspend a database, which you’ll need to know to efficiently manage your
databases, and how to drop an Oracle database with the new DROP DATABASE command.

Getting Ready to Create the Database
You can create a new database either manually (using scripts) or by using the Oracle Database Con-
figuration Assistant (DBCA). The DBCA is configured to appear immediately after the installation
of the Oracle software to assist you in creating a database, and you can also invoke the DBCA later
on to help you create a database. You can access the DBCA tool by typing dbca at the operating sys-
tem prompt in a UNIX/Linux-based system. Since the DBCA is a GUI tool, make sure you set the
DISPLAY environment variable correctly, before you invoke the tool.

You can run the DBCA in interactive or silent mode, and it has several benefits, including pro-
viding templates for creating DSS, OLTP, or hybrid databases. The biggest benefit to using the DBCA
is that for DBAs with little experience, it lets Oracle set all the configuration parameters and start up
a new database quickly without errors. Finally, the DBCA also automatically creates all its file sys-
tems based on the highly utilitarian Optimal Flexible Architecture (OFA) standard.

329

C H A P T E R 9

■ ■ ■

4517CH09.qxd 8/19/05 10:43 AM Page 329

The DBCA is an excellent tool, and it even allows you to register a new database automatically
with Oracle Internet Directory (OID). However, I recommend strongly that you use the manual
approach initially, so you can get a good idea of what initialization parameters to pick and how the
database is created step by step. Once you gain sufficient confidence, of course, the DBCA is, with-
out a doubt, the best way to create an Oracle database of any size and complexity.

Whether you create a database manually or let Oracle create one for you at software installa-
tion time, a configuration file called init.ora, or its newer equivalent, SPFILE, holds all the database
configuration details. After the initial creation of the database, you can always change the behavior
of the database by changing the initialization parameters. You can also change the behavior of the
database for brief periods or during some sessions by using the ALTER SYSTEM and ALTER SESSION
commands to change certain initialization parameter values.

Before you create a database, however, you need to make sure you have the necessary software
and appropriate the memory and storage resources. The next few sections run through the brief list
of things to check.

Installing the Oracle Software
Before you can create a database, you must first install the Oracle Database 10g software. If you
haven’t already done so, see Chapter 7, which covers the installation of the Oracle server software
on UNIX and Linux systems, or Chapter 20, which covers the same for Windows-based systems.

Creating the File System for the Database
Planning your file systems is an important task, and you need to complete it before you start creat-
ing the database. You have to plan the location of the various database files, such as the redo log
files and archive log files before you create the database, and the placement of the files can have
serious effects on performance down the road. Let’s look at the sizing and location issues in some
detail.

Sizing the File System
The amount of file system space you need depends primarily upon the total space you need to allo-
cate for Oracle data files. You use data files to create the System and Sysaux tablespaces, as well as
the undo tablespace, default permanent tablespace, redo logs, and files to hold application data
(tables and indexes). Your overall space estimate should include space for the following:

• Tables and indexes: Table and index data is the biggest component of the physical database.
You first need to estimate the size of all the tables, which you can base on the number and
width of columns and the expected number of rows in each table. You don’t need accurate
numbers here; rough figures should suffice. You must know what indexes are needed by your
application. You also need to know the type of indexes you’re going to create, as this has a
major bearing on the physical size of the indexes. You can use formulas to determine the
space required for the indexes.

• Undo tablespace: How much space needs to be allocated to the undo tablespace depends on
the size of your database and the nature of your transactions. If you anticipate a lot of large
transactions, or you need to plan for large batch jobs, you will require a fairly large undo
tablespace. You can always enlarge the undo tablespace later on by adding data files to the
undo tablespace.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE330

4517CH09.qxd 8/19/05 10:43 AM Page 330

• Temporary tablespace: The temporary tablespace size also depends on the nature of your
application and the transaction pattern. If the queries involve a lot of sorting operations,
you’re better off with a larger temporary tablespace in general. Note that you’ll be creating
the temporary tablespace explicitly during creation of the database and assigning it to be
the default temporary tablespace for the users in the database.

• Default permanent tablespace: As I explained in Chapter 7, it’s a good idea to assign a default
permanent tablespace for the database. All database users are automatically assigned the
default permanent tablespace.

• System and Sysaux tablespaces: The System and Sysaux tablespaces are both mandatory
tablespaces used by the database to store data dictionary information, and objects pertain-
ing to various Oracle schemas.

• Redo log files: Redo log files are critical for the functioning of a database, and they’re key
components when you’re trying to recover the database without any loss of committed data.
Oracle recommends that you have a minimum of two redo log groups (with each group hav-
ing one or more members). Redo log files need to be multiplexed—that is, you should have
more than a single redo log file in each group, because they’re a critical part of the database
and they’re a single point of failure. With multiplexed redo logs, the instance will continue to
run even if one copy of the redo log file is removed by error or is corrupted.

The appropriate size for the redo log file will depend on how quickly your database is writing
to the log. If you have a lot of DML operations in your database, and the redo logs seem to be
filling up very quickly, you may want to increase the size of the log files. (You can’t increase
the size of an existing redo log file, but you can create larger redo log files and drop the
smaller files.) The redo log files are written in a circular fashion, and your goal should be to
size the log files such that no more than two or three redo log files are filled up every hour.
The fundamental conflict here is between performance and recovery time. A very large redo
log file will be efficient because there won’t be many log switches and associated check-
points, all of which impose a performance overhead on the database. However, when you
need to perform recovery, larger redo logs take more time to recover from, because you have
more data to recover.

You can figure out the optimal redo log file size by looking at the OPTIMAL_LOGFILE_SIZE col-
umn of the V$INSTANCE_RECOVERY view, after your database has been running for a while.
An easier way to get recommendations for the redo log file size is to view the Redo Log
Groups page of the OEM Database Control.

■Note Oracle recommends that you have four redo log groups, to keep the log writer from having to wait for an
available group after each log switch. The members of the redo log groups (the redo log files) should be the same
size. Oracle suggests sizing the redo log files such that they switch about every 20 minutes during a busy work-
load and about once an hour during normal workloads.

• Flash recovery area: Oracle recommends that you create a flash recovery area to hold all data-
base backup- and recovery-related files needed for a recovery from a media failure. The flash
recovery area holds all data file backups, RMAN backups, flashback logs, archived redo log
files, and control file backups. The size of the flashback area depends on the size and fre-
quency of your backups and on how long you want to retain backups on disk. For example,
if you plan on taking weekly backups, you must allocate enough space in the flash recovery
area to hold one week’s full backups as well as the archived redo logs. If you plan on taking
incremental backups in between the weekly full backups, you must also allocate space for
those backups in the flash recovery area.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE 331

4517CH09.qxd 8/19/05 10:43 AM Page 331

Choosing the Location for the Files
You should place the database files, such as the system, redo log, and archive log files, in locations
that allow you to benefit from the OFA guidelines, which were discussed in Chapter 7. Following the
OFA guidelines for file placement in your database offers the following benefits:

• Makes it easy for you to locate and identify the various files, such as database files, control
files, and redo log files

• Makes it easy to administer multiple Oracle databases and multiple Oracle software versions

• Improves database performance by minimizing contention among the different types of files

If you followed the OFA guidelines while installing your software, you should be in good shape
regarding the way your files are physically laid out.

Ensuring Enough Memory Is Allocated
If you don’t have enough memory in the system to satisfy the requirements of your database, your
database instance will fail to start. Even if it does start, there will be a lot of memory paging and
swapping that will slow your database down. The cost of memory is such a small component of
enterprise computing costs these days that you’re better off getting a large amount of memory for
the server on which you plan to install the Oracle database.

In the “SGA_TARGET” section of this chapter, I’ll show you how to set up automatic shared
memory management, which enables Oracle to take care of sizing the individual components of
shared memory.

Getting Necessary Authorizations
You will need authorization to be granted by the UNIX/Linux system administrator for you to be
able to create file systems on the server. Your Oracle username should be included in the DBA group
by the system administrator, if you are working on a UNIX or a Linux server.

Setting the OS Environment Variables
Before you proceed to create the database, you must set all the necessary operating system environ-
ment variables. In UNIX and Linux environments, you must set the following environment
variables:

• ORACLE_SID: This is your database’s name and same as the value of the DB_NAME initialization
parameter.

• ORACLE_BASE: This is the top directory for the Oracle software. For this chapter’s purposes,
this is /u01/app/oracle.

• ORACLE_HOME: This is the directory in which you installed the Oracle software. Oracle recom-
mends you use the following format for this variable: $ORACLE_BASE/product/release/db_n.
For this chapter’s purposes, this directory is /u01/app/oracle/product/10.2.0.0/db_1.

• PATH: This is the directory in which Oracle’s executable files are located. Oracle’s executables
are always located in the $ORACLE_HOME/bin directory. You can add the location of Oracle’s
executable files to the existing PATH value in the following way:

export PATH=$PATH:$ORACLE_HOME/bin

• LD_LIBRARY_PATH: This variable points out where the Oracle libraries are located. The usual
location is the $ORACLE_HOME/lib directory.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE332

4517CH09.qxd 8/19/05 10:43 AM Page 332

Creating the Parameter File
Every Oracle instance makes use of a set of initialization parameters that dictate database limits
such as the number of users, specify the names and locations of key files and directories, and opti-
mize performance by setting the size of key resources such as memory. Before you jump into the
details of Oracle database creation, it’s important to familiarize yourself with the important Oracle
initialization parameters and how Oracle uses them.

Types of Database Parameter Files
Oracle uses a parameter file to store the initialization parameters and their settings for an instance.
You can use either of the following two types of parameter files:

• Server parameter file (SPFILE): A binary file that contains the initialization parameters

• Initialization parameter file (pfile): A text file that contains a list of all initialization
parameters

The key difference between these two types of files is that with an SPFILE, you have the option
of making any changes you make to the initialization parameters while an instance is running per-
sist across an instance shutdown. You can’t do this using the initialization parameter file, since any
dynamic changes that are also not recorded in that file will not persist after you restart your
instance.

In the database creation example later in this chapter, I use the traditional pfile first. Note that I
use the filename init.ora to refer to the pfile, as the standard name for the pile is initdb_name.ora.
After I create the database, I’ll show you how to create the SPFILE from the init.ora file.

The initialization parameter file (pfile), usually given the name initdb_name.ora, was tradi-
tionally the only type of file in which you could store these initialization parameter values. An
initialization parameter file is a text file that you can edit like any other text file. By default, this file
is located in the $ORACLE_HOME/dbs directory (though you can store it in any place that’s helpful
to you). If you store the configuration file in a location other than the default, you must specify the
complete location when you start the instance. If the initialization parameter filename and the
location follow the default conventions, you don’t have to specify the name or location of the file
at startup.

■Note The initialization files are used not only to create the database itself, but also each time you start an
Oracle instance. You can tune several aspects of a database’s performance by modifying parameter values. You
can change some of these parameters dynamically while the instance is running, but for other changes to take
effect, you’ll have to restart the instance.

The initialization parameter file includes parameters that will help tune the instance, that set
limits on certain database resources, and that specify the names and locations of important files.
It also contains parameters that affect database performance, such as those specifying the amount
of memory allocated to Oracle. Once you create the initialization file, you can start the instance by
using the file in your database startup commands.

You can dynamically modify several important configuration parameters while the instance is
running. The dynamic changes are made in a SQL*Plus session, without changing the init.ora file
itself. You can make an instance-wide change by using the ALTER SYSTEM statement and a session-
wide change by using the ALTER SESSION statement. These modifications won’t be permanent,
however; as soon as you shut down the database, the changes are gone and you’re back to the
values hard-coded in the init.ora file. To make any configuration parameter changes permanent,

.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE 333

4517CH09.qxd 8/19/05 10:43 AM Page 333

If you want to make the dynamic changes permanent, so that the parameter is automatically
updated and the database uses these new values upon restarting, you should use a server parameter
file (SPFILE). The SPFILE is also an initialization file, but you can’t make changes to it directly
because it’s a binary file, not a text file. Using the SPFILE to manage your instance provides several
benefits, as you’ll see in the “Working with the Server Parameter File (SPFILE)” section later in the
chapter. Oracle recommends that you use the SPFILE because of the advantages it offers.

The Initialization Parameter File
In the database creation example I show later, I use the traditional init.ora file to create the database.
Once I create my database, I’ll create an SPFILE from this init.ora file. Oracle provides a template to
make it easy for you to create your own initialization parameter file. This template is located in the
$ORACLE_HOME/dbs directory in UNIX/Linux systems and in the $ORACLE_HOME/database
directory in Windows systems. Copy this init.ora template, rename it initdb_name.ora, and then
edit it to meet your own site’s requirements. Don’t be too nervous about trying to make “correct”
estimates for the various configuration parameters, because most of the configuration parameters
are easily modifiable throughout the life of the database. Just make sure you’re careful about the
handful of parameters that you can’t change without redoing the entire database from scratch. I
point out these parameters in the “Important Oracle Database 10g Initialization Parameters” sec-
tion, later in this chapter.

The interesting thing about the initialization parameter file is that it contains the configuration
parameters for memory and some I/O parameters, but not for the database filenames or the table-
spaces that the data files belong to. The control file holds all that information. The initialization file,
though, has the locations of the control files and the dump directories for error messages. It also
specifies the modes chosen for undo management, the optimizer, and archiving for the redo logs.

With the exception of DB_NAME, all Oracle initialization parameters are optional. Oracle will sim-
ply use the default values for all the initialization parameters you leave out of the initialization
parameter file.

Of course, when you let Oracle use default values for a parameter, you relinquish control over
that parameter. You should leave parameters out of the init.ora file only if you determine that their
default values are okay for your database. In general, it’s a good idea to use approximate sizes for the
important configuration parameters and use a trial-and-error method to determine whether you
need to use parameters that are new or that you haven’t used before.

Oracle Database 10g is highly configurable, but that benefit also carries with it the need for
DBAs to learn not only how the large number of parameters work, but also how they may interact
with one another to produce results at variance with your original plans. For example, an increase
in the SGA size may increase database performance up to a point, but too big an increase might
actually slow the database down, because the operating system might be induced to swap the
higher SGA in and out of real memory. Be cautious about making configuration changes; always
think through the implications of tinkering with initialization parameters.

Changing the Initialization Parameter Values
You can change the value of any initialization parameter by simply editing the init.ora file. However,
for the changes to actually take effect, you have to bounce the database—stop it and start it again.
As you can imagine, this is not always possible, especially if you are managing a production data-
base. However, you can change several of the parameters on the fly—these are called dynamic
parameters for that reason. The parameters you can change only by changing the init.ora file and
then restarting the database are called static parameters.

You have three ways to change the value of dynamic parameters: the ALTER SESSION, ALTER
SYSTEM, and ALTER SYSTEM . . . DEFERRED commands.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE334

4517CH09.qxd 8/19/05 10:43 AM Page 334

Using the ALTER SESSION Command
The ALTER SESSION command enables you to change dynamic parameter values for the duration of
the session that issues the command. The ALTER SESSION command is used only to change a para-
meter’s value temporarily.

Here is the general syntax for the command:

ALTER SESSION SET parameter_name=value;

Using the ALTER SYSTEM Statement
The ALTER SYSTEM statement changes the parameter’s value for all sessions. However, these changes
will be in force only for the duration of the instance; when the database is restarted, these changes
will go away, unless you modify the init.ora file accordingly or you use the SPFILE.

Here is the syntax for this command:

ALTER SYSTEM SET parameter_name=value;

Using the ALTER SYSTEM . . . DEFERRED Statement
The ALTER SYSTEM . . . DEFERRED statement will make the new values for a parameter effective for
all sessions, but not immediately. Only sessions started after the statement is executed are affected.
All currently open sessions will continue to use the old parameter values.

Here is the syntax for this command:

ALTER SYSTEM SET parameter_name DEFERRED;

The ALTER SYSTEM . . . DEFERRED statement works only for the following parameters: BACKUP_
TAPE_IO_SLAVES, TRANSACTION_AUDITING, SORT_AREA_RETAINED_SIZE, OBJECT_CACHE_OPTIMAL_SIZE,
SORT_AREA_SIZE, and OBJECT_CACHE_MAX_SIZE_PERCENT. Because of the very small number of parame-
ters for which the deferred status can be used, you can, for all practical purposes, consider ALTER
SYSTEM a statement that applies immediately to all sessions.

When you change the value of a parameter by using the ALTER SESSION or ALTER SYSTEM state-
ment, the change in the parameter’s value will last only for the duration of the instance. When you
have to restart the instance, the parameter values will revert to their old values, unless you record
the changes in the init.ora file.

Important Oracle Database 10g Initialization Parameters
The following sections present the most important Oracle initialization parameters you need to be
familiar with. For the sake of clarity, I’ve divided the parameters into various groups, such as audit-
related parameters, process and session parameters, memory configuration parameters, and so on.
My parameter groupings are arbitrary and are designed simply to make it easier to understand the
configuration of a new database.

Although this list looks long and formidable, it isn’t a complete list of the initialization para-
meters for Oracle Database 10g—it’s a list of only the most commonly used parameters. Oracle
Database 10g has over 250 initialization parameters that DBAs can configure. Don’t be disheart-
ened, though. The basic list of parameters that you need in order to start your new database can be
fairly small and easy to understand. Oracle has, for the first time, grouped together the most com-
mon initialization parameters, and according to Oracle, most databases should only need these
basic parameters set. Oracle advises you to become familiar with these basic parameters and to use
other parameters only when directed to do so by the documentation or in special circumstances.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE 335

4517CH09.qxd 8/19/05 10:43 AM Page 335

Later on, as you study various topics such as backup and recovery, performance tuning, network-
ing, and so on, you’ll have a chance to really understand how to use the more esoteric initialization
parameters.

Audit-Related Parameters
An Oracle database can be configured to audit actions by its users, and you can configure this audit-
ing feature according to several criteria, although the default behavior of the database is not to
audit actions. The following parameters let you configure how you audit your database usage.

AUDIT_TRAIL

The AUDIT_TRAIL parameter turns auditing on or off for the database. If you don’t want auditing to
be turned on, do nothing, since the default value for this parameter is none, or false, which disables
database auditing. If you want auditing turned on, you can set the AUDIT_TRAIL parameter to any of
the following values:

• os: Oracle writes the audit records to an operating system audit trail, which is an operating
system file, including audit records from the OS, audit records for the SYS user, and those
database actions that are always automatically audited.

• db: Oracle records the same type of auditing as with the os setting, but it directs all audit
records to the database audit trail, which is the AUD$ table owned by SYS.

• db,extended: This is similar to the db setting, but also provides extended audit information
like the SQLBIND and SQLTEXT columns of the SYS.AUD$ table.

• none: This value disables auditing.

In addition, you have two XML-related AUDIT_TRAIL values (new in Oracle Database 10.2):

• XML: This value for audit trail enables database auditing and writes audit details to OS files in
XML format.

• XML,EXTENDED: This value prints all database audit records plus the SQLTEXT and SQLBIND
values to OS files in the XML format.

The parameter is set as follows:

AUDIT_TRAIL = db

Default value: none

Parameter type: Static

Chapter 11 provides more information about auditing actions within an Oracle database.

■Tip Even if you don’t set the AUDIT_TRAIL parameter to any value, Oracle will still write audit information to an
operating system file for all database actions that are audited by default. On a UNIX system, the default location for
this file is the $ORACLE_HOME/rdbms/audit directory. Of course, you can specify a different directory if you wish.
See Chapter 11 for more details on this feature.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE336

4517CH09.qxd 8/19/05 10:43 AM Page 336

AUDIT_FILE_DEST

The AUDIT_FILE_DEST parameter specifies the directory in which the database will write the audit
records, when you choose the operating system as the destination with the AUDIT_TRAIL parameter
by specifying AUDIT_TRAIL=os. You can also specify this parameter if you choose the XML or
XML,EXTENDED options for the AUDIT_TRAIL option, since the audit records are written to operating
system files in both cases.

Default value: $ORACLE_HOME/rdbms/audit

Parameter type: Dynamic. You can modify this parameter with the ALTER SYSTEM . . .
DEFERRED command.

AUDIT_SYS_OPERATIONS

This parameter, if set to a value of true, will audit all actions of the SYS user and any other user with
a SYSDBA or SYSOPER role and will write the details to the operating system audit trail specified by
the AUDIT_TRAIL parameter. By writing the audit information to a secure operating system location,
you remove any possibility of the SYS user tampering with an audit trail that is located within the
database. The possible values are true and false.

Default value: false

Parameter type: Static

Database Name and Other General Parameters
The most important of the general parameters is the parameter that sets the name of the database.
Let’s look at this set of parameters in detail.

DB_NAME and DB_UNIQUE_NAME

The DB_NAME parameter sets the name of the database. This is a mandatory parameter and the value
is the same as the database name you used to create the database. The DB_NAME value should be the
same as the value of the ORACLE_SID environment variable. This parameter can’t be changed after
the database is created. You can have a DB_NAME value of up to eight characters.

Default value: false

Parameter type: Static

The DB_UNIQUE_NAME parameter lets you specify a globally unique name for the database.

DB_DOMAIN

The DB_DOMAIN parameter specifies a fully qualified name (in Internet dot notation) for the database,
and this is typically the same as the name of the organization that owns the database. The DB_DOMAIN
parameter specifies the logical location of the database within the network structure, and you
should set this parameter if your database is part of a distributed system.

Default value: false

Parameter type: Static

CHAPTER 9 ■ CREATING AN ORACLE DATABASE 337

4517CH09.qxd 8/19/05 10:43 AM Page 337

INSTANCE_NAME

The INSTANCE_NAME parameter will have the same value as the DB_NAME parameter in a single
instance environment. You can associate multiple instances to a single database service (DB_NAME)
in a Real Application Clusters environment.

Default value: The instance SID

Parameter type: Static

SERVICE_NAME

The SERVICE_NAME parameter provides a name for the database service, and it can be anything you
want it to be. Usually, it is a combination of the database name and your database domain.

Default value: DB_NAME.DB_DOMAIN

Parameter type: Dynamic. This parameter can be changed with the ALTER SYSTEM command.

COMPATIBLE

The COMPATIBLE parameter allows you to use the latest Oracle database release, while making sure
that the database is compatible with an earlier release.

Suppose you upgrade to the Oracle Database 10g Release 2 version, but your application
developers haven’t made any changes to their Oracle9i application. In this case, you could set the
COMPATIBLE parameter equal to 9.2 so the untested features of the new Oracle version won’t hurt
your application. Later on, after the application has been suitably upgraded, you can reset the
COMPATIBLE initialization parameter to 10.2.0, which is the default value for Oracle Database 10g
Release 2 (10.2).

If, instead, you immediately raise the compatible value to 10.2, you can use all the new 10.2
features, but you won’t be able to downgrade your database to 9.2 or any other lower versions. You
must understand this irreversible compatibility clearly, before you set the value for this parameter.

Default value: 10.2.0

Parameter type: Static

INSTANCE_TYPE

The INSTANCE_TYPE parameter specifies whether your instance is a database instance or an Auto-
matic Storage Management instance. You specify ASM if the instance is an Automatic Storage
Management instance. A setting of RDBMS denotes a normal database instance.

Default value: RDBMS

Parameter type: Static

■Note A set of parameter values is specific to an Oracle database using ASM, and some parameters pertain only
to the special ASM instances. You’ll review these initialization parameters in Chapter 18, where we discuss ASM
further.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE338

4517CH09.qxd 8/19/05 10:43 AM Page 338

DISPATCHERS

The DISPATCHERS parameter configures the dispatcher process if you choose to run your database in
the shared server mode. You use a name/value pair to specify the number of dispatchers you want
the database to use.

Default value: none

Parameter type: Dynamic. The ALTER SYSTEM command can be used to reconfigure the
dispatchers.

NLS_DATE_FORMAT

The NLS_DATE_FORMAT parameter specifies the default date format Oracle will use. Oracle uses this
date format when using the TO_CHAR or TO_DATE functions in SQL. There is a default value, which is
derived from the NLS_TERRITORY parameter. For example, if the NLS_TERRITORY format is America,
the NLS_DATE_FORMAT parameter is automatically set to the DD-MON-YY format.

Default value: Depends on the NLS_TERRITORY variable and the operating system

Parameter type: Dynamic. Can be altered by using the ALTER SESSION command

File-Related Parameters
You can specify several file-related parameters in your init.ora file. Oracle requires you to specify
several destination locations for trace files and error messages. The bdump, udump, and cdump
files are used by the database to store the alert logs, background trace files, and core dump files. In
addition, you need to specify the UTL_FILE_DIRECTORY parameter in order to use the UTL_FILE pack-
age. The following sections cover the key file-related parameters.

IFILE

You can use the IFILE parameter to embed another initialization file in it. For example, you can
have a line in your init.ora file such as this:

ifile=config.ora

In the config.ora file, you could then have some common initialization parameters for several
instances. You can have up to three levels of nesting.

Default value: No default value

Parameter type: Static

CONTROL_FILES

Control files are key files that hold data file names and locations and a lot of other important infor-
mation. The database needs only one control file, but because this is such an important file, you
always save multiple copies of it. The way to multiplex the control file is to simply specify multiple
locations (up to a maximum of eight) in the CONTROL_FILES parameter. The minimum number of
control files is one, but Oracle recommends you have at least two control files per instance, and
most DBAs usually use three. If one of the control files is damaged or accidentally deleted, the
instance will fail when it tries to access that control file. When this happens with multiple copies
of the control file, you can always restart the database after first copying the undamaged control
file to a different location.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE 339

4517CH09.qxd 8/19/05 10:43 AM Page 339

When you use the CREATE DATABASE statement, Oracle creates the control files listed in the
CONTROL_FILES parameter. If you don’t include this parameter in your initialization file when creat-
ing the database, Oracle will create a control file using a default operating system–dependent
filename or, if you have enabled Oracle Managed Files, it will create Oracle-managed control files.
You must have a minimum of one control file and may have up to eight control files per database.

Default value: Depends on the operating system

Parameter type: Static

CONTROL_FILE_RECORD_KEEP_TIME

The CONTROL_FILE_RECORD_KEEP_TIME parameter specifies how many days Oracle will retain records
in the control file before overwriting them. Oracle recommends that you set this parameter to a
high value, to ensure that all online disk backup information remains in the control file. For exam-
ple, if you maintain a flash recovery area that holds two full weekly backups and daily incremental
backups, you must set CONTROL_FILE_RECORD_KEEP_TIME to at least 21 days.

Default: Seven days

Parameter type: Modifiable dynamically, with the ALTER SYSTEM statement

DB_FILES

The DB_FILES parameter simply specifies the maximum number of database files that can be
opened for a database. This value is just a number—you don’t list all the data files for your database
here. The larger the size of the database, the larger this number should be.

Default value: 200

Parameter type: Static

CORE_DUMP_DEST

The CORE_DUMP_DEST parameter specifies the directory location where you want the core (error) mes-
sages dumped to.

Default value: Depends on the operating system; you can use any valid directory.

Parameter type: Dynamic. This can be changed with the ALTER SYSTEM command.

USER_DUMP_DEST

The USER_DUMP_DEST parameter specifies the directory where you want Oracle to save error mes-
sages from various processes, such as PMON and the database writer.

Default value: Depends on the operating system; you can use any valid directory.

Parameter type: Dynamic. This can be changed with the ALTER SYSTEM command.

BACKGROUND_DUMP_DEST

The BACKGROUND_DUMP_DEST parameter specifies the Oracle alert log location and the locations of
some other trace files for the instance.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE340

4517CH09.qxd 8/19/05 10:43 AM Page 340

Default value: Depends on the operating system; you can use any valid directory.

Parameter type: Dynamic. This can be changed with the ALTER SYSTEM command.

UTL_FILE_DIRECTORY

You can use the UTL_FILE_DIRECTORY parameter to specify the directory (or directories) Oracle will
use to process I/O when you use the Oracle UTL_FILE package to read from or write to the operat-
ing system files. You can set UTL_FILE_DIRECTORY to any OS directory you want. If you just specify an
asterisk (*) instead of any specific directory name, the UTL_FILE package will read and write to and
from all the OS directories; Oracle recommends against this practice.

Default value: none; you can’t use the UTL_FILE package to do any I/O with this setting.

Parameter type: Static

■Caution You’ll need to use some directory on the server where you have read/write privileges as the setting
for UTL_FILE_DIRECTORY; otherwise the package can’t process I/O to the operating system. If you use * as the
value for the UTL_FILE_DIRECTORY parameter, however, users can write to and read from all directories for which
you have read/write privileges. Obviously, you don’t want this to happen!

Oracle Managed Files Parameters
You’ll need to use three parameters to specify the format of the Oracle Managed Files (OMF)
when you decide to use the feature: DB_CREATE_FILE_DEST, DB_CREATE_ONLINE_LOG_DEST_n, and
DB_RECOVERY_FILE_DEST. I describe the first two parameters in the sections that follow and the third
under the “Recovery-Related Parameters” section. Chapter 17 discusses in more detail how to use
the initialization parameters dealing with OMF.

DB_CREATE_FILE_DEST

The DB_CREATE_FILE_DEST parameter specifies the default location for Oracle-managed data files. It’s
also the directory where Oracle will create data files and temporary files when you don’t specify an
explicit location for them. The directory must already exist with the correct read/write permissions
for Oracle.

Default value: None

Parameter type: Dynamic. It can be changed using either the ALTER SYSTEM or ALTER SESSION
command.

DB_CREATE_ONLINE_LOG_DEST_n

The DB_CREATE_ONLINE_LOG_DEST_n parameter specifies the default location for OMF online redo log
files and control files. To multiplex the online redo log files or the control file, specify more than one
value for the parameter. Oracle creates one member of each online redo log and one control file in
each location when you specify a value of n greater than one. You can have a maximum of five sepa-
rate directory locations. Please see Chapter 17 for examples of how to use this parameter.

Default value: None

Parameter type: Dynamic. This parameter can be changed using either the ALTER SYSTEM or
ALTER SESSION command.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE 341

4517CH09.qxd 8/19/05 10:43 AM Page 341

Process and Session Parameters
Several initialization parameters relate to the number of processes and the number of sessions
that your database can handle. The following sections explore the important process and session
parameters.

PROCESSES

The value of the PROCESSES parameter will set the upper limit for the number of operating system
processes that can connect to your database concurrently. Both the SESSIONS and TRANSACTIONS
parameters derive their default values from this parameter.

Default value: At least 6, but varies according to the operating system

Parameter type: Static

DB_WRITER_PROCESSES

The DB_WRITER_PROCESSES parameter specifies the initial number of database writer processes for
your instance. Instances with very heavy data modification may opt for more than the default single
process. You can have up to 20 processes per instance.

Default value: 1 or the number of CPUs divided by 8, whichever is greater

Parameter type: Static

SESSIONS

The SESSIONS parameter sets the maximum number of sessions that can connect to the database
simultaneously.

Default value: (1.1 *PROCESSES) + 5

Parameter type: Static

OPEN_CURSORS

The OPEN_CURSORS parameter sets the limit on the number of open cursors a single session can have
at any given time.

Default value: 50

Parameter type: Modifiable with the ALTER SYSTEM statement

Memory-Configuration Parameters
The memory-configuration parameters determine the memory allocated to key components of the
SGA. There are two major areas of memory you allocate to Oracle from the operating system’s mem-
ory: the system global area (SGA) and the program global area (PGA). Oracle Database 10g takes
the guessing and fine-tuning out of both SGA and PGA memory allocations. You can simply set the
SGA_TARGET and PGA_AGGREGATE_TARGET parameters to approximate values and adjust their
values once the instance has run for a while, using the OEM Database Control.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE342

4517CH09.qxd 8/19/05 10:43 AM Page 342

■Note Oracle’s guidelines regarding the ideal settings for the various components of memory, such as the
DB_CACHE_SIZE and shared pool, are often vague and not really helpful to a beginner. For example, Oracle states
that the DB_CACHE_SIZE should be from 20 to 80 percent of the available memory for a data warehouse data-
base. The shared pool recommendation for the same database is between 5 and 10 percent. The wide ranges
make the DB_CACHE_SIZE recommendations useless. If your total memory is 2GB, you’re supposed to allocate
from 100MB to 200MB of memory for the shared pool. If your total memory allocation is 32GB, your allocation for
the shared pool would be between 1.6GB and 3.2GB, according to the “standard” recommendations. The best
thing to do is use a trial-and-error method to see whether the various memory settings are appropriate for your
database.

Let’s briefly review the key Oracle Database 10g parameters concerning memory allocation.
The buffer cache is the area of Oracle’s memory where it keeps data blocks that have been read in
from disk, and the data blocks may be modified here before being written back to disk again. Hav-
ing a big enough buffer cache will improve performance by avoiding too many disk accesses, which
are much slower than accessing data in memory.

You can set up the buffer cache for your database in units of the standard or primary block size
you chose for the database (using the DB_BLOCK_SIZE parameter), or you can use nonstandard-
block-sized buffer caches. If you want to base your buffer cache on the standard block size, you
use the DB_CACHE_SIZE parameter to size your cache.

SGA_TARGET

The SGA_TARGET parameter determines whether your database will use automatic shared memory
management. In order to use automatic shared memory management, set the SGA_TARGET parameter
to a positive value. You don’t have to specify the five automatic shared memory components in your
initialization file (shared pool, database buffer cache, Java pool, large pool, and streams pool). Oracle
will show zero values for these when you query the V$PARAMETER view, which shows the values
of all your initialization parameters. You may, however, choose minimum values for any of the five
auto-memory parameters, in which case you should specify the values in the initialization file.

If you set the SGA_TARGET parameter to zero, you disable automatic shared memory manage-
ment, and you have to manually set the values for all the previously mentioned SGA components.

When you use automatic shared memory management by setting a value for the SGA_TARGET
parameter, the memory you allocate for the manually sized components (the log buffer, the buffer
cache keep pool, the buffer cache recycle pool, the nondefault-sized buffer cache pools and nKB-
sized buffer caches, and the fixed SGA allocations) will be deducted from the SGA_TARGET value first.

To get a quick idea about how much memory to allocate for the SGA_TARGET parameter under
automatic shared memory management, run the following query:

SQL> SELECT (
(SELECT SUM(value) FROM V$SGA) -
(SELECT CURRENT_SIZE FROM V$SGA_DYNAMIC_FREE_MEMORY)
) "SGA_TARGET"
FROM DUAL;

The value for SGA_TARGET must be a minimum of 64MB, and the upper limit is dependent on
the operating system.

Default value: 0 (no automatic shared memory management)

Parameter type: Dynamic. You can use the ALTER SYSTEM command to modify the value.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE 343

4517CH09.qxd 8/19/05 10:43 AM Page 343

■Note If you set the SGA_TARGET parameter, you can leave out all the automatic SGA parameters—DB_CACHE_
SIZE, SHARED_POOL_SIZE, LARGE_POOL_SIZE, JAVA_POOL_SIZE, and STREAMS_POOL_SIZE—from your init.ora
file, unless you want to ensure a minimum size for some of these, in which case you can explicitly specify them in
the file.

DB_CACHE_SIZE

This parameter sets the size of the default buffer pool for those buffers that have the primary block
size (this is the block size defined by DB_BLOCK_SIZE). For example, you can use a number like
1,024MB.

Default value: If you're using the SGA_TARGET parameter, the default is 0. If you aren't using
SGA_TARGET, it’s the greater of 48MB or 4MB ✕ number of CPUs ✕ granule size.

Parameter type: Dynamic. It can be modified with the ALTER SYSTEM command.

DB_KEEP_CACHE_SIZE

The normal behavior of the buffer pool is to treat all the objects placed in it equally. That is, any
object will remain in the pool as long as free memory is available in the buffer cache. Objects are
removed (aged out) only when there is no free space. When this happens, the oldest unused objects
sitting in memory are removed to make space for new objects.

The use of two specialized buffer pools—the keep pool and the recycle pool—allows you to
specify at object-creation time how you want the buffer pool to treat certain objects. For example,
if you know that certain objects don’t really need to be in memory for a long time, you can assign
them to a recycle pool, which removes the objects right after they’re used. In contrast, the keep pool
always retains an object in memory if it’s created with the KEEP option.

The DB_KEEP_CACHE_SIZE parameter specifies the size of the keep pool, and it’s set as follows:

DB_KEEP_CACHE_SIZE = 500MB

Default value: 0; by default, this parameter is not configured.

Parameter type: Dynamic. It can be changed by using the ALTER SYSTEM command.

DB_RECYCLE_CACHE_SIZE

The DB_RECYCLE_CACHE_SIZE parameter specifies the size of the recycle pool in the buffer cache. Oracle
removes objects from this pool as soon as the objects are used. The parameter is set as follows:

DB_RECYCLE_CACHE_SIZE = 200MB

Default value: 0; by default, this parameter is not configured.

Parameter type: Dynamic. It can be changed by using the ALTER SYSTEM command.

DB_nK_CACHE_SIZE

If you prefer to use nonstandard-sized buffer caches, you need to specify the DB_nK_CACHE_SIZE
parameter for each, as in the following two examples:

DB_4K_CACHE_SIZE=2048MB
DB_8K_CACHE_SIZE=4096MB

CHAPTER 9 ■ CREATING AN ORACLE DATABASE344

4517CH09.qxd 8/19/05 10:43 AM Page 344

The values for n that can be used in this parameter are 2, 4, 8, 16, or 32.

Default value: 0

Parameter type: Dynamic. You can change this parameter’s value with the ALTER SYSTEM
command.

SHARED_POOL_SIZE

The shared pool is a critical part of Oracle’s memory, and the SHARED_POOL_SIZE parameter sets the
total size of the SGA that is devoted to the shared pool. The shared pool consists of the library cache
and the data dictionary cache, which stores the recently used data dictionary information so you
don’t have to constantly read the disk to access the data dictionary.

There is no way to separately manipulate the sizes of the two components of the shared pool.
If you want to increase the size of either component of the shared pool or both of them at once, you
do it by increasing the value of the SHARED_POOL_SIZE parameter.

If you use the Oracle-recommended automatic shared memory management by setting the
SGA_TARGET parameter, you don’t need to set the SHARED_POOL_SIZE parameter.

Default value: 32MB (for non-64-bit OSs), 84MB (for 64-bit OSs), or 0 (if you set the SGA_TARGET
parameter to use automatic shared memory management)

Parameter type: Dynamic. The ALTER SYSTEM command can be used to change the value.

LOG_BUFFER

The LOG_BUFFER parameter specifies the size of the redo log buffer. As you will recall, the redo log
buffer holds the redo records, which are used to recover a database, and the log writer writes the
contents of this buffer to the redo log files on disk. The log buffer’s size is usually small, less than a
megabyte or so.

The more changes the redo buffers have to process using redo records, the more active the
redo logs will be. Instead of adjusting the LOG_BUFFER parameter to a very large size, you may want
to use the NOLOGGING option to reduce redo operations.

Default value: 512KB or 256KB multiplied by the number of CPUs, whichever is greater

Parameter type: Static

LARGE_POOL_SIZE

The shared pool can normally take care of the memory needs of shared servers as well as Oracle
backup and restore operations, and a few other operations. Sometimes, though, this may place a
heavy burden on the shared pool, causing a lot of fragmentation and the premature aging-out of
important objects from the shared pool due to lack of space.

To avoid these problems, you can use the LARGE_POOL_SIZE parameter to mostly free up the
shared pool for caching SQL queries and data dictionary information. If the PARALLEL_AUTOMATIC_
TUNING parameter is set, the large pool is also used for parallel-execution message buffers. The
amount of memory required for the large pool in this case depends on the number of parallel
threads per CPU and the number of CPUs.

Default value: 0 (if the pool is not required for parallel execution and DBWR_IO_SLAVES is not set)

Parameter type: Dynamic. The ALTER SYSTEM command can be used to modify this parameter.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE 345

4517CH09.qxd 8/19/05 10:43 AM Page 345

JAVA_POOL_SIZE

Use the JAVA_POOL_SIZE parameter only if your database is using Java stored procedures. The pool
size can be set anywhere from 0 to an upper limit that depends on the operating system.

Default value: 24MB (if SGA_TARGET is not set) and 0 otherwise

Parameter type: Dynamic. The ALTER SYSTEM command can be used to modify this parameter.

STREAMS_POOL_SIZE

You need to set a value for this parameter if you’re using Oracle Streams. As this is one of the auto-
matic shared memory management components, if you set the SGA_TARGET parameter, you can omit
this parameter.

Default value: 0

Parameter type: Dynamic. It can be modified with the ALTER SYSTEM command.

SGA_MAX_SIZE

You can set a maximum limit for the memory that can be used by all the components of the SGA
with the SGA_MAX_SIZE parameter. This is an optional parameter because omitting it just means that
the SGA’s maximum size will default to the sum of the memory parameters in the SGA.

Default value: Initial size of SGA at startup.

Parameter type: Static

LOCK_SGA

Setting the value of the LOCK_SGA parameter to true will lock your entire SGA into the host’s physical
memory. This works only on some operating systems, and you should set this parameter to true
only after verification. As mentioned in Chapter 5, Oracle doesn’t recommend using this parameter
under most circumstances. If you anticipate a shortfall in physical memory, however, it may be
smart to lock the SGA into real (physical) memory, in order to avoid using virtual memory based
on disk space.

Default value: Depends on the values of the component variables

Parameter type: Static

PGA_AGGREGATE_TARGET

Users need areas in memory to perform certain memory-intensive operations, such as sorting, hash
joining, bitmap merging, and so on. The PGA_AGGREGATE_TARGET parameter simply denotes the maxi-
mum memory Oracle can allocate at any given time for all your users’ jobs. Note that Oracle doesn’t
immediately grab all the memory you allocate through the PGA_AGGREGATE_TARGET parameter, unlike
the case of the SGA_TARGET parameter. Chapter 5 contains a detailed discussion of the PGA and how
to size it.

By setting the PGA_AGGREGATE_TARGET parameter, you let Oracle manage the runtime memory
management for SQL execution.

Default value: 0

Parameter type: Dynamic. The ALTER SYSTEM command can be used to modify this parameter.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE346

4517CH09.qxd 8/19/05 10:43 AM Page 346

■Tip The PGA_AGGREGATE_TARGET value can range between 10MB and 4,000GB. Oracle recommends that the
PGA_AGGREGATE_TARGET parameter should be between 20 and 80 percent of the available memory.

Archive Log Parameters
Oracle gives you the option of archiving your filled redo logs. When you configure your database to
archive its redo logs, the database is said to be in an archivelog mode. You should always archivelog
your production databases unless there are exceptional reasons for not doing so. If you decide to
archive the redo logs, you have to specify that in the initialization file using the three parameters
described next.

LOG_ARCHIVE_DEST_n

The LOG_ARCHIVE_DEST_n parameters (where n = 1, 2, 3, . . . 10) define up to ten archive log destina-
tions. This parameter enables you to specify the location (or locations) of the archived logs.

You should set this parameter only if you are running the database in archivelog mode. You
can set the database to run in archivelog mode when you create the database by specifying the
ARCHIVELOG keyword in your CREATE DATABASE statement.

This is how you specify the LOG_ARCHIVE_DEST_n parameter (n=1):

LOG_ARCHIVE_DEST_1='LOCATION=/u02/app/oracle/arch/'

Default value: None

Parameter type: Dynamic. You can use the ALTER SESSION or the ALTER SYSTEM command to
make changes.

LOG_ARCHIVE_FORMAT

This parameter specifies the default filename format for the archived redo log files. It is set as follows:

LOG_ARCHIVE_FORMAT = 'log%t_%s_%r.arc'

In this example, %t stands for the thread number, %s for the log sequence number, and %r for
the resetlogs ID that ensures a unique name for archived redo logs across multiple incarnations
of the database (the multiple incarnations are created after using a resetlogs operation, explained
in Chapter 16).

Default value: Operating-system dependent

Parameter type: Static

Undo Space Parameters
The main undo-related parameters are the UNDO_MANAGEMENT, UNDO_TABLESPACE, and UNDO_RETENTION
parameters. Note that you can specify the undo-retention guarantee when you create the database
by using the RETENTION GUARANTEE clause in the CREATE UNDO TABLESPACE statement.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE 347

4517CH09.qxd 8/19/05 10:43 AM Page 347

UNDO_MANAGEMENT

If the UNDO_MANAGEMENT parameter is set to auto, the undo tablespace is used for storing the undo
records, and Oracle will automatically manage the undo segments. A value of manual means that
you will need to use rollback segments.

Default value: manual

Parameter type: Static

UNDO_TABLESPACE

The UNDO_TABLESPACE parameter determines the default tablespace for undo records. If you have
only a single undo tablespace, you don’t need to specify this parameter—Oracle will automatically
use your undo tablespace. If you don’t have an undo tablespace available, Oracle will use the System
rollback segment for undo storage, which isn’t a good option. If you don’t specify a value for this
parameter when you create the database, and you have chosen to use Automatic Undo Manage-
ment (AUM), Oracle will create a default undo tablespace with the name UNDOTBS. This default
tablespace will have a single 10MB data file that will be automatically extended without a maximum
limit.

Default value: The first undo tablespace available

Parameter type: Dynamic. You can use the ALTER SYSTEM command to change the default undo
tablespace.

UNDO_RETENTION

The UNDO_RETENTION parameter specifies the amount of redo information to be saved in the undo
tablespace before it can be overwritten. The appropriate value for this parameter depends on the
size of the undo tablespace and the nature of the queries in your database. If the queries aren’t
huge, they don’t need to have large snapshots of data, and you could get by with a low undo reten-
tion interval. Similarly, if there is plenty of free space available in the undo tablespace, transactions
won’t be overwritten, and you are less likely to run into the snapshot-too-old problem.

If you plan on using the Flashback Query feature extensively, you will have to figure out how far
back in time your Flashback queries will go, and specify the UNDO_RETENTION parameter accordingly.

Default value: 900 (seconds)

Parameter type: Dynamic. You can use the ALTER SYSTEM command to increase the value to a
practically unlimited time period.

Oracle Licensing Parameter
The use of Oracle software is limited by the license agreement between Oracle and the customer,
and the total number of “named” or unique users in your database shouldn’t exceed the maximum
licensed number of users. You use the LICENSE_MAX_USERS parameter to limit the number of users
you create in a database. Once you set the value of this parameter, the database won’t allow you to
create more than that many users in the database.

LICENSE_MAX_USERS

The LICENSE_MAX_USERS parameter specifies the maximum number of users you can create in your
database.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE348

4517CH09.qxd 8/19/05 10:43 AM Page 348

Default value: 0

Parameter type: Dynamic. The ALTER SYSTEM command can be used to change this parameter.

Performance- and Diagnostics-Related Parameters
You can configure several performance-related parameters in your parameter file. In addition, you
can set several parameters to change the diagnostic capabilities of the database when you’re per-
forming activities such as tracing SQL statements.

STATISTICS_LEVEL

You set the STATISTICS_LEVEL parameter to specify the level of statistics collection by Oracle. There
are three possible values for this parameter: BASIC, TYPICAL, and ALL. Setting this parameter to the
default value of TYPICAL will ensure the collection of all major statistics required for database self-
management and will provide the best overall performance. When the STATISTICS_LEVEL parameter
is set to ALL, Oracle collects additional statistics, such as timed OS statistics and plan-execution
statistics.

Default value: TYPICAL

Parameter type: Modifiable with either the ALTER SESSION or the ALTER SYSTEM statement

■Caution Setting the STATISTICS_LEVEL parameter to BASIC disables the collection of many of the important
statistics required by Oracle Database 10g features and functionality, including these:

• Automatic Workload Repository (AWR) snapshots

• Automatic Database Diagnostic Monitor (ADDM)

• All server-generated alerts

• Automatic Shared Memory Management

• Automatic optimizer statistics collection

• Buffer cache advisory and the mean time to recover (MTTR) advisory

• Timed statistics

OPTIMIZER_MODE

The OPTIMIZER_MODE parameter dictates the type of optimization you want Oracle’s query optimizer
to follow. You can set the optimizer mode to the following values:

• all_rows: The query optimizer uses a cost-based approach for all SQL statements and
optimizes with a goal of best throughput (minimum resource cost to complete the entire
statement).

• first_rows_n: The query optimizer uses a cost-based approach and optimizes with a goal of
best response time to return the first n rows (where n = 1, 10, 100, or 1000).

• first_rows: The query optimizer uses a mix of costs and heuristics to find the best plan for
quickly returning the first few rows.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE 349

4517CH09.qxd 8/19/05 10:43 AM Page 349

■Note The first_rows setting is available for backward compatibility—Oracle recommends using the
first_rows_n setting instead.

Default value: all_rows

Parameter type: Dynamic. It can be modified by the ALTER SESSION or ALTER SYSTEM command.

OPTIMIZER_FEATURES_ENABLE

The OPTIMIZER_FEATURES_ENABLE parameter enables the database to retain the behavior of an older
Oracle software release after you upgrade it. For example, after upgrading an Oracle 8.1.7 release
database to Oracle 10.2, you can set the OPTIMIZER_FEATURES_ENABLE parameter to 8.1.7, thus retain-
ing the optimizer behavior of the Oracle 8.1.7 release.

Default value: 10.0.0

Parameter type: Dynamic. You can use the ALTER SESSION or the ALTER SYSTEM command to
make changes.

OPTIMIZER_DYNAMIC_SAMPLING

When an object doesn’t have any optimizer statistics collected, Oracle dynamically samples the data
in order to collect a quick set of statistics. You control the level of dynamic sampling by setting the
OPTIMIZER_DYNAMIC_SAMPLING parameter.

Default value: Ranges from 0 to 2, depending upon the value of the OPTIMIZER_FEATURES_ENABLE
parameter (if less than 9.0.1, 0; for 9.2.0, 1 and for 10.0.0 or higher, 2).

Parameter type: Dynamic. It can be modified by the ALTER SESSION or ALTER SYSTEM command.

QUERY_REWRITE_ENABLED

This parameter determines whether query rewriting is enabled or disabled, which is of importance
mostly when you use materialized views.

Default value: true if the OPTIMIZER_FEATURES_ENABLE parameter is set to 10.0.0 or higher; false
if it is set to 9.2.0 or lower

Parameter type: Dynamic. You can modify it with the ALTER SESSION or ALTER SYSTEM
command.

QUERY_REWRITE_INTEGRITY

The QUERY_REWRITE_INTEGRITY parameter specifies the degree to which Oracle will enforce integrity
rules during a query rewrite: enforced, trusted, or stale tolerated.

• trusted: Oracle assumes the materialized view is current and allows rewrites using relation-
ships that are not enforced by Oracle.

• enforced: This is the safest mode; Oracle doesn’t use transformations that rely on unenforced
relationships. This mode always uses fresh data, guaranteeing consistency and integrity.

• stale tolerated: Oracle will allow query rewrites using unenforced relationships.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE350

4517CH09.qxd 8/19/05 10:43 AM Page 350

Default value: enforced

Parameter type: Dynamic. You can modify it with the ALTER SESSION or ALTER SYSTEM command.

CURSOR_SHARING

This crucial initialization parameter specifies how Oracle’s SQL statements are supposed to share
cursors. The three possible values are forced, exact, and similar. You’ll learn more about setting
this parameter in Chapter 21.

Default value: exact

Parameter type: Dynamic. Both the ALTER SESSION and ALTER SYSTEM commands can be used to
change the value.

■Caution You have to be extremely careful when using the CURSOR_SHARING parameter. As you’ll learn in
Chapter 18, using the forced option will force Oracle to use bind variables, and thus will enhance your application
performance. However, there are many caveats, and the wrong option for this parameter can hurt performance.
If you’re using a stored outline, CURSOR_SHARING = similar could cause problems in your application.

CURSOR_SPACE_FOR_TIME

This parameter specifies whether shared SQL areas are retained in the library cache or deallocated
from the library cache. You can set it to true or false. Chapter 21 deals with this parameter in detail.

Default value: false

Parameter type: Static

DB_BLOCK_SIZE

The DB_BLOCK_SIZE parameter sets the standard database block size (measured in bytes, such as 4096,
which is a 4KB block size). The System tablespace and most other tablespaces use the standard
block size. You set the standard block size from 2KB to 32KB (2, 4, 8, 16, or 32) in the DB_BLOCK_SIZE
parameter. (Because the size is specified in bytes, the actual range for the DB_BLOCK_SIZE parameter
is 2,048–32,768.) You can also specify up to four nonstandard block sizes when creating tablespaces.

You have to carefully evaluate your application’s needs before you pick the correct database
block size. Whenever you need to read data from or write data to an Oracle database object, you do
so in terms of data blocks. Also, you always should make the DB_BLOCK_SIZE value a multiple of your
operating system’s block size, which you can ascertain from your UNIX or Windows system admin-
istrator.

■Tip Remember that the data block is the smallest unit in the Oracle physical database structure. When you are
querying data, the rows aren’t fetched individually; rather, the entire block in which the row resides is read into
memory in one fell swoop.

If you’re supporting data warehouse applications, it makes sense to have a very large DB_BLOCK_
SIZE—something between 8KB and 32KB. This will improve database performance when reading
huge chunks of data from disk. Large data warehouses perform more full table scans and thus per-
form more sequential data access than random access I/Os.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE 351

4517CH09.qxd 8/19/05 10:43 AM Page 351

However, if you’re dealing with a typical OLTP application, where most of your reads and writes
consist of relatively short transactions, a large DB_BLOCK_SIZE setting would be overkill and could
actually lead to inefficiency in input and output operations. Most OLTP transactions read and write
a very small number of rows per transaction, and they conduct numerous transactions with ran-
dom access I/O (index scans), so you need to have a smaller block size, somewhere from 2KB to
8KB. A large block size will hurt performance for most OLTP applications, as the database has to
read large amounts of data into memory even when it really needs very small bits of information.

Default value: 8192 (bytes)

Parameter type: Static

■Note You can’t simply change the DB_BLOCK_SIZE parameter in the init.ora file after the database is created.
The block size is more or less permanent. However, you can get around the need to re-create the whole database
by creating new tablespaces (all but the System tablespace) with the required block size by using the BLOCKSIZE
parameter, which will perform a roundabout change in the block size. Officially, the DB_BLOCK_SIZE parameter will
still be set at the original value you specified. You can then use the online redefinition feature to move tables to the
newly created tablespaces with the new block size. You can also do this using OEM.

DB_FILE_MULTIBLOCK_READ_COUNT

This parameter specifies the maximum number of blocks Oracle will read during a full table scan.
The larger the value, the more efficient your full table scans will be. The general principle is that
data warehouse operations need high multiblock read counts because of the heavy amount of
data processing involved. If you are using a 16KB block size for your database, and the DB_FILE_
MULTIBLOCK_READ_COUNT parameter is also set to 16, Oracle will read 256KB in a single I/O. Depend-
ing on the platform, Oracle supports I/Os up to 1MB.

Note that when you stripe your disks, the stripe size should be a multiple of the I/O size for
optimum performance. If you are using an OLTP application, a multiblock read count such as 8 or
16 would be ideal. Large data warehouses could go much higher than this.

Default value: Platform dependent

Parameter type: Dynamic. It is modifiable with either an ALTER SYSTEM or an ALTER SESSION
command.

SQL_TRACE

This parameter will turn the SQL trace utility on or off. You can leave this parameter at its default
setting of false (off), setting it to true (on) only when you are tuning a specific query or set of
queries. Because of the heavy overhead, you should always use this parameter at the session, not
the instance, level. Chapter 21 shows you how to use trace queries and format the trace output to
help you in tuning SQL queries.

Default value: false

Parameter type: Dynamic. It can be changed with the ALTER SYSTEM or ALTER SESSION command.

PARALLEL_MAX_SERVERS

This parameter determines the number of parallel execution processes. Oracle recommends two
parallel processes per CPU on larger systems, and four processes per CPU on smaller systems.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE352

4517CH09.qxd 8/19/05 10:43 AM Page 352

Default value: Depends on the values of the CPU_COUNT, PARALLEL_AUTOMATIC_TUNING, and
PARALLEL_ADAPTIVE_MULTI_USER parameters

Parameter type: Dynamic. It can be changed only at the system level with the ALTER SYSTEM
command.

TIMED_STATISTICS

This parameter is used to tell Oracle whether it should collect timed statistics during tracing. The
possible values are true (timed statistics are collected) and false (timed statistics are not collected).
If timed statistics are collected, they are used in some dynamic performance views. If you set the
STATISTICS_LEVEL parameter to the recommended level of TYPICAL or to AUTO, the TIMED_STATISTICS
parameter is by default set to true.

Default value: true if the STATISTICS_LEVEL parameter is set to TYPICAL or ALL; false otherwise

Parameter type: Dynamic. You can change it with the ALTER SYSTEM or ALTER SESSION command.

RESOURCE_LIMIT

The RESOURCE_LIMIT parameter determines whether Oracle will enforce the resource limits you set
in a user’s profile. You need to set this parameter to a value of true if you want to enforce resource
limits for users. A value of false disables resource-limit enforcement.

Default value: false

Parameter type: Dynamic. The ALTER SYSTEM command can be used to change the value.

WORKAREA_SIZE_POLICY

This parameter affects the sizing of SQL work areas for individual users. The two possible values are
auto and manual. If you set this parameter to manual, you also need to set all the parameters for man-
aging the PGA, such as SORT_AREA_SIZE and HASH_AREA_SIZE. If you set this parameter to auto, Oracle
will automatically manage the PGA, provided you also set the PGA_AGGREGATE_TARGET parameter.

Default value: auto (you must first set the PGA_AGGREGATE_TARGET parameter)

Parameter type: Dynamic. You can use the ALTER SYSTEM or ALTER SESSION command to change
the value.

■Note Oracle strongly recommends against setting this parameter to manual.

PLSQL_OPTIMIZE_LEVEL

The PLSQL_OPTIMIZE_LEVEL parameter specifies the optimization level that will be used to compile
PL/SQL library units. The higher you set this parameter (in a range from 0 to 2), the more effort the
compiler makes to optimize PL/SQL library units. According to Oracle, setting this parameter to 2
pays off in better execution performance, but setting this parameter to 1 will result in almost as
good a compilation with less use of compile-time resources.

Default value: 2

Parameter type: Dynamic. You can use the ALTER SYSTEM or ALTER SESSION command to change
the value.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE 353

4517CH09.qxd 8/19/05 10:43 AM Page 353

Recovery-Related Parameters
When you create a new database, you’ll need to configure several recovery-related parameters. When
an instance crash occurs, all the data on disk is safe, but the data stored in the database buffers is
wiped out instantaneously. Redo logs are on disk, so they are intact, but the redo log buffers are
wiped out. To recover successfully from such a crash, the database needs to be brought to a consis-
tent state by using Oracle’s redo logs and the undo records from the undo tablespace. The redo log
records are used to write all the committed data to disk, and the undo records are used to roll back
any uncommitted data that was stored on disk.

Recovering an instance can take a long time—and can keep the database out of commission
for an unacceptable length of time—if you don’t configure any thresholds that determine how long
an instance recovery can take. You can, for example, specify a precise time target for a complete
instance recovery, and the database will automatically adjust the frequency of the checkpoints to
make sure that there’s only a certain maximum amount of redo information to be rolled back when
instance recovery is performed.

Of course, if you set a very low recovery time target, your instance recovery will be quick, but
the database will need an excessive number of checkpoints on an ongoing basis, which will affect
performance. There’s no one magic number for this recovery time target. You have to take into con-
sideration your site’s service-level agreement and the tolerance for downtime.

The flash recovery area is an area reserved for all Oracle backup and recovery-related files, and
it contains copies of current control files and online redo logs, as well as archived redo logs, flash-
back logs, and RMAN backups. The flash recovery area is completely separate from the database
area, which is the location for the current database files (data files, control files, and online redo
logs). The flash recovery area isn’t mandatory, but Oracle strongly recommends using it to simplify
backup and recovery operations. You’ll learn more about the flash recovery area in Chapter 16.

The two parameters described next, DB_RECOVERY_FILE_DEST_SIZE and DB_RECOVERY_FILE_DEST,
are used to configure the flash recovery area.

DB_RECOVERY_FILE_DEST_SIZE

The DB_RECOVERY_FILE_DEST_SIZE parameter specifies (in bytes) the size of the flash recovery area.

Default value: None

Parameter type: Dynamic. The ALTER SYSTEM command can be used to change the value.

DB_RECOVERY_FILE_DEST

The DB_RECOVERY_FILE_DEST parameter specifies the default location for the flash recovery area. If
you don’t specify DB_CREATE_ONLINE_LOG_DEST_n when using OMF files, Oracle uses the location you
specify for the DB_RECOVERY_FILE_DEST parameter as the default location for online redo log files and
control files.

Default value: None

Parameter type: Dynamic. The ALTER SYSTEM command can be used to change the value.

■Note You must set the DB_RECOVERY_FILE_DEST_SIZE parameter in order to set the DB_RECOVERY_FILE_
DEST parameter. If you want to use the Flashback Database feature (explained in Chapter 16), you must also use
the DB_FLASHBACK_RETENTION_TARGET parameter.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE354

4517CH09.qxd 8/19/05 10:43 AM Page 354

DB_FLASHBACK_RETENTION_TARGET

The DB_FLASHBACK_RETENTION_TARGET parameter specifies how far back (in minutes) you can flash
back your database. The Flashback Database feature relies on flashback logs, and the DB_FLASHBACK_
RETENTION_TARGET parameter dictates the length of time the flashback logs are retained. How far
back you can flash back your database depends on how much flashback data Oracle has kept in the
flash recovery area.

Default value: 1440 minutes

Parameter type: Dynamic. The ALTER SYSTEM command can be used to change the value.

RESUMABLE_TIMEOUT

The RESUMABLE_TIMEOUT parameter enables or disables the Resumable Space Allocation feature and
specifies resumable timeout at the system level. For example, if you set RESUMABLE_TIMEOUT=3600,
the database will suspend any resumable space type operation and wait one hour (3,600 seconds)
before erroring out. Chapter 6 discusses the resumable space allocation feature in detail.

Default value: 0

Parameter type: Dynamic. You can use the ALTER SYSTEM or ALTER SESSION command to change
this parameter.

Data-Block Verification Parameters
The Oracle database is equipped with certain features that can automatically check your data
blocks on the data files for consistency and data corruption. Block-checking involves going through
the data on the block and checking for consistency. Block-checking prevents memory and data cor-
ruption, but costs from 1 to 10 percent overhead, so use these parameters with caution during peak
production periods.

DB_BLOCK_CHECKSUM

Block checksums enable the detection of corruption caused by disks or the I/O system. Before
Oracle writes a data block to disk, it calculates a checksum for that block and stores the value in the
block itself. When it subsequently reads data from this block, it computes the checksum again and
compares its value to the one it computed when writing to the block. If the checksums are different,
Oracle notifies you that the data block is corrupted. You may have to perform a media recovery in
this case, as explained in Chapter 16.

Oracle recommends that you turn block checksumming on in your database to catch corrup-
tions in data blocks as well as redo log files. You can set the DB_BLOCK_CHECKSUM parameter to turn on
the computing of checksums. You can use either the FULL or TYPICAL mode, or set it to OFF. In the
FULL mode, Oracle will trap any in-memory corruption before it is recorded on the disk. However,
Oracle recommends that you set this parameter to the alternative value of TYPICAL, since it involves
a lower overhead (1 to 2 percent, instead of 4 to 5 percent).

Default value: OFF

Parameter type: Dynamic. The ALTER SYSTEM command can be used to change the value.

DB_BLOCK_CHECKING

Using the DB_BLOCK_CHECKING parameter, you can set the database to check for corrupted data
blocks. You can set this parameter to low, medium, or full, with each level involving a progressively

CHAPTER 9 ■ CREATING AN ORACLE DATABASE 355

4517CH09.qxd 8/19/05 10:43 AM Page 355

higher amount of block checking (or you can set it to off to turn it off). When you enable block-
checking, Oracle automatically checks a block for consistency each time that block is modified. If a
block isn’t consistent, Oracle will mark it as corrupt and create a trace file. Depending on your work-
load, there is a 1 to 10 percent overhead when you turn block-checking on.

Oracle recommends that you turn block-checking on. Note that Oracle checks the blocks in the
System tablespace in all settings.

Default value: off

Parameter type: Dynamic. You can use the ALTER SYSTEM or ALTER SESSION command to change
this parameter.

LOG_CHECKPOINTS_TO_ALERT
By setting the LOG_CHECKPOINTS_TO_ALERT parameter to true, you ensure that the database logs all
checkpointing activity to the alert log, thus indicating whether the checkpointing is efficient. If the
alert log indicates a wait for checkpointing, you can increase the size of your redo logs.

Default value: false

Parameter type: Dynamic. You can use the ALTER SYSTEM statement to change this setting.

Security-Related Parameters
The following initialization parameters concern database security, including password authenti-
cation.

OS_AUTHENT_PREFIX

Oracle uses the value of the OS_AUTHENT_PREFIX parameter as a prefix to the operating
system–authenticated usernames.

Default value: OPS$

Parameter type: Static

■Note The default value of OPS$ is well known to Oracle DBAs. However, Oracle suggests that you set the prefix
value to the null string '''' (OS_AUTHENT_PREFIX =""), which implies that you mustn’t add any prefix to operating
system–account names.

REMOTE_LOGIN_PASSWORDFILE

The REMOTE_LOGIN_PASSWORDFILE initialization parameter specifies whether Oracle checks for a pass-
word file for authentication purposes, and how many databases can use the password file. If you set
the value to NONE, Oracle ignores any password file, and all privileged users must be authenticated
by the operating system. If you use the SHARED value, Oracle will look for a password file to authenti-
cate users, one or more databases can share the same password file, and it can contain names other
than SYS. Chapter 11 shows how to create a password file.

Default value: SHARED

Parameter type: Static

CHAPTER 9 ■ CREATING AN ORACLE DATABASE356

4517CH09.qxd 8/19/05 10:43 AM Page 356

■Tip Always ensure that the REMOTE_LOGIN_PASSWORDFILE parameter is set to SHARED. Otherwise, you’ll be
exposing the database to a major security weakness.

Undocumented Initialization Parameters
In addition to the initialization parameters listed in this chapter, Oracle has several undocumented
initialization parameters. These parameters are not supposed to be altered in any way by regular
users, and Oracle will not help you troubleshoot several kinds of problems that may occur if you use
these undocumented and unsupported parameters. Once you gain sufficient experience, though,
you will be able to make good use of some of these parameters.

Listing 9-1 shows how to query for the list of undocumented initialization parameters.

Listing 9-1. Query to List the Undocumented Oracle Parameters

SQL> SELECT
a.ksppinm parameter,
a.ksppdesc description,
b.ksppstvl session_value,
c.ksppstvl instance_value
FROM x$ksppi a, x$ksppcv b, x$ksppsv c
WHERE
a.indx = b.indx
AND a.indx = c.indx
AND SUBSTR (a.ksppinm,1,1) = '_'
ORDER BY a.ksppinm;

This query produced a list of 911 undocumented parameters for the Oracle Database 10g
release.

Viewing the Current Initialization Parameter Values
How do you know what values the numerous initialization parameters are currently set to for your
database? The following sections describe several ways.

Reading the init.ora File (or the SPFILE)
You can always use a file editor such as Windows Notepad to examine init.ora files, not only to view
the settings for initialization parameters, but also (at your own risk) to change their values. However,
there is a major drawback to doing this: you cannot see the default values of all the initialization
parameters. Remember that there are over 260 initialization parameters in Oracle Database 10g
(10.2.0.0.0.) Release 2, and you will probably not set the values of more than a quarter of these
parameters explicitly by using your init.ora file.

The V$PARAMETER View
A good and quick way to find out the initialization settings for your database is to query the
V$PARAMETER view. You can run the following query to find out the values of all the parameters:

SQL> SELECT name, value, isdefault FROM v$parameter;

The isdefault column has a value of true if the parameter is the default value and yes if you
actually set it to something other than the default value.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE 357

4517CH09.qxd 8/19/05 10:43 AM Page 357

When I ran this command on my NT server, the output showed about 250 parameters. If you
want to see only one or a set of related parameters and their values, you can add a WHERE clause to
the previous SQL query.

The SHOW PARAMETER Command
Even though it’s easy to query the V$PARAMETER view, there’s a simpler means of querying the
database about your initialization parameters. You can just type SHOW PARAMETER and you’ll see all
the initialization parameters with their values. You can also limit the vast amount of output by pass-
ing a keyword to SHOW PARAMETER. For example, the keywords LOCKS, FILES, LOG, and many others can
be passed along to the SHOW PARAMETER command to get the values of a related set of parameters.
(Note that the resulting list may not necessarily be a set of related parameters, as the command just
uses a pattern search of the NAME column to pull the values from the V$PARAMETER table.)

Listing 9-2 shows an example of the use of the SHOW PARAMETER command. Here, the output
shows all initialization parameters that contain the string “lock”.

Listing 9-2. Using the SHOW PARAMETER Command

SQL> SHOW PARAMETER LOCK
NAME TYPE VALUE
------------------------------ ------- --------
db_block_buffers integer 0
db_block_checking boolean FALSE
db_block_checksum boolean TRUE
db_block_size integer 8192
db_file_multiblock_read_count integer 8
ddl_wait_for_locks boolean FALSE
distributed_lock_timeout integer 60
dml_locks integer 400
gc_files_to_locks string
lock_name_space string
lock_sga boolean FALSE
SQL>

Creating a New Database
As I mentioned at the beginning of the chapter, you have several ways to create an Oracle database.
One way is to have Oracle create a database for you as part of the server software installation. You
simply choose the installation option to create a new database, and Oracle will lead you through the
necessary steps to configure a database. Alternatively, you can use the DBCA to create a new database.

In this section, I show you how to create a new database from scratch, using individual data-
base creation statements. Of course, if you are familiar with the database creation process, you don’t
have to run these SQL statements one by one—just create a script with all the necessary statements,
and simply execute the script from SQL*Plus.

Setting OS Variables
You can use the SQL*Plus interface to create the database, either directly from a workstation or
through a terminal connected to the server where you want to create the database. Before you log
into the SQL*Plus session, however, you will need to set some environment variables at the operat-
ing system level.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE358

4517CH09.qxd 8/19/05 10:43 AM Page 358

First, make sure ORACLE_HOME is set for the session you log into. The ORACLE_HOME environment
variable in Oracle Database 10g databases is in the following format:

$ORACLE_BASE/product/10.2.0/db_1

You can thus set your ORACLE_HOME as in the following example:

$ export ORACLE_HOME=/u01/app/oracle/product/10.2.0/db_1

Second, set the Oracle system identifier (ORACLE_SID) for your database to uniquely identify
your database. This value will be the same as your DB_NAME initialization parameter value (which in
this example is nina).

$ export ORACLE_SID=nina

Finally, make sure you set the LD_LIBRARY_PATH variable as shown here:

$ export LD_LIBRARY_PATH=$ORACLE_HOME/lib

Ensuring You Have the Privileges to Create Databases
Every Oracle database has a set of default administrative users to manage the database or to moni-
tor various components of the database. Of these default users, two are special because their
accounts can be used to perform most of the database administrative tasks. They are the SYS and
SYSTEM accounts.

The default password for SYS is change_on_install and the password for the SYSTEM account is
manager. You can specify passwords for these two critical accounts as part of your database cre-
ation process, as you’ll see shortly. In addition to the two administrative user accounts, most types
of Oracle databases come with several other default accounts, usually with default passwords. (See
the “Changing the Passwords for the Default Users” section later in this chapter to learn how to
ensure that you change all the default passwords.) All users except SYS need to be explicitly granted
high-level privileges before they can perform special administrative functions, such as creating
databases and starting, stopping, and backing them up. The SYSDBA privilege will allow a user to
create databases.

The interesting thing about the SYSDBA privilege is that you don’t really need to have the data-
base open or even have a database before you can invoke it. Before you create the database, you’ll
be creating the instance (SGA + Oracle processes), and the SYSDBA privilege is in effect even at the
instance level. You’ll be connecting to the database as the super user SYS with the SYSDBA privilege,
as shown here:

SQL> CONNECT sys AS sysdba

If the system administrator sets the oracle user to be part of a special group called DBA in the
/etc/group file, you can also use the following command to log in as user SYS with the SYSDBA
privilege:

SQL> CONNECT / AS sysdba

Creating the init.ora File
Before you can start the Oracle instance, you first must create the initialization parameter file
(init.ora). Once you create the instance, you can create an SPFILE from your init.ora file. As you will
recall, an Oracle instance consists of certain Oracle background processes and Oracle memory.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE 359

4517CH09.qxd 8/19/05 10:43 AM Page 359

Once you have the instance running, you can create the database proper. As most of the parameters
in the initialization file are easily modifiable later on, the goal at this point isn’t to be precise or
exhaustive, but rather to get the instance up and running quickly.

The Oracle instance I created as an example for the database nina (initnina.ora), shown in List-
ing 9-3, contains the standard parameters to help support an OLTP application. Thus, you won’t see
data warehouse–oriented parameters in this initialization file. You’ll notice that in several cases, I
explicitly state the default values for certain parameters—this is purely for pedagogical reasons.

Listing 9-3. The Initialization Parameter File for the Example Database nina

first, specify the name of the databasedb_name=nina
#for an ASM instance, use instance_type=ASM. Following is the default
instance_type=RDBMS
you can set the db_name to your organization name as well
db_domain=world
following two parameters set the max number of open files and processes
db_files=1000
processes=600
following is the default block size
db_block_size=8192
following is the default value for the statistics_level parameter
statistics_level=typical
following is the default audit_trail value
audit_trail=none
following three lines set the dump directory destinations
background_dump_dest='/u01/app/oracle/admin/nina/'
user_dump_dest='/u01/app/oracle/admin/nina/'
core_dump_dest='/u01/app/oracle/admin/nina/'
following parameter sets the database compatibility level
compatible=10.2.1.0
two control files are specified below
control_files=('/u01/app/oracle/oradata/cont1.ctl',
'/u01/app/oracle/oradata/cont2.ctl')
cursor sharing is set to force, to make the database use bind variables
cursor_sharing=force
following two parameters set the SGA and the PGA targets.
sga_target=300M
pga_aggregate_target=2000M
the multiblock read count is 16
db_file_multiblock_read_count=16
the following will ensure that flashback logs
are retained for 2 hours
db_flashback_retention_target=7200
Following two parameters configure the optional flash recovery area
db_recovery_file_dest='/u02/app/oracle/flash_recovery_area'
db_recovery_file_dest_size=1000M
Following two parameters control the archiving of the redo
log files. For now, I am not archiving the logs, but these two parameters
enable me to turn it on later.
log_archive_dest_1='LOCATION=/u02/app/oracle/arch/'
log_archive_format='log%t_%s_%r.arc'
following is the default optimizer mode
optimizer_mode=all_rows
the following line makes it necessary to use a password file to connect as SYSDBA
remote_login_passwordfile=none
#Following parameter allows certain operations to resume after a suspension

CHAPTER 9 ■ CREATING AN ORACLE DATABASE360

4517CH09.qxd 8/19/05 10:43 AM Page 360

resumbable_timeout=1800
the following two parameters pertain to automatic undo management
undo_management=auto
undo_retention=7200
The following is optional, since I'm using only a single undo tablespace
undo_tablespace=undotbs_01

■Tip The default value for the STATISTICS_LEVEL initialization parameter is TYPICAL. You need to use this set-
ting if you want to use several of Oracle’s features, including the Automatic Shared Memory Management feature.

Once you configure your initialization file, you are ready to create the instance. Make sure you
save the initnina.ora file in the $ORACLE_HOME/dbs directory, which is the default location for an
init.ora file or an SPFILE on UNIX/Linux systems (on a Windows system, the default location is
$ORACLE_HOME\database). This way, Oracle will always find it without your having to specify the
complete path of the location.

Starting the Oracle Instance
To create the database, first you must have the instance up and running. Remember, an instance
can exist without any database attached to it, and the active instance makes it possible for you to
create the database. Follow these steps:

1. Make sure you have specified the correct ORACLE_SID and ORACLE_HOME locations, as
explained earlier in the “Setting OS Variables” section in this chapter.

2. Log in to the database through the SQL*Plus interface, as shown here:

oracle@localhostdbs]$ sqlplus /nolog
SQL*Plus: Release 10.2.0.0- Beta on Sun Feb 20 09:36:17 2005
Copyright (c) 1982, 2004, Oracle. All rights reserved.
SQL> CONNECT sys AS sysdba
Enter password:
Connected to an idle instance.
SQL>

3. Start the instance in the NOMOUNT mode, since you don’t have any control files to mount yet.
If you use the plain STARTUP command, Oracle will look for the control files, but you haven’t
created them yet! That will come during the creation of the database itself.

If you saved your init.ora file in the default location ($ORACLE_HOME/dbs), and you cor-
rectly specified the ORACLE_SID environment variable (nina) before you started the instance,
you don’t have to specify the init.ora file explicitly.

SQL> STARTUP NOMOUNT
ORACLE instance started.

Total System Global Area 314572800 bytes
Fixed Size 1236756 bytes
Variable Size 99164396 bytes
Database Buffers 213909504 bytes
Redo Buffers 262144 bytes
SQL>

CHAPTER 9 ■ CREATING AN ORACLE DATABASE 361

4517CH09.qxd 8/19/05 10:43 AM Page 361

If you didn’t save your init.ora file in the default location ($ORACLE_HOME/dbs), you must
specify the complete path and the name of the file:

SQL> STARTUP NOMOUNT PFILE='/u01/app/oracle/product/10.2.0/db_1/dbs/initnina.ora'

■Tip It’s common to get a couple of ORA-01078 errors (failure to process system parameters) at this point. Just
correct the error shown in the message in the init.ora file, and you should have no problem starting your instance.

4. The instance will start using the parameters specified in the initnina.ora file. You can see
that all the background processes for your database instance have been started by using the
ps -ef command, as shown here:

[oracle@localhost]$ ps -ef | grep nina

oracle 14862 1 0 10:20 ? 00:00:01 ora_pmon_nina
oracle 14862 1 0 10:20 ? 00:00:01 ora_psp0_nina
oracle 14862 1 0 10:20 ? 00:00:01 ora_mman_nina
oracle 14862 1 0 10:20 ? 00:00:01 ora_dbw0_nina
oracle 14862 1 0 10:20 ? 00:00:01 ora_lgwr_nina
oracle 14862 1 0 10:20 ? 00:00:01 ora_ckpt_nina
oracle 14862 1 0 10:20 ? 00:00:01 ora_smon_nina
oracle 14862 1 0 10:20 ? 00:00:01 ora_reco_nina
oracle 14862 1 0 10:20 ? 00:00:01 ora_mmon_nina
oracle 14862 1 0 10:20 ? 00:00:01 ora_mmnl_nina
[oracle@local]$

5. You can execute a simple query at this stage to verify the version of the database, as shown
here:

SQL> SELECT * FROM v$version;
BANNER
--
Oracle Database 10g Enterprise Edition Release 10.2.0.0.0 - Beta
PL/SQL Release 10.2.0.0.0 - Beta
CORE 10.2.0.0.0 - Beta
TNS for Linux: Version 10.2.0.0.0 - Beta
NLSRTL Version 10.2.0.0.0 - Beta
SQL>

6. Go to the location of the background dump directory for the database nina, which is the
/u01/app/oracle/admin/nina/bdump directory, and look in the alert_nina.log file. As you
can see in the example in Listing 9-4, Oracle will write all the startup and shutdown infor-
mation to the alert log, as well as any errors during instance creation and routine database
operation. The alert log also lists all the nondefault initialization parameters that you had
specified in your init.ora file. Note the starting up of all the Oracle processes: database
writer (DBWn), process monitor (PMON), log writer (LGWR), checkpoint (CKPT), system
monitor (SMON), and recoverer (RECO). The startup shown in Listing 9-4 is clean so far, as
there are no errors either on the screen or in the alert log file.

Listing 9-4. The Instance Creation Process in the Alert Log

Sun Feb 20 11:45:01 2005
Starting ORACLE instance (normal)
LICENSE_MAX_SESSION = 0
LICENSE_SESSIONS_WARNING = 0

CHAPTER 9 ■ CREATING AN ORACLE DATABASE362

4517CH09.qxd 8/19/05 10:43 AM Page 362

Picked latch-free SCN scheme 2
Autotune of undo retention is turned on.
IMODE=BR
ILAT =73
LICENSE_MAX_USERS = 0
SYS auditing is disabled
Starting up ORACLE RDBMS Version: 10.2.0.0.0.
System parameters with non-default values:
processes = 600
resource_limit = TRUE
instance_type = RDBMS
sga_target = 314572800
control_files = '/u01/app/oracle/oradata/nina/control01.ctl',

'/u01/app/oracle/oradata/nina/control02.ctl'
db_block_size = 8192
compatible = 10.2.0.0
log_archive_dest_1 = LOCATION=/u02/app/oracle/arch/
log_archive_format = log%t_%s_%r.arc
db_files = 1000
db_file_multiblock_read_count= 16
db_recovery_file_dest = /u02/app/oracle/flash_recovery_area
db_recovery_file_dest_size= 1048576000
fast_start_mttr_target = 300
db_flashback_retention_target = 720
undo_management = AUTO
undo_tablespace = undotbs_01
undo_retention = 7200
remote_login_passwordfile= NONE
db_domain = world
cursor_sharing = force
background_dump_dest = /u01/app/oracle/admin/nina/bdump
user_dump_dest = /u01/app/oracle/admin/nina/udump
core_dump_dest = /u01/app/oracle/admin/nina/cdump
audit_trail = NONE
parallel_max_servers = 5
db_name = nina
optimizer_mode = all_rows
query_rewrite_integrity = Trusted
pga_aggregate_target = 1048576000
PMON started with pid=2, OS id=16807
PSPO started with pid=2, OS id=16809
MMAN started with pid=4, OS id=16811
DBW0 started with pid=5, OS id=16813
LGWR started with pid=6, OS id=16815
CKPT started with pid=7, OS id=16817
SMON started with pid=8, OS id=16819
RECO started with pid=9, OS id=16821
MMON started with pid=10, OS id=16823
MMNL started with pid=11, OS id=16825

At this point, you have a running Oracle instance, which consists of the Oracle processes and
the SGA memory that you allocated for it. You don’t have a database yet; you’ll create one from
scratch in the next section.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE 363

4517CH09.qxd 8/19/05 10:43 AM Page 363

Creating the Database
The simplest database you can create will have a System tablespace to hold the data dictionary, a
Sysaux tablespace, a pair of control files and redo log files, a default temporary tablespace, and an
undo tablespace. Once you have this database going, you can add any number of new tablespaces
to it.

Let’s create a bare-bones Oracle Database 10g database now. You can create your new database
either by entering each line of the database-creation statement individually or by creating a database-
creation script with the entire statement, as shown in Listing 9-5, and executing the script.

Listing 9-5. The CREATE DATABASE Script

SQL> create database nina
2 user sys identified by sys_password
3 user system identified by system_password
4 maxinstances 1
5 maxloghistory 1
6 maxlogfiles 5
7 maxlogmembers 5
8 character set US7ASCII
9 national character set AL16UTF16
10 datafile '/u02/app/oracle/oradata/nina/system01.dbf' size 500M
11 extent management LOCAL
12 SYSAUX datafile '/u02/app/oracle/oradata/nina/sysaux01.dbf' size 500M
13 DEFAULT TEMPORARY tablespace temp01
14 tempfile '/u02/app/oracle/oradata/nina/temp01_01.dbf' size 100M
15 UNDO tablespace undotbs_01
16 datafile '/u02/app/oracle/oradata/nina/undotbs01.dbf' size 200M
17 DEFAULT tablespace users
18 datafile '/u02/app/oracle/oradata/nina/users01.dbf' size 100M
19 LOGFILE group 1
20 ('/u02/app/oracle/oradata/nina/redo01.log') size 100M,
21 group 2
22 *('/u01/app/oracle/oradata/nina/redo02.log') size 100M;
Database created.
SQL>

Here’s a quick review of the CREATE DATABASE statement:

• Line 1 issues the CREATE DATABASE command to Oracle. This command prompts the creation
of two control files, and their locations are read from the initnina.ora parameter file. If con-
trol files with the same names already exist at the time of database creation (from a prior
failed installation), you must specify the CONTROLFILE REUSE clause in the CREATE DATABASE
statement.

• Lines 2 and 3 show how you can specify the passwords for the two key users SYS and SYSTEM.
These are optional clauses, and if you omit them, users SYS and SYSTEM are assigned the
default passwords change_on_install and manager, respectively. Since these are well-known
default passwords, Oracle advises you to use these clauses to change the default passwords.

• Lines 4 through 7 specify the maximum settings for log files and instances. These are stan-
dard settings, and you can use these same numbers for most of the databases you’ll be
creating.

• Lines 8 and 9 specify the character sets used by the database. Just use these character sets for
all the databases you’ll be creating, unless you have special needs based on languages other
than English.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE364

4517CH09.qxd 8/19/05 10:43 AM Page 364

• Line 10 creates the System tablespace with one data file of 500MB. The data dictionary is
created within this System tablespace. One system rollback segment is also automatically
created. Line 11 specifies that the System tablespace should be locally managed, rather than
dictionary managed.

• Line 12 creates the new default tablespace Sysaux. You must create the Sysaux tablespace, or
your database creation statement will fail.

• Lines 13 and 14 create the default temporary tablespace TEMP01 with one tempfile of
100MB. All users have to be allotted a temporary tablespace when they are initially created
in the database. If you don’t do so, the users will be allocated to the default temporary
tablespace, TEMP01, automatically. Notice how line 14 specifies that the file used for the
temporary tablespace is a temp file, not a regular data file. You can’t create the temporary
tablespace with a normal data file specification.

• Lines 15 and 16 create the undo tablespace UNDOTBS_01 with one data file of 200MB.
Line 16 specifies the size and location of the data file for the undo tablespace.

• Lines 17 and 18 create the new default permanent tablespace for the database. Any users that
aren’t explicitly assigned a permanent tablespace will automatically be allocated this table-
space as their default tablespace, instead of the System tablespace.

• Lines 19 through 22 create the minimum pair of online redo logs required by Oracle, with
one data file for each log file.

Oracle automatically mounts and opens the database after it creates all the files described
previously. As you’ll see in the last part of this chapter, mounting a database involves reading the
control files, and opening the database enables all users to access the various parts of the new
database.

Take a peek at the alert log at this point to see what Oracle actually did when the CREATE
DATABASE command was issued. Listing 9-6 shows the relevant portion from the alert log, which
is located in the directory named bdump, in the location specified by the BACKGROUND_DUMP_DIR
parameter, /u01/app/oracle/admin/nina/.

Listing 9-6. The Database Creation Process in the Alert Log

Sun Feb 20 12:25:19 2005
create database nina
user sys identified by *user system identified by *
maxinstances 1
maxloghistory 1
maxlogfiles 5
maxlogmembers 5
character set US7ASCII
national character set AL16UTF16
datafile '/u02/app/oracle/oradata/nina/system01.dbf'
size 500M extent management LOCAL
SYSAUX datafile '/u02/app/oracle/oradata/nina/sysaux01.dbf' size 400M
DEFAULT TEMPORARY tablespace temp01

tempfile '/u01/app/oracle/oradata/nina/temp01.dbf' size 10M
UNDO tablespace undotbs_01

datafile '/u02/app/oracle/oradata/nina/undotbs01.dbf' size 200M
DEFAULT tablespace users datafile

'/u02/app/oracle/oradata/nina/users01.dbf' size 100M
LOGFILE group 1

('/u02/app/oracle/oradata/nina/redo01.log') size 100M,
group 2 ('/u02/app/oracle/oradata/nina/redo02.log') size 100M

CHAPTER 9 ■ CREATING AN ORACLE DATABASE 365

4517CH09.qxd 8/19/05 10:43 AM Page 365

Sun Feb 20 12:29:49 2005
Database mounted in exclusive Mode
Sun Feb 20 12:29:52 2005
Successful mount of redo thread 1, with mount id 906187389
Assigning activation ID 906187389 (0x3603527d)
Thread 1 opened at log sequence 1Current log# 1 seq# 1 mem# 0:
/u02/app/oracle/oradata/nina/redo01.log
Successful open of redo thread 1
Sun Feb 20 12:29:52 2005
SMON: enabling cache recovery
Sun Feb 20 12:29:52 2005
create tablespace SYSTEM datafile '/u01/app/oracle/oradata/nina/system01.dbf'
size 500M
EXTENT MANAGEMENT LOCAL online

Sun Feb 20 12:30:01 2005
Completed: create tablespace SYSTEM datafile
'/u01/app/oracle/oradata/nina/system01.dbf' size 500M
EXTENT MANAGEMENT LOCAL online

Sun Feb 20 12:30:01 2005
create rollback segment SYSTEM tablespace SYSTEM
storage (initial 50K next 50K)

Completed: create rollback segment SYSTEM tablespace SYSTEM
Sun Feb 20 12:30:13 2005
CREATE UNDO TABLESPACE UNDOTBS_01 DATAFILE
'/u02/app/oracle/oradata/nina/undotbs01.dbf'

size 200M
Sun Feb 20 12:30:16 2005
Successfully onlined Undo Tablespace 1.
Completed: CREATE UNDO TABLESPACE UNDOTBS_01 DATAFILE
'/u01/. . .Sun Feb 20 12:30:16 2005
create tablespace SYSAUX datafile
'/u02/app/oracle/oradata/nina/sysaux01.dbf' size 400M
EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO online

Completed: create tablespace SYSAUX datafile
'/u02/app/oracle/ oradata/nina/sysaux01.dbf' size 400M
Sun Feb 20 12:30:24 2005
CREATE TEMPORARY TABLESPACE TEMP01 TEMPFILE
'/u02/app/oracle/oradata/nina/temp01.dbf' size 100M
Completed: CREATE TEMPORARY TABLESPACE TEMP01 TEMPFILE '/u01. . .
Sun Feb 20 12:30:24 2005
ALTER DATABASE DEFAULT TEMPORARY TABLESPACE TEMP01
Completed: ALTER DATABASE DEFAULT TEMPORARY TABLESPACE TEMP01
Sun Feb 20 12:30:24 2005
CREATE TABLESPACE USERS DATAFILE

'/u02/app/oracle/oradata/nina/users01.dbf'
size 100M SEGMENT SPACE MANAGEMENT MANUAL

Completed: CREATE TABLESPACE USERS DATAFILE . . .
Sun Feb 20 12:30:25 2005
ALTER DATABASE DEFAULT TABLESPACE USERS
Completed: ALTER DATABASE DEFAULT TABLESPACE USERS
Sun Feb 20 12:30:29 2005
SMON: enabling tx recovery
Sun Feb 20 12:30:32 2005

CHAPTER 9 ■ CREATING AN ORACLE DATABASE366

4517CH09.qxd 8/19/05 10:43 AM Page 366

Threshold validation cannot be done before catproc is loaded.
replication_dependency_tracking turned off (no async multimaster replication found)
Starting background process QMNC
Starting background process MMNL
QMNC started with pid=13, OS id=17966
Sun Feb 20 12:30:33 2005
Completed: create database nina

user sys identified by *user system identified by *maxinstances 1
. . .
Sun Feb 20 12:30:33 2005
db_recovery_file_dest_size of 1000 MB is 0.00% used. This is a
user-specified limit on the amount of space that will be used by this
database for recovery-related files, and does not reflect the amount of
space available in the underlying filesystem or ASM diskgroup.
Sun Feb 20 12:48:26 2005

■Tip If you want to see exactly what Oracle is doing during the database-creation process, go to the directory
where the alert log is located (bdump) and run the following command:

$ tail –f alertnina.log

Here are the key steps in the database-creation log shown in Listing 9-6:

• The database mounted statement means that Oracle has opened the control files you speci-
fied in the init.ora file.

• The successful open of redo thread 1 statement indicates that the first redo log file has suc-
cessfully been created and opened for recovery purposes.

• The Sysaux and System tablespaces are successfully created.

• The rollback segment named system is created in the System tablespace.

• The undo tablespace, UNDOTBS, is successfully created.

• The TEMP01 tablespace is created as a temporary tablespace, using a temp file instead of the
regular data files used for permanent tablespaces. After the temporary tablespace is created,
the ALTER DATABASE DEFAULT TEMPORARY TABLESPACE TEMP01 statement is executed to desig-
nate TEMP01 as the default temporary tablespace for this database.

• The USERS tablespace is created and the ALTER DATABASE DEFAULT TABLESPACE USERS state-
ment is executed to designate the USERS tablespace as the default permanent tablespace for
the new database.

• The new background processes, QMNC and MMNL, are started.

■Note When you create the flash recovery area, which is a specialized location for storing recovery-related files,
you can’t use the traditional LOG_ARCHIVE_DEST and LOG_ARCHIVE_DUPLEX_DEST parameters. You must instead
specify the LOG_ARCHIVE_DEST_n parameter.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE 367

4517CH09.qxd 8/19/05 10:43 AM Page 367

Running Oracle Scripts to Create Data Dictionary Objects
Oracle provides two important scripts, catalog.sql and catproc.sql, that you need to run right after
you create your new database:

• Catalog.sql populates the database with the data dictionary views, public synonyms, and
other objects. The data dictionary base tables, the parents of the V$ views, are the first
objects created in the Oracle database.

• Catproc.sql creates the Oracle-provided packages and other objects to support the use of
PL/SQL code in the database.

When you run these scripts, you’ll see a lot of information flow past on the screen, indicating
that the necessary database objects are being created, and so on. Just let the two scripts do what
they are supposed to do. It should take about an hour or so to run both scripts.

■Note Ignore any errors that you see during the execution of the catalog.sql and catproc.sql scripts. These
errors mostly state that the object that is to be dropped doesn’t exist. If it bothers you to see all those errors, you
can reassure yourself by running each script twice. You won’t see any errors during the second execution if you
do this.

Connect as the SYS user with SYSDBA privileges, and run the scripts as follows:

SQL> @$ORACLE_HOME/rdbms/admin/catalog.sql
. . .
Grant succeeded

PL/SQL procedure successfully completed.
SQL>
SQL> @$ORACLE_HOME/rdbms/admin/catproc.sql
. . .

PL/SQL procedure successfully completed.
SQL>

A Simple Way to Create a Database
You’ve seen how to create a database by first specifying various initialization parameters in the
parameter file to start the instance and then using the CREATE DATABASE statement to create the
database itself. Both the initialization parameter file and the CREATE DATABASE statement are pretty
detailed, if not complex. However, you don’t have to have such an elaborate initialization file and
CREATE DATABASE statement each time you create a new database. If you want to create a new Oracle
database in a hurry, you can do so by following these steps:

1. Create a new init.ora file with just one parameter, DB_NAME.

2. Start up your new instance as follows:

SQL> STARTUP NOMOUNT
ORACLE instance started.
Total System Global Area 188743680 bytes
Fixed Size 1308048 bytes

CHAPTER 9 ■ CREATING AN ORACLE DATABASE368

4517CH09.qxd 8/19/05 10:43 AM Page 368

Variable Size 116132464 bytes
Database Buffers 67108864 bytes
Redo Buffers 4194304 bytes
SQL>

3. Create your new database with the following simple statement:

SQL> CREATE DATABASE;
Database created.
SQL>

Oracle will automatically create an OMF System and a Sysaux tablespace. The database will run
with manual undo management using rollback segments. Of course, you must still run the two
scripts, catalog.sql and catproc.sql, in order to create the data dictionary and the Oracle packages.

■Tip The initialization parameter fill will contain the locations for the data files, redo log files, and control files.
Oracle will automatically create a 100MB auto-extensible system file, a pair of redo logs, control files, an undo
tablespace, and a temporary tablespace. Simple as that! Chapter 17 shows you other interesting features of OMF.

Creating Additional Tablespaces
Now you have a real Oracle database humming away on your server, although you still can’t do a
whole lot with it because it’s just a bare-bones database. You don’t have any application code, appli-
cation objects, or data stored in it. To be able to create objects and load data, you need physical
space, and you assign the space by creating a number of tablespaces.

The first thing you should do is size your planned tables, indexes, and other database objects
using standard table-sizing guidelines. This will give you an idea of how many tablespaces you’ll
need to create. You don’t want thousands of small tablespaces, because you’ll have a hard time
managing all of them. The idea is to have as many tablespaces as are necessary to group related
application tables. You can theoretically create everything in just one large tablespace, but that
defeats the purpose of having a tablespace in an Oracle database.

Once you’ve decided on the tablespaces you need, use commands like the following to create
the additional tablespaces (by default, Oracle will create a locally managed tablespace):

SQL> CREATE TABLESPACE sales01
DATAFILE '/u02/app/oracle/oradata/nina/sales01_01.dbf' size 500M
Tablespace created.

SQL>
SQL> CREATE TABLESPACE sales02

DATAFILE '/u02/app/oracle/oradata/nina/sales02_01.dbf' size 500M
Tablespace created.

SQL>

Now, verify the tablespaces in the new database, as shown in Listing 9-7.

Listing 9-7. Query Showing Various Characteristics of Tablespaces in the New Database

SQL> SELECT tablespace_name, extent_management,
allocation_type, segment_space_management
FROM dba_tablespaces;

TABLESPACE_NAME EXTENT_MAN ALLOCATIO SEGMEN
--

CHAPTER 9 ■ CREATING AN ORACLE DATABASE 369

4517CH09.qxd 8/19/05 10:43 AM Page 369

SYSTEM LOCAL SYSTEM MANUAL
UNDOTBS_01 LOCAL SYSTEM MANUAL
SYSAUX LOCAL SYSTEM AUTO
TEMP01 LOCAL UNIFORM MANUAL
USERS LOCAL SYSTEM MANUAL
SALES01 LOCAL SYSTEM AUTO
SALES02 LOCAL SYSTEM AUTO
7 rows selected.
SQL>

The query shows a total of seven tablespaces, five of which were created during the database-
creation process (System, Sysaux, undo, temporary, and the default permanent tablespace). The
other two are the newly created application tablespaces, sales01 and sales02.

STARTING OEM DATABASE CONTROL AND ISQL*PLUS

In Oracle Database 10g, Oracle Enterprise Manager (OEM) comes in two versions: Grid Control and Database Con-
trol. You have to install the OEM Grid Control software separately and use it along with agents on remote servers to
manage your entire system. Database Control comes with the Oracle Database 10g server software, and no special
installation is necessary.

If you create your new database using the DBCA, Oracle automatically starts up the Database Control service.
If you manually create the database, you must run the following command to start up the dbconsole for the Enter-
prise Manager:

$ emctl start dbconsole

Once you start up the dbconsole process, you can access OEM Database Control by opening your web
browser and entering the following URL:

http://hostname:portnumber/em

In the URL, hostname is your computer name or address, and portnumber is the Database Control HTTP port
number. The default port is 1158 on my Red Hat Linux server, and you can look up port values by viewing the
portlist.ini file, located in the $ORACLE_HOME/install/portlist directory.

Starting iSQL*Plus is similar to starting Database Control. If you use the DBCA to create a new database,
the iSQL*Plus process is started automatically for you. If you create the database manually, you need to start the
iSQL*Plus process by the using the following command:

$ isqlplusctl start

Once the iSQL*Plus process starts, you can use the web-based iSQL*Plus interface by going to the following
URL:

http://hostname:portnumber/isqlplus/

Again, hostname is your computer name or address, and portnumber is the port used by the isqlplus service
(the default port number for isqlplus on my server is 5560). You can confirm the port number by checking the
portlist.ini file mentioned previously.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE370

4517CH09.qxd 8/19/05 10:43 AM Page 370

Changing the Passwords for the Default Users
One of the first tasks to perform after you create a new database is to change the passwords for all
the default users. The names and number of these default users could differ among databases. For
example, if you choose to let Oracle create your database using the Oracle installer, you can pick a
database customized for an OLTP, DSS, or hybrid database. Each of these databases has a different
group of specialized default users associated with it. Nevertheless, all types of databases will have at
least a handful of common default users.

The following are some of the common default users in a new Oracle database:

SQL> SELECT username FROM dba_users;
USERNAME

DBSNMP
SYSTEM
SYS
OUTLN
. . .
SQL>

You don’t have to worry about the SYS and SYSTEM passwords, as you’ve already changed
them during the database-creation process. The OUTLN user account is used to provide stored out-
lines for SQL queries, and the DBSNMP account is for the Oracle Intelligent Agent. There may be
other users created in your database, depending on the type of database you create and the options
you choose for your database. The default password for each of these accounts is the same as the
username. Change these passwords immediately, as they represent a potential security problem.
For each of the default users, you must modify the default passwords, as shown in the following
examples:

SQL> ALTER USER outln IDENTIFIED BY 'new_password';
SQL> ALTER USER dbsnmp IDENTIFIED BY 'new_password';

■Tip Most default accounts (other than SYS, SYSTEM, DBSNMP, and SYSMAN) are initially locked with their pass-
words expired. You need to unlock and reset the passwords for these accounts, using the ALTER USER statement.
Chapter 11 details how to unlock user passwords.

Changing the Archive Logging Mode
You can configure a database to run in noarchivelog mode or in archivelog mode. In noarchivelog
mode, Oracle won’t archive or save the redo logs it fills up. Instead, it overwrites them when it needs
to write to a new log file. In archivelog mode, Oracle ensures that it first saves the filled-up redo log
file before permitting it to be overwritten.

The distinction between archivelog mode and noarchivelog mode is extremely important. If
you archive all the filled redo logs, you’ll have a complete record of the changes made to the data-
base since the last backup. In the event that you lose a disk, for example, you can use your backups
of the database along with the archived redo logs to recover the database without losing any com-
mitted data. Chapters 15 and 16 deal with database backup and recovery in detail. Here, I’ll show
you how to alter the logging mode of a database.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE 371

4517CH09.qxd 8/19/05 10:43 AM Page 371

Before you change anything, you should confirm the archivelog mode of the database. Here is
one way of doing so:

SQL> SELECT log_mode FROM v$database;
LOG_MODE

NOARCHIVELOG
1 row selected.
SQL>

The other method is to use the ARCHIVE LOG LIST command:

SQL> ARCHIVE LOG LIST
Database log mode No Archive Mode
Automatic archival Disabled
Archive destination /u02/app/oracle/oradata/arch/
Oldest online log sequence 3
Current log sequence 4
SQL>

This command shows the archive log destination (/u02/app/oracle/arch) and confirms that
the database is running in noarchivelog mode (No Archive Mode). Automatic archival is disabled
as well.

Now that you’ve verified that your database is indeed running in the noarchivelog mode, let’s
see what you need to do to turn archiving on in your new database.

First, make sure that the archivelog-related parameters in your init.ora file (or SPFILE) are set.
In my init.ora file, I add (or uncomment) the following parameters:

log_archive_dest_n = 'LOCATION=/u02/app/oracle/oradata/nina/arch'
log_archive_format = 'log%t_%s_%r.arc'

Second, you need to shut down the database so it can use the new archivelog-related informa-
tion, which wasn’t in the init.ora file or was commented out initially. Note that only the LOG_
ARCHIVE_DEST_n parameter is a dynamically modifiable parameter. The other archive log–related
parameter, LOG_ARCHIVE_FORMAT, is static, meaning you can’t get use the ALTER SYSTEM command to
change the archive logging mode of your database; you have to bounce your database. However,
you have a certain amount of room to maneuver around this limitation. You don’t really have to set
the static parameter for archiving to begin. The LOG_ARCHIVE_FORMAT variable just sets the format for
the way your archived log files are named, and if you don’t specify a value, they will take Oracle’s
default archive-log naming convention.

Here’s the database shutdown command:

SQL> SHUTDOWN IMMEDIATE
Database closed.
Database dismounted.
ORACLE instance shut down.
SQL>

Third, start the database in mount mode only, by using the following command:

SQL> STARTUP MOUNT

Next, use the following command to turn archive logging on:

SQL> ALTER DATABASE ARCHIVELOG
Database altered.
SQL>

Finally, open the database. Your database will now run in archivelog mode.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE372

4517CH09.qxd 8/19/05 10:43 AM Page 372

SQL> ALTER DATABASE OPEN
Database altered.
SQL>

You can confirm that the database is running in archivelog mode by using the following com-
mand. The results show that the database is in the archive mode and that automatic archival is
enabled.

SQL> ARCHIVE LOG LIST
Database log mode Archive Mode
Automatic archival Enabled
Archive destination /u02/app/oracle/oradata/nina/arch/
Oldest online log sequence 3
Next log sequence to archive 4
Current log sequence 4
SQL>

If you decide to turn off archiving for some reason, you can do so by using the ALTER DATABASE
NOARCHIVELOG command, as shown in the following extract, after first starting up with the STARTUP
MOUNT command:

SQL> ALTER DATABASE NOARCHIVELOG;
Database altered.
SQL> archive log list
Database log mode No Archive Mode
Automatic archival Disabled
Archive destination /u02/app/oracle/oradata/nina/arch/
Oldest online log sequence 47
Current log sequence 48
SQL>

■Note Starting with Oracle Database 10g Release 10.1, Oracle has deprecated the LOG_ARCHIVE_START
parameter. When you place the database in the archivelog mode, Oracle automatically starts archiving the
redo logs.

Running the pupbld.sql File
You may occasionally see errors like the following when new users you have created try accessing
the database through SQL*Plus:

Error accessing PRODUCT_USER_PROFILE
Warning: Product user profile information not loaded!
You may need to run PUPBLD.SQL as SYSTEM

The product_user_profile table is a table Oracle maintains to control access to the database
through SQL*Plus. Chapter 11 discusses how to use the product_user_profile table to restrict opera-
tions by certain users. Make sure you are logged in as the SYSTEM user and run the following script
to ensure that this table can be accessed properly by all users, so that their SQL*Plus privileges can
be checked properly:

SQL> @$ORACLE_HOME/sqlplus/admin/pupbld.sql
DROP SYNONYM PRODUCT_USER_PROFILE
. . .
Synonym created.
SQL>

CHAPTER 9 ■ CREATING AN ORACLE DATABASE 373

4517CH09.qxd 8/19/05 10:43 AM Page 373

Using a Server Parameter File (SPFILE)
The init.ora file is the initialization file where you specify values for all the parameters you intend
to use at database-creation time. But what if you need to change some of the parameters later on?
You can do so in two ways: You can change the init.ora parameters, and stop and start the database
instance. Or, if the parameter is dynamically configurable, you can change its value while the
instance is running. Although being able to dynamically reconfigure database parameters is nice,
there are inherent problems with this approach. When you restart the database, dynamically
changed parameters are gone, because they weren’t part of the init.ora file; if you intend to make
a change permanent after you dynamically change it, you have to remember to correctly modify
the init.ora file so those changes will become permanent the next time the database reads the file
when it’s restarted. Often, DBAs forget to perform this manual chore.

The server parameter file (SPFILE) is an alternative (or a complement) to the init.ora file, and it
makes the dynamic parameter changes permanent on an ongoing basis. You can specify that any
dynamic parameter changes made by using the ALTER SYSTEM command be saved permanently in
the server parameter file, which already consists of all the parameters in the regular init.ora file.
After you create the database, you can create the SPFILE from your init.ora file as shown in the next
section. If you later use this SPFILE to start your database, all dynamic changes made to the initial-
ization parameters can be permanently saved in the SPFILE. By using the SPFILE, you can ensure
that dynamic parameter changes will not be lost in between database shutdowns and restarts.

The file is called a server file because it is always maintained on the machine where the Oracle
database server is located. Oracle recommends the use of the SPFILE to dynamically maintain the
database configuration parameters.

The number of dynamically modifiable parameters in Oracle Database 10g Release 2 (10.2) is
quite high, as the following query shows:

SQL> SELECT count(*) FROM v$parameter
2 WHERE issys_modifiable != 'FALSE';
COUNT(*)

150

1 row selected.
SQL>

More than half of the initialization parameters are dynamically changeable through the ALTER
SYSTEM command, which means that the SPFILE is a smart way to permanently record a dynami-
cally changed parameter value.

When the database is started, unless you specify the type of initialization file and its location
explicitly, Oracle will look for the SPFILE first. On UNIX/Linux systems, the default location for the
SPFILE is the $ORACLE_HOME/dbs/directory ($ORACLE_HOME\dbs in Windows). In the default
directory, Oracle first looks for a file named spfile$ORACLE_SID.ora (in our case, for the database
nina, this would be spfilenina.ora). If it can't find this file, it then looks for a file named spfile.ora.
If spfile.ora isn't found, Oracle will next look for the init.ora file, in the same default directory. The
init.ora file is traditionally named init$ORACLE_SID.ora (in our example, it is initnina.ora).

■Note Although the SPFILE is placed in the ORACLE_HOME/dbs directory by default, you can place it anywhere
as long as you specify the location in an initialization parameter file by using the SPFILE parameter.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE374

4517CH09.qxd 8/19/05 10:43 AM Page 374

The V$SPPARAMETER dynamic view is comparable to the V$PARAMETER view and is used to
record all the initialization parameter names and their values when using the SPFILE rather than the
init.ora file.

Creating a Server Parameter File
Oracle lets you use the traditional init.ora file (or PFILE, parameter file) as the configuration file.
However, Oracle also recommends that you create and use an SPFILE for all databases. You can
create the SPFILE from the init.ora file, and the process is very simple.

You must first log in as a user with SYSDBA or SYSOPER privileges. Then run the following
command, in which PFILE is the init.ora file for our new nina database (initnina.ora):

SQL> CREATE spfile
FROM
pfile = '/u03/app/oracle/dbs/initnina.ora';

File created.
SQL>

■Caution Once you create the SPFILE, a subsequent request to create it from the init.ora file will overwrite the
existing SPFILE.

The previous command will create the SPFILE in the default location ($ORACLE_HOME/dbs).
The file will be named spfilenina.ora. You can also create an SPFILE by giving it an explicit name, as
shown in the following example:

SQL> CREATE spfile = '/u03/app/oracle/dbs/nina_spfile.ora'
FROM
pfile = '/u03/app/oracle/dbs/initnina.ora';

If you want Oracle to create an SPFILE from your init.ora file, and both files are located in their
default locations ($ORACLE_HOME/dbs), you can simply issue the following command:

SQL> CREATE spfile FROM pfile;
File created.
SQL>

You can also create a new init.ora file from the SPFILE in the default location by using the fol-
lowing command:

SQL> CREATE pfile FROM spfile;
File created.
SQL>

If you bounce the database now, the instance will start up using your new SPFILE. Oracle will
look for the initialization parameter lists in their default locations in the following order, and it will
use the first one it finds:

1. It looks for the spfile$ORACLE_SID.ora file in the default location.

2. It looks for a file called spfile.ora in the default location.

3. It looks for the traditional init.ora file, with the name init$ORACLE_SID.ora, in the default
location.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE 375

4517CH09.qxd 8/19/05 10:43 AM Page 375

■Tip Although you can change the init.ora text file to your heart’s content, don’t try modifying the SPFILE directly.
You’ll end up corrupting it, and your instance may fail to start the next time you try to use the SPFILE!

Creating the SPFILE from the init.ora file doesn’t mean that you can’t use the init.ora file any-
more. If you need to start the instance with the original init.ora file, you can do so as before by
specifying it explicitly:

SQL> STARTUP PFILE='/u01/app/oracle/product/10.1.0.2.0/dbs/initnina.ora';

However, you can’t specify the SPFILE instead of the PFILE in the preceding example—Oracle
won’t allow you to specify the SPFILE directly in a STARTUP command. However, you can do so indi-
rectly by using a PFILE (init.ora) file that includes just one initialization parameter: the SPFILE
parameter:

spfile = ' u01/app/oracle/product/10.1.0.2.0/dbs/spfilenina.ora

After creating this new init.ora file, you can specify the PFILE variable in the STARTUP command,
as shown earlier.

Listing 9-8 shows the contents of the SPFILE (called SPFILEnina.ora) that was created from the
initnina.ora file.

Listing 9-8. A Sample SPFILE

*.background_dump_dest='/u01/app/oracle/admin/nina/bdump'
*.compatible='10.2.0.0'
*.control_files='/u01/app/oracle/oradata/nina/control1.ctl',
'/u01/app/oracle/oradata/nina/control2.ctl
'*. core_dump_dest='/u01/app/oracle/admin/nina/cdump'
*.cursor_sharing='force'
*.db_block_size=8192
*.db_domain='world'
*.db_file_multiblock_read_count=16
*.db_files=1000
* db_flashback_retention_target=720
*.db_name='nina'
*.db_recovery_file_dest='/u02/app/oracle/flash_recov_area'
*.db_recovery_file_dest_size=1000M
* instance_type='RDBMS'
*.log_archive_dest_1='LOCATION=/u02/app/oracle/arch/'
*.log_archive_format='log%t_%s_%r.arc'
*.pga_aggregate_target=1000M
*.processes=600
*.remote_login_passwordfile='none'
*.resumable_timeout=1800
*.sga_target=300M
*.statistics_level='typical'
*.undo_management='auto'
*.undo_retention=7200
*.undo_tablespace='undotbs_01'
*.user_dump_dest='/u01/app/oracle/admin/nina/udump'

CHAPTER 9 ■ CREATING AN ORACLE DATABASE376

4517CH09.qxd 8/19/05 10:43 AM Page 376

■Tip It’s customary for DBAs to place comments in the init.ora file, but the SPFILE will not include comment lines
from the init.ora file. However, the SPFILE will retain comments placed on the same line as the parameter in the
init.ora file (for example, cursor_sharing=false # comment).

Setting the Scope of Dynamic Parameter Changes
You now have an SPFILE that contains all your initialization parameters, and you can control
whether any changes to the initialization parameters persist by being recorded in the SPFILE or not.
Once you create an SPFILE, you can use a special SCOPE clause as part of all your ALTER SYSTEM
commands that will determine whether the changes persist or not. The SCOPE clause can take the
following three values:

• SPFILE

• MEMORY

• BOTH

When the SCOPE clause is set to MEMORY, changes are merely temporary and they go away after
the database is restarted. When the SCOPE clause is set to BOTH, all dynamic changes get recorded in
the SPFILE and are operational in the instance immediately. When the SCOPE clause is set to SPFILE,
changes aren’t applied immediately but only get recorded in the SPFILE; dynamic and static config-
uration parameters become effective only after the next startup of the database. If the database
instance is started with an SPFILE, SCOPE=BOTH is the default option used by Oracle.

■Note For static parameters, SCOPE=SPFILE is the only option, because the parameters can’t be activated right
away by definition.

As you can see, you have enormous flexibility in determining how long a change in a dynami-
cally configurable parameter’s value will persist. Here are some examples:

SQL> ALTER SYSTEM SET
log_archive_dest_2='location=/test02/app/oracle/oradata/arch'
SCOPE=SPFILE;

SQL> ALTER SYSTEM SET log_checkpoint_interval=600
SCOPE=MEMORY;

SQL> ALTER SYSTEM SET license_max_users=200
SCOPE=BOTH;

RMAN, Oracle’s backup and recovery tool, will back up the server parameter file automatically
when you back up your database. If you wish to modify several parameters in the SPFILE, the easi-
est way to do so is to first create an init.ora file from the SPFILE (as discussed in the previous
section), make changes in the init.ora file, and create a new SPFILE from it. This process will,
however, involve restarting the database.

■Tip Always create an SPFILE soon after you create the initial database. You’ll be making a lot of initialization
parameter changes on a new database, and the SPFILE gives you the chance to make these changes permanent
if you so wish. This eliminates a lot of confusion later on, when you’re making changes to several initialization
parameters at once.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE 377

4517CH09.qxd 8/19/05 10:43 AM Page 377

Starting Up and Shutting Down the Database
from SQL*Plus
You can start up and shut down your Oracle database from the SQL*Plus interface, the OEM inter-
face, and a recovery manager (RMAN) interface. I’ll focus on performing these operations using the
SQL*Plus interface in this chapter. You’ll learn how to start up and shut down databases using
OEM Database Control in Chapter 19; Chapter 15 covers how to start up and shut down a database
through the RMAN interface.

Starting the Database
When you issue the STARTUP command to start an Oracle database, Oracle will look for the initializa-
tion parameters in the default location, $ORACLE_HOME/dbs (for UNIX/Linux). There, Oracle will
look for the correct initialization file to use, in the following order:

• spfile$ORACLE_SID.ora

• spfile.ora

• init$ORACLE_SID.ora

■Note Regardless of which file Oracle reads, you don’t have to specify the path and location of the file if it’s in
the default location. If you wish to store your initialization file in a nondefault location, you have to specify the loca-
tion when you issue the startup commands.

You can start an Oracle database in several modes. Let’s take a quick look at the different
options you have while starting up a database.

The STARTUP NOMOUNT Command
You can start up the instance in a SQL*Plus session with just the instance running by using the
STARTUP NOMOUNT command. The control files aren’t read and the data files aren’t opened when you
open a database in this mode. The Oracle background processes are started up, and the SGA is allo-
cated to Oracle by the operating system. In fact, the instance is running by itself, much like the
engine of a tractor trailer being started with no trailer attached to the cab (you can’t do much with
either).

Listing 9-9 shows the use of the STARTUP NOMOUNT command.

Listing 9-9. Using the STARTUP NOMOUNT Command

[oracle@localhost oracle] sqlplus /nolog
SQL*Plus: Release 10.2.0.0.0. - Beta on Sun Feb 20 15:39:27 2005
© Copyright © 1982, 2004 Oracle. All rights reserved.
SQL> CONNECT sys/nina1 AS sysdba
Connected to an idle instance.
SQL> STARTUP NOMOUNT
ORACLE instance started.

Total System Global Area 314572800 bytes
Fixed Size 1236756 bytes
Variable Size 99164396 bytes

CHAPTER 9 ■ CREATING AN ORACLE DATABASE378

4517CH09.qxd 8/19/05 10:43 AM Page 378

Database Buffers 213909504 bytes
Redo Buffers 262144 bytes
SQL>

Sometimes during certain maintenance operations and during recovery times, you can’t have
the database open for public access. That’s when this partial opening of the database is necessary.
You also use the NOMOUNT startup option during database creation and when you have to re-create
control files.

The STARTUP MOUNT Command
The next step in the startup process, after the instance is started, is the mounting of the database.
During the mount stage, Oracle associates the instance with the database. Oracle opens and reads
the control files and gets the names and locations of the data files and the redo log files. You can
mount an already started instance with the ALTER DATABASE command, or you can use the STARTUP
MOUNT command when you initially start the database.

If you’ve already started the database in the nomount mode, use this command:

SQL> ALTER DATABASE MOUNT;
Database altered.
SQL>

To start up in the mount mode directly, use this command:

SQL> STARTUP MOUNT
ORACLE instance started.
Total System Global Area 314572800 bytes
Fixed Size 1236756 bytes
Variable Size 99164396 bytes
Database Buffers 213909504 bytes
Redo Buffers 262144 bytes
Database mounted.
SQL>

You usually need to start up a database in mount mode when you’re doing activities such as
performing a full database recovery, changing the archive logging mode of the database, or renam-
ing data files. Note that all three of these operations require Oracle to access the data files but can’t
accommodate any user operations in the files.

The STARTUP OPEN Command
The last stage of the startup process is opening the database. When the database is started in the
open mode, all valid users can connect to the database and perform database operations. Prior to
this stage, the general users can’t connect to the database at all. You can bring the database into the
open mode by issuing the ALTER DATABASE command as follows:

SQL> ALTER DATABASE OPEN;
Database altered.

More commonly, you simply use the STARTUP command to mount and open your database all
at once:

SQL> STARTUP
Oracle instance started.

Total System Global Area 314572800 bytes
Fixed Size 1236756 bytes
Variable Size 99164396 bytes

CHAPTER 9 ■ CREATING AN ORACLE DATABASE 379

4517CH09.qxd 8/19/05 10:43 AM Page 379

Database Buffers 213909504 bytes
Redo Buffers 262144 bytes
Database mounted.
Database opened.
SQL>

To open the database, the Oracle server first opens all the data files and the online redo log
files, and verifies that the database is consistent. If the database isn’t consistent—for example, if the
SCNs in the control files don’t match some of the SCNs in the data file headers—the background
process will automatically perform an instance recovery before opening the database. If media
recovery rather than instance recovery is needed, Oracle will signal that a database recovery is
called for and won’t open the database until you perform the recovery.

■Note When you issue the simple STARTUP command, Oracle will process all the startup steps in sequence and
will start the instance and open it for public access all at once. As long as your ORACLE_SID parameter is set to
the right database, you don’t need to specify the database name in the STARTUP command.

Automatically Starting Databases
You can let all your databases start up automatically each time the operating system restarts by sim-
ply using standard operating system scripts. Each operating system will have its own system-specific
way of automating Oracle database startups. Here, I’ll discuss the startup and shutdown scripts
used in UNIX/Linux systems, and I’ll specifically use examples for a Red Hat Linux environment.
Automatic startup on Windows systems is covered in Chapter 20.

Oracle provides two files, dbstart and dbshut, which use the standard /etc/oratab file contents
to determine which Oracle databases are running on the server, and automatically start up and shut
down all the databases whenever the system is started up and shut down. In most UNIX/Linux sys-
tems, these two scripts are located in the $ORACLE_HOME/bin directory. After I created the new
nina database, I added it to the oratab file by adding the following line (which specifies the database
name, ORACLE_HOME, and whether the database should be automatically stopped and started):

nina:/u01/app/oracle/product/10.2.0/db_1:Y

In order to make a database start up and shut down automatically upon a system reboot, you
must add a script to the /etc/rc.d/init.d directory. This file will include the Oracle-provided dbstart
and dbshut scripts in it, as shown in Listing 9-10. The script uses a case statement to determine
whether to start or stop all the Oracle databases and the Oracle Listener service.

Listing 9-10. A Script to Start and Stop Oracle Database and the Oracle Listener

#!/bin/sh
/etc/rc.d/init.d/oracle
Description: The following script
starts and stops all Oracle databases and listeners
case "$1" in
start)
echo -n "Starting Oracle Databases: "
date +"! %T %a %D : Starting Oracle Databases after
system start up." >> /var/log/oracle
echo "-------------------------------------" >> /var/log/oracle
su - oracle -c dbstart >> /var/log/oracle
echo "Done."
echo -n "Starting Oracle Listeners: "

CHAPTER 9 ■ CREATING AN ORACLE DATABASE380

4517CH09.qxd 8/19/05 10:43 AM Page 380

su - oracle -c "lsnrctl start" >> /var/log/oracle
echo "Done."
echo ""
echo "--------------------------------------" >> /var/log/oracle
date +"! %T %a %D : Finished." >> /var/log/oracle
echo "--------------------------------------" >> /var/log/oracle
;;
stop)
echo -n "Shutting Down Oracle Listeners: "
echo "--" >> /var/log/oracle
date +"! %T %a %D : Shutting Down All Oracle Databases
as part of system shutdown." >> /var/log/oracle
echo "--" >> /var/log/oracle
su - oracle -c "lsnrctl stop" >> /var/log/oracle
echo "Done."
echo -n "Shutting Down Oracle Databases: "
su - oracle -c dbshut >> /var/log/oracle
echo "Done."
echo ""
echo "---" >> /var/log/oracle
date +"! %T %a %D : Finished." >> /var/log/oracle
echo "---" >> /var/log/oracle
;;
restart)
echo -n "Restarting Oracle Databases: "
echo "--" >> /var/log/oracle
date +"! %T %a %D : Restarting Oracle Databases
after system startup." >> /var/log/oracle
echo "--" >> /var/log/oracle
su - oracle -c dbshut >> /var/log/oracle
su - oracle -c dbstart >> /var/log/oracle
echo "Done."
echo -n "Restarting the Oracle Listener: "
su - oracle -c "lsnrctl stop" >> /var/log/oracle
echo "Done."
echo ""
echo "---" >> /var/log/oracle
date +"! %T %a %D : Finished." >> /var/log/oracle
echo "---" >> /var/log/oracle
;;
*)
echo "Usage: oracle {start|stop|restart}"
exit 1
esac

The system administrator needs to create start and kill symbolic links in the appropriate run-
level directories /etc/rc.d/rcX.d. The following commands will ensure that the databases will come
up in runlevels 2, 3, and 4:

$ ln -s ../init.d/oracle /etc/rc.d/rc2.d/S99oracle
$ ln -s ../init.d/oracle /etc/rc.d/rc3.d/S99oracle
$ ln -s ../init.d/oracle /etc/rc.d/rc4.d/S99oracle

In order to stop the databases on each host reboot or restart, you must also add the following
links:

$ ln -s ../init.d/oracle /etc/rc.d/rc0.d/K01oracle # Halting
$ ln -s ../init.d/oracle /etc/rc.d/rc6.d/K01oracle # Rebooting

CHAPTER 9 ■ CREATING AN ORACLE DATABASE 381

4517CH09.qxd 8/19/05 10:43 AM Page 381

Restricting Database Access
Sometimes when you’re performing data loads or an export or import of data, or when you’re per-
forming other critical maintenance tasks, you’ll want the database to be open for you but not for
general users. You can do so in a couple of different ways. First, you can bring up the database in a
restricted mode, which will provide you with complete access and prevent general users from con-
necting, as shown in Listing 9-11.

Listing 9-11. Starting a Database in Restricted Mode

SQL> STARTUP RESTRICT;
ORACLE instance started.
Total System Global Area 314572800 bytes
Fixed Size 1236756 bytes
Variable Size 99164396 bytes
Database Buffers 213909504 bytes
Redo Buffers 262144 bytes
Database mounted.
Database opened.
SQL>

When you’re done with your maintenance or other tasks and wish to open up the database to
the general public, you can simply use the ALTER SYSTEM command, as follows:

SQL ALTER SYSTEM DISABLE RESTRICTED SESSION;
System altered.
SQL>

You can also change an open and unrestricted database to a restricted state of operation by
using the following command:

SQL> ALTER SYSTEM ENABLE RESTRICTED SESSION;
System altered.
SQL>

When you put a database in a restricted mode using the ALTER SYSTEM command, as shown
previously, existing users are not hindered in any way. Only new logins are prevented, unless they
have the restricted session privilege. Once you are finished doing whatever you needed to do, you
can put the database back in an unrestricted open mode by using the ALTER SYSTEM DISABLE
RESTRICT SESSION command.

Sometimes you may want to use an open database but prevent any changes to the database for
the time being. That is, you want to allow reads (SELECT operations) against the database, but no
writes. Listing 9-12 shows how you can put your database in a read-only mode.

Listing 9-12. Putting a Database in a Read-Only Mode

SQL> STARTUP MOUNT
ORACLE instance started.
Total System Global Area 314572800 bytes
Fixed Size 1236756 bytes
Variable Size 99164396 bytes
Database Buffers 213909504 bytes
Redo Buffers 262144 bytes

Database mounted.
SQL> ALTER DATABASE OPEN READ ONLY;
Database altered.
SQL>

CHAPTER 9 ■ CREATING AN ORACLE DATABASE382

4517CH09.qxd 8/19/05 10:43 AM Page 382

The read-only mode is usually employed by standby databases, which are copies of production
databases designed to relieve the querying load on the parent production database.

Shutting Down the Database
You may need to shut down a running database for some types of backups, for upgrades of software,
and so on, and there are several ways to do this. The option you choose will affect the time it takes
to shut down the database and the potential for needing database instance recovery upon restarting
the database. The following sections cover the four available database shutdown command options.

The SHUTDOWN NORMAL Command
When you issue the SHUTDOWN NORMAL command to shut the database down, Oracle will wait for all
users to disconnect from the database before shutting it down. If a user goes on vacation for a week
after logging in to a database, and you subsequently issue a SHUTDOWN NORMAL command, the data-
base will have to keep running until the user returns and logs out. The normal mode is Oracle’s
default mode for shutting down the database.

The command is issued as follows:

SQL> SHUTDOWN NORMAL

or

SQL> SHUTDOWN

Here are some details about the SHUTDOWN NORMAL command:

• No new user connections can be made to the database once the command is issued.

• Oracle waits for all users to exit their sessions before shutting down the database.

• No instance recovery is needed when you restart the database because Oracle will write all
redo log buffers and data block buffers to disk before shutting down. Thus, the database will
be consistent when it’s shut down in this way.

• Oracle closes the data files and terminates the background processes. Oracle’s SGA is deallo-
cated.

The SHUTDOWN TRANSACTIONAL Command
If you don’t want to wait for a long time for a user to log off, you can use the SHUTDOWN TRANSACTIONAL
command. Oracle will wait for all active transactions to complete before disconnecting all users
from the database, and then it will shut down the database. The command is issued as follows:

SQL> SHUTDOWN TRANSACTIONAL

Here are the details about the SHUTDOWN TRANSACTIONAL command:

• No new user connections are permitted once the command is issued.

• Existing users can’t start a new transaction and will be disconnected.

• If a user has a transaction in progress, Oracle will wait until the transaction is completed
before disconnecting the user.

• After all existing transactions are completed, Oracle shuts down the instance and deallocates
memory. Oracle writes all redo log buffers and data block buffers to disk.

• No instance recovery is needed because the database is consistent.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE 383

4517CH09.qxd 8/19/05 10:43 AM Page 383

The SHUTDOWN IMMEDIATE Command
Sometimes, a user may be running a very long transaction when you decide to shut down the
database. Both of the previously discussed shutdown modes are worthless to you under such cir-
cumstances. Under the SHUTDOWN IMMEDIATE mode, Oracle will neither wait indefinitely for users to
log off nor will it wait for any transactions to complete. It simply rolls back all active transactions,
disconnects all connected users, and shuts the database down. Here is the command:

SQL> SHUTDOWN IMMEDIATE

Here are the details about the SHUTDOWN IMMEDIATE command:

• No new user connections are allowed once the command is issued.

• Oracle immediately disconnects all users.

• Oracle terminates all currently executing transactions.

• For all transactions terminated midway, Oracle will perform a rollback so the database ends
up consistent. This rollback process is why the SHUTDOWN IMMEDIATE operation is not always
immediate. This is because Oracle is busy rolling back the transactions it just terminated.
However, if there are no active transactions, the SHUTDOWN IMMEDIATE command will shut
down the database very quickly. Oracle terminates the background processes and deallo-
cates memory.

• No instance recovery is needed upon starting up the database because it is consistent when
shut down.

The SHUTDOWN ABORT Command
The SHUTDOWN ABORT command is a very abrupt shutting down of the database. Currently running
transactions are neither allowed to complete nor rolled back. The user connections are just discon-
nected. This is the command:

SQL> SHUTDOWN ABORT

These are the details about the SHUTDOWN ABORT command:

• No new connections are permitted once the command is issued.

• Existing sessions are terminated, regardless of whether they have an active transaction
or not.

• Oracle doesn’t roll back the terminated transactions.

• Oracle doesn’t write the redo log buffers and data buffers to disk.

• Oracle terminates the background processes, deallocates memory immediately, and shuts
down.

• Upon restarting, Oracle will perform an automatic instance recovery, because the database
isn’t guaranteed to be consistent when shut down.

When you shut down the database using the SHUTDOWN ABORT command, the database has
to perform instance recovery upon restarting to make the database transactionally consistent,
because there may be uncommitted transactions that need to be rolled back. The critical thing to
remember about the SHUTDOWN ABORT command is that the database may be shut down in an incon-
sistent mode. In most cases, you aren’t required to explicitly use a RECOVER command, because the
database will perform the instance recovery on its own.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE384

4517CH09.qxd 8/19/05 10:43 AM Page 384

■Tip Oracle recommends that you always shut down the database in a consistent mode by using the SHUTDOWN
or SHUTDOWN IMMEDIATE command and not the SHUTDOWN ABORT command before backing it up.

Listing 9-13 shows what happens when an attempt is made to put a database in a read-only
mode after the SHUTDOWN ABORT command was used to shut it down first. Note that Oracle won’t put
the data files in read-only mode until the database is manually recovered. (You’ll find a lot more
information on recovery in Chapter 16.)

Listing 9-13. The SHUTDOWN ABORT Command and the Need for Instance Recovery

SQL> SHUTDOWN ABORT
ORACLE instance shut down.
SQL> STARTUP MOUNT
ORACLE instance started.
Total System Global Area 314572800 bytes
Fixed Size 1236756 bytes
Variable Size 99164396 bytes
Database Buffers 213909504 bytes
Redo Buffers 262144 bytes
Database mounted.
SQL> ALTER DATABASE OPEN READ ONLY;
alter database open read only
*
ERROR at line 1:
ORA-16005: database requires recovery
SQL> RECOVER DATABASE;
Media recovery complete.
SQL>

■Note In all shutdown modes, upon the issuing of the SHUTDOWN command, all new user connection attempts
will fail. Except for the SHUTDOWN ABORT command, all the other SHUTDOWN commands won’t require instance
recovery upon database startup.

Quiescing a Database
Suppose you want to put your database in a restricted mode to perform table reorganization or
some other administrative task. Schema changes are especially hard to make while users are con-
ducting live transactions in the database. The same goes for when you have to import data into a
large table while users are connected to the database. You have to perform these activities during a
“maintenance window” or you have to shut down the database and bring it up in a restricted mode.

But what if you don’t have a maintenance window in which to shut down and restart the data-
base? Or, as so often happens in practice, the assumed window magically disappears because you
encounter some problem in performing your tasks during the allotted time? You are forced to wait
for the next weekend, in most cases. To redress this problem, quiescing a database gives you the
opportunity to put the database in a single-user mode without having to ever shut the database
down.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE 385

4517CH09.qxd 8/19/05 10:43 AM Page 385

When a database is put in a quiesced state by the DBA the following conditions apply:

• All inactive sessions are prevented from issuing any database commands until the database
is unquiesced.

• All active sessions are allowed to be completed.

• All new login attempts will be queued. A user trying to log in during the time the database is
in a quiesced state won’t get an error message. Rather, his or her login attempts will seem
to hang.

• Only DBA queries, transactions, and PL/SQL statements will be allowed in the database.

To place the database into a quiesced state, you use the following ALTER SYSTEM command as
the SYS or SYSTEM user:

SQL> ALTER SYSTEM QUIESCE RESTRICTED;
System altered.
SQL>

Later on, when you’ve finished your administrative tasks, you can allow regular access to the
database by issuing the following command:

SQL> ALTER SYSTEM UNQUIESCE;
System altered.
SQL>

Once the database is unquiesced, all the queued logins are allowed into the database, and all
the inactive transactions are once again allowed to turn active by letting them execute their DML
statements.

Suspending a Database
If you want to suspend all I/O operations during some special administrative job, you can suspend
the database. All reads from and writes to the data files and control files are prohibited while the
database is under suspension. The suspension of activity on a database may be necessary when you
want to perform an emergency backup of a tablespace, for example, or specialized chores such as
splitting a mirror, which you can’t do in any other way.

You can suspend and resume a database as follows:

SQL> ALTER SYSTEM SUSPEND;
System altered.
SQL> ALTER SYSTEM RESUME;
System altered.
SQL>

Dropping a Database
In the past, Oracle DBAs constantly bemoaned their inability to issue a simple drop database com-
mand to remove a database. In Oracle Database 10g, you can finally drop a database with the help
of a simple DROP DATABASE command. When you issue this command, all data files, redo log files,
and control files are removed automatically. However, it doesn’t remove any parameter files, like the
init.ora file and the alert.log file.

You must start the database in the RESTRICT MOUNT mode for this operation, as shown in
Listing 9-14.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE386

4517CH09.qxd 8/19/05 10:43 AM Page 386

Listing 9-14. Dropping a Database Using the DROP DATABASE Command

$ sqlplus /nolog
SQL*Plus: Release 10.2.0.0.0. - Beta on Sun Feb 20 17:22:21 2005
© Copyright © 1982, 2004 Oracle. All rights reserved.
SQL> CONNECT sys/sys_passwd AS SYSDBA
Connected to an idle instance.
SQL> STARTUP RESTRICT MOUNT
ORACLE instance started.
Total System Global Area 314572800 bytes
Fixed Size 1236756 bytes
Variable Size 99164396 bytes
Database Buffers 213909504 bytes
Redo Buffers 262144 bytes
Database mounted.
SQL> SELECT name FROM v$database;
NAME

NINA
SQL> DROP DATABASE;
Database dropped.
Disconnected from Oracle Database 10g Enterprise Edition Release 10.2.0.0.0 -Beta
With the Partitioning, OLAP and Data Mining options
SQL>

In Listing 9-14, you start up the database in the mount mode. The RESTRICT STARTUP MOUNT
command ensures that no other users can connect to the database. Make sure you verify the name
of the database before using the DROP DATABASE command to drop the database.

■Caution Obviously, you can’t test the DROP DATABASE command casually! Be careful, since this command is
unforgiving—it doesn’t give you any chances to recall the command. All your data files, log files, and control files
will vanish before you can blink!

Using the Data Dictionary to Monitor Database Status
The dynamic view V$INSTANCE is useful in monitoring the current status of an instance. The fol-
lowing query tells you that the database is open and no shutdowns are pending:

SQL> SELECT instance_name, status,
2 shutdown_pending,
3 active_state
4* FROM v$instance

SQL> /
INSTANCE STATUS SHUTDOWN ACTIVE
NAME PENDING STATE
-------- ------ ------------ ------------
nina OPEN NO NORMAL
SQL>

In the preceding output, the active state is normal, which means that the database is neither in
the process of being quiesced nor is it already in a quiesced state. The database status column indi-
cates open, where a suspended database would have a status of suspended.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE 387

4517CH09.qxd 8/19/05 10:43 AM Page 387

The DATABASE_PROPERTIES view will provide the name of the default temporary tablespaces
in your database, in addition to a host of other information regarding NLS parameters.

The V$DATABASE view gives you plenty of details about your database. Here’s a typical query,
which shows the name of the database, whether archive logging is turned on (yes), and whether the
database is in the flashback database mode (no):

SQL> SELECT name, log_mode,
flashback_on
FROM v$database;

NAME LOG_MODE FLASHBACK_ON
--------- ------------ -------------
PASPROD ARCHIVELOG NO
SQL>

What Next?
You’ve now created the new database, but you still need to do a few things to make it fully func-
tional (patience—you’re almost there!). At this point, you have the instance up and running and
you have a first draft of the physical database based on tentative estimates.

To make this database do something useful, you need to create users. And to empower the
users and ensure the security of the database, you’ll need to grant these users specific roles and
privileges.

You have to create objects such as tables, views, indexes, synonyms, sequences, and so on,
based on the requests of the application development team. You also have to create the necessary
application code in the database, including stored procedures and packages. Because an empty
database with no data won’t do anyone much good, you need to load data into the database. You
also have to establish connectivity between the database you just created, the users, and other
systems that need to access your database.

Finally, to secure your database from unexpected failures and malfunctioning systems, you
need to back up the database and put a regular backup schema in place before you go off on your
long-awaited and well-earned vacation. The remaining chapters of this book address all these
important topics in detail.

CHAPTER 9 ■ CREATING AN ORACLE DATABASE388

4517CH09.qxd 8/19/05 10:43 AM Page 388

Connectivity and User
Management

P A R T 4

■ ■ ■

4517CH10.qxd 8/19/05 10:44 AM Page 389

4517CH10.qxd 8/19/05 10:44 AM Page 390

Connectivity and Networking

One of the DBA’s key tasks is to establish and maintain connectivity between the database on the
server and the user community. In the traditional client/server model, users connect to databases
on separate servers by using a client, and the client/server model is still used in many places to run
business functions. However, web-based connection models are much more common today as a
means of connecting to databases. Oracle calls its set of connectivity solutions (which encompasses
connectivity, manageability, and network security) Oracle Net (previously SQL Net) Services. In this
chapter, I show how to use Oracle Net, a component of Oracle Net Services, to make and maintain
connections between clients and databases. I also show you how to install the Oracle Client soft-
ware. You’ll also see how to use the new Oracle Instant Client, which lets you connect to an Oracle
database without the use of network configuration files.

Oracle Database 10g provides several methods of connecting database servers to end users. For
small sets of users, you can use the Oracle tnsnames.ora file, which is a local file containing the con-
nection details. The new easy connect method lets clients connect to your databases without any
configuration files. The most sophisticated connection method provided by Oracle is the directory
naming method, which makes use of the LDAP-compliant Oracle Internet Directory (OID). You can
use OID for security management and other purposes besides facilitating database connectivity.
There is also an external naming method, which uses external naming services such as the Network
Information Service to configure client connections to the Oracle database.

This chapter will provide you with a quick introduction to Java Database Connectivity (JDBC)
as well. You’ll learn how to connect to an Oracle database from within a Java program, and you’ll
step through a small example that illustrates the basic concepts of Oracle JDBC.

Oracle Networking and Database Connectivity
After you create the database and various database objects and load the data, the next big step is to
establish connectivity between the database server and the users who will be using it. Oracle Net
Services is the set of services that makes this possible. Oracle Net Services components have to
“live” on both the client and the server, and they typically use the TCP/IP network protocol to estab-
lish network connectivity between clients and the database server.

Oracle Net Services is configured with several important features to make life easier for DBAs:

• Location transparency: Clients need not know the network location or any other privileged
information about database services, because you can maintain all the information required
to make database connections in a centralized repository. Users are given only the database
name, and the connection is entirely transparent to them.

391

C H A P T E R 1 0

■ ■ ■

4517CH10.qxd 8/19/05 10:44 AM Page 391

• Centralized configuration: For large installations, a centralized means of establishing and
maintaining connections makes a lot of sense. The LDAP-compliant directory server sup-
ported by Oracle provides a very efficient centralized repository for meeting all your
networking needs. Network, authentication, and other security information is saved in a
central place where numerous users then access this information. Maintenance is extremely
easy, because regardless of the number of clients, you only have to maintain the centralized
information.

• Scalability: Oracle offers a specialized architecture, called the shared-server architecture, to
enhance scalability. This architecture enables several users to share the same connection
process through the use of a dispatcher process. A small number of server connections can
enable a large number of end users to use the system, thus increasing the scalability of the
system. In addition, Oracle offers the Connection Manager feature, which provides connec-
tion multiplexing whereby multiple connections are taken care of simultaneously.

SHARED-SERVER VS. DEDICATED-SERVER ARCHITECTURE

You can set up a connection architecture where the Oracle server starts a separate server process for each client
connection, or you can enable several clients to share a single server process. The separate server processes use
dedicated connections between each client and the Oracle server, and it is therefore named the dedicated-server
architecture. The shared-server architecture is the term for connections where several user processes use the
same Oracle server connection to perform their work.

Shared-Server Architecture

The shared-server architecture relies on a dispatcher service to process connection requests from clients. A single
dispatcher can service many client connections simultaneously. Dispatchers essentially act as mediators between
the clients and the shared servers. Dispatchers are in charge of receiving requests from clients and placing them in
a request queue, from which the shared server picks them up.

When you use a dispatcher (that is, when you use the shared-server approach), the listener will not hand off a
connection request to the database server directly; it hands the request off to the dispatcher. This is referred to as a
direct hand-off to the dispatcher. The listener can also redirect a client connection to a dispatcher. In this case, the
listener will pass the dispatcher’s network address to the client connection, and this information enables the client
to connect to the dispatcher, whereupon the listener connection is terminated.

You can use the Oracle Connection Manager to configure session multiplexing, which involves pooling multiple
client sessions through a network connection to a shared-server destination.

Dedicated-Server Architecture

Dedicated server processes do not involve any sharing of resources by clients. Each client is assigned a dedicated
server connection. The Oracle listener will start up a dedicated server process whenever a client process requests a
connection. The listener passes the dedicated server’s protocol address back to the client; the client then uses that
to connect directly to the database server. The listener connection is terminated as soon as it passes the dedicated
server’s address to the client.

This chapter deals exclusively with the more commonly used dedicated-server architecture. To learn how to
set up a shared-server configuration, please refer to Oracle’s manual for networking, the Net Services Administra-
tor’s Guide.

CHAPTER 10 ■ CONNECTIVITY AND NETWORKING392

4517CH10.qxd 8/19/05 10:44 AM Page 392

Networking Concepts:
How Oracle Networking Works
When you want to open a database session from a client, whether it’s a traditional client or a
browser-based client, you need to connect to the database across a network. Suppose you’re estab-
lishing a connection over an existing network from your desktop to an Oracle database on a UNIX
server across town. You need a method of making a connection between your desktop and the
Oracle database (which involves the use of specialized software), you need some kind of interface
to conduct the session (which, in this example, will be SQL*Plus), and you need some way of com-
municating with the industry-standard network protocols, such as TCP/IP.

To make it easier for you to configure and manage network connections, Oracle provides Oracle
Net Services, which is a suite of components that provide connectivity solutions in distributed,
heterogeneous computing environments. Oracle Net Services consists of Oracle Net, Oracle Net
Listener, Oracle Connection Manager, Oracle Net Configuration Assistant, and Oracle Net Manager.
The Oracle Net Services software is installed automatically as part of the Oracle Database Server or
the Oracle Client software installation.

Oracle Net is a software component that initiates, establishes, and maintains connections
between clients and servers. That’s why Oracle Net must be installed on both the client and the
server. Oracle Net consists mainly of two components:

• Oracle Network Foundation Layer: Responsible for establishing and maintaining the connec-
tion between the client application and the server, as well as exchanging messages between
them

• Oracle Protocol Support: Responsible for mapping Transparent Network Substrate (TNS)
functionality to industry-standard protocols used in connections

All servers that host an Oracle database also run a service called the Oracle Net Listener (com-
monly referred to as just the listener), whose main function is to listen for requests from client
services to log into the Oracle database. The listener, after ensuring that the client service has the
matching information for the database (protocol, port, and instance name) passes the client
request on to the database. The database will allow the client to log in, provided the username and
password are authenticated. Once the listener hands off the user request to the database, the client
and the database will be in direct contact, without any help from the listener service.

Oracle provides a number of GUI-based utilities to help configure network connections for
your databases. These utilities include the Oracle Connection Manager, the Oracle Net Manager,
and Oracle Net Configuration Assistant. These tools can help you take care of all your networking
needs. After you finish reading this chapter, just click these program icons and start experimenting
with test connections.

How a Web Application Connects to Oracle
To make an Internet connection to an Oracle database, the web browser on the client communi-
cates with the web server and makes the connection request using the HTTP protocol. The web
server passes the request along to an application, which processes it and communicates with the
Oracle database server using Oracle Net (which is configured on both the database server and the
client).

In the next sections you’ll look at some important terms that are crucial in Oracle networking.

CHAPTER 10 ■ CONNECTIVITY AND NETWORKING 393

4517CH10.qxd 8/19/05 10:44 AM Page 393

Database Instance Names
As you know by now, an Oracle instance consists of the SGA and a set of Oracle processes. The data-
base instance name is specified in the initialization file (init.ora) as the INSTANCE_NAME parameter.
When you talk about the Oracle system identifier (SID), you are simply referring to the Oracle
instance.

Normally, each database can have only one instance associated with it. In an Oracle Real Appli-
cation Clusters (RAC) configuration, however, a single database could be associated with multiple
instances.

Global Database Names
The global database name uniquely identifies an Oracle database and is of the format database_
name.database_domain; for example, sales.us.acme.com. In this global database name, “sales” is
the database name and “us.acme.com” is the database domain. Since no two databases in the same
domain could have the same database name, every global database name is unique.

Database Service Names
To a client, the database logically appears as simply a service. There is a many-to-many relationship
between services and databases, since a database can be represented by one or more services, each
dedicated to a different set of clients, and a service can cover more than one database instance. You
identify each database in your system by its service name, and you specify the service name of a
database with the SERVICE_NAMES initialization parameter. The service name parameter’s value
defaults to the global database name.

Note that a database can be addressed by more than one service name. You may do this when
you want different sets of clients to address the database differently to suit their particular needs.
For example, you can take the same database and create two service names like the following:

sales.us.acme.com
finance.us.acme.com

The sales people will use the sales.us.acme.com service name, and the finance.us.acme.com
service name will be used by the accounting and finance departments.

Connect Descriptors
To connect to any database service in the world from your desktop, you need to provide two bits of
information:

• Name of the database service

• Location of the address

Oracle uses the term connect descriptor to refer to the combined specification of the two neces-
sary components for a database connection: a database service name and its address. A connect
descriptor address portion contains three components: the communications protocol used for the
connection, the host name, and the port number.

Knowing the communication protocol helps ensure that the networking protocols agree, so
you can establish a connection. The standard protocol is TCP/IP or TCP/IP with Secure Sockets
Layer (SSL). The standard port number for Oracle connections on UNIX servers is either 1521 or

CHAPTER 10 ■ CONNECTIVITY AND NETWORKING394

4517CH10.qxd 8/19/05 10:44 AM Page 394

1526. The default port on Windows machines is 1521. Because you can’t have more than one data-
base with the same service name on any host, an Oracle database service name and a host name
will uniquely identify any Oracle database in the world. Here’s an example of a typical connect
descriptor:

(DESCRIPTION
(ADDRESS=(PROTOCOL=tcp) (HOST=sales-server) (PORT=1521))
(CONNECT_DATA=
(SERVICE_NAME=sales.us.acme.com)))

In this connect descriptor, the ADDRESS line specifies that the TCP protocol will be used for net-
work communication. HOST refers to the UNIX (or Windows) server on which the Oracle listener is
listening for connection requests at a specific port: 1521. The ADDRESS part of the connect descriptor
is also called the protocol address.

Clients wishing to connect to the database first connect to the Oracle listener process. The lis-
tener receives the incoming connection requests and hands them off to the database server. Once
the client and database server hook up through the mediation of the listener, they’re in direct com-
munication and the listener won’t involve itself any further in the communication process for this
client connection.

Connect Identifiers
A connect identifier is closely related to the connect descriptor. You can use the connect descriptor
as your connect identifier, or you can simply map a database service name to a connect descriptor.
For example, you can take a service name such as “sales” and map it to the connect descriptor you
saw in the previous section. Here’s an example showing the mapping of the sales connect identifier:

sales=
(DESCRIPTION

(ADDRESS=(PROTOCOL=tcp) (HOST=sales-server) (PORT=1521))
(CONNECT_DATA=

(SERVICE_NAME=sales.us.acme.com)))

Connect Strings
You connect to a database by providing a connect string. A connect string contains a username/
password combination and a connect identifier. One of the most common connect identifiers is
a net service name, which is a simple name for a database service.

The following example shows a connect string that uses a complete connect descriptor as the
connect identifier:

CONNECT scott/tiger@(DESCRIPTION=
(ADDRESS=(PROTOCOL=tcp)
(HOST=sales_server1)
(PORT=1521))
(CONNECT_DATA=(SERVICE_NAME=sales.us.acme.com)))

Here’s a much easier way to connect to the same database, using the connect identifier sales:

CONNECT scott/tiger@sales

Both of the preceding examples will connect you to the sales database, but obviously the sec-
ond connect string (using the sales connect identifier) is much simpler.

CHAPTER 10 ■ CONNECTIVITY AND NETWORKING 395

4517CH10.qxd 8/19/05 10:44 AM Page 395

USING ORACLE NET SERVICES TOOLS

Oracle Net provides you with several GUI and command-line tools to configure connections between clients and
database services. The most common command line you’ll probably use is the lsnrctl utility, which helps manage
the Oracle listener service. The following are the important GUI tools that help you manage Oracle Net Services.

• Oracle Net Configuration Assistant (NCA): This tool is used mostly to configure network components during
installation, and it enables you to select one of the available options (I discuss these options later in the
chapter) to configure client connectivity. The easy-to-use GUI interface enables you to quickly configure
client connections under any naming method you choose. On UNIX/Linux systems, you can start NCA by
running netca from the $ORACLE_HOME/bin directory. On Windows, choose Start ➤ Programs ➤

Oracle - HOME_NAME ➤ Configuration and Migration Tools ➤ Net Configuration Assistant.

• Oracle Net Manager: Oracle Net Manager can be run on clients and servers, and it allows you to configure
various naming methods and listeners. With this tool, you can configure connect descriptors in local
tnsnames.ora files or in a centralized OID, and you can easily add and modify connection methods.

To start Oracle Net Manager from the Oracle Enterprise Manager console, select Tools ➤ Service Manage-
ment ➤ Oracle Net Manager. To start Oracle Net Manager as a stand-alone application on UNIX, run netmgr
from $ORACLE_HOME/bin. On Windows, choose Start ➤ Programs ➤ Oracle - HOME_NAME ➤ Configura-
tion and Migration Tools ➤ Net Manager.

• Oracle Enterprise Manager: OEM in Oracle Database 10g can do everything that the Oracle Net Manager can
do, but for multiple Oracle homes across multiple file systems. In addition, using the OEM, you can export
directory naming entries to a tnsnames.ora file.

• Oracle Directory Manager: This powerful tool enables you to create the various domains and contexts
necessary for using OID. You can also perform password policy management and many Oracle advanced
security tasks with this tool. On UNIX/Linux systems, you can start OID by running oidadmin from the
$ORACLE_HOME/bin directory. On Windows, choose Start ➤ Programs ➤ Oracle - HOME_NAME ➤
Integrated Management Tools ➤ Oracle Directory Manager.

Establishing Oracle Connectivity
In order to connect to an Oracle database using the network, you must first establish a network
connection between your client and the server. You must have either the Oracle Client or the Oracle
Database Server software installed on the machine you’re making the connection from. I explain
the installation of the Oracle Client software in the following section.

Here are the steps you must take to make a successful connection:

1. Make sure the database server is installed and the Oracle instance is running.

2. Make sure that your Oracle Client software is installed on the client machine.

3. Check that the database server and client are running on the same network. Check this by
using the ping command:

C:\> ping prod1
Pinging prod1.netbsa.org [172.14.152.1] with 32 bytes of data:
Reply from 172.14.152.1: bytes=32 time<1ms TTL=255
Reply from 172.14.152.1: bytes=32 time<1ms TTL=255
Reply from 172.14.152.1: bytes=32 time<1ms TTL=255
Reply from 172.14.152.1: bytes=32 time<1ms TTL=255

CHAPTER 10 ■ CONNECTIVITY AND NETWORKING396

4517CH10.qxd 8/19/05 10:44 AM Page 396

Ping statistics for 172.14.152.1:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms

C:\>

The results of the ping command show that that the connection is successful. If the connec-
tion can’t be made, you’ll see a connection request timed out message, and the number of
sent packets of data will be more than the number of received packets in the ping statistics.

4. The TCP/IP protocol must be installed on both the server and the client; if you install Oracle
server and client software, these protocols are automatically installed in the form of the
Oracle Net software component.

5. Ensure that the Oracle listener service is running on the server and is listening at the appro-
priate port for incoming requests for connections.

6. Configure the client for connecting to the database. You can connect to an Oracle database
by using one of four available methods: local naming, easy connect naming, directory nam-
ing, and external naming. I discuss these methods later in this chapter.

7. Connect to the database with SQL*Plus or a third-party tool. For example, with SQL*Plus
you can connect to the database by providing the username/password combination and
the database name:

C:\> sqlplus system/system_passwd@nicko
SQL*Plus: Release 10.2.0.0.0 - Beta on Tue Jun 7 06:03:12 2005
(c) Copyright 1982, 2004 Oracle. All rights reserved.
Connected to:
Oracle Database 10g9i Enterprise Edition Release 10.2.0.0.09.0.1.5.1 - Beta
With the Partitioning, OLAP and Data Mining Options option
JServer Release 9.0.1.4.0 - Production
SQL>

In the following sections, I’ll discuss the Oracle Client, the listener, and naming methods in
more detail.

The Oracle Client
If you wish to access an Oracle database from a PC, you must first install the Oracle Client software
on the PC. The Oracle Client software comes with the Oracle Server software, and you can also
download the Oracle Client software from the OTN site (http://technet.oracle.com). The Oracle
Client software is available for download separately. The latest versions available from the OTN at
this time (June 2005) are Oracle Database 10g Client Release 1 (10.1.0.2). Although the Oracle Server
and Oracle Client software versions need not be the same, Oracle recommends you use matching
versions of the types of software so you can take advantage of new features.

You can determine your Oracle Client version by looking at the output when you invoke the
SQL*Plus utility, as shown here:

$ sqlplus
SQL*Plus: Release 10.2.0.0.0 - Beta on Tue Jun 7 06:15:23 2005
Copyright (c) 1982, 2004, Oracle. All rights reserved.
Enter user-name:

The output of the preceding SQL*Plus command shows that I have a 10.2.0.0.0 Oracle Client
software on my system.

CHAPTER 10 ■ CONNECTIVITY AND NETWORKING 397

4517CH10.qxd 8/19/05 10:44 AM Page 397

When you install the Oracle Client software, you have four options:

• Administrator: Lets applications connect to local or remote Oracle databases and administer
them as well

• Runtime: Lets you connect to local or remote Oracle databases

• Custom: Lets you select individual components from the Administrator and Runtime instal-
lation components

• Instant Client: Installs only the shared libraries required by Oracle Call Interface (OCI),
Oracle C++ Call Interface (OCCI), and Java Database Connectivity (JDBC) OCI applications

■Note The new Instant Client is discussed shortly in the “The Instant Client” section.

Installing the Oracle Client
Here’s how you install the Oracle Client software:

1. Insert the Oracle Database 10g Client CD in the CD drive, or run the runInstaller script from
your staging directory, as was discussed in Chapter 8. If you downloaded the software from
the Oracle web site, you must first follow the steps to unzip the files outlined in Chapter 7.

2. Select Install/Deinstall Products, and click Next.

3. The Welcome window is displayed. Click Next.

4. In the Specify File Locations page, accept the default file directory or enter an Oracle home
name and directory path. Click Next.

5. In the Select Installation Type screen, you’re offered four choices—Instant Client, Adminis-
trator, Runtime, or Custom. Select Runtime Installation from the list, and click Next.

6. Review the components of the Runtime install, and click Install.

7. After the installation of the Oracle Client software is completed, the Oracle Net Configura-
tion Assistant will appear. Select the “No, I Will Create Service Names Myself” option, and
click Next.

8. Under Database SID, enter your database name, and click Next.

9. Select TCP as the protocol, and click Next.

10. Under Host Name, enter your host server name, and select the standard port. Click Next.

11. Click the Yes button to test the connectivity, and click Next.

12. When you see the message, “Connecting . . . Test Successful,” click Next.

13. Select No when asked if you would like to configure another service. Click Next.

14. Confirm the completion of the Net Service Name configuration by clicking Next.

15. Click Finish and Exit.

CHAPTER 10 ■ CONNECTIVITY AND NETWORKING398

4517CH10.qxd 8/19/05 10:44 AM Page 398

■Tip If there are multiple Oracle installations on a PC, there may be several tnsnames.ora files on the system as
well. A user may be unable to connect to a new database after adding the network configuration information to a
tnsnames.ora file if it’s not the one in use. Make sure the correct tnsnames.ora file is in the Oracle Client’s path.

Using the TWO_TASK Environment Variable
You can bypass the use of an Oracle Net name by setting the TWO_TASK environment variable (on
UNIX/Linux) or the LOCAL environment variable (on Windows).

The TWO_TASK environment variable specifies the connect string for connecting to a remote
machine. SQL*Net will check the value of the TWO_TASK environment variable and automatically
add it to your connect string, as shown in the following example:

$ export TWO_TASK=mydb

Once you set the TWO_TASK environment variable, you can connect to the mydb database in the
following way:

$ sqlplus scott/tiger

Note that you didn’t have to use the specification sqlplus scott/tiger@mydb, since you’re using
the TWO_TASK variable.

On a Windows server, the following is the equivalent for setting the TWO_TASK environment
variable:

$ SET LOCAL=<mydb>
$ sqlplus scott/tiger

The Instant Client
The Oracle Client installation described in the previous section requires you to go through all the
preparatory steps needed for a regular Oracle Database Server software installation. As you learned
in Chapter 7, preparing for the Oracle software installation takes quite a bit of time and effort. For-
tunately, you may not always need to install the complete Oracle Client software for connecting to
an Oracle database. Oracle’s new Instant Client software allows you to run your applications with-
out installing the standard Oracle Client or having an ORACLE_HOME. You don’t need to install the
Oracle Client software on every machine that needs access to the Oracle database. All existing OCI,
ODBC, and JDBC applications will work with the Instant Client. If you wish, you can even use
SQL*Plus with the Instant Client.

The Instant Client offers the following advantages, as compared to the full-blown Oracle Client
software:

• It is free.

• It takes less disk space.

• The installation is faster (five minutes or so).

• No CD is required.

• It has all the features of the regular Oracle Client, including SQL*Plus if necessary.

CHAPTER 10 ■ CONNECTIVITY AND NETWORKING 399

4517CH10.qxd 8/19/05 10:44 AM Page 399

Installing the Instant Client
Here are the steps to install the new Instant Client software and connect quickly to an Oracle
database:

1. Download the Instant Client software from the OTN web site. You must install the Basic
client package and you can also include any of the advanced optional packages. The pack-
ages contain the following items:

• Basic: Files required to run OCI, OCCI, and JDBC-OCI applications

• SQL*Plus: Additional libraries and executables for running SQL*Plus with Instant Client

• JDBC Supplement: Additional support for XA, Internationalization, and RowSet opera-
tions under JDBC

• ODBC Supplement: Additional libraries for enabling ODBC applications with Instant
Client (Windows only)

• SDK: Additional files for developing Oracle applications with Instant Client

2. Unzip the selected packages into a single directory, and name it something like “instant-
client”.

3. In UNIX and Linux systems, set the environment variable LD_LIBRARY_PATH to instantclient
(thus making sure the setting for the parameter matches the name of the directory that
contains the packages). On Windows systems, set the environment variable PATH to
instantclient.

4. Test your connection to the Oracle server.

The Listener and Connectivity
The Oracle listener is a service that runs only on the server and listens for incoming connection
requests. Oracle provides a utility called lsnrctl to manage the listener process. Here’s a summary
of how the listener fits into Oracle networking:

• The database registers information about the services, instances, and service handlers with
the listener.

• The client makes the initial connection with the listener.

• The listener receives and verifies the client connection request and forwards it to the service
handler for the database service. Once the listener hands off the client request, the listener is
out of the picture for that connection.

The listener.ora file, whose default location is the $ORACLE_HOME/network/admin directory
on UNIX systems and the $ORACLE_HOME\network\admin directory on Windows systems, con-
tains the configuration information for the listener. Because the listener service is run only on the
server, there is no listener.ora file on the client machines. Listing 10-1 shows a typical listener.ora
file.

All the configuration parameters in listener.ora have default values, and you don’t have to
configure a listener service manually anymore. After the first database on the server is created, the
listener service automatically starts, and the listener configuration file, listener.ora, is placed in the
default directory. Upon the creation of a new database, the database’s network and service informa-
tion is automatically added to the listener’s configuration file. Upon instance startup, the database
registers itself automatically with the listener, and the listener starts listening for connection
requests to this database.

CHAPTER 10 ■ CONNECTIVITY AND NETWORKING400

4517CH10.qxd 8/19/05 10:44 AM Page 400

Listing 10-1. A Typical Listener Configuration File

LISTENER.ORA Network Configuration File:
/u01/app/oracle/product/10.2.0/db_1/network/admin/listener.ora
Generated by Oracle configuration tools.
SID_LIST_LISTENER =
(DESCRIPTION_LIST =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC4))

)
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = NTL-ALAPATISAM)(PORT = 1521))

)
)

)

SID_LIST_LISTENER =
(SID_LIST =
(SID_DESC =
(SID_NAME = PLSExtProc)
(ORACLE_HOME = /u01/app/oracle/product/10.2.0/db_1)
(PROGRAM = extproc)

)
(SID_DESC =
(GLOBAL_DBNAME = remorse.world)
(ORACLE_HOME = /u01/app/oracle/product/10.2.0/db_1)
(SID_NAME = remorse)

)
(SID_DESC =
(GLOBAL_DBNAME = finance.world)
(ORACLE_HOME = /u01/app/oracle/product/10.2.0/db_1)
(SID_NAME = finance)

))

Automatic Service Registration
The Oracle PMON process is in charge of the dynamic service registration of new Oracle database
service names with the listener—when you create new Oracle databases, they’ll automatically regis-
ter themselves with the listener service. The PMON process will update the listener.ora file after
each new database is created on a server.

For automatic service registration, the init.ora file or the SPFILE should contain the following
parameters:

• SERVICE_NAMES (for example, sales.us.oracle.com)

• INSTANCE_NAME (for example, sales)

If you don’t specify a value for the SERVICE_NAMES parameter, it defaults to the global database
name, which is a combination of the DB_NAME and DB_DOMAIN parameters. The INSTANCE_NAME para-
meter’s value defaults to the SID entered during Oracle installation or database creation.

You can check the status of the listener on the server by using the lsnrctl utility, as shown in
Listing 10-2. The output shows how long the listener has been up and where the configuration file
for the listener service is located. It also tells you the names of the databases for which the listener
is “listening” for connect requests.

CHAPTER 10 ■ CONNECTIVITY AND NETWORKING 401

4517CH10.qxd 8/19/05 10:44 AM Page 401

Listing 10-2. Using the Lsnrctl Utility to Check the Status of the Listener

$ lsnrctl status
LSNRCTL for Linux: Version 10.2.0.0.0 - Beta on 01-MAR-2005 12:44:27
Copyright (c) 1991, 2004, Oracle. All rights reserved.
Connecting to (ADDRESS=(COMMUNITY=TCP.world)(PROTOCOL=TCP)(Host=pasprod)(Port=1521))
STATUS of the LISTENER
Alias LISTENER
Version TNSLSNR for Linux: Version 10.2.0.0.0 - Beta
Start Date 05-FEB-2005 21:52:51
Uptime 23 days 14 hr. 51 min. 36 sec
Trace Level off
Security ON: Local OS Authentication
SNMP OFF
Listener Parameter File /u01/app/oracle/product/10.2.0/db_1/network/admin/listener.ora
Listener Log File /u03/app/oracle/network/log/listener.log
Listening Endpoints Summary...
(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=prod1.netbsa.org)(PORT=1521)))
(DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(KEY=pasprod.world)))
(DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(KEY=PNKEY)))
(DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(KEY=EXTPROC0)))

Services Summary...
Service "fnfactsp.world" has 1 instance(s).
Instance "fnfactsp", status UNKNOWN, has 2 handler(s) for this service...

Service "pasprod" has 1 instance(s).
Instance "pasprod", status UNKNOWN, has 1 handler(s) for this service...

Service "pasprod.WORLD" has 1 instance(s).
Instance "pasprod", status READY, has 1 handler(s) for this service...

The command completed successfully
$

In the Services Summary section of Listing 10-2, the status can have one of the following values:

• READY: The instance can accept connections.

• BLOCKED: The instance cannot accept connections.

• UNKNOWN: The instance is registered in the listener.ora file rather than through dynamic serv-
ice registration. The status is thus unknown.

Listener Commands
You can run other important commands besides the status command after invoking the lsnrctl
utility. For example, the services command will let you see what services the listener is monitoring
for connection requests.

■Note You can also check the status of the listener service from the Net Services Administration page in Oracle
Enterprise Manager.

You can see the various lsnrctl commands available by using the help command in the lsnrctl
interface, as shown in Listing 10-3.

CHAPTER 10 ■ CONNECTIVITY AND NETWORKING402

4517CH10.qxd 8/19/05 10:44 AM Page 402

Listing 10-3. Using Lsnrtcl Help to List the Lsnrctl Commands

$ lsnrctl help
LSNRCTL for Linux: Version 10.2.0.0.0 - Beta on 01-MAR-2005 12:46:30
Copyright (c) 1991, 2004, Oracle. All rights reserved.
The following operations are available
An asterisk (*) denotes a modifier or extended command:
start stop status
services version reload
save_config trace spawn
change_password quit exit
set* show*
$

You can start the listener by using the start command, and you can stop the listener by using
the stop command after invoking the lsnrctl utility. If you want to issue these commands from the
operating system command line, you can use the commands lsnrctl start and lsnrctl stop to
perform the two tasks.

If you make changes to the listener.ora file, one way to put the changes into effect is to restart
your listener. The other and safer method is to merely reload the listener information, which
includes the newly made changes to the listener configuration file. The lsnrctl reload command
lets you reload the listener on the fly, without your having to bounce it. Currently connected clients
will continue to be connected while the listener is being reloaded (or even bounced) because the
listener has already “handed off” the connections to the database and isn’t involved between the
client and the database service.

■Caution I advise not modifying the listener.ora file unless you absolutely have to, and with dynamic automatic
service registration, there is less need for you to modify the file. Nevertheless, there may be times when you have
to change some part of the listener file, which consists of network configuration information for all the services the
listener is monitoring for connection requests.

Listener Management
Although it’s quite easy to set up the listener service, you can do several things afterward to tune up
your connection process and to make the listener service secure. I’ll cover some of these options in
the following sections.

Multiple Listeners
You can have more than one listener service running on the same server, but you’ll usually do this
when you’re using Oracle Real Application Clusters (RAC). If you do use multiple listener services,
you can configure the CONNECT_TIME_FAILOVER parameter, which determines how long a client con-
nection waits for a connection through one listener before attempting a connection through
another.

Setting a Queue Size
Sometimes a large volume of simultaneous connection requests from clients may overwhelm a
listener service. To keep the listener from failing, you can use the QUEUESIZE parameter in the lis-
tener.ora configuration file to specify how many concurrent connection requests can be made.

CHAPTER 10 ■ CONNECTIVITY AND NETWORKING 403

4517CH10.qxd 8/19/05 10:44 AM Page 403

For most operating systems, the default value for QUEUESIZE is a small number, such as 5. Here’s an
example showing how to set the QUEUESIZE parameter:

LISTENER=
(DESCRIPTION=
(ADDRESS=(PROTOCOL=tcp)(HOST=sales-server)(PORT=1521)(QUEUESIZE=10)))

Setting a Password for the Listener
When the listener is first set up, there’s no password protection set for the utility. Any user who can
get into the operating system can easily stop the listener and prevent clients from making new con-
nections just by typing lsnrctl stop at the command prompt.

■Note The default password for the listener service is “listener”, and you don’t have to specify this password
when you use the listener.

You can set your own password for the listener utility as shown in Listing 10-4.

Listing 10-4. Setting a Password for the Listener

LSNRCTL> set password
Password:
The command completed successfully
LSNRCTL> change_password
Old password:
New password:
Reenter new password:
Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=ntl-alapatisam.netbsa.org
)(PORT=1521)))
Password changed for LISTENER
The command completed successfully
LSNRCTL> save_config
Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=ntl-alapatisam.netbsa.org
)(PORT=1521)))
Saved LISTENER configuration parameters.
Listener Parameter File
/u01/app/oracle/product/10.2.0/db_1/network/admin/listener.ora
Old Parameter File /u01/app/oracle/product/10.2.0/db_1/network/admin/listener.bak

After you change the password successfully, you can’t stop or start the listener service as
before—you need to use your password to do so. You need to use the set password clause at the
lsnrctl prompt to provide the listener with your (new) password, and then you can start and stop
the listener service once again. Note that set password doesn’t set a new password; it merely
causes the listener to ask you for the listener password so you can perform administrative tasks.

Listing 10-5 shows an attempt to stop the listener, which was refused because the password
wasn’t provided. The listener is then stopped properly with the set password command.

Listing 10-5. Stopping a Listener with Password Protection

$ lsnrctl stop
LSNRCTL for Linux: Version 10.2.0.0.0 - Beta on 07-JUN-2005 13:06:22
Copyright (c) 1991, 2001, Oracle Corporation. All rights reserved.
Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=ntl-alaptisam.netbsa.org
)(PORT=1521)))

CHAPTER 10 ■ CONNECTIVITY AND NETWORKING404

4517CH10.qxd 8/19/05 10:44 AM Page 404

TNS-01169: The listener has not recognized the password
$ lsnrctl status password
Password:
The command completed successfully
LSNRCTL> stop
Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=IPC)(KEY=EXTPROC0)))
The command completed successfully

Naming and Connectivity
In the previous examples of connect descriptors and connect identifiers, the “sales” connect identi-
fier was used to connect to the sales service. A connect identifier can be the connect descriptor
itself or a simpler name (like “sales”) that resolves into a connect descriptor. A commonly used sim-
ple connect identifier is called a net service name. Thus, the sales connect identifier in those earlier
examples is a net service name.

Because providing the complete connect descriptor each time you want to make a connection
is very tedious, the use of net service names makes more sense. In order to do so, however, you need
to maintain a central repository of all the mappings between net service names and the connect
descriptor information so that Oracle can validate the net service names. Thus, when a user starts
the connection process by using the net service name “sales”, the central repository is searched
for the connect descriptor for “sales”. Once the connect descriptor is found, a connection is initiated
by Oracle Net to the database on the specified server.

Oracle allows you to have several types of naming repositories, and you can access the map-
ping information stored in these locations with one of the following four naming methods:

• Local naming: Uses a file called tnsnames.ora stored on each client to connect to the data-
base server

• Easy connect naming: Enables connections without any service name configuration

• External naming: Uses a third-party naming service to resolve service names

• Directory naming: Uses a centralized LDAP-compliant directory server to resolve service
names

No matter which naming method you use, the name-resolving process is the same. The follow-
ing steps are followed under each naming method to resolve a connect descriptor to a net service
name:

1. Select the naming method—local, easy connect, external naming, or directory service
naming.

2. Map the connect descriptors to the service names.

3. Configure clients to use the naming method chosen in step 1.

The Local Naming Method
Local naming is the simplest and easiest way to establish Oracle connectivity. Using this method,
you store service names and their connect descriptors in a localized configuration file named
tnsnames.ora. By default, this file is always stored in the $ORACLE_HOME/network/admin direc-
tory. Oracle provides a sample tnsnames.ora file for your use, and you can find it in the default
directory. (You can think of the tnsnames.ora file as being similar to the /etc/hosts file, which con-
tains the networking information for UNIX/Linux systems.) The tnsnames.ora file is always present

CHAPTER 10 ■ CONNECTIVITY AND NETWORKING 405

4517CH10.qxd 8/19/05 10:44 AM Page 405

on the client machine; if the database server is also used for client-type connections, there will be a
tnsnames.ora file on the server for the other databases you need to connect to from that server.

When you initiate a connection by using either the SQL*Plus interface or some other means,
you need to provide your username and password for the database you are connecting to. Once
you do so, Oracle Net has to figure out which server the database is running on, so it consults the
tnsnames.ora file to resolve the network address, the protocol, and the port for the database server.
When it successfully resolves these, it initiates contact with the listener on the machine where the
database server is located. Once the listener hands off the connection to the database server, the
database authenticates your username and password.

Once you configure connections using the local naming method, all database connections,
whether they are made directly through SQL*Plus or through an application’s logon page, will use
the tnsnames.ora file to resolve service names.

In addition to the tnsnames.ora file, client machines make use of another file called sqlnet.ora
when they use the local naming method. The sqlnet.ora file is located on each client and contains
import network configuration parameters. (Of course, if a server is used as a client as well, there
will be a sqlnet.ora file on the server.) Chapter 11 shows how to use the SQLNET.AUTHENTICATION_
SERVICES parameter to configure operating system authentication. Here’s a typical sqlnet.ora file:

SQLNET.ORA Network Configuration File:
/u01/app/oracle/product/10.2.0/db_1/network/admin/sqlnet.ora
Generated by Oracle configuration tools.
NAMES.DEFAULT_DOMAIN = wowcompany.com
SQLNET.AUTHENTICATION_SERVICES= (NTS)
NAMES.DIRECTORY_PATH= (TNSNAMES)

The tnsnames.ora and sqlnet.ora configuration files are usually located in the $ORACLE_HOME/
network/admin directory on UNIX/Linux systems and in the $ORACLE_HOME\network\admin
directory on Windows systems. However, you can place these files anywhere you like. If you place
them in a nondefault location, you have to use the TNS_ADMIN environment variable to tell Oracle
where the files are. Oracle will search for the two files in the following locations, and it will use the
first of each it finds:

1. Oracle looks in the directory specified by the TNS_ADMIN environment variable.

2. For the tnsnames.ora file, Oracle will look in the global configuration directory. For a
UNIX/Linux system, this is usually the /var/opt/oracle directory.

3. Oracle will look in the standard network directories: $ORACLE_HOME/network/admin on
UNIX/Linux systems and $ORACLE_HOME\network\admin on Windows systems.

Modifying tnsnames.ora Manually
To configure local naming, you have to edit the tnsnames.ora file provided by Oracle when you
create a database. All you need to do is go to the default tnsnames.ora location, $ORACLE_HOME/
network/admin, and edit this file to reflect your network and database service name information.
When you add a new database to your system, you also need to physically add the new database
service name mapping to each user’s tnsnames.ora file or send all your users a new, updated
tnsnames.ora file to replace the old one. Listing 10-6 shows a typical tnsnames.ora file.

Listing 10-6. A Typical tnsnames.ora File

TNSNAMES.ORA Network Configuration File:
/u01/app/oracle/product/10.2.0/db_1/network/admin/tnsnames.ora
Generated by Oracle configuration tools.
finance =

CHAPTER 10 ■ CONNECTIVITY AND NETWORKING406

4517CH10.qxd 8/19/05 10:44 AM Page 406

(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST =)(PORT = 1521))

)
(CONNECT_DATA =
(SERVICE_NAME = finance.world)

)
)

salesprod =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST =)(PORT = 1521))

)
(CONNECT_DATA =
(SERVICE_NAME = salesprod.world)

)
)

custprod =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = custprod)(PORT = 1521))

)
(CONNECT_DATA =
(SERVICE_NAME = custprod.world)

)
)

Three databases are listed in the tnsnames.ora file in Listing 10-6, and all three have different
features that distinguish them. The first entry is for the finance database, which is on the desktop
computer, NTL-ALAPATISAM. The salesprod database is located on the UNIX server, whose IP
address is 172.11.150.1, and Oracle Net can connect to it using port 1521 and the TCP protocol. The
last database uses a symbolic name, custprod, instead of the IP address, to denote the host server.

If you were to add a fourth database, orderprod, located on the host with IP address
172.16.11.151, to this tnsnames.ora file, you would need to add the appropriate connect
identifier to the tnsnames.ora file, as shown here:

orderprod =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = 172.16.11.151)(PORT = 1521))

)
(CONNECT_DATA =
(SERVICE_NAME =orderprod.world)

)

Once you configure a net service name and modify the tnsnames.ora file, here’s how you con-
nect to the database:

1. Distribute the new service name configuration to your clients. You may do so by copying the
tnsnames.ora and sqlnet.ora files to your clients, who must have the Oracle Client software
installed. Alternatively, you can use the Oracle Net8 Assistant or Net8 Configuration Assis-
tant to configure the net service names on the client itself.

2. Make sure the listener on the server where the database is running is started. Check that the
listener is using the same protocol and address as that you configured for the net service
name in the tnsnames.ora file. Also make sure that the listener is using the TCP/IP protocol
and is listening on the default port 1521.

CHAPTER 10 ■ CONNECTIVITY AND NETWORKING 407

4517CH10.qxd 8/19/05 10:44 AM Page 407

3. Make sure that the target database you’re trying to connect to is running.

4. Test the new connection by using the following syntax:

CONNECT username/password@net_service_name

Although local naming is quite easy to implement, it is a cumbersome method to use if you
have a large number of client installations that need to access the database server directly because
you need to maintain a local copy of the tnsnames.ora file on all your local clients. Furthermore,
when you change hosts or add databases to your system, you need to ensure that you make the
changes in all your client tnsnames.ora files. Of course, if you have a small client base, the mainte-
nance of the tnsnames.ora files shouldn’t be a problem.

Modifying tnsnames.ora with the Net Configuration Assistant
I prefer using the Oracle Net Configuration Assistant (NCA) to add a new service to my tnsnames.ora
file, rather than manually adding it to the file. Like the listener.ora file, the tnsnames.ora file is
somewhat tricky, with all its parentheses, and it’s easy to make a mistake when you’re manually
editing it. Creating new services using the GUI is very easy, with the NCA prompting you for the
server name, database name, network address, and protocol type. Once you’re done configuring the
connection, there will be a new or updated tnsnames.ora file in the default location that includes
the database services you just added.

To use the NCA, you must first install the Oracle Client software on the client machine by using
the Oracle Client CD. The NCA comes bundled with both the server and the client versions of the
software. You can create a connection and test it, all in under a minute.

Here are the steps involved in using the NCA to configure a new service name in your
tnsnames.ora file:

1. Start the Oracle Net Configuration Assistant on a UNIX/Linux server with the netca com-
mand, as shown here:

$ export DISPLAY=172.16.14.15:0.0
$ netca

■Note You can start the NCA on a Windows system by selecting Start ➤ Programs ➤ Oracle ➤ Configuration
and Migration Tools.

2. The Welcome page is displayed, as shown in Figure 10-1. Select Local Net Service Name
Configuration, and click Next.

3. On the Net Service Name Configuration page, select Add and click Next.

4. In the Service Name Configuration page, enter the service name you want to configure. In
this example, it is the database named emrep.netbsa.org. Note that the database service
name is generally the same as the global database name. Click Next.

5. In the Select Protocol page, select TCP and click Next.

6. In the TCP/IP Protocol page, enter the name of the host on which the database is running.
Select the standard port number, 1521. Click Next.

7. In the Test Page, click the “Yes, Perform a Test” button, and click Next.

CHAPTER 10 ■ CONNECTIVITY AND NETWORKING408

4517CH10.qxd 8/19/05 10:44 AM Page 408

Figure 10-1. Selecting the configuration in the Oracle Net Configuration Assistant

8. The NCA will try to connect to the database using the new configuration and will show you
the results (see Figure 10-2). If the connection fails, make sure the listener for the target
database is up and that the default username and password combination the test process
uses (system/manager) is changed to a valid username/password combination. Also, make
sure that you’ve provided the correct database name and domain name.

Figure 10-2. Testing the new configuration in the Oracle Net Configuration Assistant

9. The NCA will then ask you confirm the net service name in the Net Service Name page.
Click Next.

CHAPTER 10 ■ CONNECTIVITY AND NETWORKING 409

4517CH10.qxd 8/19/05 10:44 AM Page 409

10. In the Another Service Name page you can choose to configure more service names.

11. On the Net Service Name Configuration Done page, click Next. Click Finish on the Welcome
page when it reappears.

■Note You can also configure net service names using the Net Services Administration page in Oracle Enterprise
Manager, or the Oracle Net Manager GUI.

The Easy Connect Naming Method
Oracle DBAs can now simplify client configuration by using the new easy connect naming method.
Your database clients can now connect to Oracle Database 10g database services without using any
configuration files like the tnsnames.ora file for TCP/IP environments. All that your clients need is
the host name and the optional port number and service name of the database. You thus have
configuration-free, out-of-the-box TCP/IP connectivity to any database in your system.

The only condition for using the easy connect naming method is that you must have support
for the TCP/IP protocol on both the client and the server. However, you don’t have to configure a
tnsnames.ora file. You can look at this new connection method as an extension of the host naming
method introduced in Oracle9i.

Here’s the general syntax of this new connecting method:

$ CONNECT username/password@[//]host[:port][/service_name]

In this easy connect syntax statement, there are four things you need to focus on:

• // (double slash): This is optional.

• Host: This is a mandatory parameter. You can specify either a symbolic host name or the IP
address of the server hosting your target database.

• Port: This is an optional parameter. If you don’t specify a port, the default port, 1521, is used.

• Service_name: This specifies the service name of the database (the default is the host name),
and it is optional. You can leave this parameter out if your host name and database server
name are identical. If they aren’t, you must provide a valid service name to identify your
database.

The following example shows a connection being made to the dev1 database located on the
hp50 server. The connection is being made directly from the operating system prompt, so the
SQLPLUS keyword is used instead of CONNECT:

$ sqlplus system/system_passwd@ntl-alapatisam.netbsa.org:1521/emrep.netbsa.org
SQL*Plus: Release 10.2.0.0.0 - Beta on Tue Jun 7 12:14:14 2005
Copyright (c) 1982, 2004, Oracle. All rights reserved.
Connected to:
Oracle9i Enterprise Edition Release 9.0.1.5.1 - Production
With the Partitioning option
JServer Release 9.0.1.4.0 - Production
SQL>

Note that you can also connect without using the optional port number, as shown here:

$ sqlplus system/system_passwd@ntl-alaptisam.netbsa.org/emrep.netbsa.org

CHAPTER 10 ■ CONNECTIVITY AND NETWORKING410

4517CH10.qxd 8/19/05 10:44 AM Page 410

Note that the main parameters of the easy connect method are the same as the connection
information the local naming method requires in the tnsnames.ora file. The information provided
in the preceding example would be configured in the tnsnames.ora file as follows:

(DESCRIPTION=
(ADDRESS=(PROTOCOL=tcp)(HOST=ntl_alapatisam.netbsa.org)(PORT=1521))
(CONNECT_DATA=
(SERVICE_NAME=emrep.netbsa.org)))

If I am connecting from within SQL*Plus, I can use the following syntax:

$ sqlplus /nolog
SQL*Plus: Release 10.1.0.2.0 - Production on Sun Feb 27 12:09:48 2005
Copyright (c) 1982, 2004, Oracle. All rights reserved.
SQL> connect system/system_passwd@ntl-alaptisam.netbsa.org:1521/emrep.netbsa.org
Connected.
SQL>

■Note Of the four items you need to specify in the easy connect naming method, only the host name is
mandatory.

Configuring Easy Connect Naming
As the name indicates, the easy connect naming method needs very little in the way of configura-
tion. You specify the easy connect method by using the EZCONNECT keyword as a value for the
NAMES.DIRECTORY_PATH variable in the sqlnet.ora file. Consider the following sqlnet.ora file:

sqlnet.ora Network Configuration File:
/u01/app/oracle/10.2.0/db_1/network/admin/sqlnet.ora
Generated by Oracle configuration tools.
NAMES.DEFAULT_DOMAIN = netbsa.org
SQLNET.AUTHENTICATION_SERVICES = (NTS)
NAMES.DIRECTORY_PATH = (TNSNAMES,EZCONNECT)

The last line shows the connect methods that Oracle Net will use to resolve connect identifiers
to connect descriptors. The NAMES.DIRECTORY_PATH parameter specifies the order of the naming
methods Oracle Net will use to resolve connect identifiers to connect descriptors. In this example,
TNSNAMES is the first setting, so Oracle Net will use the tnsnames.ora file by default. If it fails to con-
nect using the tnsnames.ora file, it will try connecting through the EZCONNECT method.

If you want EZCONNECT to be the default method, you can manually edit your sqlnet.ora file so
that EZCONNECT comes first in your NAMES.DIRECTORY_PATH parameter, as shown here:

NAMES.DIRECTORY_PATH = (EZCONNECT, TNSNAMES)

Restrictions on the Easy Connect Naming Method
There are a few restrictions to using the easy connect naming method:

• You must install the Oracle Database 10g Net Services software on the client.

• TCP/IP protocol support must be provided on the client and the database server.

• You can’t use any advanced features of Oracle networking such as connection pooling,
external procedure calls, or Heterogeneous Services.

CHAPTER 10 ■ CONNECTIVITY AND NETWORKING 411

4517CH10.qxd 8/19/05 10:44 AM Page 411

The External Naming Method
The external naming method uses external naming services such as the Network Information Ser-
vice (NIS), originally developed by Sun Microsystems, to resolve net service names. NIS systems
keep a central database of host names and uses a flat namespace based on a master server.

Here are the steps you need to perform to use the external naming method for name resolution:

1. Have your system administrator configure NIS if it isn’t already in place.

2. Create a tnsnames.ora file as you would in the local naming method.

3. Convert the tnsnames.ora file to a tnsnames map, which you’ll need for the NIS server later
on. You can derive the tnsnames map from the tnsnames.ora file by having your system
administrator use the tns2nis command, as shown here:

tns2nis tnsnames.ora

4. Copy the tnsnames map file to the server on which the NIS is running.

5. Install the tnsnames map file on the NIS server using the makedbm NIS program, as shown
here:

makedbm tnsnames /var/yp/'domainname'/tnsnames

6. Test the NIS installation of the tnsnames map by using the following command:

ypmatch net_service_name tnsnames

You should get a confirmation back in the following form:

description=(address=(protocol=tcp)
(host=host_name)(port=port_number)))
(connect_data=(service_name=service_name)))

7. Edit the sqlnet.ora file as follows:

NAMES_DIRECTORY_PATH=(nis, hostname, tnsnames)

The nis method should be listed first inside the brackets so that Oracle Net will attempt
to resolve the service name using NIS first. Apart from that, the order of the items in the
brackets doesn’t matter.

The Directory Naming Method
Traditionally, network information was stored on multiple servers, often in different formats, but
today’s Internet-based applications leave many organizations open to huge security risks. Decen-
tralized systems are a constant source of worry for most security professionals. Centralized directory
services for authenticating users and enforcing security policies enhance an organization’s power to
safeguard its networked resources.

Directory services are huge centralized repositories that contain all the metadata pertaining to
databases, networks, users, security policies, and so forth. The directory behind these services can
replace a large number of localized files, such as the tnsnames.ora file, and can provide a single
point of name resolution and authentication. These directories are relatively low-update databases
with substantial numbers of reads against them. Retrieval performance is a key factor in the success
of a directory service.

CHAPTER 10 ■ CONNECTIVITY AND NETWORKING412

4517CH10.qxd 8/19/05 10:44 AM Page 412

Here are some examples of the kinds of data that such directories can manage efficiently:

• Usernames and passwords

• User profiles

• Authorization policies

• Network configuration and Net Services information

Many kinds of commercial directory services are available, including Microsoft’s Active Direc-
tory and Oracle Internet Directory (OID), and they can be employed to perform a host of functions
for an organization.

The directory naming method stores database connection information in a Lightweight Direc-
tory Access Protocol (LDAP)–compliant directory server. The connect identifiers are stored under
an Oracle context that contains entries for use with OID.

Although a centralized setup may seem daunting at first, it is quite easy to set up. The initial
cost may be higher, but the cost of managing the information over time is minimal. In addition to
helping clients connect to central networks and databases, directories such as OID are valuable for
providing enterprise-wide security.

Oracle Internet Directory (OID)
OID is an LDAP-compliant directory service that stores connect identifiers, among other things.
LDAP is a popular protocol for accessing online services, and it is an Internet standard for storage
and directory access. OID is very scalable because it is implemented on the highly scalable Oracle
Database 10g. Thus, a potentially huge amount of directory information can be stored and easily
accessed. The data is secure because it is stored in the database, and OID is a high-availability serv-
ice, just like the Oracle database. The LDAP specification is also attractive because of the minimal
client software it needs.

You can use OID for many applications, such as address books, security credential repositories,
and corporate directory services. Oracle strongly recommends moving to OID as a way of configur-
ing database connectivity. By de-emphasizing Oracle Names, a connection method offered in the
past, Oracle is positioning OID as the main alternative to the traditional local naming method,
which involves the use of the tnsnames.ora network configuration file. The Oracle database can
use OID to store usernames and passwords and to store a password verifier along with the entry of
each user. Other Oracle components use OID for various purposes:

• Oracle Application Server Single Sign-On: Uses OID to store user entries

• Oracle Collaboration Suite: Uses OID for centralized management of information about
users and groups

• Oracle Net Services: Uses OID to store and resolve database services and net service names

• Oracle Advanced Security: Uses OID for central management of user authentication creden-
tials, authorizations, mappings to shared schema, single password authentication, Enterprise
user security, and the central storage of Public Key Infrastructure (PKI) credentials

OID includes the following elements:

• Oracle directory server: Provides service names and other information by using a multitiered
architecture over TCP/IP

• Oracle directory replication server: Replicates LDAP data between Oracle directory servers

CHAPTER 10 ■ CONNECTIVITY AND NETWORKING 413

4517CH10.qxd 8/19/05 10:44 AM Page 413

• Directory administration tools, including the following:

• Oracle Directory Manager, a GUI that helps you administer OID and other command-
line administration tools

• Directory server management tools within Oracle Enterprise Manager 10g Application
Server Control console, which enable you to monitor real-time events from a web
browser

The basic idea behind the use of OID is straightforward. Users connect to OID, which is an
application running on an Oracle database. Users provide OID with an Oracle service identifier (a
database name). The directory returns the complete connection information—host name, connec-
tion protocol, port number, and database instance name—to the client, which then connects to the
database server. The connect identifiers are stored in the Oracle context, which contains entries
such as database names and service names, for use with Oracle software such as OID.

Oracle’s Advanced Security option uses OID to centrally manage user-related information. If
you are using Oracle’s replicated database technology, OID will come in very handy in managing the
complexity of multiple servers and network protocols.

Although Oracle would like you to convert all your network configurations to OID, it is not clear
that OID is worth the extra administrative overhead for most small to medium-sized enterprises.
Remember that OID is not a product meant exclusively for network configuration. Networking
database connections is only a small part of the capabilities of OID. The local naming approach (or
the new easy connect naming method) is still useful for most organizations because of its simplicity.

How OID Makes Database Connections
When you use OID to resolve names, remember that the client doesn’t have a file, such as
tnsnames.ora, with the name-resolution information. When using directory naming, Net Services
clients connect to a database as follows:

1. The person wanting to connect types his or her usual username/password combination
into the client computer, along with a connect identifier.

2. The sqlnet.ora file on the client specifies that it’s using OID to resolve names, so the Net
Services client hands its request to the OID listener/dispatcher process.

3. The OID listener/dispatcher relays the LDAP request to the Oracle directory server.

4. The directory server connects to the OID database and resolves the connect identifier to the
underlying connect descriptor, which contains the network, server, and protocol informa-
tion. It sends this detailed connect descriptor information to the Net Services client.

5. The client sends the connect descriptor it receives to the Oracle Net listener (or to the dis-
patcher, if shared servers are being used).

6. The listener service receives the connection request and, after verifying it, sends it to the
database.

The Organization of OID
A directory contains a set of information about various objects, such as employee names and
addresses or database service name information (as is discussed in this chapter). The information
in a directory is arranged in a hierarchical structure called the Directory Information Tree (DIT).

CHAPTER 10 ■ CONNECTIVITY AND NETWORKING414

4517CH10.qxd 8/19/05 10:44 AM Page 414

Every directory entry is made up of various object classes and attributes, as follows:

• Directories are made up of object classes.

• Object classes are groups of attributes.

• Attributes are the containers that hold the data.

A directory consists of entries, which are collections of information about an object. To identify
an entry unambiguously, you need something to tell you where it is located in the directory struc-
ture. This unambiguous address locator is the distinguished name (DN) of the entry. A DN is like an
address that exactly locates an entry in the directory—it gives you the complete path from the top of
the hierarchy to where an entry is located.

Here’s an example of a DN:

cn=nina
ou=finance
c=us
o= wowcompany

This DN for the nina entry has the following nodes:

• cn: Common name

• ou: Organizational unit

• c: Country

• o: Organization

Thus, the DN nina.finance.us.wowcompany uniquely identifies the person with the name Nina
working in the finance department of the U.S. branch of Wowcompany. Note that each of the vari-
ous nodes are called relative distinguished names (RDNs), so in essence a DN is nothing more than
a string of RDNs.

A naming context is a contiguous subtree on a single directory server. An Oracle context con-
tains relevant entries for use with Oracle features, such as Oracle Net Service directory naming and
enterprise user security. You can have multiple Oracle contexts in one directory server. OID will
create a default Oracle context at the root of the directory information tree. In the DIT, the Oracle
context RDN (cn=OracleContext) is the default location a client uses to look up matching connect
descriptors for a connect identifier in the directory.

An Oracle context in a directory tree would have all the service names underneath it, including
complete network- and server-connection information. In addition to subentries that support
directory naming, an Oracle context contains other entries to support enterprise security. There-
fore, if you’re trying to connect to a database on a server, the OID server doesn’t have to search the
directory tree all the way from the root entry to the last node. You merely have to provide it with a
partial DN from the top root node to the Oracle context. The Oracle context will contain the net
service names underneath it, and the net service names will contain the detailed connect informa-
tion.

The administrative context, also known as the directory naming context, is a directory entry
that contains an Oracle context. The following simple example demonstrates these sometimes con-
fusing concepts.

The complete DN for the database orcl is the following:

dc=com,dc=wowcompany
cn=orcl,
cn=description,
cn=address,
cn=port,
cn=service_name

CHAPTER 10 ■ CONNECTIVITY AND NETWORKING 415

4517CH10.qxd 8/19/05 10:44 AM Page 415

In the DN, dc stands for domain component and is usually used to describe domain elements
in the directory.

The important point to note is that because all the connect descriptor information is under the
Oracle context RDN, you don’t have to provide the full DN each time you want to look up the con-
nection information for the database. You can replace the preceding lengthy DN with the following
generic-looking DN:

dc=com,dc=wowcompany,cn=OracleContext

Note that dc identifies a domain component and cn stands for a common name. In this example,
com and wowcompany are both domain components and are therefore at the top of the directory tree.

Installing OID
You can install OID using the Oracle Application Server 10g Release 2 (10.1.2.0.0) software. You must
choose the OracleAS Infrastructure 10g option in the Select a Product to Install window when using
the Oracle Universal Installer. This option lets you install a new OID on your server. In the next page
of the Oracle Universal Installer—the Select Installation Type page—select the Identify Manage-
ment and Metadata Repository option; this creates a Metadata Repository, which is a requirement
for installing OID.

Coverage of the installation and management of OID is beyond the scope of this book. Please
refer to the Oracle Application Server Release 2 documentation on the http://technet.oracle.com
web site for details.

Once you’ve configured OID, you’re ready to enter Oracle net service names into it. You can use
several methods to do so. The easiest ways are to add service names using Oracle Net Manager, if
you’re adding entries individually, or to import your entire tnsnames.ora file into OID using the
Oracle Enterprise Manager.

Oracle and Java Database Connectivity
Frequently, Java programs need to connect to a database to perform data manipulation tasks. Java
Database Connectivity (JDBC) is an interface that permits a Java program to connect to a database
and issue DML and DDL SQL statements. JDBC allows the use of dynamic SQL statements, for situ-
ations where you may not know the number and types of columns until run time. (If you’re going to
write static SQL, you can use SQLJ, which lets you embed SQL statements in Java.) JDBC provides a
rich library of routines that help you open and close connections to databases and process data.

In the following sections, you’ll see how you can use JDBC to connect to and work with Oracle
databases from Java.

Establishing Database Connectivity
Before you can connect to a database, you have to select the appropriate drivers. Oracle provides
four major kinds of JDBC drivers:

• JDBC thin driver: This pure Java client–based driver provides a direct connection to the data-
base using the TCP/IP protocol. The driver requires a listener and uses sockets for making
connections to databases.

• JDBC OCI driver: This driver needs a client installation of Oracle, so it is specific to Oracle.
This driver is highly scalable and can use connection pooling to serve large numbers of
users.

CHAPTER 10 ■ CONNECTIVITY AND NETWORKING416

4517CH10.qxd 8/19/05 10:44 AM Page 416

• JDBC server-side thin driver: Running on the server, this driver connects to remote databases
and provides the same functionality as the client-based thin driver.

• JDBC server-side internal driver: As its name indicates, this driver resides on the server and is
used by the Java Virtual Machine (JVM) to talk to the Oracle database server.

Once you choose a specific type of JDBC driver, you must specify the JDBC driver in one of two
ways: use the static registerDriver() method of the JDBC DriverManager class, or use the forName()
method of the java.lang class. Here are the two methods of specifying the JDBC driver:

DriverManager.registerDriver ("new oracle.jdbc.OracleDriver()");

or

Class.forName("oracle.jdbc.driver.OracleDriver")

Once you’ve loaded the JDBC driver, it’s time to make the connection to the database by using
the static getConnection() method of the DriverManager class. This will create an instance of the
JDBC connection class. Listing 10-7 shows the code for doing this.

Listing 10-7. Making the Database Connection

connection conn=DriverManager.getConnection(
"jdbc:oracle:thin:@prod1:1521:finprod", username, passwd);
/* Here's what the different parts of the connection object stand for: */
jdbc=protocol
oracle=vendor
thin=driver
prod1=server
1521=port number
finprod=Oracle database
username=database username
password=database password

If all your information is valid, you are connected to the database from your Java application.

Working with the Database
Now that you’ve learned how to connect to the database using JDBC, it’s time to find out how you
can process SQL statements in the database through the JDBC connection.

You can’t execute SQL directly from your Java program. First you need to create JDBC state-
ments, and then you need to execute your SQL statements. Let’s look at these two steps in detail.

Creating the Statement Object
To relay your SQL statements to the database, you need to create a JDBC Statement object. This
object will associate itself with an open connection and henceforth act as the conduit through
which SQL statements are transferred from the Java program to the database for execution.

Here’s how you create the JDBC Statement object:

statement stmt = conn.createStatement();

No SQL statements are associated with the stmt object. However, under the Statement class,
there is another object called PreparedStatement that always contains a SQL statement in addition
to being the channel for the statement’s execution. This SQL statement is compiled immediately,
and it can be compiled just once and used many times thereafter, which is a great benefit.

CHAPTER 10 ■ CONNECTIVITY AND NETWORKING 417

4517CH10.qxd 8/19/05 10:44 AM Page 417

For simplicity, however, I’ll just use the Statement object in this discussion. Let’s now turn to
the execution of SQL statements.

Executing SQL Statements
You can understand JDBC SQL statements if you separate the SELECT statements that query the
database from all the other statements. Unlike the others, SELECT statements don’t change the state
of the database.

Let’s first look at how to deal with query statements.

Handling Queries

SELECT statements use the executeQuery() method to get the query results. The method returns the
results is the ResultSet object. Listing 10-8 shows an example.

Listing 10-8. Getting the Query Results

string first_name,last_name,manager;
number salary;
resultSet rs = stmt.executeQuery("SELECT * FROM Employees");
while (rs.next()) {
first_name = rs.getString("first_name");
last_name = rs.getString("last_name");
manager = rs.getString("manager");
salary = rs.getNumber("salary");
system.out.println(first_name + last_name "works for"
Manager "salary is:" salary.");

Note that rs is an instance of the ResultSet object, and it holds the query results. The ResultSet
object also provides a cursor, so you can access the results one by one. Each time you invoke the
ResultSet method, the cursor moves to the next row in the result set.

Handling DDL and Nonquery DML Statements

Any statement that changes the state of the database—be it a DDL statement or a DML statement
such as INSERT, UPDATE, or DELETE—is executed using the executeUpdate() method. Note that the
word “update” in the method name indicates that the SQL statement will change something in the
database.

Here are some examples of executeUpdate() statements:

statement stmt = conn.createStatement();
stmt.executeUpdate("CREATE TABLE Employees" +

"(last_name VARCHAR2(30), first_name VARCHAR2(20),
manager VARCHAR2(30), salary(number");

stmt.executeUpdate("INSERT INTO Employees " +
"VALUES ('Alapati', 'Valerie', 'Shannon', salary)");

The preceding statements create the Statement object, and then they create a table and insert
some data into it.

All your normal SQL transaction properties, such as consistency and durability, are maintained
when you use JDBC to execute SQL statements. By default, each statement commits after its execu-
tion because the value of conn.setAutoCommit() is set to false, as you can see in the following
example. You can ensure that there is a commit after every statement in either of the following ways
(and if you wish, you can also use the conn.rollback() method to roll back a statement):

CHAPTER 10 ■ CONNECTIVITY AND NETWORKING418

4517CH10.qxd 8/19/05 10:44 AM Page 418

conn.setAutoCommit(false);

or

conn.commit();

Here’s a simple example that shows how to use the commit() and rollback() statements:

conn.setAutoCommit(false);
Statement stmt = conn.createStatement();

stmt.executeUpdate("INSERT INTO employees
VALUES('Alapati','Valerie','Nicholas',50000)");

conn.rollback();
stmt.executeUpdate("INSERT INTO employees
VALUES('Alapati','Nina','Nicholas',50000)");

conn.commit();

Error Handling
All programs must have an exception handler built in; especially those DML statements that change
the database state. One way to do this is to use the rollback() statement when you run into an
error, so your partial changes are all undone.

You can use the SQLException() method to catch errors. In Java programs, you use a try code
block to generate (or throw) an exception, and the catch block will “catch” the exception thus
thrown. Listing 10-9 shows a sample Java code block that illustrates these concepts.

Listing 10-9. Handling Errors in Java

try { conn.setAutoCommit(false);
stmt.executeUpdate(" " +
"(Disney World', 'MickeyMouse', 2.00)");
conn.commit();
conn.setAutoCommit(true);

}
catch(SQLException ex) {

system.err.println("SQLException: " + ex.getMessage());
conn.rollback();
conn.setAutoCommit(true);
}

A Complete Program
Listing 10-10 shows a sample program that puts together all the concepts of the preceding sections.
The example first registers the Oracle thin driver and connects to the database using it. The pro-
gram updates some rows in a table and uses the result set to print the data.

Listing 10-10. A Complete Java Program Using JDBC

/* import java packages */
import java.sql.*;
public class accessDatabase{

public static void main(String[] args)
throws SQLException {
stringfirst_name,last_name ;
number salary ;
connection c = null;

CHAPTER 10 ■ CONNECTIVITY AND NETWORKING 419

4517CH10.qxd 8/19/05 10:44 AM Page 419

/* register the Oracle Driver */
try {

class.forName("oracle.jdbc.driver.OracleDriver");
c = DriverManager.getConnection(

"jdbc:oracle:thin:@prod1:1521:finprod",
"user", "user_passwd");

/* create the statement object */
statement s = c.createStatement();
c.setAutoCommit(false);
s.executeUpdate("CREATE TABLE employees " +

"(first_name VARCHAR2(30), last_name VARCHAR2(20),salary NUMBER)");
s.executeUpdate("INSERT INTO employee VALUES " +

"('nicholas', 'Alapati', 50000)");
c.commit();
c.setAutoCommit(true);

/* the result set */
resultSet rs = s.executeQuery("SELECT * FROM Employees");
while(rs.next()){

first_name = rs.getString("first_name");
last_name = rs.getString("last_name");
salary = rs.getFloat("salary");
System.out.println(first_name + last_name + " works for " +

Manager + " salary is:" + salary");
}

/* exception handler */
} catch (ClassNotFoundException ex){

system.out.println(ex);
} catch (SQLException ex){

if (c != null){
c.rollback();
c.setAutoCommit(true);

}
system.out.println("SQLException caught");
system.out.println("---");
while (ex != null){

system.out.println("Message : " + ex.getMessage());
system.out.println("SQLState : " + ex.getSQLState());
system.out.println("ErrorCode : " + ex.getErrorCode());
system.out.println("---");
ex = ex.getNextException();

}
}

}
}

As our focus is on Oracle database administration and not on programming, I presented the
simple Java program here mainly to draw your attention to aspects of Oracle database connectivity.

CHAPTER 10 ■ CONNECTIVITY AND NETWORKING420

4517CH10.qxd 8/19/05 10:44 AM Page 420

User Management and
Database Security

Database security means different things to different people. The essential thing to remember,
though, is that the underlying goal of database security is to prevent unauthorized use of the data-
base or its components. Database security depends on system and network security as well, but this
chapter mostly focuses on how you can provide solid security at the database level.

The first thing you’ll learn in this chapter is how to create and manage users in an Oracle data-
base. Everything users can do within an Oracle database is based on explicit privileges granted to
them. You can grant users system and object privileges directly, but it’s far more common to grant
these privileges to roles, and to then grant roles to users, so this chapter shows you how to work
with roles.

You’ll also learn about Oracle profiles and how to manage them. Profiles let you set limits on
the resources used by each user in the database and enforce a password policy for security pur-
poses. The Oracle Database Resource Manager enables you to allocate scarce database and server
resources among groups of users according to a resource plan. This chapter provides you with an
introduction to this tool.

While controlling database access through the use of grants and privileges is fairly common,
you must also consider using Oracle’s powerful fine-grained access control feature, which lets you
control access at the row level. This chapter discusses Oracle’s fine-grained access control feature,
also known as a virtual private database, in detail.

In a production database, it’s always a good idea to audit database usage. You can audit both
changes made to the data and database events, such as unsuccessful attempts to log into the data-
base. Triggers based on system events can provide your database with a strong security layer, and
this chapter explains how to use these special triggers. I also show how you can use Oracle’s fine-
grained auditing polices.

Data encryption is an important tool for most organizations today. Oracle offers several ways
to encrypt your data, including special PL/SQL encryption packages and a new transparent data-
encryption feature that lets you encrypt a table’s columns. I cover these encryption features in this
chapter.

In short, these are the main aspects of Oracle database security management:

• Controlling access to data (authorization)

• Restricting access to legitimate users (authentication)

• Ensuring accountability on part of the users (auditing)

• Safeguarding key data in the database (encryption)

• Managing the security of the entire organizational information structure (enterprise
security)

421

C H A P T E R 1 1

■ ■ ■

4517CH11.qxd 8/19/05 10:50 AM Page 421

Users are, of course, why a database exists, so let’s look at how to manage users in an Oracle
database before covering the various Oracle security management techniques.

Managing Users
User management is a pretty complex topic because not only does it deal with authorizing users to
use the database, but it also touches on vital topics such as security and resource management. The
DBA creates the users in the database and sets limits on their access to the various components.
The DBA also limits the physical space and system resources that the users can use, generally by
assigning database roles and setting privileges. You’ll see later on how to make sure that the default
passwords associated with various database users are changed soon after creating a new database.

When you create a new database, the only users at first will be the application or schema own-
ers. Later on, you’ll create the actual end users who will be using the database on a day-to-day basis.
For the first set of users, the application owners, you will be more concerned with allocating suffi-
cient space and other privileges to create objects in the database. For the end users, your primary
concern will be their access rights to various objects and the limits on their use of resources while
accessing the database.

Temporary and Default Tablespaces
All users need a temporary tablespace where they can perform work such as sorting data during SQL
execution. Users also need to have a default tablespace, where their objects will be created if they
don’t explicitly assign a different tablespace during object creation.

In Oracle Database 10g, you can create a default temporary tablespace and a default perma-
nent tablespace for all users during the database-creation process (Chapter 9 explains how to create
these two tablespaces). Once you have created these two tablespaces, you don’t have to specify
them again when you create a new database user.

■Caution If you don’t assign a specific tablespace as the default tablespace, the System tablespace becomes
your default tablespace. If a user creates a very large object in the System tablespace, they might take up all the
space in it and make it impossible for the SYS super user to create any new objects in it, causing the database to
come to a grinding halt. This is the main reason why you should always create a default tablespace for every user.

Creating a New User
You use the CREATE USER statement to create a user. It’s good practice to assign each new user both a
default temporary and a default permanent tablespace. Since I’m assuming that you’ve already cre-
ated both of these tablespaces when you created the database, the CREATE USER statement can be
very simple, as shown here:

SQL> CREATE USER salapati IDENTIFIED BY sammyy1;
User created.
SQL>

This statement creates a new user, salapati, with sammyy1 as the password. You don’t have
to assign a default temporary or permanent tablespace to the user (assuming that you created a
default temporary and permanent tablespace for the database while creating your database).

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY422

4517CH11.qxd 8/19/05 10:50 AM Page 422

The following query shows the new user’s default (permanent) and temporary tablespaces:

SQL> SELECT default_tablespace, temporary_tablespace
2 FROM dba_users
3* WHERE username='SALAPATI';

DEFAULT_TABLESPACE TEMPORARY_TABLESPACE
------------------- -------------------------
USERS TEMPTBS_01

SQL>

The new user can’t connect to the database, however, because the user doesn’t have any
privileges to do so. This is what happens when the user salapati tries to connect using SQL*Plus:

[test] $ sqlplus salapati/sammyy1

SQL*Plus: Release 10.2.0.0.0 - Beta on Thu Feb 24 12:11:50 2005

Copyright (c) 1982, 2004, Oracle. All rights reserved.

ERROR:
Ora-01045: user SALAPATI lacks CREATE SESSION privilege; logon denied

Enter user-name:

In order for the salapati user to connect and start communicating with the database, you must
grant the CREATE SESSION system privilege to the new user, as shown here:

SQL> GRANT CREATE SESSION TO salapati;
Grant succeeded.
SQL>

■Note There’s a little-known way to create a new user, by using the GRANT CONNECT statement. The following
example creates the new user nina with the CONNECT system privilege:

SQL> GRANT CONNECT to nina IDENTIFIED BY nina1;
Grant succeeded.
SQL>

If you’ve followed the Oracle-recommended practice and have created default temporary and
permanent tablespaces when creating the database, any new user you create will be able to use
them instead of using the System tablespace as the temporary and default tablespace by default. In
any case, after you create a user, the new user can’t create new objects, such as tables and indexes,
right away. In the following example, USERS is the default permanent tablespace for the database,
and you can see what happens when the user tries to create a table:

SQL> CONNECT salapati/sammyy1
Connected.
SQL> CREATE TABLE xyz (name VARCHAR2(30));
create table xyz (name varchar2(30))
*
ERROR at line 1:
ORA-01950: no privileges on tablespace 'USERS'
SQL>

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY 423

4517CH11.qxd 8/19/05 10:50 AM Page 423

Let’s say you assigned the default permanent tablespace USERS to all users. Since user salapati
didn’t specify a tablespace for creating the new xyz table, Oracle tries to create it in the default per-
manent tablespace, USERS. However, the user wasn’t granted any quota on the tablespace. By
default, users aren’t given any space quotas on any tablespaces. Since the user is assigned the
USERS tablespace but isn’t allocated a quota of space in that tablespace, the user can’t create any
objects in the USERS tablespace. You must explicitly allocate tablespaces quotas to a user.

It’s common to assign specific tablespace quotas at user creation time. Here’s how you grant a
space quota on a tablespace to a user:

SQL> ALTER USER salapati
2 QUOTA 100M ON users;

User altered.
SQL>

■Tip If you don’t want a user to create any objects at all in the database, don’t assign a quota on any table-
space. If it’s an existing user with a specific quota on a tablespace, you can use the ALTER USER statement to set
this quota to 0. When you use the ALTER USER statement to assign a quota of 0 on all tablespaces, any objects
already created by the user will remain, but the user won’t be able to create any new objects. The existing objects
also cannot grow in size, since you revoked the tablespace quotas.

Once the new user is given a space quota on a tablespace, the user can create database objects
such as tables and indexes. By default, any objects a user creates will be placed in the user’s default
permanent tablespace (USERS in our example). The user can choose to create the objects in any
tablespace, however, as long as the user has a space quota on that tablespace. If you want a user
to have unlimited space usage rights in all tablespaces, you need to grant the user the UNLIMITED
TABLESPACE privilege, as shown here:

SQL> GRANT UNLIMITED TABLESPACE TO salapati;
Grant succeeded.
SQL>

If you want a user to create his or her own tablespaces, you must enable the user to create a
tablespace by using the GRANT CREATE TABLESPACE TO username command. Similarly, you must grant
the DROP TABLESPACE privilege. If a user wishes to subsequently create database objects in a table-
space that they created, they won’t need any space quotas on those tablespaces. You can see the
individual tablespace quotas allocated to a user by using the DBA_TS_QUOTAS view, as shown here:

SQL> SELECT tablespace_name, username, bytes FROM DBA_TS_QUOTAS;
TABLESPACE USERNAME BYTES
---------- --------- ----------
SYSAUX DMSYS 196608
SYSAUX OLAPSYS 16252928
SYSAUX WK_TEST 12582912
SYSAUX SYSMAN 78577664
RMAN_TBSP RMAN 8585216
SQL>

As you can see, four different users, all owners of various Oracle components, have quotas in
the Sysaux tablespace and the user RMAN has a quota on a tablespace created exclusively for the
Recovery Manager’s use.

Since they aren’t mandatory, you can create a database without a default temporary tablespace
or a default (permanent) tablespace. In such a case, you can assign both tablespaces explicitly when
you create a new user. You can also assign a quota on the default permanent tablespace. Here’s an

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY424

4517CH11.qxd 8/19/05 10:50 AM Page 424

example showing how to create a user by explicitly specifying the default tablespaces (temporary
and permanent). The GRANT QUOTA clause gives the user a 500MB space allocation in the USERS
tablespace so the user can create objects there:

SQL> CREATE USER salapati IDENTIFIED BY sammyy1
TEMPORARY TABLESPACE TEMPTBS01
DEFAULT TABLESPACE USERS
GRANT QUOTA 500M ON USERS;

User created.
SQL>

Altering a User
You use the ALTER USER statement to alter a user in the database. Using this statement, you can do
the following:

• Change a user’s password

• Assign tablespace quotas

• Set and alter default and temporary tablespaces

• Assign a profile and default roles

Here’s an example showing how a DBA (or the user being altered) can use the ALTER USER com-
mand to change a user’s password:

SQL> SHOW USER
USER is "SALAPATI"
SQL> ALTER USER salapati IDENTIFIED BY sammyy1;
User altered.
SQL>

Users can also change their own passwords with the PASSWORD command in SQL*Plus, as
shown here:

SQL> PASSWORD
Changing password for SALAPATI
Old password: *********
New password: *********
Retype new password: *********
Password changed
SQL>

Dropping a User
To drop a user, you use the DROP USER statement, as shown here:

SQL> DROP USER salapati;
User Dropped.
SQL>

The DROP USER command will remove not only the user, but all objects owned by the user as
well. If other objects in the database depend on this user, you won’t be able to use the simple DROP
USER command—you must use the DROP USER . . . CASCADE statement, which drops the user, the
user’s schema objects, and any dependent objects as well. Here’s an example:

SQL> DROP USER salapati CASCADE;
User Dropped.
SQL>

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY 425

4517CH11.qxd 8/19/05 10:50 AM Page 425

In Chapter 16, you’ll learn about Oracle’s new Recycle Bin, which keeps the database from
dropping a table permanently when you issue a DROP TABLE statement. This gives you the chance
to revive a “dropped” table if necessary. When you drop a user, however, all tables and other objects
in the user’s schema will be dropped permanently, without using the Recycle Bin! Therefore, if you
aren’t sure whether you will need a user’s objects later, but you want to deny access, simply leave the
user and the user’s schema intact, but deny the user access to the database by using the following
command:

SQL> REVOKE CREATE SESSION FROM salapati;
Revoke succeeded.
SQL>

Creating and Using User Profiles
We have so far created a new user, assigned the user a set of default and temporary tablespaces, and
granted the user the privileges to connect to the database. What is the limit on the amount of data-
base resources this person can use? What if he or she unwittingly starts a SQL program that guzzles
the CPU resource like crazy and brings your system to its knees?

You can set the individual resource limits in Oracle by using what are known as profiles. A pro-
file is a collection of resource-usage and password-related attributes that you can assign to a user.
Multiple users can share the same profile, and you can have an unlimited number of profiles in an
Oracle database. Profiles set hard limits on resource consumption by the various users in the data-
base and help you limit the number of sessions a user can simultaneously keep open, the length of
time these sessions can be maintained, and the usage of CPU and other resources. Here, for exam-
ple, is a profile called “miser” (because it limits resource usage to a minimum):

SQL> CREATE PROFILE miser
2 LIMIT
3 connect_time 120
4 failed_login_attempts 3
5 idle_time 60
6* sessions_per_user 2;

Profile created.
SQL>

When a user with the miser profile connects, the database will allow the connection to be
maintained for a maximum of 120 seconds and will log the user out if he or she is idle for more than
60 seconds. The user is limited to two sessions at any one time. If the user fails to log in within three
attempts, the user’s accounts will be locked for a specified period or until the DBA manually
unlocks them.

■Note Besides user profiles, you can also use some third-party tools that include query governs, which limit the
types of queries that users can use within the database, thus ensuring that the database is not loaded down by
inefficient queries.

Profile Parameters and Limits
Oracle databases enable you to set limits on several parameters within a profile. The following sec-
tions provide brief explanations of these parameters, which can be divided into two broad types:
resource parameters, which are concerned purely with limiting resource usage, and password
parameters, used for enforcing password-related security policies.

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY426

4517CH11.qxd 8/19/05 10:50 AM Page 426

Resource Parameters

The main reason for using resource parameters is to ensure that a single user or a set of users
doesn’t monopolize the database and server resources. Here are the most important resource
parameters that you can set within an Oracle Database 10g database:

• CONNECT_TIME: Specifies the total time (in seconds) a session may remain connected to the
database.

• CPU_PER_CALL: Limits the CPU time used per each call within a transaction (for the parse,
execute, and fetch operations).

• CPU_PER_SESSION: Limits the total CPU time used during a session.

• SESSIONS_PER_USER: Specifies the maximum number of concurrent sessions that can be
opened by the user.

• IDLE_TIME: Limits the amount of time a session is idle (which is when nothing is running on
its behalf).

• LOGICAL_READS_PER_SESSION: Limits the total number of data blocks read (from the SGA
memory area plus disk reads).

• LOGICAL_READS_PER_CALL: Limits the total logical reads per each session call (parse, execute,
and fetch).

• PRIVATE_SGA: Specifies a session’s limits on the space it allocated in the shared pool compo-
nent of the SGA (applicable only to shared-server architecture systems).

• COMPOSITE_LIMIT: Sets an overall limit on resource use. A composite limit is a limit on the
sum of several of the previously described resource parameters, measured in service units.
These resources are weighted by their importance. Oracle takes into account four parameters
to compute a weighted COMPOSITE_LIMIT: CPU_PER_SESSION, CONNECT_TIME, LOGICAL_READS_
PER_SESSION, and PRIVATE_SGA. You can set a weight for each of these four parameters by
using the ALTER RESOURCE COST statement, as shown in the following example:

SQL> ALTER RESOURCE COST
2 cpu_per_session 200
3 connect_time 2;

Resource cost altered.
SQL>

■Tip If you don’t use a weight for any of these four parameters, the parameters will be ignored in the computa-
tion of the COMPOSITE_LIMIT parameter.

Password Parameters

Oracle provides you with a wide variety of parameters to manage user passwords. You can set the
following password-related profile parameters to enforce your security policies:

• FAILED_LOGIN_ATTEMPTS: Specifies the number of times a user can attempt to log in before
being locked out.

• PASSWORD_LIFE_TIME: Sets the time limit for using a particular password. If you don’t change
the password within this specified time, the password expires.

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY 427

4517CH11.qxd 8/19/05 10:50 AM Page 427

• PASSWORD_GRACE_TIME: Sets the time period during which you’ll be warned that your pass-
word has expired. After the grace period is exhausted, you can’t connect to the database with
that password.

• PASSWORD_LOCK_TIME: Specifies the number of days a user will be locked out after reaching the
maximum number of unsuccessful login attempts.

• PASSWORD_REUSE_TIME: Specifies the number of days that must pass before you can reuse the
same password.

• PASSWORD_REUSE_MAX: Determines how many times you need to change your password before
you can reuse a particular password.

• PASSWORD_VERIFY_FUNCTION: Lets you specify your own password-verification function if you
don’t want to use the default Oracle-provided verification function.

The Default Profile

As you can see, you can set a number of resource- and password-related attributes to control access
to the database and resource usage. If you create a user and don’t explicitly assign any profile to the
user, the user will inherit the default profile, as shown here:

SQL> SELECT profile FROM dba_users
WHERE username = 'SALAPATI'

PROFILE

DEFAULT

The default profile, unfortunately, isn’t very limiting at all—virtually all the resource limits are
set to UNLIMITED, meaning there’s no limit on resource usage whatsoever.

Listing 11-1 shows the results of querying the DBA_PROFILES table regarding the attributes for
the profile named default.

Listing 11-1. Resource Limits for the Default Profile

SQL> SELECT DISTINCT resource_name, limit
2 FROM dba_profiles
3* WHERE profile='DEFAULT';

RESOURCE_NAME LIMIT
-------------------------------- ----------------
IDLE_TIME UNLIMITED
CONNECT_TIME UNLIMITED
PASSWORD_LIFE_TIME UNLIMITED
PASSWORD_LOCK_TIME UNLIMITED
LOGICAL_READS_PER_SESSION UNLIMITED
PRIVATE_SGA UNLIMITED
LOGICAL_READS_PER_CALL UNLIMITED
SESSIONS_PER_USER UNLIMITED
CPU_PER_SESSION UNLIMITED
FAILED_LOGIN_ATTEMPTS 10
PASSWORD_VERIFY_FUNCTION NULL
PASSWORD_GRACE_TIME UNLIMITED
PASSWORD_REUSE_TIME UNLIMITED
PASSWORD_REUSE_MAX UNLIMITED
COMPOSITE_LIMIT UNLIMITED
CPU_PER_CALL UNLIMITED

16 rows selected.

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY428

4517CH11.qxd 8/19/05 10:50 AM Page 428

■Caution If you don’t assign a profile to a user, Oracle assigns that user the default profile. Because the default
profile uses a value of UNLIMITED for almost all parameters, you could end up with resource usage problems if
users are assigned the default profile.

Assigning a User Profile
You can assign a user a profile when you create the user. Here’s an example:

SQL> CREATE USER salapati IDENTIFIED BY sammyy1
TEMPORARY TABLESPACE TEMPTBS01
DEFAULT TABLESPACE USERS
GRANT QUOTA 500M ON USERS;
PROFILE 'prod_user';

User created.
SQL>

You can also assign a profile to a user any time by using the ALTER USER statement, as shown
here:

SQL> ALTER USER salapati
2 PROFILE test;

User altered.
SQL>

You can use the ALTER USER statement to assign an initial profile or to replace the current pro-
file with another.

Altering a User Profile
You can alter a profile by using the ALTER PROFILE statement, as follows:

SQL> ALTER PROFILE test
2 LIMIT
3 sessions_per_user 4
4* failed_login_attempts 4;

Profile altered.
SQL>

When Do Profile Changes Go into Effect?

Unless you change the setting of the RESOURCE_LIMIT initialization parameter from its default value
of false, the profile changes you make will never come into force. The RESOURCE_LIMIT parameter
determines whether the resource limits are enforced in database profiles. You need to set this
parameter to true in the init.ora file and restart the database, or use the ALTER SYSTEM command,
as shown here:

SQL> ALTER SYSTEM SET resource_limit=true;
System altered.
SQL>

■Tip Make sure you have the RESOURCE_LIMIT initialization parameter set to true so that the resource limits
set by the profiles will be enforced. Otherwise, Oracle will ignore the limits set in the CREATE or ALTER PROFILE
statement. The password-related profile attributes don’t depend on the RESOURCE_LIMIT parameter—they are
enabled automatically when you create the profile.

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY 429

4517CH11.qxd 8/19/05 10:50 AM Page 429

Dropping a User Profile
Dropping a profile is straightforward. Here’s how you would drop the test profile:

SQL> DROP PROFILE test CASCADE;
Profile dropped.
SQL>

The test profile is assigned to several users in the database, and to drop the profile for all of
them, you must use the CASCADE keyword. Note that the users who were assigned the test profile
will now be automatically assigned the default profile.

What Happens When Profile Limits Are Reached?
When a user hits either a session-level or a call-level resource limit, Oracle rolls back the user’s state-
ment that is in progress and returns an error message. If it’s a call-level limit (such as CPU_PER_CALL),
the user’s session remains intact and other statements belonging to the current transaction remain
valid. If a session-level limit is reached, the user can’t go any further in that session.

How Do You Know What the Profile Limits Should Be?
You have several ways to gather the statistics to determine the optimal values for several critical
resource limits, such as LOGICAL_READS_PER_SESSION. If you’re too liberal with the value, some users
may hog resources, and if you’re too conservative, you’ll be fielding many calls from irate users who
are prevented from completing their jobs.

By using the IDLE_TIME profile attribute, you can limit the amount of time a user’s session can
remain idle. However, using the DBMS_RESOURCE_MANAGER package may be a better way to
control a user’s idle connection time, and I explain this package in the “Using the Database Resource
Manager” section of this chapter. Using this package, you can set a maximum idle limit for a session
as well as limit the length of time an idle session can block other sessions.

Try to get some information from test runs that you’ve made of certain jobs. If you don’t have
reliable historical data, use the AUDIT SESSION statement to acquire baseline data for several param-
eters, such as connect time and logical reads. You can also use Oracle Enterprise Manager (OEM) to
gather the data. In addition, you may have feedback (or complaints!) from the users themselves
about programs that are failing due to limits on resource use or that need longer connect times to
the database server.

Managing Resources
With large numbers of database users, resource management becomes an important issue. Server
resources are ultimately limited, and you must have some means of apportioning the scarce resources
among the users. Oracle provides a powerful tool, the Database Resource Manager, which allows
you to control database resource usage in a sophisticated manner.

You can use either the user profiles I discussed in the previous section or the Database
Resource Manager to control resource usage in your database. User profiles are effective in
controlling the resource usage of individual users, but Oracle prefers that you use profiles mainly
for password management. Oracle recommends using the Database Resource Manager to control
resource usage.

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY430

4517CH11.qxd 8/19/05 10:50 AM Page 430

The Database Resource Manager
Suppose you’re managing a production database with the following problems:

• Batch jobs are taking up most of the available resources, which is hurting other, more critical
jobs that need to run at the same time.

• Excessive loads at peak times are causing critical processes to run for an unacceptably
long time.

• You schedule large jobs and really can’t predict when they might be launched.

• Some users are using an excessive amount of CPU time, causing you to kill their sessions
abruptly.

• Some users are using a very high degree of parallelism in their operations, which is hurting
the performance of the system as a whole.

• You can’t manage active sessions.

• You want to prioritize jobs according to some scheme, but you can’t do so using operating
system resources.

As you can see, all these problems stem from the inability of the DBA to allocate the limited
resources efficiently among competing operations, which leads to lopsided resource allocation and
very long response times for critical jobs. The Oracle Database Resource Manager is the answer—it
allows you to create resource plans, which specify how much of your resources should go to the var-
ious consumer groups. You can group users based on their resource requirements, and you can
have the Database Resource Manager allocate a preset amount of resources to these groups. You
can distribute the available CPU resources by allocating a set percentage of CPU time to various
users. Thus, you can easily prioritize your users and jobs. Your higher priority online users will be
served faster, while your lower priority batch jobs may take longer.

Using the Database Resource Manager, it’s possible for you to ensure that your critical user
groups (formally referred to as resource consumer groups) are always guaranteed enough resources
to perform their tasks.

The Database Resource Manager also enables you to limit the length of time a user session can
stay idle and to automatically terminate long-running SQL statements and user sessions. Using the
Database Resource Manager, you can set initial login priorities for various consumer groups. By
using the concept of the active session pool, you can also specify the maximum number of concur-
rently active sessions for a consumer group—the Database Resource Manager will automatically
queue all subsequent requests until the currently running sessions complete. The DBA can also
automatically switch users from one resource group to another, based on preset resource usage
criteria, and can limit the amount of undo space a resource group can use.

The following four elements are integral to the Database Resource Manager:

• Resource consumer group: A resource consumer group is used to group together similar users
based on their resource needs.

• Resource plan: The resource plan lays out how resource consumer groups are allocated
resources. Each resource plan contains a set of resource consumer groups that belong to this
plan, together with instructions as to how resources are to be allocated among these groups.
For example, a resource plan may dictate that the CPU resource be allocated among three
resource consumer groups so that the first group gets 60 percent and the remaining two
groups 20 percent of the total CPU time. A resource plan can also have subplans, which
enable the allocation of resources in greater detail among resource consumer groups.

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY 431

4517CH11.qxd 8/19/05 10:50 AM Page 431

• Resource allocation method: The resource allocation method dictates the specific method
you choose to use to allocate resources like the CPU. These are the available methods of allo-
cating database resources:

• CPU method: Oracle uses multiple levels of CPU allocation to prioritize and allocate
CPU usage among the competing user sessions.

• Idle time: You can direct that a user’s session be terminated after it has been idle for a
specified period of time. You can also specify that only idle sessions blocking other ses-
sions be terminated.

• Execution time limit: You can control resource usage by setting a limit on the maximum
execution time of an operation.

• Undo pool: By setting an undo pool directive, you can limit the total amount of undos
that can be generated by a consumer resource group.

• Active session pool: You can set a maximum allowable number of concurrent sessions
within any consumer resource group. All sessions that are beyond the maximum limit
are queued for execution after the freeing up of current active sessions.

• Automatic consumer group switching: Using this method, you can specify that a user
session be automatically switched to a different group after it runs more than a speci-
fied number of seconds. The group the session should switch to is called the switch
group, and the time limit is the switch time. The session can revert to its original con-
sumer group after the end of the top call, which is defined as an entire PL/SQL block or
a separate SQL statement.

• Canceling SQL and terminating sessions: By using CANCEL_SQL or KILL_SESSION as the
switch group, you can direct a long-running SQL statement or even an entire session to
be canceled or terminated.

• Parallel degree limit: You can use this method to specify the limit of the degree of paral-
lelism for an operation.

• Resource plan directive: The resource plan directive links a resource plan to a specific
resource consumer group.

Using the Database Resource Manager
You manage the Database Resource Manager by executing procedures in the Oracle-supplied
DBMS_RESOURCE_MANAGER package. It enables you to create a resource plan for the various
consumer groups and to assign the plans to the consumer groups. As a DBA, you’ll already have
privileges to execute any procedure in the DBMS_RESOURCE_MANAGER package, but for any
other users that need to use the Database Resource Manager, you’ll need to grant a special system
privilege called ADMINISTER_RESOURCE_MANAGER so they can use the Database Resource Manager, as
shown here:

SQL> EXEC DBMS_RESOURCE_MANAGER_PRIVS.GRANT_SYSTEM_PRIVILEGE -
(GRANTEE_NAME => 'scott', PRIVILEGE_NAME => 'ADMINISTER_RESOURCE_MANAGER');

The DBMS_RESOURCE_MANAGER package has several procedures, but we’ll focus on a few
important ones that will let you use the package to control resource allocation among database
users.

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY432

4517CH11.qxd 8/19/05 10:50 AM Page 432

■Note The following discussion of the Database Resource Manager is meant to familiarize you with the various
steps involved in creating resource plans and enforcing them. The Resource Plan Wizard in the OEM toolset is
really the best way to quickly create resource plans in your database once you get the hang of the various steps
involved in creating and maintaining the plans.

Here are the steps you need to follow to start using the Database Resource Manager:

1. Create a pending area. This is the work area where you create and validate resource con-
sumer groups, resource plans, and plan directives.

2. Create a resource consumer group. This is a grouping of users who will receive the same
amount of resources.

3. Create a resource plan. This is a collection of directives that specify how Oracle should allo-
cate resources to resource consumer groups.

4. Create a plan directive. This associates resource consumer groups with resource plans and
allocates resources among resource consumer groups.

5. Validate the pending area. This process validates the resource consumer group, the resource
plan, and the plan directive.

6. Submit the pending area. This creates the resource consumer group, the resource plan, and
the plan directives, and makes them active.

Once this is all done, you can assign users to resource consumer groups, and they’ll get the
resources that have been assigned to that group.

Creating a Pending Area
Before you can use the Database Resource Manager to allocate resources, modify an old plan, or
create a new plan, you need to create what is called a pending area to validate changes before their
implementation. The pending area serves as a work area for your changes. All the resource plans
you’ll create will be stored in the data dictionary, and the pending area is the staging area where you
work with resource plans before they are implemented.

Here’s how you create the pending area:

SQL> EXECUTE dbms_resource_manager.create_pending_area;
PL/SQL procedure successfully completed.
SQL>

You can also clear the pending area by using the following procedure if you think you’ve made
errors while creating the various components of the Database Resource Manager:

SQL> EXECUTE dbms_resource_manager.clear_pending_area;
PL/SQL procedure successfully completed.
SQL>

Creating Resource Consumer Groups
Once the pending area is active, you can create the resource consumer groups to which you’ll allo-
cate your users. You can assign users initially to one group and switch them to another group later,
if necessary. You use three parameters to create a resource consumer group: consumer group name
(CONSUMER_GROUP), a comment (COMMENT), and the method for distributing CPU among the resource
consumer group’s active sessions (CPU_MTH). There are two choices you can use for the CPU_MTH

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY 433

4517CH11.qxd 8/19/05 10:50 AM Page 433

parameter—the RUN_TO_COMPLETION method schedules sessions which will take the most time ahead
of other, less time-intensive sessions, and the default ROUND_ROBIN method, which uses a round-
robin scheduling system.

The example in Listing 11-2 shows how to create three consumer groups in the database: local,
regional, and national. Note that I’m not using the CPU_MTH parameter, since I plan to use the default
ROUND_ROBIN method.

Listing 11-2. Creating the Resource Consumer Groups

SQL> EXECUTE dbms_resource_manager.create_consumer_group -
> (consumer_group => 'local', comment => 'local councils');

PL/SQL procedure successfully completed.
SQL> EXECUTE dbms_resource_manager.create_consumer_group -

> (consumer_group => 'regional', comment => 'regional councils');
PL/SQL procedure successfully completed.
SQL>
SQL> EXECUTE dbms_resource_manager.create_consumer_group -

> (consumer_group => 'national', comment => 'national office');
PL/SQL procedure successfully completed.
SQL>

Determining What Groups Exist in Your Database

You can query the DBA_RSRC_CONSUMER_GROUPS view for information about what groups
currently exist in your database (before validating and submitting the pending area), as shown in
Listing 11-3.

Listing 11-3. Querying the DBA_RSRC_CONSUMER_GROUPS View

SQL> SELECT consumer_group, status
2* FROM dba_rsrc_consumer_groups;

CONSUMER_GROUP STATUS
------------------------------ -------
AUTO_TASK_CONSUMER_GROUP PENDING
DEFAULT_CONSUMER_GROUP PENDING
SYS_GROUP PENDING
OTHER_GROUPS PENDING
LOW_GROUP ACTIVE
AUTO_TASK_CONSUMER_GROUP ACTIVE
DEFAULT_CONSUMER_GROUP ACTIVE
SYS_GROUP ACTIVE
LOW_GROUP PENDING
OTHER_GROUPS ACTIVE
LOCAL PENDING
REGIONAL PENDING
NATIONAL PENDING
13 rows selected.
SQL>

Three new groups were created in the previous section—national, regional, and local—but
Listing 11-3 shows eight distinct consumer groups. The same query would have given you the fol-
lowing output before you created the three new groups in the pending area:

SQL> SELECT consumer_group,status
2 FROM dba_rsrc_consumer_groups;

CONSUMER_GROUP STATUS

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY434

4517CH11.qxd 8/19/05 10:50 AM Page 434

-------------------------- ------
AUTO_TASK_CONSUMER_GROUP ACTIVE
OTHER_GROUPS ACTIVE
DEFAULT_CONSUMER_GROUP ACTIVE
SYS_GROUP ACTIVE
LOW_GROUP ACTIVE
SQL>

The five resource consumer groups that you see in the preceding output are default groups that
exist in every Oracle database:

• OTHER_GROUPS: This isn’t really a group, because you can’t assign users to it. When a
resource plan is active, OTHER_GROUPS is the catchall term for all sessions that don’t
belong to this active resource plan.

• DEFAULT_CONSUMER_GROUP: If you don’t assign users to any group, they will, by default,
become members of the default group.

• SYS_GROUP and LOW_GROUP: These are part of the default plan, named system_plan, that
exists in every database.

• AUTO_TASK_CONSUMER_GROUP: This is a default resource consumer group used for auto-
matically executed tasks, such as the gathering of statistics. The priority for jobs such as
statistics collection will remain below jobs in the default consumer group.

Oracle supplies three default resource plans—the system plan, the internal plan, and the
internal quiesce—for each database, as shown by the output of the following query:

SQL> SELECT plan, comments, status FROM dba_rsrc_plans;
PLAN COMMENTS STATUS

--

SYSTEM_PLAN Plan to give system sessions priority ACTIVE
INTERNAL_QUIESCE Plan to internally quiesce the system ACTIVE
INTERNAL_PLAN Default plan ACTIVE
SQL>

If you query the DBA_RSRC_CONSUMER_GROUPS view after you validate the pending area,
you’ll see the five default groups and the three groups you just created. In Listing 11-4 you can see
that the STATUS shows ACTIVE instead of PENDING for the three new resource consumer groups
that I created.

Listing 11-4. Listing the Resource Consumer Groups

SQL> SELECT consumer_group, status
FROM dba_rsrc_consumer_groups;

CONSUMER_GROUP STATUS
------------------------------ --------
AUTO_TASK_CONSUMER_GROUP ACTIVE
DEFAULT_CONSUMER_GROUP ACTIVE
SYS_GROUP ACTIVE
OTHER_GROUPS ACTIVE
LOW_GROUP ACTIVE
LOCAL ACTIVE
REGIONAL ACTIVE
NATIONAL ACTIVE
8 rows selected.
SQL>

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY 435

4517CH11.qxd 8/19/05 10:50 AM Page 435

Creating Resource Plans
A resource plan contains directives that control the allocation of resources among various resource
consumer groups. Resource plans enable you to set limits on resource use by specifying limits on
four variables: CPU, number of active sessions degree of parallelism, and the order in which queued
sessions will execute. Let’s look at the four parameters that control these resources in more detail:

• CPU_MTH: You use this resource allocation method to specify how you wish to allocate the CPU
resource among the resource consumer groups. The default method is called EMPHASIS, and it
uses percentages to allocate CPU among the various groups. The alternative method, RATIO,
uses ratios instead.

• ACTIVE_SESS_POOL_MTH: This parameter determines the limit on the number of active session
in a resource consumer group. The only method available is the ACTIVE_SESS_POOL_ABSOLUTE
method, which is the default.

• PARALLEL_DEGREE_LIMIT_MTH: This is the parameter that determines the degree of parallelism
used by a specific operation. The only option is PARALLEL_DEGREE_LIMIT_ABSOLUTE (which is
the default).

• QUEUEING_MTH: This parameter determines the order in which queued sessions will execute.
Only the default FIFO_TIMEOUT option is currently available.

You can also create subplans (plans within plans), which let you subdivide resources among
different users.

Create your resource plan by invoking the DBMS_RESOURCE_MANAGER package again:

SQL> DBMS_RESOURCE_MANAGER.CREATE_PLAN
(PLAN => 'membership_plan',
CPU_MTH -> 'RATIO',
COMMENT => 'New Membership Recruitment');

PL/SQL procedure successfully completed.
SQL>

Creating Plan Directives
You now have a resource plan, but the plan still doesn’t have any resource limits assigned to it. You
need to create a resource plan directive to assign resources to the various resource consumer groups
in the database. You can allocate resources according to the following criteria:

• CPU: Using the CPU method, you can allocate resources among consumer groups or sub-
plans. You can use multiple levels of CPU resource allocation to prioritize CPU usage. For
example, you could specify that level 2 gets CPU resources only if any CPU resources are left
after level 1 is taken care of.

• Sessions: You can control the maximum number of active sessions open at any time by using
the ACTIVE_SESSION_POOL parameter. You can also allow for the termination of long-running
SQL queries and user sessions.

• Degree of parallelism: You can set a limit on the degree of parallelism during any operation.

• Automatic consumer group switching: You can specify that, under some conditions, the data-
base will automatically switch sessions to another consumer group.

• Undo usage: You can set limits on the number of undo operations a resource consumer
group can generate. The database automatically terminates SQL statements that cause the
undo generated by a consumer group to exceed its undo limit. This will prevent new mem-
bers of the consumer group from issuing DML statements.

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY436

4517CH11.qxd 8/19/05 10:50 AM Page 436

• Idle time limit: The idle-time-limit resource directive, set by using the MAX_IDLE_TIME para-
meter, helps you control resource use by various sessions in a busy database. You can use it
to set the maximum idle time for a single session. In addition, you can also limit the amount
of time a user session can block another session by setting the MAX_IDLE_BLOCKER_TIME
parameter.

Here’s an example that shows how you can limit a session in a resource plan to a maximum
idle time of 600 seconds and a maximum idle time of only 300 seconds if it happens to be blocking
another session:

SQL> EXECUTE dbms_resource_manager.create_plan_directive -
(plan => 'prod_plan',
group_or_subplan => 'dss_group',
comment => 'Limit idle time',
max_idle_time => 900,
max_idle_blocker_time => 300);

In the preceding example, when a session exceeds 900 seconds (or 300 seconds if it’s blocking
another session), the PMON background process will automatically kill the offending session.

Listing 11-5 shows how to create a plan directive using the CPU method. The plan directive
assigns 70 percent of the available CPU time at the first level to the local group, and the rest, 30 per-
cent, to the regional group. It allocates 100 percent of the CPU at the second level to the national
group. Note that this example uses the default emphasis method of CPU allocation, which allocates
CPU in terms of percentages. There also is an alternative allocation method called ratio, which allo-
cates CPU resources by using ratios.

Listing 11-5. Creating Plan Directives Using the CPU Method

SQL> EXECUTE dbms_resource_manager.create_plan -
directive (plan => 'membership_plan', -
GROUP_OR_SUBPLAN => 'local', COMMENT => 'LOCAL GROUP',-
CPU_P1 => 70);

PL/SQL procedure successfully completed.
SQL> EXECUTE dbms_resource_manager.create_plan -

directive (plan => 'membership_plan', -
GROUP_OR_SUBPLAN => 'REGIONAL',COMMENT=> 'regional group',-
CPU_P1 => 30);

PL/SQL procedure successfully completed.
SQL> EXECUTE dbms_resource_manager.create_plan

directive (plan => 'membership_plan', -
GROUP_OR_SUBPLAN => 'national',comment => 'national group',-
CPU_P2 => 100);

PL/SQL procedure successfully completed.
SQL>

■Tip If you don’t include a resource directive for other_groups, and the plan directive is for a primary or top plan,
Oracle won’t let you use your directives for the other groups in other_groups.

Validating the Pending Area
After you’ve created the resource consumer groups, the resource plans, and the plan directives, you
are ready to validate the changes you made. Here’s how you do it:

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY 437

4517CH11.qxd 8/19/05 10:50 AM Page 437

SQL> EXEC DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();
PL/SQL procedure successfully completed.

Submitting the Pending Area
By submitting the pending area, you actually create all the necessary entities, such as the resource
consumer group, the resource plan, and the plan directives, and make them active. You submit the
pending area as follows:

SQL> EXEC DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();
PL/SQL procedure successfully completed.

You can use the query in Listing 11-6 to determine resource plan directives that are currently in
force for various groups.

Listing 11-6. Determining the Status of the Resource Plans

SQL> SELECT plan,group_or_subplan,cpu_p1,cpu_p2,cpu_p3, status
2* FROM dba_rsrc_plan_directives;

PLAN GROUP CPU_P1 CPU_P2 CPU_P3 STATUS
------------------------------ -------------------------------------
SYSTEM_PLAN SYS_GROUP 100 0 0 ACTIVE
SYSTEM_PLAN OTHER_GROUPS 0 100 0 ACTIVE
SYSTEM_PLAN LOW_GROUP 0 0 100 ACTIVE
INTERNAL_QUIESCE SYS_GROUP 0 0 0 ACTIVE
INTERNAL_QUIESCE OTHER_GROUPS 0 0 0 ACTIVE
INTERNAL_PLAN OTHER_GROUPS 0 0 0 ACTIVE
MEMBERSHIP_PLAN REGIONAL 30 0 0 ACTIVE
MEMBERSHIP_PLAN NATIONAL 0 100 0 ACTIVE
MEMBERSHIP_PLAN OTHER_GROUPS 0 0 100 ACTIVE
MEMBERSHIP_PLAN LOCAL 70 0 0 ACTIVE
10 rows selected.
SQL>

Assigning Users to Consumer Groups
After you create your resource consumer groups and validate your pending area, you can assign
some of your users to the consumer groups you’ve created. Let’s say you want to assign three users
named local_user, regional_user, and national_user to the three resource groups as follows: assign
local_user to the local consumer group, regional_user to the regional consumer group, and
national_user to the national consumer group.

Remember that the three users are already members of a default group, the default_consumer_
group. Therefore, you need to first grant the three users privileges to switch their groups before you
can actually switch them to your new groups. Listing 11-7 shows how you can use the DBMS_
RESOURCE_MANAGER package to assign and switch users’ consumer groups.

■Tip If you grant the PUBLIC user the privilege to switch groups, you won’t have to grant the privilege to all the
users in the group individually. If you have a large number of users in each group, this is a better approach.

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY438

4517CH11.qxd 8/19/05 10:50 AM Page 438

Listing 11-7. Assigning Users to Consumer Groups

SQL> EXECUTE dbms_resource_manager_privs.grant_switch_
consumer_group ('local_user','local', true);

PL/SQL procedure successfully completed.
SQL> EXECUTE dbms_resource_manager.set_

initial_consumer_group ('local_user','local');
PL/SQL procedure successfully completed.
SQL> EXECUTE dbms_resource_manager_privs.grant_

switch_consumer_group('regional_user','regional', true);
PL/SQL procedure successfully completed.
SQL> EXECUTE dbms_resource_manager.set_initial_

consumer_group ('regional_user','regional');
PL/SQL procedure successfully completed.
SQL> EXECUTE dbms_resource_manager_privs.grant_

switch_consumer_group('national_user','national',true);
PL/SQL procedure successfully completed.
SQL> EXECUTE dbms_resource_manager.set_

initial_consumer_group ('national_user','national');
PL/SQL procedure successfully completed.
SQL>

You can verify that the three users have been assigned to the appropriate consumer groups by
using the query in Listing 11-8.

Listing 11-8. Verifying Resource Consumer Group Membership of Users

SQL> SELECT username, initial_rsrc_consumer_group
2 FROM dba_users;

USERNAME INITIAL_RSRC_CONSUMER_GROUP
------------------------------ ---------------------
SYS SYS_GROUP
SYSTEM SYS_GROUP
SALAPATI DEFAULT_CONSUMER_GROUP
NATIONAL_USER NATIONAL
REGIONAL_USER REGIONAL
LOCAL_USER LOCAL
6 rows selected.
SQL>

Note that super users SYS and SYSTEM are default members of the sys_group. User salapati is
a member of the default_consumer_group, to which all users in the database are automatically
assigned when they are first created. Your three new users, local_user, regional_user, and national_user,
are correctly assigned to their new consumer groups, local, regional, and national, respectively.

Automatic Assignment of a Resource Consumer Group to a Session

In Oracle Database 10g, you can have the Database Resource Manager automatically assign a user
session to a particular consumer group, based on certain session attributes. You map the session
attributes to various consumer groups, and when the user logs in, the relevant consumer group is
automatically assigned to the user based on the user’s attributes. If there is a conflict, it can be
resolved by a prioritizing of the mapping between session attributes and resource consumer
groups.

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY 439

4517CH11.qxd 8/19/05 10:50 AM Page 439

You use two DBMS_RESOURCE_MANAGER packages, SET_CONSUMER_GROUP_MAPPING and
SET_CONSUMER_MAPPING_PRI, to map session attributes and consumer resource groups and set the
priorities in the mappings. There are two distinct types of session attributes. The first set are login
attributes, which help the Database Resource Manager determine the user’s initial consumer group.
The other set of session attributes are runtime attributes.

The following are some of the session attributes that are considered when mapping a user ses-
sion to a particular consumer resource group:

ORACLE_USER

SERVICE_NAME

CLIENT_OS_USER

CLIENT_PROGRAM

CLIENT_MACHINE

MODULE_NAME

You map each of these session attributes to a particular resource consumer group using the
SET_CONSUMER_GROUP_MAPPING procedure. In the following example, hr user is mapped to the
human_resources_group group at login time:

SQL> EXECUTE DBMS_RESOURCE_MANAGER.SET_CONSUMER_GROUP_MAPPING
(DBMS_RESOURCE_MANAGER.ORACLE_USER, 'HR', 'HUMAN_RESOURCES_GROUP');

After login time, as the user’s session attributes change, so does the user’s resource consumer
group, based on the mapping between session attributes and resource groups.

At times, there can be a conflict between two mappings, and to resolve these conflicts, you use
the SET_CONSUMER_MAPPING_PRI procedure to set priorities for the various session attributes, ranging
from 1 to 10, with 1 being the least important and 10 being the most important priority value. Here’s
an example:

SQL> EXECUTE DBMS_RESOURCE_MANAGER. SET_CONSUMER_GROUP_MAPPING_PRI (
EXPLICIT => 1, CLIENT_MACHINE => 2, MODULE_NAME => 3, ORACLE_USER => 4,
SERVICE_NAME => 5, CLIENT_OS_USER => 6, CLIENT_PROGRAM => 7,
MODULE_NAME_ACTION => 8, SERVICE_MODULE=>9, SERVICE_MODULE_ACTION=>10);

When a session attribute changes, the user is automatically switched to the relevant resource
consumer group.

Enabling the Database Resource Manager
Just because you created a new plan and plan directives and submitted your pending area doesn’t
mean that Oracle will automatically enforce the resource plans. It’s your job to explicitly activate the
Database Resource Manager, either by specifying the RESOURCE_MANAGER_PLAN initialization parame-
ter in the init.ora file or by using the ALTER SYSTEM command as follows:

SQL> ALTER SYSTEM SET resource_manager_plan=MEMBERSHIP_PLAN;
System altered.
SQL> SELECT * FROM v$rsrc_plan;
NAME

MEMBERSHIP_PLAN
SQL>

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY440

4517CH11.qxd 8/19/05 10:50 AM Page 440

If you decide to deactivate the Database Resource Manager, you can use the following command:

SQL> ALTER SYSTEM SET resource_manager_plan='';
System altered.
SQL> SELECT * FROM v$rsrc_plan;
no rows selected
SQL>

At any given time, you can query V$RSRC_CONSUMER_GROUP to see what the resource usage
among the consumer groups looks like:

SQL> SELECT name,active_sessions,cpu_wait_time, consumed_cpu_time,
current_undo_consumption
FROM v$rsrc_consumer_group;

NAME ACTIVE CPU_ CONSUMED_ CURRENT
SESSIONS WAIT CPU_TIME UNDO_CONS

--
REGIONAL 0 0 0 0
NATIONAL 0 0 0 0
OTHER_GROUPS 1 0 74 0
LOCAL 0 0 18017 0
SQL>

Data Dictionary Views
The following data dictionary views help you manage the Database Resource Manager:

• The V$SESSION view shows which resource consumer groups the sessions are currently
assigned to.

• The DBA_RSRC_CONSUMER_GROUP_PRIVS view shows all resource consumer groups
granted to users or roles.

• The DBA_RSRC_PLANS view shows all resource plans in the database.

• The V$RSRC_PLAN view shows all currently active resource plans.

Using OEM to Administer the Database Resource Manager
Now that you’ve sweated through all the error-prone, time-consuming work of creating and
enabling resource plans, let me remind you that using the Oracle Enterprise Manager to manage
the Database Resource Manager is a far easier alternative. Here’s a brief introduction to using
OEM to administer the Database Resource Manager.

Using the Resource Monitors Page
You can use the Resource Monitors page to display the current state of the active resource plan. You
can view statistics for the currently active plan, and you can select a plan from the list and activate
it. The Consumer Group Statistics table lists a series of statistics for the consumer groups that are
part of the current resource plan.

■Tip When you activate a plan using the Resource Monitors page, you must exit the page and then choose
Resource Monitors to update the page.

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY 441

4517CH11.qxd 8/19/05 10:50 AM Page 441

Creating, Editing, and Deleting Resource Plans
You can manage the list of resource plans through the Resource Plans property sheet. As you know
by now, you can use resource plans to allocate resources among consumer groups. The Resource
Plans property sheet lets you create, delete, and modify the settings of a resource plan.

To manage a resource plan, go to Database Control Home Page ➤ Administration ➤ Consumer
Groups. From the Object_Type drop-down window, select Resource Plans. The Resource Plans page
appears, with a listing of all the current resource plans. You can either create a new resource plan or
select a resource plan from the list.

Managing Resource Consumer Groups
You can manage resource groups through the Resource Consumer Groups property sheet. You can
use the property sheet to create, delete, and modify the settings of a resource consumer group.

To manage a resource consumer group, go to Database Control Home Page ➤ Administration ➤
Consumer Groups. The Resource Consumer Groups page appears, showing all resource consumer
groups for the current database. You can create, edit, and delete resource consumer groups from
here.

Controlling Access to Data
Once you create users in the database, you need to control their access to the various data objects.
To take a simple example, a clerk in the human resources department of an organization may be
able to see the salary data of employees, but he or she should not have the authority to change
salaries. Oracle uses several means to control data access, and the most elementary way to do so
is by assigning database privileges and roles to database users.

Privileges in an Oracle Database
A privilege is the right to execute a particular type of SQL statement or to access a database object
owned by another user. In an Oracle database, you must explicitly grant a user privileges to perform
any activity, including connecting to a database or selecting, modifying, and updating data in a
table other than their own.

There are two basic types of Oracle privileges: system privileges and object privileges. You use
the GRANT statement to grant specific system privileges as well as object privileges to users. The fol-
lowing sections cover these two types of Oracle privileges in detail.

■Note You can manage your users through Database Control by going to Database Control Home Page ➤
Administration ➤ Users (under the Users and Privileges Section).

System Privileges
You grant a system privilege to a user so the user can either perform a particular action within the
database, or perform an action on any schema object of a particular type. A good example of the
first type of system privilege is the privilege that lets you connect to a database, called the CONNECT
privilege. Other such system privileges include the CREATE TABLESPACE, CREATE USER, DROP
USER, and ALTER USER privileges. The second class of system privileges grants users the right to
perform operations that affect objects in any schema. Examples of this type of system privilege

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY442

4517CH11.qxd 8/19/05 10:50 AM Page 442

include ANALYZE ANY TABLE, GRANT ANY PRIVILEGE, INSERT ANY TABLE, GRANT ANY PRIVI-
LEGE, INSERT ANY TABLE, DELETE ANY TABLE, and so on. As you can see, system privileges are
very powerful, and granting them to the wrong user could have a devastating impact on your
database.

Here are some common system privileges in an Oracle database:

• ADVISOR

• ALTER DATABASE

• ALTER SYSTEM

• AUDIT SYSTEM

• CREATE DATABASE LINK

• CREATE TABLE

• CREATE ANY INDEX

• CREATE SESSION

• CREATE TABLESPACE

• CREATE USER

• DROP USER

• INSERT ANY TABLE

Granting System Privileges

You use the GRANT statement to grant system privileges to users. When you grant a system privilege
to a user, the user can immediately use that privilege. Thus, privileges work in a dynamic fashion.

■Tip You can use either Oracle Enterprise Manager Database Control or SQL statements to GRANT and REVOKE
system privileges.

For example, to grant the CREATE SESSION system privilege to the sample user, hr, allowing hr
to log on to an Oracle database, issue the following statement:

SQL> GRANT CREATE SESSION TO hr;
Grant succeeded.
SQL>

The CREATE SESSION privilege enables a user to log on to an Oracle database.

■Tip You can grant all system privileges to a user (except the SELECT ANY DICTIONARY privilege), by specifying
ALL PRIVILEGES in the GRANT statement, as shown here:

SQL> GRANT ALL PRIVILEGES TO salapati;
Grant succeeded.
SQL>

ALL PRIVILEGES itself isn’t a system privilege—it’s a convenient way to grant all privileges in one step. You can
revoke all system privileges similarly, by using the REVOKE ALL PRIVILEGES statement.

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY 443

4517CH11.qxd 8/19/05 10:50 AM Page 443

As a DBA, you can also grant a system privilege to PUBLIC, in which case all users in the data-
base can perform the actions authorized by the privilege. Here’s an example:

SQL> GRANT CREATE SESSION TO public;
Grant succeeded.
SQL>

Once you grant the CREATE SESSION privilege to PUBLIC, all users can log into the database
without being granted the CREATE SESSION privilege on an individual basis. As you can see, grant-
ing a privilege to PUBLIC is fraught with danger, since all users will have that privilege.

You can grant a system privilege to a user, provided one of the following is true:

• You have been granted the system privilege with the ADMIN OPTION clause

• You have been granted the GRANT ANY PRIVILEGE system privilege.

Here’s an example of the use of the ADMIN OPTION clause when granting a system privilege:

SQL> GRANT CREATE SESSION TO salapati WITH ADMIN OPTION;
Grant succeeded.
SQL>

The GRANT ANY OBJECT privilege is a special system privilege that lets the grantee grant (and
revoke) object privileges for objects in any schema. The interesting thing is that when the grantee
of this privilege grants any privileges on any object, it appears as if the schema owner granted the
privilege if you query the DBA_TAB_PRIVS table. However, if you’re auditing the use of the GRANT
statement, you’ll see the real user who issued this statement. All users with the SYSDBA privilege
automatically have the GRANT ANY OBJECT privilege.

Revoking System Privileges

You use the REVOKE statement to revoke system privileges. The revoking of the privileges takes place
immediately. Here’s an example:

SQL> REVOKE DELETE ANY TABLE FROM pasowner;
Revoke succeeded.
SQL>

You can use the REVOKE statement to revoke only those privileges that were previously granted
to the user with a GRANT statement.

Only users with the SYSDBA privilege or those who have been explicitly granted object privi-
leges can access objects in the SYS schema. You can also enable other users’ access to SYS-owned
objects by granting one of the following three roles to those users. (Roles are named sets of privi-
leges, and I discuss them in the “Roles” section of this chapter.)

• SELECT_CATALOG_ROLE: This role grants SELECT privileges on the data dictionary views.

• EXECUTE_CATALOG_ROLE: This role grants EXECUTE privileges on the data dictionary
views.

• DELETE_CATALOG_ROLE: This role enables users to delete records from the audit table,
called SYS.AUD$. (This table is discussed in the “Auditing Database Usage” section later in
this chapter.)

You can also use the SELECT ANY DICTIONARY system privilege to grant a user (usually devel-
opers) the privilege to select data from any object in the SYS schema.

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY444

4517CH11.qxd 8/19/05 10:50 AM Page 444

The SYSDBA and SYSOPER System Privileges

There are two powerful administrative system privileges, known as SYSDBA and SYSOPER. Because
of the powerful nature of these privileges, some restrictions apply to their administration. You can’t
use WITH ADMIN OPTION when granting these roles; only a user connected as SYSDBA can grant (or
revoke) these privileges to other users; and you can’t grant this system privilege to a role.

The SYSDBA system privilege includes the RESTRICTED SESSION privilege and has all system
privileges with ADMIN OPTION, including the SYSOPER system privilege. The SYSDBA privilege lets
you do the following:

• Perform STARTUP and SHUTDOWN operations

• Use the ALTER DATABASE command to open, mount, back up, or change a character set

• Use the CREATE DATABASE command

• Perform ARCHIVELOG and RECOVERY operations

• Create an SPFILE

The SYSOPER privilege similarly includes the RESTRICTED SESSION privilege, and it lets you
do the following:

• Perform STARTUP and SHUTDOWN operations

• Use the ALTER DATABASE command to open, mount, or back up

• Perform ARCHIVELOG and RECOVERY operations

• Create an SPFILE

■Tip Several normal database operations require users to query some data dictionary tables routinely. Therefore,
it’s a good idea to grant your developers on the development databases a set of basic system privileges by grant-
ing these users the SELECT_CATALOG_ROLE. This role gives the developers select privileges on all data dictionary
views.

Object Privileges
Object privileges are privileges on the various types of database objects. An object privilege allows a
user to perform actions on a specific table, view, materialized view, sequence, procedure, function,
or package. Thus, all users of the database will need object privileges, even if they may not need any
system privileges. There are some common object privileges that apply to all database objects and
some that apply to only certain objects.

You can use the following SQL statements when you grant object privileges:

• ALTER

• SELECT

• DELETE

• EXECUTE

• INSERT

• REFERENCES

• INDEX

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY 445

4517CH11.qxd 8/19/05 10:50 AM Page 445

The following list identifies the different types of object privileges in an Oracle database, the
main object privileges of each type, and an example for each object type:

• Table privileges: SELECT, ALTER, DELETE, INSERT, and UPDATE

GRANT DELETE ON bonuses TO hr

■Tip You can grant INSERT and UPDATE privileges at a column level. Here is an example that shows how you
grant the INSERT privilege on the column salary in the persons table:

SQL> GRANT INSERT (salary) ON persons to salapati;

In order to grant privileges at the row level, you can use Oracle’s virtual private database (which I discuss in the
“Fine-Grained Data Access” section of this chapter) or the Oracle Label Security feature.

• View privileges: SELECT, DELETE, INSERT, and UPDATE

GRANT SELECT, UPDATE
ON emp_view TO PUBLIC;

• Sequence privileges: ALTER and SELECT

GRANT SELECT
ON oe.customers_seq TO hr;

• Procedure, function, and package privileges: EXECUTE and DEBUG

GRANT EXECUTE ON employee_pkg TO hr;

• Materialized view privileges: SELECT and QUERY REWRITE

GRANT QUERY REWRITE TO hr

• Directory privileges: READ and WRITE

GRANT READ ON DIRECTORY bfile_dir TO hr

If you grant a user an object privilege with an additional GRANT OPTION clause, the user can in
turn grant that privilege to other users in the database. Here’s an example:

SQL> GRANT DELETE ON bonuses TO hr WITH GRANT OPTION;

Once you grant the user hr the DELETE privilege on the bonuses table in the preceding man-
ner, hr can turn around and grant that privilege to any other users.

The owner of any object has all rights on the object and can grant privileges on that object to
any other user in the database. The schema owner has the right to grant these privileges—not the
DBA or the SYSTEM or SYS users. You can grant an object privilege to a user, provided one of the fol-
lowing is true:

• You are the owner of the object.

• The object’s owner gave you the object privileges with the GRANT OPTION.

• You have been granted the GRANT ANY OBJECT system privilege.

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY446

4517CH11.qxd 8/19/05 10:50 AM Page 446

■Note You can’t grant object privileges on some schema objects, such as clusters, indexes, triggers, and data-
base links. You control the use of these types of objects with a system privilege instead. For example, to alter a
cluster, a user must own the cluster or have the ALTER ANY CLUSTER system privilege.

An object owner can add the additional ALL clause to a GRANT statement in order to grant all
possible privileges on an object. For example, both the following GRANT statements are equivalent:

SQL> GRANT SELECT,INSERT,UPDATE,DELETE on EMPLOYEES TO oe;
SQL> GRANT ALL ON EMPLOYEES TO oe;

The schema owner can grant one type or all types of privileges at once on any given object.
Here are some examples that illustrate the granting of object privileges:

SQL> GRANT SELECT ON ods_process TO tester;
Grant succeeded.
SQL> GRANT INSERT ON ods_process TO tester;
Grant succeeded.
SQL> GRANT ALL ON ods_servers TO tester;
Grant succeeded.
SQL> GRANT INSERT ANY TABLE TO tester;
grant insert any table to tester
*
ERROR at line 1:
ORA-01031: insufficient privileges
SQL>

The ODS user is able to grant all privileges (SELECT, INSERT, UPDATE, and DELETE) on the
ods_servers table to the tester user by using the GRANT ALL command. But ODS fails to successfully
grant the INSERT ANY TABLE privilege to tester, because this requires a system privilege (INSERT
ANY TABLE) that ODS does not have. Note, however, that the System user can successfully make
this grant, as shown here:

SQL> CONNECT system/manager@finance1
Connected.
SQL> SHOW USER
USER is "SYSTEM"
SQL> GRANT INSERT ANY TABLE TO tester;
Grant succeeded.
SQL>

If the owner of an object grants an object privilege to a user with the WITH GRANT clause, the
grantee of the privilege is given the right to grant that same object privilege to other users. Here’s
an example:

SQL> GRANT INSERT ANY TABLE TO tester WITH GRANT OPTION

Column-Level Object Privileges
In the previous discussion, object privileges always implied a right to perform a DML action on an
entire table. However, a user can also be granted privileges on only certain columns of a table, as
shown in the following examples:

SQL> GRANT UPDATE (product_id) ON sales01 TO salapati;
Grant succeeded.
SQL>

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY 447

4517CH11.qxd 8/19/05 10:50 AM Page 447

Revoking Object Privileges
Revoking object privileges is analogous to granting privileges. You simply issue the REVOKE statement
for each object privilege you want to revoke:

SQL> CONNECT ods/ods@finance1;
Connected.
SQL> REVOKE SELECT, INSERT ON ods_process FROM tester;
Revoke succeeded.
SQL>

Note that you can’t revoke privileges at a column level, even though the privilege may have
been granted at that level. You’ll have to use the table level for the revocation of a privilege, regard-
less of the level at which it was granted, as you can see in the following example:

SQL> REVOKE UPDATE (hostname) ON ods_process FROM tester;
revoke update(hostname) on ods_process from tester

*
ERROR at line 1:
ORA-01750: UPDATE/REFERENCES may only
be revoked from the whole table, not by column
SQL> REVOKE UPDATE ON ods_process FROM tester;
Revoke succeeded.
SQL>

The GRANT ANY OBJECT Privilege

A user with the GRANT ANY OBJECT system privilege can grant and revoke any object privilege as if
he or she were the actual object owner. When you connect as sysdba (user SYS), you are automati-
cally granted this role with the ADMIN OPTION.

Invoker Rights and Definer Rights
When you create a stored procedure in Oracle, it is executed by using the creator’s privileges. This
is the default behavior, and the stored procedure is said to have been created with definer’s rights.
When a user executes the procedure, it executes with the creator’s (definer’s) object privileges, not
the particular user’s, but there may be several situations where you don’t want all users to be able to
execute a procedure with the same rights. You can customize the accessibility of a procedure by cre-
ating it with invoker’s rights, meaning the procedure will execute with the privileges of the user, not
the creator, of the procedure.

When you create a procedure with invoker’s rights, the procedure will execute under the user’s
security context, not the owner’s security context. Thus, any user who intends to execute a proce-
dure from a different schema will need to have the object privileges on all the tables that are part of
the procedure. All DML privileges on those tables should be granted directly, not through any role,
to the user.

The AUTHID clause in a CREATE PROCEDURE statement indicates that this procedure is being
created with user’s or invoker’s rights, not with the default owner’s or definer’s rights. Here is an
example:

SQL> CREATE OR REPLACE PROCEDURE delete_emp
2 (p_emp_id number)
3 AUTHID current_user IS
4 BEGIN
5 DELETE FROM emp WHERE

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY448

4517CH11.qxd 8/19/05 10:50 AM Page 448

6 emp_id = p_emp_id;
7 COMMIT;
8* END;

Procedure created.
SQL>

In line 3, the AUTHID clause specifies that the procedure will execute with the privileges of the
current_user, the invoker of the procedure. Obviously, the user must have the explicit object privi-
lege on the table, DELETE on emp, for the procedure to execute successfully.

Roles
Although you can fairly easily manage user privileges by directly granting and revoking them, the
job can quickly become overwhelming when you add more users and the number of objects keeps
increasing. It’s very difficult, after a while, to keep track of each user’s current privileges. Oracle
addresses this problem by using roles, which are named sets of privileges that can be assigned to
users.

Think of roles as a set of privileges that you can grant and revoke with a single GRANT or REVOKE
command. A role can contain both a set of privileges and other roles as well. Roles make it easy for
you to assign multiple privileges to a user. A default role is a role that’s automatically operative
when a user creates a session, and you can assign more than one default role to a user.

■Tip The DBA role, which is predefined in Oracle databases, is a set of system privileges WITH ADMIN OPTION,
meaning that the user with this role can grant these privileges to other users as well. In most cases, you grant this
role to a handful of users that perform database administration.

There are several predefined roles in an Oracle database, including the EXP_FULL_DATABASE,
IMP_FULL_DATABASE, and RECOVERY_CATALOG_OWNER roles. In addition, every Oracle data-
base contains the following three important roles, which have listed privileges:

• The CONNECT role: CREATE SESSION (prior to Oracle Database 10g Release 2, the
CONNECT role had several other privileges, but now it has only the single CREATE SESSION
privilege)

• The RESOURCE role: CREATE CLUSTER, CREATE INDEXTYPE, CREATE OPERATOR, CREATE
PROCEDURE, CREATE SEQUENCE, CREATE TABLE, CREATE TRIGGER, CREATE TYPE

• The DBA role: All system privileges WITH ADMIN OPTION

There are also two other predefined roles, EXP_FULL_DATABASE and IMP_FULL_DATABASE,
which enable a user to perform a Data Pump Export and Import at the database level.

The DBA role is traditionally assigned to all individuals in an organization who perform data-
base administration tasks. Oracle has indicated, however, that it may drop the DBA, CONNECT, and
RESOURCE roles in future versions, and it recommends that you create your own roles to replace
these three.

■Note By default, no user is granted any system privileges except those who have been granted the DBA role.

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY 449

4517CH11.qxd 8/19/05 10:50 AM Page 449

Creating a Role
Assuming you have either been granted the DBA role or you have a specific system privilege called
CREATE ROLE, you can create a role in the following manner:

SQL> CREATE ROLE new_dba;
Role created.
SQL>

The new_dba role just created doesn’t have any privileges attached to it, so you must now grant
privileges to this role. You may even grant other preexisting roles to the new_dba role. Roles are
empty vessels into which you can pour any number of system and object privileges.

Once the role has been created, you simply assign the role to a user, and the user will inherit all
the privileges contained in the role. Listing 11-9 shows how to grant various database privileges to a
new role.

Listing 11-9. Granting Privileges to a Role

SQL> GRANT CONNECT TO new_dba;
Grant succeeded.
SQL> GRANT SELECT ANY TABLE TO new_dba;
Grant succeeded.
SQL> GRANT UPDATE ANY TABLE TO new_dba;
Grant succeeded.
SQL> GRANT select_catalog_role TO new_dba;
Grant succeeded.
SQL> GRANT exp_full_database TO new_dba;
Grant succeeded.
SQL> GRANT imp_full_database TO new_dba;
Grant succeeded.
SQL>

To grant user salapati all the preceding privileges, all you need to do is this:

SQL> GRANT new_dba TO salapati;
Grant succeeded.
SQL>

A user can be assigned more than one role, and all of the roles that are granted to that user will
be active when the user logs into the database.

Role Authorization
In the example in the previous section, a password wasn’t needed to use the role. However, you can
specify that a role must be authorized before it can be used. You can specify role authorization in
several ways:

• Database authorization: You use a password when a role is authorized by the database, as
shown in this example:

CREATE ROLE clerk IDENTIFIED BY password;

• Database authorization with a PL/SQL package: A developer can create a role and specify
that a PL/SQL package be used to authorize that role. In the following example, the
admin_role role is enabled by a module defined inside the hr.admin PL/SQL package:

CREATE ROLE admin_role IDENTIFIED USING hr.admin;

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY450

4517CH11.qxd 8/19/05 10:50 AM Page 450

• Externally, by the operating system, network, or other external source: You can require that a
role be authorized by an external source before it can be enabled, as shown here:

CREATE ROLE accts_rec IDENTIFIED EXTERNALLY;

• Globally, by an enterprise directory service: You can also define a role as a global role, which
means that a user can only be authorized to use the role by an enterprise directory service.
The following statement creates a global role that can be authorized by a directory service:

CREATE ROLE supervisor IDENTIFIED GLOBALLY;

Granting a Role WITH ADMIN OPTION

If you grant a user a role using the WITH ADMIN OPTION clause, the grantee can do the following:

• Grant the role to or revoke it from any user or other role in the database

• Grant the role WITH ADMIN OPTION

• Alter or drop the role

Granting a Role to Another Role

You normally grant a role to a user. The user then can immediately exercise all the privileges
encompassed by the role. However, you can grant a role to another role. In this case, the database
will add all the privileges of the role being granted to the privilege domain of the grantee role.

The PUBLIC User Group and Roles
If you grant a role to PUBLIC, the database makes the role available to all the users in your database.
If you wish to give a certain privilege or role to all the users in the database, you simply grant this
privilege or role to the PUBLIC user group, which exists in every database by default. This is not a
recommended way to grant privileges, however, for obvious reasons.

Disabling and Enabling a Role
You can disable a user’s role by inserting the appropriate row into the Product_User_Profile table
in the SYSTEM schema. Listing 11-10 shows how you to insert a row into this table to disable the
TEST123 role, which has been assigned to the user TESTER.

Listing 11-10. Disabling a Role Using the Product_User_Profile Table

SQL> INSERT INTO PRODUCT_USER_PROFILE(PRODUCT,userid,attribute,char_value)
2* VALUES('SQL*Plus','TESTER','ROLES','TEST123');

1 row created.
SQL> COMMIT;
Commit complete.
SQL> CONNECT tester/tester@finance1
Connected.
SQL> SELECT * FROM hr.regions;;
select * from hr.regions

*ERROR at line 1:
ORA-00942: table or view does not exist

As you can see, once the TEST123 role is disabled, the TESTER user can’t select from the data-
base tables, and an error is issued when the SELECT is attempted.

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY 451

4517CH11.qxd 8/19/05 10:50 AM Page 451

When you want to re-enable the TEST123 role, all you need to do is delete the appropriate row
from the Product_User_Profile table, as shown here:

SQL> DELETE FROM product_user_profile
2 WHERE userid='TESTER'
3* AND char_value = 'TEST123';

1 row deleted.
SQL> commit;
Commit complete.

Dropping a Role
Dropping a role is simple. Just use the DROP ROLE command:

SQL> DROP ROLE admin_user;
Role dropped.
SQL>

Using Views and Stored Procedures to Manage Privileges
In addition to using roles and privileges, Oracle also enables data security through the use of views
and stored procedures. You’ve already seen in Chapter 5 how views on key tables or even table joins
can not only hide the complexity of queries, but also provide significant data security.

DBA Views for Managing Users, Roles, and Privileges
The OEM is very handy when managing users in the database. However, you may wish to use a SQL
script from time to time to glean information about the users. Specific data dictionary views can
help you see who has what role, and what privileges a certain role has. You can also see what sys-
tem- and object-level privileges have been granted to a certain user. Table 11-1 presents the key
data dictionary views you can use to manage users, privileges, and roles in the database.

Table 11-1. Data Dictionary Views for Managing Users

Data Dictionary View Description

DBA_USERS Provides information about users

DBA_ROLES Shows all the roles in the database

DBA_COL_PRIVS Shows column-level object grants

DBA_ROLE_PRIVS Shows users and their roles

DBA_SYS_PRIVS Shows users who have been granted system privileges

DBA_TAB_PRIVS Shows users and their privileges on tables

ROLE_ROLE_PRIVS Shows roles granted to roles

ROLE_SYS_PRIVS Shows system privileges granted to roles

ROLE_TAB_PRIVS Shows table privileges granted to roles

SESSION_PRIVS Shows privileges currently enabled for users

SESSION_ROLES Shows roles currently enabled for users

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY452

4517CH11.qxd 8/19/05 10:50 AM Page 452

Fine-Grained Data Access
The traditional means of ensuring data security (using privileges, roles, views, etc.) works pretty
well, but it has certain limitations. Chief among these is the fact that most security measures are too
broad-based, with the result that you end up unnecessarily restricting users when your primary
goal is to ensure that users can freely access information they need. In addition to the traditional
concepts of roles and privileges, Oracle provides more fine-grained, lower-level data security tech-
niques. For example, you can allow all users to access a central table, such as a payroll table, but you
can institute security policies that limit an individual user’s access to only those rows in the table
that pertain to his or her department. Such limitations are transparent to the database users.

Oracle uses two related mechanisms to enforce fine-grained security within the database: an
application context and a fine-grained access control policy. Oracle uses the term virtual private
database to refer to the implementation of fine-grained access-control policies using application
contexts. Often, you’ll find the terms fine-grained access control, virtual private database, and row-
level security used interchangeably to refer to Oracle’s capability to ensure security at the individual
row level instead of the table level.

By using Oracle’s fine-grained access control, you can fine-tune security policies in a very
sophisticated manner. You can use the fine-grained access control for the following purposes:

• Enforce row level access control through SELECT, INSERT, UPDATE, and DELETE statements.

• Create a security policy that controls access based on a certain value of a column.

• Create policies that are applied the same way always as well as policies that dynamically
change during the execution of the query.

• Create sets of security policies, called policy groups.

Oracle lets you control row-level access to database objects through the virtual private data-
base (VPD) feature. Each user of an application can be limited to seeing only a part of a table’s data
by using the VPD concept. This row-level security is enforced by attaching a security policy directly
to a database object, such as a table, view, or a synonym. No matter which tool the user uses to
access the database (SQL*Plus, an ad hoc query tool, or a report writer), the user can’t elude this
row-level security, which is enforced by the database server. Since the database enforces VPD, it
provides much stronger security than application-based security.

VPD uses a type of query rewrite to restrict users to certain rows of tables and views. A security
policy is attached to the table or tables to which you want to control access, and stored procedures
are written to modify any relevant SQL statements made against the tables in question. When a
user issues an UPDATE statement against a table with such a security policy, Oracle will dynamically
append a predicate (a WHERE clause) to the user’s statement to modify it and limit the user’s access to
that table.

For example, if a user belonging to the sales department issues the statement UPDATE EMPLOYEE
SET salary=salary*1.10, the security policies attached to the employee table will cause Oracle
to add the fine-grained security function to the clause WHERE dept='SALES' to ensure that only
employees in sales are affected. Here is the original query:

UPDATE EMPLOYEE SET salary=salary*1.10

And here is the modified statement:

UPDATE EMPLOYEE SET salary=salary*1.10 WHERE dept='SALES'

To create a VPD, you have to create what is known as an application context and then imple-
ment fine-grained access control to enforce the row-level security for database tables and views.
The application context helps you create security policies that draw upon certain aspects of a user’s
session information. To take a simple example, when a user logs into the database, the user’s ID

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY 453

4517CH11.qxd 8/19/05 10:50 AM Page 453

identifies the user, and based on that piece of information, the application’s security policy sets
limits on what the user can do within the database. VPD is simply the implementation of an appli-
cation context with fine-grained access control.

■Note VPD policies can be applied to SELECT, INSERT, UPDATE, INDEX, and DELETE statements.

Application Context
An application context allows you to define a set of application attributes, usually a set of session
environmental variables, that you can use to control an application’s access to the database. Using
application attributes, you can supply relevant predicate values for fine-grained access-control
policies. Oracle uses a built-in application context namespace called USERENV, which has a set of
predefined session attributes attached to it. These predefined attributes are then used by Oracle to
control access. When a user logs in, the database automatically captures key session attributes such
as the username, machine name, and IP address from the USERENV application context.

You can find out session-related information about any user by using the USERENV applica-
tion context, as shown by the examples in Listing 11-11. In the first example, the TERMINAL attribute
shows the name of the terminal from which the user is accessing the database. The second example
uses the OS_USER attribute to show the name of the operating system account name of the database
user. The third example gets the username by which the current user is authenticated from the
SESSION_USER attribute.

Listing 11-11. Using sys_context to Discover Session Information

SQL> CONNECT system/system_passwd;
Connected.
SQL>

SQL> SELECT sys_context ('USERENV', 'TERMINAL')
2 FROM DUAL;

SYS_CONTEXT('USERENV','TERMINAL')

NTL-ALAPATISAM
SQL>

SQL> SELECT sys_context ('_USERENV', 'OS_USER') FROM DUAL;
SYS_CONTEXT('_USERENV','CURRENT_USER')

oracle
SQL>

SQL> CONNECT fay/fay1;
Connected.
SQL>

SQL> SELECT first_name,last_name,employee_id FROM employees
2 WHERE UPPER(last_name)=sys_context('USERENV’, ‘SESSION_USER');

FIRST_NAME LAST_NAME EMPLOYEE_ID
-------------------- --------------------
Pat Fay 202
1 row selected.
SQL>

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY454

4517CH11.qxd 8/19/05 10:50 AM Page 454

Besides the TERMINAL, CURRENT_USER, and SESSION_USER attributes shown in the examples in
Listing 11-11, several other important predefined attributes belong to the USERENV namespace.
Table 11-2 lists some of the common predefined attributes.

Table 11-2. Common Predefined Attributes in the USERENV Namespace

Attribute Description

instance Instance ID

entryID Auditing entry identifier

current_user Name of the user who started the session

session_user Database username by which the current user is authenticated

proxy_user Name of the middle tier that opened a session for the session_user

db_name Name of the database

host Name of the machine on which the database is running

os_user Operating system account name

terminal Client terminal through which the database is being accessed

ip_address IP address of the client machine

external_name External name of the database user

When a user logs in, it’s useful to identify the type of the user and to capture certain key user
attributes. You can later use this information in the security policies that are attached to the data-
base objects. The built-in USERENV namespace is ideal for capturing these kinds of information.

The USERENV namespace, of course, is just one of the application context namespaces that
you can use. You’ll have to create your own application context so you can define which attributes
you want to use in setting your security policies. To define your own application context, you need
to do the following:

1. Create a PL/SQL package that sets the context with the help of functions.

2. Create an application context that uses the package you created.

Creating a Package to Set the Context

To set the application context for the hr user, you need to create a PL/SQL package. Listing 11-12
shows you how to create a simple package called HR_CONTEXT to set the application context.
The package includes a single procedure that selects the value of the employee_id column into
the empnum variable. Since this SELECT statement is based on a WHERE clause that determines the
last_name of the employee based on the value of the SESSION_USER attribute, the employee_id
will be that of the username by which the current user is authenticated by the database.

Listing 11-12. Creating a Package to Set the Application Context

SQL> CONNECT hr/hr
Connected.

SQL> CREATE OR REPLACE PACKAGE hr_context AS
2 PROCEDURE select_emp_no ;
3* END;

SQL> /
Package created.

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY 455

4517CH11.qxd 8/19/05 10:50 AM Page 455

SQL> CREATE OR REPLACE PACKAGE BODY hr_context as
2 PROCEDURE select_emp_no IS
3 empnum number;
4 BEGIN
5 SELECT employee_id INTO empnum FROM employees WHERE
6 UPPER(last_name) =
7 sys_context('USERENV', 'SESSION_USER');
8 dbms_session.set_context('employee_info', 'emp_num', empnum);
9 END select_emp_no;
10* END;
SQL> /
Package body created.
SQL>

Creating the Application Context

Once you create the package (HR_CONTEXT) that helps set the application context, you can go
ahead and create the application context itself as follows. Note that the hr user uses the package
just created in the previous section to create the employee_info application context.

SQL> CONNECT system/system_passwd;
Connected.
SQL> GRANT CREATE ANY CONTEXT TO hr;
Grant succeeded.

SQL> CONNECT hr/hr;
Connected.
SQL> CREATE CONTEXT employee_info USING hr.context;
Context created.
SQL>

You can set the application context for a user in two ways. The first is to implement an
application context by itself, without fine-grained access control. To do this, you just create an
event trigger on a user’s logon so the user will invoke the SELECT_EMP_NO procedure belonging to
the HR_CONTEXT package upon logging in to the database. Here’s how you create the logon
trigger to set the initial context for a user:

SQL> CREATE OR REPLACE TRIGGER hr.security_context
2 AFTER LOGON ON DATABASE
3 BEGIN
4 hr_context.select_emp_no;
5* END;

SQL> /
Trigger created.
SQL>

The preceding logon trigger uses the SELECT_EMP_NO procedure of the HR_CONTEXT package
you created to grab the user’s employee_id and store it in the emp_num variable.

The second way to set or reference an application context is to do so as an integral part of VPD,
using a policy function implementing fine-grained access control. The following section discusses
this in detail.

Fine-Grained Access Control
Traditionally, security policies were applied to entire applications. Users were given roles or privi-
leges, based on which they could access the tables in the application. This always left open the
possibility of users using tools such as SQL*Plus to go around the application’s security protocols

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY456

4517CH11.qxd 8/19/05 10:50 AM Page 456

and modify data in the database tables. Furthermore, application-level security enforcement meant
you had to manage a grant/revoke policy for each user in the system for access to all the tables in
the database.

There are situations where you might want to limit access to an application’s data to certain
segments of users. Of course, you could create views to such a thing, but managing views poses sev-
eral problems, such as maintenance and auditing usage.

Fine-grained access control (FGAC) enables you to restrict Oracle users so that they can only
use the data you want them to access and modify. FGAC is facilitated through the use of policy func-
tions, which you attach to the tables or views you want to secure. It uses dynamically modifiable
statements to restrict or limit users to certain portions of a table, view, or synonym. When a user’s
SQL statements are parsed, FGAC makes Oracle automatically evaluate the policy functions (you
can attach more than one policy to a table). Oracle will execute the user’s query after dynamically
modifying the query if necessary.

■Note FGAC enables you to implement fine-grained data security. You can enforce a row-level security policy
using this feature.

FGAC involves the following steps:

1. You create a policy function that will dynamically add a predicate to a user’s DML state-
ment. A predicate is the WHERE clause based on an operator (=, !=, IS, IS NOT, >, >=, EXIST,
BETWEEN, IN, NOT IN, and so on). Here’s an example of such a function:

cust_no = (SELECT custno FROM orders
WHERE
custname = SYS_CONTEXT ('USERENV','SESSION_USER'))

The package that implements your security policy will dynamically append a predicate to
all SELECT statements on the ORDERS table, returning only those orders that pertain to the
user’s customer number (cust_no).

2. A user enters a statement such as the following:

SELECT * FROM orders;

3. Oracle will use the policy function you created to dynamically modify the user’s statement.
For example, the statement in step 2 would be modified by the policy function in step 1 as
follows:

SELECT * FROM orders WHERE custno = (
SELECT custno FROM customers
WHERE custname = SYS_CONTEXT('USERENV', 'SESSION_USER'))

4. Oracle uses the username returned by SYS_CONTEXT('USERENV', 'SESSION_USER') and exe-
cutes the modified original query, thus limiting the data returned from the ORDERS table to
that customer’s data only.

Creating a Package That Will Access the Context

Let’s look at a simple example of FGAC. This FGAC implementation will use a policy that limits an
employee to only seeing appropriate data in the employees table.

First, we will create the hr_security package, which we will use later to access the application
context. This package is the key to row-level security, since it generates the dynamic-access predi-
cates for a table. Listing 11-13 shows how to create the hr_security package.

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY 457

4517CH11.qxd 8/19/05 10:50 AM Page 457

Listing 11-13. Creating the hr_security Package

SQL> CREATE OR REPLACE PACKAGE hr_security AS
2 FUNCTION empnum_sec (A1 VARCHAR2, A2 VARCHAR2)
3 RETURN varchar2;
4 END;
5*/

Package created.
SQL> CREATE OR REPLACE PACKAGE BODY hr_security AS
2 FUNCTION empnum_sec (A1 VARCHAR2, A2 VARCHAR2)
3 RETURN varchar2
4 IS
5 d_predicate varchar2 (2000);
6 BEGIN
7 d_predicate:= 'employee_id =
8 SYS_CONTEXT("EMPLOYEE_INFO","EMP_NUM")';
9 RETURN d_predicate;
10 END empnum_sec;
11 END hr_security;
12* /
Package body created.
SQL>

The package created in Listing 11-13, hr_security, will use the employee_info context (created
earlier in the “Creating the Context” section) to get the emp_num variable. As you recall from the pre-
vious section, the employee_info application context gets the emp_num variable from the USERENV
namespace (the SESSION_USER attribute of the USERENV namespace).

The d_predicate predicate in the hr_security package indicates the transformation that should
be applied to any queries made by any employee whose employee_id matches the emp_num variable
obtained from the employee_info context. For example, if user salapati issues the following com-
mand,

SQL> SELECT * FROM employees;

it will be modified by our predicate (d_predicate) as follows:

SQL> SELECT * FROM employees
2* WHERE employee_id = SYS_CONTEXT ('EMPLOYEE_INFO', 'EMP_NUM');

Creating the Security Policy

The hr_security package created in the previous section lets you attach a dynamic predicate (WHERE
employee_id = SYS_CONTEXT ('EMPLOYEE_INFO', 'EMP_NUM') to any SQL statements that can be used
by employees whose employee_id matches the emp_num derived by using the employee_info appli-
cation context. But we still haven’t attached a security policy to the employee table. That is, we now
have to specify what kinds of SQL statements, and precisely what tables, the hr_security package
would be applied to.

In previous releases of the Oracle database, all security polices were dynamic, meaning the
database had to execute the policy function for each DML statement. Of course, repeated execution
of the policy functions costs system resources and could hurt performance in a busy OLTP data-
base. Oracle now offers several choices regarding the type of policy you can use. You can specify the
following five types of security policies in Oracle Database 10g Release 2 by using the POLICY_TYPE
parameter of the DBMS_RLS.ADD_POLICY procedure:

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY458

4517CH11.qxd 8/19/05 10:50 AM Page 458

• Dynamic: Each time a statement is parsed or executed, the security policy function is exe-
cuted afresh. This is the default policy type, and you can specify it either by setting the
POLICY_TYPE parameter to DBMS_RLS.DYNAMIC or by just leaving the parameter out altogether.

• Static: This type of policy function needs to be executed only once, when a user first accesses
a database object. Thereafter, the value of the policy function is cached in the SGA, and all
users accessing the object will get the same predicate. You can choose this type by setting the
POLICY_TYPE parameter to DBMS_RLS.STATIC.

• Shared static: This is identical to a static policy, and it is applied to multiple objects. Shared
policies reduce your administrative burden by letting a single security policy cover several
database objects. You can enable it by setting the POLICY_TYPE parameter to DBMS_RLS.
SHARED_STATIC.

• Context sensitive: Under this type of security policy, the policy predicate can be modified
based on changes in certain context attributes within a user’s session. The database caches
the policy predicate in the SGA. You choose this type by setting the POLICY_TYPE parameter to
DBMS_RLS.CONTEXT_SENSITIVE.

• Shared context sensitive: This policy type is similar to context-sensitive policies, but it is
shared across multiple objects. You choose this type by setting the POLICY_TYPE parameter
to DBMS_RLS.SHARED_CONTEXT_SENSITIVE.

You can add a security policy to a database by using the DBMS_RLS package (RLS stands for
row-level security) provided by Oracle. This package enables you to administer security policies,
which means you can add and drop policies, policy groups, or application contexts. You provide the
name of the table, view, or synonym for which you want the security policy to apply, as well as the
security policy for implementing the FGAC. You also specify the particular types of SQL statements
the policy applies to, such as a SELECT, INSERT, UPDATE, DELETE, CREATE INDEX, or ALTER INDEX statement.

Here are the main procedures of the DBMS_RLS package:

• DBMS_RLS.ADD_POLICY: Adds a policy to a table, view, or synonym

• DBMS_RLS.CREATE_POLICY_GROUP: Creates a policy group

• DBMS_RLS.ADD_POLICY_CONTEXT: Adds the context for the application

You create the security policy using the DBMS_RLS.ADD_POLICY procedure, as shown here:

SQL> CONNECT system/system_passwd
Connected.
SQL> EXECUTE dbms_rls.add_policy('hr','employees','manager_policy','hr',-

'hr_security.empnum_sec','select');
PL/SQL procedure successfully completed.

Note that you could also have executed the preceding statement in the following equivalent
manner:

SQL> BEGIN
2 dbms_rls.add_policy
3 (object_schema => 'hr',
4 object_name => 'employees',
5 policy_name => 'manager_policy',
6 function_schema => 'hr',
7 policy_function => 'hr_security.empnum_sec',
8 statement_types => 'select');
9* END;
SQL> /

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY 459

4517CH11.qxd 8/19/05 10:50 AM Page 459

The DBMS_RLS.ADD_POLICY procedure in the preceding statements creates a policy called
manager_policy in the hr schema. This security policy is actually implemented by the function
empnum_sec, which is part of the hr_security package that you created earlier. The security policy
specifies that it applies to all SELECT operations against the EMPLOYEES table.

To put it simply, the new security policy you created (manager_policy) will limit all SELECT
statements against the hr.employees table to information that pertains to the employee_id of the
user who issued the query.

You can check that the new policy was indeed created successfully by making the following
query:

SQL> SELECT object_name, policy_name, sel, ins, upd, del, enable
FROM all_policies;

OBJECT_NAME POLICY_NAME SEL INS UPD DEL ENABLED
--
EMPLOYEES MANAGER_POLICY YES NO NO NO YES

SQL>

The output of the query indicates that all SELECT statements against the employee table are
now controlled by the manager_policy security policy.

To make the security policy functions accessible to the public so that all users accessing the
database will use it, you can make the following grant:

SQL> GRANT EXECUTE ON hr_security TO public;
Grant succeeded.

Column-Level VPD
You’ve seen how you can enforce row-level security anytime you access a table. Oracle also lets you
use a column-level VPD to enforce row-level security whenever a query references a certain column
or columns only. You can apply column-level VPD to a table or a view.

Creating a column-level security policy is almost identical to creating regular security policies—
you just add the additional SEC_RELEVANT_COLS parameter in the DBMS_RLS.ADD_POLICY procedure to
specify the relevant columns for security. Here’s how you use the DBMS_RLS.ADD_POLICY procedure
to create a column-level security policy.

SQL> BEGIN
2 dbms_rls.add_policy
3 (object_schema => 'hr',
4 object_name => 'employees',
5 policy_name => 'manager_policy',
6 function_schema => 'hr',
7 policy_function => 'hr_security.empnum_sec',
8 statement_types => 'select,insert',
9 sec_relevant_cols => 'salary');
10*END;

SQL> /

The column-level policy created in the preceding example would come into effect only if the
salary column of the employees table is accessed. Suppose a user subsequently issues the following
query:

SQL> SELECT fname, lname, salary FROM employees;

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY460

4517CH11.qxd 8/19/05 10:50 AM Page 460

The column-level VPD policy kicks into action when it sees that the salary column is refer-
enced in a query, and the policy function implementing the column-level security policy returns
the predicate WHERE salary ='my_salary', thus transforming the query as follows:

SQL> SELECT fname, lname, salary FROM employees WHERE salary = 'my_salary';

Policy Groups

When you access a table, Oracle looks up the application context (the policy context) to determine
which policy group, and therefore which security policy, should be enforced. There is one default
policy group called SYS_DEFAULT that can never be dropped from the database, and every policy
belongs to this group by default.

Using Oracle Policy Manager

You can use the Oracle Policy Manager GUI, an extension to Oracle Enterprise Manager, to adminis-
ter Oracle Label Security (discussed next) as well as to create VPD security policies. Oracle Policy
Manager will help you effortlessly create application contexts and complex security policies to
enforce fine-grained data security. This definitely beats creating application contexts and security
policies manually.

When you use OEM to create a VPD policy, you create an application context and provide the
table (or view or synonym) name, the policy name, the function name that generates the predicate,
and the statement types to which the policy applies (SELECT, INSERT, UPDATE, or DELETE). Oracle
Policy Manager executes the DBMS_RLS.ADD_POLICY function to create the FGAC policy to support
your VPD.

Label-Based Access Control

Oracle allows you to label parts of your data and users can be granted privileges to access data with
certain labels. Security policies are implemented on a single column, which represents the label.
The Oracle Label Security feature (based on the older Trusted Oracle security product) is built on
the same components that help you create a VPD. You can easily construct labels to limit access to
rows in a certain table, and use label authorizations and privileges to set up a label-based security
policy. The Oracle Policy Manager GUI is mainly designed to create and administer Oracle Label
Security policies.

Auditing Database Usage
Just because you have set up a sophisticated system of access controls using privileges, roles,
views, and even fine-grained security policies, there is no guarantee that database security won’t be
breached. Auditing database usage lets you know whether your access-control mechanisms are
indeed working as designed. Auditing involves monitoring and recording (selected) users’ database
activity.

Oracle’s built-in auditing features allow you to track the changes made to database objects. You
can audit the granting of privileges within the database, as well as non-DML and non-DDL changes,
such as database startup and shutdown events. Auditing user activity can potentially lead to a large
amount of data to keep track of, but fortunately, Oracle offers you a lot of control over what type of
activities you want to audit. You can audit just at the session level or at the entire database level.

Oracle makes a broad distinction between standard auditing and fine-grained auditing. Stan-
dard auditing is based on statement-, privilege-, and object-level auditing. Fine-grained auditing
deals with data access at a granular level, with actions based on content, such as value > 100,000.

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY 461

4517CH11.qxd 8/19/05 10:50 AM Page 461

Standard Auditing
Oracle Database 10g lets you audit database use at three different levels: statement, privilege, and
object. A statement-level audit specifies the auditing of all actions on any type of object. For example,
you can specify that the database audit all actions on tables by using the AUDIT TABLE statement. A
privilege-level audit tracks actions that stem from system privileges. You can audit all actions that
involve the use of a granted privilege, such as auditing all CREATE ANY PROCEDURE statements. Finally,
an object-level audit monitors actions such as UPDATE, DELETE, and INSERT statements on a specific
table, so you could audit all deletes on the hr.employees table.

For each of the three levels of auditing, you can choose to audit either by session or by access.
If you audit by session, Oracle will log just one record for all similar statements that fall under the
purview of auditing. If you audit by access, Oracle writes a record for each access. You can also
decide to log only whether a certain action failed or succeeded by using the WHENEVER SUCCESSFUL
and the WHENEVER NOT SUCCESSFUL auditing options. When the operation is unsuccessful, it’s usually
an indication that the user doesn’t have privileges to perform the operation. You’ll want to know
who is attempting such unauthorized operations.

■Tip One of the common arguments against the use of Oracle database auditing is that it will consume a lot of
space in the database. If you spend time analyzing why you are auditing, you can limit the amount of data written
to the audit trail. By using a focused auditing policy that targets only vital data, rather than system-wide auditing,
you can limit the auditing output to a manageable amount. You may also decide to turn on auditing only if you
encounter questionable activity in the database.

Enabling Auditing
In order for you to audit any user activity within the database, and even attempts to log into the
database, you need to enable auditing by specifying the AUDIT_TRAIL parameter in your init.ora file.
Audit records contain the audit information, such as the audited user, the type of operation, and the
data and time of the operation, and the AUDIT_TRAIL parameter specifies what is done with these
records. The parameter can take the following values:

• NONE: Disables database auditing; NONE is the default value for this parameter

• OS: Specifies that Oracle will write the audit records to an operating system file (operating
system audit trail)

• DB: Specifies that Oracle will write the audit records to the database audit trail, viewable as
DBA_AUDIT_TRAIL (stored in the SYS.AUD$ table)

• DB, EXTENDED: Specifies that Oracle will send all audit records to the database audit trail
(SYS.AUD$), and in addition, populates the SQLBIND and SQLTEXT CLOB columns

• XML: Specifies database auditing, with the XML-format audit records going to the OS files

• XML, EXTENDED: Same as the XML setting, but also records all audit-trail columns, including
SQLTEXT and SQLBIND

There is a default location in which Oracle will place the audit file, and you can easily change
the location of this file by using the AUDIT_FILE_DEST parameter in the init.ora file, as shown here:

AUDIT_TRAIL=DB
AUDIT_FILE_DEST=/a10/app/oracle/oradata/audit_data

If you specify AUDIT_TRAIL=OS, the audit trail won’t store the audit information in the database.
It will instead store that information in the location specified by the AUDIT_FILE_DEST parameter.

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY462

4517CH11.qxd 8/19/05 10:50 AM Page 462

If you specify AUDIT_TRAIL=OS and omit the AUDIT_FILE_DEST parameter, by default the audit infor-
mation will be written to the $ORACLE_HOME/rdbms/audit/ directory.

■Tip If you specify AUDIT_TRAIL=DB, the audit records will be logged to a special table owned by SYS called
SYS.AUD$, located in the System tablespace. If you want to do any kind of serious auditing on your database, the
tablespace will quickly run out of space. Make sure you change the storage parameters of the SYS.AUD$ table and
add more space to the System tablespace before you turn auditing on. Otherwise, you run the risk of filling up your
System tablespace while auditing the database.

You can use the DBA_AUDIT_TRAIL view to make use of the information in the database audit
trail table (SYS.AUD$). Depending on the event you are auditing and the options you select for
auditing, you may see the following types of data in the audit trail:

• Operating system login

• Database user name

• Terminal and session identifiers

• Operation performed or attempted

• Date and time stamp

• SQL text that triggered the auditing

You don’t need to be overly concerned with the filling up of the SYS.AUD$ table when auditing
is turned on. You can always truncate the table after exporting the contents to a different location or
when you deem it isn’t necessary to store the contents of the audit table any longer.

Oracle’s Default Auditing
Even when you don’t set up database auditing by specifying the AUDIT_TRAIL parameter at all, by
default Oracle will log three types of database actions to the $ORACLE_HOME/rdbms/audit
directory:

• Connections as SYSOPER or SYSDBA

• Database startup

• Database shutdown

Typically, the audit file captures the CONNECT, SHUTDOWN, and STARTUP events undertaken by the
user SYS, who, of course has the SYSDBA privileges.

You can audit all actions of the user SYS, including all users connecting with the SYSDBA or
SYSOPER privileges, by setting the AUDIT_SYS_OPERATIONS init.ora parameter to true.

AUDIT_SYS_OPERATIONS=TRUE

Note that if this parameter is set, all actions of the SYS user will be audited, whether you set the
AUDIT_TRAIL parameter or not. The parameter has a default value of false.

Turning Auditing On
Once you have set the AUDIT_TRAIL parameter, you will have enabled auditing in your database.
However, for the actual auditing to begin, you must also specify which tables and what actions you
want the database to audit.

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY 463

4517CH11.qxd 8/19/05 10:50 AM Page 463

You can start auditing actions at any level by using the appropriate command. Listing 11-14
shows a sampling of commands that specify auditing at various levels, with different options.

Listing 11-14. Turning Auditing On in the Database

SQL> AUDIT SELECT ON employees;
Audit succeeded.
SQL> AUDIT DELETE ANY TABLE BY salapati WHENEVER NOT SUCCESSFUL;
Audit succeeded.
SQL> AUDIT UPDATE ANY TABLE;
Audit succeeded.
SQL> AUDIT SESSION BY SALAPATI;
Audit succeeded.
SQL> AUDIT SELECT,INSERT,UPDATE,DELETE
2 ON employees BY ACCESS WHENEVER SUCCESSFUL;

Audit succeeded.
SQL>

Here is a more powerful audit option that ensures the auditing of all privileges:

SQL> AUDIT ALL PRIVILEGES;
Audit succeeded.
SQL>

Obviously, the audit trail for this auditing choice will be large if you have many users who have
been granted object privileges in the database.

■Note The AUDIT SESSION statement does not audit the statements executed during an entire session—it logs
the session start time, the end time, and the logical and physical I/O resources consumed by this session, among
other things.

Turning Auditing Off
To turn auditing off, you use a statement that is almost identical to the one you used to turn audit-
ing on. The big difference, of course, is that you use the NOAUDIT keyword in place of AUDIT. Here are
some examples:

SQL> NOAUDIT SESSION;
Noaudit succeeded.
SQL> NOAUDIT DELETE ANY TABLE BY salapati WHENEVER NOT SUCCESSFUL;
Noaudit succeeded.
SQL> NOAUDIT DELETE ANY TABLE BY salapati;
Noaudit succeeded.

■Note You can use either of the last two statements to turn DELETE ANY TABLE BY salapati WHENEVER NOT
SUCCESSFUL off. That is, the NOAUDIT keyword, when applied to a more general statement, will turn off lower-level
auditing that is subsumed by the general privilege.

If you want to turn off all the levels of auditing—statement, privilege, and object—you can do
so by using the following three SQL statements:

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY464

4517CH11.qxd 8/19/05 10:50 AM Page 464

SQL> NOAUDIT ALL; /* turns off all statement auditing */
SQL> NOAUDIT ALL PRIVILEGES; /* turns off all privilege auditing */
SQL> NOAUDIT ALL ON DEFAULT; /* turns off all object auditing */

Customizing Database Auditing with Triggers
Oracle triggers are special blocks of code that are triggered or fired off by certain events in the data-
base. Most applications use triggers to update one table based on an action in another table. A
trigger could fire off based on DML or DDL statements, and they can be used to help enforce busi-
ness rules within the database. You can audit specific user actions by simply writing triggers or
other stored procedures that will log user information to a table when the user performs a specific
database operation.

You can create several types of triggers in Oracle, including DML and DDL triggers, which are
based on actions performed by users on tables and views, and system-level triggers, which are more
broad-based. In the following sections you’ll learn about these types of triggers.

■Tip You don’t have to necessarily turn database-wide auditing on if you’re solely interested in a specific user’s
actions or want to audit limited actions in the database. You can write triggers that will insert information into a log
table upon the occurrence of specified events.

Using DML-Based Triggers for Auditing

The most commonly used triggers in Oracle databases are DML triggers; applications routinely use
them to maintain business rules within the database. Oracle triggers are easy to implement, and
you can employ them if you’re interested in a modest range of auditing activity. Listing 11-15 shows
a small example of how to use a trigger to audit insert operations by users on a certain table.

Listing 11-15. A Typical DML Trigger

SQL> CONNECT tester/tester1
Connected.

SQL> CREATE OR REPLACE TRIGGER audit_insert
2 AFTER INSERT ON tester.xyz
3 FOR EACH ROW
4 INSERT INTO xyz_audit
5* VALUES(user, sysdate);

Trigger created.
SQL>

SQL> CONNECT tester/tester1
Connected.

SQL> INSERT INTO xyz
2 VALUES
3 ('sam alapati');

1 row created.
SQL> COMMIT;
Commit complete.

SQL> CONNECT system/system_passwd
Connected.

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY 465

4517CH11.qxd 8/19/05 10:50 AM Page 465

SQL> SELECT * FROM xyz_audit;
USER_NAME ACTION_DATE

TESTER 10-JUN-05
SQL>

The more actions you want to audit, the larger the space required to hold the audit trail. You
have to understand why you are auditing and only audit those activities that are of true significance
to your organization.

■Note There are no rules regarding the operations you should audit. In some organizations, all DML changes
(INSERT, UPDATE, and DELETE) may have to be audited to ensure that you can track down any unauthorized
changes. In other organizations, simply auditing failed logins might suffice.

Using System-Level Triggers for Auditing

Triggers that fire after DML operations, such as an INSERT or a DELETE, are the most commonly used
triggers in Oracle databases, but they aren’t the only types of triggers you can use. Oracle provides
powerful system-level triggers, such as those set to fire after database startup and before database
shutdown. Login and logoff triggers are especially useful for database auditing.

The following are the main types of system-level triggers that Oracle Database 10g offers:

• Database startup triggers: You can use these triggers mostly to execute code that you want to
execute immediately after database startup.

• Logon triggers: These triggers provide you with information regarding the logon times of a
user and details about the user’s session.

• Logoff triggers: These triggers are similar to the logon triggers, but they execute right before
the user’s session logs off.

• DDL triggers: You can capture all database object changes with these triggers.

• Server error triggers: These triggers capture all major PL/SQL code errors into a special table.

Let’s look at a simple example that shows the potential of the special Oracle triggers for audit-
ing users. This example first creates a simple table to hold logon data. Whenever a user logs in, the
table captures several pieces of information about the user. By auditing the logoff items with
another trigger, it is easy to find out how long the user was inside the database on a given day.

Here are the steps involved in creating a logon/logoff auditing system using system-level
triggers:

1. Create a test table called logon_audit:

SQL> CREATE TABLE logon_audit(
2 user_id VARCHAR2(30),
3 sess_id NUMBER(10),
4 logon_time DATE,
5 logoff_time DATE,
6* host VARCHAR2(20));

Table created.
SQL>

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY466

4517CH11.qxd 8/19/05 10:50 AM Page 466

2. Create a pair of logon and logoff triggers:

SQL> CREATE OR REPLACE TRIGGER logon_audit_trig
2 AFTER LOGON
3 ON DATABASE
4 BEGIN
5 INSERT INTO logon_audit
6 VALUES
7 (user,
8 sys_context('userenv', 'sessionid'),
9 sysdate,
10 null,
11 sys_context('userenv', 'host'));
12* END;
Trigger created.
SQL> CREATE OR REPLACE TRIGGER logoff_audit_trig
2 AFTER LOGON
3 ON DATABASE
4 BEGIN
5 INSERT INTO logon_audit
6 VALUES
7 (user,
8 sys_context('userenv', 'sessionid'),
9 null,
10 sysdate,
11 sys_context('userenv', 'host'));
12* END;
Trigger created.
SQL>

3. Review your users’ login/logout details:

SQL> SELECT * FROM logon_audit;
USER_NAME SESS_ID LOGON_TIME LOGOFF_TIME HOST_NAME
--
SYSTEM 347 13-JUN-2005 07:00:30 NTL-ALAPATI
HR 348 13-JUN-2005 07:10:31 NTL-ALAPATI
HR 348 13-JUN-2005 07:32:17 NTL-ALAPATI
SQL>

You could also use a DDL trigger to capture changes made to objects by users, including modi-
fication, creation, and deletion of various types of objects. You can capture a large number of
attributes about the event and the user that sets off a DDL trigger.

To capture some of the important attributes of a user event, you first need to create a table to
log DDL changes. Once you have done that, you can create a DDL trigger like the one shown in
Listing 11-16. In this example, the table is named DDL_LOG and the trigger is DDL_LOG_TRIG.

Listing 11-16. Using DDL Triggers to Audit Users

SQL> CREATE OR REPLACE TRIGGER
2 ddl_log_trig
3 AFTER DDL ON DATABASE
4 BEGIN
5 INSERT INTO ddl_log

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY 467

4517CH11.qxd 8/19/05 10:50 AM Page 467

6 (username,
7 change_date,
8 object_type,
9 object_owner,
10 database
11)
12 VALUES
13 (ora_login_user,
14 sysdate,
15 ora_dict_obj_type,
16 ora_dict_obj_owner,
17 ora_database_name)
16* END;
Trigger created.
SQL>

Once the trigger is in use, you can query the ddl_log table to see the changes. As you can see
here, users HR and SYSTEM have made several DDL-based changes to the database:

SQL> SELECT * FROM ddl_log;
USERNAME CHANGE_DATE OBJECT_TYPE OBJECT_OWNER DATABASE_NAME

HR 11-JUN-05 SYNONYM HR NINA
SYSTEM 11-JUN-05 OBJECTPRIVILEGE SYSTEM NINA
HR 11-JUN-05 TRIGGER HR NINA
SQL>

Using Flashback Features for Auditing
In addition to using the standard Oracle auditing features described in the previous sections, you
can also take advantage of Oracle’s Flashback capabilities to audit changes made to a table’s rows.
For example, you can use the Flashback Query feature to examine a table’s data at a past point in
time. Using the Flashback Transaction Query, you can find out all the changes made to a row since
a past point in time or an SCN.

The Flashback Versions Query will return each version of a row that existed in the specified
period. You can easily identify the user and the specific operation that resulted in any inappropriate
or unauthorized modifications to data. Using the transaction details from this query, you can go
ahead and identify the entire transaction(s) with the help of another flashback feature, Flashback
Transaction Query.

The Flashback Query, Flashback Versions Query, and Flashback Transaction Query features rely
on undo data and are discussed in detail in Chapter 6.

Fine-Grained Auditing
Suppose you’re interested in using auditing to find out whether users are viewing data in a table
they’re not really supposed to access. For example, say a manager is supposed to be able to see
salary-related information for employees working for him. Can you tell whether the manager is also
looking at the salary information of his superiors? Do you need to audit all the SELECT statements
done by the manager?

Auditing all SELECT statements would lead to a colossal amount of audit data, but fortunately
there’s an easy out. Oracle lets you audit actions in the database on the basis of content. That is, you
can specify that the audit records be written not for all SELECT, INSERT, UPDATE, and DELETE state-
ments, but only for statements that meet certain criteria. Instead of trying to determine policy

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY468

4517CH11.qxd 8/19/05 10:50 AM Page 468

violations based on what is being done to any data, you apply fine-grained auditing (FGA) policies
to individual tables or specific operations that you wish to monitor.

Enabling Fine-Grained Auditing
You use the DBMS_FGA Oracle package to enable fine-grained auditing. With FGA, you can audit
only specific rows within a table. You can simulate a trigger for statements by executing a user-
written procedure when an audit condition is met. You can catch employee misuse of data. You
can also use FGA as an intrusion-detection device.

You don’t need to turn on database-wide auditing to use FGA, and since the auditing is based
on table access, it is virtually impossible to bypass FGA policies. FGA records are accessible through
the DBA_FGA_AUDIT_TRAIL and DBA_COMMON_AUDIT_TRAIL views, with the latter view com-
bining both standard and fine-grained audit log records.

You use the DBMS_FGA package’s ADD_POLICY procedure to add a fine-grained audit policy.
Listing 11-17 shows the structure of the ADD_POLICY procedure.

Listing 11-17. The ADD_POLICY Procedure

SQL> EXECUTE DBMS_FGA.ADD_POLICY(
object_schema VARCHAR2,
object_name VARCHAR2,
policy_name VARCHAR2,
audit_condition VARCHAR2,
audit_column VARCHAR2,
handler_schema VARCHAR2,
handler_module VARCHAR2,
enable BOOLEAN,
statement_types VARCHAR2,
audit_trail BINARY_INTEGER IN DEFAULT,
audit_column_opts BINARY_INTEGER IN DEFAULT);

These are the parameters of the ADD_POLICY procedure:

• object_schema: The schema of the object you want to audit. The default is NULL meaning the
log-on user schema.

• object_name: The name of the object you want to audit.

• policy_name: A user-given name for the audit policy.

• audit_condition: A condition in a row that indicates a monitoring condition. The default
value is NULL, which acts as TRUE.

• audit_column: The columns you want to audit for access. The default is NULL, which means
that all column access will be audited. The audit_column_opts parameter works in conjunc-
tion with this parameter.

• handler_schema: The schema that contains the event handler. The default is NULL, meaning
that the current schema will be used.

• enable: The parameter that enables or disables the policy. The default value is TRUE, which
enables the policy.

• statement_types: The SQL statement types to which this policy is applicable: INSERT, UPDATE,
DELETE, or SELECT. The default is SELECT.

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY 469

4517CH11.qxd 8/19/05 10:50 AM Page 469

• audit_trail: The parameter that says whether to populate LSQLTEXT and LSQLBIND in fga_log$
table. A setting of DB does not populate the columns. The default value is DB_EXTENDED, which
populates the columns.

• audit_column_opts: Determines whether auditing should be enforced when the query refer-
ences any column or all columns specified in the audit_column parameter. Set to DBMS_FGA.
ALL_COLUMNS, the statement will be audited only if it references all columns specified in the
audit_column parameter. The default is DBMS_FGA.ANY_COLUMNS, which means the statement
will be audited if it references any column specified in the audit_column parameter.

Using Fine-Grained Auditing
It’s time to see how you can use the DBMS_FGA package to enforce fine-grained auditing. The fol-
lowing FGA example audits any DML statement (INSERT, UPDATE, DELETE, and SELECT) on the hr.emp
table that accesses the salary column for any employee belonging to the SALES department:

SQL> EXECUTE DBMS_FGA.ADD_POLICY(
object_schema => 'hr',
object_name => 'emp',
policy_name => 'chk_hr_emp',
audit_condition => 'dept = ''SALES'' ',
audit_column => 'salary',
statement_types => 'insert,update,delete,select',
handler_schema => 'sec',
handler_module => 'log_id',
enable => TRUE);

Once the preceding ADD_POLICY procedure is executed, all subsequent SELECT statements that
query the emp table for salary information where the employee belongs to the SALES department
will be logged in the SYS.FGA_LOG$ table in the System tablespace; DBA_FGA_AUDIT_TRAIL is a
view built on this table. You can also capture the SQL text, policy name, and other information
through the LSQLTEXT and LSQLBIND columns of fga_log$, providing you specify audit_trail =
DBMS_FGA.DB_EXTENDED.

The handler_module and the handler_schema parameters are used to take a predetermined set
of actions whenever an audit event occurs, and you can create a trigger-like mechanism called the
audit event handler, because it handles the audit event when it occurs.

Here are what the two event handler–related parameters stand for:

• handler_schema: The schema that owns the data procedure

• handler_module: The procedure or package name

In our example, the handler module is denoted by sec_id, which is the following procedure:

SQL> CREATE PROCEDURE sec.log_id (schema1 varchar2, table1 varchar2, policy1 varchar2)
AS
BEGIN
UTIL_ALERT_PAGER(schema1, table1, policy1); /* send an alert note to my pager
END;

■Tip You only need the execute privilege on the DBMS_FGA package in order to use FGA. When you use the
DBMS_FGA package, the audit records don’t go into the standard audit table, the SYS.AUD$ table, even when you
turn on the database audit trail. The audit records go into a special table called sys.fga_aud$.

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY470

4517CH11.qxd 8/19/05 10:50 AM Page 470

Viewing the Audit Trail
The DBA_FGA_AUDIT_TRAIL view shows you the audit trail (stored in the sys.fga_aud$ table) when
you use FGA in your database. It provides fine-grained audit information, such as the timestamp,
database user ID, object name, and actual SQL text used in the statement flagged by your FGA pol-
icy. Here’s an example:

SQL> SELECT timestamp,
db_user,
os_user,
object_schema,
object_name,
sql_text
FROM dba_fga_audit_trail;

The standard audit trail in Oracle databases is also called DBA_AUDIT_TRAIL and the FGA
audit trail is called DBA_FGA_AUDIT_TRAIL. If you wish, you can view both types of auditing in
the new DBA_COMMON_AUDIT_TRAIL view, which combines both regular and FGA audit trails.

■Note Always try to keep your audit options to the minimum necessary to meet your auditing objectives. As a
DBA, you should keep a close watch on the System tablespace and the SYS.AUD$ table when auditing is turned
on. If the SYS.AUD$ table gets full, further connections and DML activity in the database might come to a standstill.
You may want to archive and purge the records from the SYS.AUD$ table periodically.

Authenticating Users
Database authentication refers to the authentication of the user account and password directly by
Oracle. However, although database authentication is easy to set up, it isn’t the only or the best
means of authenticating Oracle users. You have a choice of several ways of authenticating database
users—ways that aren’t dependent on the database.

The following section covers the most common means of Oracle user authentication, which is
to authenticate users through the database. After this, I briefly discuss some other means of user
authentication—external, proxy, and centralized user authentication.

Database Authentication
Database authentication is the standard verification of a user’s access privileges by using database
passwords. If you’re relying on the database to authenticate your users, you should have a strong
password-management policy.

Here’s an example of database authentication:

SQL> CREATE USER scott IDENTIFIED BY tiger;

Managing Passwords
Depending on how you create a database (manually or using the DBCA), Oracle will have several
accounts with default passwords. If you create a tablespace manually, you may only have SYS,
SYSTEM, DBSNMP (the Oracle Intelligent Agent account), and OUTLN (the username for managing
the outlines feature). In some cases, the user scott (owner of the old Oracle demo database schema)
is also created with the default password of “tiger”. A standard database created by the DBCA may
have up to 32 default user accounts.

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY 471

4517CH11.qxd 8/19/05 10:50 AM Page 471

As part of securing the database, you must use all the standard password-management tech-
niques, including changing passwords at set intervals, checking passwords for complexity, and
preventing reuse of old passwords.

Let’s see how Oracle creates the default user accounts in a new database. The query in List-
ing 11-18 lists all the usernames and their status. An account may be open or it may be locked or
expired. An open account is one you can log in to, as long as you have a valid password. A locked
account must be explicitly unlocked by the DBA. A locked regular account usually results from the
user trying to enter the database with an incorrect password more times than the specified limit
allows. An expired account is one whose password has to be changed, which ensures that the same
passwords aren’t used forever.

Listing 11-18. Displaying the Account Status of All Users

SQL> SELECT username, account_status
2 FROM dba_users;

USERNAME ACCOUNT_STATUS

MGMT_VIEW OPEN
SYS OPEN
SYSTEM OPEN
DBSNMP OPEN
SYSMAN OPEN
SCOTT OPEN
OUTLN EXPIRED & LOCKED
HR EXPIRED & LOCKED
. . .
32 rows selected
SQL>

The DBA must change the passwords for all default user accounts immediately after the data-
base has been created. Any unnecessary default accounts must be locked and expired.

Locking Accounts
Any user account that is locked can be unlocked for free access with the following statement:

SQL> ALTER USER hr ACCOUNT UNLOCK;
User altered.
SQL>

You can make Oracle lock any account after a certain number of failed login attempts with the
CREATE or ALTER PROFILE statement. Oracle lets you specify how long you want the account to be
locked after making the specified login attempts to enter the database; after that time is reached,
Oracle will automatically unlock the account. To close this loophole, simply set the locked time
period to UNLIMITED.

Here’s an example of creating a profile with the time period for locking the account:

SQL> CREATE PROFILE test_profile
2 LIMIT FAILED_LOGIN_ATTEMPTS 5
3* PASSWORD_LOCK_TIME UNLIMITED

Profile created.
SQL>

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY472

4517CH11.qxd 8/19/05 10:50 AM Page 472

The database will lock an account once the FAILED_LOGIN_ATTEMPTS limit is reached. However,
the DBA can unlock a user’s account at any time by using the following command:

SQL> ALTER USER hr ACCOUNT UNLOCK;
User altered.
SQL>

Password Expiration
Password aging policies, which ensure that users don’t hang onto the same password for a long
time, are a standard part of database security. Once a password expires, the user is forced to
change it.

You can make a password expire with the ALTER USER command, as shown here:

SQL> ALTER USER hr IDENTIFIED BY hr PASSWORD EXPIRE;
User altered.
SQL>

You can also make a password expire with the ALTER PROFILE command:

SQL> ALTER PROFILE test_profile
2* LIMIT PASSWORD_LIFE_TIME 30;

Profile altered.
SQL> ALTER USER hr PROFILE test_profile;
User altered.
SQL>

The preceding ALTER PROFILE statement limits the password life to 30 days, and you can gently
remind the user about this by using another clause in your ALTER PROFILE statement, PASSWORD_
GRACE_TIME 7, which means that the user will be reminded for seven days prior to the final expira-
tion of the password.

After the user’s password expires, the password must be changed:

SQL> CONNECT hr/hr
ERROR:
ORA-28001: the password has expired
Changing password for hr
New password: **
Retype new password: **
Password changed
Connected.
SQL>

The Password File
Oracle will let you choose how you want your privileged users to connect to the database. Privileged
users are those users who can perform tasks such as starting up and shutting down the database. By
default, only the SYS user has the SYSDBA and SYSOPER privileges, both of which are considered
high-level privileges. The SYS user can grant these privileges to other users.

Of course, any DBA who knows the SYS password can log in as SYS and perform the privileged
tasks. However, by granting the critical privileges SYSDBA and SYSOPER explicitly to users, you
force them to provide their username and password, which makes it easy to track the actions of
privileged users. The REMOTE_LOGIN_PASSWORDFILE initialization parameter specifies whether Oracle
checks for a password file.

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY 473

4517CH11.qxd 8/19/05 10:50 AM Page 473

The REMOTE_LOGIN_PASSWORDFILE parameter can take the following two values:

• none: No password file is used. This is the default, and it permits only operating
system–authenticated users to perform privileged database administration tasks.

• shared: Creates a password file that can be used by multiple databases running on a single
server. The password file includes both SYS and non-SYS users. Any user that is granted the
SYSDBA or SYSOPER privilege is automatically added to the password file.

Oracle recommends that you use the REMOTE_LOGIN_PASSWORDFILE=SHARED option for the highest
degree of security. There is a way to manually create a password file and specify which users can
have the SYSDBA and SYSOPER privileges, but if you use the SHARED option, Oracle will automati-
cally add users to the password file upon their being granted the SYSDBA and SYSOPER privileges.
You can use the V$PWFILE_USERS view to see who has been granted these privileges besides the
default SYS user by using the following query:

SQL> CONNECT sys/life1 AS SYSDBA;
Connected.
SQL> GRANT sysoper, sysdba TO tester;
Grant succeeded.
SQL> SELECT * FROM v$pwfile_users;
USERNAME SYSDB SYSOP

SYS TRUE TRUE
TESTER TRUE TRUE
SQL>

■Tip Always set the REMOTE_LOGIN_PASSWORDFILE parameter to SHARED in the init.ora file (or SPFILE). Once
you start the database, the password file will be automatically created, and any new users to whom you grant the
SYSDBA and SYSOPER privileges will be automatically added to the file.

If you don’t have a password file and want to create one, you need to use the orapwd utility pro-
vided by Oracle. If you type orapwd at the operating system prompt, this is what you’ll see (on both
UNIX and Windows platforms):

$ orapwd
Usage: orapwd file=<fname> password=<password> entries=<users>
where
file - name of password file (mand),
password - password for SYS (mand),
entries - maximum number of distinct DBA and OPERs (opt),

There are no spaces around the equal-to (=) character.
oracle@hp1. [/u01/app/oracle/dba]
$

The following command creates a new password file called testpwd:

$ orapwd FILE=testpwd PASSWORD=remorse1 ENTRIES=20

Encrypted Passwords
By default, Oracle user passwords aren’t encrypted, and this leaves them vulnerable to unautho-
rized use. By setting the following environment variables, one on the client and the other on the
server, you can ensure that Oracle will always encrypt a password when it’s sending it across a
network.

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY474

4517CH11.qxd 8/19/05 10:50 AM Page 474

Set this one on the client:

ora_encrypt_login=true

And set this one on the server:

dblink_encrypt_login=true

■Note All passwords are always automatically encrypted during network connections, using a modified DES
(Data Encryption Standard) algorithm.

External Authentication
Another method of authenticating database users is the external authentication method, under
which you match the user accounts at the operating system level with the usernames in the data-
base. Oracle manages the user’s privileges in the database itself, but the user authentication is
performed by the operating system, which is external to the database. The advantage to this method
is that you’ll need only a single username for both the operating system and database connections.
This can also help in auditing user actions, as the database names and operating system accounts
correspond.

To use operating system authentication, you first have to set the OS_AUTHENT_PREFIX configura-
tion parameter in the init.ora file as follows:

OS_AUTHENT_PREFIX = ""

There shouldn’t be a space between the pair of quotes.

■Note The default value for the OS_AUTHENT_PREFIX parameter is "OPS$", but that is only for maintaining
backward compatibility.

When you start the database again, you can start using external authentication based on the
underlying operating system. To enable operating system authentication, this is how you need to
create your users:

SQL> CREATE USER salapati IDENTIFIED EXTERNALLY;
User created.
SQL>

Note that the new user isn’t given a password—the user doesn’t need one. As long as the user
can log in to the operating system, all he or she will have to do is type the following command to log
in to the database:

$ sqlplus /

■Note The well-known Oracle OPS$ORACLE database account is a simple variation on the preceding example of
external authentication. OPS$ is a prefix Oracle has used since the Oracle 5 version. You can use any prefix or no
prefix at all for operating system external authentication.

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY 475

4517CH11.qxd 8/19/05 10:50 AM Page 475

The external operating system authentication described in this section doesn’t allow users to
connect over Oracle Net, because that authentication method isn’t considered very secure when
used through Oracle Net. Therefore, shared server configurations that use Oracle Net can’t, by
default, use operating system external authentication. To override this default behavior, you have
to set the following parameter in your init.ora file:

REMOTE_OS_AUTHENT=TRUE

Proxy Authentication
You can use several middle-tier products to facilitate user interaction with the Oracle database. A
web server is often used as the middle or application layer connecting the clients to the database.
You can choose to have the middle tier authenticate your users, or you can have the middle tier pass
the username and password to the database for authentication.

Here is an example showing how to authorize a middle tier (appserv) to act as a proxy for a
user, with authentication by a password:

SQL> ALTER USER salapati
2 GRANT CONNECT THROUGH appserv
3* AUTHENTICATED USING PASSWORD;

User altered.
SQL>

The following example illustrates how you can authorize the middle tier to connect as a user:

SQL> ALTER USER salapati
2* GRANT CONNECT THROUGH appserv;

User altered.
SQL>

Centralized User Authorization
If you use the Oracle Advanced Security option, you can use a Lightweight Directory Access Proto-
col (LDAP)–based directory service, such as Oracle Internet Directory (OID), to perform user
authentication. The directory-based service lets you create enterprise users who can be granted
global roles. Centralized user management enables the use of a single sign-on—that is, users need
only sign in once to access all the databases they need to use.

Because Oracle Advanced Security isn’t used by every database, I don’t provide a detailed expla-
nation of the implementation of centralized user authorization. Please refer to the Oracle manual,
“Oracle Advanced Security Administrator’s Guide,” available on the http://tahiti.oracle.com web
site, for a detailed explanation of this feature

Enterprise User Security
Large organizations these days have both internal and Web-based applications to manage. It quickly
becomes an administrative nightmare to manage users and their privileges on all these different
applications. Centralized directories are increasingly being seen as the best way to manage multiple
systems within an organization.

LDAP is a popular industry standard and Oracle has its own implementation of this standard.
Information that has been managed in multiple systems and formats can be brought under one
umbrella using a directory service like LDAP. You can replace all your tnsnames.ora files on clients

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY476

4517CH11.qxd 8/19/05 10:50 AM Page 476

and manage user connectivity, authorization, and security with the help of the LDAP directory serv-
ices. The LDAP directory can provide solid password policy management, data privacy, data
integrity, and strong authentication and authorization protocols.

Shared Schemas
When users are registered and maintained in an LDAP repository, they are referred to as shared
schemas or schema-independent users. When an LDAP-registered user connects to a specific data-
base, the database will ask the LDAP server for confirmation of the user’s identity and the roles that
should be assigned to the user upon connection. Thus, in a database with several hundred users for
a certain application, you need to create only one schema to manage the application. The individ-
ual user will be registered in the centralized directory, and when the user connects to the database,
he or she will be assigned this common schema.

Single Sign-On
If you use the Oracle Application Server, you can take advantage of the Single Sign-On feature, so a
user need only log into the system once. Once the user is authenticated, he or she can access all the
other applications on the system without having to enter a name and password repeatedly. This
automatic authentication is very helpful to system administrators and other key users of systems
in an organization.

Data Encryption
Sometimes you may want to encrypt data (encode it so only users who are authorized can under-
stand it). Oracle supports encryption of network data through its Advanced Security option.
For encryption of data, Oracle provides two PL/SQL packages, the older of which is the DBMS_
OBFUSCATION_TOOLKIT package. This package enables data encryption by using the Data
Encryption Standard (DES) algorithm. The toolkit supports triple DES encryption for the highest
level of security. It also supports the use of the MD5 secure cryptographic hash.

In Oracle Database 10g, there is a new PL/SQL encryption package called DBMS_CRYPTO.
Compared to DBMS_OBFUSCATION_TOOLKIT, DBMS_CRYPTO provides a wider range of advanced
security encryption and cryptographic algorithms and is easier to use. Oracle intends this package
to replace the older DBMS_OBFUSCATION_TOOLKIT package. Whichever Oracle PL/SQL package
you use, you have to manage the data encryption keys, which isn’t a trivial task. You often have to
create views to help you decrypt the encrypted data, which adds to the management tasks. In addi-
tion, you can’t index the encrypted data according to Oracle’s recommendations, which reduces the
value of both of these encryption packages in several cases.

In Oracle Database 10g Release 2, you have a third easier option: encrypting data with the
transparent data encryption feature. The next section shows you how to easily encrypt Oracle table
data using an Oracle wallet to store encryption keys. You can index the encrypted table’s columns as
well, thus overcoming one of the biggest drawbacks in using the Oracle encryption packages.

Transparent Data Encryption
Even with all kinds of access-control mechanisms in place, you may ultimately come to the realiza-
tion that your data is physically stored on a disk drive or tape somewhere, making it vulnerable to
unauthorized access. You often come across situations where certain key column values in a table
need to be encrypted to provide security. In Oracle Database 10.2, you can use the transparent data
encryption feature to encrypt a column. Transparent data encryption means that the database will

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY 477

4517CH11.qxd 8/19/05 10:50 AM Page 477

handle encryption and decryption automatically, without the user or the application having to
manage the encryption key. This means the application no longer needs to handle the cumbersome
process of managing the encryption key.

For example, when you create a table, you can simply specify the ENCRYPT keyword along with
the column name, as shown in the following example. This statement creates a table that converts
the ssn column values into an encrypted data format when they are stored on disk:

SQL> CREATE TABLE employees (
empno NUMBER(5) PRIMARY KEY
ename VARCHAR2(15) NOT NULL,
ssn NUMBER(9) ENCRYPT,

. . .

The ENCRYPT keyword in the preceding example specifies that the ssn (social security number)
be encrypted. Once you do this, even if unauthorized users gain access to the data on your storage
devices, they can’t read the data, since it’s encrypted. When authorized users access data, however,
the encrypted data is automatically decrypted, and the decryption process is transparent to the
user.

An Oracle wallet is used to store authentication and signing credentials, including private keys
and certificates. Before you can start encrypting or decrypting a table, the encryption key is
retrieved from the Oracle wallet and stored in the SGA.

■Note In addition to regular database tables, you can also encrypt external tables using the transparent data
encryption feature.

In the following sections, I provide a brief introduction to this new Oracle feature, which lets
you encrypt one or more of a table’s columns when you create the table, or even later on. Here are
the steps you need to follow in order to use the transparent data encryption feature:

1. Create an Oracle wallet.

2. Open the Oracle wallet.

3. Generate the master encryption key that will be used to encrypt the column’s encryption
key.

4. Specify exactly how you want the encrypted column to be encrypted.

■Note Data decryption is automatic when an authorized user accesses an encrypted column. You don’t need to
create any views to decrypt the data. As with encryption, the database will load the master and the data encryption
keys into the SGA from the Oracle wallet prior to decrypting data.

Creating the Oracle Wallet

You create the Oracle wallet using the Oracle Wallet Manager. Follow these steps:

1. Start up the Oracle Wallet Manager by typing owm at the operating system prompt in a
UNIX/Linux system. On a Windows server select Start ➤ Programs ➤ Oracle ➤ Configura-
tion and Management Tools ➤ Integration Management Tools ➤ Oracle Wallet Manager.
Figure 11-1 shows the opening window of the Oracle Wallet Manager.

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY478

4517CH11.qxd 8/19/05 10:50 AM Page 478

Figure 11-1. The Oracle Wallet Manager

2. At the top left of the Oracle Wallet Manager window, click the Wallet menu and choose the
New option. If you don’t already have a default directory enabled to create the wallet in, the
Oracle Wallet Manager will ask if you want to create one. You can choose to create the Oracle
wallet in the default directory, or choose any other directory you wish.

3. A box will open in which you can enter a password for wallet management. This is the same
password that you’ll use later in SQL*Plus to open the Oracle wallet and to create and alter
the master encryption key. You can also select the wallet type; to keep things simple for now,
just choose the default wallet type, which is STANDARD. Click OK.

4. A new empty Oracle wallet is created and you’re asked if you wish to create a certificate at
this time. Click No.

Figure 11-2 shows that your Oracle wallet is created, without any certificates. You can add
Trusted Certificates later on, if you wish. For our examples, you won’t need them.

The encryption keys are stored in the Oracle wallet, whose location is specified in the sqlnet.ora
configuration file. Once you successfully create your new Oracle wallet, go the $ORACLE_HOME/
network/admin directory and add the following line to the sqlnet.ora file (making sure it points to
the directory you chose previously):

ENCRYPTION_WALLET_LOCATION = '/etc/oracle/wallet/oracle'

Now you’re ready to use your Oracle wallet to encrypt your table columns.

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY 479

4517CH11.qxd 8/19/05 10:50 AM Page 479

Figure 11-2. A newly created Oracle wallet

Opening and Closing the Oracle Wallet

Before you can use the transparent data encryption feature to encrypt a column, you must open the
Oracle wallet, since it is closed after you create it. Here’s how you open the Oracle wallet:

SQL> ALTER SYSTEM SET ENCRYPTION WALLET OPEN IDENTIFIED BY "password";
System altered.
SQL>

Note that the password is whatever you specified when you created the Oracle wallet. Make
sure you enclose it in double quotes.

The Oracle wallet you opened can be closed in two ways:

• Use the ALTER SYSTEM SET ENCRYPTION WALLET CLOSE statement

• Shut down the database—the wallet will be closed automatically

Once a wallet is closed, you have to open it again before you use it by using the ALTER SYSTEM
SET ENCRYPTION WALLET OPEN statement again. You don’t have to open the wallet manually every
time, if you use an auto-login wallet (set in the Wallet Manager). The auto-login wallet is opened
when the user that created it logs in. It stays in effect until that user logs off.

Generating the Master Encryption Key

Even if an unauthorized user gains access to the stored table data, the encrypted data in the key
columns you encrypted will thwart the user from understanding what’s there. Regardless of the
number of columns you encrypt in your database, you use a single encryption key for each table.
You can change this key if you wish, and the keys for each encrypted table are stored in the data
dictionary after they are encrypted by the master key of the database.

The master key’s function is to protect the data encryption keys. The data encryption keys
are automatically generated when you use the transparent data encryption feature (by using the
ENCRYPT keyword), but you have to manually generate the master key to actually encrypt the table
columns. Here’s how you create the master encryption key:

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY480

4517CH11.qxd 8/19/05 10:50 AM Page 480

SQL> ALTER SYSTEM SET ENCRYPTION KEY IDENTIFIED BY "password";
System altered.
SQL>

Again, you provide your Oracle wallet password, as in the previous example.
If you ever think the master key has been compromised, you can regenerate a new key by using

the same statement. Each time you do so, a new master key is generated by the database.

Encrypting the Table Columns

Now that you’ve created the master encryption key, you can start encrypting your table data by
using the ENCRYPT keyword after the name of the column you want to encrypt.

First, let’s look at how to encrypt a column while creating the table. In the following example,
the ssn column in the employees table is encrypted:

SQL> CREATE TABLE EMPLOYEES
first_name VARCHAR2(30),
last_name VARCHAR2(30),
emp_id NUMBER (9),
salary NUMBER(6),
ssn NUMBER(9) ENCRYPT;

Table created.
SQL>

Table creation is not the only time you can encrypt a table’s columns. You can also encrypt a
column in an existing table by using the ALTER TABLE statement. Let’s add a new column, ENCRYPT_ID,
to the employees table:

SQL> ALTER TABLE EMPLOYEES ADD (ENCRYPT_ID NUMBER(9) ENCRYPT);
Table altered.
SQL>

You can also encrypt an existing column in a table, as shown here:

SQL> ALTER TABLE EMPLOYEES MODIFY (EMP_ID ENCRYPT);
Table altered.
SQL>

If you check the employees table now, you’ll find that the ssn, encrypt_id, and emp_id columns
are all encrypted:

SQL> DESCRIBE employees
NAME NULL? TYPE
FIRST_NAME VARCHAR2(30)
LAST_NAME VARCHAR2(30)
EMP_ID NUMBER(9) ENCRYPT
SALARY NUMBER(6)
SSN NUMBER(9) ENCRYPT
ENCRYPT_ID NUMBER(9) ENCRYPT
SQL>

Note that encrypting data will result in a performance hit, especially when users are selecting
or inserting data. If you decide you want to turn off encryption for any reason, you can do so by
using the DECRYPT keyword, as shown here:

SQL> ALTER TABLE employees MODIFY (ssn DECRYPT);

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY 481

4517CH11.qxd 8/19/05 10:50 AM Page 481

Encryption Algorithms

The encrypted columns in the employees table use the default encryption algorithm. This default
encryption algorithm uses salt, which involves adding a random string to data before it’s encrypted,
thus making it harder for someone to match patterns in the text.

As mentioned earlier, you can index transparently encrypted columns, but Oracle recommends
that you not use salt if you plan on using indexes on the encrypted columns. If you don’t wish to use
salt, specify the ENCRYPT NO SALT option when you encrypt a column. Similarly, if you wish to use a
nondefault encryption algorithm, you can do so by specifying the algorithm when you encrypt the
column, as shown in the following example, where the 3DES168 algorithm is used:

ssn NUMBER(9) ENCRYPT USING '3DES168'

Oracle Internet Directory
In Chapter 10, you were introduced to the Oracle Internet Directory (OID). OID can perform effec-
tive security management, including enforcing strict password policies for security management.
OID also helps you maintain a single, global identity for each user across the application environ-
ment, and helps you centrally store user credentials.

Database Security Dos and Don’ts
A common misunderstanding among DBAs is that once the database is behind a firewall, it’s
immune to security attacks. This presupposes, of course, that your security threats are always exter-
nal, when real-life statistics point out that the majority of security violations are from insiders.
That’s why you have to follow a rock-solid authentication policy and sound data-access policies.

You can take several basic steps to enhance the security of your Oracle database. Most of these
steps are based on common sense and prohibit easy entry into the database through well-known
backdoor access points. Let’s quickly review these security guidelines.

User Accounts
Oracle recommends that you lock and expire all default user accounts except, of course, the SYS
and SYSTEM accounts, and other user accounts that you’ll need, like DBSNMP, SYSMAN, and
MGMT_VIEW. The number of default accounts depends on the number of database features and
components you use and how you create your database. For example, creating a database with the
help of the DBCA usually results in the creation of a larger number of default accounts than you’ll
find in a manually created database.

Passwords
Don’t hard-code Oracle user passwords in shell scripts. Use a password file and variables to access
the passwords instead. Otherwise, your user passwords can be gleaned by using a simple ps -ef |
grep command while the process is running.

Change the passwords for all default user accounts immediately after creating the database.
You should set passwords for the SYS and SYSTEM users while creating the database, although this
isn’t mandatory.

Use strict password aging and expiration policies, and force users to change passwords in a
timely fashion. Use the FAILED_LOGIN_ATTEMPTS option when setting user profiles to limit unsuccess-
ful login attempts to a reasonable number. Accounts should be locked indefinitely (which is the

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY482

4517CH11.qxd 8/19/05 10:50 AM Page 482

default behavior) if they hit the FAILED_LOGIN_ATTEMPTS ceiling. This way, the DBA will be the only
one who can unlock these accounts. You can also use Oracle’s password-complexity verification
routine to make sure your users’ passwords meet standard password-complexity requirements.

Operating System Authentication
Two initialization parameters enable access to an Oracle database through authentication at the
operating system level. One is the well-known OS_AUTHENT_PREFIX parameter, which many people
use to create the OPS$ account for use in shell scripts and other places. Of course, using the OPS$
account implies that you’re relying on operating system authentication and security.

The other initialization parameter affecting operating system authentication of users is the
REMOTE_OS_AUTHENT parameter, which enables users who authenticate themselves not on the server,
but on a remote workstation, to gain access to your database. There may be an exceptional circum-
stance when you want to use this feature. In general, though, you should leave this parameter at its
default value of false. Otherwise, a user from a remote system can log in using non-secure proto-
cols through the remote operating system authorization, and that’s a serious violation of security
standards.

Database Auditing
Check the audit trail for logins as SYSDBA to make sure that only authorized people are logging in
as SYSDBA users. The audit trail also lets you see if the database was brought up at any time with
the auditing feature disabled.

You should audit all unsuccessful attempts to log in to the database. In addition, you can audit
all actions by any user connected as SYSDBA or SYSOPER. To enable auditing of all SYSDBA and
SYSOPER operations, you need to set the following initialization parameter:

AUDIT_SYS_OPERATIONS=TRUE

■Note Setting AUDIT_SYS_OPERATIONS=TRUE logs all SYSDBA and SYSOPER activity to an operating system
audit trail, not a database audit trail. Thus, the audit trail can’t be tampered with by users with powerful privileges
within the database.

Granting Privileges
Oracle recommends strongly that you avoid granting ANY privileges, as in delete ANY table, to
reduce your vulnerability. You can avoid this problem generally by refraining from (carelessly)
granting object privileges directly to users. In addition, avoid granting privileges with the ADMIN
privilege. The ADMIN privilege means that the user to whom you granted a privilege can grant the
same privilege to other users in turn. This means that you, the DBA, can very quickly lose control
over who is being granted privileges in your database.

Use roles rather than granting privileges directly to users. This will help you a lot on databases
with a large user base, where it is hard to check which user has been granted which privilege if you
have been granting them directly to the users.

PUBLIC is a default role for every user created in the database. Make sure you don’t grant any
unnecessary roles or privileges to PUBLIC, because every user will automatically inherit those roles
and privileges, including default users such as DBSNMP and OUTLN.

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY 483

4517CH11.qxd 8/19/05 10:50 AM Page 483

The following query shows that PUBLIC has over 12,000 object-level privileges:

SQL> SELECT COUNT(*) FROM dba_tab_privs
2 WHERE grantee='PUBLIC';
COUNT(*)

=========
12814

SQL>

Of the more than 12,000 object privileges that have been granted to PUBLIC, over 100 are privi-
leges to execute DBMS packages, such as DBMS_JOB, DBMS_METADATA, DBMS_SNAPSHOT,
DBMS_DDL, DBMS_SPACE, and DBMS_OBFUSCATION_TOOLKIT. In addition, PUBLIC can use
the UTL_FILE and UTL_HTTP packages by default. The PUBLIC user also has a single system
privilege: unlimited tablespace.

Revoke all important execution privileges from PUBLIC. Grant important privileges to users
through the judicious use of roles.

The SYSDBA privilege gives a user very powerful privileges, including the ability to drop data-
base objects and alter data dictionary tables. It goes without saying that you must hand out the
SYSDBA privilege very sparingly.

Dealing with Environments with Multiple DBAs
If you’re the only Oracle DBA in your organization, you must have all the system privileges to
manage the database. However, if you have a group of Oracle DBAs managing a large number of
databases, it’s smart not to give everyone the same type of privileges (such as SYSDBA) and the
same type of roles (such as DBA). You should create your own specialized roles, with each role con-
taining a specific set of privileges for performing certain database tasks. Thus, a DBA in charge of
helping the developers create new objects won’t be able to perform certain recovery-related tasks,
and vice versa. You can then assign these roles to the DBAs, ensuring that there is a clear demarca-
tion of job duties.

Protecting the Data Dictionary
Users that are granted the ANY system privilege can drop data dictionary tables. To protect your
data dictionary, you must set the 07_DICTIONARY_ACCESSIBILITY configuration parameter to FALSE in
your parameter file. This will limit the ANY privilege to only those users that log in with the SYSDBA
privilege.

Setting Permissions
Set the proper file permissions at the operating system level, as there often can be a security loop-
hole at this level. The default permissions on a newly created file in most UNIX systems are
rw-rw-rw. This means that any users who gain admission to the UNIX server can read or copy all
files, including your database files. You should set the UMASK variable to 022, so only the Oracle user-
name can read from and write to database files.

Ensure that you remove the SETUID on all Oracle files immediately. Some of the SETUID files may
allow the execution of scripts as the root user in UNIX systems.

The UTL_FILE package, as you’ll see in Chapter 20, enables writing to operating system files
from within an Oracle PL/SQL program. When you use the UTL_FILE_DIR initialization parameter,
never use the * value for the parameter, which means that the package could output files to any
directory in the operating system’s file system. Restrict the directories to some well-known locations
that are exclusively set apart from the UTL_FILE output files.

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY484

4517CH11.qxd 8/19/05 10:50 AM Page 484

Remove the PL/SQL EXTPROC functionality unless it is needed. First remove mentions to
EXTPROC in both the listener.ora file on the server and the tnsnames.ora file on the client. You then
can remove all EXTPROC executables from your $ORACLE_HOME/bin directory. There is usually a
pair of executables called extproc and extproc0. The EXTPROC facility gives hackers a way to break
into the operating system without any authentication. If you do need to use the EXTPROC functional-
ity, refer to Note 175429.1 on Oracle’s MetaLink site (http://metalink.oracle.com).

Make sure you don’t allow ordinary users access to your export and import control files,
because your passwords may appear in those files.

■Note Peter Finnegan’s Oracle security web site (http://www.petefinnigan.com) provides several interesting
and useful Oracle security-related articles and scripts, including discussion about the detection of SQL injection
and numerous other Oracle security issues. The comprehensive Oracle Database Checklist that’s available on
Finnegan’s web site is used to audit Oracle database installations and pretty much covers all Oracle database
security issues.

The Network and the Listener
The network and the listener service are vulnerable points of Oracle security—there are many ways
you can inadvertently leave avenues open for attacks on your database. Let’s first look at how you
can strengthen the listener service.

Securing the Listener
As you learned in Chapter 10, you should always use a password for the listener to prevent unautho-
rized users from preventing connections to the database. Once you set a password for the listener,
privileged actions such as shutting down or starting up the listener can’t be performed unless you
provide the right password.

You can also prevent a user from using the SET command to interfere with listener functions.
To do this, you need to add the following line to your listener.ora configuration file:

ADMIN_RESTRICTIONS=ON

By default, this parameter is set to false.
You should also avoid remote management of the listener service, as its password isn’t

encrypted over the network. The listener password is stored in the listener.ora file, so you must
safeguard this file.

Securing the Network
One of the basic security requirements for today’s Internet-based database applications is that you
must have a firewall protecting your system from the external world. Once you have a firewall in
place, keep it secure by not poking holes in it for any reason, such as by using the ports used by the
listener to connect to the Internet.

In addition to having a normal firewall, you can use a feature of Oracle Net to add an additional
layer of protection called server-side access controls. Server-side access controls limit the capability
of an address to connect to your database using the listener service. There are two ways to limit
the addresses through which connections can be made. You can either list the invited (accepted)
address or the excluded addresses in the sqlnet.ora file. All network addresses in the invited list are
allowed to connect, and all addresses in the excluded nodes list are denied access.

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY 485

4517CH11.qxd 8/19/05 10:50 AM Page 485

When the listener service starts, it reads the sqlnet.ora file and provides access according to the
access controls you specified. Here are the additions that you need to make to your sqlnet.ora file to
enforce server-side access controls if you are specifying the invited addresses:

tcp.validnode_checking = yes
tcp.invited_nodes = (server1.us.wowcompany.com,
172.14.16.152)

Here is what you need to add if you are excluding addresses:

tcp.excluded_nodes = (server1.us.wowcompany.com,
172.14.16.152)

■Note In general, because it’s more likely that you know the addresses that are going to connect to your data-
base, using the TCP_INVITED_NODES parameter may be the best way to limit access to your system.

Denying Remote Client Authentication
As you learned earlier in this chapter, letting remote clients authenticate logins is unsafe, and you
should always let the server authenticate clients connecting to your database. You can turn client-
based operating system authentication off by setting the following parameter in your init.ora file:

REMOTE_OS_AUTHENT=FALSE

The preceding setting will force server authentication of users, which is more secure than trust-
ing the clients to perform operating system authentication.

MetaLink and Critical Patch Updates
An important part of security management is keeping up with the latest news about security vul-
nerabilities and the patches or workarounds to overcome them. Oracle has a policy of quickly
issuing fixes for new security problems, so you should check for the latest security patches on the
Oracle MetaLink web site (http://metalink.oracle.com).

You can find regular Oracle security alerts at the following location: http://technet.oracle.com/
deploy/security/alerts.htm. You can also find news about security breaches on the MetaLink site in
the “News & Notes” section. If you wish, Oracle will send you e-mail security alerts about new
issues. You can sign up for this free service by registering at http://otn.oracle.com/deploy/security/
alerts.htm.

Oracle provides Critical Patch Updates on a quarterly schedule, and Oracle’s customers are
notified of these updates via MetaLink, the OTN Security Alerts page, and the Oracle Security RSS
newsfeed. If you’re already a MetaLink subscriber, you are automatically signed up for the Critical
Patch Updates. If a patch addresses a severe threat, Oracle will not wait for the quarterly Critical
Patch Update to send the patch to you. In such cases, Oracle will issue an unscheduled Security
Alert through MetaLink and will let you immediately download the patch. The patch will also be
included in the next quarterly Critical Patch Update. For the most part, though, Critical Patch
Updates will be the process by which most patches will be released by Oracle from now on.

Critical Patch Updates are comprehensive patches that address significant security vulnerabili-
ties and include fixes you can apply, prerequisites for the security fixes, or both. You can thus have a
regular, planned quarterly schedule for patching your system. A single patch on a quarterly basis is
better than a number of patches that need extensive testing and may conflict with each other.

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY486

4517CH11.qxd 8/19/05 10:50 AM Page 486

Oracle has also introduced a new Risk Matrix along with its quarterly Critical Patch Updates.
The Risk Matrix enables customers to estimate the scope and severity of the vulnerabilities
addressed by each Critical Patch Update. The Risk Matrix tells you the threat you face to confiden-
tiality, integrity, and availability, and the conditions under which your system is most exploitable.
You can thus assess the risk to your system and prioritize patching on those systems.

Oracle’s Advanced Security Option
Oracle doesn’t require or recommend that you use its Advanced Security option to secure your
Oracle databases. However, the Advanced Security option provides so many strong security features
that you may want to consider using it if your business needs warrant the highest degree of data
and network security. Here are some of the additional security features available when you use
Oracle’s Advanced Security option:

• Encryption of network traffic among clients, application servers, and databases

• Sophisticated authentication methods for users

• Centralized user management

• Support for Public Key Infrastructure (PKI)

Application Security
Although the security guidelines thus far have mostly dealt with preventing unauthorized access to
your network and the database, it’s extremely important that you review the application security
policies to ensure no vulnerabilities exist there. There are some commonsense policies involving
roles and SQL*Plus use that your organization must enforce to provide strong application security.

Granting Privileges Through Roles
You’ve already seen in the section on data security how you can use roles to encapsulate privileges
rather than granting privileges directly to various users. You should minimize the number of direct
object privileges by letting stored code such as procedures and packages be the means through
which users can issue DML statements. Then you can just grant the user the privilege to execute a
certain package or procedure to perform any DML actions. Once the package or procedure com-
pletes executing, the user will not have the privilege to perform the DML activity from outside the
stored code.

Disabling Roles
All application roles should use the SET ROLE statement to enable the roles granted to users. Appli-
cation users should be granted roles only for specific purposes, and the roles should be revoked
from them when they aren’t needed any longer.

Application owners should consider creating secure application roles, which are enabled by
PL/SQL packages. Once you create and assign a secure application role to a user, it automatically
gets assigned to the user when the user logs in to the database.

Restricting SQL*Plus Usage
One of the first things you should do when opening your database to the public is to tightly restrict
the ability of users to use the SQL*Plus interface. You can restrict the SQL*Plus capabilities of a user
by using the product_user_profile table.

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY 487

4517CH11.qxd 8/19/05 10:50 AM Page 487

Useful Techniques for Managing Users
In this section you’ll examine some simple scripts that can help you manage your users. You’ll also
learn about some typical problems that you might encounter in this area.

Altering Profiles
The following code shows how to alter a user’s profile:

SQL> ALTER PROFILE fin_user
2 LIMIT
3 FAILED_LOGIN_ATTEMPTS 5
4 PASSWORD_LOCK_TIME 1;

Profile altered.
SQL>

Listing User Information
You can use the DBA_USERS view to get quite a bit of information about the user population in
your database. Here’s a typical query using the DBA_USERS view:

SQL> SELECT username, profile, account, status
FROM dba_users;

USERNAME PROFILE ACCOUNT_STATUS

SYS DEFAULT OPEN
SYSTEM DEFAULT OPEN
OUTLN DEFAULT OPEN
DBSNMP DEFAULT OPEN
HARTSTEIN DEFAULT OPEN
FINANCE DEFAULT OPEN
SQL>

Determining What SQL a User Is Currently Executing
You can use the query shown in Listing 11-19, which joins the V$SESSION and the V$SQLTEXT
tables, to give you the text of the SQL currently being used by a user.

Listing 11-19. Finding Out the SQL Being Executed by a User

SQL> SELECT a.sid,a.username,
2 s.sql_text
3 FROM v$session a,v$sqltext s
4 WHERE a.sql_address = s.address
5 AND a.sql_hash_value = s.hash_value
6 AND a.username LIKE 'HR%'
7* ORDER BY a.username,a.sid,s.piece;
SID USERNAME SQL_TEXT

--
8 HR BEGIN dbms_stats.gather_table_stats

('HR','REGIONS'); END;
SQL>

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY488

4517CH11.qxd 8/19/05 10:50 AM Page 488

Logging In As a Different User
You may need to sometimes log in as another DBA to perform certain actions. However, even the
Oracle DBA doesn’t have access to users’ passwords, which are stored in an encrypted form. You
could use the ALTER USER statement to change the user’s password, but you might not want to
inconvenience the user by changing the password for good.

In a case like this, you can change the password of a user temporarily and use the new pass-
word to get in as that user. Before you change a user’s password, get the original encrypted
password, which you can use to reset the user’s password back after you’re done. Here’s an example:

SQL> SELECT 'alter user tester identified by values '||password||';'
2 FROM dba_users
3* WHERE username='TESTER';

'ALTERUSERTESTERIDENTIFIED

alter user tester identified by values 1825ACAA229030F1;
SQL>

Now change the password of user tester so you can log in as that user:

SQL> ALTER USER tester IDENTIFIED BY newpassword;

When you’re done using the tester user account, use the ALTER USER statement again to change
user tester’s password back to its original value. Make sure you enclose the encrypted password in
single quotes.

SQL> ALTER USER tester IDENTIFIED BY VALUES '1825ACAA229030F1';
User altered.
SQL>

Killing a User’s Session
You can use the ALTER SYSTEM command to kill any user’s session. You need to first query the
V$SESSION view for the values of the SID and serial number of the user. Then using the SID and
serial number, you can kill the user’s session. Here’s an example:

SQL> SELECT sid, serial# FROM v$session
2* WHERE username='SALAPATI';

SID SERIAL#

10 32

SQL> ALTER SYSTEM KILL SESSION '10,32';
System altered.
SQL>

If the session you want to kill is involved in a long operation, such as a lengthy rollback, Oracle
will inform you that the session is marked for kill and it will be killed after the operation is com-
pleted. When Oracle kills a session, it rolls back all ongoing transactions and releases all session
locks.

If the UNIX process of the user is killed, the Oracle session will most likely be killed also, but
that isn’t the most graceful way to end a session. If you think you must kill a user’s UNIX session,
and the Oracle KILL SESSION command isn’t working, or it’s taking a long time, you can terminate
the session rather abruptly by using the UNIX kill command as follows. Note that you can use
either the kill command by itself or with the -9 switch, but in most cases the simple kill com-
mand will be enough to terminate the UNIX session of your Oracle users:

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY 489

4517CH11.qxd 8/19/05 10:50 AM Page 489

$ kill 345678

or

$ kill -9 345678

You can use the following script to derive the process number from the V$SESSION dynamic
view (and the SID and serial number as well):

SQL> SELECT process,sid,serial# FROM v$session
WHERE username='&user';

Enter value for user: SALAPATI
old 2: username='&user'
new 2: username='SALAPATI'
PROCESS SID SERIAL#

2920:2836 10 34
SQL>

Windows systems don’t use the concept of processes, of course, but all user processes are
threads of the same Oracle .exe process. In order to terminate an Oracle user’s session on Windows,
you can use the ORAKILL utility, which will kill a specific thread under the Oracle .exe process.

Suppose you wish to kill a user’s session. How do you find out what that user’s thread is?
Listing 11-20 shows how you can use a simple query to identify any user’s thread in a Windows
system.

Listing 11-20. Identifying a User’s Thread in a Windows System

SQL> SELECT sid, spid as thread, osuser, s.program
2 FROM v$process p, v$session s
3* WHERE p.addr = s.paddr;

SID THREAD OSUSER PROGRAM

1 1192 SYSTEM ORACLE.EXE
2 1420 SYSTEM ORACLE.EXE
3 1524 SYSTEM ORACLE.EXE
4 1552 SYSTEM ORACLE.EXE
5 1528 SYSTEM ORACLE.EXE
6 1540 SYSTEM ORACLE.EXE
7 1580 SYSTEM ORACLE.EXE
8 1680 SYSTEM ORACLE.EXE
9 2948 NETBSA\SAlapati sqlplusw.exe
10 4072 NETBSA\SAlapati sqlplusw.exe

10 rows selected.
SQL>

The script in Listing 11-20 will give you the thread numbers associated with each Oracle user.
Once you have the thread numbers, you can kill the user’s session by using the following command.
Here’s an example, assuming that the thread number is 2948:

C:> orakill 2948

This chapter covered a vast terrain, including creating users, granting privileges and roles,
auditing the Oracle database, security mechanisms (including the virtual private database concept),
authentication methods, and data encryption. For more details about Oracle’s user management
and security mechanisms please refer to the Oracle Database Security Guide manual.

CHAPTER 11 ■ USER MANAGEMENT AND DATABASE SECURITY490

4517CH11.qxd 8/19/05 10:50 AM Page 490

Using SQL*Plus and iSQL*Plus

You can connect to and work with Oracle databases in many ways. Chances are, though, that
you’ll spend a lot of time using the Oracle SQL*Plus interface and a set of commands known as
SQL*Plus commands. The SQL*Plus interface provides you with a window into the Oracle database,
and Oracle developers use the interface extensively to create SQL and PL/SQL program units. The
interface is a valuable tool for Oracle DBAs for several reasons:

• You can use it to run SQL queries and PL/SQL (Oracle’s procedural language extension to
SQL) code blocks and to receive the results

• You can issue DBA commands and automate jobs

• It enables you to start up and shut down the database

• It provides you with a convenient way to create database administration reports

This chapter covers the use of SQL*Plus to perform typical database administration tasks, and
you’ll get a chance to learn the important SQL*Plus commands, if you aren’t already familiar with
them. There is also a brief discussion of building reports using SQL*Plus. Although you probably
won’t use the SQL*Plus interface to produce a lot of reports, it’s nice to know how to work with its
many report-building features.

The iSQL*Plus interface enables you to connect to the Oracle database through a web browser
and use most of the standard SQL*Plus commands. This chapter outlines how to configure and use
iSQL*Plus.

■Note The web-based iSQL*Plus interface is available only with the Oracle9i or Oracle Database 10g software
and not as part of an Oracle Client installation. SQL*Plus is available with both the Oracle Database Server and
Oracle Client installations.

Starting a SQL*Plus Session
SQL*Plus is the utility most commonly used to connect to and work with an Oracle database.
SQL*Plus is included with your Oracle Database 10g server software, and the Oracle Client software
also contains the SQL*Plus executables. You can also use the new Oracle Instant Client (discussed in
Chapter 11), to connect to a database using SQL*Plus. The web-based interface, iSQL*Plus, is auto-
matically installed with the server software as well.

Once you ascertain that the SQL*Plus software is installed on your server or client machine,
it’s a straightforward process to log in to the server or client and start a SQL*Plus session. Since
every SQL*Plus session involves a connection with a database (unless it’s a NOLOG connection, as

491

C H A P T E R 1 2

■ ■ ■

4517CH12.qxd 8/19/05 10:58 AM Page 491

explained in the “Connectionless SQL*Plus Session with /NOLOG” section of this chapter), all you’ll
need is a valid username/password combination to start a SQL*Plus session and connect to a
database.

Setting the Environment
Before you can invoke SQL*Plus, you must first set your Oracle environment correctly. You must set
the ORACLE_SID, ORACLE_HOME, and LD_LIBRARY_PATH environment variables. In addition, sometimes
you may have to set the NLS_LANG and ORA_NLS33 environment variables as well.

If you don’t have the correct environment variables set, you’ll see an error. For example, not
setting the ORACLE_HOME variable correctly before starting SQL*Plus will lead to the following error:

$ sqlplus
Error 6 initializing SQL*Plus
Message file sp1<lang>.msb not found
SP2-0750: You may need to set ORACLE_HOME to your Oracle software directory

If you get the preceding error, simply set the value of the ORACLE_HOME environment variable, as
shown here:

$ export ORACLE_HOME= /u01/app/oracle/product/10.2.0/db_1

Starting a SQL*Plus Session from the Command Line
From either a client machine or the database host server, you can access SQL*Plus from the
command-line prompt by typing sqlplus without providing either the username or the password.
SQL*Plus will then prompt you for your username and password. If you provide the username with
the command (for example, sqlplus salapati), SQL*Plus will prompt you for the password. As a
DBA, you should log in with one of your administrative accounts.

■Note On UNIX servers, be sure to type in lowercase letters. On Windows, the interface is not case sensitive.
Other than this minor detail, the SQL*Plus command-line interface works the same way on Windows and all vari-
ants of the UNIX and Linux platforms.

You can also type in the username/password combination when you invoke SQL*Plus, but
your password will be visible to others when you do this. Here’s an example:

$ sqlplus salapati/sammyy1
SQL>

The SQL prompt (SQL>) indicates that the SQL*Plus connection is initiated, and you can start
entering your commands.

Certain operations, such as startup and shutdown, are permitted only if you log into SQL*Plus
with SYSDBA or SYSOPER credentials. If you have the SYSDBA (or the SYSOPER) privilege, you can
log into SQL*Plus as follows:

$ sqlplus sys/sys_passwd AS SYSDBA
SQL> SHO USER
USER is "SYS"
SQL>

The AS clause allows privileged connections by users who have been granted the SYSDBA or
SYSOPER system privilege.

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS492

4517CH12.qxd 8/19/05 10:58 AM Page 492

If you’ve created an operating system authenticated user account (previously known as the
OPS$name login; see Chapter 11) in your database, you can connect by simply using the forward
slash (/), as shown here:

$ sqlplus /
SQL> SHO USER
USER is "OPS$ORACLE"
SQL>

If you’ve set up database authorization, you can also connect by including the Oracle software
owner as part of the DBA group, as follows:

$ sqlplus / AS SYSDBA
SQL> SHO USER
USER is "SYS"
SQL>

Notice that in all the preceding cases, we didn’t have to use the database name when connect-
ing through SQL*Plus. That’s because we were connecting to the default database—the database
indicated by the value of the ORACLE_SID environment variable. You don’t have to specify the data-
base name when you use SQL*Plus to log into the default database. If you wish to connect to a
nondefault database that’s accessible through your network, however, you must use a connection
identifier or a net service name.

Theoretically speaking, you can connect to a database using the complete connection identi-
fier syntax, as shown here, where you use the complete address for the database named orcl:

$ sqlplus salapati/sammyy1@(DESCRIPTION =
(ADDRESS=(PROTOCOL=tcp)(HOST=sales-server)(PORT=1521)
(CONNECT_DATA= SERVICE_NAME=orcl.mycompany.com))

However, by using a net service name defined in the network file tnsnames.ora, you can use a
simpler way to connect to the orcl database, as shown here:

$ sqlplus salapati/sammyy1@orcl

You can also use the new easy connect method to connect to a database. The easy connect
method has the following syntax:

$ [//]host[:port][/[service_name]]

For our database, orcl, using the easy connect method, you can connect as follows:

$ sqlplus hr/hr_passwd@sales-server:1521/orcl.mycompany.com

Note that you don’t need a network file (tnsnames.ora) if you’re using the easy connect method.
No matter which of these methods you use, you’ll open a successful SQL*Plus session to either

the default database or the database specified in your connection identifier.

Connecting by Using the CONNECT Command
The SQL*Plus CONNECT command helps you connect as a different user, once you’re logged in to
SQL*Plus. You can also log in to a different database after you’re connected to one database by using
the CONNECT command. In the following example, I use the CONNECT command to connect as a differ-
ent user while remaining in the same database:

SQL> CONNECT newuser/newuser_passwd
Connected.
SQL>

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS 493

4517CH12.qxd 8/19/05 10:58 AM Page 493

In the following example, I connect to a different database from within SQL*Plus by providing
the connect identifier as part of the CONNECT command:

SQL> CONNECT salapati/sammyy1@orcl
Connected.
SQL>

Just make sure that you have the remote database connection information in your tnsnames.ora
file before connecting to the different database.

You can use the CONNECT command from within SQL*Plus with the / AS SYSDBA and / AS
SYSOPER syntax, as shown here:

CONNECT / AS SYSDBA

CONNECT username/password AS SYSDBA

CONNECT / AS SYSOPER

CONNECT username/password AS SYSOPER

Connectionless SQL*Plus Session with /NOLOG
You can also start a SQL*Plus session without connecting to a database by using the /NOLOG option
with the sqlplus command when starting a new SQL*Plus session. You may do this, for example,
when you’re starting the database, or if you just want to use SQL*Plus editing commands to write
or edit scripts. Once the SQL*Plus session starts, you can connect to a database using the CONNECT
command.

Here’s an example using the NOLOG option:

$ sqlplus /NOLOG
SQL*Plus: Release 10.2.0.0.0 - Beta on Sun Mar 6 11:50:42 2005
Copyright (c) 1982, 2004, Oracle. All rights reserved.
SQL> SHO USER
USER is ""
SQL> SHO SGA
SP2-0640: Not connected
SQL> CONNECT salapati/sammyy1
Connected.
SQL>

Connecting to SQL*Plus Through a Windows GUI
If you are using the SQL*Plus GUI on a Windows machine, click the SQL*Plus icon and the interface
will prompt you for your username, password, and the instance name. As long as your connection
to the database is established through the proper entries in the tnsnames.ora file (see Chapter 11
for more information on this file), you are all set to use the SQL*Plus interface.

Alternatively, you can start the SQL*Plus Windows GUI with the following command at the
operating system level, on a Windows server:

$ sqlplusw

You can also start the SQL*Plus GUI on a Windows server by directly typing in either the user-
name/password for a local database, or the username/password along with the client identifier for
a remotely located database, as shown here:

$ sqlplus system/system_passwd@orcl

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS494

4517CH12.qxd 8/19/05 10:58 AM Page 494

You can use the SQL*Plus utility in both manual and scripted noninteractive modes. It stands
to reason that you would want to perform sensitive administration tasks, such as database recovery,
in an interactive mode. On the other hand, you can automate routine processing of SQL with
scripts, and your SQL commands will then run noninteractively. In either case, the commands are
the same—it is just the mode in which you issue the commands that is different.

Operating in SQL*Plus
Once you’re logged in to the SQL*Plus interface, you can type in any SQL*PLUS, SQL, or PL/SQL
commands. As explained later in this chapter, a SQL statement is terminated by a semicolon (;)
or a slash (/), and a PL/SQL code block is terminated by a slash (/). You can see the output on the
screen, and you can also spool it to a file if you wish. A SQL*Plus command is always terminated by
a newline character. If you enter a SQL*Plus command, the SQL*Plus client program will handle it,
and if it’s a SQL or a PL/SQL statement, it’s sent on to the database server for processing.

You can use the hyphen (-) as a continuation character, although it’s not necessary to use a
continuation character when you finish the first line. You can type an arbitrary number of charac-
ters or words in each SQL line and just press the Enter key to continue on the next line. SQL*Plus
will automatically number each line.

In some cases, however, the continuation character (-) comes in handy. In the next example,
I’m trying to enter the SQL statement, SELECT 200 - 100 FROM dual:

SQL> SELECT 200 -
> 100 from dual;
select 200 100 from dual

*
ERROR at line 1:
ORA-00923: FROM keyword not found where expected
SQL>

In the preceding example, when I started the second line after the hyphen (-), which is also
the minus sign, SQL*Plus automatically interpreted it as the continuation character and issued an
error because the statement was syntactically incorrect (select 200 100 from dual). You can avoid
this problem by using a second hyphen (minus sign) at the end of the first line as a continuation
character.

SQL> SELECT 200 - -
> 100 FROM dual;

200-100

100
SQL>

Exiting SQL*Plus
You exit a SQL*Plus session by simply typing EXIT in lowercase letters or capitals. You can also type
QUIT to exit to the operating system. Again, case doesn’t matter.

■Caution If you make a graceful exit from SQL*Plus by typing in the EXIT (or QUIT) command, your transac-
tions will all be committed immediately. If you don’t intend to commit the transactions, make sure you issue the
rollback command before you exit.

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS 495

4517CH12.qxd 8/19/05 10:58 AM Page 495

SQL*Plus and SQL Commands
Remember that the SQL*Plus interface lets you interact with the Oracle database. You can use two
basic types of commands in SQL*Plus:

• Local commands: These are executed locally with SQL*Plus and are usually not sent to the
server. They include commands such as COPY, COMPUTE, REM, and SET LINESIZE. These
SQL*Plus commands all end with a new line, and they don’t need a command terminator
as such.

• Server-executed commands: Server-executed commands aren’t locally executed in SQL*Plus,
but are processed by the server instead. This group includes all other commands, including
the CREATE TABLE and INSERT SQL commands, and PL/SQL code that is enclosed in BEGIN and
END statements. All SQL-type commands end in a semicolon (;) or a slash (/). All PL/SQL-
type commands end with a slash (/).

SQL*Plus Security
Beyond the mandatory username/password requirement for using the SQL*Plus interface,
Oracle provides an additional security mechanism that involves the use of a special table called
product_user_profile. This table is owned by the System user, one of the two super users of the
Oracle database. By using the product_user_profile table, you can limit access to SQL*Plus and
SQL commands, and to PL/SQL statements as well.

When a user logs in to the SQL*Plus session, SQL*Plus checks this table to see what restrictions
are supposed to be applied to the user in the SQL*Plus session. How Oracle administers this secu-
rity layer is a little bit tricky. The user may have an insert or delete privilege in the database, but
because the SQL*Plus privileges override this privilege, Oracle may deny the user the right to exer-
cise the privilege.

After you create a database, you should execute a special script, pupbld.sql, which is used to
support SQL*Plus security. This script is located in the $ORACLE_HOME/sql/admin directory, and
it should be run as the System user. This script will build the product_user_profile table, which is
actually a synonym for the sqlplus_product_user_profile table. Listing 12-1 shows the format of this
table.

Listing 12-1. The product_user_profile Table

SQL> DESC product_user_profile
Name Null? Type
------------------------------ -------- ----------------------
PRODUCT NOT NULL VARCHAR2(30)
USERID VARCHAR2(30)
ATTRIBUTE VARCHAR2(240)
SCOPE VARCHAR2(240)
NUMERIC_VALUE NUMBER(15,2)
CHAR_VALUE VARCHAR2(240)
DATE_VALUE DATE
LONG_VALUE LONG
SQL>

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS496

4517CH12.qxd 8/19/05 10:58 AM Page 496

■Note By default, SQL*Plus imposes no usage restrictions on any users, so when the product_user_profile table
is first created, there are no rows in it. The System user has to explicitly insert rows into the product_user_profile
table if some users need to be restricted in SQL*Plus. You can choose to restrict a user from executing the follow-
ing commands: ALTER, BEGIN, CONNECT, DECLARE, EXEC, EXECUTE, GRANT, HOST, INSERT, SELECT, and UPDATE.
If you get errors stating INVALID COMMAND when a user issues one of these statements, even though your
product_user_profile table is empty, run the pupbld.sql script as the System user.

Listing 12-2 shows how you can use the product_user_profile table to prevent the user OE from
deleting, inserting, or updating any data in the database.

Listing 12-2. Using the product_user_profile Table

SQL> INSERT INTO product_user_profile
VALUES
('SQL*PLUS','OE','INSERT',NULL,NULL,NULL,NULL,NULL);

1 row created.
SQL> INSERT INTO product_user_profile

VALUES
('SQL*PLUS','OE','DELETE',NULL,NULL,NULL,NULL,NULL);

1 row created.
SQL> INSERT INTO product_user_profile

VALUES
('SQL*PLUS','OE','UPDATE',NULL,NULL,NULL,NULL,NULL);

1 row created.
SQL> COMMIT;
Commit complete.
SQL>

You can see the entries pertaining to user OE by querying the product_user_profile table as
follows:

SQL> SELECT product, attribute FROM
product_user_profile WHERE userid='OE';

PRODUCT ATTRIBUTE

SQL*PLUS INSERT
SQL*PLUS DELETE
SQL*PLUS UPDATE
SQL>

If the user OE tries to delete data from a table, the result would be the following error, even
though the orders table belongs to the OE schema:

SQL> CONNECT oe/oe
Connected.
SQL> DELETE FROM oe.orders;
SP2-0544: invalid command: delete
SQL>

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS 497

4517CH12.qxd 8/19/05 10:58 AM Page 497

If you want to grant to user OE the right to delete data through SQL*Plus, you can do so by
deleting the relevant line from the product_user_profile table, as follows:

SQL> DELETE FROM product_user_profile
WHERE userid='OE' and attribute = 'DELETE';

1 row deleted.
SQL> COMMIT;
Commit complete.
SQL>

The ALTER, BEGIN, DECLARE, EXECUTE, and GRANT commands are data definition language (DDL)
and PL/SQL commands. The INSERT, SELECT, and UPDATE commands are, of course, data manipula-
tion language (DML) commands. The HOST command is used in SQL*Plus to access the operating
system and issue operating system commands. You really don’t want your users to be able to issue
operating system commands by simply using the HOST command, so if you want to deny user
salapati this dangerous privilege, this is what you have to do to the product_user_profile table:

SQL> INSERT INTO product_user_profile
(product,userid,attribute)
VALUES
('SQL*Plus','salapati','HOST');

1 row created.
SQL>

If you want to restore to user salapati the right to use the HOST command, you can do so by
deleting the row you just inserted. For example, you would need to issue the following command
to restore the HOST privilege to user salapati:

SQL> DELETE FROM product_user_profile WHERE userid='SALAPATI';

■Note Remember that users will retain any privileges you grant them, even though they can’t exercise the privi-
leges in the SQL*Plus session. This means you can grant application owners privileges on the data objects when
they are using packages and procedures that are stored and executed in the database, while at the same time
denying them these same privileges when they log into SQL*Plus.

Controlling Security Through the SET ROLE Command
As you probably know, it is better to grant and revoke database privileges through the use of roles,
rather than granting the privileges directly, for several reasons. The use of roles, however, carries
with it a potential security problem, because any user can change his or her role by simply using
the set role command in SQL*Plus. You can shut down this security loophole by using the
product_user_profile table to disable any user’s ability to use the set role command.

Using the RESTRICT Command to Disable Commands
As an alternative to using the product_user_profile table, you can use the RESTRICT command to
prevent users from using certain operating system commands. The net effect is the same as using
the product_user_profile table, except that the RESTRICT command disables the commands even
where there are no connections to the server.

You can use the RESTRICT command at three levels. The following example illustrates the use of
the command at level 1:

$ sqlplus -RESTRICT 1

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS498

4517CH12.qxd 8/19/05 10:58 AM Page 498

Table 12-1 shows the commands that are disabled by using the RESTRICT command and the dif-
ferences between the three restriction levels.

Table 12-1. The Three Restriction Levels for SQL*Plus

Command Level 1 Level 2 Level 3

EDIT Disabled Disabled Disabled

GET Disabled

HOST Disabled Disabled Disabled

SAVE Disabled Disabled

SPOOL Disabled Disabled

START Disabled

STORE Disabled Disabled

■Tip By using iSQL*Plus instead of the traditional SQL*Plus interface, you remove the ability of the users to issue
operating system commands such as HOST and SPOOL. In the iSQL*Plus environment, the users never access the
intermediate operating system.

Setting the SQL*Plus Environment with the SET Command
Of all the commands that you can use in SQL*Plus, the SET command is probably the most funda-
mental, because it enables you to set the all-important environment for your SQL*Plus sessions.
Environment settings include the number of lines per page of output, the width of the numeric data
in the output, the titles for reports, and the HTML formatting, all of which are enabled, disabled, or
modified with the SET command.

The SET command is but one of the commands that you can use in SQL*Plus, and you can
see the entire list of available commands by typing help index at the SQL prompt, as shown in
Listing 12-3.

Listing 12-3. Using the HELP INDEX Command to Show Help Topics

SQL> HELP INDEX
Enter Help [topic] for help.
@ COPY PAUSE SHUTDOWN
@@ DEFINE PRINT SPOOL
/ DEL PROMPT SQLPLUS
ACCEPT DESCRIBE QUIT START
APPEND DISCONNECT RECOVER STARTUP
ARCHIVE LOG EDIT REMARK STORE
ATTRIBUTE EXECUTE REPFOOTER TIMING
BREAK EXIT REPHEADER TTITLE
BTITLE GET RESERVED WORDS(SQL) UNDEFINE
CHANGE HELP RESERVED WORDS(PL/SQL) VARIABLE
CLEAR HOST RUN WHENEVER OS_ERROR
COLUMN INPUT SAVE WHENEVER SQLERROR
COMPUTE LIST SET
CONNECT PASSWORD SHOW

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS 499

4517CH12.qxd 8/19/05 10:58 AM Page 499

If you want to see the entire set of environment variables that you can control with the SET
command, type help set. For performing your day-to-day tasks in SQL*Plus, you need to be familiar
with several of these commands, and I will explain them briefly in the next section.

Setting Common SQL*Plus Variables
Variables are key attributes whose values you can change while using SQL*Plus. Table 12-2 summa-
rizes the most common variables you will need to know. Practice with the variables will enhance
your comfort level and help you become a skilled practitioner of SQL*Plus in a relatively short time.

Beyond what is shown in the table, I haven’t provided examples of the use of these variables,
so it’s important you actually try them out in your SQL*Plus session. Refer to the Oracle SQL*Plus
manuals for usage guidelines for all the variables, including many variables that aren’t listed in
Table 12-2.

■Note In Table 12-2, the options inside square brackets show the alternative full name of the command. You can
specify either the shortened version of a command or its long version. The options inside the curly brackets, {},
show the possible options you can choose and the default values. The value listed first inside the curly brackets
is the default value. You can either leave it as is by not doing anything, or you can change it to the other possible
values by using the SET variable value notation.

Table 12-2. Common SQL*Plus Environment Variables

Variable Function Usage

ARRAY[SIZE] Determines the number of rows SET ARRAY 50
fetched from database at one time

AUTO[COMMIT] Specifies whether commits of SET AUTO ON
transactions are automatic or manual

COLSEP Specifies the text that you want SET COLSEP
printed in between column values

COPY[COMMIT] Sets the frequency of commits when SET COPY 10000
using the COPY command

DEF[INE]{&/C/ON/OFF} Sets the prefix character used during SET DEFINE ON
variable substitutions

ECHO {OFF/ON} Specifies whether echo is on or off; SET ECHO ON
if you have ECHO ON, each command
will be displayed before its output
onscreen

EDITF[ILE] Sets the default filename when you SET EDITFILE draft.sql
use your default editor

FEED[BACK] {OFF/ON} Specifies whether SQL*Plus shows SET FEEDBACK OFF
the number of records returned by
your query

FLUSH {OFF/ON} Determines whether output is SET FLUSH OFF
buffered or flushed to the screen

HEA[DING] {OFF/ON} Specifies whether the column headers SET HEAD OFF
are printed or not

LIN[ESIZE] {80|n} Specifies the number of characters SET LINESIZE 40
displayed per line

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS500

4517CH12.qxd 8/19/05 10:58 AM Page 500

Variable Function Usage

LONG {80/n} Specifies the maximum width of SET LONG 100000
the LONG, CLOB, NCLOB, and
XMLType values

NEWP[AGE] {1/n/none} Specifies the number of blank lines SET NEWPAGE 0
at the top of each new page

NUM[WIDTH] {10/n} Specifies the format for displaying SET NUM
numbers

PAGES[IZE] {24/n} Specifies the number of lines in SET PAGESIZE 60
each page

PAU[SE] {OFF/ON/TEXT} Specifies the amount of output SET PAUSE ON
that is printed to the screen

SERVEROUT[PUT] Specifies whether output of PL/SQL SET SERVEROUTPUT ON
{OFF/ON}[SIZE n] code is shown

SQLP[ROMPT] {SQL> |TEXT} Specifies the command prompt for SET SQLPROMPT
SQL*Plus sessions 'salapati >'

TERM[OUT] {OFF/ON} Specifies whether command file SET TERMOUT OFF
output is displayed or not

TI[ME] {OFF/ON} Displays time if set to on SET TIME OFF

TIMI[NG] {OFF/ON} Controls the display of timing for SET TIMING OFF
SQL commands

VER[IFY] {OFF/ON} Specifies whether SQL text is displayed SET VERIFY OFF
after variable substitution

■Tip If you don’t want the “X rows selected” and “PL/SQL procedure successfully completed” messages after
you execute code in SQL*Plus, use the following command:

SET FEEDBACK OFF

You can have all your preferred session settings stored in a file, which you can execute like any
other SQL file whenever you want to change a bunch of variable values at once. You can also have
several of these files saved for different tasks, if your job involves a lot of reporting using the
SQL*Plus interface.

If you are using the Oracle SQL*Plus GUI interface on Windows, you can change the environ-
ment variables for your session by using the Options menu and choosing Environment. You are
shown all the current environment variables for your session, and you can modify them as long as
you stay within the limits. If you are logged into SQL*Plus through a UNIX server’s X Window Ses-
sion, you lose this easy way to change the values of your environment variables.

The SET SERVEROUTPUT Command
One of the most important commands that you’ll use is the SET SERVEROUTPUT command, which
determines whether the output of a PL/SQL code segment or a stored procedure is displayed on
screen. If you set SERVEROUTPUT ON, you’ll see the output. By default, the SERVEROUTPUT variable is set
to OFF, and you may be caught by surprise when you run a PL/SQL block that should output some-
thing on the screen, but you don’t see anything there.

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS 501

4517CH12.qxd 8/19/05 10:58 AM Page 501

Here’s an example that shows how you can use the SERVEROUTPUT variable to display the output
from the DBMS_OUTPUT package. This package, which is explained in detail in Chapter 24, con-
tains a procedure named PUT_LINE, which outputs a line. By setting SERVEROUTPUT ON, you can see
the output printed by the PUT_LINE procedure:

SET SERVEROUTPUT ON
BEGIN
dbms_output.put_line('This is the first line');
dbms_output.put_line('This is the second line');
dbms_output.put_line('This is the last line');
END;
SQL> /
This is the first line
This is the second line
This is the last line
PL/SQL procedure successfully completed.
SQL>

If you hadn’t set the SERVEROUTPUT variable to the value of ON in the preceding example, you
wouldn’t have seen any of the output of the PUT_LINE procedure.

You can use the FORMAT clauses of the SERVEROUTPUT command to determine how the output is
formatted. The FORMAT clause can take the values WRAPPED, WORD_WRAPPED, or TRUNCATED. The default
is WRAPPED, meaning that the output is wrapped within the length specified by LINESIZE, and new
lines are started as required. Let’s look at a short example for each of the other two FORMAT clauses,
WORD_WRAPPED and TRUNCATED.

The WORD_WRAPPED option for FORMAT wraps each line to the length specified by the value of the
LINESIZE variable, and if an entire word won’t fit at the end of a line, the line ends before the word.

SQL> SET SERVEROUTPUT ON FORMAT WORD_WRAPPED
SQL> SET LINESIZE 20
SQL> BEGIN
2 > dbms_output.put_line('After the first 20 characters please');
3 > dbms_output.put_line('continue on the second line');
4 > END;
5 > /
After the first 20
characters please
continue on the
second line

When you use the TRUNCATED formatting option, each line of the displayed output is truncated
exactly at the length specified by the LINESIZE variable.

SQL> SET SERVEROUTPUT ON FORMAT TRUNCATED
SQL> SET LINESIZE 20
SQL> BEGIN
2 > DBMS_OUTPUT.PUT_LINE('After the first 20 characters please');
3 > DBMS_OUTPUT.PUT_LINE('continue on the second line');
4 > END;
5 > /
After the first 20 c
continue on the seco

Specifying Global Preferences with the glogin.sql File
Users don’t have to manually set their SQL*Plus environment each time they log in to SQL*Plus—
Oracle allows you to specify your variable preferences in a site profile file, called glogin.sql. You can

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS502

4517CH12.qxd 8/19/05 10:58 AM Page 502

use the glogin.sql file to configure identical environment settings for all users for the SQL*Plus com-
mand line, Windows GUI, and iSQL*Plus sessions from an iSQL*Plus server.

■Note The glogin.sql file applies to all the users of the system, and therefore it is called a site profile. If you
want all SQL*Plus sessions to have a specific set of environment variable values upon logging in, all you have
to do is edit the glogin.sql file. Only DBAs, not individual users, can access the glogin.sql file.

The site profile is created during installation, and the file is placed in the $ORACLE_HOME/
sqlplus/admin directory. Listing 12-4 shows the default glogin.sql file, which is read by Oracle every
time you log in to SQL*Plus. You can modify this default file to suit your needs.

Listing 12-4. The Default glogin.sql File

-- Copyright (c) 1988, 2003, Oracle Corporation. All Rights Reserved.
-- NAME
-- glogin.sql
-- DESCRIPTION
-- SQL*Plus global login "site profile" file
-- Add any SQL*Plus commands here that are to be executed when a
-- user starts SQL*Plus, or uses the SQL*Plus CONNECT command
-- USAGE
-- This script is automatically run
-- Used by Trusted Oracle
COLUMN ROWLABEL FORMAT A15
-- Used for the SHOW ERRORS command
COLUMN LINE/COL FORMAT A8
COLUMN ERROR FORMAT A65 WORD_WRAPPED
-- Used for the SHOW SGA command
COLUMN name_col_plus_show_sga FORMAT a24
COLUMN units_col_plus_show_sga FORMAT a15
-- Defaults for SHOW PARAMETERS
COLUMN name_col_plus_show_param FORMAT a36 HEADING NAME
COLUMN value_col_plus_show_param FORMAT a30 HEADING VALUE
-- Defaults for SHOW RECYCLEBIN
COLUMN origname_plus_show_recyc FORMAT a16 HEADING 'ORIGINAL NAME'
COLUMN objectname_plus_show_recyc FORMAT a30 HEADING 'RECYCLEBIN NAME'
COLUMN objtype_plus_show_recyc FORMAT a12 HEADING 'OBJECT TYPE'
COLUMN droptime_plus_show_recyc FORMAT a19 HEADING 'DROP TIME'
-- Defaults for SET AUTOTRACE EXPLAIN report
COLUMN id_plus_exp FORMAT 990 HEADING i
COLUMN parent_id_plus_exp FORMAT 990 HEADING p
COLUMN plan_plus_exp FORMAT a60
COLUMN object_node_plus_exp FORMAT a8
COLUMN other_tag_plus_exp FORMAT a29
COLUMN other_plus_exp FORMAT a44

Specifying Individual Preferences with the login.sql File
If individual users wish to set their own particular preferences for variables for their sessions, they
can use the login.sql file, another file checked by Oracle, to set their own customized SQL*Plus envi-
ronment. Because the login.sql file lets you set individual user variables, it is also known as the user
profile file. The commands in the login.sql file are executed automatically when you connect to
SQL*Plus.

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS 503

4517CH12.qxd 8/19/05 10:58 AM Page 503

This file is usually located in your home directory. You can use the login.sql file for both
SQL*Plus command-line and Windows GUI connections. Note that the iSQL*Plus environment
can’t be configured with the login.sql file—it applies only to SQL*Plus. Listing 12-5 shows a sample
login.sql file.

Listing 12-5. A Sample login.sql File

-- login.sql
-- SQL*Plus user login startup file.
-- This script is automatically run after glogin.sql
-- To change the SQL*Plus prompt to display the current user,
-- connection identifier and current time.
-- First set the database date format to show the time.
ALTER SESSION SET nls_date_format = 'HH:MI:SS';
-- SET the SQLPROMPT to include the _USER, _CONNECT_IDENTIFIER
-- and _DATE variables.
SET SQLPROMPT "_USER'@'_CONNECT_IDENTIFIER _DATE> "
-- To set the number of lines to display in a report page to 24.
SET PAGESIZE 24
-- To set the number of characters to display on each report line to 78.
SET LINESIZE 78
-- To set the number format used in a report to $99,999.
SET NUMFORMAT $99,999

■Note When you connect to the database using SQL*Plus, the site profile, glogin.sql, is executed first, followed
by the site profile script, the login.sql file. All SQL*Plus variable values you specify in the login.sql file will override
the settings in the glogin.sql file. Any changes you make in the session itself will override everything else and last
for the duration of that session only.

When Do the Login Files Take Effect?
The glogin.sql file, which contains system-wide settings, takes effect after you log in successfully
through a SQLPLUS or CONNECT command. It also comes into effect when you use the /NOLOG option
when you connect to SQL*Plus and when you connect successfully from an iSQL*Plus session or
when you use the CONNECT command from within an iSQL*Plus session to connect to a database.

The login.sql file, which is applicable only to the individual user’s session, is automatically run
right after the site profile file, glogin.sql, is run. Note that the login.sql file has no relevance in the
iSQL*Plus interface.

SQL*Plus Command-Line Options
As you saw earlier in this chapter, you can start a new SQL*Plus session by merely typing sqlplus at
the command prompt. However, you can specify several command-line options to customize the
SQL*Plus session. Listing 12-6 shows how you can find all the command-line options available to
you in SQL*Plus.

Listing 12-6. SQL*Plus Command-Line Options

[pasprod] $ sqlplus -help
SQL*Plus: Release 10.2.0.0.0 - Beta
Usage: SQLPLUS [[<option>] [<logon>] [<start>]]

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS504

4517CH12.qxd 8/19/05 10:58 AM Page 504

where <option> ::= -H | -V | [[-C <v>] [-L] [-M <o>] [-R <n>] [-S]]
<logon> ::= <username>[/<password>][@<connect_identifier>] | / | /NOLOG
<start> ::= @<URL>|<filename>[.<ext>] [<parameter> ...]
"-H" displays the SQL*Plus version banner and usage syntax
"-V" displays the SQL*Plus version banner
"-C" sets SQL*Plus compatibility version <v>
"-L" attempts log on just once
"-M <o>" uses HTML markup options <o>
"-R <n>" uses restricted mode <n>
"-S" uses silent mode

[pasprod] $

■Tip In Oracle Database 10g, the login.sql file is executed at SQL*Plus startup time as well as when you use the
CONNECT command to connect from within the SQL*Plus session.

Here are brief explanations of the most important command-line options you can use when
you start a SQL*Plus session:

• The silent option (-S): If you invoke SQL*Plus with the -s option, the session will run silently;
there won’t be any output on the screen. When you’re running batch jobs and you have no
need to see the output of the SQL*Plus session, you can start the session in silent mode. The
silent mode is very useful when you’re producing reports, because the banner, version, and
other information is suppressed.

• The no-prompt logon option (-L): If you invoke SQL*Plus with the -L option, it won’t prompt
you for a new username and password if you fail to log in the first time. Again, this is an
option that’s handy during the execution of SQL batch jobs through the operating system.

• The restrict option (-R): You’ve already seen how you can use the SQL*Plus -R option (at three
different levels) to disable certain operating system commands in SQL*Plus. Refer to the
“Using the RESTRICT Command to Disable Commands” section, earlier in this chapter, for
more information.

• The markup option (-M): You can generate complete web pages from your SQL*Plus sessions
by invoking SQL*Plus with the -M option. There is more on the markup command in the
“Creating Web Pages Using SQL*Plus” section of this chapter.

Removing Current Values and Settings with the
CLEAR Command
The CLEAR command removes several current settings, including settings for columns and the
SQL*Plus buffer. You use the CLEAR command to make sure that settings no longer needed are not in
force in the current session of SQL*Plus. Listing 12-7 shows sample output of the CLEAR command.

Listing 12-7. Using the CLEAR Command

SQL> CLEAR BREAKS
breaks cleared
SQL> CLEAR BUFFER
buffer cleared
SQL> CLEAR COLUMNS
columns cleared

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS 505

4517CH12.qxd 8/19/05 10:58 AM Page 505

SQL> CLEAR SQL
sql cleared
SQL> CLEAR TIMING
SQL> CLEAR SCREEN

The CLEAR command by itself clears your screen without affecting any of the settings of
SQL*Plus. The CLEAR BUFFER and CLEAR SQL commands achieve the same effect: they remove the
SQL in the memory buffer of SQL*Plus. The CLEAR COLUMNS and the CLEAR BREAKS commands
remove any column definitions and breaks. The CLEAR TIMING command deactivates all timers.
You use the CLEAR SCR (or CLEAR SCREEN) command to clear the screen.

The STORE Command
During a given SQL*Plus session, it’s likely that you’ll need to change your environment settings in
order to run a specific SQL script or command. If you want to preserve these settings for future use,
you can do so with the help of the STORE command. The following example shows how to use the
STORE command to save your SQL*Plus environment settings:

SQL> STORE SET mysqlplus.sql
Created file mysqlplus.sql
SQL>

Once you store your favorite environment variables in a file, you can easily reuse them anytime
you want by simply executing the script. (I explain the execution of SQL scripts in the following
sections.)

The STORE command can be used with three options: CREATE, REPLACE, or APPEND. The default is
CREATE, which creates a new file. If you wish to replace an existing file and store your SQL*Plus com-
mands there, use the REPLACE option. If you wish to add the commands to an existing file, use the
APPEND option.

The SHOW Command
You can use the SHOW command to display variable values. To find out the individual values, you
type in the specific variable’s name, as shown in the following example:

SQL> SHOW TTITLE
ttitle ON and is the following 49 characters:
Annual Financial Report for the Women's Club, 2005
SQL>

The SHOW ALL command will show you the current settings for all the SQL*Plus environment
variables. I briefly explain some of the most important options for the SHOW command in the follow-
ing sections.

SHOW RECYCLEBIN
One of the most useful SQL*Plus commands in Oracle Database 10g is the SHOW RECYCLEBIN com-
mand. This command will let you see if there are any tables that are eligible for a recovery using the
FLASHBACK TO BEFORE DROP command. If you drop a table, that table doesn’t go away immediately—
it stays in the Recycle Bin until you either get rid of it permanently with the DROP TABLE PURGE
command, or the database faces space pressure.

I discuss the Flashback Table feature in detail in Chapter 6, but here’s what you’ll see if there is
an eligible table stored in the Recycle Bin:

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS506

4517CH12.qxd 8/19/05 10:58 AM Page 506

SQL> CREATE TABLE test (name varchar2(30));
Table created.
SQL> DROP TABLE test;
Table dropped.
SQL> SHOW RECYCLEBIN
ORIGINAL NAME RECYCLEBIN NAME OBJECT TYPE DROP TIME
--
TEST BIN$oGZbms6pRa6xlbFglGjgUw==$0 TABLE 2005-06-27:13:13:58

SQL>

As you can see, the TEST table, after it’s dropped with the DROP TABLE command, is automati-
cally renamed by the database and stored in the Recycle Bin.

SHOW USER
The SHOW USER command shows the currently logged in username.

SQL> SHO USER
USER is "SYSTEM"
SQL>

SHOW SGA
The SHOW SGA command shows the current allocations of the SGA memory.

SQL> SHO SGA

Total System Global Area 452984832 bytes
Fixed Size 1309568 bytes
Variable Size 237765760 bytes
Database Buffers 209715200 bytes
Redo Buffers 4194304 bytes
SQL>

SHOW PARAMETERS
The SHOW PARAMETERS command lists all the current default and nondefault values of the initializa-
tion parameters.

SQL> SHO PARAMETERS

NAME TYPE VALUE

O7_DICTIONARY_ACCESSIBILITY boolean FALSE
. . .
SQL>

SHOW ERRORS
The SHOW ERRORS command is useful for seeing the compilation errors associated with a procedure
or function. You run the command immediately after you compile the PL/SQL unit. If there are no
errors, you’ll see the following:

SQL> SHO ERRORS PROCEDURE TEST_PROC
NO ERRORS.
SQL>

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS 507

4517CH12.qxd 8/19/05 10:58 AM Page 507

Key SQL*Plus “Working” Commands
All the work you do in SQL*Plus, whether you are issuing simple commands or elaborate scripts to
gather information from the database, involves knowing how to use two basic kinds of SQL*Plus
commands. The commands in the first group are those that actually do something and can be
called the group of “working” commands—for example, the RECOVER command recovers a database.
The commands in the second group are formatting commands, and they will help you get clean
output from your queries.

You’ll learn about the most important of both kinds of commands in this chapter. In this sec-
tion you’ll look at the commands that do something, and the formatting commands will be covered
in the “Commands for Formatting SQL*Plus Output and Creating Reports” section, later in the
chapter.

The SQLPROMPT Command
As a DBA, you’ll more than likely be working on several databases. When you’re performing multiple
tasks during the day, it’s very easy to forget which database you’re connected to from a particular
SQL*Plus session. To avoid committing blunders (such as dropping production tables instead of
development or testing tables), you should always set your environment so that the instance name
shows up on your prompt every time, reminding you exactly where you are.

You can use the following command, which uses the special CONNECT_IDENTIFIER predefined
variable to help you set your SQL*Plus prompt to show the database name (predefined variables are
discussed in the “Predefined SQL*Plus Variables” section, later in this chapter):

SQL> SET SQLPROMPT '_CONNECT_IDENTIFIER > '
nick >

Notice how the SET command changes your prompt immediately in the SQL*Plus interface.
When you use this command, your prompt will no longer be the generic SQL> prompt—it will
instead be the more meaningful DBNAME > prompt, which will always remind you which database
you are in without your having to make any dangerous guesses. In this example, the database name
is nick.

You can use other special predefined variables to set your SQL*Plus prompt. For example, you
can make the prompt show the username, as shown here:

SQL> SET SQLPROMPT "_USER > "
APPOWNER >

If you wish to see both the database name as well as the current user’s name, you can do so
with the following command, which uses the _USER and _CONNECT_IDENTIFIER variables:

SQL> SET SQLPROMPT "_USER'@'_CONNECT_IDENTIFIER > "
APPOWNER@nick >

The following prompt uses the _PRIVILEGE and _USER predefined variables to show the current
user’s name and the privilege the user logged in with:

SQL> SET SQLPROMPT "_USER _PRIVILEGE> "
SYS AS SYSDBA>

The following formulation shows the username, current date, and the database name (nick),
using the three predefined variables _USER, _DATE, and _CONNECT_IDENTIFIER, respectively:

SQL> SET SQLPROMPT "_USER 'on' _DATE 'at' _CONNECT_IDENTIFIER > "
SYS on 20-JUN-05 at nick>

If you wish, you can incorporate the preceding line in your login.sql file, which will set your
session values every time you log in, instead of having to reset them manually each time.

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS508

4517CH12.qxd 8/19/05 10:58 AM Page 508

The DESCRIBE Command
The DESCRIBE command describes or lists the columns and the column specifications of a table. It
also enables you to describe an Oracle package or procedure. The DESCRIBE command is immensely
useful when you’re performing routine DBA activities. If, for example, you aren’t sure what column
to select in a particular table, but you’re sure what table you should be querying, the DESCRIBE com-
mand helps out by giving you all the column names. Because you can describe even the metadata
(the data dictionary), it’s very easy to get familiar with and use table and column information that is
critical for the database.

Listing 12-8 shows how the DESCRIBE command enables you to display the columns and col-
umn types for a table.

Listing 12-8. Using the DESCRIBE Command

SQL> DESCRIBE employees
Name Null? Type
-------------------------------- -------- ---------------------
EMPLOYEE_ID NOT NULL NUMBER(6)
FIRST_NAME VARCHAR2(20)
LAST_NAME NOT NULL VARCHAR2(25)
EMAIL NOT NULL VARCHAR2(25)
PHONE_NUMBER VARCHAR2(20)
HIRE_DATE NOT NULL DATE
JOB_ID NOT NULL VARCHAR2(10)
SALARY NUMBER(8,2)
COMMISSION_PCT NUMBER(2,2)
MANAGER_ID NUMBER(6)
DEPARTMENT_ID NUMBER(4)
SQL>

The HOST Command
The HOST command enables you to use operating system commands from within SQL*Plus. You
may, for example, want to see if a file exists in a certain directory, or you may want to use the cp or
tar commands at the UNIX level and return to your SQL*Plus session to resume interacting with
the Oracle database.

Here is an example showing how to use the HOST command:

SQL> HOST cp /u01/app/oracle/new.sql /tmp

The HOST command in the preceding example will help you copy the new.sql file from the spec-
ified directory to the tmp directory.

Just about any command you can use at the operating system level can be executed using the
HOST command. You can replace the HOST command with ! (bang, or exclamation point) to run oper-
ating system commands from within SQL*Plus, as in the following example:

SQL> ! cp /u01/app/oracle/new.sql /tmp

■Note If you just type the command by itself, as in HOST or !, you’ll be transported to the operating system
directory from which you logged in to the SQL*Plus session.

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS 509

4517CH12.qxd 8/19/05 10:58 AM Page 509

When you’re done with your operating system task, just type exit on the command line and
you’ll return to the SQL*Plus session you just left. Here’s an example:

SQL> HOST
$ exit
SQL>

The SPOOL Command
The SPOOL command enables you to save the output of one or more SQL statements to an operating
system file in both UNIX and Windows:

SQL> SET LINESIZE 180
SQL> SPOOL employee.lst
SQL> SELECT emp_id, last_name, salary, manager FROM employee;
SQL> SPOOL OFF;

By default, spooled text files are saved as filename.lst by default. Although the default behavior
is to save the output in a file, you can also send the output to a printer. Spooling files is very useful
when you use SQL to help write SQL scripts, and you can see examples in Appendix A of this book.

You can append to, or replace, an existing spool file (replacing is the default). Here is the full
syntax of the command:

SPOOL { file_name[.ext] [CRE[ATE]|REP[LACE]|APP[END]]| OFF | OUT }

This is what the various options stand for:

• FILE_NAME: Specifies the name of the spool file. The file extension is optional, and “lst” is the
default extension in most cases.

• CREATE: Creates a new file.

• REPLACE: Replaces the contents of an existing file and creates a new file if the file doesn’t exist.
This is the default behavior.

• APPEND: Adds the contents of the buffer to the end of a file you specify.

• OFF: Stops spooling.

• OUT: Stops spooling and sends the file to your default printer. This option is not available on
some operating systems.

Often, you’ll want to attach the current date to the spooled file name. Here’s one easy way to
do it:

COLUMN dcol new_value mydate NOPRINT
SELECT TO_CHAR(sysdate,'YYYYMMDD') dcol
FROM dual;

SPOOL &mydate._output.txt
-- your output here
SELECT * FROM hr.employees;
SPOOL OFF

In the preceding script, the mydate variable captures the current date in the format you specify,
using SYSDATE. The SPOOL command then uses the mydate variable’s value (&mydate) as the prefix to
the filename output.txt. Thus, when you run this script, the output.txt file will actually be named
something like 20050620.output.txt.

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS510

4517CH12.qxd 8/19/05 10:58 AM Page 510

The ACCEPT and PROMPT Commands
The ACCEPT command is used to read user input from the screen and save it in a variable. You can
either specify the variable or let SQL*Plus create one. The ACCEPT command is typically used to read
user input in response to prompts from the SQL*Plus interface.

The PROMPT command comes in handy when you’re creating interactive scripts. The command
sends a message or just a blank line from SQL*Plus to the screen, and it’s commonly used to elicit
user input or to display comments. For example, including the line PROMPT "Testing" in a script will
result in the following output:

SQL> "Testing"

The ACCEPT and PROMPT commands are usually used together in a SQL script, typically to request
user input and save the input in variables that can be used later in the program. The following
example illustrates the use of these commands:

SQL> PROMPT 'Please enter your last name'
SQL> ACCEPT lastname CHAR FORMAT a20 alapati

The EXECUTE Command
When you use scripts that invoke PL/SQL code in the form of procedures and packages, you need to
use the EXECUTE command to actually fire off the package or procedure. Here is an example of using
this command:

SQL> EXECUTE insert_into_fintables
PL/SQL procedure successfully completed
SQL>

The EXECUTE command is frequently used in SQL scripts to run batch jobs.

The PAUSE Command
Often, you’ll be executing scripts that generate output that doesn’t fit on one screen. The output just
zips past you on the screen, and it’s gone before you can actually read it. You can use the SPOOL com-
mand to capture the entire output, but it’s a waste to do this constantly, because you’ll be creating
files all day long just so you can look at the output of your scripts. SQL*Plus provides the PAUSE com-
mand so you can pause after every full screen of output. You just press the Enter key to see the next
full screen.

The following example shows how to use the PAUSE command to slow down the output dis-
played on your terminal:

SQL> SHOW PAUSE
PAUSE is OFF
SQL> SET PAUSE ON
SQL> SHOW PAUSE
PAUSE is ON and set to ""

After you set the PAUSE command, the output won’t flash by on the screen whenever you issue a
SQL command. SQL*Plus will display a screen of output and wait for you to press Enter. When you
run your queries with the PAUSE command set on, you need to press the Enter key in order to view
the first screen of output.

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS 511

4517CH12.qxd 8/19/05 10:58 AM Page 511

Commands for Formatting SQL*Plus Output and
Creating Reports
Using the regular SQL*Plus commands, coupled with some formatting commands, you can add
structure to the output of your queries and create rudimentary reports. Although your firm may
have sophisticated software that will keep you from having to use SQL*Plus’s formatting and report-
ing capabilities much of the time, chances are that you’ll sometimes want to use SQL*Plus’s
formatting features to make your output pretty, or perhaps just legible! The formatting capabilities
are somewhat primitive, but they get the job done in most cases, because most of your reports will
be for database-management purposes.

The BREAK Command
The BREAK command specifies where a formatting change occurs, as well as specifying the type of
change. You can use the BREAK command on a column, a row, an action, or the whole report. For
example, you can use the BREAK command to skip a line each time a specified column’s value
changes. Or you can specify that certain computed figures be printed at the end of a report.

Here’s an example of the BREAK command:

BREAK ON DEPT_ID SKIP PAGE ON JOB_ID SKIP 1 ON SALARY SKIP 1

In the preceding example, there are three break columns, since each ON clause specifies a
break—there is a break on the DEPT_ID, JOB_ID, and SALARY columns. Thus, each time there is a value
in any one of these three break columns, SQL*Plus will perform the action specified by the particu-
lar break on that column. The actions are executed by SQL*Plus starting from the innermost break
(on SALARY) and moving to the outermost break (on DEPT_ID).

When you use the ON clause in a BREAK command, it should be accompanied by an ORDER BY
clause in the SQL statement that follows the formatting commands. In the following example, the
BREAK command (the same one as in the previous example) is used along with a SQL statement, to
produce meaningful output.

SQL> BREAK ON DEPT_ID SKIP PAGE ON JOB_ID SKIP 1 ON SALARY SKIP 1
SQL> SELECT dept_id, job_id, salary, emp_name

FROM employees
WHERE salary > 50000
ORDER BY dept_id, job_id, salary, emp_name;

Using this BREAK command on the three columns will give us output in the following format:

• All rows with identical DEPT_ID values will be printed on the same page, and all rows with
identical JOB_ID values will be printed in groups.

• In each group of jobs, jobs with identical SALARY values will be printed as separate groups.

• Changes in the emp_name column don’t matter, since there is no break on the emp_name
column.

The COLUMN Command
The COLUMN command shows various properties of any specified column in a table. Once this com-
mand is issued, the settings for column format put in place by this command can be used by all the
SQL commands in this session. Therefore, if you’re running similar reports all the time, you may
find it beneficial to include the COLUMN command specifications in a file using the STORE SET com-
mand sequence.

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS512

4517CH12.qxd 8/19/05 10:58 AM Page 512

You can use a number of options for the COLUMN command, but here’s a simple example of how
to use it:

SQL> COLUMN dept FORMAT a15 HEADING 'Department'
SQL> COLUMN cost FORMAT $9999

In the first COLUMN command, the DEPT column is specified to be up to 15 characters in length.
Longer names will be truncated. It further specifies a meaningful heading under which the depart-
ment names should be listed. The second COLUMN command specifies that the cost column will
display a leading dollar sign.

The COMPUTE Command
As its name indicates, the COMPUTE command is used for several types of computations, including
averages, standard deviations, and so on. Here’s an example of how to use this command. The
SELECT collates the data for the COMPUTE command to work on:

SQL> COMPUTE AVG OF sales ON district
SQL> SELECT region, district, sales

FROM total_sales
WHERE district = 'NORTH';

SQL>

The REPFOOTER Command
The REPFOOTER command prints specified footer text at the bottom of a report. Here’s an example:

SQL> REPFOOTER PAGE RIGHT 'END OF THE 1st QUARTER RESULTS REPORT'

The REPHEADER Command
The REPHEADER command is similar to the REPFOOTER command, but instead of placing a footer at the
bottom of your report, it places a header at the top of your report, formatted as you specify. The fol-
lowing example prints the report header in the top center of the first page of the report:

SQL> REPHEADER PAGE CENTER '1st QUARTER RESULTS REPORT FOR 2005'

The BTITLE and TTITLE Commands
The TTITLE command places a title at the top of each page of your report, and the BTITLE command
does the same at the bottom of each page. Here are some examples to illustrate their use:

SQL> TTITLE 'Annual Financial Report for the Women's Club, 2005'
SQL> BTITLE '2005 Report'

■Caution After you use the BTITLE and TTITLE commands, as well as many other SQL*Plus commands, you
have to manually turn them off to prevent all the ensuing SQL commands in that session from inheriting those
settings. For example, if you don’t turn the title off after you create a report, all the subsequent output for any
command will be printed with the same title.

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS 513

4517CH12.qxd 8/19/05 10:58 AM Page 513

Creating Command Files in SQL*Plus
Instead of using a single command each time, you can use a set of commands together by writing
them to a file and then running the file. When you do this, all the SQL commands included in the
file will be executed sequentially.

Typing edit (or ed) at the SQL prompt will bring up your default editor (generally vi in UNIX
and Notepad in Windows). Then you can type your commands, and then name and save your file
so you can execute the commands later on.

You can set the default editor’s name in either your glogin.sql or login.sql file. Of course, you
can also set the default editor after you log in to SQL*Plus.

Saving the SQL Buffer Contents to a File
Often when you’re writing fairly complex scripts, it is useful to take the contents of the SQL buffer
and save them to a file. You can then retrieve the file for use later or use it for an automated execu-
tion. The SAVE command helps you save the SQL buffer contents. Here’s a simple example:

SQL> SELECT username,process,sid,serial#
FROM v$session
WHERE status = 'ACTIVE'
.

SQL> SAVE status.sql
Created file status.sql
SQL>

After you’ve typed some SQL, you can just type the dot (.) character on a new line. This indi-
cates that you’re finished writing the block of SQL. When you type the SAVE filename command, the
contents stored in the SQL memory buffer are saved as a file with the specified filename—in this
case, status.sql.

Note that the SAVE command, as shown in the preceding example, uses the default CREATE
option, meaning it will create a new file called status.sql. However, if you already have a file called
status.sql, you must use the SAVE command with the REPLACE option. If you wish to add on to an
existing file, specify the APPEND option with the SAVE command. Here are some examples:

SQL> SAVE REPLACE status.sql
SQL> SAVE APPEND status.sql

Executing SQL Scripts in SQL*Plus
If you want to execute a SQL script, you have two choices:

• If you don’t intend to make any changes before execution, just invoke the script by using the
at sign (@).

• If the file containing the script is in the directory from which you started SQL*Plus, all you
have to do is type the name of the file. If the command file is in a different directory, you
have to give the full path for the file in order to run it in SQL*Plus.

On UNIX systems, you can configure an environment variable called ORACLE_PATH to tell
SQL*Plus where to look for a script. This way, you can put all your routine SQL scripts in one loca-
tion, and you don’t need to specify the complete path for the file each time you want to execute an
existing script. On my UNIX servers, for example, this is how I set the variable:

$ export $ORACLE_PATH=/u01/app/oracle/admin/dba/sql

On Windows systems, you can edit the Windows registry to specify the ORACLE_PATH variable.

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS514

4517CH12.qxd 8/19/05 10:58 AM Page 514

Listing 12-9 shows a script called status.sql being run—it is in the directory from which
SQL*Plus was invoked.

Listing 12-9. Using the at (@) Command to Execute a Script

SQL> @status.sql
USERNAME STATUS PROCESS SID SERIAL#
--

ACTIVE 2076 1 1
ACTIVE 2080 2 1
ACTIVE 2084 3 1
ACTIVE 2088 4 1
ACTIVE 2092 5 1
ACTIVE 2096 6 1

SYSTEM ACTIVE 1856:444 8 58
7 rows selected.
SQL>

The status.sql script is run in Listing 12-9 without any path information, because it is located in
the same directory from which you logged into SQL*Plus. You can run a script located in a different
directory by entering the complete path of the script’s location, as in @/u01/app/oracle/admin/dba/
sql/status.sql.

You can also execute the status.sql script by just typing the command run status.sql. The RUN
command will execute the contents of the specified file. Or, if your SQL commands are actually
listed on the screen (that is, stored in the SQL*Plus buffer), you can use the / command to execute
the SQL code. Listing 12-10 shows the use of the / command. Note that when you use the / com-
mand to execute a script, the commands aren’t listed again. Instead, the / command executes the
contents of the SQL*Plus buffer.

Listing 12-10. Using the / Command to Execute a Script

SQL> /
USERNAME STATUS PROCESS SID SERIAL#
--

ACTIVE 2076 1 1
. . .
7 rows selected.
SQL>

You could also have used the RUN command instead of the / command, and your SQL would
have been executed the same way. The RUN command lists the contents of the script it just executed,
unlike the / command, which doesn’t show the code in the SQL*Plus buffer that it’s executing. The
RUN command is shown in Listing 12-11.

Listing 12-11. Using the RUN Command to Execute a Script

SQL> RUN status.sql
1 SELECT username,status
2* FROM v$session

USERNAME STATUS
------------------------------ --------

ACTIVE
ACTIVE
ACTIVE
ACTIVE
ACTIVE

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS 515

4517CH12.qxd 8/19/05 10:58 AM Page 515

ACTIVE
SYSTEM ACTIVE
7 rows selected.
SQL>

■Caution When you invoke a script with the RUN command, the SQL is shown on the screen before it’s exe-
cuted. The / command won’t show the SQL, but executes it right away. Because of this, you have to exercise
extreme caution when you use the / command. The script in the buffer might not be what you intended to run.

Creating a Windows Batch Script
You can easily create a batch script in a Windows system to run your SQL*Plus commands. For
instance, say you have a script file called testscript.sql that provides information about the users in
your database. If you want to schedule this script to run at a specified time, you must first create a
Windows batch file that invokes the testscript.sql script file. You can then use the Windows at sched-
uling utility, if you wish, to schedule the batch script.

Here’s a simple example. First create a batch file, named testbatch.bat, containing the following:

sqlplus username/password@connect_identifier @C:\temp\testscript.sql
notepad.exe C:\temp\output.txt

The preceding batch file will start a SQL*Plus session, run the testscript.sql script, and output
the results of the testscript.sql file into the output.txt file using the notepad executable.

The DEFINE and UNDEFINE Commands
During the course of writing and using SQL scripts, you sometimes need to specify variables and
their values. The DEFINE command enables you to create your own variables (user variables) that
continue to hold the values you specify for the duration of the SQL*Plus session or until you use
the UNDEFINE command and unset the variables. Here is an example demonstrating the use of the
DEFINE and UNDEFINE commands:

SQL> DEFINE dept = finance
SQL> UNDEFINE dept

The preceding example is straightforward. In SQL*Plus, however, you’ll often use the DEFINE
command in scripts to substitute values for variables. You typically do this by using the DEFINE com-
mand with a substitution variable instead of a user variable. A substitution variable is specified by
adding an ampersand (&) to the user variable, as in &VARIABLE.

Listing 12-12 presents a simple example of the use of the DEFINE command with a substitution
variable.

Listing 12-12. Using the DEFINE Command

SQL> col segment_name for a27
DEFINE owner = '&1'
SELECT segment_name,segment_type,extents
FROM dba_segments
WHERE owner = upper ('&owner)
AND extents > 10
AND segment_name NOT LIKE 'TMP%'
ORDER BY segment_type,extents desc
SQL> @extents.sql

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS516

4517CH12.qxd 8/19/05 10:58 AM Page 516

Enter value for 1: system
SEGMENT_NAME SEGMENT_TYPE EXTENTS
HELP_TOPIC_SEQ INDEX 18
PRODUCT_PROFILE TABLE 22
SQL>

In the extents.sql script in Listing 12-12, the owner variable was defined, but instead of it being
given a hard-coded single value, it takes on any substituted value provided by the user. Thus, this
same script can be run for any user in the database. All you need to do is plug in a different name
for the schema owner each time you run the script.

Predefined SQL*Plus Variables
SQL*Plus provides a set of predefined variables, which you can use in the same way as the other
substitution variables that you may create. Listing 12-13 shows the list of the predefined SQL*Plus
variables, which you can see by using the DEFINE command without any arguments.

Listing 12-13. Predefined SQL*Plus Variables Shown by the DEFINE Command

SQL> DEFINE
DEFINE _DATE = "20-JUN-05" (CHAR)
DEFINE _CONNECT_IDENTIFIER = "nick" (CHAR)
DEFINE _USER = "SYS" (CHAR)
DEFINE _PRIVILEGE = "AS SYSDBA" (CHAR)
DEFINE _SQLPLUS_RELEASE = "1002000000" (CHAR)
DEFINE _EDITOR = "vi" (CHAR)
DEFINE _O_VERSION = "Oracle Database 10g Enterprise Edition

Release 10.2.0.0.0 - Beta
With the Partitioning, OLAP and Data Mining options"(CHAR)

DEFINE _O_RELEASE = "1002000000" (CHAR)
SQL>

Here’s what the variables are:

• DATE: Contains the current date or a user-defined fixed string

• CONNECT_IDENTIFIER: Contains the name of the database you are connected to

• USER: Contains the username as supplied by the user to make the current connection (this is
the same as the output from the SHOW USER command)

• PRIVILEGE: Contains the privilege level of the current connect (can be AS SYSDBA, AS SYSOPER,
or blank to indicate a normal connection)

• SQLPLUS_RELEASE: Shows the SQL*Plus release number

• EDITOR: Shows the editor that is being used

• O_VERSION: Shows the Oracle Database version (Enterprise Edition, for example), along with
the database options

• O_RELEASE: Shows the Oracle Database release number

Using Comments in SQL*Plus
Often, you’ll need to use nonexecutable comments in your SQL*Plus scripts and reports. Here’s a
brief description of the commenting features available in SQL*Plus:

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS 517

4517CH12.qxd 8/19/05 10:58 AM Page 517

• The /* . . . */ delimiters: You can enclose one or more lines in your script with these delim-
iters to indicate that those lines are comments.

• The -- notation: You can preface the lines you want commented by a pair of hyphens.

• The REMARK (or just REM) command: The REMARK command before the beginning of a line indi-
cates that the line is not to be executed.

Listing Your SQL Commands
SQL*Plus stores your most recently issued SQL statement in an area of memory called the SQL
buffer. Unfortunately, SQL*Plus lets you save only the last command you issued in the buffer. Every
new statement that you enter replaces the previous statement in the buffer. If you want to see the
previous command you issued, type the word LIST or just the letter l.

SQL> l
1 SELECT username, status, process, sid, serial#
2 FROM v$session
3* WHERE status = 'ACTIVE'

SQL>

If you want to see what’s in your SQL script before you execute it, load it from the operating
system into the SQL buffer by using the GET command, as follows:

SQL> GET status.sql
1 SELECT username,status,process,sid,serial#
2 FROM v$session
3* WHERE status = 'ACTIVE'

SQL>

■Caution If you just enter the slash (/) command in your SQL*Plus session, you’ll execute the last command
you entered, which is always stored in the SQL buffer. It’s a very good idea to always use the LIST command to
first see what you’re actually executing.

Sometimes you may want to execute several SQL command scripts consecutively. You can
specify all the scripts you want to run in one main script and just run that main script—all the
included scripts will run consecutively. Here’s an example of how you can embed several SQL
scripts into one main file:

SQL> GET one_script.sql
1 @check.sql
2 @create_table.sql
3 @insert_table.sql
4* @create_constraint.sql

SQL>

When you run the one_script.sql script, its four constituent scripts will run one after the other.
This is an efficient way to execute scripts, especially when you’re creating and populating a new
database, provided you have already tested the individual scripts.

■Note You can also use the @@commandfile notation, as in @@one_script.sql to run command files that
include several command files. The use of the @@ notation ensures that Oracle looks for the individual files in the
same path as the command file.

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS518

4517CH12.qxd 8/19/05 10:58 AM Page 518

Editing Within SQL*Plus
Often you’ll want to make minor changes in the SQL code you’re using. It isn’t necessary to resort to
your editor for minor changes, though, because SQL*Plus comes with its own change command,
aptly called CHANGE. Simple pattern-matching techniques are used to modify SQL*Plus command
lines. Therefore, you can add or modify a word or a part of a word by just replacing an existing pat-
tern in a word with a new one.

The general pattern for changing SQL text is C/OLD/NEW, where C is the shortened form of the
CHANGE command, which lets you change the first occurrence of the specified text on the current
line, OLD stands for the actual SQL you intend to change, and NEW stands for the SQL text that is
replacing the old text. Listing 12-14 shows how to use pattern matching to replace text in a SQL*Plus
session.

Listing 12-14. Changing Text Using Pattern Matching

SQL> SELECT username,status,process,sid,serial
2 FROM v$session
3* WHERE status = 'ACTIVE';

select username,status,process,sid,serial
*

ERROR at line 1:
ORA-00904: invalid column name
SQL> 1
1* SELECT username,status,process,sid,serial

SQL> c/serial/serial#
1* SELECT username,status,process,sid,serial#

SQL> l
1 SELECT username,status,process,sid,serial#
2 FROM v$session
3* WHERE status = 'ACTIVE'

SQL> /
USERNAME STATUS PROCESS SID SERIAL#

ACTIVE 2076 1 1
ACTIVE 2080 2 1
ACTIVE 2084 3 1
ACTIVE 2088 4 1
ACTIVE 2092 5 1
ACTIVE 2096 6 1

SYSTEM ACTIVE 1856:444 8 58
7 rows selected.
SQL>

If you have a complicated script, making changes using pattern matching as shown in List-
ing 12-14 can quickly get hairy! Use the runtime editor instead to make your changes conveniently.
Saving the changes will bring you into the SQL*Plus interface automatically, and you can execute
your edited SQL there.

■Note In UNIX, the usual editor is the vi editor, and in Windows, the usual editor is Notepad. You invoke them by
typing ed at the SQL*Plus command line.

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS 519

4517CH12.qxd 8/19/05 10:58 AM Page 519

Inserting and Deleting Lines in SQL*Plus
You can always remove a line from or add one to your SQL text by merely invoking the editor and
making the changes there. The SQL*Plus interface also offers you easy ways to add and delete lines.
Using the INPUT command, you can easily add one or more lines to the SQL text already in the SQL
buffer.

To use the INPUT command, just type the letter i. Listing 12-15 shows how you can insert text on
a new line at the end of a SQL script. When you’re done inserting new lines, you can type a period
(.) to get the SQL prompt back.

■Note The semicolon (;) normally acts as the terminator for SQL statements. The period (.) is the default value
for the BLOCKTERMINATOR variable, and it indicates the end of the statement inputting.

Listing 12-15. Using the INPUT Command (i) to Insert a New Line at the End of a Script

SQL> SELECT username, status, process, sid, serial#
2 FROM v$session
3* WHERE status = 'ACTIVE'

SQL> i
4 and username = 'HR'
SQL> /

USERNAME STATUS PROCESS SID SERIAL#

HR ACTIVE 1856:444 8 64
SQL>

Listing 12-16 shows how to insert a line in the middle of a SQL script. You just print the line
on the screen by using the LIST command and then add the new line afterward using the INPUT
command.

Listing 12-16. Using the INPUT Command to Insert a Line in the Middle of a Script

SQL> SELECT username, status, process, sid, serial#
2 FROM v$session
3 WHERE status='ACTIVE'
SQL> 1
1* SELECT username, status, process, sid, serial#

SQL> i
2i ,logon_time,terminal
3i .

SQL> l
1 SELECT username, status, process, sid, serial#,
2 logon_time,terminal
3 FROM v$session
4* WHERE status='ACTIVE'

SQL>

Similarly, you can delete one or more lines of the SQL buffer by using the delete command DEL
(or just D), accompanied by the line number, as shown in Listing 12-17.

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS520

4517CH12.qxd 8/19/05 10:58 AM Page 520

Listing 12-17. Deleting Text in SQL*Plus

SQL> SELECT username, status, process, sid, serial#
2 FROM v$session
3 WHERE status = 'ACTIVE'
4* AND username='HR'

SQL> del4
SQL> l
1 SELECT username, status, process, sid, serial#
2 FROM v$session
3* WHERE status = 'ACTIVE'

SQL>

The DEL command will delete the specified line. Using the DEL command without a line number
will remove the last line of the SQL you have in the buffer.

Adding to Text
Sometimes you need to add a word or two to a particular line. Instead of invoking the editor, you
can just use the APPEND command to accomplish this, as shown in Listing 12-18.

Listing 12-18. Using the APPEND Command

SQL> SELECT username, profile
2 FROM dba_users
3 .

SQL> 1
1* SELECT username, profile

SQL> APPEND , created_date
1* select username, profile, created_date

SQL> l
1 SELECT username, profile, created_date
2* FROM dba_users

SQL>

Sometimes, you may have a semicolon inside one of your statements, which will be interpreted
as a statement terminator by SQL*Plus, leading to an error. Here’s an example:

SQL> INSERT INTO EMPLOYEES VALUES ('BEGIN
2 LOAD_PROCEDURE);
3* END');

The semicolon in line 2 is not the end of the statement, and therefore you’ll get the following
error when you enter the preceding statement:

ERROR:
ORA-01756: quoted string not properly terminated

The default value of the SQLTERMINATOR variable is a semicolon (;). You can resolve the
problem here by simply turning off the use of the semicolon as a statement terminator, by using
the SQLTERMINATOR variable, as shown here:

SET SQLTERMINATOR OFF
SQL> INSERT INTO EMPLOYEES VALUES ('BEGIN
2 LOAD_PROCEDURE);
3* END')

/

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS 521

4517CH12.qxd 8/19/05 10:58 AM Page 521

Note that since you turned off the use of the semicolon as a statement terminator, you should
use the slash (/) to execute the statement. You can also use the BLOCKTERMINATOR variable, whose
default value is a period (.), to signify the end of the statement.

Incorporating Comments with the REMARK Command
The REMARK command is straightforward. It enables you to incorporate comments in your SQL
scripts. Here it’s shortened to REM.

SQL> GET user_report.sql
1 REM This script gives you the usernames and their profiles
2 REM Author: sam alapati
3 REM Date: JUNE 20,2005
4 SELECT username, profile FROM dba_users;
SQL>

Copying Tables with the COPY Command
On large tables, you tend to get into trouble using the CREATE TABLE AS SELECT (CTAS) technique
because Oracle does not commit between the inserts, and in the meantime, the undo segments
may run out of space. You are also limited to non-LONG data types when you use this technique. By
using the COPY command, you can copy data from a query into a table in the same or a remote data-
base. The COPY command gives you a way to easily copy all types of tables, and it avoids many of the
problems of using the CTAS technique, because it does commit while it’s copying the data from the
source table.

Here’s the syntax of the SQL COPY command:

SQL> COPY
usage: COPY FROM <db> TO <db> <opt> <table> { (<cols>) } USING <sel>
<db> : database string, e.g., hr/your_password@d:chicago-mktg
<opt> : ONE of the keywords: APPEND, CREATE, INSERT or REPLACE
<table>: name of the destination table
<cols> : a comma-separated list of destination column aliases
<sel> : any valid SQL SELECT statement

SQL>

If the FROM or TO clause is missing, the current SQL*Plus connection is used. The key parameter
is opt, which lets you specify one of the following:

• APPEND: Inserts records into the target table and creates the table if it doesn’t exist

• CREATE: Creates the target table and inserts rows into it

• INSERT: Inserts rows into an existing table

• REPLACE: Drops the existing table, re-creates it, and loads data into it

The USING <sel> clause lets you specify the query that determines the rows and columns you
want to copy from the target table.

■Tip If a table consists of a LONG column, you can’t use the CTAS method to make a copy of the table. You can,
however, use the COPY command to copy this table.

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS522

4517CH12.qxd 8/19/05 10:58 AM Page 522

Listing 12-19 shows how to use the COPY command. Note that the hyphen (-) is the “continue”
character, and it lets you break up long SQL statements over multiple lines. Make sure you use the
continue character and don’t hit Enter after the first line!

Listing 12-19. Using the COPY Command

SQL> COPY FROM sysadm/sysadm1@finance1-
> CREATE test01 -
> USING SELECT * FROM employee;

Array fetch/bind size is 15. (arraysize is 15)
Will commit when done. (copycommit is 0)
Maximum long size is 80. (long is 80)
Table TEST01 created.

4954 rows selected from sysadm@finance1
4954 rows inserted into TEST01.
4954 rows committed into TEST01 at DEFAULT HOST connection.

SQL>

You can make the COPY command’s execution faster by increasing the size of the SQL*Plus
parameters ARRAYSIZE, COPYCOMMIT, and LONG, if necessary.

Using the CREATE TABLE AS SELECT method is usually faster than using the COPY command
when you’re copying data from one table to another on the same server—using the COPY command
involves copying data from the server to the client SQL*Plus interface before copying it back to the
database again. Obviously this will increase the overhead and take longer to process than directly
copying from the server to the same server.

Making DML Changes Permanent with SQL*Plus
When you use SQL*Plus, you can enter data manipulation statements (DML) either separately or as
part of a named or anonymous block of PL/SQL code. Here are the different ways in which DML
changes are made permanent:

• You can commit the results of a transaction by using the COMMIT keyword at the end of the
transaction.

• You can set the AUTOCOMMIT setting to ON in your SQL*Plus session, which will ensure that
changes being made in the session are committed periodically on an automatic basis.

• You can issue a DDL command, such as DROP INDEX, that will also automatically commit all
the transactions pending either a commit or a rollback within the session.

• You can exit gracefully from SQL*Plus by typing in EXIT or QUIT, which are identical in
their effects. When you issue the EXIT command, Oracle will automatically commit all
changes you made in that session, even if you never issued a commit request, or even if the
AUTOCOMMIT setting has been set to OFF. When you use either the EXIT or QUIT command,
the following will happen:

• All pending changes are rolled back or committed.

• The user is logged out of Oracle.

• The SQL*Plus session is terminated.

• Control is returned to the operating system.

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS 523

4517CH12.qxd 8/19/05 10:58 AM Page 523

Creating Web Pages Using SQL*Plus
When you embed SQL*Plus in program scripts, you can use the MARKUP command in the following
way to produce HTML output:

SQLPLUS -MARKUP "HTML ON"

Before executing any SQL commands, this command outputs the HTML and BODY tags.
If you want to output an HTML page that can be embedded in an existing web page, you can

use the MARKUP command as follows:

SQL> SET MARKUP HTML ON SPOOL ON
SQL> commands here . . .
SQL> SET MARKUP HTML OFF SPOOL OFF

Key SQL*Plus Database Administration Commands
Although you may use every SQL*Plus command in the course of database administration, some
specific commands in SQL*Plus exist for the sole use of the Oracle DBA. Previous editions of the
Oracle database allowed you to run these commands in alternative DBA interfaces, such as the
Server Manager utility, but the Server Manager is finally obsolete, and SQL*Plus is now the only
interface for all manual commands for administering databases.

There are four powerful database administration commands that you can use from SQL*Plus—
the RECOVER command, the STARTUP and SHUTDOWN commands, and the ARCHIVE LOG command.

The RECOVER Command
The RECOVER command, as you can imagine, is used to recover a database or one of its files or table-
spaces after a database failure. To be able to run this command, you need to have the OSOPER or
the OSDBA role. You can perform manual or automatic recovery, and in either case, you’re responsi-
ble for first restoring all the necessary data files so you can recover your database.

The RECOVER command is complex and critical, and you’ll examine it in great detail in Chap-
ter 16, which deals with database recovery.

The STARTUP and SHUTDOWN Commands
The STARTUP and SHUTDOWN commands are used to start up and shut down your Oracle instance.
For details about both of these commands, see Chapter 9.

The ARCHIVE LOG Command
Archive logs are the archived or stored redo logs, and they play a critical role in database recovery.
The ARCHIVE LOG command can be used by anyone with an OSDBA or OSOPER privilege. It enables
you to start and stop the archiving of redo log files, as shown here:

SQL> ARCHIVE LOG START
Statement processed.
SQL> ARCHIVE LOG STOP
Statement processed.
SQL>

You can use the ARCHIVE LOG LIST command to view details about the archive logs being
archived, as shown here:

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS524

4517CH12.qxd 8/19/05 10:58 AM Page 524

SQL> ARCHIVE LOG LIST
Database log mode Archive Mode
Automatic archival Enabled
Archive destination /a03/app/oracle/admin/NICKO/arch/
Oldest online log sequence 933
Next log sequence to archive 937
Current log sequence 937
SQL>

You’ll learn much more about the ARCHIVE LOG command in Chapters 15 and 16.

Using SQL to Generate SQL
There will be occasions when you have to write a SQL script that involves a number of similar lines.
A good example would be a script in which you are assigning a set of privileges to several users.
You can, of course, execute separate SQL statements for each user, but it is a waste of time to do so,
besides being a mind-numbing exercise. Fortunately, you can use SQL to generate a script with all
the SQL statements that need to be executed. Using SQL to generate SQL essentially involves using
the output of one SQL statement as input for another SQL statement.

It is very easy to write SQL code that generates more SQL code as output. First, you write the
SQL to generate the SQL. Next, you start spooling a file, where the output of the first SQL script will
be captured. Then you execute the SQL code that will actually generate SQL code as its output. The
spooled script will contain the final set of commands you are interested in. Finally, you execute this
spooled script that contains the generated SQL code.

■Caution Always make sure you set the heading off, echo off, and feedback off. This will give you a clean,
spooled output script, which you can execute directly without any changes.

Here is an example that you are likely to be familiar with.

1. Set the environment variables.

SQL> SET ECHO OFF HEADING OFF FEEDBACK OFF

2. Name a spool file, to which the output of the first script will be written:

SQL> SPOOL test.txt

3. Execute the SQL that creates more SQL:

SQL> SELECT 'grant connect, resource to '||username||';' FROM dba_users;

This is the output of the preceding command:

GRANT CONNECT, RESOURCE TO DBA1;
GRANT CONNECT, RESOURCE TO ODSCOMMON;
GRANT CONNECT, RESOURCE TO JEFFRESS;
GRANT CONNECT, RESOURCE TO CAMPBELL;
GRANT CONNECT, RESOURCE TO ALAPATI;
GRANT CONNECT, RESOURCE TO BOLLU;
GRANT CONNECT, RESOURCE TO BOGAVELLI;
SQL> SPOOL OFF

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS 525

4517CH12.qxd 8/19/05 10:58 AM Page 525

4. The spooled script will have captured the preceding commands. Now run that script
(test.txt in this example):

SQL> @test.txt
Grant succeeded.
Grant succeeded.
Grant succeeded.
Grant succeeded.
Grant succeeded.
Grant succeeded.
Grant succeeded.
SQL>

As you can see, if you had to run this GRANT command for a hundred users, the effort would be
the same as for one user. You can easily adapt the preceding technique when you are performing a
task that applies to a number of objects or users in your database at the same time. This is a very
useful little technique to have in your arsenal. You’ll find many uses for it in performing your rou-
tine administrative tasks.

iSQL*Plus
The iSQL*Plus interface isn’t very different from the traditional SQL*Plus interface, in terms of the
type of commands you can use. iSQL*Plus is actually a web-based interface to the regular SQL*Plus
engine. Thus, underlying all interaction with the iSQL*Plus interface is the SQL*Plus engine that
performs the actual work and returns the results to the iSQL*Plus interface. The big difference is
that iSQL*Plus is browser-based; therefore, once you have access to a machine that has just about
any type of web browser, all you need is the URL of the HTTP server in order to log into the database
from anywhere (security considerations permitting). You can do in iSQL*Plus most of what you can
do in SQL*Plus, including running queries, either manually or with the help of scripts, and adminis-
tering the database itself.

The iSQL*Plus interface comes bundled with the Oracle server as a component of the SQL*Plus
software. This is important to remember—iSQL*Plus is not part of the Client installation like the
SQL*Plus interface or the SQL*Plus Windows GUI.

The iSQL*Plus interface’s architecture is based on a middle tier, which includes the iSQL*Plus
Application Server (with a built-in web server). This middle tier communicates with the database
on one side and the client on the other. The iSQL*Plus interface involves minimal or no configura-
tion, and, in some cases, you may be able to use it right out of the box. However, it may take some
time for you to feel completely comfortable with iSQL*Plus. There are some limitations to using
iSQL*Plus because some of the common SQL*Plus commands are either redundant or can’t be used
in it. Install it and get good at using it, because it provides some interesting reporting facilities, such
as HTML-formatted reports.

■Note If iSQL*Plus is installed on a common server, clients can log into the iSQL*Plus environment and access
all the databases, without any Oracle software on the client machines.

Installing the iSQL*Plus Software
There isn’t much to installing the iSQL*Plus software—its installation is part of the Oracle server
software installation. If you create a database using the Database Configuration Assistant (DBCA),
the iSQL*Plus Application Server is automatically started at the end of the database-creation

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS526

4517CH12.qxd 8/19/05 10:58 AM Page 526

Configuring iSQL*Plus
You have three components in the iSQL*Plus architecture—the client tier, the middle tier consisting
of the iSQL*Plus Application Server, and the database tier. Although the configuration of any one of
the three components is not really difficult, you may have to deal with certain issues at each level,
depending on your system’s configuration and your Internet or intranet architecture. The following
sections examine each of these three components.

Client Tier
The client tier consists of the web browser–based iSQL*Plus user interface, and all you have to do is
ensure you have installed Microsoft Internet Explorer 5.0 or later, or Netscape Navigator 4.7 or later.
(In fact, you can use just about any web browser, including Firefox.) In most cases, you are not
required to make any changes in your browser settings, as long as you are set to accept cookies
and run JavaScript.

In addition, on some web browsers, you may have to set up new application extensions for files
or add a proxy server exception for your web server running in the middle tier. You can make all
these changes by selecting Preferences from the Edit menu in Netscape or by selecting Internet
Options from the Tools menu in Internet Explorer.

To connect to iSQL*Plus, you must type in the following URL in your web browser:

http://machine_name.domain:port/isqlplus

For example, on my server, this translates to

http://localhost:5560/isqlplus

Middle Tier
Make sure that the middle tier, the iSQL*Plus Application Server, is up and running before you
connect to the iSQL*Plus interface through your browser and start an iSQL*Plus session. If your
iSQL*Plus Application Server isn’t running, you’ll see the following message when you try to con-
nect to iSQL*Plus by using, for example, the URL http://localhost:5560/isqlplus:

The connection was refused when attempting to contact localhost:5560.

In the next few sections, I explain how to start and stop the iSQL*Plus Application Server and
how to check whether the iSQL*Plus Application Server is running.

You can change the iSQL*Plus configuration file, http-web-site.xml, located in the $$ORACLE_
HOME/oc4j/j2ee/isqlplus/config directory, to modify the default settings of the iSQL*Plus server.
You should probably edit this configuration file to change the default iSQL*Plus session timeout
parameter from its limit of 60 minutes.

Sometimes, you may be unable to connect because the port that the iSQL*Plus Application
Server is attempting to use is already in use by another application. In this case, you can change
the port setting in the http-web-site.xml file.

■Note Remember to edit the tnsnames.ora file in your $ORACLE_HOME/network/admin directory to include the
network information for the database server. Oracle Net will make the connection between the iSQL*Plus module
and the Oracle database.

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS 527

4517CH12.qxd 8/19/05 10:58 AM Page 527

Database Tier
All you have to do on the database side is ensure that the database is running and the listener serv-
ice is started.

Starting and Stopping the iSQL*Plus Application Server
In order to use the iSQL*Plus interface, you must first start the iSQL*Plus Application Server, if it
isn’t running already. You use the isqlplusctl utility to start the iSQL*Plus Application Server from
the command line in both UNIX and Windows systems, as shown here:

$ isqlplusctl start
iSQL*Plus 10.2.0.0.0
Copyright (c) 2004 Oracle. All rights reserved.
Starting iSQL*Plus ...
iSQL*Plus started.
$

Similarly, you can stop the iSQL*Plus server by using the isqlplusctl stop command. You
can run the isqlplusctl command from anywhere if your ORACLE_HOME variable is set properly. The
isqlplusctl utility is located in the $ORACLE_HOME/bin directory.

On a Windows server, you can also start the iSQL*Plus Application Server by using the Services
Window through the Control Panel and starting the iSQL*Plus Application Server service, which is
in the format OracleOracleHomeNameiSQL*Plus.

Checking Whether the iSQL*Plus Application Server Is Running
On UNIX/Linux systems, use the following command to check for the iSQL*Plus server process:

$ ps -ef | grep Djava
oracle 11840 1 0 Sep 23 ? 86:50 /u04/app/oracle/jdk/bin/PA_RISC2.0/java -
Djava.security.policy=...
oracle 1933 10368 2 11:46:29 pts/14 0:00 grep Djava
$

The preceding output, or something that looks similar and contains references to J2EE-related
directories, indicates that the iSQL*Plus Application Server is running.

To check whether the iSQL*Plus Application Server is running in Windows, ensure that the
Windows service OracleOracleHomeNameiSQL*Plus is running. For example, on my Windows
server, I ensure that the service OracleOra10gHomeiSQL*Plus shows STARTED as its current status.
Make sure that the service is set to start automatically upon a system reboot. You can either use the
Control Panel to start the iSQL*Plus service, or you can use the isqlplusctl start command as in a
UNIX/Linux system (and isqlplusctl stop to shut the service down).

Logging In to and Disconnecting from iSQL*Plus
Logging in and using the iSQL*Plus interface is a novel experience for those who are used to the
monitor-based SQL*Plus interface, but the rewards of well-formatted output, the ability to run
saved scripts from the interface, and great reporting abilities make the learning curve well worth
the effort.

To bring up the iSQL*Plus interface and log in, you need to perform the following steps:

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS528

4517CH12.qxd 8/19/05 10:58 AM Page 528

1. You connect to the iSQL*Plus login page from your web browser by using a URL like this:
http://machine_name.domain:port/isqlplus. On my Linux server, for example, I enter the
URL http://localhost:5560/isqlplus/, where localhost is the symbolic name of my Linux
server. If your computer’s DNS doesn’t support the symbolic name, you can replace it with
the actual IP address for your machine. If you aren’t sure about the exact port number on
your server, you can look up the information in the portlist.ini file, as shown here:

[pasx] $ cat $ORACLE_HOME/install/portlist.ini
Ultra Search HTTP port number =5620
iSQL*Plus HTTP port number =5560
Enterprise Manager Console HTTP Port (test) = 1158
Enterprise Manager Agent Port (test) = 3938
oracle@hp50.netbsa.org [/u03/app/oracle]
[pasx] $

2. Press Enter to get the iSQL*Plus Login page.

3. You can use the iSQL*Plus interface to log into a database as a regular user, or if you intend
to perform database administration, you can log in as a user with the SYSDBA or SYSOPER
privilege. By default, you can only log in as a regular user—all SYSDBA connections have to
be authenticated by the iSQL*Plus Application Server.

4. In the initial login page of the iSQL*Plus interface, enter your Oracle database username
and password in the appropriate boxes. If you are logging in to the default database, you
can leave the Connection Identifier field blank. Otherwise, enter the database connection
identifier, as specified in your tnsnames.ora file. The iSQL*Plus Application Server can also
provide a drop-down user list with the SYSTEM and SYS accounts, and prompt you for their
passwords. Click the Login button.

5. Assuming your username and password are accepted, you will be in the iSQL*Plus work
page. You are now ready to enter your SQL*Plus commands (most of them, anyway), SQL
commands, and PL/SQL commands.

You can use the DISCONNECT command to disconnect from a database without leaving
iSQL*Plus. To log out of your iSQL*Plus session, click the Logout button, which is at the top
right of the work page.

■Note If you exit the iSQL*Plus session by typing in the word exit, you’ll still be connected to the database. The
exit command in iSQL*Plus only stops any scripts you may be currently executing, but it leaves your database
connection intact. You need to click the Logout icon to completely exit the iSQL*Plus interface.

Connecting to a Different Database
Once you’re connected to iSQL*Plus, you can switch your connection and log into a different data-
base, just as you would in SQL*Plus, by using the CONNECT command, as shown here:

CONNECT username/password@connect_identifier

Troubleshooting the iSQL*Plus Startup on UNIX/Linux
If your previous iSQL*Plus connections didn’t shut down gracefully, you may sometimes have trou-
ble starting your iSQL*Plus connection. To solve this problem, first make sure that no previous

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS 529

4517CH12.qxd 8/19/05 10:58 AM Page 529

sessions are still running by using the following command, which I explained earlier in the “Check-
ing Whether the iSQL*Plus Application Server Is Running” section:

$ ps -eaf |grep Djava

If the previous command indicates that an iSQL*Plus process is still running, use the following
command to kill the process:

$ $ORACLE_HOME/bin/isqlplusctl stop

If the previous command fails to kill the iSQL*Plus process, use the UNIX/Linux kill com-
mand, as shown here:

$ kill -9 <process_id>

Restart the iSQL*Plus process, using the following command:

$ $ORACLE_HOME/bin/isqlplusctl start

If you’re still having problems starting up the iSQL*Plus session, it’s time to clear the RMI and
HTTP ports, and one way to do so is by using the lsof utility, as shown here:

$ lsof -i:5560

If you see a lot of processes using port 5560, kill them using the following command, which
uses the lsof utility and pipes its results to the kill command directly:

$ lsof -i:5560 | grep -v PID | awk '{print $2}' | xargs kill -9

Changing the iSQL*Plus Default Port
Your iSQL*Plus Application Server may not start up if the port it’s supposed to be using (5560 by
default) is already in use. You can confirm this by using the netstat command. If you need to
change the port number for the iSQL*Plus Application Server, use the following steps, after making
sure the iSQL*Plus Application Server is stopped first:

1. Edit the configuration file, which is named http-web-site.xml and is located in the
ORACLE_HOME/oc4j/j2ee/isqlplus/config directory. Change the port number (for
example, port="5560") to the port number you wish to use.

2. Restart the iSQL*Plus Application Server like this:

$ isqlplusctl start

Starting iSQL*Plus from a URL
You can also start an iSQL*Plus session from a URL. Here’s an example:

http://localhost.localdomain:5560/isqlplus/dba/dynamic?
userid=hr/hr@orcl%20as%20sysdba&script=testscript.sql&name=*&salary=12000

This is just a test URL, to show you how to specify the script name, username/password combi-
nation, and the connect identifier when you connect. Of course, you’d enter the two lines as one
unbroken URL in your web browser.

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS530

4517CH12.qxd 8/19/05 10:58 AM Page 530

Connecting to a Remote Database
You can connect to remote databases just as you do from SQL*Plus, by either specifying the remote
database in the tnsnames.ora file, or by using the easy connect method. If you wish, you can specify
the entire connection identifier in the URL. By using the iSQLPlusConnectIdList parameter, you can
restrict connections to a limited set of databases.

Here’s an example that shows how you can connect to a remote database using the complete
database connection string:

<href='http://localhost.localdomain:5560/isqlplus?userid="hr/hr@
(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=localhost)
(PORT=1521)))(CONNECT_DATA=(SID=orcl)))"
&script=http://localhost/scripts/report.sql'>
iSQL*Plus Dynamic Report

Using this URL, you can create a link in your HTML pages to run a dynamic report using
iSQL*Plus.

Navigating in iSQL*Plus
Once you log in to the iSQL*Plus interface, there are several ways to navigate inside. You can move
to other screens in the following ways:

• Navigation icons: When you first log in, you’ll see three navigations icons: Logout, Prefer-
ences, and Help. These are located in the top right of your current screen, and you can click
them to go to a different screen.

• Menus: The menus let you navigate to screens such as Preferences.

• Footer links: Navigation links to other screens are at the bottom of each page.

The iSQL*Plus Workspace
Once you log in to the iSQL*Plus interface successfully, you’ll be in the iSQL*Plus Workspace, and
here you can enter SQL commands for execution. The Workspace, shown in Figure 12-1, consists of
the Workspace, History, and Load Script screens. This is what you can do in the Workspace screen:

• Enter, execute, and cancel SQL scripts

• Load scripts from a directory on the server

• Load and save a script to a file

• View, save, and print your output

• Log out

• Access the Help screen

• Go to the History and Preferences screens

Here’s what you can do in the History and Preferences screens:

• History: You can save and reuse recently executed SQL scripts through the History screen.
Only scripts that you entered in the current session are available.

• Preferences: The Preferences screen lets you change your password, set system variables, and
set the interface options (size of the screen and so forth) for your iSQL*Plus sessions. You can
divide the configurable items in the Preferences screen into three main groups: interface
configuration, system configuration, and changing a password.

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS 531

4517CH12.qxd 8/19/05 10:58 AM Page 531

Figure 12-1. The iSQL*Plus Workspace

Interface Configuration

The interface configuration settings includes settings that affect your iSQL*Plus interface. You can
configure items like these:

• History size: The number of scripts displayed in the script history.

• Input area size: The size of the script input area.

• Output location: Where you want the output to be displayed—you can select the screen, a
text file, or a printer as the location for the output text.

• Output page setup: You can decide whether output is displayed on a single page or over
multiple pages.

System Configuration

System configuration consists of three main areas:

• Script formatting: You can format the script output and determine what optional informa-
tion it will contain. You can also specify whether your output is displayed in preformatted
text form or as an HTML table.

• Script execution: You can configure script parsing and executing settings, such as array size,
checking of SQL syntax, and whether to automatically commit changes.

• Database administration: You can set the source of the archive logs needed during database
recovery (the equivalent SQL command for this is SET LOGSOURCE), and you can choose
whether you want automatic recovery (using the default filenames for archived redo logs)
or not (the equivalent SQL command for this is SET AUTORECOVERY).

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS532

4517CH12.qxd 8/19/05 10:58 AM Page 532

Changing a Password

The Change Password screen lets you change your database password.

Displaying Results in iSQL*Plus
You can display the output of your work in either preformatted text form or in an HTML table. You
may find that it’s easier to copy the output if it’s in the text format. Here’s how to specify the prefor-
matted text display:

SET MARKUP HTML PREFORMAT ON

If you’d rather view the text in the HTML table format, specify the following:

SET MARKUP HTML PREFORMAT OFF

Authentication Levels
You can log in to an iSQL*Plus session in two different ways. If you are logging in as a normal user,
all you have to do is submit your database username/password combination. If you are logging in
as a DBA with the SYSDBA or SYSOPER privilege, you have to go through an extra layer of authenti-
cation—in addition to database authentication, you must add your name and password to the
Application Server authentication file.

This mandatory SYSOPER and SYSDBA role authentication by the iSQL*Plus Application Server
middle layer actually means that there are two sets of usernames and passwords that you need to
use to gain entry into the Oracle database as a DBA when you are using the iSQL*Plus interface.

Setting Up Application Server Authentication
In order to connect with SYSDBA or SYSOPER privileges, you must add your username and pass-
word to the iSQL*Plus authentication file for the iSQL*Plus Application Server. Java Authentication
and Authorization Service (JAAS) is a package that augments Java 2 security and supports user-
based authentication and access control. Oracle’s JAAS implementation is known as the JAAS
Provider or JAZN (an abbreviation of Java authorization). You can configure the JAAS Provider with
either an XML repository (JAZN-XML) or the Oracle Internet Directory (OID). In this section, I show
how to set up the iSQL*Plus DBA URL to use the XML-based JAAS provider.

In order to use the JAAS Provider, you need to use two configuration files—jazn.xml and
jazn-data.xml. In the jazn.xml file, you specify the provider type, either XML or LDAP/OID. You use
the jazn-data.xml file when you specify the XML provider type. This file will contain JAAS data on
users, roles, policies, and login modules.

To set up the iSQL*Plus DBA URL, you need to start the JAZN shell, create authorized users,
grant the WEBDBA role to new users, and test the new DBA access. The following sections describe
these steps.

Starting the JAZN Shell

Although you can create and manage users from the command line, it is laborious to do so, and
you’re better off invoking the JAZN shell. You must start the JAZN shell from the following directory:
$ORACLE_HOME/oc4j/j2ee/isqlplus/application-deployments/isqlplus.

Before you invoke the JAZN shell, make sure that the iSQL*Plus server is running. If it isn’t, start
it using the isqlplusctl utility described in the “Starting and Stopping the iSQL*Plus Application
Server” section earlier in this chapter.

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS 533

4517CH12.qxd 8/19/05 10:58 AM Page 533

First use the cd command to move to the right directory.

$ cd $ORACLE_HOME/oc4j/j2ee/isqlplus/application-deployments/isqlplus

To invoke the JAZN shell, use the following command, all on the same line:

$ $JAVA_HOME/bin/java -Djava.security.properties= -
$ORACLE_HOME/sqlplus/admin/iplus/provider -jar $ORACLE_HOME -
/oc4j/j2ee/home/jazn.jar -user "iSQL*Plus DBA/admin" -password admin_password -shell

In the preceding command, you need to replace admin_password with the actual password
(“welcome” is the default password) for the iSQL*Plus DBA realm administrator user, admin. Once
you run the previous command, you’ll be in the JAZN shell, as shown here:

JAZN:>

You need to first change the default password of the admin user for the iSQL*Plus DBA envi-
ronment, by using the following command:

JAZN:> SETPASSWD "iSQL*Plus DBA" "iSQL*Plus DBA/admin" welcome newpass1

In the previous command, note that iSQL*Plus DBA/admin is the admin user for the iSQL*Plus
DBA environment, whose default password, as I mentioned earlier, is “welcome”. The SETPASSWD
command changes the password to newpass1.

Creating Authorized Users

Once you invoke the JAZN shell, you need to create the users that will be granted access to the
iSQL*Plus DBA URL. Here’s how you do this:

JAZN:> ADDUSER "iSQL*Plus DBA" salapati sammyy1

The previous command creates a new user, salapati, who can connect using the iSQL*Plus DBA
URL. Since the command doesn’t indicate the status of your request to create the new user, you
need to check if the new user has been created by using the following command:

JAZN:> LISTUSERS "iSQL*Plus DBA"
salapati
admin
JAZN>

You find two users—the admin user that you created originally, and the salapati user that you
created subsequently. If you wish to remove any of the new users you created, you can use the
REMUSER command, as shown here:

JAZN> REMUSER "iSQL*Plus DBA" username

Granting the WEBDBA Role to New Users

There are two roles available in the JAZN environment, and you can see them by issuing the follow-
ing command:

JAZN:> LISTROLES
iSQL*Plus DBA/webDba
iSQL*Plus DBA/admin
JAZN>

Once you’ve finished creating all the users you want to grant the iSQL*Plus DBA privileges to,
you must grant the users the webdba role by using the GRANTROLE command, as shown here:

JAZN:> GRANTROLE webdba "iSQL*Plus DBA" salapati

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS534

4517CH12.qxd 8/19/05 10:58 AM Page 534

You can use the REVOKEROLE command to revoke a user’s webdba role from the JAZN shell, as
shown here:

JAZN> REVOKEROLE webDba "iSQL*Plus DBA" username

Testing iSQL*Plus DBA Access

Before testing the changes you just made, you must first restart the iSQL*Plus Administration
Server. When you set up your new users, you changed the JAZN authentication file, jazn-data.xml.
By restarting the iSQL*Plus sever, you can incorporate your changes into the new iSQL*Plus
instance.

After restarting the iSQL*Plus server, you can check the iSQL*Plus DBA access by entering the
iSQL*Plus DBA URL in your web browser, as shown here:

http://machine_name.domain:port/isqlplus/dba

For example, on my server, this is what I need to enter as the web address:

http://localhost:5860/isqlplus/dba

You’ll see a dialog box requesting authentication for the iSQL*Plus DBA URL.
To find out which port number the iSQL*Plus server is using on your server, look in the

$ORACLE_HOME/oc4j/j2ee/isqlplus/config/http-web-site.xml file, which will have a line
similar to this:

<web-site port="5560" display-name="OC4J Java HTTP Web Site">

When you enter the URL into your browser, you’ll see username and password box for your
HTTP server credentials, which lets the HTTP server check the authentication first. Once the HTTP
server credentials are confirmed, another page asks for your database username and password and
the database connection details. Figure 12-2 shows the iSQL*Plus DBA login page for providing your
database username and password.

Figure 12-2. The iSQL*Plus DBA Login page

When you successfully log in to iSQL*Plus with the DBA privilege (SYSDBA or SYSOPER), the
iSQL*Plus DBA Workspace is displayed, instead of the regular iSQL*Plus Workspace.

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS 535

4517CH12.qxd 8/19/05 10:58 AM Page 535

iSQL*Plus Security
The iSQL*Plus interface uses the security model based on the RESTRICT option, which you saw ear-
lier in the chapter. Thus, you can’t execute commands such as HOST, @, and SPOOL from iSQL*Plus,
meaning that you can’t reference the local file system using an iSQL*Plus interface.

Note that iSQL*Plus does not use a login.sql file as the SQL*Plus interface does. When you first
log in, only the global login file, glogin.sql, is read. This file is usually located in the $ORACLE_HOME/
sqlplus/admin directory. Users thus cannot customize the environment for their use to the extent
they can in SQL*Plus.

You can further restrict access to the iSQL*Plus server to a limited set of databases, by editing
the web.xml file located in the $ORACLE_HOME/oc4j/j2ee/oc4j-applications/applications/
isqlplus/isqlplus/WEB-INF directory. Here’s an example, showing how the user’s access is limited
to two databases, prod1 and cust1:

<init-param>
<param-name>iSQLPlusConnectIdList</param-name>
<description> prod1;cust1
</description>
<param-value>ora10g;ora9i</param-value>
</init-param>

In the preceding web.xml file, the third line is where you specify the list of databases to which
iSQL*Plus users are restricted. If you leave this line blank, users aren’t restricted from accessing any
database through iSQL*Plus.

■Caution Because of possible HTTP network timeouts, Oracle recommends that you stick to using the tradi-
tional SQL*Plus interface for running time-consuming DBA operations (for example, analyzing a huge table).

This chapter introduced you to the main features of SQL*Plus and iSQL*Plus, which continue
to be heavily used interfaces for day-to-day DBA work, even if you use the OEM Database Control as
the main DBA tool for administering databases.

CHAPTER 12 ■ USING SQL*PLUS AND iSQL*PLUS536

INAPPLICABLE SQL*PLUS COMMANDS IN ISQL*PLUS

For several reasons, including redundancy, several of the regular SQL*Plus commands do not work in the iSQL*Plus
environment. The following are some of the important commands that you can’t use in the iSQL*Plus environment:
APPEND, DELETE, CHANGE, EDIT, INPUT, EXIT, QUIT, GET, HOST, SAVE, SPOOL, STORE, FLUSH, NEWPAGE,
PAUSE, SQLPROMPT, TAB, TERMOUT, TRIMOUT, and TRIMSPOOL.

Although you may be disappointed to see that so many of your old standby SQL*Plus commands are unavail-
able, the iSQL*Plus environment does give you a better display and capabilities for web reporting, which
compensates for the drawbacks.

4517CH12.qxd 8/19/05 10:58 AM Page 536

Data Loading, Backup,
and Recovery

P A R T 5

■ ■ ■

4517CH13.qxd 8/19/05 11:01 AM Page 537

4517CH13.qxd 8/19/05 11:01 AM Page 538

Loading and Transforming Data

One of your most common tasks as a DBA is loading data from external sources. Although you
normally do this when you first populate a database, you frequently need to load data into various
tables throughout the life of a production database. Traditionally, DBAs have used the SQL*Loader
utility to load data from flat files into the Oracle database tables.

Although SQL*Loader has always been an important tool for loading data into Oracle data-
bases, Oracle also provides another way to load tables: using the external tables feature. External
tables use SQL*Loader functionality and let you perform complex transformations on data before
loading it into the database. Not only can you load data into your database, but with Oracle Data-
base 10g, you can also unload data into external files. You can then use these files to load data into
other Oracle databases.

In many cases, especially in data warehouses, you need to transform the data you load. Oracle
provides several means of performing data transformation within the database, including SQL and
PL/SQL techniques. Additionally, Oracle Database 10g introduces the powerful MODEL clause, which
enables you to create sophisticated multidimensional arrays and conduct complex interrow and
interarray calculations, using simple SQL.

Oracle provides a useful data replication feature called Oracle Streams, which lets you propa-
gate changes from one database to another. You can use the Streams feature for various purposes,
including the maintenance of a standby database.

This chapter covers all of these topics related to loading and transforming data. First, it pro-
vides an overview of the extraction, transformation, and loading process.

An Overview of Extraction, Transformation,
and Loading
Before you can run your application on an Oracle database, you need to populate your database.
One of the most common sources of database data is a set of flat files from legacy systems or some
other source.

Traditionally, using the conventional or direct data load method with SQL*Loader was the only
way to load this data from the external files into database tables. SQL*Loader is still technically the
main Oracle-supplied utility to load data from external files, but you can also use the external tables
feature, which employs the SQL*Loader tool to help you access data located in external data files.

Because the raw data may contain extraneous information or data in a different format
from what your application needs, you frequently need to transform the data in some way before
the database can use it. Transforming data is an especially common requirement for data ware-
houses, which extract their data from multiple sources. It’s possible to do some preliminary or basic
transformation of the raw data during the SQL*Loader run itself. However, more complex data

539

C H A P T E R 1 3

■ ■ ■

4517CH13.qxd 8/19/05 11:01 AM Page 539

transformation requires separate steps, and you have a choice of several techniques to manage
the transformation process. Most warehouse data goes through three major steps before you can
analyze the data extraction, transformation, and loading (ETL). These steps are defined as follows:

• Extraction is the identification and extraction of raw data, possibly in multiple formats, from
several sources, not all of which may be relational databases.

• Transformation of data is the most challenging and time-consuming of the three processes.
Transformation of data may involve the application of complex rules to data. It may also
include performing operations such as data aggregation and the application of functions
to the raw data.

• Loading is the process of placing the data in the database tables. This may also include the
task of maintaining indexes and constraints on the tables.

Traditionally, organizations have used two different methods of performing the ETL process:
the transform-then-load method and the load-then-transform method. In the former method, the
data is cleaned or transformed before it’s loaded into Oracle tables. Custom-made ETL processes
are usually used for the transformation of data. In the latter method of data cleansing, you aren’t
fully taking advantage of Oracle’s built-in transformation capabilities in most cases. In the load-
then-transform method, the raw data is first loaded into staging tables and moved to the final tables
after the data transformation process is performed within the database itself. Intermediate staging
tables are the key to the load-then-transform method. The drawback to this technique is that you
must maintain multiple types of data in the table, some in a raw and original state and some in a
finished state.

Oracle Database 10g offers terrific ETL capabilities that enable a newer way to load data into a
database: the transform-while-loading method. By using the Oracle database to perform all the ETL
steps, you can efficiently perform the typically laborious ETL processes. Oracle provides you with a
whole set of complementary tools and techniques aimed at reducing the time needed to load data
into the database while simplifying the work involved. Oracle’s ETL solution includes the following
components:

• External tables: External tables provide a way to merge the loading and transformation
processes. Using external tables will enable you to eliminate cumbersome and time-
consuming intermediate staging tables during data loading. External tables are discussed
in the “Using External Tables to Load Data” section in this chapter.

• Multitable inserts: Using the multitable insert feature, you can insert data into more than
one table at the same time, using different criteria for the various tables. This capability
eliminates the additional step of first dividing data into separate groupings and then per-
forming data loading. Multitable inserts are discussed in the “Using Multitable Inserts”
section in this chapter.

• Upserts: This is simply a made-up name indicating the technique by which you can either
insert data into a table or just update the rows with a single SQL statement: MERGE. The MERGE
statement will insert new data and update data if the rows already exist in the table. This
simplifies your loading process because you don’t need to worry about whether a table
already contains the data. Upserts are discussed in the “Using the MERGE Statement”
section in this chapter.

• Table functions: Table functions produce a set of rows as output. Table functions return a
collection type instance (nested table and VARRAY data types). Table functions are similar
to views, but, instead of defining the transform declaratively in SQL, you define it procedu-
rally in PL/SQL. Table functions are a great help when you’re doing large and complex

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA540

4517CH13.qxd 8/19/05 11:01 AM Page 540

transformations, because you can perform the transformations before loading data into a
data warehouse. Table functions are discussed in the “Using Table Functions for Data Trans-
formation” section in this chapter.

• Transportable tablespaces: These tablespaces provide you with an efficient and speedy way
to move data from one database to another. For example, you can migrate data between an
OLTP database and a data warehouse using transportable tablespaces. Chapter 14 discusses
transportable tablespaces.

■Note You can also use Oracle Warehouse Builder (OWB) to efficiently load data. OWB offers you a wizard-driven
facility to load data into the database through SQL*Loader. OWB can load data from an Oracle database or from flat
files. In addition, OWB can extract data from other databases such as Sybase, Informix, and Microsoft SQL Server
via Oracle Transparent Gateways. OWB combines ETL and design functions in an easy-to-use format.

In the next section, you’ll learn how to use the SQL*Loader utility to load data from external
files. This will also help you understand how to use external tables to perform data loading. After
examining the external tables feature, you’ll review the various methods of data transformation
offered by Oracle Database 10g.

Using the SQL*Loader Utility
The SQL*Loader utility, which comes with the Oracle database server, is commonly used by DBAs to
load external data into an Oracle database. SQL*Loader is an immensely powerful tool that’s capable
of performing more than just a data load from text files. Here’s a quick list of the SQL*Loader utility’s
capabilities:

• You can use SQL*Loader to transform data before it’s loaded into the database or during the
data load itself (limited capabilities).

• You can load data from multiple sources: disk, tape, and named pipes. You can also use
multiple data files in the same loading session.

• You can load data across a network.

• You can selectively load from the input file based on conditions.

• You can load all or part of a table. You can also load data into several tables simultaneously.

• You can perform simultaneous data loads.

• You can automate the load process, so it runs at scheduled times.

• You can load complex object-relational data.

You can use the SQL*Loader utility to perform several types of data loading:

• Conventional data loading: Under conventional data loading, SQL*Loader reads multiple
rows at a time and stores them in a bind array. SQL*Loader subsequently inserts this whole
array at once into the database and commits the operation.

• Direct-path loading: The direct-path loading method doesn’t use the SQL INSERT statement
to load the data into Oracle tables. Column array structures are built from the data to be
loaded, and these structures are used to format Oracle data blocks that are then written
directly to the database tables.

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA 541

4517CH13.qxd 8/19/05 11:01 AM Page 541

• External data loading: The new external tables feature of Oracle relies on the functionality of
SQL*Loader to access data in external files as if it were part of the database tables. When you
use the ORACLE_LOADER access driver to create an external table, you are basically using the
SQL*Loader’s functionality. In Oracle Database 10g, you can also use the new ORACLE_DATAPUMP
access driver, which provides the ability to write to external tables.

The conventional and direct-path loading methods offer their own benefits and drawbacks.
Because the direct-path loading method bypasses the Oracle SQL mechanism, it is much faster
than the conventional loading method. However, when it comes to the data transformation capabil-
ities, the conventional loading method is much more powerful than direct-path loading, because it
allows a full range of functions to be applied to the table columns during the load. The direct-path
loading method supports a far more limited number of transformations during the load. Oracle rec-
ommends that you use the conventional loading method for small data loads and the direct-path
loading method for larger loads. You’ll learn the specifics of direct-path loading after examining the
main SQL*Loader features and using the conventional loading method. External data loading is
covered in the “Using External Tables to Load Data” section later in this chapter.

Loading data using the SQL*Loader utility involves two main steps:

1. Select the data file that contains the data you want to load. The data file usually ends with
the extension .dat and contains the data you want to load. The data could be in several
formats.

2. Create a control file. The control file tells SQL*Loader how to map the data fields to an
Oracle table and specifies if the data needs to be transformed in some way. The control
file usually ends with the extension .ctl.

The control file will provide the mapping of the table columns to the data fields in the input
file. There is no requirement that you have a separate data file for the load. If you wish, you can
include the data in the control file itself, after you specify the load control information such as the
field specification and so on. The data can be supplied in fixed-length fields or in free format, sepa-
rated by a character such as a comma (,) or a pipe (|). Let’s begin by studying the all-important
SQL*Loader control file.

Exploring the SQL*Loader Control File
The SQL*Loader control file is a simple text file in which you specify important details about the
data load job, such as the location of the source data file. The control file is also the place where you
map the data files to the table columns. You can also specify any transformation during the load
process within the control file. The control file contains the names of the log files for the load and
files for catching bad and rejected data. The control file instructs SQL*Loader regarding the follow-
ing aspects of the SQL*Loader session:

• The source of the data to be loaded into the database

• The column specification of the target table

• The nature of the input file formatting

• The mapping of the input file fields to the table columns

• Data transformation rules (applying SQL functions)

• The locations for the log files and error files

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA542

4517CH13.qxd 8/19/05 11:01 AM Page 542

Listing 13-1 shows a typical SQL*Loader control file. SQL*Loader considers data rows in the
source data files as records, and you can specify the record formats in the control file. Note that you
can also use a separate file for the data. In this example, you see the control information followed by
in-line data, as shown by the use of the INFILE * specification in the control file. This specification
indicates that the data for the load will follow the control information for the load. If you are doing a
onetime data load, it is probably better to keep things simple and place the data in the control file
itself. The keyword BEGINDATA tells SQL*Loader where the data portion of the control file starts.

Listing 13-1. A Typical SQL*Loader Control File

LOAD DATA
INFILE *
BADFILE test.bad
DISCARDFILE test.dsc
INSERT
INTO TABLE tablename
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY""
(column1 POSITION (1:2) CHAR,
column2 POSITION (3:9) INTEGER EXTERNAL,
column3 POSITION (10:15) INTEGER EXTERNAL,
column4 POSITION (16:16) CHAR
)
BEGINDATA
AY3456789111111Y
/* Rest of the data here . . .*/

The portion of the control file that describes the data fields is called the field list. In the control
file in Listing 13-1, the field list is the following section:

(column1 POSITION (1:2) char,
column2 POSITION (3:9) integer external,
column3 POSITION (10:15) integer external,
column4 POSITION (16:16) char
)

The field list shows the field names, position, data type, delimiters, and any applicable
conditions.

You can specify numerous variables in the control file, and you can informally sort them into
the following groups:

• Loading-related clauses

• Data file-related clauses

• Table- and field-mapping clauses

• Command-line parameters in the control file

The following sections describe the parameters you can specify in the control file to configure
your data loads.

■Tip If you aren’t sure which parameters you can use for your SQL*Loader run, just type sqlldr at the operating
system prompt to view all the available options. You will see a complete list of all the parameters and their operat-
ing system-specific default values (if any exist).

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA 543

4517CH13.qxd 8/19/05 11:01 AM Page 543

Loading-Related Clauses
The keywords LOAD DATA start off a control file. This simply means that the data is to be loaded from
the input data file to the Oracle tables using the SQL*Loader utility.

The INTO TABLE clause indicates into which table the data will be loaded. If you’re loading into
multiple tables simultaneously, you’ll need an INTO TABLE statement for each table. The keywords
INSERT, REPLACE, and APPEND instruct the database how the load will be done. If it is an INSERT, the
table is assumed to be empty; otherwise, the loading process will generate an error and stop. The
REPLACE clause will truncate the table and start loading new data. You’ll often see that a load job
using the REPLACE option seems to hang initially. This is because Oracle is busy truncating the table
before it starts the load process. The APPEND clause will add the new rows to existing table data.

Data File-Related Clauses
You can use several clauses to specify the locations and other characteristics of the data file(s) from
which you’re going to load data using SQL*Loader. The following sections cover the important data
file-related clauses.

Data File Specification

You specify the name and location of the input data file by using the INFILE parameter:

INFILE='/a01/app/oracle/oradata/load/consumer.dat'

If you don’t want to use the INFILE specification, you can include the data in the control file
itself. When you include the data in the control file instead of a separate input file, you omit the file
location and use the * notation, as follows:

INFILE = *

If you choose to have the data in the control file itself, you must use the BEGINDATA clause
before your data starts:

BEGINDATA
Nicholas Alapati,243 New Highway,Irving,TX,75078
. . .

Physical and Logical Records

Every physical record in the source data file is equivalent to a logical record by default, but the con-
trol file can specify that more than one physical record be combined into a single logical record. For
example, in the following input file, three physical records are also considered three logical records:

Nicholas Alapati,243 New Highway,Irving,TX,75078
Shannon Wilson,1234 Elm Street,Fort Worth,TX,98765
Nina Alapati,2629 Skinner Drive,Flower Mound,TX,75028

You can transform these three physical records by using either of two parameters in the control
file: the CONCATENATE clause or the CONTINUEIF clause.

If your input is in the fixed format, you can specify the number of rows of data to be read for
each logical record in the following way:

CONCATENATE 4

This CONCATENATE clause will combine four rows of data. If each row of data has 80 characters,
then the total number of characters in the new logical record that is created will be 320. Therefore,

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA544

4517CH13.qxd 8/19/05 11:01 AM Page 544

when you use the CONCATENATE clause, you should also specify a record length (RECLEN) clause along
with it. In this case, the record length clause is as follows:

RECLEN 320

The CONTINUEIF clause lets you combine physical records into logical records by specifying one
or more characters in a specified location. Here’s an example:

CONTINUEIF THIS (1:4) = 'next'

In this line, the CONTINUEIF clause means that if SQL*Loader finds the four letters next at the
beginning of a line, it should treat the data that follows as a continuation of the previous line (the
four characters and the word next are arbitrary—continuation indicators can be any arbitrary
characters).

If you are using fixed-format data, the CONTINUEIF character may be placed in the very last col-
umn, as shown in the following example:

CONTINUEIF LAST = '&'

This line means that if SQL*Loader encounters the ampersand (&) character at the end of a line,
it will treat the following line as a continuation of the preceding line.

■Note Using either CONTINUEIF or CONCATENATE will slow down SQL*Loader, so map physical and logical
records one to one. You should do this because when you join more than one physical record to make a single
logical record, SQL*Loader must perform additional scanning of the input data, which takes more time.

Record Format

You may specify a record format in one of three ways:

• Stream record format: This is the most common record format, which uses a record termina-
tor to indicate the end of a record. When SQL*Loader scans the input file, it knows it has
reached the end of a record when it encounters the terminator string. If no terminator string
is specified, the last character defaults to a newline character or a linefeed (carriage return
followed by a linefeed on Windows) character. The set of three records in the previous exam-
ple uses this record format.

• Variable record format: In this format, you explicitly specify the length at the beginning of the
each record, as shown in the following example:

INFILE 'example1.dat' "var 2"
06sammyy12johnson,1234

This line contains two records: the first with six characters (sammyy) and the second with
twelve characters (johnson,1234). var 2 indicates that the data records are of variable size,
with record size indicators specified as a field of length 2, before every new record.

• Fixed record format: In this format, you specify that all records are a specific fixed size. Here’s
an example, which specifies that every record is 12 bytes long:

INFILE 'example1.dat' "fix 12"
sammyy,1234, johnso,1234

Although at first glance in this example, the record seems to include the entire line
(sammyy,1234, johnso,1234), the fix 12 specification means that there are actually two
12-byte records in this line. Thus, when you use the fixed record format, you may have

ce data file.

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA 545

4517CH13.qxd 8/19/05 11:01 AM Page 545

Table- and Field-Mapping Clauses
During a load session, SQL*Loader takes the data fields in the data records and converts them into
table columns. The table- and field-mapping clauses pertain to the mapping process between data
fields and table columns. The control file provides details about fields, including the column name,
position, input record data types, delimiters, and data transformation parameters.

Table Column Name

Each column in the table is specified clearly, with the position and data type of the matching field
value in the input file. You don’t need to load all the columns in the table. If you omit any columns
in the control file, they’re set to null.

Position

SQL*Loader must have a way of knowing the location of the various fields in the input file. Oracle
calls the individual items in the data file fields, and there is no direct correspondence between these
fields and the columns in the table in which you are loading the data. The process of mapping fields
in the input data file to the table columns in the database is called field setting, and it is the biggest
contributor to CPU time taken during the load. The POSITION clause specifies exactly where in the
data record the various fields are. You have two ways to specify the location of the fields: relative and
absolute.

Relative position implies that you specify the position of a field with respect to the position of
the preceding field, as shown in the following example:

employee_id POSITION(*) NUMBER EXTERNAL 6
employee_name POSITION(*) CHAR 30

In this example, the load starts with the first field, employee_id. SQL*Loader then expects
employee_name to start in position 7 and continue for 30 characters. It will look for the next field
starting at position 37, and so on.

When you use the POSITION clause in an absolute position sense, you just specify the position
at which each field starts and ends, as follows:

employee_id POSITION(1:6) NUMBER EXTERNAL
employee_name POSITION(7:36) CHAR

Data Types

The data types used in the control file refer to the input records only and aren’t the same as the
column data types within the database tables. The following are the main data types used in
SQL*Loader control files:

• INTEGER(n)—binary integer, where n can be 1, 2, 4, or 8

• SMALLINT

• CHAR

• INTEGER EXTERNAL

• FLOAT EXTERNAL

• DECIMAL EXTERNAL

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA546

4517CH13.qxd 8/19/05 11:01 AM Page 546

Delimiters

After each column’s data type is specified, you can specify a delimiter, which indicates how the field
should be delimited. You can delimit data by using one of the following two clauses: TERMINATED BY
or ENCLOSED BY.

TERMINATED BY limits the field to the character specified and denotes the end of a field. Here are
a couple of examples:

TERMINATED BY WHITESPACE
TERMINATED BY ","

The first example indicates that the field is terminated by the first blank that is encountered.
The second example simply indicates that the fields are separated by commas.

The ENCLOSED BY " " delimiter specifies that the field is enclosed by a pair of quotation marks.
Here is an example:

FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'

■Tip Oracle recommends that you avoid delimited fields and choose positional fields (using the POSITION
parameter) where possible. Choosing positional fields means that the database avoids scanning the data file
to find the delimiters you chose, thus reducing processing time.

Data Transformation Parameters

You can apply SQL functions to the field data before loading it into table columns. Only SQL func-
tions that return single values can be used for transforming field values in general. The field should
be denoted inside the SQL string as field_name. You specify the SQL function(s) after you specify the
data type for the field, and you enclose the SQL string in double quotation marks, as shown in the
following examples:

field_name CHAR TERMINATED BY "," "SUBSTR(:field_name, 1, 10)"
employee_name POSITION 32-62 CHAR "UPPER(:ename)"
salary position 75 CHAR "TO_NUMBER(:sal,'$99,999.99')"
commission INTEGER EXTERNAL "":commission * 100"

As you can see, the application of SQL operators and functions to field values before they are
loaded into tables helps you transform the data at the same time you are loading it. This is a handy
feature.

Command-Line Parameters in the Control File
SQL*Loader allows you to specify a number of runtime parameters at the command line when
you invoke the SQL*Loader executable. Usually, you specify in the parameter file those parameters
whose values remain the same across jobs. You can then use the command line to start the
SQL*Loader job, either interactively or as part of a scheduled batch job. On the command line,
you specify runtime-specific parameters, along with the control filename and location.

As an alternative, you may use the OPTIONS clause of the control file to specify runtime para-
meters inside the control file itself. You can always specify a number of runtime parameters while
invoking SQL*Loader, but you’re better off using the OPTIONS clause to specify them in the control
file, if those parameters are something you’ll repeat often. Using the OPTIONS clause comes in handy
particularly if your SQL*Loader command-line specification is so long that it exceeds your operat-
ing system’s maximum command-line size.

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA 547

4517CH13.qxd 8/19/05 11:01 AM Page 547

■Note Specifying a parameter on the command line will override the parameter’s values inside a control file.

The following sections cover some of the important parameters you can control using the
OPTIONS clause in the control file.

USERID

The USERID parameter specifies both the username and the password of the user in the database
who has the privileges for the data load:

USERID = samalapati/sammyy1

CONTROL

The CONTROL parameter specifies the name of the control file for the SQL*Loader session. The con-
trol file may include the specifications for all the load parameters. Of course, you can load data
using manual commands, but using a control file gives you more flexibility and enables the
automation of the load process.

CONTROL = '/test01/app/oracle/oradata/load/finance.ctl'

DATA

The DATA parameter simply refers to the input data file. The default filename extension is .dat. Note
that the data doesn’t necessarily need to be inside a separate data file. If you wish, you can include
the data at the end of the control file load specifications.

DATA = '/test02/app/oracle/oradata/load/finance.dat'

BINDSIZE and ROWS

You can use the two parameters BINDSIZE and ROWS to specify a conventional path bind array.
SQL*Loader in the conventional path mode doesn’t insert data into the table row by row. Rather, it
inserts a set of rows at a time, and that set of rows, called the bind array, is sized based on either the
BINDSIZE or ROWS parameter.

The BINDSIZE parameter sets the bind array size in bytes. On my system, the default bind size is
256,000 bytes.

BINDSIZE = 512000

The ROWS parameter does not set any limit on the number of bytes in the bind array. It imposes
a limit on the number of rows in each bind array, and SQL*Loader multiplies this value in the ROWS
parameter with its estimate of the size of each row in the table. The default number of rows under
the conventional method on my system is 64.

ROWS = 64000

■Note If you specify both the BINDSIZE and ROWS parameters, SQL*Loader uses the smaller of the two values
for the bind array.

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA548

4517CH13.qxd 8/19/05 11:01 AM Page 548

DIRECT

If you specify DIRECT=true, SQL*Loader loads using the direct-path method instead of the conven-
tional method. The default for this parameter is DIRECT=false, meaning the conventional method is
the default method used.

ERRORS

The ERRORS parameter specifies the maximum number of errors that can occur before the
SQL*Loader job is terminated. The default on most systems is 50. If you don’t want to tolerate
any errors, set this parameter to 0:

ERRORS = 0

LOAD

Using the LOAD parameter, you can set the maximum number of logical records to be loaded into the
table. The default is to load all the records in the input data file.

LOAD = 10000

LOG

The LOG parameter specifies the name of the log file. The SQL*Loader log file, as you’ll see shortly,
provides a lot of information about your SQL*Loader session.

LOG = '/u01/app/oracle/admin/finance/logs/financeload.log'

BAD

The BAD parameter specifies the name and location of the bad file. If any records are rejected due to
data formatting errors, SQL*Loader will write the record to the bad file. For example, a field could
exceed its specified length and be rejected by SQL*Loader. Note that besides the records rejected by
SQL*Loader, other records may be rejected by the database. For example, if you try to insert rows
with duplicate primary key values, the database will reject the insert. These records will be part of
the bad file as well. If you don’t explicitly name a bad file, Oracle will create one and use a default
name with the control filename as a prefix.

BAD = '/u01/app/oracle/load/financeload.bad'

SILENT

By default, SQL*Loader displays feedback messages on the screen showing the load job’s progress.
You can turn off the display with the SILENT parameter. You can use several options with the SILENT
parameter. For example, you can turn off all types of messages with the ALL option, as shown here:

SILENT = ALL

DISCARD and DISCARDMAX

The discard file contains all records rejected during the load because they didn’t meet the record
selection criteria you specified in the control file. The default is to not have a discard file. Oracle will
create this file only if there discarded records, and, even then, only if you explicitly specify the dis-
card file in the control file. You use the DISCARD parameter to specify the name and location of the
discard file.

DISCARD = 'test01/app/oracle/oradata/load/finance.dsc'

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA 549

4517CH13.qxd 8/19/05 11:01 AM Page 549

By default, SQL*Loader doesn’t impose any limit on the number of records; therefore, all the
logical records can be discarded. Using the DISCARDMAX parameter, you can set a limit on the number
of records that can be discarded.

■Tip Both the bad and discard files contain records in the original format. Therefore, it’s easy, especially during
large loads, to just edit these files and use them for loading the data that was left out during the first load run.

PARALLEL

The PARALLEL parameter specifies whether SQL*Loader can run multiple sessions when you’re
employing the direct-path loading method. Obviously, you need a server with multiple CPUs if
you wish to use the parallel load feature.

sqlldr USERID=salapati/sammyy1 CONTROL=load1.ctl DIRECT=true PARALLEL=true

RESUMABLE

Using the RESUMABLE parameter, you can turn on Oracle’s Resumable Space Allocation feature. This
way, if a job encounters a space problem while loading the data, the load job is merely suspended.
You can arrange for a notification about the job suspension and allocate more space so the job can
continue without failing. The Resumable Space Allocation feature is discussed in Chapter 6. The
default for the RESUMABLE parameter is false, meaning Resumable Space Allocation is disabled.
Set RESUMABLE=true to enable this feature.

RESUMABLE_NAME

The RESUMABLE_NAME parameter enables you to identify a specific resumable load job when you use
the Resumable Space Allocation feature. The default name is the combination of the username,
session ID, and instance ID.

RESUMABLE_NAME = finance1_load

RESUMABLE_TIMEOUT

The RESUMABLE_TIMEOUT parameter can be set only when the RESUMABLE parameter is set to true. The
timeout is the maximum length of time for which an operation can be suspended when it runs into
a space-related problem. If the space-related problem is not fixed within this interval, the operation
will be aborted. The default is 7,200 seconds.

RESUMABLE_TIMEOUT = 3600

SKIP

The SKIP parameter is very useful in situations where your SQL*Loader job fails to complete its run
due to some errors, but it has already committed some rows. The SKIP parameter lets you skip a
specified number of records in the input file when you run the SQL*Loader job the second time.
The alternative is to truncate the table and restart the SQL*Loader job from the beginning—not a
great idea if a large number of rows has already been loaded into the database tables.

SKIP = 235550

This example assumes the first job failed after loading 235,549 records successfully. You can
find out this information from the log file for the load, or query the table directly.

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA550

4517CH13.qxd 8/19/05 11:01 AM Page 550

Generating Data During the Load
The SQL*Loader utility enables you to generate data to load columns. This means that you can do
a load without ever using a data file. More commonly, however, you generate data for one or more
columns of the data when you are loading from a data file. The following types of data can be gener-
ated by SQL*Loader:

• Constant value: You can set a column to a constant value by using the constant specification.
For example, with the following specification, all the rows populated during this run will
have the value sysadm in the loaded_by column:

loaded_by CONSTANT "sysadm"

• Expression value: You can set a column to the value specified by a SQL operator or a PL/SQL
function. You specify the expression value using the EXPRESSION parameter, as shown here:

column_name EXPRESSION "SQL string"

• Data file record number: You can set a column’s value to the record number that loaded that
row by using the RECNUM column specification:

record_num RECNUM

• System date: You can use the sysdate variable to set a column to the date you’re loading
the data:

loaded_date sysdate

• Sequence: You can generate unique values to load a column by using the SEQUENCE function.
In the following example, the current maximum value of the loadseq sequence is incre-
mented by one each time a row is inserted:

loadseq SEQUENCE(max,1)

Invoking SQL*Loader
You can invoke the SQL*Loader utility in a number of ways. The standard syntax for invoking the
SQL*Loader is as follows:

SQLLDR keyword=value [,keyword=value,. . .]

Here’s an example showing how to invoke the SQL*Loader:

$ sqlldr USERID=nicholas/nicholas1 CONTROL=/u01/app/oracle/finance/finance.ctl \
DATA=/u01/app/oracle/oradata/load/finance.dat \
LOG=/u01/aapp/oracle/finance/log/finance.log \
ERRORS=0 DIRECT=true SKIP=235550 RESUMABLE=true RESUMABLE_TIMEOUT=7200

■Note In the command-line invocation of the SQL*Loader utility, the backslash (\) at the end of each line simply
indicates that the command continues on the next line. You can specify a command-line parameter with the
parameter name itself or by position. For example, the username/password specification always follows the key-
word sqlldr. If you ignore a parameter, Oracle will use the default value for that parameter. You can optionally
use a comma after each parameter.

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA 551

4517CH13.qxd 8/19/05 11:01 AM Page 551

As you can see, the more parameters you want to use, the more information you need to pro-
vide at the command line. This approach presents two problems. First, if you make typing or other
errors, you’ll have a mess on your hands. Second, there may be a limit on some operating systems
regarding how many characters you can input at the command prompt. Fortunately, you can run
the same SQL*Loader job with the following command, which is a lot less complicated:

$ sqlldr PARFILE=/u01/app/oracle/admin/finance/load/finance.par

The command-line parameter PARFILE stands for parameter file, which is a file in which you
can specify values for all your command parameters. For example, for the load specifications shown
in this chapter, the parameter file looks like this:

USERID=nicholas/nicholas1
CONTROL='u01/app/oracle/admin/finance/finance.ctl'
DATA='/app/oracle/oradata/load/finance.dat'
LOG='/u01/aapp/oracle/admin/finance/log/finance.log'
ERRORS=0
DIRECT=true
SKIP=235550
RESUMABLE=true
RESUMABLE_TIMEOUT=7200

Using the parameter file is more elegant than typing all the parameters at the command line,
and it is a logical approach when you need to regularly run jobs that use the same options. Any
option that you specify at the command line will override the value specified for that parameter
inside a parameter file.

If you want to use the command line, but you don’t want to type the password where someone
can easily see it, you can invoke SQL*Loader in the following manner:

$ sqlldr CONTROL=control.ctl

SQL*Loader will then prompt you for your username/password combination.

Exploring the Loader Log File
The SQL*Loader log file offers a host of information regarding a SQL*Loader run. It tells you how
many records were supposed to be loaded and how many actually were loaded. It tells you which
records failed to get loaded and why. It also describes the field columns provided in the SQL*Loader
control file. Listing 13-2 shows a typical SQL*Loader log file.

Listing 13-2. A Typical SQL*Loader Log File

SQL*Loader: Release 10.2.0.0.0 - Beta on Sun Mar 6 14:04:26 2005
Copyright (c) 1982, 2004, Oracle. All rights reserved.
Control File: /u01/app/oracle/admin/fnfactsp/load/test.ctl
Data File: /u01/app/oracle/admin/fnfactsp/load/test.ctl
Bad File: /u01/app/oracle/admin/fnfactsp/load/test.badl
Discard File: none specified
(Allow all discards)

Number to load: ALL
Number to skip: 0
Errors allowed: 0
Bind array: 64 rows, maximum of 65536 bytes
Continuation: none specified
Path used: Conventional
Table TBLSTAGE1, loaded when ACTIVITY_TYPE != 0X48(character 'H')

and ACTIVITY_TYPE != 0X54(character 'T')

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA552

4517CH13.qxd 8/19/05 11:01 AM Page 552

Insert option in effect for this table: APPEND
TRAILING NULLCOLS option in effect

Column Name Position Len Term Encl Datatype
------------------------------ ---------- ----- ---- ---- -----
COUNCIL_NUMBER FIRST * , CHARACTER
COMPANY NEXT * , CHARACTER
ACTIVITY_TYPE NEXT * , CHARACTER
RECORD_NUMBER NEXT * , CHARACTER
FUND_NUMBER NEXT * , CHARACTER
BASE_ACCOUNT_NUMBER NEXT * , CHARACTER
FUNCTIONAL_CODE NEXT * , CHARACTER
DEFERRED_STATUS NEXT * , CHARACTER
CLASS NEXT * , CHARACTER
UPDATE_DATE SYSDATE
UPDATED_BY CONSTANT

Value is 'sysadm'
BATCH_LOADED_BY CONSTANT

Value is 'sysadm'
/*Discarded Records Section: Gives the complete list of discarded
records, including reasons why they were discarded.*/
Record 1: Discarded - failed all WHEN clauses.
Record 1527: Discarded - failed all WHEN clauses.
Table TBLSTAGE1:
/*Number of Rows: Gives the number of rows
successfully loaded and the number of rows not
loaded due to errors or because they failed the
WHEN conditions, if any. Here, two records failed the WHEN condition*/
1525 Rows successfully loaded.
0 Rows not loaded due to data errors.
2 Rows not loaded because all WHEN clauses were failed.
0 Rows not loaded because all fields were null.

/* Memory Section: Gives the bind array size chosen for the data load*/
Space allocated for bind array: 99072 bytes(64 rows)
Read buffer bytes: 1048576
/* Logical Records Section: Gives the total records, number of rejected
and discarded records.*/
Total logical records skipped: 0
Total logical records read: 1527
Total logical records rejected: 0
Total logical records discarded: 2
/*Date Section: Gives the day and date of the data load.*/
Run began on Sun Mar 06 14:04:26 2005
Run ended on Sun Mar 06 14:04:27 2005
/*Time section: Gives the time taken for completing the data load.*/
Elapsed time was: 00:00:01.01
CPU time was: 00:00:00.27

When you examine the log file, focus on the total logical records read and the records that are
skipped, rejected, and discarded. When you encounter difficulty running a job, the log file is the first
place you should look to see whether or not the data records are being loaded.

Using Return Codes
The log file provides a wealth of information about the load, but Oracle also allows you to trap the
exit code after each load run. This enables you to check the results of the load when you run it

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA 553

4517CH13.qxd 8/19/05 11:01 AM Page 553

through a cron job or a shell script. For a Windows server, you may use the at command to schedule
the load job. Here are the key exit codes for the UNIX/Linux operating systems:

• EX_SUCC 0 indicates that all the rows were loaded successfully.

• EX_FAIL 1 indicates that there were command-line or syntax errors.

• EX_WARN 2 indicates that some or all rows were rejected.

• EX_FTL 3 indicates operating system errors.

Using the Direct-Path Loading Method
So far, you have looked at the SQL*Loader utility from the point of view of a conventional load. As
you recall, the conventional loading method uses SQL INSERT statements to insert the data into the
tables one bind array size at a time. The direct-path loading option doesn’t use the SQL INSERT state-
ment to put data into the tables; rather, it formats Oracle data blocks and writes them directly to the
database files. This direct-write process eliminates much of the overhead involved in executing
SQL statements to load tables. Since the direct-path loading method doesn’t contend for database
resources, it will load data much faster than a conventional data load. For larger data loads, the
direct-path loading method works best, and it may be the only viable method of loading data into
tables for the simple reason that a conventional load may require more time than is available.

Besides the obvious advantages of a shorter load time, direct loading also helps you rebuild
indexes and presort table data. Using the direct-path loading method as opposed to the conven-
tional loading method has the following advantages:

• The load is much faster than in the conventional loading method because you aren’t using
SQL INSERT statements for the load.

• The direct load uses multiblock asynchronous I/O for database writes, so the writing is fast.

• You have the option of presorting data using efficient sorting routines with the direct load.

• By setting the UNRECOVERABLE=Y parameter, you can avoid the writing of any redo during a
direct load.

• By using temporary storage, you can build indexes more efficiently during a direct load than
when you’re using the conventional load method.

■Note A conventional load will always generate redo entries, whereas the direct-path loading method will gen-
erate redo only under specific conditions. A direct load also won’t fire any insert triggers, unlike the conventional
load, which fires the triggers during the load. Users can’t make any changes when a table is being loaded using a
direct load, unlike in a conventional load.

However, direct-path loads have some serious limitations. You can’t use this method under the
following conditions:

• You’re using clustered tables.

• You’re loading parent and child tables together.

• You’re loading VARRAY or BFILE columns.

• You’re loading across heterogeneous platforms using Oracle Net.

• You want to apply SQL functions during the load.

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA554

4517CH13.qxd 8/19/05 11:01 AM Page 554

■Note In a direct load, you can’t use any SQL functions. If you need to perform a large data load and also trans-
form the data during the load, you have a problem. The conventional data load will let you use SQL functions to
transform data, but the method is very slow compared to the direct load. Thus, for large data loads, you may want
to consider using one of the newer load/transform techniques, such as external tables or table functions, which
you’ll learn about later in this chapter.

Direct Load Options
Several SQL*Loader options are intended especially for use with the direct load option or are more
significant for direct loads than conventional loads. The following options are relevant to the direct-
path loading method:

• DIRECT: The DIRECT clause must be set to true in order for you to use the direct-path loading
method (DIRECT=true).

• DATA_CACHE: The DATA_CACHE parameter comes in handy if you’re loading the same data or
timestamp values several times during a direct load. SQL*Loader has to convert the date and
timestamp data each time it encounters them. If you have duplicate data and timestamp val-
ues in your data, you can reduce unnecessary data conversions, and thus processing time,
by specifying the DATA_CACHE parameter. By default, the DATA_CACHE parameter is enabled for
1,000 values. If you don’t have duplicate date and timestamp values in your data, or if there
are few such duplicates, you can disable the DATA_CACHE parameter by setting it to zero
(DATA_CACHE=0).

• ROWS: The ROWS parameter is crucial because you can use it to specify how many rows
SQL*Loader will read from the input data file before saving the insertions to the tables. You
use the ROWS parameter to set the ceiling on the amount of data lost if the instance fails dur-
ing a long SQL*Loader run. When SQL*Loader reads the number of rows specified in the ROWS
parameter, it will stop loading data until all of the data buffers are successfully written to the
data files. This process is called a data save. Oracle recommends that you set the ROWS param-
eter such that data is saved to the table every 15 minutes. For example, if SQL*Loader can
load about 10,000 rows per minute, setting ROWS=150000 saves the data every 15 minutes.

• UNRECOVERABLE: If you want to minimize the use of the redo log, you can do so by using the
UNRECOVERABLE parameter during a direct load (UNRECOVERABLE=true).

• SKIP_INDEX_MAINTENANCE: The SKIP_INDEX_MAINTENANCE parameter, when turned on (SKIP_
INDEX_MAINTENANCE=true), instructs SQL*Loader not to bother maintaining the indexes dur-
ing the load. The default for SKIP_INDEX_MAINTENANCE is false.

• SKIP_UNUSABLE_INDEXES: Setting a value of true for the SKIP_UNUSABLE_INDEXES parameter will
ensure that SQL*Loader will load tables with indexes in an unusable state. These indexes
won’t be maintained by SQL*Loader, however. The default for this parameter is based on the
setting for the SKIP_UNUSABLE_INDEXES initialization parameter, whose default value is true.

• SORTED_INDEXES: The SORTED_INDEXES parameter signals SQL*Loader that data is sorted on a
specified index, which helps improve load performance.

• COLUMNARRAYROWS: This parameter determines the number of rows loaded before the building
of the stream buffer. For example, COLUMNARRAYROWS=100000 loads 100,000 rows first. The size
of the direct-path column array is thus determined by this parameter. The default value for
this parameter on my UNIX server is 5,000.

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA 555

4517CH13.qxd 8/19/05 11:01 AM Page 555

• STREAMSIZE: The STREAMSIZE parameter lets you set the size of the stream buffer. The default
on my server, for example, is 256,000, and I can increase it using the STREAMSIZE parameter;
for example, STREAMSIZETREAMSIZE=512000.

• MULTITHREADING: Under MULTITHREADING, the conversion of column arrays to stream buffers
and stream buffer loading are performed in parallel. On machines with multiple CPUs, by
default, multithreading is turned on (true). If you wish, you can turn it off by setting
MULTITHREADING=false.

Direct Loads and Constraint/Trigger Management
The direct-path loading method inserts data directly into the data files by formatting the data
blocks. By bypassing the INSERT statement mechanism, the table constraints and triggers aren’t
systematically applied during a direct load. All triggers are disabled, as are several integrity con-
straints. SQL*Loader automatically disables all foreign keys and check constraints, but the not null,
unique, and primary key constraints are still maintained by SQL*Loader. Upon completion of the
SQL*Loader run, the disabled constraints are automatically enabled by SQL*Loader if the REENABLE
clause has been specified. Otherwise, the disabled constraints must be manually reenabled. The
disabled triggers are automatically enabled after the load is completed.

TIPS FOR OPTIMAL USE OF SQL*LOADER

The following tips will help you optimize SQL*Loader during data loads, especially when the data loads are large
and/or you have multiple indexes and constraints on the tables in your database.

• Try to use the direct-path loading method as much as possible. It’s much faster than conventional data
loading.

• Use the UNRECOVERABLE=true option wherever possible (in direct loads). This will save you considerable
time, because the newly loaded data doesn’t need to be logged in the redo log file. Media recovery is still in
force for all the other users of the database, and you can always start a new SQL*Loader run if there’s a
problem.

• Keep the use of the NULLIF and DEFAULTIF parameters to a minimum. These clauses must be tested for
every single row on which they’re used.

• Minimize the number of data type and character set conversions, as they slow down processing.

• Wherever possible, use positional fields rather than delimited fields. SQL*Loader can move from field to field
much faster if it’s given the position of the field.

• Map physical and logical records on a one-to-one basis.

• Disable constraints before the load, as the constraints will slow down the loading. Of course, you may some-
times end up with errors while enabling the constraints, but it’s a small price to pay for a much faster data
load, especially for large tables.

• If you’re using the direct-path loading method, specify the SORTED_INDEXES clause to optimize the load
performance.

• If you’re doing large data loads, it’s smart to drop the indexes on the tables before the load. Index mainte-
nance will slow down your SQL*Loader session. If it isn’t possible to drop the indexes, you can make them
unusable and use the SKIP_UNUSABLE_INDEXES clause during the load. If it’s a direct load, use the
SKIP_INDEX_MAINTENANCE clause.

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA556

4517CH13.qxd 8/19/05 11:01 AM Page 556

Some Useful SQL*Loader Data-Loading Techniques
Using SQL*Loader is efficient, but it’s not without its share of headaches. This section describes how
to perform some special types of operations during data loads.

Using the WHEN Clause During Loads
You can use WHEN clauses during data loads to limit the load to only those rows that match certain
conditions. For example, in a data file, you can pick up only those records that have a field matching
certain criteria. Here’s an example that shows how to use the WHEN clause in a SQL*Loader control
file:

LOAD DATA
INFILE *
INTO TABLE stagetbl
APPEND
WHEN (activity_type <>'H') and (activity_type <>'T')
FIELDS TERMINATED BY ','
TRAILING NULLCOLS
/* Table columns here . . .*/
BEGINDATA
/* Data here . . .*/

The WHEN condition will reject all records where the data record field matching the activity_
type column in the stagetbl table is neither H nor T.

Loading the Username into a Table
You can use the user pseudo-variable to load the username into a table during the load. The follow-
ing example illustrates the use of this variable. Note that the target table stagetbl should have a
column called loaded_by so SQL*Loader can insert the username into that column.

LOAD DATA
INFILE *
INTO TABLE stagetbl
INSERT
(loaded_by "USER")
/* Table columns and the data follow . . .*/

Loading Large Data Fields into a Table
If you try to load any field larger than 255 bytes into a table, even if the table column is defined as
VARCHAR2(2000) or a CLOB, SQL*Loader won’t be able to load the data. You’ll get an error informing
you that the “Field in data file exceeds maximum length.” To manage the load of the large field, you
need to specify the size of the table column in the control file when you’re matching table columns
to the data fields, as in this example (for a table column called text):

LOAD DATA
INFILE '/u01/app/oracle/oradata/load/testload.txt'
INSERT INTO TABLE test123
FIELDS TERMINATED BY ','
(text CHAR(2000))

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA 557

4517CH13.qxd 8/19/05 11:01 AM Page 557

Loading a Sequence Number into a Table
Suppose you have a sequence named test_seq, and you want this sequence to be incremented each
time you load a data record into your table. Here’s how to do it:

LOAD DATA
INFILE '/u01/app/oracle/oradata/load/testload.txt'
INSERT INTO TABLE test123

(test_seq.nextval,. . .)

Loading Data from a Table into an ASCII File
You may sometimes want to get data out of the database table into flat files; for example, to later use
this data to load data into Oracle tables in a different location. You can write complex scripts to do
the job if there are a number of tables, but if there are few tables to load, you can use the following
simple method of extracting data using SQL*Plus commands:

SET TERMOUT OFF
SET PAGESIZE 0
SET ECHO OFF
SET FEED OFF
SET HEAD OFF
SET LINESIZE 100
COLUMN customer_id FORMAT 999,999
COLUMN first_name FORMAT a15
COLUMN last_name FORMAT a25
SPOOL test.txt
SELECT customer_id,first_name,last_name FROM customer;
SPOOL OFF

You may also use the UTL_FILE package (see Chapter 24) to load data into text files.

Dropping Indexes Before Bulk Data Loads
There are two major reasons why you should seriously consider dropping indexes on a large table
before performing a direct-path load using the NOLOGGING option. First, it may take you a longer time
to do the load with the indexes included with the table data. Second, if you leave indexes on, there
will be redo records generated by the changes that will be made to the index structure during the
load.

■Tip Even if you choose to load data using the NOLOGGING option, there will be considerable redo generated to
mark the changes being made to the indexes. In addition, there will always be some redo to support the data dic-
tionary, even during a NOLOGGING data load operation. The best strategy here is to drop the indexes and rebuild
them after the tables are created.

While you’re performing a direct load, the instance may fail halfway through, SQL*Loader may
run out of space that it needs to update the index, or SQL*Loader may encounter duplicate values
for the index keys. This situation is referred to as the indexes left unusable condition, as the indexes
will be unusable upon instance recovery. In such cases, it may be better to create the indexes after
the load is complete.

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA558

4517CH13.qxd 8/19/05 11:01 AM Page 558

Loading into Multiple Tables
You can use the same SQL*Loader run to load into multiple tables. Here’s an example that shows
how to load data into two tables simultaneously:

LOAD DATA
INFILE *
INSERT
INTO TABLE dept
WHEN recid = 1
(recid FILLER POSITION(1:1) INTEGER EXTERNAL,
deptno POSITION(3:4) INTEGER EXTERNAL,
dname POSITION(8:21) CHAR)
INTO TABLE emp
WHEN recid <> 1
(recid FILLER POSITION(1:1) INTEGER EXTERNAL,
empno POSITION(3:6) INTEGER EXTERNAL,
ename POSITION(8:17) CHAR,
deptno POSITION(19:20) INTEGER EXTERNAL)

In the preceding example, data from the same data file is simultaneously loaded into two
tables, dept and emp, based on whether or not the recid field value is 1.

Trapping Error Codes from SQL*Loader
Here’s a simple example of how you can trap the process error codes issued by SQL*Loader:

$ sqlldr PARFILE=test.par
retcode=$?
if [[retcode !=2]]
then
mv ${ImpDir}/${Fil} ${InvalidLoadDir}/.${Dstamp}.${Fil}
writeLog $func "Load Error" "load error:${retcode} on file ${Fil}"
else
sqlplus / ___EOF
/* You can place any SQL statements to process the successfully loaded data */
___EOF

Loading XML Data into an Oracle XML Database
SQL*Loader supports the XML data type for columns. If a column is of this type, you can use
SQL*Loader to load the XML data into a table. SQL*Loader treats the XML columns as CLOBs.
Oracle also lets you load the XML data either from a primary data file or from an external LOB file.
You can use fixed-length fields or delimited fields. The contents of the entire file could also be read
into a single LOB field.

Using External Tables to Load Data
For many years, Oracle DBAs used SQL*Loader almost exclusively for loading data into Oracle
database tables from outside sources, employing either the conventional loading method or the
direct-path loading method. Oracle’s external tables feature goes one step further and enables you
to use the SQL*Loader functionality to access data stored in operating system files without ever
loading the data into a real Oracle table. External tables aren’t a new feature of Oracle Database 10g.
Oracle9i first introduced the concept, but in Oracle9i, you could only read from external tables
(data load). Now, in Oracle Database 10g, you can also to write to external tables (data unload).

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA 559

4517CH13.qxd 8/19/05 11:01 AM Page 559

If your source data doesn’t need any transformations when loading into the database, using the
SQL*Loader to perform a conventional or a direct load is sufficient. External tables complement the
functionality of the SQL*Loader. If you want to perform major data transformations before the load,
then external tables are the recommended way to go.

Using the external tables feature, you can visualize external data as if it were stored in an Oracle
table. When you create an external table, the columns are listed the same way as they are when you
create a regular table. However, the data fields in the external file are merely mapped to the external
table columns, not actually loaded into them.

External tables don’t actually exist anywhere, inside or outside the database. The term external
table implies that a given table structure is mapped to a data file that’s located in an operating
system file. When you create an external table, the only thing that happens in the database is the
creation of new metadata entries in the data dictionary for the new table. You can’t change the data
file’s contents in any way while you’re accessing its contents from within the database. In other
words, you can only use the SELECT command when you’re dealing with external tables, not the
INSERT, UPDATE, or DELETE command.

In reality, an external table is an interface to an external data file. However, you may query this
external table like a virtual table, just as you would query any regular Oracle table, which makes it
a very powerful tool for data warehouse ETL activities. You can query external tables or join them
with regular tables, without ever loading the external data into your database. In addition, you may
create other regular tables or views from the external tables, so this feature comes in handy during
the population of data warehouses.

SQL*Loader and the external tables feature perform similarly in terms of data-loading speed,
in most cases. The two techniques offer you alternative methods of loading data into your database
tables from external sources. The following are the general advantages that the external table
method of loading offers in comparison with the SQL*Loader method:

• You can query data in the external files before it’s loaded into the tables.

• You can perform an extensive range of transformations on the data during the load process
itself. SQL*Loader is limited in the number of data transformations you can perform.

• You may choose to perform data transformation at the same time you’re loading data into
the tables. This is called the pipelining of the two phases. When you use SQL*Loader to load
directly into the tables, you can’t perform anything other than the most minimal data trans-
formation at load time. Consequently, major transformations must be done in a separate
step from that of data loading.

• External tables are suitable for large data loads that may have a onetime use in your
database.

• External tables save the time involved in creating real database tables and then aggregating
the data dimensions for loading into other tables.

• External tables eliminate the need to create staging or temporary tables, which are almost a
must if you’re using SQL*Loader to load the data from external sources.

• You don’t need any physical space even for the largest external table. Once the data files
are loaded into the operating system, you can create your external tables and start executing
SQL queries against them.

If you need to load data remotely, or if your data doesn’t need major transformations,
SQL*Loader is the best way to go. External tables are in no way as versatile as regular database
tables, because they’re read-only tables. Furthermore, external tables suffer from the limitation that
you can’t index them. Therefore, high-powered query work with these tables is impractical. If the
data in your staging tables needs to be indexed for some reason, then SQL*Loader is the only viable
alternative. The real benefit of the external tables feature is primarily realized in data warehousing

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA560

4517CH13.qxd 8/19/05 11:01 AM Page 560

environments or in situations where you need to load and transform huge amounts of data when
you first load an application.

■Caution If you want to create indexes on a staging table, you’re better off using the SQL*Loader utility to load
data into the table. You can’t index an external table!

For example, suppose you have an external data file named sales_data that contains detailed
information about your firm’s sales data for the last year. Your firm wants to perform product and
time cost analysis based on this raw data. You create a cost table to do this analysis. Now, the
sales_data file contains a lot of detailed information on costs, but your company wants the data to
be aggregated, say on the basis of regions. External tables are excellent for this kind of analysis,
where you have large amounts of raw data available, but you need only certain transformed parts
of this data.

Traditionally, data warehousing DBAs had to create staging tables to first transform data,
before loading it into the data warehouse. Using just the SQL*Loader, you would need to load the
raw data into your database first, and then apply the necessary transformations to it. Using an
external table, you can perform the loading and transform operations in one step!

Now, let’s look at how to create and populate external tables.

Creating the External Table Layer
The external table description is also called the external table layer, and it is basically a description
of the columns in your external table. This external table layer, along with the access driver, maps
the data in the external file to the external table definition.

Listing 13-3 shows how to create an external table.

Listing 13-3. Creating an External Table

SQL> CREATE TABLE sales_ext(
2 product_id NUMBER(6),
3 sale_date DATE,
4 store_id NUMBER(8),
5 quantity_sold NUMBER(8),
6 unit_cost NUMBER(10,2),
7 unit_price NUMBER(10,2))
8 ORGANIZATION EXTERNAL (
9 TYPE ORACLE LOADER
10 DEFAULT DIRECTORY ext_data_dir
11 ACCESS PARAMETERS
12 (RECORDS DELIMITED BY NEWLINE
13 BADFILE log_file_dir:'sales.bad_xt'
14 LOGFILE log_file_dir:'sales.log_xt'
15 FIELDS TERMINATED BY "|" LDRTRIM
16 MISSING FIELD VALUES ARE NULL)
17 LOCATION ('sales.data'))
18* REJECT LIMIT UNLIMITED;
Table created.
SQL>

Let’s analyze this statement in detail, in order to understand the various components of an
external table.

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA 561

4517CH13.qxd 8/19/05 11:01 AM Page 561

CREATE TABLE . . . ORGANIZATION EXTERNAL
The statement CREATE TABLE sales_ext (. . .) describes the external table structure, with the
ORGANIZATION EXTERNAL clause that follows it indicating that this isn’t going to be a regular Oracle
table, but an external table.

The CREATE statement for an external table is very similar to that of a regular table, except that
in addition to the column definitions, you must provide the mapping for the columns to the data
fields in the external data file. In addition, the external table creation statement must provide the
operating system location of the external data file.

Access Parameters
The ACCESS PARAMETERS clause, somewhat similar to the OPTIONS clause in a SQL*Loader control file,
indicates the various options chosen, as well as the location of the bad file and log file. Several
external table parameters are available to specify the format of the data. Important among them
are the following:

• RECORD_FORMAT_INFO: This is an optional clause. The default is RECORDS DELIMITED BY
NEWLINE.

• FIXED: When you specify a fixed length by using the FIXED clause, you’re indicating that all
records in the external file are of the same length.

ACCESS PARAMETERS (RECORD FIXED 20 FIELDS (. . .))

• VARIABLE: The VARIABLE clause indicates that each record may be a different size, indicated by
a number of digits before the beginning of each record.

ACCESS PARAMETERS (RECORDS VARIABLE 2)

When you use the VARIABLE clause, every record in this data set will have the following for-
mat, with the first two bytes indicating the length of the record:

22samalapati1999dallastx

• DELIMITED BY: This clause indicates the character that terminates each record. The most
common delimiters are the pipe (|) and the comma (,).

• LOAD WHEN: This clause indicates the conditions that must be satisfied before a record can be
loaded into a table.

LOAD WHEN (job != MANAGER)

• LOG FILE, BAD FILE, and DISCARD FILE: These are optional parameters, but a log file is always
created by default. The bad file and the discard file are created only if data is rejected or data
fails to meet a LOAD WHEN condition.

• Condition: This variable compares all or part of a field against an arbitrarily chosen constant
string.

Access Driver
The access parameters describe the external data in the data files. The access driver ensures that the
external data processing matches the description of the external table.

Two types of access drivers are available, and you specify each of them by using the attribute
TYPE in the external table creation statement. The first is the ORACLE_LOADER access driver, which is

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA562

4517CH13.qxd 8/19/05 11:01 AM Page 562

the default. Listing 13-3 creates an external table using the ORACLE_LOADER access driver. Using this
access driver, you can only load data into a table from an external text file.

The new ORACLE_DATAPUMP access driver lets you both load and unload data using external
dump files. You can read data into database tables from an external dump file. You can also extract
data from an Oracle table into an external table’s dump file.

Directory Objects and Their Locations
The clause DEFAULT DIRECTORY indicates the default location for all files that external tables need to
read from or write to. You can’t place the external data files in a random operating system directory
for obvious security reasons. For an external table creation statement to succeed, you must first
create a directory object, and then grant rights to specific users on this directory object.

The LOCATION parameter toward the end of the external table creation statement shown in
Listing 13-3 indicates where the data files for the external table creation are located. The LOCATION
parameter could indicate both a directory object and a filename. The format of the LOCATION para-
meter is directory: file, where directory is a directory object you’ve created in the database, not
an actual directory path on your system. If you omit the directory part of the specification, then it’s
assumed that the data file(s) is located in the directory specified by the DEFAULT DIRECTORY clause.
You can also use the directory: file notation to specify the data files directly under the ACCESS
PARAMETERS clause, if you wish.

SQL*Loader uses the directory object(s) to indicate where the data files are located, as well as
to store its output files, such as the bad and discard files. A user must have read privileges on the
directory object containing the data files and write privilege on the directory object containing the
output files. If you wish to place both the data files and the output files in the same directory object,
you may grant both read and write privileges on that directory object to the user. Here’s one such
example:

SQL> CREATE DIRECTORY ext_data_dir AS '/u01/oradata/ext_data';
Directory created.
SQL> GRANT READ, WRITE ON DIRECTORY ext_data_dir TO samalapati;
Grant succeeded.
SQL>

Once you create the directory object ext_data_dir and grant the proper rights, you can then
use this as the default directory for placing all the external data files as well as output files. The
LOCATION parameter in the external table creation statement shown in Listing 13-3 simply names
the external data file, which will be located in the default directory specified by ext_data_dir.

For demonstration purposes, let’s create a new table named costs, into which you’ll eventually
load the aggregate data (the totals of the unit_cost and unit_price columns) from the external data
file (external table):

SQL> CREATE TABLE costs
2 (sale_date DATE,
3 product_id NUMBER(6),
4 unit_cost NUMBER (10,2),
5 unit_price NUMBER(10,2));

Table created.

Now you’re ready to insert the necessary aggregate data from the external table (external file,
actually) sales_ext into the new costs table. This process of first reading data from an external table
and then loading it into a normal database table is called loading data. Listing 13-4 shows how to
insert data into a normal table from an external table. The Oracle table is named costs, and
sales_ext is the external table.

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA 563

4517CH13.qxd 8/19/05 11:01 AM Page 563

Listing 13-4. Loading Data into a Normal Table from an External Table

SQL> INSERT INTO costs
(sale_date,
product_id, unit_cost, unit_price)
SELECT
sale_date,
product_id,
sum(unit_cost),
sum(unit_price)
FROM sales_ext
GROUP BY time_id, prod_id;

SQL>

Note that you can insert only some of the columns in the external table if you choose, and you
can transform the data before it’s even loaded into your tables. This is the key difference between
using external tables and SQL*Loader to load data into Oracle tables. The SQL*Loader tool permits
you to perform data transformation, but its capabilities in that area are extremely limited, as you
saw earlier in this chapter. You can use just about any arbitrary SQL transformations when creating
an external table.

Populating External Tables
The terms loading and unloading in the context of external tables can be confusing, so let’s pause
and make sure you understand these terms without any ambiguity. When you deal with external
tables, this is what these terms mean:

• Loading data means reading data from an external table and loading it into a regular Oracle
table. Oracle first reads the data stream from the files you specify. Oracle will then convert
the data from its external representation to an Oracle internal data type and pass it along to
the external table interface.

• Unloading data means reading data from a regular Oracle table and putting it into an exter-
nal table. Actually, you’ll be loading table data into an external file. In Oracle Database 10g,
you can load and transform large volumes of data into platform-independent, Oracle propri-
etary flat files for data propagation or storage.

The ORACLE_DATAPUMP access driver can load as well extract data; that is, it can both load an
external table from a flat file and extract data from a regular database table to an external flat file.
This external flat file data is written in a proprietary format, which only the ORACLE_DATAPUMP access
driver can read. You can then use this newly created file to create an external table in the same data-
base or a different database.

When you load an Oracle table from an external table (data loading), you use the INSERT INTO
. . . SELECT clause, as shown in Listing 13-4. When you populate an external table using Oracle
table data (data unloading), you use the CREATE TABLE . . . AS SELECT clause (CTAS), as shown
later in Listing 13-6.

Following are some of the benefits of being able to populate tables with external tables:

• Loading table data into flat files means that you can now store data or move it to different
databases easily. External tables help move large volumes of data across platforms, since
they are platform-independent.

• In data warehousing environments, there are many situations where you need to perform
complex ETL jobs. You can use SQL transformations to manipulate the data in the external
tables before reloading them into the same or other databases.

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA564

4517CH13.qxd 8/19/05 11:01 AM Page 564

Note that when you talk about writing to external tables, you are really referring to writing to
an external file. You use a SELECT statement to extract table data to this operating system file. The
ORACLE_DATAPUMP access driver writes data to this file in a binary Oracle-internal Data Pump format,
and you can then use this file to load another external table in a different database.

Creating an External Table with the ORACLE_DATAPUMP Access Driver
The example in Listing 13-5 shows how you can create an external table and populate it with data
from an external flat file using the ORACLE_DATAPUMP access driver rather than the ORACLE_LOADER
driver.

Listing 13-5. Creating an External Table with the ORACLE_DATAPUMP Access Driver

SQL> CREATE TABLE test_xt(
3 product_id NUMBER(6),
4 warehouse_id NUMBER(3),
5 quantity_on_hand NUMBER(8))
7 ORGANIZATION EXTERNAL(
9 TYPE ORACLE_DATAPUMP
10 DEFAULT DIRECTORY ext_data_dir
11 LOCATION ('test_xt.dmp'));
Table created.
SQL>

To load data from this external table into an existing database table, you can use the INSERT
INTO . . . SELECT clause, as shown earlier in Listing 13-4.

Writing to an External Table
The feature shown in Listing 13-6—writing to an external table—is an Oracle Database 10g external
tables enhancement.

Listing 13-6. Populating an External Table

SQL> CREATE TABLE test_xt
ORGANIZATION EXTERNAL(
TYPE ORACLE_DATAPUMP
DEFAULT DIRECTORY ext_data_dir
LOCATION ('test_xt.dmp'))
AS
SELECT * FROM scott.dept;

Note how the external table creation statement uses the SELECT * FROM . . . clause to write
data from the scott.dept table to the external table (file). If your new external table contains some
but not all of the columns of the table scott.dept, you use the appropriate SELECT statement instead
of the SELECT * FROM statement.

■Note Remember that when you load an Oracle table from an external table (data loading), you use the INSERT
INTO . . . SELECT clause. When you populate an external table using Oracle table data (data unloading), you
use the CREATE TABLE . . . AS SELECT clause.

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA 565

4517CH13.qxd 8/19/05 11:01 AM Page 565

If you now go look in the location specified for the default directory (ext_data_dir), you’ll see
the following:

SQL> ls -altr
Total 24
drwxr-xr-x 5 root root 4096 March 4 14:08 ..
-rw-r--r-- 1 oracle oinstall 41 March 5 10:08 TEST_XT_28637.log
-rw-r------- 1 oracle oinstall 12288 March 5 10:08 test_xt.dmp

The first file, test_xt_28637.log, logs the creation of this external table. The dump file test_xt.dmp
contains the data from the table. You are creating the external table test_xt as an external table. The
table structure and data both come from the regular Oracle table scott.dept. If you wish, you can
then use this dump file in the same database or a different database to load other tables. Note that
you must create the default directory (ext_data_dir) beforehand for this external table creation
statement to succeed. The CTAS method of table creation will load the data from the scott.dept
table into the new external table dept_xt. The CTAS command simply stores the table data in the
external file called dept_xt_dmp. Thus, the external table is really composed of proprietary format,
operating system–independent flat files.

You can also use the ORACLE_DATAPUMP access loader to extract Oracle table data into multiple
files, as shown here:

SQL> CREATE TABLE extract_cust
ORGANIZATION EXTERNAL
(TYPE ORACLE_DATAPUMP DEFAULT DIRECTORY ext_data_dir ACCESS PARAMETERS
(NOBADFILE NOLOGFILE)
LOCATION ('extract_cust1.exp', 'extract_cust2.exp', 'extract_cust3.exp',

'extract_cust4.exp'))
PARALLEL 4 REJECT LIMIT UNLIMITED AS
SELECT c.*, co.country_name, co.country_subregion, co.country_region
FROM customers c, countries co where co.country_id=c.country_id;

The PARALLEL parameter will speed up the data unloading to the four data files. Note that the
number of files you specify sets a limit on the degree of parallelization. For example, if you specify
PARALLEL=8 and specify only four files, the degree of parallelism would be four, not eight.

Using an External Table
Once you create a new external table by populating an external file with data from an Oracle table,
you can query the new table as you would any normal Oracle table. For example, the external table
you created, test_xt, would show you the same data as a query on the original table (scott.dept).
Here’s the query:

SQL> SELECT * FROM test_xt;

The user samalapati is listed as the owner for this new table test_xt, as shown here:

SQL> SELECT owner FROM dba_tables
WHERE table_name='TEST_XT';
OWNER

SAMALAPATI

Note that as in the case of the original external tables in Oracle9i, you can only select from an
external table. You also cannot insert, delete, or update data in an external table. Therefore, the term
writable external tables applies in only a limited sense—you can write to the external tables only
when you initially create them. Otherwise, external tables in Oracle Database 10g continue to be
read-only tables, as in Oracle9i. Here is an example of what would happen if you attempted to insert

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA566

4517CH13.qxd 8/19/05 11:01 AM Page 566

SQL> INSERT INTO test_xt (product_id) VALUES (222222);
INSERT INTO test_xt

*
ERROR at line 1:
ORA-30657: operation not supported on external organized table
SQL>

You would get similar error messages if you tried a DELETE or UPDATE operation.
Also note that when you use the external tables feature to extract table data to a file, you export

only the data. You can’t export metadata using external tables. If you wish to extract the metadata
for any object, just use DBMS_METADATA, as shown here:

SET LONG 2000
SELECT DBMS_METADATA.GET_DDL('TABLE','EXTRACT_CUST') FROM DUAL;

Using SQL*Loader to Generate External Table
Creation Statements
As you saw in the previous sections, creating external tables correctly and choosing the appropriate
access parameters can be a tedious task. Fortunately, there is an easier way to do all this: you can
have SQL*Loader generate the entire DDL for creating the external tables and all the SQL statements
to load the tables directly.

The SQL*Loader command-line parameter EXTERNAL_TABLE will allow you to generate the DDL
for creating all your external tables. The default value for the EXTERNAL_TABLE parameter is NOT_USED,
which means SQL*Loader will perform a normal data load in either the conventional or direct-path
loading. When you use this parameter with the value GENERATE_ONLY, the SQL*Loader utility does
not load any data; rather, SQL*Loader generates all SQL statements necessary to load the external
tables described in the control file and places these statements in the SQL*Loader log file. If you
use the EXTERNAL_TABLE parameter with the EXECUTE option, SQL*Loader will try to execute the SQL
statements to create the external tables and perform the load.

The EXTERNAL_TABLE=GENERATE_ONLY option outputs the following information in the
SQL*Loader log file:

• A CREATE DIRECTORY statement

• A complete CREATE TABLE statement for the external table, with all necessary access
parameters

• All INSERT statements needed for loading the internal tables

• The DELETE statements for the directory and the external table

Let’s look at an example that illustrates how to generate the external table creation statements
with the help of the SQL*Loader utility. In this example, the internal table name is test_emp. This
table must already exist or you must create it before you can use SQL*Loader. The SQL*Loader-
generated external table name is sys_sqlldr_x_ext_test_emp. The control file for SQL*Loader is
called test.ctl, and it looks like this:

LOAD DATA
INFILE *
INTO TABLE test_emp
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
(employee_id,first_name,last_name,hire_date,salary,manager_id)
BEGINDATA
12345,"sam","alapati",sysdate,50000,99999
23456,"mark","potts",sysdate,50000,99999

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA 567

4517CH13.qxd 8/19/05 11:01 AM Page 567

Invoke the SQL*Loader utility with test.ctl as your control file. Note that you’re generating only
the CREATE TABLE and INSERT statements; you aren’t actually loading the tables.

$ sqlldr USERID=system/sammyy1 CONTROL=test.ctl \
EXTERNAL_TABLE=GENERATE_ONLY

SQL*Loader: Release 10.2.0.0.0 - Beta on Sun Mar 6 13:49:39 2005
Copyright (c) 1982, 2004, Oracle. All rights reserved.
oracle@hp50.netbsa.org [/u01/app/oracle/dba]
$

Since no directory was specified for the log file, it will be created in the same directory where
you ran SQL*Loader. The log file for the preceding run, test.log, will have all the information in it,
including the external directory and table creation statements, and the actual INSERT statements
to load the data into those tables. You can create the external table and then load the data directly
using SQL without needing to use the SQL*Loader utility again. Listing 13-7 shows the log file gen-
erated using the EXTERNAL_TABLE=GENERATE_ONLY parameter.

Listing 13-7. Using SQL*Loader to Generate the External Table Creation Statements

SQL*Loader: Release 10.2.0.0.0 - Beta on Sun Mar 6 13:49:39 2005
Copyright (c) 1982, 2004, Oracle. All rights reserved.
Control File: test.ctl
Data File: test.ctl
Bad File: test.bad
Discard File: none specified
(Allow all discards)
Number to load: ALL
Number to skip: 0
Errors allowed: 50
Continuation: none specified
Path used: External Table
Table TEST_EMP, loaded from every logical record.
Insert option in effect for this table: INSERT

Column Name Position Len Term Encl Datatype
------------------------------ ---------- ----- ---- ---- ---------
EMPLOYEE_ID FIRST * , O(") CHARACTER
FIRST_NAME NEXT * , O(") CHARACTER
LAST_NAME NEXT * , O(") CHARACTER
HIRE_DATE NEXT * , O(") CHARACTER
SALARY NEXT * , O(") CHARACTER
MANAGER_ID NEXT * , O(") CHARACTER
CREATE DIRECTORY statements needed for files
--
CREATE DIRECTORY SYS_SQLLDR_XT_TMPDIR_00000 AS '/u01/app/oracle/dba'
CREATE TABLE statement for external table:
--
CREATE TABLE "SYS_SQLLDR_X_EXT_TEST_EMP"
(
"EMPLOYEE_ID" NUMBER,
"FIRST_NAME" VARCHAR2(20),
"LAST_NAME" VARCHAR2(20),
"HIRE_DATE" DATE,
"SALARY" NUMBER,
"MANAGER_ID" NUMBER

)
ORGANIZATION external

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA568

4517CH13.qxd 8/19/05 11:01 AM Page 568

TYPE oracle_loader
DEFAULT DIRECTORY SYS_SQLLDR_XT_TMPDIR_00000

ACCESS PARAMETERS
(
RECORDS DELIMITED BY NEWLINE CHARACTERSET US7ASCII
BADFILE 'SYS_SQLLDR_XT_TMPDIR_00000':'test.bad'
LOGFILE 'test.log_xt'
READSIZE 1048576
SKIP 6
FIELDS TERMINATED BY "," OPTIONALLY ENCLOSED BY '"' LDRTRIM
REJECT ROWS WITH ALL NULL FIELDS
(
"EMPLOYEE_ID" CHAR(255)
TERMINATED BY "," OPTIONALLY ENCLOSED BY '"',

"FIRST_NAME" CHAR(255)
TERMINATED BY "," OPTIONALLY ENCLOSED BY '"',

"LAST_NAME" CHAR(255)
TERMINATED BY "," OPTIONALLY ENCLOSED BY '"',

"HIRE_DATE" CHAR(255)
TERMINATED BY "," OPTIONALLY ENCLOSED BY '"',

"SALARY" CHAR(255)
TERMINATED BY "," OPTIONALLY ENCLOSED BY '"',

"MANAGER_ID" CHAR(255)
TERMINATED BY "," OPTIONALLY ENCLOSED BY '"'

)
)
location
(
'test.ctl'

)
)REJECT LIMIT UNLIMITED
INSERT statements used to load internal tables:
--
INSERT /*+ append */ INTO TEST_EMP
(
EMPLOYEE_ID,
FIRST_NAME,
LAST_NAME,
HIRE_DATE,
SALARY,
MANAGER_ID

)
SELECT
"EMPLOYEE_ID",
"FIRST_NAME",
"LAST_NAME",
"HIRE_DATE",
"SALARY",
"MANAGER_ID"

FROM "SYS_SQLLDR_X_EXT_TEST_EMP"
Run began on Sun Mar 06 13:49:39 2005
Run ended on Sun Mar 06 13:49:40 2005
Elapsed time was: 00:00:01.22
CPU time was: 00:00:00.27

You can see that it’s a lot easier to generate the CREATE TABLE statements for the external tables
this way, rather than creating them from scratch.

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA 569

4517CH13.qxd 8/19/05 11:01 AM Page 569

Transforming Data
In most cases, especially in data warehouse environments, the data you’re loading needs to be
transformed to make it more meaningful for analysis. Oracle Database 10g can help you perform
sophisticated and efficient data transformation within the database itself, so you don’t need to rely
on external processes or tools. You have several ways of performing data transformations in Oracle
Database 10g. The following are the most commonly used techniques:

• Derive the data from existing tables. You can use joins or aggregations of data from tables in
the same database, or you can gather the data from tables located in external Oracle or non-
Oracle databases.

• Use SQL to transform data. SQL techniques including the MERGE statement, multiple-table
inserts, and table functions to transform data during the loading process.

• Use Oracle Database 10g’s MODEL statement, which helps you perform highly expressive com-
putations using sets of interrelated formulas. Using the MODEL clause, you can now treat an
Oracle table as an n-dimensional array and specify interrow references without SQL joins
and unions.

■Note You can also use PL/SQL procedural techniques to perform complex data transformations. The real issue
here is whether you have the time and expertise at your disposal to code the transformation. In addition, when
you’re dealing with very large data sets, the use of PL/SQL is not very efficient when you compare it to some of
the alternatives.

You’ll examine the main Oracle data transformation techniques in more detail in the following
sections.

Deriving the Data from Existing Tables
It’s common to derive your new transformed data from existing tables in your database or other
databases. You have two basic methods you can use to derive data from another table. If you’re cre-
ating the table for the very first time, you can use the CTAS method to create new tables that meet
your specifications. If the table already exists in your database or another database, you can use the
INSERT /* APPEND */ INTO . . . SELECT method.

If the tables are in external databases, you can still use the CTAS method by using database
links. Using the CTAS method simply means that you create a new table from an existing table.
While you’re creating the new table, you can apply certain SQL functions to the source table’s
columns, thereby transforming the data in the process. The following is a simple example showing
the use of the CTAS method:

SQL> CREATE TABLE new_employees
AS
SELECT e.empno, INITCAP(e.ename), e.sal*1.1,
e.mgr, d.deptno, d.loc, d.dname
FROM emp e, dept d
WHERE e.deptno=d.deptno;

Table created.
SQL>

The data transformations in this example state that the employee names will all start with a
capital letter (INITCAP) and the salary column will be raised by a uniform 10 percent (sal * 1.1).

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA570

4517CH13.qxd 8/19/05 11:01 AM Page 570

The next example shows how to load data into an existing table from another table. The use of
the NOLOGGING and PARALLEL options in the example make the bulk insert run extremely fast.

SQL> INSERT /*APPEND NOLOGGING PARALLEL */
INTO sales_data
SELECT product_id, customer_id, TRUNC(sales_date),
discount_rate, sales_quantity, sale_price
FROM sales_history;

SQL>

Note that even though you used the PARALLEL hint in the preceding INSERT statement, Oracle
may not execute your INSERT statement in parallel because, by default, parallel mode is disabled.
You first must use the following statement so any DML statements you issue can be considered for
parallel execution:

SQL> ALTER SESSION ENABLE PARALLEL DML;
Session altered.
SQL>

Once you have enabled parallel DML in your session, you can use the PARALLEL hint in your
DML statements, and Oracle will parallelize its execution.

■Caution There are several restrictions on the use of parallel DML. For example, you can’t use parallel DML on
a table that has triggers. Refer to Oracle’s documentation for more information about conditions that may preclude
the use of the parallel DML feature.

Using SQL to Transform Data
It’s common to use SQL statements to perform various kinds of data transformations. You can
transform data by using simple UPDATE statements, although they could take a considerable time
to execute in large tables. For smaller transactions in OLTP databases, the UPDATE statement is
adequate when you need to transform data in a column based on some criteria. In the following
sections, you’ll explore some of the other common ways of using SQL to transform your data
before loading: the MERGE statement, multitable inserts, and table functions.

Using the MERGE Statement
The MERGE statement is a powerful means of transforming data because it provides the functionality
of checking the data to see if an update is indeed required for a given row. Suppose you’re loading
data from a data source into your table. You want to insert customer data only if the customer is a
new customer. If the customer’s data is already present in your table, you don’t want to reload the
data, but you may want to update the customer’s information based on the new data you just
received.

The MERGE statement is actually an UPDATE–ELSE-INSERT operation performed by a single SQL
statement. You could do the same thing without using the MERGE statement by performing a two-
pass operation. In the first pass, you update all rows that have matching customer IDs in the table.
In the second pass, you insert all rows that don’t have a matching customer ID in your table. The fol-
lowing listings show the traditional two-pass update/insert method using separate UPDATE and
INSERT statements. First, the update:

SQL> UPDATE catalog c SET
(catalog_name, catalog_desc, catalog_category, catalog_price) =
SELECT (catalog_name, catalog_desc, catalog_category, catalog_price)

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA 571

4517CH13.qxd 8/19/05 11:01 AM Page 571

FROM catalog_data d
WHERE c.catalog_id=d.catalog_id;

Second, the insert:

SQL> INSERT INTO catalog c
SELECT * FROM catalog_data d
WHERE c.catalog_id NOT IN
(select catalog_id from catalog_data);

You could do the preceding work using a lengthy PL/SQL code piece. The PL/SQL procedures
must match each input row against the table to see if it already exists. Based on the results of the
checks, code that either inserts or updates rows is executed.

Whether you use SQL or PL/SQL, you can’t avoid the inefficient multiple processing of the
same data to complete your update/insert processing. Both methods are fairly tedious and take a
long time.

The MERGE statement, sometimes referred to as the upsert statement (because it does both an
update and an insert using a single SQL statement), is a much more efficient way of performing tra-
ditionally multiple-pass operations. It’s almost like using if-then-else logic. Listing 13-8 shows an
update and insert process using the MERGE statement. The MERGE statement in Listing 13-8 indicates
that if customer_id exists, then update; otherwise, insert into the table.

Listing 13-8. Using the MERGE Statement to Perform an Update/Insert

SQL> MERGE INTO target t
USING source s
ON (t.product_id=s.product_id)
WHEN MATCHED THEN UPDATE SET
t.price=s.price,
t.discount=s.discount
WHEN NOT MATCHED THEN INSERT
(product_id, product_code, product_desc,
product_price, product_discount)
VALUES
(s.product_id, s.product_code, s.product_desc,
s.product_price, s.product_discount);

The WHEN MATCHED THEN UPDATE SET clause determines if an UPDATE or an INSERT operation will
take place. The previous statement will update a row in the table target if that row already exists.
If there is no such row, Oracle will insert a new row in the table.

In addition to a straightforward insert/delete operation, you may perform conditional
updates/inserts and optionally delete some rows, as shown in the following sections.

Conditional UPDATE and INSERT Statements

Rather than unconditionally inserting or updating all the table rows, you may want to insert or
update data only when certain conditions are met. In Oracle Database 10g, the MERGE statement has
been enhanced to allow you to conditionally insert or delete data. Now, Oracle allows you to use a
WHERE clause in a MERGE statement’s UPDATE or INSERT clause to conditionally update or insert data, as
shown in Listing 13-9 (note the USING clause in the MERGE statement).

Listing 13-9. Using UPDATE and INSERT Clauses in a MERGE Statement

SQL> MERGE INTO products p /* Destination table
USING product_changes s /* Source table
ON (p.prod_id = s.prod_id) /* Search/join condition

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA572

4517CH13.qxd 8/19/05 11:01 AM Page 572

WHEN MATCHED THEN UPDATE /* Update if join
SET p.prod_list_price = s.prod_new_price
WHERE p.prod_status <> "EXPIRED" /* Conditional update
WHEN NOT MATCHED THEN
INSERT /* Insert if not join
SET p.prod_list_price = s.prod_new_price
WHERE s.prod_status <> "EXPIRED" /* Conditional insert

Note that Oracle will skip the INSERT or UPDATE operation if the statement doesn’t satisfy the
WHERE condition. Both the INSERT and UPDATE operations would occur only if the product is not an
expired item (WHERE s.prod_status <> "EXPIRED").

The DELETE Clause with the MERGE Statement

You can now use the MERGE statement with an optional DELETE clause. However, you can’t use the
DELETE clause independently in a MERGE statement, as with the UPDATE or INSERT clause. You must
embed the DELETE statement inside the UPDATE statement. This means that the DELETE statement
isn’t a global clause, but rather works in the confines of the data affected by the UPDATE clause of the
MERGE statement. Listing 13-10 shows how the DELETE clause is embedded within the UPDATE clause.

Listing 13-10. Using the DELETE Clause in a MERGE Statement

SQL> MERGE INTO products p
USING product_changes s ON (p.prod_id = s.prod_id)
WHEN MATCHED THEN UPDATE
SET p.prod_list_price = s.prod_new_price,
p.prod_status = s.prod_new_status
DELETE WHERE (p.prod_status = "OLD_ITEM")
WHEN NOT MATCHED THEN INSERT
(prod_id, prod_list_price, prod_status)
VALUES (s.prod_id, s.prod_new_price, s.prod_new_status);

This MERGE statement will first update the prod_list_price and the prod_status columns of the
products table wherever the join condition is true. The join condition (p.prod_id = s.prod_id) joins
the two tables: product (the source table) and product_changes (the destination table).

Here are a couple of considerations when using the DELETE statement:

• The DELETE clause affects only the rows that were updated by the MERGE statement.

• The MERGE statement will delete only the rows included in the join condition specified by the
ON clause.

In the example, when you use this MERGE statement, the UPDATE clause fires first, and it may set
some of the prod_new_status values to expired. The DELETE clause will then remove all the rows
whose prod_new_status value was set to expired by the UPDATE clause. The DELETE clause will not
remove any other rows with the expired status, unless they are part of the join defined in the ON
clause.

Using Multitable Inserts
Suppose you need to insert data from the source table into several target tables. Additionally, you
want this loading to be based on various conditions: if condition A, then load into table X; if condi-
tion B, then load into table Y; and so on. Normally, you’re forced to write several INSERT statements
for inserting from the source into the target tables. If the data were very large, this would slow down
the data loading. Alternatively, you could write PL/SQL-based code to do the same thing, but that
would also slow down the process.

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA 573

4517CH13.qxd 8/19/05 11:01 AM Page 573

A type of SQL statement called a multitable insert enables you to do fast conditional loads of
data from one source into multiple tables simultaneously. Because it’s still a normal SQL statement,
you can parallelize the operation to make the operation even faster. Multitable inserts can be either
unconditional or conditional. You can also have a multitable insert that is a mix of conditional and
unconditional inserts. The structure of the multitable insert varies depending on whether all or only
some of the source table’s rows are being loaded into the target tables.

■Note The performance gain from using a multitable insert is directly proportional to the complexity of the
data and the number of target tables. Oracle claims that you can achieve a processing speed gain of 400 percent
or more.

Loading All the Rows from the Source Table

When you load all rows of a table, you can use either an unconditional all row insert or a conditional
all row insert. In the following example, the source table is called sales_activity, whose data is
loaded at the same time into two destination tables: sales and cost. The unconditional insert uses
the keywords INSERT ALL, meaning that all the source rows (sales_activity) are loaded into the sales
and cost tables.

SQL> INSERT ALL
INTO target1 VALUES (product_id, customer_id, sysdate, product_quantity)
INTO target2 VALUES
(product_id,sysdate,product_price,product_discount)
SELECT s.product_id, s.customer_id, sysdate, s.product_quantity,
s.product_price, s.product_discount
FROM source s;

After the INSERT ALL keywords, there are two INTO statements, each denoting an insert into a
separate table. Notice that the SELECT statement contains all the necessary columns required by
both INTO statements for inserting into the two tables.

The conditional insert of all rows from the source table is similar to the unconditional version,
except that the keyword WHEN indicates the conditions under which the inserts will be made. The fol-
lowing example shows how to perform a conditional all-row insert:

SQL> INSERT ALL
WHEN product_id IN(SELECT product_id FROM primary) THEN
INTO target1 VALUES (product_id, customer_id, sysdate, product_quantity)
WHEN product_id IN (SELECT product_id FROM secondary) THEN
INTO target2 VALUES
(product_id, sysdate, product_price, product_discount)
SELECT s.product_id, s.customer_id, sysdate, s.product_quantity,
s.product_price, s.product_discount
FROM source s;

This example still inserts all the rows from sales_data, because it uses the key phrase INSERT ALL.

Loading Selected Rows from the Source Table

Sometimes, you’re interested in loading only some rows from a table, either based on a condition
or unconditionally. You can do this in a multitable insert by using the keywords INSERT FIRST.
Listing 13-11 shows how only some of the source table’s rows are loaded into each target table,
based on a separate condition for each table.

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA574

4517CH13.qxd 8/19/05 11:01 AM Page 574

Listing 13-11. Partial Loading of Rows from the Source Table

SQL> INSERT FIRST
WHEN (quantity_sold > 10 AND product_id <1000)
THEN INTO targetA VALUES
(sysdate,product_id, customer_id, quantity_sold))

WHEN quantity_sold <= 10 and product_id >10000
THEN INTO targetB VALUES
(sysdate,product_id, customer_id, quantity_sold)

ELSE
INTO targetC VALUES
(time_id, cust_id, prod_id, sum_quantity_sold)
SELECT s.time_id, s.cust_id, s.prod_id, p.prod_weight_class,
SUM(amount_sold) AS sum_amount_sold,
SUM(quantity_sold) AS sum_quantity_sold
FROM sales s, products p
WHERE s.prod_id = p.prod_id
AND s.time_id = TRUNC(sysdate)
GROUP BY s.time_id, s.cust_id, s.prod_id, p.prod_weight_class;

Using Table Functions for Data Transformation
You can use Oracle’s table functions to perform efficient data transformations. Table functions pro-
duce a collection of transformed rows that can be queried just like a regular table’s data. Oracle
table functions are an excellent example of Oracle’s sophisticated transform-while-loading para-
digm. Table functions can take a set of rows as input and return a transformed set of rows. When
you query a table function in a statement, the function returns a collection type instance represent-
ing the rows in a table. The collection types can be either a VARRAY or a nested table. Table functions
allow you to use PL/SQL, C, or Java with SQL without any problems.

Table functions make the traditional use of staging tables redundant. You don’t need to create
any intermediate tables to perform data transformations before loading data into the final data
warehouse tables. Three features make table functions a powerful means of performing fast trans-
formation of data sets:

• Streaming: This refers to the direct transmission of results from one process to the other
without any intermediate steps. The way in which a table function orders or clusters rows
that it fetches from cursor arguments is called data streaming.

• Parallel execution: This refers to the concurrent execution of the functions on multiprocessor
systems.

• Pipelining: This technique lets you see the results of a query iteratively, instead of waiting
for the entire result set to be batched and returned. Pipelining can thus help table functions
reduce the response time by sending results as soon as they are produced in batches. You
also have the option of having the table function immediately return rows from a collection
by using pipelining. The elimination of (sometimes multiple) staging tables and the lack of
need for any manual coding of parallel processing makes the pipelined parallel processing
provided by table functions very attractive during large-scale data loading and transformation.

Here’s a brief summary of the tasks that table functions can help you perform:

• Return a set of rows

• Return a result set incrementally, so you can process the results gradually

• Accept a cursor as an input

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA 575

4517CH13.qxd 8/19/05 11:01 AM Page 575

• Return results continuously while the transformation is taking place

• Be parallelized

It’s easy to understand what a table function is when you think about a regular Oracle function.
An Oracle function such as SUBSTR or TRANSLATE transforms data. For example, you can use the
SUBSTR function to cut out a portion of a string, as shown in the following example:

SQL> SELECT sysdate FROM dual;
SYSDATE
========
20-MAY-05
SQL> SELECT SUBSTR(sysdate,4,3) FROM dual;
SUBSTRING(SYSDATE)
===================
MAY
SQL>

Table functions work the same way as regular Oracle functions that transform data. The only
difference is that the table functions can be much more complex, and they can take cursors as
inputs and return multiple rows after transforming them.

Suppose you need to load data from a table using an INSERT statement, and suppose that you
don’t need the data to be in the same format as the data in the source table. You can easily use the
INSERT statement with one additional (automatic) step: use a table function to transform the data
after it extracts the rows from the source and before the data gets inserted into your target table.
Instead of the normal statement:

INSERT INTO target_table
SELECT * FROM source_table;

you use the following INSERT statement:

INSERT INTO target_table
SELECT * FROM (table function(source_table));

The previous INSERT statement will take the rows from the source table and insert them into
the target table, with the twist that the inserted data will be of a different format from the original
data in the target table. The table function will modify the data format before the INSERT operation
can insert the data into the target table.

As an example, suppose you have an original table named sales_data, which shows a holding
company’s stores and sales figures for the two years 2001 and 2002:

SQL> SELECT * FROM sales_data;
STORE_NAME SALES_2001 SALES_2002
------------------------- ---------- ---------------------------------
shoe city 500000
trinkets galore 1400000 1500000
modern tools 1000000 1200000
toys and toys 800000
SQL>

Your goal is to extract data from this table to a target table with a different format. The new
table is named yearly_store_sales, and it lists the company sales figures differently—each company’s
sales figure is listed by year. For example, in the original table, the store modern tools showed two
yearly sales numbers in the same row: 1000000 and 1200000. In the new transformed table, these
numbers should appear in different rows—that is, the data should show the store/sales year combi-
nations. To do this, the company name may appear more than once in this table:

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA576

4517CH13.qxd 8/19/05 11:01 AM Page 576

SQL> CREATE TABLE yearly_store_sales
2 (store_name VARCHAR2(25),
3 sales_year NUMBER,
4* total_sales NUMBER);

Table created.
SQL>

Because table functions return sets of records, you need to create some special object struc-
tures to use table functions to transform data. The first object you need to create is an object type
called yearly_store_sales_row, which reflects the records. Note that the structure of this type is the
same as your target table, yearly_store_sales.

SQL> CREATE TYPE yearly_store_sales_row AS
2 OBJECT(
3 store_name varchar2(25),
4 sales_year number,
5* total_sales number);

Type created.
SQL>

The next step is to create a table type named yearly_store_sales_table. This table type is
based on the object type you just created.

SQL> CREATE TYPE yearly_store_sales_table
2 AS
3 TABLE OF yearly_store_sales_row;

Type created.
SQL>

The package creation statement shown in Listing 13-12 is somewhat complex, and it is the
heart of the table function feature. The table function uses a REF CURSOR to fetch the input rows.
It then transforms the data and sends it out interactively (that is, it pipelines the data).

Listing 13-12. Creating the Table Function

SQL> CREATE OR REPLACE PACKAGE sales_package
2 AS
3 TYPE sales_cursor_type IS REF CURSOR
4 RETURN sales_data%ROWTYPE;
5 FUNCTION modify_sales_data
6 (INPUTDATA IN sales_cursor_type)
7 RETURN yearly_store_sales_table
8 PIPELINED;
9* END;

SQL> /
Package created.
SQL>
1 CREATE OR REPLACE PACKAGE BODY sales_package
2 AS
3 FUNCTION modify_sales_data(
4 inputdata IN sales_cursor_type)
5 RETURN yearly_store_sales_table
6 PIPELINED IS
7 inputrec sales_data%ROWTYPE;
8 outputrow_2001 yearly_store_sales_row :=

yearly_store_sales_row(NULL,NULL,NULL);
9 outputrow_2002 yearly_store_sales_row :=

yearly_store_sales_row(NULL,NULL,NULL);

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA 577

4517CH13.qxd 8/19/05 11:01 AM Page 577

10 BEGIN
11 LOOP
12 FETCH inputdata INTO inputrec;
13 EXIT WHEN inputdata%NOTFOUND;
14 IF INPUTREC.SALES_2001 IS NOT NULL THEN
15 outputrow_2001.store_name := inputrec.store_name;
16 outputrow_2001.sales_year := 2001;
17 outputrow_2001.total_sales:= inputrec.sales_2001;
18 pipe row (outputrow_2001);
19 END IF;
20 IF INPUTREC.SALES_2002 IS NOT NULL THEN
21 outputrow_2002.store_name := inputrec.store_name;
22 outputrow_2002.sales_year := 2002;
23 outputrow_2002.total_sales:= inputrec.sales_2002;
24 pipe row (outputrow_2002);
25 END IF;
26 END LOOP;
27 RETURN;
28 END;
29* END;
SQL> /
Package body created.
SQL>

Let’s look at each part of the package carefully:

• In order to return sets of rows from the source table as inputs to the table function, you need
to create a REF CURSOR based on the source table rows. The REF CURSOR in the example is
named sales_cursor.

• The function modify_sales_data is the table function. It has one input parameter, the REF
CURSOR sales_cursor. The function returns data in the format of the source table,
yearly_store_sales.

• The keyword PIPELINED at the end means that data flows through the data transformation
process. As the input data is processed, the transformed results are continuously fed into the
target table.

• The package body shows the details of the function modify_sales_data. The function will
transform the original structure of data in the source table into the desired format and insert
it into the target table.

In the following INSERT statement, the function modify_sales_data is used. Note how the func-
tion is applied to the row data from the original table sales_data. The data is transformed before it is
inserted into the yearly_store_sales table.

SQL> INSERT INTO yearly_store_sales t
2 SELECT *
3 FROM TABLE(sales_package.modify_sales_data(
4 CURSOR(select store_name,sales_2001,sales_2002
5 FROM sales_data)));

6 rows created.
SQL> COMMIT;
Commit complete.
SQL>

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA578

4517CH13.qxd 8/19/05 11:01 AM Page 578

USING TABLE FUNCTIONS TO MINE WEB SERVICES DATA

Web services are self-contained, modular applications that can be published and invoked on the Web. Web services
can perform complex business processes or serve as information providers. For example, you will find weather
information services and stock market ticker services. Table functions can help you mine web services data.

Here's an outline of how you might use a table function to mine the stock market information that is published
on the Web to provide a stock price alert system:

1. A private web service run by a stock market information services is accessed to collect the stock price infor-
mation.

2. A table function, using a REF CURSOR of stock symbols as inputs, calls a Java stored procedure to gather
the stock information from the web service. The table function converts the necessary stock price informa-
tion into relational table data. The table function processes the information in the REF CURSOR one row at
a time, and loads it into the table in a streamed fashion. You can have this information updated at regular
intervals.

3. You can then use SQL and PL/SQL code to mine the stock data you collected in step 2. For example, the fol-
lowing is a typical SQL statement that uses the web services data you downloaded into your database
table(s):

SQL> SELECT AVG(price), MIN(price), MAX(price)
FROM
table(stock_service_pack.to_table
(cursor(select stock_symbol from stocks)));

Listing 13-13 shows the data in the new table. Note how the original data in the sales_data table
has been transformed into a different format by the table function.

Listing 13-13. The Transformed Table

SQL> SELECT * FROM yearly_store_sales;
STORE_NAME SALES_YEAR TOTAL_SALES
------------------------- ---------- --------
shoe city 2002 500000
trinkets galore 2001 1400000
trinkets galore 2002 1500000
modern tools 2001 1000000
modern tools 2002 1200000
toys and toys 2002 800000
6 rows selected.
SQL>

The final SELECT statement from the yearly_store_sales table shows a different layout of data
from that of the original table, sales_data. Now each store has a new column and year, and the
yearly sales data is in separate rows. This makes it easier to compare the yearly sales figures of the
various stores.

This example is rather trivial, but it clearly illustrates how you can use table functions to easily
transform data during the process of loading it into another table.

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA 579

4517CH13.qxd 8/19/05 11:01 AM Page 579

Using the SQL MODEL Clause
It is common for Oracle users to process data using third-party tools, since Oracle SQL has tradi-
tionally lacked sophisticated modeling capabilities to produce complex reports. A basic example is
the use of spreadsheets, which apply formulas to transform data into new forms. In previous ver-
sions of Oracle, in order to produce these spreadsheet-like reports, you needed to either download
data into spreadsheet programs like Microsoft Excel or use dedicated multidimensional online
analytical processing (OLAP) servers such as Oracle Express. For example, you might use Excel to
convert your business data into rule-based business models, with the help of various macros. But
third-party spreadsheet tools are cumbersome to use, and you need to expend considerable effort
and time to constantly import updated Oracle data into the spreadsheet programs.

Oracle professionals commonly make heavy use of multiple table joins and unions when deal-
ing with complex data warehousing data. These techniques help you perform very complex
computations, but they are usually slow and computationally expensive.

Oracle Database 10g offers the extremely powerful MODEL clause, which allows you to use SQL
statements to categorize data and apply sophisticated formulas to produce fancy reports directly
from within the database itself. You can now produce highly useful Oracle analytical queries, over-
coming several drawbacks of Oracle SQL. With the new MODEL clause, you can use normal SQL
statements to create multidimensional arrays and conduct complex interrow and interarray calcu-
lations on the array cells.

The MODEL clause provides interrow calculation functionality by enabling you to create multidi-
mensional arrays of your query data and letting you randomly access the cells within the arrays. The
way the MODEL clause addresses individual cells is called symbolic cell addressing. The MODEL clause
also performs symbolic array computation, by transforming the individual cells using formulas,
which it calls rules.

The MODEL clause enables you to apply business models to your existing data. When you use
the MODEL clause as part of a query, Oracle feeds the data retrieved by the query to the MODEL clause.
The MODEL clause rearranges the data into a multidimensional array and applies your business rules
to the individual elements of the array. From the application of various user-specified business
rules, Oracle derives updated as well as newly created data. However, you won’t actually see an array
as your final form of the output, since Oracle will format the new and updated data into a row for-
mat when it delivers the MODEL clause’s output to you.

The first step in a MODEL-based query is the creation of the multidimensional array. The follow-
ing section explains the basis of the arrays created by the MODEL clause.

Creating the Multidimensional Arrays
The MODEL clause creates the multidimensional arrays that are at the heart of its functionality by
mapping all the columns of the query that contains a MODEL clause into the following three groups.

• Partitions: Basically, a partition is a result handed to the MODEL clause by previous grouping
operations. The MODEL clause is always separately applied to the data within each partition.

• Dimensions: A dimension is a layer of metadata you can apply to a table to define hierarchi-
cal relationships among the table’s columns. For example, a dimension named REGION could
contain the hierarchy of STATE, COUNTY, and CITY. You may define several dimensions on a
table, such as region, time, and product.

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA580

4517CH13.qxd 8/19/05 11:01 AM Page 580

• Measures: Measures are the fact table data on which you are modeling your report, such
as sales or inventories. You can look at the aggregate measure as consisting of a bunch of
measure cells, with each of the cells identified by a unique combination of dimensions. For
example, if sales is your measure, then the sales of detergents for the third quarter of 2004
in the New York region is one cell of the measure, since you can have only one such unique
combination of your three dimensions: product (detergents), time (third quarter of 2004),
and region (New York region).

The next section looks at how the MODEL feature uses rules to modify your multidimensional
array data.

Transforming Array Data with Rules
A rule in the context of the MODEL clause is any business rule or formula you want to apply to the
array data created by the MODEL clause. You may, for example, use a formula to forecast next year’s
sales on the basis of the preceding two years’ sales data. You create a simple forecasting formula
that expresses your business reasoning, and then pass it along to the MODEL clause as a rule.

You use the keyword RULES to indicate that you are specifying the rules that the MODEL clause
must apply to its multidimensional array data. For example, you could specify a simple rule as
follows:

MODEL
. . .
RULES
. . .
(sales['ProductA', 2005] = sales['ProductA', 2003] + sales['ProductA', 2004]
. . .

This rule specifies that the sales of ProductA for the year 2005 would be the sum of the sales of
ProductA in the years 2003 and 2004.

When you specify the RULES keyword, you may also want to indicate whether the rules you are
specifying will be transforming existing data or inserting new rows of data. By default, the RULES
keyword operates with the UPSERT specification. That is, if the measure cell on the left side of a rule
exists, Oracle will update it. Otherwise, Oracle will create a new row with the measure cell values.
Here’s an example:

MODEL
. . .
RULES UPSERT
sales ('ProductA', 2005) = sales ('ProductA', 2003) + sales ('ProductA', 2004)
. . .
/* MORE RULES HERE */)

In this rules specification, if there is already a table or view row that shows the sales for
ProductA in the year 2005, Oracle will update that row with the values derived from applying the
rule formula. If there is no such row, Oracle will create a new row to show the forecasted sales of
ProductA for the year 2005.

If you don’t want Oracle to insert any new rows, but just update the existing rows, you can
change the default behavior of the RULES clause by specifying the UPDATE option for all the rules,
as shown here:

MODEL
. . .
RULES UPDATE
Sales ('ProductA', 2005) = sales ('ProductA', 2003) + sales ('ProductA', 2004)
. . .

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA 581

4517CH13.qxd 8/19/05 11:01 AM Page 581

The previous two examples demonstrated how to apply different rule options at the MODEL
clause level. You may also specify rule options at the individual rule level, as shown here:

RULES
(UPDATE sales ('ProductA', 2005) = sales ('ProductA', 2003) +
sales ('ProductA', 2004)

When you specify a rule option at the individual rule level as shown in this example, the use of
the RULES keyword is optional.

■Note If you specify a rule option at the rule level, it will override the RULES specification at the MODEL clause
level. If you don’t specify a rule option at the rule level, the MODEL level option applies to all the rules. If you don’t
specify an option at the MODEL level, the default UPSERT option will prevail.

You can specify that Oracle should evaluate the rules in either of the following two ways:

• SEQUENTIAL_ORDER: Oracle will evaluate a rule in the order it appears in the MODEL clause.
SEQUENTIAL_ORDER is the default order of processing rules in a MODEL clause.

• AUTOMATIC_ORDER: Rather than evaluating a rule based on its order of appearance in a list of
several rules, Oracle will evaluate the rule on the basis of the dependencies between the vari-
ous rules in the MODEL clause. If rule A depends on rule B, Oracle will evaluate rule B first,
even though rule A appears before rule B in the list of rules under the RULES keyword.

Producing the Final Output
As its output, the MODEL clause will give the results of applying your rules to the multidimensional
arrays it created from your table data. A MODEL-based SQL analytical query typically uses an ORDER BY
clause at the very end of the query to precisely order its output.

You can use the optional RETURN UPDATED ROWS clause after the MODEL keyword to specify that
only the new values created by the MODEL statement should be returned. These new values may be
either updated values of a column or newly created rows.

Note that when I say that the MODEL clause will create or update rows, I strictly mean that the
changes are shown in the MODEL clause output. The MODEL clause doesn’t update or insert rows into
the table or views. To change the base table data, you must use the traditional INSERT, UPDATE, or
MERGE statement.

Using the MODEL Clause
Let’s look at a simple SQL example that demonstrates the capabilities of the MODEL clause. Here’s the
query:

SQL> SELECT country, product, year, sales
FROM sales_view
WHERE country IN ('Mexico', 'Canada')
MODEL
PARTITION BY (country) DIMENSION BY (product, year)
MEASURES (sale sales)
RULES
(sales['ProductA', 2005] = sales['ProductA', 2004] + sales['ProductA',2003],
sales['ProductB', 2005] = sales['ProductB', 2004],
sales['All_Products', 2005] = sales['ProductA', 2005] +
sales['ProductB',2005])

ORDER BY country, product, year;

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA582

4517CH13.qxd 8/19/05 11:01 AM Page 582

Sales units are the measure in this example. The query partitions the data by country and
forms the measure cells consisting of product and year combinations. The three rules specify the
following:

• Total sales of ProductA in 2005 are forecast as the sum of ProductA sales in the years 2003
and 2004.

• Total sales of ProductB in the year 2005 are forecast to be the same as the sales in 2004.

• Total product sales in 2005 are computed as the sum of the ProductA and ProductB sales
in 2005.

Here’s the output generated by using the preceding SQL statement with the MODEL clause:

COUNTRY PRODUCT YEAR SALES

Mexico ProductA 2002 2474.78
Mexico ProductA 2003 4333.69
Mexico ProductA 2004 4846.3
Mexico ProductA 2005 9179.99
Mexico ProductB 2002 15215.16
Mexico ProductB 2003 29322.89
Mexico ProductB 2004 81207.55
Mexico ProductB 2005 81207.55
Mexico All_Products 2005 90387.54
Canada ProductA 2002 2961.3
Canada ProductA 2003 5133.53
Canada ProductA 2004 6303.6
Canada ProductA 2005 11437.13
Canada ProductB 2002 22161.91
Canada ProductB 2003 45690.66
Canada ProductB 2004 89634.83
Canada ProductB 2005 89634.83
Canada All_Products 2005 101071.96

The SELECT clause first retrieves the product, year, and sales data for the two countries (Mexico
and Canada) and feeds it into the MODEL clause. The MODEL clause takes this raw data and rearranges
it into a multidimensional array, based on the values of the PARTITION BY (country) and DIMENSION
BY (product and year) clauses. After the MODEL clause creates the array, it applies the three formulas
listed under the RULES clause to the data. It finally produces the resulting row data, after ordering it
by country, product, and year. Note that the MODEL clause shows the original table or view data, as
well as the new data that the MODEL clause has calculated.

Using Oracle Streams for Replication and
Information Sharing
As companies grow, it becomes important to be able to share information among multiple data-
bases and applications. Disparate information sharing technologies add to the burden of effectively
replicating data. The Oracle Streams feature provides a single unified solution for information shar-
ing across the enterprise.

When you use Oracle Streams, each unit of information is called an event, and you share these
events in a stream. A stream routes specified information to specified destinations. The Oracle
Streams feature captures changes occurring in the database, using both the active and archived
redo logs. Streams capture these changes and store them in queues, after proper formatting.
Streams then propagate these changes to other databases and apply them to the target databases.

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA 583

4517CH13.qxd 8/19/05 11:01 AM Page 583

Using the Oracle Streams feature, you can capture, propagate, and apply information within an
Oracle database, between two Oracle databases, among multiple Oracle databases, or between
an Oracle database and a non-Oracle database.

Using Streams, you can transform the streams of data at any of the three points: during capture
of data, during propagation to the target and during application at the destination site. The events
may include messages queued into a database queue by applications as well as DML and DDL
changes. You can use Oracle Streams for the following applications:

• Data replication: You can use Oracle Streams to capture changes from a source database,
stage and propagate these changes to a target databases, and consume or apply the changes
to the target database.

• Advanced message queuing: The Oracle Streams Advanced Queuing (AQ) feature lets you
enqueue messages into a queue, propagate messages to subscribing queues, notify user
applications that messages are ready for consumption, and dequeue messages at their
destination.

• Event management and notification: The ability to capture events and propagate them based
on rules lets you use Oracle Streams for event notification. Events staged in a queue may be
dequeued explicitly by a messaging client or an application, and actions can be taken based
on these events, including e-mail notification and cell phone transmission.

• Data warehouse loading: Streams can capture changes made to a production database and
send those changes over to a data warehouse. During the apply process, you can apply trans-
formations to the data before you load it in the target database.

• Data protection: You can use the streams technology to maintain a remote standby
database, which will be a copy of your production database. The standby database is open
for read/write, and you can query it as updates are applied. Standby databases are a good
solution for offloading queries from your production database.

■Note You can use Oracle Streams at multiple levels of granularity: database, schema, and table. Oracle
Streams can use rules to configure the capture of changes for the entire database, a specific schema, or a
set of tables.

Exploring the Streams Architecture
The three basic elements of Oracle Streams technology are capture, staging, and consumption of
events within the Oracle database.

The capture process captures change information from the source database, at the table,
schema or the database level. Streams capture events in one of two ways: explicit or implicit.
Explicit capture is when users and applications manually enqueue events into a queue. These user-
enqueued events can be redo log change records or messages of a user-defined type called user
messages. In the implicit capture process, the server captures DML and DDL changes from the
source database by mining the redo logs and archived redo logs. The implicit capture process,
which is an Oracle background process, consists of the following components:

• A reader server, which reads redo logs and divides them into regions

• One or more prepare servers, which scan the regions in parallel and perform prefiltering of
changes

• A builder server, which merges redo records it receives from the prepare servers and hands
them to the capture process

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA584

4517CH13.qxd 8/19/05 11:01 AM Page 584

The capture process formats the merged redo records into a logical change record (LCR) and
enqueues them into the staging area for further processing. An LCR describes changes made to a
single row with a DML statement. A single DML statement can produce several LCRs. An LCR,
which is a set of captured changes, is also called an event. LCRs containing information about table
data are called row LCRs, and those containing information about DDL changes are called DDL
LCRs. Rules used by the capture process determine which changes it captures.

In the staging element, the Oracle Streams process stores events in a queue. These events could
include both explicit and implicit changes.

In the final stage, consumption, the queued events are consumed in the target database. An
event is consumed when you dequeue it from an event queue. Users and applications can dequeue
events explicitly. However, most of the dequeueing is through an implicit apply process. The
dequeueing and processing of the captured data is done according to rules. The apply process
may apply the captured data directly or transform it using PL/SQL code.

Setting Up Oracle Streams
Following are the steps you must take in order to configure and administer the Oracle Streams fea-
ture to propagate changes between multiple databases.

1. Make the necessary changes to your init.ora or SPFILE, to make sure the following are true:

• The COMPATIBLE parameter should be set to 10.2.0 or higher in both databases (you can
actually set it 9.2 or higher).

• The JOB_QUEUE_PROCESSES parameter on the source database should be at least 2.

• The GLOBAL_NAMES parameter should be set to true in both the source and target
databases.

• Set LOG_ARCHIVE_DEST_n. You must have at least one log archive destination at the site
running the downstream capture process.

• Make sure you allocate at least 200MB to the STREAMS_POOL_SIZE memory components
of the SGA.

• If you are running one or more capture processes, set UNDO_RETENTION to at least 3600.
Make sure the undo tablespace is large enough to accommodate the UNDO_RETENTION
setting.

• Make sure your source database is in the archivelog mode.

2. Create a new user to manage the streams. Before you create the user, you may want to cre-
ate a new tablespace for the use of this new Streams user.

SQL> CREATE TABLESPACE streams_tbs
DATAFILE '/u01/app/oracle/oradata/
streams_tbs.dbf' SIZE 100M;

Now create the Streams administrator user in the database, as follows:

SQL> CREATE USER strmadmin
IDENTIFIED BY strmadmin
DEFAULT TABLESPACE streams_tbs
TEMPORARY TABLESPACE temp
QUOTA UNLIMITED ON streams_tbs;

3. Grant the CONNECT, RESOURCE, and DBA roles to the Streams administrator:

SQL> GRANT CONNECT, RESOURCE, DBA TO strmadmin;

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA 585

4517CH13.qxd 8/19/05 11:01 AM Page 585

4. Use the GRANT_ADMIN_PRIVILEGE procedure in the DBMS_STREAMS_AUTH package to grant
necessary privileges to the Streams administrator:

SQL> BEGIN
DBMS_STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE(
GRANTEE => 'strmadmin',
GRANT_PRIVILEGES => true);
END;
/

5. Create a database link between the source and target databases, as shown here:

SQL> CREATE DATABASE LINK targetdb
CONNECT TO strmadmin
IDENTIFIED BY strmadmin
USING 'sourcedb.world';

6. Oracle Streams moves data between the source and destination databases using queues.
You need to create a queue on both the source and destination databases. To do this, you
must run the following procedure on both the source and the target databases. This will
create both queues with their default names.

EXEC DBMS_STREAMS_ADM.SET_UP_QUEUE();

7. You need to enable supplemental logging for all the tables on the source databases for
which you intend to capture changes. You set up supplemental logging in the following
manner:

SQL> ALTER TABLE emp ADD SUPPLEMENTAL LOG DATA
(PRIMARY KEY, UNIQUE) COLUMNS;

8. Configure the capture process in the source database, using the ADD_TABLE_RULES procedure
of the DBMS_STREAMS_ADM package, as shown here:

SQL> BEGIN
DBMS_STREAMS_ADM.ADD_TABLE_RULES(
table_name => 'scott.emp',
streams_type => 'capture',
streams_name => 'capture_stream',
queue_name => 'strmadmin.streams_queue',
include_dml => true,
include_ddl => true,
inclusion_rule => true);
END;
/

Now that you’ve configured your Oracle Streams setup, you can test the setup by starting a cap-
ture process and using an apply process to replicate the emp table from the source database to the
emp table in the target database. First, capture the changes using the following procedure:

SQL> BEGIN
DBMS_CAPTURE_ADM.START_CAPTURE(
capture_name => 'capture_stream');
END;
/

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA586

4517CH13.qxd 8/19/05 11:01 AM Page 586

To migrate the captured changes to the destination database, run the following procedure:

SQL> BEGIN
DBMS_APPLY_ADM.START_APPLY(
apply_name => 'apply_stream');
END;
/

The Oracle Streams feature was discussed very briefly here. However, it’s a very powerful fea-
ture useful for database replication, migration, and upgrades. The primary interface to Streams is
this collection of Oracle-supplied PL/SQL packages. You saw how to use various Oracle-supplied
PL/SQL packages to set up and manage the Streams feature, so you know exactly what’s happening
during the change capture and propagation phases. To help users configure, administer, and moni-
tor their Streams environments, Oracle provides a Streams tool in the OEM Console. I recommend
using the Streams feature with the help of the OEM Database Control interface, for convenience.

CHAPTER 13 ■ LOADING AND TRANSFORMING DATA 587

4517CH13.qxd 8/19/05 11:01 AM Page 587

4517CH13.qxd 8/19/05 11:01 AM Page 588

Using Data Pump Export and Import

Almost all Oracle DBAs are familiar with Oracle’s export and import utilities, which help in load-
ing data into and unloading data from databases. In Oracle Database 10g, you now have newer and
more refined versions of the old utilities—the Data Pump Export and Import utilities.

The old export and import utilities continue to be available under Oracle Database 10g, but
Oracle would prefer you to use the Data Pump technology because it offers more sophisticated fea-
tures. For example, you can now interrupt export/import jobs in the middle and then resume them.
You can restart failed export and import jobs. You can remap object attributes to modify the objects.
You can easily monitor your Data Pump jobs from a different session, and you can even modify job
attributes on the fly during the course of a job. It’s easy to move massive amounts of data quickly
using parallelization techniques. Because Oracle provides you the APIs for the Data Pump technol-
ogy, you can easily incorporate export/import jobs within PL/SQL programs.

You can also use the powerful transportable tablespaces feature to transport large amounts of
data quickly, even across disparate operating system platforms.

This chapter provides in-depth coverage of the Data Pump technology, as well as transportable
tablespaces.

Introduction to the Data Pump Technology
Oracle Database 10g offers the new Data Pump technology, a server-side infrastructure for fast data
movement between Oracle databases. The Data Pump technology enables DBAs to transfer large
amounts of data and metadata at very high speeds compared with the older export/import technol-
ogy. Data Pump manages multiple parallel streams of data to achieve maximum throughput. Oracle
claims that Data Pump enables you to decrease total export time by more than two orders of magni-
tude in most data-intensive export jobs. Imports are supposed to run 15 to 45 times faster than with
the original import utility (the estimates are for single-thread operations; parallel threads will make
the operations even faster). Much of the higher speed comes from using parallelism to read and
write export dump files.

Data Pump is a superset of the original export and import utilities, offering several new capa-
bilities. Data Pump lets you estimate job times, perform fine-grained object selection, monitor jobs
effectively, and directly load a database from a remote instance via the network.

For compatibility purposes, Oracle still includes the old export and import utilities in Oracle
Database 10g. Thus, you can continue to use your export and import scripts as usual, without any
changes. Once you see how and why the newer Data Pump utilities are better than the older ones,
you probably will choose the newer utilities, however. Oracle will eventually deprecate the original
export utility, but it will support the original import utility forever. This means that you’ll always
have a way of importing dump files from earlier versions of Oracle. However, Data Pump Import
will not work with databases that are older than the Oracle Database 10g Release 1 (10.1) version.
Also note that the new Data Pump technology lets you export data only to disk. You cannot use a
tape drive when performing a Data Pump export. 589

C H A P T E R 1 4

■ ■ ■

4517CH14.qxd 8/19/05 11:02 AM Page 589

Oracle Data Pump technology consists of two components: the Data Pump Export utility, to
unload data objects from a database, and the Data Pump Import utility, to load data objects into a
database. You access the two Data Pump utilities through a pair of clients called expdp and impdp. As
their names indicate, the first of these corresponds to the export utility and the latter to the import
utility. You can control both Data Pump Export and Import jobs with the help of several parameters.
Here’s how you invoke the two utilities:

$ expdp username/password (various parameters here)
$ impdp username/password (various parameters here)

Unlike the old export and import utilities, the Data Pump utilities have a set of parameters
you can use at the command line and a set of special commands you can use only in an interactive
mode. I’ll explain the main parameters, commands, and other important features of the Data Pump
tool set in the “Performing Data Pump Exports and Imports” section later in this chapter. You can
also get a quick summary of all Data Pump parameters and commands (including the interactive
commands) by simply typing expdp help=y or impdp help=y at the command line.

The Data Pump Export utility unloads data into operating system files known as dump files in a
proprietary format that only the Data Pump Import utility can understand. You can take Data Pump
Export dump files from an operating system and import them into a database running on a differ-
ent platform, as you could with the older export/import utilities.

■Caution The original export and Data Pump dump files aren’t compatible. You can’t read the older export
dump files with Data Pump import, and the older import utility can’t read Data Pump export dump files. The new
features of Oracle Database 10g aren’t supported in the original export utility, which you still have access to in
Oracle Database 10g.

In addition to expdp and impdp, you can have other clients perform Data Pump export and
import by using the Data Pump API. The database uses the Oracle-supplied package DBMS_DATA
PUMP to implement the API, through which you can programmatically access the Data Pump
Export and Import utilities. This means that you can create powerful custom data-movement utili-
ties using the Data Pump technology.

The traditional export utility is a normal user process that writes data to its local disks. The old
export utility fetches this data from a server process as part of a regular session. In contrast, the
Data Pump expdp user process launches a server-side process that writes data to disks on the server
node, and this process runs independently of the session established by the expdp client.

Benefits of Data Pump Technology
The older export/import technology was client-based. The Data Pump technology is purely server-
based. All dump, log, and other files are created on the server by default.

Data Pump technology offers several benefits over the traditional export and import data utili-
ties. The following are the main benefits of the Data Pump technology:

• Improved performance: The performance benefits are significant if you are transferring huge
amounts of data.

• Ability to restart jobs: You can easily restart jobs that have stalled due to lack of space or have
failed for other reasons. You may also manually stop and restart jobs.

• Parallel execution capabilities: By specifying a value for the PARALLEL parameter, you can
choose the number of active execution threads for a Data Pump Export or import job.

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT590

4517CH14.qxd 8/19/05 11:02 AM Page 590

• Ability to attach to running jobs: You can attach to a running Data Pump job and interact
with it from a different screen or location. This enables you to monitor jobs, as well as to
modify certain parameters interactively. Data Pump is an integral part of the Oracle database
server, and as such, it doesn’t need a client to run once it starts a job.

• Ability to estimate space requirements: You can easily estimate the space requirements for
your export jobs by using the default BLOCKS method or the ESTIMATES method, before run-
ning an actual export job (see the “Data Pump Export Parameters” section later in this
chapter for details).

• Network mode of operation: Once you create database links between two databases, you can
perform exports from a remote database straight to a dump file set. You can also perform
direct imports via the network using database links, without using any dump files. The net-
work mode is a means of transferring data from one database directly into another database
with the help of database links and without the need to stage it on disk.

• Fine-grained data import capability: Oracle9i offered only the QUERY parameter, which
enabled you to specify that the export utility extract a specified portion of a table’s rows.
With Data Pump, you have access to a vastly improved fine-grained options arsenal, thanks
to new parameters like INCLUDE and EXCLUDE.

• Remapping capabilities: During a Data Pump import, you can remap schemas and table-
spaces, as well as filenames, by using the new REMAP_ * parameters. Remapping capabilities
enable you to modify objects during the process of importing data by changing old attrib-
utes to new values. For example, the REMAP_SCHEMA parameter enables you to map all of user
HR’s schema to a new user, OE. The REMAP_SCHEMA parameter is similar to the TOUSER para-
meter in the old import utility.

Uses for Data Pump Export and Import
The SQL*Loader tool discussed in the previous chapter is designed to move data into or out of one
or a few tables at the most. For exporting or importing entire schemas and even databases, the Data
Pump Export and Import utilities are ideal. Here are some of the main uses of the Data Pump tools:

• Migrating databases from development to test or production

• Copying test data from development/testing databases to production or vice versa

• Transferring data between Oracle databases on different operating system platforms

• Backing up important tables before you make any changes to them

• Backing up databases

• Moving database objects from one tablespace to another

• Transporting tablespaces between databases

• Reorganizing fragmented table data

• Extracting the DDL for tables and other objects such as stored procedures and packages

■Note Data Pump doesn’t create a perfect backup, because you won’t have up-to-the-minute data in the export
file when a disaster occurs. However, for smaller databases and individual tablespace exports, data exports are
still viable as a backup tool.

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT 591

4517CH14.qxd 8/19/05 11:02 AM Page 591

As you’ll see, the Data Pump Export and Import utilities are extremely versatile and easy to use.
You can export just the DDL for objects if you wish, or you can export and import the objects with
the data. You also have the choice of exporting and importing a single table (or even a part of a single
table), all the tables in a tablespace, an entire schema, or an entire database.

Data Pump Components
On the surface, expdp and impdp are quite similar to the traditional export and import utilities. How-
ever, while they are syntactically similar to the Data Pump clients, exp and imp are ordinary user
processes that use SQL statements like SELECT, INSERT, and CREATE. In contrast, the new Data Pump
utilities are more like control processes that initiate jobs. In Data Pump Export and Import, the
database instance handles the Data Pump utilities.

The Data Pump technology consists of three major components:

• DBMS_DATAPUMP package: This is the main engine for driving data dictionary metadata
loading and unloading. The DBMS_DATAPUMP package (Data Pump API) contains the guts
of the Data Pump technology in the form of procedures that actually drive the data loading
and unloading jobs. The contents of this package perform the work of both the Data Pump
Export and Import utilities.

• DBMS_METADATA package: To extract and modify metadata, Oracle provides the
DBMS_METADATA package (Metadata API), which has been available since Oracle9i. In the
traditional export and import utilities, the metadata of the objects is included in the export
dump file. In Data Pump technology, you need to use the DBMS_METADATA package to
extract the appropriate metadata.

• Command-line clients: The two command-line utilities—expdp and impdp—correspond to
the old exp and imp utilities. The expdp utility invokes the Data Pump Export utility, and the
impdp utility invokes the Data Pump Import utility. The dump files you create with these
new utilities aren’t compatible with the older export/import utilities.

Note that both packages—DBMS_DATAPUMP and DBMS_METADATA—act as APIs (the Data
Pump API and the Metadata API), in the sense that you can use either of them directly in your pro-
grams to load and unload data without accessing the expdp and impdp clients.

Data-Access Methods
A Data Pump Import or export job can access table data in either of two ways:

• Direct-path: This access uses the Direct Path API. Direct-path exports and imports lead to
improved performance, since the direct-path internal stream format is the same format as
the data stored in Oracle dump files. This leads to a reduced need for data conversions.

• External tables: The external tables feature lets Oracle read data from and write data to oper-
ating system files that lie outside the database. Chapter 13 explains external tables in detail.

It is up to Oracle to decide which access method it will employ for a given job. Oracle always
tries to use the direct-path method to load or unload data, but under some conditions, it may not
be able to employ that method. Since direct-path access doesn’t support intra-partition parallelism,
external tables are used for very large data loading or unloading jobs. In the following cases, the
structure of the table and/or the indexes precludes the use of direct-path access, so Data Pump will
use external tables:

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT592

4517CH14.qxd 8/19/05 11:02 AM Page 592

• Clustered tables

• Active triggers in the tables

• A single partition in a table with a global index

• Referential integrity constraints

• Domain indexes on LOB columns

• Tables with fine-grained access control enabled in the insert mode

• Tables with BFILE or opaque type columns

On the other hand, if your table has any LONG data, you must use the direct-path access
method.

■Note The data file format is identical in external tables and the direct-access method. Therefore, you can easily
export data with one method and import it with the other method, if you wish.

Data Pump Files
As in the case of the traditional export and import utilities, Data Pump uses dump files and other
log files, but there are significant differences. You’ll use three types of files for Data Pump operations:

• Dump files: These hold the table data as well as the metadata that’s being loaded or
unloaded.

• Log files: These are the standard files for logging the messages and results of Data Pump
operations.

• SQL files: Data Pump Import uses a special parameter called SQLFILE, which will write all the
DDL statements it will execute during the import job to a file. Data Pump doesn’t actually
execute the SQL, but merely writes the DDL statements to the file specified by the SQLFILE
parameter. You use SQL files only to hold the output of the SQLFILE command during a Data
Pump Import job. This parameter is discussed in the “Data Pump Import Parameters” sec-
tion later in this chapter.

As in the case of the older export/import utilities, all new log files and (and SQL files) will over-
write any older files with the same name. If an older dump file of the same name already exists,
you’ll get an error.

Unlike with the traditional export and import utilities, you use directories and directory objects
to store the Data Pump files. The following section explains how to use directory objects.

Using Directory Objects
A Data Pump job creates all its dump files on the server, not on the client machine where a job may
have originated. Oracle background processes are responsible for all dump file set I/O, on behalf of
the Oracle software owner (usually, the user oracle). This means that for security reasons, you can’t
let any user specify an absolute file path on the server. In addition to a possible violation of security,
there is the matter of safety, as you can unwittingly overwrite a server file if you are given the power
to write dump files anywhere on the system. Similarly, you’ll be able to read all files that the server
has access to, even though you may not have been granted specific privileges to do so. To avoid
these types of problems, Data Pump uses directory objects.

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT 593

4517CH14.qxd 8/19/05 11:02 AM Page 593

■Caution Your Data Pump Export and Import jobs will not run unless you create a directory object first. Subse-
quently, you must also ensure that the user has the necessary file and directory access privileges on that file
system.

Directory objects are named objects that Data Pump maps to a specific operating system direc-
tory. For example, a directory object named dpump_dir1 can point to the /u01/app/oracle/admin/
export directory on the server. You can then access this directory by simply using the dpump_dir1
directory object name. Oracle creates a default directory object, DATA_PUMP_DIR, when you create a
new Oracle Database 10g Release 2 database or if you upgrade a database to that version. This
default DATA_PUMP_DIR directory object points to a directory named dpdump. The default data
pump directory is automatically created by Oracle in one of the following locations:

• ORACLE_BASE/admin/SID

• ORACLE_HOME/admin/SID

If you have defined the ORACLE_BASE directory, Oracle uses the location based on it. Other-
wise, Oracle will create the default directory under the ORACLE_HOME directory. Data Pump will
write all dump files, SQL files, and log files to the directory specified for the default DATA_PUMP_DIR
object. To see exactly where your default DATA_PUMP_DIR directory object is located, you can use the
following query, based on the DBA_DIRECTORIES view:

SQL> SELECT * FROM dba_directories;
OWNER DIRECTORY_NAME DIRECTORY_PATH
--
SYS DATA_PUMP_DIR /u01/app/oracle/product/10.2.0/db_1/admin/orcl/dpdump/
SQL>

Only privileged users like SYS and SYSTEM can use the default directory object DATA_PUMP_DIR.
Thus, user SYSTEM can start a Data Pump Export job without providing a directory name. However,
before a nonprivileged user can use Data Pump Export or Import, the DBA must create a directory
object or grant privileges to use an existing directory. In addition to the DBA, any user with the
CREATE ANY DIRECTORY privilege can create a directory object. Here’s how you create a directory
object:

SQL> CREATE DIRECTORY dpump_dir1 AS '/u01/finance/oradata/dump_dir';

In order for a user to use a specific directory, the user must have access privileges to the direc-
tory object. For example, in order to let the database read and write files on behalf of user salapati in
the new directory object dpump_dir1, you need to grant the following privileges:

SQL> GRANT READ, WRITE ON DIRECTORY dpump_dir1 TO salapati
Grant succeeded.
SQL>

This command will permit the Oracle database to read and write files in the dpump_dir1 direc-
tory object on behalf the user, but won’t give the user any direct privileges on that directory. You’ll
need the write privilege on all files for a Data Pump Export job. During an import, you’ll need read
access to the export dump file. You’ll also need write privileges on the directory for an import job, so
that you can write to the log file. Here’s what happens when you are given the read/write privileges
on a directory object:

• You can read/write files mapped to that directory object only through Oracle.

• The Oracle database must have privileges to read/write files in that directory.

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT594

4517CH14.qxd 8/19/05 11:02 AM Page 594

Once you create a directory and grant the necessary rights, all Data Pump Export and Import
jobs can use the DIRECTORY parameter (described shortly) to specify the name of the directory object
(DIRECTORY=dpump_dir1). This way, the DIRECTORY parameter will indirectly point to the actual oper-
ating system directories and files. Here’s an example:

$ expdp salapati/password DIRECTORY=dpump_dir1 dumpfile=testexp01.dmp

If a user tries to use the expdp or impdp utility without a DBA creating and granting privileges on
a directory beforehand, that user will get an error, which means that Oracle isn’t able to find a direc-
tory object and, hence, can’t start the Data Pump job, as shown in the following example:

[finance] $ expdp samalapati/sammyy1
Export: Release 10.2.0.0 Beta on Sunday, 13 March, 2005 15:49:48
Copyright (c) 2003, Oracle. All rights reserved.
Connected to: Oracle Database 10g Enterprise Edition Release 10.2.0.0.0 - Beta
With the Partitioning, OLAP and Data Mining options
ORA-39002: invalid operation
ORA-39070: Unable to open the log file.
ORA- 39145: directory object parameter must be specified and non-null
oracle@finance [/u01/app/oracle]
[finance] $

In order for the Data Pump utilities to know where to place or get data for their export and
import jobs, you need to specify location information when you use the expdp and impdp clients.
As you know by now, you can’t use absolute directory path location for Data Pump jobs; you must
always use a directory object. However, you can specify this directory object name during an actual
job in several ways:

• DIRECTORY parameter: During a Data Pump Export job, you can specify the directory object
by using the DIRECTORY parameter:

$ expdp hr/hr DIRECTORY=dpump_dir1 . . .

• DIRECTORY:FILE notation: Instead of using the DIRECTORY parameter, you can specify the
directory object’s name as part of the value for a specific Data Pump file (the dump file, log
file, or SQL file). Use a colon (:) to separate the directory and the individual filenames in the
file specification. In the following example, dpump_dir2 is the name of the directory object,
and the Data Pump filename is salapati.log:

$ expdp LOGFILE=dpump_dir2:salapati.log . . .

• DATA_DUMP_DIR environment variable: You can also use the environment variable DATA_DUMP_DIR
to point to the directory object on the server. In order to use the DATA_DUMP_DIR environment,
you must have first created a specific directory object on the server.

For example, you could first create a new directory object on the server with the variable
DATA_DUMP_DIR, and then use the export command to save the value of the DATA_DUMP_DIR variable in
the operating system environment. Once you have made the DATA_DUMP_DIR variable part of your
operating system environment, you don’t need to specify the actual directory name (data_dump_dir2,
in this example) explicitly (by using the DIRECTORY parameter) when you perform a Data Pump
export. As shown in the following example, you merely need to specify the name, not the location,
for the DUMPFILE parameter.

First, create the directory data_dump_dir2 object, as follows:

SQL> CREATE DIRECTORY data_dump_dir2 AS '/u01/app/oracle/datapump/dumpfiles_02';

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT 595

4517CH14.qxd 8/19/05 11:02 AM Page 595

Next, export the environment variable DATA_PUMP_DIR, with the value data_dump_dir2.

$ export DATA_PUMP_DIR data_dump_dir2

Now, you can perform the export without explicitly using the DIRECTORY parameter, since its
value is saved in the DATA_PUMP_DIR environment variable. You merely use the DUMPFILE parameter,
and the employees.dmp file will be located in the directory /u01/app/oracle/datapump/
dumpfiles_02.

$ expdp salapati/password TABLES=employees DUMPFILE=employees.dmp

Understanding the Order of Precedence for File Locations
Now that we have reviewed the various ways you can specify a directory object for a Data Pump job,
you may wonder how Oracle knows which location to use in case there is a conflict. You can have a
situation where you specified a DATA_DUMP_DIR environment variable, but you then also specify a
DIRECTORY parameter for the export job. Here’s the order of precedence for directory objects:

1. Oracle looks to see if you specified a directory name as part of a file-related parameter (for
example, the LOGFILE parameter). Remember that, in these cases, the directory object is
separated from the filename by a colon (:).

2. Oracle’s second choice is to see if you specified a directory object during the export or
import job by using the DIRECTORY parameter (DIRECTORY=dpump_dir1 . . .). If you explic-
itly specify the DIRECTORY parameter, you don’t need to use the directory name as part of a
file-related parameter.

3. If you aren’t using an explicit directory object or using the DIRECTORY parameter, Oracle
checks whether the Data Pump Export and Import clients are using the environment
variable DATA_PUMP_DIR.

4. Finally, Oracle looks to see if there is a default server-based directory object named
DATA_PUMP_DIR. As noted earlier, Oracle automatically creates this directory when you create
a new Oracle Database 10g Release 2 database, or when you upgrade to this version. Note
that the default DATA_DUMP_DIR object is available only to DBAs and other privileged users.

The directory object name resolution simply means that Oracle knows which directory it
should be using to read or write data files. However, you must have already granted the database
read/write privileges at the operating system level in order to enable the database to actually use
the operating system files.

Data Pump Privileges
All Oracle users can use the Data Pump utilities by default. However, you must have the special
privileges EXP_FULL_DATABASE and IMP_FULL_DATABASE to perform advanced tasks. The grant-
ing of these roles will make you a privileged user, with the capability to perform the following tasks:

• Export and import database objects owned by any user

• Attach to and modify jobs started by other users

• Use all the new remapping capabilites during a Data Pump Import job

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT596

4517CH14.qxd 8/19/05 11:02 AM Page 596

The Mechanics of a Data Pump Job
The Data Pump Export and Import utilities use several processes to perform their jobs, including
the key master and worker processes, as well as the shadow process and client processes. Let’s look
at these important Data Pump processes in detail.

The Master Process
The master process, or more accurately, the Master Control Process (MCP), has a process name of
DMnn. The full master process name is in the format <instance>_DMnn_<pid>. There is only one mas-
ter process for each job. The master process controls the execution and sequencing of the entire
Data Pump job. More specifically, the master process performs the following tasks:

• Creates jobs and controls them

• Creates and manages the worker processes

• Monitors the jobs and logs the progress

• Maintains the job state and restart information in the master table

• Manages the necessary files, including the dump file set

The master process uses a special table called the master table to log the location of the
various database objects in the export dump file. The master table is like any Oracle table and is at
the heart of every Data Pump Export and Import job. The master process maintains the job state
and restart information in the master table. Oracle creates the master table in the schema of the
user who is running the Data Pump job at the beginning of every export job. The master table con-
tains various types of information pertaining to the current job, such as the state of the objects in
the export/import job, the location of the objects in the dump file set, the parameters of the job,
and the status of all worker processes. The master table has the same name as the export job, such
as SYS_EXPORT_SCHEMA_01.

The master process uses the master table only for the duration of the export. At the end of
the export, as the last step in the export job, it writes the contents of the master table to the export
dump file and automatically deletes the master table from the database. The deletion of the master
table will occur automatically, as long as the export completed successfully (or if you issue the
KILL_JOB command). However, if you use the STOP_JOB command to stop a job or the export fails
for some reason, the master table isn’t deleted from the database. (Data Pump job commands are
described in the “Data Pump Export Parameters” section later in this chapter.) When you restart
the export job, it then uses the same master table. Since the master table tracks the status of all the
objects, Data Pump can easily tell which objects are in the middle of an export and which have been
successfully exported to the dump files.

The master process re-creates the master table saved by the export utility (in the dump file)
in the schema of the user who is performing the import. This is the first step in any Data Pump
Import job. The Data Pump Import utility reads the contents of the master table to verify the correct
sequence in which it should import the various exported database objects. As in the case of a Data
Pump export, if the import job finishes successfully, Oracle will automatically delete the master
table.

■Note The master table contains all the necessary information to restart a stopped job. It is thus the key to Data
Pump’s job restart capability, regardless of whether you stopped the job intentionally or it died unexpectedly.

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT 597

4517CH14.qxd 8/19/05 11:02 AM Page 597

The Worker Process
The worker process is named <instance>_DWnn_<pid>. It is the process that actually performs the
heavy-duty work of loading and unloading data. The master process (DMnn) creates the worker
process. The degree of parallelism determines the number of worker processes that the master
process will create.

The worker processes maintain the rows of the master table. As they export or import various
objects, they update the master table with information about the status of the various jobs: com-
pleted, pending, or failed.

Shadow Process
When a client logs in to an Oracle server, the database creates an Oracle process to service Data
Pump API requests. This shadow process creates the job consisting of the master table and the
master process. Once a client detaches, the shadow process automatically disappears.

Client Processes
The client processes call the Data Pump API. You perform export and import with the two clients,
expdp and impdp. In the next section, you’ll learn about the various parameters you can specify
when you invoke these clients.

Performing Data Pump Exports and Imports
The Data Pump Export utility loads row data from database tables, as well as object metadata, into
dump file sets in a proprietary format that only the Data Pump Import utility can read. The dump
file sets, which are operating system files, contain data, metadata, and control information. Dump
file sets usually refer to a single file, such as the default export dump file expdat.dmp.

Quite a few of the Data Pump Import utility’s features are mirror images of the Data Pump
Export utility features. However, some features are exclusive to the Data Pump Import utility.

In the following sections, we’ll look at Dump Pump types, modes, and parameters, as well as
some examples.

Data Pump Export Methods
You can interface with the Data Pump Export and Import utilities through the command line, using
a parameter file, or interactively. Let’s now examine the various methods.

■Note Performing a Data Pump export or import of data using manual methods is tedious and error-prone.
OEM provides excellent export and import wizards that let you quickly perform an export or import. You can also
schedule these jobs using OEM. Before you use the OEM’s wizards, however, it’s good to go through the manual
processes to understand what’s involved in using the Data Pump Export and Import utilities.

Using the Command Line
You can use the Data Pump Export utility from the command line in a manner similar to the tradi-
tional export utility. ote that by default, you specify the username/password combination after the
keyword expdp. Here’s a simple example:

$ expdp system/manager DIRECTORY=dpump_dir1 DUMPFILE=expdat1.dmp

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT598

4517CH14.qxd 8/19/05 11:02 AM Page 598

As you can see, the command-line option would quickly get tiring if you were doing anything
but the simplest type of exports.

Using a Parameter File
Rather than specifying the export parameters on the command line, you can put them in a parame-
ter file. You then simply invoke the parameter file during the actual export. Here’s an example of a
parameter file:

SCHEMAS=HR
DIRECTORY=dpump_dir1
DUMPFILE=system1.dmp
SCHEMAS=hr

Once you create the parameter file, all you need to do in order to export the HR schema is
invoke expdp with just the PARFILE parameter:

$ expdp PARFILE=myfile.txt

■Note You can use all command-line export parameters in an export parameter file. The only exception is the
parameter PARFILE itself.

Using Interactive Data Pump Export
Several of you are probably familiar with the interactive feature of the old export and import utilities.
All you needed to do during an interactive export or import was type exp or imp at the command
line, and Oracle would prompt you for the rest of the information. Interactive Data Pump is quite
different from the interactive mode of the older utilities. As you’ll see in the following sections, Data
Pump’s interactive mode isn’t meant to be used in the same way as the exp/imp interactive mode—
you can’t start an interactive job using the Data Pump Export (or Import) utility. You can use the
interactive mode only to intervene during a running job.

In Data Pump Export, you use the interactive method for one purpose only: to change some
export parameters midstream while the job is still running. There are two ways to get into the inter-
active mode. The first is by pressing the Ctrl+C combination on your keyboard, which interrupts the
running job and displays the export prompt (export>) on your screen. At this point, you can deal
interactively with the Export utility, with the help of a special set of interesting commands, which
I’ll explain later in this chapter in the “Interactive Mode Export Parameters” section.

The second way to enter the interactive mode of operation is by using the ATTACH command.
If you are at a terminal other than the one where you started the job, you can attach to the running
job by specifying the ATTACH parameter.

■Note In Data Pump, the interactive mode means that the export or import job stops logging its progress on the
screen and displays the export> (or import>) prompt. You can enter the special interactive commands at this
point. Note that the export or import job keeps running throughout, without any interruption.

You can also perform Data Pump Export and Import operations easily through the OEM Data-
base Control interface. To use this feature, start the Database Control, select Maintenance, and then
choose Utilities. On the Utilities page, you can see the various choices for exporting and importing
of data.

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT 599

4517CH14.qxd 8/19/05 11:02 AM Page 599

Data Pump Export Modes
As in the case of the regular export utilities, you can perform Data Pump Export jobs in several
modes:

• Full export mode: You use the FULL parameter when you want to export the entire database in
one export session. You need the EXPORT_FULL_DATABASE role to use this mode.

• Schema mode: If you want to export a single user’s data and/or objects only, you must use
the SCHEMAS parameter.

• Tablespace mode: By using the TABLESPACES parameter, you can export all the tables in one or
more tablespaces. If you use the TRANSPORT_TABLESPACES parameter, you can export just the
metadata of the objects contained in one or more tablespaces. You may recall that you can
export tablespaces between databases by first exporting the metadata, copying the files of
the tablespace to the target server, and then importing the metadata into the target database.

• Table mode: By using the TABLES parameter, you can export one or more tables. The TABLES
parameter is identical to the TABLES parameter in the old export utility.

Schema mode is the default mode for Data Pump Export and Import jobs. If you log in as fol-
lows, for example, Data Pump will automatically perform a full export of all of SYSTEM’s objects:

$ expdp system/sammyy1

If you are the SYSTEM user, you can export another schema’s objects by explicitly using the
SCHEMAS parameter, as shown in Listing 14-1.

Listing 14-1. A Data Pump Export Using the Schema Mode

$ expdp system/sammyy1 DUMPFILE=scott.dmp SCHEMAS=SCOTT
EXPORT: Release 10.2.0.0.0 - Beta on Wednesday, 16 March, 2005 18:24:58
With the Partitioning, OLAP and Data Mining options
Master table "SCOTT"."SYS_SQL_FILE_SCHEMA_01" successfully loaded/unloaded
Starting "SYSTEM"."SYS_EXPORT_SCHEMA_01": system/******** dumpfile=scott.dmp
schemas=SCOTT
total estimation using BLOCKS method: 192 KB
Processing object type SCHEMA_EXPORT/USER
Processing object type SCHEMA_EXPORT/SYSTEM_GRANT
Processing object type SCHEMA_EXPORT/ROLE_GRANT
Processing object type SCHEMA_EXPORT/DEFAULT_ROLE
Processing object type SCHEMA_EXPORT/PRE_SCHEMA/PROCACT_SCHEMA
Processing object type SCHEMA_EXPORT/TABLE/TABLE
Processing object type SCHEMA_EXPORT/TABLE/INDEX/INDEX
Processing object type SCHEMA_EXPORT/TABLE/CONSTRAINT/CONSTRAINT
Processing object type SCHEMA_EXPORT/TABLE/INDEX/STATISTICS/INDEX_STATISTICS
Processing object type SCHEMA_EXPORT/CONSTRAINT/REF_CONSTRAINT
Processing object type SCHEMA_EXPORT/TABLE/STATISTICS/TABLE_STATISTICS
. . exported "SCOTT"."DEPT"
. . exported "SCOTT"."EMP"
. . exported "SCOTT"."SALGRADE"
. . exported "SCOTT"."BONUS"
Dump file set for SYSTEM.SYS_EXPORT_SCHEMA_01 is:

/u01/app/oracle/product/10.2.0/db_1/admin/orcl/dpdump/scott.dmp
Job "SYSTEM"."SYS-EXPORT_SCHEMA_01" successfully completed AT 18:25:16

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT600

4517CH14.qxd 8/19/05 11:02 AM Page 600

Data Pump Export Parameters
Some of the Data Pump Export utility parameters will be familiar to you from the traditional export
utility. Others are quite new. Here, I’ll briefly run through the parameters, providing detailed expla-
nations for the most important parameters. For this discussion, I’ve grouped the parameters into
the following categories:

• File- and directory-related parameters

• Export mode-related parameters

• Export filtering parameters

• Estimation parameters

• The network link parameter

• Interactive mode export parameters

• Job-related parameters

Note that you can use all the export parameters at the command line or in parameter files,
except for those listed in the “Interactive Mode Export Parameters” section.

File- and Directory-Related Parameters
You can specify several file- and directory-related parameters during a Data Pump Export job. These
include the DIRECTORY, DUMPFILE, FILESIZE, PARFILE, LOGFILE, NOLOGFILE, and COMPRESSION parameters.

DIRECTORY

The DIRECTORY parameter refers to the directory object to be used for dump files and log files. See
the “Using Directory Objects” section earlier in this chapter for details.

DUMPFILE

The DUMPFILE parameter provides the name (or list) of the dump file(s) to which the export dump
should be written. The DUMPFILE parameter replaces the FILE parameter in the old export utility.
You can provide multiple dump filenames in several ways:

• Create multiple dump files by specifying the %U substitution variable. The substitution vari-
able will start at 01 and can go up to 99. For example, a specification like exp%U.dmp can be
expanded into filenames such as exp01.dmp, exp02.dmp, exp03.dmp, and so on.

• Provide multiple files in a comma-separated list.

• Specify the DUMPFILE parameter multiple times for a single export job.

■Note If you specify the %U notation to indicate multiple dump files, the number of files you can create is equal
to the value of the PARALLEL parameter.

If you don’t specify the DUMPFILE parameter, Oracle will use the default name expdat.dmp for
the export dump file, just as it did with the traditional export utility.

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT 601

4517CH14.qxd 8/19/05 11:02 AM Page 601

FILESIZE

The FILESIZE parameter is purely optional, and it specifies the size of the dump file in bytes by
default. You may use bytes, kilobytes, megabytes, and gigabytes to specify the FILESIZE parameter.
If you don’t specify this parameter, the dump file has no limits on its size. If you use the FILESIZE
parameter by specifying, say 10MB, as the maximum dump file size, your export will stop if your
dump file reaches its size limit, and you can restart it after correcting the problem.

PARFILE

The PARFILE parameter stands for the same thing it did in traditional export utility: the parameter
file. As explained earlier in this chapter, you can specify export parameters in a parameter file,
instead of entering them directly from the command line.

LOGFILE and NOLOGFILE

You can use the LOGFILE parameter to specify a log file for your export jobs. Here’s what you need to
remember regarding this parameter:

• If you just specify the LOGFILE parameter without the DIRECTORY parameter, Oracle automati-
cally creates the log file in the location you specified for the DIRECTORY parameter.

• If you don’t specify this parameter, Oracle creates a log file named export.log.

If you specify the parameter NOLOGFILE, Oracle does not create its log file (export.log). You still
see the progress of the export job on the screen, but Oracle suppresses the writing of a separate log
file for the job.

COMPRESSION

By default, all metadata is compressed before it’s written out to an export dump file. You can disable
compression by specifying a value of NONE for the COMPRESSION parameter, as shown here:

$ expdp hr/hr DIRECTORY=dpump_dir1 DUMPFILE=hr_comp.dmp COMPRESSION=NONE

The COMPRESSION parameter can take one of two values: METADATA_ONLY or NONE. There is no way
for you to specify the compression of the actual export data itself.

Export Mode-Related Parameters
The export mode-related parameters are FULL, SCHEMAS, TABLES, TABLESPACES, TRANSPORT_TABLESPACES,
and TRANSPORT_FULL_CHECK. You’ve already seen all these parameters except the last one, TRANSPORT_
FULL_CHECK, in the “Data Pump Export Modes” section earlier in this chapter.

The TRANSPORT_FULL_CHECK parameter checks to make sure that the tablespaces you are trying
to transport meet all the conditions to qualify for the transportable tablespaces job. Using this
parameter, you can specify whether to check for dependencies between objects inside the trans-
portable set and the other objects in the database. For example, an index is entirely dependent on
the table, since it doesn’t have any meaning without the table. However, a table isn’t dependent on
an index, since the table can exist without an index.

You can set the TRANSPORT_FULL_CHECK parameter to a value of Y or N. If you set TRANSPORT_FULL_
CHECK=Y, the Data Pump Export job will check for two-way dependencies. If you have a table in the
transportable tablespace but not its indexes, or your tablespace contains indexes without their
tables, the export job will fail. If you set TRANSPORT_FULL_CHECK=N, the Data Pump Export job will
check for one-way dependencies. If your transportable tablespace set contains tables without their
indexes, the export will succeed. However, if the set contains indexes without their tables, the

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT602

4517CH14.qxd 8/19/05 11:02 AM Page 602

Export Filtering Parameters
Data Pump contains several parameters related to export filtering. Some of them are substitutes for
old export parameters; others offer new functionality. Let’s look at these important parameters in
detail.

CONTENT

By using the CONTENT parameter, you can filter what goes into the export dump file. The CONTENT
parameter can take three values:

• ALL exports both table data and table and other object definitions (metadata).

• DATA_ONLY exports only table rows.

• METADATA_ONLY exports only metadata.

Here’s an example:

$ expdp system/manager DUMPFILE=expdat1.dmp CONTENT=DATA_ONLY

■Note The CONTENT=METADATA_ONLY option is equivalent to the ROWS=N option in the original export utility.

EXCLUDE and INCLUDE

The EXCLUDE and INCLUDE parameters are two mutually exclusive parameters that you can use to
perform what is known as metadata filtering. Metadata filtering enables you to selectively leave out
or include certain types of objects during a Data Pump Export or Import job. In the old export util-
ity, you used the CONSTRAINTS, GRANTS, and INDEXES parameters to specify whether you wanted to
export those objects. Using the EXCLUDE and INCLUDE parameters, you now can include or exclude
many other kinds of objects besides the four objects you could filter previously. For example, if
you don’t wish to export any packages during the export, you can specify this with the help of the
EXCLUDE parameter.

■Note If you use the CONTENT=DATA_ONLY option (same as the old ROWS=Y parameter), you aren’t exporting any
objects—just table row data. Naturally, in this case, you can’t use either the EXCLUDE or INCLUDE parameter.

Simply put, the EXCLUDE parameter helps you omit specific database object types from an
export or import operation. The INCLUDE parameter, on the other hand, enables you to include
only a specific set of objects. Following is the format of the EXCLUDE and INCLUDE parameters:

EXCLUDE=object_type[:name_clause]
INCLUDE=object_type[:name_clause]

For both the EXCLUDE and INCLUDE parameters, the name clause is optional. As you know, sev-
eral objects in a database—such as tables, indexes, packages, and procedures—have names. Other
objects, such as grants, don’t. The name clause in an EXCLUDE or an INCLUDE parameter lets you apply
a SQL function to filter named objects.

Here’s a simple example that excludes all tables that start with EMP:

EXCLUDE=TABLE:"LIKE 'EMP%'"

In this example, "LIKE 'EMP%'" is the name clause.

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT 603

4517CH14.qxd 8/19/05 11:02 AM Page 603

The name clause in an EXCLUDE or INCLUDE parameter is optional. It’s purely a filtering device,
allowing you finer selectivity within an object type (index, table, and so on). If you leave out the
name clause component, all objects of the specified type will be excluded or included.

In the following example, Oracle excludes all indexes from the export job, since there is no
name clause to filter out only some of the indexes:

EXCLUDE=INDEX

You can also use the EXCLUDE parameter to exclude an entire schema, as shown in the following
example:

EXCLUDE=SCHEMA:"='HR'"

The INCLUDE parameter is the precise opposite of the EXCLUDE parameter: it forces the inclusion
of only a set of specified objects in an export. As in the case of the EXCLUDE parameter, you can use a
name clause to qualify exactly which objects you want to export. Thus, you have the ability to selec-
tively choose objects at a fine-grained level.

The following three examples show how you can use the name clause to limit the selection of
objects:

INCLUDE=TABLE:"IN ('EMPLOYEES', 'DEPARTMENTS')"
INCLUDE=PROCEDURE
INCLUDE=INDEX:"LIKE 'EMP%'"

The first example is telling the Data Pump job to include only two tables: employees and
departments. In the second example, the INCLUDE parameter specifies that only procedures should
be included in this export job. The third example shows how you can specify that only those indexes
that start with EMP should be part of the export job.

The following example shows how you must use slashes (\) to escape the double quotation
marks:

$ expdp scott/tiger DUMPFILE=dumphere:file%U.dmp
schemas=SCOTT EXCLUDE=TABLE:\"='EMP'\", EXCLUDE=FUNCTION:\"='MY_FUNCTION''\",

■Note The EXCLUDE and INCLUDE parameters are mutually exclusive. You can use one or the other, not both
simultaneously in the same job.

When you filter metadata by using the EXCLUDE or INCLUDE parameters, remember that all
objects that depend on any of the filtered objects are processed in the same fashion as the filtered
object. For example, when you use the EXCLUDE parameter to exclude a table, you’ll also be automat-
ically excluding the indexes, constraints, triggers, and so on that are dependent on the table.

QUERY

The QUERY parameter serves the same function as it does in the traditional export utility: it lets
you selectively export table row data with the help of a SQL statement. However, the parameter
is enhanced for Oracle Database 10g by permitting you to qualify the SQL statement with a table
name, so that it applies only to a particular table. Here’s an example:

QUERY=OE.ORDERS: "WHERE order_id > 100000"

In this example, only those rows in the orders table (owned by user OE) where the order_id is
greater than 100000 are exported.

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT604

4517CH14.qxd 8/19/05 11:02 AM Page 604

SAMPLE

Using the brand-new Oracle Database 10g Release 2 SAMPLE parameter, you now have the capability
to export only a subset of data from a table. The SAMPLE parameter lets you specify a percentage
value ranging from .000001 to 100. This parameter has the following syntax:

SAMPLE=[[schema_name.]table_name:]sample_percent

Here’s an example:

SAMPLE="HR"."EMPLOYEES":50

You specify the sample size by providing a value for the SAMPLE_PERCENT clause. The schema
name and table name are optional. If you don’t provide the schema name, the current schema
is assumed. You must provide a table name if you do provide a schema name. Otherwise, the sam-
ple percent value will be used for all the tables in the export job. In the following example, the
sample size is 70 percent for all tables in the export job because it doesn’t specify a table name:

$ expdp hr/hr DIRECTORY=dpump_dir1 DUMPFILE=sample.dmp SAMPLE=70

Estimation Parameters
Two interesting parameters enable you to estimate how much physical space your export job will
consume: ESTIMATE and ESTIMATE_ONLY.

ESTIMATE

The ESTIMATE parameter will tell you how much space your new export job is going to consume. The
space estimate is always in terms of bytes. You can specify that the database provide you the space
estimates using either the number of database blocks (BLOCKS option) in the objects that are going
to be exported or the optimizer statistics (STATISTICS option) for the tables. The following is the syn-
tax of the ESTIMATE parameter specification:

ESTIMATE={BLOCKS | STATISTICS}

By default, Oracle estimates the export job space requirements in terms of blocks. It simply
takes your database block size and multiplies it by the number of blocks all the objects together will
need. Here is an example of what you’ll see in your log file (and on the screen):

Estimate in progress using BLOCKS method...
Processing object type SCHEMA_EXPORT/TABLE/TABLE_DATA
Total estimation using BLOCKS method: 654 KB

Since the space estimation in terms of blocks is the default behavior, you don’t need to specify
the ESTIMATE parameter during the export. However, if you have analyzed all your tables recently,
you can ask the Data Pump Export utility to estimate the space requirements by using the statistics
the database has already calculated for each of the tables. In order to tell the database to use the
database statistics (rather than use the default BLOCKS method), you need to specify the ESTIMATE
parameter in the following manner:

ESTIMATE=STATISTICS

Here’s what you’ll see in your log file when you use the ESTIMATE=STATISTICS parameter:

Estimate in progress using STATISTICS method...
Processing object type SCHEMA_EXPORT/TABLE/TABLE_DATA
. estimated "SYSTEM"."HELP" 35.32 KB
Total estimation using STATISTICS method: 65.72 KB

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT 605

4517CH14.qxd 8/19/05 11:02 AM Page 605

ESTIMATE_ONLY

While the ESTIMATE parameter is operative only during an actual export job, you can use the
ESTIMATE_ONLY parameter without starting an export job. Listing 14-2 shows one such example.

Listing 14-2. Using the ESTIMATE_ONLY Parameter

[finance $ expdp system/manager DIRECTORY=dpump_dir1 ESTIMATE_ONLY=Y
Export: Release 10.2.0.0.0 - Beta on Sunday, 13 March, 2005 15:57:46
Copyright (c) 2003, Oracle. All rights reserved.
Connected to: Oracle Database 10g Enterprise Edition Release 10.2.0.0.0 - Beta
With the Partitioning, OLAP and Data Mining options
Starting "SYSTEM"."SYS_EXPORT_SCHEMA_02":
system/******** directory=dpump_dir1 estimate_only=y
Estimate in progress using BLOCKS method...
Processing object type SCHEMA_EXPORT/TABLE/TABLE_DATA
. . .
estimated "SYSTEM"."XP_TABLESPACE" 32 KB
estimated "SYSTEM"."XP_TUNING_SESSION" 32 KB
Total estimation using BLOCKS method: 10.89 MB
Job "SYSTEM"."SYS_EXPORT_SCHEMA_02" successfully completed at 11:31
oracle@finance [/u01/app/oracle]
[test] $

Although the log indicates that the export job “successfully completed,” all the previous job
really did was to estimate the space that you will need for the actual export job.

The Network Link Parameter
The Data Pump Export utility provides a way to initiate a network export. Using the NETWORK_LINK
parameter, you can initiate an export job from your server and have Data Pump export data from
a remote database to dump files located on the instance from which you initiate the Data Pump
Export job.

Here’s an example that shows you how to perform a network export:

$ expdp hr/hr DIRECTORY=dpump_dir1 NETWORK_LINK=finance@prod1
DUMPFILE=network_export.dmp LOGFILE=network_export.log

In the example, the NETWORK_LINK parameter must have a valid database link as its value. This
means that you must have created the database link ahead of time. This example is exporting data
from the finance database on the prod1 server.

Let’s say you have two databases, called local and remote. In order to use the NETWORK_LINK
parameter and pass data directly over the network, follow these steps:

1. Create a database link in the remote database:

SQL> CREATE DATABASE LINK remote
2 CONNECT TO scott IDENTIFIED BY tiger
3 USING 'remote.world';

2. If there isn’t one already, create a Data Pump directory object:

SQL> CREATE DIRECTORY remote_dir1 AS '/u01/app/oracle/dp_dir';

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT606

4517CH14.qxd 8/19/05 11:02 AM Page 606

3. Set the new directory as your default directory, by exporting the directory value:

$ export DATA_PUMP_DIR=remote_dir1

4. Perform the network export from the database named remote:

$ expdp system/sammyy1 SCHEMAS=SCOTT FILE_NAME=network.dmp NETWORK_LINK=remote

You’ll see that the Data Pump Export job will create the dump file network.dmp (in the direc-
tory location specified by remote_dir1) on the server hosting the database named local. However,
the data within the dump file is extracted from the user scott’s schema in the remote database. You
can see that the NETWORK_LINK parameter carries the dump files over the network from a remote
location to the local server. All you need is a database link from a database on the local server to
the source database on the remote server.

■Caution You can’t use Data Pump in the normal way to export data from a read-only database. This is
because Data Pump can’t create the necessary master table or create external tables on a read-only tablespace.
Using the network mode, however, you can export data from a read-only database on server A to dump files on
server B, where Data Pump is running.

The Encryption Parameter
If your export data dump file includes encrypted column data columns, you can use the new
ENCRYPTION_PASSWORD parameter to supply a password, to prevent the writing of the encrypted col-
umn data as clear text in the dump file set. When you import a dump file that was created using an
encryption password this way, you’ll need to supply the password. Here’s an example of using the
ENCRYPTION_PASSWORD parameter:

$ expdp hr/hr TABLES=employees DUMPFILE=test.dmp ENCRYPTION_PASSWORD=123456

Job-Related Parameters
Several of the Data Pump Export parameters can be classified as job-related parameters. I’ll briefly
discuss the important ones here.

JOB_NAME

The JOB_NAME parameter is purely optional. You can use this parameter to give an explicit name to
the export job, instead of letting Oracle assign a default name. Remember that Oracle gives the
master table, which holds critical information about your export job, the same name as the name
of the job.

STATUS

The STATUS parameter is useful while you’re running long jobs, as it provides you with an updated
status at intervals that you can specify. The parameter takes integer values that stand for seconds.
The default is 0 and will show new status when it’s available. If you want to reassure yourself with
minute by minute updates concerning a Data Pump job you’re currently running, use the STATUS
parameter, as shown in Listing 14-3.

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT 607

4517CH14.qxd 8/19/05 11:02 AM Page 607

Listing 14-3. Using the STATUS Parameter

$ expdp system/manager STATUS=60 . . .
. . .
Worker 1 Status:
State: EXECUTING
..Object Schema: SYSTEM
..Object Name: SYS_EXPORT_SCHEMA_01
Object Type: SCHEMA_EXPORT/TABLE/TABLE_DATA
Completed Objects: 1
Total Objects: 65

. . exported "SYSTEM"."REPCAT$_SITES_NEW"
Job: SYS_EXPORT_SCHEMA_01
Operation: EXPORT
Mode: SCHEMA
State: EXECUTING
Bytes Processed: 69,312
Percent Done: 99
Current Parallelism: 1
Job Error Count: 0
Dump File: C:\ORACLE\PRODUCT\10.1.0\ADMIN\EXPORT\EXPDAT6.DMP
bytes written: 1,748,992

. . .

The STATUS parameter shows the overall percentage of the job that is completed, the status of
the worker processes, and the status of the current data objects being processed. Note that the Data
Pump log file will show the completion status of the job, whereas the STATUS parameter gives you
the status of an ongoing Data Pump job.

FLASHBACK_SCN

The FLASHBACK_SCN parameter specifies the system change number (SCN) that Data Pump Export
will use to enable the Flashback utility. If you specify this parameter, the export will be consistent as
of this SCN.

The following example shows how you can export the user HR’s schema up to the SCN 150222:

$ expdp hr/hr DIRECTORY=dpump_dir1 DUMPFILE=hr_exp.dmp FLASHBACK_SCN=150222

FLASHBACK_TIME

The FLASHBACK_TIME parameter is similar to the FLASHBACK_SCN parameter. The only difference is that
here you use a time, instead of an SCN, to limit the export. Oracle finds the SCN that most closely
matches the time you specify, and uses this SCN to enable the Flashback utility. The Data Pump
Export operation will be consistent as of this SCN. Here’s an example:

$ expdp system/sammyy1 DIRECTORY=dpump_dir1 DUMPFILE=hr_time.dmp
FLASHBACK_TIME="TO_TIMESTAMP('25-05-2005 17:22:00', 'DD-MM-YYYY HH24:MI:SS')"

■Note FLASHBACK_SCN and FLASHBACK_TIME are mutually exclusive.

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT608

4517CH14.qxd 8/19/05 11:02 AM Page 608

PARALLEL

PARALLEL is the mighty parameter that lets you specify more than a single active execution thread
(worker process) for your export job. Using the PARALLEL parameter means that your jobs will use
multiple threads for their execution. You can change the degree of parallelism on the fly by using the
ATTACH command. Note that the Data Pump PARALLEL parameter has nothing to do with the Oracle
parallel execution features, but they can work together.

The default value of the PARALLEL parameter is 1, meaning a single-thread export operation
writing to a single dump file. If you specify anything more than 1 as the value for the PARALLEL
parameter, you also should remember to specify the same number of dump files, so the multiple
execution threads can simultaneously write to the multiple dump files. Here’s an example that
shows how you can set the level of parallelism to 3, forcing the export job to write in parallel to
three dump files:

$ expdp system/manager DIRECTORY=dpump_dir1 DUMPFILE=par_exp%U.dmp PARALLEL=3

In this example, the DUMPFILE parameter uses the substitution varable %U to indicate that mul-
tiple files should be generated, of the format par_expNN.dmp, where NN is a two-character integer
starting with 01. Since the PARALLEL parameter is set to 3, the substitution variable will create three
files with the following names: par_exp01.dmp, par_exp02.dmp, and par_exp03.dmp.

Note that you don’t need to use the %U substitution variable to generate multiple dump files
when you choose a value greater than 1 for the PARALLEL parameter. You could simply use a comma-
separated list of values, as follows:

$ expdp system/manager DIRECTORY=dpump_dir1
DUMPFILE=(par_exp01.dmp,par_exp02.dmp,par_exp03.dmp)

Be aware that if you don’t have sufficient I/O bandwidth, you may actually experience a degra-
dation in Data Pump performance with the PARALLEL parameter.

■Caution If you specify the PARALLEL parameter, make sure you allocate the same number of dump files as
the degree of parallelism. You must also remember that the higher the degree of parallelism, the higher the mem-
ory, CPU, and network bandwith usage as well.

ATTACH

The ATTACH parameter attaches your Data Pump client session to a running job and places you in
an interactive mode. You can use this parameter only in conjunction with the username/password
combination; you can’t use any other export parameters along with it. Here’s an example:

$ expdp hr/hr ATTACH=hr.export_job

The ATTACH parameter is very important, as it’s one of the two ways to open an interactive Data
Pump job, as explained in the following section.

Interactive Mode Export Parameters (Commands)
As I mentioned earlier in this chapter, the interactive mode of Data Pump is quite different from the
interactive export and import mode in the older utilities. Traditionally, the interactive mode gave
you the chance to enter a limited set of export/import parameters at the command line in response

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT 609

4517CH14.qxd 8/19/05 11:02 AM Page 609

to the queries made by the export or import utility. You use the interactive mode in the new Data
Pump technology only to intervene in the middle of a running job, to either suspend the job or
modify some aspects of it. You can enter the interactive mode of Data Pump Export in either of
two ways:

• Use the Ctrl+C keyboard combination during a Data Pump Export job, if you want to enter
the interactive mode from the same session where you are running the Data Pump job.

• Use a separate session or even a separate server to attach yourself to a running session by
using—what else?—the ATTACH command. (You can also attach to a stopped job.) When you
successfully attach yourself to a job, you’ll be able to use specific export parameters in an
interactive mode. I use the word parameters, but you may also refer these as interactive
export commands.

■Note In the Data Pump Export (and Import) utility, the only way to get into an interactive mode of operation is
by using the Ctrl+C sequence or by opening another session and “attaching” yourself to that session. You cannot
start an interactive Data Pump session from the command line.

Let’s examine when you might use the interactive mode in a Data Pump Export job. Suppose
that you started a job in the evening at work and left for home. At midnight, you check the status of
the job and find that it’s barely moving. You can easily start another session, and then connect to
the running job and monitor it by using the ATTACH command. When you do this, the running job
does not pause. Instead, it opens an interactive window into the running session so you can change
some parameters to hasten the crawling export job via a special set of interactive Data Pump Export
commands. Using the ATTACH parameter, you can restart jobs that are stalled because of a lack of
space in the file system, instead of having to start a new job from the beginning. This feature comes
in especially handy when dealing with exports and imports of large amounts of data.

Listing 14-4 shows an example of using the ATTACH command.

Listing 14-4. Using the ATTACH Command to Attach to a Stopped Job

[orcl] $ expdp system/sammyy1 ATTACH=system.sys_export_schema_01
Export: Release 10.2.0.0.0 - Beta on Monday, 14 March, 2005 11:03:08
Copyright (c) 2003, Oracle. All rights reserved.
Connected to: Oracle Database 10g Enterprise Edition Release 10.2.0.0.0 -Beta
With the Partitioning, OLAP and Data Mining options
Job: SYS_EXPORT_SCHEMA_01
Owner: SYSTEM
Operation: EXPORT
Creator Privs: FALSE
GUID: F24953A52C006A63E0340060B0B2C268
Start Time: Monday, 14 March, 2005 11:03:03
Mode: SCHEMA
Instance: orcl
Max Parallelism: 1
EXPORT Job Parameters:
Parameter Name Parameter Value:

CLIENT_COMMAND system/********
State: EXECUTING
Bytes Processed: 0
Current Parallelism: 1
Job Error Count: 0

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT610

4517CH14.qxd 8/19/05 11:02 AM Page 610

Dump File: /u01/app/oracle/product/10.2.0/db_1/admin/orcl/dpdump/expdat.dmp
bytes written: 4,096

Worker 1 Status:
State: EXECUTING

■Note You may attach multiple clients to a single job.

You can attach to a running job by using the ATTACH command as just shown, or by simply
using the Ctrl+C (^C) sequence on the server where the job is actually running. When you use the
Ctrl+C sequence, you get the interactive export prompt (export>), indicating that Data Pump is
awaiting your interactive commands. Here’s an example:

Starting "SYSTEM"."SYS_EXPORT_SCHEMA_01": system/********
Estimate in progress using BLOCKS method...
(You stop the export job by using the ^C sequence)
export>

Note that when you use the ATTACH command or the Ctrl+C sequence to interactively attach to
a job, you don’t stop the running job itself. The commands will merely stop the display of the job
messages on the screen and present you with the prompt (export>).

From the interactive prompt, you can use several options to influence the progress of the cur-
rently executing Data Pump job. You may intervene during a running export or import job, not only
when you issue the ATTACH or Ctrl+C sequence, but also when the jobs temporarily fail. For example,
your export job may run out of dump file space, as shown by the following set of entries in your
export log file:

Processing object type SCHEMA_EXPORT/TABLE/COMMENT
Processing object type SCHEMA_EXPORT/VIEW/VIEW
Processing object type SCHEMA_EXPORT/TABLE/CONSTRAINT/REF_CONSTRAINT
ORA-39095: Dump file space has been exhausted: Unable to allocate 524288 bytes
Job "SYSTEM"."SYS_EXPORT_SCHEMA_01" stopped due to fatal error at 18:40
...

One option is to end this idle export job with the following interactive command:

export> KILL_JOB

More likely, you would want the job to resume by adding more space to your directory. Here’s
how you can use the ADD_FILE command to add files to your export directory:

export> ADD_FILE=data_dump_dir:expdat02.dmp

Once you finish adding space to the export directory, you use the interactive command
START_JOB to continue the stopped export job, as shown here:

export> START_JOB

To resume the logging of the output on your screen, you issue the CONTINUE_CLIENT command,
as shown here:

export> CONTINUE_CLIENT
Job SYS_EXPORT_SCHEMA_01 has been reopened at Sunday, 20 March, 2005 19:15
Restarting "SYSTEM"."SYS_EXPORT_SCHEMA_01": system/********
parfile=test_export.par
...

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT 611

4517CH14.qxd 8/19/05 11:02 AM Page 611

In a Data Pump Import job, your space-related problems are most likely to be caused by run-
ning out of room in the tablespaces that contain the tables into which you are importing. In such a
case, the import job will stop in the middle. You can add space to the relevant tablespaces, and then
use the ATTACH command to attach to the held-up job, followed by the START_JOB and CONTINUE_CLIENT
commands, as shown in the preceding example.

■Note You must be a DBA, or have EXP_FULL_DATABASE or IMP_FULL_DATABASE roles, in order to attach and
control Data Pump jobs of other users.

Table 14-1 provides a summary of the interactive Data Pump Export commands.

Table 14-1. Interactive Data Pump Export Commands

Command Description

ADD_FILE Adds a dump file to the dump file set.

CONTINUE_CLIENT Returns to logging mode. The job will be restarted if it was idle.

EXIT_CLIENT Quits the client session and leaves the job running.

HELP Provides summaries of the usage of the interactive commands.

KILL_JOB Detaches and deletes the job.

PARALLEL Changes the number of active workers for the current job.

START_JOB Starts or resumes the current job.

STATUS Sets the frequency of job monitoring (in seconds). The default (0) will show
the new status when available.

STOP_JOB Performs an orderly shutdown of the job execution and exits the client.

■Tip STOP_JOB=IMMEDIATE performs an immediate shutdown of the Data Pump job.

I’ll explain the important interactive Data Pump parameters in the following sections, grouped
in the categories of client-related parameters, job-related parameters, and other parameters.

Client-Related Interactive Parameters

The CONTINUE_CLIENT parameter will take you out of the interactive mode and resume the running
export job. Your client connection will still be intact, and you’ll continue to see the export messages
on your screen. However, the EXIT_CLIENT parameter will stop the interactive session, as well as ter-
minate the client session. In both of these cases, the actual Data Pump Export job will continue to
run unhindered.

Job-Related Interactive Parameters

You can use several job-related parameters from any interactive session you open with an export
session using the ATTACH command. You can use the STOP_JOB command to stop the export job in an
orderly fashion. To stop it immediately, use the STOP_JOB=IMMEDIATE command. You can choose to
resume any export jobs you’ve stopped in this manner with the START_JOB command.

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT612

4517CH14.qxd 8/19/05 11:02 AM Page 612

If you decide that you don’t really want to continue the job you’ve just attached to, you can
terminate it by using the KILL_JOB parameter. Unlike the EXIT_CLIENT parameter, the KILL_JOB
parameter terminates both the client as well as the export job itself.

To summarize, the job-related interactive parameters work as follows:

• STOP_JOB stops running Data Pump jobs.

• START_JOB resumes stopped jobs.

• KILL_JOB kills both the client and the Data Pump job.

■Note You can restart any job that is stopped, whether it’s stopped because you issued a STOP_JOB command
or due to a system crash, as long as you have access to the master table and an uncorrupted dump file set.

Other Interactive Parameters

From the interactive prompt, you can use the ADD_FILE parameter to add a dump file to your job, if
you find that the dump file is filling rapidly and may not have any more free space left. You can also
use the HELP and STATUS parameters interactively, and both of these parameters function the same
way as their command-line counterparts.

Data Pump Export Examples
Let’s look at a few simple Data Pump Export job specifications that demonstrate some of the con-
cepts you’ve learned in this chapter. The first example creates an export dump file of just two tables:
employees and jobs.

$ expdp hr/hr TABLES=employees,jobs DUMPFILE=dpump_dir1:table.dmp NOLOGFILE=Y

The following example shows how to use a parameter file, as well as how to use the CONTENT and
EXCLUDE parameters. The CONTENT=DATA_ONLY specification means you are exporting just rows of data
and excluding all object definitions (metadata). The EXCLUDE parameter requires that the countries,
locations, and regions tables be omitted from the export. The QUERY parameter stipulates that all the
data in the employees table, except that belonging to department_id 20, be exported. The parameter
file, exp.par, has the following information:

DIRECTORY=dpump_dir1
DUMPFILE=dataonly.dmp
CONTENT=DATA_ONLY
EXCLUDE=TABLE:"IN ('COUNTRIES', 'LOCATIONS', 'REGIONS')"
QUERY=employees:"WHERE department_id !=20 ORDER BY employee_id"

You can then issue the following command to execute the exp.par parameter file:

$ expdp hr/hr PARFILE=exp.par

The following example illustrates a schema mode export. You don’t see any mention of the
SCHEMA parameter, because Data Pump will export a schema (of the exporting user) by default.

$ expdp hr/hr DUMPFILE=dpump_dir1:expschema.dmp
LOGFILE=dpump_dir1:expschema.log

■Note By default, the Data Pump Export utility will run the export in the schema mode.

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT 613

4517CH14.qxd 8/19/05 11:02 AM Page 613

The following example shows how you can export specific tables from a specific schema:

$ expdp hr/hr TABLES=employees,jobs DUMPFILE=dpump_dir1:hrtable.dmp NOLOGFILE=Y

Here’s an interesting Data Pump Export example, showing how to use the PARALLEL, FILESIZE,
and JOB_NAME parameters. It also illustrates the use of the DUMPFILE parameter when there are mul-
tiple dump files.

$ expdp hr/hr FULL=Y DUMPFILE=dpump_dir1:full1%U.dmp, dpump_dir2:full2%U.dmp
FILESIZE=2G PARALLEL=3 LOGFILE=dpump_dir1:expfull.log JOB_NAME=expfull

Now that you’ve seen how the Data Pump Export utility works, you’re ready to look at the Data
Pump Import utility features.

Data Pump Import Types and Modes
As in the case of a Data Pump Export job, you can perform a Data Pump Import job from the
command line or use a parameter file. Interactive access to the Import utility is available, but it is
different from what you are used to when working with the traditional import utilities. The interac-
tive framework is analogous to the interactive access to the Data Pump Export utility, as you’ll see
shortly.

You can use Data Pump Import in the same modes as Data Pump Export: table, schema, table-
space, and full modes. In addition, you can employ the TRANSPORTABLE_TABLESPACES parameter to
import the metadata necessary for implementing the transportable tablespaces feature.

You must have the IMPORT_FULL_DATABASE role in order to perform one of the following:

• Full database import

• Import of a schema other than your own

• Import of a table that you don’t own

■Note You’ll need the IMPORT_FULL_DATABASE role to perform an import if the dump file for the import was
created using the EXPORT_FULL_DATABASE role.

Data Pump Import Parameters
As in the case of the Data Pump Export utility, you control a Data Pump Import job with the help
of several parameters when you invoke the impdp utility. For this discussion, I’ve grouped the
parameters into the following categories:

• File- and directory-related parameters

• Filtering parameters

• Job-related parameters

• Import mode-related parameters

• Remapping parameters

• The network link parameter

• The transform parameter

• The Flashback parameters

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT614

4517CH14.qxd 8/19/05 11:02 AM Page 614

File- and Directory-Related Parameters
The Data Pump Import utility uses the PARFILE, DIRECTORY, DUMPFILE, LOGFILE, and NOLOGFILE com-
mands in the same way as the Data Pump Export utility does. However, SQLFILE is a file-related
parameter unique to the Import utility.

The SQLFILE parameter is similar to the old import utility’s INDEXFILE parameter. When you
perform a Data Pump Import job, you may sometimes wish to extract the DDL from the export
dump file. The SQLFILE parameter enables you to do this easily, as shown in the following example:

$ impdp system/sammyy1 DIRECTORY=dpump_dir1 DUMPFILE=scott.dmp
SQLFILE=dpump_dir2:finance.sql SCHEMAS=scott

In this example, the SQLFILE parameter instructs the Data Pump Import job to write all the
DDL pertaining to the scott schema to the scott.dmp file, located in the directory dpump_dir2.
Of course, you must have created dpump_dir2 prior to issuing this command, using the CREATE
DIRECTORY AS command. The DIRECTORY=dpump_dir1 parameter value tells the Data Pump Import
utility where to find the dump file scott.dmp, from which the Data Pump Import job will extract the
DDL for user scott’s schema. This example also shows how you can use multiple directories in a
single Data Pump job.

Listing 14-5 shows the output from running the previously specified Data Pump Import job.

Listing 14-5. Running a Data Pump Import Job

[oracle@localhost] $ impdp system/sammyy1 DIRECTORY=dpump_dir1 DUMPFILE=scott.dmp
SQLFILE=dpump_dir2:finance.sql SCHEMAS=scott
Import: Release 10.2.0.0.0 - Beta on Wednesday, 16 March, 2005 18:42:09
Copyright (c) 2003, Oracle. All rights reserved.
Connected to: Oracle Database 10g Enterprise Edition Release 10.2.0.0.0 - Beta
With the Partitioning, OLAP and Data Mining options
Master table "SYSTEM"."SYS_SQL_FILE_SCHEMA_01" successfully loaded/unloaded
Starting "SCOTT"."SYS_SQL_FILE_SCHEMA_01": system/******** dumpfile=scott.dmp
sqlfile=scott.sql schemas=scott

Processing object type SCHEMA_EXPORT/USER
Processing object type SCHEMA_EXPORT/SYSTEM_GRANT
Processing object type SCHEMA_EXPORT/ROLE_GRANT
Processing object type SCHEMA_EXPORT/DEFAULT_ROLE
Processing object type SCHEMA_EXPORT/PRE_SCHEMA/PROCACT_SCHEMA
Processing object type SCHEMA_EXPORT/TABLE/TABLE
Processing object type SCHEMA_EXPORT/TABLE/INDEX/INDEX
Processing object type SCHEMA_EXPORT/TABLE/CONSTRAINT/CONSTRAINT
Processing object type SCHEMA_EXPORT/TABLE/INDEX/STATISTICS/INDEX_STATISTICS
Processing object type SCHEMA_EXPORT/CONSTRAINT/REF_CONSTRAINT
Processing object type SCHEMA_EXPORT/TABLE/STATISTICS/TABLE_STATISTICS
Job "SYSTEM"."SYS_SQL_FILE_SCHEMA_01" successfully completed at 18:42:20
[oracle@localhost] $

It’s important to remember that the SQLFILE parameter just extracts the SQL DDL to the speci-
fied file—no actual data import takes place. By using this parameter, you can extract a SQL script
with all the DDL from your export dump file. The DDL in SQLFILE lets you peek at what the import
job will execute.

If you edit the finance.sql file, you’ll see uncommented, ready-to-use SQL DDL statements to
re-create user scott’s schema. Listing 14-6 shows the first few lines of the script obtained by using
the SQLFILE parameter.

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT 615

4517CH14.qxd 8/19/05 11:02 AM Page 615

Listing 14-6. Partial Output Obtained Using the SQLFILE Parameter

-- CONNECT SYSTEM
-- new object type path is: SCHEMA_EXPORT/USER
CREATE USER "SCOTT" IDENTIFIED BY VALUES 'F894844C34402B67'

DEFAULT TABLESPACE "USERS"
TEMPORARY TABLESPACE "TEMP"
PASSWORD EXPIRE
ACCOUNT UNLOCK;

-- new object type path is: SCHEMA_EXPORT/SYSTEM_GRANT
GRANT UNLIMITED TABLESPACE TO "SCOTT";

-- new object type path is: SCHEMA_EXPORT/ROLE_GRANT
GRANT "CONNECT" TO "SCOTT";
GRANT "RESOURCE" TO "SCOTT";
-- new object type path is: SCHEMA_EXPORT/DEFAULT_ROLE
ALTER USER "SCOTT" DEFAULT ROLE ALL;
-- new object type path is: DATABASE_EXPORT/SCHEMA/PROCACT_SCHEMA
-- CONNECT SCOTT
BEGIN
sys.dbms_logrep_imp.instantiate_schema(schema_name=>'SCOTT',
export_db_name=>'SALES', inst_scn=>'643491');
COMMIT;
END;
/
new object type path is: SCHEMA_EXPORT/TABLE/TABLE
--CONNECT SYSTEM
CREATE TABLE "SCOTT"."DEPT"

("DEPTNO" NUMBER(2,0),
"DNAME" VARCHAR2(14),
"LOC" VARCHAR2(13)

) PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING
STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT)
TABLESPACE "USERS" ;

. . .

Note that you’ll get the SQL to re-create not only tables and indexes, but all objects, including
any functions and procedures in user scott’s schema.

The other important file-related Data Pump Import parameter is the new REUSE_DATAFILES
parameter. This parameter tells Data Pump whether it should use existing data files for creating
tablespaces during an import. If you specify REUSE_DATAFILES=Y, the Data Pump Import utility will
write over your existing data files.

Filtering Parameters
You use the CONTENT parameter, as in the case of a Data Pump export, to determine whether
you’ll load just rows (CONTENT=DATA_ONLY), rows and metadata (CONTENT=ALL), or just metadata
(CONTENT=METADATA_ONLY).

The EXCLUDE and INCLUDE parameters have the same meaning as in an export, and they are
mutually exclusive:

• Use the INCLUDE parameter to list the objects that you wish to import.

• Use the EXCLUDE parameter to list the objects you don’t want to import.

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT616

4517CH14.qxd 8/19/05 11:02 AM Page 616

Here’s a simple example of using the INCLUDE parameter. The specification restricts the import
to only table objects. Only the persons table will be imported.

INCLUDE=TABLE:"= 'persons'"

You can use the clause INCLUDE=TABLE:"LIKE 'PER%'" to export only those tables whose name
start with PER. You can also use the INCLUDE parameter in a negative fashion, by specifying that all
objects with a certain syntax be ignored, as shown here:

INCLUDE=TABLE:"NOT LIKE 'PER%'"

Note that if you use the CONTENT=DATA_ONLY option, you cannot use either the EXCLUDE or
INCLUDE parameter during an import.

You can use the QUERY parameter as well to filter data during an import. (In the older export and
import utilities, you could use the QUERY parameter only during an export.) You can use the QUERY
parameter to specify an entire schema or a single table. Note that if you use the QUERY parameter
during import, Data Pump will use only the external tables data method, rather than the direct-path
method, to access the data.

You can use the TABLE_EXISTS_ACTION parameter to tell Data Pump import what to do when a
table already exists. You can provide four different values to the TABLE_EXISTS_ACTION parameter:

• With SKIP (the default), Data Pump will skip a table if it exists.

• The APPEND value appends rows to the table.

• The TRUNCATE value truncates the table and reloads the data from the export dump file.

• The REPLACE value drops the table if it exists, re-creates it, and reloads it.

Job-Related Parameters
The JOB_NAME, STATUS, and PARALLEL parameters carry identical meanings as their Data Pump Export
counterparts. Note that if you have multiple dump files, you should specify them either explicitly or
by using the %U notation, as shown earlier in the coverage of Data Pump Export parameters.

Import Mode-Related Parameters
You can perform a Data Pump import in various modes, using the TABLE, SCHEMAS, TABLESPACES, and
FULL parameters, just as with the Data Pump Export utility. You can use the TRANSPORTABLE_TABLESPACES
parameter when you wish to transport tablespaces between databases.

You use the TRANSPORT_FULL_CHECK parameter in a matter analogous to its use under Data Pump
Export, when you’re performing a transportable tablespaces operation. The TRANSPORT_FULL_CHECK
parameter is applicable to a tablespace transport only if you’re using the NETWORK_LINK parameter.

The TRANSPORT_DATAFILES import parameter is used during a transportable tablespaces opera-
tion, to specify the list of data files the job should import into the target database. You must first
copy these files from the source system to the target server. Here’s a simple example that illustrates
how to use the transport tablespaces-related import parameters:

$ impdp salapati/sammyy1 DIRECTORY=dpump_dir1 \
> NETWORK_LINK=source_database_link \
> TRANSPORT_TABLESPACES=users TRANSPORT_FULL_CHECK=Y \
> TRANSPORT_DATAFILES='/wkdir/data/tbs6.f'

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT 617

4517CH14.qxd 8/19/05 11:02 AM Page 617

Remapping Parameters
The remapping parameters are new features in the Oracle Database 10g Data Pump Import utility,
and they clearly mark the superiority of this utility over the traditional import utility by expanding
Oracle’s ability to remap objects during the data import process. The remapping parameters are
REMAP_SCHEMA, REMAP_DATAFILE, and REMAP_TABLESPACE. While you did have the ability to remap
schemas in the old export and import utilities (by using the FROMUSER/TOUSER specification), you
couldn’t remap data files and tablespaces.

REMAP_SCHEMA

Using the REMAP_SCHEMA parameter, you can move objects from one schema to another. You need to
specify this parameter in the following manner:

$ impdp system/manager DUMPFILE=newdump.dmp REMAP_SCHEMA=hr:oe

In this example, HR is the source schema, and Data Pump Import will import all of user HR’s
objects into the target schema OE. The Import utility can even create the OE schema if it doesn’t
already exist in the target database. Of course, if you want to just import one or more tables from
the HR schema and import them into the OE schema, you can do that as well, by using the TABLES
parameter.

REMAP_DATAFILE

When you are moving databases between two different platforms, each with a separate file-naming
convention, the REMAP_DATAFILE parameter comes in handy to change file system names. The fol-
lowing is an example that shows how you can change the file system from the old Windows platform
to the new UNIX platform. Whenever there is any reference to the Windows file system in the export
dump file, the Import utility will automatically remap the filename to the UNIX file system.

$ impdp hr/hr FULL=Y DIRECTORY=dpump_dir1 DUMPFILE=db_full.dmp \
REMAP_DATAFILE='DB1$:[HRDATA.PAYROLL]tbs6.f':'/db1/hrdata/payroll/tbs6.f'

REMAP_TABLESPACE

Sometimes, you may want the tablespace into which you are importing data to be different from the
tablespace in the source database. The REMAP_TABLESPACE parameter enables you to move objects
from one tablespace into a different tablespace during an import, as shown in the following exam-
ple. Here, Data Pump Import is transferring all objects from the tablespace example_tbs to the
tablespace new_tbs.

$ impdp hr/hr REMAP_TABLESPACE='example_tbs':'new_tbs' DIRECTORY=dpump_dir1 \
PARALLEL=2 JOB_NAME=TESTJOB_01 DUMPFILE=employees.dmp NOLOGFILE=Y

The Transform Parameter
Suppose you are importing a table from a different schema or even a different database. Let’s say you
want to make sure that you don’t also import the objects’ storage attributes during the import—
you just want to bring in the data that the table contains. The TRANSFORM parameter lets you specify
that your Data Pump Import job should not import certain storage and other attributes. Using the
TRANSFORM parameter, you can exclude the STORAGE and TABLESPACE clauses, or just the STORAGE
clause, from a table or an index.

During a Data Pump (or traditional) import, Oracle creates objects using the DDL that it finds
in the export dump files. The TRANSFORM parameter instructs Data Pump Import to modify the DDL
that creates the objects during the import job.

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT618

4517CH14.qxd 8/19/05 11:02 AM Page 618

The TRANSFORM parameter has the following syntax:

TRANSFORM = transform_name:value[:object_type]

where the syntax elements represent the following:

• Transform name: You can modify four basic types of an object’s characteristics using four
possible options for the TRANSFORM_NAME component. Here are the options and what they
stand for:

• SEGMENT ATTRIBUTES: Segment attributes include physical attributes, storage attributes,
tablespaces, and logging. You can instruct the import job to include the previous
attributes by specifying SEGMENT_ATTRIBUTES=Y (the default for this parameter) as the
transform name. When you do this, the import job will include all four of the segment
attributes, along with their DDL.

• STORAGE: You can use the STORAGE=Y (default) specification to get just the storage attrib-
utes of the objects that are part of the import job.

• OID: If you specify OID=Y (the default value), a new OID is assigned to object tables
during the import.

• PCTSPACE: By supplying a positive number as the value for this transform, you can
increase the extent allocation size of objects and the data file size by a percentage
equal to the value of PCTSPACE.

• Value: The value of the TRANSFORM parameter can be Y (yes) or N (no). You’ve already seen that
the default value for the first three transform names is Y. This means that, by default, Data
Pump imports an object’s segment attributes and storage features. Alternatively, you can set
the value for these parameters to N. If you assign a value of N, you specify not to import the
original segment attributes and/or the storage attributes. The PCTSPACE transform name
takes a number as its value.

• Object type: The object type specifies which types of objects should be transformed. You can
choose from tables, indexes, tablespaces, types, clusters, constraints, and so on, depending
on the type of transform you’re employing for the TRANSFORM parameter. If you don’t specify
an object type when using the SEGMENT_ATTRIBUTES and STORAGE transforms, the transforms
are applied to all tables and indexes that are part of the import.

Here’s an example of using the TRANSFORM parameter:

$ impdp hr/hr TABLES=hr.employees \
DIRECTORY=dpump_dir1 DUMPFILE=hr_emp.dmp \
TRANSFORM=SEGMENT_ATTRIBUTES:N:table

In this example, the SEGMENT_ATTRIBUTES transform is applied with the value of N. The object
type is table. This specification of the TRANSFORM parameter means that the import job will not
import the existing storage attributes for any table.

The Network Link Parameter
Using the new NETWORK_LINK parameter, you can perform an import across the network without
using dump files. The NETWORK_LINK parameter enables the Data Pump Import utility to connect
directly to the source database and transfer data to the target database. Here’s an example:

$ impdp hr/hr TABLES=employees DIRECTORY=dpump_dir1 SCHEMAS=SCOTT \
EXCLUDE=CONSTRAINT NETWORK_LINK=finance@prod1

In this example, finance@prod1 is the network link. It is a valid database link, created by you
beforehand using the CREATE DATABASE LINK command. Thus, the database shown in the database

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT 619

4517CH14.qxd 8/19/05 11:02 AM Page 619

link is your source for the import job. Data Pump will import the table employees from the remote
database finance to your instance where you run the Data Pump Import job. In a network import,
the Metadata API executes on the remote instance, extracts object definitions, and re-creates neces-
sary objects in your local instance. It then fetches data from the remote database tables and loads
them in your local instance, using the INSERT INTO . . . SELECT SQL statement, as follows:

SQL> INSERT INTO employees(emp_name,emp_id) . . . SELECT (emp_name,emp_id) FROM
finance@remote_service_name

Note that a Data Pump network import doesn’t involve a dump file, as Data Pump will import
the table from the source to the target database directly.

Here’s an example showing how to use the the NETWORK_LINK parameter to perform a direct
import from a remote database into a local database:

1. Create a database link in the remote database:

SQL> CREATE DATABASE LINK remote
CONNECT TO system IDENTIFIED BY sammyy1
USING 'remote.world';

2. If there isn’t one already, create a Data Pump directory object:

SQL> CREATE DIRECTORY remote_dir1 AS '/u01/app/oracle/dp_dir';

3. Set the new directory as your default directory, by exporting the directory value:

$ export DATA_PUMP_DIR=remote_dir1

4. Perform the network import from the database named remote, using the following Data
Pump Import command:

[local] $ impdp system/sammyy1 SCHEMAS=scott NETWORK_LINK=remote

Listing 14-7 shows the output of the Data Pump job specification in this example, using the
NETWORK_LINK parameter.

Listing 14-7. Using the NETWORK_LINK Parameter in Data Pump Import

Import: Release 10.2.0.0.0 - Beta on Thursday, 17 March, 2005 06:56
Copyright (c) 2003, Oracle. All rights reserved.
Connected to: Oracle Database 10g Enterprise Edition Release 10.2.0.0.0 - Beta
With the Partitioning, OLAP and Data Mining options
FLASHBACK automatically enabled to preserve database integrity.
Starting "SYSTEM"."SYS_IMPORT_SCHEMA_01": system/******** schemas=SCOTT
NETWORK_LINK=remote
Estimate in progress using BLOCKS method...
Processing object type SCHEMA_EXPORT/TABLE/TABLE_DATA
Total estimation using BLOCKS method: 32 KB
Processing object type SCHEMA_EXPORT/USER
Processing object type SCHEMA_EXPORT/SYSTEM_GRANT
Processing object type SCHEMA_EXPORT/ROLE_GRANT
Processing object type SCHEMA_EXPORT/DEFAULT_ROLE
Processing object type SCHEMA_EXPORT/TABLESPACE_QUOTA
Processing object type SCHEMA_EXPORT/TABLE/TABLE
. . imported "SCOTT"."TEST" 96 rows
Job "SYSTEM"."SYS_IMPORT_SCHEMA_01" successfully completed at 06:59
[local] $

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT620

4517CH14.qxd 8/19/05 11:02 AM Page 620

The Flashback Parameters
The FLASHBACK_TIME parameter enables you to import data consistent as of the flashback time you
specify in your import job. Oracle finds the SCN closest to the time you specify, and enables the
Flashback utility using this SCN. For example, look at the following import statement:

$ impdp system/manager FLASHBACK_TIME=2005-06-01 07:00

The import job will ensure that the data is consistent as of the time you specified. Note that the
FLASHBACK_TIME parameter does the same thing as the old CONSISTENT parameter in the traditional
import utility.

The FLASHBACK_SCN parameter is similar to the FLASHBACK_TIME parameter, except that you
directly specify the SCN.

Whether you use the FLASHBACK_TIME or the FLASHBACK_SCN parameter, it is the SCN that plays
the key role in determining the flashback time with which your imported data will be consistent.

Interactive Import Parameters
All the interactive export parameters shown in Table 14-1 are valid for interactive import as well,
with one exception: the ADD_FILE command is valid only for Data Pump Export jobs. As with Data
Pump Export jobs, when you use the Ctrl+C sequence, the import job will pause, and you’ll see the
import> prompt, enabling you to enter any of the interactive import commands from there.

Monitoring a Data Pump Job
Two new views—DBA_DATA PUMP_JOBS and DBA_DATA PUMP_SESSIONS—are crucial for moni-
toring Data Pump jobs. In addition, you can use the V$SESSION_ LONGOPS view and the old
standby V$SESSION to obtain session information. In most cases, you can join two or more of these
views to gain the necessary information about job progress. Let’s look at some of the important data
dictionary views that help you manage Data Pump jobs.

Viewing Data Pump Jobs
The DBA_DATAPUMP_JOBS view shows summary information of all currently running Data Pump
jobs. Here’s an example:

SQL> SELECT * FROM dba_datapump_jobs;

OWNER_NAME JOB_NAME OPERATION JOB_MODE STATE DEGREE ATTACHED_SESSIONS
---------------------------- ------------------------------ ---------- -------------
SYSTEM SYS_EXPORT EXPORT FULL EXECUTING 1 1

_FULL_01
SQL>

Since the dynamic DBA_DATA PUMP_JOBS view shows only the active jobs, a query on this
view will reveal the value of the important JOB_NAME column for any job that is running right now.
You’ll need to know the job name for a job if you want to attach to a running job in midstream.
Because the name of the master table is the same as the JOB_NAME value, you can thus determine
the name of the master table through this view.

The JOB_MODE column can take the values FULL, TABLE, SCHEMA, or TABLESPACE, reflecting the
mode of the currently executing export or the import job.

The STATE column can take the values UNDEFINED, DEFINING, EXECUTING, and NOT RUNNING,
depending on which stage of the export or import you execute your query. Of course, when there
aren’t any active jobs running, the view DBA_DATA PUMP_JOBS returns no rows whatsoever.

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT 621

4517CH14.qxd 8/19/05 11:02 AM Page 621

Viewing Data Pump Sessions
The DBA_DATAPUMP_SESSIONS view identifies the user sessions currently attached to a Data
Pump Export or Import job. You can join the SADDR column in this view with the SADDR column in the
V$SESSION view to gain useful information about user sessions that are currently attached to a job.
The following query shows this information:

SQL> SELECT sid, serial#
FROM v$session s, dba_datapump_sessions d
WHERE s.saddr = d.saddr;

Viewing Data Pump Job Progress
The V$SESSION_LONGOPS dynamic performance view is not new to Oracle Database 10g. In
Oracle9i, you could use use this view to monitor long-running sessions.

In the V$SESSION_LONGOPS view, you can use the following four columns to monitor the
progress of an export or import job:

• TOTALWORK shows the total estimated number of megabytes in the job.

• SOFAR shows the megabytes transferred thus far in the job.

• UNITS stands for megabytes.

• OPNAME shows the Data Pump job name.

Here’s a typical SQL script that you can run to show how much longer it will take for your Data
Pump job to finish:

SQL> SELECT opname, target_desc, sofar, totalwork
2 FROM v$session_longops;

OPNAME TARGET_DES SOFAR TOTALWORK
----------------------- ---------- ---------- ------------
SYS_EXPORT_FULL_01 EXPORT 244 244
SYS_EXPORT_FULL_02 EXPORT 55 244
SQL>

In this example, the first row shows that the job is already complete, since the TOTALWORK and
SOFAR columns are equal in value. In the second row, the SOFAR value is only 55MB, and TOTALWORK
is 244MB. Thus, only about a quarter of the second export job has been completed thus far.

Using the Data Pump API
You can use the Data Pump API to write PL/SQL scripts that export and import data. The Data
Pump API is the DBMS_DATAPUMP package, which you can use for the following tasks:

• Starting a job

• Monitoring a job

• Detaching from a job

• Stopping a job

• Restarting a job

Listing 14-8 presents a simple PL/SQL script that shows how to export a simple schema export
of a user. Make sure you create a directory object first and grant the user the appropriate rights to it.

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT622

4517CH14.qxd 8/19/05 11:02 AM Page 622

Listing 14-8. Using the Data Pump API to Create a Data Pump Export Job

DECLARE
d1 NUMBER; -- Data Pump job handle

BEGIN
-- first create a Data Pump job for the export.
d1 := DBMS_DATAPUMP.OPEN('EXPORT','SCHEMA',NULL,'TEST1','LATEST');

-- Specify a single dump file for the job
DBMS_DATAPUMP.ADD_FILE(d1,'test1.dmp','DMPDIR');

-- Specify the schema.
DBMS_DATAPUMP.METADATA_FILTER(d1,'SCHEMA_EXPR','IN (''OE'')');

-- Start the export job.
DBMS_DATAPUMP.START_JOB(d1);

-- Indicate that the job finished and detach from it.
dbms_output.put_line('Job has completed');
dbms_datapump.detach(d1);

END;
/

Listing 14-9 shows how to import the dump file you just created. The example uses the remap-
ping parameter to remap OE’s objects into the user HR’s schema.

Listing 14-9. Using the Data Pump API to Create a Data Pump Import Job

DECLARE
d1 NUMBER; -- Data Pump job handle

BEGIN
-- Create a Data Pump job to do a "full" import.
d1 := DBMS_DATAPUMP.OPEN('IMPORT','FULL',NULL,'TEST2');

-- Specify the dump file for the job
DBMS_DATAPUMP.ADD_FILE(d1,'example1.dmp','DMPDIR');

-- The following will remap schema objects from oe to hr.
DBMS_DATAPUMP.METADATA_REMAP(d1,'REMAP_SCHEMA','oe','hr');

-- Start the job.
DBMS_DATAPUMP.START_JOB(h1);

-- Indicate that the job finished and gracefully detach from it.
dbms_output.put_line('Job has completed');
dbms_datapump.detach(h1);

END;
/

Transportable Tablespaces
Oracle’s transportable tablespaces feature offers you an easy way to move large amounts of data
between databases efficiently by simply moving data files from one database to the other. Instead of
re-creating the objects, transportable tablespaces enable you to move large objects effortlessly in a
fraction of the time it takes to re-create them manually in a database. Oracle strongly recommends
that you use the transportable tablespaces feature wherever applicable because of its superiority to
other methods of moving data between databases.

Transporting tablespaces involves copying all the data files belonging to the source database to
the target database and importing the data dictionary information about the tablespaces from the
source database to the target database. Thus, the Data Pump Export and Import utilities, described
in the preceding sections of this chapter, are part of the transportable tablespaces feature. You can
also transport the index tablespaces pertaining to the tables, which makes the entire data transfer

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT 623

4517CH14.qxd 8/19/05 11:02 AM Page 623

extremely fast. The whole operation will take only a little longer than the time it takes for you to
copy the data files belonging to the tablespace to the new location, by using FTP, remote copy, or
some other method such as a tape copy.

Uses for Transportable Tablespaces
You use transportable tablespaces mainly in the context of a data warehouse, but you can employ
them in any kind of database. The following are some of the important uses of the transportable
tablespaces feature:

• Moving data from a source database (usually OLTP) to a data warehouse

• Moving data from a staging database into a data warehouse

• Moving data from a data warehouse to a data mart

• Performing tablespace point-in-time recovery (PITR)

• Archiving historical data

Transporting a Tablespace
Transporting a tablespace between two databases involves the following main steps:

1. Select the tablespace to be transported (and make sure there are no dependencies with
objects in other tablespaces).

2. Generate the transportable tablespace set.

3. Perform the tablespace import. This involves copying data files to the target server and
importing related metadata into the target database.

Let’s go through each of these steps. Note that the tablespace you’re transporting must not
already exist in the target database.

Selecting the Tablespaces to Be Transported
The primary condition you must meet for transporting tablespaces is that the set of candidate
tablespaces must be self-contained. For example, if the tables in the tablespaces have any indexes,
they should be contained in one of the tablespaces in the set you’re transporting. Referential
integrity constraints for objects inside the tablespace being transported must not refer to objects
outside the tablespace.

You must meet a few other conditions when you’re importing tablespaces containing parti-
tioned tables (refer to the Oracle manual “Database Administrator’s Guide” for the complete set
of conditions). One way to verify that your set of tablespaces meets the self-contained criteria is
by using the DBMS_TTS package, as follows:

SQL> EXECUTE sys.dbms_tts.transport_set_check('sales01,sales02',true);
PL/SQL procedure successfully completed.
SQL>

You must have the EXECUTE_CATALOG_ROLE role to execute the TRANSPORT_SET_CHECK proce-
dure. The procedure TRANSPORT_SET_CHECK returns no errors, indicating that the two tablespaces in
your transportable tablespaces set, sales01 and sales02, are self-contained and therefore, eligible
candidates for transporting. You can further confirm this by querying the transport_set_violation
table, which table lists all the partially contained tables in a tablespace and any references between
objects belonging to different tablespaces.

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT624

4517CH14.qxd 8/19/05 11:02 AM Page 624

SQL> SELECT * FROM sys.transport_set_violation
no rows selected
SQL>

■Note Instead of using the TRANSPORT_SET_CHECK procedure, you can simply use the TRANSPORT_FULL_CHECK
parameter during Data Pump export and import, to specify that a certain tablespace set has no dependencies.
However, during the import, you must be using the NETWORK_LINK parameter in order to use the TRANSPORT_
FULL_CHECK parameter.

Generating the Transportable Tablespace Set
Before you can transport your tablespaces to the target database, you must generate a transportable
tablespace set. The transportable tablespace set consists of all the data files in the tablespaces plus
the export dump file, which contains the structural data dictionary information about the table-
spaces.

The first thing you need to do before transporting a tablespace is to put the tablespaces in a
read-only mode. If there are active transactions modifying the tables, you can’t transport the table-
space. If your objective is to export a very large table or a part of a very large table, then create a new
tablespace where you can put a new table that holds the data of interest. You can then transport this
new tablespace to a different database.

SQL> ALTER TABLESPACE sales01 READ ONLY;
Tablespace altered.
SQL> ALTER TABLESPACE sales02 READ ONLY;
Tablespace altered.
SQL>

■Note You can transport a tablespace without first putting it into a read-only mode, but doing so ensures that
there aren’t any active transactions in that tablespace while you are transporting it.

Once you’ve put both tablespaces that you want to transport in the read-only mode, you have
two things left to do to generate your transportable tablespaces set. First, you must use the Data
Pump Export utility to generate the data dictionary metadata for the two tablespaces, sales01 and
sales02. Second, you must physically copy all the data files in the two tablespaces and the export
dump file to a directory that the target database can access. The next two sections show you how to
perform these steps.

Exporting the Dictionary Information (Metadata) for the Tablespaces

The first step in creating the transportable tablespaces set is to export the metadata that describes
the objects that are part of the tablespaces you want to export. Here’s the interesting part about the
transportable tables feature: no matter how large the tablespace is, this step is done very quickly
because all you’re exporting is the data dictionary information (metadata) about the objects, not
their row data. You also have the option of using the parameter TTS_FULL_CHECK=Y; in which case, the
export utility will ensure that the tablespaces being exported are fully contained. However, you’ve
already ascertained this in the previous step, so you can leave out this parameter. Listing 14-10
shows the export of the metadata for the pair of tablespaces.

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT 625

4517CH14.qxd 8/19/05 11:02 AM Page 625

Listing 14-10. Exporting the Dictionary Metadata for the Tablespaces

[finance] $ expdp oe/oe DIRECTORY=dpump_dir1 DUMPFILE=sales.dmp
TRANSPORT_TABLESPACES=sales01,sales02 INCLUDE=triggers,constraint,grant

Export: Release 10.2.0.0.0 - 64bit on Sunday, 29 May, 2005 14:34
Copyright (c) 2003, Oracle. All rights reserved.
Connected to: Oracle Database 10g Enterprise Edition Release 10.2.0.0.0 –
64bit Beta With the Partitioning, OLAP and Data Mining options
Starting "oe"."SYS_EXPORT_TRANSPORTABLE_01": oe/********
transport_tablespaces=sales01,sales02
include=triggers,constraint,grant directory=dpump_dir1 dumpfile=sales.dmp
Processing object type TRANSPORTABLE_EXPORT/TYPE/GRANT/OBJECT_GRANT
Master table "OE"."SYS_EXPORT_TRANSPORTABLE_01" successfully loaded/unloaded
**
Dump file set for OE.SYS_EXPORT_TRANSPORTABLE_01 is:
/u01/app/oracle/dba/sales.dmp

Job "OE"."SYS_EXPORT_TRANSPORTABLE_01" successfully completed at 14:36
oracle@finance.netbsa.org [/u01/app/oracle]
[finance] $

■Tip Don’t specify the USERID parameter when you use the TRANSPORT_TABLESPACE parameter. When you omit
the USERID parameter, the Data Pump Export utility will prompt you for the username. Connect by using the string
connect SYS/password as SYSDBA to perform the TRANSPORT_TABLESPACE export.

Note that the export in this example didn’t export any rows of the tables in the pair of table-
spaces you are transporting. The export specifies only which tablespaces are going to be part of
your transportable tablespaces set. Only the metadata (table and index definitions) is exported to
the export dump file. The export dump file, sales.dmp, will be very small, because it contains just
the table definitions, column descriptions, and so forth that will help identify the objects in the
tablespace when you export them to the target database.

Copying the Export File and the Tablespace Files to the Target

The next step in generating the transportable tablespaces set is the physical copying of the data
files contained in the tablespaces and the export dump file containing the metadata about the
tablespaces to the target location. Before you can start importing the export dump file to the target
database, make sure that the block size of the tablespace is the same as the standard block size of
the target tablespace. If it isn’t, the target database must have a nonstandard block size specified in
its init.ora file of the same size as the block size of the tablespace you want to export.

You must now copy the export dump file, sales.dmp, to the target database using FTP, remote
copy (or copy, if you’re using Windows), or some other means. You also copy all the data files that
are part of the two tablespaces sales01 and sales02 to the target location, so they’re accessible to
the target database for importing.

Performing the Tablespace Import
Next, run the Data Pump Import utility (in the target database), which will plug in the tablespaces
and incorporate information about them in the data dictionary of the target database. Because the
export dump file doesn’t have any data, all you’ll be importing is the metadata about the objects.
The target database will simply use the copied data files from the source database as the data files
for the transported tablespaces. All you’re doing is plugging the tablespaces into the target database.

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT626

4517CH14.qxd 8/19/05 11:02 AM Page 626

Listing 14-11 shows the importing of the metadata into the target database from the dump file.

Listing 14-11. Performing the Transportable Tablespaces Import

C:\>impdp system/sammyy1 dumpfile=sales.dmp TRANSPORT_DATAFILES='sales01_01.dbf', \
'sales02_01.dbf' directory=dpump_dir1
Import: Release 10.2.0.0.0 - Beta on Saturday, 21 May, 2005 16:15
Copyright (c) 2003, Oracle. All rights reserved.
Connected to: Oracle Database 10g Enterprise Edition Release 10.2.0.0.0 - Beta
With the Partitioning, OLAP and Data Mining options
Master table "SYSTEM"."SYS_IMPORT_TRANSPORTABLE_01" successfully loaded/unloaded
Starting "SYSTEM"."SYS_IMPORT_TRANSPORTABLE_01": system/********
dumpfile=sales.dmp TRANSPORT_DATAFILES='sales01_01.dbf',
'sales02_01.dbf' directory=dpump_dir1
Processing object type TRANSPORTABLE_EXPORT/TYPE/GRANT/OBJECT_GRANT
. . .
C:\>

As you can see, there are two parts to the import of the transportable tablespaces. First, the
Data Pump Import utility will extract the metadata of the transportable tablespaces from the
export dump file. After this, it will extract the various objects (tables and indexes) definitions from
the dump file into the target database. No data rows are actually imported into the database at this
time. The data is already in the data files of the tablespaces, and you’ve already plugged those table-
spaces into the target database. The import log will show the tables that are being imported into the
target database, but unlike in a normal import process, you don’t see the number of rows being
imported.

As you can see from the examples, the transportable tablespaces feature is very powerful,
because it will let you move entire tablespaces between databases by merely copying the data files
and exporting the data dictionary information from one database to another. Compared to any of
the alternatives, this is a much a faster and more efficient means of transferring very large objects.

■Tip You can transport a tablespace to a database with the same or higher compatibility setting. The two data-
bases could be on different platforms.

Transporting Tablespaces Across Platforms with
Different Endian Formats
The transportable tablespaces feature applies regardless of the platform of the source and target
databases; that is, you can transport tablespaces from a Windows platform, for example, to a UNIX
platform and vice versa. However, there is one requirement you must meet in order to perform
cross-platform transport of tablespaces: the endian format of the data files in the source and target
databases must be identical.

■Note Endian format refers to the byte ordering of file systems. Endian format could be one of two types: big or
little. If the endian formats of the source and target database are identical, everything you’ve seen up to now is all
you’ll need to do to transport the tablespaces. However, if the endian formats are different, you must convert the
endian format of the source data files, either before or after transporting the data files to the target server.

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT 627

4517CH14.qxd 8/19/05 11:02 AM Page 627

Determining the Endian Format of a Platform
You need to join the well-known V$DATABASE view with the new V$TRANSPORTABLE_PLATFORM
view to determine if the source and target endian formats are identical. For example, the following
query reveals that the endian format of a Linux platform is little endian:

SQL> SELECT t.endian_format
2 FROM v$transportable_platform t, v$database d
4* WHERE t.platform_name = d.platform_name;

ENDIAN_FORMAT

Little
SQL>

Then run the same query on the other server (target or source) to see what the endian format
is. If the endian formats are the same in the source and target platforms, you can transport the
tablespaces using the standard method described in the previous section. However, if the endian
formats on the two platforms are different (one is little endian and the other is big endian), you
need to perform a conversion of the tablespaces either at the source or the target database. Here
are the steps:

1. Ensure the tablespaces are self-contained.

2. Make the tablespaces read-only.

3. Export the metadata using Data Pump Export.

4. Convert the data files to match the endian format.

5. Copy the files to the target system.

6. Use the Data Pump Import utility to import the metadata.

Let’s look at what’s involved in each of these steps.

Ensuring Tablespaces Are Self-Contained and Making Them Read-Only
Ensure that the tables you want to transport are all placed in their own separate tablespaces. To
ensure that your tablespaces are self-contained, you need to use the TRANSPORT_SET_CHECK proce-
dure in the Oracle-supplied DBMS_TTS package. In Oracle Database 10g Release 2, you can also use
the TRANSPORT_FULL_CHECK parameter while performing the export, to ensure that the tablespaces
don’t contain dependent objects. For example, setting the TRANSPORT_FULL_CHECK=Y specification
ensures that the tablespaces you are exporting won’t contain tables without their indexes or any
indexes without the parent tables.

Also, alter the tablespace to make it read-only. Once you complete the export of the metadata
in the next step, you can make the tablespace read/write again.

Exporting the Metadata Using Data Pump Export
Export the metadata describing the objects in the tablespace(s), by using the TRANSPORTABLE_
TABLESPACES parameter, as described earlier in this chapter.

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT628

4517CH14.qxd 8/19/05 11:02 AM Page 628

Converting the Data Files to Match the Endian Format
If your platforms are compatible, but the endian formats are different, you need to convert the data
files. You may perform the conversion before transporting the tablespace set or after finishing the
transport. You can convert the data files before transporting the tablespaces, using the CONVERT
TABLESPACE command in the Recovery Manager (RMAN) utility, as shown in Listing 14-12.

Listing 14-12. Using the RMAN CONVERT TABLESPACE Command to Convert Data Files

RMAN> CONVERT TABLESPACE finance_tbs01
2> TO PLATFORM 'HP-UX (64-bit)'
3> FORMAT '/temp/%U';
Starting backup at 09-MAY-05
using channel ORA_DISK_1
channel ORA_DISK_1: starting datafile conversion
input datafile fno=00011 name=C:\ORACLE\TEST02.DBF
converted datafile=C:\TEMP\DATA_D-FINANCE_I-2343065311_TS-TODAY_FNO-11_05FLAUM6
channel ORA_DISK_1: datafile conversion complete, elapsed time: 00:00:17
Finished backup at 09-MAY-05
RMAN> exit
Recovery Manager complete.

This example shows how you can use the FORMAT parameter to tell Oracle what format the
newly converted file should be and in which directory to put it. But as you can see, Oracle gives the
file a name. If you want to specify the name of the data file yourself, perform the conversion using
the DB_FILE_NAME_CONVERT clause. Listing 14-13 shows the results of using the CONVERT TABLESPACE
command with the DB_FILE_NAME_CONVERT clause.

Listing 14-13. Converting Filenames with the DB_FILE_NAME_CONVERT Clause

RMAN> CONVERT TABLESPACE test
2> TO PLATFORM 'HP-UX (64-bit)'
3> DB_FILE_NAME_CONVERT = 'c:\oracle\test.dbf','c:\temp\test.dbf';
Starting backup at 10-MAY-05
using target database controlfile instead of recovery catalog
allocated channel: ORA_DISK_1
channel ORA_DISK_1: sid=151 devtype=DISK
channel ORA_DISK_1: starting datafile conversion
input datafile fno=00011 name=C:\ORACLE\TEST.DBF
converted datafile=C:\TEMP\TEST.DBF
channel ORA_DISK_1: datafile conversion complete, elapsed time: 00:00:16
Finished backup at 10-MAY-05
RMAN>

The DB_FILE_NAME_CONVERT clause performs the following functions for you:

• Takes a given filename and converts it to any filename you specify

• Places the converted file in the location you specify

Note that you use the DB_FILE_NAME_CONVERT command when you convert the files directly on
the source system, before transporting them.

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT 629

4517CH14.qxd 8/19/05 11:02 AM Page 629

Copying the Files to the Target System
At this point, you need to copy both the converted data files that is part of the tablespace (finance_tbs01
in this example) as well as the expdp dump file, which was named sales.dmp in the earlier trans-
portable tablespaces example, over to the target server where your target database is running.

If you chose to transport the tablespaces (the data files that constitute the tablespaces) first
instead, you must convert the data files on the target platform at this point, before trying to perform
the import of the metadata in the tablespace. Here’s an example that shows how you can take a data
file that belongs to the HP-UX operating system platform and convert it into a Windows platform:

RMAN> CONVERT DATAFILE 'c:\audit_d01_01.dbf'
2> TO PLATFORM 'Microsoft Windows IA (32-bit)'
3> FROM platform='HP-UX (64-bit)'
4> FORMAT '\u01\oradata\finance\export';

As in the previous example, where you performed the file conversion on the source system, you
may use the DB_FILE_NAME_CONVERT clause when performing the data file conversion on the target
system. Your data file conversion statement would then have the following format:

CONVERT DATAFILE . . .FROM PLATFORM . . .DB_FILE_NAME_CONVERT...

Here’s an example that shows the use of the DB_FILE_NAME_CONVERT clause:

RMAN> CONVERT DATAFILE
2> '/hq/finance/work/tru/tbs_31.f',
3> '/hq/finance/work/tru/tbs_32.f',
4> '/hq/finance/work/tru/tbs_41.f'
5> TO PLATFORM="Solaris[tm] OE (32-bit)"
6> FROM PLATFORM="HP TRu64 UNIX"
7> DB_FILE_NAME_CONVERT=
8> "/hq/finance/work/tru/", "/hq/finance/dbs/tru"
9> PARALLELISM=5;

■Tip By default, Oracle places the converted files in the flash recovery area, without changing the data file
names.

Using Data Pump Import to Import the Metadata
Once you move the converted files files over to the target system (or move the files over first and
convert them later), use the Data Pump Import utility as follows to import the metadata into the
target database:

$ impdp system/password DUMPFILE=sales.dmp DIRECTORY=dpump_dir
TRANSPORT_DATAFILES=/salesdb/sales_101.dbf, /salesdb/sales_201.dbf

As you can see, you just plug in the tablespaces and use the Data Pump Import utility to inte-
grate the data files and their metadata (found in the test.dmp file).

As you’ve seen in this chapter, the Data Pump Export and Import utilities are valuable assets to
a DBA and help you perform numerous tasks. The transportable tablespaces feature is of great help,
especially when you’re dealing with very large tables. Instead of performing a laborious and long
export and import job, all you need to do is copy data fields at the operating system level, and
then export and import the metadata.

Time and again, you’ll find yourself relying on the wonderful set of tools that are part of the
Data Pump technology. It isn’t an exaggeration to say that in most databases, the Data Pump utili-
ties will be the most used of all DBA administrative tools.

CHAPTER 14 ■ USING DATA PUMP EXPORT AND IMPORT630

4517CH14.qxd 8/19/05 11:02 AM Page 630

Backing Up Databases

As an Oracle DBA, one of your fundamental tasks is to regularly back up the databases. Backups
involve making copies of your database to re-create the database if necessary. They provide the
basis of all database recoveries—no backup, no recovery. One of the best things you can do to help
yourself as a DBA is to focus on a tried-and-tested strategy for backing up the database, because the
more time you spend planning backups, the less time you’ll spend recovering the database from a
mishap.

You can perform database backups in two different ways: use Oracle’s Recovery Manager
(RMAN) interface or use operating system utilities. I give RMAN-based backups much more atten-
tion in this chapter because of the many benefits they offer compared with operating system-based,
user-created backups.

Database administrators frequently use tape devices for Oracle backups, because of their con-
venience and also because tape backups are easy to archive for safekeeping. If you want to use
RMAN with tape devices, you need to use a media management layer (MML). Oracle Corporation
now offers its own media management tool, called Oracle Backup, free with the Oracle server. (This
product was called Oracle Backup during the beta testing of Oracle Database 10g Release 2. As I
note later in the chapter, Oracle seems to have renamed this product as Oracle Secure Backup for its
public release). In this chapter, you’ll learn how to install, configure, and integrate Oracle Backup
with RMAN to perform sophisticated backups.

You need to consistently check and verify backups to make sure they’re correct and usable
during a recovery. The latter part of this chapter is devoted to a review of database corruption and
the many ways to test for it. I’ll also briefly review Oracle Data Guard and the concept of standby
databases.

Let’s begin with an overview of Oracle database backups.

Backing Up Oracle Databases
Database backups are used to avoid the loss of data, so it’s essential to have a backup system in
place. Backups involve keeping copies of the key Oracle database files: data files, the control file,
and the archived redo log files.

Physical backups involve the copying of database files. You can perform physical backups in
two main ways:

• Use operating system utilities like cp and dd to back up files to perform user-managed
backups. You use a combination of operating system backup commands and SQL*Plus
commands to back up the database files.

• Use the Oracle-provided utility, Recovery Manager (RMAN), to perform the backups. RMAN
can be used in the command-line mode, as well as through the OEM Database Control
interface.

631

C H A P T E R 1 5

■ ■ ■

4517CH15.qxd 8/19/05 11:04 AM Page 631

RMAN can do everything that user-managed backups can, and it provides several additional
capabilities. You also don’t need to keep track of the backed-up data files and archived redo log files
with RMAN, since RMAN itself manages all that information.

In this chapter, I introduce you to using RMAN though the command line, so you understand
the concepts behind it. Once you gain proficiency in using the tool, feel free to use the Database
Control interface to manage RMAN-based backups. Although I’ll focus on using RMAN in this
chapter, I briefly discuss user-managed backups toward the end of the chapter.

Although disk storage prices keep dropping, tape storage is still the cheaper way to store large
amounts of data offsite. If you’re using RMAN, you need a third-party media manager to make a
backup to a tape device.

Before you start dealing with the mechanics of backups, you need to understand certain terms
associated with backups.

Important Backup Terms
A clear understanding of the types of backups and backup concepts is extremely important for a
successful recovery. Here, I’ll review some terminology related to Oracle database backups.

Archivelog and Noarchivelog Modes
Oracle writes all changes to the data blocks in memory to the online redo logs, usually before they
are written to the database files. During a recovery process, Oracle uses the changes recorded in the
redo log files to bring the database up-to-date. Oracle can manage the redo log files in two ways:

• Archivelog mode: In this mode, Oracle saves (archives) the filled redo logs. Thus, no matter
how old the database backup is, if you are running in archivelog mode, you can recover the
database to any point in time using the archived logs.

• Noarchivelog mode: In this mode, the filled redo logs are overwritten and not saved. The
noarchivelog mode thus implies that you can restore only the backup, and you’ll lose all the
changes made to the database after the backup was performed. The noarchivelog mode of
operation means that you can recover from a crash of only the database instance. If there
is a media failure (for example, a loss of a disk), a database in noarchivelog mode may be
restored from a backup, but it will lose all changes made to the database since the backup
was made.

Production systems are usually run in archivelog mode, for the following reasons:

• You can recover completely from an instance failure as well as media failure.

• You can completely recover all your data in the event of a damaged disk drive.

• You can maintain high availability because a database run in archivelog mode doesn’t need
to be shut down in order to be backed up. You can perform online backups in this mode,
thus keeping the database open for any length of time you wish.

• You can perform open backups—that is, backups while the database is running—only if the
database is operating in archivelog mode.

• You need to run your database in archivelog mode to carry out a tablespace point-in-time
recovery (PITR).

I can’t think of any organization that doesn’t care if it loses valuable business data, so just about
all production databases are run in archivelog mode. If you’re running in noarchivelog mode, the
implication is that the data can be restored from other sources, or it’s just a test or development
database and you don’t need to have up-to-the-minute recoverability. Although I do discuss backing

CHAPTER 15 ■ BACKING UP DATABASES632

4517CH15.qxd 8/19/05 11:04 AM Page 632

up noarchivelog mode databases in this chapter, I concentrate on backing up databases operating
in archivelog mode.

■Note If the database is being backed up very frequently (using incremental backups, for example), or you’re
using a snapshot technology based on a tool such as Hewlett Packard’s Business Copy, you may be able to get
away with running in noarchivelog mode, for certain types of databases.

Whole and Partial Database Backups
You can back up either an entire database or part of it, such as a tablespace or a data file. Note that
you can’t back up a partial database if the database is running in noarchivelog mode, unless all the
tablespaces and files in the partial backup are read-only. You can make a whole database backup in
either archivelog or noarchivelog mode.

The most commonly performed backup is the whole database backup, and it consists of all the
data files and one other important file: the control file. Without the control file, Oracle will not open
the database, so you need the latest backup of the control file along with all the data file backups for
recovery.

Consistent and Inconsistent Backups
The difference between consistent and inconsistent backups is simple. A consistent backup doesn’t
need to go through a recovery process. When a backup is used to recover a database or a part of a
database (such as a tablespace or a data file), first you need to restore the backup, and then you
recover the database. In the case of a consistent backup, you don’t have to perform any recovery
steps. An inconsistent backup, on the other hand, always needs to undergo a recovery.

Oracle assigns every transaction a unique system change number (SCN). Each commit, for
example, will advance the SCN forward. Each time Oracle performs a checkpoint, all the changed
data in the online data files is written to disk. And each time there is a checkpoint, the thread check-
point in the control file is updated by Oracle. During this thread checkpoint, Oracle makes all the
read/write data files and the control files consistent to the same SCN. A consistent database means
that the SCNs stored in all the data file headers are identical and are also the same as the data file
header information held in the control files. The important thing is that the same SCN number must
appear in all the data files and the control file(s). The identical SCN means that the data files contain
data taken from the same point in time. Since the data is consistent, you don’t need to perform any
recovery steps after you restore (or copy back) a set of backup files.

To make a consistent backup, either the database needs to be closed (with a normal SHUTDOWN
or SHUTDOWN TRANSACTIONAL command, not a SHUTDOWN ABORT command) or it needs to be in a mount
position after being started (again, after a clean shutdown).

An inconsistent backup is a backup in which the files contain data from different points in
time. Most production systems can’t be shut down for a consistent backup. Instead, you need to
operate those databases on a 24/7 basis. You thus must back up the data files of these databases
online; that is, while the database is open for transactions. Since the data files are being modified by
users while you are backing them up, you end up with an inconsistent backup. Inconsistent back-
ups don’t mean there is anything wrong with your backups. However, during a recovery process, it
isn’t sufficient to merely restore these backups. In addition to restoring these backups, you must
also supply all archived and online redo logs from the time of the backup to the time to which you
want to recover the database. Oracle will read these log files and apply all necessary changes to the
restored backup files.

Since you can make an inconsistent backup of a database while it’s open, most production
databases use inconsistent backups as the foundation of their backup strategy.

CHAPTER 15 ■ BACKING UP DATABASES 633

4517CH15.qxd 8/19/05 11:04 AM Page 633

Open and Closed Backups
Online or open (or hot/warm) backups are backups you make while the database is open and acces-
sible to users. You can make an online backup of the entire database (or a tablespace or data file) as
long as the database is being run in archivelog mode. You can’t make an online backup if the data-
base is running in noarchivelog mode.

A closed backup of a database, also called a cold backup, is made while the database is shut
down. A closed backup is always consistent, as long as the database wasn’t shut down with the
SHUTDOWN ABORT command.

■Note Remember that if the backup is open (online) or if it closed (offline) but inconsistent, you may need to use
archived redo logs to make the database consistent.

The decision about whether you should make a closed backup or an open backup depends on
business requirements. Business requirements dictate the uptime levels, which are then encapsu-
lated in the service level agreement (SLA). If your SLA requires that your database be up 24/7, you
must make online backups. On the other hand, if your organization allows you a backup window
that will enable you to bring the database down, you can schedule closed backups. The frequency of
closed backups and the number of redo logs produced by the database are both factors in the time
it takes to recover the database. If you are performing closed backups on a weekly basis, you may
have up to six days’ worth of archived logs to apply to the database backup during recovery (in the
worst case).

Physical and Logical Backups
Technically speaking, you can divide Oracle backups into logical and physical backups. Logical
backups are backups made using the Data Pump Export utility, and they contain logical objects
like tables and procedures. These backups are in proprietary binary form, and their data can be
extracted only by using Oracle’s own Data Pump Import utility.

Physical backups refer to the backing up of the key Oracle database files: data files, archived
redo logs, and control files. Physical backups are made on disk or on tape drives.

This chapter discusses physical backups, which are the cornerstone or Oracle’s recovery strat-
egy when confronted with a major loss of data. Logical files are an adjunct, not an alternative, to
physical backups.

Backup Levels
Following are the levels at which you can perform Oracle database backups:

• Whole database: You back up all files including the control file. This level is applicable to
both archivelog and noarchivelog modes of operation.

• Tablespace backups: You back up all the data files belonging to a tablespace. Tablespace
backups are applicable only in the archivelog mode.

• Data file backups: You back up a single data file. Data file backups are valid in the archivelog
mode only.

Backup Guidelines
Regardless of your SLA and your recovery requirements, some general guidelines regarding backup
processes will help you avoid a recovery in most cases. After all, the best strategy for recovery is to

CHAPTER 15 ■ BACKING UP DATABASES634

4517CH15.qxd 8/19/05 11:04 AM Page 634

avoid having to do one by having an ironclad backup and data protection system in place. The
guidelines are as follows:

• Build redundancy into your systems by using RAID-based storage systems, which will let you
mask individual disk failures.

• Perform backups at frequent intervals to reduce your recovery time.

• Maintain offsite storage of your backups with a reliable vendor. The tapes that you store
offsite should be part of a regular recovery testing program.

• Run any database deemed to contain useful data for the organization in archivelog mode.
You would run a database in noarchivelog mode only when you don’t care about the up-to-
the-minute recoverability of the data.

• Multiplex the control files on separate disk drives managed by different disk controllers.
Multiplexing means that Oracle will automatically maintain more than one copy of a file. For
example, when you specify two copies of the Oracle control file, Oracle will write to both the
control files. Mirror the control files in addition to using the multiplexing offered by Oracle.

■Note Unlike in the case of the online redo log file, the Oracle instance will shut down if one of the multiplexed
control files can’t be written to due to a disk failure, or if the disk on which the control file is located runs out of
space.

• A loss of an active redo log file could be a single point of failure, which will result in the loss
of data. To avoid such an event, Oracle strongly recommends that you multiplex the redo log
file. When you multiplex the redo log file, even if one of the files is corrupted or lost, Oracle
will continue writing to its copy. A mirrored strategy may not be appropriate here, as both
copies might be corrupted at the same time, thus making the extra copy just as useless as the
original. Even when the database files are mirrored, it’s important to use Oracle multiplexing
for both archive logs and control files.

• Take advantage of the archivelog multiplexing option and set the LOG_ARCHIVE_MIN_SUCCEED_
DEST parameter to at least 2 to ensure you have multiple sets of good archived logs.

• After every major structural change, back up the control file. The control file backup takes so
little space that you can schedule a job that will back up the control file every hour or so on a
busy production machine without affecting its performance.

• Always make more than one copy of the database when it’s being backed up to tape, because
the tapes can be defective and you may not be aware of it.

• Make at least two copies of the archived redo logs, and keep one on disk for a short recovery
time if there’s a media problem.

• Though the data files, log files, and control files are indeed the key files needed for recovery,
you should back up other Oracle database files on a routine basis and put them away safely.
These include the server parameter file (SPFILE) or the init.ora file, the sqlnet.ora file, the
tnsnames.ora file, and the password file. You can always reconfigure each of these files in
case you lose them, but this wastes a lot of critical time and you could end up making mis-
takes in the process. These auxiliary files take very little space to store, and you may
sometimes need these other files to restore and recover a damaged database.

• Keep the use of the UNRECOVERABLE and NO LOGGING options to a minimum, for obvious rea-
sons. If there’s a problem, you won’t have those objects in the redo logs, and you won’t be
able to recover them.

CHAPTER 15 ■ BACKING UP DATABASES 635

4517CH15.qxd 8/19/05 11:04 AM Page 635

• Use the RMAN tool, which is provided free of cost from Oracle, to perform your backups and
recovery. RMAN maintains a log of all the backup and recovery actions performed, so it’s
easy to keep track of those operations.

• Keep older copies of backups for added protection. It’s not a good idea to overwrite your
tapes too soon to save a little money. If the current backups turn out to be unusable for some
reason (which is a real possibility), you end up losing all of your data. Always know how
many archived backups you have and where they are, and safeguard them.

• Your backup scripts should write to a log file or a log table, which should be examined for
any problems that might have occurred during the backups.

• Ensure that your applications are separated into independent tablespaces, so you needn’t
take more than one application offline if you have a major media problem.

• Consider using snapshot technology-based storage system backup techniques for fast back-
ups of large databases.

• Use the Data Pump Export utility (discussed in Chapter 14) to provide supplemental
protection.

Testing Your Backups
Too often, the first encounter a DBA has with a defective backup strategy occurs during a frustrating
recovery session of a production database. You can attribute the vast majority of problems encoun-
tered during recovery to inadequate or even nonexistent planning and testing of the backup and
recovery strategy. The time to find out whether your database is recoverable is most definitely not
when you are trying to recover a production database in the dead of night. To avoid a catastrophic
recovery experience, every DBA should have established and tested backup and disaster recovery
plans.

Always validate your backups and make sure that the backups are actually readable. Check for
corrupted blocks in the backed-up files, so recovery doesn’t become impossible due to bad files.
The RMAN utility and user-managed backups both offer ways to check for data block corruption.
I discuss these features in the “Database Corruption Detection” section later in this chapter.

You should also make periodic restoration tests mandatory for all key databases.

Maintaining a Redundancy Set
Always keep a redundancy set online so you can recover faster. A redundancy set is defined as the
following:

• Last backup of all data files

• Last backup of the control file

• Multiplexed copies of the current redo log files

• Copies of the current control file that’s being used

• All the archived redo logs since the last backup

You may also include the SPFILE or the init.ora, listener.ora, and tnsnames.ora files in your
redundancy set.

If you have such a redundancy set, you can recover from a media failure that results in any of
the possible losses: a data file, control file, or online redo log. Make sure you save the redundancy
set on completely separate physical volumes and RAID systems than those on which the data files,

CHAPTER 15 ■ BACKING UP DATABASES636

4517CH15.qxd 8/19/05 11:04 AM Page 636

online redo log files, and control files are located. This separation of the redundancy set and the
active database files guarantees that you’ll never lose any uncommitted data due to media failure.

The ideal way to maintain a redundancy set is to use the flash recovery area, as described in the
“The Flash Recovery Area” section of this chapter. This way, you can maintain the redundancy set in
one location on disk and automatically manage this space. Your recovery time will be reduced, as all
the necessary backups that are part of your redundancy set are maintained on disk itself.

Backup Strategies
You can take it for granted that there will be some kind of storage media–related problems over
time. You need to have a strategy so you can be ready for this eventuality. Your backup strategy will
depend heavily on the type of SLA you have in place, the size of your databases, the amount of
changes made to your data, the disk space available, and other factors.

Service Level Agreements
It is common for most IT departments today to draw up formal SLAs with their clients. SLAs are
ways to formalize expectations regarding the availability and performance of the database, as well
as other components such as the network. SLAs usually include factors such as the following:

• Maintenance windows

• Upgrade schedules

• Backup and recovery procedures

• Response times for certain key database operations

• Database and server downtime parameters

SLAs specify the uptime for the databases in clear terms. They also specify maintenance win-
dows and the planned recovery time under several identifiable downtimes (for example, downtime
due to a disk failure). The concept of uptime is pretty tricky—with a 99 percent uptime, you are still
down almost four entire days during the year. Whether your organization can handle this or would
like a 99.999 percent uptime, which implies only five minutes of downtime, is something you need
to nail down in clear terms.

A typical SLA for database operations may look like the following (a partial agreement is shown
here):

Standard Processing Services. The Provider shall furnish and allow access to the processing
environments listed below:

a. Mid-tier processing.

(1) Applications to be processed:

Financial Information Systems (FIS) to include:

LIST OF FIS APPLICATIONS

Other Departmental Applications

(2) Hours of Availability.

Interactive: Monday-Friday* 07:00-17:00*

Saturday, Sunday, & Holidays Not Applicable

*Application will be a web-based 24 x 7x 365 system WITH the exception of the scheduled
maintenance periods (see below)

CHAPTER 15 ■ BACKING UP DATABASES 637

4517CH15.qxd 8/19/05 11:04 AM Page 637

Batch: Not applicable

Maintenance: Monthly, Fourth weekend of every month

(3) Standard Processing/Service Requirements.

All of the systems/applications listed in paragraph (1) above are required to be opera-
tional 98% of the total time listed in paragraph (2) above. The Information Systems
Department will provide a method for the Department of Finance to monitor
operational percentages.

(4) Processing of data will be limited to the functionality/processing that was being
conducted at the time of handing over the operations to the Information Services
Department.

b. . . .

■Note SLAs also specify the cause of possible service interruptions and the expectations regarding the resump-
tion of normal service. If the disruption of service is not due to a database failure, obviously other factors come into
play, such as the network and the servers. You should, however, list the potential reasons for a database failure
and the time it will take to recover from each of those failures. The total time taken for any recovery, of course, will
include the time taken to restore the lost or damaged files and the time to recover the database. Chapter 16 covers
the recovery process.

The type of backup and recovery strategy you want to adopt depends very much on the level of
uptime specified in your SLA. The uptime level reflects how quickly you must recover from a failure.
If the SLA states that you can take a whole day to restore and recover your database, then you may
not need to do a nightly online backup.

You can get by with a once-a-week cold backup (if you’re allowed the downtime for it). If your
SLA specifies a 99.999 percent uptime, you may want to invest in Oracle Real Application Clusters
(RAC), for example.

Usually, you’ll find that uptime and cost are directly proportional to each other. What happens
if you find out you can’t make your main production server function for a very long time? Maybe
you should have a standby database in place to take over for the main database in such a case.

Planning a Backup Strategy
There is no “one size fits all” type backup strategy that works for all organizations. Plan on using the
flash recovery area, described in the next section, as it will eliminate the need to restore from tape
in many cases, saving you valuable time. You also don’t need to manually remove the obsolete
backup files.

Planning an efficient backup strategy will mean two important things:

• You have all required backup files on disk, preferable, for a quick restoration and recovery.

• You minimize the space requirements by deleting obsolete backups and keeping only the
required backup files on hand.

If you expect few changes in data, you are better off using incremental backups, since they
won’t consume a lot of space. Incremental backups, as part of your backup strategy, will reduce the
time required to apply redo during recovery. However, if most of your database blocks change fre-
quently, your incremental backups will be quite large. In such a case, you are better off making a
complete image copy of the database at regular intervals.

CHAPTER 15 ■ BACKING UP DATABASES638

4517CH15.qxd 8/19/05 11:04 AM Page 638

Your frequency of backups and whether and how you should use incremental backups depends
on the acceptable mean time to recover (MTTR). For example, you can implement a three-level
backup scheme where you take a full or level 0 monthly backup, a weekly cumulative level 1 backup,
and a daily differential level 1 backup. (See the “Incremental Backups” section in the discussion of
RMAN commands later in this chapter for a description of these levels and cumulative and differen-
tial backups.) Using this strategy, you most likely can completely recover your database without
needing to apply more than a day’s worth of redo logs.

You could use the new incrementally updated backups feature to minimize the MTTR. If on a
daily basis, you run the script that appears in the “Incrementally Updated Backups” section later in
this chapter, in essence, you can perform any PITR within 24 hours.

A Suggested Backup Schedule for Databases with Few Changes
In this example, you size the flash recovery area so it holds three days’ worth of incremental back-
ups. In this and the next example, assume that the retention policy is REDUNDANCY 1; that is, you keep
only one set of backups on hand. Use the following commands to make your incremental backups.
As explained later in this chapter, the RECOVER COPY command will produce a level 0 whole database
backup. Use the following script to save archived logs and incremental backups created after
SYSDATE-3.

RECOVER COPY OF DATABASE TAG "whole_db_copy" UNTIL TIME 'SYSDATE-3';
BACKUP INCREMENTAL LEVEL 1
FOR RECOVER OF COPY WITH TAG "whole_db_copy" DATABASE;

Let’s say you start running the script on Sunday, March 20, 2005. You decide that you want to
keep only three days’ worth of backups in the flash recovery area, including data files and archived
redo logs. Any backups and archived redo logs older than three days are automatically deleted when
the flash recovery area needs additional space for new files. This is what you’ll have in the flash
recovery area after each of the following days:

• Sunday March 20 level 0 backup from March 20

• Monday March 21 level 0 backup from March 20, level 1 incremental backup from March 21,
and the archived logs from March 20 onwards

• Tuesday, March 22 level 0 backup, level 1 incremental backups from March 21 to March 22,
archived logs from March 20 onwards

• Wednesday, March 23 level 0 backup, level 1 backups from March 21 to March 24, archived
logs from March 20 onwards

• Thursday, March 24 level 0 backup rolled forward to March 21, level 1 backups from
March 21 to March 24, and archived logs from March 21 through March 24

• Every day from Friday, March 25 on: level 0 backup rolled forward to level 1 backup and
archived logs from the day of the new level 0 backup until the current day

A Suggested Backup Schedule for Databases with Many Changes
If your database undergoes numerous changes, incremental backups won’t be very helpful. You are
better off with a full backup of your database at regular intervals. The following example shows how
to make a weekly full backup.

RMAN> BACKUP DATABASE TAG "weekly_full_bkup";

CHAPTER 15 ■ BACKING UP DATABASES 639

4517CH15.qxd 8/19/05 11:04 AM Page 639

You schedule this backup command to run once a week on Sunday night. Let’s say you use the
backup command for the first time on Sunday, March 20. This is what the flash recovery area will
contain over time:

• Sunday, March 20: Full backup of the database

• Sunday, March 27: Full backup from March 27 and the archived logs from March 20 to
March 27 (the full backup from the previous week; March 20 will be deleted, if space
requirements dictate it)

• Sunday April 3 and every Sunday thereafter: Full backup from that day and archived logs
from the previous Sunday to this Sunday

Now that you’ve had an overview of backing up an Oracle database and reviewed some basic
backup strategies, you’ll learn about the nuts and bolts of Oracle backups next, beginning with the
flash recovery area.

Examining the Flash Recovery Area
If you’re using Oracle Database 10g, Oracle Corporation recommends that you designate the flash
recovery area as the default area for storing every file related to backup and restore operations. One
of the first steps in setting up your backup/recovery strategy is to configure a flash recovery area.

Traditionally, Oracle DBAs had to manage the areas of backup storage, ensuring that there was
sufficient space to save their backup-related files. However, you should now allow the database
take care of these chores by using Automatic Disk-Based Backup and Recovery. Using a disk-based
backup and recovery strategy minimizes the response time for a database recovery and increases
database availability.

■Note The flash recovery area isn’t mandatory, but it’s highly recommended. Some features of Oracle database
backup and recovery, such as Oracle Flashback Database, require the use of a flash recovery area. You don’t need
to store all your backup-related files here, although that’s what Oracle recommends.

To enable Automatic Disk-Based Backup and Recovery, you have to designate enough disk
space for the flash recovery area, set the maximum size for the area, and tell Oracle how long you
want to keep backup-related information. Oracle then manages the backup, including archive log
files, control files, and other files (your redundancy set will be part of this set of files). Oracle also
deletes any files not needed by your database. Therefore, all you have to do is provide enough space
for the flash recovery area and select an appropriate length of time for keeping files.

To delete unwanted files automatically, the Oracle database relies on the Oracle Managed Files
(OMF) system. The OMF system automates Oracle database file management by creating and man-
aging the database files that are part of the operating system. To set up an OMF file system, set the
following OMF-related initialization parameters: DB_CREATE_FILE_DEST and DB_CREATE_ONLINE_LOG_
DEST_n. OMF has the ability to create and delete Oracle files without the DBA’s intervention. RMAN
uses this OMF capability in its backup- and recovery-related functions in conjunction with the flash
recovery area. If you want, you can use a flash recovery area with an ASM file system. Chapter 17
provides details on OMF and ASM file systems.

■Tip You can share a flash recovery area among multiple databases.

CHAPTER 15 ■ BACKING UP DATABASES640

4517CH15.qxd 8/19/05 11:04 AM Page 640

Benefits of the Flash Recovery Area
Following are the key benefits of using the flash recovery area:

• It acts as a central storage area

• It allows you to automatically manage recovery-related disk space

• It allows you to carry out backup and restore operations more quickly

• Backups have an increased reliability, because disks are safer storage devices than tapes

Because you are no longer restoring tape backups, backup and restore operations are quicker.
Even the backups moved to tape from the flash recovery area are retained on disk as long as there is
room in the flash recovery area. Backup files that become obsolete per your recoverability goals will
be automatically deleted when space is needed for new files.

Looking into the Flash Recovery Area
Ideally, the flash recovery area holds a full backup of every data file, your incremental backups, con-
trol file backups, and every archived redo log that is required for media recovery. In addition, you
can use the flash recovery area as a disk cache for tape.

If you configure a flash recovery area, RMAN will store all the backup-related files in it by
default. In this case, Oracle will use OMF files and generate the filenames.

The flash recovery area can contain the following:

• Data file copies: The RMAN BACKUP AS COPY command creates image copies of every data
file. The RMAN will in turn store these in the flash recovery area. You can also store RMAN
backup pieces in the flash recovery area. (An RMAN backup piece is an operating system file
containing the backup of a data file, a control file, or archived redo log files.)

• Incremental backups: If your backup strategy includes any incremental backups, they can be
stored here.

• Control file autobackups: The flash recovery area is the default area for all control file auto-
backups made by RMAN.

• Archived redo log files: Oracle automatically deletes every obsolete file and every file that
has been transferred to tape, so the flash recovery area is the ideal place to store archived
redo log files.

• Online redo log files: Oracle recommends that you save multiplexed copies of the online redo
log files in the flash recovery area. Oracle generates its own names for these files.

• Current control files: You should also store a multiplexed copy of your current control file in
the flash recovery area.

• Flashback logs: The Oracle Flashback Database feature, which provides an convenient alter-
native to traditional PITR, generates flashback logs. Oracle stores the flashback logs in the
flash recovery area. The Flashback Database feature (discussed in Chapter 16), if enabled,
copies images of each altered block in every data file into the flashback logs in the flash
recovery area.

The multiplexed redo log files and control files contained in the flash recovery area are called
permanent files, since you should never delete them (if you did, your instance will eventually crash
as a result). The other files in the flash recovery area (recovery-related files) are transient files,
because they’ll be deleted after they are obsolete or have been copied to tape. The transient files
include archived redo logs, data file copies, control file copies, control file autobackups, and
backup pieces.

CHAPTER 15 ■ BACKING UP DATABASES 641

4517CH15.qxd 8/19/05 11:04 AM Page 641

■Note At the very least, you should keep those archived logs that are not saved to tape in the flash
recovery area.

The background process archiver (ARCn) will automatically create a copy of every archived
redo logo file in the flash recovery area, if you have specified the flash recovery area as the place
to save archive logs. If you configure a flash recovery area, you won’t be able to use the older
LOG_ARCHIVE_DEST and LOG_ARCHIVE_DUPLEX_DEST parameters; you must use the LOG_ARCHIVE_DEST_n
parameter instead. The LOG_ARCHIVE_DEST_10 parameter is implicitly set to the flash recovery area,
where the database will save archived redo log files. If you don’t set any other local archiving desti-
nations, LOG_ARCHIVE_DEST_10 is, by default, set to USE_DB_RECOVERY_FILE_DEST. This means that the
archived redo log files will be automatically sent to the flash recovery area. In addition, if you’ve
configured other archive log locations with LOG_ARCHIVE_DEST_n, copies of archived redo logs will
also be placed in those other locations.

For example, if you configured a flash recovery area and turned on archiving for a database
without setting an explicit archive log location, and then issued the ARCHIVE LOG LIST command,
you would see something like this:

SQL> ARCHIVE LOG LIST
Database log mode Archive Mode
Automatic archival Enabled
Archive destination USE_DB_RECOVERY_FILE_DEST
Oldest online log sequence 825
Next log sequence to archive 827
Current log sequence 827
SQL>

The USE_DB_RECOVERY_FILE_DEST setting points to the flash recovery area for the database. This
is because you configured a flash recovery area and didn’t specify a LOG_ARCHIVE_DEST_n destination.
Therefore, the LOG_ARCHIVE_DEST_10 destination is implicitly set to the flash recovery area. (You can
override this behavior by explicitly setting LOG_ARCHIVE_DEST_10 to an empty string.)

Setting the Size of the Flash Recovery Area
Oracle recommends that your flash recovery area should be the same size as the sum of the size of
the database, any incremental backups, and every archived redo log. Your flash recovery area must
be large enough to accommodate the following:

• A copy of all data files

• Incremental backups

• Online redo logs

• Archived redo logs that haven’t been backed up to tape

• Control files

• Control file autobackups

You should save both a multiplexed online redo log file and a current control file, in addition to
all the other recovery-related files. Since Oracle recommends that you keep at least two copies of
the online redo logs and the control file, you can use the flash recovery area to save a pair of redo log
and control files.

The size of your database is the main factor when setting the size of the flash recovery area.
Other factors that affect the size of the flash recovery area are:

CHAPTER 15 ■ BACKING UP DATABASES642

4517CH15.qxd 8/19/05 11:04 AM Page 642

• The RMAN backup retention policy

• The type of storage device for backups (tape and disk or a disk device alone)

• The number of data block changes in your database

Ways to Create a Flash Recovery Area
There are a number of ways you can create a flash recovery area:

• Configure the flash recovery area at database-creation time using the Database Creation
Assistant (DBCA).

• Configure two flash recovery area–related dynamic initialization parameters. You can create
a flash recovery area with these two parameters while the database is running.

• Use the OEM Database Control to configure a flash recovery area.

Configuring a Flash Recovery Area
You use two initialization parameters to configure a flash recovery area:

• DB_RECOVERY_FILE_DEST_SIZE: This parameter sets the maximum size of the flash recovery
area.

• DB_RECOVERY_FILE_DEST: This parameter points to the location on disk of the flash recovery
area. You must locate the flash recovery area on a disk separate from the database area, where
you store the active database files such as data files, control files, and online redo logs.

You have to specify DB_RECOVERY_FILE_DEST_SIZE before you can specify DB_RECOVERY_
FILE_DEST.

Here’s how you would specify the two flash recovery area initialization parameters in your
init.ora file:

DB_RECOVERY_FILE_DEST_SIZE = 10G
DB_RECOVERY_FILE_DEST = '/u01/oradata/rcv_area'

Note that the database doesn’t allocate the amount of disk space set in DB_RECOVERY_FILE_
DEST_SIZE to the flash recovery area immediately. Oracle will use this space only as the maximum
limit on the flash recovery area size. Until new files necessitate the use of more space, the space is
controlled by the operating system, although Oracle has assigned it to the flash recovery area.

Dynamically Defining the Flash Recovery Area
Even if you don’t specify a flash recovery area in the init.ora file or the SPFILE, you can use the ALTER
SYSTEM statement to configure it while the instance is running. You can create and modify the flash
recovery area dynamically using DB_RECOVERY_FILE_DEST and DB_RECOVERY_FILE_DEST_SIZE as
follows:

SQL> ALTER SYSTEM SET
2* DB_RECOVERY_FILE_DEST_SIZE = 2G;

System altered.
SQL> ALTER SYSTEM SET
2 DB_RECOVERY_FILE_DEST = '/u01/app/oracle/flashrec_area';

System altered.
SQL>

CHAPTER 15 ■ BACKING UP DATABASES 643

4517CH15.qxd 8/19/05 11:04 AM Page 643

As noted earlier, you must set the DB_RECOVERY_FILE_DEST_SIZE parameter first, before you set
DB_RECOVERY_FILE_DEST. Ensure that you have created the flash recovery area directory before you
use DB_RECOVERY_FILE_DEST. The SCOPE=BOTH clause makes sure that the changes you made are writ-
ten permanently to the SPFILE. Use the ALTER SYSTEM command to make any changes to the flash
recovery area after you create it.

■Note The DB_RECOVERY_FILE_DEST location is really a synonym for the flash recovery area.

Disabling the Current Flash Recovery Area
If you want to disable the current flash recovery area, set DB_RECOVERY_FILE_DEST to blank (''). This
unsets the destination for the flash recovery area files. You can check the V$RECOVERY_FILE_DEST
view see the current location of the flash recovery area.

RMAN will still access the flash recovery area to carry out backup and recovery tasks, even if
you have disabled flash recovery. However, RMAN can’t access the automatic space management
features of flash recovery.

Examining the Default File Location
The flash recovery area requires that you use OMF, which means you can’t use the LOG_ARCHIVE_DEST
and LOG_ARCHIVE_DUPLEX_DEST parameters to specify redo log archive destinations (if you use these,
you can’t enable the flash recovery area). Instead, you must use the newer LOG_ARCHIVE_DEST_n
parameters.

With OMF, Oracle designates the default location for the data files, control files, and redo log
files based on the values of DB_CREATE_FILE_DEST and DB_CREATE_ONLINE_LOG_DEST_n. You use these
two initialization parameters, along with DB_RECOVERY_FILE_DEST, which specifies the location of the
flash recovery area.

■Note The location specified with DB_RECOVERY_FILE_DEST should not be the same as
DB_CREATE_FILE_DEST or any setting in DB_CREATE_ONLINE_LOG_DEST_n.

Working with Control Files

Setting the CONTROL_FILES parameter before you start the instance and create a new database means
that Oracle creates the control files in this location. If you don’t set the CONTROL_FILES parameter
during instance creation, Oracle creates the control files in default locations, following a set of rules:

• Specifying DB_CREATE_ONLINE_LOG_DEST_n gets Oracle to create an OMF-based control file in
n number of locations. The first directory will hold the primary control file.

• If you specify the DB_CREATE_FILE_DEST and DB_RECOVERY_FILE_DEST parameters, Oracle will
create an OMF-based control file in both of these locations.

• If you just specify DB_RECOVERY_FILE_DEST, Oracle creates an OMF-based control file only in
the flash recovery area.

• If you omit all the initialization parameters, Oracle creates a non-OMF-based control file in
the system-specific default location.

CHAPTER 15 ■ BACKING UP DATABASES644

4517CH15.qxd 8/19/05 11:04 AM Page 644

Redo Log Files

As I noted earlier, you can’t use the LOG_ARCHIVE_DEST and LOG_ARCHIVE_DUPLEX_DEST parameters to
specify redo log archive destinations. If you don’t specify the LOGFILE clause when you create a data-
base, Oracle creates the redo log files based on the following rules:

• If you specify the DB_CREATE_ONLINE_LOG_DEST_n parameter, Oracle creates an online redo
log member in n number of locations. The maximum number is equal to the MAXLOGMEMBERS
limit.

• If you specify the DB_CREATE_FILE_DEST and DB_RECOVERY_FILE_DEST parameters, Oracle
creates an online redo log member in these locations up to the MAXLOGMEMBERS limit for the
database.

• If you just specify the DB_RECOVERY_FILE_DEST parameter, Oracle will create an online redo
log member in the flash recovery area only. Oracle will also implicitly set LOG_ARCHIVE_
DEST_10 to the flash recovery area.

• If you omit all three initialization parameters, Oracle will create a non-OMF online redo log
file in the system-specific default location.

Setting Up Flash Recovery Parameters
Let’s review the procedure for configuring the flash recovery area and look at an example of how to
set up the flash recovery parameters in your initialization file. This example assumes you are using
OMF (see Chapter 17). OMF files are automatically named and managed by the Oracle database
itself. You just provide a directory for the files, and Oracle will take care of the rest.

When you use OMF files, you use two parameters to tell Oracle where to create your data files,
online redo log files, and control files. You use the DB_CREATE_FILE_DEST parameter to specify the
location for all database files. You use the DB_CREATE_ONLINE_LOG_DEST_n parameter to specify the
location of all online redo log and control files. If you don’t specify the second parameter, Oracle
will create all three types of files in the directory you specified for the DB_CREATE_FILE_DEST
parameter.

For example, here is a set of initialization parameters you might use to create a test database:

DB_CREATE_FILE_DEST = /u02/test/oradata/dbfiles/
LOG_ARCHIVE_DEST_1 = 'LOCATION=/u03/test/arc_dest1'
LOG_ARCHIVE_DEST_2 = 'LOCATION=USE_DB_RECOVERY_FILE_DEST'
DB_RECOVERY_FILE_DEST = 'LOCATION=/u03/test/oradata/rcv_area'
DB_RECOVERY_FILE_DEST_SIZE = 10G

This set of initialization parameters will create the following:

• OMF-based data files, online redo log files, and control files in the directory specified by the
DB_CREATE_FILE_DEST parameter.

• One copy of the current control file in the flash recovery area, since you are using both the
DB_CREATE_FILE_DEST and DB_RECOVERY_FILE_DEST parameters.

• One copy of the current online redo log files in the flash recovery area, since you are using
both the DB_CREATE_FILE_DEST and DB_RECOVERY_FILE_DEST parameters.

• One copy of the archived redo logs in a file system location, indicated by LOG_ARCHIVE_DEST_1
= 'LOCATION=/u03/test/arc_dest1'.

• One copy of the archived redo log files in the flash recovery area, indicated by LOG_ARCHIVE_
DEST_2 = 'LOCATION=USE_DB_RECOVERY_FILE_DEST'.

CHAPTER 15 ■ BACKING UP DATABASES 645

4517CH15.qxd 8/19/05 11:04 AM Page 645

If you make sure your flash recovery area is physically separated from the other files, you will
have ensured the creation of a safe redundancy set by following the example outlined here. By
default, RMAN will send all backups of data files and control files to the flash recovery area. In addi-
tion, you have specified that copies of the current online redo files and control file also should be
sent there. You thus have a complete redundancy set.

Backing Up the Flash Recovery Area
You can back up the flash recovery area with RMAN backup commands. For these to work, you have
to turn CONFIGURE BACKUP OPTIMIZATION on. You can only back up the flash recovery area to a tape
device using these backup commands.

The RMAN command BACKUP RECOVERY AREA allows you to back up every flash recovery file in
either the current flash recovery area or the previous flash recovery area. This will only back up
those files that haven’t been backed up to tape before.

The RMAN command BACKUP RECOVERY FILES allows you to back up every file that the BACKUP
RECOVERY AREA command does, but includes files from all areas on the file system.

■Tip You can use the RMAN command BACKUP RECOVERY FILE DESTINATION to move disk backups to tape.

Working with the Flash Recovery Area
You need to ensure that the flash recovery area is large enough for your needs.

When you add a new file to the flash recovery area, Oracle does an update on the list of backup
files it considers eligible for deletion. This list contains files that you’ve backed up to tape or that
have become obsolete according to the local retention rules. Here’s a summary of Oracle’s auto-
matic file deletion policy for the flash recovery area:

• Permanent files (multiplexed redo log files and control files) are never deleted.

• Files that are obsolete under the configured retention policy are eligible for deletion.

• Transient files (files other than the redo log and control files) that have been copied to tape
are also eligible for deletion.

Even though a file might become eligible for deletion, Oracle removes it only when the flash
recovery area is full. Thus, files recently moved to tape might still be available on disk, if there is no
space pressure in the flash recovery area.

The V$RECOVERY_FILE_DEST view is the best place to find information on managing the flash
recovery area. You can use this view to check the current location, disk quota, space in use, space
reclaimable by deleting files, and total number of files in the flash recovery area:

SQL> SELECT * FROM V$RECOVERY_FILE_DEST;
NAME SPACE_LIMIT SPACE_USED SPACE_RECLAIMABLE NUMBER_OF_FILES

---------- ------------ --------- ----------------- ----------------
u01/app/oracle 2147483648 1545718272 0 100
SQL>

In the V$RECOVERY_FILE_DEST view, the SPACE_LIMIT column contains the allocated flash
recovery area space. The SPACE_RECLAIMABLE column contains the value that shows how much space
you can reclaim by garbage collecting obsolete and redundant files in the flash recovery area.

You can use the V$FLASH_RECOVERY_AREA_USAGE view to check the space being used by
different types of files, and how much space for each type of file you can reclaim by deleting files
that are obsolete, redundant, or already backed up to tape.

CHAPTER 15 ■ BACKING UP DATABASES646

4517CH15.qxd 8/19/05 11:04 AM Page 646

SQL> SELECT * FROM V$FLASH_RECOVERY_AREA_USAGE;
FILE_TYPE PERCENT_SPACE_USED PERCENT_SPACE_RECLAIMABLE NUMBER_OF_FILES
------------ ------------------ ------------------------- ------------
CONTROLFILE 0 0 0
ONLINELOG 0 0 0
ARCHIVELOG 43.57 0 96
BACKUPPIECE 28.41 0 4
IMAGECOPY 0 0 0
FLASHBACKLOG 0 0 0

Additionally, Oracle has added the IS_RECOVERY_DEST_FILE column to the V$LOGFILE,
V$CONTROLFILE, V$ARCHIVED_LOG, V$DATAFILE_COPY, and V$BACKUP_PIECE views.
A value of YES means the file is in the flash recovery area; NO means that it is not.

If the flash recovery area runs out of space and it can’t remove any files to compensate, you
will see one of the following: an warning alert at 85 percent full or a critical alert at 97 percent full.
If this happens, Oracle adds entries to the alert log file and the DBA_OUTSTANDING_ALERTS view.
However, Oracle continues placing recovery-related files in the flash recovery area, until it fills
100 percent of the space; at that point, it issues an error that tells you that the flash recovery area
is full.

When the flash recovery area fills up, the database issues the following error:

ORA-19815: WARNING: db_recovery_file_dest_size of 2147483648 bytes is 100.00% used,
and has 0 remaining bytes available.

The following are two other errors you’ll most likely see when you run of space in the flash
recovery area:

• ORA-19809 means that the limit set by the DB_RECOVERY_FILE_DEST_SIZE parameter is
exceeded.

• ORA-19804 indicates that Oracle is unable to reclaim a specified amount of bytes from the
limit set by DB_RECOVERY_FILE_DEST_SIZE.

■Note The ORA-00257 error message is Archiver error. Connect internal only, until freed. This
means that your archive log directory is full and users can’t connect to the database anymore. Existing users can
continue to query the database, but no DML can be executed because Oracle can’t archive the logs. If you quickly
move some of the files in the archive log directory to a different location, the database is free to continue its nor-
mal operations. If you have a script monitoring the free space on your archive log directory, you shouldn’t have this
problem.

If any of this ever happens you can do the following:

• Think about changing your policies that cover backup and archive log retention.

• Increase the size of DB_RECOVERY_FILE_DEST_SIZE.

• Back up the contents of the flash recovery area to a tape device with the RMAN BACKUP
RECOVERY AREA command.

• Delete unnecessary backup files with RMAN. The CROSSCHECK and DELETE EXPIRED com-
mands are useful for this.

If want to move the flash recovery area, use the DB_RECOVERY_FILE_DEST initialization parameter:

SQL> ALTER SYSTEM SET DB_RECOVERY_FILE_DEST='/u01/app/oracle/new_area';

CHAPTER 15 ■ BACKING UP DATABASES 647

4517CH15.qxd 8/19/05 11:04 AM Page 647

Oracle creates the flash recovery area files in the new flash recovery area. You can, if you want,
leave the permanent files, flashback logs, and transient files where they are. Eventually, as they
become eligible for deletion, Oracle will remove all the transient files. However, you can move the
permanent files, transient files, and flashback logs with the standard operating system file
commands.

The Recovery Manager (RMAN)
The traditional user-managed backup method consists simply of using the operating system com-
mands to copy the relevant files to a different location and/or to a tape device. With RMAN, you
back up the database files from within the database with the help of the database server itself.
RMAN can make backups of data files and data file image copies, control files and control file image
copies, archived redo logs, the SPFILE, and RMAN backup pieces. Oracle recommends using the
RMAN interface to back up your databases.

■Note Most “old-school” Oracle DBAs will be familiar with operating system commands, but newer DBAs may
want to focus on RMAN, which offers ease of use, safety, and features that the traditional methods don’t have.
You can use all the RMAN backup and recovery functionality through the OEM interface (Database Control or Grid
Control), without needing to remember complex commands.

RMAN simplifies the backup procedures by enabling the use of powerful yet easy-to-write
backup and recovery scripts. RMAN also offers features such as corruption detection within the
data blocks and the ability to back up only the changed blocks in the database. You can save
RMAN’s scripts in the database and use them right from there, so you don’t need to write operating
system-based scripts. RMAN automatically ensures the backup of all the database files, which elim-
inates the human-error component that is present in operating system-based backups.

Despite its sophistication, RMAN has some limitations. You can’t, for example, read from or
write directly to a tape device using RMAN; you need to use what’s known as a media management
layer (MML) to make tape backups.

■Note RMAN can create and manage backups on disk and on tape devices, also referred to as system backup
to tape (SBT) devices, move backups on disk to tape, and restore backups from tape. However, RMAN interacts
with SBT devices through an MML, or media manager. Oracle provides its own MML, in the form of Oracle Secure
Backup.

Benefits of RMAN
RMAN provides an array of benefits compared to user-managed backup methods, including the
following:

• You can perform incremental backups using RMAN. The size of the backups doesn’t depend
on database size; rather, it depends on the activity level within the database, because
unchanged blocks are skipped during incremental backups. You can’t perform incremental
backups any other way. You can perform incremental exports, but that isn’t considered a real
backup for all databases.

• You can repair a data file with a few corrupt data blocks online, without needing to resort to
restoring a file from backup. This is called block media recovery.

CHAPTER 15 ■ BACKING UP DATABASES648

4517CH15.qxd 8/19/05 11:04 AM Page 648

■Tip Even if you use user-managed backups, you can perform block media recovery by cataloging your data file
and archive redo log backups into the RMAN repository.

• Human error is minimized because RMAN, not the individual DBA, keeps track of all the file-
names and locations. Once you understand the use of the RMAN utility, it’s easy for you to
take over the backup and recovery of databases from another DBA.

• A simple command, such as BACKUP DATABASE, can back up an entire database, without the
need for complex scripts.

• The unused block compression feature of RMAN lets you skip copying never-used data
blocks in a data file during a backup, thus saving storage space and backup time.

• It’s easy to automate the backup and recovery process through RMAN. RMAN can also auto-
matically parallelize your backup and recovery sessions.

• RMAN can perform error checking during backups and recovery, thus ensuring that the
backed-up files aren’t corrupt. RMAN has the capability to recover any corrupted data blocks
without taking the data file offline.

• During online backups, no redo is generated, unlike when online backups are performed
using the operating system utilities. Thus, the overhead is low for online backups.

• The binary compression feature reduces the size of backups saved on disk.

• If you use the recovery catalog, you can store backup and recovery scripts directly in it.

• RMAN can perform simulated backups and restores.

• RMAN enables you to make image copies, which are similar to operating system-based
backups of files.

• RMAN can be easily integrated with powerful third-party media management products to
make tape backups effortless.

• RMAN is integrated well with the OEM backup functionality, so you can schedule backup
jobs easily for a large number of databases through a common management framework.

• You can easily clone databases and maintain standby databases using the RMAN
functionality.

As the preceding list clearly shows, it’s no contest when it comes to the question of whether you
should be using operating system-based backup and recovery techniques (user-managed backup
and recovery) or RMAN. Therefore, you’ll see quite a bit of discussion about RMAN in this chapter
and the next, which deals with recovering databases. Oracle maintains that both RMAN and tradi-
tional user-managed backup and recovery methods are equally valid and effective, but
recommends the use of RMAN.

RMAN Architecture
RMAN operates via server sessions connecting to the target databases, which are the databases you
want to back up or recover. The collection of information about the target database—such as its
schema information, backup copy information, configuration settings, and backup and recovery
scripts—is called the RMAN repository. RMAN uses this metadata about the target databases to
perform its backup and recovery activities. RMAN periodically retrieves metadata from the target
database control file and saves it in the recovery catalog.

CHAPTER 15 ■ BACKING UP DATABASES 649

4517CH15.qxd 8/19/05 11:04 AM Page 649

Following is a list of the entities that enable RMAN to perform its backup and recovery
functions:

• Target database: This is the database that the RMAN needs to back up. RMAN server sessions
running in the target database perform the backup and recovery operations.

• RMAN repository: This is RMAN’s metadata about backups, archived redo logs, and its own
activities. The control file of each database is the primary storage for RMAN’s repository.

• Recovery catalog schema: This is the database schema in the recovery catalog database that
owns the RMAN backup and recovery metadata (the RMAN repository).

• RMAN client: You manage RMAN operations through RMAN client sessions. The RMAN
client is a command-line interface through which you issue commands to perform backup
and recovery operations by communicating with the RMAN server process. You can issue
special RMAN commands, as well as SQL statements from the RMAN client. The client starts
the RMAN server sessions on the target database and directs them to perform the backup
and recovery operations. The RMAN client uses Oracle Net to connect to a target database,
so it can be located on any host that is connected to the target host through Oracle Net.

• RMAN executable: This is the actual program that manages all backup and recovery
operations. You can find the RMAN executable (also known simply as rman) in the
$ORACLE_HOME/bin directory. You specify the backup or recovery operation, and the
RMAN executable performs it for you by interacting with the target database. It records
the results in the control file and the optional recovery catalog.

• Server processes: These are the background processes that facilitate communication between
the RMAN executable and the target database. The server process performs the real work of
reading and writing to disk devices and tape drives during backup and recovery.

■Note Three entities are optional when you use RMAN: the flash recovery area, the recovery catalog database
(and the recovery catalog schema), and media management software.

The RMAN Repository and Recovery Catalog
You have a choice of two locations for storing the RMAN repository: you can let RMAN store it in the
target database control file, or you can configure and use the optional recovery catalog to manage
the metadata. The RMAN repository contains information about the following items:

• Data file backup sets and copies

• Archived redo log copies and backup sets

• Tablespaces and data file information

• Stored scripts and RMAN configuration settings

By default, RMAN stores all metadata in the control file. All RMAN information is first written
in the control file, and then to the recovery catalog if one exists. For instance, when RMAN creates a
new backup set, you can view the information in the V$BACKUP_SET view. You can also view the
same information in the recovery catalog view, RC_BACKUP_SET. Thus, for every change to the
RMAN repository, information is recorded in two places: the control file and the optional recovery
catalog. The recovery catalog versions of the RMAN repository are stored in database tables. The
control file version of the repository is stored as records within the control file.

CHAPTER 15 ■ BACKING UP DATABASES650

4517CH15.qxd 8/19/05 11:04 AM Page 650

If you wish, you can manage the RMAN with just the information in the control file. The objec-
tions you’ll hear regarding using the recovery catalog are that it’s too complex to maintain and that
it needs another database to manage it. However, there are some RMAN commands you can use
only when you use the recovery catalog. You can also use RMAN-stored scripts only if you use the
recovery catalog. If you use the control file, you run the risk of some of the historical data being
overwritten, but the recovery catalog will safeguard all such data. This is because the control file
allocates a finite space for backup-related activities, while the recovery catalog has more room for
storing backup history. One recovery catalog in your system can perform backup, restore, and
recovery activities for dozens of Oracle databases. Thus, you can centralize and automate backup
and recovery operations by using the recovery catalog. Oracle recommends that you use a dedi-
cated database for running the recovery catalog, but it isn’t absolutely necessary.

■Note You’re strongly advised to use the recovery catalog so you can take advantage of the full range of fea-
tures provided by RMAN. The discussion of RMAN’s features in this chapter and the next assumes the existence of
the recovery catalog.

The Media Management Layer
You can make backups directly to your operating system disks using RMAN. If you want to make
backups to tape, you’ll need additional software called an MML or a media manager. RMAN can
move backups on disk to tape and restore the tape backups if necessary. Oracle Database 10g
includes a new proprietary media management product, called Oracle Backup, which I discuss
in the “The Oracle Backup Tool” section later in this chapter.

Connecting to RMAN
You can connect to RMAN by simply typing rman at the operating system prompt. This will get you
the RMAN> prompt, at which point you can type in the various commands. You can also use the
RMAN commands in batch mode or through pipes by using Oracle’s DBMS_PIPE package.

You must have SYSDBA privileges to connect to other databases through RMAN. You don’t
need to be a SYSDBA privilege holder to just connect to the RMAN catalog; you can do so with
the special rman account and password. As you’ll see later in the “Creating the Recovery Catalog”
section, the user rman is the owner of the catalog. You can connect to RMAN through database
password authentication. You can also connect to the database using operating system authenti-
cation. The following sections describe each of these methods.

Connecting to RMAN Through Database Authentication
You can log in to the RMAN utility using your database credentials. You issue backup/recovery com-
mands after connecting to the target database. To finish your RMAN session, use the exit command.
Here is an example of connecting to the database named orcl, which is the target database.

$ rman
Recovery Manager: Release 10.2.0.0.0 – Beta on Tue Mar 8 15:31:04 2005
Copyright (c) 1982, 2004, Oracle. All rights reserved.
RMAN> CONNECT TARGET system/system_passwd
connected to target database: ORCL (DBID=1080111806)
RMAN> exit
Recovery Manager complete.
$

CHAPTER 15 ■ BACKING UP DATABASES 651

4517CH15.qxd 8/19/05 11:04 AM Page 651

USING A MEDIA MANAGEMENT LAYER WITH RMAN

It’s not uncommon for Oracle databases to be hundreds of gigabytes in size. Backing up large, mission-critical data-
bases poses challenges to the DBA in terms of the complexity of the techniques and the longer durations of the
backups. In recent years, several advances in technology have contributed to easing the DBA’s burden in this area.
Today’s leading solutions do provide an array of choices, in terms of both strategy and third-party tools, to make the
backup process extremely efficient and safe.

Manually tracking backup files and backup operations also starts hitting the point of diminishing returns after
a while. Even if you use RMAN, a large number of databases make it imperative to work with a third-party tool to
manage the backup schedules and to automate the media devices. Oracle maintains the Oracle Backup Solutions
Program (BSP), which is a team of vendors whose media management products that are designed to work with
RMAN. Some of the important players in the field are Legato Systems (NetWorker) and VERITAS (NetBackup). For a
complete list of the BSP media management software vendors, visit http://otn.oracle.com/deploy/
availability/htdocs/bsp.htm#MMV.

NetWorker, for example, provides an automated way of performing backups that includes monitoring all the
backups in addition to scheduling them. NetWorker also has the capability to perform parallel backups to multiple
tape systems simultaneously, thereby cutting down on the time needed for backups of extremely large databases.
Dedicated storage servers and autochanger-based tape drives are used by Legato, as well as other similar private-
party offerings. NetWorker accepts data through RMAN, saves it on tape, and provides archiving and indexing
services for the tapes. Products such as NetWorker provide much better I/O performance than the traditional oper-
ating system utilities.

Another interesting third-party product is Business Copy XP, offered by Hewlett Packard in support of its HP
line of UNIX machines. Business Copy XP is an array-based mirroring strategy that enables you to make copies
online in a fraction of the time it normally takes. You can even run background processes on the copied data without
adversely affecting production. This reduction in the time taken for backups enables more frequent backups.

In the past, Oracle depended exclusively on third-party products for RMAN media management to access
sequential media devices like tape libraries. In fact, Oracle even bundled a single user version of the Legato Net-
Worker, called the Legato Single Server Version (LSSV), with the Oracle database. However, in Oracle Database 10g
Release 2, Oracle has introduced its own proprietary media management solution named Oracle Secure Backup.

The following way of specifying the credentials at the operating system level is equivalent to
the preceding commands:

$ rman target system/system__passwd
Recovery Manager: Release 10.2.0.0.0 – Beta on Sat Mar 12 11:38:21 2005
Copyright (c) 1982, 2004, Oracle. All rights reserved.
connected to target database: ORCL (DBID=1080111806)
RMAN>

Connecting to RMAN Using Operating System Authentication
You can also log in to RMAN using operating system authentication, without using a database user
account and password. Here’s how you do this:

$ rman target /
Recovery Manager: Release 10.2.0.0.0 – Beta on Tue Mar 8 15:35:22 2005
Copyright (c) 1982, 2004, Oracle. All rights reserved.
connected to target database: ORCL (DBID=1080111806)
RMAN>

CHAPTER 15 ■ BACKING UP DATABASES652

4517CH15.qxd 8/19/05 11:04 AM Page 652

Connecting to the Recovery Catalog
The preceding login examples connect directly to the target database without a recovery catalog.
Once you configure the optional recovery catalog, you have the option of connecting to the recov-
ery catalog first and performing all your backup/recovery actions through it. This is the option
Oracle strongly recommends because of the benefits of using the recovery catalog. In the following,
the recovery catalog is in the database nick and the target database is orcl.

$ rman target orcl catalog rman/rman@nick
Recovery Manager: Release 10.2.0.0.0 - Beta
Copyright (c) 1995, 2004, Oracle. All rights reserved.
target database Password:
connected to target database: ORCL (DBID=1065483535)
connected to recovery catalog database
RMAN>

Scripting with RMAN
As you’ll see in upcoming sections of this chapter, you can use simple manual RMAN commands,
such as BACKUP DATABASE and LIST OBSOLETE. However, manual commands aren’t the only or the
best way to give directives to RMAN. RMAN comes with a powerful scripting language that lets you
encapsulate common backup tasks easily. You can store RMAN scripts either in the recovery catalog
or as text files. You can create scripts designed for a single database or global scripts that can be
used in several databases.

When you need to use a large number of configuration parameters for a particular backup, it’s
much easier to use a script. RMAN scripts thus perform the same function as regular scripts in
UNIX or SQL: they make it easier to store and rerun long sets of commands.

Creating and Running Scripts
All scripts in RMAN are created with the CREATE SCRIPT command, followed by the actual script
contents enclosed within a pair of curly brackets { }. The RMAN scripts do look a bit cryptic at first,
but they are highly effective and actually easy to write.

Here’s a simplified nightly backup script that performs a full database backup. Note that by
using the keyword SQL, you can include regular SQL commands within your RMAN backup script.

RMAN> CREATE SCRIPT nightly_backup {
2> ALLOCATE CHANNEL c1 TYPE DISK;
3> BACKUP DATABASE FORMAT '/u01/app/oracle/%u';
4> SQL 'ALTER DATABASE BACKUP CONTROLFILE TO TRACE';
5> }
created script nightly_backup
RMAN>

You execute a script with the RUN command and the EXECUTE SCRIPT command. So, now that
you have created the script nightly_backup, all you need to do to run the full backup is to execute
the script as follows:

RMAN> RUN {EXECUTE SCRIPT nightly_backup;}
executing script: nightly_backup
allocated channel: c1
channel c1: sid=19 devtype=DISK
. . .
RMAN>

CHAPTER 15 ■ BACKING UP DATABASES 653

4517CH15.qxd 8/19/05 11:04 AM Page 653

RMAN scripting enables you to perform complex tasks in a few short lines. The following script
uses two tape devices to perform a full database backup. The script allocates the two channels (con-
nections to the server), completes the backup in a specified format, and releases the channels.

RMAN> RUN {
2> ALLOCATE CHANNEL c1 TYPE 'sbt_tape';
3> ALLOCATE CHANNEL c2 TYPE 'sbt_tape';
4> BACKUP
5> FORMAT 'full d%d_u%u'
6> FILESPERSET 10
7> DATABASE;
8> RELEASE CHANNEL c1;
9> RELEASE CHANNEL c2;
10> }

If you wish, you can incorporate RMAN commands in an operating system file, called a
command file. Here is an example that shows how you can use an operating system file directly
to run your RMAN commands and store the results in a log file (output.txt):

$ rman TARGET/CATALOG rman/cat@catdb CMDFILE commandfile.rcv LOG outfile.txt

Checking the Syntax of RMAN Scripts
You can use the CHECKSYNTAX parameter to check the syntax of a script (or any RMAN command)
you plan to use with RMAN. Here’s an example that shows a script contained in the script file testfile
has the correct syntax:

$ rman CHECKSYNTAX @/tmp/testfile
Recovery Manager: Release 10.2.0.0.0 - Beta on Sun Jun 5 12:40:22 2005
Copyright (c) 1982, 2004, Oracle. All rights reserved.
RMAN> # command file with correct syntax
2> restore database;
3> recover database;
4>
The cmdfile has no syntax errors
Recovery Manager complete.
$

Converting RMAN Scripts
RMAN offers two sorts of scripts: stored scripts (kept in the RMAN recovery catalog) and text scripts
(kept in regular text files). Stored scripts have the advantage that any user who logs in to RMAN can
access them easily. You can change scripts from the text format to a stored script and vice versa.
Here’s how an RMAN command can send the contents of a stored script to a text file:

RMAN> PRINT script nightly_backup to file 'test.txt';
script nightly_backup written to file test.txt
RMAN>

Creating Global RMAN Scripts
The scripts you’ve seen so far are local scripts, since you can use them only in the database in which
you create them. You can also create and execute an RMAN global script against a database regis-
tered in the recovery catalog, providing your RMAN client is connected to the recovery catalog and
the target database simultaneously. You can get databases to share RMAN scripts if they connect to
the database with the RMAN catalog. The following statement shows the syntax for creating a global
script.

CHAPTER 15 ■ BACKING UP DATABASES654

4517CH15.qxd 8/19/05 11:04 AM Page 654

RMAN> CREATE GLOBAL SCRIPT global_full_backup
{
BACKUP DATABASE PLUS ARCHIVELOG;
DELETE OBSOLETE;
}

created global script global_full_backup
RMAN>

You execute a global script in the same way as a local script:

RMAN> RUN {EXECUTE SCRIPT global_full_backup}; }

Printing a Script
The following PRINT SCRIPT command prints out the contents of the global script example:

RMAN> PRINT GLOBAL SCRIPT global_full_backup;
printing stored global script: global_full_backup
{backup database plus archivelog ;
delete obsolete;
}

RMAN>

Important RMAN Terms
RMAN uses some special terminology. To use RMAN effectively, you need a good understanding of
the terms discussed in the following sections.

Backup Piece
A backup piece is an operating system file containing the backup of a data file, a control file, or
archived redo log files. This backup information is stored in an RMAN-specific format.

Backup Set
A backup set is a logical structure that consists of one or more RMAN backup pieces (the default
is one backup piece per backup set). You can create a backup set on disk or tape. If you back up a
database, data file, tablespace, or archive log, RMAN groups the complete set of relevant backup
pieces into one backup set. When you issue the backup command, RMAN creates the backup set to
hold the output. Remember that a backup set is a file or set of files in a proprietary format that only
RMAN can understand. Thus, only RMAN is able to use the backup sets to recover the database.

By default, RMAN creates a backup set when you use a backup command, whether you are
copying to disk or tape (through a media manager).

Image Copy
Image copies are similar to the copies you can make of operating system files with the cp command
in UNIX or the copy command in DOS. You can make image copies of data files, control files, and
archived redo log files. RMAN image copies can be made only to disk; they can’t be made to tape.

RMAN can also use copies that you make using non-RMAN operating system utilities. These
types of copies are called user-managed copies or operating system copies. Really, there’s no differ-
ence between RMAN image copies and normal copies made with the cp command, for example,
except that image copies made through the RMAN tool have information about them written to the
control file or the recovery catalog. If you use an operating system command such as dd to produce

CHAPTER 15 ■ BACKING UP DATABASES 655

4517CH15.qxd 8/19/05 11:04 AM Page 655

image copies, you can then use the RMAN CATALOG command to record these copies in the RMAN
repository. Thus, you can use a manually copied data file during a recovery, if you first use the
CATALOG command to register the file with RMAN. You can then use these user-made copies of
data files in RMAN operations, using the RESTORE and SWITCH commands.

You use the RMAN command BACKUP AS COPY to make image copies. You may also direct RMAN
to always produce image copies rather than backup sets (thus changing the default behavior of
making backup sets) by performing the following configuration change:

RMAN> CONFIGURE DEVICE TYPE DISK BACKUP TYPE TO COPY;
new RMAN configuration parameters:
CONFIGURE DEVICE TYPE DISK BACKUP TYPE TO COPY PARALLELISM 1;
new RMAN configuration parameters are successfully stored
released channel: ORA_DISK_1
starting full resync of recovery catalog
full resync complete
RMAN>

You can use the image copies produced by the RMAN BACKUP AS COPY command just like any
other file copies made with operating system utilities.

Proxy Copy
RMAN can also perform a special kind of backup called the proxy copy, where the media manager is
given control of the copying process. Proxy copies can’t be used with disks. Here’s an example of
how you specify a proxy copy:

RMAN> BACKUP DEVICE TYPE sbt PROXY DATAFILE 2;

Channel
An RMAN session must use some kind of a connection to the server to perform backup and recov-
ery work, and channels represent those connections. Channels specify the specific device, disk or
tape, that will be used for the backup or recovery. You can either have preconfigured channels
(somewhat like default channels) or specify the channel manually.

You can use automatic channel allocation to configure channels persistently across sessions. In
the following examples, the default device is set to a tape device (sbt) in the first case and to disk in
the second case.

RMAN> CONFIGURE DEFAULT DEVICE TYPE TO sbt; /* tape device */
RMAN> CONFIGURE DEFAULT DEVICE TYPE TO disk; /* OS file system */

These devices are made part of the RMAN configuration, and until they are changed again
through the use of the CONFIGURE command, they remain the default device types for all RMAN
sessions.

You can manually set the channel type by using the ALLOCATE CHANNEL command. The following
command sets the device to sbt, which indicates a sequential tape device. Note that the example
uses a RUN block for allocating the channel. A RUN block is used in RMAN when you need to set up
the environment for the statements within the block:

RMAN> RUN
{ALLOCATE CHANNEL a1 DEVICE TYPE sbt;
backup database;
}

RMAN>

CHAPTER 15 ■ BACKING UP DATABASES656

4517CH15.qxd 8/19/05 11:04 AM Page 656

Specifying Backup Tags and Backup Formats
RMAN lets you use a tag for every backup so you can easily identify the backup. Thus, when you
perform a restore or recovery operation, you can specify the tag to identify the backups to use. Tags
are very useful in identifying various backups, especially those created using incremental backup
strategies. Here’s a simple example, showing how you can tag a full database backup:

RMAN> BACKUP TAG 'weekly_full_db_bkup' DATABASE;

You can use the FORMAT option with backup commands to specify a location and name for
backup pieces and copies. You use substitition variables to generate unique filenames. Here’s an
example that shows how you can specify a file format, as well as the location, using the FORMAT
option:

RMAN> BACKUP FORMAT='AL_%d/%t/%s/%p' ARCHIVELOG LIKE '%arc_dest%';

Making Copies of RMAN Backups
You cannot produce multiple copies of an RMAN image copy while performing the backup itself.
However, you can make multiple copies of backup sets within a BACKUP command. You may send
each backup copy to a different disk or tape location. You can produce up to four copies of each
backup piece in a backup set within a single BACKUP command. You can specify multiple copies in
one of the following ways:

• Use the CONFIGURE . . . BACKUP COPIES option.

• Use SET BACKUP COPIES in a RUN block.

• Use the COPIES option in the BACKUP command

The following example demonstrates how to make copies of a backup to multiple disks.

RMAN> BACKUP DEVICE TYPE DISK
COPIES 2 DATAFILE 1
FORMAT '/disk1/df1_%U', '/disk2/df1_%U';

If you already have a previously made backup on a disk and wish to make a copy of it to
another disk, use the BACKUP AS BACKUPSET command in the following way:

RMAN> BACKUP DEVICE TYPE DISK AS BACKUPSET DATABASE PLUS ARCHIVELOG;

If you would rather copy the previously made backup sets on disk to tape, use the following
version of the BACKUP BACKUPSET command:

RMAN> BACKUP DEVICE TYPE sbt BACKUPSET ALL

After making image copies of a data file, tablespace, or database, you can back up the image
copies of the backups, as either image copies or backups sets. Here are some examples:

• Create an image copy of a database:

RMAN> BACKUP AS COPY DATABASE;

• Copy the previous image copy of the database:

RMAN> BACKUP AS COPY COPY OF DATABASE;

• Make an image copy of a single tablespace:

RMAN> BACKUP AS COPY TABLESPACE SYSAUX;

CHAPTER 15 ■ BACKING UP DATABASES 657

4517CH15.qxd 8/19/05 11:04 AM Page 657

• Create a backup set from the tablespace image copy:

RMAN> BACKUP AS BACKUPSET COPY OF TABLESPACE SYSAUX;

• Copy a data file:

RMAN> BACKUP AS COPY DATAFILE 2;

• Copy the data file copy:

RMAN> BACKUP AS COPY COPY OF DATAFILE 2;

RMAN Backup Locations
Let’s say you configured DISK as the default device, using the CONFIGURE DEFAULT DEVICE TYPE com-
mand. The actual location on disk where RMAN will create its backup files is determined in the
following manner:

• As described earlier in the chapter, you can specify a backup location and name using the
FORMAT parameter; in which case, this location will override any location you specified for the
flash recovery area. Here’s an example:

RMAN> BACKUP DATABASE FORMAT '/tmp/%U'; /* %U generates a unique filename */

• If you don’t specify the FORMAT parameter in the backup command, RMAN uses the flash
recovery area as the default location for storing the backups, as is the case in the following
example:

RMAN> BACKUP DATABASE;

• If you have not configured a flash recovery area and also don’t specify the FORMAT parameter
during the backup, RMAN will store the backups in an operating system-specific directory
on disk.

RMAN Commands
You need to be familiar with a limited set of commands to use the RMAN utility for performing
backups. You’ll encounter the specific commands pertaining to restoring and recovering databases
in Chapter 16. The following sections describe the RMAN commands related to backups, grouped
into the following types:

• Backup commands

• Job commands

• Copy commands

• Reporting commands

• Listing commands

• Validating commands

CHAPTER 15 ■ BACKING UP DATABASES658

4517CH15.qxd 8/19/05 11:04 AM Page 658

Backup Commands
The most important backup command is obviously the BACKUP command. As noted earlier, you can
either specify a channel manually at backup time or let RMAN allocate a default channel.

The BACKUP command allows you to back up the entire database, a tablespace, a single data file
(current or a copy), control file (current or a copy), SPFILE, an archived redo log, and other backup
sets. Here are some examples showing how to use the BACKUP command:

RMAN> BACKUP DATABASE;
RMAN> BACKUP TABLESPACE users;
RMAN> BACKUP DATAFILE '/u01/app/oracle/oradata/finance/users01.dbf';

The use of the simple BACKUP DATABASE command is the same as using the BACKUP AS BACKUPSET
DATABASE command. When you use the preceding commands, RMAN generates one or more backup
sets, which are RMAN-specific logical backup units. A backup set, by default, consists of 4 or fewer
data files or 16 or fewer archived logs.

Image Copy Backups

When you use the BACKUP AS COPY version of the command, RMAN generates image copies of the
files you want to back up. In order to make corresponding image copy backups for the previous
examples, use the following commands:

RMAN> BACKUP AS COPY DATABASE;
RMAN> BACKUP AS COPY TABLESPACE USERS;
RMAN> BACKUP AS COPY DATAFILE '/u01/app/oracle/oradata/finance/users01.dbf';

■Note By default, RMAN creates all backups as backup sets, on tape or on disk.

None of the previous examples used names for the backups created by RMAN. In all such
cases, RMAN assigns a default tag to the backups it creates. As explained earlier, you can use the TAG
parameter to specify a backup tag. Here’s an example, showing how to attach the tag weekly_backup
to an RMAN backup:

RMAN> BACKUP DATABASE TAG = 'weekly_backup';

Logical Checking of RMAN Backups

You can use the keyword LOGICAL during a backup to let RMAN perform a logical check of the
backup files. Here is an example that checks for logical corruption in the copy of a database copy
(duptest), which is made from the copy of a database (test):

RMAN> BACKUP AS COPY COPY OF DATABASE FROM TAG 'TEST' CHECK LOGICAL TAG 'DUPTEST';

Incremental Backups

All the BACKUP commands in the preceding sections are full backup commands. You can also per-
form incremental backups using RMAN, and in fact, this is one of the big advantages of using
RMAN. Incremental backups are much faster than backing up the entire database. Incremental
backups will back up only those data blocks that changed since a previous backup.

Incremental backups can be either level 0 or level 1. A level 0 incremental backup copies all
data blocks just like a full backup, and acts as the base for subsequent incremental backups. To
perform a level 1 incremental backup, you must first have a base level 0 backup.

CHAPTER 15 ■ BACKING UP DATABASES 659

4517CH15.qxd 8/19/05 11:04 AM Page 659

RMAN provides two types of incremental backups:

• Differential backup: Backs up all blocks changed after the most recent incremental backup at
level 1 or 0.

• Cumulative backup: Backs up all blocks changed after the most recent incremental backup
at level 0.

The following command gets a level 0 backup to start with:

RMAN> BACKUP INCREMENTAL LEVEL 0 DATABASE;

Once you have the level 0 backup, you perform a level 1 differential incremental backup:

RMAN> BACKUP INCREMENTAL LEVEL 1 DATABASE;

A cumulative incremental backup at level n will perform a backup of all changed blocks since
the last backup at level n–1 or lower. So, if you perform the cumulative incremental backup at
level 2, it will back up all data blocks changed since level 0 or level 1.

The size of your incremental backup file will depend on the number of changed blocks and the
incremental level. Cumulative backups will, in general, be larger than differential backups, since
they duplicate the data copied by backups at the same level. However, cumulative backups have the
advantage that they reduce recovery time, because you only apply only one backup. Thus, Oracle
recommends using cumulative backups, if space isn’t a problem on your server.

Here’s an example that shows how you can use a combination of incremental backups to come
up with your backup strategy:

• On Sunday, perform an incremental level 0 backup.

• On Monday through Saturday, perform differential incremental level 1 backups.

• Repeat the cycle next week.

In this strategy, if you need to recover data on Thursday evening, you apply the incremental
backups from Monday, Tuesday, and Wednesday to Sunday’s level 0 backup.

Consider an alternative strategy using cumulative backups:

• On Sunday, perform an incremental level 0 backup.

• On Monday through Saturday, perform cumulative incremental level 1 backups.

• Repeat the cycle next week.

Note that in this case, the daily cumulative level 1 backup backs up all blocks changed since the
Sunday backup. Thus, if you need to recover your database on Thurday, you need to apply only one
cumlative backup from the night before to Sunday’s incremental level 0 backup.

Job Commands
You can’t use the ALLOCATE CHANNEL and SWITCH commands as stand-alone commands. You must use
them with the RUN command, as follows:

RMAN> RUN
{ALLOCATE CHANNEL c1 DEVICE TYPE sbt
PARMS='ENV=(NSR_GROUP=default)';
BACKUP DATAFILE 1;
}

allocated channel: c1
channel c1: sid=11 devtype=SBT_TAPE
channel c1: MMS Version 2.2.0.1

CHAPTER 15 ■ BACKING UP DATABASES660

4517CH15.qxd 8/19/05 11:04 AM Page 660

The SWITCH command is similar to the ALTER DATABASE RENAME DATAFILE command. It lets you
replace a data file with file copy made by RMAN.

Data File Copies

The RMAN BACKUP AS COPY command makes a plain copy of a data file (you can also use the old
COPY command to do this, but Oracle has deprecated the COPY command in Oracle Database 10g).
These image copies are identical to the copies made by using operating system utilities. Here’s an
example:

RMAN> BACKUP AS COPY DATAFILE 1;
Starting backup at 05-JUN-05
using channel ORA_DISK_1
channel ORA_DISK_1: starting datafile copy
input datafile fno=00001 name=C:\ORALE\PRODUCT\10.2.0\ORADATA\NEWS\SYSTEM01.DBF
output filename=C:\ORALE\PRODUCT\10.2.0\FLASH_RECOVERY_AREA\NEWS\DATAFILE\O1_MF_
SYSTEM_0Q2XPZ1Y_.DBF tag=TAG20041016T143037 recid=2 stamp=539706790
channel ORA_DISK_1: datafile copy complete, elapsed time: 00:02:35
channel ORA_DISK_1: starting datafile copy
copying current controlfile
output filename=C:\ORALE\PRODUCT\10.1.0\FLASH_RECOVERY_AREA\NEWS\CONTROLFILE\O1_
MF_TAG20041016T143037_0Q2XVT4T_.CTL tag=TAG20041016T143037 recid=3 stamp=5397067
96
channel ORA_DISK_1: datafile copy complete, elapsed time: 00:00:07
Finished backup at 05-JUN-05
RMAN>

The following example illustrates the use of the older COPY command:

RMAN> COPY DATAFILE 1 TO 'c:\download\test.copy';
Starting backup at 05-JUN-05
using channel ORA_DISK_1
channel ORA_DISK_1: starting datafile copy
input datafile fno=00001 name=C:\ORALE\PRODUCT\10.1.0\ORADATA\ORCL\SYSTEM01.DBF
output filename=C:\DOWNLOAD\TEST.COPY tag=TAG20041009T124719 recid=2 stamp=53909
channel ORA_DISK_1: datafile copy complete, elapsed time: 00:01:35
Finished backup at 05-JUN-05
RMAN>

Backup Deletion

You use the DELETE command to remove physical backups made by RMAN. The DELETE command
deletes physical backups, updates control file records to indicate that the backups are deleted, and
also removes their records from the recovery catalog (if you use one). You can delete backup sets,
archived redo logs, and data file copies

■Caution Always use RMAN’S DELETE command, rather than an operating system deletion command, to
remove RMAN backups. Otherwise, the RMAN repository will contain records of backups that are no longer
available.

The following example deletes all archived redo logs that RMAN has backed up at least twice
to tape:

RMAN> DELETE ARCHIVELOG ALL BACKED UP 2 TIMES TO DEVICE TYPE sbt;

CHAPTER 15 ■ BACKING UP DATABASES 661

4517CH15.qxd 8/19/05 11:04 AM Page 661

The DELETE OBSOLETE command will remove all backups you no longer need. You can run
DELETE OBSOLETE periodically to delete all backups that are obsolete. A backup is obsolete if it’s no
longer needed for database recovery, according to your retention policy. The DELETE EXPIRED com-
mand removes the recovery catalog records for expired backups and marks them as DELETED. This
command is handy when you think you might have deleted RMAN backups or archived logs from
disk with an operating system utility. You can first run the CROSSCHECK command so RMAN can mark
the backups it can’t find as expired. An expired backup means that the backup file can’t be found by
RMAN. You can then use the DELETE EXPIRED command to remove the records for these files from
the control file and the recovery catalog.

Reporting Commands
RMAN provides useful reporting commands that enable you to check your backup and recovery
processes. You can query RMAN to see which files need backup and which files are obsolete and,
therefore, removable.

Schema, Obsolete, Need Backup, and Unrecoverable Reports

The REPORT SCHEMA command lists all data files that are part of the target database.
The REPORT OBSOLETE command displays all the backups rendered obsolete based on the reten-

tion policy you choose:

RMAN> REPORT OBSOLETE;
RMAN retention policy will be applied to the command
RMAN retention policy is set to recovery window of 14 days
no obsolete backups found
RMAN>

If there are obsolete backups in the repository, you can delete them with the DELETE OBSOLETE
command.

If you use the flash recovery area to store your backups, RMAN automatically deletes obsolete
backups when it needs to make room for newer backups. Until then, obsolete backups will remain
in the flash recovery area. If you aren’t using a flash recovery area, you must manually run the
DELETE OBSOLETE command periodically to remove the obsolete backup files.

The REPORT NEED BACKUP command lists any data files that need backup to conform with the
retention policy you originally chose for your backups. The following example shows that no files
need a backup:

RMAN> REPORT NEED BACKUP;
RMAN retention policy will be applied to the command
RMAN retention policy is set to redundancy 1
Report of files with less than 1 redundant backups
File #bkps Name
---- ----- ---
1 0 /u01/app/oracle/product/10.2.0/oradata/nicko/system01.dbf
2 0 /u01/app/oracle/product/10.2.0/oradata/nicko/undotbs01.dbf
3 0 /u01/app/oracle/product/10.2.0/oradata/nicko/sysaux01.dbf
4 0 /u01/app/oracle/product/10.2.0/oradata/nicko/users01.dbf
RMAN>

The REPORT UNRECOVERABLE command lists all unrecoverable data files. An unrecoverable file
is a data file with a segment that has undergone a nologging operation, and should therefore be
backed up immediately.

CHAPTER 15 ■ BACKING UP DATABASES662

4517CH15.qxd 8/19/05 11:04 AM Page 662

Catalog Reports

The CATALOG command helps you identify and catalog any files that aren’t recorded in RMAN’s
repository and thus are unknown to RMAN. Any one of the following events might cause this:

• You restore a backup control file.

• Your restore a standby control file.

• You re-create the control file.

• You enable the DB_RECOVERY_FILE_DEST parameter and then disable it.

In addition, you may create file backups of both data files and archived redo logs that RMAN
won’t be aware of. For example, you can use the CATALOG command to catalog database file copies
you made as a a level 0 backup. You can then do an incremental backup later by using the data file
copy as the basis.

You can catalog all data file copies, backup pieces, or archive logs on disk using the CATALOG
command. Here are a couple of examples:

RMAN> CATALOG DATAFILECOPY '/u01/app/oracle/backup/users01.dbf';
RMAN> CATALOG BACKUPPIECE '/disk1/backups/backup_820.bkp';

By using the CATALOG START WITH command, you can make RMAN start searching for all uncat-
aloged files in the directory you specify. This command is especially handy when your filenames are
cryptic, as when you use an OMF or ASM file system. The following example shows how you can
catalog multiple backup files in a directory at once, using the CATALOG START WITH command:

RMAN> CATALOG START WITH '/disk1/backups/';

RMAN will first list all files in the /disk1/backups directory and add them to its repository, after
you confirm the operation.

If you notice a discrepancy between the recovery catalog entries and the actual backups on
disk, RMAN will issue an error when you try to perform a backup or recovery. To get rid of invalid
entries in the recovery catalog, you use the DELETE command with the FORCE option, as shown here:

RMAN> DELETE FORCE NOPROMPT ARCHIVELOG SEQUENCE 40;

Listing Commands
Several RMAN commands let you list various items, like backups and stored scripts in the recovery
catalog.

The LIST BACKUP command shows you all the completed backups registered by RMAN. The
command shows all backup sets and image copies, as well as the individual data files, control files,
archived redo log files, and SPFILEs in the backup files. You can also list all backups by querying
V$BACKUP_FILES and the RC_BACKUP_FILES recovery catalog view. Listing 15-1 shows the output
of the LIST BACKUP command.

Listing 15-1. Using the LIST BACKUP Command

RMAN> LIST BACKUP;
List of Backup Sets
===================
BS Key Type LV Size Device Type Elapsed Time Completion Time
------- ---- -- ---------- ----------- ------------ ---------------
892 Full 169M DISK 00:01:19 06-JUN-05
List of Datafiles in backup set 892
File LV Type Ckp SCN Ckp Time Name

CHAPTER 15 ■ BACKING UP DATABASES 663

4517CH15.qxd 8/19/05 11:04 AM Page 663

---- -- ---- ---------- --------- ----
1 Full 81814 06-JUN-05 C:\ORALE\PRODUCT\10.1.0\

ORADATA\NEWS\SYSTEM01.DBF
. . .

List of Archived Logs in backup set 917

BS Key Type LV Size Device Type Elapsed Time Completion Time
------- ---- -- ---------- ----------- ------------ ---------------
928 Full 3M DISK 00:00:06 06-JUN-05

BP Key: 930 Status: AVAILABLE Compressed: NO Tag: TAG20041016T132630
Controlfile Included: Ckp SCN: 81959 Ckp time: 06-JUN-05

RMAN>

The LIST COPY command is analogous to the LIST BACKUP command and shows you the com-
plete list of all the copies made using RMAN.

RMAN> LIST COPY;

The LIST ARCHIVELOG ALL command will list all available archived log copies.
Finally, you can use the LIST SCRIPT NAMES command to display names of all the stored scripts

in the recovery catalog. The LIST GLOBAL SCRIPT NAMES command will show all the global scripts.

Validating Commands
You can use the VALIDATE BACKUPSET command to validate backup sets before you use them from a
recovery. In the following example, the VALIDATE command shows that backup set 1 can’t be found
by RMAN:

RMAN> VALIDATE BACKUPSET 1;
using channel ORA_DISK_1
RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-03002: failure of validate command at 06/05/2005 13:14:04
RMAN-06004: ORACLE error from recovery catalog database: RMAN-20215: backup set
not found
RMAN-06159: error while looking up backup set
RMAN>

In addition, you can use the CROSSCHECK command to make sure that a backup is indeed pres-
ent and is usable. You’ll see an example of this command in the “Monitoring and Verifying RMAN
Jobs” section later in this chapter.

RMAN Configuration Parameters
RMAN has several configuration parameters, which are set to their default values when you first use
RMAN. Use the SHOW ALL command to see the default values, as shown in Listing 15-2.

Listing 15-2. Using the SHOW ALL Command

RMAN> SHOW ALL;
RMAN configuration parameters are:
CONFIGURE RETENTION POLICY TO REDUNDANCY 1; # default
CONFIGURE BACKUP OPTIMIZATION OFF; # default
CONFIGURE DEFAULT DEVICE TYPE TO DISK; # default

CHAPTER 15 ■ BACKING UP DATABASES664

4517CH15.qxd 8/19/05 11:04 AM Page 664

CONFIGURE CONTROLFILE AUTOBACKUP OFF; # default
CONFIGURE CONTROLFILE AUTOBACKUP FORMAT FOR DEVICE TYPE DISK TO '%F'; # default
CONFIGURE DEVICE TYPE DISK PARALLELISM 1 BACKUP TYPE TO BACKUPSET; # default
CONFIGURE DATAFILE BACKUP COPIES FOR DEVICE TYPE DISK TO 1; # default
CONFIGURE ARCHIVELOG BACKUP COPIES FOR DEVICE TYPE DISK TO 1; # default
CONFIGURE MAXSETSIZE TO UNLIMITED; # default
CONFIGURE ARCHIVELOG DELETION POLICY TO NONE; # default
CONFIGURE SNAPSHOT CONTROLFILE NAME TO
'/u01/app/oracle/product/10.2.0/db_1/dbs/snapcf_orcl.f'; # default
RMAN>

You can view the current configuration values of all the RMAN parameters that you change
from their default values by using the V$RMAN_CONFIGURATION view, as follows:

SQL> SELECT * FROM v$rman_configuration;
CONF# NAME VALUE
----- ---------------------------- -----------------
1 DEFAULT DEVICE TYPE TO 'SBT_TAPE'
2 CONTROLFILE AUTOBACKUP ON
3 BACKUP OPTIMIZATION ON
4 RETENTION POLICY TO REDUNDANCY 2
SQL>

You can use the CONFIGURE command to change the values of these RMAN configuration
parameters. Let’s take a closer look at some of the important configurable parameters and how
you can change them.

Backup Retention Policy
A backup retention policy tells RMAN when to consider backups of data files and log files obsolete.
Note that that when you tell RMAN to consider a backup file obsolete after a certain time period,
RMAN only marks the file obsolete—it doesn’t delete it. You must go in and delete the obsolete files.

You can set a retention policy by using either of two methods: the default REDUNDANCY option or
the RETENTION WINDOW option. In both cases, you use the CONFIGURE RETENTION POLICY command to
set the retention policy for all of your database files by default.

The REDUNDANCY Option

The REDUNDANCY option lets you specify how many copies of the backups you want to retain. The
default is 1. You set the retention policy this way:

RMAN> CONFIGURE RETENTION POLICY TO REDUNDANCY 2;
new RMAN configuration parameters:
CONFIGURE RETENTION POLICY TO REDUNDANCY 2;
new RMAN configuration parameters are successfully stored
starting full resync of recovery catalog
full resync complete
RMAN>

Let’s say you’re backing up your data files every day. The previous RMAN command specifies
that RMAN keep only two backups of each database files. RMAN will also retain all redo logs required
to recover the two days’ worth of data file backups. Any backups that are older than two days are
considered obsolete. Of course, you can save to tape and archive a much older set of backups.

Archived backups are useful if you ever want to perform a PITR to a time further back than
your recent backup. In addition, if your current backups end up being unusable, you have an alter-
native set of backups available.

CHAPTER 15 ■ BACKING UP DATABASES 665

4517CH15.qxd 8/19/05 11:04 AM Page 665

The RECOVERY WINDOW Option

Setting the backup retention policy using the RECOVERY WINDOW option enables you to specify how far
back in time you want to recover from when your database is affected by a media failure. RMAN will
keep all backups of data files and log files one backup older than the recovery window. For example,
if the recovery window is seven days, RMAN will save all backups starting from the backups done
immediately before the seven-day period. You set the recovery window as follows:

RMAN> CONFIGURE RETENTION POLICY TO RECOVERY WINDOW OF 14 DAYS;
old RMAN configuration parameters:
CONFIGURE RETENTION POLICY TO REDUNDANCY 2;
new RMAN configuration parameters:
CONFIGURE RETENTION POLICY TO RECOVERY WINDOW OF 14 DAYS;
new RMAN configuration parameters are successfully stored
starting full resync of recovery catalog
full resync complete
RMAN>

As you can see in this example, you can set the redundancy number or a recovery window, but
not both. A change in the value of either of the two options will supersede the values of the existing
option.

Default Device Type
The default device for backups is disk; that is, RMAN will automatically make backups to a file sys-
tem on your server. If you want to back up to tape, you configure the default device type to sbt (all
tape destinations are referred to as sbt). Here’s an example:

RMAN> CONFIGURE DEFAULT DEVICE TYPE TO sbt;
old RMAN configuration parameters:
CONFIGURE DEFAULT DEVICE TYPE TO DISK;
new RMAN configuration parameters:
CONFIGURE DEFAULT DEVICE TYPE TO 'SBT_TAPE';
new RMAN configuration parameters are successfully stored
starting full resync of recovery catalog
full resync complete
RMAN>

If you wish to switch the default device back to disk, you can do so with the following
command:

RMAN> CONFIGURE DEFAULT DEVICE TYPE TO DISK;
old RMAN configuration parameters:
CONFIGURE DEFAULT DEVICE TYPE TO 'SBT_TAPE';
new RMAN configuration parameters:
CONFIGURE DEFAULT DEVICE TYPE TO DISK;
new RMAN configuration parameters are successfully stored
starting full resync of recovery catalog
full resync complete
RMAN>

Channel Configuration
Channels are the means by which RMAN conducts its backup and recovery operations, and they
represent a single stream of data to a particular device (such as a tape). If you have four channels
configured, four connections will be made to the target database to open four separate server
sessions.

CHAPTER 15 ■ BACKING UP DATABASES666

4517CH15.qxd 8/19/05 11:04 AM Page 666

The following example configures two channels, with channel 1 backing up to the backup
directory under /test01 and channel 2 backing up to the backup directory under /test02:

RMAN> CONFIGURE CHANNEL 1 DEVICE TYPE DISK FORMAT
'/test01/app/oracle/oradata/backup/%U';
new RMAN configuration parameters:
CONFIGURE CHANNEL 1 DEVICE TYPE DISK FORMAT'/test01/app/oracle/oradata/backup/%U';
new RMAN configuration parameters are successfully stored
RMAN> CONFIGURE CHANNEL 2 DEVICE TYPE DISK FORMAT
'/test02/app/oracle/oradata/backup/%U';
new RMAN configuration parameters:
CONFIGURE CHANNEL 2 DEVICE TYPE DISK
FORMAT'/test02/app/oracle/oradata/backup/%U';
new RMAN configuration parameters are successfully stored

■Note The DISK PARALLELISM parameter and the CHANNEL parameter are related to each other. For example,
if the degree of parallelism is 4 and you have specified only two or even no channels at all, RMAN will open four
generic channels. If, on the other hand, you have manually configured six channels but set the degree of paral-
lelism to 1, RMAN will use only the first channel and ignore the other five.

If you start the backup with multiple channels, the failure of one channel, say, due to the failure
of a tape device, won’t stop the backup job. RMAN will instead complete the job using the remain-
ing channels, and report the problem in the V$RMAN_OUTPUT view. This is also known as RMAN’s
Automatic Channel Failover feature.

Degree of Parallelism
The degree of parallelism (the default degree is 1) denotes the number of channels that RMAN can
open during a backup or recovery. The time taken to complete the backup or recovery will decrease
as you increase the degree of parallelism.

RMAN> CONFIGURE DEVICE TYPE DISK PARALLELISM 4;
old RMAN configuration parameters:
CONFIGURE DEVICE TYPE DISK BACKUP TYPE TO COPY PARALLELISM 1;
new RMAN configuration parameters:
CONFIGURE DEVICE TYPE DISK PARALLELISM 4 BACKUP TYPE TO COPY;
new RMAN configuration parameters are successfully stored
released channel: ORA_DISK_1
starting full resync of recovery catalog
full resync complete
RMAN>

Backup Optimization
The BACKUP OPTIMIZATION option ensures that RMAN doesn’t perform a file backup if it has already
backed up identical versions of the file. Here is how you turn on this option:

RMAN> CONFIGURE BACKUP OPTIMIZATION ON;
new RMAN configuration parameters:
CONFIGURE BACKUP OPTIMIZATION ON;
new RMAN configuration parameters are successfully stored
starting full resync of recovery catalog
full resync complete
RMAN>

CHAPTER 15 ■ BACKING UP DATABASES 667

4517CH15.qxd 8/19/05 11:04 AM Page 667

Control File Parameters
RMAN has several configuration parameters that deal with control file backups. The following sec-
tions cover the important control file parameters.

Control File Autobackup

If you set the CONTROLFILE AUTOBACKUP option to ON, each time you do a backup of your data files, the
control file is automatically backed up along with the SPFILE. Here’s how you configure this:

RMAN> CONFIGURE CONTROLFILE AUTOBACKUP ON;
old RMAN configuration parameters:
CONFIGURE CONTROLFILE AUTOBACKUP OFF;
new RMAN configuration parameters:
CONFIGURE CONTROLFILE AUTOBACKUP ON;
new RMAN configuration parameters are successfully stored
starting full resync of recovery catalog
full resync complete
RMAN>

Now, if you use any backup command, the control file and the SPFILE (if there is one) are both
automatically backed up, as shown in the following example:

RMAN> BACKUP TABLESPACE sysaux;
Starting backup at 06-JUN-05
. . .
channel ORA_DISK_1: datafile copy complete, elapsed time: 00:01:16
Finished backup at 06-JUN-05
Starting Control File Autobackup at 06-JUN-05
Finished Control File Autobackup at 06-JUN-05
RMAN>

Control File Backup Location and Format

You can use the control file AUTOBACKUP FORMAT parameter to specify the location and format of the
control file backups. Here’s an example:

RMAN> CONFIGURE CONTROLFILE AUTOBACKUP FORMAT FOR DEVICE TYPE DISK TO
'/test01/app/oracle/oradta/backup/cf_%F';
new RMAN configuration parameters:
CONFIGURE CONTROLFILE AUTOBACKUP FORMAT FOR
DEVICE TYPE DISK TO '/test01/app/oracle/oradata
/backup/cf_%F'; new RMAN configuration parameters
are successfully stored
RMAN>

Now that you’ve seen the RMAN configuration parameters, let’s look at how to work with the
RMAN recovery catalog.

Working with the Recovery Catalog
Using the recovery catalog is purely optional, as Oracle can use the control file to store the RMAN
repository data (metadata). However, as explained earlier in this chapter, it’s a good idea to spend
the little time it takes to create and use the recovery catalog. I assume the use of the recovery catalog
in the discussions in this and the next chapter.

CHAPTER 15 ■ BACKING UP DATABASES668

4517CH15.qxd 8/19/05 11:04 AM Page 668

■Tip Make sure that the database in which the recovery catalog is being created runs in archivelog mode. This
ensures that you can always perform a PITR.

To create the recovery catalog, you must first connect to the database in which you want to cre-
ate the recovery catalog. You need to create a new recovery catalog owner schema (usually named
rman), grant the necessary privileges to it, and then create the recovery catalog. Once you create the
catalog, you can register databases in it.

■Note If you create your database using the DBCA, you don’t need to manually create the user rman. The RMAN
schema will be already a part of the database and will have the RECOVERY_CATALOG_OWNER role. The user
rman’s account, however, will be “locked and expired” when you create the database. You must unlock the
account and change the password to change the account status to open.

Creating the Recovery Catalog Schema
In order to use the recovery catalog, you need to first create a recovery catalog schema. You can cre-
ate this schema or user in an existing tablespace or in a new tablespace created for this purpose.
The recovery catalog itself is stored in the default tablespace of this schema. For the recovery cata-
log tablespace, you need to allocate roughly 15MB for each tablespace registered in the recovery
catalog. The following example creates a schema called rman:

SQL> CREATE USER RMAN IDENTIFIED BY rman
TEMPORARY TABLESPACE temp
DEFAULT TABLESPACE rman_tbsp
QUOTA UNLIMITED ON rman_tbsp

User created.
SQL>

Make sure you first create the rman_tbsp tablespace for the user rman.

Making the Necessary Grants
The new rman schema owner, rman, needs privileges to maintain and query the recovery catalog.
You do this by granting the user the RECOVERY_CATALOG_OWNER role. The following code shows
how to make the necessary grants to user rman:

SQL> GRANT CONNECT,RESOURCE TO rman;
Grant succeeded.
SQL> GRANT RECOVERY_CATALOG_OWNER TO rman;
Grant succeeded.
SQL>

Connecting to RMAN
You can connect to RMAN in one of two ways. One way is to first invoke RMAN, and then use the
CONNECT CATALOG command to connect to it, as shown here (nicko is the database containing the
recovery catalog in this example):

CHAPTER 15 ■ BACKING UP DATABASES 669

4517CH15.qxd 8/19/05 11:04 AM Page 669

$ rman
Recovery Manager: Release 10.2.0.0.0 – Beta on Sun Jun 5 12:03:30 2005
Copyright (c)1982, 2004, Oracle. All rights reserved.
RMAN> CONNECT CATALOG rman/rman@nicko
connected to recovery catalog database
RMAN>

You can also connect directly from the operating system level, as follows:

$ rman CATALOG rman/rman@nicko
connected to reovery catalog database
RMAN>

When you connect to the catalog database directly, you still aren’t connected to the target data-
base (unless the target and the catalog database are the same). To connect to the target database,
you must now use the following command from within the RMAN interface (nina is the target data-
base name):

RMAN> connect target nina
Connected to target database: NINA (DBID=1974138212)
RMAN>

Instead of first connecting to the recovery catalog and then to the target database, you can use
the following method to connect to the recovery catalog and to the target database in one step:

$ rman catalog rman/rman@nicko target nina
Recovery Manager: Release 10.2.0.0.0 – Beta on Tue Mar 8 16:38:52 2005
Copyright (c)1982, 2004, Oracle. All rights reserved.
target database password:
connected to target database: NINA (DBID=1974138212)
connected to recovery catalog database
RMAN>

■Tip Although you can create the recovery catalog schema in the target database itself, Oracle recommends that
you use a dedicated recovery catalog database, to secure the recovery catalog. This way, if the target database
needs to be recovered, you’ll have the necessary recovery data available in the recovery catalog.

Creating the Recovery Catalog
If you want to utilize the recovery catalog (instead of the default method of using the control file) to
store the RMAN metadata, you must first create it in the recovery catalog owner’s (rman) schema.

First, connect to the catalog database in one of the two ways shown in the previous section.
Next, use the CREATE CATALOG command, which will create the recovery catalog:

RMAN> CREATE CATALOG;
recovery catalog created
RMAN>

The CREATE CATALOG command creates the RMAN recovery catalog in the tablespace
rman_tbsp, which you assigned as the default tablespace for the user rman.

The DROP CATALOG command will remove the recovery catalog:

RMAN> DROP CATALOG;
Recovery catalog owner is RMAN
Enter DROP CATALOG comamnd again to confirm catalog removal
RMAN> DROP CATALOG;
Recovery catalog dropped

CHAPTER 15 ■ BACKING UP DATABASES670

4517CH15.qxd 8/19/05 11:04 AM Page 670

Registering a Database
For RMAN to do its job, you need to register the target database you want to back up and recover.
Registration means that a database is enrolled in the recovery catalog. Once you register the data-
base, RMAN will automatically get all the relevant metadata pertaining to the target database and
store it in its own schema.

You don’t need a separate recovery catalog for each of your Oracle databases; you can register
all your databases in a single recovery catalog.

To register a new database in the recovery catalog, first, connect to the target database:

$ rman catalog rman/rman@nicko target nina
Recovery Manager: Release 10.2.0.0.0 – Beta on Sun Jun 5 15:55:49 2005
Copyright (c)1982, 2004, Oracle. All rights reserved.
target database Password:
connected to target database: NINA (DBID=1974138212)
connected to recovery catalog database
RMAN>

■Caution Make sure you set the ORACLE_SID to the target database SID before you register a database in the
recovery catalog. Otherwise, when you specify the target, you’ll connect to the database whose instance name
matches the ORACLE_SID of your UNIX session not to the target database.

Next, register the database in the recovery catalog:

RMAN> REGISTER DATABASE;
database registered in recovery catalog
starting full resync of recovery catalog
full resync complete
RMAN>

The target database is now successfully registered in the recovery catalog. At this point, you can
use the REPORT SCHEMA command to make sure all the data files of the target database show up in
the list.

You can also issue the following command to check the incarnation of the database:

RMAN> LIST INCARNATION;
List of Database Incarnations
DB Key Inc Key DB Name DB ID STATUS Reset SCN Reset Time
------- ------- -------- ----------- ---------- ---------- -----------
1 8 NINA 1974138212 PARENT 1 11-JAN-05
1 2 NINA 1974138212 CURRENT 318842 05-JUN-05
RMAN>

Resynchronizing the Recovery Catalog
Changes made to the target database structure aren’t automatically propagated to the recovery cat-
alog. The BACKUP and COPY commands automatically perform a resynchronization each time you
perform a backup or copy. But you may need to manually resynchronize the recovery catalog under
two circumstances: when your target database has just undergone a number of physical changes
and when the target database is performing a very large number of log switches in between the
backups.

During a resync operation, RMAN reads the target database’s control file to update the infor-
mation it keeps regarding data file, log switches, physical schema, and so forth. Oracle recommends
that you resynchronize the recovery catalog after making any changes to the physical structure of a

CHAPTER 15 ■ BACKING UP DATABASES 671

4517CH15.qxd 8/19/05 11:04 AM Page 671

target database. You issue the RESYNC CATALOG command as follows, after connecting to the target
database:

RMAN> RESYNC CATALOG;
starting full resync of recovery catalog
full resync complete
RMAN>

Backing Up the Recovery Catalog
You should always back up the recovery catalog database immediately after you back up the target
database. Backing up the recovery catalog becomes even more critical if you’re using a single recov-
ery catalog to store the metadata of all the databases in your system. You should follow these
principles to afford the maximum possible security to the recovery catalog database:

• Never store the recovery catalog in the target database. You could end up losing the target
database and the recovery catalog at the same time if there’s a media failure.

• Always run the database holding the recovery catalog in the archivelog mode.

• Make multiple copies of the recovery catalog database backup, preferably to tape, in
addition to disk backups.

• Set the retention policy to a value greater than 1.

• Set CONTROLFILE AUTOBACKUP to ON.

• Set a very high value for CONTROL_FILE_RECORD_KEEP_TIME, so the control file won’t be over-
written quickly, wiping out your RMAN repository data

Examples of Various Backups Using RMAN
The following sections take you through a few examples of various kinds of backups you can
perform using RMAN.

Backing Up an Entire Database
If you want to back up the entire database, you use the BACKUP DATABASE command. RMAN will
automatically back up all the data files that are part of the database, as shown in Listing 15-3.

Listing 15-3. Backing Up a Database Using RMAN

RMAN> BACKUP DATABASE;
Starting backup at 06-JUN-05
using channel ORA_DISK_1
channel ORA_DISK_1: starting full datafile backupset
channel ORA_DISK_1: specifying datafile(s) in backupset
input datafile fno=00001 name=C:\ORALE\PRODUCT\10.1.0\ORADATA\ORCL\SYSTEM01.DBF
input datafile fno=00003 name=C:\ORALE\PRODUCT\10.1.0\ORADATA\ORCL\SYSAUX01.DBF
input datafile fno=00005 name=C:\ORALE\PRODUCT\10.1.0\ORADATA\ORCL\EXAMPLE01.DBF
input datafile fno=00002 name=C:\ORALE\PRODUCT\10.1.0\ORADATA\ORCL\UNDOTBS01.DBF
input datafile fno=00004 name=C:\ORALE\PRODUCT\10.1.0\ORADATA\ORCL\USERS01.DBF
...
Starting Control File Autobackup at 06-JUN-05
piece handle=C:\ORALE\PRODUCT\10.1.0\FLASH_RECOVERY_AREA\ORCL\AUTOBACKUP\2005_06
_06\O1_MF_N_539094997_0PJ8FDBF_.BKP comment=NONE
Finished Control File Autobackup at 06-JUN-05

CHAPTER 15 ■ BACKING UP DATABASES672

4517CH15.qxd 8/19/05 11:04 AM Page 672

Backing Up the Archived Logs
You use the BACKUP ARCHIVELOG ALL command to back up all archived logs that you haven’t backed
up before. You can also use the command BACKUP DATABASE PLUS ARCHIVELOG to back up all data files
as well as any archived redo log files, as shown in Listing 15-4.

Listing 15-4. Backing Up a Database and Archived Logs Using RMAN

RMAN> BACKUP DATABASE PLUS ARCHIVELOG;
Starting backup at 06-JUN-05
current log archived
allocated channel: ORA_DISK_1
channel ORA_DISK_1: sid=38 devtype=DISK
channel ORA_DISK_1: starting archive log backupset
channel ORA_DISK_1: specifying archive log(s) in backup set
input archive log thread=1 sequence=4 recid=1 stamp=539702327
...
16\O1_MF_ANNNN_TAG20041016T132206_0Q2SPK4S_.BKP comment=NONE
channel ORA_DISK_1: backup set complete, elapsed time: 00:00:05
Finished backup at 06-JUN-05
RMAN>

■Note If you’re running in the archivelog mode, your redo log files are being archived continuously. Therefore,
there's no need to back up your online redo log files. In fact, RMAN doesn’t let you back up the online redo log
files. The best way to protect the online logs against media failure is to multiplex them, with duplicate online log
members on different disks attached to different disk controllers. Losing an online redo log could mean loss of
data if you don’t have a copy.

Performing an Online Backup with a Script
The RMAN utility performs online backups in a more efficient manner than the normal user-man-
aged backups, besides providing many extra benefits that make the backups far easier and safer. For
one thing, you don’t need to place the tablespaces into the begin backup and end backup modes. In
addition, you back up only the used space in the database, not the entire allocated space. You also
take care of any fractured blocks, because RMAN will continue to read the blocks until it gets a con-
sistent read.

■Caution You should never back up your online redo log files when performing an online backup, because
you’ll run the risk of accidentally restoring the backed up log files and thus corrupt your database.

Listing 15-5 shows a typical script that performs online backups using RMAN, assuming you
are backing up to disk.

Listing 15-5. Performing an Online Backup with RMAN

RMAN> RUN {
backup the database to disk
ALLOCATE CHANNEL d1 TYPE DISK;
ALLOCATE CHANNEL t2 TYPE DISK;
ALLOCATE CHANNEL t3 TYPE DISK;

CHAPTER 15 ■ BACKING UP DATABASES 673

4517CH15.qxd 8/19/05 11:04 AM Page 673

#backup the whole db
BACKUP
TAG whole_database_open
FORMAT '/u01/oradata/backups/db_%t_%s_p%p'
DATABASE;
switch the current log file
SQL 'alter system archive log current';
#backup the archived logs
BACKUP
ARCHIVELOG ALL
FORMAT '/u11/oradata/backups/al_%t_%s_p%p';
backup a copy of the controlfile
BACKUP
CURRENT CONTROLFILE
TAG = cf1
FORMAT '/u12/oradata/backups/cf_%t_%s_p%p';
RELEASE channel d1;
RELEASE channel d2;
RELEASE channel d3;
}
RMAN>

Backing Up the Control File
The BACKUP CURRENT CONTROLFILE command backs up the control file, as shown in Listing 15-6.

Listing 15-6. Backing Up a Control File Using RMAN

RMAN> BACKUP CURRENT CONTROLFILE;
Starting backup at 06-JUN-05
using channel ORA_DISK_1
channel ORA_DISK_1: starting full datafile backupset
channel ORA_DISK_1: specifying datafile(s) in backupset
including current controlfile in backupset
channel ORA_DISK_1: starting piece 1 at 06-JUN-05
channel ORA_DISK_1: finished piece 1 at 06-JUN-05
piece handle=C:\ORALE\PRODUCT\10.1.0\FLASH_RECOVERY_AREA\NEWS\BACKUPSET\2005_06_
06\O1_MF_NCNNF_TAG20041016T132630_0Q2SYTM3_.BKP comment=NONE
channel ORA_DISK_1: backup set complete, elapsed time: 00:00:07
Finished backup at 06-JUN-05
RMAN>

If you had already configured the automatic backup of the control file with the CONFIGURE
CONTROLFILE AUTOBACKUP ON command, you can back up the entire database—data files, log
files, and the control file—with the RMAN command BACKUP DATABASE PLUS ARCHIVELOG (see
Listing 15-4).

Backing Up a Tablespace
You can back up individual tablespaces if you are operating the database in archivelog mode:

RMAN> BACKUP TABLESPACE USERS;

CHAPTER 15 ■ BACKING UP DATABASES674

4517CH15.qxd 8/19/05 11:04 AM Page 674

Backing Up a Data File
You can back up a single data file by simply using the command BACKUP DATAFILE filename, or
optionally, specify the destination as well. In the first case, RMAN will store the backup files in the
flash recovery area. Here’s an example:

RMAN> BACKUP DATAFILE '/u01/orcl/oradata/system01.dbf';

Restarting an RMAN Backup
If an RMAN backup fails before it completes, you can resume the backup from the point where it
failed, without needing to redo the entire backup. Let’s say you perform a daily backup, and the last
backup failed midway. After the backup failure, issue the following command:

RMAN> BACKUP DATABASE NOT BACKED UP SINCE TIME 'SYSDATE-1';

Note that the BACKUP DATABASE NOT BACKED UP SINCE TIME command will back up only those
files that you haven’t backed up before.

Specifying Limits for Backup Duration
Sometimes, a nightly backup interferes with the performance of a critical database job. To help with
this, you can direct the database to take longer to finish the backup. The DURATION option for the
RMAN BACKUP command provides this capability. When you use the DURATION option, RMAN will fig-
ure out the appropriate backup speed for the job. You can also add your own directives to either
minimize the backup time (MINIMIZE TIME) or to minimize the load (MINIMIZE LOAD) on your system.

You can use the DURATION clause with backup commands, such as BACKUP AS COPY, to specify
the time (in hours and minutes) Oracle should take when doing a backup job:

DURATION <hrs>:<mins> [PARTIAL] [MINIMIZE {TIME|LOAD}]

The options are as follows:

• PARTIAL: You can override RMAN’s default behavior when the backup job runs past the inter-
val you specify by using the PARTIAL clause. This clause prevents RMAN error messages.

• MINIMIZE TIME: This tells the RMAN to finish the backup as fast as it can.

• MINIMIZE LOAD: This option tells the RMAN to slow down if it is within its allotted time for
backing up.

■Note You must use disks if you want to use the MINIMIZE LOAD option, because you will probably want a tape
backup to finish as quickly as possible.

Remember that the DURATION clause’s PARTIAL option leads to an error if the backup exceeds its
time limit. The MINIMIZE TIME option gets the job done the fastest. The MINIMIZE LOAD option mini-
mizes resource use.

Here’s an example of this clause:

RMAN> BACKUP AS COPY
2> DURATION 04:00
3> MINIMIZE TIME DATABASE;

CHAPTER 15 ■ BACKING UP DATABASES 675

4517CH15.qxd 8/19/05 11:04 AM Page 675

This says

• limit the backup time to four hours (DURATION 04:00)

• run the backup at full speed, telling it to finish within the four-hour limit (MINIMIZE TIME) if
possible

• back up the entire database (DATABASE)

Incrementally Updated Backups
Using the incrementally updated backups feature, you can use image file backups and apply incre-
mental backups to them, thus advancing or rolling forward the initial image copy to the time when
you took the level 1 incremental backup. When you perform recovery, you can use the incrementally
updated image copy as if it were an actual image copy taken at the time of the incremental backup.
Using incrementally updated backups truly revolutionizes backup strategies, as you always have an
updated image copy available, no matter when you took the first level 0 full backup. The incremen-
tally updated backup command looks like this:

RMAN> BACKUP INCREMENTAL LEVEL 1 FOR RECOVER OF COPY WITH TAG LEVEL 0 DATABASE;

This command will take the incremental level 1 backup and update the existing level 0 full
backup—in effect, updating the previous level 0 backup to the current day’s level 0 backup.

You can run the script shown in Listing 15-7 to set up an incrementally updated backup:

Listing 15-7. Performing Incrementally Updated Backups Using RMAN

RMAN> RUN {
RECOVER COPY OF DATABASE WITH TAG 'incr_update';
BACKUP INCREMENTAL LEVEL 1 FOR RECOVER OF COPY WITH TAG 'incr_update'
DATABASE;
}

In this script, the RECOVER COPY command will make RMAN apply any incremental level 1
backups to a set of data file copies with the same tag. The BACKUP command will create a level 1
incremental backup. However, the very first time the script runs, if there isn’t already a level 0
backup, the command creates a level 0 backup as a starting point for the incremental backup
strategy.

This is what happens when you execute the script:

• On the first day, the BACKUP command will create a level 0 backup, since there isn’t one
already.

• On the second day, the BACKUP command creates a level 1 incremental backup.

• On the third day, and every day forward, the RECOVER COPY command will apply the level 1
backups to the level 0 backup, thus updating it continuously.

Using the script in Listing 15-7 will make it unnecessary for you to apply multiple incremental
backups to the initial level 0 backup. Each day, as the incremental backup (level 1) of that day is
applied to the level 0 backup, the level 0 backup becomes a full level 0 backup of that day. You
don’t need another full database backup. If you need to perform a recovery, you use the latest
level 0 backup, which is the updated product of all incremental level 1 backups since the
first level 0 backup, and then apply the archive logs to it.

CHAPTER 15 ■ BACKING UP DATABASES676

4517CH15.qxd 8/19/05 11:04 AM Page 676

Fast Incremental Backups
During incremental backups, Oracle must scan the entire data file. This ensures unnecessarily long
incremental backup times.

The change-tracking file, new in Oracle Database 10g, is used to track the physical location of
all database block changes. RMAN reads this file to discover which data blocks it has to read and
copy. RMAN therefore avoids reading entire data files and backup times will be dramatically
reduced.

The change-tracking writer (CTWR) background process, another new feature, writes the
block-change information to the change-tracking file.

■Note You should place the change-tracking file on the same disk system as the data files.

Enabling Block-Change Tracking
If you want to track block changes, you must explicitly enable the feature, as shown here:

SQL> ALTER DATABASE
2 ENABLE BLOCK CHANGE TRACKING
3 USING FILE '/u01/oradata/finance/changetrack.log';

Database altered.
SQL>

Storing the change-tracking file with you database files means that the database will automati-
cally delete it when you disable block-change tracking. To rename or relocate a change-tracking file,
use the ALTER DATABASE RENAME FILE command (ensure that the database is in the mount stage
before you rename the change-tracking file):

SQL> ALTER DATABASE RENAME FILE
'/u01/app/oracle/finance/changetrack.log'
TO
'/u02/app/oracle/finance/changetrack.log';

Database altered.
SQL>

You can disable block-change tracking with the following statement:

SQL> ALTER DATABASE DISABLE BLOCK CHANGE TRACKING;
Database altered.
SQL>

Monitoring Block-Change Tracking
You can monitor block-change tracking with the V$BLOCK_CHANGE_TRACKING and
V$BACKUP_DATAFILE views.

The V$BLOCK_CHANGE_TRACKING view shows the name, size, and status of the file, as
shown in this example:

SQL> SELECT filename,status,bytes
2 FROM v$block_change_tracking;

FILENAME STATUS BYTES
-- ---------- ---------
/U01/APP/ORACLE/ORADATA/FINANCE/CHANGETRACK.LOG ENABLED 11599872
SQL>

CHAPTER 15 ■ BACKING UP DATABASES 677

4517CH15.qxd 8/19/05 11:04 AM Page 677

In the V$BACKUP_DATAFILE view, use the ratio between the BLOCKS_READ column and the
DATAFILE_BLOCKS column to calculate the percentage of blocks Oracle is reading. If the BLOCKS_
READ to DATAFILE_BLOCKS ratio is too high, you may have to take more frequent backups.

RMAN Compressed Backups
You can compress RMAN backups if you need to save space. However, your recovery times will be
longer when you use compressed backup sets, because of the additional step to uncompress the
backup sets. The compression factor depends on the nature of the data in your data files. You
should use this instead of an external compression utility. You should never use both together.

■Note You can’t compress an image copy. You can compress a backup only if you are using backup sets.

Here is the RMAN command to compress a backup set:

RMAN> BACKUP AS COMPRESSED BACKUPSET DATABASE PLUS ARCHIVELOG;

The V$BACKUP_FILES view contains information about backup filenames and file sizes. In
addition, it will tell you the compression status. Here’s an example query showing how to do this:

SQL> SELECT fname, compressed, backup_type
FROM v$backup_files;

Oracle Corporation believes that the RMAN binary compression technique will reduce the
space used by the backup file by about 50 to 75 percent.

Monitoring and Verifying RMAN Jobs
You can monitor RMAN’s backups using several important data dictionary views. The V$BACKUP_
CORRUPTION and V$COPY_CORRUPTION views, for example, provide important information
about corrupt blocks. (I’ll discuss data block corruption in the “Database Corruption Detection”
section later in this chapter.) You can use the V$RMAN_OUTPUT view to monitor a running
RMAN job.

The V$RMAN_STATUS view shows the status of all completed jobs as well as commands, as
shown here:

SQL> SELECT operation, status, start_time, end_time
FROM v$rman_status;

OPERATION STATUS START_TIME END_TIME
LIST COMPLETED 12-MAR-05 12-MAR-05
VALIDATE COMPLETED 12-MAR-05 12-MAR-05
BACKUP FAILED 12-MAR-05 12-MAR-05
BACKUP COMPLETED 13-MAR-05 13-MAR-05
...
SQL>

You can estimate the backup’s progress using the following query on the V$SESSION_LONGOPS
view.

SQL> SELECT TO_CHAR(start_time,'DD-MON-YY HH24:MI') "Start of
backup",Sofar, totalwork,
elapsed_seconds/60 "ELAPSED TIME IN MINUTES",
ROUND(sofar/totalwork*100,2) "Percentage Completed so far"
FROM v$session_longops
WHERE opname='prod1_dbbackup';

CHAPTER 15 ■ BACKING UP DATABASES678

4517CH15.qxd 8/19/05 11:04 AM Page 678

To ensure the backups made using RMAN are useful during a recovery, you can use the
CROSSCHECK and VALIDATE commands, as described in the following sections.

Cross-Checking Backups Made with RMAN
RMAN provides the useful CROSSCHECK command to enable you to check that the backup sets and
image copies listed in the recovery catalog actually exist in their specified locations and haven’t
been accidentally deleted or written over. In addition, the command verifies the headers and
ensures that RMAN can read the files. The CROSSCHECK command can thus test both the existence
and the readability of the backups. Here’s an example of the use of the CROSSCHECK command in
RMAN:

RMAN> CROSSCHECK BACKUPSET 326;
allocated channel: ORA_DISK_1
...
channel ORA_DISK_4: sid=21 devtype=DISK
crosschecked backup piece: found to be 'AVAILABLE'
Crosschecked 1 objects
RMAN>

As you can see, RMAN has cross-checked the backup piece and found it to be available, which
confirms that the backup files exist and are usable.

Using the RMAN VALIDATE Command
RMAN helps detect both physical and logical corruption. When RMAN encounters corrupt blocks
of either kind, it logs the information to the control file and the recovery catalog. The VALIDATE com-
mand helps you ensure that the backed-up files exist in the proper locations, and that they are
readable and free from any logical and physical corruption. You simply issue the following com-
mand to test any particular backup set:

RMAN> VALIDATE BACKUPSET 9;

To test the entire database and archived log backup sets, you issue the following command:

RMAN> BACKUP VALIDATE DATABASE ARCHIVELOG ALL;

If the backup set does not exist, RMAN will let you know. If the command does not result in any
errors, you can assume that the specified backup set exists and can be used in the recovery process.

The following command doesn’t restore any data files; it merely validates that the contents of
the backup sets are restorable.

RMAN> RUN {
ALLOCATE CHANNEL d1 TYPE DISK;
RESTORE DATABASE VALIDATE;
{

Backing Up the Control File
The control file is critical for recovery, as it contains crucial information like database checkpoints
and the data file header checkpoints for the data files. A recovery is much harder when you lose all
copies of your control file. You also need to create a new control file when you want to change the
name of a database, clone a database in a different location, or increase the maximum number of
files you specified when you first created the control file.

CHAPTER 15 ■ BACKING UP DATABASES 679

4517CH15.qxd 8/19/05 11:04 AM Page 679

You’ve seen how you can back up a control file using RMAN’s BACKUP CONTROLFILE command.
That command will produce a binary copy of the control file. You can also use the SQL statement
ALTER DATABASE BACKUP CONTROLFILE from the SQL*Plus interface or from within RMAN to back up
your control files.

It’s a good practice to back up your control file on a regular basis by using the BACKUP
CONTROLFILE TO TRACE command, as shown here:

SQL> ALTER DATABASE BACKUP CONTROLFILE TO TRACE;
Database altered.
SQL>

You can use the ALTER DATABASE BACKUP CONTROLFILE TO 'filename' command to achieve the
same result as the preceding command. It will produce a text file that has the CREATE CONTROLFILE
statement in it.

You should immediately back up your control file after you perform any of the following
operations:

• Create or drop a tablespace

• Add or rename a data file

• Add, rename, or drop an online redo log group or member

The Oracle Backup Tool
Oracle Backup is Oracle Corporation’s own media manager for tape backups, which simplifies and
automates backup and recovery operations. Underlying Oracle Backup is backup software called
Reliaty, which Oracle recently acquired. RMAN, Oracle’s recommended backup tool, works effec-
tively with Oracle Backup, as do 20 other third-party media managers. However, Oracle claims that
Oracle Backup is the fastest and best integrated media manager for backup and recovery of Oracle9i
and Oracle Database 10g databases.

■Note I use the term Oracle Backup here, because that’s what the product was called during beta testing of
Oracle Database 10g Release 2. However, it seems that Oracle has renamed this product as Oracle Secure Backup
for its public release.

Oracle has replaced the Legato Single Server Version (LSSV) software with the Oracle Backup
software, by bundling it free with Oracle Database 10g Release 2. Although Oracle Backup is a new
product, it’s actually based on a fourth-generation of the Reliaty backup engine, which has a 12-year
market history. Oracle Backup can be used in UNIX, Linux, and Windows environments. It supports
all major tape libraries and drives in SAN, Gigabit Ethernet (GbE), and SCSI environments.

You can use the following tools when working with Oracle Backup:

• A GUI tool called the Oracle Backup Web Interface, which allows you to configure adminis-
trative domains, manage operations, and backup and restore data.

• A command-line Oracle Backup interface, which lets you perform many of the same func-
tions as the GUI tool

• OEM’s interface to the Oracle Backup tool

Using Oracle Backup, you initiate a backup using one of these tools, and the RMAN server
process backs up the data and passes it to the media manager buffer. Then the media management
vendor (MMV) library backs up the database to tape.

CHAPTER 15 ■ BACKING UP DATABASES680

4517CH15.qxd 8/19/05 11:04 AM Page 680

■Note For complete details on using the new Oracle Backup tool, refer to the Backup Installation Guide, the
Backup Administrator’s Guide, and the Backup Reference, which are all a part of the Oracle Database 10g
Release 2 (10.2) documentation library.

Benefits of Oracle Backup
Oracle Backup provides the following benefits.

• Out-of-the-box integration with the RMAN tool

• Automated control of tape backups, automatic tape drive cleaning, and automatic tape
expiration and recycling

• Ability to back up both the database and operating system files

• Easy configuration

• Ability to share tape libraries across platforms

• Flexible backup strategies, including full, incremental, and differential backups

• Secondary verification of backup data

Oracle Backup Administrative Domain
Oracle Backup uses the concept of an administrative domain as the central piece in managing its
activities. An administrative domain is a collection of hosts under the direction of an administrative
server. All the machines in your network that you want to treat as a common unit for the purpose of
backup and restore operations are grouped together as the administrative domain.

An administrative domain consists of three types of servers:

• Administrative server: This server maintains the Oracle Backup catalog files, which contain
configuration and history information.

• Media server: This server has the secondary storage devices, such as tape drives and robotic
tape libraries attached to it. A media server must have at least one tape drive attached to it.
The media server transfers data to and from the attached media devices.

• Client host server: This server contains the Oracle databases that are backed up by Oracle
Backup.

Typically, an administrative domain consists of a single administrative server at the top, one or
more media servers, and one or more client hosts.

A single server can play one or more roles; that is, a single server can be the administrative
server, media server, and host server, all rolled in one.

Installing Oracle Backup
You can obtain Oracle Backup software from OTN or install the software from an Oracle-supplied
CD-ROM. You must install the Oracle Backup software on your administrative server and on each of
the media servers and client hosts in your administrative domain.

Here are the steps for installing Oracle Backup on a Linux platform (UNIX platforms have a
similar installation process):

CHAPTER 15 ■ BACKING UP DATABASES 681

4517CH15.qxd 8/19/05 11:04 AM Page 681

1. Log in as root and create a working directory named backup.

$ mkdir -p /usr/local/oracle/backup

2. Move to the working directory and invoke the setup program.

$ cd /usr/local/oracle/backup
$ /mnt/cdrom/setup

3. The setup program’s welcome page appears, with three choices regarding the operating
system. Select option 2 for a Linux installation.

4. The setup process loads the Oracle Backup software onto the server and prompts you to
choose yes to continue the installation.

5. The installer will then ask, “Have you already reviewed and customized install/obparameters
for your Oracle Backup installation?” You can, if you wish, configure the standard Oracle
Backup user named oracle, who is in charge of facilitating RMAN backup and restore opera-
tions through Oracle Backup. However, the default answer is yes, meaning you accept the
default parameters for the installation.

6. In the next step, you’re offered a choice between an interactive and batch mode of installa-
tion. Choose the interactive mode (option a).

7. You are now asked to select a host role, as shown here:

Oracle Backup is not yet installed on this machine.
Oracle Backup's Web server has been loaded, but is not yet configured.
You can install this host one of three ways:
(a) admininistrative host
(the host will also be able to act as a media server or client)
(b) media server
(the host will also be able to act as a client)
(c) client
If you are not sure which way to install, please refer to the Oracle
Backup Installation Guide. (a, b or c) [a]?

In this example, let’s choose to install an administrative server, by choosing (a).

8. The installation process will then ask you the following question:

Is localhost connected to any SCSI tape libraries that you'd like to use with ➥
Oracle
Backup [no]?

You can answer yes to configure a tape library. You must probe your platform for SCSI bus-
related data, such as host bus adapter, bus address (channel), target, and LUN numbers.
The following command will let you identify your device information:

[root@localhost] $ cat /proc/scsi/scsi

You can use the output of this command to provide the installer information regarding the
following:

Logical Unit Number
Host SCSI adapter number
SCSI bus address
SCSI target ID
SCSI lun
Confirm your choices and click Enter.

CHAPTER 15 ■ BACKING UP DATABASES682

4517CH15.qxd 8/19/05 11:04 AM Page 682

9. You’ll see the following prompt:

Is localhost connected to any SCSI tape drives that you'd like to use with
Oracle Backup [no]?

If your server is connected to a tape drive, respond yes. If it isn’t, answer no. If you choose
yes, the installer will then ask you for details about the tape drive, similar to the details you
provided for the tape library (in step 8). Provide the information and press Enter.

10. In the final step, the installer will ask you if you want to install Oracle Backup on another
machine. Choose no. You’ll see the installation summary, as shown in Figure 15-1.

Figure 15-1. Completing installation of Oracle Backup

Using the Oracle Backup Web Interface Tool
Oracle provides the Oracle Backup Web Interface tool on UNIX/Linux, as well as Windows systems.
The Backup GUI uses the Apache server. In order to use this tool, make sure that the observiced
process is running, as shown here:

$ ps –ef | grep observice
root 16127 1 0 10:57 pts/3 00:00:00 observiced -s
oracle 22093 1541 0 12:58 pts/0 00:00:00 grep observice
$

To bring up the web browser, type the following address in your web server’s address bar:
https:/localhost. When the security alert box appears, click OK (this box appears because the
Oracle Backup Web Interface installs a self-signed security certificate, and thus is unknown to
the web browser).

You’ll then see the Oracle Backup Login page, as shown in Figure 15-2.

CHAPTER 15 ■ BACKING UP DATABASES 683

4517CH15.qxd 8/19/05 11:04 AM Page 683

Figure 15-2. Logging in to use the Oracle Backup Web Interface tool

Since this is the first time you’re logging in, use the username admin and leave the password
blank. Once you log in successfully, you’ll see the Oracle Backup home page, as shown in
Figure 15-3.

Figure 15-3. Starting the Oracle Backup Web Interface tool

CHAPTER 15 ■ BACKING UP DATABASES684

4517CH15.qxd 8/19/05 11:04 AM Page 684

As you can see in Figure 15-3, you can perform four major activities using the Oracle Backup
Web Interface: configure, manage, backup, and restore operations.

Configuring Oracle Backup
When you install Oracle Backup, it creates default users, hosts, devices, classes, and the null media
family. You can choose to use the defaults or configure your own entities, as described in the follow-
ing sections.

Users
You must have separate users with privileges to use the Oracle Backup utility. You can add, modify,
and remove users through either the Oracle Backup Web Interface tool or the obtool command-line
interface. These users can be the same as some of your Oracle users if you wish. Classes assign a set
of access rights or privileges to users who perform backups and restore operations. Oracle Backup
uses the following classes:

• admin: For overall administration of a domain

• operator: For standard day-to-day operations

• oracle: For specific database privileges

• reader: For viewing index information

• user: For allowing specific users to interact in a limited way with their domains

Hosts
Hosts are the server machines that host the Oracle Backup tool. You can distinguish between two
types of hosts, based on their access mode:

• ob host: These are servers on which Oracle Backup components run the background as
daemons. These daemons participate in managing the backup and restore operations.

• Network Data Management Protocol (NDMP) host: This is a storage appliance from a third-
party vendor. An NDMP host implements the NDMP protocol and employs NDMP daemons
instead of Oracle Backup daemons to back up and restore files.

Devices
Devices include both tape drives and tape libraries. A library is a medium changer that accepts
commands to move media between storage locations and tape drives. Following are the basic
components of libraries:

• storage element (se): Contains a volume when it is not in use.

• import-export element (iee): Used to move volumes into and out of the library without
opening the door and is physically present only on certain libraries.

• medium transport element (mte): Moves a volume from a storage element to a drive.

• data transfer element (dte): A tape drive.

CHAPTER 15 ■ BACKING UP DATABASES 685

4517CH15.qxd 8/19/05 11:04 AM Page 685

Media Families
Media familites are a way of grouping together tape volumes with similar write periods and reten-
tion policies. You could, for example, create a media family for all of your onsite full backups.
Similarly, you can create another media family for your offsite full backups. You could also define
a separate media family for all your incremental backups. Oracle Backup lets you classify your
backup media using the following criteria:

• Volume identification sequence: Each tape volume has a unique identifier attached to it,
when it’s either written to the first time or overwritten from the beginning of the tape.

• Write-allowed period: Oracle Backup can write to a volume set until a predetermined write-
allowed period has expired, at which time it closes the volume to further updates.

• Retention period: Oracle Backup determines the expiration date and time for each volume
set when you first create the set. You can’t write to the set past the expiration date.

Oracle Database Objects
You use Oracle database objects to represent backup and restore parameters that describe your
Oracle database. RMAN accesses the database, and Oracle Backup manages the media. Data-
base objects act as intermediaries between RMAN and the Oracle Backup software. Oracle database
objects provide necessary information for Oracle Backup to interact with RMAN. RMAN provides
the database name, content type, and copy number to Oracle Backup. Based on that information,
Oracle Backup determines the Oracle database object.

Performing Backups with Oracle Backup
Before you can back up data, you must log in to Oracle Backup as a user having the privileges to
perform the backup and create a dataset. A dataset is a description file that identifies data you want
to back up.

You can back up data in two different ways:

• On demand: You can create immediate, one-time use backup jobs and send your requests to
the scheduler when you’re ready. Oracle Backup then turns it into a dataset job, making it
eligible to run.

• Scheduled jobs: You can use the Oracle Backup scheduler to schedule jobs. You can specify
backups in terms of day, days of the week, month, quarter, or year.

■Note Expert users can use the obtar command-line tool to work directly with tape drives, bypassing the
Oracle Backup’s scheduler.

You can also specify backup windows, to minimize the impact on day-day-day operations.

User-Managed Backups
RMAN is the Oracle-recommended method for backing up and recovering databases. RMAN is
designed to take advantage of its knowledge of Oracle’s block structures to provide excellent per-
formance, including features like compression, resumable backups and recovery, block-change
tracking, and integration with the MML. However, you can make completely valid backups yourself,

CHAPTER 15 ■ BACKING UP DATABASES686

4517CH15.qxd 8/19/05 11:04 AM Page 686

without the use of RMAN or the Oracle Backup tool, by using operating system copy commands
such as cp and dd in UNIX, and the copy command in Windows systems. You can also connect to a
media manager if you want to make tape backups. If you choose this approach, you must keep track
of all the backups, check their validity, and also decide which of the backups you’ll need during a
recovery session. This is the reason Oracle calls this method user-managed backups.

If you have a simple Oracle database and your backup requirements aren’t onerous, you may
decide that it’s not worth the time and effort that you need to invest in ascending the learning curve
associated with RMAN. For you, user-managed backups are probably the ideal solution, even if it
means that you lose all the special features that Oracle has built into the RMAN tool.

Making Whole Database Backups
You can make a backup of the entire database when the database is closed or when it’s open, pro-
vided you’re operating in archivelog mode. If you’re using noarchivelog mode, you can make only a
closed database backup.

Whole Closed Backup
To make a closed, or cold, backup, the database must have been shut down cleanly through a nor-
mal, immediate, or transactional shutdown.

You need to back up the entire set of files necessary to restore the database: the data files,
online redo log files, and control files. Technically, you need only one control file to restore the data-
base, but because the init.ora file or the SPFILE refers to multiple control files, you might as well
back up all the multiplexed copies of the control files. You first get a list of the files in each category,
and you then copy the files to the target. In the following sections, you’ll learn how you to back up
the three main types of files involved in a whole closed backup.

Backing Up the Data Files

You can get the list of all the data files in your database by using the following query:

SQL> SELECT file_name FROM dba_data_files;

You can then use the UNIX cp command (or the Windows copy command) to copy these data
files to whatever location you want. You may first copy them to an operating system file, and later
on copy those files to a tape device, so you can store them offsite. For example, in UNIX, you may
use the following command to back up the files:

$ cp /u01/orcl/oradata/data_01.dbf /u09/orcl/oradata/data_01.dbf

Backing Up the Online Redo Log Files

You’ll need to back up all the online redo log files when you perform a closed backup. You can get
the list of online redo files by making the following query:

SQL> SELECT member FROM v$logfile;
MEMBER
--
C:\ORACLENT\ORADATA\HELPME\REDO03.LOG
C:\ORACLENT\ORADATA\HELPME\REDO02.LOG
C:\ORACLENT\ORADATA\HELPME\REDO01.LOG
SQL>

Since you are performing a whole closed backup here, the backups are consistent; that is, when
you shut down the database, the data files are all consistent and don’t need recovery on startup.

CHAPTER 15 ■ BACKING UP DATABASES 687

4517CH15.qxd 8/19/05 11:04 AM Page 687

Thus, the restored online backup logs aren’t really useful for recovery. So, you don’t really need to
back up these online redo log files. However, you’ll need redo log files to start the restored instance,
so you might as well use these copies of the online redo log files to start your instance.

Backing Up the Control Files

You can find the control file names and their location by querying the V$CONTROLFILE view:

SQL> SELECT name FROM v$controlfile;
NAME

C:\ORACLENT\ORADATA\HELPME\CONTROL01.CTL
C:\ORACLENT\ORADATA\HELPME\CONTROL02.CTL
C:\ORACLENT\ORADATA\HELPME\CONTROL03.CTL
SQL>

A Simple Cold Backup Script

Scripts for cold backups are fairly simple. Because you’re doing a backup while the database is shut
down, the backup process boils down to copying all the necessary files using the operating system
copy utilities. Listing 15-8 shows a sample cold backup script.

Listing 15-8. A User-Managed Cold Backup Script

#!/bin/ksh
ORACLE_SID=$1
export ORACLE_SID
export ORAENV_ASK=NO
BACKUP_DIR=/test01/app/oracle
. oraenv
sqlplus -s system/remorse1 << EOF
SET HEAD OFF FEED OFF ECHO OFF TRIMSPOOL ON LINESIZE 200
SPOOL /u01/app/oracle/dba/cold_backup.ksh
SELECT 'cp ' ||file_name|| ' ${BACKUP_DIR}' from sys.dba_data_files;
SELECT 'cp ' ||name || ' ${BACKUP_DIR}' from V$controlfile;
SELECT 'cp ' ||member|| ' ${BACKUP_DIR}' from V$logfile;
SPOOL OFF;
EXIT;
EOF

When you run the preceding commands, the output will be cold_backup.ksh, which you can
then make into an executable script and schedule for regular execution.

Making a Whole Open Backup
There’s a world of difference between making closed backups and open (or hot) backups. Open
backups imply that users are changing data while you’re backing up files, and this leads to the use
of more complex mechanisms on behalf of the Oracle server to perform the backups.

You need to back up all the data files, control files, and archived redo logs for a complete
online database backup. You use the normal operating system copy commands to achieve this, but
because the database is actually running, you need to add some other commands to make the
backups valid and consistent. To understand this, it’s necessary to understand what happens within
the database during an online backup.

When you first prepare the tablespace for the backup by issuing the BEGIN BACKUP command,
Oracle notes the SCNs in the data file headers and freezes them. In other words, the data file header

CHAPTER 15 ■ BACKING UP DATABASES688

4517CH15.qxd 8/19/05 11:04 AM Page 688

checkpoint SCNs will remain constant at their old values until the backup is completed and the
command END BACKUP is issued. Oracle will continue writing all the changes to the data files and to
the redo log files, but the redo log files get filled up pretty fast in most cases, because Oracle will be
writing the entire data block instead of just the changes made by individual transactions, as is done
during normal operation. As users are modifying the data during the online backup, checkpoints
will occur as normal, and data blocks will keep being written to disk as usual. Once the backup is
completed for the entire tablespace, Oracle will advance the checkpoint SCN for each file to the
latest actual SCN value.

The crucial idea in the hot backup process is that should a crash of the database occur before
the end of the backup, recovery can be performed based on the checkpoint that was noted when the
tablespace was first put in backup mode. The SCN that is frozen in the file headers is placed there
right after a checkpoint, which flushes all the modified records in the buffer to the data files. There
is a considerable amount of redo log activity during hot backups, mostly to handle what is known as
the split block problem. During the online backup of a particular Oracle block, the block could be
in the process of being written to. Consequently, a backed-up copy could conceivably end up with
inconsistent data, with part of the data from before the change was made and the rest from after the
change. The inconsistent block thus produced is called a split block. Oracle copies the entire block
to the redo log file to make sure that it can create a consistent version of the block later on if it
indeed has been split during the hot backup process.

The following is the basic hot backup process:

1. Issue the following command:

SQL> ALTER DATABASE BEGIN BACKUP;

2. Copy all the data files that are part of all the tablespaces in your database.

SQL> host cp /u10/app/oracle/oradata/remorse/users01.dbf
/u01/app/oracle/remorse/backup

3. After you back up all the data files, end the online backup with the following command:

SQL> ALTER DATABASE END BACKUP;

The END BACKUP command instructs Oracle to take all tablespaces out of backup mode.

■Note RMAN doesn’t put the tablespaces in the begin backup and end backup modes. The Oracle server ses-
sion checks the data block header and footer to see if the data block is “fractured.” If it is, the RMAN server simply
reads the data block again to get a consistent view of it.

When you perform an online full backup of an archivelog database, you must back up the con-
trol file using the special BACKUP CONTROLFILE TO 'filename' command, as shown here:

SQL> ALTER DATABASE BACKUP CONTROLFILE TO '/u01/app/oracle/oradata/backup/';

During a recovery, you must use the backup of the control file derived in the previous manner
to avoid problems you may encounter if you try to use the normal operating system copy of the
control file.

As you noticed, you don’t need to individually place each tablespace into a hot backup mode.
In Oracle Database 10g, you can put all data files in online backup mode with a single command.
You must make sure, however, that the database is in the archivelog mode, mounted, and open.

You’ve seen how the online backup mechanism works. Listing 15-9 shows a complete online
backup script that will dynamically pick up all the tablespaces in the databases and back them up
to disk; from there, you can copy them to tape later.

CHAPTER 15 ■ BACKING UP DATABASES 689

4517CH15.qxd 8/19/05 11:04 AM Page 689

Listing 15-9. A User-Managed Backup Script

#!/bin/ksh
ORACLE_SID=$1
export ORACLE_SID
export ORACLE_ASK=NO
BACKUP_DIR=/u01/app/oracle/backup
export BACKUP_DIR
sqlplus -s "sys/sys_password as sysdba" << EOF
set linesize 200
set head off
set feed off
SPOOL /u01/app/oracle/dba/hot_backup.ksh
BEGIN
dbms_output.put_line ('alter database begin backup;');
for f1 in (select file_name fn from sys.dba_data_files)
loop
dbms_output.put_line('host cp '||f1.fn|| ' $BACKUP_DIR');
end loop;
dbms_output.put_line ('alter database end backup;');
dbms_output.put_line('alter database backup
controlfile to '|| ' $BACKUP_DIR/control'|| ';');
dbms_output.put_line('alter system switch logfile;');

END;
/
SPOOL OFF;
EXIT
EOF

The spooled script hot_backup.sh looks like this:

ALTER DATABASE BEGIN BACKUP;
HOST cp /u05/oradata/nicko/system01.dbf $BACKUP_DIR
HOST cp /u05/oradata/nicko/undotbs01.dbf $BACKUP_DIR
...
ALTER DATABASE END BACKUP;
ALTER DATABASE BACKUP CONTROLFILE TO $BACKUP_DIR/control;
ALTER SYSTEM SWITCH LOGFILE;

As in the case of your cold backup script, you can make the hot backup script a part of a shell
script and run it at the specified backup time.

Making Partial Database Backups
You don’t need to back up the entire database at one time. You can back up a part of the database—
for instance, a tablespace or just a single data file. Ordinarily, you can do a partial backup of a
database only if the database is running in archivelog mode, but there are a couple of exceptions.
If a database in noarchivelog mode has some read-only or offline-normal tablespaces, you can
back up those tablespaces by themselves.

You can make a tablespace backup with the tablespace either online or in an offline status,
depending on your needs. First, let’s look at an example of an offline backup of a tablespace. You
first take the tablespace offline, and then you back up the files that compose the tablespace.

SQL> SELECT file_name FROM dba_data_files
WHERE tablespace_name = 'USERS';

/u05/oradata/nicko/users01.dbf
SQL>

CHAPTER 15 ■ BACKING UP DATABASES690

4517CH15.qxd 8/19/05 11:04 AM Page 690

As you can see, only one data file belongs to the tablespace USERS. In order to back up the
tablespace, you must back up this data file. But first, take the tablespace offline, in case users are
accessing any of the data files in that tablespace.

SQL> ALTER TABLESPACE users OFFLINE;

Now, you can use an operating system utility like cp (or copy on a Windows system) to back up
the data file belonging to the USERS tablespace.

SQL> host copy/u05/oradata/nicko /users01/dbf /u10/oradata/nicko/users01.dbf

Once you finish copying all the data files belonging to the tablespace (only one data file in this
example), bring the tablespace online.

SQL> ALTER TABLESPACE users ONLINE;

In order to back up a tablespace without taking it offline, first, put the tablespace in the backup
mode to let the database know that you’re starting an online backup:

SQL> ALTER TABLESPACE sysaux BEGIN BACKUP;
Tablespace altered.
SQL>

Next, copy the data file(s) belonging to the online tablespace.

SQL> HOST copy /u01/oradata/nicko/sysaux01.dbf /u05/oradata/nicko/sysaux01.dbf
SQL>

Finally, issue the following command, to let the database know you’re finished.

SQL> ALTER TABLESPACE sysaux END BACKUP;
Tablespace altered.
SQL>

Monitoring User-Managed Online Backups
Several dynamic performance views help you monitor the online backups and troubleshoot the
process. Online backups could take a considerable amount of time, depending on the size of the
database. It’s not unheard of for the backup process to fail or hang up before it completes. As a DBA,
you should be aware of the steps you need to take under those circumstances. Table 15-1 lists the
critical V$ views that help monitor and diagnose problems in backups.

Table 15-1. V$ Views for Monitoring Backups

View Description

V$BACKUP This view is of great help in determining if any of the data files are still in
backup mode. Hot backups sometimes get hung up, and you can query
the status column of this table to find out if any file shows ACTIVE as the
status. If a file does show this status, and the backup is supposed to have
been finished based on the schedule, something obviously went wrong
and you need it to get the file(s) out of hot backup mode.

V$DATAFILE This view lists all the data files that belong to all the tablespaces that need
to be backed up.

V$LOG This view displays all the online redo logs for the database.

V$ARCHIVED_LOG This view displays historical archived log information from the control file.

V$LOG_HISTORY This view displays the redo logs that have been archived.

CHAPTER 15 ■ BACKING UP DATABASES 691

4517CH15.qxd 8/19/05 11:04 AM Page 691

Database Corruption Detection
Regular backups of a production database are imperative, but the backups won’t help if they are
unusable for some reason. Testing of backups is an often-ignored area of backup and recovery.
Unfortunately, many administrators realize its necessity under painful circumstances.

Backed-up database files may become useless during recovery for several reasons: corrupt data
files and redo logs, accidentally overwritten files, defective tapes, or even nonexistent files. You must
get into the habit of regularly testing your production backups according to a schedule. This will
help you catch any data corruption. I use the term corruption to indicate the fact that the data is
inconsistent with what it should be. You are concerned here basically with what is known as block
corruption, which could be logical or physical.

Detecting Media Corruption
Media corruption can be caused by myriad factors, ranging from user error to bugs in the operating
system software, to bad disks, to a Logical Volume Manager (LVM) error, to faulty memory chips.
Media defects could lead to corruption in the control files, redo logs, data dictionary, table data,
and index data.

Your detection of media corruption anywhere in the database involves using scripts to monitor
your alert logs on a regular basis and using some Oracle features that enable early detection of
problems. You can almost completely prevent redo log and control file corruption by using multi-
plexing, at both the operating system level and the Oracle level. Owing to the database’s sheer size
and the fact that its files are not multiplexed as a matter of course, data block corruption is of most
concern to DBAs. Try to catch the corruption messages in your alert logs early on and seek Oracle
Worldwide Support’s help in fixing any type of corruption issues in your database

Detecting Data Block Corruption
Data block corruption occurs when you have inconsistent data in tables or indexes. You usually end
up losing a significant amount of data if you can’t fix the corrupted blocks of data. Although you
may take several steps to prevent corruption, early detection of corrupted data files will help you
in two ways:

• It will enable you to find quick ways of salvaging all or as much of the affected data as
possible.

• It will save you surprises during a recovery from media errors. Early detection of corruption
always will minimize the problem, because it will enable you to take the files offline and
reduce the potential damage.

You can use several methods to detect data block corruption. First, you can set a few initializa-
tion parameters to trap corrupted block information. Also, you can use utilities such as DBVERIFY,
DBMS_REPAIR, and ANALYZE to enable you to detect data block corruption. These methods are not
mutually exclusive; rather, you should use them as complements to each other, as each has its own
appealing features. The following sections cover the use of each of these techniques.

Setting Initialization Parameters
You can use the initialization parameter DB_BLOCK_CHECKSUM to force Oracle to perform check-
summing, which involves the computation of checksums for every data block and its storage in the
data block header. When the data is read, the checksums are compared and corrupt data blocks are

CHAPTER 15 ■ BACKING UP DATABASES692

4517CH15.qxd 8/19/05 11:04 AM Page 692

identified. Oracle recommends that you leave the DB_BLOCK_CHECKSUM parameter at its default set-
ting of TYPICAL (same as TRUE in previous versions). According to Oracle, using this feature in the
TYPICAL mode causes only an additional 1 to 2 percent overhead. In the alternative FULL mode, it
causes a 4 to 5 percent overhead.

The DB_BLOCK_CHECKING parameter is more sophisticated, and it checks data and index blocks
only when the blocks are actually changed. It also detects corruption before the data blocks are
marked corrupt. The default for this parameter is OFF. The other possible values are LOW, MEDIUM, and
FULL. Block checking may cause a 1 to 10 percent overhead; the overhead is directly linked to update
and insert operations in your database. Oracle recommends that you set this parameter value to
FULL, if you can handle the additional overhead. You can set this feature by including it in the
init.ora file, as in this example, which sets it to LOW:

DB_BLOCK_CHECKING=LOW

You can also set it dynamically using the ALTER SESSION statement:

SQL> ALTER SESSION SET DB_BLOCK_CHECKING=LOW;

Using the ANALYZE Command
You can use the ANALYZE command to catch corrupted data blocks. The following command verifies
each data block in the customer table, and if it finds any corrupted blocks, it adds the suspect rows
to the invalid_rows table.

SQL> ANALYZE TABLE customer VALIDATE STRUCTURE;

In addition to checking for block corruption, the command will make sure that the index data
corresponds to the table data.

Using the DBVERIFY Utility
When you suspect data block corruption, you can use the Oracle-provided DBVERIFY utility. The
DBVERIFY tool is used from the operating system level. It checks the structural integrity of the data-
base files for corruption.

To illustrate the use of DBVERIFY, the following example verifies a file on a Windows platform
(the command works in the same way on UNIX platforms). You can easily write a script that will
perform the data file verification and use crontab to schedule it on a regular basis. Listing 15-10
shows the results of using the DBVERIFY utility.

Listing 15-10. Output of the DBVERIFY Utility

$ dbv file=/u01/orcl/oradata/system01.dbf
DBVERIFY: Release 10.2.0.0.0 Beta on Mon Mar 14 17:12:33 2005
Copyright (c) 1982, 2004, Oracle. All rights reserved.
DBVERIFY - Verification starting :
FILE = =/u01/orcl/oradata/system01.dbf
DBVERIFY - Verification complete
Total Pages Examined : 19200
Total Pages Processed (Data) : 4404
Total Pages Failing (Data) : 0
Total Pages Processed (Index): 1245
Total Pages Failing (Index): 0
Total Pages Processed (Other): 2663

CHAPTER 15 ■ BACKING UP DATABASES 693

4517CH15.qxd 8/19/05 11:04 AM Page 693

Total Pages Processed (Seg) : 0
Total Pages Failing (Seg) : 0
Total Pages Empty : 10888
Total Pages Marked Corrupt : 0
Total Pages Influx : 0
Highest block SCN : 935681 (0.935681)
$

This example shows a simplified use of the DBVERIFY utility, which is invoked by the com-
mand DBV on both the UNIX and Windows platforms. The keyword FILE indicates the data file you
want to check for corruption. As you can see, the total pages marked corrupt are 0, which means
the data file is free of any structural integrity problems—it is not corrupted.

Using the DBMS_REPAIR Package
Though using the DBVERIFY utility is simple, it’s severely limited by the fact that it can’t be used to
fix corrupted data. In Oracle8i, Oracle introduced the DBMS_REPAIR package, which can detect
and fix data block corruption while data files are online. To use this utility, you first need to log in as
the user SYS and then create a pair of tables, the first of which needs to be prefixed with repair_ and
the second is called the orphan_key table.

Once you have created the table repair_table, you’re ready to run the DBMS_REPAIR package.
The repair_table table will log all the information about corrupt data. The CHECK_OBJECT procedure
of the DBMS_REPAIR package detects corrupted data blocks and recommends fixes. After the
execution of the CHECK_OBJECT procedure, the table repair_table is queried on the columns
OBJECT_NAME and CORRUPT_DESCRIPTION to identify if and what type of data block
corruption exists.

I discuss various ways of fixing data block corruption in the next chapter, because one of the
ways to fix the problem involves restoring the database from backups.

ORACLE’S HARD INITIATIVE

RAID ensures only that the data storage drives are redundant, so you can withstand the loss of some disks without
losing any data. What if you have a mirrored system, but the data that’s being written to a mirrored pair is corrupted?
Both the disks in the mirrored pair, of course, will hold corrupted data. Oracle has recently instituted a new initia-
tive, Hardware Assisted Resilient Data (HARD), to prevent data corruption before it occurs. Oracle will incorporate
special data validation algorithms inside the storage devices sold by participating vendors in the HARD Initiative,
thus preventing corrupted data from being written permanently to disk. The HARD Initiative is designed to address
problems of the following nature:

• Operating system overwrites of Oracle data

• Partially written blocks and lost writes

• Physically and logically corrupt blocks being written

• Blocks being written to the wrong locations

CHAPTER 15 ■ BACKING UP DATABASES694

4517CH15.qxd 8/19/05 11:04 AM Page 694

Enhanced Data Protection for Disaster Recovery
The backup techniques you’ve seen in this chapter will protect your database from unexpected disk
and other hardware failures. If you have a well-designed mirroring or a RAID-configured disk sys-
tem, you’ll have built enough redundancy into your system to survive ordinary disasters. However,
even the most stringent backup systems are no guarantee that you have a high-availability system
in place. A disaster could easily put your organization data resources out of commission, causing
severe service interruptions. For events like those, you need more than the ordinary backup systems
in place—you need a high-availability strategy in place.

High-Availability Systems
A high-availability system will ensure almost continuous data availability in the face of disasters of
just about any kind. The key to providing such high availability is to have multiple data systems
using various architectures. Oracle provides several alternatives, including the following:

• Oracle Real Application Clusters (RAC): Oracle RAC uses multiple Oracle instances on multiple
nodes (servers) to connect to a single database. In the event of a node failure, the surviving
nodes recover the failed instance while providing continuous service to the users, who aren’t
aware that anything went wrong. Oracle RAC provides high availability, and under some cir-
cumstances, it can also enhance performance and provide scalability. However, if the single
database goes, everything goes with it, the multiple nodes notwithstanding. You can start at
http://www.oracle.com/technology/products/database/clustering/index.html to learn
more about Oracle RAC.

• Oracle Streams: Oracle’s Streams provides high availability by maintaining a distributed data-
base system. Changes from the primary database are captured and sent to other databases
located in a remote location. High availability is ensured because the failure of one site
means customers are switched over to a different site, and they can continue selecting and
updating data as before. See Chapter 6 for an introduction to the Oracle Streams feature.

• Oracle Data Guard and standby databases: Oracle provides the standby database concept,
where you can have your production database update a secondary database in a different
location on a continuous basis. Oracle Data Guard helps you administer sophisticated
standby database setups so you can quickly switch from one database to another.

Oracle Data Guard and standby databases are frequently used to provide disaster recovery, data
protection, and high availability. Let’s take a quick look at how these work.

Oracle Data Guard and Standby Databases
The standby database feature has been provided by Oracle for many years. Oracle Data Guard is
the management and monitoring layer through which the standby databases are maintained. The
standby databases are kept up-to-date by propagating changes from the primary server continu-
ously.

In the event of a disaster, a standby database is activated and brought online as the primary
database. Besides providing you protection against a total destruction of the primary database, the
standby database can also be used for reporting purposes.

The databases maintained in an Oracle Data Guard configuration can be in the same LAN-
based location, or they could be in a much wider WAN-supported network. LAN-based local
standby databases offer faster failure capabilities, and WAN-based databases are a better bet against
a catastrophic disaster affecting your data center or local sites. You can configure a primary data-
base and several standby databases. You can reduce downtime to less than a minute by choosing

CHAPTER 15 ■ BACKING UP DATABASES 695

4517CH15.qxd 8/19/05 11:04 AM Page 695

the proper protection level when you set up the standby databases. Here is a brief summary of the
many benefits of using the Oracle Data Guard standby database feature:

• High availability

• Protection against disasters

• Protection against physical data corruption

• Protection against user errors

• Failover and switchover capabilities, which can be used for both planned and unplanned
switching of production and standby databases

• Geographical separation of primary and secondary servers through Oracle Net

Oracle provides the excellent Oracle Data Guard Broker to help create and manage the Oracle
Data Guard configurations. The Oracle Data Guard Broker can support up to ten databases (one pri-
mary and nine standby) at a time. The Oracle Data Guard Broker can manage tasks such as log
application, log transportation, and switchover or failover from primary to secondary. The Oracle
Data Guard Broker offers two interfaces: a command-line interface and a GUI called the Data Guard
Manager.

The Oracle Data Guard Broker is a great tool, in that it automates the many tasks involved in
managing complex standby database groupings. It also automates the often-complex networking
aspects of maintaining standby databases.

■Note Oracle Data Guard isn’t meant for maintaining a low downtime. It’s meant to serve in a disaster-protection
capacity and to provide for an alternative database during scheduled maintenance of the production database.

Physical and Logical Standby Databases
Standby databases come in two flavors: physical and logical. Even the logical database, contrary to
what its name implies, is a real standby database. Logical and physical standby databases are main-
tained in the same fashion: by propagating changes from the main production (primary) database
to the standby database.

Physical standby databases are updated by continuously applying the primary database’s
archived logs. Physical standby databases are identical to the production database. A physical
standby database must undergo a constant recovery process for it to be in tune with the production
database.

Logical standby databases, on the other hand, use the same archived logs to derive transaction
information, which is applied to the standby database using SQL statements.

The big difference between the two standby databases is that you can’t use a physical standby
database for reporting while you’re performing recovery on it. However, you can continuously
access a logical database for reporting and querying, even while you’re performing recovery on it.
You can have a maximum of nine logical and physical standby databases in one Oracle Data Guard
configuration.

Both logical and physical standby databases have their own benefits and drawbacks. The phys-
ical standby database is the traditional Oracle standby database, and it is based on applying redo
logs from the production server to recover. There are no data limitations—all types of DML and
DDL can be propagated mechanically with the application of the redo logs.

CHAPTER 15 ■ BACKING UP DATABASES696

4517CH15.qxd 8/19/05 11:04 AM Page 696

Protection Modes
You can choose three data protection modes when you use the Oracle Data Guard feature to main-
tain standby databases. The protection modes are a reflection of the trade-off between availability
and performance. The following modes are available:

• Maximum protection mode: This mode, also called the double failure protection mode, offers
the highest level of protection. This mode guarantees that no data loss will occur if your pri-
mary database fails. To ensure this protection, the redo data must be written to both the
primary database’s online redo log and the standby redo log on at least one standby data-
base, before a transaction can commit. The primary database will shut down if it can’t write
redo data to at least one of the secondary database’s redo log files.

• Maximum availability mode: This mode, also known as instant protection mode, offers pro-
tection from the failure of the primary production database. You get the highest level of data
protection possible while keeping the primary database available. The redo data from the
primary server is written asynchronously following the committing of the transactions on
the primary server. You could lose your primary database, your standby database, or the net-
work connection connecting the two, without losing any data under this data protection
mode. If you lose the connection to the standby database, the primary server stops shipping
changes to it, but doesn’t shut down. There is a drawback with this method: the transactions
must be eventually shipped to the standby database before they are committed on the pro-
duction database.

• Maximum performance mode: If you don’t need protection against a zero loss of data, but
you would like to keep the production database’s performance at its peak level, this is the
mode of protection you should choose. The primary database doesn’t wait for confirmation
from the secondary database before committing its changes. If the primary database fails,
the standby database might miss some changes that were already committed on the primary.

As you can see, each mode is designed to provide either a greater amount of performance or a
greater amount of data protection. It’s up to the individual organization to make a choice between
them, based on the firm’s needs.

CHAPTER 15 ■ BACKING UP DATABASES 697

4517CH15.qxd 8/19/05 11:04 AM Page 697

4517CH15.qxd 8/19/05 11:04 AM Page 698

Database Recovery

A database can be unavailable for use for a number of reasons, including a system crash, a net-
work failure, a media failure, or a natural disaster. The keys to a successful recovery, of course, are
solidly tested backups and regular recovery drills using those backups.

Database recovery is a rather complex topic, and practicing the recovery techniques is essen-
tial to a successful recovery. The new Flashback recovery techniques are great alternatives to several
more drastic traditional recovery techniques, and you should be comfortable with using these tools.
This chapter discusses the important Oracle recovery techniques, but you should also review the
Oracle manuals concerning backup and recovery, and you should simulate different types of recov-
ery so you’re ready for the real thing, should the need arise!

In this chapter, I’ll cover the following topics:

• Types of database failures (system failure, media failure, and so on)

• Automatic crash/instance recovery versus user-initiated media recovery (the latter being the
main focus of this chapter)

• Recovery using RMAN

• Oracle Database 10g’s new Flashback recovery techniques

Besides having to recover from media failure, you may also encounter situations where data
blocks are corrupted, leading to a potential loss of data. You can take steps to prevent data cor-
ruption, and you can salvage most of the uncorrupted data from the data blocks using special
Oracle-provided packages. You’ll learn how to use these techniques in the latter part of this chapter.

Recovery is a process in which mistakes can be very expensive in terms of data loss. Your suc-
cess during a recovery process directly corresponds to your understanding of backup and recovery
concepts and your knowledge of which techniques to apply for different kinds of media losses. At
the very end of this chapter, a set of recovery scenarios will outline the steps to be followed during
these various types of recovery.

Types of Database Failures
As a DBA, your most important task is to safeguard the enterprise data and enable users to access it
with as few disruptions as possible. In the previous chapter, you learned how important it is to have
a proper backup and recovery process in place. Your database could stop functioning for a number
of reasons, some of them mechanical and others due to user errors or natural disasters, as outlined
in the next few sections.

699

C H A P T E R 1 6

■ ■ ■

4517CH16.qxd 8/19/05 11:07 AM Page 699

System Failures
The most common system failures are hardware-related failures. A disk drive controller may fail, or
the disk head could be defective. Some of the system peripherals or controllers can also malfunc-
tion. You may have a problem with a CPU on your system or the memory chips may turn out to be
defective. Of course, you could always end up with a power supply–related failure, especially if you
aren’t using uninterrupted power supplies. Software-related problems could result from problems
on either the operating system side or the Oracle server side. The database might crash without any
notice upon hitting a server bug. Similarly, the middle-tier software could cause the network to fail
or it could generate other problems.

If you have only one instance running and your entire system goes down, there’s really not a
whole lot you can do. If you have mission-critical systems, you can prevent the downtime by using
a cluster of several nodes, thus avoiding a single point of failure. Oracle offers Real Application
Clusters (RAC), which involves running several instances from different servers connecting to a
single database. When one node or server goes down, the others can take over within seconds, with-
out any noticeable disruption in service. Oracle also offers the Transparent Application Failover
feature, which you can use in tandem with RAC to failover clients transparently from one server to
the other.

Data Center Disasters
Data center disasters could range from a tornado to a fire to a terrorist attack. I discussed the
Oracle Data Guard feature, which makes use of standby databases, in Chapter 15. Standby data-
bases provide good protection against a data center disaster. Your business will continue to run
without any interruption, because all the changes made to your operational database are sent to
a duplicate standby database over the network. In a disaster recovery situation, you just turn the
duplicate database into your main production database, with almost no disruption and no loss
of data.

You can also use Oracle’s Advanced Replication feature, whereby you maintain a distributed
database system so a remote distributed database can take over from the primary production
system if it suffers a total failure.

Human Error
People can and do make mistakes. DBAs or system administrators can make critical errors that
might put their databases in jeopardy. For example, you could accidentally run the wrong batch
job, producing data that is meaningless or wrong.

If you have entered incorrect data into a table or deleted some data in error, you have several
ways to get out of the jam. You can use Oracle’s Flashback Query feature to query old data and
replace the lost or wrongly entered data without taking the database offline. Chapter 6 dealt with
various Flashback features that use undo data. In this chapter, I discuss the Flashback Database
and Flashback Drop features, which enable you to perform a database or table recovery without
restoring data files.

You can also use Oracle’s LogMiner tool to read your redo logs and undo changes to the data-
base. You can use Data Pump Export and Import to replace the affected tables, but you may lose
some data in the process. Or, you can perform a point-in-time recovery (PITR) to recover the data-
base or a tablespace to a point in time before the problem occurred. However, the new Flashback
features are a better alternative in most cases, as you’ll see later in this chapter.

CHAPTER 16 ■ DATABASE RECOVERY700

4517CH16.qxd 8/19/05 11:07 AM Page 700

Media Failures
The most serious recovery issues are those related to media problems. Damage to disks that prevent
them from being read from or written to is the most serious scenario, and you’ll have to depend on
your backup copies of the database and log files to make the database current without any perma-
nent loss of data. If your data files or control files are on the inaccessible media, you’ll most likely
end up doing a recovery.

In some situations, you may perform a recovery even if there’s no media damage—for instance,
when there’s a serious case of user error. If you have to restore a backed-up data file or you take a
file offline using the OFFLINE IMMEDIATE option, you’ll need to perform a media recovery. Two factors
are critical when disasters occur: the amount of data that becomes unavailable and needs to be
replaced from backups, and the amount of time it might take to replace the data.

The Oracle Recovery Process
You can broadly divide Oracle database recoveries into crash and instance recoveries on one hand
and media recoveries on the other. Let’s clarify the differences between these two types of recoveries.

Crash and Instance Recovery
Oracle automatically performs crash recovery when a single instance suddenly fails, or when all
instances of a multiple-instance Oracle Real Application Cluster (RAC) fail. Also, if you shut down
your database with the SHUTDOWN ABORT command, Oracle has to perform a crash recovery. Instance
recovery is very similar to crash recovery, but it applies to cases where a surviving instance recovers
the failed instances in an RAC setup. The essential point about crash and instance recoveries is that
you don’t apply any backed-up data files or archived logs during recovery. Oracle uses only the cur-
rent data files and online redo log files to bring the database up to date.

Crash and instance recovery involves the following two-step procedure:

1. Roll-forward step: During this step, formally called cache recovery, the database applies the
committed and uncommitted data in the current online redo log files to the current online
data files.

2. Rollback step: During this step, formally called transaction recovery, the database removes
the uncommitted transactions applied in the previous step, using the undo data in the undo
segments.

As you know, when the database suddenly crashes, not all the committed transactions will have
been written to disk. If your database is large, and the redo log files are also large, it can take a long
time for the roll-forward and rollback to complete. By using Oracle’s Fast-Start Fault Recovery func-
tionality, you can substantially reduce the downtime resulting from system-related outages.

The roll-forward phase of a crash recovery uses the redo logs to see what changes need to be
applied to disk. Redo application begins at a point in the redo logs known as the thread checkpoint
redo byte address. This is the time when the last checkpoint was done before the crash. Because all
the data in the buffers is written to disk during a checkpoint, only changes after this last checkpoint
position will need to be recovered. Fast-Start Checkpointing is the frequent writing of the dirty data-
base buffers in the cache to disk by the database writer (DBWn). Fast-Start Checkpointing is the
basis of Oracle’s Fast-Start Fault Recovery feature. You can minimize the time required for crash
recovery by frequently advancing the checkpoint position. Oracle uses a two-pass technique to per-
form a recovery using the checkpoints. In the first pass, it determines which blocks in the redo logs
need recovery, and in the second pass the database applies the required changes.

CHAPTER 16 ■ DATABASE RECOVERY 701

4517CH16.qxd 8/19/05 11:07 AM Page 701

In Oracle Database 10g, the database automatically performs checkpoint tuning by deciding
when to write out dirty buffers with the least impact on throughput. All you have to do is specify the
time (in seconds) that a crash recovery should take by setting the FAST_START_MTTR_TARGET parameter.
The maximum value for FAST_START_MTTR_TARGET is 3,600 seconds (one hour) and the default is 0. (If
you set the value to more than 3,600 seconds, Oracle resets it to 3,600 seconds.) Even if you set the
parameter to a large value, checkpointing is enabled by default. The goal of automatic checkpoint
tuning is to write as many dirty buffers and perform as frequent checkpointing as possible without
increasing the overhead and hurting database throughput.

The following example shows how to set FAST_START_MTTR_TARGET so that crash recovery will
take no longer than 1 minute :

SQL> ALTER DATABASE SET FAST_START_MTTR_TARGET=60;

■Note You can also set the value of the FAST_START_MTTR_TARGET parameter in the initialization parameter file.

The target of 60 seconds in the preceding example may not be met exactly by Oracle the very
first time during a crash recovery because Oracle initially uses an estimate of the I/O rates on your
systems. Oracle constantly monitors your system to measure the actual I/O rates, and over time it
uses this information to estimate the recovery time more precisely. Every 30 seconds, Oracle esti-
mates the current mean time to recover (MTTR) and places this value in the V$INSTANCE_
RECOVERY table. You can query this table, as shown next, to see what Oracle’s current estimated
MTTR is and adjust your FAST_START_MTTR_TARGET value accordingly.

SQL> SELECT recovery_estimated_ios, estimated_mttr, target_mttr
FROM v$instance_recovery;

RECOVERY_ESTIMATED_IOS ESTIMATED_MTTR TARGET_MTTR

994 20 52
SQL>

■Note Using Fast-Start Fault Recovery can lower your crash-recovery times to less than a minute. Although
there is some concern that more frequent checkpointing has a performance cost, studies have shown that the
performance hit is negligible.

In Oracle Database 10g, you don’t have to specify any checkpoint-related initialization
parameters.

Faster Instance Startup in Oracle Database 10.2
When you have very large SGAs, it can sometimes take a considerable amount of time for the
instance to start. Oracle traditionally used to wait for the initialization of the entire buffer cache
before starting the instance, which accounted for most of the delay. In Oracle Database 10g
Release 2, Oracle initializes only about 10 percent of the buffer cache before starting up the
instance and opening the database. The remaining buffer cache is initialized by the checkpoint
process after the database is opened.

CHAPTER 16 ■ DATABASE RECOVERY702

4517CH16.qxd 8/19/05 11:07 AM Page 702

Media Recovery
Unlike crash and instance recovery, media recovery isn’t automatic—the DBA has to initiate the
recovery process. You need the following four items to perform a complete media recovery:

• A full backup of all data files

• Archived redo logs since the last full backup

• A control file copy

• Current online redo logs

Oracle media recovery ensures the recovery of up-to-the-minute data, provided you have a
copy of a recent backup and archived redo logs. The archived logs are transaction journals, and
they contain the complete set of changes made to the database since the last backup. By using the
archived redo logs and contents of the online redo logs, you can bring your database up to date.
You’ll see quite a bit of discussion on recovering databases from a media failure in this chapter.

Dropping a Data File
Before you can begin a complete media recovery, you must take the data files to be recovered
offline. In Oracle Database 10g Release 2, you can drop a data file directly from SQL*Plus, with the
DROP DATAFILE command. When you issue this command, the data file is removed both from the
tablespace and the operating system as well. Here’s an example:

SQL> ALTER TABLESPACE TEST DROP DATAFILE '/u01/app/oracle/test/test01.dbf';

You must make sure that the data file is empty and that it isn’t the only data file in a tablespace;
if it is, you must drop the tablespace itself. The tablespace in which the data file resides must also be
online and read-write.

Restoring vs. Recovering
Using backed-up copies of data files and control files to replace lost or damaged data files and con-
trol files is called restoring. Bringing the data files up to date using backed-up data files and archived
redo log files is called recovery.

The Media Recovery Process
There are two steps in an Oracle media recovery process: First you restore a backup of the data files
and the control file and make them available to Oracle. Then comes the recovery, when you bring
the data files up to date by applying the archived redo log files and the online redo log files.

The recovery process, itself, has two steps:

• Cache recovery (rolling forward): The redo log contains both committed and uncommitted
changes. As you know, Oracle writes to the redo log first and the data files later. When you
restore older files from backups to replace lost or damaged data files, those files are missing
all the changes made since the time of the backup. The process of applying the contents of
both the archived and redo log files to bring the data files up to date is called cache recovery
or rolling forward. Once you complete cache recovery, you will have gained all your commit-
ted changes, but unfortunately, you’ll also have all the uncommitted changes that are part of
the redo log.

CHAPTER 16 ■ DATABASE RECOVERY 703

4517CH16.qxd 8/19/05 11:07 AM Page 703

• Transaction recovery (rolling back): During the application of the redo log data to the data
files, both committed and uncommitted changes get applied. The uncommitted changes
must now be removed from the data files. Oracle uses the pre-change versions of data stored
in the undo segments to remove these uncommitted changes. This second step is called
transaction recovery or rolling back. Oracle gets the undo data through cache recovery,
which regenerates the undo segments from the redo log.

■Note If you use Recovery Manager (RMAN), you can recover your data files with incremental backups, which
are backups that contain only the changes after a previous backup. You can perform this media recovery with the
help of RMAN or with manual recovery commands by using SQL*Plus and operating system data-restoring utilities.
Chapter 15 explains RMAN incremental backups in detail.

Open and Closed Media Recovery
It’s important to remember that a database failure or even a disaster need not involve the entire
database. Users can continue to work away on most parts of the database while another part is
being repaired with the help of backups.

Open recovery is recovery performed while the database is open to users. Only the affected
data files or tablespaces are taken offline for recovery. You can continue to run the database as
usual, with service being interrupted only for those transactions that involve the damaged part of
the database.

A closed recovery is a recovery for which you need to shut down the database completely. You’ll
need to use closed recovery when your entire database needs to be recovered or when your system
or rollback (undo) data files are damaged.

Time Needed for Recovery
The time it will take you to perform a recovery depends on the following factors:

• On what media do you have your archived redo logs? If the logs are all on tape, it will take
much longer to perform the recovery than if they’re on disk. It’s a good idea to keep an extra
copy of the logs on disk somewhere.

• Are you using the parallel recovery feature? Parallel recovery, when it can be implemented,
will reduce the time needed to recover the database.

• Do you need to replace the disks right away, or can you get away with just moving the data
files to a different good location?

• What’s your service contract for replacement and repair of parts on the server? Some com-
panies have a response time as short as 45 minutes from the initial call. Some may have a
24-hour turnaround. Make sure you know and understand the implications of your com-
pany’s service contract with the vendor of your system.

• How frequently do you perform backups? The more infrequently you perform backups, the
more logs need to be applied, and the longer the recovery time.

Complete and Incomplete Recovery
If you have a disk go bad on you, and you consequently have to restore and recover from backups,
naturally your goal will be a full recovery up to the time the problem occurred. On the other hand, if
you’re recovering your database due to user errors (such as incorrect data entry), your goal may be

CHAPTER 16 ■ DATABASE RECOVERY704

4517CH16.qxd 8/19/05 11:07 AM Page 704

to remove the errors from your database by recovering only up to the point when the incorrect
activity began. This is typically called incomplete recovery, and as you’ll see later on, you make the
decision about exactly when to stop recovering the database based on different criteria.

Complete recovery simply means a recovery with no loss of data. All the changes in the online
and archived redo logs are applied to the most recent backup of the database. Thus, the database is
brought up to date with the current point in time. You can perform a complete recovery at the data-
base, tablespace, or data file level.

Incomplete recovery implies data loss, because you restore only part of the data that existed
when the database failure occurred. That is, you apply only some of the archived and current log
records to the database. Your database after recovery is consistent, but it’s not an up-to-date ver-
sion. You could have several reasons for wanting to do an incomplete recovery, including user error,
loss of necessary archived log files, or loss of an online redo log. When you perform an incomplete
recovery, you always open the database after resetting your redo logs. This will, in effect, give you a
new version or incarnation of the database. You can make an incomplete recovery only at the data-
base level, not at the tablespace or data file level.

During both complete and incomplete database recovery, you can’t open your database to
users. When one or more tablespaces have been logically damaged (due to incorrect data entry, for
example), you can perform a tablespace point-in-time recovery (TSPITR). Since you don’t have to
perform an incomplete media recovery of the entire database, recovery will be much quicker. In
addition, you don’t have to make all of your database inaccessible to users during recovery. TSPITR
techniques are cumbersome, and you may first consider using the Flashback techniques like Flash-
back Table and Flashback Drop instead.

Block Media Recovery
If only a few data blocks are corrupted, and the rest of the data file is good, you should consider per-
forming a block media recovery instead of a data file recovery. You can perform block media recovery
only through RMAN. Even if you’re using your own backup and restore techniques, you can still per-
form a block media recovery through RMAN by using the CATALOG command to first register the
necessary data files and archived redo log backups with RMAN.

Media Recovery vs. Non-File-Based Recoveries
Most traditional recoveries are file-based media recoveries. Whether you use RMAN or user-managed
recovery techniques, recovery traditionally has meant the restoration and recovery of the data files,
archived redo logs, and control files. If you lost an entire database or entire data files due to media
problems, you had no recourse but to use the file-based recovery techniques. However, if you were
trying to undo user errors or to recover an accidentally dropped table, traditional recovery tech-
niques proved to be overkill and were time consuming.

Over the last few years, Oracle has developed several non-file-based recovery techniques. In
these techniques, the emphasis isn’t on restoring and recovering files, but on using either undo
data, redo logs, or the new Flashback logs to restore lost objects. Here’s a list of these non-file-based
recovery techniques:

• Flashback: Flashback techniques enable you to recover dropped tables or restore a table or
a database to a past point in time. Chapter 6 dealt with the Flashback Query, Flashback
Versions Query, Flashback Transactions, and Flashback Table techniques, since that chapter
discussed undo data, which is the basis for these techniques. In this chapter, I’ll cover the
other two important Flashback techniques—Flashback Drop and Flashback Database.

• LogMiner: Oracle’s LogMiner utility lets you mine your redo logs, both online and archived,
to uncover and undo erroneous changes to your database. I discuss the LogMiner technique
later in this chapter.

CHAPTER 16 ■ DATABASE RECOVERY 705

4517CH16.qxd 8/19/05 11:07 AM Page 705

• Data Pump: You may also consider Oracle’s Data Pump Export and Import tools as alterna-
tive tools for recovering lost objects. Chapter 14 discusses the Data Pump technology in
detail.

Although the traditional file-based recovery techniques have been faithful standbys for a long
time, you should consider using the alternative techniques wherever you can use them instead of
the older techniques. For example, you can use the Flashback Database feature to revert your data
files to their state at a past time, thus achieving the same end result as a file-based point-in-time
recovery, but more quickly, since you don’t have to restore backed-up data files, and you apply only
a limited amount of redo compared to media recovery.

REDUCING YOUR VULNERABILITY

No aspect of an Oracle DBA’s job is more dreadful, or even scary, than recovering databases. Recovery techniques
aside, the best way to protect yourself is to reduce your vulnerability in the first place.

The most common errors on a day-to-day basis are hardware related. Disks or the controllers that manage
them fail on a regular basis. The larger the database (and the larger the number of disk drives), the greater the like-
lihood that on any given day a service person is fixing or replacing a faulty part. Because it is well known that the
entire disk system is a vulnerable point, you must provide redundancy in your database. Either a mirrored system or
a RAID 5 disk system, or a combination of both, will give you the redundancy you need.

If your whole site goes down, you recover without a noticeable disruption if you have a distributed replication
database or standby database in place. Otherwise, your uptime will be seriously compromised by a major problem
at the production data center.

Keep a complete redundancy set somewhere on the production server. This redundancy set should consist of
the latest database backups, the archived redo logs since that backup, and a multiplexed copy of the online redo
log files and the control file. You can also include the other Oracle files, such as the init.ora or SPFILE, tnsnames.ora,
and the listener.ora file.

The key to a successful recovery is adhering to the simple admonition “Be prepared” by having the right
backups, which you know have passed a rigorous (and recent) testing process. In addition, your recovery concepts
must be crystal clear in your head. Although you can pore over the books and manuals and probably (eventually)
figure out the right sequence of actions for any DBA task, I don’t recommend that course of action in the case of
database recovery for a number of reasons. First, there’s enormous psychological pressure to bring the database up
as soon as possible. Second, your normal tranquil work circumstances are transformed rather suddenly and rudely,
as your cubicle turns into an overcrowded war room of edgy and frustrated managers—not exactly a great time to
be hitting the books. Third, you need to conserve as much time as you can by knowing the drill ahead of time for
any number of potential problem situations. And fourth, database recovery is one of those areas where the deci-
sions you make and the commands you execute aren’t always retractable. You’ll be traveling a one-way street
during those times, and any errors you make in haste or ignorance tend to cost you dearly.

In this chapter, I explain several techniques for restoring and recovering databases. Many more techniques
are enumerated in the Oracle manuals. It’s sometimes bewildering to see the types of recovery situations you can
encounter. However, if you have a good set of backups and you’re running your database in archivelog mode, you
can recover from the loss of any data file or control file. The only situation in which you might have data loss is if
your online redo log files are lost. Therefore, if you multiplex your online redo log files and also mirror them, there’s
very little chance you’ll ever lose any data, even with a major problem involving your disk drives. But if all your
drives are inaccessible, mirrored or otherwise, you do have a disaster on your hands, and you need to have an
alternative database to switch over to, or at least you need to have an offsite disaster recovery system in place.

In the scenarios of database recovery that follow, I deal only with the recovery of a database running in
archivelog mode. The reason is obvious: just about all critical databases are run in archivelog mode. If you under-
stand the recovery procedures in the following sections, you can restore a noarchivelog mode database very easily.

CHAPTER 16 ■ DATABASE RECOVERY706

4517CH16.qxd 8/19/05 11:07 AM Page 706

Performing Recovery with RMAN
It’s critical to have the right log files during a recovery, and RMAN, with its automatic maintenance
of the necessary files, can be a big help. RMAN can help you perform all the user-managed types
of recovery, and it provides several other benefits discussed in the following section. This chapter
focuses on RMAN recovery techniques, although I do discuss user-managed recovery techniques
briefly.

As was explained in Chapter 15, you can use RMAN to make either image copies that are simi-
lar to operating system file copies, or proprietary backup sets. If you have RMAN image copies, you
can directly use them to perform a recovery. However, if you have backup sets, you must first extract
the backup files using the RESTORE command before you can perform a recovery.

■Note In Oracle Database 10g Release 2, you can use the database backups instead of the actual database files
to transport tablespaces. Thus, you don’t need to make a running database’s data files read-only in order to trans-
port tablespaces.

RMAN’s Benefits for Recovery
RMAN provides undeniable benefits when compared to the traditional user-managed recovery
methods. Here’s a summary of what RMAN offers during a database recovery:

• RMAN selects and applies the necessary data and log files during recovery.

• RMAN selects the most recent backup sets and image copies to recover with.

• RMAN can perform recovery at the data block level with the block media recovery feature
(an option not otherwise available), which dramatically reduces recovery time.

• RMAN provides restore optimization, a great timesaving feature that enables you to bypass
data files that are okay during the recovery process. RMAN can check the files that need to be
restored and avoid recovering bad files.

• RMAN allows you to recover by applying incrementally updated backups, which drastically
reduces recovery time.

• RMAN provides the DUPLICATE command, which lets you easily create clones of your produc-
tion database.

RMAN restores data files from backups and applies the necessary archived redo logs to bring
the database up to date. RMAN knows, by looking into its recovery catalog, which files it needs. You
thus avoid the extremely labor-intensive and error-prone manual intervention in a typical user-
managed recovery.

■Note The recovery catalog, as you learned in Chapter 15, provides so many benefits that you should plan on
using it if RMAN is a part of your backup and recovery strategy.

One of the biggest advantages to using RMAN is that you can check whether your backups are
valid before performing a recovery. The following section explains how to validate backups taken
with RMAN.

CHAPTER 16 ■ DATABASE RECOVERY 707

4517CH16.qxd 8/19/05 11:07 AM Page 707

Using the VALIDATE BACKUP Command to Validate
RMAN Backups
When you use RMAN to perform backup and recovery tasks, it’s easy to verify that a certain backup
not only exists, but that it is usable. The LIST command shows information about backup sets,
proxy copies, and image copies recorded in the RMAN repository. You can use the LIST BACKUP com-
mand in RMAN to view information about backup sets, backup pieces, and proxy copies. The LIST
COPY command shows information about all data file copies, archived redo logs, and image copies
of archived redo logs. The LIST BACKUP SUMMARY command shows a summary of all RMAN backups.

The LIST commands show usable and unusable backups, backups that can and can’t be
restored, and expired and unavailable backups. You must use the RECOVERABLE option with the
LIST command, to list only those backups that can be used for recovery.

The VALIDATE BACKUPSET command checks the usability of RMAN backups. You can get the
backup set information by first using the LIST BACKUP command. You can then use the VALIDATE
BACKUPSET command to check a backup set’s usability.

Here’s an example of the use of the VALIDATE BACKUPSET command:

RMAN> VALIDATE BACKUPSET 1;
allocated channel: ORA_DISK_1
channel ORA_DISK_1: sid=155 devtype=DISK
channel ORA_DISK_1: starting validation of datafile backupset
channel ORA_DISK_1: reading from backup piece . . .
channel ORA_DISK_1: restored backup piece 1
piece handle=/u01/app/oracle/10.2.0/db_3/flash_recovery_area/NICKO...
channel ORA_DISK_1: validation complete, elapsed time: 00:00:34
RMAN>

The “validation complete” message on the last line is confirmation that RMAN considers the
specified backup set valid for a restore operation.

Using the RESTORE . . .VALIDATE Command
You can use the RESTORE . . . VALIDATE command to check whether a certain object of interest is
among RMAN’s backup sets. Here’s an example:

RMAN> RESTORE TABLESPACE users VALIDATE;
Starting restore at 29-JUN-05
. . .
Finished restore at 29-JUN-05
RMAN>

The RESTORE TABLESPACE users VALIDATE command asks RMAN to confirm whether it can
restore the users tablespace from its backup sets. The “Finished restore” message indicates only that
the users tablespace can be recovered if necessary—RMAN doesn’t perform an actual recovery of
the tablespace.

Using the RESTORE . . . PREVIEW Command
In order to successfully restore a database or any part of it, RMAN should have access to all the
necessary data files and archived redo log files. RMAN provides a handy PREVIEW option you can
use with the RESTORE command, which lets you identify all the backup files necessary for a specific
restore operation. You can then ensure that all the backups are available before issuing the RESTORE
command.

CHAPTER 16 ■ DATABASE RECOVERY708

4517CH16.qxd 8/19/05 11:07 AM Page 708

Here are some examples of how you can use the RESTORE command with the PREVIEW option:

RMAN> RESTORE DATABASE PREVIEW;
RMAN> RESTORE TABLESPACE users PREVIEW;
RMAN> RESTORE DATAFILE 3 PREVIEW;

The RESTORE . . . PREVIEW command provides a detailed report of all backups that are neces-
sary for that RESTORE command to succeed. If you want a summary report instead, use the PREVIEW
SUMMARY option instead, as shown here:

RMAN> RESTORE DATABASE PREVIEW SUMMARY;
. . .
List of Backups
. . .
List of Archived Log Copies
. . .
Finished Restore at 29-JUN-05
RMAN>

Identifying Necessary Files for Recovery
You may need to perform a restore and recovery when you lose control files or data files. Your
database will shut down immediately if even one of the multiplexed control copies becomes inac-
cessible. You then can take the appropriate action, as outlined in the “Recovering from the Loss of
Control Files” section of this chapter.

To identify which data files need recovery, you can run the following SQL statement:

SQL> SELECT FILE#, ERROR, ONLINE_STATUS, CHANGE#, TIME
FROM V$RECOVER_FILE;

You can join the V$DATAFILE and V$TABLESPACE views, as shown here, to find out more
details about the files you may need to restore and recover:

SQL> SELECT r.FILE# AS df#, d.NAME AS df_name, t.NAME AS tbsp_name,
d.STATUS, r.ERROR, r.CHANGE#, r.TIME
FROM V$RECOVER_FILE r, V$DATAFILE d, V$TABLESPACE t
WHERE t.TS# = d.TS#
AND d.FILE# = r.FILE#;

RMAN Recovery Procedures
You really don’t have to do a whole lot of work during recovery if you’re using RMAN, since RMAN
automates the entire recovery process. You use the following RMAN commands to recover the data-
base (or a part of it):

• RESTORE: This command restores the entire database, a tablespace or a single data file by
itself, control files, archived redo logs, and server parameter files from RMAN backup sets or
from image copies on disk. You don’t have to restore archived redo logs, since RMAN auto-
matically restores any necessary archived redo logs.

• RECOVER: This command will perform the actual media recovery by applying necessary
archived logs or incremental backups.

Before you use the RESTORE and RECOVER commands, you must place the database in the appro-
priate state. For example, if you are recovering a single tablespace, you can keep the database open
and take the tablespace offline, and once you are done recovering the data file, you can bring the

CHAPTER 16 ■ DATABASE RECOVERY 709

4517CH16.qxd 8/19/05 11:07 AM Page 709

tablespace online. However, if you’re recovering the entire database, you must first shut down the
database and then start it up in the mount mode before starting the restore and recovery process.
Then, after the RECOVER command executes without errors, you must open the database.

Recovering with Incrementally Updated Backups
There is overhead involved in taking full image copies of the database every night. In addition, it
is time-consuming to perform media recoveries using archive logs. To reduce this overhead and
recovery time, you can use RMAN to roll forward the image copy of a data file to a point in time sim-
ply by applying incremental backups to image copies. For example, a daily incremental backup can
be applied to a base Level 0 backup, which is taken once a week, say, on a Sunday. From Monday on,
a daily incremental backup is applied to this Sunday Level 0 backup. On any given day during the
week, after the incremental backup for that day is merged with the Level 0 backup, you’ll end up
with an up-to-date backup as of that day.

When you use incremental backups for recovery, you update the image copies with changes up
to the SCN at which you took the last incremental backup. After you apply the incremental backups,
you must apply all archive logs (since the last incremental backup) as usual, to bring the data files
up to date. If RMAN has a choice between using an archived log or an incremental backup to per-
form recovery, it chooses an incremental backup.

Chapter 15 explains the RMAN incremental backup feature in detail.

Monitoring RMAN Jobs
You can monitor the status of both an RMAN backup as well as a recovery job by using the
V$RMAN_STATUS view. This view shows all finished and ongoing RMAN jobs. Here’s a simple
example:

SQL> SELECT operation, status from V$RMAN_STATUS;
OPERATION STATUS

REPORT COMPLETED
BACKUP COMPLETED
LIST COMPLETED
RESTORE PREVIEW COMPLETED
. . .
SQL>

Another highly useful data dictionary view for monitoring RMAN jobs is the in-memory
V$RMAN_OUTPUT view, which displays all the messages being put out by RMAN during a backup
or recovery job.

■Tip You can use the Database Control interface to perform most of RMAN’s backup and recovery tasks, includ-
ing point-in-time and Flashback tasks. The RMAN command-line client offers you more flexibility in complex
recovery situations, but the Database Control interface is far simpler to use in most situations.

User-Managed Recovery Procedures
Just as you can manage your own backups, user-managed techniques can be used to restore and
recover a database. It’s my firm belief that RMAN is vastly superior to the old-fashioned manual
method, but it’s a good idea to be familiar with both methods. When you use the user-managed

CHAPTER 16 ■ DATABASE RECOVERY710

4517CH16.qxd 8/19/05 11:07 AM Page 710

recovery method, you can learn a lot about the recovery process by watching the different steps that
Oracle goes through.

You should use the following general procedure during the user-managed recovery of data-
bases running in the archivelog mode. Specific situations demand different recovery strategies, but
the essential technique are same, no matter what type of file (control file, system tablespace file,
data file, and so forth) you are recovering.

1. Decide whether you’re going to let users access your database during recovery. This decision
depends on the extent of the media damage—if most of the files are affected, you need to
start up the database in the mount mode. If only a single data file is affected, you can merely
take the tablespace to which the data file belongs offline and leave the database, itself,
open.

2. Restore the affected data files to their original location if possible, or to an alternate location
after renaming them. You must also restore any necessary archived redo log files. The
V$RECOVERY_LOG and the V$ARCHIVED_LOG views list the names of archive log files.
The V$RECOVERY_LOG view lists only those archived redo log files that the database needs
to perform media recovery. If you have enough free space, restore the necessary archived
redo log files to the location specified by the LOG_ARCHIVE_DEST_1 initialization parameter.
The database will automatically locate the correct log during media recovery.

3. Use the RECOVER DATABASE, RECOVER TABLESPACE, or RECOVER DATAFILE command, depending
on the situation, to recover the entire database, a tablespace, or a data file, respectively.

4. If any archive logs are needed to recover the database, tablespace, or data files, Oracle will
ask you to supply the archived redo logs, and you can recover up until the point of failure
for a complete recovery, or choose to recover to a point in time in the past, if you prefer an
incomplete recovery.

5. If you did not open the database in step 1, open it now, using the ALTER DATABASE OPEN
command.

If you don’t want to recover to the point of failure—for instance, due to previous user errors or
if some of the necessary archived redo logs are missing—you can perform an incomplete recovery.

Typical Media Recovery Scenarios
The steps you take during a database recovery depend on the extent of the recovery and which of
the files (data files, control files, online and archived redo logs) are missing due to a media problem.
The following sections take you through several common recovery scenarios using RMAN and user-
managed recoveries.

Complete Recovery of a Whole Database
You may have to perform a complete recovery of the whole database when you lose several or all of
your data files. Before you recover the database, you must restore the backup files. Then you need to
apply all the available archived redo logs to the database. In the following sections, you’ll learn how
to do this with RMAN and with user-managed techniques.

Using RMAN for Whole Database Recovery
Assume that all the data files in your database are inaccessible due to a media malfunction. If you
have all your archived redo logs, you can restore your backups and do a complete recovery without
any loss of data.

CHAPTER 16 ■ DATABASE RECOVERY 711

4517CH16.qxd 8/19/05 11:07 AM Page 711

To recover an entire database, first start the database but leave it in the mount position, as
shown in Listing 16-1. Thus, the database is not open to users while you’re restoring files and recov-
ering the database. (You can open the database if you are performing a tablespace recovery.)

Listing 16-1. Using RMAN to Start the Database

C:\> RMAN TARGET / CATALOG RMAN/RMAN1@NICK
Recovery Manager: Release 10.1.0.2.0 - Production
Copyright (c) 1995, 2004, Oracle. All rights reserved.
connected to target database (not started)
connected to recovery catalog database
RMAN> startup mount
Oracle instance started
database mounted
. . .
RMAN>

Next, you need to restore the data files that are lost. Because this is the recovery of an entire
database, you ask RMAN to restore all the data files from backup sets. The command is very simple:
RESTORE DATABASE. RMAN knows where the backed-up files are on disk, and it copies them to their
original locations. By default, RMAN will direct the server session to restore backups to the default
location, overwriting any previous files that are already there. If you wish, you can have RMAN copy
files to new locations by using the SET NEWNAME command, as shown here:

RMAN> SET NEWNAME FOR DATAFILE '?/oradata/trgt/tools01.dbf' TO '/tmp/tools01.dbf';
RMAN> RESTORE DATAFILE '?/oradata/trgt/tools01.dbf';

Listing 16-2 shows the output of the RESTORE DATABASE command.

Listing 16-2. The RMAN RESTORE DATABASE Command

RMAN> RESTORE DATABASE;
Starting restore at 29-JUN-05
Using channel ORA_DISK_1
channel ORA_DISK_1: sid=50 devtype=DISK
channel ORA_DISK_1: starting datafile backupset restore
channel ORA_DISK_1: specifying datafile(s) to restore from backup set
restoring datafile 00001 to C:\ORACLE\PRODUCT\10.1.0\ORADATA\NICK\SYSTEM01.DBF
. . .
channel ORA_DISK_1: restore complete
Finished restore at 29-JUN-05
RMAN>

Once RMAN restores all the data files, you need to synchronize them using the archived redo
logs. The RECOVER DATABASE command applies the archived logs to the restored files and synchro-
nizes the SCNs for all the data files and the control file. Listing 16-3 shows the output of the RECOVER
DATABASE command.

Listing 16-3. The RMAN RECOVER DATABASE Command

RMAN> RECOVER DATABASE;
Starting recover at 29-JUN-05
using channel ORA_DISK_1
starting media recovery
archive log thread 1 sequence 12 is already on disk as file
. . .

CHAPTER 16 ■ DATABASE RECOVERY712

4517CH16.qxd 8/19/05 11:07 AM Page 712

media recovery complete
Finished recover at 29-JUN-05
RMAN>

■Tip When you use RMAN, you don’t have to restore the archived redo logs—RMAN automatically applies
archived redo logs as necessary during the recovery process.

Finally, you need to bring the database online so users can access it once again:

RMAN> ALTER DATABASE OPEN;
database opened;
RMAN>

Note that you can simplify the preceding steps for recovering the whole database by using the
following script:

RMAN> RUN {
shutdown immediate;
startup mount;
restore database;
recover database;
alter database open;
}

RMAN>

As you can see, RMAN makes the recovery of a database a breeze. You don’t have to specify
the location of any of the files that you need to restore. RMAN knows where to get the files from by
looking in the recovery catalog (or the control file).

Performing a Hot Restore with RMAN
In the previous example, I showed how you first had to restore the data files before recovering the
database. By default, when you use the RESTORE command, RMAN restores a data file from an image
backup, or from a backup set if an image copy isn’t available. Either way, you have to wait for RMAN
to copy the file to its original location.

However, you don’t have to copy the file to the original location. When you need to perform
a fast recovery, you can save the time it takes to restore the data files by using the image copies
directly. You use the special SWITCH command to let Oracle know that you are actually using the
image copy for the lost data file. You can thus skip the restore step and directly head to the recovery
stage.

The SWITCH command makes the control file point to the copy of the data file as the current
data file. This is the same as using the SQL statement ALTER DATABASE RENAME FILE. Note that the file-
name at the operating system level remains unchanged.

Here’s how you use the SWITCH command:

RMAN> SWITCH DATABASE TO COPY;

The preceding command will perform a hot restore of your database.

■Tip Use the SWITCH DATABASE rather than the RESTORE DATABASE command if your goal is to restore as
quickly as possible.

CHAPTER 16 ■ DATABASE RECOVERY 713

4517CH16.qxd 8/19/05 11:07 AM Page 713

User-Managed Whole Database Recovery
The user-managed complete database recovery process starts with the restoration of all lost or
damaged data files from the backup. You then recover the database by using the RECOVER DATABASE
command. Oracle will ask for the necessary archived log files and perform the recovery by applying
them. It’s easier to let Oracle apply the relevant archived log file than to attempt to do it yourself
manually.

You can automate the application of the archived redo log files in two ways. Before you use the
RECOVER DATABASE command, you can use the SET AUTORECOVERY ON command. The other way is to
specify the AUTOMATIC keyword in the RECOVER command, as in RECOVER DATABASE AUTOMATIC.

The following is a summary of steps required for a complete recovery of your database:

1. Restore the data files from backup.

2. Start up the database in the mount mode:

SQL> STARTUP MOUNT;

3. Use the RECOVER DATABASE command to start recovering the database. The AUTOMATIC key-
word tells Oracle to automate the application of the archived redo logs. In this example, I’m
assuming that you’re placing the archived redo logs in the default location specified in the
init.ora file or SPFILE.

SQL> RECOVER DATABASE AUTOMATIC;

If you’ve placed them in a different location, you’ll have to supply the location to Oracle by
using the LOGSOURCE parameter of the SET statement, or the RECOVER FROM parameter of the
ALTER DATABASE statement. Here are examples of each method of specifying an alternative
location for the archived redo log files:

SQL> SET LOGSOURCE /new_directory;
SQL> ALTER DATABASE RECOVER FROM '/new_directory';

4. Open the database once you’re sure Oracle has completed media recovery:

Media recovery complete.
SQL> ALTER DATABASE OPEN;

Recovering a Tablespace
You need to perform a tablespace recovery when you lose one or more data files that belong to the
tablespace and you don’t have a mirrored copy of the files. The recovery may be open or closed, and
it may be a full recovery or a point-in-time recovery, as explained at the beginning of this chapter.
You can recover using either RMAN or user-managed techniques.

Using RMAN to Recover a Tablespace
Sometimes you may have to recover a tablespace or a set of tablespaces. You can use the RESTORE
and RECOVER commands at the tablespace level for these situations. Since only a part of the database
is affected, you don’t have to shut down the database—you can leave it open instead. If you wish,
you can shut down the database in the mount mode, if several tablespaces or a single very large
tablespace is affected.

Here are the recovery steps:

1. Take the tablespace you’re going to recover offline. The rest of the database will be function-
ing normally after you do this:

RMAN> ALTER TABLESPACE sysaux OFFLINE;

CHAPTER 16 ■ DATABASE RECOVERY714

4517CH16.qxd 8/19/05 11:07 AM Page 714

2. Restore the tablespace using the RESTORE TABLESPACE command, as follows:

RMAN> RESTORE TABLESPACE sysaux;
Starting restore at 29-JUN-05
using channel ORA_DISK_1
. . .
channel ORA_DISK_1: restore complete
Finished restore at 29-JUN-05
RMAN>

3. Recover the tablespace, as follows:

RMAN> RECOVER TABLESPACE sysaux;
Starting recover at 29-JUN-05
using channel ORA_DISK_1
starting media recovery
archive log thread 1 sequence 12 is already on disk as file
. . .
media recovery complete
Finished recover at 29-JUN-05
RMAN>

4. Finally, bring the recovered tablespace online, as follows:

RMAN> ALTER TABLESPACE sysaux ONLINE;

User-Managed Recovery of a Tablespace
Say your database is online, and one or more files belonging to it are damaged. If the database
writer can’t write to the damaged files, Oracle will take the files offline automatically. Otherwise,
you must first take the tablespace offline. Then you need to restore the damaged data files and
perform a recovery.

Here’s a summary of the recovery process:

1. Take the affected tablespace offline:

SQL> ALTER TABLESPACE sales01 OFFLINE IMMEDIATE;

2. Restore the damaged files:

SQL> HOST cp /u01/app/oracle/backup/shan/sales_01.dbf
/u01/app/oracle/oradata/shan/sales_01.dbf

3. Recover the offline tablespace:

SQL> RECOVER TABLESPACE sales01;

4. Bring the tablespace you just recovered online:

SQL> ALTER TABLESPACE sales01 ONLINE;

Recovering a Data File
The procedures for recovering from the loss of a data file depend on the type of tablespace the data
file belongs to. You can use the dynamic performance view V$RECOVER_FILE to determine the files
you need to recover.

Let’s see what happens when your instance encounters media errors, assuming you are operat-
ing in the archivelog mode. If your instance encounters a read error and can’t read a data file, you’ll
see an operating system error stating this fact, but the database will continue to operate. When the

CHAPTER 16 ■ DATABASE RECOVERY 715

4517CH16.qxd 8/19/05 11:07 AM Page 715

database tries writing the file header during a checkpoint, a write error will be issued. If the instance
encounters a write error and can’t write to a System or undo tablespace data file, the instance will
immediately shut down.

If the write error pertains to any other tablespace, the database will take that data file offline—
the other data files in the tablespace containing this data file will remain online. Your job then is to
restore and recover the affected data file. But first, you must take the tablespace offline and then
bring it online when the recovery is complete.

The following discussion deals with the loss of a data file from a non-System tablespace.

Using RMAN to Recover a Data File
The recovery process using RMAN is much simpler than the user-managed recovery technique.
First of all, you don’t need to tell RMAN where to get the backup file from—it identifies the correct
file from its recovery catalog. All you have to do is tell RMAN to restore and recover the necessary
tablespace.

You may want to take the tablespace offline, because your database is open. Then you run
RMAN, which restores the data files and recovers the data files by using the archived redo logs.
RMAN knows what archived logs to apply to the restored data file.

Let’s use a RUN block to perform our data file recovery, as shown in Listing 16-4.

Listing 16-4. Recovering a Data File Using RMAN

RMAN> RUN {
2> sql "alter tablespace sysaux offline";
3> restore datafile 'C:\ORACLE\PRODUCT\10.1.0\ORADATA\NICK\SYSAUX01.DBF';
4> recover datafile 'C:\ORACLE\PRODUCT\10.1.0\ORADATA\NICK\SYSAUX01.DBF';
5> SQL "alter tablespace sysaux online";
6> }
sql statement: alter tablespace sysaux offline
starting full resync of recovery catalog
full resync complete
Starting restore at 12-JUL-05
using channel ORA_DISK_1
channel ORA_DISK_1: restore complete
Finished restore at 12-JUL-05
Starting recover at 12-JUL-05
using channel ORA_DISK_1
starting media recovery
. . .
media recovery complete
Finished recover at 12-JUL-05
sql statement: alter tablespace sysaux online
starting full resync of recovery catalog
full resync complete
RMAN>

RMAN automatically applies any necessary archive logs without prompting from you, and it
brings the data file online again.

User-Managed Recovery of a Data File
If the database instance crashes or can’t be started without an error, as the result of a missing or
damaged data file, the identity of the data file is obvious. However, you can lose a data file and con-
tinue to have an open database. You can use the following statement to find out which files may
need a recovery:

CHAPTER 16 ■ DATABASE RECOVERY716

4517CH16.qxd 8/19/05 11:07 AM Page 716

SQL> SELECT file#, status, error, recover, tablespace_name, name
FROM V$DATAFILE_HEADER
WHERE RECOVER = 'YES' OR (RECOVER IS NULL AND ERROR IS NOT NULL);

The various possibilities that can be shown in the output of the preceding query can be inter-
preted as follows:

• If the query results in “no rows selected,” then none of the data files need recovery.

• If the ERROR column shows NULL, and the RECOVER column says YES, you can recover without
having to restore a copy of the data file.

• If the ERROR column is not NULL, there may be a media problem. Similarly, if the RECOVER
column doesn’t show the value NO, there may be a problem with the disk.

• In all the previous cases, first check whether the problem is temporary and can be fixed
without replacing the media. If the problem isn’t temporary, you’ll have to perform media
recovery.

• A NULL value in the RECOVER column indicates a hardware error.

You can also use the following query of the V$RECOVER_FILE view to find out the file number,
status, and other error information for data files:

SQL> SELECT file#, error, online_status, change#, time
FROM V$RECOVER_FILE;

To recover from the loss of a data file while the database is open, you must first take the
affected tablespace offline. You must then restore the data file from a backup and recover the
tablespace. Here’s a summary of the commands you need to use:

SQL> ALTER TABLESPACE sales01 OFFLINE IMMEDIATE;
SQL> HOST cp /test01/app/oracle/backup/sales01.dbf

/test01/app/oracle/oradata/finance/sales01.dbf;
SQL> RECOVER TABLESPACE sales01;
SQL> ALTER TABLESPACE sales01 ONLINE;

The ALTER TABLESPACE OFFLINE and ONLINE commands ensure that users don’t access the table-
space during the recovery process.

Incomplete Recovery
The previous examples dealt with complete-recovery scenarios. The database or the tablespace, as
the case may be, are fully recovered and there’s no loss of data. You use incomplete recovery in situ-
ations where you want to recover to a previous point in time, perhaps because you made a data
entry error or because an online redo log was lost. After recovery, you end up with a database that’s
not current to the latest point in time, but it is consistent. In the following sections, you’ll see how to
perform incomplete recovery using RMAN and user-managed recovery procedures.

Using RMAN for Incomplete Recovery
You can perform three types of incomplete recovery using RMAN, provided you are running your
database in the archivelog mode. You can specify a time, SCN, or log sequence number with the
SET UNTIL command before using the RESTORE and RECOVER commands. Your choice of recovery type
depends on the problem that prompts the incomplete recovery.

CHAPTER 16 ■ DATABASE RECOVERY 717

4517CH16.qxd 8/19/05 11:07 AM Page 717

• Time-based recovery: In this type of recovery RMAN restores and recovers all files in the data-
base up to a point in time. This is helpful if you know that a problem, such as the accidental
dropping of a table, occurred at a certain point in time. You use the SET UNTIL command to
perform a time-based recovery, as in this example:

SET UNTIL TIME 'Mar 21 2005 06:00:00'

• Change-based SCN: You can perform the recovery up to a specific SCN if you know it. You use
the keywords SET UNTIL SCN to specify that files up to that SCN be used. Here is an example:

SET UNTIL SCN 1000

• Log sequence–based recovery: You can recover until a particular log sequence number. RMAN
selects the files to recover up to but not including the specified sequence number. You use
the SET UNTIL SEQUENCE command for a log sequence–based recovery:

SET UNTIL SEQUENCE 9923

Let’s look at an example of a time-based recovery within the current incarnation of the data-
base. Assume that table test was accidentally dropped right before 4 PM. Listing 16-5 shows the
time-based recovery process.

Listing 16-5. A Time-Based Incomplete Recovery Using RMAN

RMAN> STARTUP MOUNT
RMAN> RUN
2> {set until time 'Jun 30 2005 18:00:00';
3> restore database;
4> recover database;
5> }
executing command: SET until clause
restoring datafile 00024 to /test02/app/oracle/oradata/temp_01.dbf
channel ORA_DISK_1: restored backup piece 1
piece handle=/test01/app/oracle/oradata/backup
/2ddp387s_1_1 tag=null params=NULL
channel ORA_DISK_1: restore complete
Finished restore at 30-JUN-05
Starting recover at 30-JUN-05
using channel ORA_DISK_1
starting media recovery
media recovery complete
Finished recover at 30-JUN-05
RMAN> ALTER DATABASE OPEN RESETLOGS;
Database opened.
RMAN>

■Note For this tablespace point-in-time recovery (TSPITR) recovery to succeed, you must have backups of all
data files from before the target point in time (or SCN). You must also have all archived redo logs for the period
between the SCN of the backups and the target SCN.

In Listing 16-5, the database is first mounted but not opened. RMAN is asked to restore the
database (meaning that it is asked to get the backed-up data files that are necessary for this restore).
It then is asked to recover the database. RMAN knows which archived redo logs are needed based

CHAPTER 16 ■ DATABASE RECOVERY718

4517CH16.qxd 8/19/05 11:07 AM Page 718

on the information about backups stored in its recovery catalog. RMAN applies the archived redo
logs and finishes the recovery process. You can then open the database with the ALTER DATABASE
OPEN RESETLOGS command. This is a point-in-time recovery (PITR), and you need to make sure that
the database doesn’t apply the old redo logs by mistake. You ensure this by resetting or reinitializing
the redo log files.

Here’s the entire script for performing a tablespace PITR using RMAN:

RMAN> RUN {
Allocate channel s1 type 'sbt_tape';
Allocate channel s2 type 'sbt_tape';
Set until time '28-JUL-05 06:00:00';
Restore database;
Recover database;
Sql "alter database open reset logs";
Release channel s1;
Release channel s2;
}

Once you query the database and verify that you have recovered it to the current point in time,
you can open the database using the following command, which will undo all changes after the
point in time you’ve recovered to:

RMAN> ALTER DATABASE OPEN USING RESETLOGS;

The previous command will archive all online redo logs, reset the log sequence numbers, and
give the online redo logs a new time stamp and SCN. You thus eliminate the possibility of corrupting
your data files by mistakenly applying older redo logs.

If you want to use a specific log sequence number instead of a point in time, you modify the
script by replacing the SET UNTIL TIME line with the following:

RMAN> SET UNTIL SEQUENCE 1234;

WHAT IS RESETLOGS?

Note that after you perform any kind of incomplete recovery, the logs are always reset. Essentially, the RESETLOGS
option reinitializes the redo log files, erasing all the redo information they currently have, and resets the log sequence
number to 1. To apply any archived redo logs to a data file, the SCNs and timestamps in the database files have to
match the SCNs and timestamps in the headers of the archived redo log files, and when you perform a RESETLOGS
operation, the data files are stamped with new SCN and timestamp information, making it impossible for the older
archived redo logs to be applied to them by mistake.

The RESETLOGS option is used under these circumstances:

• When you use a backup control file to recover

• When you perform an incomplete recovery, rather than a complete recovery

• When you recover using a control file created with the RESETLOGS option

If you were to do the incomplete recovery using an SCN number, the SET UNTIL command would be modi-
fied as SET UNTIL SCN nnnn. If you were to use an archived log sequence number, the command would be
SET UNTIL LOGSEQ=nnnn THREAD=nnnn, where LOGSEQ is the log you want to recover to.

CHAPTER 16 ■ DATABASE RECOVERY 719

4517CH16.qxd 8/19/05 11:07 AM Page 719

Here’s a short script that shows how to perform incomplete recovery using RMAN, where you
specify an SCN:

RMAN> RUN
{
ALLOCATE CHANNEL ch1 TYPE sbt;
RESTORE DATABASE;
RECOVER DATABASE UNTIL SCN 1000; # recovers through SCN 999
ALTER DATABASE OPEN RESETLOGS;
}

Recovery Through Current and Ancestor Database Incarnations

Anytime you use the OPEN RESETLOGS command, the incarnation of the database changes and a new
incarnation begins. The previous incarnation is termed an ancestor incarnation, and the latest is the
current incarnation. RMAN can recover through multiple incarnations of a database. For example,
if you have backups from an older incarnation of the database, you can use them to recover your
current database incarnation, but you must specify that the backups are coming from a previous
incarnation.

In Oracle Database 10g, there is a new concept called Simplified Recovery Through Resetlogs,
which lets you use archived redo logs from an earlier incarnation of the database. The default for-
mat for the LOG_ARCHIVE_FORMAT initialization parameter now includes a %r component, which
stands for the RESETLOGS identifier. For example, on a UNIX/Linux system, your archived redo logs
will use the format log%t_%s_%r.arc. The variable t stands for the thread number, and the variable s
is the log sequence number. The V$LOG_HISTORY view has two columns, RESETLOGS_CHANGE# and
RESETLOGS_TIME, that indicate the database incarnation of the archived redo logs.

The TSPITR example in the previous section dealt with recovery using the current incarnation
of the database. Let’s look at incomplete database recovery using a parent incarnation of the data-
base. Suppose you want to specify an SCN that isn’t in the current incarnation, but is in an ancestor
incarnation. There are two requirements for this type of TSPITR:

• You must reset the current incarnation of the database back to the incarnation to which your
target SCN belongs

• You must use the control file from the older incarnation that contains the target SCN

To perform point-in-time recovery to the older incarnation, use the following steps:

1. Find out the incarnation key for the incarnation that was current at the time you want to
recover your database to. You can find it in the incarnation key column of the output of
RMAN’s LIST INCARNATION command. Let’s say our incarnation key value for this example
is 2.

2. Start the database in the following way:

RMAN> STARTUP FORCE NOMOUNT;

3. Reset the current incarnation to the incarnation that was current at the point in time that
you want to recover to:

RMAN> RESET DATABASE TO INCARNATION 2;

4. Restore the old control file from a backup and mount the database with the following
commands:

RMAN> RESTORE CONTROLFILE FROM AUTOBACKUP;
RMAN> ALTER DATABASE MOUNT;

CHAPTER 16 ■ DATABASE RECOVERY720

4517CH16.qxd 8/19/05 11:07 AM Page 720

5. Restore and recover the database until the point in time or the SCN:

RMAN> RESTORE DATABASE;
RMAN> RECOVER DATABASE UNTIL SCN 1000;

6. Open the database after resetting the online log files:

RMAN> ALTER DATABASE OPEN RESETLOGS;

Oracle calls the preceding type of recovery Simplified Recovery Through Resetlogs. This feature
comes in handy when you perform a point-in-time recovery or a recovery using a backup control
file and use the RESETLOGS option to open the database. In these cases, you can still use the backup
from before the RESETLOGS operation.

User-Managed Incomplete Recovery
You have looked at how to use RMAN for incomplete recovery; let’s look now at how to do it
manually. Assume that your database is open and you have decided that you have to perform an
incomplete recovery—you want to take the database back to a previous point. All changes since
then are gone, whether you want it that way (because of user error, for example) or you’re forced
to do so (such as when you don’t have all the archived redo logs needed for up-to-date recovery).
Here’s a brief summary of the steps you must take to perform an incomplete recovery:

1. Shut down the database immediately:

SQL> SHUTDOWN ABORT;

2. Restore all the data files and make sure all of them are online.

3. Choose one of the following three commands to recover the data files, depending upon your
situation:

• Cancel-based recovery: Here, you let Oracle apply the archived redo logs until you cancel
the recovery process. You could use this method, for example, when there is a gap in
your archived redo logs. Here is the command you would use:

SQL> RECOVER DATABASE UNTIL CANCEL;

• Time-based recovery: You have to specify the point in time to which you want the data-
base to be recovered. Here is an example:

SQL> RECOVER DATABASE UNTIL TIME '2005-06-30:12:00:00';

Or, if you’re using a backed-up control file, you should use the following command
instead of the preceding one:

SQL> RECOVER DATABASE UNTIL TIME
'2005-06-30:12:00:00' USING BACKUP CONTROLFILE;

• Change-based recovery: In the change-based method, you need to find out what SCN
number you want to go back to, and specify it in the command:

SQL> RECOVER DATABASE UNTIL CHANGE 27845;

4. No matter which of the three methods you use to perform your recovery, you must issue the
following command when the recovery is complete, because this is an incomplete recovery:

SQL> ALTER DATABASE RESET LOGS;

CHAPTER 16 ■ DATABASE RECOVERY 721

4517CH16.qxd 8/19/05 11:07 AM Page 721

Recovering from the Loss of Control Files
Your instance will shut down immediately if one or all of the control files are inaccessible. Here are
two possible scenarios:

• If even a single copy of the duplexed control file is lost, your instance will crash immediately.
You then simply copy a duplexed control file to the same location as the lost or damaged
control file. If you can’t place it in the same location, update your parameter file (use the
CONTROL_FILES parameter), to indicate the new location. If you can’t replace the lost control
file for some reason, just edit the initialization parameter file so it doesn’t refer to the lost
control file any longer. You can successfully start your instance now.

• If you’ve lost all your control files, you must restore a backup control file or create a new one.
If you restore the control file from backup, you must perform media recovery of the whole
database and then perform an OPEN RESETLOGS operation.

The following sections show how to recover from a situation where all your control files are
lost. You’ll have to recover using a backed-up control file.

Using RMAN to Recover from Control-File Loss
In this section we’ll simulate a control file loss by deleting both the control files. Make sure you have
a backup of the database, including the control files, before you do this.

Once you have deleted your control files, follow these steps:

1. Shut down the database and try to start it up. The instance will start and try to mount the
database, but when it doesn’t find the control files, the database fails to mount:

RMAN> SHUTDOWN IMMEDIATE;
database closed
database dismounted
Oracle instance shut down
RMAN>
RMAN> STARTUP
Oracle instance started
RMAN-00571:
RMAN-00569: ERROR MESSAGE STACK FOLLOWS
RMAN-00571:
RMAN-03002: failure of startup command at 07/11/2005 17:18:05
ORA-00205: error in identifying controlfile, check alert log for more info
RMAN>

You can avoid the preceding error messages by using the alternative command STARTUP
NOMOUNT:

RMAN> SHUTDOWN IMMEDIATE;
database closed
database dismounted
Oracle instance shut down
RMAN>
RMAN> STARTUP NOMOUNT;
connected to target database (not started)
Oracle instance started
. . .
RMAN>

CHAPTER 16 ■ DATABASE RECOVERY722

4517CH16.qxd 8/19/05 11:07 AM Page 722

2. Issue the RESTORE CONTROLFILE command so RMAN can copy the control file backups to
their default locations specified in the init.ora file:

RMAN> RESTORE CONTROLFILE;
Starting restore at 14-JUL-05
allocated channel: ORA_DISK_1
. . .
output filename=C:\ORACLE\PRODUCT\10.1.0\ORADATA\NICK\CONTROL03.CTL
Finished restore at 14-JUL-05
RMAN>

3. After the restore is over, mount the database:

RMAN> ALTER DATABASE MOUNT;
database mounted
RMAN>

4. Recover the database as shown in Listing 16-6.

Listing 16-6. Using RMAN to Recover from the Loss of Control Files

RMAN> RECOVER DATABASE;
Starting recover at 14-JUL-05
Starting implicit crosscheck backup at 14-JUL-05
Crosschecked 5 objects
Finished implicit crosscheck backup at 14-JUL-05
Starting implicit crosscheck copy at 14-JUL-05
Finished implicit crosscheck copy at 14-JUL-05
searching for all files in the recovery area
cataloging files...
cataloging done
starting media recovery
media recovery complete
Finished recover at 14-JUL-05
RMAN>

Because RMAN restores the control files from its backups, you have to open the database with
the RESETLOGS option:

RMAN> ALTER DATABASE OPEN RESETLOGS;
database opened
new incarnation of database registered in recovery catalog
starting full resync of recovery catalog
full resync complete
RMAN>

User-Managed Recovery from Control-File Loss
If you’ve lost all your control files, you can create a brand-new control file by using the CREATE
CONTROLFILE command. Listing 16-7 shows a typical control file creation statement derived using
the output of the ALTER DATABASE BACKUP CONTROLFILE TO TRACE statement. Here’s the SQL state-
ment that will get you the output necessary to run the CREATE CONTROLFILE statement later on:

SQL> ALTER DATABASE BACKUP CONTROLFILE TO TRACE;
Database altered.
SQL>

CHAPTER 16 ■ DATABASE RECOVERY 723

4517CH16.qxd 8/19/05 11:07 AM Page 723

■Tip Even if you don’t have a control file backup, you can easily create a new control file provided you have a
complete list of all the data files and the redo log files that are part of the database.

After you issue the ALTER DATABASE BACKUP CONTROLFILE TO TRACE statement, you can get a
trace file as shown in Listing 16-7 from your trace directory, usually the udump directory.

Listing 16-7. Recovering Lost Control Files with User-Managed Techniques

Dump file c:\oracle\product\10.1.0\admin\NICK\udump\NICK_ora_2452.trc
Sun Jul 10 16:35:47 2005
ORACLE Version 10.1.0.2.0 - Production vsnsta=0
The following commands will create a new control file and use it
-- to open the database.
-- Data used by Recovery Manager will be lost.
-- Additional logs may be required for media recovery of offline
-- Use this only if the current versions of all online logs are
-- available.
STARTUP NOMOUNT
CREATE CONTROLFILE REUSE DATABASE "NICK" NORESETLOGS ARCHIVELOG

MAXLOGFILES 5
MAXLOGMEMBERS 2
MAXDATAFILES 200
MAXINSTANCES 1
MAXLOGHISTORY 454

LOGFILE
GROUP 1 'C:\ORACLE\PROD\10.1.0\ORADATA\NICK\REDO01.LOG' SIZE 100M,
GROUP 2 'C:\ORACLE\PROD\10.1.0\ORADATA\NICK\REDO02.LOG' SIZE 100M

-- STANDBY LOGFILE
DATAFILE
'C:\ORACLE\PRODUCT\10.1.0\ORADATA\NICK\SYSTEM01.DBF',
'C:\ORACLE\PRODUCT\10.1.0\ORADATA\NICK\UNDOTBS01.DBF',
'C:\ORACLE\PRODUCT\10.1.0\ORADATA\NICK\SYSAUX01.DBF'

CHARACTER SET US7ASCII;
-- Commands to re-create incarnation table
-- Below log names MUST be changed to existing filenames on
-- disk. Any one log file from each branch can be used to
-- re-create incarnation records.
-- ALTER DATABASE REGISTER LOGFILE 'C:\ORACLE\PRODUCT\10.1.0\FLASH_RECOVERY_AREA\NICK\➥
ARCHIVELOG\2005_07_10\O1_MF_1_1_%U_.ARC';
-- ALTER DATABASE REGISTER LOGFILE 'C:\ORACLE\PRODUCT\10.1.0\FLASH_RECOVERY_AREA\NICK\➥
ARCHIVELOG\2005_07_10\O1_MF_1_1_%U_.ARC';
-- Recovery is required if any of the datafiles are restored backups,
-- or if the last shutdown was not normal or immediate.
RECOVER DATABASE
-- All logs need archiving and a log switch is needed.
ALTER SYSTEM ARCHIVE LOG ALL;
-- Database can now be opened normally.
ALTER DATABASE OPEN;
-- No tempfile entries found to add.

CHAPTER 16 ■ DATABASE RECOVERY724

4517CH16.qxd 8/19/05 11:07 AM Page 724

As you can see, you can make up your own CREATE CONTROLFILE statement, with the catch being
that you need to have an accurate record of all the component files of your database. Let’s take a
closer look at the control file creation script.

The script first starts up the database in nomount mode. Obviously, if you don’t have the con-
trol files, you can’t mount the database. The next line, which includes the CREATE CONTROLFILE
statement, is the most critical one in the script. If you have all your redo log files intact, you have to
specify the NORESETLOGS option so that Oracle can reuse the redo logs. Alternatively, if your redo logs
are lost or damaged, you need to specify RESETLOGS in the CREATE CONTROLFILE statement. Oracle will
create new redo files in this case, or if they exist, Oracle will reinitialize them, essentially creating a
new set of redo log files. The REUSE parameter asks Oracle to overwrite any of the old control files if
they exist in their default locations.

Listing 16-8 shows how to use the control file creation statement in Listing 16-7.

Listing 16-8. Creating New Control Files

SQL> STARTUP NOMOUNT
ORACLE instance started.
Total System Global Area 118255568 bytes
Fixed Size 282576 bytes
Variable Size 83886080 bytes
Database Buffers 33554432 bytes
Redo Buffers 532480 bytes
SQL>
SQL> CREATE CONTROLFILE REUSE DATABASE "NICK" NORESETLOGS ARCHIVELOG
. . .
Control file created.
SQL>
SQL> RECOVER DATABASE
ORA-00283: recovery session canceled due to errors
ORA-00264: no recovery required
SQL> ALTER SYSTEM ARCHIVE LOG ALL;
System altered.
SQL> ALTER DATABASE OPEN;
Database altered.
SQL>

Recovering a Data File Without a Backup
Suppose you add a new data file and users consequently create some objects in it. Before you back
up your database over the weekend, the new file is damaged and you need to recover the data. The
archived redo logs since the last backup will contain the information regarding the lost file and will
enable you to recover the data. The following sections illustrate the procedures involved.

Using RMAN to Recover a File Without a Backup
Suppose you first notice the damaged file when you access the lost or damaged file and get the
following error:

SQL> CREATE TABLE x (name varchar2 (30));
create table x (name varchar2 (30))
*
ERROR at line 1:
ORA-01116: error in opening database file 5
ORA-01110: data file 5: '/test02/app/oracle/oradata/finance1/test01.dbf'

CHAPTER 16 ■ DATABASE RECOVERY 725

4517CH16.qxd 8/19/05 11:07 AM Page 725

Here are the steps you would follow to fix the problem:

1. Take the affected data file offline:

RMAN> SQL "alter database datafile
2> ''/test01/app/oracle/oradata/remorse/sales_01.dbf'' offline";

sql statement: alter database datafile
''/test01/app/oracle/oradata/remorse/sales_01.dbf'' offline

RMAN>

2. Create a new data file with the same name as the damaged offline data file:

RMAN> sql "alter database create datafile
2> ''/test02/app/oracle/oradata/remorse/sales01.dbf'' ";

sql statement: alter database create datafile
''/test02/app/oracle/oradata/remorse/sales01.dbf"

RMAN>

3. Recover the new data file. RMAN will retrieve data from the archived redo logs, so the new
data file is identical to the one that was lost:

RMAN> RECOVER DATAFILE '/test01/app/oracle/oradata/remorse/sales_01.dbf';
Starting recover at 30-JUN-05
using channel ORA_DISK_1
using channel ORA_DISK_2
using channel ORA_DISK_3
using channel ORA_DISK_4
starting media recovery
media recovery complete
Finished recover at 30-JUN-05
RMAN>

4. Bring the new data file online:

RMAN> SQL "alter database datafile
2> ''/test02/app/oracle/oradata/finance1/test01.dbf'' online";

sql statement: alter database datafile
''/test02/app/oracle/oradata/remorse/sales01.dbf'' online

RMAN> EXIT

User-Managed Recovery of a File Without a Backup
The manual procedure for recovering a file without prior backups is very straightforward, again
assuming you have all the archived redo logs available. You first create a new file with the same
name as the lost file, and then you use the archived logs (if necessary) to recover the data that was
in that file.

Cloning a Database
DBAs routinely refresh development and test databases, and they will sometimes need to clone
databases to test backup and recovery strategies. If you have a small database, a simple Data Pump
export/import will suffice, but most databases aren’t amenable to this procedure. You can clone
databases in three different ways:

• By using the RMAN DUPLICATE command

• By using the OEM Database Control

• By manually performing the copy with SQL*Plus

CHAPTER 16 ■ DATABASE RECOVERY726

4517CH16.qxd 8/19/05 11:07 AM Page 726

■Note The main purpose of cloning databases is not to create a failover database during a crisis—you use
standby databases for that purpose.

Using RMAN to Clone a Database
RMAN provides the DUPLICATE command, which uses the backups of a database to create a new
database. The files are restored to the target database, after which an incomplete recovery is per-
formed and the new database is opened with the OPEN RESETLOGS command. The good thing about
using RMAN is that all the preceding steps are performed automatically, without any user interven-
tion. The duplicate database can be an exact replica of the original, or it can contain only a subset
of it.

The following steps are involved in cloning a database:

1. Create a new init.ora file for the auxiliary database. The init.ora file should have the follow-
ing parameters, with the data files and log file parameters changed to ensure that the
original database files aren’t used for the new database:

• DB_FILE_NAME_CONVERT: This parameter transforms the target data file names to the
duplicate database data file names.

• LOG_FILE_NAME_CONVERT: This parameter converts the target database redo log file
names to the duplicate database redo log file names.

2. Start the target database instance. You must start the target database instance in the
nomount mode.

3. Connect the recovery catalog to the target database and the auxiliary database:

RMAN> CONNECT target / catalog rman/rman1@catalog_db auxiliary
sys/password@auxiliary_db

4. Issue the RMAN DUPLICATE command, as follows:

RMAN> DUPLICATE TARGET DATABASE TO
auxiliary_db /* actual name of auxiliary database here */
pfile =/u01/app/oracle/10.2.0/db_1/dbs/init_auxiliary_db;

The preceding is a simplified presentation of the database duplication process using RMAN,
and you should refer to the Oracle documentation for complete details about duplicating a data-
base. When you issue the DUPLICATE TARGET DATABASE TO . . . command, as shown previously,
RMAN will shut down the auxiliary database and start it up again. It then performs the following
steps:

• Restores all the backed-up files of the target database to the destination auxiliary database,
using all available archived redo logs

• Opens the duplicated database with the RESETLOGS option

Using Database Control to Clone a Database
The Enterprise Manager Clone Database Wizard steps you through the database cloning operation.
Here are the main features of the cloning feature:

• You can clone any Oracle database that is release 8.1.7 or higher.

• The source database can be in the archivelog or the noarchivelog mode.

CHAPTER 16 ■ DATABASE RECOVERY 727

4517CH16.qxd 8/19/05 11:07 AM Page 727

• You can clone a database while it is open. Database Control uses RMAN internally for the
cloning operation.

• Database Control will back up the data files and restore them in the new location. It will then
recover them using archived redo logs.

• Database Control will create the new instance, a password file, any necessary networking
files, and the init.ora file and SPFILE.

• Database Control will automatically start the new instance in the open mode.

Here are the steps for cloning a database using Database Control:

1. Click the Maintenance Tab on the Database Home Page of Database Control.

2. Click on the Clone Database item in the Data Movement section (under the Move Database
files group).

3. In the Source Type page, choose the Clone a Running Database Instance option.

4. In the Source Working Directory page, enter your operating system username and password.
Click Next.

5. In the Select Destination page, enter the new database name and the destination host
name. Click Next.

6. In the Destination Options page, you can customize database file locations if you wish.
Click Next.

7. In the Schedule page, you can choose whether you want to clone the database immediately
or to schedule it for later. Click Next.

8. In the Review page you can review the source and clone database information, as shown in
Figure 16-1. Click the Submit Job button to start the cloning operation.

Figure 16-1. The Clone Database Review page

You can check the database cloning status by going to the Logs page, shown in Figure 16-2.

CHAPTER 16 ■ DATABASE RECOVERY728

4517CH16.qxd 8/19/05 11:07 AM Page 728

Figure 16-2. Reviewing the cloning status in the Logs page

Manually Cloning a Database
To clone a database manually, you need to first use the operating system to copy all of the source
database files to the target location. If you are on the same server, you also have to change the name
of the database; if you are on a different server, you can keep the same name for the databases if you
wish. You first back up the source database control file to trace (using the ALTER DATABASE BACKUP
CONTROLFILE TO TRACE statement) and, using the trace file’s contents, create a new control file that
will help you create the new clone database.

Here’s a summary of the steps involved in manually cloning a database. The procedure is simple,
with most of the time being consumed by copying the database files from source to target. Assume
that your production database is the source database and is named “prod” and your destination
(target) database is named “test”.

1. Copy the prod database files to the target location.

2. Prepare a text file for the creation of a control file for the new database as follows:

SQL> ALTER DATABASE BACKUP CONTROLFILE TO TRACE;

3. On the target location, create all the directories for the various files.

4. Copy the following four sets of files from the production (source) database to the target
database: parameter files, control files, data files, and redo log files.

5. In all the clone database files, change the database name to test.

6. Run the CREATE DATABASE statement, which was prepared with the ALTER DATABASE BACKUP
CONTROLFILE TO TRACE statement.

7. Create the control file for the test database using the following statement:

SQL> CREATE CONTROLFILE REUSE SET DATABASE "TEST" RESETLOGS NOARCHIVELOG

You’ll now have a new database called test that has a new control file pointing to the copied
(target) version of the production database.

CHAPTER 16 ■ DATABASE RECOVERY 729

4517CH16.qxd 8/19/05 11:07 AM Page 729

8. Once you get the prompt back from the previous command, run this command:

SQL> ALTER DATABASE OPEN RESETLOGS USING BACKUP CONTROLFILE;

9. Finally, change the global name of the database you just created by running the following
command:

SQL> UPDATE global_name SET global name='test.world';

Techniques for Granular Recovery
The techniques you’ve seen thus far show that both RMAN and user-managed recovery strategies
are reliable methods for restoring databases when there’s a media-related problem. However, sup-
pose you only need to undo some changes in the database. Even the incomplete recoveries, though
they remove unwanted changes, will lead to a loss of data. In addition, sometimes you can’t deter-
mine exactly when a change was made, so you can’t make a precise incomplete recovery. You may
also have to close the database to your users during the recovery process if you are recovering the
entire database.

Fortunately, you can use several other more granular recovery methods when your needs are
more precise. The tablespace point-in-time recovery (TSPITR) method enables you to recover a
database until a specified point in the past. The LogMiner utility, which Oracle provides free of
charge, enables you to perform extremely precise recovery based on a reading of the changes
recorded in the redo logs. In addition, you can use the Flashback Query feature to identify and
recover lost data or wrongly committed incorrect data. Depending on your needs, you may find
one of these alternatives a better way to fix data loss problems than having to restore and recover
the database every time you have to undo the results of an application error.

Tablespace Point-in-Time Recovery
Suppose you or one of the users of your database has dropped a table by mistake. Or, as it happens
sometimes, you truncated the wrong table or you wrongly deleted (or inserted) data into a table.
You don’t have to recover the entire database when you need to bring back the table’s contents. You
can use Oracle’s tablespace point-in-time recovery (TSPITR) technique to recover the tablespace
containing the lost table to a point in time that’s different from the rest of the database.

You can perform TSPITR using RMAN, or you can manage the whole process manually. Essen-
tially, you have to use an auxiliary database so you can recover the tablespace (or tablespaces) to
the desired point in time before the damaging action occurred. Once the tablespace is recovered to
that clean point, it is brought back to the main database. RMAN makes the TSPITR type of recovery
very easy.

Using RMAN for TSPITR
You recover the tablespaces from the database (the target database) by first performing the PITR in
a temporary instance called the auxiliary database, which is created solely to serve as the staging
area for the recovery of the tablespaces.

Here’s how to use RMAN to perform a TSPITR:

1. Create the auxiliary database. Use a skeleton initialization parameter file for the auxiliary
instance along the lines of the following:

db_name=help (this is the target database_name)
db_file_name_convert=('/oraclehome/oradata/target/', '/tmp/')
/* Lets you convert the target database data files to a different name */

CHAPTER 16 ■ DATABASE RECOVERY730

4517CH16.qxd 8/19/05 11:07 AM Page 730

log_file_name_convert=('/oraclehome/oradata/target/redo', '/tmp/redo')
/* Lets you convert the target database redo log files
to a different name. */
instance_name=aux
control_files=/tmp/control1.ctl
compatible=10.0.2
db_block_size=8192

2. Start up the auxiliary database in the nomount mode:

$ sqlplus /nolog
SQL> CONNECT sys/oracle@aux AS sysdba
SQL> STARTUP NOMOUNT PFILE = /tmp/initaux.ora

3. Generate some archived redo logs and back up the target database. You can use the ALTER
SYSTEM SWITCH LOGFILE command to produce the archived redo log files.

4. Connect to all three databases—the catalog, target, and auxiliary databases—as follows:

$ rman target sys/sys_passwd@nick catalog rman/rman1@nina
auxiliary system/oracle@aux

5. Perform a TSPITR. If you want to recover until a certain time, for example, you can use
the following statement (assuming your NLS_DATE format uses the following format mask:
Mon DD YYYY HH24:MI:SS):

RMAN> RECOVER TABLESPACE users UNTIL TIME ('JUN 30 2005 12:00:00');

This is a deceptively simple step, but RMAN performs a number of tasks in this step. It
restores the data files in the users tablespace to the auxiliary database and recovers them to
the time you specified. It then exports the metadata about the objects in the tablespaces
from the auxiliary to the target database. RMAN also uses the SWITCH command to point the
control file to the newly recovered data files.

6. Once the recovery is complete, bring the user tablespace online:

$ rman target sys/sys_passwd@nick
RMAN> SQL "alter tablespace users online";
RMAN> Exit;

7. Shut down the auxiliary instance and remove all the control files, redo log files, and data
files pertaining to the auxiliary database.

Using LogMiner for Precision Recovery
Oracle provides the excellent LogMiner utility, which helps you perform precision recovery by
using the data captured in the redo logs. LogMiner can read the redo logs, which opens the door
to a number of possibilities, including the option to restore a database to a precise point in time.
Remember that redo logs hold the information about the history of the changes made to the data-
base. Although you can use LogMiner’s capability to read redo logs for security and auditing
purposes, our interest in it in this chapter is solely for database recovery.

When DBAs fix user errors with a PITR, there is a possible loss of valuable data. LogMiner obvi-
ates the need for a recovery when you are trying to undo a minor change to the data. In cases where
you need to undo a committed change to just one table, LogMiner can help you identify the exact
transaction, read the redo log files, and undo the changes that were incorrectly made. If you need
to recover from a massive error, LogMiner can still help by pinpointing the time to which you
need to recover from backups. You can then perform a time-based or change-based recovery.

CHAPTER 16 ■ DATABASE RECOVERY 731

4517CH16.qxd 8/19/05 11:07 AM Page 731

LogMiner makes it easy to perform fine-grained recovery by rolling back unwanted changes
from a table. In addition to serving as a fine-grained recovery tool, the LogMiner utility can help you
reconstruct SQL statements to help in auditing and debugging. You can also use this tool to discover
the time frame in which a logical corruption occurred.

LogMiner uses the DBMS_LOGMNR and the DBMS_LOGMNR_D packages supplied by Oracle
(along with a couple of other, less important packages) to extract the information from the redo
logs. In addition, LogMiner uses several dynamic performance views to help analyze the informa-
tion contained in the redo logs. You can give regular users access to the SYS-owned packages by
granting them the EXECUTE_CATALOG_ROLE role. To enable LogMiner to match its object IDs
with actual database object names, you have to specify a data dictionary to use, and the easiest
thing to do is assign LogMiner the normal data dictionary that belongs to the database.

The V$LOGMNR_CONTENTS view holds a wealth of information that LogMiner uses to help
remove unwanted changes in table data. Here is a brief list of the types of information recorded in
the V$LOGMNR_CONTENTS view:

• Timestamp

• Username

• Type of action (insert, update, delete, or DDL)

• The transaction and SCN numbers

• The tables involved in the transaction

• A reconstruction of the SQL that made the changes

• SQL that will undo the change, if necessary

How the LogMiner Utility Works
LogMiner reads redo log files and puts the information it extracts into the V$LOGMNR_CONTENTS
view, which you can then query for details about transactions you’re interested in. Because the
information in the redo logs is in the form of internal object identifiers and data in hex form, Oracle
recommends you provide LogMiner with access to the data dictionary so it can translate the con-
tents of the redo log file into a form you can readily understand.

You can provide LogMiner with access to the data dictionary in three different ways:

• You can extract the data dictionary to a flat file.

• You can have a dictionary snapshot placed in the redo logs.

• You can do away with the extraction of the data dictionary and direct LogMiner to just use
the online data dictionary.

Note that LogMiner doesn’t show you all the SQL statements in the redo log; it just shows the
end statement that would need to be applied to the database to undo the unwanted changes.

Supplemental Logging
Before you start using the LogMiner utility, be aware that you must turn on supplemental logging to
take full advantage of the LogMiner functionality. As its name indicates, supplemental logging logs
more information about transactions by logging additional columns in the redo logs. This addi-
tional information can be used to undo changes to the database.

CHAPTER 16 ■ DATABASE RECOVERY732

4517CH16.qxd 8/19/05 11:07 AM Page 732

Types of Supplemental Logging

There are two types of supplemental logging, differing in the set of additional columns logged. The
set of additional columns is the supplemental log group; the more restrictive supplemental logging
uses the conditional supplemental log group, and the more general supplemental logging uses the
unconditional supplemental log group.

If you want the before-images of these columns to always be logged, even if none of the
columns were changed, then you use an unconditional supplemental log group (also known as the
ALWAYS log group). Here’s an example that shows how you create an unconditional supplemental
log group:

SQL> ALTER TABLE hr.employees
ADD SUPPLEMENTAL LOG GROUP key_info(empno, ename)
FROM hr.employees ALWAYS;

The conditional supplemental log group is a more restricted supplemental log group that logs
the before-images of the specified columns in the group only if one of them changes. Here’s an
example that shows how to create a conditional supplemental log group:

SQL> ALTER TABLE hr.employees
ADD SUPPLEMENTAL LOG GROUP key_info(empno,ename)
FROM hr.employees;

Levels of Supplemental Logging

You also have two levels of supplemental logging, one at the database level and the other at the table
level. If you turn on supplemental logging for the entire database, keep in mind that it could impose
a performance penalty. If you do use supplemental logging at the database level, use the minimal
supplemental logging, which is an option designed to put the least amount of stress on your data-
base. That said, minimal supplemental logging still provides the information you need to identify
and group the operations associated with various DML operations. Oracle strongly recommends
you have at least this level of supplemental logging turned on for LogMiner to be effective.

To turn minimal database-wide supplemental logging on, use the following command:

SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

You can specify table-level supplemental logging, which logs only that table’s supplemental
data in the redo log files. Here’s an example showing how you can specify table-level supplemental
logging for all columns of a table:

SQL> ALTER TABLE HR.EMPLOYEES ADD SUPPLEMENTAL LOG DATA (ALL) COLUMNS;

■Tip Although supplemental logging is strongly recommended by Oracle if you want to avail yourself of all the
features of the LogMiner utility, it does inflict some burden on the system if you choose the more expansive data-
base-wide supplemental logging rather than table-level supplemental logging.

Extracting the Data Dictionary
As mentioned previously, you have three ways to extract the data dictionary information for Log-
Miner’s use: using a flat file, extracting the dictionary to the redo logs, or using the online data
dictionary. When you start LogMiner, it builds its own internal data dictionary from the dictionary
supplied by one of the preceding three methods.

CHAPTER 16 ■ DATABASE RECOVERY 733

4517CH16.qxd 8/19/05 11:07 AM Page 733

The easiest method is to use the existing data dictionary, but it isn’t valid with the DDL_DICT_
TRACKING option, which means you can’t track changes to DDL. Also, you can’t track DML operations
performed on tables created after the dictionary was extracted.

The problem with the extraction of the dictionary to a flat file is that you can’t guarantee it’s
always consistent, because DDL operations could be changing the database structure while the
dictionary is being extracted.

During the extraction of the dictionary to the redo logs, on the other hand, DDL statements
aren’t allowed, thus ensuring the consistency of the dictionary that’s being extracted. Therefore, it is
best to extract the data dictionary to the redo logs, because it gives you a consistent version of the
data dictionary and enables DDL tracking at the same time.

A LogMiner Session
Before you invoke the LogMiner utility, make sure you create a separate tablespace for LogMiner’s
data, because the default location for it is the System tablespace. Also, make sure you have minimal
database-wide logging turned on, as explained in the previous “Supplemental Logging” section.

Let’s look at a simple LogMiner session with minimal supplemental logging already turned on.
Note that DBMS_LOGMNR is owned by SYS.

The first step is to extract the data dictionary to the redo logs. The DBMS_LOGMNR_D package
builds the data dictionary and stores it in the online redo logs:

SQL> EXECUTE sys.DBMS_LOGMNR_D.build(-
> OPTIONS => sys.DBMS_LOGMNR_D.store_in_redo_logs);

PL/SQL procedure successfully completed.
SQL>

Next, you need to specify the logs to be included in the LogMiner analysis. Because you chose
to use the redo logs to extract the data dictionary, you must specify the redo logs that contain the
data dictionary, in addition to the other redo logs you’re interested in using in the DBMS_LOGMNR.ADD_
LOGFILE procedure. The first file you add should use the DBMS_LOGMNR.NEWFILE procedure, and all the
other ones should use the DBMS_LOGMNR.ADDFILE procedure.

You now can use the V$ARCHIVED_LOG view to find out which of the redo log files the data
dictionary was extracted to when you invoked the DBMS_LOGMNR_D.BUILD procedure. The DICTIONARY_
BEGIN and DICTIONARY_END columns will tell you in which redo log files your data dictionary is con-
tained. Here’s the query:

SQL> SELECT SEQUENCE#, DICTIONARY_BEGIN, DICTIONARY_END
2 FROM V$ARCHIVED_LOG;

SEQ# DIC DIC
BEG END

---- ----- -----
2 NO NO
24 YES YES
25 NO NO
26 NO NO
27 NO NO
28 NO NO

SQL>

From the output, you can see that the DICTIONARY_BEGIN and DICTIONARY_END columns are both
contained in archived redo log number 24. You must include this in your list of log files, as follows:

SQL> EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
> LOGFILENAME => 'C:\ORACLENT\RDBMS\ARC00024.001', -
> OPTIONS => DBMS_LOGMNR.NEW);

PL/SQL procedure successfully completed.

CHAPTER 16 ■ DATABASE RECOVERY734

4517CH16.qxd 8/19/05 11:07 AM Page 734

In addition, you need to add the files you’re interested in to the ADD_LOGFILE procedure in the
DBMS_LOGMNR package:

SQL> EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
> LOGFILENAME => 'C:\ORACLENT\RDBMS\ARC00025.001' , -
> OPTIONS => DBMS_LOGMNR.ADDFILE);

PL/SQL procedure successfully completed.
SQL>
SQL> EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-

> LOGFILENAME => 'C:\ORACLENT\RDBMS\ARC00026.001', -
> OPTIONS => DBMS_LOGMNR.ADDFILE);

PL/SQL procedure successfully completed.
SQL>

Note that you can also add log files without the OPTIONS line, as follows:

SQL> EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
> LOGFILENAME => 'C:\ORACLENT\RDBMS\ARC00027.001');

PL/SQL procedure successfully completed.

Once you’ve specified the redo log files, it’s time to start the LogMiner utility. In this example,
in addition to specifying that LogMiner use the redo logs as the source of the data dictionary, you’ll
also enable DDL tracking, which is turned off by default:

SQL> EXECUTE DBMS_LOGMNR.START_LOGMNR(OPTIONS => -
> DBMS_LOGMNR.DICT_FROM_REDO_LOGS + -
> DBMS_LOGMNR.DDL_DICT_TRACKING);

PL/SQL procedure successfully completed.
SQL>

Using LogMiner to Analyze Redo Logs
Now that you’ve successfully started LogMiner, you can issue commands against the V$LOGMNR_
CONTENTS table to get information about various DML and DDL statements encompassed by
the set of redo log files you included earlier. Whenever you query the V$LOGMNR_CONTENTS view,
all the redo log files you specified are read sequentially, and the information is loaded into the
V$LOGMNR_CONTENTS view. Listing 16-9 shows a simple example.

Listing 16-9. Analyzing the V$LOGMNR_CONTENTS View

SQL> SELECT SQL_REDO
2 FROM V$LOGMNR_CONTENTS
3* WHERE USERNAME='HR';

SQL_REDO

set transaction read write;
select * from "SYS"."DUAL" where ROWID = 'AAAADdAABAAAANnAAA' for update;
commit;
set transaction read write;
delete from "HR"."REGIONS" where "REGION_ID" = '5'
and "REGION_NAME" =
'northern europe' and ROWID = 'AAAHrNAAFAAAAESAAE';
delete from "HR"."REGIONS" where "REGION_ID" = '6'
and "REGION_NAME" =
'pacific region' and ROWID = 'AAAHrNAAFAAAAESAAF';
update "HR"."REGIONS" set "REGION_NAME" = 'eastern europe' where
"REGION_NAME" = 'northern africa' and ROWID = 'AAAHrNAAFAAAAESAAG';

CHAPTER 16 ■ DATABASE RECOVERY 735

4517CH16.qxd 8/19/05 11:07 AM Page 735

commit;
10 rows selected.
SQL>

You can see that user HR has deleted two rows and updated one row. You can thus use Log-
Miner to retrieve DML from a previous period. There’s an additional bonus to using LogMiner; it
will give you the SQL to undo the preceding DML statements, as shown in Listing 16-10.

Listing 16-10. Retrieving the SQL to Undo DML Statements

SQL> SELECT SQL_UNDO
2 FROM V$LOGMNR_CONTENTS
3* WHERE USERNAME='HR';

SQL_UNDO
--
insert into "HR"."REGIONS"("REGION_ID","REGION_NAME")
values ('5','northern europe');
insert into "HR"."REGIONS"("REGION_ID","REGION_NAME")
values ('6','pacific region');
update "HR"."REGIONS" set "REGION_NAME" = 'northern africa' where
"REGION_NAME"= 'eastern europe' and ROWID = 'AAAHrNAAFAAAAESAAG';
10 rows selected.
SQL>

The INSERT statements replace the deletes and the UPDATE statement reverses the changes
made. Note that SQL*Plus indicates that ten rows were selected in response to your query, although
only the three DML operations executed by user HR are displayed.

As you can see, the SQL_UNDO column contains complete statements that are ready to be used
in SQL, semicolon and all. However, the statements aren’t very easy to read when they’re long and
complex. LogMiner provides the DBMS_LOGMNR.PRINT_PRETTY_SQL procedure to make the LogMiner
output appear less cluttered and enable you to print easy-to-read output.

If you want to continuously analyze data using LogMiner, you don’t have to keep adding files
manually. You can just add the DBMS_LOGMNR.CONTINUOUS_MINE procedure by using the OPTIONS key-
word, and LogMiner will keep adding any redo log files that are archived to the list of files to be
analyzed each time you query the V$LOGMNR_CONTENTS view.

Because you started LogMiner with the DDL tracking option turned on, the following query
will identify, for example, all the DDL changes made by user SYS:

SQL> SELECT sql_undo
2 FROM v$logmnr_contents
3 WHERE username='SYS'
4* AND operation='DDL'

When you’ve finished using LogMiner, end your session with the DBMS_LOGMNR.end_logmnr
procedure, as follows:

SQL> EXECUTE dbms_logmnr.end_logmnr();
PL/SQL procedure successfully completed.
SQL>

Flashback Techniques and Recovery
Oracle’s Flashback technology allows you to “rewind” your database, or parts of it, to a previous
point in time, without recourse to the traditional, more time consuming, recovery techniques
involving backup files and archived redo logs. It can often provide a quick and effective means of
recovering from logical corruptions or user error.

CHAPTER 16 ■ DATABASE RECOVERY736

4517CH16.qxd 8/19/05 11:07 AM Page 736

CONVERTING BETWEEN TIMESTAMPS AND SCNS

Two new SQL functions, SCN_TO_TIMESTAMP and TIMESTAMP_TO_SCN, convert SCNs to a corresponding time-
stamp value and vice versa. The SCN_TO_TIMESTAMP SQL function lets you convert an SCN to a calendar time
(TIMESTAMP) value. Here’s an example:

SQL> SELECT current_scn, SCN_TO_TIMESTAMP(current_scn)
2 FROM v$database;

CURRENT_SCN SCN_TO_TIMESTAMP(CURRENT_SCN)
------------- -----------------------------------

5956956 13-JUL-05 09.37.16.000000000 AM
SQL>

The TIMESTAMP_TO_SCN function is the inverse of the SCN_TO_TIMESTAMP function. It converts a time-
stamp to its corresponding SCN.

You can use either a clock time or a system change number (SCN) to define the exact point to
which you wish to restore. If you specify a clock time, Oracle will pick an SCN that’s within three
seconds of this clock time. Oracle retains the mapping between your clock time and SCNs for a
period that is as long as your UNDO_RETENTION initialization parameter.

Flashback Levels
In Oracle Database 10g, you have access to flashback techniques at the row, table, and database
levels, as follows:

• Row level: You can use Flashback techniques to undo erroneous changes to individual rows.
There are three types of row-level Flashback techniques, and all of them rely on undo data
stored in the undo tablespace:

• Flashback Query: Allows you to view old row data based on a point in time or an SCN.
You can view the older data and, if necessary, retrieve it and undo erroneous changes.

• Flashback Versions Query: Allows you to view all versions of the same row over a period
of time so that you can undo logical errors. It can also provide an audit history of
changes, effectively allowing you to compare present data against historical data
without performing any DML activity.

• Flashback Transaction Query: Lets you view changes made at the transaction level. This
technique helps in analysis and auditing of transactions, such as when a batch job runs
twice and you want to determine which objects were affected. Using this technique, you
can undo changes made by an entire transaction during a specified period.

• Table level: There are two main Flashback features available at the table level:

• Flashback Table: Restores a table to a point in time or to a specified SCN without
restoring data files. This feature uses DML changes to undo the changes in a table.
The Flashback Table feature relies on undo data.

• Flashback Drop: Allows you to reverse the effects of a DROP TABLE statement, without
resorting to a point-in-time recovery. The Flashback Drop feature uses the Recycle Bin
to restore a dropped table.

CHAPTER 16 ■ DATABASE RECOVERY 737

4517CH16.qxd 8/19/05 11:07 AM Page 737

• Database level: The Flashback Database feature allows you to restore an entire database to
a point in time, thus undoing all changes since that time. For example, you can restore a
dropped schema or an erroneously truncated table. Flashback Database mainly uses flash-
back logs to retrieve older versions of the data blocks; it also relies, to a much smaller extent,
on archived redo logs to completely recover a database without restoring data files and per-
forming traditional media recovery.

As you can see, Oracle’s Flashback technology employs a variety of techniques. The row-level
Flashback techniques and Flashback Table use undo data and are discussed in Chapter 6. Flashback
Drop and Flashback Database rely on the new concept of a Recycle Bin and Flashback log data,
respectively, to undo errors at various levels. We will focus on these latter two techniques in this
chapter.

Flashback vs. Traditional Recovery Techniques
Unlike traditional recovery techniques, the primary use of Flashback techniques isn’t to recover
from a media loss, but to recover from human errors. For example, you may accidentally change the
wrong set of data or drop a table. Or you may just want to query historical data and perform change
analysis. In some extreme cases, you may want to revert the entire database to a previous point in
time.

■Note If you have a damaged disk drive, or if there is physical corruption (not logical corruption due to applica-
tion or user errors) in your database, you must still use the traditional methods of restoring backups and using
archived redo logs to perform the recovery.

Traditionally, the only way to recover from human error was to employ traditional backup and
restore techniques. The process of restoring the database files and then rolling forward through all
the redo logs could often involve significant downtime, however, and Flashback technology offers
you a much more efficient and much faster way to recover from logical errors, in most cases while
the database is still online and available to users. Furthermore, Flashback techniques allow you to
selectively restore certain objects. With traditional techniques, you have no choice but to recover
the entire database.

Flashback Drop
The Flashback Drop feature provides a means to recover an accidentally dropped table (or index)
without the loss of any recent transactions. Most experienced DBAs will have experienced situa-
tions where a production table has been accidentally dropped, or the wrong table truncated. It
takes seconds to perform—DROP TABLE and your SQL prompt comes back very quickly—but its con-
sequences can be dire. Unfortunately, you aren’t required to confirm your choice to drop a table
before the table is gone!

In Oracle Database 10g, when you drop a table, Oracle doesn’t get rid of it immediately. It lists
the table, and any dependent objects, in the Recycle Bin (more on this shortly) and retains it for as
long as possible. If you quickly realize a mistake has been made, you can use the following simple
command to immediately restore your lost table:

SQL> FLASHBACK TABLE table_name TO BEFORE DROP;

CHAPTER 16 ■ DATABASE RECOVERY738

4517CH16.qxd 8/19/05 11:07 AM Page 738

■Tip One of the best ways to avoid accidentally dropping a table is to use the new prompt variables in SQL*Plus,
so your database name and username appear as part of the prompt. I explain this in Chapter 12.

How Flashback Drop Works
Before Oracle Database 10g, executing a DROP TABLE command would result in the immediate
removal of the table and all its dependent objects, and all of the related space in that table segment
would be released back to the database.

In Oracle Database 10g, however, the table and dependent objects aren’t immediately removed.
They are renamed, but they temporarily stay in the same location, and Oracle will retain them for as
long as possible, based on space pressure. As noted earlier, these “dropped” objects are listed in the
Recycle Bin, which is simply a logical container (a data dictionary table that maintains information
about dropped tables, such as their new and original names). You can query it as you would a nor-
mal table to view its contents with a simple SELECT * FROM RECYCLEBIN command. As long as a table
is still listed in the Recycle Bin, it can be restored at any time using the Flashback Drop feature.

■Tip In Oracle Database 10g Release 2, you can use the RECYCLEBIN initialization parameter to turn the
Flashback Drop capability off. By default, the parameter is set to ON, which means that all dropped tables go
into the Recycle Bin and you can recover them using the Flashback Drop feature. By setting the parameter’s value
to OFF, you turn the Flashback Drop feature off, and tables won’t go into the Recycle Bin upon being dropped.

A query on the DBA_FREE_SPACE view will tell you that the space previously occupied by these
“dropped” objects is now free. In fact, however, this space is not immediately reclaimable by the
database—it is potential free space that is reclaimed later, once the objects have been removed for
good. So, despite what the DBA_FREE_SPACE view tells you, these objects will continue to take up
their original space allocation in their tablespaces until they are permanently deleted from the
Recycle Bin. This deletion can occur in the following circumstances:

• A user can permanently remove the objects from the Recycle Bin using the PURGE command
(DROP TABLE table_name PURGE).

• Oracle automatically removes the dropped objects in the Recycle Bin due to space pres-
sure—when Oracle doesn’t have enough available free space in a tablespace to create a new
object or to extend more space to an existing object.

■Tip The Flashback Drop feature is automatically enabled in an Oracle Database 10g database. You don’t have
to configure a thing in order to use the feature.

In summary, on issuing a DROP TABLE (or DROP INDEX) command in Oracle Database 10g, the
objects in question are not truly dropped. Oracle simply hides them, and you can restore them at a
later point using Flashback Drop. If you truly do want to permanently remove an object, you can
use the PURGE option with the DROP command:

SQL> DROP TABLE test PURGE;

Let’s take a look at all this in a bit more detail.

CHAPTER 16 ■ DATABASE RECOVERY 739

4517CH16.qxd 8/19/05 11:07 AM Page 739

The Recycle Bin
As mentioned earlier, the Recycle Bin is a logical structure—a data dictionary table named
RECYCLEBIN$. You can view the contents of the Recycle Bin for the currently logged in user via the
USER_RECYCLEBIN view (RECYCLEBIN is a synonym for USER_RECYCLEBIN). Alternatively, you
can view the contents of the Recycle Bin for the entire database via the DBA_RECYCLEBIN view.
The following code shows an example of the latter:

SQL> SELECT owner, original_name, object_name,
ts_name, droptime
FROM dba_recyclebin;

OWNER ORIGINAL_NAME OBJECT_NAME TS_NAME
--
sam PERSONS BIN$xTMPjHZ6SG+1xnDIaR9E+g==$0 USERS

At the user level, you simply select from the RECYCLEBIN view, instead of the DBA_RECYCLEBIN
view. You can also use the SHOW RECYCLEBIN command from SQL*Plus:

SQL> SHOW RECYCLEBIN
ORIGINAL NAME RECYCLEBIN NAME OBJECT TYPE DROP TIME
---------------- ------------------------------ ------------ -------------------
LOGIN_INFO BIN$5oAI+vnANcTgNABgsLLCaA==$0 TABLE 2005-06-29:15:48:31
TEST5 BIN$+rR0/h2APITgNABgsLLCaA==$0 TABLE 2005-06-29:15:44:53
SQL>

■Tip The CAN_UNDROP and CAN_PURGE columns of the DBA_RECYCLEBIN view tell you whether you can
“undrop” and purge an object, respectively. The SHOW RECYCLEBIN command shows only those objects that
you can “undrop.”

As you can see, when a table is moved to the Recycle Bin, Oracle assigns it a system-generated
name, which is usually 30 characters long. If you wish to query an object in the Recycle Bin, you
must use its new system-generated name, enclosed in double quotes:

SQL> SELECT * FROM "BIN$xTMPjHZ6SG+1xnDIaR9E+g==$0";
NAME

valerie alapati
sam alapati
nina alapati
nicholas alapati
shannon alapati
SQL>

■Note You can only query objects in the Recycle Bin. INSERT, UPDATE, and DELETE commands won't work.

Oracle renames all objects in the Recycle Bin, including any dependent objects such as
indexes, constraints, and triggers. When you recover a table, Oracle will recover the dependent
objects as well, but they’ll retain these cryptic system-generated names, so you will need to
rename them appropriately.

In order to find out which of your tables are currently in the Recycle Bin, you can simply query
the DBA_TABLES view. A table that was dropped and is in the Recycle Bin will show a YES value for
the DROPPED column, and NO otherwise.

CHAPTER 16 ■ DATABASE RECOVERY740

4517CH16.qxd 8/19/05 11:07 AM Page 740

Restoring a Dropped Table
You can restore any dropped table, as long as it is still listed in the Recycle Bin, by using the
FLASHBACK TABLE table_name TO BEFORE DROP command (at which point Oracle will also remove it
from the Recycle Bin). The following example would restore the previously dropped persons table.

SQL> FLASHBACK TABLE persons TO BEFORE DROP;
Flashback complete.
SQL>

Alternatively, you can use the system-generated table name:

SQL> FLASHBACK TABLE "BIN$xTMPjHZ6SG+1xnDIaR9E+g==$0"
TO BEFORE DROP;

Flashback complete.
SQL>

As part of the Flashback operation, you may want to rename the previously dropped table, as
follows (you can use either the system-generated or original table name):

SQL> FLASHBACK TABLE "BIN$xTMPjHZ6SG+1xnDIaR9E+g==$0"
TO BEFORE DROP
RENAME TO NEW_PERSONS;

This is particularly useful when you’ve already created a new table with the same name as the
dropped table.

If you drop a table and then create a new one of the same name, it’s possible (if you then drop
that new table) that the Recycle Bin will contain several versions of the dropped table, each with a
unique system-generated table name. If you then issue a FLASHBACK TABLE . . . TO BEFORE DROP
command using the original table name, Oracle will simply recover the latest version of the table.
If you want to return to an older version you can then simply reissue the same command until you
recover the required version. Alternatively, you can provide the specific system-generated name of
the table you want to recover.

Permanently Removing Tables
As noted previously, if you want to permanently and immediately remove a table, without moving it
to the Recycle Bin, you must use the DROP TABLE table_name PURGE command:

SQL> DROP TABLE persons PURGE;
Table dropped.
SQL>

■Tip The new PURGE clause comes in especially handy when you want to drop a sensitive table and don’t want it
to appear in the Recycle Bin for security reasons.

You can also use the PURGE TABLE or the PURGE INDEX command to permanently erase a previ-
ously dropped table or index from the Recycle Bin:

SQL> PURGE TABLE persons
Table purged.
SQL>

CHAPTER 16 ■ DATABASE RECOVERY 741

4517CH16.qxd 8/19/05 11:07 AM Page 741

Alternatively, you can use the system-generated name:

SQL> PURGE TABLE "BIN$Q1qZGCCMRsScbbRn9ivwfA==$0"
Table purged.
SQL>

If you have several tables of the same original name in the Recycle Bin, the PURGE command will
drop the first table that you originally dropped.

■Note Once you remove an object from the Recycle Bin with the PURGE command, or when you drop an object
with the PURGE option, you can’t apply the Flashback Drop feature to retrieve those objects (or their dependent
objects)—the purged objects are gone forever!

You can also use the PURGE TABLESPACE command to remove all objects from the Recycle Bin
that are part of that tablespace, as shown here:

SQL> PURGE TABLESPACE users;

The following command will remove all objects of a single user, scott (along with any depend-
ent objects that live in other tablespaces) from the tablespace users:

SQL> PURGE TABLESPACE users USER scott;

To permanently remove all objects from a tablespace, without them moving to the Recycle Bin,
you can use the DROP TABLESPACE . . . INCLUDING CONTENTS command. In addition, any objects
belonging to the tablespace that are currently in the Recycle Bin are immediately purged. The DROP
TABLESPACE command by itself, without the INCLUDING CONTENTS clause, will fail unless the table-
space is empty.

If you wish to permanently remove all of your objects currently in the Recycle Bin, you can use
the PURGE RECYCLEBIN command (or PURGE USER_RECYCLEBIN). These will simply remove any objects
belonging to the user issuing the command. In order to empty the entire Recycle Bin of all objects,
regardless of ownership, you can use PURGE DBA_RECYCLEBIN. However, for obvious reasons, you
need the SYSDBA privilege to issue this command.

■Note The DROP USER . . . CASCADE command will instruct Oracle to drop the user and all objects owned by
the user from the database and will automatically purge any objects in the Recycle Bin that belong to that user.

Finally, remember that Oracle may automatically purge objects from the Recycle Bin if it expe-
riences space pressure. It will start with the oldest objects.

Necessary Privileges
To retrieve a table using the FLASHBACK TABLE table_name TO BEFORE DROP command, you must
either be the owner or have the drop privileges (DROP TABLE or DROP ANY TABLE) on a table. To
use the PURGE command, you need similar privileges. You must have the SELECT privilege and the
FLASHBACK privilege on an object in order to query that object in the Recycle Bin.

Flashback Database
Before Oracle Database 10g, if you suffered logical database corruption, you would undertake tradi-
tional point-in-time recovery techniques, restoring data file backup copies and then using archived

CHAPTER 16 ■ DATABASE RECOVERY742

4517CH16.qxd 8/19/05 11:07 AM Page 742

redo logs to advance the database forward. This was often time-consuming and cumbersome. No
matter how limited the extent of the corruption, you would need to restore entire data files and
apply the archived redo logs.

■Note Oracle can check data block integrity by computing checksums before writing the data blocks to disk.
When the block is subsequently read again, the checksum for the data block is computed again, and if the two
checksums differ, there is likely corruption in the data block. By setting the DB_BLOCK_CHECKSUM initialization
parameter to FULL, you can make the database perform the check in the database buffer cache itself, thus elimi-
nating the possibility of corruption at the physical disk level. The DB_BLOCK_CHECKSUM parameter is FALSE by
default.

In Oracle Database 10g, the Flashback Database feature restores data files but without requir-
ing backup data files and using just a fraction of the archived redo log information. A Flashback
Database operation simply reverts all data files of the database to a specified previous point in time.
With Flashback Database, the time it takes to recover is directly proportional to the number of
changes that you need to undo. Thus, it is the size of the error and not the size of the database that
determines the time it takes to recover. This means that you can recover from logical errors in a
fraction of the time—perhaps as little as a hundredth of the time, depending on the size of the data-
base—that it would take using traditional methods.

■Note Flashing back a database is possible only when there is no media failure. If you lose a data file or it
becomes corrupted, you’ll have to recover using a restored data file from backups.

You can use Flashback Database in the following situations:

• To retrieve a dropped schema

• When a user error affects the entire database

• When you truncate a table in error

• When a batch job performs only partial changes

The Flashback Database feature uses flashback database logs, which are stored in the new flash
recovery area, to undo changes to a point in time just before a specified target time or SCN. Since
the specified target time and the actual recovery time may differ slightly, you then use archived redo
logs to recover the database over the short period of time between the target time and the actual
recovery time.

Once the Flashback Database feature is enabled, you simply use the FLASHBACK DATABASE com-
mand to return the database to its state at a previous time, SCN, or log sequence. You can issue the
FLASHBACK DATABASE command from either RMAN or SQL*Plus. The only difference is that RMAN
will automatically retrieve the necessary archived redo logs, whereas in SQL*Plus you may have to
supply the archived redo logs, unless you use the SET AUTORECOVERY ON feature in SQL*Plus.

We’ll take a look at the whole Flashback Database process in more detail shortly, but first let’s
look at how to enable (and disable) the Flashback Database feature.

■Tip Since you need the current data files in order to apply changes to them, you can’t use the Flashback Data-
base feature in cases where a data file has been damaged or lost.

CHAPTER 16 ■ DATABASE RECOVERY 743

4517CH16.qxd 8/19/05 11:07 AM Page 743

Configuring Flashback Database
In order to configure the Flashback Database feature, you need to step through a series of opera-
tions, as follows:

1. Check that your database is in the archivelog mode by either querying the V$DATABASE
view, or by simply issuing the following command:

SQL> ARCHIVE LOG LIST
Database log mode Archive Mode
Automatic archival Enabled
Archive destination /u01/app/oracle/admin/finance/arch/finance
Oldest online log sequence 42035
Next log sequence to archive 42039
Current log sequence 42039
SQL>

The preceding output reveals that the database is indeed running in the archivelog mode. If
it isn’t, you can turn archive logging on with the ALTER DATABASE statement shown in the fol-
lowing code, after first shutting down the database and starting it up initially in the mount
mode:

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP MOUNT;
SQL> ALTER DATABASE ARCHIVELOG;
SQL> STARTUP OPEN

2. Set up a flash recovery area, as described in Chapter 15.

3. Set the DB_FLASHBACK_RETENTION_TARGET initialization parameter to specify how far back you
can flashback your database. The following code sets the Flashback target to 1 day (1,440
minutes):

SQL> ALTER SYSTEM SET
2 DB_FLASHBACK_RETENTION_TARGET=1440;
System altered.
SQL>

4. Shut down and restart the database in the mount exclusive mode. If you are using a single
instance, a simple MOUNT command can be used:

SQL> SHUTDOWN IMMEDIATE;
Database closed.
Database dismounted.
ORACLE instance shut down.

SQL> STARTUP MOUNT;

5. Enable the Flashback Database feature:

SQL> ALTER DATABASE FLASHBACK ON;
Database altered.

SQL>

6. Use the ALTER DATABASE OPEN command to open the database and then confirm that the
Flashback Database feature is enabled, by querying the V$DATABASE view:

SQL> STARTUP OPEN;
SQL> SELECT FLASHBACK_ON FROM V$DATABASE;
FLA

YES
SQL>

CHAPTER 16 ■ DATABASE RECOVERY744

4517CH16.qxd 8/19/05 11:07 AM Page 744

If you want to take the easy way out, you can use the OEM Database Control tool to configure
Flashback logging in your database using the following steps (assuming you are working in
archivelog mode):

1. From the Database Home Page, click on the Maintenance tab.

2. Go to the Backup/Recovery section and click on Configure Recovery Settings.

3. Under the Flash Recovery Area section, specify the Flash Recovery Area Location and Flash
Recovery Area Size.

4. Check the box next to “Enable flashback logging for fast database point-in-time recovery,”
as shown in Figure 16-3.

Figure 16-3. Configuring Flashback Database using Database Control

Disabling Flashback Database
You can turn the Flashback Database feature off by issuing the ALTER DATABASE FLASHBACK OFF com-
mand. First, though, make sure you shut down the database and restart the database in the mount
(or mount exclusive) mode before using this command.

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP MOUNT;
SQL> ALTER DATABASE FLASHBACK OFF;

■Tip When you disable the Flashback Database feature, Oracle deletes all Flashback Database logs in the flash
recovery area.

If you want to use Flashback Database, but not for certain tablespaces, you can disable it using
the ALTER TABLESPACE command:

SQL> ALTER TABLESPACE users FLASHBACK OFF;

CHAPTER 16 ■ DATABASE RECOVERY 745

4517CH16.qxd 8/19/05 11:07 AM Page 745

Once disabled, Oracle will not log any Flashback Database data for that tablespace. If you want
to switch it back on again, you simply issue this command:

SQL> ALTER TABLESPACE users FLASHBACK ON;
Tablespace altered.
SQL>

As Chapter 4 explains, you can create a tablespace with the Flashback feature turned off by
specifying the FLASHBACK OFF clause when creating the tablespace. By default, of course, Flashback
is on.

Flashback Database Concepts
With the Flashback Database feature enabled, a new background process, RVWR (Recovery Writer)
is also enabled. This process copies, at infrequent intervals in order to reduce the I/O and CPU
overhead, the before-image of each altered block in the data files from the memory buffer (flash-
back buffer) to the flashback database logs, which are stored in the flash recovery area. This flash
recovery area is a dedicated area of disk storage for the retention of recovery-related components,
such as these data file image copies, incremental backups, and archived redo logs.

■Note To increase disk throughput, Oracle recommends the use of fast file systems and multiple disk spindles
with small stripe sizes (128KB) for flash recovery areas.

The Flashback Database logs are similar to the traditional Oracle redo logs (both logs are
written to from a buffer area) but with the big difference that there aren’t any archived Flashback
Database logs! Oracle stores all the Flashback Database logs in the flash recovery area.

■Note You need the SYSDBA privilege to perform a Flashback Database operation.

You can use these before-images of data blocks to reconstruct a data file as it existed at a spe-
cific time in the past. In essence, you can back out any changes made after a specified target time.
In reality, the Flashback Database logs are used to recover to a time immediately before the target
time, and Oracle then uses traditional archive logs to write any changes made during the short gap
between the target recovery time and the actual recovery time.

For example, if you want to flash back to 9:00 AM, it may turn out that the Flashback Database
logs nearest to the target time were written at 8:57 AM. You then apply the changes from archived or
online redo log files to cover the three to four minute gap. For this reason, although you aren’t doing
a traditional point-in-time recovery using backup files and archived redo log files, the redo logs
must still be available for the entire time period spanned by the Flashback Database logs.

When you actually issue a FLASHBACK DATABASE command, Oracle first checks to see that the
required archived and online redo log files are available. If so, it automatically reverts all the cur-
rently online data files to the SCN or time you specify in the FLASHBACK DATABASE statement.

■Tip The time taken to flash back a database depends on how far back you want to go and the numbers of data
block changes in the meantime. If you have a heavily used DML-based database, you’ll have more data block
changes than if the database were mainly supporting queries.

CHAPTER 16 ■ DATABASE RECOVERY746

4517CH16.qxd 8/19/05 11:07 AM Page 746

Flashback Storage Limits

You must bear in mind that Oracle doesn’t guarantee that you can flash back your database as far as
the time set in the FLASHBACK_RETENTION_TARGET init parameter (one day in our earlier example). If
Oracle is running low on free space in the flash recovery area, it will remove some older flashback
logs in order to make room for newly arriving data file backups, archived redo log files, or any other
backup-related files that are part of the flash recovery area.

Furthermore, as we noted earlier, the flash recovery area is specifically set aside for the storage
of recovery-related files. The database accords priority to storing these recovery-related files over
retaining Flashback Database logs. As such, the database will delete Flashback Database logs if it
needs the flash recovery area space to accommodate other recovery-related files.

Therefore, it is essential that you monitor the flash recovery area’s size to ensure that you have
sufficient space so as not to risk losing any of the Flashback Database logs that you need to recover
your database.

■Note It is possible to create a guaranteed restore point to ensure that Oracle will always keep the Flashback
Database logs and redo logs necessary to flash back the database to a specified point in time. I explain restore
points and guaranteed restore points in the “Using Restore Points” section, later in this chapter.

The amount of space you need to allocate to the flash recovery area will depend on the value
you set for the DB_FLASHBACK_RETENTION_TARGET parameter. After the database has been running for
a reasonable length of time with the Flashback Database feature enabled (enough time to make
sure that a typical workload is recorded and that the level of data modification activity in your data-
base is adequately captured), you can estimate the space required by querying the V$FLASHBACK_
DATABASE_LOG view, as follows:

SQL> SELECT estimated_flashback_size, retention_target, flashback_size
FROM v$flashback_database_log;

ESTIMATED_FLASHBACK_SIZE RETENTION_TARGET FLASHBACK_SIZE
------------------------ ---------------- -----------------

126418944 1440 152600576
SQL>

Although this query helps you estimate the required disk space for the Flashback Database
logs, there is no guarantee that the space will suffice. In order to find out how far you can flash back
your database at any given time, use the following query:

SQL> SELECT oldest_flashback_scn,
oldest_flashback_time
FROM v$flashback_database_log;

OLDEST_FLASHBACK_SCN OLDEST_FLASHBACK_
-------------------- ----------------------

5964669 07-03-05 12:22:37
SQL>

If the result indicates that you can’t wind your database back as far as the time set in the
DB_FLASHBACK_RETENTION_TARGET parameter, then you should consider increasing the size of your
flash recovery area.

The V$FLASHBACK_DATABASE_STAT view allows you to monitor any modulation in the gen-
eration of your Flashback data over the course of a day. You can adjust your retention target or flash
recovery area size or both, based on the statistics provided by this view.

CHAPTER 16 ■ DATABASE RECOVERY 747

4517CH16.qxd 8/19/05 11:07 AM Page 747

Flashback Database in Action
We are now ready to take a look at Flashback Database in action. I use SQL commands in this exam-
ple, but you can also use RMAN to perform the same steps. For this example, we will first create a
table called persons and load it with some test data.

Follow these steps:

1. Create the table:

SQL> CREATE TABLE persons AS
SELECT * FROM persons@prod;

Table created.
SQL>

2. Get a count of the total number of rows in the new table:

SQL> SELECT COUNT(*) FROM persons;
COUNT(*)

32768

3. Find out the current SCN of the database:

SQL> SELECT current_scn FROM V$DATABASE;
CURRENT_SCN

5965123

4. Perform an INSERT, doubling the number of rows in our persons table, as shown here:

SQL> INSERT INTO persons
SELECT * FROM persons;

65536 rows created.
SQL>

5. Verify the data insertion as follows:

SQL> SELECT COUNT(*) FROM persons;
COUNT(*)

65536

Our goal is to flash the database back to the point in time when the persons table held 32,768
rows. In effect, this means flashing back to the SCN 5965123. Follow these steps:

1. Shut down the database and start it up again in the mount exclusive mode, as shown here:

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP MOUNT;
ORACLE instance started.
. . .
Database mounted.
SQL>

■Note In order to use the Flashback Database feature, the database must be running in the mount mode.

2. Issue the following simple FLASHBACK DATABASE command:

SQL> FLASHBACK DATABASE TO SCN 5964663;
Flashback complete.

CHAPTER 16 ■ DATABASE RECOVERY748

4517CH16.qxd 8/19/05 11:07 AM Page 748

Note that TO SCN takes the database back to its state at that SCN. You can also take a data-
base back to its state just before an SCN by using the TO BEFORE SCN clause. Alternatively,
you can use the TO TIMESTAMP or TO BEFORE TIMESTAMP clauses to revert the database to a
specified timestamp or to one second before the specified timestamp.

3. In order to query the persons table, you must first open the database, which I try to do here:

SQL> ALTER DATABASE OPEN;
alter database open
*
ERROR at line 1:
ORA-01589: must use RESETLOGS or NORESETLOGS option for database open
SQL>

As you can see, it didn’t work: In order to have write access to the flashed back database, we
have to reopen the database with an ALTER DATABASE OPEN RESETLOGS statement. However,
you should consider first opening the database using ALTER DATABASE OPEN READ ONLY in
order to confirm that you have flashed the database back to the correct point in time or the
correct SCN. If, after the initial read-only check, you find that you flashed back too far into
the past, you can use redo logs to roll forward. If you haven’t gone far enough back, you can
reissue the FLASHBACK DATABASE command using an earlier SCN.

Once you are certain you have the right time, finalize the flashback by issuing this command:

SQL> ALTER DATABASE OPEN RESETLOGS;
Database altered.
SQL>

4. Verify that the database has been flashed back appropriately:

SQL> SELECT COUNT(*) FROM persons;
COUNT(*)

32768

SQL>

As an alternative to using an SCN, you may use an archived log sequence, or a prior time, to
specify the Flashback point. Here are some examples using time and log sequence numbers:

/* will flashback the database to the log sequence 12345 */
SQL> FLASHBACK DATABASE TO SEQUENCE 12345;

/* will flashback the database to an hour ago */
SQL> FLASHBACK DATABASE TO TIMESTAMP(SYSDATE -1/24);

No matter whether you use an SCN, a timestamp, or a log sequence number, if you’re sure you
have recovered your database to the state you wanted, you can make the database available to your
users by using the following command:

RMAN> ALTER DATABASE OPEN RESETLOGS;

Your database will now reflect the state of the database at the past SCN or timestamp you
chose. All subsequent changes in the database are removed.

If, on the other hand, you aren’t happy with the state of the database after the Flashback Data-
base operation, you can simply undo the results of the entire Flashback operation by issuing the
following command:

SQL> RECOVER DATABASE;

The RECOVER DATABASE command will perform a complete recovery by applying all the changes
ent again.

CHAPTER 16 ■ DATABASE RECOVERY 749

4517CH16.qxd 8/19/05 11:07 AM Page 749

If you think you didn’t go far back enough the first time when you flashed back your database,
you can run the FLASHBACK DATABASE command once again, to take the database further back in time.

If you have flashed back farther than necessary, you can use the RECOVER DATABASE UNTIL com-
mand to take the database forward in time.

Flashback Database Considerations
I’ll end this section with a few limitations that you must bear in mind when using the Flashback
Database feature:

• You must be running the database in the archivelog mode.

• If you’ve lost a data file, or you can’t use a particular data file for whatever reason, then you
can’t use Flashback Database for recovery.

• If a control file has been restored or re-created during the time span you want to flash back
over, then you can’t use the Flashback Database feature.

• You can’t flash back a database to before a RESETLOGS operation.

• You can’t flash back a data file that was shrunk or dropped during the time span covered by
the Flashback Table operation.

■Note In Oracle Database 10g Release 2, you can use Flashback Database to go back past an OPEN RESETLOGS
operation. You can thus return the current database to an ancestor or sibling incarnation.

Using Restore Points
Oracle Database 10.2 provides a new enhancement to recovery techniques by allowing you to create
restore points. A restore point is an alias for an SCN, which eliminates the need to research and
record SCNs or timestamps, which you need to use for Flashback Database and Flashback Table
operations. Suppose you’re executing a new package or procedure that will modify a large amount
of data. You can create a restore point beforehand, just in case you have to reverse the effects of
this operation. If you need to ever revert back to the original data, all you need to do is refer to the
restore point in a Flashback Database or Flashback Table operation. You can also use restore points
in a point-in-time recovery operation.

You can use a restore point when performing the following types of operations:

• Flashback Table

• Flashback Database

• Database recovery operations

■Note In order to use restore points, you must be using Oracle Database 10g Release 2, the database should be
running in the archivelog mode, and you must use a flash recovery area.

Here’s how you create a restore point:

SQL> CREATE RESTORE POINT test;
Restore point created.
SQL>

CHAPTER 16 ■ DATABASE RECOVERY750

4517CH16.qxd 8/19/05 11:07 AM Page 750

You can drop a restore point by using this command:

SQL> DROP RESTORE POINT test;
Restore point dropped.
SQL>

Guaranteed Restore Points
The restore point I created in the previous example is known as an ordinary restore point. An
ordinary restore point merely provides you a convenient way of specifying a prior SCN or a point in
time during a Flashback or recovery operation. However, an ordinary restore point doesn’t guaran-
tee that the database will retain the Flashback Database logs necessary for a Flashback Database
operation to succeed under all circumstances. However, you can also create a guaranteed restore
point, which guarantees that you can revert your database to the SCN or time specified by the
restore point. All you need is enough room in the flash recovery area to store the logs necessary to
enforce the guaranteed restore point.

Ordinarily, before undertaking a major operation in the database, you might ensure that you
have a backup, just in case you have to revert to the original version of the database if something
goes wrong. A guaranteed restore point makes performing a backup unnecessary. With a guaran-
teed restore point, you are always guaranteed that you can flash back your database to that prior
time.

Guaranteed restore points don’t depend on the Flashback logs. Thus, you can create a guaran-
teed restore point even if Flashback logging is turned off. Guaranteed restore points use a logging
mechanism that’s somewhat similar to the Flashback logs, but it’s separate from them.

If you use a guaranteed restore point, Oracle won’t delete any Flashback logs that are created
after you create the guaranteed restore point. Therefore, you can end up filling up your flash recov-
ery area and causing the database to stop its operations if Flashback logging is enabled when you’re
using guaranteed restore points. You’re better off turning off Flashback logging if you’re using guar-
anteed restore points.

■Tip Guaranteed restore points use a separate logging mechanism from the Flashback logging used for a Flash-
back Database operation. You can use guaranteed restore points with or without Flashback logging enabled—you
must, however, configure a flash recovery area.

You create a guaranteed restore point the same way as an ordinary restore point, just adding
the GUARANTEE FLASHBACK CLAUSE to it, as shown here:

SQL> CREATE RESTORE POINT test_guarantee GUARANTEE FLASHBACK DATABASE;
Restore point created.
SQL>

You drop a guaranteed restore point in the same way as an ordinary restore point.
Once you create a guaranteed restore point, you can use it to recover your database through a

Flashback Database operation in the following manner:

RMAN> FLASHBACK DATABASE TO RESTORE POINT test_guarantee;

Viewing Restore Points
You use the V$RESTORE_POINT view to view information about restore points in your database.
Here’s a typical query on that view:

CHAPTER 16 ■ DATABASE RECOVERY 751

4517CH16.qxd 8/19/05 11:07 AM Page 751

SQL> SELECT name, scn, storage_size, time, guarantee_flashback_database
FROM v$restore_point;

NAME SCN STORAGE_SIZE TIME GUARANTEE
--
TEST_GUARANTEE 1685977 199409664 09-MAY-05 02.10.55.00 PM YES
TEST 4039395 0 30-JUN-05 05.49.02.00 AM NO
SQL>

The preceding output shows two restore points, one of which is ordinary and the other being a
guaranteed restore point. The SCN column tells you when each of the restore points was created.
If you need to perform a recovery now, all you need to do is provide the name of the restore point
during the recovery, rather than the actual SCN or calendar time. As you can see, the STORAGE_SIZE
column, which shows the space (in bytes) needed for supporting the restore point, is zero for the
ordinary restore point and about 200MB for the guaranteed restore point.

As you are aware, you can determine whether a database is running in the Flashback Database
mode by using the following query:

SQL> SELECT flashback_on FROM v$database;
FLASHBACK_ON

NO

In the preceding example, the NO value for the FLASHBACK_ON column means that the Flashback
Database feature is currently not enabled in this database. However, if you’ve created a restore
point, the same query would show this:

SQL> SELECT flashback_on FROM v$database;
FLASHBACK_ON

RESTORE POINT ONLY
SQL>

Even with the Flashback Database feature disabled, you can see that you can use restore points
to guarantee your ability to flash back a database. Once you enable the Flashback Database feature,
you’ll be able to flash back the database to the time or SCN specified by the guaranteed restore
point. The logs maintained in the flash recovery area by the guaranteed restore point will enable
this flashback of the database, even though there are no Flashback logs during that time period.

Note that a guaranteed restore point guarantees only a Flashback Database operation, not a
point-in-time operation or a Flashback Table operation, since they require the necessary backup
files and undo data to succeed. However, guaranteed restore points can be used to approximate the
SCN or time for a point-in-time or Flashback Table operation.

■Note Although you can flash back your database to a guaranteed restore point even if Flashback Database
wasn’t originally enabled and therefore no Flashback logs were collected, you can only recover exactly to the guar-
anteed restore point. If you want to recover to any point before that, you must still use a point-in-time recovery
technique using backups and archived log files.

Repairing Data Corruption and Trial Recovery
As you saw in Chapter 15, Oracle provides several means of detecting data block corruption. These
methods include the use of the ANALYZE command, the DBVERIFY command, and the DB_BLOCK_
CHECKING initialization parameter. Oracle also provides the excellent DBMS_REPAIR package, which

CHAPTER 16 ■ DATABASE RECOVERY752

4517CH16.qxd 8/19/05 11:07 AM Page 752

not only detects corruption, but also helps you fix it. Using this package, you can analyze and repair
block corruption in Oracle tables and indexes.

Block Media Recovery
Even if only a few data blocks in a data file are corrupted, the entire data file becomes unavailable to
users during a normal data file recovery process whether you use RMAN or user-managed recovery
techniques.

RMAN can help you recover from data block corruption by enabling block media recovery
(BMR). With BMR, your smallest recoverable unit of data is the data block, instead of the data file.
Unlike in data file recovery, which makes one or more entire data files unavailable while you’re
recovering data, with BMR virtually the entire database continues to be available to users while
the corrupted blocks are being recovered. Only the specific data blocks you are recovering will be
unavailable to users. RMAN’s BLOCKRECOVER command recovers blocks marked as corrupt in the
V$BACKUP_CORRUPTION and V$COPY_CORRUPTION views. Only RMAN allows BMR.

During a block media recovery operation, RMAN restores from backups only those data blocks
that need recovery. Redo application time is vastly reduced because you only need to recover cer-
tain data blocks, not entire data files.

Thus, BMR helps you achieve the following goals:

• Faster recovery time

• Increased database availability

Data block corruption could lead to the following types of messages in your alert log:

ORA_11578: ORACLE data block corrupted (file# 9, block# 21)
ORA=01110: data file 9: /u01/app/oracle/oradata/remorse/users_01.dbf'

Once you have the data file number and the corrupt block number, you can use the following
BLOCKRECOVER command to recover the corrupted block:

RMAN> BLOCKRECOVER DATAFILE 9 BLOCK 21;

The BLOCKRECOVER command determines the backups from which it needs to get the necessary
data blocks to perform recovery. It then reads the backups and collects the necessary data blocks in
memory buffers, and it may use an older backup if it finds that the most recent backup contains
corrupt data blocks. The BLOCKRECOVER command then starts and manages the BMR session, reading
any necessary archived redo logs from the backed-up archived logs. The BLOCKRECOVER command
always results in a complete recovery; you can’t perform a PITR using this command.

If you think you have extensive database block corruption and you aren’t sure whether the pre-
ceding method will successfully recover the data, the best course of action is to first get in touch
with Oracle Worldwide Support, which has access to specialized tools that can help you extract data
from corrupted data blocks. Oracle may charge you extra for these services, but if your data is criti-
cal, it may be well worth the expense.

Trial Recovery
While you’re recovering databases, the recovery process may encounter corrupt data blocks some-
where along the line. When a situation like this occurs, the recovery process will stop, leaving the
database in a consistent state. Although it’s possible to recover the database to a point before the
corruption occurred, this could be a time-consuming process.

To determine the extent of the damage before you start recovery, you can use a trial recovery.
Depending on the amount of corruption you find, you can then decide whether you’ll use an

CHAPTER 16 ■ DATABASE RECOVERY 753

4517CH16.qxd 8/19/05 11:07 AM Page 753

incomplete recovery or continue recovery beyond the corrupted block by using the ALLOW n
CORRUPTION recovery option. For example, if you want to ignore a minor amount of corruption, you
can use the following command, which can find one corrupt data block yet continue the recovery
process:

SQL> RECOVER DATABASE ALLOW 1 CORRUPTION;

If there is a larger number of corrupt data blocks, you will have to perform a PITR, with signifi-
cant data loss.

Trial recovery lets you simulate the recovery process—it neither performs a real recovery nor
fixes data corruption. It lets you know whether there is corruption and, if there is, the extent of the
corruption. Trial recovery proceeds in the same way as real data recovery by applying the redo
changes. However, trial recovery changes the data blocks only in memory, not permanently on
disk. After the test, it rolls back all its changes, leaving only the possible error messages in the
alert log file.

Here are the typical trial recovery commands:

SQL> RECOVER DATABASE UNTIL CANCEL TEST;
ORA-10574: Test recovery did not corrupt any data block
ORA-10573: Test recovery tested redo from change 9948095 to 9948095
ORA-10570: Test recovery complete
/* The following statement would recover a tablespace */
SQL> RECOVER TABLESPACE users TEST;

Troubleshooting Recovery Errors
Recovery management is prone to more errors and it needs more troubleshooting than any other
part of Oracle database administration. If a production recovery is being bogged down by Oracle
errors, it gets to be an even more stressful event. You could conceivably run into numerous different
problems over the years. This section covers a few common error messages issued during a recovery
session.

The ORA-01194 Error
When you’re trying to start up a database after a database cloning, you’ll usually end up with the
ORA-01194 error. Listing 16-11 shows the sequence of Oracle messages and the DBA’s responses.

Listing 16-11. The ORA-01194 Error

SQL> startup
ORACLE instance started.
Total System Global Area 118255568 bytes
Fixed Size 282576 bytes
Variable Size 83886080 bytes
Database Buffers 33554432 bytes
Redo Buffers 532480 bytes
Database mounted.
ORA-01589: must use RESETLOGS or NORESETLOGS option for database open
SQL> alter database open noresetlogs;
alter database open noresetlogs
*
ERROR at line 1:
ORA-01588: must use RESETLOGS option for database open
SQL> alter database open resetlogs;

CHAPTER 16 ■ DATABASE RECOVERY754

4517CH16.qxd 8/19/05 11:07 AM Page 754

alter database open resetlogs
*
ERROR at line 1:
ORA-01194: file 1 needs more recovery to be consistent
ORA-01110: data file 1: 'C:\ORACLENT\ORADATA\MANAGER\SYSTEM01.DBF'
SQL> recover database until cancel using backup controlfile;
ORA-00279: change 405719 generated at 05/26/2002 15:51:04 needed for thread 1
ORA-00289: suggestion : C:\ORACLENT\RDBMS\ARC00019.001
ORA-00280: change 405719 for thread 1 is in sequence #19
Specify log: {<RET>=suggested | filename | AUTO | CANCEL}
ORA-01547: warning: RECOVER succeeded but OPEN RESETLOGS would get error below
ORA-01194: file 1 needs more recovery to be consistent
ORA-01110: data file 1: 'C:\ORACLENT\ORADATA\MANAGER\SYSTEM01.DBF'
SQL>

Oracle keeps issuing the 1194 error message, and even using the RECOVER DATABASE UNTIL
CANCEL USING BACKUP CONTROLFILE command (with which you can mimic a recovery) does not suc-
ceed in stopping it. The problem is that the changes needed for recovery are in the very last online
redo log, not in any archived redo log Oracle might be suggesting to you. When you apply this
online redo log, Oracle will finish recovery successfully, as shown in Listing 16-12.

Listing 16-12. Applying a Redo Log During Recovery

SQL> RECOVER DATABASE UNTIL CANCEL USING BACKUP CONTROLFILE;
ORA-00279: change 405719 generated at 06/30/2005 15:51:04 needed for thread 1
ORA-00289: suggestion : C:\ORACLENT\RDBMS\ARC00019.001
ORA-00280: change 405719 for thread 1 is in sequence #19
Specify log: {<RET>=suggested | filename | AUTO | CANCEL}
C:\ORACLENT\ORADATA\MANAGER\REDO03.LOG
Log applied.
Media recovery complete.
SQL> alter database open resetlogs;
Database altered.
SQL>

The ORA-01152 Error
The ORA-01152 error (“File # was not restored from a sufficiently old backup”) bedevils quite a few
recovery sessions. This is an interesting situation whose solution is similar to the preceding exam-
ple. You provide all the archived redo logs that Oracle asks for, but you still get errors, as shown in
Listing 16-13.

Listing 16-13. When an Archived Redo Log File Isn’t Needed for Recovery

ORA-00289: suggestion :
/u01/app/oracle/admin/finance/arch/finance/_0000012976.arc
ORA-00280: change 962725326 for thread 1 is in sequence #12976
ORA-00278:
logfile'/u01/app/oracle/admin/finance/arch/finance/_0000012975.arc'
no longer needed for this recovery
Specify log: {<RET>=suggested | filename | AUTO | CANCEL}
ORA-01547: warning: RECOVER succeeded but OPEN RESETLOGS would get error below
ORA-01152: file 1 was not restored from a sufficiently old backup
ORA-01110: data file 1: '/pase16/oradata/finance/system_01.dbf'ORA-01112:
media recovery not started

CHAPTER 16 ■ DATABASE RECOVERY 755

4517CH16.qxd 8/19/05 11:07 AM Page 755

In response to the preceding errors, the following recovery command was used:

SQL> recover database until cancel using backup controlfile;
ORA-00279: change 962726675 generated at 07/30/2005 04:32:48 needed for thread 1
ORA-00289: suggestion :
/u01/app/oracle/admin/finance/arch/finance/_0000012977.arc
ORA-00280: change 962726675 for thread 1 is in sequence #12977

Oracle’s response was to ask for an archived redo log file, but because the recovery process has
already indicated that it doesn’t need any more archived redo logs, you can ignore this misleading
request and provide Oracle with the name of your restored online redo log files, starting with the
first one. One of those redo log files will have the change number (SCN=962726675) the recovery
process is looking for. Just provide Oracle with your redo log files—one member from each redo log
group. Listing 16-14 shows the rest of this recovery process.

Listing 16-14. Using an Online Redo Log File During Recovery

Specify log: {<RET>=suggested | filename | AUTO | CANCEL}
/pase04/oradata/finance/redo01a.rdo
ORA-00279: change 962746677 generated at 07/30/2005 04:33:52 needed for thread 1
ORA-00289: suggestion :
/u01/app/oracle/admin/finance/arch/finance/_0000012978.arc
ORA-00280: change 962746677 for thread 1 is in sequence #12978
ORA-00278: log file '/pase04/oradata/finance/redo01a.rdo'
no longer needed for this recovery
Specify log: {<RET>=suggested | filename | AUTO | CANCEL}
/pase04/oradata/finance/redo02a.rdo
Log applied.
Media recovery complete.
SQL>

The ORA-00376 Error
Another common error that you could meet with is the ORA-00376 error, which indicates that your
database can’t read a certain file or files. The error results in the following messages:

ORA-00376: file 10 cannot be read at this time
ORA-01110: data file 10: '/u01/app/oracle/remorse/data_01.dbf'

ORA-00376 is usually the result of a data file or tablespace being offline. By bringing the table-
space or data file online, you can fix the problem easily. Sometimes the error is the result of the data
file not existing at the tablespace level. In this case, you have to take the tablespace offline, re-create
it with the correct data file name, and bring it online.

CHAPTER 16 ■ DATABASE RECOVERY756

4517CH16.qxd 8/19/05 11:07 AM Page 756

Managing the Operational
Oracle Database

P A R T 6

■ ■ ■

4517CH17.qxd 8/19/05 11:08 AM Page 757

4517CH17.qxd 8/19/05 11:08 AM Page 758

Automatic Management and
Online Capabilities

Oracle has been emphasizing that the Oracle Database 10g server automates management to
such an extent that it refers to the database as a self-managing database. Well, this is at least par-
tially true, as several traditional time-consuming and error-prone tasks have been replaced with
new ways managing memory, transactions, and resources, and of organizing space. In addition,
there have been improvements in backup and recovery techniques. However, the DBA is just as
essential as ever. If anything, the DBA’s role has become even more central because of the new
features’ added complexity.

This chapter deals with the operational aspects of running an Oracle database. Several compo-
nents of the database require constant monitoring and modifications, and you’ll learn about some
important Oracle Database 10g features in detail in this chapter. Earlier chapters introduced several
topics that you’ll see here, and this chapter will tie together the various aspects of Oracle Database
10g that make the DBA’s job easier. The chapter highlights two main operational areas: automatic
database management features and online management features.

Oracle Database 10g introduces the revolutionary Automatic Storage Management (ASM) fea-
ture, which helps Oracle DBAs manage disk storage with a built-in Logical Volume Manager (LVM)
without requiring a system administrator’s involvement. Automatic shared memory management
is a useful feature that will help you immensely in your day-to-day administration. The online table
redefinition feature will help you perform several routine tasks online without reducing database
availability. Furthermore, Oracle Managed Files (OMF) will help you reduce database file-manage-
ment tasks. In the following sections you’ll explore how adopting these new features can make
day-to-day database management easier.

The Automatic Database Diagnostic
Monitor (ADDM)
Traditionally, organizations have spent considerable amounts of effort on laborious performance-
tuning exercises. Oracle Database 10g provides you with powerful and accurate automatic
performance-tuning capabilities. The heart of this functionality is the new statistics collection
facility, the Automatic Workload Repository (AWR), which automatically collects and saves crucial
performance statistics (including those for SQL statements that use the most resources in the data-
base) to help detect performance problems and self-tune the database. AWR saves its data in the
Sysaux tablespace. I explain the AWR in detail in Chapter 18.

Instead of running myriad SQL performance tuning scripts, just go to the ADDM as the first
source for all your performance troubleshooting work. You’ll save a lot of time that you might other-
wise spend looking at extraneous issues that really don’t have a bearing on performance. Since the

759

C H A P T E R 1 7

■ ■ ■

4517CH17.qxd 8/19/05 11:08 AM Page 759

ADDM ranks both the problems and its recommendations according to the crucial DB time statistic
(more on this in a little bit), you have a way of quantitatively estimating the effectiveness of different
measures in improving performance.

■Note Oracle recommends that you rely on the AWR for all the performance data you need for tuning purposes.

In Oracle Database 10g, you are relieved of the responsibility of catching a problem at the right
time to collect statistics, since the new diagnostic engine, Automatic Database Diagnostic Monitor
(ADDM, pronounced Adam), automatically analyzes performance data for you. By default, the AWR
collects new performance statistics in the form of an hourly snapshot and saves these snapshots for
seven days before purging them. An AWR snapshot is a collection of database performance statis-
tics at a single point in time, including statistics for resource-intensive SQL statements. Every time
the AWR takes a new snapshot, ADDM runs automatically, does its top-down system analysis, and
reports its findings on the Database Control home page. The ADDM’s output consists of a descrip-
tion of each performance problem it identifies, along with the recommended action. The recom-
mendations are ranked by the expected benefit of implementing each of them. You can view the
regular ADDM reports from the OEM Database Control or view them from a SQL*Plus session with
the help of an Oracle-supplied SQL script.

The ADDM runs automatically, but you can also manually invoke the tool to investigate prob-
lems that occur in between the scheduled snapshots. Oracle stores the ADDM analyses in the
Sysaux tablespace.

The Purpose of the ADDM
The basic rationale behind the ADDM is to reduce a key database metric called DB time, which is
the total time (in microseconds) the database spends actually processing users’ requests.

DB time includes the total amount of time spent on actual database calls (at the user level) and
it ignores time spent on background processes. DB time includes both the wait time and processing
time (CPU time), but doesn’t include the idle time incurred by your processes. For example, if you
spend an hour connected to the database and you’re idle for 58 of those minutes, the DB time is
only 2 minutes.

If a problem contributes to inappropriate or excessive DB time, ADDM automatically flags it
as an issue needing attention. If there is a problem in your system, but it doesn’t contribute signifi-
cantly to the DB time, ADDM will simply ignore it. Thus, the ADDM is focused on the single mantra:
reduce DB time. The ADDM aims to increase the throughput of your database, thereby serving more
users with the same amount of resources.

Problems That the ADDM Diagnoses
The ADDM analyzes the AWR snapshots every hour by default, comes up with performance recom-
mendations, and ranks them in terms of the expected benefit of implementing the various actions.
These are some of the key problems that the ADDM diagnoses:

• Expensive SQL statements

• I/O performance issues

• Locking and concurrency issues

• Excessive parsing

• Resource bottlenecks, including memory and CPU bottlenecks

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES760

4517CH17.qxd 8/19/05 11:08 AM Page 760

• Undersized memory allocation

• Connection management issues, such as excessive logon/logoff activity

When you are beset by a severe performance problem, look at the ADDM reports first, to get a
good diagnosis of the problem. ADDM ignores the nonproblem areas and focuses on the truly sig-
nificant causes affecting performance. The ADDM report contains the following:

• Expert problem diagnosis

• Emphasis on the root cause of the problem rather than on the symptoms

• A ranking of the effects of the problems

• Recommendations ranked according to their benefit

Unlike running some complex SQL scripts, the ADDM report has very little overhead associ-
ated with it, since its raw material is already saved in the AWR.

The ADDM uses sophisticated, new, time-model statistics in Oracle Database 10g that are
highly effective in determining where time is spent in the database. These new time-model statistics
enable Oracle to focus on only the most critical performance problems. If a problem exceeds the
threshold for the key DB time metric, the ADDM tags it as a top performance problem; otherwise, it
leaves it alone as a nonproblem area. Let’s look at these new time-model statistics in the following
section.

Time-Model Statistics
The ADDM bases most of its performance recommendations on time-model statistics, the most
important of which is the new DB time statistic, explained in the previous “The Purpose of the
ADDM” section. Time-model statistics provide a uniform way to quantify various database opera-
tions. In addition to DB time, there are other time-model statistics, such as statistics that quantify
the time taken by logon statistics and hard and soft parses.

You can use the new V$SESS_TIME_MODEL and V$SYS_TIME_MODEL database views to look
at the time-based performance statistics. The V$SYS_TIME_MODEL view provides the accumulated
time statistics for various operations in the entire database and shows the number of microseconds
the database has spent on specific operations. The query in Listing 17-1 demonstrates the kind of
operations for which the V$SYS_TIME_MODEL view holds time-based statistics.

Listing 17-1. A Query Using the V$SYS_TIME_MODEL View

SQL> SELECT stat_name, value FROM v$sys_time_model;
STAT_NAME VALUE

DB time 3.8422E+13
DB CPU 9.2726E+12
background elaps 2.7506E+12
background cpu time 1.3335E+11
sequence load elapsed ti 6583934097
parse time elapse 3.0984E+11
hard parse elapsed time 4.7280E+10
sql execute elapsed time 3.7533E+13
connection management call elapsed time 4.3565E+10
failed parse elapsed time 3350540297
failed parse (out of shared memory) elapsed time 0
hard parse (sharing criteria) elapsed time 1770964950
hard parse (bind mismatch) elapsed time 706518501
PL/SQL execution elapsed time 7.0339E+11

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES 761

4517CH17.qxd 8/19/05 11:08 AM Page 761

inbound PL/SQL rpc elapsed time 7.3869E+12
PL/SQL compilation elapsed time 3667675394
Java execution elapsed time 1.7993E+11
RMAN cpu time (backup/restore) 0
17 rows selected.
SQL>

The V$SESS_TIME_MODEL view is similar to the V$SYS_TIME_MODEL view and provides the
same types of time statistics, but it shows a session’s accumulated time for the various operations
rather than information for the entire database.

The AWR collects time-model statistics as part of its hourly snapshots. In addition, the AWR
collects object statistics, including the usage statistics for objects, system and session statistics,
statistics for high-load SQL statements, and a history of recent session activity, called the Active
Session History (ASH). I discuss the AWR statistics, including the ASH, in Chapter 18.

ADDM Findings
The ADDM analysis is available in the form of a series of findings, and there are three types of find-
ings: problem, symptom, and informational. Here’s an example of a typical ADDM finding:

FINDING 1: 45% impact (11223 seconds)

SQL statements were not shared due to the usage of literals.
This resulted in additional hard parses which were consuming significant database time.

This is a problem finding, because it’s accompanied by an impact estimate, which is an esti-
mate of the amount of additional DB time caused by the problem.

The findings are presented in decreasing order of importance (as defined by the impact per-
centages), and the sum of the impact percentages for all the findings may exceed 100 percent, as
you can see in the following example:

FINDING 1: 34% impact (289378 seconds)
FINDING 2: 25% impact (214227 seconds)
FINDING 3: 23% impact (193521 seconds)
FINDING 4: 16% impact (134639 seconds)
FINDING 5: 6.1% impact (51563 seconds)
FINDING 6: 2.1% impact (17753 seconds)

The sum of the impact percentages can exceed 100 percent of DB time because the perform-
ance issues of the various findings might overlap and, therefore, encompass the same portion of
DB time.

ADDM Recommendations
ADDM usually proposes one or more recommendations for each of the problem findings in its
analysis. You may not need to follow all the recommendations to fix the problem. Each recommen-
dation is accompanied by a quantified benefit that will result from the adoption of the ADDM
recommendation, the benefit being measured in terms of the estimated reduction in DB time.

Here’s a typical ADDM recommendation, wherein you’re asked to first analyze your application
logic:

RECOMMENDATION 1: Application Analysis, 45% benefit (11223 seconds)

If you see multiple recommendations, which is common, it means that the benefit that accrues
from adopting all the recommendations would be equal to the impact percentage noted for the rel-
evant finding. Here’s an example:

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES762

4517CH17.qxd 8/19/05 11:08 AM Page 762

FINDING 1: 34% impact (289378 seconds)

The report starts with a finding that has a 34 percent impact on DB time. The finding is accom-
panied by the following five recommendations, each with a certain benefit. If you sum up the
benefit (in percentages) that results from adopting all five recommendations, you’ll notice that
it’s equal to the value of the finding’s impact (34 percent):

RECOMMENDATION 1: Segment Tuning, 13% benefit (112768 seconds)
RECOMMENDATION 2: Segment Tuning, 6.7% benefit (56805 seconds)
RECOMMENDATION 3: Segment Tuning, 6.1% benefit (51882 seconds)
RECOMMENDATION 4: Segment Tuning, 4.4% benefit (37330 seconds)
RECOMMENDATION 5: Segment Tuning, 3.6% benefit (30594 seconds)

ADDM recommendations may include the following:

• Hardware changes: The ADDM may recommend that you add more CPUs to your system or
change the way you configure your I/O subsystem.

• Database and application changes: In some cases, the ADDM may recommend that you
change the setting of some of your initialization parameters, instead of rewriting your
application code.

• Space configuration changes: The ADDM may sometimes make major recommendations,
such as using the new Automatic Storage Management (ASM) feature, in order to fix certain
performance problems.

• Use of performance advisors: In several cases, the ADDM will recommend that you use a
performance advisor, like the SQL Tuning Advisor or the Segment Advisor, to fix your per-
formance problems.

Recommendations may also have action and rationale components, with actions showing you
the various things you need to do to implement the recommendation, while rationales explain the
reason for the recommendation. Here’s part of an ADDM report that shows an action and the
rationale for the recommendation you saw earlier in this section:

ACTION: Investigate application logic for possible use of bind variables
instead of literals. Alternatively, you may set the parameter
"cursor_sharing" to "force".

RATIONALE: SQL statements with PLAN_HASH_VALUE 2094286255 were found to be
using literals. Look in V$SQL for examples of such SQL statements.

Note that a recommendation may have one or more actions attached to it. Similarly, you may
have one or more rationale items.

Managing the ADDM
Oracle manages the ADDM with the help of the new MMON background process. Each time the
AWR takes a snapshot (every hour by default), the MMON process tells ADDM to analyze the inter-
val between the last two AWR snapshots. Thus, by default, the ADDM automatically runs each time
the AWR snapshot is taken. As mentioned earlier, you can use the OEM Database Control to view
the ADDM’s performance analysis and action recommendations.

Configuring the ADDM
Oracle enables the ADDM feature by default, and your only task is to make sure that the STATISTICS_
LEVEL initialization parameter is set to TYPICAL or ALL in order for the AWR to gather its performance
statistics. If you set STATISTICS_LEVEL to BASIC, you can still use the AWR to collect statistics by using

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES 763

4517CH17.qxd 8/19/05 11:08 AM Page 763

the DBMS_WORKLOAD_REPOSITORY package, but you won’t be able to collect several important
types of performance statistics.

You can control the volume of statistics collected by the AWR by adjusting either or both of two
variables:

• Snapshot interval The default snapshot interval is 60 minutes. Oracle assumes that hourly
snapshots are frequent enough for diagnosis and infrequent enough that they won’t influ-
ence performance.

• Snapshot retention period By default, Oracle retains all snapshots for seven days in the AWR,
after which it purges the outdated snapshots.

■Note The management of AWR is discussed in detail in Chapter 18.

You can change the snapshot interval and snapshot retention periods by using the INTERVAL
and the RETENTION parameters of the MODIFY_SNAPSHOT_SETTINGS procedure of the DBMS_
WORKLOAD_REPOSITORY package. Chapter 18 shows you how to modify the AWR snapshot
interval and retention period.

■Note The ADDM runs automatically after each AWR snapshot, and you can run it whenever you choose, such as
when an alert recommends that you do so. You can also run it manually when you want an ADDM analysis across
multiple snapshots, rather than over the two most recent snapshots, which is the default interval for analysis.

Oracle automatically runs the ADDM following an AWR snapshot, but you can also produce
custom ADDM reports by manually running the ADDM if you want to examine, for example, the
period between 8 AM and 5 PM, which encompasses multiple AWR snapshots. You just provide the
beginning and ending snapshot information, and ADDM will generate a report for the entire period.

Determining Optimal I/O Performance
If your I/O system performs at a certain speed, your system can read a database block in a specific
number of milliseconds; the DBIO_EXPECTED parameter (which is not an initialization parameter)
indicates I/O performance, and the default value for this parameter is 10 milliseconds.

You can find out the current value of the DBIO_EXPECTED parameter by querying the DBA_
ADVISOR_DEF_PARAMETERS view as follows:

SQL> SELECT parameter_value
FROM dba_advisor_def_parameters
WHERE advisor_name='ADDM'
AND parameter_name='DBIO_EXPECTED';

PARAMETER_VALUE

10000
SQL>

You can use the SET_DEFAULT_TASK_PARAMETER procedure of the DBMS_ADVISOR package to
modify the default value of the DBIO_EXPECTED parameter, as shown here:

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES764

4517CH17.qxd 8/19/05 11:08 AM Page 764

SQL> SHO USER
USER is "SYS"
SQL> EXECUTE DBMS_ADVISOR.SET_DEFAULT_TASK_PARAMETER(-
> 'ADDM', 'DBIO_EXPECTED', 6000);
PL/SQL procedure successfully completed.

Running the ADDM
The new Oracle background process, MMON, schedules the ADDM to run every time the AWR col-
lects its most recent snapshot. Oracle, therefore, automatically generates ADDM reports throughout
the day, which you can view through Database Control.

One of the reasons for invoking the ADDM manually is because an alert might recommend you
do it. You can perform an ad hoc ADDM analysis to find out details about a performance problem
that’s currently occurring in the database. You can create a new AWR snapshot manually and run
the ADDM using this and the preceding snapshot.

You can also request that the ADDM analyze past instance performance by examining AWR
snapshot data that falls between any two nonadjacent snapshots. The only requirements regarding
the selection of the AWR snapshots are these:

• The snapshots must not contain any errors.

• There can’t be a database shutdown between the two snapshots. The AWR holds only cumu-
lative database statistics, and once you shut down the database, all the cumulative data will
lose its meaning.

■Note Although the addmrpt.sql script indicates that you can specify the number of days of snapshots, you
really aren’t given that choice. The script really just lists the last three days of completed snapshots, as you can
see here:

Specify the number of days of snapshots to choose from
Entering the number of days (n) will result in the most recent
(n) days of snapshots being listed. Pressing <return> without
specifying a number lists all completed snapshots.
Listing the last 3 days of Completed Snapshots

Viewing Detailed ADDM Reports
You can view the ADDM analysis reports in three different ways:

• You can use the Oracle-provided addmrpt.sql script (located in the $ORACLE_HOME/
rdbms/admin directory) to create an ad hoc ADDM report for a time period covered by
any pair of snapshots.

• You can use the DBMS_ADVISOR package and create an ADDM report by using the
CREATE_REPORT procedure.

• You can use the OEM to view the performance findings of the stored ADDM reports, which
are proactively created each hour after the AWR snapshots.

The following sections discuss each of these three methods, but first we’ll look at how to read
an ADDM report.

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES 765

4517CH17.qxd 8/19/05 11:08 AM Page 765

Reading an ADDM Report

The ADDM presents the results of its analysis to you in a standard format that consists of the follow-
ing components:

• The definition of the performance problem

• The root cause of the performance problem

• Recommendation(s) for fixing the problem

• The rationale for the proposed recommendations

Listing 17-2 shows a condensed version of an ADDM report.

Listing 17-2. An Abbreviated ADDM Report

DETAILED ADDM REPORT FOR TASK 'TASK_4028' WITH ID 4028
Analysis Period: 01-JUL-2005 from 06:00:11 to 21:00:37

Database ID/Instance: 866170026/1
Database/Instance Names: FINANCE/finance

Host Name: prod5
Database Version: 10.2.0.0.0
Snapshot Range: from 3068 to 3076
Database Time: 687974 seconds

Average Database Load: 23.9 active sessions

FINDING 1: 42% impact (287205 seconds)
Individual database segments responsible for significant physical I/O were found.

RECOMMENDATION 1: Segment Tuning, 15% benefit (102631 seconds)
ACTION: Run "Segment Advisor" on TABLE "FIN.UNIT_REGISTR"

with object id 1817.
RELEVANT OBJECT: database object with id 1817

ACTION: Investigate application logic involving I/O
on TABLE "FIN.UNIT_REGIST" with object id 1817.

RELEVANT OBJECT: database object with id 1817
RATIONALE: The SQL statement with SQL_ID "dvycj85pfmb1b" spent

significant time waiting for User I/O on the hot object.
RELEVANT OBJECT: SQL statement with SQL_ID dvycj85pfmb1b
UPDATE UNIT_REGISTR UR SET UR.CARD_PRINTED_FLAG = 'Y'

. . .

RECOMMENDATION 2: Segment Tuning, 6.7% benefit (56805 seconds)
ACTION: Run "Segment Advisor" on TABLE "APPOWNER.CAMP_POS"

with object id 1381.
RELEVANT OBJECT: database object with id 1381

ACTION: Investigate application logic involving I/O on TABLE
"APPOWNER.CAMP_POS" with object id 1381.
RELEVANT OBJECT: database object with id 1381

RATIONALE: The SQL statement with SQL_ID "gfjfc1g8t2a64" spent
. . .

FINDING 2: 29% impact (202802 seconds)
Individual database segments responsible for significant user I/O wait were found.

RECOMMENDATION 1: Segment Tuning, 12% benefit (84451 seconds)
ACTION: Run "Segment Advisor" on TABLE "APPOWNER.COM_ORGS" with

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES766

4517CH17.qxd 8/19/05 11:08 AM Page 766

RELEVANT OBJECT: database object with id 1412
ACTION: Investigate application logic involving I/O on TABLE

"APPOWNER.COM_ORGS" with object id 1412.
RELEVANT OBJECT: database object with id 1412

FINDING 3: 23% impact (160643 seconds)
The buffer cache was undersized causing significant additional read I/O.

RECOMMENDATION 1: DB Configuration, 23% benefit (160643 seconds)
ACTION: Increase SGA target size by increasing the value of

parameter "sga_target" by 2128 M.
SYMPTOMS THAT LED TO THE FINDING: Wait class "User I/O" was consuming

significant database time.

FINDING 4: 16% impact (134639 seconds)
SQL statements consuming significant database time were found.

RECOMMENDATION 1: SQL Tuning, 4.9% benefit (41134 seconds)
ACTION: Run SQL Tuning Advisor on the SQL statement with SQL_ID

"dvycj85pfmb1b".

FINDING 5: 6.1% impact (51563 seconds)
The throughput of the I/O subsystem was significantly lower than expected.

RECOMMENDATION 1: Host Configuration, 6.1% benefit (51563 seconds)
ACTION: Consider increasing the throughput of the I/O subsystem.

Oracle's recommended solution is to stripe all data file using the
SAME methodology. You might also need to increase the number of disks
for better performance. Alternatively, consider using Oracle's
Automatic Storage Management solution.

SYMPTOMS THAT LED TO THE FINDING:
Wait class "User I/O" was consuming significant database time. (71%
impact [604143 seconds])

. . .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ADDITIONAL INFORMATION
----------------------

Wait class "Administrative" was not consuming significant database time.
Wait class "Application" was not consuming significant database time.
Wait class "Cluster" was not consuming significant database time.
Wait class "Commit" was not consuming significant database time.
Wait class "Configuration" was not consuming significant database time.
CPU was not a bottleneck for the instance.
Wait class "Network" was not consuming significant database time.
Wait class "Scheduler" was not consuming significant database time.
Wait class "Other" was not consuming significant database time.

The analysis of I/O performance is based on the default assumption that the
average read time for one database block is 10000 micro-seconds.

An explanation of the terminology used in this report is available when you
run the report with the 'ALL' level of detail.

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES 767

4517CH17.qxd  8/19/05  11:08 AM  Page 767



In an ADDM report, each finding is followed by one or more recommendations. Thus, you
might see a Recommendation 1, Recommendation 2, and so on, under each of the findings. For any
particular finding, the sum of the benefit that follows the implementation of all recommendations
under a finding equals that finding’s impact (DB time).

Note the following about the ADDM report shown in Listing 17-2:

• Findings 1 and 2 state that individual database segments responsible for significant physical
I/O wait were found. ADDM recommends that you run the Segment Advisor to find out
whether you can shrink the problem segments.

• Finding 3 reports an undersized buffer cache and recommends that you increase the
SGA_TARGET parameter by 2,128MB.

• For Finding 4, the recommendation is to run the SQL Tuning Advisor on a specific SQL
statement.

• For Finding 5, you’re asked to look into disk striping and adopting the Automatic Storage
Management solution, since the user I/O wait event was taking up considerable DB time.

■Note The ADDM’S I/O performance analysis is based on the assumption that the average read time for one
database block is 10,000 microseconds.

At the end of the Detailed ADDM Report, you’ll see a section called Additional Information,
which usually shows insignificant wait information. 

■Tip Oracle enables the ADDM by default, as long as you set the STATISTICS_LEVEL parameter to TYPICAL or
ALL. If you set the STATISTICS_LEVEL parameter to BASIC, you’ll disable many automatic performance-tuning
and statistics-gathering activities, including the AWR and ADDM.

Using the addmrpt.sql script

You can create an ADDM report by using the addmrpt.sql script, found in the $ORACLE_HOME/
rdbms/admin directory. The example in Listing 17-3 shows how to get the ADDM report for the
period between 6 AM and 2 PM. To do so, I specified the snapshot numbers corresponding to the
6 AM and 2 PM snapshot collection times—the addmrpt.sql script makes this easy by displaying a
list of snapshot numbers and the corresponding dates and times. (In the script, you can see that
snapshot ID 3068 was captured at 6:00 AM and 3076 was captured at 2:00 PM.) 

Listing 17-3. Producing an ADDM Report with the addmrpt.sql Script

$ sqlplus /nolog
SQL*Plus: Release 10.2.0.0.0. - Beta on Sat Jul 2 14:16:33 2005
Copyright (c) 1982, 2004, Oracle.  All rights reserved.
SQL> CONNECT sys/syspasswd AS SYSDBA
Connected.
SQL> @/u03/app/oracle/rdbms/admin addmrpt.sql 
Current Instance
~~~~~~~~~~~~~~~~
DB Id DB Name Inst Num Instance
----------- ------------ -------- ------------
877170026 FINANCE 1 finance

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES768

4517CH17.qxd 8/19/05 11:08 AM Page 768

Instances in this Workload Repository schema
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
DB Id       Inst Num DB Name       Instance     Host
------------ -------- ------------ ------------ ----
866170026          1 FINANCE        finance    prod5

Using  866170026 for database Id
Using          1 for instance number
Specify the number of days of snapshots to choose from
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Entering the number of days (n) will result in the most recent
(n) days of snapshots being listed. Pressing <return> without
specifying a number lists all completed snapshots.
Listing the last 3 days of Completed Snapshots

Snap
Instance DB Name Snap Id Snap Started Level
------------ ------------ --------- ------------------ -----
finance FINANCE 3067 22 Jul 2005 05:00 1

3068 22 Jul 2005 06:00 1
3069 22 Jul 2005 07:01 1
3070 22 Jul 2005 08:00 1
3071 22 Jul 2005 09:00 1
3072 22 Jul 2005 10:00 1
3073 22 Jul 2005 11:00 1
3074 22 Jul 2005 12:01 1
3075 22 Jul 2005 13:00 1
3076 22 Jul 2005 14:00 1

Specify the Begin and End Snapshot Ids
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Enter value for begin_snap: 3068
Begin Snapshot Id specified: 3068
Enter value for end_snap: 3076
End   Snapshot Id specified: 3076

Specify the Report Name
~~~~~~~~~~~~~~~~~~~~~~~
The default report file name is addmrpt_1_3068_3076.txt.
To use this name, press <return> to continue, otherwise enter an alternative.
Enter value for report_name:
Using the report name addmrpt_1_3068_3076.txt
Running the ADDM analysis on the specified pair of snapshots . . .
. . .
SQL>

You’ve seen how to get an ADDM report covering a past period, but suppose you are experienc-
ing a performance problem at 2:40 PM, and the last snapshot is from 2 PM—the next snapshot
won’t be taken until 3 PM, so your last ADDM report is of no use to you in this case. You can create
an ad hoc ADDM report by manually creating a snapshot, as shown here:

SQL> EXECUTE dbms_workload_repository.create_snapshot();
PL/SQL procedure successfully completed.

Within a few seconds of the creation of this AWR snapshot, Oracle automatically generates an
ADDM report (using the period between the snapshot you just executed and the preceding snap-
shot), which you can view through the OEM Database Control interface.

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES 769

4517CH17.qxd 8/19/05 11:08 AM Page 769

Using the DBMS_ADVISOR Package

The DBMS_ADVISOR package helps you manage the attributes of ADDM, as well as perform jobs like
creating tasks and retrieving ADDM reports using SQL. ADDM is part of the advisory framework in
Oracle Database 10g. A non-DBA user needs the ADVISOR privilege to use the DBMS_ADVISOR
package.

The following are the main procedures and functions of the DBMS_ADVISOR package, and
they apply not just to the ADDM, but also to all the other database advisors:

• CREATE_TASK: Creates a new advisor task

• SET_DEFAULT_TASK: Helps you modify default values of parameters within a task

• DELETE_TASK: Deletes a specific task from the repository

• EXECUTE_TASK: Executes a specific task

• GET_TASK_REPORT: Displays the most recent ADDM report

• SET_DEFAULT_TASK_PARAMETER: Modifies a default task parameter

You can get an ADDM report identical to the one we got with the addmrpt.sql script in the
previous section by using the GET_TASK_REPORT procedure of the DBMS_ADVISOR package. The
GET_TASK_REPORT procedure lets you get an XML, text, or HTML report for a specified task, including
an ADDM task. Here’s how you get a text report:

SQL> SET LONG 1000000
SQL> SELECT dbms_advisor.get_task_report(
2 task_name, 'TEXT', 'ALL')
3 FROM dba_advisor_tasks
4 WHERE task_id=(
5 SELECT max(t.task_id)
6 FROM dba_advisor_tasks t, dba_advisor_log l
7 WHERE t.task_id = l.task_id
8 AND t.advisor_name='ADDM'
9* AND l.status= 'COMPLETED')

Using the OEM Database Control to View ADDM Reports

You can also view ADDM reports via the OEM interface, using either the Database Control (or Grid
Control). Let’s look at how to use the Database Control interface to get the ADDM findings.

First, go the ADDM page by following these steps:

1. On the Database Control home page, click on the Advisor Central link, which is under the
Related Links section at the bottom of the page.

2. On the Advisor Central page, you’ll see the Results section at the bottom (see Figure 17-1).
The latest ADDM auto-run results (based on the two latest snapshots) are available from this
page. From this page you can also get the results of any other advisors you may have run.

Figure 17-1 shows the Advisor Central page with the latest ADDM report shown at the bottom
of the page, in the Results section. This automatically run ADDM report was completed just after
10 AM on March 26, 2005, using the most recent pair of consecutive snapshots, 3167 and 3168. The
name of the ADDM report is ADDM:877170026_1_3168. Click on this report name link to view the
detailed ADDM report, as shown in Figure 17-2. You can also save the ADDM results to a file or print
the report.

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES770

4517CH17.qxd 8/19/05 11:08 AM Page 770

Figure 17-1. Locating the latest ADDM report on the Advisor Central page of the Grid Control

Figure 17-2. Viewing the latest ADDM report in the OEM Grid Control

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES 771

4517CH17.qxd 8/19/05 11:08 AM Page 771

■Tip Note that you can also view an ADDM report straight from the Database Control home page. Simply go to
the Diagnostic Summary section and click on the ADDM Findings link, which is a number that shows how many
ADDM Findings are available for viewing. If your instance doesn’t have any ADDM problem findings, this number
will be 0.

For each problem identified by ADDM its performance findings are displayed in the form of
three columns: the Impact column, the Finding column, and the Recommendations column.
The Impact column lists the performance problems in the order of their impact on their system.
The Impact column is thus very important, because you can start working on fixing the most seri-
ous problem that is currently affecting database performance. Even if your guess is that SQL parsing
issues are the most pressing issues right now, if the Impact column ranks I/O problems as number
one, you should take care of the I/O problems first. The Finding column lists a brief description of
the problem, and one or more recommendations are presented in the Recommendations column.
For example, the “SQL statements consuming significant database time were found” finding has an
impact of 48.33 percent on DB time, and SQL tuning is the recommended action.

In addition to the impact, problem, and recommendations information, the detailed report
includes a listing of the symptoms that led to each particular finding. For some problems, the
ADDM report also includes a Rationale section that explains the reasoning behind its recommenda-
tions. You can drill down the findings to get the rationale and the detailed recommendations. For
example, Figure 17-3 shows the rationale behind a certain recommendation.

Figure 17-3. Viewing the rationale for a recommendation in the ADDM report

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES772

4517CH17.qxd 8/19/05 11:08 AM Page 772

Using Database Control to Run ADDM
In the previous section, I showed how to use the Database Control to view existing ADDM reports.
As explained earlier, ADDM automatically runs by default every hour, immediately after the hourly
(default value) AWR snapshot completes. However, you can also manually run the ADDM to pro-
duce an ad hoc report if you see a spike in instance activity or you notice excessive waits in the
database. Here are the steps to do this:

1. From the Database Control home page, click on the Advisor Central link.

2. Click on the ADDM link.

3. You will now be in the Run ADDM page, shown in Figure 17-4. You can make one the follow-
ing choices and then click OK:

• To analyze current instance performance, create an immediate AWR snapshot and run
the ADDM analysis on it and the most recent snapshot.

• To analyze past instance performance, select either the Period Start Time or the Period
End Time option and click on one of the snapshot icons under the Active Sessions graph.

Figure 17-4. Running an ad hoc ADDM report using Database Control

Using ADDM-Related Dictionary Views
The following data dictionary views will help you manage the ADDM:

• The DBA_ADVISOR_RECOMMENDATIONS view shows all the ADDM recommendations in
the database.

• The DBA_ADVISOR_FINDINGS view shows the findings of all the advisors in your database.

• The DBA_ADVISOR_RATIONALE view shows the rationale behind all the recommendations.

• The DBA_ADVISOR_ACTIONS view shows all the actions that are necessary to implement
the ADDM recommendations.

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES 773

4517CH17.qxd 8/19/05 11:08 AM Page 773

Automatic Shared Memory Management
It isn’t always easy to adjust the System Global Area (SGA), which is the memory that Oracle assigns
to every instance to hold data and control information. You may have a situation where OLTP trans-
actions dominate the database all day, and then you run heavy-duty batch jobs during the night. In
such a situation, you’d need a higher allocation for the buffer cache during the day, and an increase
in the large pool component of the SGA for the nightly batch jobs.

You can, of course, dynamically change several SGA components, as well as use scripts to
change SGA allocations before and after batch jobs, but the fact remains that you are directly
responsible for adjusting the SGA components to match instance needs. Problems like the ORA-4031
(“out of shared pool memory”) error are all too common when you’re manually tuning various
parameters. If you try to be extra careful and allocate a lot of SGA memory, you’ll run the risk of
wasting critical resources and also potentially contributing to paging and other problems, which
will affect your database performance.

■Note To enable automatic shared memory management, you need to set the SGA_TARGET parameter to a
nonzero value. In Oracle Database 10g, the database enables the automatic PGA memory management feature by
default, but if you set the PGA_AGGREGATE_TARGET parameter to 0 or the WORKAREA_SIZE_POLICY parameter to
MANUAL, Oracle doesn’t use automatic PGA memory management.

In Oracle Database 10g, you can make the often-tricky issue of shared memory management
completely automatic. This is one of the more significant improvements in Oracle Database 10g,
and it contributes significantly to Oracle’s goal of automatic database management. Under auto-
matic shared memory management, Oracle will automatically allocate and deallocate memory for
each of the memory pools based on changing database workloads. Oracle uses internal views and
statistics to decide on the best way to allocate memory among the SGA components.

These are some of the benefits of using automatic shared memory management:

• Reduces the chance of running out of shared pool memory

• Uses available memory optimally

• Improves database performance by constantly matching memory allocations and instance
memory needs

You can continue to manually manage the shared memory components in Oracle Database
10g if you wish. All SGA automatic components behave the same way as in previous versions, except
that the shared pool component now includes the internal overhead allocations for metadata, and
should therefore be set a little higher than in previous versions of the database.

■Note You limit the total amount of memory used by Oracle by setting the SGA_MAX_SIZE initialization para-
meter. The maximum size limit applies to both manual and automatic shared memory management. Oracle will
consequently limit the sum of the various components of the SGA to the size of the SGA_MAX_SIZE parameter. The
SGA_MAX_SIZE parameter defaults to the sum of the actual size of all the SGA components, and when you set it,
Oracle will ensure that it is bumped up to at least the sum of the memory assigned to all the SGA components.

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES774

4517CH17.qxd 8/19/05 11:08 AM Page 774

Enabling Automatic Shared Memory Management
In order to enable automatic shared memory management, all you have to do is set the new
SGA_TARGET initialization parameter to a positive value. By default, the SGA_TARGET parameter is
set to zero (meaning that automatic shared memory management is disabled).

■Tip In order to use automatic shared memory management, you must make sure that you’ve set the
STATISTICS_LEVEL initialization parameter to the default TYPICAL value or the ALL setting.

When automatic shared memory management is enabled, the new Oracle Database 10g
MMAN background process monitors the workload of the database and adjusts the size of the
individual memory components based on the workload.

Setting Automatic and Manual SGA Parameters
As you know, Oracle’s SGA isn’t one big chunk of memory. Rather, it consists of several specific
components such as the buffer cache and shared pool. When you use automatic shared memory
management, the database doesn’t manage all of the shared memory components. Although it is
referred to as automatic shared memory management, the SGA has both an automatic and a man-
ual set of components.

Under automatic shared memory management, the database manages five major components
of the SGA, also known as the auto-tuned SGA parameters. Here are the five components, along
with the parameters that control them:

• Buffer cache (DB_CACHE_SIZE)

• Shared pool (SHARED_POOL_SIZE)

• Large pool (LARGE_POOL_SIZE)

• Streams pool (STREAMS_POOL_SIZE)

• Java pool (JAVA_POOL_SIZE)

■Note You only need to use these parameters if you’re setting their values manually, not if you’re using auto-
matic shared memory management.

Even when you use automatic shared memory management, you must manage all other SGA
components that don’t fall under the automatically managed group of SGA parameters. Here are the
manually managed SGA components, along with the initialization parameters to set their values:

• The log buffer (LOG_BUFFER)

• The optional keep and recycle buffer caches (DB_KEEP_CACHE_SIZE and DB_RECYCLE_
CACHE_SIZE)

• The optional nonstandard block size buffer caches (DB_nK_CACHE_SIZE)

• The new Oracle Storage Management buffer cache, which is meant for the optional ASM
instance (this cache is assigned automatically; you don’t have to specify any parameter
for this).

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES 775

4517CH17.qxd 8/19/05 11:08 AM Page 775

Note that the SGA_TARGET parameter shows the sum of memory for all SGA components, not
just for automatically managed components. Oracle first subtracts the total value of all the manu-
ally sized memory components from the SGA_TARGET value, and then allocates the remainder of the
memory among the five auto-tuned memory components. Let’s look at an example.

Let’s say that you set the SGA_TARGET parameter to 2,000MB, thus utilizing automatic shared
memory management. In order to use the multiple block sizes in your database, you set the follow-
ing values for the DB_nK_CACHE_SIZE parameters:

DB_4K_CACHE_SIZE=200MB
DB_8K_CACHE_SIZE=400MB

In this case, you’ll have a total of 1,400MB left for Oracle to automatically allocate among the
five auto-tuned SGA parameters:

SGA Remaining = SGA_TARGET – (DB_4K_CACHE_SIZE + DB_8K_CACHE_SIZE)

The default values for the five automatically managed SGA components begin at zero, and
Oracle uses an internal memory-tuning algorithm, based on database workload, to allocate mem-
ory to each of the auto-tuned memory components. Oracle will increase the memory allocated to
each component as necessary over time, eventually stabilizing their levels at an optimal allocation.
Oracle recommends that you try not to set a minimum for any of these components, since that will
interfere with the database’s ability to allocate memory optimally.

If Oracle is automatically managing your SGA, you can influence the sizes of the automatically
tuned SGA components by setting a predetermined size for any of the five auto-tuned components.
Oracle will always ensure that the memory allocation for these components will never fall below
any minimum levels that you set. For example, if you set the BUFFER_CACHE_SIZE parameter to
600MB and the SHARED_POOL_SIZE parameter to 800MB, Oracle will never reduce the values of the
two parameters below these levels. In this example, if your SGA_TARGET parameter is set to 2,000MB,
Oracle will have 600MB left to spread among the three remaining automatic SGA parameters and
any other manually tuned SGA parameters like the LOG_BUFFER, for example.

Keep the following points in mind:

• Oracle can raise, but not lower, the value of the auto-tuned SGA parameters beyond the
amounts you set for them.

• All nonautomatic shared memory components will always retain the sizes you assign them.

The SGA_TARGET Parameter
You can arrive at a good initial value for the SGA_TARGET parameter by summing the values of all the
current SGA components in your instance using the V$SGA view, as shown here:

SQL> SELECT SUM(value) FROM V$SGA;
SUM(VALUE)

1009754624
SQL>

The preceding query shows that the current SGA is about 1GB in that instance. If most of the
memory is indeed being used by the instance and isn’t being wasted as free memory, you can assign
a value of 1GB to the SGA_TARGET parameter.

If you’re currently manually managing the SGA components, you can also use the following
query to find out what the appropriate allocation for your SGA_TARGET parameter should be:

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES776

4517CH17.qxd 8/19/05 11:08 AM Page 776

SQL> SELECT (
(SELECT SUM(value) FROM v$sga -
(SELECT current_size FROM v$sga_dynamic free_memory))
FROM dual;

Once you start the instance with a certain value for SGA_TARGET, you can change it dynamically
by using the ALTER SYSTEM command, as shown here:

SQL> ALTER SYSTEM SET SGA_TARGET=1000M;
System altered.
SQL>

Oracle takes into account factors like the number of CPUs in order to impose a minimum
allowable value for the SGA_TARGET parameter on a specific server. If you try to set a SGA_TARGET
value lower than this minimum value, you’ll get an error when you try to start the instance.

After starting the instance under automatic shared memory management, you can switch to
the manual memory management mode by dynamically setting the value of the SGA_TARGET para-
meter to zero (that is, change the parameter’s value while the instance is running). Oracle will
continue to assign the current values for all five automatically tuned SGA parameters. If you restart
the instance, however, Oracle will use the values you specify in the initialization parameter file for
these manually sized parameters. If you don’t set values for any of the SGA components and you
don’t set the SGA_TARGET parameter, the instance SGA will be running in the manually managed
mode by default. Oracle will assign default values for each of the SGA components, which you can
dynamically alter once the instance starts.

■Caution Although the SGA_MAX_SIZE value acts as the upper limit for the SGA_TARGET parameter, Oracle
recommends that you not set the SGA_MAX_SIZE parameter on some UNIX platforms that don’t support dynamic
shared memory, since those platforms use the entire physical memory specified by SGA_MAX_SIZE immediately
after instance startup. In these cases, it doesn’t make any sense to set the SGA_TARGET to a value smaller than
the value specified for the SGA_MAX_SIZE parameter. In other platforms (Oracle specifies Solaris and Windows as
examples), you can limit the total physical SGA used to the value set by the SGA_TARGET parameter.

The SGA_TARGET Parameter and the SGA Components
When you change the value of the SGA_TARGET parameter, such as from 600MB to 700MB, all the
manually configured SGA components will remain same—only the automatically configured SGA
components will be affected by the increase in the value of the SGA_TARGET parameter.

When you use automatic shared memory management, you must either remove all automati-
cally tuned SGA parameters from your initialization parameter file, or you must explicitly set them
to zero. If any of the five auto-tuned parameters have values set, Oracle will consider those as the
floor for that parameter. Oracle will then allocate minimum values for all five auto-tuned memory
components when the instance starts and will adjust them as necessary.

If you use the V$PARAMETER view to check on the size of the automatically tuned SGA para-
meters, you’ll see a value of zero for all the parameters, as shown in Listing 17-4.

Listing 17-4. The V$PARAMETER View Doesn’t Show the SGA Pools

SQL> SELECT name, value FROM V$PARAMETER
WHERE name IN
('shared_pool_size','large_pool_size','db_cache_size',
'streams_pool_size','java_pool_size');

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES 777

4517CH17.qxd 8/19/05 11:08 AM Page 777

NAME VALUE

shared_pool_size 0
large_pool_size 0
java_pool_size 0
streams_pool_size 0
db_cache_size 0
SQL>

Use the V$SGA_DYNAMIC_COMPONENTS view to see the actual current values of the auto-
tuned components, as shown in Listing 17-5. The output of the query shows the correct values for
the current SGA allocations, which can change throughout the life of the instance. Notice that all
manually sized components have a value of zero, since I didn’t specify any allocations for these.

Listing 17-5. Using the V$SGA_DYNAMIC_COMPONENTS View

SQL> SELECT component, current_size
FROM V$SGA_DYNAMIC_COMPONENTS;

COMPONENT CURRENT_SIZE

shared pool 83886080
large pool 4194304
java pool 4194304
streams pool 4194304
DEFAULT buffer cache 201326592
KEEP buffer cache 0
RECYCLE buffer cache 0
DEFAULT 2K buffer cache 0
DEFAULT 4K buffer cache 0
DEFAULT 8K buffer cache 0
DEFAULT 16K buffer cache 0
DEFAULT 32K buffer cache 0
OSM Buffer Cache 0
13 rows selected.
SQL>

You can also use the V$SGASTAT view to check current shared memory allocations, as shown in
Listing 17-6. The first value in the query output refers to the buffer cache pool.

Listing 17-6. Using the V$SGASTAT View to Check SGA Allocations

SQL> SELECT pool, SUM(bytes)/1024/1024
FROM V$SGASTAT
GROUP BY pool;

POOL SUM(BYTES)/1024/1024
------------ -----------------------------

101.411758
java pool 8
streams pool 4
shared pool 184.009274
large pool 4
SQL>

If you use the V$SGA view (which is the same as using the SQL*Plus command SHOW SGA) to see
the values of the SGA, you get somewhat different values, as seen here:

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES778

4517CH17.qxd 8/19/05 11:08 AM Page 778

SQL> SELECT * FROM V$SGA;

NAME VALUE
-------------------- ----------
Fixed Size 1218192
Variable Size 212429168
Database Buffers 104857600
Redo Buffers 262144

SQL>

The higher values shows by the V$SGA view are due to the added allocations for overhead.

■Tip Oracle recommends that you not set any of the auto-tuned parameters if you’re using automatic shared
memory management, as it reduces Oracle’s ability to optimally allocate the SGA among the various components.

SGA and Using the SPFILE vs. the init.ora File
You can store your initialization parameters in the traditional init.ora file or the newer SPFILE,
as explained in Chapter 8. Oracle recommends that the SPFILE be used because of its inherent
benefits. In the case of automatic shared memory management, the SPFILE is a superior way of
managing your initialization parameters.

For example, under automatic shared memory management, the database determines the
ideal allocations of memory for the five automatic components. It does this with the help of internal
algorithms that continually analyze the nature of the database workload. After you first incorporate
automatic shared memory management, Oracle doesn’t know the ideal levels for these compo-
nents—it arrives at appropriate values after a period of calibration based on the nature of your
workload, and it records those values in the SPFILE.

If you are using the init.ora file for specifying your initialization parameters you can’t record
any dynamic changes you make on the fly—if you shut down the database instance, Oracle must
go through the laborious process of analyzing the workload again. The only way to avoid this is to
manually modify the init.ora file before you restart your instance. If you use the SPFILE instead,
Oracle remembers the sizes of the five auto-tuned parameters across the instance shutdown, since
you’ve the option of recording the changes in the SPFILE when you dynamically alter these para-
meters. Thus, when you restart the instance, you won’t start from scratch; Oracle will start with the
values for the auto-tuned memory parameters recorded in the SPFILE.

■Tip Use the SPFILE (rather than the init.ora file) if you want Oracle to remember the sizes of the automatically
tuned memory components across an instance shutdown.

Automatic SGA Management with OEM Database Control
You can use the OEM Database Control to configure automatic shared memory management in
your database. Follow these steps:

1. Click on the Advisor Central link on the Database Control home page.

2. Select Memory Advisor from the list of advisors. This will take you to the Memory
Parameters page.

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES 779

4517CH17.qxd 8/19/05 11:08 AM Page 779

3. Click the Enable button, if automatic shared memory management is currently disabled.
The Enable Automatic Shared Memory Management page will be displayed, as shown in
Figure 17-5.

Figure 17-5. Specifying the SGA_TARGET value in the Database Control’s Enable Automatic Shared
Memory Management page

4. Specify the total SGA size (the SGA_TARGET value) and click the OK button. The changes to
the SGA will take effect immediately.

■Caution Too often, Oracle DBAs focus on the SGA allocation, neglecting to pay enough attention to the pro-
gram global area (PGA) allocation. Yet, in several databases, especially decision-support databases where users
perform queries involving heavy sorting routines, it’s the PGA that’s the more important component of Oracle
memory allocation. I discuss the PGA in detail in Chapters 8 and 22.

Automatic Optimizer Statistics Collection
In an Oracle database, the query optimizer plays a critical role in executing SQL statements in the
most efficient manner. You can execute a given SQL statement in several ways, and it is the query
optimizer’s job to come up with the fastest and most efficient way to perform each database query.

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES780

4517CH17.qxd 8/19/05 11:08 AM Page 780

To arrive at the best plan of execution for any SQL statement, the optimizer first evaluates the
available access paths, join orders, and so on, and selects several candidate execution plans. Next,
it computes the cost of the alternative plans, based on their use of I/O, CPU, and memory. During
this step, the optimizer uses optimizer statistics—crucial statistics that tell the optimizer about data
distribution and storage characteristics of tables and indexes, among other things. The optimizer
finally compares the costs of the alternative plans and picks the least costly plan.

■Note Oracle recommends that you let the database collect optimizer statistics automatically.

Automatically Collecting Optimizer Statistics
Oracle Database 10g introduces the new automatic optimizer-statistics collection feature. You,
thus, don’t have to deal with questions about the frequency of statistics collection or the objects to
include in the collection process, because Oracle will take care of all that for you.

■Note There are some situations where manually collecting optimizer statistics still makes sense, and these are
discussed in the “Manually Collecting Optimizer Statistics” section of this chapter.

It’s very easy to enable automatic statistics collection in Oracle Database 10g—Oracle automat-
ically starts collecting statistics when you create a new Oracle Database 10g database or upgrade to
Oracle Database 10g Release 2, Oracle uses the DBMS_STATS package to collect optimizer statistics
on an automatic basis.

■Tip Make sure that the STATISTICS_LEVEL initialization parameter is set to TYPICAL or ALL, in order to
ensure the automatic statistics collection feature is enabled.

The Scheduler and the GATHER_STATS_JOB
When you create a new database or upgrade one to the Oracle Database 10g release, Oracle auto-
matically creates a database job called GATHER_STATS_JOB, and Oracle Scheduler automatically
schedules the job to run during the maintenance window. Here’s how you verify that the automatic
statistics-collection job is running:

SQL> SELECT job_name
FROM dba_scheduler_jobs
WHERE job_name LIKE 'GATHER_STATS%';

JOB_NAME

GATHER_STATS_JOB
SQL>

Oracle schedules the GATHER_STATS_JOB job for automatic execution using the new Oracle
Scheduler tool. In Oracle Database 10g, the Scheduler replaces and enhances the old job-schedul-
ing capability that used the DBMS_JOBS package (I explain the Scheduler in detail in Chapter 18).

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES 781

4517CH17.qxd 8/19/05 11:08 AM Page 781

■Note I provide more details about automatic optimizer statistics collection, including checking the results of the
GATHER_STATS_JOB job, in Chapter 21.

The Oracle Scheduler has two default operation windows:

• The weeknight window covers the time between 10:00 PM and 6:00 AM, Monday through
Friday.

• The weekend window covers the time between 12:00 AM Saturday and 12:00 AM Monday.

Together, the weeknight and the weekend windows are known as the maintenance window.
Oracle automatically schedules the GATHER_STATS_JOB job to run when the maintenance window
opens.

You can disable the automatic collection of statistics in this way:

SQL> BEGIN
2 dbms_scheduler.disable('gather_stats_job');
3 END;
4 /

PL/SQL procedure successfully completed.
SQL>

The GATHER_STATS_JOB job calls the DBMS_STATS.GATHER_DATABASE_STATS_JOB_PROC procedure to
gather the optimizer statistics. The job collects statistics only for objects that fall into one of the fol-
lowing classes:

• Objects with missing statistics: Any object without statistics is a candidate for statistics
collection.

• Objects with stale statistics: Oracle considers an object’s statistics stale if 10 percent or more
of the object’s rows have been modified since the last time statistics were collected for that
object.

By default, Oracle monitors the modifications (DML changes) in database objects, so long as
you set the STATISTICS_LEVEL initialization parameter to TYPICAL or ALL (TYPICAL is the default
value). The GATHER_DATABASE_STATS_JOB_PROC sets priorities among the database objects based on
the extent of DML activity in each object. The procedure will analyze the objects that have had the
most DML changes first, so that even if it doesn’t finish the entire statistics-collection job before
the maintenance window closes, it ensures that it collects the most-needed statistics. Note that, by
default, the Scheduler will terminate the GATHER_STATS_JOB if it’s still running when the mainte-
nance window closes. The objects for which statistics couldn’t be collected before the close of the
maintenance window, will be processed automatically the next time the job runs. You can, however,
use the setting FALSE for the STOP_ON_WINDOW_CLOSE attribute of the GATHER_STATS_JOB job. Chapter 18,
which discuses the Oracle Scheduler, explains how to do this.

Using the Database Control to Manage the GATHER_STATS_JOB Schedule
You can always modify the default maintenance window using SQL*Plus. You can also use the OEM
Database Control to change the current schedule of the GATHER_STATS_JOB schedule. Here are the
steps:

1. From the Database Control home page, click the Administration tab.

2. Go to the Scheduler Group, and click the Windows link.

3. Click the Edit button. You’ll then be able to edit the weeknight or the weekend window

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES782

4517CH17.qxd 8/19/05 11:08 AM Page 782

Manually Collecting Optimizer Statistics
You can use the DBMS_STATS package to manually collect optimizer statistics at the table, schema,
or database level, as well as to gather system statistics, and I show how to do this in Chapter 21. In
Oracle Database 10g, the recommended way to collect optimizer statistics, however, is to let the
database automatically do it for you. Under some situations, such as the following, however, you
must use the traditional DBMS_STATS package to gather statistics, instead of relying on Oracle’s
automatic statistics collection:

• When using external tables

• When collecting system statistics

• For collecting statistics on fixed objects, such as the dynamic performance tables

• Immediately after you run a bulk load job, since this will make your existing statistics
unrepresentative

Automatic Storage Management
DBAs sometimes maintain thousands of data files for each database they manage, so an Oracle
storage solution should provide both high-performance I/O and failure-proof storage hardware. In
fact, file and I/O management is what usually takes up a large part of an Oracle DBA’s time. With
Oracle’s new Automatic Storage Management (ASM) feature, you can automate traditional file man-
agement tasks. Under an ASM system, the Oracle DBA is in charge of the management of physical
storage from within Oracle’s framework, instead of relying on the system administrator. Using the
ASM disk groups, you can address sets of disks simultaneously, instead of individual disks, and the
database can dynamically configure storage based on changing workloads. By allowing the Oracle
DBA the flexibility to manage complex storage-management devices across various server and stor-
age platforms, ASM becomes a crucial part of Oracle’s grid computing initiative.

ASM is built on OMF, which means you don’t have to worry about specifying filenames and
locations when creating new databases—all you have to do is identify an ASM disk group, which
consists of a set of disks. When you create a database or add a file, you can use familiar CREATE,
ALTER, and DROP SQL statements to allocate disk space. ASM acts as Oracle’s built-in Logical Volume
Manager (LVM) by handling striping and mirroring functions previously managed by third-party
tools. Under ASM, disks are grouped and managed by the database itself and made available for cre-
ating tablespaces. You don’t have to mount the files as with the normal Linux or UNIX file systems.
You also can’t use the traditional tools, such as cp and tar, to copy the ASM files, nor can you describe
them using the ls command. The database holds all information regarding ASM files. If you use
ASM for an Oracle file, the operating system can’t see it, but RMAN and Oracle’s other tools can.

For example, issue the following command:

SQL> ALTER DATABASE BACKUP CONTROLFILE TO TRACE;

This will display the names of any ASM files. If ASM uses fully qualified names, you can see
data files in views such as V$DATAFILE and V$LOGFILE.

When assigning a file to a tablespace or other object in an ASM file system, you don’t need to
know its name. You can refer to a disk group, and ASM automatically generates the filename.

Instead of learning to utilize a whole set of commands to manage ASM databases, you can just
use OEM Database Control to mange virtually all ASM operations. You can create a new ASM
instance with the DBCA or with the Oracle Universal Installer (which uses the DBCA behind the
scenes), and you can migrate an existing database to an ASM system with Database Control.

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES 783

4517CH17.qxd 8/19/05 11:08 AM Page 783

The Benefits of ASM
By using ASM, you can manage data by selecting reliability and performance characteristics for data
classes, rather than working with large storage systems on a per-file basis. An ASM file system offers
the following benefits:

• ASM provides automatic load balancing over all the available disks, thus reducing hot spots
in the file system.

• ASM prevents fragmentation of disks, so you don’t need to manually relocate data to tune
I/O performance.

• Adding disks is straightforward—ASM automatically performs online disk reorganization
when you add or remove storage.

• ASM uses redundancy features available in intelligent storage arrays.

• The ASM storage system stores all types of database files.

• ASM makes your file management tasks easier, because you will be dealing with just a few
groups of disks, rather than a multitude of database files. ASM automatically creates the
database files and places them in appropriate disk groups.

• ASM does mirroring and striping, which in turn increases reliability and performance. You
can select different reliability and performance characteristics for various types of data. For
example, you can use fine-grained striping for redo log files and a coarser-grained striping
for regular data files.

• ASM is free!

■Tip ASM and non-ASM files can coexist in the same Oracle database.

Examining the ASM Architecture
The three major components of ASM are the ASM instance, ASM disk groups, and ASM files. Let’s
look briefly at these important ASM components.

The ASM instance is a special Oracle instance—it does not have its own data files like a regular
Oracle database does. A single ASM instance on a server can manage the ASM file systems for all
the Oracle databases on that server. The ASM instance looks after disk groups and gives the data-
base access to the ASM files. The database makes the initial contact with the ASM instance to get
information on the data files, but it accesses those files directly. The ASM instance must be running
for an Oracle database to use the ASM file system, and the ASM instance can’t be shut down while
the other Oracle databases using ASM file systems are still running, since those databases will crash
without the ASM instance.

ASM disk groups are somewhat analogous to logical volumes created by a Logical Volume Man-
ager. Unlike the usual Oracle database files, you don’t access ASM files directly. Disks in an ASM
context are rather loosely defined and can include a partition of a disk spindle or the entire disk
spindle itself. This depends on how the storage system represents the logical unit number (LUN) to
the operating system. Any LUN or a disk represented to the operating system is called a disk. Since
each operating system could have a different disk-naming system, check your disk-naming system.

ASM files are part of an ASM disk group, which contains all your database files. ASM manages a
disk group consisting of several disk drives as a single unit, and it spreads the data evenly among all
the disks in the group. You don’t have to change the management of your database if you want to

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES784

4517CH17.qxd 8/19/05 11:08 AM Page 784

switch to an ASM system, because you can use your operating system–based files with the new ASM
files. Logical concepts such as extents, segments, and tablespaces work the same way under an ASM
system.

Here’s a summary of an ASM storage system:

• A database is allowed to have multiple disk groups.

• You can store all of your Oracle database files as ASM files because Oracle sets up a one-to-
one mapping between an Oracle database file (data files and control files, for example) and
an ASM file.

• An ASM disk group comprises a set of disk drives.

• ASM disk groups are permitted to contain files from more than one disk.

• ASM files always spread over every disk in an ASM disk group and belong to one disk
group only.

• ASM allocates disk space in allocation units of 1MB.

■Note You can continue to use your existing operating system file systems, raw devices, or OMF files as usual,
along with ASM files, or you can migrate all existing file systems to an ASM-based file system.

Installing ASM
If you’re creating an ASM instance on a server with just a single Oracle database, you probably don’t
need a separate Oracle home for the ASM instance. However, if you’re running multiple Oracle
databases on that server, Oracle recommends that you install ASM in a separate Oracle home. To do
so, you use the Oracle Universal Installer and the Database Configuration Assistant to install the
Oracle software and configure and create the ASM instance. In the example that follows, we will cre-
ate an ASM instance in the same home as the existing Oracle database, so we don’t have to install
anything new.

ASM and Cluster Synchronization Service
An ASM storage system requires the use of an additional specialized database instance called ASM,
which will actually manage the storage for a set of Oracle databases. In order to use ASM storage for
your Oracle databases, you must first ensure that you have Oracle’s Cluster Synchronization Service
(CSS) running on your databases.

CSS is responsible for synchronizing ASM instances and your database instances, and it is
installed as part of your Oracle software. CSS also synchronizes recovery from an ASM instance fail-
ure. You can find out if the CSS service is running by using the following command:

$ ps -ef | grep css
oracle 5506 1 1 Apr 11 ? 630:05 /u03/app/oracle/bin/ocssd.bin
oracle 12791 10525 2 16:38:39 pts/11 0:00 grep css

$

The preceding ps -ef output shows that the CSS service is indeed running. If you get the fol-
lowing result instead, it means that your CSS service hasn’t been started:

$ ps -ef | grep css
oracle 2207 19736 0 18:12:39 pts/6 0:00 grep css

$

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES 785

4517CH17.qxd 8/19/05 11:08 AM Page 785

■Tip You can’t use ASM until the Oracle CSS service is started.

You can also check for the CSS process with the CRSCTL utility, as shown here:

$ crsctl check cssd
Failure 1 contacting CSS daemon
$

If your CSSD daemon isn’t running, as in the preceding example, you must start it by following
these steps:

1. Log in as the root user.

2. Make sure you add the Oracle home directory to your path, as shown here:

export PATH=$PATH:/u01/app/oracle/product/10.2.0/bin

3. Run the following command to start the CSS daemon:

localconfig add
/etc/oracle does not exist. Creating it now.
Successfully accumulated necessary OCR keys.
Creating OCR keys for user 'root', privgrp 'root'..
Operation successful.
Configuration for local CSS has been initialized

Adding to inittab
Startup will be queued to init within 30+60 seconds.
Checking the status of new Oracle init process...
Expecting the CRS daemons to be up within 600 seconds.
CSS is active on these nodes.
localhost
CSS is active on all nodes
Oracle CSS service is installed and running under init(1M)
#

4. Now, check for the CSS daemon again:

crsctl check css
CSS appears healthy
#

You can also check to make sure that the CSS processes are running, as shown here:

ps -ef | grep css
root 24871 1 0 07.59 ? 00:00:00 /bin/su -1 oracle c exec➥
/u01/app/oracle/product/10.2.0/db_1/bin/ocssd
root 24945 24871 0 08.00 ? 00:00:02 ➥
/u01/app/oracle/product/10.2.0/db_1/bin/ocssd.bin
#

The init.cssd script, which acts as the control script for the CSS daemon, starts and stops the
CSS service. It is located in the $ORACLE_HOME/css/admin directory. The localconfig add com-
mand will automatically add the init.cssd script to your system’s /etc/inittab file, as shown here:

h1:3:respawn:/sbin/init.d/init.cssd run >/dev/null 2>&1 </dev/null

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES786

4517CH17.qxd 8/19/05 11:08 AM Page 786

If you create an ASM instance using the DBCA, the CSS daemon is automatically started. The
localconfig command and the CRSCTL utility work the same way in a Windows server. However,
refer to the documentation for more details on configuring the CSS service on a Windows server.

■Tip Since an ASM instance acts as the storage manager for all databases on a server, you’ll need a single ASM
instance on a node to service all the Oracle databases running there.

Creating an ASM Instance
Before you can create an ASM file system, you must create an ASM instance on your server. To
create an ASM instance, you follow the same process you would when creating any other Oracle
instance, with the big difference that you use a small number of initialization parameters. It should
be noted that the ASM instance won’t mount any Oracle database files. The ASM instance’s main
function is to maintain ASM file metadata, which the regular Oracle databases will use to access the
ASM-based database files. An ASM instance usually requires only about 100MB of disk space.

Unlike normal Oracle databases, ASM instances don’t have data dictionaries, so you must con-
nect as an administrator, either using operating system authentication as SYSDBA or SYSOPER, or
using a password file, if you’re working over a remote connection. To create the ASM instance, you
have to have the SYSDBA privilege. You can perform most management tasks (apart from creating
the instance and a few other tasks) with just the SYSOPER privilege, but connecting as SYSDBA
means you’ll have complete administrative privileges.

■Note If you choose to create a new Oracle database during the Oracle Database software installation, or you
use the Database Configuration Assistant (DBCA) to create a database, all you have to do to use ASM is choose an
ASM storage system from the three storage choices that you’re offered (raw devices, OS file systems, and ASM).
The DBCA will automatically create the ASM instance for you, along with the Oracle database.

Working with the ASM Instance's Initialization Parameters
You have to create an initialization parameter file with the following parameters before you can
create the new instance:

• INSTANCE_TYPE: In an Oracle Database 10g database, you have two types of Oracle instances:
RDBMS and ASM. RDBMS, of course, refers to the normal Oracle databases, and ASM refers
to the new ASM instance. Set the INSTANCE_TYPE parameter to ASM. This will implicitly set
the DB_UNIQUE_NAME parameter to +ASM.

• ASM_POWER_LIMIT: This is the maximum speed of this ASM instance during a rebalance disk
operation. This operation redistributes the data files evenly and balances I/O load across the
disks. The default is 1 and the range is from 1 to 11 (1 is slowest and 11 is fastest).

• ASM_DISKSTRING: This is the location where Oracle should look during a disk-discovery
process. The format of the disk string may vary according to your operating system. You
can specify a list of values as follows; this example limits the ASM discovery to disks whose
names end in s1 and s2 only:

ASM_DISKSTRING = '/dev/rdsk/*s1', '/dev/rdsk/*s2'

• ASM_DISKGROUPS: Here you specify the name of any disk group that you want to mount auto-
matically at instance startup; the default value for this parameter is NULL.

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES 787

4517CH17.qxd 8/19/05 11:08 AM Page 787

To start an ASM instance off, you first have to create an init.ora file (initasm+.ora) that contains
the ASM-related initialization parameters. Here it is:

INSTANCE_TYPE=ASM
ASM_POWER_LIMIT =2
ASM_DISKSTRING = '/dev/rdsk/*s1', '/dev/rdsk/*s2'
ASM_DISKGROUPS = dgroupA, dgroupB

Oracle will issue an error after the ASM instance is created because we’ve included the ASM-
DISKGROUPS parameter, but no disk groups have yet been created for this new instance. We can
create the disk groups after the ASM instance comes up.

Once you have the init.ora file ready, export the new ASM instance’s SID just as you would for
any regular Oracle database, and start up the new ASM instance, as shown in Listing 17-7.

■Note If your CSS instance wasn’t started, you’ll see the following error when you try to create your ASM
instance:

ORA-29701: unable to connect to Cluster Manager

If this happens, simply start up the CSS daemon as explained in the “ASM and Cluster Synchronization
Service” section earlier in this chapter, and then start up the ASM instance as shown in Listing 17-7.

Listing 17-7. Starting a New ASM Instance

[finance] $ export ORACLE_SID=+ASM
[+ASM] $ sqlplus /nolog
SQL*Plus: Release 10.2.0.0.0 - Beta on Sun Jul 3 08:33:34 2005
Copyright (c) 1982, 2004, Oracle. All rights reserved.
SQL> CONNECT / AS SYSDBA
Connected to an idle instance.
SQL> STARTUP PFILE=initasm+.ora
ASM instance started

Total System Global Area 79691776 bytes
Fixed Size 1216820 bytes
Variable Size 53309132 bytes
ASM Cache 25165824 bytes
ORA-15110: no diskgroups mounted
SQL>

Note the new SGA component, ASM Cache, which is sized at about 25MB. In most cases, the
total SGA memory allocated to the entire ASM instance remains small, usually less than 100MB.

In the preceding example, we also ended up with the ORA-15110 error, because the disk groups
specified in the init.ora file don’t exist yet, and the new instance can’t mount them. We’ll create the
disk groups later on and then mount them with the ALTER DISKGROUP . . . MOUNT command. You
can avoid the error message by taking out the ASM_DISKGROUPS parameter from the initialization
parameter file.

■Tip Once you create an ASM instance, you must set the ORACLE_SID environment variable for the ASM
instance before you can connect to it, just as you would do for a normal Oracle database instance. The default
ASM instance name is +ASM.

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES788

4517CH17.qxd 8/19/05 11:08 AM Page 788

You can confirm the name of your new ASM instance with the following query:

SQL> SELECT instance_name FROM v$instance;
INSTANCE_NAME

+ASM
SQL>

If you run the LSNRCTL STATUS command from the command line, you’ll see that the listener
has automatically registered the new ASM instance:

Service "+ASM" has one instance(s).

You can check the newly created ASM instance processes in the following way:

[+ASM] $ ps –ef | grep asm
oracle 3201 1 0 Jul 3 ? 0:00:00 oracleasm+ (DESCRIPTION =

(LOCAL=YES) (ADDRESS=(PROTOCOL=beq)))
oracle 11977 1 0 12:56 ? 0:00: 05 asm_pmon_+asm
oracle 11979 1 0 12:56 ? 0:00: 02 asm_psp0_+asm
oracle 11981 1 0 12:56 ? 0:00: 02 asm_mman_+asm
oracle 11985 1 0 12:56 ? 0:00: 02 asm_dbw0_+asm
oracle 11973 1 1 12:56 ? 0:00: 02 asm_lgwr_+asm
oracle 11987 1 0 12:56 ? 0:00: 03 asm_ckpt_+asm
oracle 11989 1 0 12:56 ? 0:00: 02 asm_smon_+asm
oracle 11991 1 0 12:56 ? 0:00: 02 asm_rbal_+asm
oracle 11995 1 0 12:56 ? 0:00: 02 asm_gmon_+asm
[+ASM] $

All the background processes shown in the preceding output are standard Oracle Database 10g
processes, with the exception of a couple of background processes specific to an ASM instance. The
following section explains the important ASM-specific background processes.

■Tip You don’t need to back up an ASM database, since you don’t have any physical ASM data files to back up!
This is also why you can’t use the MOUNT and OPEN options while starting an ASM instance. All ASM metadata is
either stored in the SGA while the ASM instance is running or stored on the disk groups and mirrored, to provide
high availability.

Examining an ASM Instance’s Architecture
An ASM instance uses several regular Oracle background processes, such as SMON, PMON, and
LGWR. In addition, ASM utilizes two new ones: ASM rebalance master (RBAL) and ASM rebalance
(ARBn). The RBAL process coordinates disk activity, and the ARBn processes perform the rebalanc-
ing work, which can include moving data extents.

In addition to ASM’s RBAL and ARBn, any Oracle database instance that uses ASM will have
two ASM-related background processes: RBAL and ASM background (ASMB). RBAL performs global
opens of the disks that are part of the ASM disk group, and ASMB connects to the ASM instance as a
foreground process and links the ASM instance and your database instance, sending information
such as notifications when a data file is created or deleted, and when statistics are updated.

You can use the OEM Database Control to manage an ASM instance. Its main page shows your
ASM instance’s status. From here, click the Configuration tab to visit the ASM Configuration page,
where you can modify the ASM instance’s parameters. You can also go to the ASM main page and
check your instance’s performance.

Let’s review the manual ASM startup and shutdown procedures.

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES 789

4517CH17.qxd 8/19/05 11:08 AM Page 789

Starting an ASM Instance
The STARTUP command for an ASM instance is quite similar to the STARTUP command for regular
Oracle databases, with a couple of interesting differences.

During the mount phase of the normal Oracle STARTUP command, an Oracle database reads
the control file and mounts the file systems specified there. An ASM instance doesn’t have any file
systems to mount and instead mounts the disk groups that you specify in the ASM_DISKGROUPS ini-
tialization parameter. The NOMOUNT command is similar to the regular Oracle NOMOUNT command: it
starts an ASM instance, but doesn’t mount any disk groups. Listing 17-8 shows how the STARTUP
NOMOUNT and STARTUP MOUNT commands work in an ASM instance.

Listing 17-8. The STARTUP NOMOUNT and STARTUP MOUNT Commands in an ASM Instance

SQL> STARTUP NOMOUNT;
ASM instance started

Total System Global Area 79691776 bytes
Fixed Size 1216820 bytes
Variable Size 53309132 bytes
ASM Cache 25165824 bytes
SQL> SELECT name FROM v$database;
select name from v$database

*
ERROR at line 1:
ORA-01507: database not mounted
SQL> ALTER DATABASE MOUNT;
alter database mount
*
ERROR at line 1:
ORA-15000: command disallowed by current instance type
SQL>
SQL> ALTER DATABASE OPEN;
alter database open
*
ERROR at line 1:
ORA-15000: command disallowed by current instance type
SQL>

To use ASM, you have to have a running ASM instance, and since there aren’t any data files in
an ASM instance, you can’t use the STARTUP command’s MOUNT or OPEN options. When you issue a
STARTUP FORCE command, the ASM instance is first shut down with an internal STARTUP ABORT com-
mand and the instance is restarted. You can prevent any client Oracle database instances from
connecting to the ASM instance by using the STARTUP RESTRICT command.

Shutting Down an ASM Instance
To shut down an ASM instance, you run the same commands you would if you were shutting down
a normal Oracle database instance:

$ sqlplus /nolog
SQL> CONNECT / AS SYSDBA
Connected.
SQL> SHUTDOWN
ASM instance shutdown
SQL>

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES790

4517CH17.qxd 8/19/05 11:08 AM Page 790

Each Oracle database connected to an ASM instance depends on the status of the ASM
instance. If you shut down your ASM instance, every connected Oracle database will also shut
down. (This is similar to how all Oracle instances will shut down if you shut down the LVM on the
operating system.) When you shut down an ASM instance, it forwards the SHUTDOWN command, in
the same mode, to any Oracle databases that are connected to it.

If you shut down your ASM instance in NORMAL mode, it will wait for every connected Oracle
database instance to close their ASM connections before shutting down. If you shut down in
IMMEDIATE or TRANSACTIONAL mode, the ASM instance waits until the connected databases have
finished all SQL operations before shutting down, but it doesn’t wait for them to disconnect.

Issuing the SHUTDOWN ABORT command causes the following events to occur:

• The ASM instance terminates immediately.

• All open Oracle connections are automatically terminated.

• All dependent Oracle databases will also terminate immediately. This is why you should be
careful about shutting down the ASM instance abruptly.

The asmcmd Command-Line Tool
In Oracle Database 10g Release 2, you can also manage ASM using a command-line tool, which
gives you more flexibility than having to use SQL*Plus or the Database Control. To invoke the com-
mand-line administrative tool, called asmcmd, enter this command (after the ASM instance is
started):

$ asmcmd
ASMCMD>

The command-line tool has about a dozen commands you can use to manage ASM file sys-
tems, and it includes familiar UNIX/Linux commands such as du, which checks ASM disk usage. To
get a complete list of commands, type help at the command prompt (ASMCMD>). By typing help fol-
lowed by a command, you can get details about that command.

Managing ASM Disk Groups
An ASM disk group is a collection of disks analogous to the logical volumes that an LVM creates
from the underlying physical disks. This means that you have to manage the underlying disks indi-
rectly by managing the disk group.

If you have large numbers of disks, you can group them into a small number of easily managed
disk groups, and if you add storage to your ASM system, you simply add disks to an ASM disk group.
This is good news, because if your database grows quickly, the total storage space increases, but the
number of disk groups remains the same.

Adding Performance and Redundancy with Disk Groups
Two major reasons for using ASM file management are the additional performance and protection,
and the decreased management overhead. Of course, these are the same advantages third-party
vendors claim for their LVM tools, but the major advantage of ASM is that you as an Oracle DBA can
do most of the disk management using ASM. There’s no need for you to be an expert in file systems,
RAID, or logical volumes to use ASM; all you need is an understanding of ASM’s disk-management
system and Oracle’s processes for accessing database files spread over the ASM disks.

ASM gives you performance and redundancy through striping and mirroring, so let’s look at
these two features.

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES 791

4517CH17.qxd 8/19/05 11:08 AM Page 791

■Note The OEM Database Control is the best way to administer the ASM instance, once you create it. Refer to
the Oracle Database 10g Release 2 (10.2) manual “Oracle Database 2 Day DBA” for details about using Database
Control to manage disk groups, as well as all other aspects of an ASM instance.

Examining ASM Striping
ASM systems store your database files on ASM disks. The manner in which you place your database
files on ASM disks plays a critical role in the resulting performance. For optimal I/O performance,
ASM stripes its files across every disk that is part of its disk group. This means that all the disks in a
disk group must be of the same type and performance capacity.

ASM offers two types of striping, with the choice depending on the type of database file. Coarse
striping uses a stripe size of 1MB, and you can use coarse striping for every file in your database,
except for the control files, online redo log files, and flashback files. Fine striping uses a stripe size
of 128KB. You can use fine striping for control files, online redo log files, and flashback files.

Examining ASM Mirroring
Disk mirroring gives us data redundancy. This means that, should you lose a disk, you can use the
mirror disk to continue operations. This process is not like an OS-level mirroring scheme, but they
both provide redundancy for your database. The difference is that OS-based LVMs mirror entire
disks, whereas ASM mirrors extents. This means that when ASM allocates an extent (the primary
extent, in contrast to a mirrored extent), it also allocates a mirror copy to one of the disks in the
same disk group. Therefore, a disk can have mirror extents on any number of disks in the group.

When a disk in a group fails, ASM rebuilds the failed disk using the mirrored extents from other
disks in the group. When ASM reconstructs a failed disk, the storage system takes a small perform-
ance hit, because ASM requires some extra I/O to reconstruct the failed device.

Failure Groups

Disk failure is not the only way in which you can lose a disk. You can also lose a disk if shared
resources, such as SCSI disk controllers, fail. When one of these fails, you cannot access any of the
connected disks. A set of disks that fail because they all share a common resource, such as a disk
controller, is a failure group. You ensure redundancy by mirroring disks on a separate failure group.

To avoid problems, ASM will not place a primary extent and its mirror copy in the same failure
group. This means that even if a failure group loses several disks, ASM can survive the disaster and
reconstruct the lost disks from the mirror copies that are in a different failure group.

Types of ASM Mirroring

ASM supports three forms of disk mirroring, each with a different level of data redundancy.
External redundancy doesn’t have failure groups, and thus is effectively a no-mirroring strategy.
Normal redundancy provides two-way mirroring of all fields in a disk group. High redundancy pro-
vides three-way mirroring, which results in three failure groups, with a disk controller for each.

Creating a Disk Group
OEM Database Control is the best tool for performing most ASM tasks, including creating a disk
group. Using the Disk Group Administration page, you can select redundancy levels, disk-group
names, and lists of disks that are members of a disk group. Once you create disk groups, the ASM
instance will mount them each time you start the instance, and you won’t receive the ORA-15110

ted the ASM instance.

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES792

4517CH17.qxd 8/19/05 11:08 AM Page 792

You can also create a disk group with the CREATE DISKGROUP command. Suppose you have three
disk controllers and twelve disks. The first four disks are on a separate controller from the second
four disks, and so on. You could create three failure groups, each of which has four disks. To start
with, you need to start the ASM instance in NOMOUNT mode. (If you want to access existing disk
groups, you have to use MOUNT mode.) You can then create the disk groups corresponding with the
three groups. To do so, you would issue the CREATE DISKGROUP command, as shown in Listing 17-9.

Listing 17-9. Creating Disk Groups with the CREATE DISKGROUP Command

$ sqlplus /nolog
SQL> CONNECT / AS SYSDBA
Connected to an idle instance.
SQL> STARTUP NOMOUNT
SQL> CREATE DISKGROUP group1 HIGH REDUNDANCY 2
2 failgroup group1 disk
3 '/devices/disk1',
4 '/devices/disk2',
5 '/devices/disk3',
6 '/devices/disk4',
7 failgroup group2 disk
8 '/devices/disk5',
9 '/devices/disk6',
10 '/devices/disk7',
11 '/devices/disk8',
12 failgroup group3 disk
13 '/devices/disk9',
14 '/devices/disk10',
15 '/devices/disk11',
16 '/devices/disk12';
SQL>

In order to find the disks, Oracle uses a search string in the following format:

/devices/diskname

The FAILGROUP and REDUNDANCY keywords are optional, but if you omit FAILGROUP, each disk in
the group will be in its own failure group. Specifying the HIGH REDUNDANCY setting creates the follow-
ing setup:

• There are three failure groups, each defined by FAILGROUP (you must have at least three fail-
ure groups to specify HIGH REDUNDANCY).

• Each failure group has four disks.

• Oracle writes data simultaneously to all three disks in the three failure groups.

Adding Disks to a Disk Group
The ALTER DISKGROUP command can be used to add a new disk, as shown here:

SQL> ALTER DISKGROUP group1 ADD DISK
'/devices/disk5' name disk5,
'/devices/disk6' name disk6,

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES 793

4517CH17.qxd 8/19/05 11:08 AM Page 793

Dropping Disks and Disk Groups
The ALTER DISKGROUP command can be used to drop a disk, as shown here:

SQL> ALTER DISKGROUP group1 DROP DISK disk5;

You can use the following command to remove a disk group, after putting the database in the
MOUNT state:

SQL> DROP DISKGROUP group1 INCLUDING CONTENTS

The UNDROP clause keeps a pending DROP DISK command from happening. If the disk has
already dropped, there is no way for you to retrieve it, even using UNDROP.

The optional FORCE clause means you can’t use the UNDROP clause and you can never UNDROP a
whole disk group. Here’s an example of the UNDROP clause:

SQL> ALTER DISKGROUP group1 UNDROP DISKS;

This cancels the pending drop of all disks from the group1 disk group.

Rebalancing Disk Groups
When ASM rebalances a disk group, it does so automatically and dynamically. It does this whenever
you change the status of a disk in a disk group, whether you are adding or removing a disk from the
disk group—it attempts to maintain an I/O balance across all the disks in a disk group. So, when
you add or remove disks, you disturb the I/O balance, but ASM sets it right automatically by moving
data appropriately for the space you added or removed.

■Note Since there will be a performance hit on your system while ASM rebalances a disk group, you should
consolidate the times when you add and remove disks so that you reduce the number of times that ASM has to
rebalance.

You can also manually rebalance the disk groups if you wish, using the following command;
you can assign a value of 1 through 11 for the POWER clause:

SQL> ALTER DISKGROUP dgroup1 REBALANCE POWER 5;

The POWER clause specifies how fast ASM performs the REBALANCE command. Setting the POWER
clause high increases the speed of the rebalancing. The default is 1 (the default value for the
ASM_POWER_LIMIT parameter). Specifying POWER means you are overriding the value you assigned to
the ASM_POWER_LIMIT initialization parameter when you started the ASM instance. Of course, it
would be nice to rebalance disks quickly rather than slowly, but due to the overhead involved,
there’s a tradeoff between rebalancing speed and database performance.

Managing ASM Files
The data files you create in a regular database aren’t like the ones in an ASM setup. ASM file man-
agement takes over your normal operating system files, which become ASM files and, when you
create a new data file, control file, or redo log, you simply specify an ASM group and not an operat-
ing system file name.

So, to create a new tablespace on an ASM disk group, you would run a command like the
following:

SQL> CREATE TABLESPACE tbsp1 DATAFILE '+group1';

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES794

4517CH17.qxd 8/19/05 11:08 AM Page 794

In this example, DATAFILE takes a file type (DATAFILE), which indicates that we’re going to use
the file as a data file. Here, CREATE TABLESPACE works with a disk group and not with a disk in that
group. Note that we don’t even refer to a data file.

The ASM system does indeed create a data file, though it doesn’t compare to regular data files.
ASM spreads its files across every disk in the disk group, so you can’t rely on a backup of a single
disk to hold the entire data file.

It should also be noted that ASM files have a permanent redundancy level and striping policy,
which is different from normal data files.

ASM files are OMF files, and Oracle will remove them when you don’t need them. Note that if
you give an ASM file a user alias, Oracle doesn’t consider that file an OMF file, so it can’t automati-
cally delete it.

■Note Administrative files such as trace files, audit files, alert logs, backup files, export files, tar files, and core
files can’t be on an ASM file system. ASM filenames are stored in control files and the RMAN recovery catalog, the
same way as filenames of regular operating system–based files or OMF-based files are.

Types of ASM Filenames
ASM naming conventions depend on whether you’re creating a new file, or referring to an existing
file. Here are the usage guidelines for the different file-naming conventions:

• Fully qualified ASM filenames are used when referencing existing ASM files (for example,
+dgroupA/db2/controlfile/CF.123.456789).

• Numeric ASM filenames are also only used when referencing existing ASM files (for example,
+dgroupA.123.456789).

• Alias ASM filenames employ user-friendly names and are used when you create new files, as
well as when you refer to existing files (for example, +dgroupA/myfiles/control_file1).

• Alias filenames with templates are strictly for creating new ASM files (for example,
+dgroupA/config1(spfile)).

• Incomplete ASM filenames consist of a disk group name only and are used only for file cre-
ation. Incomplete ASM filenames may be used with or without a template (for example, here
is an incomplete file name with a template: +dgroupA(datafile)).

Creating Diskgroup Directories for Alias Filenames
The fully qualified filenames in a disk group are held in a hierarchical directory structure. To use
aliases, you have to create a directory structure to support the alias naming conventions. The fol-
lowing example shows how to create a hierarchical directory for a disk group named dgroup1:

SQL> ALTER DISKGROUP dgroup1 ADD DIRECTORY '+dgroup1/dir1';

After creating the +dgroup1/dir1 directory, you can create alias ASM filenames, such as
+dgroup1/dir1/control_file1, for example.

Using Templates with Aliases
Templates are used to apply a set of file attributes, like those referring to file mirroring and striping,
to each of the files created in a disk group. There are default templates for each file type (data file,
control file, and so on), and you can create custom file templates.

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES 795

4517CH17.qxd 8/19/05 11:08 AM Page 795

■Note Templates are discussed in detail in the “ASM File Templates” section of this chapter.

Using a template, you can create an alias ASM filename when you create a new file. Here’s the
syntax of a template-based alias ASM filename:

diskgroup/alias(template)

And here’s an example:

dgroup1/config1(spfile)

Adding and Dropping Aliases
If you create a file and don’t use an alias, you can later add an alias with the ADD ALIAS or RENAME
ALIAS clauses of the ALTER DISKGROUP statement. The following example replaces a fully qualified
ASM filename with an alias:

SQL> ALTER DISKGROUP dgroup1 ADD ALIAS '+dgroup1/dir/second.dbf'
FOR '+dgroup2/ datafile/table.763.1';

To delete an alias, use the DROP ALIAS clause.

Dropping Files from a Disk Group
ASM files are often OMF files, but you may sometimes want to use your own aliases for some ASM
files. If you use your own aliases, Oracle won’t automatically delete the aliases when there is a need
to do so. To accomplish this, you have to use ALTER DISKGROUP . . . DROP FILE to delete them:

SQL> ALTER DISKGROUP dgroup1 DROP FILE '+dgroup1/payroll/compensation.dbf';

Working with ASM Filenames
Here’s a brief summary of ASM filename usage:

• When referring to an existing file, use a fully qualified name, a numeric name, or an alias.
This cannot be an alias with a template, or an incomplete filename with or without a
template.

• When creating a single file, use any filename, but not a fully qualified filename.

• When creating multiple files, only use incomplete filenames or incomplete filenames with
templates.

You must avoid using ASM filenames if you can, since one of the main goals in using ASM is to
simplify file management by just referring to the disk groups instead.

ASM File Templates
It is easy to specify file attributes in Oracle. You can simply use templates to specify attributes when
you create files. Oracle applies templates to individual files, but associates them with the newly
created file’s disk group.

If you create a disk group, Oracle creates system default templates for that disk group, and
these templates contain specific file attributes.

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES796

4517CH17.qxd 8/19/05 11:08 AM Page 796

For example, suppose we want to create a new tablespace called “tbsp01” in an ASM file sys-
tem. This tablespace will use data files, so we can use the ASM DATAFILE template:

SQL> CREATE TABLESPACE tbsp01 DATAFILE '+group1';

The tablespace data file will inherit the attributes such as the striping level of the DATAFILE
template.

Creating an ASM-Based Database
To create an ASM-based Oracle database (not an ASM instance, which we created earlier in the
chapter), specify the DB_CREATE_FILE_DEST, DB_RECOVERY_FILE_DEST, and the DB_RECOVERY_FILE_
DEST_SIZE parameters in your initialization parameter file, as shown here:

DB_CREATE_FILE_DEST = '+dgroup1'
DB_RECOVERY_FILE_DEST = '+dgroup2'
DB_RECOVERY_FILE_DEST_SIZE = 100G

These four parameters are also used to create an Oracle Managed Files (OMF) file system,
which I discuss in detail in the “Easy File Management with OMF” section, later in this chapter.

Once the preceding parameters have been set up, you simply issue the database creation
statement. You don’t need to specify data files when creating an ASM database, so it’s a very
straightforward process. Here’s how:

SQL> CREATE DATABASE;

In this example, Oracle will create a System tablespace and a Sysaux tablespace in the disk
group dgroup1. In addition, it will create a multiplexed redo log file group and a control file in both
dgroup1 and dgroup2. If you configure Automatic Undo Management, an undo tablespace will be
created in dgroup1, as well.

Creating new tablespaces and adding various files to the database also become trivial chores,
as shown by the next two examples. Here’s how you would create a new tablespace:

SQL> CREATE TABLESPACE new_tbsp;

In order to create a redo log file, use the following statement:

SQL> ALTER DATABASE ADD LOGFILE;

Migrating Your Database to ASM
You can migrate a database to an ASM system, either by using OEM Database Control (or Grid
Control), or by using RMAN. You can use RMAN even if you don’t use it to backup your current
database.

Migrating with RMAN
Here’s a brief summary of how to use RMAN to migrate a database to ASM:

1. Shut down the database in a consistent mode by using the SHUTDOWN IMMEDIATE command.

2. Add the DB_CREATE_FILE_DEST and DB_CREATE_ONLINE_LOG_DEST_n parameters, as well as the
new flash recovery area initialization parameters, DB_RECOVERY_FILE_DEST and DB_RECOVERY_
FILE_DEST_SIZE, to your database parameter file so you can use an OMF-based file system.
(I explain OMF files shortly in the “Easy File Management with OMF” section of this chap-
ter). Make sure that the two OMF parameters refer to the disk groups that you want to use in
your ASM system.

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES 797

4517CH17.qxd 8/19/05 11:08 AM Page 797

3. Delete the control file parameter from the SPFILE, since Oracle will create new control files
in the OMF file destinations by restoring them from the non-ASM database control files.

4. Start the database with STARTUP NOMOUNT command:

RMAN> CONNECT TARGET;
RMAN> STARTUP NOMOUNT;

5. Restore the old control file in the new location, as shown here:

RMAN> RESTORE CONTROLFILE from '/u01/orcl/oradata/control1.ctl';

6. Mount the database:

RMAN> ALTER DATABASE MOUNT;

7. The following command will copy your database files into an ASM disk group:

RMAN> BACKUP AS COPY DATABASE FORMAT +dgroup1;

8. Use the SWITCH command (discussed in Chapter 16) to switch all data files into the ASM disk
group dgroup1:

RMAN> SWITCH DATABASE TO COPY;

At this point, all data files will be converted to ASM type. You still have your original data file
copies on disk, which you can use to restore your database if necessary.

9. Open the database with the following command:

RMAN> ALTER DATABASE OPEN;

10. For each redo log member, use the following command to move it to the ASM system:

RMAN> SQL "alter database rename '/u01/test/log1' to '+dgroup1' ";

11. Archive the current online redo logs, and delete the old non-ASM redo logs. Since RMAN
doesn’t migrate temp files, you must manually create a temporary tablespace using the
CREATE TEMPORARY TABLESPACE statement.

You’ll now have an ASM-based file system. You still have your old non-ASM files as backups in
the RMAN catalog, and you can delete them if you need the space.

Migrating with Database Control
Instead of going through the cumbersome RMAN migration exercise shown in the previous section,
you can simply use the Database Control interface to easily convert your current database to an
ASM database. Here are the first few steps:

1. From the Database Control home page, click on the Administration tab.

2. In the Change Database group, click on the Migrate to ASM link.

3. You’ll now be on the Migrate to ASM Database page, as shown Figure 17-6. At this point,
make sure you have an ASM instance running on your server. After that, provide the neces-
sary information on the pages that follow to convert your database to ASM.

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES798

4517CH17.qxd 8/19/05 11:08 AM Page 798

Figure 17-6. Using Database Control to migrate to ASM

Automatic Space Management
Oracle Database 10g provides several automatic space-management features. These features elimi-
nate the need for manually performing several traditional space-management chores. In this
section, you’ll learn about the following automatic space-management features:

• Locally managed tablespaces

• Automatic undo management

• Resumable Space Allocation

• Oracle Managed Files

• Automatic online segment shrinking

Locally Managed Tablespaces
Space management has been one of the most time-consuming Oracle DBA tasks for many years.
DBAs used to worry about tablespace fragmentation, and they devoted considerable time to reor-
ganizing database objects to coalesce fragmented free space in tablespaces. The use of locally
managed databases frees up DBAs from routine space-management tasks and improves the per-
formance of DML and of certain DDL operations. In Oracle Database 10g, by default, permanent
tablespaces are created as locally managed tablespaces. If you currently have dictionary-managed
tablespaces, you can convert to locally managed tablespaces using Oracle’s DBMS_SPACE_ADMIN
package.

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES 799

4517CH17.qxd 8/19/05 11:08 AM Page 799

When you use locally managed tablespaces, you can choose the Automatic Segment Space
Management (ASSM) feature to manage segment space. ASSM provides you both better space
utilization as well as better database performance, compared to traditional manual segment-space-
management techniques. In Oracle 10.2, ASSM is the default for all permanent, locally managed
tablespaces.

■Note Chapter 5 provides more details about locally managed tablespaces and the ASSM feature.

Automatic Undo Management
Undo refers to the before image of data as it existed before the start of a transaction. All the con-
current transactions running in your database need to be able to fit into the undo space allocated
for them, or you’re going to have transaction failures. Rollback segment contention and space man-
agement used to be big database management issues, but when you use Oracle’s recommended
Automatic Undo Management (AUM) mode, you don’t have to worry about these problems anymore.

Under manual rollback management, you manually manage the rollback segments and have to
worry about specifying large segments for large transactions to avoid “Snapshot too old” errors. In
addition, you have to worry about contention for rollback segments, proper sizing of the segments,
and the correct number of segments. When you choose AUM mode, you simply create a dedicated
undo tablespace, select the undo retention period, and Oracle will do the rest.

Oracle introduced AUM in the Oracle9i release. Under AUM, the rollback segments are inter-
nally created and are called undo segments. Oracle handles issues such as the number and size of
the rollback segments, block contention, and maintenance of read consistency. When you create
the undo tablespace during database creation, Oracle creates a set of undo segments, and Oracle
automatically increases the number and size of these segments according to an internal algorithm,
based on database workload.

■Note Chapter 6 discusses the setting up and management of Automatic Undo Management in detail.

Easy File Management with OMF
Oracle Managed Files (OMF) makes managing data files, control files, redo log files, and RMAN
backup files a lot easier than managing the various files at the operating system level. Normally, if
you drop a data file, the database won’t have any references to the data file, but the physical file still
exists in the old location—you have to explicitly remove the physical file yourself. If you use OMF,
Oracle will remove the file for you when you drop it from the database. According to Oracle, OMF
file systems are most useful for databases using Logical Volume Managers that support RAID and
extensible file systems. Smaller databases benefit the most from OMF, because of the reduced
file-management tasks. Test databases are another area where an OMF file system will cut down
on management time.

You have to use operating system–based files if you want to use the OMF feature; you can’t use
raw files. You do lose some control over the placement of data in your storage system when you use
OMF files, but even with these limitations, the benefits of OMF file management can outweigh its
limitations in some circumstances.

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES800

4517CH17.qxd 8/19/05 11:08 AM Page 800

Benefits of Using OMF
You can create tablespaces with OMF-based files. You can also specify that your online redo log files
and your control files are in the OMF format. OMF files offer several advantages over user-managed
files:

• Oracle automatically creates and deletes OMF files.

• You don’t have to worry about coming up with a naming convention for the files.

• It’s easy to drop data files by mistake when you’re managing them. With OMF files, you don’t
run the risk of accidentally deleting database files.

• Oracle automatically deletes a file when it’s no longer needed.

• You can have a mix of traditional files and OMF files in the same database.

In the following sections we’ll look at the OMF feature in some detail.

Creating Oracle Managed Files
You can create OMF files when you create the database, or you can add them to your traditionally
created database later on. Either way, you need to set some initialization parameters to enable OMF
file creation.

Initialization Parameters for OMF

You need to set four initialization parameters to enable the use of OMF files. You can set these three
parameters in your parameter file, and you can change them online with the ALTER SYSTEM or ALTER
SESSION statement. You can use each of these parameters to specify the file destination for different
types of OMF files:

• DB_CREATE_FILE_DEST: This parameter specifies the default location of data files, online redo
log files, control files, block-change tracking files, and temporary files. You can also specify a
control file location if you wish. Unfortunately, the DB_CREATE_FILE_DEST parameter can take
only a single directory as its value; you can’t specify multiple file systems for the parameter.
If the assigned directory for file creation fills up you can always specify a new directory,
because the DB_CREATE_FILE_DEST parameter is dynamic. This enables you to place Oracle
data files anywhere in the file system without any limits whatsoever.

• DB_RECOVERY_FILE_DEST_SIZE: This parameter specifies the size of your flash recovery area.

• DB_CREATE_ONLINE_LOG_DEST_n: You can use this parameter to specify the default location of
online redo log files and control files. In this parameter, n refers to the number of redo log
files or control files that you want Oracle to create. If you want to multiplex your online redo
log files as Oracle recommends, you should set n to 2.

• DB_RECOVERY_FILE_DEST: This parameter defines the default location for RMAN backups,
flashback logs, and archived redo logs. If you omit the DB_CREATE_ONLINE_LOG_DEST_n param-
eter, this parameter will determine the location of the online redo log files and control files.
The directory location you specify using this parameter is also known as the flash recovery
area, and I explain it in detail in Chapter 15.

If you don’t specify any of these initialization parameters in your init.ora file or SPFILE, you can
still use the ALTER SYSTEM command to dynamically enable the creation of OMF files, as shown in
the following example:

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES 801

4517CH17.qxd 8/19/05 11:08 AM Page 801

SQL> ALTER SYSTEM SET DB_CREATE_FILE_DEST =
2 '/test01/app/oracle/oradata/finance1';

System altered.
SQL>

As long as you specify the DB_CREATE_FILE_DEST parameter, you can have Oracle create OMF
files for you and you can use both the user-managed and OMF files simultaneously without a
problem.

File-Naming Conventions

Oracle uses the OFA standards in creating filenames, so filenames are unique and data files are eas-
ily identifiable as belonging to a certain tablespace. Table 17-1 shows the naming convention for
various kinds of OMF files and an example of each type. Note that the letter t stands for a unique
tablespace name, g stands for an online redo group, and u is an 8-character string.

Table 17-1. OMF File-Naming Conventions

OMF File Type Naming Convention Example

Data file ora_t%_u.dbf ora_data_Y2ZV8P00.dbf

Temp file (default size ora_%t_u.tmp ora_temp_Y2ZWGD00.tmp
is 100MB)

Online redo log file ora_%g_%u.log ora_4_Y2ZSQK00.log
(default size is 100MB)

Control file ora_u%.ctl ora_Y2ZROW00.ctl

Different Types of Oracle Managed Files
You can use OMF to create all three types of files that the Oracle database requires: control files,
redo log files, and, of course, data files. However, there are interesting differences in the way OMF
requires you to specify (or not specify) each of these types of files. The following sections cover how
Oracle creates the three different types of files.

Control Files

As you have probably noticed already, there is no specific parameter that you need to include in
your init.ora file to specify the OMF format. If you specify the control files parameter, you will, of
course, have to specify a complete file location for those files, and obviously they will not be OMF
files—they are managed by you. If you don’t specify the control files parameter, and you use the
DB_CREATE_FILE_DEST or the DB_CREATE_ONLINE_LOG_DEST_n parameter, your control files will be
OMF files.

If you are using a traditional init.ora file, you need to add the control file locations to it. If you
are using an SPFILE, Oracle automatically adds the control file information to it.

Redo Log Files

OMF redo log file creation is similar to control file creation. If you don’t specify a location for the
redo log files, and you set either the DB_CREATE_FILE_DEST or the DB_CREATE_ONLINE_LOG_DEST_n
parameter in the init.ora file, Oracle automatically creates OMF-based redo log files.

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES802

4517CH17.qxd 8/19/05 11:08 AM Page 802

Data Files

If you don’t specify a data file location in the CREATE or ALTER statements for a regular data file, or a
temp file for a temporary tablespace, temp file, or an undo tablespace data file, but instead specify
the DB_CREATE_FILE_DEST parameter, all these files will be OMF files.

Simple Database Creation Using OMF
Let’s look at a small example to see how OMF files can really simplify database creation. When you
create a new database, you need to provide the control file, redo log file, and data file locations to
Oracle. You specify some file locations in the initialization file (control file locations) and some file
locations at database creation (such as redo log locations). However, if you use OMF-based files,
database creation can be a snap, as you’ll see in the sections that follow.

Setting Up File Location Parameters

For the new OMF-based database, named NICKO, let’s use the following initialization parameters.

db_name=nicko
DB_CREATE_FILE_DEST = '/u01/app/oracle/oradata'
DB_RECOVERY_FILE_DEST_SIZE = 100M
DB_RECOVERY_FILE_DEST = '/u04/app/oracle/oradata'
LOG_ARCHIVE_DEST_1 = 'LOCATION = USE_DB_RECOVERY_FILE_DEST'

Note that of the four OMF-related initialization parameters, I chose to use only the DB_CREATE_
FILE_DEST, DB_RECOVERY_FILE_DEST_SIZE, and DB_RECOVERY_FILE_DEST parameters. I didn’t have to
use the fourth parameter, DB_CREATE_ONLINE_LOG_DEST_n, in this example. When this parameter is
left out, Oracle creates a copy of the log file and the redo log file in the locations specified for the
DB_CREATE_FILE_DEST and the DB_RECOVERY_FILE_DEST parameters. I thus have two copies of the
control file and the online redo log files.

The setting for the last parameter, LOG_ARCHIVE_DEST_1, tells Oracle to send the archived redo
logs for storage in the flash recovery area specified by the DB_RECOVERY_FILE_DEST parameter.

Starting the Instance

Using the simple init.ora file in the preceding section, you can start an instance as shown in
Listing 17-10:

Listing 17-10. Creating the OMF-Based Instance

$ export ORACLE_SID=nicko
[nicko] $ sqlplus /nolog
SQL*Plus: Release 10.2.0.0 - Beta on Sun July 3 17:21:58 2005
Copyright (c) 1982, 2004, Oracle. All rights reserved.
SQL> connect sys/sys_passwd as sysdba
Connected to an idle instance.
SQL> STARTUP NOMOUNT PFILE='initnicko.ora';
ORACLE instance started.
Total System Global Area 188743680 bytes
Fixed Size 1308048 bytes
Variable Size 116132464 bytes
Database Buffers 67108864 bytes
Redo Buffers 4194304 bytes
SQL>

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES 803

4517CH17.qxd 8/19/05 11:08 AM Page 803

Creating the Database

Now that you’ve successfully created the new Oracle instance, you can create the new database
NICKO with this simple command:

SQL> CREATE DATABASE nicko;
Database created.

SQL>

That’s it! Just those two simple lines are all you need to create a functional database with the
following structures:

• A System tablespace created in the default file system specified by the DB_CREATE_FILE_DEST
parameter (/u01/app/oracle/oradata)

• A Sysaux tablespace created in the default file system (/u01/app/oracle/oradata)

• Two duplexed redo log groups

• Two copies of the control file

• A default temporary tablespace

• An undo tablespace automatically managed by the Oracle database

Where Are the OMF Files?

You can see the various files within the database by looking in the alert log for the new database,
alert_nicko.log, which you’ll find in the $ORACLE_HOME/rdbms/log directory, since we didn’t
specify the BACKGROUND_DUMP_DIR directory in the init.ora file.

In the following segment from the alert log file for the database, you can see how the various
files necessary for the new database were created. First, Oracle creates the control files and places
them in the location you specified for the DB_CREATE_ONLINE_LOG_DEST_n parameter.

Sun Jul 3 17:44:51 2005
create database nicko
default temporary tablespace temp
Sun Jul 3 17:44:51 2005
WARNING: Default passwords for SYS and SYSTEM will be used.

Please change the passwords.
Created Oracle managed file /u01/app/oracle/oradata/NICKO/controlfile/o1_mf_150w
. . .
Sun Jul 3 17:46:37 2005
Completed: create database nicko
default temporary tablespace
MMNL started with pid=13, OS id=28939

Here’s what the alert log shows regarding the creation of the control files:

Created Oracle managed file /u01/app/oracle/oradata/NICKO/controlfile/o1_mf_150w
h3r1_.ctl
Created Oracle managed file /u04/app/oracle/oradata/NICKO/controlfile/o1_mf_150w
h3xx_.ctl

Next, the Oracle server creates the duplexed online redo log files. Oracle creates the minimum
number of groups necessary and duplexes them by creating a set of online log files (two) in the
locations specified by the DB_CREATE_ONLINE_LOG_DEST and the DB_RECOVERY_FILE_DEST parameters:

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES804

4517CH17.qxd 8/19/05 11:08 AM Page 804

Created Oracle managed file /u01/app/oracle/oradata/NICKO/onlinelog/o1_mf_1_150w
h48m_.log
Created Oracle managed file /u04/app/oracle/oradata/NICKO/onlinelog/o1_mf_1_150w
hf07_.log
Created Oracle managed file /u01/app/oracle/oradata/NICKO/onlinelog/o1_mf_2_150w
honc_.log
Created Oracle managed file /u04/app/oracle/oradata/NICKO/onlinelog/o1_mf_2_150w
hwh0_.log

The System tablespace is created next, in the location you specified for the DB_CREATE_FILE_
DEST parameter:

create tablespace SYSTEM datafile /* OMF datafile */
default storage (initial 10K next 10K) EXTENT MANAGEMENT DICTIONARY online

Created Oracle managed file /u01/app/oracle/oradata/NICKO/datafile/o1_mf_system_
150wj4c3_.dbf
Completed: create tablespace SYSTEM datafile /* OMF datafile

The default Sysaux tablespace is created next, as seen here:

create tablespace SYSAUX datafile /* OMF datafile */
EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO online

Sun Jul 3 17:46:16 2005
Created Oracle managed file /u01/app/oracle/oradata/NICKO/datafile/o1_mf_sysaux_
150wkk9n_.dbf
Completed: create tablespace SYSAUX datafile /* OMF datafile

The undo tablespace is created next, with the default name of SYS_UNDOTS in the location
specified by the DB_CREATE_FILE_DEST parameter. A temporary tablespace named TEMP is also
created in the same directory:

CREATE UNDO TABLESPACE SYS_UNDOTS DATAFILE SIZE 10M AUTOEXTEND ON
Created Oracle managed file
/test01/app/oracle/oradata/ora_omf/finDATA/ora_sys_undo_yj5mg123.dbf
...
Successfully onlined Undo Tablespace 1.
Completed: CREATE UNDO TABLESPACE SYS_UNDOTS DATAFILE SIZE 1
CREATE TEMPORARY TABLESPACE TEMP TEMPFILE
Created Oracle managed file
/test01/app/oracle/oradata/ora_omf/finDATA/ora_temp_yj5mg592.tmp
Completed: CREATE TEMPORARY TABLESPACE TEMP TEMPFILE

Adding Tablespaces

Adding other tablespaces and data files within an OMF file system is easy. All you have to do is
invoke the CREATE TABLESPACE command without the DATAFILE keyword. Oracle will automatically
create the data files for the tablespace in the location specified in the DB_CREATE_FILE_DEST para-
meter. The example that follows shows how to create the tablespace:

SQL> ALTER SYSTEM SET DB_CREATE_FILE_DEST =
2 '/test01/app/oracle/ora_omf/finance1';

System altered.
SQL> CREATE TABLESPACE omftest;
Tablespace created.
SQL> SELECT file_name FROM dba_data_files
2 WHERE tablespace_name='OMFTEST';

FILE_NAME

/test01/app/oracle/oradata/ora_omf/ora_omftest_yj7590bm.dbf

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES 805

4517CH17.qxd 8/19/05 11:08 AM Page 805

Compare the OMF tablespace-creation statement shown previously with the typical table-
space-creation statement, and you’ll see how OMF simplifies database administration. Adding data
files is also simple with OMF, as shown by the following example:

SQL> ALTER TABLESPACE omftest ADD DATAFILE;

OMF files, as you can see, simplify file administration chores and let you create and manage
databases with a small number of initialization parameters. You can easily set up the necessary
number of locations for your online redo log files, control files, and archive log files by specifying
the appropriate value for the various OMF parameters. Oracle’s ASM-based file system relies on the
OMF file system.

Online Segment Shrinking and the Segment Advisor
Oracle recommends that you use online segment shrinking to compact segments that become frag-
mented over time due to the update and delete operations. A segment’s high-water mark (HWM)
shows the highest point of space usage ever reached by that segment. If you have unused space
above the HWM, that means that this space has never been used by a table or index segment.

You can use the DBMS_SPACE package, as shown in Chapter 5, to find out the amount of
unused space in a segment. You can then deallocate the unused space in a segment by using the
ALTER TABLE (or ALTER INDEX) . . . DEALLOCATE . . . statement, as shown here:

SQL> ALTER TABLE persons DEALLOCATE UNUSED KEEP 1000M;

Once you execute the preceding statement, Oracle will take everything over 1,000MB from the
persons segment and makes the newly free space available for other segments in the tablespace.

For example, if you have used 80 percent of a table segment’s space by inserting rows into that
segment, the HWM for that segment will be at 80 percent. Later on, even if you delete half the rows,
the table’s HWM remains at 80 percent. This has a detrimental effect on full-table scans and index
scans, because Oracle will scan the table all the way to the HWM, even if there is currently very little
data in the table.

A table segment with a large number of deletions will lead to fragmentation, leaving several
gaps below its HWM. You can, of course, reclaim the space you allotted to a table by creating a new
table, copying all the existing data into it, and dropping the old table. In previous versions of Oracle,
you could also compact the unused pockets of space in table or index segments by reorganizing the
object, which usually involved the MOVE command. These reorganizations, which basically recreate
the object in the same or a different tablespace, are sometimes very time-consuming, and they also
require additional space. Also, contrary to Oracle’s assurances, online availability for DML opera-
tions is sometimes diminished.

In Oracle Database 10g, you can use the new segment-shrinking capability to make sparsely
populated segments give their space back to their parent tablespace. You can reduce the HWM,
thereby compacting the data within the segments. In Oracle Database 10g, you can shrink tables
(including index-organized tables), partitions and subpartitions of a table, indexes, and material-
ized views (and materialized view logs).

■Note The segment-shrinking capability is termed an online and in-place operation. It’s online because users
can continue to access the tables during the shrinking operation. The operation is in-place because you don’t need
any duplicate or temporary database space during the segment-shrinking operations.

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES806

4517CH17.qxd 8/19/05 11:08 AM Page 806

Oracle handles the shrinking operation internally as an insert/delete operation. Since you are
only moving data and not modifying it, triggers on the tables will not fire when you perform the
shrink operations. When you shrink a table to compact space, the indexes on the table remain
usable after the shrinking operation.

■Tip A tablespace must both be locally managed as well as use Automatic Segment Space Management for its
segments to be eligible for segment-shrinking operations.

Manual Segment Shrinking
You can use simple SQL commands to shrink segments. The segment-shrinking operation com-
pacts fragmented space in the segments and optionally frees the space.

Before shrinking the segments, you must first enable row movement for any segment that you
want to shrink. You can enable row movement by using the ENABLE ROW MOVEMENT clause of the ALTER
TABLE command, as shown here:

SQL> ALTER TABLE test ENABLE ROW MOVEMENT;

Of course, if you’ve already specified the ENABLE ROW MOVEMENT clause at table-creation time,
you won’t need to issue any commands to enable row movement before starting the segment-
shrinking operation. By default, row movement is disabled at the segment level.

There are two phases in a segment-shrinking operation:

• Compaction phase: During the compaction phase, the rows in a table are compacted and
moved toward the left side of the segment. You thus make the segment dense, but the HWM
remains where it was. The recovered space isn’t immediately released back as free space. You
can continue to issue DML statements and queries on a segment while it is being shrunk.
Oracle holds locks only on the packets of the rows involved in the DML operations. If you
have any long-running queries, Oracle can read from all the blocks that have technically
been reclaimed during the shrinking operation. Of course, this capability is dependent on
the time interval you specified for your undo retention parameter.

• Adjustment of the HWM/releasing-space phase: In the second phase, which lasts for a very
short period of time, Oracle lowers the HWM and releases the recovered free space under the
old HWM back to the parent tablespace. Oracle locks the object in an exclusive mode while
the HWM is being lowered, meaning that you can’t issue any INSERT, UPDATE, and DELETE DML
statements against the segment.

■Caution During the compacting phase, the object is online and available, but during the second phase, the
object becomes briefly unavailable, due to Oracle’s exclusive locking of the segment.

The basic statement for shrinking segments performs both phases of the segment-shrinking
operation (first compacting, then resetting the HWM and releasing the space) in sequence. Here’s
the statement (the name of the table being shrunk is test):

SQL> ALTER TABLE test SHRINK SPACE;

Once you issue this command, Oracle will first compact the segment and then reset the HWM
level and yield the freed space to the tablespace.

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES 807

4517CH17.qxd 8/19/05 11:08 AM Page 807

Since the second phase, the resetting of the HWM, will affect DML operations, you may not
want to use it when a large number of users are connected to the database. Instead, you may want
to issue the following command, which only compacts the space in the segment:

SQL> ALTER TABLE test SHRINK SPACE COMPACT;

This way, during peak hours, the database will merely compact the space in the segment. Dur-
ing off-peak hours, you can issue the ALTER TABLE table_name SHRINK SPACE command, and this
will finish the shrinking process by performing the second phase.

If you use the CASCADE option during a segment-shrinking operation, all the dependent seg-
ments will be shrunk as well. For example, if you shrink a table, all the dependent index segments
will be automatically shrunk. Here’s how you specify the CASCADE option:

SQL> ALTER TABLE test SHRINK SPACE CASCADE;

Using the Segment Advisor to Shrink Segments
Using the new Segment Advisor, you can easily identify the segments that are good candidates for
shrinking. The Segment Advisor bases its recommendations on the amount of fragmentation within
an object. It determines whether objects have enough space to be reclaimed, taking into account
the future space requirements. It bases its estimates of the future space requirements of an object
on historical trends. Besides helping you select candidates for shrinking, the Segment Advisor is
also helpful in sizing new database objects. The following sections describe how to use the advisor
for both purposes.

■Note You can use the Segment Advisor only for Oracle Database 10.1 and 10.2 versions. In order to run the
Segment Advisor, you must have the ADVISOR privilege in addition to the CREATE ANY JOB (or CREATE JOB)
privilege.

Choosing Candidate Objects for Shrinking
You can invoke the Segment Advisor at either the individual segment level or the tablespace level.
You can call the Segment Advisor from the Database Control’s Advisor Central page (which you can
get to from the Database Control home page, clicking Advisor Central in the Related Links section,
and then clicking Segment Advisor). Figure 17-7 shows the main Segment Advisor page.

The Segment Advisor can generate advice at three levels: object, segment, and tablespace. The
Advisor’s recommendations can be either a shrink or a reorganization operation, based on the fol-
lowing criteria:

• If you created the objects in the default locally managed tablespaces with Automatic Seg-
ment Space Management, the Segment Advisor recommends shrinking the segments.

• If you used manual segment space management, or the object isn’t eligible for a shrink oper-
ation, the Segment Advisor will recommend an object reorganization.

You can run the Segment Advisor in two modes:

• Comprehensive analysis: The Segment Advisor will perform an analysis regardless of whether
there are prior statistics or not. If there aren’t any prior statistics, the Segment Advisor will
sample the objects before generating its recommendations. This analysis is more time-
consuming.

• Limited analysis: This analysis is based strictly on the statistics collected on the segment. If
’t perform any analysis.

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES808

4517CH17.qxd 8/19/05 11:08 AM Page 808

Figure 17-7. The Database Control Segment Advisor page

The Automatic Workload Repository (AWR) collects all space-usage statistics during its regular
snapshot collection. The Segment Advisor, to estimate future segment-space needs, uses the
growth-trend report based on the AWR space-usage data. You can view the Segment Advisor recom-
mendations through OEM by clicking on the Segment Advisor Recommendations link on the
Segment Advisor page.

Automatic Segment Advisor Job
In Oracle Database 10.2, Oracle provides an automatic Segment Advisor job called AUTO_SPACE_
ADVISOR_JOB, which automatically detects segment-space related issues. Here are the job details,
which you can see using the DBA_SCHEDULER_JOBS view:

• JOB_NAME: AUTO_SPACE_ADVISOR_JOB

• PROGRAM_NAME: AUTO_SPACE_ADVISOR_JOB

• SCHEDULER_NAME: MAINTENANCE_WINDOW_GROUP

The Segment Advisor job automatically runs during the maintenance window, identifying can-
didates for a segment shrink operation based on the amount of space fragmentation within an
object. You can view the automatic Segment Advisor job recommendations in the same way as any
other manually invoked Segment Advisor recommendations, as shown in the previous section.
You’ll see a list of the Segment Advisor recommendations, from the last time it ran, by clicking the
Segment Advisor Recommendations link on the Segment Advisor page. Figure 17-8 shows the
Recommendations page.

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES 809

4517CH17.qxd 8/19/05 11:08 AM Page 809

Figure 17-8. The Segment Advisor Recommendations page

Automatic Checkpoint Tuning
Oracle is capable of recovering from an unexpected database crash without losing any data.
Remember that when the database crashes, there are two phases to the ensuing recovery:

• Redo or roll-forward phase: In the first phase, the database applies to the data files any
committed updates that haven’t yet been made a part of the data files. These committed
transactions are recovered from the redo log.

• Undo or rollback phase: In the second phase, all uncommitted transactions that are already
part of the data files are undone.

After a crash, the database can’t be opened unless it performs recovery. However, here’s the
interesting part: Oracle lets you open the database before the second phase is completed. As soon
as the redo or roll-forward phase is over, the database is opened for the users, while the SMON
process performs the undo in the background. When a user’s process runs into a transaction locked
for rollback, it rolls back the transaction quickly. These intermittent rollbacks don’t have a dis-
cernible impact on the user’s query performance. This means that the database is open far quicker
after a crash than if you waited for both phases of recovery to complete.

■Note The time it takes for the second phase (the rollback) to complete depends on how much undo information
you have to roll back.

In Oracle Database 10g, you can automate checkpoint tuning by completely avoiding the set-
ting of any checkpoint-related initialization parameters and by setting the FAST_START_MTTR_TARGET
parameter to a nonzero value. By default, the value of this parameter is 0. Oracle will automatically

verhead on database throughput.

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES810

4517CH17.qxd 8/19/05 11:08 AM Page 810

Online Capabilities of Oracle Database 10g
In addition to the automatic database management features, Oracle Database 10g offers you oppor-
tunities to perform many common tasks online, thus reducing the work that you would otherwise
perform only after the database was shut down or an object was taken offline. In some cases (such
as the MOVE command), DML operations are prevented until the table is moved. These features offer
you continuous online availability, making it easier for you to perform the reorganization tasks. In
the sections that follow, you’ll examine some of the important online capabilities of the Oracle
Database 10g database.

Online Data Reorganization
Oracle provided several online reorganization features, such as the ability to create partitions, move
tables, and add constraints, in older versions of its software. The Oracle Database 10g version goes
much further and provides more online options for DBAs, including online database reorganiza-
tion, object validation, and index rebuilding.

Online Database Reorganization with OEM Database Control
You can easily perform offline or online reorganization of database objects using OEM Database
Control. Often you’ll see a need to change the storage attributes of a table or index, and Database
Control makes it easy to perform these reorganizations.

To perform database reorganization with Database Control, go the Database Control home
page and choose Administration ➤ Reorganize Objects. Figure 17-9 shows the main page of the
Database Control Data Reorganization feature. You can choose either offline or online reorganiza-
tion. Online reorganization is slower, but it provides access to the objects being reorganized.

Figure 17-9. The main Database Control Data Reorganization page

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES 811

4517CH17.qxd 8/19/05 11:08 AM Page 811

Once you choose the online reorganization method, OEM will ask you for the list of objects to
be reorganized. It then generates an impact report and job summary, which is a summary of the
actual reorganization script. In the next step, you decide whether to perform the online reorganiza-
tion right away or to schedule it for some other time.

Using SQL Commands to Perform Online Data Reorganization
In addition to the online data redefinition feature which I explain shortly in the “Online Data
Redefinition” section, you can reorganize data in tables and indexes online, using various SQL com-
mands. Let’s briefly look at the important data reorganization methods, first looking at an object
validation command.

Validating an Object Online

You can validate the structure of an object while users are making changes to the table, by using the
ANALYZE TABLE . . . VALIDATE STRUCTURE statement, as shown in the following example:

SQL> ANALYZE TABLE persons
2 VALIDATE STRUCTURE ONLINE;

Table analyzed.
SQL>

Rebuilding an Index Online

You can rebuild indexes online, thus improving the availability of large database tables. Note that
while users can change the table data, they can’t use the parallel DML options during an online
index rebuild. Users can, however, perform normal DML operations against the base table.

You can rebuild many kinds of indexes, including function-based indexes and reverse-key
indexes, online. You can’t rebuild a bitmap index online, though. Here’s an online index rebuilding
example:

SQL> ALTER INDEX test_idx REBUILD ONLINE;

Creating an Index Online

You can also create indexes online, with the following statement:

SQL> CREATE INDEX test_idx ON persons(person_id) ONLINE;

Coalescing an Index Online

You can coalesce an index online with this statement:

SQL> ALTER INDEX test_idx COALESCE;

Moving a Table Online

You can move a table from one tablespace to another, with this command:

SQL> ALTER TABLE test MOVE TABLESPACE new_tbsp

Online Data Redefinition
Oracle offers the online table-redefinition feature, which lets you redefine objects like database
tables online while users continue reading from and writing to them. You can use online data redef-
inition to create new tables with more efficient physical storage parameters, move tables to

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES812

4517CH17.qxd 8/19/05 11:08 AM Page 812

different tablespaces, reduce fragmentation in tables, and change a heap table into an index-
organized table and vice versa, all while maintaining database availability and performance.

The online data-redefinition feature can enhance both data availability and disk usage. Both
the newly redefined table and the original table continue to exist together until the DBA decides to
switch over to the newly redefined table. The length of the switching process is extremely brief and
doesn’t depend on table or index size or the complexity of the object redefinition.

During the redefinition process, local materialized logs are maintained and changes to the
master table are tracked using snapshot logs. If you have materialized views and materialized logs
defined on a table, you can’t redefine them online.

■Note Whenever possible, use the Segment Advisor for shrinking segments and reclaiming unused space below
the HWM. However, if a segment doesn’t qualify for the use of the Segment Advisor, as is the case when you use
dictionary-managed tablespaces or manual segment space management, use the online table-redefinition tech-
nique to reorganize segment data. You also use online table redefinition if you plan on making logical or physical
changes to any table attributes during the reorganization.

What Can Online Redefinition Do?
You can use online redefinition to perform a number of tasks that would have necessitated taking
tables offline in early versions of Oracle. Using the online table-redefinition feature, you can do the
following:

• Add, drop, or rename columns

• Transform table data

• Change data types of the columns

• Rename table constraints

• Change the original storage parameters

• Reduce fragmentation in tables

• Create a partitioned table out of a regular table online

• Create an index-organized table (IOT) out of a regular table

• Move a table to a different tablespace

The list of tasks you can perform using online redefinition is truly impressive, because you
don’t have to keep users from accessing the tables while you’re performing these common tasks.

The online table redefinition involves a simple sequence of steps:

1. Determine whether a table is a good candidate for redefinition.

2. Decide on the structure of the new table, and create a new image of the table.

3. Start the redefinition process by using the DBMS_REDEFINITION package.

4. Create necessary constraints and triggers on the new table.

5. Perform periodic synchronization and validation of data in the new table.

6. Complete the redefinition of the table.

You can perform online table redefinition using one of two methods: a primary key method
and a ROWID method. The ROWID method is more complex, and Oracle recommends you use the
easier primary key method, which requires that the original and the redefined tables have the same

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES 813

4517CH17.qxd 8/19/05 11:08 AM Page 813

primary key columns. In the following sections, you’ll see how to perform online table redefinition
using the default primary key method.

An Online Table-Redefinition Example
In this example, we’ll reorganize the employees table in the HR schema, which has the structure
shown in Listing 17-11. For this example, our goal is to drop the salary column in the employees
table.

Listing 17-11. The Structure of the employees Table

Name Null? Type
--- -------- -----
EMPLOYEE_ID NOT NULL NUMBER(6)
FIRST_NAME VARCHAR2(20)
LAST_NAME NOT NULL VARCHAR2(25)
EMAIL NOT NULL VARCHAR2(25)
PHONE_NUMBER VARCHAR2(20)
HIRE_DATE NOT NULL DATE
JOB_ID NOT NULL VARCHAR2(10)
SALARY NUMBER(8,2)
COMMISSION_PCT NUMBER(2,2)
MANAGER_ID NUMBER(6)
DEPARTMENT_ID NUMBER(4)

The goal is to remove the salary column in the employees table and partition the table using a
range scheme based on the employee_id column. Once we have completed the online redefinition,
we can drop the temporary table. The new table will have all the attributes of the temporary table.

Verifying the Eligibility of the Table

The first step in the online redefinition process is to ensure that the employees table is a candidate
for the process by using the DBMS_REDEFINITION package. If your table is not eligible, Oracle
will issue an error message. The following example shows the use of the package for verifying the
employees table:

SQL> BEGIN
2 DBMS_REDEFINITION.CAN_REDEF_TABLE('hr','employees');
3 END;
4 /

PL/SQL procedure successfully completed.
SQL>

In the DBMS_REDEFINITION.CAN_REDIF_TABLE procedure, you can specify the method of online
redefinition as the third parameter, in addition to the schema owner name (hr) and the table name
(employees). This third parameter is called the options_flag, and it can take two possible values:
DBMS_REDEFINITION.cons_use_pk if you want to use the primary key method or DBMS_REDEFINITION.
cons_use_rowid if you want to use ROWIDs to do the redefinition. Because you’re using the default
primary key method, you don’t have to specify this third parameter for your procedure.

■Note A table doesn’t need a primary key for it to be eligible for online redefinition.

Now that the employees table has indeed been verified as an eligible candidate for redefinition,
we’ll move to the next step, where we’ll create an interim table.

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES814

4517CH17.qxd 8/19/05 11:08 AM Page 814

Creating the Temporary Table

When you’re redefining a production table, you don’t want to change the table directly. It’s a lot less
risky if you can view the results and check the redefinition first. Then you can swap the interim
table for the existing production table. In our example, the interim table, hr.employees_temp, will
not have the salary column. It will also be partitioned on the employee_id column, as shown in
Listing 17-12. These two things—removing the salary column and partitioning the table are the
goals of our redefinition exercise.

Listing 17-12. Creating the Temporary Table for Online Redefinition

SQL> CREATE TABLE hr.employees_temp
2 (employee_id number(6),
3 first_name varchar2(20) not null,
4 last_name varchar2(25) not null,
5 email varchar2(25) not null,
6 phone_number varchar2(20),
7 hire_date date not null,
8 job_id varchar2(10) not null,
9 commission_pct number(2,2),
10 manager_id number(6),
11 department_id number(4))
12 PARTITION BY RANGE(employee_id)
13 (PARTITION employees1

VALUES LESS THAN (100) tablespace TEST01,
14* PARTITION employees2

VALUES LESS THAN (300) tablespace TEST02);
Table created.
SQL>

Redefining the Table

You can now start the redefinition process by using the DBMS_REDEFINITION.START_REDIF_TABLE pro-
cedure, as shown in Listing 17-13. The START_REDIF_TABLE procedure has the following parameters:

• UNAME: This is the schema name (hr).

• ORIG_TABLE: This is the table you’re redefining (employees).

• INT_TABLE: This is the name of the interim table.

• COL_MAPPING: This specifies the mapping between the interim and the original table’s
columns. If you don’t supply any values for this column-mapping parameter, all the columns
of the original table will be included in the interim table.

• OPTIONS_FLAG: This specifies the method of redefinition. In this example, because we’re using
the default primary key method, we can omit this parameter.

■Tip When you perform table redefinition, you should be logged in as the schema owner. Make sure the schema
owner is granted execute privileges on the DBMS_REDEFINITION package. The schema owner should also be
granted the privileges to select, create, alter, drop, and lock any table. Otherwise, you’ll encounter the “ORA-01031
insufficient privileges” error.

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES 815

4517CH17.qxd 8/19/05 11:08 AM Page 815

Listing 17-13. Starting the Online Redefinition Process

SQL> BEGIN
2 dbms_redefinition.start_redef_table('hr','employees',
3 'employees_temp',
4 'employee_id employee_id,
5 first_name first_name,
6 last_name last_name,
7 email email,
8 phone_number phone_number,
9 hire_date hire_date,
10 job_id job_id,
11 commission_pct commission_pct,
12 manager_id manager_id,
13 department_id department_id');
14 END;
15 /
PL/SQL procedure successfully completed.

Make sure the interim and master tables have the same number of rows by running the follow-
ing queries:

SQL> SELECT COUNT(*) FROM employees_temp;
COUNT(*)

107

SQL> SELECT COUNT(*) FROM employees;
COUNT(*)

107

SQL>

Copying the Dependent Objects

You need to execute the DBMS_REDEFINITION.COPY_TABLE_DEPENDENTS procedure next, to automati-
cally create any existing triggers, indexes, grants, and constraints on the HR.EMPLOYEES_TEMP
table. Here’s how you do it:

SQL> DECLARE
SQL> num_errors PLS_INTEGER;
SQL> BEGIN

DBMS_REDEFINITION.COPY_TABLE_DEPENDENTS('hr', 'employees', 'employees_temp',
DBMS_REDEFINITION.CONS_ORIG_PARAMS, TRUE, TRUE, TRUE, TRUE, num_errors);
END;

What Happens During the Redefinition Process?

Using the DBMS_REDEFINITION package is easy, but a lot is going on behind the scenes. When you
execute the DBMS_REDEFINITION.START_REDIF_TABLE procedure, two new tables are created: a tempo-
rary table and a permanent table. The temporary table is called RUPD$_Employee, and it lasts for
the duration of the session. The permanent table is a snapshot table that holds all the changes
made to the master employees table once you execute the START_REDIF_TABLE procedure. The mas-
ter table’s rows are copied to the interim table, and users will be able to update the master table
during this process. The changes made by the users are logged in the materialized log during this
process.

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES816

4517CH17.qxd 8/19/05 11:08 AM Page 816

Listing 17-14 shows a query on dba_objects that shows that your new table has been parti-
tioned based on your redefinition. The query also shows the two new tables created during the
online redefinition process.

Listing 17-14. Checking That the New Table Has Been Partitioned Based on Our Redefinition

SQL> SELECT object_type, object_name
2 FROM dba_objects
3 WHERE object_name LIKE '%EMPLOYEES%';

OBJECT_TYPE OBJECT_NAME
------------------ --------------
TABLE EMPLOYEES
TABLE PARTITION EMPLOYEES_TEMP
TABLE PARTITION EMPLOYEES_TEMP
TABLE EMPLOYEES_TEMP
TABLE EMPLOYEES_NEW
SEQUENCE EMPLOYEES_SEQ
TABLE MLOG$_EMPLOYEES
TABLE RUPD$_EMPLOYEES
TRIGGER SECURE_EMPLOYEES
9 rows selected.
SQL>

Checking for Errors

You can use the DBA_REDEFINITION_ERRORS view to check for any errors during the redefinition
process, as shown here:

SQL> SELECT OBJECT_NAME, BASE_TABLE_NAME, DDL_TXT
FROM DBA_REDEFINITION_ERRORS;

Synchronizing the Interim and Source Tables

You can use the SYNC_INTERIM_TABLE procedure to synchronize the data in the interim and the
source table. This is an optional step. Here’s how you execute the procedure:

SQL> EXECUTE dbms_redefinition.sync_interim_table ('hr', -
> 'employees','employees_temp');

PL/SQL procedure successfully completed.
SQL>

You should use this procedure only if you have reason to believe that a large number of updates
have taken place in the source table after you started the redefinition process (by executing the
START_REDEF_TABLE procedure). By using the SYNC_INTERIM_TABLE procedure, you save time in the
last phase of the redefinition process if a large number of updates have taken place. Otherwise, you
can safely ignore this step, because the last procedure you run, the FINISH_REDEF_TABLE procedure,
will perform the synchronization anyway.

Completing the Redefinition Process

Once you’re done creating triggers and constraints, and granting privileges on the interim table, it’s
time to complete the process by running the FINISH_REDEF_TABLE procedure. The interim table at
this point has all the data of the source table, but the source table still has its old structure. In our
example, the employees table is still not partitioned, and it still contains the salary column.

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES 817

4517CH17.qxd 8/19/05 11:08 AM Page 817

SQL> EXECUTE DBMS_REDEFINITION.FINISH_REDEF_TABLE ('hr', -
> 'employees', 'employees_temp');

PL/SQL procedure successfully completed.

When you run the FINISH_REDEF_TABLE procedure, the following things happen:

• Oracle reads the materialized log on the master table so the contents can be added to the
interim table.

• The employees table is redefined so it has all the attributes, indexes, constraints, and grants
of the interim table, employees_temp.

• Any referential constraints involving the employees_temp table are enabled.

• Any new triggers that you defined on the employees_temp table are also on the newly
redefined table and are enabled now.

• The two tables are briefly locked in the exclusive mode to make the necessary changes in the
data dictionary.

• The materialized view and the log are dropped.

You can confirm that your original table, employees, has indeed been partitioned, by running
this query:

SQL> SELECT object_type, object_name
2 FROM dba_objects
3* WHERE object_name ='EMPLOYEES';

OBJECT_TYPE OBJECT_NAME
------------------ -----------
TABLE PARTITION EMPLOYEES
TABLE PARTITION EMPLOYEES
TABLE EMPLOYEES
SQL>

If you describe the employees table, you’ll notice that it doesn’t have the salary column.
Once you finish the table redefinition, you can drop the employees_temp table. When you drop

the interim table, all the indexes, triggers, and constraints on the original table are dropped also,
because the original table has become the interim table. The new table has all the necessary trig-
gers, grants, indexes, and constraints intact.

If you see any significant errors during the preceding process, it is easy to abort the redefini-
tion by using the DBMS_REDEFINITION.ABORT_REDEF_TABLE procedure. This procedure drops the
temporary table and logs created during the redefinition process. You can then manually drop the
interim table.

Dynamic Resource Management
Traditionally, once any user started a transaction in the database, he or she had to be given the
same priority as all the other sessions in the database. This would sometimes lead to a single user
monopolizing the database resources and consequently slowing down the database. In Chapter 12,
you saw how the Database Resource Manager can help you control resource use within the data-
base by using resource groups and resource plans to allocate critical resources.

In addition to its resource-allocation capabilities, the Database Resource Manager has the fol-
lowing features that help in online management of transactions:

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES818

4517CH17.qxd 8/19/05 11:08 AM Page 818

• You can automatically move a long-running operation from a high-priority consumer group
to a low-priority group.

• You can limit the number of concurrent long transactions.

• You can prevent any transaction from running if its estimated time for completion exceeds a
preset execution limit set by the DBA.

The following sections cover how you can perform each of these tasks using the Database
Resource Manager.

Switching Long-Running Transactions
The Database Resource Manager lets you use plan directives, which can specify limits on resource
usage. Plan directives include the following parameters, which you can use to shift the priority of
consumer groups:

• SWITCH_TIME

• SWITCH_GROUP

• SWITCH_ESTIMATE

A user will be assigned to a certain consumer group at the beginning of a transaction. If the
user’s transaction is active for more than the number of seconds specified by the switch_time
parameter, the transaction is automatically switched to a lower priority group specified by the
switch_group parameter.

You can have the Database Resource Manager determine whether it should switch a user ses-
sion even before an operation starts by setting the switch_estimate parameter to true. In this case,
the Database Resource Manager will estimate the time it will take for the operation to complete, and
based on that time estimate, the Database Resource Manager will determine whether it should
switch the user’s consumer group right away.

Limiting the Number of Long Transactions with Operation Queuing
When you create resource consumer groups using the Database Resource Manager, you can set the
active session pool for each group. An active session is one where a transaction or a select operation
is currently active. Once the consumer group’s active session pool limit is reached, new sessions
belonging to the group can’t become active. They’re queued by the Database Resource Manager and
allowed to become active as the current active sessions complete.

You can set an optional time-out period for the queued sessions in each group. If a session is
queued past this time-out period, it will abort with an error message. The user then has the choice
of resubmitting the job or ignoring it.

Limiting the Maximum Execution Times for Transactions
All DBAs dread the possibility of a very large job that could take up most of the database’s resources
and bring it to its knees. Most times, you’re left to decide whether you should kill the long-running
job. The Database Resource Manager helps you avoid such stressful situations by allowing you to set
limits on the execution times of operations—it allows you to run only those jobs that fall within a
maximum run-time limit that you set.

You have two ways to limit the execution times of a transaction in the database: using the
MAX_ESTIMATED_EXEC_TIME resource plan directive or the UNDO_POOL resource plan directive.

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES 819

4517CH17.qxd 8/19/05 11:08 AM Page 819

■Note You can use the DBMS_APPLICATION.SET_SESSION_LONGOPS procedure to track long-running opera-
tions. The procedure will populate the V$SESSION_LONGOPS virtual table. Chapter 23 shows you how to use the
procedure.

Using the MAX_ESTIMATED_EXEC_TIME Resource Plan Directive

You can limit the maximum execution times for transactions by using the MAX_ESTIMATED_EXEC_TIME
resource plan directive. When you set this parameter, the Database Resource Manager will estimate
the operation’s execution time and will abort the operation if it exceeds the maximum estimated
execution time you set.

Using the Undo_Pool Resource Plan Directive

You can control long-running transactions by limiting the amount of undo space that a resource
consumer group can use. Long-running transactions in general tend to need a large amount of
undo space to maintain a consistent image of the old data and to enable the session to roll back
the transaction.

By default, an active session can use an unlimited amount of undo space, but you can specify a
limit to the undo space for a consumer group by using the UNDO_POOL resource plan directive. Once
all the sessions in a consumer group use up the allotted undo space specified by the undo_pool
parameter, all insert, update, and delete transactions on behalf of any session transaction within
that group will abort with an error.

Online Database Block-Size Changes
Suppose you have a tablespace that has a block size of 8KB, as shown in the following example:

SQL> SELECT NAME, VALUE FROM V$SPPARAMETER
2 WHERE NAME='db_block_size';

NAME VALUE

db_block_size 8192
SQL>

Because the block size is 8KB and you have only a single block size, all your tablespaces are cre-
ated with this default size. Suppose that you now want to create a tablespace with a higher block
size—for example, 16KB. Creating a database consisting of tablespaces with different block sizes is
easy—each of the tablespace block sizes in the database should correspond to a DB_nK_CACHE_SIZE
parameter value. Thus, if you want five tablespaces with different sized blocks, you must have all
five of the buffer cache sizes configured.

In Listing 17-15, which shows the results of a query in my test database, you don’t see any val-
ues under any of the five possible DB_nK_CACHE_SIZE parameters. This is because I chose only one
block size, the standard block size of 8KB, and none of the other optional cache sizes. My total
DB_CACHE_SIZE value is shown as 25MB (2,516,824 bytes) in the listing, and it’s composed of the
standard 8KB blocks.

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES820

4517CH17.qxd 8/19/05 11:08 AM Page 820

Listing 17-15. The Buffer Cache nK Size Components

SQL> SELECT NAME, VALUE FROM V$PARAMETER
2 WHERE NAME LIKE '%cache_size%';

NAME VALUE
--
db_keep_cache_size 0
db_recycle_cache_size 0
db_2k_cache_size 0
db_4k_cache_size 0
db_8k_cache_size 0
db_16k_cache_size 0
db_32k_cache_size 0
db_cache_size 25165824
8 rows selected.
SQL>

You can easily create a new buffer cache size of 16KB online and create a new tablespace with
that block size. You can then create your objects in this new tablespace or move any existing objects
into this tablespace, all online.

Here’s what you have to do. First, create a new 16KB buffer cache, so you can create a table-
space with a 16KB block size.

SQL> ALTER SYSTEM SET DB_16K_CACHE_SIZE =1024M;
System altered.
SQL>

Now you can create your new tablespace with the 16KB block size, because you have a match-
ing 16KB buffer cache size. Here’s the CREATE TABLESPACE statement:

SQL> CREATE TABLESPACE big_block
3 DATAFILE '/test01/app/oracle/big_block_01.dbf' SIZE 1000M
4* BLOCKSIZE 16K;

Tablespace created.
SQL>

If you have a table that you want to move to the new big_block tablespace with the 16KB block
size, all you have to do is use the MOVE command:

SQL> ALTER TABLE test MOVE TABLESPACE big_block;
Table altered.
SQL>

Of course, you can also use the online table redefinition method to move your table to the new
tablespace.

Using Database Quiescing for Online Maintenance
Suppose you want to change the schema of a table. If a transaction is currently using this table, you
can’t perform this task. If a PL/SQL procedure is later updated to reflect the change in the schema,
users currently trying to execute the procedure will receive an error. Fortunately, Oracle has a great
quiescing feature, whereby you don’t have to shut down the database and open it in restricted mode.

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES 821

4517CH17.qxd 8/19/05 11:08 AM Page 821

You can use this feature when you need to perform actions that require that no active transac-
tions are running in the database. Users will remain logged in and they can execute their requests
while the database is in the quiesced state. The database, however, will block all transactional
requests except those made by the users SYS and SYSTEM. Users can continue to query the data-
base, which means the database is more available than a database in the restricted mode. Quiescing
thus puts the database in a partially available state. When you take the database out of the quiesced
state, any user requests that were blocked are processed automatically.

The following commands perform the quiescing and unquiescing of the database:

SQL> ALTER SYSTEM QUIESCE RESTRICTED;
SQL> ALTER SYSTEM UNQUIESCE;

■Note Not every user with DBA privileges can quiesce the database. Only the SYS and SYSTEM users can use
this feature.

Users can continue to log in to the system unless you’re using the shared server architecture.
Typical maintenance operations that can require the use of the quiesce database feature are those
that need the exclusive use of an object, such as an ALTER TABLE, DROP TABLE, or CREATE PROCEDURE
operation. Any DDL statement that a DBA might want to execute in a live database will need exclu-
sive locks, and it will fail if other transactions are using the table.

While the database is in the quiesced state, users other than SYS and SYSTEM won’t be able to
start any new transactions or queries. Any inactive sessions will be prevented from becoming active.
While it is quiesced, Oracle waits for all transactions and queries to commit or roll back, and the
database waits for the release of all shared resources, such as enqueues. Upon unquiescing the
database, all the blocked actions are allowed to proceed to execution.

Users won’t get any error messages during this process. When they try to execute a transaction
on a quiesced database, their transaction simply hangs until the database is put into a normal mode
again.

Suspending the Database
In addition to the restricted start-up and database quiesce modes, you can run the database in the
suspend mode to perform certain tasks (such as a backup) without any user activity. You use the
following commands to suspend the database and, later, resume it so all users can access the
database:

SQL> ALTER SYSTEM SUSPEND;
System altered.
SQL> ALTER SYSTEM RESUME;
System altered.

When you suspend a database, any executing transactions are allowed to complete. All other
transactions that come in for execution will be suspended until the database resumes normal oper-
ation mode.

The ability to suspend a database comes in handy when you need to back up a database using
a mirrored set of disks. You can suspend the database, split the mirror, and back up the database.
You don’t have to contend with I/O during the online backup of the split mirror.

CHAPTER 17 ■ AUTOMATIC MANAGEMENT AND ONLINE CAPABIL IT IES822

4517CH17.qxd 8/19/05 11:08 AM Page 822

Managing and Monitoring the
Operational Database

This chapter deals primarily with the day-to-day management of Oracle databases and covers
several major features that help you manage your database:

• Server-generated alerts are automatically raised by the database to let you know when
problems occur.

• The Automatic Workload Repository (AWR) is the new infrastructure that automatically
collects and maintains numerous performance statistics for self-tuning purposes. The
Automatic Database Diagnostic Monitor that you saw in Chapter 17 uses the AWR data
for its analyses.

• The Active Session History (ASH) deals with recent session activity, and the database uses it
to tune its own performance.

• The advisory framework provides a common framework for various database advisors that
provide information about resource utilization and performance. You’ve seen several of
these advisors in other chapters, such as the ADDM, the SQL Access Advisor, and the SQL
Tuning Advisor. I explain the common infrastructure of the advisory framework in this
chapter.

• The DBMS_FILE_TRANSFER package lets you transfer operating system files directly
through the database.

• The Oracle Scheduler provides a very powerful way to schedule complex database jobs.

In this chapter, I also discuss the management of redo logs as well as the creation of database
links to connect to remote databases from your database.

The preceding topics cover most of the Oracle DBA’s daily management tasks, and familiarity
with them is essential to performing typical data movement, space organization, performance
tuning, and other database management tasks.

Types of Oracle Performance Statistics
Oracle DBAs regularly collect several types of performance statistics in order to analyze database
bottlenecks and other performance issues. In Oracle Database 10g, DBAs now have access to sev-
eral new types of performance statistics. Besides database statistics at the system and session
levels (such as wait statistics, segment usage statistics, and so on), there are also operating system
statistics (such as CPU statistics, disk usage statistics, and memory usage statistics) and network
statistics. Based on how the various performance statistics are collected and aggregated, you can

823

C H A P T E R 1 8

■ ■ ■

4517CH18.qxd 8/19/05 11:10 AM Page 823

divide these statistics into two groups: cumulative statistics and database metrics. While cumulative
statistics show the accumulated values of key database statistics, metrics measure the rate of
change in the cumulative performance statistics.

Cumulative Statistics
Cumulative statistics are the accumulated total value of particular statistics since the start of an
Oracle instance. The total logons statistic, for example, is a cumulative statistic. Oracle collects sev-
eral types of cumulative statistics, including statistics for segments and SQL statements, as well as
session-wide and system-wide statistics. By comparing the delta values—the change in the value of
the cumulative statistics between a beginning and an ending period—Oracle analyzes database
performance during a specific interval of time.

The Automatic Workload Repository (AWR) stores important cumulative statistics. I discuss the
AWR in the “The Automatic Workload Repository (AWR)” section of this chapter.

Sample Data
Sample data represents a sample of the total amount of data available. The Automatic Session
History (ASH) feature automatically collects session sample data, which represents a sample of the
current state of all active sessions. ASH collects the data in memory, where you can view it with
the help of V$ views. The AWR helps save the ASH data permanently by collecting it as part of its
regular snapshots.

I discuss the ASH feature in detail in the “Active Session History (ASH)” section of this chapter.

Baseline Data
A good way to evaluate database performance is by comparing database performance statistics
from two periods, where the first period reflects “good” performance. The statistics from the period
when the database performed well are called baseline data. By comparing current performance
with the base period’s performance, you can check whether the database is doing better or worse.

ORACLE DATABASE 10g PREMIUM FUNCTIONALITY LICENSING

Several important Oracle Database 10g performance tools need separate licensing from Oracle Corporation, in addi-
tion to the licensing you purchased for the Oracle Database server software. Oracle divides most of its performance
functionality into sets of products called Oracle Management Packs, each of which covers several key diagnostic
and other management tools. So be aware that while the tools are enabled with the installation of the Oracle Data-
base server software, their production use requires additional licensing.

You can purchase the Management Packs only with the Enterprise Edition, and you can access their features
through OEM Database Control, Grid Control, and API provided by Oracle. You can purchase licensing for just one or
for all of these Management Packs. I summarize the functionality of the Management Packs as follows.

Oracle Diagnostic Pack

The Oracle Diagnostic Pack allows you to set up automatic processes to monitor performance and system function-
ality. It contains a number of features:

• An Automatic Workload Repository (AWR)

• An Automatic Database Diagnostic Monitor (ADDM)

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE824

4517CH18.qxd 8/19/05 11:10 AM Page 824

• An event-notification system

• A history of events and metrics on the database and the host

• Performance monitoring for the database and the host

Oracle Tuning Pack

The Oracle Tuning Pack is only available if you have the diagnostic pack and it helps you tune the performance of
your database. It includes the following features:

• The SQL Access Advisor

• The SQL Tuning Advisor

• SQL tuning sets

• Database object reorganization help

Oracle Configuration Management Pack

The Oracle Configuration Management Pack automates software configuration, software and hardware inventory
tracking, patching, and policy management. The Configuration Management Pack facilitates the following:

• Configuring databases and hosts

• Managing deployments

• Staging and viewing of database patches

• Cloning databases and cloning Oracle home

• Searching and comparing configuration

• Managing security and other enterprise policies

Oracle Change Management Pack

The Oracle Change Management Pack lets you evaluate and implement database schema changes. You can track
changes, compare and synchronize objects and schemas, modify schema objects and evaluate the changes, and
even undo the changes. The Change Management Pack lets you do the following things:

• Reverse-engineer database capability

• Compare databases and schemas, or baselines

• Copy database objects

• Update database object definitions

• Synchronize objects and schemas

• Evaluate the impact of changes

• Clone application schemas

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE 825

4517CH18.qxd 8/19/05 11:10 AM Page 825

Database Metrics
Database metrics, statistics that measure the rate of change in a cumulative performance statistic,
are also important Oracle performance statistics. In previous Oracle versions, you needed to collect
data at various periods to calculate the rate of change of various statistics. Now, Oracle places pre-
computed metrics at your fingertips. For example, you may be interested in a metric like the number
of transactions per second during peak times. Dynamic performance views hold these metrics, and
the AWR can also store them in its repository.

You can consider statistics such as the number of user transactions and the number of physical
reads in the system as the base statistics from which database metrics are derived. The MMON
(Manageability Monitor) background process updates metric data on a minute-by-minute basis
after collecting the necessary base statistics.

All the Oracle management advisors use database metrics for diagnosing performance prob-
lems and making tuning recommendations. Database metrics can be used to check the health of
various resources like the CPU, memory, and I/O. The OEM Database Control’s All Metrics page,
shown in Figure 18-1, offers an excellent way to view metrics. To access this page, start at the Data-
base Control home page and click All Metrics under the Related Links heading. For details about the
metrics, click the Expand All link in the left corner of the page. From here, you can drill down to the
details of any metric by simply clicking on a specific metric.

Figure 18-1. The All Metrics page of Database Control

Oracle Database 10g uses several metric groups, with each group representing items like a wait
event, service, or session. Table 18-1 lists the basic metric groups in Oracle Database 10g.

You can view the Oracle metrics in two ways: by using V$ dynamic views, you can view the in-
memory metrics; by using the DBA_HIST* views, you can view the metrics that are stored by the
AWR. I explain these two types of views in the following sections.

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE826

4517CH18.qxd 8/19/05 11:10 AM Page 826

Table 18-1. Oracle Database 10g Metric Groups

Metric Description

Event class metrics Metrics collected at the wait event class level, such as
DB_TIME_WAITING

Event metrics Metrics collected on various wait events

File metrics long duration Metrics collected at the file level, such as
AVERAGE_FILE_WRITE_TIME

Service metrics Metrics collected at the service level, such as
CPU_TIME_PER_CALL

Session metrics short duration Metrics collected at the session level, such as
BLOCKED_USERS

System metrics long duration Metrics collected at the system level

Tablespace metrics long duration Metrics collected at the tablespace level, such as
TABLESPACE_PCT_FULL

In-Memory Metrics
The MMON background process collects database metrics and saves them in the SGA for one hour.
You can view system-related metrics by using views like V$SYSMETRIC_HISTORY and V$SYSMETRIC.

Here are some of the system metrics maintained in the V$SYSMETRIC view:

• Buffer cache hit ratio

• CPU usage per second

• Database CPU time ratio

• Database wait time ratio

• Disk sort per second

• Hard parse count per second

• Host CPU utilization percent

• Library cache hit ratio

• SQL service response time

• Shared pool free percent

The V$SERVICEMETRIC and V$SERVICEMETRIC_HISTORY views provide details about service-
level metrics. V$SERVICEMETRIC shows metric values measured on the most recent time interval
for database services, in five-second and one-minute intervals, and V$SERVICEMETRIC_HISTORY
gives the recent history of the metric values measured in five-second and one-minute intervals for
the services running inside the database.

Saved Metrics
Using the AWR snapshots, Oracle saves the metric information that is being continuously placed
in the SGA by the MMON process. After saving performance metrics in memory for an hour, the
MMON process flushes metric data from the SGA to disk, where they are stored permanently in the
DBA_HIST_* views, such as DBA_HIST_SUMMARY_HISTORY, DBA_HIST_SYSMETRIC_HISTORY,
and DBA_HIST_METRICNAME. Each of these views actually represents snapshots of the correspon-
ding V$ view, with, for example, the DBA_HIST_SYSMETRIC_HISTORY view containing snapshots
of the V$SYSMETRIC_HISTORY view.

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE 827

4517CH18.qxd 8/19/05 11:10 AM Page 827

Oracle metrics serve as the foundation of the new server-generated alerts feature in Oracle
Database 10g, which is the next topic.

Server-Generated Alerts
Oracle DBAs generally use SQL scripts to alert them when abnormal conditions occur. Oracle
Database 10g now has a built-in system of alerts, formally called server-generated alerts, which auto-
matically alert you when problem conditions occur. The database generates alerts based on the
occurrence of specific events, or when certain database metrics exceed their threshold values.

Oracle calls the threshold-based alerts stateful alerts, and they can be set off at either a warning
threshold or a critical threshold. Threshold-based alerts thus are based on metrics, not events. Unlike
in the old OEM alert-notification system, the database, itself, collects all alert-related metrics
instead of the OEM. The warning and critical threshold values can be set by the DBA, or you can
accept Oracle’s internal settings for the thresholds.

The nonthreshold Oracle alerts are problem-related alerts, and they are based on the occur-
rence of certain predetermined events (usually bad ones) occurring in the database. Oracle calls
these stateless alerts—here are some examples:

• Recovery area space usage exceeded

• Resumable session suspended

• Snapshot too old

Thus, there are altogether three situations when a database can send an alert:

• A metric crosses a critical threshold value

• A metric crosses a warning threshold value

• A nonthreshold (problem) type of alert occurs

When you use threshold-based alerts, Oracle distinguishes between a warning alert (severity
level 5) and a critical alert (severity level 1). For example, by default, the database will send you a
warning alert when any tablespace hits an 85 percent space use threshold. When the usage reaches
the 97 percent level, you get a critical alert.

Default Server-Generated Alerts
Oracle enables several default alerts in every Oracle Database 10g database, and they resemble the
OEM alerts in previous versions of the Oracle database. The server-generated default alerts could be
either threshold-based or problem alerts. These are some of the out-of-the-box server-generated
alerts in an Oracle Database 10g database:

• Snapshot too old

• Tablespace space usage (warning alert at 85 percent usage; critical alert at 97 percent usage)

• Resumable session suspended

• Recovery session running out of free space

■Note Oracle automatically sets thresholds on all metrics with the object type SYSTEM.

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE828

4517CH18.qxd 8/19/05 11:10 AM Page 828

In addition to the default alerts, you can choose to use other alerts, and you can also change
the thresholds for the default alerts. You can perform these tasks with the help of the OEM Database
Control or with Oracle-supplied PL/SQL packages. You can also use the Database Control to set up
notification rules; for example, you could specify a blackout period for the alerts, during which no
alerts would be sent out by the database.

When the database issues an alert, you can see it in the Database Control Alerts table (see Fig-
ure 18-2), which is located at the bottom of the Database Control home page, and you’ll receive a
notification if you’ve configured the system to send you one. The alert data is, by default, updated
every 60 seconds. To get the details of an alert, click on the alert message in the Message column of
the Alerts table. The alerts usually are accompanied by a recommendation to fix the problem as well.

Figure 18-2. The Database Control Alerts table

Make sure you set the STATISTICS_LEVEL parameter to TYPICAL or ALL in order to use the server-
generated alerts feature. In addition, you can display alerts directly by subscribing to the alert
queue.

Managing Alerts
The best way to manage database alerts and related metrics is to use the OEM Database Control.
You can also use the DBMS_SERVER package to manage alerts, or you can access the alert queue
directly. The following sections explain the default server-generated alerts and how to manage
them.

Using the Database Control to Manage Alerts
Oracle automatically sends an alert message to a persistent queue named ALERT_QUE and OEM reads
this queue and sends out notifications about the outstanding server alerts. Database Control (as
well as Grid Control) displays the alerts and can also send e-mail or pager notifications regarding
the alerts.

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE 829

4517CH18.qxd 8/19/05 11:10 AM Page 829

If you’ve used the Oracle9i OEM, you’re familiar with the Enterprise Manager alerts. Server-
generated alerts work in a similar fashion. In addition having Oracle send alerts, now you can
configure alert thresholds as well.

Setting Alert Thresholds

It is very easy to set your own warning and critical thresholds for any database metric. To set alert
thresholds, go to the Database Control home page and click the Manage Metrics link, which you’ll
find under the Related Links group. On the Manage Metrics page, click the Edit Thresholds button.
You’ll see the Edit Thresholds page, as shown in Figure 18-3. For each metric on the Edit Thresholds
page, you can set the following:

• Warning and critical thresholds: You can set an arbitrary threshold or compute a threshold
based on a set of baselines for a metric. For example, you might specify that the database
should generate a threshold alert if a resource use is 15 percent higher than its normal base-
line values. You can also specify multiple thresholds.

• Response action: This action can be a SQL script or an operating system command. Oracle
will automatically execute this response action immediately when the alert is generated.
Make sure that you provide the complete path to the SQL script or operating system com-
mand, so the OEM Agent can find it.

Figure 18-3. Using OEM Database Control to set alert thresholds

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE830

4517CH18.qxd 8/19/05 11:10 AM Page 830

Setting Notification Rules

Notification rules enable you to control the conditions under which you want to receive a message
from the OEM. For example, you may not want to be awakened at 2:00 AM just because a table-
space with 100GB of allocated space has reached an 80 percent usage level. On the other hand, you
would surely want to know immediately when a 200MB tablespace has crossed the 97 percent usage
level.

You can use OEM Database Control to set notification rules through the Preferences page.
On the Database Control home page, click the Preferences link (at the very bottom of the page) to
go to the Preferences page. Then click the Rules link in the Notification section. Select any metric,
such as Listener Availability, and click the Edit button. From here, you can set notification rules for
a selected event.

Using the DBMS_SERVER_ALERT Package to Manage Alerts
Although the OEM Database Control interface provides an easy way to manage database alerts,
there may be times when you need to incorporate certain changes inside a PL/SQL program. At
times like this, you can use the Oracle-supplied DBMS_SERVER_ALERT package to set up and
modify thresholds on various database metrics. The DBMS_SERVER_ALERT package has two
main procedures: GET_THRESHOLD and SET_THRESHOLD.

You use the SET_THRESHOLD procedure to define threshold settings for a database metric.
Listing 18-1 shows the structure of the SET_THRESHOLD procedure.

Listing 18-1. The SET_THRESHOLD Procedure of the DBMS_SERVER_ALERT Package

SQL> DESC DBMS_SERVER_ALERT.SET_THRESHOLD
PROCEDURE dbms_server_alert.set_threshold
Argument Name Type In/Out Default?
------------------------------ ----------------------- --
METRICS_ID BINARY_INTEGER IN
WARNING_OPERATOR BINARY_INTEGER IN
WARNING_VALUE VARCHAR2 IN
CRITICAL_OPERATOR BINARY_INTEGER IN
CRITICAL_VALUE VARCHAR2 IN
OBSERVATION_PERIOD BINARY_INTEGER IN
CONSECUTIVE_OCCURRENCES BINARY_INTEGER IN
INSTANCE_NAME VARCHAR2 IN
OBJECT_TYPE BINARY_INTEGER IN
OBJECT_NAME VARCHAR2 IN

■Tip You can turn off all metric-based alerts by setting both the warning value and the critical value to NULL.

In the SET_THRESHOLD procedure described in Listing 18-1, the WARNING_VALUE and CRITICAL_
VALUE refer to the warning and critical threshold values for an alert. To find out the current warning
and critical thresholds for a database metric, you use the DBMS_ALERT.GET_THRESHOLD procedure.

Using the Alert Queue Directly
In addition to using the DBMS_SERVER_ALERT package, you can also use procedures from the
DBMS_AQ and DBMS_AQADM packages to directly access and read alert messages in the alert

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE 831

4517CH18.qxd 8/19/05 11:10 AM Page 831

queue. The DBMS_AQADM package lets you subscribe to the alert queue, set thresholds, and dis-
play alert notifications using various procedures. The DBMS_AQ package lets you manage alert
notifications. See the Oracle documentation for more details.

Proactive Tablespace Alerts
All Oracle Database 10g tablespaces have built-in alerts that will notify you if their free space drops
below a set threshold. The two default thresholds are critical and warning. The MMON background
process monitors the free space in each tablespace and sends out the alerts.

Oracle will, by default, alert you with a warning when your tablespace is at 85 percent of capac-
ity and will send a critical alert when the tablespace is at 97 percent of capacity. However, you can
turn the alerting mechanism off if you want. To view information on your thresholds, see the
DBA_THRESHOLDS view.

■Tip If you are migrating to Oracle Database 10g, Oracle turns off the automatic tablespace alerting mechanism
by default. If you want to set the alert thresholds, use the DBMS_SERVER_ALERT package.

Here’s a simple example that shows how to use the DBMS_SERVER_ALERT package to set
warning and critical thresholds and trigger alerts when either of the thresholds is crossed. You’ll
see how to set, view, and clear an alert.

1. Create a small tablespace to use for testing the Oracle alert mechanism:

SQL> CREATE TABLESPACE test DATAFILE 'test01.dbf' size 10M
EXTENT MANAGEMENT LOCAL UNIFORM SIZE 3M;

Tablespace created.

2. Set your tablespace alert thresholds as follows (warning alert at 80 percent full and critical at
95 percent full):

SQL> EXECUTE DBMS_SERVER_ALERT.SET_THRESHOLD(-
> dbms_server_alert.tablespace_pct_full,dbms_server_alert.operator_ge,'80',-
> dbms_server_alert.operator_ge,'95',1,1,null,-
> dbms_server_alert.object_type_tablespace,'TEST');

PL/SQL procedure successfully completed.
SQL>

3. Create a new table using the following SQL statement. (This will set off an alert because the
MINEXTENTS 3 clause for the new table will cause the tablespace to cross its warning thresh-
old of 80 percent full):

SQL> CREATE TABLE test_table (name varchar2(30))
TABLESPACE test
STORAGE (MINEXTENTS 3);

Table created.
SQL>

4. You can verify the tablespace alert as follows (though you may not see the alert immediately,
since the MMON process has to gather the alert information first):

SQL> SELECT reason FROM dba_outstanding_alerts;

REASON

Tablespace [TEST] is [88 percent] full
SQL>

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE832

4517CH18.qxd 8/19/05 11:10 AM Page 832

5. You can clear the alert by increasing the size of the data file that is part of the test tablespace
and see what happens to the alert by querying the DBA_OUTSTANDING_ALERTS view.
You’ll find that the alert is gone from that view, since it has been cleared.

SQL> ALTER TABLESPACE test ADD DATAFILE 'test02.dbf' size 5M;
Tablespace altered.
SQL>
SQL> SELECT reason FROM dba_outstanding_alerts;
no rows selected
SQL>

6. All cleared alerts will show up in the DBA_ALERT_HISTORY view. You can verify that the
cleared tablespace alert is in that view by using the following query.

SQL> SELECT reason, resolution FROM dba_alert_history;
REASON RESOLUTION

Tablespace [TEST] is [88 percent] full cleared
SQL>

Data Dictionary Views Related to Metrics and Alerts
There are several data dictionary views that provide information about database metrics and alerts.
I’ve already mentioned the V$SYSMETRIC, V$SERVICEMETRIC, and V$SYSMETRIC_HISTORY views
earlier in this chapter. Following are some of the other key views:

• V$METRICNAME shows the mapping of metric names to metric IDs.

• V$ALERT_TYPES displays information about server alert types.

• DBA_HIST_SYSMETRIC_HISTORY contains snapshots of V$SYSMETRIC_HISTORY.

• DBA_ALERT_HISTORY provides a history of alerts that are no longer outstanding; that is, all
alerts that you have already resolved.

• DBA_OUTSTANDING_ALERTS contains all the threshold alerts that have yet to be resolved.

• DBA_THRESHOLDS shows the names as well as the critical and warning values for all
thresholds in the database.

I’ll describe a couple of the important views in more detail in the following sections.

V$ALERT_TYPES
The V$ALERT_TYPES view provides information about all system alert types. Three columns in this
view are noteworthy:

• STATE: Holds two possible values: stateful or stateless. Stateful alerts are those alerts that
clear automatically when the alert threshold that prompted the alert is cleared. The database
considers all the nonthreshold alerts as stateless alerts. A stateful alert first appears in the
DBA_OUTSTANDING_ALERTS view and goes to the DBA_ALERT_HISTORY view when it is
cleared. A stateless alert goes straight to DBA_ALERT_HISTORY.

• SCOPE: Classifies alerts into database-wide and instance-wide. The only database-level alert is
the one based on the tablespace space usage metric. All the other alerts are at the instance
level.

• GROUP_NAME: Oracle aggregates the various database alerts into some common groups: space,
performance, and configuration.

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE 833

4517CH18.qxd 8/19/05 11:10 AM Page 833

DBA_THRESHOLDS
The DBA_THRESHOLDS view provides the current threshold settings for all alerts. This view is use-
ful when you want to find out the current threshold settings for any alert:

SQL> SELECT metrics_name, warning_value, critical_value,
consecutive_occurrences
FROM DBA_THRESHOLDS
WHERE metrics_name LIKE '%CPU Time%';

■Tip If you get a snapshot too old alert, you may need to increase the size of your undo tablespace. In addition,
you may consider increasing the length of the undo retention period. Note that you’ll get a maximum of only one
undo alert during any 24-hour period.

The Automatic Workload Repository (AWR)
The dynamic performance views V$SYSSTAT and V$SESSSTAT hold many of the important cumu-
lative statistics for the Oracle database. Dynamic performance views are very useful in judging
database performance, but unfortunately, when you shut down the database, the data in the
dynamic performance views disappears completely! If you wish to track database performance
over time, or if you wish to compare the performance effects of database changes, you need to
store the performance data in a repository, which is where the Automatic Workload Repository
(AWR) comes in.

The AWR is the brand-new feature in Oracle Database 10g that automatically collects and
stores database performance statistics relating to problem detection and tuning, and it lies at the
heart of the new database self-tuning mechanisms. The AWR was designed by Oracle as a replace-
ment for the traditional Statspack utility, which helps you gather database performance statistics
(the Statspack utility is still available, but Oracle strongly recommends using the AWR instead).

The AWR generates snapshots of key performance data, such as system and session statistics,
segment-usage statistics, time-model statistics, and high-load-SQL statistics, and it stores the
snapshots in the Sysaux tablespace. By default, the database will generate a performance snapshot
every hour. You can customize the snapshot interval, the types of statistics the AWR collects, and
the length of time the snapshots are retained in the AWR.

AWR provides performance statistics in two formats:

• A temporary in-memory collection of statistics in the SGA, accessible through dynamic
performance (V$) views or the OEM interface.

• A persistent type of performance data in the form of regular AWR snapshots, which you
access either through data dictionary (DBA_*) views or the OEM Database Control. The
persistent data in the AWR snapshots helps in historical comparisons of performance.

MMON is a new Oracle Database 10g background process that performs mostly management-
related tasks, including issuing database alerts and capturing statistics for recently modified
database objects. The MMON process transfers the memory version of AWR statistics to disk on
a regular basis (in the form of snapshots).

Oracle DBAs traditionally have needed to maintain special database tables to collect historical
performance data. The AWR automatically collects performance statistics for you and maintains

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE834

4517CH18.qxd 8/19/05 11:10 AM Page 834

historical data for analysis. You can view the data in the snapshots with the help of the V$ views or
create reports to examine the data in detail. Various database components and features use the data
from these AWR snapshots to monitor and diagnose performance issues. For example, as you saw
in Chapter 17, the ADDM relies on these snapshots for the diagnosis of performance problems. In
addition, the SQL Tuning Advisor, the Undo Advisor, and the Segment Advisor all use AWR data.

Types of Data Collected by AWR
The AWR facility collects a large number of performance statistics, including the following:

• Base statistics that are also part of the V$SYSSTAT and V$SESSSTAT views

• SQL statistics that aid in the identification of resource-intensive SQL statements

• Database object-usage statistics that inform you about how the database is currently
accessing various objects

• Time-model statistics, which tell you how much time each database activity is taking

• Wait statistics, which provide information about session waits (in previous versions, you
needed to join the V$SESSION view with the V$SESSION_WAIT view to gather information
on session waits; now several new columns have been added to the V$SESSION view, so you
can query the view directly)

• Active Session History (ASH) statistics, which are flushed to the AWR on a regular basis

• Database feature-usage statistics that tell you whether and how intensively your database is
utilizing various features

• The results of various management advisory sessions, such as the Segment Advisor and the
SQL Access Advisor

• Operating system statistics such as disk I/O and memory usage within the database

As explained in Chapter 17, the ADDM will automatically run after each AWR snapshot, ana-
lyzing the time period between the last two snapshots. By comparing the difference in statistics
between snapshots, for example, the ADDM knows which SQL statements are contributing signifi-
cantly to your system load. It then focuses on these SQL statements.

AWR Data Handling
It is important to understand that the AWR isn’t a permanent repository for Oracle performance sta-
tistics. By default, the AWR captures performance statistics on an hourly basis, and retains them for
seven days. Oracle estimates that with about ten concurrent sessions, these default settings would
require about 200–300MB of storage space for AWR data.

The space used by AWR depends on the following:

• Data-retention period: The longer the retention period, the more space is used.

• Snapshot interval: The more frequently the snapshots are taken, the more space is used.

• Number of active sessions: The higher the number of user sessions, the more data is collected
by the AWR.

By default, the AWR saves the data for a period of seven days, but you can modify this period.
Oracle recommends that you retain the AWR data to cover at least one complete workload cycle.

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE 835

4517CH18.qxd 8/19/05 11:10 AM Page 835

Managing AWR
Snapshots provide you values for key performance statistics at a given point in time. By comparing
snapshots from different periods, you can compute the rate of change of a performance statistic.
Most of the Oracle advisors depend on these AWR snapshots for their recommendations.

Managing the AWR essentially involves managing the regular snapshots that AWR collects from
your database. The default interval for snapshot collection is 60 minutes, and the minimum interval
is 10 minutes. If you think this isn’t an appropriate length of time for your purposes, you can easily
change the default snapshot interval by changing the INTERVAL parameter.

■Note You can take manual snapshots of the system any time you wish.

To make good use of the AWR feature, you need to select a truly representative baseline, which
is a pair or range of AWR snapshots. When database performance is slow, you can compare the base-
line snapshot statistics with current performance statistics and figure out where the problems are.

You can manage the AWR snapshots either with the help of the OEM Database Control or with
the Oracle-supplied DBMS_WORKLOAD_REPOSITORY package, which lets you manage snapshots
and baselines. Let’s first look at how you can use this package to manage AWR snapshots.

Using the DBMS_WORKLOAD_REPOSITORY Package to Manage AWR Snapshots
You can use the DBMS_WORKLOAD_REPOSITORY package to create, drop, and modify snapshots,
as well as to create and drop snapshot baselines.

To create a snapshot manually, use the CREATE_SNAPSHOT procedure, as follows:

SQL> BEGIN
dbms_workload_repository.create_snapshot ();
END;

In order to drop a range of snapshots, use the DROP_SNAPSHOT procedure. When you drop a set of
snapshots, Oracle automatically purges the AWR data that is part of this snapshot range. The follow-
ing example drops all snapshots whose snap IDs fall in the range of 40 to 60.

SQL> BEGIN
DBMS_WORKLOAD_REPOSITORY.DROP_SNAPSHOT_RANGE(
low_snap_id => 40,
high_snap_id => 60, dbid => 2210828132);
END;

■Tip If you set the snapshot interval to 0, the AWR will stop collecting snapshot data. Of course, this means that
the ADDM, the SQL Tuning Advisor, the Undo Advisor, and the Segment Advisor will all be adversely affected,
because they depend on the AWR data.

Using the Database Control to Manage AWR Snapshots
You can manage AWR snapshots from the AWR page of the OEM Database Control, shown in
Figure 18-4. To access this page, go to the Database Control home page, click the Administration
link, and click the Automatic Workload Repository link, which is under the Statistics Management
group. This page has two main sections: the General section and the Manage Snapshots and
Preserved Snapshot Sets section.

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE836

4517CH18.qxd 8/19/05 11:10 AM Page 836

Figure 18-4. The main AWR page

If you want to change the general settings of the AWR, you can do so by clicking the Edit
button in the General section. This will take you to the Edit Settings page, where you can modify
the following:

• Snapshot retention intervals

• Snapshot collection intervals

• Snapshot collection levels (Typical or All)

Under the Manage Snapshots and Preserved Snapshot Sets section on the main AWR page,
the first line lists the total number of snapshots. This listing is a link, which you click to get to the
Manage Snapshots page, which lists all the snapshots in the AWR. You can click on an individual
snapshot to view complete details about it, including the capture time and the collection level.
Figure 18-5 shows the snapshot details for a single AWR snapshot. If you have established an AWR
baseline (which is a representative time period), you’ll also see how a particular snapshot compares
with that baseline.

From the Manage Snapshots page, you can do the following:

• Create a snapshot spontaneously (using the Create button)

• View a list of the snapshots collected over a specific period

• Establish a range of snapshots to use as a baseline (using the Create Preserved Snapshot Set
button)

• Delete a defined range of snapshots from the list of snapshots collected over a period of time
(using the Delete Snapshot Range button)

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE 837

4517CH18.qxd 8/19/05 11:10 AM Page 837

Figure 18-5. Viewing the details of an AWR snapshot

■Note The range of snapshots you use for a baseline is the same as a preserved snapshot set.

Creating and Deleting AWR Snapshot Baselines
The purpose of using snapshot baselines is to have a valid measuring stick for acceptable database
performance, as well as to have a reference point for various system statistics. When you say data-
base performance is bad, you must know that it’s bad compared to something you know to be good
performance.

You define a snapshot baseline on a pair of snapshots taken when you know that the period
covered represents typical good database performance. The baseline then serves as a valid repre-
sentative sample to compare with current system database performance. When you create a
baseline, the AWR retains the baseline snapshots indefinitely (it won’t purge these snapshots
after the default period of seven days), unless you decide to drop the baseline itself.

You can create a new snapshot baseline by using the CREATE_BASELINE procedure of the
DBMS_WORKLOAD_REPOSITORY package. You identify the snapshots to use with the snap ID,
which uniquely and sequentially identifies each snapshot. You can get the snap IDs you need to
create baselines from the DBA_HIST_SNAPSHOT view.

The following example creates a snapshot baseline named “peak_time baseline”:

SQL> BEGIN
DBMS_WORKLOAD_REPOSITORY.CREATE_BASELINE
(START_SNAP_ID => 125,
END_SNAP_ID => 185,
BASELINE_NAME => 'peak_time baseline',
DBID => 2210828132);
END;

You can drop a snapshot baseline by using the DROP_BASELINE procedure of the DBMS_
WORKLOAD_REPOSITORY package, as shown here:

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE838

4517CH18.qxd 8/19/05 11:10 AM Page 838

SQL> BEGIN
DBMS_WORKLOAD_REPOSITORY.DROP_BASELINE(BASELINE_NAME => 'peak_time
baseline',
CASCADE => FALSE, DBID => 2210828132);
END;

By setting the CASCADE parameter to TRUE, you can drop the actual snapshots as well.

Purging AWR Snapshots
As you know, the AWR runs every hour by default, and the AWR statistics are saved for a default
period of seven days. After the seven-day period, Oracle removes the snapshots, starting with the
oldest ones first (excluding the baseline snapshots). Oracle estimates that if you have ten concur-
rent sessions, it will take between 200MB and 300MB of disk space to store the data that it saves
over the standard seven-day period. You must therefore ensure that your Sysaux tablespace has at
least this much free space. The number of user sessions is a key determinant of the space required
for the AWR statistics.

■Note If your Sysaux tablespace runs out of space, Oracle will automatically delete the oldest set of snapshots
to make room for new snapshots.

As mentioned earlier, in addition to the number of active user sessions, the period of time for
which you want to retain the AWR data and the snapshot interval are the key determinants of the
volume of statistics retained in the Sysaux tablespace. You can change the retention time period
with the RETENTION parameter and the snapshot interval with the INTERVAL parameter. Here are
some details on the role of these two important parameters in snapshot creation and maintenance:

• RETENTION: As you know, the default retention period for AWR statistics is seven days. The
minimum retention period is one day. The longer the retention period, the more space the
AWR will need in the Sysaux tablespace. However, if there is no room in the Sysaux table-
space, that fact will override all other retention settings. Oracle will start deleting snapshots,
overwriting the oldest ones first with new data.

• INTERVAL: By default, the AWR collects data every 60 minutes, and the minimum interval
value is 10 minutes. The more frequently you schedule the AWR snapshots, the more data
the AWR will collect; the less frequent the AWR snapshots, the greater the chance that you
may miss short bursts in disk or memory usage that may occur in your database.

You can use the DBMS_WORKLOAD_REPOSITORY package to modify the snapshot settings, as
shown here:

SQL> BEGIN
DBMS_WORKLOAD_REPOSITORY.MODIFY_SNAPSHOT_SETTINGS(
RETENTION => 43200,
INTERVAL => 30,
DBID => 3310949047);
END;

Oracle recommends that you make the retention period the same as your database workload
cycle. If your database is like many typical OLTP databases, you probably have OLTP transactions
throughout the weekdays, with batch jobs scheduled during nights and weekends. If this is the case,
your workload is considered to span a week, in which case the default AWR retention period of
seven days is just fine.

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE 839

4517CH18.qxd 8/19/05 11:10 AM Page 839

■Note If you set the value of the RETENTION parameter to 0, you disable the automatic purging of the AWR. If
you set the value of the INTERVAL parameter to 0, you disable the automatic capturing of AWR snapshots.

Creating AWR Reports
Oracle provides a script named awrrpt.sql (located in the $ORACLE_HOME/rdbms/admin direc-
tory) to generate summary reports about the statistics collected by the AWR facility. The results of
running the awrrpt.sql script are very similar to the output of the traditional Statspack reports.
In order to run an AWR report, you must have the DBA privilege.

■Caution Make sure you don’t confuse the AWR report with the ADDM report that you obtain by running the
addmrpt.sql script. The ADDM report is also based on the AWR snapshot data, but it highlights both the problems
in the database and the recommendations for resolving them.

When you run the awrrpt.sql script, you’ll need to make the following choices:

• Choose between an HTML or plain text report

• Specify the beginning and ending snap IDs

If you prefer, you can use the awrsqrpt.sql SQL script, located in the $ORACLE_HOME/rdbms/
admin directory, to generate a report focusing on the performance of a single SQL statement over a
range of snapshot IDs. This may be the right script to run if you’re trying to analyze the performance
of a specific SQL statement, instead of the entire database.

■Tip You can also use the functions AWR_REPORT_TEXT and AWR_REPORT_HTML (both belonging to the
DBMS_WORKLOAD_REPOSITORY package) to get AWR reports in text and HTML format respectively. However,
Oracle recommends that you use the awrrpt.sql script (which uses the preceding two functions), to get your
reports, instead of directly using these functions.

The AWR reports include voluminous information, including the following:

• Load profile

• Top five timed events

• Wait events and latch activity

• Time-model statistics

• Operating system statistics

• SQL ordered by elapsed time

• Tablespace and file I/O statistics

• Buffer pool and PGA statistics and advisories

Here’s how you create a typical AWR report. First, run the awrrpt.sql script as shown here:

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE840

4517CH18.qxd 8/19/05 11:10 AM Page 840

SQL> @$ORACLE_HOME/rdbms/admin/awrrpt.sql
Current Instance
~~~~~~~~~~~~~~~~

DB Id    DB Name   Inst Num Instance
----------- -------- -------- ------------
877170029   ORCL        1       orcl

In the next step, specify the report type, as shown in Listing 18-2. 

Listing 18-2. Specifying the Report Type for an AWR Report

Specify the Report Type
~~~~~~~~~~~~~~~~~~~~~~~
Would you like an HTML report, or a plain text report?
Enter 'html' for an HTML report, or 'text' for plain text
Defaults to 'html'
Enter value for report_type: text
Type Specified: text
Instances in this Workload Repository schema
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

DB Id     Inst Num DB Name      Instance     Host
------------ -------- ------------ ------------ ------------
* 877170029         1 ORCL      orcl      prod5
Using  877170029 for database Id
Using          1 for instance number

Next, you must specify the range you want the AWR report to cover by specifying the beginning
and ending snapshots for the time period you chose, as in Listing 18-3.

Listing 18-3. Specifying the Report Range for an AWR Report

Specify the number of days of snapshots to choose from
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Entering the number of days (n) will result in the most recent
(n) days of snapshots being listed. Pressing <return> without
specifying a number lists all completed snapshots.
Listing the last 3 days of Completed Snapshots
Instance DB Name Snap Id Snap Started Snap Level
------------ ------------ --------- ----------------------- -----
orcl ORCL 3254 30 Mar 2005 00:00 1

3307 01 Apr 2005 05:00 1
3308 01 Apr 2005 06:00 1
3309 01 Apr 2005 07:00 1
3310 01 Apr 2005 08:01 1
3311 01 Apr 2005 09:00 1
3312 01 Apr 2005 10:00 1
3313 01 Apr 2005 11:00 1

Specify the Begin and End Snapshot Ids
Specify the Begin and End Snapshot Ids
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Enter value for begin_snap: 3309
Begin Snapshot Id specified: 3309
Enter value for end_snap: 3313
End   Snapshot Id specified: 3313
Specify the Report Name

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE 841

4517CH18.qxd  8/19/05  11:10 AM  Page 841



Finally, select a name for the report, as shown in Listing 18-4. You can either choose the default
name that’s offered or specify your own name for the AWR report.

Listing 18-4. Specifying the Report Name for an AWR Report

The default report file name is awrrpt_1_3309_3313.txt.  To use this name,
press <return> to continue, otherwise enter an alternative.
Enter value for report_name:
Using the report name awrrpt_1_3309_3313.txt
WORKLOAD REPOSITORY report for
DB Name       DB Id        Instance      Inst Num    Release    Cluster   Host
------------ ----------- ------------ ------------  ----------- ------- ------------
ORCL        877170026       orcl          1         10.1.0.2.0    NO      prod2

Snap Id          Snap Time                 Sessions    Curs/Sess
--------- ------------------- -------- -------------

Begin Snap:      3309 01-Apr-05 07:00:28        480      7,795.3
End Snap:      3313 01-Apr-05 11:00:58      1,179      3,239.7
Elapsed:              240.49 (mins)
DB Time:            7,999.88 (mins)

The first meaningful part of the AWR report shows the size of the buffer cache and the shared
pool, as shown here:

Cache Sizes (end)
~~~~~~~~~~~~~~~~~
Buffer Cache: 2,304M Std Block Size: 8K
Shared Pool Size: 1,424M Log Buffer: 4,096K

The Load Profile segment of the AWR report, shown in Listing 18-5, indicates the amount of
logical and physical reads in the database between the two snapshots you chose, as well as the
number of parses, executions, and transactions. The load analysis is shown both on a per-second
and per-transaction basis. This section should give you a quick idea about the load being carried
by the instance, and it will be more useful if you have some baseline figures from a representative
period to compare it with.

Listing 18-5. The Load Profile Section of an AWR Report

Load Profile Per Second Per Transaction
--
Redo size: 209,042.04 19,549.50
Logical reads: 181,753.19 16,997.46
Block changes: 1,470.90 137.56
Physical reads: 6,473.32 605.38
Physical writes: 46.45 4.34
User calls: 2,189.05 204.72
Parses: 225.36 21.08
Hard parses: 1.93 0.18
Sorts: 2,462.09 230.25
Logons: 0.91 0.09
Executes: 2,224.24 208.01
Transactions: 10.69

The Instance Efficiency segment, shown next, shows the buffer cache, library cache hit ratios,
and the percentage of sorting in memory. If this value is low, you should investigate why disk sorting
is high.

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE842

4517CH18.qxd 8/19/05 11:10 AM Page 842

Instance Efficiency Percentages (Target 100%)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Buffer Nowait %:   99.91       Redo NoWait %:  100.00
Buffer  Hit   %:   96.44    In-memory Sort %:  100.00
Library Hit   %:   99.81        Soft Parse %:   99.14

Execute to Parse %:   89.87         Latch Hit %:   99.55
Parse CPU to Parse Elapsd %:   29.23     % Non-Parse CPU:   99.04

The Top 5 Timed Events section shows the wait situation in your instance during the specified
period. In the following example, user I/O is contributing a vast majority of the instance waits:

Top 5 Timed Events

~~~~~~~~~~~~~~~~~~                                        % Total
Event Waits Time (s) DB Time Wait Class
------------------------------ ------------ ----------- --------- ------------
db file sequential read 30,650,078 308,185 64.21 User I/O
CPU time 63,520 13.23
db file scattered read 3,641,607 34,740 7.24 User I/O
read by other session 2,256,127 15,262 3.18 User I/O
wait for SGA component shrink 14,012 14,079 2.93 Other

The Time Model Statistics section shows what the instance is spending its time on, as you can
see in Listing 18-6.

Listing 18-6. The Time Model Statistics Section of an AWR Report

Time Model Statistics DB/Inst: ORCL/orcl Snaps: 3309-3313
-> ordered by Time (seconds) desc

Time % Total
Statistic Name (seconds) DB Time
--- -------------- -----------
DB time 10,860.27 100.00
sql execute elapsed time 9,989.24 91.98
DB CPU 6,605.53 60.82
background elapsed time 1,693.64 15.59
parse time elapsed 991.06 9.13
hard parse elapsed time 977.66 9.00
background cpu time 837.48 7.71
PL/SQL compilation elapsed time 385.77 3.55
Java execution elapsed time 268.49 2.47
PL/SQL execution elapsed time 246.51 2.27
failed parse elapsed time 84.06 .77
inbound PL/SQL rpc elapsed time 43.14 .40
connection management call elapsed time 17.47 .16
hard parse (sharing criteria) elapsed time 4.25 .04
hard parse (bind mismatch) elapsed time .50 .00

You can review SQL statements in the SQL Ordered by Elapsed Time section. This section of
the report, shown in Listing 18-7, shows the top SQL statements during the period of analysis,
ranked according to the total elapsed time, the CPU time consumed, and the percentage of total
DB time used.

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE 843

4517CH18.qxd 8/19/05 11:10 AM Page 843

Listing 18-7. The SQL Ordered by Elapsed Time Section of an AWR Report

SQL ordered by Elapsed Time DB/Inst: ORCL/orcl Snaps: 3309-3313
-> Resources reported for PL/SQL code includes the resources used by all SQL

statements called by the code.
-> % Total DB Time is the Elapsed Time of the SQL statement divided

into the Total Database Time multiplied by 100
Elapsed CPU Elap per % Total
Time (s) Time (s) Executions Exec (s) DB Time SQL Id

---------- ---------- ------------ ---------- ------- -------------
15,970 3,769 24 665.4 3.3 dvycj85pfmb1b

Module: PRNTREPORT
UPDATE UNIT_USERS UR SET UR.CARD_PRINTED_FLAG = 'Y' WHERE UR.CHARTER_ID IN
(SELECT DISTINCT CHARTER_ID FROM PS_LASER_CARDS WHERE BATCH_ID = :B1) AND UR.P
OSNTYP_CODE IN ('V','M','O') AND UR.POSN_CODE NOT IN ('AP','IH') AND UR.REGISTRA
NT_STATUS IN ('X','R','N') AND UR.CARD_PRINTED_FLAG = 'N'

Operating system statistics are listed next:

Operating System Statistics
Statistic Name Value
----------------------------------- ------------------
AVG_BUSY_TICKS 989,293
AVG_IDLE_TICKS 1,971,976
AVG_IOWAIT_TICKS 125,186
AVG_SYS_TICKS 447,993
AVG_USER_TICKS 540,353
BUSY_TICKS 15,845,441
IDLE_TICKS 31,567,835

The Segments by Physical Reads section, shown in Listing 18-8, lists the database objects
(tables and indexes) that have the highest percentage of physical reads.

Listing 18-8. The Segments by Physical Reads Section of an AWR Report
Segments by Physical Reads DB/Inst: ORCL/orcl Snaps: 3309-3313

Tablespace Subobject Obj. Physical
Owner Name Object Name Name Type Reads %Total
---------- ---------- -------------------- ---------- ----- ------------ -------
PAS UNIT_REGIS UNIT_REGISTRANTS TABLE 18,003,616 21.08
PAS CAMPAIGN_P CAMPAIGN_POSITIONS TABLE 15,319,556 17.94
PAS OT_D01 PAYMENT_CATEGORY_BAT TABLE 11,799,007 13.81
PAS PERSONNEL_D PERSONNEL TABLE 7,189,914 8.42

. . .
End of Report

■Note I only highlighted a few of the categories of information contained in a typical AWR report. Run the
awrrpt.sql script to get a full picture of your instance performance over a specified period of time. In addition to
the information listed previously, you get important wait information, as well as detailed logical and physical reads
analysis based on SQL statements and on a per-data-file basis.

Managing AWR Statistics with Data Dictionary Views
The best way to view AWR data is by using the OEM Database Control. Of course, you can also run
the awrrpt.sql script, as shown earlier, to view a summary of the AWR data.

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE844

4517CH18.qxd 8/19/05 11:10 AM Page 844

The following data dictionary views are very helpful in viewing AWR data:

• The DBA_HIST_SNAPSHOT view shows all snapshots saved in the AWR.

• The DBA_HIST_WR_CONTROL view displays the settings to control the AWR.

• The DBA_HIST_BASELINE view shows all baselines and their beginning and ending snap ID
numbers.

Active Session History (ASH)
AWR snapshots are very useful, but Oracle takes the snapshots only every 60 minutes by default.
If you are interested in analyzing a performance problem that happened 10 minutes ago, the AWR
snapshots aren’t of any help to you. However, you do have a way to get that information. Oracle
Database 10g now collects the new Active Session History (ASH) statistics (mostly the wait statistics
for different events) for all active sessions every second, and stores them in a circular buffer in the
SGA. Thus, ASH records very recent session activity (within the past five or ten minutes).

The MMNL process (Oracle calls this manageability monitor light, although this process
shows up as “manageability monitor process 2” when you query the V$BGPROCESS view) performs
lightweight manageability tasks, including computing metrics and capturing session history infor-
mation for the ASH feature under some circumstances. For example, MMNL will flush ASH data to
disk if the ASH memory buffer fills up before the one-hour interval that would normally cause the
MMON to flush it.

ASH analysis provides you with effective performance data, since it focuses strictly on active
sessions. You can perform an analysis of the current active sessions by using the V$ACTIVE_
SESSION_HISTORY view and older session history by using the DBA_HIST_ACTIVE_SESSION_
HISTORY view.

■Note The extra statistics in Oracle Database 10g described in this chapter won’t have a detrimental effect on
performance, since the statistics mostly come directly from the SGA via background processes. The ASH feature
uses about 2MB of SGA memory per CPU.

Current Active Session Data
As you are aware, the V$SESSION view holds all the session data for all current sessions. It contains
72 columns of information, so it’s unwieldy when you are trying to analyze session data. That’s why
ASH samples the V$SESSION view and gets the most critical wait information from it. Oracle pro-
vides the new V$ACTIVE_SESSION_HISTORY view, which contains one row for each active session
that ASH samples and returns the latest session rows first.

The V$ACTIVE_SESSION_HISTORY view is where the database stores a sample of all active ses-
sion data. In this view, there’s a column called SESSION_STATE, which indicates whether a session is
active. The SESSION_STATE column can take two values: ON CPU or WAITING. A session is defined as an
active session in the following cases:

• The session state is ON CPU, meaning that it is actively using the CPU to perform a database
chore.

• The session state is WAITING, but the EVENT column indicates that the session isn’t waiting for
any event in the IDLE class.

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE 845

4517CH18.qxd 8/19/05 11:10 AM Page 845

Note that the ASH is really a rolling buffer in the SGA; it is an in-memory active session history.
Thus, in a busy database, older information is frequently overwritten, since ASH collects data every
second from the V$SESSION view.

■Note Chapter 22 shows you how to use ASH statistics to tune instance performance.

Older Active Session History Data
The DBA_HIST_ACTIVE_SESSION_HISTORY data dictionary view provides historical information
about recent active session history. In other words, this view is nothing but a collection of snapshots
from the V$ACTIVE_SESSION_HISTORY view, which itself is a sample of active session data.

There are two ways in which the DBA_HIST_ACTIVE_SESSION_HISTORY view is populated:

• During the course of the regular (by default, hourly) snapshots performed by the AWR, the
MMON background process flushes the ASH data to the AWR.

• Oracle may also need to transfer data to the DBA_HIST_ACTIVE_SESSION_HISTORY view in
between the regular snapshots if the memory buffer is full and the database can’t write new
session activity data to it. In this case, the new MMNL background process will perform the
flushing of data from the memory buffer to the data dictionary view.

Producing an ASH Report
You can use the ashrpt.sql script, located in the $ORACLE_HOME/rdbms/admin directory, to get
an ASH report. The use of the script is similar to the AWR script awrrpt.sql described earlier in this
chapter. The script generates information about the SQL that ran during the time you specify, and it
includes blocking and wait details. Here’s how you run the ashrpt.sql script to get an ASH report:

$ $ORACLE_HOME/rdbms/admin/ashrpt.sql

You are prompted for the time frame for collecting ASH information, whether you’d like an
HTML or text report, and the name of the report. Listing 18-9 shows a portion of an ASH report.

Listing 18-9. The Beginning of an ASH Report

ASH Report For NICKO/nicko
DB Name DB Id Instance Inst Num Release Cluster Host
------------ ----------- ------------ -------- ----------- -------
NICKO 1974138210 nicko 1 10.2.0.0.0 NO localhost
CPUs SGA Size Buffer Cache Shared Pool ASH Buffer Size
---- ------------------ ------------------ ------------------ -----
1 304M (100%) 100M (32.9%) 184M (60.5%) 2.0M (0.7%)

Analysis Begin Time: 28-Jun-05 12:29:55
Analysis End Time: 28-Jun-05 13:30:00

Elapsed Time: 60.1 (mins)
Sample Count: 81

Average Active Sessions: 0.02
Avg. Active Session per CPU: 0.02

Report Target: None specified

The first section of the ASH report provides information about the top user events, as shown in
Listing 18-10.

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE846

4517CH18.qxd 8/19/05 11:10 AM Page 846

Listing 18-10. The Top User Events Part of the ASH Report

Top User Events DB/Inst: NICKO/nicko (Jun 28 12:29 to 13:30)
Avg Active

Event Event Class % Activity Sessions
----------------------------------- --------------- ---------- ----------
null event Other 19.75 0.00
CPU + Wait for CPU CPU 18.52 0.00
SQL*Net break/reset to client Application 18.52 0.00
log file switch completion Configuration 1.23 0.00
log file sync Commit 1.23 0.00

The Top Background Events section, shown in Listing 18-11, shows the wait events in the
database.

Listing 18-11. The Top Background Events Part of the ASH Report

Top Background Events DB/Inst: NICKO/nicko (Jun 28 12:29 to 13:30)
Avg Active

Event Event Class % Activity Sessions
----------------------------------- --------------- ---------- ----------
os thread startup Concurrency 20.99 0.00
control file parallel write System I/O 9.88 0.00
CPU + Wait for CPU CPU 6.17 0.00
db file sequential read User I/O 1.23 0.00
log file parallel write System I/O 1.23 0.00

The next section, in Listing 18-12, shows the activity broken down according the services or
modules in the instance.

Listing 18-12. The Top Service/Module Part of the ASH Report

Top Service/Module DB/Inst: NICKO/nicko (Jun 28 12:29 to 13:30)
Avg Active

Service Module % Activity Sessions
-------------------- ------------------------------ ---------- ----------
SYS$BACKGROUND UNNAMED 35.80 0.01
nicko OEM.SystemPool 20.99 0.00
SYS$USERS UNNAMED 17.28 0.00
nicko OEM.BoundedPool 7.41 0.00
SYS$USERS EM_PING 6.17 0.00

The following section provides information on the top SQL command types executed in the
database during the last hour:

Top SQL Command Types DB/Inst: NICKO/nicko (Jun 28 12:29 to 13:30)
Avg Active

SQL Command Type % Activity Sessions
-- ---------- ----------
PL/SQL EXECUTE 19.75 0.00
SELECT 9.88 0.00
INSERT 1.23 0.00
UPDATE 1.23 0.00

The next segment of the report identifies the top SQL statements during the time period of the
ASH analysis:

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE 847

4517CH18.qxd 8/19/05 11:10 AM Page 847

Top SQL Statements DB/Inst: NICKO/nicko (Jun 28 12:29 to 13:30)

SQL ID % Activity Event % Event
--------------- ---------- ------------------------------ ----------
2b064ybzkwf1y 18.52 SQL*Net break/reset to client 18.52

BEGIN EMD_NOTIFICATION.QUEUE_READY(:1, :2, :3); END;

After this, you’ll also see a section called Top SQL Using Literals that helps you identify SQL
that’s not using bind variables.

The next two segments relate to Top Sessions and Top Blocking Sessions based on enqueue
waits and buffer busy wait statistics:

Top Sessions DB/Inst: NICKO/nicko (Jun 28 12:29 to 13:30)
-> '# Samples Active' shows the number of ASH samples in which the session

was found waiting for that particular event. The percentage shown
in this column is calculated with respect to wall clock time
and not total database activity.

Top Blocking Sessions DB/Inst: NICKO/nicko (Jun 28 12:29 to 13:30)
-> Blocking session activity percentages are calculated with respect to

waits on Enqueues and "buffer busy" only

The next three segments summarize the top database objects, the top database files, and the
top latches in the instance. In the end, the ASH report provides a summary of the wait events in
the database, distributed over smaller time slots than the aggregate period of analysis, as shown in
Listing 18-13. In this example, the one hour time period is broken up into ten six-minute intervals.
This analysis helps you pinpoint performance deterioration more accurately.

Listing 18-13. Summary of Wait Events over Time Intervals

Activity Over Time DB/Inst: NICKO/nicko (Jun 28 12:29 to 13:30)
-> Analysis period is divided into smaller time slots
-> Top 3 events are reported in each of those slots
-> 'Slot Count' shows the number of ASH samples in that slot
-> 'Event Count' shows the number of ASH samples waiting for

that event in that slot
-> '% Event' is 'Event Count' over all ASH samples in the analysis period

Slot Event
Slot Time (Duration) Count Event Count % Event
-------------------- -------- ------------------------------ -------- -------
12:30:00 (6.0 min) 6 SQL*Net break/reset to client 3 3.70

null event 2 2.47
os thread startup 1 1.23

12:36:00 (6.0 min) 4 CPU + Wait for CPU 3 3.70
null event 1 1.23

12:42:00 (6.0 min) 7 CPU + Wait for CPU 2 2.47
null event 2 2.47
os thread startup 2 2.47

12:48:00 (6.0 min) 9 SQL*Net break/reset to client 3 3.70
CPU + Wait for CPU 2 2.47
control file parallel write 2 2.47

12:54:00 (6.0 min) 13 control file parallel write 4 4.94
os thread startup 4 4.94
CPU + Wait for CPU 2 2.47

13:00:00 (6.0 min) 16 CPU + Wait for CPU 5 6.17
SQL*Net break/reset to client 4 4.94
null event 3 3.70

13:06:00 (6.0 min) 9 CPU + Wait for CPU 3 3.70

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE848

4517CH18.qxd 8/19/05 11:10 AM Page 848

SQL*Net break/reset to client 2 2.47
os thread startup 2 2.47

13:12:00 (6.0 min) 5 null event 2 2.47
CPU + Wait for CPU 1 1.23
SQL*Net break/reset to client 1 1.23

13:18:00 (6.0 min) 4 SQL*Net break/reset to client 1 1.23
control file parallel write 1 1.23
null event 1 1.23

13:24:00 (6.0 min) 8 os thread startup 4 4.94
CPU + Wait for CPU 2 2.47
SQL*Net break/reset to client 1 1.23

End of Report

The Management Advisory Framework
Oracle Database 10g includes several management advisors to provide you with automatic per-
formance details about various subsystems of the database. These advisors are specialized tools
that help in the performance tuning of various database components, identifying bottlenecks and
suggesting optimal sizes for key database resources. For example, the Undo Advisor tells you what
the optimal undo tablespace size might be for your database. Each of these advisors bases its
actions on a specific Oracle PL/SQL package like the DBMS_ADVISOR package.

Each time an advisor runs a task, it performs an analysis and provides you with recommen-
dations. Note that the ADDM and the Automatic Segment Advisor are the only advisors that are
scheduled to run automatically. To get recommendations from any of the other advisors, you
must manually schedule or perform an advisor task.

The management advisory framework offers you a uniform interface for all Oracle advisors.
Some of these advisors have been around since Oracle9i. What is new is that Oracle has built a
common management advisory framework in Oracle Database 10g to make it easy to manage the
advisors. The new framework allows you to use a similar method to invoke all the advisors, and
the advisors provide their reports in a consistent format as well. All the advisors get their raw data
from the AWR and store their analysis results in the AWR.

The advisory framework’s primary function is to help the database improve its performance.
The ADDM recommends using the management advisors on an ad hoc basis, whenever a perform-
ance problem needs a deeper analysis. DBAs can also use the advisors for performing what-if
analyses.

The Management Advisors
You can group the automatic advisors into the following groups: memory-related, tuning-related,
and space-related. Let’s briefly look at the advisors that fall into these three groups.

Memory- and Instance-Related Advisors
There are two memory- and instance-related management advisors:

• Memory Advisor: The Memory Advisor provides recommendations regarding the optimal
sizing of the SGA and the PGA memory. The Allocation History chart shows the history of
the memory allocation for the various SGA components over time.

• MTTR Advisor: This advisor lets you configure instance recovery by enabling you to adjust
the mean time to recover (MTTR) setting for an instance.

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE 849

4517CH18.qxd 8/19/05 11:10 AM Page 849

■Tip Obviously, if you are using automatic shared memory and program global area management, you don’t
need the Memory Advisor to tell you how to size these memory components, since the database will manage
these by itself.

Tuning-Related Advisors
The ADDM, of course, is the most important all-around tuning advisor in the database, and it pro-
vides access to the automatic diagnostic capabilities of the Oracle database. Apart from the ADDM,
there are two purely SQL-tuning-related and SQL-performance-related advisors:

• SQL Tuning Advisor: This advisor analyzes complex SQL statements and recommends ways
to improve performance. The SQL Tuning Advisor bases all its work on internal statistics and
may include suggestions to collect new statistics as well as to restructure SQL code.

• SQL Access Advisor: This advisor mainly provides you advice on creating new indexes, mate-
rialized views, or materialized view logs. You provide the advisor with a representative
workload in order to get the advice.

■Note Most of the database alert messages in the OEM also contain a link to specific management advisors.
Thus, you can invoke a management advisor directly from the alert message itself.

Space-Related Advisors
Oracle Database 10g has two space-related advisors:

• Segment Advisor: This advisor allows you to perform growth-trend analyses on various data-
base objects. This advisor also helps you perform object shrinkage, thus helping you reclaim
unused space in your database. In Oracle Database 10.2, the Segment Advisor automatically
runs during the maintenance window and recommends candidate objects for shrinking, as
well as objects that are candidates for a reorganization operation due to issues such as exces-
sive row chaining.

• Undo Advisor: This advisor bases its activities on system usage statistics, including the length
of the queries as well as the rate of undo generation. The Undo Advisor facilitates Oracle’s
Automatic Undo Management (AUM) feature. It helps you to correctly size your undo table-
space and to correctly size the undo retention interval.

Managing the Advisory Framework
You can manage all aspects of the management advisory framework easily using the Database
Control interface. You can also use the DBMS_ADVISOR package to create and manage tasks for
each of the management advisors.

Using the DBMS_ADVISOR Package
You can invoke any of the management advisors through the OEM interface, using various wizards
like the SQL Access Advisor Wizard, and this is my suggested way to use any of the advisors. How-
ever, there are times when you may need to invoke an advisor programmatically, in which case you

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE850

4517CH18.qxd 8/19/05 11:10 AM Page 850

can use the DBMS_ADVISOR package to manage modules in the advisory framework. The methods
for creating a task, adjusting task parameters, performing the analysis, and reviewing the recom-
mendations are common to all the advisors.

■Note You must grant a user the ADVISOR privilege for the user to use the DBMS_ADVISOR package.

These are the steps you must follow to use the DBMS_ADVISOR package to manage various
advisors:

1. Create a task.

2. Set the task parameters.

3. Generate the recommendations.

4. Review the advisor’s recommendations.

I describe these steps in detail in the following sections.

Creating a Task

The first step in using an advisor is creating a task. A task is where the advisor stores all its recom-
mendation-related information.

You create a task using the CREATE_TASK procedure, as shown here:

SQL> VARIABLE task_id NUMBER;
SQL> VARIABLE task_name VARCHAR2(255);
SQL> EXECUTE DBMS_ADVISOR.CREATE_TASK ('SQL Access Advisor', :task_id, :task_name);

Setting the Task Parameters

After you create a new task, the next step is to set the parameters for this task. The task parameters
control the recommendation process. The parameters that you can modify belong to four groups:
workload filtering, task configuration, schema attributes, and recommendation options.

Here is an example showing how you can set various task parameters using the SET_TASK_
PARAMETER procedure:

SQL> EXECUTE DBMS_ADVISOR.SET_TASK_PARAMETER (-
'TEST_TASK', 'VALID_TABLE_LIST', 'SH.SALES, SH.CUSTOMERS');

In this example, the VALID_TABLE_LIST parameter belongs to the workload-filtering group of
parameters. You are instructing the advisor (the SQL Access Advisor) to exclude all tables from the
analysis except the sales and customers tables from the SH schema.

The following example uses the STORAGE_CHANGE parameter from the recommendation-options
group to add 100MB of space to the recommendations.

SQL> EXECUTE DBMS_ADVISOR.SET_TASK_PARAMETER('TEST_TASK',
'STORAGE_CHANGE', 100000000);

■Tip The V$ADVISOR_PROGRESS view lets you monitor the progress of advisor tasks as they execute.

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE 851

4517CH18.qxd 8/19/05 11:10 AM Page 851

Generating the Recommendations

To generate a set of recommendations by any advisor, you execute the task that you created earlier,
using the EXECUTE_TASK procedure of the DBMS_ADVISOR package. The EXECUTE_TASK procedure
will generate recommendations, which consist of one or more actions. For example, executing the
SQL Access Advisor may provide a recommendation to create a materialized view and a material-
ized view log.

Here’s how you execute a task named TEST_TASK:

SQL> EXECUTE DBMS_ADVISOR.EXECUTE_TASK('TEST_TASK');

Viewing the Recommendations

You can view the recommendations made by a certain task by using the GET_TASK_REPORT procedure.
You can also use the DBA_ADVISOR_RECOMMENDATIONS view to check the recommendations
related to a particular advisor task name:

SQL> SELECT rec_id, rank, benefit
FROM DBA_ADVISOR_RECOMMENDATIONS
WHERE task_name = 'TEST_TASK';
REC_ID RANK BENEFIT

---------- ---------- ------------
1 2 2754
2 3 1222
3 1 5499
4 4 594

In this example, the RANK column shows how the four recommendations stack up against each
other. The BENEFIT column shows the decrease in the execution cost for each of the four recommen-
dations.

Using OEM Database Control to Manage the Advisory Framework
The best way to use the management advisors is through the OEM Database Control. All you need
to do is click the Advisor Central link on the Database Control home page. From the Advisor Central
page, shown in Figure 18-6, you can select any of the management advisors in the database.

Figure 18-6. The Advisor Central page in Database Control

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE852

4517CH18.qxd 8/19/05 11:10 AM Page 852

The Advisor Central page is your starting point to using the advisory framework through the
OEM Database Control or Grid Control. You use the Advisor Tasks sections to review the results of
running an advisor task. The Results table on the main Advisor Central page shows the output of the
last run of the advisor.

After creating a new database, the first time you check this page you’ll see a single ADDM task
result. This is because the ADDM runs automatically after you create the database. As you invoke
the other advisors, the Results table will gather other results.

Using Data Dictionary Views to Manage the Advisory Framework
Several new data dictionary views provide information about managing tasks and recommenda-
tions made by the various advisors. These are the main advisor-related dictionary views:

• DBA_ADVISOR_TASKS: This view shows information about all tasks in the database, includ-
ing the task name, data of creation, and frequency of usage. The ACTIVITY_COUNTER column
indicates whether useful work is being done by a task.

• DBA_ADVISOR_PARAMETERS: This view shows the names and values of all parameters for
all advisor tasks in the database.

• DBA_ADVISOR_FINDINGS: This view shows the findings reported by all the advisors, includ-
ing the finding’s impact value.

• DBA_ADVISOR_RECOMMENDATIONS: This view contains an analysis of all the recommen-
dations in the database. You can also view the benefits of implementing each recommenda-
tion and a ranking of all recommendations based on their benefit value.

• DBA_ADVISOR_ACTIONS: This view shows the remedial actions associated with each
advisor recommendation.

• DBA_ADVISOR_RATIONALE: This view shows you the rationale for all advisor recommen-
dations.

USING THE SEGMENT ADVISOR

In Oracle Database 10g Release 2, the Segment Advisor is automatically scheduled to run during the default main-
tenance window by the Scheduler. The Segment Advisor will provide you with recommendations regarding objects
that might need compacting to reclaim unused space, as well as recommendations about object reorganization to
eliminate problems such as excessive row chaining.

You can view the details of the Segment Advisor’s recommendations through the DBA_AUTO_SEGADV_CTL
view. By using the ASA_RECOMMENDATIONS built-in pipelined function (located in the DBMS_SPACE package), you
can find out which segments have reclaimable space and excessive row chaining. Here’s how you would use it:

SELECT * FROM TABLE (DBMS_SPACE.ASA_RECOMMENDATIONS());

You can also view the Segment Advisor’s recommendations and the reasons for them by going to the Advisor
Central page in Database Control and clicking on the Segment Advisor Recommendations link at the top of the
page. At the bottom of the Segment Advisor Recommendations page, click on the link entitled “Recommendations
from Last Run of the Automatic Segment Advisor Job.”

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE 853

4517CH18.qxd 8/19/05 11:10 AM Page 853

Working with the Undo and the MTTR Advisors
I’ve discussed how to use the most important advisors like the ADDM, SQL Tuning Advisor, SQL
Access Advisor, and Segment Advisor in other chapters. I’ll briefly summarize the use of the Undo
and MTTR Advisors here.

Using the Undo Advisor
In Oracle Database 10g Release 2, the database automatically tunes undo retention to ensure the
successful completion of the longest running queries. However, you can set your own undo thresh-
old value, which then becomes the minimum value, below which Oracle can’t set its automatically
tuned undo retention period.

You can get to the Undo Advisor by following these steps:

1. From the Database Control home page, click on the Advisor Central link.

2. On the Advisor Central page, click on the Undo Management link.

3. Click the Undo Advisor button at the top of the page.

Using the Undo Advisor, you can do the following:

• Set the low threshold value for undo retention

• Figure out the size of the undo tablespace size you’ll need for a new undo retention setting

• Use different analysis time periods representing different levels of system activity to get rec-
ommendations, in the form of a graph, about the right undo tablespace size for varying undo
retention length

The MTTR Advisor
To control database recovery time, you use the FAST_START_MTTR_TARGET initialization parameter to
set the mean time to recover (MTTR) from a crash. To optimize performance, set the size of the redo
log files so they are just large enough that Oracle isn’t performing more checkpoints than required
by the value of FAST_START_MTTR_TARGET.

■Note The FAST_START_MTTR_TARGET parameter is discussed in detail in Chapter 16.

If your log files are small, Oracle may perform incremental checkpointing more often than the
MTTR value specifies. As has been mentioned, frequent log switching tends to promote incremen-
tal checkpoint activity, meaning that the database writer will perform excessive disk I/O. In an ideal
setup, the MTTR target should govern this activity.

You can access the MTTR Advisor through the Database Control, as follows:

1. From the Database Control home page, click on the Advisor Central link under the Related
Links section.

2. Click on the MTTR Advisor link under the Advisors group.

The main page of the MTTR Advisor is titled Configure Recovery Settings. You can do the
following things with the help of the MTTR Advisor:

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE854

4517CH18.qxd 8/19/05 11:10 AM Page 854

• Look up the tradeoff between a certain MTTR and total I/O in the Instance Recovery section.

• Turn archive logging on and off and enable and disable the automatic archiving of the redo
logs, both through the Media Recovery section.

• Manage the flash recovery area (discussed in detail in Chapter 15), including its location and
size, and enable and disable Flashback Database logging for fast database point-in-time
recovery. You do all this from the Flash Recovery Area section.

Managing the Online Redo Logs
The online redo logs are Oracle’s means of ensuring that all the changes made by the users are
logged, in case there’s a failure before those changes can be written to permanent storage. Thus,
redo logs are fundamental for the recovery process.

Oracle organizes its redo log files in redo log groups, and you need to have at least two different
groups of redo logs with at least one member in each. You need to have at least two redo groups,
because even when one redo log is being archived, the log writer should be able to write to an active
redo log.

Although your database will run just fine with only one member in each redo log group, Oracle
strongly recommends that you multiplex the online redo logs. Multiplexing simply means that you
maintain more than one member in each of your redo log groups. All members of a redo log group
are identical—multiplexing is designed to protect against the loss of a single copy of a log file. When
you multiplex the online redo log files, the log writer writes simultaneously to all the members of a
group.

■Tip Always multiplex the online redo log, as you can lose data if one of the active online redo logs is lost due to
a disk problem. The multiplexed redo logs should ideally be located on different disk drives under different disk
controllers.

Hardware Mirroring vs. Oracle Multiplexing
Mirroring will protect you from a disk failure, but it will not protect you against an accidental dele-
tion of files. Multiplexing ensures that your files are protected soundly against such errors.

If you lose an online redo log file before the redo information is written to the disk, you may
lose valuable data, so under a multiplexed redo log system, the LGWR background process, which is
in charge of writing redo log data from the redo log buffer, writes simultaneously to all the (identi-
cal) members of a multiplexed group. If there are problems writing to one member of a multiplexed
group of redo logs, the writes to the other members continue unhindered.

Online Redo Log Groups
When you multiplex redo log files, you are maintaining identical copies of the same files. Let’s say
you create two copies of a redo log file. You need to create a redo log group to contain these two
identical files, which are called members of the group. At any given time, the LGWR process will
write to a single group of redo log files, and the members of that group are then said to be active.

Here are some basic conditions for Oracle redo log groups:

• All groups must contain an identical number of redo log files (members).

• All redo log files in a group must be identically sized.

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE 855

4517CH18.qxd 8/19/05 11:10 AM Page 855

• Although you can put both members of an online redo log group on the same physical disk,
it’s smart to locate them on different disks so one identical member can survive a disk crash
that involves another member of the same group. Oracle will continue to write to the surviv-
ing members of the online redo log group when one member is not writable (perhaps due to
a problem involving the disk drive).

Creating Online Redo Log Groups
You can create online redo log groups when you create a database for the first time. Here’s an exam-
ple showing just the redo log creation statement as part of the database creation process. Note that
the three redo log groups each have only a single member—they are not multiplexed at this point.

SQL> CREATE DATABASE
. . .
LOGFILE GROUP 1 ('/u01/app/oracle/nicko/redo01.log') SIZE 100M,

GROUP 2 ('/u01/app/oracle/nicko/redo02.log') SIZE 100M,
GROUP 3 ('/u01/app/oracle/nicko/redo03.log') SIZE 100M,

. . .
Database created.
SQL>

Adding Redo Log Groups
Although you need a minimum of two online redo log groups, the ideal number of online redo log
groups for your database can only be worked out from the transaction activity in your database.

■Tip Start with two or three online redo log groups and monitor your alert log for any redo log errors. If the alert
log frequently shows that the log writer was waiting to write to an online redo log, you have to increase the num-
ber of redo groups.

The following statement, which uses the ADD LOGFILE GROUP syntax, adds a new group of redo
logs to your database. Note that this new redo log group is duplexed; two redo log files are being
created in the group, not one:

SQL> ALTER DATABASE
ADD LOGFILE GROUP 4 ('/u01/app/oracle/nicko/log4a.rdo',

('/u01/app/oracle/nicko/log4b.rdo') SIZE 500M;
Database altered.
SQL>

In the example in the previous section, we created three online log groups, but each of them
had only a single member. To duplex those groups to provide additional safety, we need to add a
member to each group. To add a single member to an existing group, you use the ADD LOGFILE
MEMBER statement:

SQL> ALTER DATABASE ADD LOGFILE MEMBER
'/u01/app/oracle/nicko/log1b.rdo'
TO GROUP 2;

Database altered.
SQL>

Note that we didn’t have to specify a size for the new redo log member being added to group 2—
the new member will simply be sized the same as the existing members of the group.

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE856

4517CH18.qxd 8/19/05 11:10 AM Page 856

Renaming Redo Log Files
If you need to rename your redo log file, follow these steps:

1. Shut down the database and start it up in the mount mode:

SQL> STARTUP MOUNT

2. Move the files to the new location with an operating system command:

SQL> host! mv /u10/app/oracle/oradata/nina/log01.rdo
/a10/app/oracle/oradata/nina/log01.rdo

3. Use the ALTER DATABASE RENAME datafile TO command to rename the file within the
control file:

SQL> ALTER DATABASE RENAME
'/u10/app/oracle/oradata/nina/log01.rdo' TO
'/a10/app/oracle/oradata/nina/log01.rdo';

Dropping Online Redo Logs
You can drop an entire redo log group by using the following command:

SQL> ALTER DATABASE DROP LOGFILE GROUP 3;

To drop a single member of an online redo log group, use this command:

SQL> ALTER DATABASE DROP LOGFILE MEMBER
'/u01/app/oracle/oradata/nina/log01.rdo';

If the redo log file you want to drop is active, Oracle won’t let you drop it. You need to use the
following command to switch the log file first, after which you can drop it:

SQL> ALTER SYSTEM SWITCH LOGFILE;

Online Redo Log Corruption
You can set the DB_BLOCK_CHECKSUM initialization parameter on to make sure Oracle checks for cor-
ruption in the redo logs before they’re archived. If the online redo logs are corrupted, the file can’t
be archived, and one solution is to just drop and re-create them. But if there are only two log groups,
you can’t do this, as Oracle insists on having a minimum of two online redo log groups at all times.
However, you can create a new (third) redo log group, and then drop the corrupted redo log group.

Also, you can’t drop an online redo log file if the log file is part of the current group. Your strat-
egy then would be to reinitialize the log file by using the following statement:

SQL> ALTER DATABASE CLEAR LOGFILE GROUP 1;

If the log group has not been archived yet, you can use the following statement:

SQL> ALTER DATABASE CLEAR UNARCHIVED LOGFILE GROUP 1;

Monitoring the Redo Logs
You can use two key dynamic views, V$LOG and V$LOGFILE, to monitor the online redo logs.

The V$LOGFILE view provides the full filename of the redo logs, their status, and type, as
shown here:

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE 857

4517CH18.qxd 8/19/05 11:10 AM Page 857

SQL> SELECT * FROM V$LOGFILE;
GROUP # STATUS TYPE MEMBER
-------- -------- ------ --------------------------------------

3 STALE ONLINE /u10/app/oracle/oradata/nina/log01.rdo
2 ONLINE /u10/app/oracle/oradata/nina/log01.rdo
1 ONLINE /u10/app/oracle/oradata/nina/log01.rdo

3 rows selected.

The V$LOG view gives detailed information about the size and status of the redo logs, as well as
showing whether the logs have been archived:

SQL> SELECT group#, sequence#, bytes, archived, members, status
2* FROM V$LOG;

GROUP# SEQUENCE# BYTES ARCHIVED MEMBERS STATUS
---------- ---------- ---------- --- ---------- -------------

1 8 104857600 NO 1 INACTIVE
2 10 104857600 NO 1 CURRENT
3 7 104857600 NO 1 INACTIVE
4 9 10485760 NO 3 INACTIVE

SQL>

Managing Database Links
A database link enables a one-way connection to a remote database from a local database. The link
is one way only. The remote database users can’t use this link to connect to the local database—they
must create a separate database link for that.

A database link allows you to gain access to a different database though a remote database user
account; you don’t have to be a user in the remote database. Your privileges on that database will be
identical to the privileges of the user account you use when creating the database link. Database
links are useful when you want to query a table in a distributed database or even insert data from
another database’s table into a local table. Database links allow users to access multiple databases
as a single logical database.

You can create private and public database links. In the following sections, we’ll look at examples
of how to create both types of database links.

Creating a Private Database Link
A private database link is owned by the user that creates the link. In the following statement, the
SYSTEM user creates a private database link. The database link enables a connection to the remote
database using the hr user’s username and password in that database.

SQL> CONNECT system/system_passwd@monitor
Connected.
SQL>
SQL> CREATE DATABASE LINK MONITOR
2 CONNECT TO hr IDENTIFIED BY hr
3 USING 'monitor.world';

Database link created.
SQL>

After the link is created, the SYSTEM user can query the hr.employees table in the remote
database.

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE858

4517CH18.qxd 8/19/05 11:10 AM Page 858

SQL> SELECT COUNT(*) FROM hr.employees@monitor;
COUNT(*)

107

SQL>

■Note To create a database link, a user must have the CREATE PRIVATE DATABASE LINK privilege or the CREATE
PUBLIC DATABASE LINK privilege in the local database.

In the preceding statement, note that the database link’s name is MONITOR, which is the same
as the remote database’s TNS name alias (Oracle Net Service alias), but it could be anything you
want. The CONNECT TO . . . IDENTIFIED BY clause means that the user of this database link will use
that username and password to enter the remote database. The USING 'monitor.world' clause sim-
ply specifies the TNS name alias for the linked remote database.

Because this is a private database link, only the SYSTEM user can use it. When the hr user tries
to use this link to a remote database, this is what happens:

SQL> CONNECT hr/hr;
Connected.
SQL> SELECT count(*) FROM hr.employees@monitor;
select count(*) from hr.employees@monitor

*
ERROR at line 1:
ORA-02019: connection description for remote database not found
SQL>

Creating a Public Database Link
A public database link, unlike a private database link, enables any user or any PL/SQL program unit
to access the remote database objects. The creation statement is very similar to that for a private
database link. You just add the PUBLIC keyword to the CREATE DATABASE LINK statement:

SQL> connect system/system_passwd as sysdba;
Connected.
SQL> CREATE PUBLIC DATABASE LINK MONITOR
2 CONNECT TO hr IDENTIFIED BY hr
3 USING 'monitor.world';

Database link created.
SQL>

■Tip You can create a public database link if several users require access to a remote Oracle database from a
local database. Otherwise, create a private database link, which will allow only the owner of the private database
link to access database objects in the remote database.

Once the public MONITOR link is created, any user can log in to a remote database using that
link. In the following example, the user tester uses the public database link to query the remote
database, MONITOR.

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE 859

4517CH18.qxd 8/19/05 11:10 AM Page 859

SQL> CONNECT tester/tester1;
Connected.
SQL> SELECT COUNT(*) FROM hr.employees@monitor;
COUNT(*)

107

SQL>

■Note The user tester can access the remote database, even without being a user in the remote database,
because tester is using a public database link, which enables any user to use the hr user’s username/password
combination to access the remote database. Of course, from a security point of view, a public database link isn’t
a great idea, and it is bound to be frowned upon by your database auditors!

Using Database Control to Create Database Links
It’s very easy to create a database link using OEM Database Control. On the Database Control home
page, click on the Administration tab. Then click on the Database Links link in the Schema group.
You can create a database link from this page, by answering various prompts.

Copying Files with the Database Server
With Oracle Database 10g you have a new way to copy binary files—you can use the database server
directly and bypass the operating system. The DBMS_FILE_TRANSFER package allows you to copy
binary files in the same server or transfer them between different Oracle databases.

Requirements for the File Copy
There are some conditions to using the DBMS_FILE_TRANSFER package to copy files:

• The source files must be of the same type as the destination files. That is, the files on the two
systems should all be operating system files or all be ASM files.

• The files can’t be larger than 2 terabytes, and each file’s size has to be a multiple of 512 bytes.

• You can’t perform a character set conversion while you copy the files.

• You must grant explicit privileges to all nonprivileged users of the database before they can
use files transferred by the DBMS_FILE_TRANSFER package.

Copying Files on a Local System
You copy files between directories on the same server using the DBMS_FILE_TRANSFER package’s
COPY_FILE procedure. Suppose you wanted to copy a file named example.txt from the /u01/app/
oracle directory to the /u01/app/oracle/dba directory. Here are the steps you would follow:

1. Create a source directory object that points to a source directory (source_dir):

SQL> CREATE DIRECTORY source_dir AS '/u01/app/oracle';
Directory created.

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE860

4517CH18.qxd 8/19/05 11:10 AM Page 860

2. Create a destination directory object that points to the destination directory (dest_dir):

SQL> CREATE DIRECTORY dest_dir AS '/u01/app/oracle/test';
Directory created.
SQL>

3. Use COPY_FILE to copy the example.txt file (destination_file_name) from the source direc-
tory to the destination directory (and you can rename the file during the copy process if
you wish):

SQL> BEGIN
DBMS_FILE_TRANSFER.COPY_FILE(
SOURCE_DIRECTORY_OBJECT => 'source_dir',
SOURCE_FILE_NAME => 'example.txt',
DESTINATION_DIRECTORY_OBJECT => 'dest_dir',
DESTINATION_FILE_NAME => 'example.txt');
END;

SQL> /
PL/SQL procedure successfully completed.
SQL>

If you now check in the destination directory (/u01/app/oracle/test), you’ll find a copy of the
original file from the source directory (/u01/app/oracle).

■Tip You must have the READ privilege on the source directory and the WRITE privilege on the destination direc-
tory to execute the DBMS_FILE_TRANSFER.COPY_FILE procedure.

The new OEM Database Control Load Data Wizard automates the process of creating
SQL*Loader control files. You specify the data files and provide information about their structure,
and the Load Data Wizard uses this information to automatically generate a SQL*Loader control
file, as well as create the SQL*Loader job for loading the data file into the database.

Transferring a File to a Different Database
The DBMS_FILE_TRANSFER package can send copies of files on a server to a remote server using
the PUT_FILE procedure. You follow the same steps as in the previous section, but you use an addi-
tional parameter, DESTINATION_DATABASE, to point to the remote server:

SQL> BEGIN
DBMS_FILE_TRANSFER.PUT_FILE(
SOURCE_DIRECTORY_OBJECT => 'source_dir',
SOURCE_FILE_NAME => 'example.txt',
DESTINATION_DIRECTORY_OBJECT => 'dest_dir',
DESTINATION_FILE_NAME => 'e.txt',
DESTINATION_DATABASE => 'finance');
END;

SQL> /
PL/SQL procedure successfully completed.
SQL>

■Tip You must first ensure that a database link exists between the local and the remote server before using the
PUT_FILE procedure to send files to the remote server.

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE 861

4517CH18.qxd 8/19/05 11:10 AM Page 861

The PUT_FILE procedure first reads the specified file on the local server. It then creates a copy of
that file on the remote server you specify in the DESTINATION_DATABASE parameter. Thus, the source
directory is on the local server, and the destination directory will be located on the remote server.

The GET_FILE procedure is analogous to the PUT_FILE procedure, and it enables you to copy
files on remote servers to your local server. In this procedure, the destination directory and the des-
tination file are on the local server, and the source directory and the source file are on the remote
server. Here’s the structure of GET_FILE:

DBMS_FILE_TRANSFER.GET_FILE(
SOURCE_DIRECTORY_OBJECT IN VARCHAR2,
SOURCE_FILE_NAME IN VARCHAR2,
SOURCE_DATABASE IN VARCHAR2,
DESTINATION_DIRECTORY_OBJECT IN VARCHAR2,
DESTINATION_FILE_NAME IN VARCHAR2);

Mapping Oracle Files to Physical Devices
If your Oracle files are operating system files or if you’re using a raw file system, it’s no big deal to
map data files to the devices that host them. If you aren’t mapping UNIX mount points directly to
physical disks, however, it’s hard to tell where in the disk system a particular Oracle data file is
located. More commonly, organizations use Logical Volume Managers (LVMs) and RAID-based
storage systems, and if you’re interested in finding out where particular files are located in the stor-
age system, you’re normally out of luck.

You can use the V$DATAFILE and V$TABLESPACE dynamic views, along with some other views,
to glean information about data files. When you’re using host-based LVMs and RAID-based storage
systems, you’ll quickly find out that an I/O on a data file can involve multiple storage devices that
are part of a complex storage system. As a DBA, it’s impossible for you to tell where your objects are
located in the I/O stack.

However, you can come up with a physical mapping of all the data files in your database using
the Oracle file-mapping feature. Oracle provides storage-mapping APIs, which are used by the stor-
age vendors to provide corresponding mapping libraries that provide a complete mapping of the
data files. Using the file-mapping feature, you can link data files to the logical devices and the physi-
cal drives. You can also map individual objects, including their file and the specific blocks on which
they reside. This kind of detailed information helps you really understand and evaluate I/O per-
formance.

Architecture of File Mapping
When you use the file-mapping feature, there will be an additional Oracle background process,
FMON, that will run as part of your instance background processes. This FMON background
process will run only if you specify the FILE_MAPPING initialization parameter to TRUE in the init.ora
file or SPFILE. You can also set this parameter dynamically by using the ALTER SYSTEM statement.

The FMON process starts an operating system process called FMPUTL, which communicates
with mapping libraries that contain detailed information about where the files are located. Vendors
of the storage systems provide mapping libraries, although Oracle provides the mapping library for
storage systems made by EMC, a leading storage vendor. The FMPUTL process supplies FMON
with the mapping information for various levels of the I/O stack, and FMON stores this information
in the Oracle data dictionary.

Oracle uses mapping structures to map data files to their physical counterparts. At the founda-
tion of the mapping structure are components that Oracle calls elements, which can be RAID 0,
RAID 1, or RAID 5 disks or just whole disks. The FMON process gathers information about files and

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE862

4517CH18.qxd 8/19/05 11:10 AM Page 862

their elements through the FMPUTL process, and it saves this information in the SGA and some
data dictionary views. Whenever you add, drop, or change the size of a data file, FMON changes the
information in the SGA and in the related V$ tables.

Setting up File Mapping
Now let’s look at the steps that are necessary to set up file mapping in your database.

Providing the Mapping Library
You must first have a mapping library from your storage system vendor, if it is not EMC (EMC’s
mapping library is supplied by Oracle). Then you should edit the filemap.ora file, which is located
in the $ORACLE_HOME/rdbms/filemap/etc directory, to make it specific to your system. The map-
ping library path and the vendor name should be added to the filemap.ora file using a line like the
following:

lib:vendor_name:mapping_library_path

For example, you might use the following line for a VERITAS mapping library:

Lib=VERITAS:/opt/VRTSdbed/lib/libvxoramap_32.so

Once you edit the filemap.ora file, either restart the database (if you are using the init.ora file
instead of the SPFILE), or use the ALTER SYSTEM command to set the FILE_MAPPING initialization
parameter to TRUE.

SQL> ALTER SYSTEM SET FILE_MAPPING=TRUE;

Starting the File Mapping
When you set the FILE_MAPPING initialization parameter to TRUE, Oracle doesn’t automatically start
mapping the files. You do this by invoking the DBMS_STORAGE_MAP package, which, by commu-
nicating with the Oracle FMON background process, invokes mapping operations that populate
mapping views. If you invoke the MAP_ALL procedure in this package, mapping information about
all the data files in your database will be collected.

Three dynamic performance tables, VMAP_FILE, VMAP_ELEMENT, and V$MAP_FILE_IO_
STACK, can then be joined to see the mapping between Oracle data files and physical elements in
the storage system. You can see the storage hierarchy all the way from an individual table down to a
disk in any storage system.

Using the Oracle Scheduler
Oracle Database 10g offers the new built-in Scheduler feature that helps you automate jobs from
within the Oracle database. The DBMS_SCHEDULER package contains various functions and pro-
cedures that help manage the Scheduler, although you can also schedule jobs very easily through
the Database Control interface as well. The most important architectural feature of the Scheduler is
its modular approach to managing tasks, which enables the reuse of similar jobs.

You can also use the Scheduler along with the Database Resource Manager to fine-tune the
allocation of resources among various jobs. The Scheduler is not only a job-specification tool; it
also helps you control resource usage and prioritize jobs within the database.

One of the limitations of the DBMS_JOB package is that it can only schedule PL/SQL-based
jobs, and you can’t use it to schedule operating system scripts or an executable. To run these

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE 863

4517CH18.qxd 8/19/05 11:10 AM Page 863

non-database-type jobs, you must use the crontab in UNIX or the AT facility in Windows servers, or
a third-party tool. The Oracle Scheduler lets you use PL/SQL scripts, operating system shell scripts,
Java programs, and native binary executables to perform scheduled jobs. Note that you can still
use the DBMS_JOB package in Oracle Database 10g, since it’s included for backward-compatibility
purposes.

Basic Scheduler Components
The Scheduler consists of five basic components—jobs, schedules, programs, events, and chains.
Jobs are pretty similar to the jobs used in the DBMS_JOB package, but schedules, programs, events,
and chains are new concepts, leading to a modular approach to the management of tasks. A pro-
gram, for example, enables several users to perform similar tasks.

Let’s examine the basic Scheduler components in more detail.

Jobs
A job is a task that you schedule to run one or more times A job contains a specification of what is to
be executed, and when it should be executed. A Scheduler job can execute a PL/SQL block of code,
a native binary executable, a Java application, or a shell script. You can create a new job by specify-
ing the job details such as the actions that the job performs and time and frequency of the execution,
just as you can with the traditional DBMS_JOB package. In the Scheduler, you can abstract all the
job execution and timing details by using the program and schedule modules.

Schedules
A schedule is a specification of when and how frequently the database executes a job. You can use
the same schedule for several jobs. In Oracle Database 10g Release 2, you can also have schedules
that specify job execution when a specific event occurs in the database.

Programs
A program contains metadata about a Scheduler job. A program includes the program name, the
program type (PL/SQL code or a UNIX shell script, for example) and the program action, which is
the actual name of a procedure or executable script, for example. Several jobs can use the same pro-
gram. Note that a job can specify what the job is executing directly in the job definition, or it can use
a preexisting program for that purpose.

Events
The Scheduler uses the Oracle Streams Advanced Queuing feature to raise events and start database
jobs based on the events. An event is a message sent by an application or process when it notices
some action or occurrence.

There are two types of events—Scheduler-raised events and application-raised events.
Scheduler-raised events are caused by changes in the functioning of the Scheduler, so the
successful completion of a job by the Scheduler may be an event. Application-raised events are
“consumed” or used by the Scheduler to start a job. In fact, you have the option of using just an
event instead of a schedule as the means of starting a job. You can also base a schedule on an event,
in which case the schedule is known as an “event schedule.”

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE864

4517CH18.qxd 8/19/05 11:10 AM Page 864

Chains
You can use the concept of a Scheduler chain to link related programs together. Thus, the running
of a specific program could be made contingent on the successful running of certain other pro-
grams. You can also start a job based on a chain rather than on a single scheduler program. When
you have interrelated jobs, a chain makes it easy to run all the programs necessary to complete the
entire transaction.

Advanced Scheduler Components
In addition to the five basic Scheduler components—jobs, schedules, programs, chains, and
events—the Scheduler also uses several advanced concepts: job classes, windows, and window
groups. These advanced features set apart the Scheduler from its predecessor, the DBMS_JOB
package. It’s these advanced concepts that enable the prioritizing of jobs in the database and the
allocation of resources in accordance with the organization’s priorities. Let’s look at the advanced
Scheduler components briefly.

Job Classes
A job class groups a set of jobs that share common characteristics, such as resource requirements.
Job classes enable you to allocate resources among jobs by grouping similar types of jobs together.
You use job classes to do a couple of things:

• Assign job priority levels for individual jobs, with a higher-priority job always starting before
a lower-priority job

• Specify common attributes for a set of jobs

You use the Database Resource Manager in coordination with the Scheduler to allocate scarce
resources in your database. In the Database Resource Manger, the concept of a resource consumer
group lets you group users according to their resource usage. Oracle controls resource allocation by
assigning each job class to a specific resource consumer group. By default, a job class is assigned to
the default consumer group.

Windows
Scheduler windows offer a link to the Oracle Resource Manager. A window represents an interval of
time during which you can schedule jobs, and the purpose of using windows is to change resource
allocation during specific time periods. Each window is associated with a specific resource plan,
which you create through the Database Resource Manager. Using windows, you can activate differ-
ent resource plans during different time periods, thus providing differential prioritizing for jobs.

Window Groups
A window group is a collection of similar windows. For example, you can create a window for your
weekends and a window for your holidays and group both these windows into a single maintenance
window group.

Scheduler Architecture
The Scheduler architecture consists of the job table, job coordinator, and the job workers (or slaves,
as Oracle calls them).

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE 865

4517CH18.qxd 8/19/05 11:10 AM Page 865

The job table contains information about jobs, such as the job name, program name, and job
owner. You can examine the job table by using the DBA_SCHEDULER_JOBS view. The job coordina-
tor regularly looks in the job table to find out what jobs to execute. The job coordinator creates and
manages the job worker processes, which actually execute the job.

When you create a new job or execute a job, a background process (cjqnnn) wakes up and
coordinates the running of the job. When the job coordinator tells a job worker to execute a job,
the worker process starts a new database session and starts a transaction. It executes the job, and
once completed, it commits and ends the transaction and terminates the database session. The job
worker updates the job table, the run count, and the job log table.

Scheduler Privileges
Oracle creates all jobs, programs, and schedules in the schema of the user that creates these objects,
but it creates all the advanced Scheduler components, like job classes, windows, and window
groups, at the database level, and their owner is the SYS schema.

The SCHEDULER_ADMIN role contains all Scheduler system privileges, with the WITH ADMIN
OPTION clause. The DBA role contains the SCHEDULER_ADMIN role.

The MANAGE SCHEDULER system privilege lets you do the following:

• Create, drop, and alter job classes, windows, and window groups

• Stop any job

• Start and stop windows prematurely

■Note All Scheduler objects are of the form [schema.]name. By default, all scheduler object names are in upper-
case, unless you wrap the lowercase names in double quotes, as in "test_job".

You must have the CREATE JOB privilege to create Scheduler components (jobs, schedules,
programs, chains, and events). To use the advanced Scheduler components (windows, window
groups, and job classes), you need the MANAGE SCHEDULER system privilege.

You can assign other users the right to use one of your components by giving them EXECUTE
privileges on that component:

• The EXECUTE ANY PROGRAM privilege lets a user execute any program under any schema.

• The EXECUTE ANY CLASS privilege lets you assign a job to any job class.

In order for users to modify Scheduler components, they must use the GRANT ALTER SQL state-
ment for each Scheduler component.

■Note To be able to create a job in a job class you create, you must have a separate EXECUTE privilege on that
job class.

Note the following basic points regarding Scheduler privileges:

• To create a job, you must have the CREATE JOB privilege.

• You don’t need any special privileges to specify a schedule, a window or window group, or a
program that you own.

• If you specify a program owned by a different user, you must have the EXECUTE privilege on
ivilege.

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE866

4517CH18.qxd 8/19/05 11:10 AM Page 866

Managing the Basic Scheduler Components
The basic Scheduler components—jobs, programs, schedules, chains, and events—have several
common manageability features. You create, alter, and drop all the components with the same pro-
cedure from the DBMS_SCHEDULER package. The following sections describe how to manage
these components.

Managing Jobs
Creating and managing jobs is at the heart of the Scheduler feature. You can create and run jobs
independently, or you can create a job using schedules and programs. Using saved programs and
schedules saves you having to redefine a program or schedule each time you create a new job.

Creating Jobs

You create a Scheduler job using the CREATE_JOB procedure of the DBMS_SCHEDULER package.
Listing 18-14 shows a simple example of how to create a basic Scheduler job, without using a pro-
gram or schedule. This is the most straightforward way to specify a job, with all pertinent infor-
mation being specified in the job-creation statement itself, without using programs and schedules.

Listing 18-14. Creating a Basic Scheduler Job Without a Program or Schedule

SQL> BEGIN
2 DBMS_SCHEDULER.CREATE_JOB(
3 JOB_NAME => 'test_job',
4 JOB_TYPE => 'PLSQL_BLOCK',
5 JOB_ACTION => 'insert into persons select * from new_persons;',
6 START_DATE => '28-JUNE-05 07.00.00 PM ',
7 REPEAT_INTERVAL => 'FREQ=DAILY; INTERVAL=2',
8 END_DATE => '20-NOV-05 07.00.00 PM ',
9 COMMENTS => 'Insert new customers into the persons table',
10 ENABLED => TRUE,
11* END;
/
PL/SQL procedure successfully completed.
SQL>

■Note You’ll be the owner of a job if you create it in your own schema. However, if you create it in another
schema, that schema owner will be the owner of the job. Thus, the fact that you create a job doesn’t mean that
you are necessarily its owner.

Let’s look at the parameters of the CREATE_JOB procedure:

• JOB_NAME: Provides a way to specify a name for your job.

• JOB_TYPE: Specifies the type of job that you’re creating. Jobs can include a PL/SQL block, a
stored procedure, an executable, or a Java program.

• JOB_ACTION: Specifies the exact procedure, command, or script that the job will execute.

• START_DATE and END_DATE: Specifies the date that a new job should start and end. (If a job is
ongoing, it may not have an END_DATE parameter.)

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE 867

4517CH18.qxd 8/19/05 11:10 AM Page 867

• REPEAT_INTERVAL: Specifies how often a job should be executed by the Scheduler. In Listing
18-14, the repeat interval is 'FREQ=DAILY; INTERVAL=2', which means that you run the job
every other day. There are two ways to specify a repeat interval (both of which are discussed
in the next section):

• Use a database calendaring expression

• Use a PL/SQL date/time expression

• COMMENTS: Allows you to include any comments about the scheduled job.

• ENABLED: Specifies whether the job is enabled or not when it is created. The default value is
FALSE, meaning it is not enabled; to enable the job immediately, set this to TRUE.

Setting the Repeat Interval

Let’s look at the two ways of specifying a repeat interval. A calendaring expression is a straight-
forward, English-like expression consisting of the following three components:

• Frequency: This is a mandatory component of a calendaring expression, identified by the
keyword FREQ. Possible values are YEARLY, MONTHLY, WEEKLY, DAILY, HOURLY, MINUTELY, and
SECONDLY.

• Repeat interval: This interval is identified by the INTERVAL keyword, and it specifies how often
the database must repeat the job.

• Specifiers: These provide detailed information about when a job should be run; the possible
values are BYMONTH, BYWEEKNO, BYYEARDAY, BYMONTHDAY, BYDAY, BYHOUR, BYMINUTE, and BYSECOND.
For example, BYMONTHDAY specifies the day of the month when a job should be run, and BYDAY
specifies the day of the week.

Note that specifiers are optional, but the repeat interval and frequency components of a calen-
daring expression are mandatory. Here are some typical calendaring expressions:

FREQ=DAILY; INTERVAL=3 Executes a job every three days

FREQ=HOURLY; INTERVAL=2 Executes a job every other hour

FREQ=WEEKLY; BYDAY=MON Executes a job every Monday

FREQ=WEEKLY; INTERVAL=2; BYDAY=FRI Executes a job every other Friday

FREQ=MONTHLY; BYMONTHDAY=1 Executes a job on the last day of the month

You can also create more complex repeat intervals using PL/SQL expressions, with the proviso
that all such expressions must evaluate to a date or a timestamp data type. When you use a
date/time expression for specifying the repeat interval, you end up with a date/time data type as
the value of the interval, as shown here:

repeat_interval => 'SYSTIMESTAMP + INTERVAL '30' MINUTE'

The preceding PL/SQL expression states that Oracle will execute the job every half hour.

Administering Jobs

You use the DBMS_SCHEDULER package to perform job-related administrative tasks.
You can enable, and thus activate, a job as follows:

SQL> EXEC DBMS_SCHEDULER.ENABLE('TEST_JOB1');
PL/SQL procedure successfully completed.

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE868

4517CH18.qxd 8/19/05 11:10 AM Page 868

You disable a job this way:

SQL> EXEC DBMS_SCHEDULER.DISABLE('TEST_JOB1');
PL/SQL procedure successfully completed.

You drop a job by using the DROP_JOB procedure, as shown here:

SQL> BEGIN
DBMS_SCHEDULER.DROP_JOB(JOB_NAME => 'TEST_JOB1');
END;

You can run a job manually (at other than the regularly scheduled times) using the RUN_JOB
procedure, as shown here:

SQL> EXEC DBMS_SCHEDULER.RUN_JOB('TEST_JOB');

Finally, you can stop a job immediately using the STOP_JOB procedure, as shown here:

SQL> EXEC DBMS_SCHEDULER.STOP_JOB('TEST_JOB');

■Tip In both the STOP_JOB and RUN_JOB procedures, you can use the FORCE attribute, which will determine
whether an active job can be stopped or dropped. By setting FORCE=TRUE, you can stop or drop a running job.
The default for the FORCE attribute is FALSE.

Managing Programs
A program contains metadata about what the Scheduler will run, including the name and type of
the program, and what a job will execute. Different jobs can share a single program.

Creating a Program

You create a new program using the CREATE_PROGRAM procedure of the DBMS_SCHEDULER package,
as shown here:

SQL> BEGIN
2 DBMS_SCHEDULER.CREATE_PROGRAM(
3 PROGRAM_NAME => 'MY_PROGRAM',
4 PROGRAM_ACTION => 'UPDATE_SCHEMA_STATS',
5 PROGRAM_TYPE => 'STORED_PROCEDURE',
6 enabled => TRUE);
7* end;
SQL> /
PL/SQL procedure successfully completed.
SQL>

Once you create a program, you can simplify your job creation statement by replacing the
JOB_TYPE and JOB_ACTION attributes with the name of the program that already contains the specifi-
cation of these attributes. The PROGRAM_TYPE and PROGRAM_ACTION attributes thus replace the job
attributes that you normally provide when creating a new job. You can see why this type of modular
approach is beneficial—different jobs can use the same program, thus simplifying the creation of
new jobs.

The following example re-creates the TEST_JOB job that was created in Listing 18-14, but using
the program component this time:

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE 869

4517CH18.qxd 8/19/05 11:10 AM Page 869

SQL> BEGIN
2 DBMS_SCHEDULER.CREATE_JOB(
3 JOB_NAME => 'TEST_JOB',
4 PROGRAM_NAME => 'TEST_PROGRAM',
5 REPEAT_INTERVALl => 'FREQ=DAILY;BYHOUR=12',ENABLED => TRUE);
7* END;

SQL> /
PL/SQL procedure successfully completed.
SQL>

In the preceding example, using a program lets you avoid specifying the JOB_TYPE and
JOB_ACTION parameters in the CREATE_JOB statement.

Administering Programs

You can enable, disable, and drop Scheduler programs using various procedures from the
DBMS_SCHEDULER package, as shown in the following examples.

The ENABLE procedure is used to enable a Scheduler program:

SQL> EXEC DBMS_SCHEDULER.ENABLE('TEST_PROGRAM');
PL/SQL procedure successfully completed.

You use the DISABLE procedure to disable a program:

SQL> EXEC DBMS_SCHEDULER.DISABLE('TEST_PROGRAM');
PL/SQL procedure successfully completed.
SQL>

The DROP_PROGRAM procedure is used to drop a program:

SQL> EXEC DBMS_SCHEDULER.DROP_PROGRAM('TEST_PROGRAM');
PL/SQL procedure successfully completed.
SQL>

Managing Schedules
Let’s say you have a number of jobs, all of which execute at the same time. By using a common
schedule, you can simplify the creation and managing of such jobs. The following sections explain
how you can manage schedules.

Creating a Schedule

You use the CREATE_SCHEDULE procedure of the DBMS_SCHEDULER package to create a schedule, as
shown here:

SQL> BEGIN
2 DBMS_SCHEDULER.CREATE_SCHEDULE(
3 SCHEDULE_NAME => 'TEST_SCHEDULE',
4 START_DATE => SYSTIMESTAMP,
5 END_DATE => SYSTIMESTAMP + 90,
6 REPEAT_INTERVAL => 'FREQ=HOURLY;INTERVAL= 4',
7 COMMENTS => 'Every 4 hours');
8* END;

SQL> /
PL/SQL procedure successfully completed
SQL>

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE870

4517CH18.qxd 8/19/05 11:10 AM Page 870

The TEST_SCHEDULE schedule states that a job with this schedule will be executed immediately
and then be reexecuted every 4 hours, for a period of 90 days. Note the following things about this
new schedule:

• The CREATE_SCHEDULE procedure has three important parameters: START_DATE, END_DATE, and
REPEAT_INTERVAL.

• You specify the start and end times using the TIMESTAMP WITH TIME ZONE data type.

• You must use a calendaring expression when creating the repeat interval.

Once you create the TEST_SCHEDULE schedule, you can simplify the job creation process even
further by using both a program and a schedule when creating a new job, as shown here:

SQL> BEGIN
2 DBMS_SCHEDULER.CREATE_JOB(
3 JOB_NAME => 'MY_JOB',
4 PROGRAM_NAME => 'MY_PROGRAM',
5 SCHEDULE_NAME => 'MY_SCHEDULE');
6 END;
7 /

PL/SQL procedure successfully completed.
SQL>

As you can see, using saved schedules and programs makes creating new jobs a breeze.

Administering Schedules

You can alter various attributes of a schedule by using the SET_ATTRIBUTE procedure of the DBMS_
SCHEDULER package. You can alter all attributes except the name of the schedule itself.

You can drop a schedule by using the DROP_SCHEDULE procedure, as shown here:

SQL> BEGIN
2 DBMS_SCHEDULER.DROP_SCHEDULE (SCHEDULE_NAME => 'TEST_SCHEDULE');
3 END;
4 /

PL/SQL procedure successfully completed.
SQL>

If a job or window is using the schedule you want to drop, your attempt to drop the schedule
will result in an error instead, by default. You can force the database to drop the schedule anyway,
by using an additional FORCE parameter in the preceding example and setting it to TRUE.

■Tip When you create a schedule, Oracle provides access to PUBLIC, thus letting all users use your schedule by
default.

Managing Chains
A Scheduler chain consists of a set of related programs that run in a specified sequence. The succes-
sive positions in the chain are referred to as “steps” in the chain, and each step can point to another
chain, a program, or an event. The chain includes the “rules” that determine what is to be done at
each step of the chain.

We’ll create a simple Scheduler chain by first creating a Scheduler chain object, then the chain
steps and the chain rules.

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE 871

4517CH18.qxd 8/19/05 11:10 AM Page 871

Creating a Chain

Since Scheduler chains use Oracle Streams Rules Engine objects, a user must have both the CREATE
JOB privilege, as well as the Rules Engine privileges, to create a chain. You can grant all the necessary
Rules Engine privileges by using a statement like this, which grants the privileges to the user nina:

SQL> BEGIN
DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(DBMS_RULE_ADM.CREATE_RULE_OBJ, 'nina'),
DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE (
DBMS_RULE_ADM.CREATE_RULE_SET_OBJ, 'nina'),
DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE (
DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT_OBJ, 'nina')
END;

Now that you have the necessary privileges, let’s create a Scheduler chain called TEST_CHAIN
using the CREATE_CHAIN procedure:

SQL> BEGIN
DBMS_SCHEDULER.CREATE_CHAIN (
chain_name => 'test_chain',
rule_set_name => NULL,
evaluation_interval => NULL,
comments => NULL);
END;

Next, define the steps for the new chain using the DEFINE_CHAIN_STEP procedure. Note that a
chain step can point to a program, an event, or another chain:

SQL> BEGIN
DBMS_SCHEDULER.DEFINE_CHAIN_STEP('test_chain', 'step1', 'program1');
DBMS_SCHEDULER.DEFINE_CHAIN_STEP('test_chain', 'step2', 'program2');
DBMS_SCHEDULER.DEFINE_CHAIN_STEP('test_chain', 'step3', 'program3');
END;

Finally, to make the chain operative, you must add rules to the chain using the DEFINE_CHAIN_
RULE procedure. Chain rules determine when a step is run and specify the conditions under which a
step is run. Usually, a rule specifies that a step be run based on the fulfillment of a specific condi-
tion. Here’s an example:

SQL> BEGIN
DBMS_SCHEDULER.DEFINE_CHAIN_RULE('test_chain', 'TRUE', 'START step1');
DBMS_SCHEDULER.DEFINE_CHAIN_RULE('test_chain', 'step1 COMPLETED',
'Start step2, step3');
DBMS_SCHEDULER.DEFINE_CHAIN_RULE('test_chain',
'step2 COMPLETED AND step3 COMPLETED', 'END');
END;

The first rule in the preceding example specifies that step1 be run, which means that the
Scheduler will start program1. The second rule specifies that step2 (program2) and step3 (program3)
be run if step1 has completed successfully ('step1 COMPLETED'). The final rule says that when step2
and step3 finish, the chain will end.

Enabling a Chain

You must enable a chain before you can use it. Here’s how to do so:

SQL> BEGIN
DBMS_SCHEDULER.ENABLE ('test_chain');
END;

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE872

4517CH18.qxd 8/19/05 11:10 AM Page 872

Embedding Jobs in Chains

In order to run a job within a Scheduler chain, you must create a job with the JOB_TYPE attribute set
to CHAIN, and the JOB_ACTION attribute pointing to the name of the particular chain you wish to use.
Of course, this means that you must first create the chain.

Here’s the syntax for creating a job for a Scheduler chain:

SQL> BEGIN
DBMS_SCHEDULER.CREATE_JOB (
JOB_NAME => 'test_chain_job',
JOB_TYPE => 'CHAIN',
JOB_ACTION => 'test_chain',
REPEAT_INTERVAL => 'freq=daily;byhour=13;byminute=0;bysecond=0',
ENABLED => TRUE);
END;

You also have the option of using the RUN_CHAIN procedure to run a chain without creating a
job first. The procedure will create a temporary job and immediately run the chain. Here’s how you
do this:

SQL> BEGIN
DBMS_SCHEDULER.RUN_CHAIN (
CHAIN_NAME => 'my_chain1',
JOB_NAME => 'quick_chain_job',
START_STEPS => 'my_step1, my_step2');
END;

As with the other components of the Scheduler, there are procedures that enable you to drop a
chain, drop rules from a chain, disable a chain, alter a chain, and so on. For the details, please refer
to the section about the DBMS_SCHEDULER package in the Oracle manual, “PL/SQL Packages and
Types Reference.”

Managing Events
So far, you’ve seen how to create jobs with and without a schedule. When you create a job without a
schedule, you’ll have to provide the start time and the frequency, whereas using a schedule enables
you to omit these from a job specification. In both cases, the job timing is based on calendar time.
However, you can create both jobs and schedules that are based strictly on events, not calendar
time. We’ll briefly look at event-based jobs and schedules in the following sections.

Creating Event-Based Jobs

The following example shows how to create a Scheduler job using a program and an event. The job
will start when the event, 'FILE ARRIVAL', occurs:

SQL> BEGIN
dbms_scheduler.create_job(
JOB_NAME => test_job,
PROGRAM_NAME => test_program,
START_DATE => '01-AUG-05 5.00.00AM US/Pacific',
EVENT_CONDITION => 'tab.user_data.event_name = ''FILE_ARRIVAL''',
QUEUE_SPEC => 'test_events_q'
ENABLED => TRUE,
COMMENTS => 'An event based job');
END;

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE 873

4517CH18.qxd 8/19/05 11:10 AM Page 873

There are two unfamiliar attributes in the preceding CREATE_JOB procedure, both of which are
unique to event-based jobs:

• EVENT_CONDITION: The EVENT_CONDITION attribute is a conditional expression that takes its val-
ues from the event source queue table and uses Oracle Streams Advanced Queuing rules. You
specify object attributes in this expression and prefix them with tab.user_data. Review the
DBMS_AQADM package to learn more about Advanced Queuing and related rules.

• QUEUE_SPEC: The QUEUE_SPEC attribute determines the queue into which the job-triggering
event will be queued. In the preceding example, test_events_q is the name of the queue.

Creating Event-Based Schedules

The following example shows how to create an event-based schedule. Whenever an event
(FILE_ARRIVAL) occurs, the Scheduler will start a job based on the schedule created in this example.
In this case, the event indicates that a file has arrived before noon.

SQL> BEGIN
dbms_scheduler.create_event_schedule(
SCHEDULE_NAME => 'appowner.file_arrival',
START_DATE => systimestamp,
EVENT_CONDITION => 'tab.user_data.object_owner = ''APPOWNER''

AND tab.user_data.event_name = ''FILE_ARRIVAL''
AND extract hour FROM tab.user_data.event_timestamp < 12',
QUEUE_SPEC => 'test_events_q');
END;

You were introduced to the EVENT_CONDITION and QUEUE_SPEC attributes in the previous example.

Managing Advanced Scheduler Components
So far you’ve learned how to manage the basic Scheduler components—jobs, programs, schedules,
chains, and events. In this section, let’s look at how to manage the advanced Scheduler compo-
nents—job classes and windows (and window groups).

You’ll also learn how the Scheduler makes good use of the Database Resource Manager fea-
tures, such as resource consumer groups and resource plans, to efficiently allocate scarce OS and
database resources. Too often, heavy batch jobs run past their window and spill over into the day-
time, when OLTP transactions demand the lion’s share of the resources. Prioritizing jobs to ensure
that they are guaranteed adequate resources to perform along accepted lines is an essential require-
ment in production databases. The Scheduler uses the concepts of job classes and windows to
prioritize jobs.

Managing Job Classes
Using job classes helps you prioritize jobs by allocating resources differently among various groups
of jobs. The scheduler associates each job class with a resource consumer group, which lets the
Scheduler determine the appropriate resource allocation for each job class. The ability to associate
job classes with the resource consumer groups created by the Database Resource Manager helps in
prioritizing jobs.

■Note All jobs must belong to a job class. There is a default job class, DEFAULT_JOB_CLASS, to which all
jobs will belong by default, if they aren’t assigned to any other job class. A job class will be associated with the
DEFAULT_CONSUMER_GROUP by default if you don’t expressly assign it to a specific resource consumer group.

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE874

4517CH18.qxd 8/19/05 11:10 AM Page 874

Creating a Job Class

All job classes are created in the SYS schema, regardless of which user creates it. The following
example uses the CREATE_JOB_CLASS procedure to create a new job class called ADMIN_JOBS.

SQL> BEGIN
DBMS_SCHEDULER.CREATE_JOB_CLASS(
JOB_CLASS_NAME => 'admin_jobs'
RESOURCE_CONSUMER_GROUP => 'admin_group',
LOGGING_LEVEL => dbms_scheduler.logging_runs
LOG_HISTORY => 15);
END;

These are the attributes in the preceding example:

• JOB_CLASS_NAME: This is the name of the job class.

• RESOURCE_CONSUMER_GROUP: This attribute specifies that all jobs that are members of this class
will be assigned to the ADMIN_GROUP resource consumer group.

• LOGGING_LEVEL: This attribute can take the following three values:

• DBMS_SCHEDULER.LOGGING_OFF: Specifies no logging of any kind for the jobs in the job
class

• DBMS_SCHEDULER.LOGGING_RUNS: Specifies detailed log entries for each run of a job

• DBMS_SCHEDULER.LOGGING_FULL: Specifies detailed entries for each run of a job in the job
class, as well as all for other operations on the jobs, including the creation, dropping,
altering, enabling, or disabling of jobs

■Note The DBMS_SCHEDULER.LOGGING_FULL value for the LOGGING_LEVEL attribute provides the most infor-
mation about jobs in a job class; the default logging level is DBMS_SCHEDULER.LOGGING_RUNS.

• LOG_HISTORY: This attribute specifies the number of days that the database will retain the logs
before purging them using the automatically scheduled PURGE_LOG job. You can also manu-
ally clear the logs using the PURGE_LOG procedure of the DBMS_SCHEDULER package.

The PURGE_LOG procedure of the DBMS_SCHEDULER package takes two important parameters—
LOG_HISTORY and WHICH_LOG. You use the LOG_HISTORY parameter to specify the number of days to
keep logs before the Scheduler purges them. The WHICH_LOG parameter enables you to specify
whether you want to purge job or window logs. For example, to purge all job logs more than 14 days
old, you would use the following statement:

SQL> EXEC DBMS_SCHEDULER.PURGE_LOG(LOG_HISTORY=14, WHICH_LOG='JOB_LOG');

Managing Job Classes

You drop a job class using the DROP_JOB_CLASS procedure, as shown here:

SQL> BEGIN
DBMS_SCHEDULER.DROP_JOB_CLASS('TEST_CLASS');
END;

■Tip You must specify the force=true option to drop job classes with jobs in them. If the job is already running,
it will be allowed to complete before the dropped job class is disabled.

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE 875

4517CH18.qxd 8/19/05 11:10 AM Page 875

You can change job class attributes with the ALTER_ATTRIBUTES procedure. The following exam-
ple will change the START_DATE attribute, and its new value is specified by the VALUE parameter.

SQL> BEGIN
2 DBMS_SCHEDULER.ALTER_ATTRIBUTES(
3 NAME => 'ADMIN_JOBS',
4 ATTRIBUTE => 'START_DATE',
5 VALUE => '01-JUL-2005 9:00:00 PM US/Pacific');
6* END;

SQL>

Changing Resource Plans Using Windows
A window is an interval with a specific start and end time, such as “from 12 midnight to 6:00 AM.”
However, a window is not merely a chronological device like a schedule, specifying when a job will
run; every window is associated with a resource plan. When you create a window, you specify a
resource plan as a parameter. This ability to activate different resource plans at different times is
what makes windows special scheduling devices that enable you to set priorities.

The basic purpose of a window is to switch the active resource plan during a certain time
frame. All jobs that run during a window will be controlled by the resource plan that’s in effect for
that window. Without windows, you would have to manually switch the resource manager plans.
Windows enable the automatic changing of resource plans based on a schedule.

■Note All windows are created in the SYS schema, no matter which user creates them. To manage windows,
you must have the MANAGE SCHEDULER system privilege.

A Scheduler window consists of the following three major attributes:

• Start date, end date, and repeat interval attributes: These determine when and how fre-
quently a Window will open and close (thus, these attributes determine when a window
is in effect)

• Duration: This determines the length of time a window stays open

• Resource plan: This determines the resource priorities among the job classes

■Note The V$RESOURCE_PLAN view provides information on currently active resource plans in your database.

On the face of it, both a schedule and a window seem to be serving the same purpose, since
both enable you to specify the start and end times and the repeat interval for a job. However, it’s the
resource plan attribute that sets a window apart from a simple schedule. Each time a window is
open, a specific active resource plan is associated with it. Thus, a given job will be allocated differ-
ent resources if it runs under different windows.

You can specify what resources you want to allocate to various job classes during a certain time
period by associating a resource plan with the window you create for this period. When the window
opens, the database automatically switches to the associated resource plan, which becomes the
active resource plan. The system-wide resource plan associated with the window will control the
resource allocation for all jobs and sessions that are scheduled to run within this window. When the
window closes, there will be another switch to the original resource plan that was in effect, provided
no other window is in effect at that time.

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE876

4517CH18.qxd 8/19/05 11:10 AM Page 876

If a window is open and the Database Resource Manager is not turned on, the window won’t be
able to switch the resource plans. In this case, the window will simply open as scheduled and run
the jobs that have been assigned for that window. Thus, the window in this case serves only as a
basic scheduling component.

You can see which window is currently active and which resource plan is associated with that
window by using the following query:

SQL> SELECT window_name, resource_plan, enabled, active
2 FROM DBA_SCHEDULER_WINDOWS;

WINDOW_NAME RESOURCE_PLAN ENABLED ACTIVE
------------------------------ ----- -----------------------------
WEEKNIGHT_WINDOW TRUE FALSE
WEEKEND_WINDOW TRUE FALSE
TEST_WINDOW TEST_RESOURCEPLAN TRUE FALSE
SQL>

The WEEKNIGHT_WINDOW and the WEEKEND_WINDOW are default windows in every Oracle Database
10g database. They are the windows in which weeknight and weekend maintenance tasks are
scheduled, and together, they’re referred to as the maintenance window.

Creating a Window

You create a window by using the CREATE_WINDOW procedure. Let’s look at two examples using this
procedure, one with an inline specification of the start and end times and the repeat interval, and
the other where you use a saved schedule instead to provide these three scheduling attributes.

In the first example, the window-creation statement specifies the schedule for the window:

SQL> BEGIN
DBMS_SCHEDULER.CREATE_WINDOW(
WINDOW_NAME => 'MY_WINDOW',
START_DATE => '01-JUN-05 12:00:00AM',
REPEAT_INTERVAL => 'FREQ=DAILY',
RESOURCE_PLAN => 'TEST_RESOURCEPLAN',
DURATION => interval '60' minute,
END_DATE => '31-DEC-05 12:00:00AM',
WINDOW_PRIORITY => 'HIGH',
COMMENTS => 'Test Window');
END;

Let’s look at the individual attributes of the new window created by the preceding statement:

• RESOURCE_PLAN: This attribute specifies that while this window is open, resource allocation to
all the jobs that run in this window will be guided by the resource plan directives in the
TEST_RESOURCEPLAN resource plan.

• WINDOW_PRIORITY: This attribute is set to HIGH, and the default priority level is LOW; these are
the only two values possible. If two windows overlap, the window with the high priority level
has precedence. Since only one window can be open at a given time, when they overlap, the
high-priority window will open and the low-priority window doesn’t open.

• START_DATE: The setting for this attribute specifies that the window first becomes active at
12:00 AM on June 1, 2005. You can also say that the window will open at this time.

• DURATION: This attribute is set so that the window will remain open for a period of 60 minutes,
after which it will close.

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE 877

4517CH18.qxd 8/19/05 11:10 AM Page 877

• REPEAT_INTERVAL: This attribute specifies the next time the window will open again. In this
example, it is 12:00 AM on June 2, 2005.

• END_DATE: This attribute specifies that this window will open for the last time on December
31, 2005, after which it will be disabled and closed.

■Note Since the Scheduler doesn’t check to make sure that there are prior windows for any given schedule,
windows can overlap sometimes.

The following example creates a window using a saved schedule. Obviously, it is much simpler
to create a window this way:

SQL> BEGIN
DBMS_SCHEDULER.CREATE_WINDOW(
WINDOW_NAME => 'TEST_WINDOW',
SCHEDULE_NAME => 'TEST_SCHEDULE',
RESOURCE_PLAN => 'TEST_RESOURCEPLAN',
DURATION => interval '180' minute,
COMMENTS => 'Test Window');
END;

In the preceding CREATE_WINDOW procedure, the use of the TEST_SCHEDULE schedule lets you
avoid specifying the START_DATE, END_DATE, and REPEAT_INTERVAL parameters.

■Tip A window is automatically enabled upon creation.

Once you create a window, you must associate it with a job or job class, so the jobs can take
advantage of the automatic switching of the active resource plans.

Managing Windows

You can open, close, alter, enable, disable, or drop a window using the appropriate procedure in the
DBMS_SCHEDULER package, and you need the MANAGE SCHEDULER privilege to perform any
of these tasks. Note that since all windows are created in the SYS schema, you must always use the
[SYS].window_name syntax when you reference any window.

A window will automatically open at a time specified by its START_TIME attribute. You can also
open a window manually anytime you wish by using the OPEN_WINDOW procedure. Even when you
manually open a window, that window will still open at its regular opening time as specified by its
interval.

Here’s an example that shows how you can open a window manually:

SQL> EXECUTE DBMS_SCHEDULER.OPEN_WINDOW(
WINDOW_NAME =>'BACKUP_WINDOW',
DURATION => '0 12:00:00');

SQL>

Look at the DURATION attribute in the preceding statement. When you specify the duration, you
can specify days, hours, minutes, and seconds, in that order. Thus, the setting means 0 days, 12
hours, 0 minutes, and 0 seconds.

You can also open an already open window. If you do this, the window will remain open for the
time specified in its DURATION attribute. That is, if you open a window that has been running for 30

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE878

4517CH18.qxd 8/19/05 11:10 AM Page 878

minutes, and its duration is 60 minutes, that window will last be open for the initial 30 minutes plus
an additional 60 minutes, for a total of 90 minutes.

To close a window, you use the CLOSE_WINDOW procedure, as illustrated by the following example:

SQL> EXECUTE DBMS_SCHEDULER.CLOSE_WINDOW('BACKUP_WINDOW');

If a job is running when you close a window, the job will continue to run to its completion.
However, if you created a job with the STOP_ON_WINDOW_CLOSE attribute set to TRUE, that running job
will close upon the closing of its window.

To disable a window, you use the DISABLE procedure, as shown here:

SQL> EXECUTE DBMS_SCHEDULER.DISABLE (NAME => 'BACKUP_WINDOW');

You can only disable a window if no job uses that window or if the window isn’t open. If the
window is open, you can disable it by using the DISABLE procedure with the FORCE=TRUE attribute.

You can drop a window by using the DROP_WINDOW procedure. If a job associated with a window
is running, a DROP_WINDOW procedure will continue to run through to completion, and the window is
disabled after the job completes. If you set the job’s STOP_ON_WINDOW_CLOSE attribute to TRUE, how-
ever, the job will immediately stop when you drop an associated window. If you use the FORCE=TRUE
setting, you’ll disable all jobs that use that window.

Prioritizing Jobs

You can map each Scheduler job class to a specific resource consumer group. A resource plan is
assigned to a resource consumer group, and thus indirectly to each job class as well, by the Data-
base Resource Manager. The active resource plan (as determined by the currently open window)
will apportion resources to groups, giving different levels of resources to different jobs, based on
their job class.

The Scheduler works closely with the Database Resource Manager to ensure proper resource
allocation to the jobs. The Scheduler will start a job only if there are enough resources to run it.

Within each Scheduler window, you can have several jobs running, with varying degrees of pri-
ority. You can prioritize jobs at two levels—class and job. The prioritization at the class level is based
on the resources allocated to each resource consumer group by the currently active resource plan.
For example, the FINANCE_JOBS class might rank higher than the ADMIN_JOBS class, based on the
resource allocations dictated by its active resource plan.

Within the FINANCE_JOBS and ADMIN_JOBS classes, there will be several individual jobs.
Each of these jobs has a job priority, which can range from 1 to 5, with 1 being the highest priority.
You can use the SET_ATTRIBUTES procedure to change the job priority of any job, as shown here:

SQL> BEGIN
dbms_scheduler.SET_ATTRIBUTE(
NAME => 'test_job',
ATTRIBUTE => 'job_priority',
VALUE => 1);
END;

The default job priority for a job is 3, which you can verify with the following query:

SQL> SELECT job_name, job_priority FROM dba_scheduler_jobs;
JOB_NAME JOB_PRIORITY
------------------------------ ---------------------
ADV_SQLACCESS1523128 3
ADV_SQLACCESS5858921 3
GATHER_STATS_JOB 3
PURGE_LOG 3

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE 879

4517CH18.qxd 8/19/05 11:10 AM Page 879

TEST_JOB03 3
TEST_JOB1 3
6 rows selected
SQL>

When you have more than one job within the same class scheduled for the same time, the
job_priority of the individual jobs determines which job starts first.

Window Priorities

Since windows might have overlapping schedules, you may frequently have more than one window
open at the same time, each with its own resource plan. At times like this, the Scheduler will close
all windows except one, using certain rules of precedence. Here is how the precedence rules work:

• If two windows overlap, the window with the higher priority opens and the window with the
lower priority closes.

• If two windows of the same priority overlap, the active window remains open.

• If you are at the end of a window and you have other windows defined for the same time
period with the same priority, the window that has the highest percentage of time remaining
will open.

Window Groups

A window group is a collection of windows, and it is part of the SYS schema. Window groups are
optional entities, and you can make a window a part of a window group when you create it, or you
can add windows to a group at a later time. You can specify either a single window or a window
group as the schedule for a job.

As explained earlier in this chapter, you can take two or more windows that have similar char-
acteristics—for example, some night windows and a holiday window—and group them together to
create a downtime window group. Window groups are used for convenience only, and their use is
purely optional.

Managing Scheduler Attributes
In earlier sections in this chapter, you’ve seen how you can use the SET_ATTRIBUTE procedure to
modify various components of the Scheduler. Attributes like JOB_NAME and PROGRAM_NAME are unique
to the job and program components. You can retrieve the attributes of any Scheduler component
with the GET_SCHEDULER_ATTRIBUTE procedure of the DBMS_SCHEDULER package.

Unsetting Component Attributes
You can use the SET_ATTRIBUTE_NULL procedure to set a Scheduler component’s attributes to NULL.
For example, to unset the comments attribute of the TEST_PROGRAM program, you can use the following
code:

SQL> EXECUTE dbms_scheduler.SET_ATTRIBUTE_NULL('TEST_PROGRAM', 'COMMENTS');

Altering Common Component Attributes
There are some attributes that are common to all Scheduler components. The SET_SCHEDULER_
ATTRIBUTE procedure lets you set these common, or global, attribute values, which affect all Sched-
uler components. The common attributes include the default time zone, the log history retention
period, and the maximum number of job worker processes.

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE880

4517CH18.qxd 8/19/05 11:10 AM Page 880

Monitoring Scheduler Jobs
There are several dynamic performance views you can use to monitor Scheduler jobs, and I briefly
discuss the important views here.

DBA_SCHEDULER_JOBS

The DBA_SCHEDULER_JOBS view provides the status and general information about scheduled
jobs in your database. Here’s a simple query using the view:

SQL> SELECT job_name, program_name
2 FROM DBA_SCHEDULER_JOBS;

JOB_NAME PROGRAM_NAME
--- ---
PURGE_LOG PURGE_LOG_PROG
GATHER_STATS_JOB GATHER_STATS_PROG
. . .
SQL>

DBA_SCHEDULER_RUNNING_JOBS

The DBA_SCHEDULER_RUNNING_JOBS view provides information regarding currently running
jobs.

DBA_SCHEDULER_JOB_RUN_DETAILS

You can use the DBA_SCHEDULER_JOB_RUN_DETAILS view to check the status and the duration
of execution for all jobs in your database, as the following example shows:

SQL> SELECT job_name, status, run_duration
2* FROM DBA_SCHEDULER_JOB_RUN_DETAILS;

JOB_NAME STATUS RUN_DURATION
--
PURGE_LOG SUCCEEDED +000 00:00:02
PURGE_LOG SUCCEEDED +000 00:00:04
GATHER_STATS_JOB SUCCEEDED +000 00:31:18
SQL>

DBA_SCHEDULER_SCHEDULES

The DBA_SCHEDULER_SCHEDULES view provides information on all current schedules in your
database, as shown here:

SQL> SELECT schedule_name, repeat_interval
2* FROM dba_scheduler_schedules;

SCHEDULE_NAME REPEAT_INTERVAL

DAILY_PURGE_SCHEDULE freq=daily;byhour=12;byminute=0;bysecond=0
SQL>

DBA_SCHEDULER_JOB_LOG

The DBA_SCHEDULER_JOB_LOG view enables you to audit job-management activities in your
database. The data that this view contains depends on how you set the logging parameters for your
jobs and job classes.

In the “Creating a Job Class” section, earlier in the chapter, you saw how to set the logging level
for a job at the job class level. In order to set the logging levels at the individual job level, you use the

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE 881

4517CH18.qxd 8/19/05 11:10 AM Page 881

SET_ATTRIBUTE procedure of the DBMS_SCHEDULER package. In the SET_ATTRIBUTE procedure, you
can set the LOGGING_LEVEL attribute to two different values:

DBMS_SCHEDULER.LOGGING_FULL
DBMS_SCHEDULER.LOGGING_RUNS

The DBMS_SCHEDULER.LOGGING_RUNS option will merely record the job runs, while the DBMS_
SCHEDULER.LOGGING_FULL option turns on full job logging.

Here is an example showing how you can turn on full job logging at the job level:

SQL> EXECUTE dbms_scheduler.set_attribute ('TESTJOB',
'LOGGING_LEVEL', dbms_scheduler.LOGGING_FULL);

Purging Job Logs
By default, once a day, the Scheduler will purge all window logs and job logs that are older than
30 days. You can also manually purge the logs by executing the PURGE_LOG procedure, as shown here:

SQL> EXECUTE DBMS_SCHEDULER.PURGE_LOG(
LOG_HISTORY => 1,
JOB_NAME => 'TEST_JOB1');

Default Scheduler Jobs
By default, all Oracle Database 10.2 databases use the Scheduler to run the following jobs, though
you can, of course, disable any of these jobs if you wish:

SQL> SELECT owner, job_name, job_type FROM dba_scheduler_jobs;
OWNER JOB_NAME JOB_TYPE
------------------------------ -----------------------------
SYS PURGE_LOG
SYS FGR$AUTOPURGE_JOB PLSQL_BLOCK
SYS GATHER_STATS_JOB
SYS AUTO_SPACE_ADVISOR_JOB

The GATHER_STATS_JOB is responsible for automatic optimizer-statistics collection. The
AUTO_SPACE_ADVISOR_JOB runs the Segment Advisor on a daily basis in order to provide recom-
mendations for segment shrinking.

The new Scheduler is a welcome addition to the Oracle DBA’s arsenal of tools. By providing a
sophisticated means of scheduling complex jobs, it does away with the need for third-party tools or
complex shell scripts to schedule jobs within the database.

CHAPTER 18 ■ MANAGING AND MONITORING THE OPERATIONAL DATABASE882

4517CH18.qxd 8/19/05 11:10 AM Page 882

Using Oracle Enterprise Manager

Oracle Enterprise Manager (OEM), Oracle’s GUI-based comprehensive database-management
toolset, has been a part of the Oracle server software for many years, and Oracle has substantially
improved it over time. It provides a wide array of services, including reporting features and event
notification through e-mail and pagers.

It’s possible to manage a database with homegrown SQL and PL/SQL scripts, but OEM gives
you an attractive console-based client framework to help you perform almost all of your day-to-day
management activities, including tasks such as backup, recovery, export, import, and data loading.
Although you can use Oracle-supplied packages to perform these tasks, OEM makes it a lot easier
to use new Oracle Database 10g DBA tools like the Segment Advisor, SQL Access Advisor, and SQL
Tuning Advisor. While the installation of various OEM components was substantially more complex
in previous versions, the latest versions of OEM are quite user-friendly.

In Oracle Database 10g, there are two versions of the OEM—a single-instance version called
the Database Control, and a system-wide version that lets you manage your entire system, called
the Grid Control. With the Grid Control, you can manage your enterprise-wide database, applica-
tion servers, hosts, and other services. This chapter shows you how to configure and use both
versions of the OEM. If you aren’t comfortable writing scripts, OEM is ideal for you because it comes
with all the essential scripts to manage a database and other services. Modern Oracle DBAs should
strive to master the OEM and use its powerful functionality to enhance the depth and breadth of
their database management.

■Note If you’re using Oracle Application Server 10g, you can use the Application Server Control to manage the
application server instance.

Oracle Enterprise Manager
Traditionally, Oracle DBAs have used a variety of scripts to manage their databases. You can either
write a script yourself or you can get just about any script you want at one of the many fine Oracle
DBA sites on the Internet (I listed some of these sites in the Introduction). Scripts are either SQL-
based or a combination of SQL*Plus and UNIX shell scripts. You can manually monitor the system
or schedule the scripts to provide automated monitoring and notification through pagers or e-mail.
Most DBAs also use operating system–based tools, such as HP’s Glance, sar, vmstat, and iostat.

If you have a single database with few users, you can probably manage it with a few automated
scripts and some occasional manual monitoring. However, using the single-instance Database
Control tool makes day-to-day management a snap. If you have to manage several databases, you’ll
need a tool to help you perform such tasks as object creation, security maintenance, database mon-
itoring and notification, event management, backing up, recovering, and data loading. A number of

883

C H A P T E R 1 9

■ ■ ■

4517CH19.qxd 8/19/05 11:11 AM Page 883

excellent management tools are also available from third-party sources such as Quest Software
(http://www.quest.com) and Embarcadero Technologies (http://www.embarcadero.com). However,
you get the Database Control tool as part of your Oracle Server software, and so it’s the logical
choice for managing your Oracle database.

Monitoring database performance is not the only benefit of using OEM. Proactive event
management lets you set thresholds for various database parameters for event notification. Job
scheduling makes the traditional crontab seem antiquated. You can even perform application tun-
ing and some reverse-engineering of the schema with OEM. Finally, you can perform many DBA
tasks, such as backup, recovery, data loading, online table reorganization much more easily using
OEM. You can even publish trend charts about the database performance, uptime, and capacity
planning.

Your DBA skill level will increase as you explore the various areas of OEM. You’ll be much more
effective as a DBA, and you’ll significantly reduce the time you need to complete important but
tedious tasks such as checking logs and monitoring various components of the database.

Benefits of Using OEM to Manage Databases
OEM offers several features that make it an attractive tool for managing Oracle databases. The
complete toolset of OEM allows you to monitor databases, manage physical storage and the various
database objects, and analyze database performance. Let’s look at the various benefits OEM
provides.

Out-of-the-Box Management
OEM offers a true out-of-the-box solution for complete systems monitoring and management. I do
cover the configuration of the various components of OEM later in this chapter, but there really isn’t
any heavy-duty configuration necessary to get started with OEM, even for the Grid Control version.
In fact, the OEM Database Control doesn’t need any configuration at all, if you create a new Oracle
database with the DBCA, or you choose to create a new database when you install Oracle Database
Server software.

Web-Based Management
You can view the OEM console on your workstation or access it through your web server. OEM uses
Secure Sockets Layer (SSL), so database security isn’t compromised when you access your databases
through the Internet. All tiers of OEM communicate via HTTP, so they can go through any firewall
that HTTP communications are allowed to go through. The web-based OEM console has all the
features of the regular console, so all you need is a web browser to access your databases from any-
where, at any time.

Real-Time Monitoring
OEM provides excellent real-time monitoring in addition to its capability to provide reports on the
database. Without OEM, you’re forced to use SQL scripts, and the information isn’t always quick in
coming. For example, locking scripts are notoriously slow in finishing. By using OEM, on the other
hand, you can immediately see all the locks in the database. Similarly, OEM helps you identify the
waits in the system and find out what’s causing them while they’re occurring.

The new Hang Analysis feature in the Oracle 10.2 release helps tremendously during a database
hang, when SQL scripts can’t get information back to you quickly. The Hang Analysis feature, by
attaching directly to the SGA, bypasses the SQL and rescue you when normal SQL queries don’t
help.

CHAPTER 19 ■ USING ORACLE ENTERPRISE MANAGER884

4517CH19.qxd 8/19/05 11:11 AM Page 884

Complete Environment Monitoring
As you already know, a poorly performing (or unavailable) database could be the result of a problem
anywhere in the application stack—in the database, in the web servers, or in the server that’s hosting
any of the components of the application. OEM monitors the performance of all the components of
this stack, not just the Oracle database. As a result, you can quickly figure out why the database is
performing poorly all of a sudden. Maybe you have a web server that isn’t able to process the con-
nect requests efficiently for some reason, while your database is performing just fine.

This is a sampling of the items that OEM can monitor and report on:

• The entire platform

• End-user experience

• Systems and web application availability

• The extended network components

• Business transactions

• Historical data analysis and change tracking

Application Performance Monitoring
OEM provides Application Performance Monitoring (APM) tools, which provide you with an easy
way to diagnose system problems and monitor database performance. APM tools gather and report
not only on the status, but also the response times of all the databases in your system. This informa-
tion helps you proactively manage your databases and prevent problems from happening.

When DBAs use OEM’s alert systems and notifications, they can quickly inform managers
about poorly performing system components. These alerts thus help you resolve bottlenecks before
the database becomes completely unavailable to users.

APM performs the following functions:

• Monitors the performance and availability of the system

• Indicates outages and bottlenecks throughout the application system

• Analyzes the root causes of performance problems

• Diagnoses performance with drill-downs

• Minimizes application downtime through the use of efficient problem-resolution tools

Scalable Management Capability
OEM is a highly scalable tool, and you don’t need additional resources to monitor an ever-growing
enterprise. To add new servers to your system, all you need to do is start up a Management Agent on
the new node. The agent will help you gather all pertinent information about servers and databases.

Consolidated Database Management
OEM provides you with a quick top-level view of the entire environment—servers, databases, appli-
cation servers, and so forth—through its home pages. Each managed target has a home page that
provides a concise overall view of system health and performance. By summarizing key information
on the home pages, OEM helps you quickly identify the root cause of any system problems.

OEM also enables you to efficiently query for the latest code patches for all the Oracle products
installed in your enterprise. If new patches are available, you can download and install them easily
with OEM.

CHAPTER 19 ■ USING ORACLE ENTERPRISE MANAGER 885

4517CH19.qxd 8/19/05 11:11 AM Page 885

Integrated Systems Management
You can easily integrate OEM with a system-wide monitoring tool such as HP OpenView. This
integration of the database and server management tools lets you view both the database and
system events from a single browser. The two products essentially act like a single integrated man-
agement suite. OEM uses the Smart Plug-In (SPI) to provide the integration of OEM and OpenView
operations.

OEM Architecture and Components
Unlike previous versions of Oracle, OEM in Oracle Database 10g comes in two flavors—Database
Control and Grid Control.

To monitor and manage just a single database, OEM Database Control is all you need. You don’t
have to configure anything to use the OEM Database Control—it is ready to use the moment you
create a new Oracle Database 10g database, if you do so using the DBCA or the Oracle Universal
Installer.

To manage large-scale, complex environments, you must use the OEM Grid Control, which you
install separately from the Oracle database.

You can consider the Database Control to be a subset of the Grid Control, since the Grid Con-
trol can do everything that the Database Control can do, besides helping you manage system-wide
non-database targets as well.

■Note In addition to the Database Control and Grid Control, the OEM product also includes the Oracle Enterprise
Manager Application Control, which helps you manage individual Oracle Application Server 10g instances. An
Oracle Application Server instance is automatically installed as part of the Grid Control installation.

OEM Database Control
The OEM Database Control uses an HTTP server, and you can view the Database Control Console
with an Internet browser. The default URL for the Database Control is http://hostname:portnumber/
em. For example, on my Linux server, I access the Database Control using the following URL:

http://localhost:5500/em

■Note The default port for the OEM is 5500. However, if that port is already in use, the Database Control will
use a different port number. To see which port your database is using, examine the $ORACLE_HOME/install/
portlist.ini file.

Automatically Configuring the Database Control
If you select the option of creating a new database when you install the Oracle Database Server
software, or if you use the DBCA to create a new database, then Database Control is automatically
installed and configured for you. When you choose the option of creating a new database during
Oracle Server software installation, you’ll be given a choice between the Database Control and Grid
Control, as shown in Figure 19-1.

CHAPTER 19 ■ USING ORACLE ENTERPRISE MANAGER886

4517CH19.qxd 8/19/05 11:11 AM Page 886

Figure 19-1. Selecting the database management option

■Note If you chose to create your database manually or to upgrade your database to Oracle Database 10g, you
must configure the Database Control using the dbconsole build script ($ORACLE_HOME/bin/emca for in UNIX/Linux
systems and $ORACLE_HOME\bin\emca.bat for Windows). This script configures the Database Control and starts
up the dbconsole process. This is discussed in the “Manually Configuring the Database Control” section of this
chapter.

Manually Configuring the Database Control
Remember that the Database Control is automatically configured only if you create a new Oracle
10g Database using the DBCA. If you manually create a new Oracle Database 10g database or
upgrade one to Oracle Database 10g, you must configure the Database Control using the emca
(Enterprise Manger Configuration Assistant) utility, found in the $ORACLE_HOME/bin directory
in UNIX/Linux and Windows systems. The emca utility is used for several purposes besides config-
uring the Database Control, and it can be run with the options shown here:

$ emca [operation] [mode] [dbType] [flags] [parameters]

To configure the Database Control for your database, you must run the emca utility, as shown
in Listing 19-1.

CHAPTER 19 ■ USING ORACLE ENTERPRISE MANAGER 887

4517CH19.qxd 8/19/05 11:11 AM Page 887

Listing 19-1. Running emca to Configure the Database Control

$ export ORACLE_SID=orcl
$ emca -config dbcontrol db

STARTED EMCA at Apr 10, 2005 12:12:33 PM
EM Configuration Assistant, Version 10.2.0.0.0.0 Beta
Copyright © 2003, 2004, Oracle. All rights reserved.

Enter the following information about the database to be configured
Database SID:orcl
Listener port number: 1521
Password for sys:
Password for dbsnmp:
Password for sysman:
Email address for notification (optional):
Email gateway for notification (optional):
You have specified the following settings

Database ORACLE_HOME..................../u01/app/oracle/product/10.2.0/db_1
Enterprise Manager ORACLE_HOME..................../u01/app/oracleproduct/10.2.0/db_1
Database host namelocalhost.localdomain
Listener port number1521
Database SIDorcl
Email address for notification ...
Email gateway for notification..

Do you wish to continue? [yes(Y)/no(N)]: yes
Apr 10, 2005 12:13:06 PM oracle.sysman.emcp.EMConfig perform
INFO: This operation is being logged at / u01/app/oracle/product/10.2.0/db_1
Cfgtoollogs/emca/orcl/emca_2005-04-10_12-12-33-PM.log.
Apr 10, 2005 12:13:08 PM oracle.sysman.emcp.util.FileUtil get Properties
u01/app/oracle/product/10.2.0/db_1/install/staticports.ini
Apr 10, 2005 12:13:08 PM oracle.sysman.emcp.util.DBControlUtil startOMS
INFO: Starting Database Control (this may take a while) ...
Apr 10, 2005 12:13:08 PM oracle.sysman.emcp.EMDBPostConfig performConfiguration
INFO: Database Control started successfully
Apr 10, 2005 12:13:08 PM oracle.sysman.emcp.EMDBPostConfig
INFO: >>>>>>>>>>>>> The Database Control URL is
http://localhost.localdomain:1158/em <<<<<<<<<<<<<<
Enterprise Manager Configuration completed successfully
FINISHED EMCA at Apr 10, 2005 12:15:08 PM
$

You can test the new Database Control connection by using the URL shown in the Database
Control configuration output (toward the end of Listing 19-1). Here is the URL from Listing 19-1:

http://localhost:localdomain:1158/em

Make sure you specify em after the last slash—otherwise, you’ll merely succeed in getting to the
Oracle Containers for J2EE home page!

The Database Control login screen in Figure 19-2 shows that the Database Control configura-
tion was successful.

CHAPTER 19 ■ USING ORACLE ENTERPRISE MANAGER888

4517CH19.qxd 8/19/05 11:11 AM Page 888

Figure 19-2. The Database Control login screen

Accessing the Database Control
Before you can manage a database with the help of the Database Control, you must first make sure
that the target database is running. In addition, you must make sure the Oracle listener service is
running. If the listener service hasn’t been started, and you try connecting to the Database Control,
you may see errors like the following:

The Network Adapter could not establish connection
ORA-12541:TNS:no listener

Once you’ve made sure that the database and the listener service are running, you have to
make sure that the dbconsole process is running on your system—it is needed in order to access
the Database Control as a web application. You can use the start, stop, and status options of the
emctl utility to work with dbconsole, and you can also use the setpasswd option (emctl setpasswd
dbconsole) to establish a password for dbconsole.

To check the status of dbconsole, use the emctl status dbconsole command as shown here:

$ emctl status dbconsole
TZ set to US/Eastern
Oracle Enterprise Manager 10g Database Control Release 10.2.0.0
Copyright (c) 1996, 2004 Oracle Corporation. All rights reserved.
http:localhost.localdomain:1158/em/console/aboutApplication
Oracle Enterprise Manager 10g is not running.
--
Logs are generated in directory / u01/app/oracle/product/10.2.0/db_1/
localhost.localdomain_orcl/sysman/log
$

You start the dbconsole process with the emctl start dbconsole command:

$ emctl start dbconsole
TZ set to US/Eastern
Oracle Enterprise Manager 10g Database Control Release 10.2.0.0
Copyright (c) 1996, 2004 Oracle Corporation. All rights reserved.

CHAPTER 19 ■ USING ORACLE ENTERPRISE MANAGER 889

4517CH19.qxd 8/19/05 11:11 AM Page 889

http:localhost.localdomain:1158/em/console/aboutApplication
Starting Oracle Enterprise Manager 10g Database Control......................
started.
Logs are generated in directory / u01/app/oracle/product/10.2.0/db_1/
localhost.localdomain_orcl/sysman/log
$

You can stop the dbconsole process by using the emctl stop dbconsole command:

$ emctl stop dbconsole

Once dbconsole is up and running, you can access the Database Control through your web
browser using the following URL: http://host.domain:port/em. As shown earlier in the chapter, a
typical URL would look like this:

http://localhost:5500/em

A Brief Tour of the Database Control
The Database Control interface is very intuitive, so I won’t spend a whole lot of time walking you
through the various Database Control links or list all of its capabilities. Besides, throughout this
book, I’ve been using the Database Control’s functionality in the context of various Oracle manage-
ment tasks, so many of its features are explained elsewhere in the book.

You don’t need a special user account (like sysman, which you use for the Grid Control) to log
in to the Database Control console. Use one of the privileged database accounts like SYS so you can
log in with the SYSDBA privileges. When you log in, you’ll be in the Database Control home page,
shown in Figure 19-3. The Oracle Database Control home page provides a launching point for per-
formance tuning and other management activities.

CHAPTER 19 ■ USING ORACLE ENTERPRISE MANAGER890

4517CH19.qxd 8/19/05 11:11 AM Page 890

The Database Control home page allows you to do the following:

• Start up and shut down your database

• Assess the current health of the database by checking the alerts

• Drill down into various management tasks via the, Performance, Administration, and Main-
tenance tabs (discussed in the following sections)

The home page is automatically refreshed every minute by default, and it contains the follow-
ing sections:

• General: Provides a quick view of the up or down status of the database and provides impor-
tant data like listener and host information.

• Host CPU: Shows the CPU utilization of the host.

• Active Sessions: Shows the time the instance spent using CPU and I/O, as well as the time it
spent waiting due to bottlenecks in the instance.

• SQL Response Time: Provides a way of determining whether your instance SQL statements
are executing efficiently. If the current response time of SQL statements is the same or close
to a baseline response time, your instance is functioning normally.

• Diagnostics Summary: Provides the ADDM analyses, information about policy violations,
and any errors logged in the alert log for the instance.

• Space Summary: Provides information on the size of the database, problem tablespaces, and
policy violations.

• High Availability: Tells you what the instance mean time to recovery is and whether the most
recent backups were successful or not. It also indicates the space usage in the archive log
directory, and whether Flashback Logging is enabled.

The Performance Page
The Database Performance page shows you the overall status of the database and helps you quickly
identify causes of performance bottlenecks. Figure 19-4 shows the top part of the Performance
page.

The Performance page consists of four graphs: Host, Average Active Sessions, Instance Disk
I/O, and Instance Throughput, each of which is outlined here:

• Host: Shows problems that lie outside the database. The run queue length indicates con-
tention for host CPU. By clicking on the Host graph, you can get to the Host page, which
shows the following data regarding resource utilization on the host:

• CPU utilization

• Memory utilization

• Disk I/O utilization

• Processes (including a list of the top ten processes)

• Average Active Sessions: Shows problems within the database. Problems with the wait classes
indicate contention for resources like CPU or disk I/O, and the Sessions graph shows which
active sessions are on the CPU and which are waiting for resources like locks, disk I/O, and
so on. By clicking specific boxes, you can drill down to any wait that seems serious.

CHAPTER 19 ■ USING ORACLE ENTERPRISE MANAGER 891

4517CH19.qxd 8/19/05 11:11 AM Page 891

• Instance Disk I/O: Shows the read and write activity. If the “other reads and writes” category
spikes, it’s usually due to a backup or an archiving job.

• Instance throughput: Shows the work currently being performed by the instance and shows
any contention among the active sessions. A low instance throughput is a sign of problems
within the instance and needs further review.

Figure 19-4. The Database Control Performance page

■Tip Oracle recommends that you start investigating waits if the level of waits is at twice the Maximum CPU line
in the sessions graph. If your instance throughput is decreasing, and there is an increasing amount of contention
within the database, you should start looking into tuning your database.

The Memory Access Mode

You can use the Performance page in two viewing modes: the default SQL mode, which is the tradi-
tional mode, and the Memory Access mode, which is an Oracle Database 10g Release 2 innovation.
The Memory Access mode enables you to get performance statistics by querying the SGA directly,
instead of making system-level calls using SQL. To switch between the SQL mode and the Memory
Access mode, use the View Mode drop-down window on the Database Control Performance page.

When you have a slow or hung system, you don’t want to burden your instance further by using
SQL queries. In some cases, excessive library cache contention may make all querying impossible
anyway. In such cases, switch to the Memory Access mode of monitoring database performance.

CHAPTER 19 ■ USING ORACLE ENTERPRISE MANAGER892

4517CH19.qxd 8/19/05 11:11 AM Page 892

Using the Performance page, you can do the following:

• View instance performance

• Identify the SQL statements, sessions, and users that are using the most resources in the
database (top SQL, top sessions, and top users)

• Run the Automatic Database Diagnostic Monitor (ADDM)

The Administration Page
The Administration page is your jumping off point for all Oracle database management activities,
including instance management, space management, schema administration, the Resource
Manger, Oracle Scheduler, Streams administration, and OEM administration. Figure 19-5 shows
the Database Control Administration page.

Figure 19-5. The Database Control Administration page

The Maintenance Page
The Database Control Maintenance page, shown in Figure 19-6, lets you perform backups and
recoveries, use Oracle utilities like Data Pump Export and Import, manage optimizer statistics, and
migrate to Automatic Storage Management. Besides managing Oracle utilities, you can also manage
software patches and clone databases and Oracle homes from this page.

CHAPTER 19 ■ USING ORACLE ENTERPRISE MANAGER 893

4517CH19.qxd 8/19/05 11:11 AM Page 893

Figure 19-6. The Database Control Maintenance page

Oracle Software Cloning

You can clone Oracle homes from a master installation to one or more servers using the Database
Control. The Grid Control will automatically adjust host names, IP addresses, and other related
settings.

If you want to create multiple new installations at once, you can do so. In addition, you can
also save a selection of master installations to use repeatedly in cloning operations.

Cloning a Database with the Database Control

The OEM Clone Database Wizard (also known as the Clone Database tool) allows you to carry out
the database-cloning operation. To do so, from the Database Control home page, go to the Mainte-
nance page, and in the Deployments section, click the Clone Database link. OEM backs up the
source database’s data files and automatically restores and recovers these in the target location.

■Note To clone an Oracle database, it must be version 8.1.7 or higher.

The Setup Page
You can gain access to the Database Control Setup page by clicking the Setup link at the top of the
Database Control home page. On the Setup page, there are options for configuring the following

CHAPTER 19 ■ USING ORACLE ENTERPRISE MANAGER894

4517CH19.qxd 8/19/05 11:11 AM Page 894

• Administrators: By default, a super-administrator account with the name sysman is created
during the installation of the OEM Database Control. The super administrator can create
other administrators as well as create roles in the system. You should use the sysman
account only to perform general configuration tasks and to create other administrative
accounts for your daily database administration.

• Notification Methods: You can use this page to set up e-mail notifications from the Database
Control. You need to provide your SMTP mail server information and your e-mail address to
do this. Figure 19-7 shows the Notification Methods page.

Figure 19-7. The Database Control Setup page

• Patching Setup: You can directly download various patches for your Oracle software from
MetaLink using the Database Control. From the Patching Setup page, you can enter your
MetaLink credentials to search for new patches in Oracle MetaLink and download them.

• Blackouts: You can suspend monitoring for a specified target for any reason, including main-
tenance activity on that target. This way, you don’t get notifications indicating false problems
in the database.

• Management Pack Access: Premium functionality is included in four Management Packs—
Oracle Diagnostics Pack, the Oracle Tuning Pack, the Oracle Configuration Management
Pack, and the Oracle Change Management Pack—and they are subject to additional Oracle
licensing. The Management Pack Access page lets you grant or remove access to these pack-
ages, based on your Oracle licensing agreement. Here’s what they offer:

CHAPTER 19 ■ USING ORACLE ENTERPRISE MANAGER 895

4517CH19.qxd 8/19/05 11:11 AM Page 895

• The Oracle Diagnostics Pack includes performance-monitoring abilities (database and
host), the Automated Database Diagnostic Monitor (ADDM), the Automatic Workload
Repository (AWR), a system for event notification and notification blackouts, and a
history of events and metrics (database and host).

• The Oracle Tuning Pack includes SQL Access Advisor, SQL Tuning Advisor, SQL Tuning
Sets, and database-object reorganization help.

• The Oracle Configuration Management Pack facilitates database and host configura-
tion, management of deployments, cloning of databases and Oracle homes, and
searching and comparing of configuration policies.

• The Oracle Change Management Pack allows you to make changes in database
schemas. You can track changes, compare and synchronize objects and schemas, mod-
ify schema objects, and evaluate and undo the changes, should this be necessary.

■Caution You will violate your Oracle license if you use the three Management Packs described here without
additional licensing from Oracle Corporation.

The Related Links Section
At the bottom of the Database Control home page, you’ll find the Related Links section, which con-
tains links to several management tools, including iSQL*Plus, jobs., and alert history. The Advisor
Central link is part of the Related Links section as well, and it takes you to the Advisor Central page,
which is the launchpad for using the various specialized tools for the management advisory frame-
work. Each of these important management advisors are discussed elsewhere in the book:

• Automatic Database Diagnostic Monitor (ADDM; see Chapter 17)

• Segment Advisor (see Chapter 17)

• SQL Tuning Advisor (see Chapter 21)

• SQL Access Advisor (see Chapter 5)

• Memory Advisor (see Chapter 17)

• Undo Advisor (see Chapter 6)

• MTTR Advisor (see Chapter 18)

Creating Database Control Roles
A role is a collection of predefined target privileges created by the privileged administrators. By
default, only the SYS, SYSTEM, and SYSMAN users can log into the DB Control Console. After log-
ging in as one of these three users, you can assign management privileges to other user accounts
in the database. Here’s how you create roles:

1. Log in to the Database Control as SYS, SYSTEM, or SYSMAN.

2. Click on the Setup link and click the Create button.

3. In the Create Role Properties page, enter a name for the role and enter a description.
Click Next.

4. In the System Privileges page, select View Any Target and click Next.

CHAPTER 19 ■ USING ORACLE ENTERPRISE MANAGER896

4517CH19.qxd 8/19/05 11:11 AM Page 896

5. Under Available Targets, select the Database type. Choose the databases you want from the
drop-down list. Click Next.

6. Under Available Targets, choose Listener and select the appropriate listener. Click Next.

7. Under Target Privileges, choose Full (under Batch Assignment). Click Next.

8. Click on the Administrators button to get to the Create Role Administrators page. Here,
you’ll see the list of available administrators to whom you can grant the newly created
OEM role. Select the administrators and click Finish.

Linking to MetaLink
Oracle Database 10g allows you to link directly from the OEM to the Oracle MetaLink service, which
means that OEM can automatically track patches. If you want to receive an alert when the OEM
detects a new patch, you can easily set it up. If you’d like, the OEM can even notify you when a sys-
tem needs one of the new patches. Once you have applied a patch, Oracle will update the Oracle
Universal Installer inventory to ensure that it knows your latest patch level.

Here’s how to download and apply software patches manually:

1. Click Setup on the Database Control home page.

2. Click the Patching Setup link on the Setup page.

3. In the Patching Setup page, specify the MetaLink username and password. The Patch Search
URL has the default MetaLink login page address (http://updates.oracle.com).

Oracle will use the MetaLink credentials you specified to run the RefreshFromMetalink job at
regular intervals. This job will collect the Oracle critical path information and the latest patch col-
lection criteria from MetaLink, and it will update the OEM repository with the data.

■Note Alternatively, you can access Oracle MetaLink by going to http://oracle.com/support/metalink/index.html.
Once you have logged in, you can search for and download patches.

Policy-Based Configuration Framework
Oracle Database 10g contains a policy-based framework to help you easily track targets that may be
violating established configuration policies. OEM provides a set of policies based on Oracle’s best-
practice configuration to ensure that your database performs at an optimal level, and Oracle
Database 10g enables you to monitor all of your databases to see if there are any violations of the
predetermined configuration policies. Oracle collects these configuration metrics for databases,
host machines, and listener services.

On the Database Control home page, there is a section called Diagnostic Summary, which
shows you whether there are any policy violations anywhere. If you drill down, using the All Policy
Violations button, you can get to the Policy Violations page, which summarizes all policy violations
in your databases and hosts. If you wish, you can disable a policy by going to the Manage Policy
Library page.

Here are some typical policy rules:

• The “critical patch advisories for Oracle Homes” policy rule checks for missing Oracle patches.

• The “insufficient number of control files” policy rule checks for the use of a single control file.

• The “listener password” policy rule checks for password-protected listeners.

CHAPTER 19 ■ USING ORACLE ENTERPRISE MANAGER 897

4517CH19.qxd 8/19/05 11:11 AM Page 897

Tracking Database Feature-Usage Statistics
In Oracle Database 10g, you can track database usage metrics, which enable you to understand two
important phenomena:

• How you are using the various features of your Oracle database, including whether the data-
base is currently using a given feature, and the first and last times a given feature was used.

• The high-water mark (HWM) statistics for important database attributes. The HWM is simply
the highest usage point a feature has attained to that time.

The database features that you can track include advanced replication, Oracle Streams, virtual
private database (VPD), and various auditing features.

Oracle Database 10g collects HWM statistics for items such as the following:

• Maximum size of tables

• Maximum number of Oracle data files

• Maximum number of user sessions

• Size of the largest data and index segments

Examining Database Feature-Usage Statistics
To view database usage statistics in the Database Control, follow these steps:

1. On the Database Control home page, click the Administration link and go to the Database
Configuration group. Click the Database Feature Usage link.

2. You’ll now be in the Database Usage Statistics property sheet, which shows the database
feature-usage statistics in the form of a table. The table lists all the available database fea-
tures by name and lets you see if the database is currently using each one, as well as
providing the first usage and last usage times. To view details about the usage statistics of
any feature, just click the associated link. Figure 19-8 shows the Feature Usage portion of
the Database Usage Statistics property sheet.

atabase Usage Statistics property sheet

CHAPTER 19 ■ USING ORACLE ENTERPRISE MANAGER898

4517CH19.qxd 8/19/05 11:11 AM Page 898

3. To view the database HWMs, click the High Water Marks tab in the Database Usage Statis-
tics property sheet. In the High Water Marks page you can see the HWMs for all database
objects, as well as the last sampled value for each feature, and the version of the database
feature. Figure 19-9 shows the High Water Marks page.

Figure 19-9. The High Water Marks page of the Database Usage Statistics property sheet

OEM Grid Control
The purpose of the OEM Grid Control is to facilitate the management of entire systems, including
hosts, databases, web servers, listeners, and other services. It provides you with a powerful and con-
venient centralized means of managing your entire infrastructure, not just your Oracle databases.
You can manage your systems from just about anywhere, including from mobile devices.

When you click on the Databases tab on the Grid Control home page, you’ll see a list of all the
databases that are under the purview of the Grid Control. Just click on the database you want to
examine in detail. The Grid Control Database page provides the same functionality as the single-
instance Database Control console.

Grid Control Framework Components
The Grid Control consists of the following four components:

• OEM Grid Control: This is main OEM web-based interface for monitoring your enterprise.
You can manage hosts, databases, listeners, application servers, HTTP servers, and web
applications from this centralized Grid Control.

• OEM Management Agent: You install an OEM Management Agent on every host that you
wish to manage. It’s the agent’s job to monitor the host, databases, and other services and
to send the information to the OEM Management Service.

CHAPTER 19 ■ USING ORACLE ENTERPRISE MANAGER 899

4517CH19.qxd 8/19/05 11:11 AM Page 899

• Oracle Management Service: This is the middle tier of the Grid Control stack. The Man-
agement Service provides the user interface for the Grid Control and interacts with the
Management Agent and the Management Repository, which contains the data for the
OEM Grid Control. The Management Service receives all data from the Management
Agents, and it then sends the data to be stored in the Management Repository.

■Note In order to install the Management Service, the Grid Control installation process first installs the Oracle
Application Server on your system, which includes an HTTP server.

• Management Repository: The Management Repository contains all pertinent information
about hosts, databases, and other targets that the OEM Grid Control needs. The repository
consists of two tablespaces in the database hosting the OEM Grid Control. Note that the
Database Control doesn’t require the creation of any extra tablespaces for hosting the Man-
agement Repository—only the Grid Control version of OEM needs the repository.

Installing the Grid Control
As you know, the local Database Control doesn’t need any additional software, since it is a part of
the Oracle database software. However, you need to install the Grid Control separately, either by
downloading the software from Oracle’s web site or by using the appropriate CD. Installing Grid
Control consists of two steps: installing the OEM Grid Control software on the host from which you
intend to use the Grid Control console, and installing a Management Agent on each of the hosts
you want to monitor.

In the following sections, I first show how to install the Grid Control software and then the
Management Agent.

Installing the Grid Control Component
Installing Grid Control is similar to the installing the Oracle server software. You must make sure
you have the DISPLAY variable set up properly if you’re using a UNIX/Linux system. Here are the
steps in the installation process:

1. Log in to the host as the Oracle software owner and mount the Oracle Database 10g CD.
Change directory to the CD, and execute the runInstaller script:

$./runInstaller

2. At the Welcome window, click Next.

3. Accept the default Operating System Group Name. Click Next.

4. A separate window asking you to run the root.sh UNIX script will appear. Leave this window
open, and open a new terminal window.

5. Execute orainstRoot.sh as the root user in the terminal window, as shown here:

$ cd $ORACLE_BASE/oraInventory
$ su
$ <rootpassword>
$./orainstRoot.sh
$ exit

6. Once you run the orainstRoot.sh script, go back to the Oracle Universal Installer window
and click Continue.

CHAPTER 19 ■ USING ORACLE ENTERPRISE MANAGER900

4517CH19.qxd 8/19/05 11:11 AM Page 900

7. In the Specify File Locations window, choose the directory for the OEM files and click Next.

8. In the Select a Product to Install window you can install the OEM Grid Control in an existing
Oracle database or you can create a new database. You can also choose to install a Manage-
ment Service or Management Agent from this window. In this example, I chose the option
that creates a new Oracle database. Click Next.

■Note When you choose to install the Grid Control using a new database, Oracle will create a new Oracle Data-
base 10g database on your server. If you want to install using an existing Oracle database, your database must be
version 9.2 or higher.

9. The Oracle Universal Installer will make the necessary prerequisite checks, after which you
click Next.

10. Choose a password for the default SYSMAN user and click Next.

11. Select passwords for the SYS, SYSTEM, and DBSMNP users in the new database and click
Next.

12. In the next window, you have the option of setting up MetaLink and Proxy information.
These are optional and have no bearing on the functioning of Grid Control. Once you make
your choice, click Next.

13. In the Database Identification window that appears next, choose the SID and the Global
Database Name for the database. Click Next.

14. In the Database File Location window, specify the location for all the database files and click
Next.

15. Review the list of components that are going to be installed in the Summary screen that
appears, and click Install.

16. You’ll now see a series of windows indicating the progress of the installation. You’ll be asked
to run the root.sh script again as the root user. Log in as the root user in a separate window
and run the root.sh script. Then go back to the installation window and click OK.

17. The Configuration Assistants window will show the status of the various configuration assis-
tants, such as the Oracle Database Configuration Assistant. On my system, there were 16
configuration assistants. After the new Oracle database is created, you’ll see the following
message:

The Oracle Agent will now be installed on the same machine as the database that
was just created. This database will then be available through Grid Control to
manage its environment.

Click OK.

18. When the Setup Privileges window appears, open a new terminal window and run the
orainstRoot.sh script yet again. Once the script completes, go back to the installer window
and click Next. The Configuration Assistants window will appear again and the Agent Con-
figuration Assistant will install the Oracle Agent.

19. You’ll see an End of Installation message from the installer, along with a list of the port
numbers you can use to access the Grid Control, the Oracle Application Server that’s
installed as part of the Grid Control installation, and the Oracle database that was created
to host the Grid Control.

20. Click Exit to end the installation.

CHAPTER 19 ■ USING ORACLE ENTERPRISE MANAGER 901

4517CH19.qxd 8/19/05 11:11 AM Page 901

Installing and Deploying the OEM Management Agent
Use the following steps to install the OEM Management Agent on each server you want to monitor:

1–7. Start the Oracle Universal Installer and perform the first seven steps in the preceding
“Installing the Grid Control Component” section.

8. In the Select a Product window, choose the Additional Management Agent installation type
and click Next.

9. Specify the name of your host server in the next page, and click Next.

10. Click Next, after reading the security warning (regarding secure HTTP mode) and then
click OK.

11. Review the Summary window and click Next to start the actual agent installation process.

12. Once your installation completes, click Yes to exit the Oracle Universal Installer.

13. Verify that your databases and hosts can be seen by the newly installed Management Agent.
You can do this by logging in to the Grid Control and clicking the Targets tab. You will see all
the discovered hosts. Click on any host and then click on Databases. You should now be able
to view all your Oracle databases that are running on that host.

Once you successfully install the agents on your servers, you can use the information they
collect to monitor all your Oracle databases, hosts, web servers, and listeners.

Managing the Management Agent
The emctl utility is used to configure agents and consoles for not only the Grid Control, but also for
the Database Control and Oracle Application Server. You can check the status of the agent and stop
and start the agent service with the following commands:

• emctl status agent

• emctl start agent

• emctl stop agent

■Tip The emctl executable is common to both UNIX/Linux and Windows systems. However, remember that
there is a separate emctl executable for the Database Control and the Management Agent. You’ll find the appropri-
ate emctl executable by using the full path for it, under the right home directory. In this case, since we’re using
the emctl executable to manage the OEM agent, we’d go to the directory where the agent software was installed.
If you just type in emctl, you may be looking at the wrong executable.

You can find out the current status of the agent as shown in Listing 19-2.

Listing 19-2. Checking the Status of the Management Agent

$ emctl status agent
Oracle Enterprise Manager 10g Release 10.1.0.2.0.
Copyright (c) 1996, 2004 Oracle Corporation. All rights reserved.

Agent Version : 10.1.0.2.0
OMS Version : 10.1.0.3.0
Protocol Version : 10.1.0.2.0
Agent Home : /u03/app/oracle/agent

CHAPTER 19 ■ USING ORACLE ENTERPRISE MANAGER902

4517CH19.qxd 8/19/05 11:11 AM Page 902

Agent binaries : /u03/app/oracle/agent
Agent Process ID : 29597
Parent Process ID : 22494
Agent URL : http://hp50.netbsa.org:1831/emd/main/
Started at : 2005-04-04 13:27:50
Started by user : oracle
Last Reload : 2005-04-04 13:27:50
Last successful upload : 2005-04-05 12:39:34
Total Megabytes of XML files uploaded so far : 133.40
Number of XML files pending upload : 0
Size of XML files pending upload(MB) : 0.00
Available disk space on upload filesystem : 8.48%

Agent is Running and Ready
$

The Oracle Management Service (OMS)
Before you can start using the Grid Control interface, you must first make sure that the middle tier,
the Oracle Management Service (OMS), is running. At the end of the Grid Control software installa-
tion, the OMS should be automatically started by the installer. You can use the following command
to check whether the OMS is running:

$ emctl status oms
Oracle Enterprise Manager 10g Release 10.1.0.3.0.
Copyright (c) 1996, 2004 Oracle Corporation. All rights reserved.
Oracle Management Server is Up
$

If the OMS isn’t running, start it up this way:

$ emctl start oms
Oracle Enterprise Manager 10g Release 10.1.0.3.0.
Copyright (c) 1996, 2004 Oracle Corporation. All rights reserved.
Starting HTTP Server ...
Starting Oracle Management Server ...
Checking Oracle Management Server Status ...
Oracle Management Server is Up
$

Connecting to the Grid Control
Once you know OMS is running, as discussed in the previous section, you’re ready to log in to the
Grid Control console. In order to do this, you must know the port number for the Grid Control,
which you can get from the portlist.ini file, located in the $ORACLE_HOME/install directory.

The first item in the setupinfo file shows the port number of the Grid Control. You connect to
the Grid Control interface by typing a URL with the following format into your web browser:

http://your_servername:port_number/em

• The Grid Control installation includes an Oracle Application Server instance, which is
administered using a special ias_admin user account. This is the default information for the
embedded Application Server instance on my server:

Instance Name: EnterpriseManager0.ntl-alapatisam.netbsa.org
ias_admin password: This password is the same the SYSMAN account.

CHAPTER 19 ■ USING ORACLE ENTERPRISE MANAGER 903

4517CH19.qxd 8/19/05 11:11 AM Page 903

• These are the connection details for the Management Repository on my server:

Host: ntl-alapatisam.netbsa.org
Port: 1521
SID: emrep

Logging In to the Grid Control
When you install the Grid Control, a super-administrator account, sysman, is automatically
installed, and you provide the password for it at that time. You use this sysman account to log
in to OEM for the first time.

You can’t rename or delete this account, but you can later set up administrator accounts for
various users who need to use the Grid Control to manage databases. You can limit the privileges
of each administrator to control which databases they can access, and you can set up customized
notification rules for them. Figure 19-10 shows the Grid Control login page.

■Note You must log into the Grid Control using the sysman account, not your database accounts like sys or
system.

Figure 19-10. The Grid Control Login page

Once you successfully log in to the Grid Control, you’ll be in its home page, shown in
Figure 19-11. From the home page, you can manage databases either by choosing Databases
from the drop-down list of targets, or by clicking the Targets tab and clicking the Databases link.

CHAPTER 19 ■ USING ORACLE ENTERPRISE MANAGER904

4517CH19.qxd 8/19/05 11:11 AM Page 904

Figure 19-11. The Grid Control home page

Features of the Grid Control
The Grid Control is an enormously powerful monitoring and management tool. I devote the follow-
ing sections to explaining the important features, but I make no attempt to cover the various data-
base management features, which are identical to those in the Database Control.

Enterprise Configuration Management
You can perform the following two enterprise-wide configuration-related tasks through Grid Control:

• Obtaining host and database configuration information

• Changing the configuration

Obtaining Host and Database Configuration Information

Management Agents, which run on the database hosts, collect configuration information about
their hosts and send it back to the OEM’s Management Repository every 24 hours. Here’s what they
send:

• Memory, CPU, and I/O configuration on the host

• Details about the operating system, such as vendor, version, installed software components,
patches, and database patch information

• Properties associated with the database and its instances

CHAPTER 19 ■ USING ORACLE ENTERPRISE MANAGER 905

4517CH19.qxd 8/19/05 11:11 AM Page 905

• Information about tablespaces and data files

• Information about control files and redo logs

Monitoring and Managing Enterprise Configuration

You can use the Grid Control to monitor and manage the configuration once it has the relevant
details. Here’s what the Grid Control allows you to do with respect to managing your configuration:

• Look at and contrast the hardware and software configurations of different hosts and
databases

• Monitor any changes to host configurations

• Summarize your configuration

• Search for configurations

• Carry out cloning operations on Oracle homes and database instances

• Look at violations of host and database policies

• Patch Oracle and manage warnings about critical patches

Groups
To facilitate the management of a large number of targets, the Grid Control lets you organize large
numbers of systems into groups. For example, you can grant a Grid Control user access only to cer-
tain groups. You can group targets into homogeneous groups (databases only, for example) or
heterogeneous groups (such as a database, listener, application server, and host server).

Using the Grid Control to Manage the Enterprise
The Grid Control home page provides an overall view of the entire enterprise. Use this as your start-
ing point when you’re evaluating the health of your database, since it provides information about
the entire Oracle environment, not just the database.

The home page shows you the following things:

• Status: Provides the status of the monitored Oracle targets, including the availability and
open alerts for each target. Targets include hosts, databases, web servers, and listeners.

• Critical Patch Advisories: Displays a visual summary of any patch advisories and the affected
Oracle homes.

• Deployments Summary: Provides a summary of your entire system configuration, including
hardware and software.

• Resource Center: Provides links to Oracle documentation, release notes, support, and the
Oracle Technology Network (OTN).

The Grid Control home page contains tabs that offer links to the following entities:

• Targets: Targets include the host servers, databases, application servers, web applications,
and groups.

• Deployments: The Deployments home page has sections for critical patch advisories, deploy-
ments, configuration, patching, cloning, and policies (managing policy violations).

• Alerts: This page will tell you if any of your targets are down.

CHAPTER 19 ■ USING ORACLE ENTERPRISE MANAGER906

4517CH19.qxd 8/19/05 11:11 AM Page 906

• Jobs: The Job Activity page contains information on all scheduled, running, and finished jobs
in your database.

• Management System: This page contains information about the Management Service and
the Management Repository. It provides details about the general health of OEM, availability,
backlogs, and alerts about the OEM itself and all the targets.

At the top (and the bottom) of the Grid Control home page you’ll find additional links to the
following pages:

• Setup: The Setup page is similar to the Setup page in the Database Control.

• Preferences: The Preferences page is where you can change preferred credentials, including
the password of the sysman account.

• Help: This page provides details about each of the pages in the Grid Control.

• Logout: This link will log you out of the Grid Control.

Monitoring Your Entire System with the Grid Control
You can use the Grid Control to monitor not only Oracle databases, but also web applications, host
performance, application servers, and database groups. In the following sections, I briefly summa-
rize the Grid Control capabilities in the non-database areas. The Grid Control has all the features of
the Database Control, as regards the management of databases; in addition, you can manage all the
other parts of your system.

Monitoring Web Applications

In order to view your web applications through the Grid Control, select Web Applications from the
View drop-down list on the home page. You can perform the following tasks from the Web Applica-
tions home page:

• Review web application alerts: You can use the Grid Control to view alerts regarding your web
applications. Whenever an application fails to perform according to a preset performance-
policy threshold, Grid Control will alert you. You specify the alerts when you create your web
applications. In order for the Grid Control to monitor the application, you must, of course,
add the target to OEM.

• Monitor transaction performance: The Grid Control will monitor your web applications to
see if they are conforming to availability and service-level requirements. You can monitor
and track key transaction-performance indicators like average page response, slowest page,
and the response time (in milliseconds).

You can go to the Transaction Playback page and view the summary and breakdown of the
time spent on each web page in your application.

• Analyze page performance: Using the Grid Control, you can track the web server response
time and correlate this information with the response times of URLs from various users.
You can also perform end-user performance review of the slow URLs.

Monitoring Host Performance

You can monitor the performance of your hosts and track configuration changes through the Grid
Control. You can reach the Host home page by clicking on the Targets tab and then selecting the
host you want to investigate. The Host home page summarizes the availability and status of the
host. From the Host home page, you can navigate to the performance and configuration areas:

CHAPTER 19 ■ USING ORACLE ENTERPRISE MANAGER 907

4517CH19.qxd 8/19/05 11:11 AM Page 907

• Performance: You can use the Grid Control to view host performance, including CPU usage,
memory, disk I/O, etc. You can view current CPU load and swap utilization on your system
without using operating system tools like sar and top.

• Configuration: You can view the hardware and software configuration on the host. If you
wish, you can perform a side-by-side comparison of any two hosts on your system. This
enables you to identify the differences between a development and production server, for
example. You will see the differences in operating system patches, packages, and Oracle
software versions.

Monitoring Web Applications

You can monitor the application servers in your environment by clicking the Targets tab and then
clicking the Web Applications link. You’ll see a list of all the Web applications in your system here,
and you can click on a specific application to examine its performance. In addition to monitoring
your web applications, you can also monitor the web servers used by your applications, including
the Oracle Application Server instances.

Managing Groups

The Groups sub-tab under the Targets tab lists all the groups defined in Grid Control. The Grid Con-
trol’s Groups capability lets you organize your databases and hosts into related groups. For example,
you can collect all your production databases into a group called Production Databases. Groups let
you run a job in all related targets with a single command. In addition, you can view all alerts and
configuration policy violations in your production databases separately from the development and
test databases.

You can perform the following tasks from the Groups page:

• Add, remove, and configure groups

• Access a group’s home page

• View alerts and policy violations for a group

CHAPTER 19 ■ USING ORACLE ENTERPRISE MANAGER908

4517CH19.qxd 8/19/05 11:11 AM Page 908

Managing Oracle Databases on
Windows and Linux Systems

In this chapter, you’ll learn how to install, configure, and manage an Oracle database on a
Windows 2000 server. For the most part, there’s no difference in the way the SQL or database-
administration commands work in the UNIX and Windows operating systems. The main
differences relate to the way the database instance runs under the two operating systems.

In the last part of the chapter, I briefly discuss managing Oracle databases on the Linux
operating system.

■Note Please bear in mind that this chapter presents an overview rather than a detailed discussion about the
management of Oracle on Windows and Linux systems. The primary goal of the chapter is to look at the differ-
ences between the UNIX system and the Windows and Linux systems.

Oracle Database 10g and Windows
Oracle was the first major database vendor to provide a commercial database for Windows (in 1993).
Microsoft SQL Server has recently overtaken Oracle as the leading database on the Windows plat-
form (in terms of the installed software base and number of purchased licenses), but when it comes
to functionality and performance, Oracle is way ahead of SQL Server—and any other database, for
that matter.

Oracle Database 10g provides features and capabilities that make it the premier database for
sophisticated, enterprise-wide Internet-based applications. The following sections explain some of
the more powerful features of Oracle Database 10g on the Windows platform. The Oracle databases
on Windows have essentially the same functionality as the UNIX versions, but Oracle modifies the
software in order to accommodate Windows features.

Database Access Methods
Oracle Database 10g provides multiple data access methods for applications, including COM and
.NET data access. Thus, a vast number of developers are able to access the database using the
method that best suits their needs. Here is a summary of the Oracle data access methods:

909

C H A P T E R 2 0

■ ■ ■

4517CH20.qxd 8/19/05 11:12 AM Page 909

• Oracle ODBC: This is the traditional Oracle data access method for Windows-based applica-
tions; you use Oracle ODBC drivers to access the database.

• Oracle Objects for OLE: The Oracle Objects for OLE (OO4O) are COM-based native Oracle
drivers that provide superior performance when compared to ODBC. OO4O is designed as
a thin layer sitting on top of the Oracle Call Interface (OCI), which performs the database
access. OO4O is popular with programmers because it’s easy to use and it’s easily accessible
from all popular scripting languages.

• Oracle OLE DB: OLE DB is the well-known Microsoft data access specification, and the Oracle
OLE DB provider is optimized for Oracle database access. Other third-party Oracle OLE DB
providers are available, but Oracle’s OLE DB provider offers superior data access features and
better performance.

• COM Automation: This feature enables developers to access COM Automation servers.
Developers access these servers by using PL/SQL and Java packages, procedures, and
functions.

■Note The Oracle ODBC and OLE DB providers access the database through a middle layer: the Microsoft
ActiveX Data Objects (ADO) automation layer.

Oracle Support for .NET
The Oracle Data Provider for .NET allows .NET applications to access the Oracle database and
advanced Oracle features. Oracle also supports OLE DB .NET and ODBC .NET. Using these interop-
erability layers, you can access Oracle Database 10g from .NET languages such as C#, Visual Basic
.NET, and ASP.NET.

Integration with Windows Services
Oracle Database 10g Release 2 provides tight integration between the database and the Windows
operating system to support highly scalable and secure applications. Oracle supports Windows
technologies, including native Windows services, .NET, COM, and Java. The following sections dis-
cuss the most important Oracle features that help integration with the Windows server.

Using the Oracle Data Provider for .NET
The Oracle Data Provider for .NET (ODP.NET) enables you to access an Oracle database from any
.NET language, and it is far more efficient than OLE DB .NET or ODBC .NET. The big difference is
that ODP .NET doesn’t need a data access bridge like Microsoft ADO to access the database because
it’s a native driver. This direct access capability makes ODP .NET more stable and far more scalable.

Using Oracle Objects for OLE
Oracle Objects for OLE (OO4O) is COM based and gives high-performance data access to Oracle.
It has a number of other advantages over ADO, one of which is that you can use built-in Oracle
features, such as objects and queuing. OO4O is compatible with, for example, Visual Basic, Power-
Builder, and Delphi, which are of course COM languages.

CHAPTER 20 ■ MANAGING ORACLE DATABASES ON WINDOWS AND L INUX SYSTEMS910

4517CH20.qxd 8/19/05 11:12 AM Page 910

Using OLE DB
Oracle’s OLE DB provider is the best option if you are writing data access code using OLE DB and
ADO techniques. Of course, .NET programs access databases with OLE DB .NET, which in turn uses
OLE DB.

Using Oracle Open Database Connectivity
The Oracle Open Database Connectivity (ODBC) driver is your usual ODBC vendor driver for use
with Windows clients, just as Microsoft supplies one for all their data formats. .NET programs can
access the Oracle databases through ODBC DB .NET, which uses ODBC.

Using the COM Automation Feature
The COM Automation feature gives Oracle the ability to work with COM Automation servers. With
this feature you can instantiate objects from the COM Automation server, then get and set their
properties and invoke their methods.

Integrating Directories and Windows Security Policies
Oracle integrates with Oracle Internet Directory, Microsoft Active Directory, and Windows native
authentication so that you can centralize your Windows security policy and any other directory-
based admin tasks.

The Oracle Services for Microsoft Transaction Server
Microsoft Transaction Server (MTS) serves as an application server for COM objects and transac-
tions under distributed environments. MTS, also known as COM+ and .NET Enterprise Services,
consists of the Microsoft distributed transaction coordinator. In this case, Oracle databases are used
as MTS resource managers, which means that they provide client-side connection pools to MTS. To
coordinate transactions among the distributed resource managers, MTS uses a Distributed Transac-
tion Coordinator (DTC).

The Oracle Services for MTS coordinate with the DTC to enable the use of the database to coor-
dinate transactions. The Oracle Services for MTS run on a Windows server, but you can use them
with an Oracle database on any operating system platform.

Oracle and Windows Security Features
Oracle enhances the Windows security model by providing two features that use the Oracle Public
Key Infrastructure (PKI) in an improved manner. These features are the use of Oracle Wallets in the
Windows registry and the Microsoft Certificate Store integration.

Oracle Wallets

Oracle lets you store Oracle Wallets in the Windows registry, thus providing an additional layer of
security for Wallets. You can use both the Oracle Wallet Manager and the Oracle Enterprise Login
Assistant to provide single sign-on for Oracle PKI applications.

Microsoft Certificate Store Integration

Oracle’s PKI applications are designed to work with Oracle products. However, by integrating with
the Microsoft Certificate Store, Oracle’s PKI credentials for public key security services can be used
by non-Oracle applications using Microsoft PKI.

CHAPTER 20 ■ MANAGING ORACLE DATABASES ON WINDOWS AND L INUX SYSTEMS 911

4517CH20.qxd 8/19/05 11:12 AM Page 911

Windows Active Directory

In Chapter 10, you saw that the LDAP-compliant Oracle Internet Directory (OID) facilitates the
management of database connectivity in addition to serving other purposes. A centralized directory
eliminates the administrative overhead that is involved in managing large groups of database users.

You can use the Windows Active Directory to perform the same tasks as OID. By storing and
resolving connect descriptors through Active Directory, you eliminate the use of tnsnames.ora files
on client machines.

Oracle provides native authentication through the use of Windows authentication mechanisms,
which enables the use of single-sign-on features and Windows operating system authentication of
users. The Windows Native Authentication adapter provides support for

• Operating system authentication

• Database authentication of operating system–enabled roles

• Kerberos authentication

By purchasing the Advanced Security option, you can perform single sign-on over SSL. The
option also enables cross-platform Kerberos support, whereby a Windows client can securely com-
municate with a non-Windows client, for example.

Essential Differences Between Managing Oracle
on Windows and UNIX
The real differences between using Oracle on Windows and UNIX are in the architecture of Oracle,
the way the environmental variables are configured, and the way you start up and shut down the
database instance. The differences are thus minor, with one caveat: it is much easier going from
Oracle on a UNIX system to an Oracle database running on Windows than the other way around.
The reason, of course, is that most people are already familiar with Windows systems, but UNIX sys-
tems require specialized study. To make matters more complex, the vi editor and shell scripting are
not terribly intuitive to people who are just moving to the UNIX world. The UNIX-based DBA who is
trying to implement Oracle on Windows also has some hurdles to clear, but they are not nearly as
difficult to overcome.

In the following sections I summarize the essential differences in installing and managing the
Oracle database management system on Windows and UNIX systems.

Processes vs. Threads
Remember the various processes, such as the database writer and the log writer, that start when the
Oracle instance starts? In UNIX, these processes run as separate entities, each with its own process
identifier (PID).

For Windows systems, Oracle uses a separate thread mode, not a simple port of its UNIX
process-based architecture. In Windows, there is just one process for the entire instance, called the
Oracle Service (invoked by oracle.exe). All Oracle background processes (log writer, database writer,
and so on) and all dedicated servers spawned for each user connection are threads of the same sin-
gle Oracle process. This multithreaded architecture enables a Windows-based Oracle database to
perform fast context switches, because all threads share the resources of a common Oracle process.
If you have three Oracle database instances running on your Windows server, you’ll have three
Oracle services running also. OracleServiceSID is the mandatory Windows service for each Oracle
instance.

CHAPTER 20 ■ MANAGING ORACLE DATABASES ON WINDOWS AND L INUX SYSTEMS912

4517CH20.qxd 8/19/05 11:12 AM Page 912

To display the background processes that are running in a Windows Oracle instance, you can
query the V$BGPROCESS view, as shown in Listing 20-1. This view provides the names and descrip-
tions for all background processes.

Listing 20-1. Viewing the Oracle Processes

SQL> SELECT b.name,
2 p.program,
3 p.spid
4 FROM v$session s,
5 V$PROCESS p,
6 V$BGPROCESS b
7 WHERE b.paddr = p.addr
8* AND p.addr = s.paddr;

NAME PROGRAM SPID
----- ------------ ----------
PMON ORACLE.EXE (PMON) 4080
PSPO ORACLE.EXE (PSPO) 3356
MMAN ORACLE.EXE (MMAN) 1164
DBW0 ORACLE.EXE (DBW0) 4048
LGWR ORACLE.EXE (LGWR) 2524
CKPT ORACLE.EXE (CKPT) 1856
SMON ORACLE.EXE (SMON) 3488
RECO ORACLE.EXE (RECO) 3256
CJQ0 ORACLE.EXE () 1044
QMNC ORACLE.EXE (QMNC) 3572
MMON ORACLE.EXE (MMON) 1924
MMNL ORACLE.EXE (MMNL) 2028
12 rows selected.
SQL>

Because you can’t use the Windows Task Manager to kill the (only) Oracle process, Oracle pro-
vides the special orakill utility to help you kill a single thread within the main Oracle process. If, for
some reason, you want to terminate a nonessential user process, you can use the orakill command
from the command line, as shown here:

C:\> orakill
Usage: orakill sid thread
where sid = the Oracle instance to target

thread = the thread id of the thread to kill
The thread id should be retrieved from the spid column of a query such as:

select spid, osuser, s.program from
v$process p, v$session s where p.addr=s.paddr

C:\>

Of course, as in the case of UNIX-based Oracle databases, you can kill a user’s session by using
the following command:

SQL> ALTER SYSTEM KILL SESSION 'SID,SERIAL#';

The preceding command will kill the user’s session, but not the user’s thread, which represents
the user’s connection to the Windows server. Note that the user’s session may still show up in the
session monitor, because the background process may still be busy rolling back the transaction for
the session you just killed.

CHAPTER 20 ■ MANAGING ORACLE DATABASES ON WINDOWS AND L INUX SYSTEMS 913

4517CH20.qxd 8/19/05 11:12 AM Page 913

■Caution Exercise care when you use the orakill command. Killing a background process by mistake will
bring the database down.

You can use the query in Listing 20-2 to ensure you are killing a user’s unwanted session,
and not an important background process. This script will reveal all shadow processes with the
thread IDs.

Listing 20-2. A Query that Shows All Oracle Shadow Processes

SQL> SELECT p.spid "Windows Thread",
2 B.NAME "USERNAME", S.OSUSER, S.PROGRAM
3 FROM V$PROCESS P, V$SESSION S, V$BGPROCESS B
4 WHERE P.ADDR = S.PADDR
5 AND P.ADDR = B.PADDR
6 UNION ALL
7 SELECT P.SPID "Windows Thread",
8 S.USERNAME "USERNAME", S.OSUSER, S.PROGRAM
9 FROM V$PROCESS P, V$SESSION S
10* WHERE P.ADDR=S.PADDR AND S.USERNAME IS NOT NULL;
SQL
WINDOWS THREAD USERNAME OSUSER PROGRAM
--

6976 PMON SYSTEM ORACLE.EXE (PMON)
7756 PSP0 SYSTEM ORACLE.EXE (PSP0)
7508 MMAN SYSTEM ORACLE.EXE (MMAN)
6640 DBW0 SYSTEM ORACLE.EXE (DBW0)
7388 LGWR SYSTEM ORACLE.EXE (LGWR)
7172 CKPT SYSTEM ORACLE.EXE (CKPT)
6572 SMON SYSTEM ORACLE.EXE (SMON)
3260 RECO SYSTEM ORACLE.EXE (RECO)
7020 CJQ0 SYSTEM ORACLE.EXE (CJQ0)
4724 MMON SYSTEM ORACLE.EXE (MMON)
7376 MMNL SYSTEM ORACLE.EXE (MMNL)
7120 QMNC SYSTEM ORACLE.EXE (QMNC)

. . .
19 rows selected.
SQL>

Oracle Service Threads
Each Oracle instance linked to the oracle.exe binary will have several threads that are part of it. Each
of these threads is linked to an Oracle process. These are the most common threads under the
Oracle Service:

• Thread 0: This is the dispatcher thread, and it mainly handles the input from the listener
process.

• Thread 1: This thread executes the requests made by thread 0. On a dedicated server, this
means launching a thread on behalf of the new connections.

• Thread 2: This is the PMON thread.

CHAPTER 20 ■ MANAGING ORACLE DATABASES ON WINDOWS AND L INUX SYSTEMS914

4517CH20.qxd 8/19/05 11:12 AM Page 914

• Thread 3: This is the database writer thread.

• Thread 4: This is the log writer thread.

• Thread 5: This is the checkpoint thread.

• Thread 6: This is the SMON thread.

• Thread 7: This is the recoverer thread.

You can also get information about the various Oracle service threads by querying the
V$BGPROCESS view, as shown in Listing 20-3.

Listing 20-3. Querying the V$BGPROCESS View for Thread Information

SQL> SELECT NAME,DESCRIPTION FROM V$BGPROCESS;
NAME DESCRIPTION
----- ------------------------------
PMON process cleanup
DIAG diagnosibility process
FMON File Mapping Monitor Process
PSP0 process spawner 0
MMAN Memory Manager
DBW0 db writer process 0
ARC0 Archival Process 0
MRP0 Managed Standby Recovery
LGWR Redo etc.
LCK0 Lock Process 0
CKPT checkpoint
CTWR Change Tracking Writer
RVWR Recovery Writer
SMON System Monitor Process
RECO distributed recovery
CJQ0 Job Queue Coordinator
EMN0 Event Monitor Process 0
QMNC AQ Coordinator
DMON DG Broker Monitor Process
RBAL ASM Rebalance master
ARB0 ASM Rebalance 0
ASMB ASM Background
GMON diskgroup monitor
MMON Manageability Monitor Process
MMNL Manageability Monitor Process 2
. . .
157 rows selected.
SQL>

Services and Daemons
Windows services are the closest things to the daemons on UNIX servers. All Windows services run
under the operating system’s SYSTEM username (the osuser). Don’t confuse this SYSTEM user with
the default SYSTEM user in the Oracle database.

Table 20-1 shows a list of typical Oracle services created in a Windows server when you install
Oracle Database 10g software and create a new database.

CHAPTER 20 ■ MANAGING ORACLE DATABASES ON WINDOWS AND L INUX SYSTEMS 915

4517CH20.qxd 8/19/05 11:12 AM Page 915

Table 20-1. Typical Oracle Windows Services

Service Name Function

OracleService<SID> A service for each database you create on the server

Oracle<ORACLE_HOME>TNSListener Listens for incoming connection requests

OracleDBConsole<SID> The OEM Database Control Console service

OracleJobScheduler<SID> Schedules jobs

Tuning Memory Resources
In UNIX-based systems, the root user may have to reconfigure the kernel after adjusting the SHMMAX
parameter, which sets the maximum size of a shared memory segment. The UNIX administrator
may also have to modify the SEMMNS parameter, which sets the maximum number of semaphores
available in the system.

On Windows, Oracle provides the orastack utility to modify the amount of stack that’s reserved
for each thread in the Oracle server. The default stack size of 1MB may be excessive, and by using
orastack you can drop it to around 500KB. You can serve larger user populations by reducing the
stack of every session created in the Oracle executable. For example, if you have 100 users in your
system, dropping the stack from 1MB to 500KB will free up 500MB of the address space for other
purposes. Oracle recommends that you not drop the stack below 350KB per process.

Listing 20-4 provides information on the orastack utility.

Listing 20-4. The orastack Utility

C:\>orastack
The ORASTACK utility was created to allow users to modify
the amount of stack that's reserved and/or committed by
each thread in the Oracle Server. By running ORASTACK on
certain .exe files, the headers of these executables are patched
to reflect the settings specified. Typically, changing the
commit size of each thread's stack is not necessary, since NT
will commit more stack as needed. However, decreasing each
thread's reserved size may be necessary since this size comes
out of the Oracle Server's 2 gigabyte address space. When
thousands of connections or a large SGA are in use, running
out of address space in the Oracle server process [although
still having available physical memory in the machine] is a
possibility.

Some guidelines for orastack:
- run orastack as: orastack executable_name new_stack_size_in_bytes

For example, 'orastack oracle.exe 500000'
'orastack tnslsnr.exe 500000'

- run orastack on BOTH the sql*net listener executable AND the Oracle RDBMS.
In addition, if there are programs on the server machine which connect to
the database locally [no sql*net], run orastack on those as well.

- lower the stack size in small increments as needed. Anything below 300K
or so is most likely not safe. If needed, begin at 500K as a first pass,
and go lower as needed. Note that lowering the stack too much can cause
stack overruns in the shadow and/or background threads.

C:\>

CHAPTER 20 ■ MANAGING ORACLE DATABASES ON WINDOWS AND L INUX SYSTEMS916

4517CH20.qxd 8/19/05 11:12 AM Page 916

Oracle has been gradually increasing the capabilities of its database servers on the Windows
platform. In practical terms, there are no limits on maximum connections, memory, and other
resources, except as limited by the Windows operating system. For 32-bit Windows systems, there is
a 3GB limit on memory per database instance. If you use VLM support, you can go beyond the 3GB
limit on 32-bit systems. For 64-bit systems, 8 terabytes is the maximum memory limit.

CPU and Memory Considerations
One of the first things you’ll notice on a Windows server is that the number of processors is invari-
ably much smaller than on a typical UNIX server. It is not uncommon for UNIX servers to have
16 and 24 processors, whereas Windows-based systems are usually limited to 4 and sometimes 6
processors. Thus, UNIX-based systems scale much more effectively than Windows-based systems.

File I/O
Oracle Database 10g on Windows fully supports logical and physical raw files and partitions. The
architecture uses a full 64-bit file I/O internally. There is no longer a 2GB or 4GB limit on file sizes.
The new maximum file size is 64GB and the new maximum database size is 4 petabytes.

64-Bit Itanium Processors and Oracle Database 10g
Oracle fully supports the 64-bit Itanium processor–based Windows servers. There is full interoper-
ability between 32-bit clients and 64-bit servers and vice versa.

You can easily migrate from a 32-bit to a 64-bit server, since the 32-bit files are compatible with
the 64-bit systems. You can use the Database Upgrade Assistant to perform the upgrade process,
and the applications won’t need any changes to run on the 64-bit servers.

Automatic Startup and Shutdown
On UNIX systems, you can use the well-known dbshut and dbstart scripts to cleanly shut down your
database on system shutdown and start it up at system boot-up. In a Windows system, there is no
need for a special script. The automatic startup and shutdown is determined by settings in the
Windows registry.

You can use the ORADIM utility, which you’ll learn more about in the “Administering the
Instance with the ORADIM Utility” section of this chapter, to configure automatic startup of the
database.

Users and Groups
On a Windows system, the Oracle installer needs to be a member of the Administrators group. When
a member of the Administrators group installs Oracle, that username is automatically added to the
ORA_DBA group, which confers the SYSDBA privilege to all its members. Thus, any user who is part
of the ORA_DBA group can connect to the database as a privileged user by simply using the CONNECT
. . . AS SYSDBA command, as shown here:

C:\> sqlplus /nolog
SQL*Plus: Release 10.1.0.2.0 - Production on Fri Jun 24 17:15:09 2005
Copyright (c) 1982, 2004, Oracle. All rights reserved.
SQL> CONNECT sys/sys_passwd AS SYSDBA
Connected.
SQL> SHO USER
USER is "SYS"

CHAPTER 20 ■ MANAGING ORACLE DATABASES ON WINDOWS AND L INUX SYSTEMS 917

4517CH20.qxd 8/19/05 11:12 AM Page 917

If you wish, you can have an ORA_SID_OPER group and an ORA_SID_DBA group on your
Windows server if you have more than one instance running.

The File Systems
A UNIX system can support a number of file systems, including the Journal File System (JFS). Under
a Windows system, you have a choice between the FAT and NTFS file systems. The essential differ-
ence between them from a DBA’s point of view is that the NTFS file system has much better
file-level security than the FAT file system. The maximum file size is also much larger under the
NTFS file system than under the FAT file system.

Use the FAT file system for the boot partition and the Oracle executables. You should use the
NTFS file system for the Oracle database and log files. Windows systems support database files up
to 64GB in size.

The Windows Copy Utilities
In a UNIX system, the common copy commands, such as cpio and tar, can copy files to disk or to
tape without a problem. However, the Windows OCOPY command can’t copy files to tape directly.
You have to first copy the files to disk, and then transfer them to tape from there using NT Backup
or a similar copy utility.

Also note that that the NT Backup utility can’t back up files that are in use, so it can’t perform a
hot Oracle database backup, which must be done while the database is running. Only the OCOPY
utility can copy open files during a hot backup.

Using the GUI
On a Windows server, you can have only one interactive GUI session. Of course, if you are using a
service such as Citrix, Carbon Copy, or the Microsoft Terminal Server, you can have more than one
GUI session simultaneously. UNIX servers have no inherent limitation on the number of GUI ses-
sions that you can start from a single server.

Automating Jobs
On a UNIX system, you usually use the crontab facility to schedule jobs. On Windows, you use the
at command (which is also available in UNIX systems) to automate jobs. If you want to perform a
hot backup, you must use the Windows OCOPY command to first copy the online data files to disk.
From there, you can copy the files to tape using third-party tools.

Diagnostic Tools
Because you can’t use utilities such as sar and vmstat on a Windows system, you need other tools to
diagnose performance and to monitor system resources. Fortunately, the Windows operating sys-
tem comes with several built-in monitoring tools, such as the well-known Task Manager, Event
Viewer, User Manager, and Oracle Performance Monitor. In addition, Windows 2000 comes with the
Microsoft Management Console (MMC), which you can use to perform specialized management
tasks.

CHAPTER 20 ■ MANAGING ORACLE DATABASES ON WINDOWS AND L INUX SYSTEMS918

4517CH20.qxd 8/19/05 11:12 AM Page 918

Installing Oracle Database 10g on a
Windows System
Installing the Oracle Database software on a Windows platform isn’t that different from the installa-
tion process I showed in Chapter 7 for the UNIX and Linux systems. The big difference is that you
don’t have to set the environment variables in Windows—the server will automatically take care of
that by updating the registry. In addition, you don’t have to create the special oracle user or create
any directories for the software installation.

A Typical Installation Process
You can choose to just install the Oracle software, or to create a starter database as well. In the
example that follows, I install the software only. You can create the database using the steps I
showed in Chapter 9. Here’s a summary of the Oracle Database software installation process:

1. If you are installing from a CD, just place the CD in the drive and the Oracle Universal
Installer will get going. In my case, I first unzipped the zipped file and clicked on the
Setup icon.

2. The Oracle Universal Installer will launch if your system meets all the prerequisites con-
cerning memory and the operating system version.

3. The Welcome window of the Oracle Universal Installer appears next. You are offered two
installation choices:

• Basic Installation: The basic installation lets you quickly perform a single-instance
Oracle software installation and enables you to create a starter database if you so wish.

• Advanced Installation: The advanced installation lets you perform a custom installa-
tion. You can choose to install the Oracle Real Application Clusters, configure
automated backups, configure the new Automatic Storage Management (ASM),
and specify different passwords for various administrative schemas.

Choose the Advanced Installation option and click next.

■Tip If you want to upgrade your database, choose the Advanced Installation option in step 3 and select the Cus-
tom Installation option in the next window.

4. The Installation Type window appears next. You can choose the Enterprise, Standard, or
Personal version, or choose the Custom Installation option if you are planning to upgrade
an existing database. Enterprise Edition is the version you will want to install on your server,
as it has the capability to support high-end applications. Unless you are upgrading an exist-
ing database, choose Enterprise Edition and click Next.

5. The installer asks you for the location of the Oracle home directory. Note that you can have
multiple Oracle home directories. Specify the directory location and click Next. The installer
will create all the necessary directories by itself.

6. The Product Specific Prerequisite Checks window appears next. The installer will check to
ensure that your system meets the minimum requirements for installation and configura-
tion. You can ignore any warnings if you wish and go ahead, but if you fail a requirement,
the installation will stop until you rectify the situation.

CHAPTER 20 ■ MANAGING ORACLE DATABASES ON WINDOWS AND L INUX SYSTEMS 919

4517CH20.qxd 8/19/05 11:12 AM Page 919

7. The Upgrade an Existing Database option window appears next. Since you are not upgrad-
ing your database, choose No and click Next.

8. The Select Configuration Option window is next. Choose the Install Database Software Only
option and click Next.

9. The Installation Summary window appears next. Click Next to begin the installation.

10. The Install window will appear and show you the progress of the installation.

11. The installation of the Oracle Database 10g software takes less than an hour. You’ll see the
End of Installation window when the installation is complete. Figure 20-1 shows the window
at the end of a successful installation. In Figure 20-1, you can also see that the installation
process sets up the iSQL*Plus interface and provides the URLs both for the normal, as well
as the DBA version, of iSQL*Plus. The iSQL*Plus service itself will be disabled upon installa-
tion. You can use Windows services to locate this service and start it after making it an
automatic process that starts after every system startup. You can also go to the command
line and use the isqlplusctl start command to start the iSQL*Plus service.

Figure 20-1. A successful installation of Oracle Database 10g

The Windows Registry
The Windows registry contains all the permanent configuration parameters and environment
variables for all Oracle databases running on the server. Windows-based Oracle databases use the
registry in much the same way as UNIX-based Oracle databases use the shell environment vari-
ables. The registry information is stored in a tree format, with keys at the head of branches, and
parameters under the various keys. The keys are shown in the left pane of the Windows registry
window, and the parameter values are shown in the right pane.

CHAPTER 20 ■ MANAGING ORACLE DATABASES ON WINDOWS AND L INUX SYSTEMS920

4517CH20.qxd 8/19/05 11:12 AM Page 920

Using the Registry
You enter the registry by typing the command REGEDIT after invoking the RUN command. Click
HKEY_LOCAL_MACHINE and then click SOFTWARE. You will see the Oracle key on the left side
of the Registry Editor.

The following sections cover the important registry keys for your Oracle installation.

HOMEID
The HOMEID key is under HKEY_LOCAL_MACHINE\SOFTWARE. It is the most important Oracle
registry key, as it contains the most important Oracle environment variables on your system.

There are as many HOMEID keys as there are databases on your Windows system. The first
database that you create on your server will have its registry entries located in the HKEY_LOCAL_
MACHINE\SOFTWARE\Oracle\HOME0 subkey. Additional databases will have the subkeys
HOME1, HOME2, HOME3, and so on. Table 20-2 presents some of the important subkeys of
the HOMEID key.

Table 20-2. Important Oracle Entries in the Windows Registry

Entry Function

Oracle_Sid Specifies the name of the Oracle instance on your server.

Oracle_Home Specifies the directory in which you install all Oracle products (e.g.,
C:\oracle\).

Oracle_Home_Name Specifies the name for the Oracle_Home variable (e.g., ORAHOME).

Oracle_Base Specifies the top-level Oracle directory under which ORACLE_HOME
and all the other directories are located.

Ora_Sid_Autostart Starts the Oracle instance when the OracleServiceSID service starts.

Ora_Sid_Shutdown Shuts down the Oracle instance when the OracleServiceSID service
stops.

Sqlpath Specifies the location of SQL scripts. If you place your SQL scripts in
this directory, you don’t have to specify the full path when you invoke
them from SQL*Plus. The default location is $ORACLE_HOME\
database.

ALL_HOMES
The ALL_HOMES subkey provides information about all the Oracle home directories on your
Windows server. The key has values for the default home, the last installed Oracle home, and the
number of Oracle homes on your server.

Managing Oracle on Windows Systems
Surprisingly, there is very little difference between managing a Windows-based Oracle server and
a UNIX-based Oracle server. You use exactly the same commands for all the database activities—
there is no need to learn new commands when you switch operating systems. The management
differences relate mainly to starting and stopping services, some backup commands, and how you
monitor the instance. In the following sections you’ll see the important elements of managing
Oracle databases on Windows servers.

CHAPTER 20 ■ MANAGING ORACLE DATABASES ON WINDOWS AND L INUX SYSTEMS 921

4517CH20.qxd 8/19/05 11:12 AM Page 921

Oracle Services
When you create a new Oracle database on a Windows server, a number of services are started for
the instance by the Windows operating system. The two main Oracle services on Windows are the
Oracle Database Service and the Oracle Listener Service. You can stop and start any Windows serv-
ices, including the Oracle Database Service and the Oracle Listener Service, through the Services
window. You can access the Services window by selecting Settings ➤ Control Panel ➤ Administrative
Tools ➤ Services.

To log in to a database to perform tasks such as startup and shutdown, you need to log in as a
user with the SYSDBA role in SQL*Plus. For example, this is the way the user SYS can log in to the
database named finance:

C:\ SQLPLUS sys/sys_passwd@finance AS SYSDBA

The following sections describe the important Oracle services that you can manage from the
Services window. You can configure each service as manual or automatic, which means that the
service will come up by itself when the Windows server starts up.

The Oracle Service
The Oracle Service is the main Oracle Database Service, usually named OracleServiceSID, and with-
out it you can’t access the database. This service runs the main Oracle executable, oracle.exe. The
Oracle Service has the naming convention OracleServiceSID (for example, OracleServiceManager if
Manager is the name of the instance).

If the Oracle Service is not up for some reason, and you try to connect to the database, you’ll
get an Oracle error, as shown here:

ERROR:
ORA-12500: TNS:listener failed to start a dedicated server process

If you try to start the database from the command line while the Oracle Service is down, you’ll
get the ORA-12571 error, as shown here:

SQL> STARTUP
ORA-12571: TNS: packet writer failure

You must make sure the Oracle Service for a database is running before you start up the data-
base itself. Once the service is running, you can start up the database as shown in Listing 20-5.

Listing 20-5. Starting the Oracle Database

C:\ SET ORACLE_SID=shan
C:\ sqlplus /nolog
SQL*Plus: Release 10.2.0.0.0 - Beta on Sat Apr 9 12:44:42 2005
Copyright (c) 1982, 2004, Oracle. All rights reserved.
SQL> connect sys/sammyy1 as sysdba
Connected to an idle instance.
SQL> STARTUP
ORACLE instance started.
Total System Global Area 612368384 bytes
Fixed Size 1250308 bytes
Variable Size 174386172 bytes
Database Buffers 436207616 bytes
Redo Buffers 524288 bytes
Database mounted.
Database opened.
SQL>

CHAPTER 20 ■ MANAGING ORACLE DATABASES ON WINDOWS AND L INUX SYSTEMS922

4517CH20.qxd 8/19/05 11:12 AM Page 922

SETTING CREDENTIALS FOR THE JOB SYSTEM

You must ensure that you’ve set the appropriate credentials for the Windows systems user in order to execute a
database job through OEM. When you try to start or stop the database from OEM, for example, you must have the
Windows Log On as a Batch Job privilege. Here’s how you grant his privilege to a Windows user:

1. Go to Start ➤ Control Panel ➤ Adminstrative Tools ➤ Local Security Policy.

2. Choose Local Policies under the Security Settings list.

3. Click on User Rights Assignment.

4. Ensure that Log On as a Batch Job is enabled under Policy.

5. Restart your Windows server.

Starting and Stopping the Oracle Service

You can start the Oracle Service, in one of two ways. From your Start menu, select Programs ➤
Control Panel ➤ Administrative Tools. Double-click on Services, find the name of the database you
want to stop or start, and select Start, Stop, or Pause. You can also start or stop your database by
going to the command line and using the net start or net stop commands, as shown here:

C:\>net stop OracleServiceORCL
The OracleServiceORCL service is stopping............
The OracleServiceORCL service was stopped successfully.

C:\>net start OracleServiceORCL
The OracleServiceORCL service is starting...........
The OracleServiceORCL service was started successfully.
C:\>

■Caution Shutting down a database by directly stopping the Oracle Service (instead of issuing the SHUTDOWN
command from within SQL*PLUS) will abruptly stop your database, and the database will have to perform an
instance recovery upon restarting.

Automatically Starting Up Oracle Databases

Your Oracle databases will start up automatically when the Windows server is rebooted. On occa-
sion, however, your databases may surprise you by not starting up with system startup. A common
cause of startup failure is that the remote_login_passwordfile parameter isn’t set in the init.ora file
or the SPFILE.

Accessing the Database from the Command Prompt

You can also start the database from the command prompt or access it after it has started, but be
careful to set your ORACLE_SID variable at the command prompt or make sure it’s part of your envi-
ronment. If the database name isn’t set in either of these ways, you’ll get the following error:

CHAPTER 20 ■ MANAGING ORACLE DATABASES ON WINDOWS AND L INUX SYSTEMS 923

4517CH20.qxd 8/19/05 11:12 AM Page 923

C:\> sqlplus /nolog
SQL*Plus: Release 10.2.0.0.0 - Beta on Sat Apr 9 12:28:13 2005
Copyright (c) 1982, 2004, Oracle. All rights reserved.
SQL> CONNECT SYS/SAMMYY1 AS SYSDBA
ERROR:
ORA-12560: TNS:protocol adapter error
SQL> EXIT

You can avoid the preceding error by setting the ORACLE_SID variable as follows (FINANCE is the
database name):

C:\> SET ORACLE_SID=FINANCE
C:\> SQLPLUS /NOLOG
SQL*Plus: Release 10.2.0.0.0 - Beta on Sat Apr 9 12:33:27 2005
Copyright (c) 1982, 2004, Oracle. All rights reserved.
SQL> CONNECT sys/sammyy1 AS SYSDBA
Connected to an idle instance.
SQL>

Instead of setting the environment variable for the ORACLE_SID variable each time you want to
log in to the database from the command line, you can set it permanently by adding an environ-
ment variable for ORACLE_SID. To do this, go to Control Panel ➤ System ➤ Advanced ➤ Environment
Variables. Here, you can use the Edit button to enter the new ORACLE_SID environment variable and
its value. You can set the environment variable for a single user or you can set it system-wide.

Oracle Listener
The Oracle listener service, similar to the listener utility on UNIX servers, is responsible for listening
to requests from new connections. The listener service has the naming format OracleHOME_
NAMETNSListener.

You can’t connect to the instance using the username/password@net_servicename format if the
listener service is down. You’ll get the ORA-12541 error if you try, as shown here:

ERROR
ORA-12541: TNS:no listener

To restart the listener service, you can use the Services window. Go to Control Panel ➤
Administrative Services ➤ Component Services ➤ Services (Local) and start the OracleHOME_
NAMETNSListener service. Alternatively, you can use the lsnrctl utility, as shown in Listing 20-6 (the
listing shows the status option). You can also use lsnrctl with the start and stop options, to stop
and start the listener service). Note that a single listener service can serve all the database instances
on your server.

Listing 20-6. Using the lsnrctl Utility

C:\> lsnrctl status

LSNRCTL for 32-bit Windows: Version 10.1.0.3.0 - Prod on 05-AUG-2005 10:09:34
Copyright (c) 1991, 2004, Oracle. All rights reserved.
Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=ntl-alaptisam.netbsa.org
)(PORT=1521)))
STATUS of the LISTENER

Alias LISTENER
Version TNSLSNR for 32-bit Windows: Version 10.1.0.3.0 - Production
Start Date 03-AUG-2005 16:57:06
Uptime 1 days 17 hr. 12 min. 28 sec

CHAPTER 20 ■ MANAGING ORACLE DATABASES ON WINDOWS AND L INUX SYSTEMS924

4517CH20.qxd 8/19/05 11:12 AM Page 924

Trace Level off
Security ON: Local OS Authentication
SNMP OFF
Listener Parameter File C:\OraHome_2\network\admin\listener.ora
Listener Log File C:\OraHome_2\network\log\listener.log
Listening Endpoints Summary...
(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=ntl-alaptisam.netbsa.org)(PORT=1521)

))
(DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(PIPENAME=\\.\pipe\EXTPROCipc)))
(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=ntl-alaptisam.netbsa.org)(PORT=8080)

)(Presentation=HTTP)(Session=RAW))
(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=ntl-alaptisam.netbsa.org)(PORT=2100)

)(Presentation=FTP)(Session=RAW))
Services Summary...
Service "PLSExtProc" has 1 instance(s).
Instance "PLSExtProc", status UNKNOWN, has 1 handler(s) for this service...

Service "emrep.netbsa.org" has 2 instance(s).
Instance "emrep", status READY, has 1 handler(s) for this service...

Service "oas10g.netbsa.org" has 1 instance(s).
Instance "oas10g", status UNKNOWN, has 1 handler(s) for this service...

Service "oas10g.world" has 1 instance(s).
The command completed successfully
C:\>

■Note Both the Oracle database service and the Oracle listener service are automatically started when you
create a new Oracle Database 10g database.

Management Server
The Management Server is used when you use OEM Grid Control; it sits between the Intelligent
Agent and the OEM console and manages the Intelligent Agent that’s running on the remote servers
you are monitoring through Grid Control.

Other Important Oracle Windows Services
When you create a new Oracle Database 10g database, the Oracle dbconsole process, with a name
in the format OracleDBConsoleSID, is automatically started. The DBConsole process starts the
OEM Database Control. If your database is upgraded to Oracle Database 10g, you must manually
create this process, as shown in Chapter 19. I also show how to start and stop the DBConsole
process in that chapter.

In addition to the DBConsole process, all Oracle Database 10g databases that you create will
also automatically have the new Oracle Scheduler service running as well. The service’s name has
the format OracleJobSchedulerSID.

Starting Up and Shutting Down the Oracle Database
In a UNIX operating system, starting up and shutting down an Oracle database is straightforward.
You perform the start-up and shutdown operations by going into SQL*Plus and running the startup
and shutdown commands after you log in as a user with the SYSDBA privilege. In the Windows oper-
ating system, you have several ways to start up and shut down your database instance, as the
following sections show.

CHAPTER 20 ■ MANAGING ORACLE DATABASES ON WINDOWS AND L INUX SYSTEMS 925

4517CH20.qxd 8/19/05 11:12 AM Page 925

Using the Services Window
You can open the Services window and start or stop the database instance by following these steps:

1. Click the Start button and select Settings ➤ Control Panel.

2. Double-click the Administrative Tools icon.

3. Double-click the Services icon.

4. Highlight the OracleServiceManager entry, and click the Start or Stop button.

5. Click OK and exit the Services window.

Using the SQL*Plus Utility
You can use SQL*Plus, as in UNIX, to start and stop an Oracle instance. The sequence of steps is as
follows:

1. Go to the command prompt and invoke the SQL*Plus utility:

C:\> sqlplus / nolog

2. Connect to the database as a user with the SYSDBA privilege:

SQL> CONNECT sys/sys_passwd AS sysdba
Connected.

3. Start up or shut down the database by using the appropriate commands.

Administering the Instance with the ORADIM Utility
You can use the Windows ORADIM utility to create, delete, and modify databases, as well as to start
and stop them. You can also perform the same activities using the Database Configuration Assistant,
which is a whole lot easier to work with. However, if you ever have to manually manage the Oracle
instance, you must use the ORADIM utility.

The ORADIM utility is very easy to use, but unfortunately it doesn’t provide adequate feed-
back on its activities. The utility does provide a log of its activity, and the log is located in the
$ORACLE_HOME\database directory under the name “ORADIM.”

■Tip The ORADIM utility doesn’t let you know whether a specific command failed or succeeded. It returns the
prompt in either case, and you can’t rely on the absence of an error message as an indication that everything is
working fine. Make sure you read the ORADIM log file after each invocation of the utility.

When the Oracle Service starts, it will start the database automatically by default. You can use
the ORADIM utility to configure the Oracle Service to start with or without the Oracle instance, but
if your registry settings point to an automatic start of the Oracle instance, the instance will come up
when you start the Oracle Service.

■Note Don’t confuse the Oracle Service with the Oracle instance. The Oracle Service is merely the Windows
process that denotes that the Oracle server executable, oracle.exe, has been invoked. Starting the Oracle instance,
on the other hand, includes starting well-known processes such as the database writer and the log writer.

CHAPTER 20 ■ MANAGING ORACLE DATABASES ON WINDOWS AND L INUX SYSTEMS926

4517CH20.qxd 8/19/05 11:12 AM Page 926

The following sections present some examples of how to use the ORADIM utility to manage the
Oracle Service and the database instance. Assume that the instance name is FINANCE.

Starting a Service

You can start a service by itself, or you can start a service along with a database instance. To start the
service by itself, use ORADIM as follows:

C:> ORADIM -startup -sid FINANCE

Depending on your registry settings, this command will also bring up your database instance.
If you want to ensure that the instance also comes up, use the following command:

C:> ORADIM -startup -sid FINANCE -starttype srvc, inst

If your initialization parameter file is not in its default location ($ORACLE_HOME\database),
you need to add a pfile parameter to the previous command to specify the location of the initial-
ization parameter file.

Stopping a Service

You can stop the service, or the instance, or both, using the ORADIM utility. If you don’t specify the
service or the instance, the values specified in your Windows registry will be used as the default val-
ues. The following two examples show how to use the SHUTDOWN option of the ORADIM utility to shut
down the database service and the instance.

C:> ORADIM -SHUTDOWN -SID FINANCE
C:> ORADIM -SHUTDOWN -SID FINANCE SHUTTYPE SRVC, INST

Creating a Service

When you use the Oracle Database Configuration Assistant to create a database, whether at the
time you install the software or later on, Oracle will use the ORADIM utility to create the service.
When you create a database manually in UNIX, there is no need to create a separate service for it,
but in Windows systems you need to specifically create the database service after you create the
database. You use the ORADIM utility to manually create the service.

The following example illustrates how to create the instance for the FINANCE database:

C:> ORADIM -NEW -SIDFINANCE -SRVC ORACLESERVICEFINANCE
-INTPWD NEWPASS1 -STARTMODE AUTO

■Note Again, I am assuming that the initialization file is in the default location; otherwise, you need to use the
pfile parameter and provide the complete path for the file.

Modifying a Service

If you need to change some of the important values, such as the instance name or the start-up
mode, you can use the ORADIM utility with the EDIT command, as shown here:

C:> ORADIM -EDIT -SID FINANCE -NEWSID NEWFIN

CHAPTER 20 ■ MANAGING ORACLE DATABASES ON WINDOWS AND L INUX SYSTEMS 927

4517CH20.qxd 8/19/05 11:12 AM Page 927

Deleting a Service

Finally, you can delete an instance using the ORADIM utility, as shown in the following two exam-
ples. The first command will delete the database instance, and the second, the database service:

C:> ORADIM -DELETE -SID FINANCE
C:> ORADIM -DELETE -SRVC FINANCE

Using the Oracle Administration Assistant for NT
Oracle Database 10g provides you with a graphical tool called the Oracle Administration Assistant
for Windows NT, which makes it easy for you to configure users, administrators, and their roles.
In addition, you can use the Administration Assistant to start and stop the databases. The Oracle
Administration Assistant for Windows NT appears as part of the MMC window on your Windows
server.

These are the tasks you can perform with the help of the Oracle Administration Assistant for
Windows NT:

• Create local and external operating system database roles for Windows domain users.

• Create and grant local and external operating system database roles to users and groups.

• Configure Windows DBAs and operators to access the database without a password.

• Start and stop the Oracle Service.

• Configure automatic startup and shutdown of the Oracle database along with the Oracle
Service.

• Modify the Oracle home Windows registry parameters without using Regedit or Regedit32.

The Oracle Administration Assistant for Windows NT is covered in detail in the following
sections.

Starting the Oracle Administration Assistant for Windows NT
You can start the Oracle Administration Assistant for Windows NT by clicking the Start button and
selecting Programs ➤ Oracle ➤ Configuration and Migration Tools ➤ Administration Assistant for
Windows. Once the Oracle Administration Assistant for Windows GUI shows up, in the left pane
you can choose Oracle Managed Objects ➤ Computers ➤ Your_Computer_Name ➤ Databases, as
shown in Figure 20-2.

When you click a database name, you can create and modify settings for several important
variables. You can choose to modify or add database administrators, database operators, and Oracle
homes from here.

Viewing Process Information
The Oracle Administration Assistant for Windows NT lets you view the process information for your
Oracle database. It also enables you to kill a specified process. Figure 20-3 shows the Process Infor-
mation window, which you can reach by selecting Process Information from the Action menu.

CHAPTER 20 ■ MANAGING ORACLE DATABASES ON WINDOWS AND L INUX SYSTEMS928

4517CH20.qxd 8/19/05 11:12 AM Page 928

Figure 20-2. The Oracle Administration Assistant for Windows NT GUI

Figure 20-3. The Oracle Administration Assistant for Windows NT Process Information window

Starting and Stopping the Oracle Service and the Database
You can use the Oracle Administration Assistant for Windows NT to start and stop the database
instance, the Oracle Service, or both. You can also alter the settings that determine whether your
database will come up automatically along with the service.

You change these settings by first right-clicking the appropriate Oracle home in the drop-down
list of Oracle homes in the Navigation pane and selecting Properties. You can then edit the start and
stop parameters in the Oracle Home Properties window.

CHAPTER 20 ■ MANAGING ORACLE DATABASES ON WINDOWS AND L INUX SYSTEMS 929

4517CH20.qxd 8/19/05 11:12 AM Page 929

Uninstalling Oracle on Windows
Suppose you need to uninstall an Oracle installation on your server, either because you are encoun-
tering some insurmountable problems or because you just want to start fresh with a new instal-
lation. If you are going to uninstall the Oracle server software, it means that your databases have
to go too.

There are three basic steps in the Oracle software uninstallation process: stop the Oracle serv-
ices, remove Oracle components with the Oracle Universal Installer (OUI), and manually remove
the remaining Oracle components.

Stop all Oracle Services
The first step in the uninstallation process is to stop all the Windows services relating to Oracle.
Here are the steps:

1. Go to Start ➤ Settings ➤ Control Panel ➤ Administrative Tools ➤ Services.

2. Stop all Oracle services (services that start with ORA) that are running.

Remove Oracle components with the OUI
Use the Oracle Universal Installer to remove all the Oracle components that the installer can
remove:

1. Go to Start ➤ Programs ➤ Oracle home name ➤ Oracle Installation Products ➤ Universal
Installer.

2. Choose the Deinstall Products option.

3. When you get to the Installed Components Page, click Remove.

4. In the Confirmation Page, click Yes to confirm your choice.

5. Click Close to close the Inventory window.

6. Click Cancel to exit the installer.

7. Click Yes to confirm that you want to exit.

Manually Remove the Remaining Oracle Components
After you run the OUI to remove the Oracle components it can remove, you must manually remove
the remainder of the Oracle components. To remove all traces of Oracle services, variables, and file
systems, follow these steps.

Remove Oracle Registry Keys
You need to edit the Windows registry to remove all the Oracle keys. Here are the steps:

1. Open the Windows registry:

C:\ regedit

2. In the Windows registry, click on HKEY_CLASSES_ROOT and delete all registry keys that
begin with Ora, Oracle, Orcl, or EnumOra.

3. Click on HKEY_LOCAL_MACHINE\SOFTWARE and delete the Oracle Group Key.

CHAPTER 20 ■ MANAGING ORACLE DATABASES ON WINDOWS AND L INUX SYSTEMS930

4517CH20.qxd 8/19/05 11:12 AM Page 930

4. Click on HKEY_LOCAL_MACHINE\SOFTWARE\ODBC and remove all Oracle keys.

5. Click on HKEY_LOCAL_MACHINE_SYSTEM\CurrentControlSet\Services \Eventlog\
Application and delete all keys starting with Ora.

6. Click on HKEY_LOCAL_MACHINE_SYSTEM\CurrentControlSet\Services and delete all keys
starting with Oracle.

7. Click on HKEY_CURRENT_USER and delete the Oracle key.

8. Click on HKEY_CURRENT_USER\SOFTWARE and delete all Oracle keys.

9. Exit the registry and restart the computer.

Remove Oracle Entries from Your System Path
You must also remove all Oracle path references by updating your Windows Path environment
variable as shown here.

1. Go to Control Panel ➤ Start ➤ Settings ➤ Control Panel ➤ System and select Environment
Variables.

2. Click on the Advanced tab under System Properties and click on Environment Variables.

3. Choose the System Variable Path and remove all Oracle entries from the Windows path.

Remove Oracle Entries from the Start Menu
You must also remove all Oracle entries from the Start menu:

1. Go to C:\Document and Settings\All Users\Start Menu\Programs.

2. Delete all folders whose names start with Oracle.

Remove the Oracle File System
Finally, you must remove all Oracle directories and files by doing the following:

1. Remove the Oracle software directories by deleting the C:\program files\Oracle directory.

2. Remove all directories under which you created Oracle data files.

Oracle and Linux
Linux is a multiuser, multitasking X Windows–based operating system. If it sounds very much like
someone is describing UNIX, it’s no surprise, because Linux and UNIX are essentially the same.
Linux is a descendent of the UNIX software, and its main claim to fame is that it’s open source, free
software. Of course, if you want a firm like Red Hat to hold your hand while you install and manage
Linux, you have to pay.

■Note Most of the chapters in this book were based on an Oracle Database 10g database running on Linux.
In all cases, the commands you use to administer a database are identical in UNIX and Linux systems.

CHAPTER 20 ■ MANAGING ORACLE DATABASES ON WINDOWS AND L INUX SYSTEMS 931

4517CH20.qxd 8/19/05 11:12 AM Page 931

Linux is red-hot right now, and many major businesses are already using it for everything
except their core mission-critical applications. For example, a major Wall Street firm uses Linux for
everything except its main live customer databases. Increasingly, firms are finding that they can use
Linux for mission-critical applications. The main draw of Linux is that it’s much cheaper than pro-
prietary UNIX servers, and it’s not a Microsoft product. Linux is the fastest-growing operating
system platform, and total sales are projected to grow to $5.9 billion by the year 2006, according to
the IDC consulting firm. Oracle is the leading commercial database on the Linux operating system.
Also according to IDC, Linux now owns 27 percent of the server operating system market, up from
a meager 1 percent in 1995.

If you know UNIX, you know Linux as well, because the commands are similar. The main ker-
nel parameters, such as the shared memory and semaphores, are handled similarly in both Linux
and UNIX. The differences between the two relate to the installation process—you may have more
difficulty with non-certified versions of Linux. In addition, some of the smaller Linux distributions
may not be as stable as UNIX software sold by Sun Microsystems and HP.

Several versions of Linux are available, some totally free and some available at a price that is a
fraction of what Sun Microsystems and HP charge for their UNIX software. Nevertheless, a feature-
laden Linux operating system with technical support worth mentioning will cost you some serious
money. In the end, by choosing Linux you may save anywhere between 20 and 60 percent of what
you’d spend on a well-known UNIX brand. Are these savings significant enough to warrant letting
go of the established, battle-proven UNIX servers from Sun Microsystems and HP? This is a ques-
tion that each individual organization has to answer, based on their needs and their expectations
regarding performance. For example, a research institution would be more justified in plunging
headlong into the Linux world than a commercial financial service providing online services to a
large number of customers.

Despite all the hype, remember that Linux is still busy gradually incorporating features that
have been well established in UNIX servers for years. These features include improving I/O
throughput and memory utilization, as well as Symmetric Multi-Processor (SMP) scalability.

Oracle’s Commitment to Linux
Oracle was the first major commercial database available on the Linux platform. Oracle supports
and certifies many products, including the Oracle Database Server software, on several major Linux
distributions. Oracle’s Linux version can support all the options supported by the UNIX and Windows
versions. Oracle Corporation itself uses Linux-based systems to run all its outsourcing business and
its application demo systems.

Although Oracle is working with many Linux distributors, it has a special relationship with the
Red Hat version of Linux, and it has been helping Red Hat to enhance the Linux kernel’s functional-
ity. In fact, Oracle and Red Hat’s collaborative efforts in improving performance and reliability have
resulted in the development of Red Hat Linux Advanced Server. Oracle provides Red Hat Linux users
support for both the Oracle database and the operating system. The only requirement is that clients
should be running Red Hat Linux Advanced Server on specific hardware platforms, such as Dell and
HP, that are certified by Oracle. Red Hat Linux Advanced Server includes many powerful perform-
ance features that are commonly seen in regular UNIX software.

Oracle provides support for the Oracle Real Application Clusters (RAC)–based systems running
on Linux, and because of the inexpensive outlays for Linux servers, they may be an alternative to
traditional UNIX software for several organizations. The Linux Kernel 2.4 distribution supports RAC
just as well as the established UNIX servers. Also, the new Clustered File System that Oracle has
developed for Linux is easier to work with than the standard raw disks you have to use for an RAC
configuration.

CHAPTER 20 ■ MANAGING ORACLE DATABASES ON WINDOWS AND L INUX SYSTEMS932

4517CH20.qxd 8/19/05 11:12 AM Page 932

Ensuring You Have a Stable Version of Linux
Unlike commercial UNIX software, Linux is well known as open source software, meaning that
new versions are released to the public at frequent intervals and may tend to have more bugs than
officially tested and certified software. For someone planning to implement Linux, it is critically
important to distinguish between the two types of Linux software releases: stable and beta releases.

Stable versions aren’t likely to crash unexpectedly, and you may encounter minor bugs. You can
expect bug fixes to be released to fix the defects. Beta versions are aimed at developers, and they
may be unstable and tend to crash frequently. You can expect newer releases to focus more on
adding new features.

Here’s how you can tell which Linux versions are stable and which aren’t. The generic version
number for a Linux distribution is r.x.y, where r is the release number:

• If x is an even number, it’s a stable version (e.g., Release 2.2.15).

• If x is an odd number, it’s a beta version (e.g., Release 2.3.99).

Managing Oracle on Linux
As far as managing the database goes, there isn’t much difference between running Oracle data-
bases on a UNIX server and running them on a Linux-based server. Some commands such as ps
may show slightly different things under the two systems, so make sure you check the Linux docu-
mentation for such differences. The main difference between the two systems is in the installation
of the operating system itself. Once you learn your craft on one type of operating system, you can
ply it on any other type with ease. All your UNIX scripts will work in the Linux operating system.

The key to a successful installation of the Oracle database on Linux is careful installation and
tuning of the Linux server itself. For help with installing Red Hat Linux Advanced Server, please read
the excellent white paper titled “Tips for Installing and Configuring Oracle Database 10g on Red Hat
Linux” on the Oracle Technology Network (OTN) web site (http://technet.oracle.com).

CHAPTER 20 ■ MANAGING ORACLE DATABASES ON WINDOWS AND L INUX SYSTEMS 933

4517CH20.qxd 8/19/05 11:12 AM Page 933

4517CH20.qxd 8/19/05 11:12 AM Page 934

Performance Tuning

P A R T 7

■ ■ ■

4517CH21.qxd 8/19/05 11:14 AM Page 935

4517CH21.qxd 8/19/05 11:14 AM Page 936

Improving Database Performance:
SQL Query Optimization

Performance tuning is the one area in which the Oracle DBA probably spends most of his or her
time. If you’re a DBA helping developers to tune their SQL, you can improve performance by sug-
gesting more efficient queries or table- and index-organization schemes. If you’re a production
DBA, you’ll be dealing with user perceptions of a slow database, batch jobs taking longer and longer
to complete, and so on.

Performance tuning focuses primarily on writing efficient SQL, allocating appropriate comput-
ing resources, and analyzing wait events and contention in the system. This chapter focuses on SQL
query optimization in Oracle. You’ll learn about the Oracle Optimizer and how to collect statistics
for it. You’ll find an introduction to the new Automatic Optimizer Statistics Collection feature. You
can also manually collect statistics using the DBMS_STATS package, and this chapter shows you
how to do that. You’ll learn the important principles that underlie efficient code. I present a detailed
discussion of the various tools, such as the EXPLAIN PLAN and SQL Trace utilities, with which you
analyze SQL and find ways to improve performance.

Oracle provides several options to aid performance, such as partitioning large tables, using
materialized views, storing plan outlines, and many others. This chapter examines how DBAs can
use these techniques to aid developers’ efforts to increase the efficiency of their application code.
This chapter introduces the new SQL Tuning Advisor to help you tune SQL statements. You can then
use the recommendations of this advisor to rewrite poorly performing SQL code. I begin the chap-
ter with a discussion of how to approach performance tuning. More than the specific performance
improvement techniques you use, your approach to performance tuning determines your success
in tuning a recalcitrant application system.

An Approach to Oracle Performance Tuning
Performance tuning is the 800-pound gorilla that is constantly menacing you and that requires
every bit of your ingenuity, knowledge, and perseverance to keep out of harm’s way. Your efforts to
increase performance or to revive a bogged-down database can have a major impact on your organ-
ization, and users and management will monitor and appreciate your results.

Unlike several other features of Oracle database management, performance tuning isn’t a cut-
and-dried subject with clear prescriptions and rules for every type of problem you may face. This is
one area where your technical knowledge must be used together with constant experimentation
and observation. Practice does make you better, if not perfect, in this field.

Frustrating as it is at times, performance tuning is a rewarding part of the Oracle DBA’s tasks.
You can automate most of the mundane tasks such as backup, export and import, and data loading—
the simple, everyday tasks that can take up so much of your valuable time. Performance tuning is

937

C H A P T E R 2 1

■ ■ ■

4517CH21.qxd 8/19/05 11:14 AM Page 937

one area that requires a lot of detective work on the part of application programmers and DBAs to
see why some process is running slower than expected, or why you can’t scale your application to a
larger number of users without problems.

A Systematic Approach to Performance Tuning
It’s important to follow a systematic approach to tuning database performance. Performance
problems commonly come to the fore only after a large number of users start working on a new
production database. The system seems fine during development and rigorous testing, but it slows
down to a crawl when it goes to production. This could be because the application isn’t easily scala-
ble for a number of reasons.

The seeds of the future performance potential of your database are planted when you design
your database. You need to know the nature of the applications the database is going to support.
The more you understand your application, the better you can prepare for it by creating your data-
base with the right configuration parameters. If major mistakes were made during the design stage
and the database is already built, you’re left with tuning application code on one hand and the
database resources such as memory, CPU, and I/O on the other. Oracle suggests a specific design
approach with the following steps:

1. Design the application correctly.

2. Tune the application SQL code.

3. Tune memory.

4. Tune I/O.

5. Tune contention and other issues.

Reactive Performance Tuning
Although the preceding performance tuning steps suggests that you can follow the sequence in an
orderly fashion, the reality is completely different. Performance tuning is an iterative process, not a
sequential one where you start at the top and end up with a fully tuned database as the product.
As a DBA, you may be involved in a new project from the outset, when you have just the functional
requirements. In this case, you have an opportunity to be involved in the tuning effort from the
beginning stages of the application, a phase that is somewhat misleadingly dubbed proactive tuning
by some. Alternatively, you may come in after the application has already been designed and imple-
mented, and is in production. In this case, your performance efforts are categorized as reactive
performance tuning. What you can do to improve the performance of the database depends on
the stage at which you can have input, and on the nature of the application itself.

In general, developers are responsible for writing the proper code, but the DBA has a critical
responsibility to ensure that the SQL is optimal. Developers and QA testers may test the application
conscientiously, but the application may not scale well when exposed to heavy-duty real-life pro-
duction conditions. Consequently, DBAs are left scrambling to find solutions to a poorly performing
SQL statement after the code is running in production. Reactive performance tuning comprises
most of the performance tuning done by most DBAs, for the simple reason that most problems
come to light only after real users start using the application.

In many cases, you’re experiencing performance problems on a production instance that was
designed and coded long ago. Try to fix the SQL statements first if that’s at all possible. Many people
have pointed out that if the application is seriously flawed, you can do little to improve the overall
performance of the database, and they’re probably correct. Still, you can make a significant differ-
ence in performance, even when the suboptimal code can’t be changed for one reason or another.
You can use several techniques to improve performance, even when the code is poorly written but

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION938

4517CH21.qxd 8/19/05 11:14 AM Page 938

can’t be changed in the immediate future. The same analysis, more or less, applies to performance-
tuning packaged systems such as PeopleSoft and SAP, where you can’t delve into the code that
underlies the system. In Oracle Database 10g, you can make use of the SQL Advisor tool’s SQL
Profiles to improve performance, even though you can’t touch the underlying SQL code. SQL
tuning, which is the topic of this chapter, is how you improve the performance in both of the afore-
mentioned situations. In the next chapter, you’ll learn ways to tune database resources such as
memory, disks, and CPU.

Optimizing Oracle Query Processing
When a user starts a data-retrieval operation, the user’s SQL statement goes through several
sequential steps that together constitute query processing. One of the great benefits of using the SQL
language is that it isn’t a procedural language in which you have to specify the steps to be followed
to achieve the statement’s goal. In other words, you don’t have to state how to do something; rather,
you just state what you need from the database.

Query processing is the transformation of your SQL statement into an efficient execution plan
to return the requested data from the database. Query optimization is the process of choosing the
most efficient execution plan. The goal is to achieve the result with the least cost in terms of resource
usage. Resources include the I/O and CPU usage on the server where your database is running. This
also means that the goal is to reduce the total execution time of the query, which is simply the sum
of the execution times of all the component operations of the query. This optimization of through-
put may not be the same as minimizing response time. If you want to minimize the time it takes to
get the first n rows of a query instead of the entire output of the query, the Optimizer may choose a
different plan. If you choose to minimize the response time for all the query data, you may also
choose to parallelize the operation.

A user’s SQL statement goes through the parsing, optimizing, and execution stages. If the
SQL statement is a query, data has to be retrieved, so there’s an additional fetch stage before the SQL
statement processing is complete. In the next sections you’ll examine what Oracle does during each
of these steps.

Parsing
Parsing primarily consists of checking the syntax and semantics of the SQL statements. The end
product of the parse stage of query compilation is the creation of the parse tree, which represents
the query’s structure.

The SQL statement is decomposed into a relational algebra query that’s analyzed to see
whether it’s syntactically correct. The query then undergoes semantic checking. The data dictionary
is consulted to ensure that the tables and the individual columns that are referenced in the query
do exist, as well as all the object privileges. In addition, the column types are checked to ensure that
the data matches the column definitions. The statement is normalized so it can be processed more
efficiently. The query is rejected if it is incorrectly formulated. Once the parse tree passes all the syn-
tactic and semantic checks, it’s considered a valid parse tree, and it’s sent to the logical query plan
generation stage. All these operations take place in the library cache portion of the SGA.

Optimization
During the optimization phase, Oracle uses its optimizer—which is a cost-based optimizer (CBO)—
to choose the best access method for retrieving data for the tables and indexes referred to in the
query. Using statistics that you provide and any hints specified in the SQL queries, the CBO pro-
duces an optimal execution plan for the SQL statement.

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION 939

4517CH21.qxd 8/19/05 11:14 AM Page 939

The optimization phase can be divided into two distinct parts: the query rewrite phase and the
physical execution plan generation phase. Let’s look at these two optimization phases in detail.

Query Rewrite Phase
In this phase, the parse tree is converted into an abstract logical query plan. This is an initial pass at
an actual query plan, and it contains only a general algebraic reformulation of the initial query. The
various nodes and branches of the parse tree are replaced by operators of relational algebra. Note
that the query rewriting here isn’t the same as the query rewriting that’s involved in using material-
ized views.

Execution Plan Generation Phase
During this phase, Oracle transforms the logical query plan into a physical query plan. The Opti-
mizer may be faced with a choice of several algorithms to resolve a query. It needs to choose the
most efficient algorithm to answer a query, and it needs to determine the most efficient way to
implement the operations. In addition to deciding on the best operational steps, the Optimizer
determines the order in which it will perform these steps. For example, the Optimizer may decide
that a join between table A and table B is called for. It then needs to decide on the type of join and
the order in which it will perform the table join.

The physical query or execution plan takes into account the following factors:

• The various operations (for example, joins) to be performed during the query

• The order in which the operations are performed

• The algorithm to be used for performing each operation

• The best way to retrieve data from disk or memory

• The best way to pass data from one operation to another during the query

The Optimizer may generate several valid physical query plans, all of which are potential exe-
cution plans. The Optimizer then chooses among them by estimating the cost of each possible
physical plan based on the table and index statistics available to it, and selecting the plan with the
lowest estimated cost. This evaluation of the possible physical query plans is called cost-based query
optimization. The cost of executing a plan is directly proportional to the amount of resources such
as I/O, memory, and CPU necessary to execute the proposed plan. The Optimizer passes this low-
cost physical query plan to Oracle’s query execution engine. The next section presents a simple
example to help you understand the principles of cost-based query optimization.

An Example of Cost Optimization
Let’s say you want to run the following query, which seeks to find all the supervisors who work in
Dallas. The query looks like this:

SQL> SELECT * FROM employee e, dept d
WHERE e.dept_no = d.dept_no
AND(e.job = 'SUPERVISOR'
AND d.city = 'DALLAS');

SQL>

Now, you have several ways to arrive at the list of the supervisors. Let’s consider three ways to
arrive at this list, and compute the cost of accessing the results in each of the three ways.

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION940

4517CH21.qxd 8/19/05 11:14 AM Page 940

Make the following simplifying assumptions for the cost computations:

• You can only read and write data one row at a time (in the real world, you do I/O at the block
level, not the row level).

• The database writes each intermediate step to disk (again, this may not be the case in the
real world).

• No indexes are on the tables.

• The employee table has 2,000 rows.

• The dept table has 40 rows. The number of supervisors is also 40 (one for each department).

• Ten departments are in the city of Dallas.

In the following sections, you’ll see three different queries that retrieve the same data, but that
use different access methods. For each query, a crude cost is calculated, so you can compare how
the three queries stack up in terms of resource cost. The first query uses a Cartesian join.

Query 1: A Cartesian Join

First, form a Cartesian product of the employee and dept tables. Next, see which of the rows in the
Cartesian product satisfies the requirement. Here’s the query:

WHERE e.job=supervisor AND d.dept=operations AND e.dept_no=d.dept_no.

The following would be the total cost of performing the query:

The Cartesian product of employee and dept requires a read of both tables: 2,000 + 40 = 2,040
reads

Creating the Cartesian product: 2,000 * 40 = 80,000 writes

Reading the Cartesian product to compare against the select condition: 2,000 * 40 = 80,000
reads

Total I/O cost: 2,040 + 80,000 + 80,000 = 162,040

Query 2: A Join of Two Tables

The second query uses a join of the employee and dept tables. First, join the employee and dept
tables on the dept_no column. From this join, select all rows where e.job=supervisor and
city=Dallas.

The following would be the total cost of performing the query:

Joining the employee and dept tables first requires a read of all the rows in both tables:
2,000 + 40 = 2,040

Creating the join of the employee and dept tables: 2,000 writes

Reading the join results costs: 2,000 reads

Total I/O cost: 2,040 + 2,000 + 2,000 = 6,040

Query 3: A Join of Reduced Relations

The third query also uses a join of the employee and dept tables, but not all the rows in the two
tables—only selected rows from the two tables are joined. Here’s how this query would proceed to

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION 941

4517CH21.qxd 8/19/05 11:14 AM Page 941

retrieve the needed data. First, read the employee table to get all supervisor rows. Next, read the
dept table to get all Dallas departments. Finally, join the rows you derived from the employee and
the dept tables.

The following would be the total cost of performing the query:

Reading the employee table to get the supervisor rows: 2,000 reads

Writing the supervisor rows derived in the previous step: 40 writes

Reading the dept table to get all Dallas departments: 40 reads

Writing the Dallas department rows derived from the previous step: 10 writes

Joining the supervisor rows and department rows derived in the previous steps of this query
execution: A total of 40 + 10 = 50 writes

Reading the join result from the previous step: 50 reads

Total I/O cost: 2,000 + 2(40) + 10 + 2(50) = 2,190

This example, simplified as it may be, shows you that Cartesian products are more expensive
than more restrictive joins. Even a selective join operation, the results show, is more expensive than
a selection operation. Although a join operation is in query 3, it’s a join of two reduced relations; the
size of the join is much smaller than the join in query 2. Query optimization often involves early
selection (picking only some rows) and projection (picking only some columns) operations to
reduce the size of the resulting outputs or row sources.

Heuristic Strategies for Query Processing
The use of the cost-based optimization technique isn’t the only way to perform query optimization.
A database can also use less systematic techniques, known as heuristic strategies, for query process-
ing. A join operation is called a binary operation, and an operation such as selection is called a
unary operation. A successful strategy in general is to perform the unary operation early on, so the
more complex and time-consuming binary operations use smaller operands. Performing as many
of the unary operations as possible first reduces the row sources of the join operations. Here are
some of the common heuristic query-processing strategies:

• Perform selection operations early so you can eliminate a majority of the candidate rows
early in the operation. If you leave most rows in until the end, you’re going to do needless
comparisons with the rows that you’re going to get rid of later anyway.

• Perform projection operations early so you limit the number of columns you have to
deal with.

• If you need to perform consecutive join operations, perform the operation that produces
the smaller join first.

• Compute common expressions once and save the results.

Query Execution
During the final stage of query processing, the optimized query (the physical query plan that has
been selected) is executed. If it’s a SELECT statement, the rows are returned to the user. If it’s an
INSERT, UPDATE, or DELETE statement, the rows are modified. The SQL execution engine takes the
execution plan provided by the optimization phase and executes it.

Of the three steps involved in SQL statement processing, the optimization process is the
crucial one because it determines the all-important question of how fast your data will be retrieved.

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION942

4517CH21.qxd 8/19/05 11:14 AM Page 942

Understanding how the Optimizer works is at the heart of query optimization. It’s important to
know what the common access methods, join methods, and join orders are in order to write effi-
cient SQL. The next section presents a detailed discussion of the all-powerful Oracle CBO.

Query Optimization and the Oracle
Cost-Based Optimizer
In most cases, you have multiple ways to execute a SQL query. You can get the same results from
doing a full table scan or using an index. You can also retrieve the same data by accessing the tables
and indexes in a different order. The job of the Optimizer is to find the optimal or best plan to exe-
cute your DML statements such as SELECT, INSERT, UPDATE, and DELETE. Oracle uses the CBO to help
determine efficient methods to execute queries.

The CBO uses statistics on tables and indexes, the order of tables and columns in the SQL
statements, available indexes, and any user-supplied access hints to pick the most efficient way to
access them. The most efficient way, according to the CBO, is the least costly access method, cost
being defined in terms of the I/O and the CPU expended in retrieving the rows. Accessing the nec-
essary rows means Oracle reads the database blocks on the file system into the buffer pool. The
resulting I/O cost is the most expensive part of SQL statement execution because it involves reading
from the disk. You can examine these access paths by using tools such as the EXPLAIN PLAN. The
following sections cover the tasks you need to perform to ensure that the Optimizer functions
efficiently.

Choosing Your Optimization Mode
In older versions of Oracle, you had a choice between a rule-based and a cost-based optimizer. In
a rule-based approach, Oracle used a heuristic method to select among several alternative access
paths with the help of certain rules. All the access paths were assigned a rank, and the path with the
lowest rank was chosen. The operations with a lower rank usually executed faster than those with a
higher rank. For example, a query that uses the ROWID to search for a row has a cost of 1. This is
expected because identifying a row with the help of the ROWID, an Oracle pointer-like mechanism,
is the fastest way to locate a row. On the other hand, a query that uses a full table scan has a cost of
19, the highest possible cost under rule-based optimization. The CBO method almost always per-
forms better than the older rule-based approach because, among other things, it takes into account
the latest statistics about the database objects.

Providing Statistics to the Optimizer
In Oracle Database 10g, the database itself automatically collects the necessary Optimizer statistics.
Every night, the database schedules a statistics collection job during the maintenance window of
the Oracle Scheduler. The maintenance window, by default, extends from 10 PM to 6 AM on week-
days and all weekend as well. The job is named GATHER_STATS_JOB, and runs by default in every
Oracle Database 10g database. You have the ability to disable the GATHER_STATS_JOB if you wish. You
can get details about this default GATHER_STATS_JOB by querying the DBA_SCHEDULER_JOBS view.

The GATHER_STATS_JOB collects statistics for all tables that either don’t have Optimizer statistics,
or have stale (outdated) statistics. Oracle considers an object’s statistics stale if more than 10 percent
of its data has changed since the last time it collected statistics for that object. By default, Oracle
monitors all DML changes such as inserts, updates, and deletes made to all database objects. You can
also view the information about these changes in the DBA_TAB_MODIFICATIONS view. Based on
this default object monitoring, Oracle decides whether to collect new statistics for an object.

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION 943

4517CH21.qxd 8/19/05 11:14 AM Page 943

To check that the GATHER_STATS_JOB is indeed collecting statistics on a regular basis, use the
following:

SQL> SELECT last_analyzed, table_name, owner, num_rows, sample_size
2 FROM dba_tables
3* ORDER by last_analyzed;

TABLE_NAME LAST_ANALYZED OWNER NUM_ROWS SAMPLE_SIZE
--
IR_LICENSE 22/JUN/2005 12:38:56 AM APSOWNER 142 142
ROLL_AUDIT 06/JUN/2005 11:34:29 PM APSOWNER 8179264 5444
HISTORY_TAB 04/JUN/2005 07:28:40 AM APSOWNER 388757 88066
YTDM_200505 04/JUN/2005 07:23:21 AM APSSOWNER 113582 6142
REGS163X_200505 04/JUN/2005 07:23:08 AM APSSOWNER 115631 5375
UNITS 07/JUN/2005 01:18:48 AM APSOWNER 33633262 5144703
CAMPAIGN 16/JUN/2005 02:01:45 AM APSOWNER 29157889 29157889
FET$ 30/JUN/2005 12:03:50 AM SYS 5692 5692
. . .
SQL>

Note the following points about the preceding output:

• The job collects statistics during the maintenance window of the database, which is, by
default, scheduled between 10 PM and 6 AM during weekdays and all weekend.

• The statistics are collected by the nightly GATHER_STATS_JOB run by the Scheduler.

• If a table is created that day, the job uses all the rows of the table the first time it collects
statistics for the table.

• The sampling percentage varies from less than 1 percent to 100 percent.

• The size of the table and the percentage of the sample aren’t correlated.

• The job doesn’t collect statistics for all the tables each day.

• If a table’s data doesn’t change after it’s created, the job never collects a second time.

Oracle determines the sample size for each object based on its internal algorithms; there is no
standard sample size for all objects. Once you verify the collection of statistics, you can pretty much
leave statistics collection to the database and focus your attention elsewhere. This way, you can
potentially run huge production databases for years on end, without ever having to run a manual
statistics collection job using the DBMS_STATS package. Of course, if you load data during the day,
or after the GATHER_STATS_JOB starts running, you’ll miss the boat and the object won’t have any sta-
tistics collected for it. Therefore, keep any eye on objects that might undergo huge changes during
the day. You might want to schedule a statistics collection job right after the data changes occur.

In addition, you can provide the necessary statistics to the Optimizer with the DBMS_STATS
package yourself (the automatic statistics collection process managed by the GATHER_STATS_JOB uses
the same package internally to collect statistics), which you’ll learn about later on in this chapter.
The necessary statistics are as follows:

• The number of rows in a table

• The number of rows per database block

• The average row length

• The total number of database blocks in a table

• The number of levels in each index

• The number of leaf blocks in each index

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION944

4517CH21.qxd 8/19/05 11:14 AM Page 944

• The number of distinct values in each column of a table

• Data distribution histograms

• The number of distinct index keys

• Cardinality (the number of columns with similar values for each column)

• The minimum and maximum values for each column

• System statistics, which include I/O characteristics of your system; and CPU statistics, which
include CPU speed and other related statistics

The key to the CBO’s capability to pick the best possible query plan is its capability to correctly
estimate the cost of the individual operations of the query plan. These cost estimates are derived
from the knowledge about the I/O, CPU, and memory resources needed to execute each operation
based on the table and index statistics. The estimates are also based on the operating system
statistics that I enumerated earlier, and additional information regarding the operating system
performance.

The database stores the Optimizer statistics that it collects in its data dictionary. The DBA_
TAB_STATISTICS table shows Optimizer statistics for all the tables in your database. You can also
see column statistics by querying the DBA_TAB_COL_STATISTICS view, as shown here:

SQL> SELECT column_name, num_distinct
FROM dba_tab_col_statistics

2* WHERE table_name='PERSONNEL';
COLUMN_NAME NUM_DISTINCT
------------------------------ ------------
PERSON_ID 22058066
UPDATED_DATE 1200586
DATE_OF_BIRTH 32185
LAST_NAME 7281
FIRST_NAME 1729
GENDER 2
HANDICAP_FLAG 1
CREATED_DATE 2480278
MIDDLE_NAME 44477
SQL>

As you can see, more than 22 million PERSON_ID numbers are in the PERSONNEL table. How-
ever, there are only 7,281 distinct last names and 1,729 distinct first names. Of course, the GENDER
column has only two distinct values. The Optimizer takes into account these types of information
regarding your table data, before deciding on the best plan of execution for a SQL statement that
involves the table’s columns.

■Tip Optimizer statistics include both object (table and index) statistics, as well as system statistics. Without
accurate system statistics, the Optimizer can’t come up with valid cost estimates to evaluate alternate execution
plans.

Setting the Optimizer Mode
Oracle optimizes the throughput of queries by default. Optimizing throughput means using the
fewest resources to process the entire SQL statement. You can also ask Oracle to optimize the
response time, which usually means using the fewest resources to get the first (or first n) row(s).
For batch jobs, response time for individual SQL statements is less important than the total time it

, response time is more critical.

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION 945

4517CH21.qxd 8/19/05 11:14 AM Page 945

You can use any of the following three modes for the Optimizer with the CBO. The value you set
for the OPTIMIZER_MODE initialization parameter is the default mode for the Oracle Optimizer. The
rule-based optimizer is a deprecated product, and I don’t even mention it here.

• ALL_ROWS: This is the default Optimizer mode, and it directs Oracle to use the CBO whether
you have statistics on any of the tables in a query (derived by you through using the
DBMS_STATS package or automatically by the Oracle database) or not, with the express
goal of maximizing throughput.

■Tip In the case of all three values for the Optimizer mode discussed here, I state that cost optimization is used
regardless of whether there are any statistics on the objects that are being accessed in a query. What this means
is that in the absence of any statistics collected with the help of the DBMS_STATS package, Oracle uses dynamic
sampling techniques to collect the Optimizer statistics at run time. For certain types of objects, such as external
tables and remote tables, Oracle uses simple default values, instead of dynamic sampling, for the Optimizer statis-
tics. For example, Oracle uses a default value of 100 bytes for row length. Similarly, the number of rows in a table
is approximated by using the number of storage blocks used by a table and the average row length. However, nei-
ther dynamic sampling nor default values give results as good as using comprehensive statistics collected using
the DBMS_STATS package. Whether you collect statistics manually, or rely on Oracle’s Automatic Optimizer Statis-
tics Collection feature (which uses the DBMS_STATS package internally), Optimizer statistics are collected through
the DBMS_STATS package.

• FIRST_ROWS_n: This optimizing mode uses cost optimization regardless of the availability of
statistics. The goal is the fastest response time for the first n number of rows of output, where
n can take the value of 10, 100, or 1,000.

• FIRST_ROWS: The FIRST_ROWS mode uses cost optimization and certain heuristics (rules of
thumb), regardless of whether you have statistics or not. You use this option when you want
the first few rows to come out quickly so response time can be minimized. Note that the
FIRST_ROWS mode is retained for backward compatibility purposes only, with the FIRST_
ROWS_n mode being the latest version of this model.

Setting the Optimizer Level
You can set the Optimizer mode at the instance, session, or statement level. You set the Optimizer
mode at the instance level by setting the initialization parameter OPTIMIZER_MODE to ALL_ROWS,
FIRST_ROWS_n, or FIRST_ROWS, as explained in the previous section. For example, you can set the goal
of the query optimizer for the entire instance by adding the following line in your initialization
parameter file:

OPTIMIZER_MODE = ALL_ROWS

Setting the initialization parameter OPTIMIZER_MODE to ALL_ROWS ensures that all SQL statements
in the instance are optimized.

You can also set the Optimizer mode for a single session by using the following ALTER SESSION
statement:

SQL> ALTER SESSION SET optimizer_goal = first_rows_10;
Session altered.
SQL>

The previous statement directs the Optimizer to base its decisions on the goal of the best
response time for getting the first ten rows of the output of every SQL statement that is executed.

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION946

4517CH21.qxd 8/19/05 11:14 AM Page 946

■Tip Note that the Optimizer mode you choose applies only to SQL statements that are issued directly. If you use
an ALTER SESSION statement to change the Optimizer mode for SQL that’s part of a PL/SQL code block, it’ll be
ignored. You must use Optimizer hints, which I discuss in the section titled “Using Hints to Influence the Execution
Plan,” to set the Optimizer mode for any SQL statement that’s part of a PL/SQL block.

To determine the current Optimizer mode for your database, you can run the following query:

SQL> SELECT name, value FROM V$PARAMETER
2 WHERE name = 'optimizer_mode';

NAME VALUE

optimizer_mode ALL_ROWS
SQL>

Any SQL statement can override the instance- or session-level settings with the use of
Optimizer hints, which are directives to the Optimizer for choosing the optimal access method.
By using hints, you can override the instance-wide setting of the OPTIMIZER_MODE initialization
parameter. See the section “Using Hints to Influence the Execution Plan” later in this chapter for
an explanation of Optimizer hints.

What Does the Optimizer Do?
The CBO performs several intricate steps to arrive at the optimal execution plan for a user’s query.
The original SQL statement is most likely transformed, and the CBO evaluates alternative access
paths (for example, full-table or index-based scans). If table joins are necessary, the Optimizer eval-
uates all possible join methods and join orders. The Optimizer evaluates all the possibilities and
arrives at the execution plan it deems the cheapest in terms of total cost, which includes both I/O
and CPU resource usage cost.

SQL Transformation
Oracle hardly ever executes your query in its original form. If the CBO determines that a different
SQL formulation will achieve the same results more efficiently, it transforms the statement before
executing it. A good example is where you submit a query with an OR condition, and the CBO trans-
forms it into a statement using UNION or UNION ALL. Or your statement may include an index, but the
CBO might transform the statement so it can do a full table scan, which can be more efficient under
some circumstances. In any case, it’s good to remember that the query a user wishes to be executed
may not be executed in the same form by Oracle, but the query’s results are still the same. Here are
some common transformations performed by the Oracle CBO:

• Transform IN into OR statements.

• Transform OR into UNION or UNION ALL statements.

• Transform noncorrelated nested selects into more efficient joins.

• Transform outer joins into more efficient inner joins.

• Transform complex subqueries into joins, semi joins, and anti joins.

• Star transformation for data warehouse tables based on the star schema.

• Transform BETWEEN to greater than or equal to and less than or equal to statements.

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION 947

4517CH21.qxd 8/19/05 11:14 AM Page 947

Choosing the Access Path
Oracle can often access the same data through different paths. For each query, the Optimizer
evaluates all the available paths and picks the least expensive one in terms of resource usage. The
following sections present a summary of the common access methods available to the Optimizer. If
joins are involved, then the join order and the join method are evaluated to finally arrive at the best
execution plan. You’ll take a brief look at the steps the Optimizer goes through before deciding on
its choice of execution path.

Full Table Scans

Oracle scans the entire table during a full table scan. Oracle reads each block in the table sequen-
tially, so the full table scan can be efficient if the MULTI_BLOCK_READ_COUNT initialization parameter is
set high enough. However, for large tables, full table scans are inefficient in general.

Table Access by ROWID

Accessing a table by ROWID retrieves rows using unique ROWIDs. ROWIDs in Oracle specify the
exact location in the data file and the data block where the row resides, so ROWID access is the
fastest way to retrieve a row in Oracle. Often, Oracle obtains the ROWID through an index scan of
the table’s indexes. Using these ROWIDs, Oracle swiftly fetches the rows.

Index Scans

An index stores two things: the column value of the column on which the index is based and the
ROWID of the rows in the table that contain that column value. An index scan retrieves data from an
index using the values of the index columns. If the query requests only the indexed column values,
Oracle will return those values. If the query requests other columns outside the indexed column,
Oracle will use the ROWIDs to get the rows of the table.

Choosing the Join Method
When you need to access data that’s in two or more tables, Oracle joins the tables based on a com-
mon column. However, there are several ways to join the row sets returned from the execution plan
steps. For each statement, Oracle evaluates the best join method based on the statistics and the
type of unique or primary keys on the tables. After Oracle has evaluated the join methods, the CBO
picks the join method with the least cost.

The following are the common join methods used by the CBO:

• Nested-loop join: A nested-loop join involves the designation of one table as the driving table
(also called the outer table) in the join loop. The other table in the join is called the inner
table. Oracle fetches all the rows of the inner table for every row in the driving table.

• Hash join: When you join two tables, Oracle uses the smaller table to build a hash table on
the join key. Oracle then searches the larger table and returns the joined rows from the hash
table.

• Sort-merge join: If both the tables in a join are sorted on the join key, the sorted lists are
merged together.

Choosing the Join Order
Once the Optimizer chooses the join method, it determines the order in which the tables are joined.
The goal of the Optimizer is always to join tables in such a way that the driving table eliminates the

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION948

4517CH21.qxd 8/19/05 11:14 AM Page 948

largest number of rows. A query with four tables has a maximum of 4 factorial, or 24, possible ways
in which the tables can be joined. Each such join order would lead to a number of different execu-
tion plans, based on the available indexes and the access methods. The search for an optimal join
strategy could take a long time in a query with a large number of tables, so Oracle depends on an
adaptive search strategy to limit the time it takes to find the best execution plan. An adaptive search
strategy means that the time taken for optimization is always a small percentage of the total time
that is taken for execution of the query itself.

Drawbacks of the CBO
The CBO is systematic, but the Optimizer is not guaranteed to follow the same plan in similar cases.
However, the CBO isn’t always perfect, and you need to watch out for the following:

• The CBO isn’t fixed across Oracle versions. Execution plans can change over time as versions
change. Later in this chapter, you’ll see how to use stored outlines so the Optimizer always
uses a known plan to maintain plan stability.

• Application developers may know more than the CBO when it comes to choosing the best
access path. Application developers know the needs of the users, of which the CBO is
completely unaware. This could lead to a situation where the CBO may be optimizing
throughput, when the users would rather have a quick set of results on their screen. By
using hints such as FIRST_ROWS_n, you can overcome this drawback in the CBO.

• The CBO depends enormously on correct statistics gathering. If the statistics are absent or
outdated, the Optimizer can make poor decisions.

Providing Statistics to the CBO
The CBO can follow optimal execution paths only if it has detailed knowledge of the database
objects. In Oracle Database 10g, the recommended way to provide these statistics is by letting the
database automatically collect statistics for you. This is known as the Automatic Optimizer Statistics
Collection feature, which I explained in Chapter 17. You can also manually provide statistics to the
Optimizer with the DBMS_STATS package. Note that whether you rely on automatic collection
of statistics or collect them yourself manually, Oracle uses the DBMS_STATS package to collect
statistics.

Using DBMS_STATS to Collect Statistics
Although letting the database automatically collect Optimizer statistics is the recommended
approach under Oracle Database 10g, you can still manually collect Optimizer statistics using
the DBMS_STATS package.

■Tip For large tables, Oracle recommends just sampling the data, rather than looking at all of it. Oracle lets you
specify row or block sampling, and it sometimes seems to recommend sampling sizes as low as 5 percent. The
default sampling size for an estimate is low too. Oracle also recommends using the DBMS_STATS automatic sam-
pling procedure. However, statistics gathered with sampled data aren’t reliable. The difference between collecting
Optimizer statistics with the estimate at 30 percent and 50 percent is startling at times in terms of performance.
Always choose the option of collecting full statistics for all your objects, even if the frequency is not as high as it
could be if you just sampled the data.

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION 949

4517CH21.qxd 8/19/05 11:14 AM Page 949

As I explained in Chapter 17, you must manually collect Optimizer statistics under the follow-
ing conditions:

• When you use external tables

• When you need to collect system statistics

• To collect statistics on fixed objects, such as the dynamic performance tables (for dynamic
tables, you should use the GATHER_FIXED_OBJECTS_STATS procedure to collect Optimizer
statistics)

• Immediately after you run a bulk load job, because this makes your automatically collected
statistics unrepresentative

The following sections show you how to make use of the DBMS_STATS package to gather
statistics.

■Note Oracle recommends that you not use the older ANALYZE statement to collect statistics for the Optimizer,
but rather use the DBMS_STATS package. The ANALYZE command is retained for backward compatibility, and
you must use it for non-Optimizer statistics collection tasks, such as verifying the validity of an object (using the
VALIDATE clause), or identifying migrated and chained rows in a table (using the LIST CHAINED ROWS clause).

Storing the Optimizer Statistics

You use various DBMS_STATS package procedures to collect Optimizer statistics. Most of these pro-
cedures have three common attributes—STATOWN, STATTAB, and STATID—which enable you to save
the collected statistics in a database table owned by a user. By default, these attributes are null, and
you shouldn’t provide a value for any of these attributes if your goal is to collect statistics for the
Optimizer. When you ignore these attributes, Optimizer statistics you collect are stored in the data
dictionary tables by default, where they’re accessible to the Oracle Optimizer.

Collecting the Statistics

The DBMS_STATS package has several procedures that let you collect data at different levels. The
main data collection procedures for database table and index data are as follows:

• GATHER_DATABASE_STATISTICS gathers statistics for all objects in the database.

• GATHER_SCHEMA_STATISTICS gathers statistics for an entire schema.

• GATHER_TABLE_STATISTICS gathers statistics for a table and its indexes.

• GATHER_INDEX_STATISTICS gathers statistics for an index.

Let’s use the DBMS_STATS package to collect statistics first for a schema, and then for an indi-
vidual table.

• Collecting statistics at the schema level:

SQL> EXECUTE DBMS_STATS.GATHER_SCHEMA_STATS (ownname => 'hr');
PL/SQL procedure successfully completed.
SQL>

• Collecting statistics at the table level:

SQL> EXECUTE DBMS_STATS.GATHER_TABLE_STATS ('hr','employees');
PL/SQL procedure successfully completed.
SQL>

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION950

4517CH21.qxd 8/19/05 11:14 AM Page 950

The GATHER_DATABASE_STATISTICS procedure collects Optimizer statistics for the entire database.
This is probably the most common way of using the DBMS_STATS package, as you can use this pro-
cedure to collect statistics for all database objects with a single statement. Here’s an example:

SQL> EXECUTE dbms_stats.gather_database_stats (-
> ESTIMATE_PERCENT => NULL, -
> METHOD_OPT => 'AUTO', -
> GRANULARITY => 'ALL', -
> CASCADE => 'TRUE',-
> OPTIONS => 'GATHER AUTO');
PL/SQL procedure successfully completed.
SQL>

■Tip Although you can use the ESTIMATE_PERCENT attribute to collect Optimizer statistics for a sample ranging
from 0.000001 to 100 percent of the rows in a table, you should strive to collect statistics for all the rows (by using
null as the value for this attribute). Collecting statistics based on a sample is fraught with dangers. Unless the
tables are so huge that you can’t collect all statistics within your maintenance window, strive to collect full statis-
tics on all objects, especially those that have heavy DML changes.

Let me explain the preceding GATHER_DATABASE_STATS procedure briefly here:

• The example shows only some of the various attributes or parameters that you can specify.
You can see the complete list of attributes by typing in this command:

SQL> DESCRIBE DBMS_STATS.GATHER_DATABASE_STATS

• If you don’t specify any of the attributes, Oracle uses the default values for those attributes.
Even when I use a default value, I list the attribute here, for exposition purposes.

• The ESTIMATE_PERCENT attribute refers to the percentage of rows that should be used to esti-
mate the statistics. I chose null as the value. Null here, contrary to intuition, means that
Oracle collects statistics based on all rows in a table. This is the same as using the COMPUTE
STATISTICS option in the traditional ANALYZE command. The default for this attribute is to
let Oracle estimate the sample size for each object, using the DBMS_STATS.AUTO_SAMPLE_SIZE
procedure.

• You can use the METHOD_OPT attribute to specify several things, including whether histograms
should be collected. Here, I chose AUTO. This means Oracle will collect histograms based on
the distribution of column data and the workload of the columns.

• The GRANULARITY attribute applies only to tables. The ALL value collects statistics for subparti-
tions, partitions, and global statistics for all tables.

• The CASCADE=>YES option specifies that statistics be gathered on all indexes, along with the
table statistics.

• The OPTIONS attribute is critical. The most important values for this attribute are as follows:

• GATHER gathers statistics for all objects, regardless of whether they have stale or fresh
statistics.

• GATHER_AUTO collects statistics for only those objects that Oracle deems necessary.

• GATHER_EMPTY collects statistics only for objects without statistics.

• GATHER_AUTO results in collection of statistics for only stale objects, the determination as
to the object staleness being made by checking the DBA_TAB_MODIFICATIONS view.

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION 951

4517CH21.qxd 8/19/05 11:14 AM Page 951

Note that you could also execute the GATHER_DATABASE_STATS procedure in the following format,
which produces equivalent results:

SQL> BEGIN
dbms_stats.gather_database_stats (ESTIMATE_PERCENT => NULL, METHOD_OPT =>
'AUTO',
GRANULARITY => 'ALL', CASCADE => 'TRUE', OPTIONS => 'GATHER AUTO');
END;

PL/SQL procedure successfully completed.

SQL>

You can check when a table has last been analyzed by using the following query:

SQL> SELECT table_name, last_analyzed FROM dba_tables;
TABLE_NAME LAST_ANALYZED
------------------------------ -------
TEST1 07/08/2005
TEST2 07/08/2005
TEST3 07/08/2005
. . .
SQL>

You can use a similar query for indexes, using the DBA_INDEXES view.

■Tip Make sure you have the initialization parameter JOB_QUEUE_PROCESSES set to a positive number. If this
parameter isn’t set, it takes the default value of 0, and your DBMS_STATS.GATHER_SYSTEM_STATS procedure
won’t work. You can do this dynamically; for example, issue the command ALTER SYSTEM SET JOB_QUEUE_
PROCESSES = 20.

The Cost Model of the Oracle Optimizer
The cost model of the Optimizer takes into account both I/O cost and CPU cost, both in units of
time. The CBO evaluates alternate query costs by comparing the total time it takes to perform all
the I/O operations, as well as the number of CPU cycles necessary for the query execution. The CBO
takes the total number of I/Os and CPU cycles that will be necessary according to its estimates, and
converts them into execution time. It then compares the execution time of the alternative execution
paths and chooses the best candidate for execution.

For the CBO to compute the cost of alternate paths accurately, it must have access to accurate
system statistics. These statistics, which include items such as I/O seek time, I/O transfer time, and
CPU speed, tell the Optimizer how fast the system I/O and CPU perform. It’s the DBA’s job to pro-
vide these statistics to the Optimizer. I show how to collect system statistics in the following section.

Collecting System Statistics
Although Oracle can automatically collect Optimizer statistics for you regarding your tables and
indexes, you need to collect operating system statistics with the GATHER_SYSTEM_STATS procedure.
When you do this, Oracle populates the SYS.AUX_STATS$ table with various operating system sta-
tistics, such as CPU and I/O performance. Gathering system statistics at regular intervals is critical,
because the Oracle CBO uses these statistics as the basis of its cost computations for various
queries. System statistics enable the Optimizer to compare more accurately the I/O and CPU costs
of alternative execution. The Optimizer is also able to figure out the execution time of a query more
accurately if you provide it with accurate system statistics.

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION952

4517CH21.qxd 8/19/05 11:14 AM Page 952

You can run the GATHER_SYSTEM_STATS procedure in the following modes:

• No workload mode: By using the NOWORKLOAD keyword, you can collect certain system statis-
tics. These statistics mostly pertain to general I/O characteristics of your system, such as I/O
seek time and I/O transfer speed. You should ideally run the GATHER_SYSTEM_STATS procedure
in the no workload mode right after you create a new database. The procedure takes only a
few minutes to complete.

• Workload mode: To collect representative statistics such as CPU and I/O performance, you
must collect system statistics during a specified interval that represents a typical workload
for your instance. You can use the INTERVAL keyword to specify statistics collection for a cer-
tain interval of time. You can alternatively use the START and STOP keywords to collect system
statistics for a certain length of time.

• IOTFRSPEED: I/O transfer speed (bytes per millisecond)

• IOSEEKTIM: Seek time + latency time + operating system overhead time (milliseconds)

• SREADTIM: Average time to (randomly) read a single block (milliseconds)

• MREADTIM: Average time to (sequentially) read an mbrc block at once (milliseconds)

• CPUSPEED: Average number of CPU cycles captured for the workload (statistics collected using
the INTERVAL or START and STOP options)

• CPUSPEEDNW: Average number of CPU cycles captured for the no workload mode (statistics
collected using NOWORKLOAD option)

• MBR: Average multiblock read count for sequential read, in blocks

• MAXTHR: Maximum I/O system throughput (bytes/second)

• SLAVETHR: Average slave I/O throughput (bytes/second)

Here’s the syntax of the GATHER_SYSTEM_STATS procedure:

DBMS_STATS.GATHER_SYSTEM_STATS (
gathering_mode VARCHAR2 DEFAULT 'NOWORKLOAD',
interval INTEGER DEFAULT NULL,
stattab VARCHAR2 DEFAULT NULL,
statid VARCHAR2 DEFAULT NULL,
statown VARCHAR2 DEFAULT NULL);

Here’s an example that shows how to use the procedure to collect system statistics:

SQL> EXECUTE dbms_stats.gather_system_stats('start');
PL/SQL procedure successfully completed.
SQL>
SQL> EXECUTE dbms_stats.gather_system_stats('stop');
PL/SQL procedure successfully completed.
SQL>
SQL> SELECT * FROM sys.aux_stats$;
SNAME PNAME PVAL1 PVAL2

SYSSTATS_INFO STATUS COMPLETED
SYSSTATS_INFO DSTART 04-25-2005 10:44
SYSSTATS_INFO DSTOP 04-26-2005 10:17
SYSSTATS_INFO FLAGS 1
SYSSTATS_MAIN CPUSPEEDNW 67.014
SYSSTATS_MAIN IOSEEKTIM 10.266
SYSSTATS_MAIN IOTFRSPEED 10052.575
SYSSTATS_MAIN SREADTIM 5.969

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION 953

4517CH21.qxd 8/19/05 11:14 AM Page 953

SYSSTATS_MAIN MREADTIM 5.711
SYSSTATS_MAIN CPUSPEED 141
SYSSTATS_MAIN MBRC 18
SYSSTATS_MAIN MAXTHR 17442816
SYSSTATS_MAIN SLAVETHR

13 rows selected.
SQL>

■Note You can view system statistics by using the GET_SYSTEM_STATISTICS procedure of the DBMS_STATS
package.

Collecting Statistics on Dictionary Objects
You should collect Optimizer statistics on data dictionary tables to maximize performance. The two
types of dictionary tables are fixed and real. You can’t change or delete dynamic performance tables,
which means they are fixed. Real dictionary tables belong to schemas such as SYS and SYSTEM.

Collecting Statistics for Fixed Objects
Oracle recommends that you gather statistics for dynamic performance tables (fixed objects) only
once for every database workload, which is usually a week for most OLTP databases. You can collect
fixed object statistics in a couple ways, as follows:

• You can use the DBMS_STATS_GATHER_DATABASE_STATS procedure and set the GATHER_SYS argu-
ment to TRUE (the default is FALSE).

• You can use the GATHER_FIXED_OBJECTS_STATS procedure of the DBMS_STATS package, as
shown here:

SQL> SHO USER
USER is "SYS"
SQL> EXECUTE DBMS_STATS.GATHER_FIXED_OBJECTS_STATS;

■Tip Before you can analyze any dictionary objects or fixed objects, you need the SYSDBA or ANALYZE ANY
DICTIONARY system privilege.

You can use the procedures from the DBMS_STATS package that enable table-level statistics
collection to collect statistics for an individual fixed table.

Collecting Statistics for Real Dictionary Tables
You can use the following methods to collect statistics for real dictionary tables:

• Set the GATHER_SYS argument of the DBMS_STATS.GATHER_DATABASE_STATS (or GATHER_SCHEMA_
STATS) procedure to TRUE. You can also use the GATHER_SCHEMA_STATS ('SYS') option.

• Use the DBMS_STATS.GATHER_DICTIONARY_STATS procedure, as shown here:

SQL> SHO user
USER is "SYS"
SQL> EXECUTE dbms_stats.gather_dictionary_stats;

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION954

4517CH21.qxd 8/19/05 11:14 AM Page 954

The GATHER_DICTIONARY_STATS procedure helps you collect statistics for tables owned by the
SYS and SYSTEM users as well as the owners of all database components.

■Note You can also use the DBMS_STATS package to delete, import, restore, and set Optimizer statistics that
you have previously collected.

Frequency of Statistics Collection
Theoretically, if your data is static, you may only need to collect statistics once. If your database per-
forms only a small amount of DML activities, you may collect statistics at relatively longer intervals,
say weekly or monthly. However, if your database objects go through constant change on a daily
basis, you need to schedule the statistics collection jobs much more frequently, say daily or even
more often. One of the best Oracle Database 10g new features is that you can let the database
decide the frequency of statistics collection. Remember that the database bases its statistics collec-
tion on whether the statistics are “fresh” or “stale.” Thus, you can relax and let the database be the
arbiter of how often to collect statistics.

What Happens When You Don’t Have Statistics
You’ve seen how the Oracle database can automatically collect Optimizer statistics for you. You’ve
also learned how to use the DBMS_STATS package to collect the statistics manually yourself. But
what happens if you disable the automatic statistics collection process, or if you don’t collect statis-
tics in a timely fashion? Even with automatic statistics collection, under which necessary statistics
are collected on a nightly basis, you may have a situation where table data is altered after the statis-
tics collection process is over. In situations such as this, Oracle uses data, such as the number of
blocks taken up by the table data and other ancillary information, to figure out the Optimizer exe-
cution plan.

You can also use the initialization parameter OPTIMIZER_DYNAMIC_SAMPLING to let Oracle esti-
mate Optimizer statistics on the fly, when no statistics exist for a table, or when the statistics exist
but are too old or otherwise unreliable. Of course, sampling statistics dynamically would mean that
the compile time for the SQL statement involved would be longer. Oracle smartly figures out if the
increased compile time is worth it when it encounters objects without statistics. If it’s worth it,
Oracle will sample a portion of the object’s data blocks to estimate statistics. You need to set the
value of the OPTIMIZER_DYNAMIC_SAMPLING initialization parameter to 2 or higher to enable dynamic
sampling of all unanalyzed tables. Because the default for this parameter is 2, dynamic sampling is
turned on by default in your database. Thus, you need not spend sleepless nights worrying about
objects with missing or outdated statistics. In any case, if you adhere to Oracle’s recommendation
and use the Automatic Optimizer Statistics Collection feature, the GATHER_STATS_JOB will automati-
cally collect your database’s statistics. The GATHER_STATS_JOB is created at database creation time
and is managed by the Oracle Scheduler, which runs the job when the maintenance window is
opened. By default, the maintenance window opens every night from 10 PM to 6 AM, and all day on
weekends. Oracle will collect statistics for all objects that need them if you adopt the Automatic
Optimizer Statistics Collection feature. The feature is turned on by default in a new Oracle 10g data-
base or when you upgrade to the 10g release from an older version.

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION 955

4517CH21.qxd 8/19/05 11:14 AM Page 955

Using the OEM to Collect Optimizer Statistics
As with so many other DBA tasks in Oracle Database 10g, you’re better off simply using the OEM
Database Control or the Grid Control to schedule the collection of Optimizer statistics. Here are the
steps to collect Optimizer statistics using the Database Control or Grid Control interfaces of the OEM:

1. From the Database Control home page, click the Administration tab.

2. In the Administration page, click the Manage Optimizer Statistics link under the Statistics
Management group.

3. You’re now in the Manage Optimizer Statistics page. Click the Gather Statistics link to start
collecting statistics and follow the instructions for the five steps you must implement.

Figure 21-1 shows part of the Optimizer statistics collection process using the OEM Grid
Control interface.

Figure 21-1. Collecting Optimizer statistics through the OEM

■Note Oracle strongly recommends that you just use the Oracle-created GATHER_STATS_JOB, run by the Sched-
uler during the scheduled maintenance window, to collect Optimizer statistics. You may want to collect Optimizer
statistics manually under an extreme situation, such as the database not being up during the scheduled mainte-
nance window, or if you want to analyze a newly created table right away.

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION956

4517CH21.qxd 8/19/05 11:14 AM Page 956

Writing Efficient SQL
One of the trickiest and most satisfying aspects of a DBA’s job is helping to improve the quality of
SQL code in the application. Efficient code means fast performance, and an easy way to decrease
the I/O your query requires is to try to lower the number of rows that the Optimizer has to examine.
The Optimizer is supposed to find the optimal plan based on your query. This means the Optimizer
won’t rewrite an inefficiently written query—it only produces the execution plan for that query.
Also, even if your query is efficiently written, the Optimizer may not always end up producing the
best execution plan. You have better knowledge of your application and data than the Optimizer
does, and you can, with hints, force the Optimizer to use that knowledge. The following sections
cover some of the best guidelines for writing good SQL.

Efficient WHERE Clauses
Selective criteria in your WHERE clauses can dramatically decrease the amount of data Oracle has to
consider during a query. You can follow some simple principles to ensure that the structure of your
SQL statements is not inherently inefficient. Your join methods may be fine, but overlooking some
of these principles could doom your statement from a performance point of view.

Careful specification of WHERE conditions can have a significant bearing on whether the Opti-
mizer will choose existing indexes. The principle of selectivity—the number of rows returned by a
query as a percentage of the total number of rows in a table—is the key idea here. A low percentage
means high selectivity and a high percentage means the reverse. Because more selective WHERE
clauses mean fewer I/Os, the CBO tends to prefer to choose those kinds of WHERE clauses over others
in the same query. The following example makes this clear:

SQL> SELECT * FROM national_employees
WHERE ss_no = 515086789
AND city='DALLAS';

Two WHERE clauses are in this example, but you can see that the first WHERE clause that uses
ss_no requires fewer I/Os. The column ss_no is the primary key and is highly selective—only one
row with that ss_no is in the entire table. The Optimizer determines the selectivity of each of the two
columns in the query by looking at the index statistics, which tell it how many rows in the table con-
tain each of the two column values in the query. If neither of the columns has an index, Oracle will
use a full table scan to retrieve the answer to the query. If both of them have indexes, it will use the
more selective (and hence more efficient) index on the ss_no column.

If you think that the Optimizer should have used an index instead of doing a full table scan,
then perform the following steps:

1. Views in a query sometimes prevent the use of indexes. Check to make sure that the execu-
tion plan shows that the correct indexes are being used.

2. If you think heavy data skew is in the table, use histograms to provide Oracle with a more
accurate representation of the data distribution in the table. The CBO assumes a uniform
distribution of column data. The CBO may forego the use of an index even when a column
value is selective, because the column itself is unselective in nature. Histograms help by
providing the CBO with an accurate picture of the column data distribution. I discuss his-
tograms later in this chapter, in the section “Using Histograms.”

3. If Oracle is still refusing to use the index, force it to do so by using an index hint, as
explained in the section “Using Hints to Influence the Execution Plan” later in this chapter.

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION 957

4517CH21.qxd 8/19/05 11:14 AM Page 957

■Note It isn’t always obvious why Oracle doesn’t use an index. For example, Oracle may not use an index
because the indexed columns are part of an IN list, and the consequent transformation prevents the use of an
index.

If you use a WHERE clause such as WHERE last_name LIKE '%MA%', the Optimizer might just
decide to skip the index and do a full scan of the table because it needs to perform a pattern match
of the entire LAST_NAME column to retrieve data. The Optimizer correctly figures that it will go ahead
and look up just the table, instead of having to read both the index and the table values. For exam-
ple, if a table has 1,000 rows placed in 200 blocks, and you perform a full table scan assuming a
DB_FILE_MULTIBLOCK_READ_COUNT of 8, you’ll incur a total of 25 I/Os to read in the entire table. If your
index has a low selectivity, most of the index has to be read first. If your index has 40 leaf blocks and
you have to read 90 percent of them to get the indexed data first, your I/O is already at 32. On top of
this, you have to incur additional I/O to read the table values. However, a full table scan costs you
only 25 I/Os, making that a far more efficient choice than using the index. Be aware that the mere
existence of an index on a column doesn’t guarantee that it will be used all the time.

You’ll look at some important principles to make your queries more efficient in the following
sections.

Using SQL Functions
If you use SQL functions in the WHERE clause (for example, the SUBSTR, INSTR, TO_DATE, and TO_NUMBER
functions), the Oracle Optimizer will ignore the index on that column. Make sure you use a
function-based index if you must use a SQL function in the WHERE clause.

Using the Right Joins
Most of your SQL statements will involve multi-table joins. Often, improper table-joining strategies
doom a query. Here are some pointers regarding joining tables wisely:

• Using the equi join leads to a more efficient query path than otherwise. Try to use equi joins
wherever possible.

• Performing filtering operations early reduces the number of rows to be joined in later steps.
Fop example, a WHERE condition applied early reduces the row source that needs to be joined
to another table. The goal is to use the table that has the most selective filter as the driving
table, because this means fewer rows are passed to the next step.

• Join in the order that will produce the least number of rows as output to the parent step.

Using the CASE Statement
When you need to calculate multiple aggregates from the same table, avoid writing a separate query
for each aggregate. With separate queries, Oracle has to read the entire table for each query. It’s
more efficient to use the CASE statement in this case, as it enables you to compute multiple aggre-
gates from the table with just a single read of the table.

Efficient Subquery Execution
Subqueries perform better when you use IN rather than EXISTS. Oracle recommends using the IN
clause if the subquery has the selective WHERE clause. If the parent query contains the selective
WHERE clause, use the EXISTS clause rather than the IN clause.

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION958

4517CH21.qxd 8/19/05 11:14 AM Page 958

Using WHERE Instead of HAVING
Wherever possible, use the WHERE clause instead of the HAVING clause. The WHERE clause restricts the
number of rows retrieved at the outset. The HAVING clause forces the retrieval of a lot more rows than
necessary. It then also incurs the additional overhead of sorting and summing.

Minimizing Table Lookups
One of the primary mottos of query writing is “Visit the data as few times as possible.” This means
getting rid of SQL that repeatedly accesses a table for different column values. Use multicolumn
updates instead.

Using Hints to Influence the Execution Plan
The assumption that underlies the use of the CBO is that the Optimizer knows best. That is, by
evaluating the various statistics, the CBO will come to the best decision in terms of choosing the
optimal execution plan. However, the Optimizer is based on rules, and a good application devel-
oper has knowledge about the application and data that the CBO can’t exploit. You can provide
hints to the Optimizer to override the CBO’s execution plans. For example, if you know that a certain
index is more selective than another, you can force Oracle to use that index by providing the hint in
your query.

Hints can alter the join method, join order, or access path. You can also provide hints to paral-
lelize the SQL statement operations. The following are some of the common hints that you can use
in SQL statements:

• ALL_ROWS: The ALL_ROWS hint instructs Oracle to optimize throughput (that is, minimize total
cost), not optimize the response time of the statement.

• FIRST_ROWS(n): The FIRST_ROWS(n) hint dictates that Oracle return the first n rows quickly.
Low response time is the goal of this hint.

■Note When you specify ALL_ROWS or the FIRST_ROWS(n) hint, it overrides the current value of the
OPTIMIZER_MODE parameter, if it’s different from that specified by the hint.

• FULL: The FULL hint requires that a full scan be done on the table, ignoring any indexes that
may be present. You would want to do this when you have reason to believe that using an
index in this case will be inefficient compared to a full table scan. To force Oracle to do a full
table scan, you use the FULL hint.

• ORDERED: This hint forces the join order for the tables in the query.

• INDEX: This hint forces the use of an index scan, even if the Optimizer was going to ignore the
indexes and do a full table scan for some reason.

• INDEX_FFS: An index fast full scan (INDEX_FFS) hint forces a fast full scan of an index, just as if
you did a full table scan that scans several blocks at a time. INDEX_FFS scans all the blocks in
an index using multiblock I/O, the size of which is determined by the DB_FILE_MULTIBLOCK_
READ_COUNT parameter. You can also parallelize an INDEX_FFS hint, and it’s generally prefer-
able to a full table scan.

The OPTIMIZER_MODE settings determine the way the query optimizer performs optimization
throughout the database. However, at times, due to lack of accurate statistics, the optimizer can
be mistaken in its estimates, leading to poor execution plans. In cases such as this, you can use

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION 959

4517CH21.qxd 8/19/05 11:14 AM Page 959

Optimizer hints to override this database optimization setting at the individual SQL statement level.
Oracle Database 10g also provides the new SQL Profile feature. This feature enables you to collect
auxiliary information using sampling and partial execution techniques, thereby avoiding the use of
Optimizer hints. I discuss SQL profiles in the section titled “Using the SQL Tuning Advisor,” later in
this chapter.

Selecting the Best Join Method
Choose a join method based on how many rows you expect to be returned from the join. The Opti-
mizer generally tries to choose the ideal join condition, but it may not do so for various reasons. It’s
up to you to see what join method the Optimizer will adopt and change it if necessary. The following
guidelines will help you when you’re analyzing output produced by an EXPLAIN PLAN.

Avoiding Cartesian Joins
Cartesian joins usually aren’t the result of intentional planning; rather, they happen due to logical
mistakes in the query. Cartesian joins are produced when your joins don’t have any WHERE clauses.
If you’re joining several tables, make sure that each table in the join is referenced by a WHERE condi-
tion. Even if the tables being joined are small, avoid Cartesian joins because they’re inefficient. For
example, if the employee table has 2,000 rows and the dept table has 100 rows, a Cartesian join of
employee and dept will have 2,000 * 100 = 200,000 rows.

Nested Loops
If you’re joining small subsets of data, the nested loop (NL) method is ideal. If you’re returning fewer
than, say, 10,000 rows, the NL join may be the right join method. If the Optimizer is using hash joins
or full table scans, force it to use the NL join method by using the following hint:

SELECT /*+ USE_NL (TableA, TableB) */

Hash Join
If the join will produce large subsets of data or a substantial proportion of a table is going to be
joined, use the hash join hint if the Optimizer indicates it isn’t going to use it:

SELECT /* USE_HASH */

Merge Join
If the tables in the join are being joined with an inequality condition (not an equi join), the merge
join method is ideal:

SELECT /*+ USE_MERGE (TableA, TableB) */

Using Bitmap Join Indexes
Bitmap join indexes (BJIs) prestore the results of a join between two tables in an index, and thus do
away with the need for an expensive runtime join operation. BJIs are specially designed for data
warehouse star schemas, but any application can use them as long as there is a primary key/foreign
key relationship between the two tables.

Typically, in a data warehouse setting, the primary key is in a dimension table and the fact table
has the foreign key. For example, customer_id in the customer dimension table is the primary key,
and customer_id in the fact table is the foreign key. Using a BJI, you can avoid a join between these

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION960

4517CH21.qxd 8/19/05 11:14 AM Page 960

two tables because the rows that would result from the join are already stored in the BJI. Let’s look at
a simple example of a BJI here.

Say you expect to use the following SQL statement frequently in your application:

SQL> SELECT SUM((s.quantity)
FROM sales s, customers c
WHERE s.customer_id = c.customer_id
AND c.city = 'DALLAS';

In this example, the sales table is the fact table with all the details about product sales, and
the customers table is a dimension table with information about your customers. The column
customer_id acts as the primary key for the customers table and as the foreign key for the sales
table, so the table meets the requirement for creating a BJI.

The following statement creates the BJI. Notice line 2, where you’re specifying the index on
sales (c.cust_id). This is how you get the join information to place in the new BJI. Because the sales
table is partitioned, you use the clause LOCAL in line 5 to create a locally partitioned index:

SQL> CREATE BITMAP INDEX cust_orders_BJI
2 ON sales (c.cust_id)
3 FROM sales s, customers c
4 WHERE c.cust_id = s.cust_id
5 LOCAL
6*TABLESPACE users;

Index created.
SQL>

You can confirm that the intended index has been created with the help of the following query.
The first index is the new BJI index you just created:

SQL> SELECT index_name, index_type, join_index
2 FROM dba_indexes
3*WHERE table_name='SALES';

INDEX_NAME INDEX_TYPE JOIN_INDEX
------------------------------ ----------------
CUST_ORDERS_BJI BITMAP YES
SALES_CHANNEL_BIX BITMAP NO
SALES_CUST_BIX BITMAP NO
3 rows selected.
SQL>

Being a bitmap index, the new BJI uses space extremely efficiently. However, the real benefit of
using this index is that when you need to find out the sales for a given city, you don’t need to join the
sales and customers tables. You only need to use the sales table and the new BJI that holds the join
information already.

Selecting the Best Join Order
When your SQL statement includes a join between two or more tables, the order in which you join
the tables is extremely important. The driving table in a join is the first table that comes after the
WHERE clause. The driving table in the join should contain the filter that will eliminate the most rows.
Choose the join order that gives you the least number of rows to be joined to the other tables. That
is, if you’re joining three tables, the one with the more restrictive filter should be joined first to one
of the other two tables. Compare various join orders and pick the best one after you consider the
number of rows returned by each join order.

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION 961

4517CH21.qxd 8/19/05 11:14 AM Page 961

Indexing Strategy
An index is a data structure that takes the value of one or more columns of a table (the key) and
returns all rows (or the requested columns in a row) with that value of the column quickly. The effi-
ciency of an index comes from the fact that it lets you find necessary rows without having to scan all
the rows of a table. As a result, indexes are more efficient in general, because they need fewer disk
I/Os than if you had to scan the table.

■Note For a quick summary of indexing guidelines, please refer to the section “Guidelines for Creating Indexes”
in Chapter 5.

Developers are content when the EXPLAIN PLAN indicates that a query was using indexes.
However, there’s more to query optimization than simply using an index for speeding up your
queries. If you don’t use good indexes, your queries could slow down the database significantly.
Important things to consider are whether you have the right indexes or even if the index is neces-
sary in a certain query. In the next sections you’ll look at some of the issues you should consider
regarding the use of indexes.

■Caution A common problem is that an index that performs admirably during development and testing phases
simply won’t perform well on a production database. Often, this is due to the much larger amounts of data in the
“real” system than in the development system. Ideally, you should develop and test queries on an identical version
of the production database.

When to Index
You need to index tables only if you think your queries will be selecting a small portion of the table.
If your query is retrieving rows that are greater than 10 or 15 percent of the total rows in the table,
you may not need an index. Remember that using an index prevents a full table scan, so it is inher-
ently a faster means to traverse a table’s rows. However, each time you want to access a particular
row in an indexed table, first Oracle has to look up the column referenced in your query in its index.
From the index, Oracle obtains the ROWID of the row, which is the logical address of its location
on disk.

If you choose to enforce uniqueness of the rows in a table, you can use a primary index on
that table. By definition, a column that serves as a primary index must be non-null and unique. In
addition to the primary index, you can have several secondary indexes. For example, the attribute
LAST_NAME may serve as a primary index. However, if most of your queries include the CITY column,
you may choose to index the CITY column as well. Thus, the addition of secondary indexes would
enhance query performance. However, a cost is associated with maintaining additional secondary
indexes. In addition to the additional disk space needed for large secondary indexes, remember that
all inserts and updates to the table require that the indexes also be updated.

If your system involves a large number of inserts and deletes, understand that too many
indexes may be detrimental, because each DML causes changes in both the table and its indexes.
Therefore, an OLTP-oriented database ought to keep its indexes to a minimum. A data warehouse,
on the other hand, can have a much larger number of indexes because there is no penalty to be
paid. That’s because the data warehouse is a purely query-oriented database, not a transactional
database.

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION962

4517CH21.qxd 8/19/05 11:14 AM Page 962

What to Index
Your goal should be to use as few indexes as possible to meet your performance criteria. There's a
price to be paid for having too many indexes, especially in OLTP databases. Each INSERT, UPDATE,
and DELETE statement causes changes to be made to the underlying indexes of a table, and can slow
down an application in some cases. The following are some broad guidelines you can follow to
make sure your indexes help the application instead of hindering it:

• Index columns with high selectivity. Selectivity here means the percentage of rows in a table
with a certain value. High selectivity, as you learned earlier in this chapter, means that there
are few rows with identical values.

• Index all important foreign keys.

• Index all predicate columns.

• Index columns used in table joins.

Proper indexing of tables involves carefully considering the type of application you’re running,
the number of DML operations, and the response time expectations. Here are some additional tips
that can aid you in selecting appropriate indexes for your application:

• Try to avoid indexing columns that consist of long character strings, unless you’re using the
Oracle ConText feature.

• Wherever possible, use index-only plans, meaning a query that can be satisfied completely
by just the data in the index alone. This requires that you pay attention to the most common
queries and create any necessary composite indexes (indexes that include more than one
column attribute).

• Use secondary indexes on columns frequently involved in ORDER BY and GROUP BY operations,
as well as sorting operations such as UNION or DISTINCT.

Using Appropriate Index Types
The B-tree index (sometimes referred to as the B*tree index) is the default or normal type of Oracle
index. You’re probably going to use it for almost all the indexes in a typical OLTP application.
Although you could use the B-tree index for all your index needs, you’ll get better performance by
using more specialized indexes for certain kinds of data. Your knowledge of the type of data you
have and the nature of your application should determine the index type. In the next few sections,
you’ll see several alternative types of indexes.

Bitmap Indexes

Bitmap indexes are ideal for column data that has a low cardinality, which means that the indexed
column has few distinct values. The index is compact in size and performs better than the B-tree
index for these types of data. However, the bitmap index is going to cause some problems if a lot of
DML is going on in the column being indexed.

Index-Organized Tables

Index-organized tables (IOTs) are explained in Chapter 5. The traditional Oracle tables are called
heap-organized tables, where data is stored in the order in which it is inserted. Indexes enable fast
access to the rows. However, indexes also mean more storage and the need for accessing both the
index and the table rows for most queries (unless the query can be selected just by the indexed
columns themselves). IOTs place all the table data in its primary key index, thus eliminating the
need for a separate index.

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION 963

4517CH21.qxd 8/19/05 11:14 AM Page 963

IOTs are more akin to B-tree indexes than tables. The data in an IOT is sorted, and rows are
stored in primary key order. This type of organization of row values gives you faster access in addi-
tion to saving space. To limit the size of the row that’s stored in the B-tree leaf blocks, IOTs use an
overflow area to store infrequently accessed non-key columns, which leads to lower space con-
sumption in the B-tree.

Concatenated Indexes

Concatenated or composite indexes are indexes that include more than one column, and are excel-
lent for improving the selectivity of the WHERE predicates. Even in cases where the selectivity of the
individual columns is poor, concatenating the index improves selectivity. If the concatenated index
contains all the columns in the WHERE list, you’re saved the trouble of looking up the table, thus
reducing your I/O. However, you have to pay particular attention to the order of the columns in the
composite index. If the WHERE clause doesn’t specify the leading column of the concatenated index
first, Oracle may not use the index at all.

Up until recently, Oracle used a composite index only if the leading column of the index was
used in the WHERE clause or if the entire index was scanned. The index skip scan feature lets Oracle
use a composite index even when the leading column isn’t used in the query. Obviously, this is a
nice feature that eliminates many full table scans that would have resulted in older versions of
Oracle.

Function-Based Indexes

A function-based index contains columns transformed either by an Oracle function or by an expres-
sion. When the function or expression used to create the index is referenced in the WHERE clause of a
query, Oracle can quickly return the computed value of the function or expression directly from the
index, instead of recalculating it each time. Function-based indexes are efficient in frequently used
statements that involve functions or complex expressions on columns. For example, the following
function-based index lets you search for people based on the last_name column (in all uppercase
letters):

SQL> CREATE INDEX upper_lastname_idx ON employees (UPPER(last_name));

Reverse-Key Indexes

If you’re having performance issues in a database with a large number of inserts, you should con-
sider using reverse-key indexes. These indexes are ideal for insert-heavy applications, although they
suffer from the drawback that they can’t be used in index range scans. A reverse-key index looks like
this:

Index value Reverse_Key Index Value
----------- ----------------------
9001 1009
9002 2009
9003 3009
9004 4009

When you’re dealing with columns that sequentially increase, the reverse-key indexes provide
an efficient way to distribute the index values more evenly and thus improve performance.

Partitioned Indexing Strategy

As you saw in Chapter 5, partitioned tables can have several types of indexes on them. Partitioned
indexes can be local or global. In addition, they can be prefixed or nonprefixed indexes. Here’s a
brief summary of important partitioned indexes:

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION964

4517CH21.qxd 8/19/05 11:14 AM Page 964

• Local partitioned indexes correspond to the underlying partitions of the table. If you add a
new partition to the table, you also add a new partition to the local partitioned index.

• Global partitioned indexes don’t correspond to the partitions of the local table.

• Prefixed indexes are partitioned on a left prefix on the index columns.

• Nonprefixed indexes are indexes that aren’t partitioned on the left prefix of the index
columns.

In general, local partitioned indexes are a good indexing strategy if the table has been indexed
primarily for access reasons. If your queries include columns that aren’t a part of the partitioned
table’s key, global prefixed indexes are a good choice. Using global prefixed indexes is a good index-
ing strategy if the table has been indexed primarily for access reasons. Local nonprefixed indexes
are good if you’re using parallel query operations.

■Note In Chapter 5 I showed how to use the SQL Access Advisor to get advice concerning the creation of
indexes and materialized views (and materialized view logs). Use the SQL Access Advisor on a regular basis to
see if you need to create any new indexes or materialized views (or materialized view logs).

Monitoring Index Usage
You may have several indexes on a table, but that in itself is no guarantee that they’re being used in
queries. If you aren’t using indexes, you might as well get rid of them, as they just take up space and
time to manage them. You can use the V$OBJECT_USAGE view to gather index usage information.
Here’s the structure of the V$OBJECT_USAGE view:

SQL> DESC V$OBJECT_USAGE
Name Null? Type

------------ -------- -----------
INDEX_NAME NOT NULL VARCHAR2(30)
TABLE_NAME NOT NULL VARCHAR2(30)
MONITORING VARCHAR2(3)
USED VARCHAR2(3)
START_MONITORING VARCHAR2(19)
END_MONITORING VARCHAR2(19)
SQL>

Chapter 5 shows how to use the V$OBJECT_USAGE view to find out if a certain index is being
used.

Removing Unnecessary Indexes
The idea of removing indexes may seem surprising in the beginning, but you aren’t being asked to
remove just any index on a table. By all means, keep the indexes that are being used and that are
also selective. If an index is being used but it’s a nonselective index, you may be better off in most
cases getting rid of it, because the index will slow down the DML operations without significantly
increasing performance. In addition, unnecessary indexes just waste space in your system.

Using Similar SQL Statements
As you know by now, reusing already parsed statements leads to a performance improvement,
besides conserving the use of the shared pool area of the SGA. However, the catch is that the SQL
statements must be identical in all respects, white space and all.

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION 965

4517CH21.qxd 8/19/05 11:14 AM Page 965

Reducing SQL Overhead Via Inline Functions
Inline stored functions can help improve the performance of your SQL statements. Here’s a simple
example to demonstrate how you can use an inline function to reduce the overhead of a SQL state-
ment. The following code chunk shows the initial SQL statement without the inline function:

SQL> SELECT r.emp_id,
e.name, r.emp_type,t.type_des,
COUNT(*)
FROM employees e, emp_type t, emp_records r
WHERE r.emp_id = e.emp_id
AND r.emp_type = t.emp_type
GROUP BY r. emp_id, e.name, r.emp_type, t.emp_des;

You can improve the performance of the preceding statement by using an inline function call.
First, you create a couple of functions, which you can call later on from within your SQL statement.
The first function is called select_emp_desc, and it fetches the employee description if you provide
emp_type as an input parameter. Here’s how you create this function:

SQL> CREATE OR REPLACE FUNCTION select_emp_desc (type IN) number)
2 RETURN varchar2
3 AS
4 desc varchar2(30);
5 CURSOR a1 IS
6 SELECT emp_desc FROM emp_type
7 WHERE emp_type = type;
8 BEGIN
9 OPEN a1;
10 FETCH a1 into desc;
11 CLOSE a1;
12 RETURN (NVL(desc,'?'));
13 END;

Function created.
SQL>

Next, create another function, select_emp, that returns the full name of an employee once you
pass it employee_id as a parameter:

SQL> CREATE OR REPLACE FUNCTION select_emp (emp IN number) RETURN varchar2
2 AS
3 emp_name varchar2(30);
4 CURSOR a1 IS
5 SELECT name FROM employees
6 WHERE employee_id = emp;
7 BEGIN
8 OPEN a1;
9 FETCH a1 INTO emp_name;
10 CLOSE a1;
11 RETURN (NVL(emp_name,'?'));
12 END;
Function created.
SQL>

Now that you have both your functions, it’s a simple matter to call them from within a SQL
statement, as the following code shows:

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION966

4517CH21.qxd 8/19/05 11:14 AM Page 966

SQL> SELECT r.emp_id, select_emp(r.emp_id),
2 r.emp_type, select_emp_desc(r.emp_type),
3 COUNT(*)
4 FROM emp_records r
5* GROUP BY r.emp_id, r.emp_type;

SQL>

Using Bind Variables
The parsing stage of query processing consumes resources, and ideally you should parse just once
and use the same parsed version of the statement for repeated executions. Parsing is a much more
expensive operation than executing the statement. You should use bind variables in SQL statements
instead of literal values to reduce the amount of parsing in the database. Bind variables should be
identical in terms of their name, data type, and length. Failure to use bind variables leads to heavy
use of the shared pool area and, more often than not, contention for latches and a general slowing
down of the database when a large number of queries are being processed. Sometimes your appli-
cation may not be changeable into a form where bind variables are used.

In Chapter 22, you’ll see how to use Oracle configuration parameters to force statements that
fail to use bind variables to do so.

Avoiding Improper Use of Views
Views have several benefits to offer, but faster performance may not necessarily be one of them.
Views are useful when you want to present only the relevant portions of a table to an application or
a user. Whenever you query a view, it has to be instantiated at that time. Because the view is just a
SQL query, it has to perform this instantiation if you want to query the view again. If your query
uses joins on views, it could lead to substantial time for executing the query.

Avoiding Unnecessary Full Table Scans
Full table scans can occur sometimes, even when you have indexed a table. The use of functions on
indexed columns is a good example for when you unwittingly can cause Oracle to skip indexes and
go to a full table scan. You should avoid the use of inequality and the greater than or equal to predi-
cates, as they may also bypass indexes.

How the DBA Can Help Improve SQL Processing
Performance tuning involves the optimization of SQL code and the calibration of the resources
used by Oracle. The developers generally perform SQL tuning, and the DBA merely facilitates their
tuning efforts by setting the relevant initialization parameters, turning tracing on, and so on. Never-
theless, the DBA can implement several strategies to help improve SQL processing in his or her
database.

In some cases, you and the developers might be working together to optimize the application.
What if you can’t modify the code, as is the case when you’re dealing with packaged applications?
Alternatively, what if even the developers are aware that major code changes are needed to improve
performance, but time and budget constraints make the immediate revamping of the application
difficult? There are several ways you can help without having to change the code itself.

It’s common for DBAs to bemoan the fact that the response times are slow because of poorly
written SQL. I’ve heard this in every place I’ve worked, so I assume this is a universal complaint of
DBAs who have to manage the consequences of bad code. A perfectly designed and coded applica-
tion with all the right joins and smart indexing strategies would be nice, but more often than not,

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION 967

4517CH21.qxd 8/19/05 11:14 AM Page 967

that perfect state of affairs doesn’t happen. The theory of the next best option dictates that you
should do everything you can to optimize within the limitations imposed by the application design.

That said, let’s look at some of the important ways in which you can help improve query per-
formance in an application, even when you can’t change the code right away.

Using Partitioned Tables
Partitioned tables usually lead to tremendous improvements in performance, and they’re easy to
administer. By partitioning a table into several subpartitions, you’re in essence limiting the amount
of data that needs to be examined to satisfy your queries. If you have large tables, running into tens
of millions of rows, consider partitioning them.

Five table partitioning schemes are available to you in Oracle Database 10g, and they’re
explained in Chapter 5. You can index partitioned tables in a variety of ways, depending on the
needs of the application. Partition maintenance is also easy, and it’s well worth the additional effort
when you consider the tremendous gains partitioned tables provide.

Using Compression Techniques
The Oracle database lets you use table compression to compress tables, table partitions, and materi-
alized views. Table compression helps reduce space requirements for the tables and enhances query
performance. Oracle compresses the tables by eliminating the duplicate values in a data block and
replacing those values with algorithms to re-create the data when necessary. The table compression
technique is especially suitable for data warehouse and OLAP databases, but OLTP databases can
also use the technique fruitfully. The larger the table that is compressed, the more benefits you’ll
achieve with this technique. Here’s a simple table compression statement:

SQL> CREATE table sales_compress
2 COMPRESS
3 AS SELECT * FROM sh.sales;

Table created.
SQL>

You can also use index key compression to compress the primary key columns of IOTs. This
compression not only saves you storage space, but also enhances query performance. Index com-
pression works by removing duplicate column values from the index.

To compress an index, all you have to do is add the keyword COMPRESS after the index-creation
statement, as shown here:

SQL> CREATE INDEX item_product_x
2 ON order_items(product_id)
3 TABLESPACE order_items_indx_01
4 COMPRESS;

Index created.
SQL>

Perform some tests to confirm the space savings and the time savings during the creation
statements. Later, you can test query performance to measure the improvement.

Using Materialized Views
If you’re dealing with large amounts of data, you should seriously consider using materialized views
to improve response time. Materialized views are objects with data in them—usually summary data
from the underlying tables. Expensive joins can be done beforehand and saved in the materialized

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION968

4517CH21.qxd 8/19/05 11:14 AM Page 968

view. When users query the underlying table, Oracle automatically rewrites the query to access the
materialized view instead of the tables.

Materialized views reduce the need for several complex queries because you can precalculate
aggregates with them. Joins between large tables and data aggregation are expensive in terms of
resource usage, and materialized views significantly reduce the response time for complex queries
on large tables. If you aren’t sure which materialized views to create, not to worry—you can use the
DBMS_OLAP package supplied by Oracle to get recommendations on ideal materialized views.

Chapter 5 discusses materialized views in more detail, and also shows you how to use the SQL
Access Advisor tool to get recommendations for creating materialized views and materialized
view logs.

Using Stored Outlines to Stabilize the CBO
As I mentioned earlier in this chapter, the CBO doesn’t always use the same execution strategies.
Changes in Oracle versions or changes in the initialization parameters concerning memory alloca-
tion may force the CBO to modify its plans. You can use Oracle’s plan stability feature to ensure that
the execution plan remains stable regardless of any changes in the database environment.

The plan stability feature uses stored outlines to preserve the current execution plans, even if
the statistics and Optimizer mode are changed. The CBO uses the same execution plan with identi-
cal access paths each time you execute the same query. The catch is that the query must be exactly
identical each time if you want Oracle to use the stored plan.

■Caution When you use stored outlines to preserve a currently efficient execution plan, you’re limiting Oracle’s
capability to modify its execution plans dynamically based on changes to the database environment and changes
to the statistics. Ensure you use this feature for valid purposes, such as maintaining similar plans for distributed
applications.

On the face of it, the stored outline feature doesn’t seem impressive. Let’s consider a simple
example to see how a stored outline could be useful in a real production environment.

Suppose you have a system that’s running satisfactorily and, due to a special need, you add an
index to a table. The addition of the new index could unwittingly modify the execution plans of the
CBO, and your previously fast-running SQL queries may slow down. It could conceivably take a lot
of effort, testing, and time to fix the problem by changing the original query. However, if you had
created stored outlines, these kinds of problems wouldn’t arise. Once Oracle creates an outline, it
stores it until you remove it. In the next section you’ll examine how to implement planned stability
in a database.

When to Use Outlines
Outlines are useful when you’re planning migrations from one version of Oracle to another. The
CBO could behave differently between versions, and you can cut your risk down by using stored
outlines to preserve the application’s present performance. You can also use them when you’re
upgrading your applications. Outlines ensure that the execution paths the queries used in a test
instance successfully carry over to the production instance.

Stored outlines are especially useful when the users of an application have information about
the environment that the Oracle CBO doesn’t possess. By enabling the direct editing of stored out-
lines, Oracle lets you tune SQL queries without changing the underlying application. This is
especially useful when you’re dealing with packaged applications where you can’t get at the
source code.

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION 969

4517CH21.qxd 8/19/05 11:14 AM Page 969

Implementing Plan Stability
Implementing plan stability is a simple matter. You have to ensure that the following initialization
parameters are consistent in all the environments. You must set the value of the first two parame-
ters to TRUE. The default value for OPTIMIZER_FEATURES_ENABLE is 10.1.0, and if you change it, make
sure it’s the same in all environments. The initialization parameters are as follows:

• QUERY_REWRITE_ENABLED

• STAR_TRANSFORMATION_ENABLED

• OPTIMIZER_FEATURES_ENABLE

Creating Outlines
The outlines themselves are managed through the DBMS_OUTLN and DBMS_OUTLN_EDIT Oracle
packages. To create outlines for all your current SQL queries, you simply set the initialization
parameter CREATE_STORED_OUTLINES to TRUE.

The OUTLN user is part of the database when it is created and owns the stored outlines in the
database. The outlines are stored in the table OL$. Listing 21-1 shows the structure of the OL$ table.

Listing 21-1. The OL$ Table

SQL> DESC OL$
Name Null? Type

OL_NAME VARCHAR2(30)
SQL_TEXT LONG
TEXTLEN NUMBER
SIGNATURE RAW(16)
HASH_VALUE NUMBER
HASH_VALUE2 NUMBER
CATEGORY VARCHAR2(30)
VERSION VARCHAR2(64)
CREATOR VARCHAR2(30)
TIMESTAMP DATE
FLAGS NUMBER
HINTCOUNT NUMBER
SPARE1 NUMBER
SPARE2 VARCHAR2(1000)
SQL>

The SQL_TEXT column has the SQL statement that is outlined. In addition to the OL$ table, the
user OUTLN uses the OL$HINTS and OL$NODES tables to manage stored outlines.

Create a special tablespace for the user OUTLN and the tables OL$, OL$HINTS, and OL$NODES.
By default, they’re created in the SYSTEM tablespace. After you create a new tablespace for user
OUTLN, you can use the export and import utilities to move the tables.

Creating Outlines at the Database Level

To let Oracle automatically create outlines for all SQL statements, use the CREATE_STORED_OUTLINES
initialization parameter, as shown here:

CREATE_STORED_OUTLINES = TRUE

You can also dynamically enable the creation of stored outlines for the entire database by using
the ALTER SYSTEM statement, as shown here:

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION970

4517CH21.qxd 8/19/05 11:14 AM Page 970

SQL> ALTER SYSTEM SET CREATE_STORED_OUTLINES=TRUE;
System altered.
SQL>

In both the preceding cases, the outlines that Oracle creates are assigned to a category called
DEFAULT. You also have the option of specifying a named category for your stored outlines. Setting
the CREATE_STORED_OUTLINES parameter means that the database creates a stored outline for every
distinct SQL statement. This means that the SYSTEM tablespace could potentially run out of space
if you have a large number of SQL statements that are being processed. For this reason, use the
CREATE_STORED_OUTLINES initialization parameter with care. To keep the overhead low, you may
instead use the option to create stored outlines at the session level, or just for a lone SQL statement,
as shown in the next section.

Creating Outlines for Specific Statements

You can create outlines for a specific statement or a set of statements by using the ALTER SESSION
statement, as shown here:

SQL> ALTER SESSION SET create_stored_outlines = true;
Session altered.
SQL>

Any statements you issue after the ALTER SESSION statement is processed will have outlines
stored for them.

To create a stored outline for a specific SQL statement, you use the CREATE OUTLINE statement.
The user issuing this command must have the CREATE OUTLINE privilege. The following statement
shows how to create a simple outline for a SELECT operation on the employees table:

SQL> CREATE OUTLINE test_outline
2 ON SELECT employee_id, last_name
3 FROM hr.employees;

Outline created.
SQL>

You can use the DROP OUTLINE statement to drop an outline, as shown here:

SQL> DROP OUTLINE test_outline;
Outline dropped.
SQL>

Using the Stored Outlines

After you create the stored outlines, Oracle won’t automatically start using them. You have to use the
ALTER SESSION or ALTER SYSTEM statement to set USE_STORED_OUTLINES to TRUE. The following example
uses the ALTER SYSTEM statement to enable the use of the stored outlines at the database level:

SQL> ALTER SYSTEM SET use_stored_outlines=true;
System altered.
SQL>

You can also set the initialization parameter USE_STORED_OUTLINES to TRUE, to enable the use of
the stored outlines. Otherwise, the database won’t use any stored outlines it has created.

Editing Stored Outlines

You can easily change the stored access paths while using the plan stability feature. You can use
either the DBMS_OUTLN_EDIT package or OEM to perform the changes.

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION 971

4517CH21.qxd 8/19/05 11:14 AM Page 971

Using Parallel Execution
Parallel execution of statements can make SQL run more quickly, and it’s especially suitable for
large warehouse-type databases. You can set the parallel option at the database or table level. If you
increase the degree of parallelism of a table, Oracle could decide to perform more full table scans
instead of using an index, because the cost of a full table scan may now be lower than the cost of an
index scan. If you want to use parallel operations in an OLTP environment, make sure you have
enough processors on your machine so the CPU doesn’t become a bottleneck.

Other DBA Tasks
The DBA must perform certain tasks regularly to optimize the performance of the application.
Some of these fall under the routine administrative chores, and the following sections cover some
of the important DBA tasks related to performance tuning.

Collecting System Statistics
Even if you’re using the Automatic Optimizer Statistics Collection feature, Oracle won’t collect sys-
tem statistics. As explained earlier in this chapter, you must collect system statistics yourself, so the
Oracle Optimizer can accurately evaluate alternate execution plans.

Refreshing Statistics Frequently
This section applies only if you have turned off the automatic statistics collection process for some
reason. Refreshing statistics frequently is extremely important if you’re using the CBO and your data
is subject to frequent changes.

How often you run the DBMS_STATS package to collect statistics depends on the nature of
your data. For applications with a moderate number of DML transactions, a weekly gathering of
statistics will suffice. If you have reason to believe that your data changes substantially daily, then
schedule the statistics collection on a daily basis.

Using Histograms
Normally, the CBO assumes that data is uniformly distributed in a table. There are times when data
in a table isn’t distributed in a uniform way. If you have an extremely skewed data distribution in a
table, you’re better off using histograms to store the column statistics. If the table data is heavily
skewed toward some values, the presence of histograms provides more efficient access methods.
Histograms use buckets to represent distribution of data in a column, and Oracle can use these
buckets to see how skewed the data distribution is.

You can use the following types of histograms in an Oracle database:

• Height-based histograms divide column values into bands, with each band containing a
roughly equal number of rows. Thus, for a table with 100 rows, you’d create a histogram with
10 buckets if you wanted each bucket to contain 10 rows.

• Frequency-based histograms determine the number of buckets based on the distinct values
in the column. Each bucket contains all the data that has the same value.

Creating Histograms

You create histograms by using the METHOD_OPT attribute of the DBMS_STATS procedure such as
GATHER_TABLE_STATS, GATHER_DATABASE_STATS, and so on. You can either specify your own histogram
creation requirements by using the FOR COLUMNS clause, or use the AUTO or SKEWONLY values for the

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION972

4517CH21.qxd 8/19/05 11:14 AM Page 972

METHOD_OPT attribute. If you choose AUTO, Oracle will decide which columns it should collect his-
tograms for, based on the data distribution and workload. If you choose SKEWONLY, Oracle will base
the decision only on the data distribution of the columns. In the two examples that follow, I use the
FOR COLUMNS clause to specify the creation of the histograms.

The following example shows how to create a height-based histogram while collecting the
Optimizer statistics:

SQL> BEGIN
DBMS_STATS.GATHER_table_STATS (OWNNAME => 'HR', TABNAME => 'BENEFITS',
METHOD_OPT => 'FOR COLUMNS SIZE 10 Number_of_visits');
END;

The following example shows how to create a frequency-based histogram:

SQL> BEGIN
DBMS_STATS.GATHER_table_STATS(OWNNAME => 'HR', TABNAME => 'PERSONS',
METHOD_OPT => 'FOR COLUMNS SIZE 20 department_id');
END;

Viewing Histograms

You can use the DBA_TAB_COL_STATISTICS view to view histogram information. Following are
the two queries that show the number of buckets (num_buckets) and the number of distinct values
(num_distinct), first for the height-balanced and then for the frequency-based histogram created
in the previous section:

SQL> SELECT column_name, num_distinct, num_buckets, histogram
FROM USER_TAB_COL_STATISTICS
WHERE table_name = 'BENEFITS' AND column_name = 'NUMBER_OF_VISITS';

COLUMN_NAME NUM_DISTINCT NUM_BUCKETS HISTOGRAM
------------------------------ ------------ ----------- -----------
NUMBER_OF_VISITS 320 10 HEIGHT BALANCED

SQL> SELECT column_name, num_distinct, num_buckets, histogram
FROM USER_TAB_COL_STATISTICS
WHERE table_name = 'PERSONS' AND column_name = 'DEPARTMENT_ID';

COLUMN_NAME NUM_DISTINCT NUM_BUCKETS HISTOGRAM
----------------------------- ------------ ----------- -------
DEPARTMENT_ID 8 8 FREQUENCY

Rebuilding Tables and Indexes Regularly
The indexes could become unbalanced in a database with a great deal of DML. It’s important to
rebuild such indexes regularly so queries can run faster. You may want to rebuild an index to change
its storage characteristics or to consolidate it and reduce fragmentation. Use the ALTER INDEX . . .
REBUILD statement, because the old index is accessible while you’re re-creating it. (The alternative is
to drop the index and re-create it.)

When you rebuild the indexes, include the COMPUTE STATISTICS statement so you don’t have to
gather statistics after the rebuild. Of course, if you have a 24/7 environment, you can use the ALTER
INDEX . . . REBUILD ONLINE statement so that user access to the database won’t be affected. It is
important that your tables aren’t going through a lot of DML operations while you’re rebuilding
online, because the online feature may not work as advertised under such circumstances. It might
even end up unexpectedly preventing simultaneous updates by users.

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION 973

4517CH21.qxd 8/19/05 11:14 AM Page 973

Reclaiming Unused Space
In Oracle Database 10g Release 2, the Segment Advisor runs automatically during the regularly
scheduled nightly maintenance job, and provides you with recommendations about objects you
can shrink to reclaim wasted space. Just remember that you need to use locally managed table-
spaces with automatic segment space management in order to use the Segment Advisor. Shrinking
segments saves space, but more importantly, improves performance by lowering the high water
mark of the segments and eliminating the inevitable fragmentation that occurs over time in objects
with heavy update and delete operations.

Caching Small Tables in Memory
If the application doesn’t reuse a table’s data for a long period, the data might be aged out of the
SGA and need to be read from disk. You can safely pin small tables in the shared pool with the fol-
lowing:

SQL> ALTER TABLE hr.employees CACHE;
Table altered.
SQL>

SQL Performance Tuning Tools
SQL performance tuning tools are extremely important. Developers can use the tools to examine
good execution strategies, and in a production database they’re highly useful for reactive tuning.
The tools can give you a good estimate of resource use by queries. The SQL tools are the EXPLAIN
PLAN, SQL Trace, and Autotrace utilities.

Using the EXPLAIN PLAN
The EXPLAIN PLAN facility helps you tune SQL by letting you see the execution plan selected by the
Oracle Optimizer for a SQL statement. During SQL tuning, you may have to rewrite your queries
and experiment with Optimizer hints. The EXPLAIN PLAN tool is great for this experimentation, as
it immediately lets you know how the query will perform with each change in the code. Because the
utility gives you the execution plan without executing the code, you save yourself from having to
run untuned software to see if the changes were beneficial or not. Understanding an EXPLAIN
PLAN is critical to understanding query performance. It provides a window into the logic of the
Oracle Optimizer regarding its choice of execution plans.

The output of the EXPLAIN PLAN tool goes into a table, usually called plan_table, where it can
be queried to determine the planned execution plan of statements. In addition, you can use GUI
tools, such as OEM or TOAD, to get the execution plan for your SQL statements without any fuss.
In OEM, you can view the explain statements from the Top Sessions or the Top SQL charts.

A walk-through of an EXPLAIN PLAN output takes you through the steps that would be under-
taken by the CBO to execute the SQL statement. The EXPLAIN PLAN tool indicates clearly whether
the Optimizer is using an index, for example. It also tells you the order in which tables are being
joined and helps you understand your query performance. More precisely, an EXPLAIN PLAN out-
put shows the following:

• The tables used in the query and the order in which they’re accessed.

• The operations performed on the output of each step of the plan. For example, these could
be sorting and aggregation operations.

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION974

4517CH21.qxd 8/19/05 11:14 AM Page 974

• The specific access and join methods used for each table mentioned in the SQL statement.

• The cost of each operation.

Oracle creates the plan_table as a global temporary table, so all the users in the database can
use it to save their EXPLAIN PLAN output. However, you can create a local plan table in your own
schema by running the utlxplan.sql script, which is located in the $ORACLE_HOME/rdbms/admin
directory. The script, among other things, creates the plan table, where the output of the EXPLAIN
PLAN utility is stored for your viewing. You are free to rename this table. Here’s how you create the
plan table so you can use the EXPLAIN PLAN feature:

SQL> @$ORACLE_HOME/rdbms/admin/utlxplan.sql
Table created.
SQL>

Creating the EXPLAIN PLAN
To create an EXPLAIN PLAN for any SQL data manipulation language statement, you use a SQL
statement similar to that shown in Listing 21-2.

Listing 21-2. Creating the EXPLAIN PLAN

SQL> EXPLAIN PLAN
2 SET statement_id = 'test1'
3 INTO plan_table
4 FOR select p.product_id,i.quantity_on_hand
5 FROM oe.inventories i,
6 oe.product_descriptions p,
7 oe.warehouses w
8 WHERE p.product_id=i.product_id
9 AND i.quantity_on_hand > 250
10 AND w.warehouse_id = i.warehouse_id;
Explained.
SQL>

Producing the EXPLAIN PLAN
You can’t select the columns out of plan_table easily because of the hierarchical nature of relation-
ships among the columns. Listing 21-3 shows the code that you can use so the EXPLAIN PLAN
output is printed in a form that’s readable and shows clearly how the execution plan for the state-
ment looks.

Listing 21-3. Producing the EXPLAIN PLAN

SQL> SELECT lpad(' ',level-1)||operation||' '||options||' '||
2 object_name "Plan"
3 FROM plan_table
4 CONNECT BY prior id = parent_id
5 AND prior statement_id = statement_id
6 START WITH id = 0 AND statement_id = '&1'
7 ORDER BY id;

Enter value for 1: test1
old 6: START WITH id = 0 AND statement_id = '&1'
new 6: START WITH id = 0 AND statement_id = 'test1'
Plan
--

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION 975

4517CH21.qxd 8/19/05 11:14 AM Page 975

SELECT STATEMENT
HASH JOIN
NESTED LOOPS
TABLE ACCESS FULL INVENTORIES
INDEX UNIQUE SCAN WAREHOUSES_PK
INDEX FAST FULL SCAN PRD_DESC_PK

6 rows selected.
SQL>

Other Ways of Displaying the EXPLAIN PLAN Results
You can also use the DBMS_XPLAN package to display the output of an EXPLAIN PLAN statement
in an easily readable format. You use a table function from this package to display the EXPLAIN
PLAN output. You use the DISPLAY table function of the DBMS_XPLAN package to display the out-
put of your most recent EXPLAIN PLAN. You can use the table function DISPLAY_AWR to display the
output of the SQL statement’s execution plan from the Automatic Workload Repository (AWR).
Here’s an example that shows how to use the DBMS_XPLAN package to produce the output of the
most recent EXPLAIN PLAN statement.

First, create the EXPLAIN PLAN for a SQL statement:

SQL> EXPLAIN PLAN FOR
2 SELECT * FROM persons
3 WHERE PERSONS.last_name LIKE '%ALAPATI%'
4 AND created_date < sysdate -30;

Explained.
SQL>

Make sure you set the proper line size and page size in SQL*Plus:

SQL> SET LINESIZE 130
SQL> SET PAGESIZE 0

Display the EXPLAIN PLAN output:

SQL> SELECT * FROM table (DBMS_XPLAN.DISPLAY);

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 37 | 3 (0) | 00:00:01 |
|* 1 | TABLE ACCESS FULL| PERSONS | 1 | 37 | 3 (0) | 00:00:01 |

Predicate Information (identified by operation id) :
__
- filter ("ENAME" LIKE '%ALAPATI%' AND "CREATED_DATE">SYSDATE@!-30)

13 rows selected.
SQL>

■Note I explain the DBMS_XPLAN package in more detail in Chapter 24.

If you wish, you can use the Oracle-provided utlxpls.sql script to get nicely formatted output.
The utlxpls.sql script is an alternative to using the DBMS_XPLAN package directly, and it relies on

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION976

4517CH21.qxd 8/19/05 11:14 AM Page 976

the same package. The utlxpls.sql script is located in the $ORACLE_HOME/rdbms/admin directory,
and uses the DBMS_XPLAN package to display the most recent EXPLAIN PLAN in the database. Of
course, you must make sure that the table plan_table exists before you can use the utlxpls.sql script.
Here’s how you’d run this script:

$ @$ORACLE_HOME/rdbms/admin/utlxpls.sql

The output of the utlxpls.sql script is exactly identical to that of the DBMS_XPLAN.DISPLAY, which
was presented a few paragraphs prior.

Interpreting the EXPLAIN PLAN Output
Reading an EXPLAIN PLAN is somewhat confusing in the beginning, and it helps to remember
these simple principles:

• Each step in the plan returns output in the form of a set of rows to the parent step.

• Read the plan outward starting from the line that is indented the most.

• If two operations are at the same level in terms of their indentation, read the top one first.

• The numbering of the steps in the plan is misleading. Start reading the EXPLAIN PLAN out-
put from the inside out. That is, read the most indented operation first.

In the example shown earlier in Listing 21-3 (I reproduce the plan output after the code), then,
Oracle uses the INVENTORIES table as its driving table and uses the following execution path:

SELECT STATEMENT
HASH JOIN
NESTED LOOPS
TABLE ACCESS FULL INVENTORIES
INDEX UNIQUE SCAN WAREHOUSES_PK
INDEX FAST FULL SCAN PRD_DESC_PK

The plan output is as follows:

1. Oracle does a full table scan of the INVENTORIES table.

2. Oracle performs an index unique scan of the WAREHOUSES table using its primary key
index.

3. Oracle performs a nested loop operation to join the rows from steps 1 and 2.

4. Oracle performs an index fast full scan of the product_descriptions table using its primary
key, PRD_DESC_PK.

5. In the final step, Oracle performs a hash join of the set from step 3 and the rows resulting
from the index full scan of step 4.

Using the output of the EXPLAIN PLAN, you can quickly see why some of your queries are
taking much longer than anticipated. Armed with this knowledge, you can fine-tune a query until
an acceptable performance threshold is reached. The wonderful thing about the EXPLAIN PLAN
is that you never have to execute any statement in the database to trace the execution plan of the
statement. The next section presents a few examples so you can feel more comfortable using the
EXPLAIN PLAN utility.

More Plan Examples
In this section, you’ll learn how to interpret various kinds of execution plans derived by using the
EXPLAIN PLAN utility.

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION 977

4517CH21.qxd 8/19/05 11:14 AM Page 977

In the first example, consider what happens when you use a function on an indexed column.
Oracle completely ignores the index! As you can see, the Optimizer can make mistakes. Good pro-
grammers can help the Optimizer get it right by using methods such as proper indexing of tables,
Optimizer hints, and so on.

SQL> EXPLAIN PLAN set statement_id = 'example_plan1'
2 FOR
3 SELECT last_name FROM hr.employees
4 WHERE upper(last_name) = 'FAY';

Explained.
SQL>
example_plan1

SELECT STATEMENT
TABLE ACCESS FULL EMPLOYEES
SQL>

The next example is a query similar to the preceding one, but without the upper function on
last_name. This time, Oracle uses the index on the last_name column:

SQL> EXPLAIN PLAN SET statement_id = 'example_plan1'
2 FOR
3 SELECT last_name FROM hr.employees 4* WHERE last_name='FAY';

Explained.
SQL>
example_plan1

SELECT STATEMENT
INDEX RANGE SCAN EMP_NAME_IX
SQL>

In the third example, two tables (customers and orders) are joined to retrieve the query results:

SQL> EXPLAIN PLAN SET statement_id 'newplan1'
2 FOR
3 SELECT o.order_id,
4 o.order_total,
5 c.account_mgr_id
6 FROM customers c,
7 orders o
8 WHERE o.customer_id=c.customer_id
9 AND o.order_date > '01-JUL-05'

Explained.
SQL>

Listing 21-4 shows the EXPLAIN PLAN from the plan table.

Listing 21-4. Another EXPLAIN PLAN Output

SQL> SELECT lpad(' ',level-1)||operation||' '||options||' '||
2 object_name "newplan"
3 FROM plan_table
4 CONNECT BY prior id = parent_id
5 AND prior statement_id = statement_id
6 START WITH id = 0 AND statement_id = '&1'
7* ORDER BY id;

Enter value for 1: newplan1
old 6: START WITH id = 0 AND statement_id = '&1'
new 6: START WITH id = 0 AND statement_id = 'newplan1'

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION978

4517CH21.qxd 8/19/05 11:14 AM Page 978

newplan
SELECT STATEMENT
HASH JOIN /* step 4 */
TABLE ACCESS FULL CUSTOMERS /* step 2 */
TABLE ACCESS BY INDEX ROWID ORDERS /* step 3 */
INDEX RANGE SCAN ORD_ORDER_DATE_IX /* step 1 */

Elapsed: 00:00:00.01
SQL>

In step 1, the query first does an index range scan of the orders table using the ORD_ORDER_DATE_
IX index. Why an index range scan? Because this index isn’t unique—it has multiple rows with the
same data value—the Optimizer has to scan these multiple rows to get the data it’s interested in. For
example, if the indexed column is a primary key, it will be unique by definition, and you’ll see the
notation “Unique Scan” in the EXPLAIN PLAN statement.

In step 2, the customers table is accessed through a full table scan, because account_manager_
id in that table, which is part of the WHERE clause, isn’t indexed.

In step 3, the query accesses the orders table by INDEX ROWID, using the ROWID it derived in the
previous step. This step gets you the order_id, customer_id, and order_total columns from the
orders table for the date specified.

In step 4, the rows from the orders table are joined with the rows from the customers table
based on the join condition WHERE o.customer_id=c.customer_id.

As you can see from the preceding examples, the EXPLAIN PLAN facility provides you with a
clear idea as to the access methods used by the Optimizer. Of course, you can do this without hav-
ing to run the query itself. Often, the EXPLAIN PLAN will provide you with a quick answer as to why
your SQL may be performing poorly. The plan’s output can help you determine how selective your
indexes are and let you experiment with quick changes in code.

Using Autotrace
The Autotrace facility enables you to produce EXPLAIN PLANs automatically when you execute a
SQL statement in SQL*Plus. You automatically have the privileges necessary to use the Autotrace
facility when you log in as SYS or SYSTEM.

First, if you plan to use Autotrace, you should create a plan table in your schema. Once you cre-
ate this plan table, you can use it for all your future executions of the Autotrace facility. If you don’t
have this table in your schema, you’ll get an error when you try to use the Autotrace facility, as
shown here:

SQL> SET AUTOTRACE ON SP2-0618: Cannot find the Session Identifier
. Check PLUSTRACE role is enabled
SP2-0611: Error enabling STATISTICS report
SQL>

You can create the plan_table table by using the CREATE TABLE statement, as shown in
Listing 21-5. You can also create this table by executing the $ORACLE_HOME/rdbms/admin/
utlxplan.sql script, as I explained earlier.

Listing 21-5. Manually Creating the Plan Table

SQL> CREATE TABLE PLAN_TABLE(
2 STATEMENT_ID VARCHAR2(30), TIMESTAMP DATE,
3 REMARKS VARCHAR2(80), OPERATION VARCHAR2(30),
4 OPTIONS VARCHAR2(30), OBJECT_NODE VARCHAR2(128),
5 OBJECT_OWNER VARCHAR2(30), OBJECT_NAME VARCHAR2(30),
6 OBJECT_INSTANCE NUMERIC, OBJECT_TYPE VARCHAR2(30),
7 OPTIMIZER VARCHAR2(255),SEARCH_COLUMNS NUMBER,

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION 979

4517CH21.qxd 8/19/05 11:14 AM Page 979

8 ID NUMERIC, PARENT_ID NUMERIC,
9 POSITION NUMERIC, COST NUMERIC,
10 CARDINALITY NUMERIC, BYTES NUMERIC,
11 OTHER_TAG VARCHAR2(255),PARTITION_START VARCHAR2(255),
12 PARTITION_STOP VARCHAR2(255),PARTITION_ID NUMERIC,
13 OTHER LONG, DISTRIBUTION VARCHAR2(30));

Table created.
SQL>

Next, the SYS or SYSTEM user needs to grant you the PLUSTRACE role, as shown here:

SQL> GRANT PLUSTRACE TO salapati;
*

ERROR at Line 1:
ORA-1919: role 'PLUSTRACE' does not exist.

If, as in the preceding case, the PLUSTRACE role doesn’t already exist in the database, the SYS
user needs to run the plustrace.sql script, as shown in Listing 21-6, to create the PLUSTRACE role.

Listing 21-6. Creating the PLUSTRACE Role

SQL> @ORACLE_HOME/sqlplus/admin/plustrce.sql
SQL> DROP ROLE plustrace;
drop role plustrace

*
ERROR at line 1:
ORA-01919: role 'PLUSTRACE' does not exist
SQL> CREATE ROLE plustrace;
Role created.
SQL>
SQL> GRANT SELECT ON v_$sesstat TO plustrace;
Grant succeeded.
SQL> GRANT SELECT ON v_$statname TO plustrace;
Grant succeeded.
SQL> GRANT SELECT ON v_$mystat TO plustrace;
Grant succeeded.
SQL> GRANT plustrace TO dba WITH ADMIN OPTION;
Grant succeeded.
SQL>

Third, the user who intends to use Autotrace should be given the PLUSTRACE role, as shown here:

SQL> GRANT plustrace TO salapati;
Grant succeeded.
SQL>

The user can now set the Autotrace feature on and view the EXPLAIN PLAN for any query that
is used in the session. The Autotrace feature can be turned on with different options:

• SET AUTOTRACE ON EXPLAIN: This generates the execution plan only and doesn’t execute the
query itself.

• SET AUTOTRACE ON STATISTICS: This shows only the execution statistics for the SQL
statement.

• SET AUTOTRACE ON: This shows both the execution plan and the SQL statement execution
statistics.

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION980

4517CH21.qxd 8/19/05 11:14 AM Page 980

All SQL statements issued after the Autotrace feature is turned on will generate the execution
plans (until you turn off the Autotrace facility with the command SET AUTOTRACE OFF), as shown in
Listing 21-7.

Listing 21-7. Using the Autotrace Utility

SQL> SET AUTOTRACE ON;
SQL> SELECT * FROM EMP;
no rows selected
Execution Plan

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=2 Card=1 Bytes=74)
1 0 TABLE ACCESS (FULL) OF 'EMP' (Cost=2 Card=1 Bytes=74)

Statistics
0 recursive calls
0 db block gets
3 consistent gets
0 physical reads
0 redo size

511 bytes sent via SQL*Net to client
368 bytes received via SQL*Net from client
1 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
0 rows processed

SQL>

After showing the execution plan for the SQL statement, the Autotrace feature shows the details
about the number of SQL recursive calls incurred in executing the original statement; the number
of physical and logical reads, in memory and on disk sorts; and the number of rows processed.

I provide a few simple examples to show how Autotrace helps you optimize SQL queries. In the
following examples, the same query is used twice in the courses table, once without an index and
once with an index. After the table is indexed, you run the query before you analyze the table. The
results are instructive.

In the first example, whose output is shown in Listing 21-8, you run the test query before you
create an index on the courses table.

Listing 21-8. The Execution Plan for a Query Without an Index

SQL> SET AUTOTRACE ON
SQL> SELECT COUNT(*) FROM courses
2 WHERE course_subject='medicine'
3* AND course_title = 'fundamentals of human anatomy';
COUNT(*)
98304

Execution Plan

0 SELECT STATEMENT Optimizer=CHOOSE
1 0 SORT (AGGREGATE)
2 1 TABLE ACCESS (FULL) OF 'COURSES'

Statistics

0 recursive calls
0 db block gets

753 consistent gets
338 physical reads
0 redo size

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION 981

4517CH21.qxd 8/19/05 11:14 AM Page 981

381 bytes sent via SQL*Net to client
499 bytes received via SQL*Net from client
2 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
1 rows processed

SQL>

As you can see, the query used a full table scan because there are no indexes. There were a total
of 338 physical reads. Note that the total number of rows in the courses table is 98,384. Out of this
total, the courses with medicine as the course subject were 98,304. That is, the table values aren’t
distributed evenly among the courses at all. Now let’s see what happens when you use an index.

The following example uses a query with an index. However, no statistics are collected for
either the table or the index. When you create an index on the courses table and run the same
query, you’ll see some interesting results. Listing 21-9 tells the story.

Listing 21-9. The Execution Plan for a Query with an Index

SQL> CREATE INDEX title_idx ON courses (course_title);
Index created.
SQL> SELECT count(*) FROM courses
2 WHERE course_subject='medicine'
3 AND course_title = 'fundamentals of human anatomy';
COUNT(*)

98304
Execution Plan
--

0 SELECT STATEMENT Optimizer=CHOOSE
1 0 SORT (AGGREGATE)
2 1 TABLE ACCESS (BY INDEX ROWID) OF 'COURSES'
3 2 INDEX (RANGE SCAN) OF 'TITLE_IDX' (NON-UNIQUE)

Statistics
--

0 recursive calls
0 db block gets

1273 consistent gets
1249 physical reads

0 redo size
381 bytes sent via SQL*Net to client
499 bytes received via SQL*Net from client
2 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
1 rows processed

SQL>

After you created the index, the physical reads went from 338 to 1,249! The EXPLAIN PLAN
shows that Oracle is indeed using the index, so you would expect the physical reads to be lower
when compared to the no-index case. What happened here is that even if a table has an index, this
doesn’t mean that it’s always good to use it under all circumstances. The CBO always figures the best
way to get a query’s results, with or without using the index. In this case, the query has to look at
almost all the rows of the table, so using an index isn’t the best way to go. However, you haven’t col-
lected statistics for the table and the index, so Oracle has no way of knowing the distribution of the
actual data in the courses table. Lacking any statistics, it falls back to a rule-based approach. Under
a rule-based optimization, using an index occupies a lower rank and therefore indicates that this is
the optimal approach here. Let’s see the results after analyzing the table.

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION982

4517CH21.qxd 8/19/05 11:14 AM Page 982

The third example is a query with an index executed after collecting Optimizer statistics for the
table. Oracle has the complete statistics, and it uses the CBO this time around. The CBO decides to
use an index only if the cost of using the index is lower than the cost of a full table scan. The CBO
decides that it won’t use the index, because the query will have to read 98,304 out of a total of 98,384
rows. It rightly decides to do a full table scan instead. The results are shown in Listing 21-10.

Listing 21-10. The Execution Plan with an Index After Analyzing the Table

SQL> ANALYZE TABLE courses COMPUTE STATISTICS;
Table analyzed.
SQL> SELECT count(*) FROM courses
2 WHERE course_subject='medicine'
3 AND course_title = 'fundamentals of human anatomy';
COUNT(*)

98304

Execution Plan
--

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=74 Card=1 Bytes=39)
1 0 SORT (AGGREGATE)
2 1 TABLE ACCESS (FULL) OF 'COURSES' (Cost=74 Card=24596 Bytes=959244)

Statistics
--

290 recursive calls
0 db block gets

792 consistent gets
334 physical reads
0 redo size

381 bytes sent via SQL*Net to client
499 bytes received via SQL*Net from client
2 SQL*Net roundtrips to/from client
6 sorts (memory)
0 sorts (disk)
1 rows processed

SQL>

In this listing, the first item, recursive calls, refers to additional statements Oracle needs to
make when it’s processing a user’s SQL statement. For example, Oracle issues recursive calls (or
recursive SQL statements) to make space allocations or to query the data dictionary tables on disk.
In our example, Oracle made 290 internal calls during the SQL Trace period.

Using SQL Trace and TKPROF
SQL Trace is an Oracle utility that helps you trace the execution of SQL statements. TKPROF is
another Oracle utility that helps you format the trace files output by SQL Trace into a readable form.
Although the EXPLAIN PLAN facility gives you the expected execution plan, the SQL Trace tool gives
you the actual execution results of a SQL query. Sometimes, you may not be able to identify the
exact code, say, for dynamically generated SQL. SQL Trace files can capture the SQL for dynamic
SQL. Among other things, SQL Trace enables you to track the following variables:

• CPU and elapsed times

• Parsed and executed counts for each SQL statement

• Number of physical and logical reads

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION 983

4517CH21.qxd 8/19/05 11:14 AM Page 983

• Execution plan for all the SQL statements

• Library cache hit ratios

■Tip If your application has a lot of dynamically generated SQL, the SQL Trace utility is ideal for tuning the SQL
statements.

Although the EXPLAIN PLAN tool is important for determining the access path that the Opti-
mizer will use, SQL Trace gives you a lot of hard information on resource use and the efficacy of the
statements. You’ll get a good idea of whether your statement is being parsed excessively. The state-
ment’s execute and fetch counts illustrate its efficiency. You get a good sense of how much CPU
time is consumed by your queries and how much I/O is being performed during the execution
phase. This helps you identify the resource-guzzling SQL statements in your application and tune
them. The EXPLAIN PLAN, which is an optional part of SQL Trace, gives the row counts for the indi-
vidual steps of the EXPLAIN PLAN, helping you pinpoint at what step the most work is being done.
By comparing resource use with the number of rows fetched, you can easily determine how produc-
tive a particular statement is.

In the next sections you’ll use SQL Trace to trace a simple SQL statement and interpret it with
the TKPROF utility. You start by setting a few initialization parameters to ensure tracing.

Setting the Trace Initialization Parameters
Collecting trace statistics imposes a performance penalty, and consequently the database doesn’t
automatically trace all sessions. Tracing is purely an optional process that you turn on for a limited
duration to capture metrics about the performance of critical SQL statements. You need to look at
four initialization parameters to set up Oracle correctly for SQL tracing, and you have to restart
the database after checking that the following parameters are correctly configured. Three of these
parameters are dynamic session parameters, and you can change them at the session level.

STATISTICS_LEVEL

The STATISTICS_LEVEL parameter can take three values. The value of this parameter has a bearing
on the TIMED_STATISTICS parameter. You can see this dependency clearly in the following summary:

• If the STATISTICS_LEVEL parameter is set to TYPICAL or ALL, timed statistics are collected auto-
matically for the database.

• If STATISTICS_LEVEL is set to BASIC, then TIMED_STATISTICS must be set to TRUE for statistics
collection.

• Even if STATISTICS_LEVEL is set to TYPICAL or ALL, you can keep the database from tracing by
using the ALTER SESSION statement to set TIMED_STATISTICS to FALSE.

TIMED_STATISTICS

The TIMED_STATISTICS parameter is FALSE by default, if the STATISTICS_LEVEL parameter is set to
BASIC. In a case like this, to collect performance statistics such as CPU and execution time, set the
value of the TIMED_STATISTICS parameter to TRUE in the init.ora file or SPFILE, or use the ALTER
SYSTEM SET TIMED_STATISTICS=TRUE statement to turn timed statistics on instance-wide. You can
also do this at the session level by using the ALTER SESSION statement as follows:

SQL> ALTER SESSION SET timed_statistics = true;
Session altered.

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION984

4517CH21.qxd 8/19/05 11:14 AM Page 984

USER_DUMP_DEST

USER_DUMP_DEST is the directory on your server where your SQL Trace files will be sent. By default
you use the $ORACLE_HOME/admin/database_name/udump directory as your directory for
dumping SQL trace files. If you want non-DBAs to be able to read this file, make sure the directory
permissions authorize reading by others. Alternatively, you can set the parameter TRACE_FILES_
PUBLIC=TRUE to let others read the trace files on UNIX systems. Make sure the destination points to
a directory that has plenty of free space to accommodate large trace files. USER_DUMP_DEST is a
dynamic parameter, so you can also change it using the ALTER SYSTEM command, as follows:

SQL> ALTER SYSTEM SET user_dump_dest='c:\oraclent\oradata';
System altered.
SQL>

MAX_DUMP_FILE_SIZE

Some traces could result in large trace files in a big hurry, so make sure your MAX_DUMP_FILE_SIZE
initialization parameter is set to a high number. The default size of this parameter may be too small
for some traces. If the trace fills the dump file, it won’t terminate, but the information in the file will
be truncated.

Enabling SQL Trace
To use SQL Trace and TKPROF, first you need to enable the Trace facility. You can do this at the
instance level by using the ALTER SESSION statement or the DBMS_SESSION package. You can trace
the entire instance by either including the line SQL_TRACE=TRUE in your init.ora file or SPFILE or by
using the ALTER SYSTEM command to set SQL_TRACE to TRUE. Tracing the entire instance isn’t recom-
mended, because it generates a huge amount of tracing information, most of which is useless for
your purpose. The statement that follows shows how to turn tracing on from your session using the
ALTER SESSION statement:

SQL> ALTER SESSION SET sql_trace=true;
Session altered.
SQL>

The following example shows how you set SQL_TRACE to TRUE using the DBMS_SESSION package:

SQL> EXECUTE sys.dbms_session.set_sql_trace(true);
PL/SQL procedure successfully completed.
SQL>

Often, users request the DBA to help them trace their SQL statements. You can use the DBMS_
SYSTEM.SET_SQL_TRACE_IN_SESSION procedure to set tracing on in another user’s session. Once the
ALTER SESSION set sql_trace statement or the DBMS_SESSION package are used to start tracing
in a user’s session, all statements are traced until you use the ALTER SESSION statement or the
DBMS_SESSION package to turn tracing off (replace true with false in either of the preceding
statements). Alternatively, when the user logs off, tracing is automatically stopped for that user.

Interpreting the Trace Files with TKPROF

Once you set tracing on for a session, any SQL statement that is issued during that session is
traced and the output stored in the directory (udump) specified by the user_dump_dest parameter
in your init.ora file or SPFILE. The filename has the format db_name_ora_nnnnn.trc, where nnnnn
is usually a four- or five-digit number. For example, the sample trace file in our example is named
pasx_ora_16340.trc. If you go to the user dump destination directory immediately after a trace ses-
sion is completed, the most recent file is usually the file output by the sql_trace command.

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION 985

4517CH21.qxd 8/19/05 11:14 AM Page 985

You can also differentiate the trace file output by a SQL Trace execution from the other files
in the dump directory, by its size—these trace files are much larger in general than the other files
output to the directory. These trace files are detailed and complex. Fortunately, the easy-to-run
TKPROF utility formats the output into a readable format. The TKPROF utility uses the trace file
as the input, along with several parameters you can specify.

Table 21-1 shows the main TKPROF parameters you can choose to produce the format that
suits you. If you type tkprof at the command prompt, you’ll see a complete listing of all the
parameters that you can specify when you invoke TKPROF.

Table 21-1. TKPROF Command-Line Arguments

Parameter Description

FILENAME The input trace file produced by SQL Trace

EXPLAIN The EXPLAIN PLAN for the SQL statements

RECORD Creates a SQL script with all the nonrecursive SQL statements

WAITS Records a summary of wait events

SORT Presents sort data based on one or more items, such as PRSCPU (CPU time parsing),
PRSELA (elapsed time parsing), and so on

TABLE The name of the tables into which the TKPROF utility temporarily puts the
execution plans

SYS Enables and disables listing of SQL statements issued by SYS

PRINT Lists only a specified number of SQL statements instead of all statements

INSERT Creates a script that stores the trace information in the database

Let’s trace a session by a user who is executing two SELECT statements, one using tables with
indexes and the other using tables without any indexes. In this example, you’re using only a few
parameters, choosing to run TKPROF with default sort options. The first parameter is the name of
the output file and the second is the name for the TKPROF-formatted output. You’re specifying that
you don’t want any analysis of statements issued by the user SYS. You’re also specifying that the
EXPLAIN PLAN for the statement be shown in addition to the other statistics.

■Tip By just typing tkprof at the operating system prompt, you can get a quick help guide to the usage of the
TKPROF utility.

$ tkprof finance_ora_16340.trc test.txt sys=no explain=y

TKPROF: Release 10.1.0.2.0 - Production on Sat Apr 30 14:32:42 2005

Copyright (c) 1982, 2004, Oracle. All rights reserved.
$

The test.txt file contains the output of the SQL trace, now nicely formatted for you by the
TKPROF utility.

Examining the Formatted Output File

Listing 21-11 shows the top portion of the test.txt file, which explains the key terms used by the utility.

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION986

4517CH21.qxd 8/19/05 11:14 AM Page 986

Listing 21-11. The Top Part of the TKPROF-Formatted Trace File

TKPROF: Release 10.1.0.2.0 - Production on Sat Apr 30 14:42:45 2005
Copyright (c) 1982, 2004, Oracle. All rights reserved.
Trace file: finance_ora_16340.trc
Sort options: default
**
count = number of times OCI procedure was executed
cpu = cpu time in seconds executing
elapsed = elapsed time in seconds executing
disk = number of physical reads of buffers from disk
query = number of buffers gotten for consistent read
current = number of buffers gotten in current mode (usually for update)
rows = number of rows processed by the fetch or execute call

Each TKPROF report shows the following information for each SQL statement issued during
the time the user’s session was traced:

• The SQL statement

• Counts of parse, execute, and fetch (for SELECT statements) calls

• Count of rows processed

• CPU seconds used

• I/O used

• Library cache misses

• Optional execution plan

• Row-source operation listing

• A report summary analyzing how many similar and distinct statements were found in the
trace file

Let’s analyze the formatted output created by TKPROF. Listing 21-12 shows the parts of the
TKPROF output showing the parse, execute, and fetch counts.

Listing 21-12. The Parse, Execute, and Fetch Counts

SQL> select e.last_name,e.first_name,d.department_name
from teste e,testd d
where e.department_id=d.department_id;

call count cpu elapsed disk query current rows
------- ------ ------ ---------- -- ---------- ---------- --------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 17322 1.82 1.85 3 136 5 259806
------- ------ -------- ---------- ---------- ---------- ----------
total 17324 1.82 1.85 3 136 5 259806

Misses in library cache during parse: 0
Optimizer goal: CHOOSE
Parsing user id: 53

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION 987

4517CH21.qxd 8/19/05 11:14 AM Page 987

In Listing 21-12

• CPU stands for total CPU time in seconds.

• Elapsed is the total time elapsed in seconds.

• Disk denotes total physical reads.

• Query is the number of consistent buffer gets.

• Current is the number of database block gets.

• Rows is the total number of rows processed for each type of call.

From Listing 21-12, you can draw the following conclusions:

• The SQL statement shown previously was parsed once, so a parsed version wasn’t available
in the shared pool before execution. The Parse column shows that this operation took less
than 0.01 seconds. Note that the lack of disk I/Os and buffer gets indicates that there were no
data dictionary cache misses during the parse operation. If the Parse column showed a large
number for the same statement, it would be an indicator that bind variables weren’t being
used.

• The statement was executed once and execution took less than 0.01 seconds. Again, there
were no disk I/Os or buffer gets during the execution phase.

• It took me a lot longer than 0.01 seconds to get the results of the SELECT statement back. The
Fetch column answers this question of why that should be: it shows that the operation was
performed 17,324 times and took up 1.82 seconds of CPU time.

• The Fetch operation was performed 17,324 times and fetched 259,806 rows. Because the
number of rows is far greater than the number of fetches, you can deduce that Oracle used
array fetch operations.

• There were three physical reads during the fetch operation. If there’s a large difference
between CPU time and elapsed time, it can be attributed to time taken up by disk reads. In
this case, the physical I/O has a value of only 3, and it matches the insignificant gap between
CPU time and elapsed time. The fetch required 136 buffer gets in the consistent mode and
only 5 DB block gets.

• The CBO was being used, because the Optimizer goal is shown as CHOOSE.

The following output shows the execution plan that was explicitly requested when TKPROF
was invoked. Note that instead of the cost estimates that you get when you use the EXPLAIN PLAN
tool, you get the number of rows output by each step of the execution.

Rows Row Source Operation
------- -----------------------
259806 MERGE JOIN
1161 SORT JOIN
1161 TABLE ACCESS FULL TESTD

259806 SORT JOIN

Finally, TKPROF summarizes the report, stating how many SQL statements were traced. Here’s
the summary portion of the TKPROF-formatted output:

Trace file: ORA02344.TRC
Trace file compatibility: 9.00.01
Sort options: default

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION988

4517CH21.qxd 8/19/05 11:14 AM Page 988

2 sessions in trace file.
18 user SQL statements in trace file.
104 internal SQL statements in trace file.
72 SQL statements in trace file.
33 unique SQL statements in trace file.

18182 lines in trace file.

The TKPROF output makes it easy to identify inefficient SQL statements. TKPROF can order the
SQL statements by elapsed time (time taken for execution), which tells you which of the SQL state-
ments you should focus on for optimization.

The SQL Trace utility is a powerful tool in tuning SQL, because it goes far beyond the informa-
tion produced by using EXPLAIN PLAN. It provides you with hard information about the number of
the various types of calls made to Oracle during statement execution, and how the resource use was
allocated to the various stages of execution.

■Note It’s easy to trace individual user sessions using the OEM Database Control. I explain how you can trace
and view user sessions using the Database Control in the section “Using the Database Control for End-to-End
Tracing.” You can trace a session as well as read the output file directly from the Database Control.

End-to-End Tracing
In multitier environments, the middle tier passes a client’s request through several database ses-
sions. It’s hard to keep track of the client across all these database sessions. Similarly, when you use
shared server architecture, it’s hard to identify the user session that you’re tracing at any given time.
Because multiple sessions may use the same shared server connection, when you trace the connec-
tion, you can’t be sure who the user is exactly at any given time—the active sessions using the
shared server connection keep changing throughout.

In the cases I described earlier, tracing a single session becomes impossible. Oracle Database
10g introduces end-to-end tracing, with which you can uniquely identify and track the same client
through multiple sessions. The new attribute CLIENT_IDENTIFIER uniquely identifies a client and
remains the same through all the tiers. You can use the DBMS_MONITOR package to perform end-
to-end tracing. You can also use the OEM Database Control to set up end-to-end tracing easily. Let’s
look at both approaches in the following sections.

Using the DBMS_MONITOR Package
You use the Oracle PL/SQL package DBMS_MONITOR to set up end-to-end tracing. You can trace a
user session through multiple tiers and generate trace files using the following three attributes:

• Client identifier

• Service name

• Combination of service name, module name, and action name

You can specify a combination of service name, module name, and action name. You can also
specify service name alone, or a combination of service name and module name. However, you
can’t specify an action name alone. Your application must use the DBMS_APPLICATION_INFO
package to set module and action names. The service name is determined by the connect string
you use to connect to a service. If a user’s session isn’t associated with a service specifically, the
sys$users service handles it.

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION 989

4517CH21.qxd 8/19/05 11:14 AM Page 989

Let’s use two procedures belonging to the DBMS_MONITOR package. The first one, SERV_MOD_
ACT_TRACE_ENABLE, sets the service name, module name, and action name attributes. The second,
CLIENT_ID_TRACE_ENABLE, sets the client ID attribute. Here’s an example:

SQL> EXECUTE dbms_monitor.serv_mod_act_trace_enable
(service_name=>'myservice', module_name=>'batch_job');

PL/SQL procedure successfully completed.
SQL> EXECUTE dbms_monitor.client_id_trace_enable

(client_id=>'salapati');
PL/SQL procedure successfully completed.
SQL>

You can use the SET_IDENTIFIER procedure of the DBMS_SESSION package to get a client’s
session ID. Here’s an example showing how you can use a logon trigger and the SET_IDENTIFIER
procedure together to capture the user’s session ID immediately upon the user’s logging into the
system:

SQL> CREATE OR REPLACE TRIGGER logon_trigger
AFTER LOGON
ON DATABASE
DECLARE
user_id VARCHAR2(64);
BEGIN
SELECT ora_login_user ||':'||SYS_CONTEXT('USERENV','OS_USER')
INTO user_id
FROM dual;
dbms_session.set_identifier(uid);
END;

Using the value for the client_id attribute, you can get the values for the SID and SERIAL#
columns in the V$SESSION view for any user and set up tracing for that client_id. Here’s an
example:

SQL> EXECUTE dbms_monitor.session_trace_enable
(session_id=>111, serial_num=>23, waits=>true, binds=>false);

You can now ask the user to run the problem SQL and collect the trace files so you can use the
TKPROF utility to analyze them. In a shared server environment especially, there may be multiple
trace files. By using the trcsess command-line tool, you can consolidate information from multiple
trace files into one single file. Here’s an example (first navigate to your user dump or udump
directory):

$ trcsess output="salapati.trc" service="myservice
"module="batch job" action="batch insert"

You can then run your usual TKPROF command against the consolidated trace file, as shown
here:

$ tkprof salapati.trc output=salapati_report SORT=(EXEELA, PRSELA, FCHELA)

■Note In this chapter, you saw how to enable SQL tracing using the SQL Trace facility, the DBMS_SESSION
package, and the DBMS_MONITOR package. You should use one of the two packages, rather than SQL Trace,
to trace SQL statements. You can use any one of these three methods to set up a session-level or instance-wide
trace. Be careful about tracing the entire instance, because it’ll lead to excessive load on your instance, as well
as produce too many voluminous trace files.

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION990

4517CH21.qxd 8/19/05 11:14 AM Page 990

Using the Database Control for End-to-End Tracing
The best approach, as well as the recommended one, to end-to-end tracing is to use the OEM
Database Control. This way, you don’t have to bother with manual runs of the DBMS_MONITOR
package. Here are the steps:

1. From the Database Control home page, click the Performance link.

2. In the Performance page, click the Top Consumers link under the Additional Management
Links section.

3. In the Top Consumers page, you’ll see the tabs for Top Services, Top Modules, Top Actions,
Top Clients, and Top Sessions, as shown in Figure 21-2.

4. Click the Top Clients tab.

5. To enable aggregation for a client, select the client and click Enable Aggregation.

Figure 21-2. Using the Database Control for tracing

If you wish, you can use the Database Control to trace a normal SQL session instead of using
the set_trace command and the TKPROF utility. To trace a user command, in step 4 of the preced-
ing sequence, click the Top Sessions tab. You then click the Enable SQL Trace button. You can then
use the Disable SQL Trace button to stop the session tracing and view the output by clicking the
View SQL Trace File button.

■Note You can view all outstanding trace information in your instance by examining the DBA_ENABLED_TRACES
view, or use a trace report generated through the Database Control.

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION 991

4517CH21.qxd 8/19/05 11:14 AM Page 991

Using the V$SQL View to Find Inefficient SQL
The V$SQL view is an invaluable tool in tracking down wasteful SQL code in your application. The
V$SQL view gathers information from the shared pool area on every statement’s disk reads and
memory reads, in addition to other important information. The view holds all the SQL statements
executed since instance startup, but there’s no guarantee that it will hold every statement until you
shut down the instance. For space reasons, the older statements are aged out of the V$SQL view. It’s
a good idea for you to grant your developers select rights on this view directly if you haven’t already
granted them the “select any catalog” role. You can use the V$SQL view to perform ad hoc queries
on disk and CPU usage, but remember that the AWR report includes summaries of these kinds of
information.

The V$SQL view includes, among other things, the following columns, which help in assessing
how many resources a SQL statement consumes:

• Rows_processed gives you the total number of rows processed by the statement.

• Sql_text is the text of the SQL statement (first 1,000 characters).

• Buffer_gets gives you the total number of logical reads (indicates high CPU use).

• Disk_reads tells you the total number of disk reads (indicates high I/O).

• Sorts gives the number of sorts for the statement (indicates high sort ratios).

• Cpu_time is the total parse and execution time.

• Elapsed_time is the elapsed time for parsing and execution.

• Parse_calls is the combined soft and hard parse calls for the statement.

• Executions is the number of times a statement was executed.

• Loads is the number of times the statement was reloaded into the shared pool after being
flushed out.

• Sharable_memory is the total shared memory used by the cursor.

• Persistent_memory is the total persistent memory used by the cursor.

• Runtime_memory is the total runtime memory used by the cursor.

■Note In previous versions, DBAs used the V$SQLAREA view to gather information shown earlier. However, the
V$SQL view supplants the V$SQLAREA view by providing all information in that view, plus other important tuning-
related information as well.

Finding SQL That Uses Most of Your Resources
You can query the V$SQL view to find high–resource-using SQL. You can determine resource-
intensive SQL on the basis of the number of logical reads or buffer gets, or high disk reads, high
parse calls, large number of executions, or combinations of these factors. It’s obvious that a high
number of disk reads is inefficient because a high amount of physical I/O slows query performance.
However, a high number of memory reads (buffer gets) is also expensive because they consume
CPU resources. You normally have high buffer gets because you’re using the wrong index, the wrong
driving table in a join, or a similar SQL-related error. One of the primary goals of SQL tuning should
be to lower the number of unnecessary logical reads. If buffer gets and disk reads are at identical
levels, it could indicate a missing index. The reasoning is this: if you don’t have an index, Oracle is
forced to do a full table scan. However, full table scans can’t be kept in the SGA for too long because

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION992

4517CH21.qxd 8/19/05 11:14 AM Page 992

they might force a lot of other data to be cleared out. Consequently, the full table won’t get to stay in
the SGA for too long unless it’s a small table.

The following simple query shows how the V$SQL view can pinpoint problem SQL statements;
both high disk reads and high logical reads are used as the criteria for flagging down poor SQL state-
ments captured by the V$SQL view. The SQL_TEXT column shows the exact SQL statement that’s
responsible for the high disk reads and logical reads:

SQL> SELECT sql_text, executions, buffer_gets, disk_reads,
2 FROM V$SQL
3 WHERE buffer_gets > 100000
4 OR disk_reads > 100000
5 ORDER BY buffer_gets + 100*disk_reads DESC;

SQL_TEXT EXECUTIONS BUFFER_GETS DISK_READS
----------- ----------- ----------- ---------- --------------
BEGIN dbms_job.run(1009133); 726216 1615283234 125828
BEGIN label_sc_pkg.launch_sc; 34665 1211625422 3680242
SELECT COUNT(*) AV_YOUTHS... 70564 152737737 7186125
SELECT UC.CHART_ID... 37849 96590083 5547319
SELECT MAX(REC_NUM) FROM... 5163242 33272842 6034715
SQL>

The following query is a slight variation on the preceding query. It seeks to find out the number
of rows processed for each statement:

SQL> SELECT sql_text, rows_processed,
2 buffer_gets, disk_reads, parse_calls
3 FROM V$SQL
4 WHERE buffer_gets > 100000
5 OR disk_reads > 100000
6*ORDER BY buffer_gets + 100*disk_reads DESC;

SQL_TEXT ROWS_PROCESSED BUFFER_GETS DISK_READS PARSE_CALLS
-------------------- --
BEGIN dbms_job.run(1009133); 9659 1615322749 125830 2078
BEGIN label_sc_pkg.launch_sc; 3928 1214405479 3680515 4
SELECT COUNT(*) AV_YOUTHS... 70660 152737737 7186125 3863
SELECT UC.CHART_ID... 37848 96590083 5547319 5476
SELECT MAX(REC_NUM) FROM... 5163236 33272842 6034715 606
SQL>

The V$SQL view helps you find out which of your queries have high logical I/O (LIO) and high
physical I/O (PIO). By also providing the number of rows processed by each statement, it tells you if
a statement is efficient or not. By providing the disk reads and the number of executions per state-
ment, the view helps you determine if the number of disk reads per execution is reasonable. If CPU
usage is your concern, look at the statements that have a high number of buffer gets. If I/O is your
primary concern, focus on the statements that perform the most disk reads. Once you settle on the
statement you want to investigate further, examine the complete SQL statement and see if you (or
the developers) can improve it.

One of the best ways to find poorly performing SQL queries is by using the Oracle wait interface,
which I explain in detail in Chapter 22.

Here’s a query that uses the V$SQL view to sort the top five queries that are taking the most
CPU time and the most elapsed time to complete:

SQL> SELECT sql_text, executions,
2 ROUND(elapsed_time/1000000, 2) elapsed_seconds,
3 ROUND(cpu_time/1000000, 2) cpu_secs from
4 (select * from v$sql order by elapsed_time desc)
5* WHERE rownum <6;

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION 993

4517CH21.qxd 8/19/05 11:14 AM Page 993

SQL_TEXT EXECUTIONS ELAPSED_SECONDS CPU_SECS
--
DELETE MS_DASH_TRANLOGS... 2283 44.57 43.04
UPDATE PERSONS SET... 14132 19.74 20.52
SELECT /*+ INDEX(ud)... 9132 9.95 9
SELECT PROG_ID FROM UNITS ... 14132 5.26 5.81
SELECT NVL(SUM(RECHART),0)... 2284 4.13 4.43
SQL>

Using Other Dictionary Views for SQL Tuning
The V$SQL_PLAN and V$SQL_PLAN_STATISTICS views are highly useful for tracking the efficiency
of execution plans. You should be wary of quick changes in code to fix even the worst-performing
query in the system. Let’s say you create an extra index on a table or change the order of columns
in a composite key to fix this problem query. How do you know these aren’t going to impact other
queries in the application adversely? This happens more often than you think, and therefore you
must do your due diligence to rule out unintended consequences of your fixes.

The SQL Tuning Advisor
If you have identified bad SQL, Oracle Database 10g offers the new SQL Tuning Advisor. It has the
following features:

• Advice on improving the execution plan

• Reasons for the SQL improvement recommendations

• Benefits you can expect by following the Advisor’s advice

• Details of the commands to tune the misbehaving SQL statements

Using the SQL Tuning Advisor on SQL Statements
It is usual for the Advisor to take SQL statements from places such as these:

• New SQL statements. When working with a development database, this may be your best
source of SQL statements.

• High-load SQL statements.

• SQL statements from the AWR.

• SQL statements from the database cursor cache.

The Advisor can tune sets of SQL statements called SQL Tuning Sets (STSs). An STS is a set of
SQL statements combined with execution information, which includes the average elapsed time.
An STS has the advantage of capturing the information about a database’s workload as well as
allowing you to tune several large SQL statements at once.

How the SQL Tuning Advisor Works
As mentioned previously, the Optimizer will try to find the optimal execution plan for each state-
ment you provide. However, this process happens under production conditions, so the Optimizer
can only devote a short amount of time to working out a solution. The Optimizer uses heuristics to
generate an estimate of the best solution. This is called the normal mode of the Optimizer.

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION994

4517CH21.qxd 8/19/05 11:14 AM Page 994

You can also run the Optimizer in tuning mode, which means that the Optimizer carries out in-
depth analysis to come up with ways to optimize execution plans. While in this mode, the Optimizer
can take several minutes and produces recommendations instead of the best SQL execution plan.
You, in turn, use these recommendations to optimize the SQL statements’ execution plans. You get
the added advantage of advice that details the rationale behind the recommendations and what you
will gain from implementing them.

The Oracle Optimizer running in tuning mode is called the Automatic Tuning Optimizer (ATO).
The ATO does the following tasks:

• Statistics analysis

• SQL profiling

• Access path analysis

• SQL structure analysis

I describe each of these tasks in the following sections, along with the types of recommenda-
tions that the SQL Tuning Advisor makes.

Statistics Analysis
The ATO makes sure that there are representative, up-to-date statistics for all the objects in the SQL
statement, which you need for efficient execution plans. If the ATO finds any statistics that are
missing or stale, it suggests that you collect new statistics for the objects in question. During this
process, the ATO collects other information that it can use to fill in any missing statistics. It can also
correct stale statistics.

SQL Profiling
At this stage the ATO tries to verify the validity of its estimates of factors such as column selectivity
and cardinality of database objects. It can use three methods to verify its estimates:

• Dynamic data sampling: The ATO can use a data sample to check its estimates. The ATO can
apply correction factors if the data-sampling process shows its estimates to be significantly
wrong.

• Partial execution: The ATO can carry out the partial execution of a SQL statement. This
process allows it to check whether its estimates are close to what really happens. It does not
check whether its estimates are correct, but rather it checks whether a plan derived from
those statistics is the best possible plan.

• Past execution history statistics: The ATO can use the SQL statement’s execution history to
help with its work.

If there’s enough information from statistics analysis or SQL profiling, the ATO suggests you
create a SQL profile, which is supplementary information about a SQL statement.

If you accept this advice and are running the Optimizer in tuning mode, Oracle will store the
SQL profile in the data dictionary. Once you have done this, the Optimizer uses it to produce opti-
mal execution plans, even when it is running in normal mode.

■Tip Remember that a SQL profile is not the same thing as a stored execution plan.

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION 995

4517CH21.qxd 8/19/05 11:14 AM Page 995

The SQL profile will continue to apply if you make small changes to your database and allow
your objects to grow normally. One of the big advantages of SQL profiles is the ability to tune pack-
aged applications. These are hard to tune because you can’t easily access and modify the code.
Because SQL profiles are saved in the data dictionary, you can use them to tune packaged
applications.

Analyzing Access Paths
The ATO analyzes how using an improved access method, such as working with an index, will affect
queries. These are important considerations, because adding an index can substantially increase
the speed of a query. However, adding new indexes can adversely affect other SQL statements; the
SQL Advisor knows this and makes its recommendations as follows:

• If an index is effective, it will advise you to create it.

• It can advise you to run the SQL Access Advisor (see Chapter 5 for details) to analyze the
wisdom of adding the new index.

SQL Structure Analysis
The ATO can make recommendations to modify the structure (both the syntax and semantics) of
poorly performing SQL statements. The ATO considers issues such as the following:

• Design mistakes; for example, performing full table scans because you didn’t create indexes.

• Using inefficient SQL; for example, the NOT IN construct, which is known to be much slower
than the NOT EXISTS construct in general.

■Note The ATO only identifies poorly written SQL, but it won’t rewrite it for you. You will know your application
better than the ATO, so Oracle only provides advice, which you can implement or not.

Recommendations
Here are some recommendations that the SQL Tuning Advisor will give you:

• Creating indexes will speed up access paths

• Using SQL profiles will allow you to generate a better execution plan

• Gathering Optimizer statistics for objects that do not have any, or renewing stale statistics,
will be of benefit

• Rewriting SQL as advised will improve its performance

The SQL Tuning Advisor in Practice
You can use the SQL Tuning Advisor through packages or through the web interface of the OEM
Database Control.

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION996

4517CH21.qxd 8/19/05 11:14 AM Page 996

Using the DBMS_SQLTUNE Package to Run the SQL Tuning Advisor
The main SQL package for tuning SQL statements is DBMS_SQLTUNE. The first example will be
creating and managing tasks that tune SQL statements.

■Note You must have the ADVISOR privilege to use the DBMS_SQLTUNE package. Ensure that you do before
running any of the following examples.

Performing Automatic SQL Tuning

Here’s how to tune SQL statements using the DBMS_SQLTUNE package:

1. Create a task: The CREATE_TUNING_TASK procedure creates a task to tune a single statement or
several statements (a SQL tuning set or STS). You can also use a SQL statement (using the
SQL identifier) from the AWR or from the cursor cache. In the following example, I show
how to create a task using a single SQL statement as input. First, I pass the SQL statement as
a CLOB argument, as shown here:

DECLARE
my_task_name VARCHAR2(30);
my_sqltext CLOB;
BEGIN
my_sqltext := 'SELECT /*+ ORDERED */ * '

'FROM employees e, locations l, departments d '
'WHERE e.department_id = d.department_id AND '
'l.location_id = d.location_id AND '

'e.employee_id < :bnd';

Next, I create the following tuning task:

my_task_name := DBMS_SQLTUNE.CREATE_TUNING_TASK(
sql_text => my_sqltext,
bind_list => sql_binds(anydata.ConvertNumber(90)),
user_name => 'HR',
scope => 'COMPREHENSIVE',
time_limit => 60,
task_name => 'my_sql_tuning_task',
description => 'Task to tune a query on a specified employee');

END;
/

In the preceding task, sql_text refers to the single SQL statement that I’m tuning. The
bind_list shows that 90 is the value of the bind variable bnd. The tuning task’s scope is com-
prehensive, meaning that it analyzes the SQL Profile, and the task_limit parameter sets a
limit of 60 seconds on the total time for analysis.

2. Execute the task: To execute the task, run the EXECUTE_TUNING_TASK procedure:

BEGIN
DBMS_SQLTUNE.EXECUTE_TUNING_TASK(task_name => 'my_sql_tuning_task');

END;
/

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION 997

4517CH21.qxd 8/19/05 11:14 AM Page 997

3. Get the tuning report: You can view the tuning process with the REPORT_TUNING_TASK
procedure:

SQL> SET LONG 1000
SQL> SET LONGCHUNKSIZE 1000
SQL> SET LINESIZE 100
SQL> SELECT DBMS_SQLTUNE.REPORT_TUNING_TASK('my_sql_tuning_task')

FROM DUAL;

The report consists of findings and recommendations. The Tuning Advisor provides the
rationale and the expected benefits for each recommendation. It also provides you with
the SQL to implement the recommendations.

You can use the following views to manage your automatic SQL tuning efforts:

• DBA_ADVISOR_TASKS

• DBA_ADVISOR_FINDINGS

• DBA_ADVISOR_RECOMMENDATIONS

• DBA_ADVISOR_RATIONALE

• DBA_SQLTUNE_STATISTICS

• DBA_SQLTUNE_PLANS

Managing SQL Profiles

Once the ATO has made its recommendations, you can accept its findings and run the DBMS_
SQLTUNE.ACCEPT_SQL_PROFILE procedure to create an appropriate SQL profile, though you must
ensure you have the CREATE_ANY_PROFILE privilege first.

The preceding may seem to say that a SQL profile is an inevitable consequence of an ATO
process, but it will only recommend that you create a SQL profile if it has built one as a result of its
scan. However, it will only do this if it collected auxiliary information while analyzing statistics and
profiling SQL (as detailed previously). Oracle will apply the new profile to the SQL statement when
you execute it.

Managing SQL Tuning Categories

You may find that you have a number of different SQL profiles for a single SQL statement. Oracle
has to manage them in some way, so it assigns each one to a SQL tuning category. The same process
occurs when a user logs in, meaning that Oracle will assign a user to a tuning category. The category
is selected according to the SQLTUNE_CATEGORY initialization parameter.

If you do not change it, SQLTUNE_CATEGORY takes the value DEFAULT. This means that any SQL
profiles belonging to the default category apply to everyone who logs in. You can alter the SQL tun-
ing category for every user with the ALTER SYSTEM command. You can also alter a session’s tuning
category with the ALTER SESSION command. For example, take the PROD and DEV categories. To
change the SQL tuning category for every user, do the following:

SQL> ALTER SYSTEM SET SQLTUNE_CATEGORY = PROD;

If you wanted to change a session’s tuning category, you could do this:

SQL> ALTER SESSION SET SQLTUNE_CATEGORY = DEV;

■Note You may also use the DBMS_SQLTUNE.ALTER_SQL_PROFILE procedure to alter the SQL tuning category.

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION998

4517CH21.qxd 8/19/05 11:14 AM Page 998

Using the OEM to Run the SQL Tuning Advisor
To use the OEM to run the Advisor, click Related Links ‰ Advisor Central ‰ SQL Tuning Advisor.
This is the SQL Tuning Advisor page. Here you can specify the SQL statements that the SQL Advisor
will analyze, which can be one of two kinds:

• Top SQL: These SQL statements could be top SQL from the cursor cache or saved high-load
SQL statements that have come from the AWR.

• SQL Tuning Sets: You can create an STS from any set of SQL statements.

Choosing one of the four links on the SQL Tuning Advisor page will take you to your selected
data source. You can now launch the SQL Tuning Advisor if you wish.

Using Other GUI Tools
The EXPLAIN PLAN and SQL Trace utilities aren’t the only tools you have available to tune SQL
statements. Several GUI-based tools provide the same information much more quickly. Just make
sure that statistics collection is turned on in the initialization file before you use these tools. One of
the well-known third-party tools is the free version of TOAD software, which is marketed by Quest
Software (http://www.quest.com). From this tool you get not only the execution plan, but also
memory usage, parse calls, I/O usage, and a lot of other useful information, which will help you
tune your queries. The use of GUI tools helps you avoid most of the drudgery involved in producing
and reading EXPLAIN PLANs. Note that whether you use GUI tools or manual methods, the
dynamic performance views that you use are the same. How you access them and use the data
makes the difference in the kind of tool you use.

A Simple Approach to Tuning SQL Statements
Whether you use manual methods such as EXPLAIN PLAN, SQL Trace, and TKPROF, or more
sophisticated methods such as the SQL Tuning Advisor, you need to understand that optimizing
SQL statements can improve performance significantly. In the following sections, I summarize a
simple methodology you can follow to tune your SQL statements.

Identify Problem Statements
This chapter has shown you many ways you can identify your slow-running or most resource-
intensive SQL statements. For instance, you can use dynamic performance views such as V$SQL to
find out your worst SQL statements, as shown earlier. Statements with high buffer gets are the CPU-
intensive statements and those with high disk reads are the high I/O statements. Alternatively, you
can rely on the AWR report and the ADDM analysis to figure out which of your SQL statements need
to be written more efficiently. Obviously, you want to start (and maybe end) with tuning these prob-
lem statements.

Locate the Source of the Inefficiency
The next step is to locate the inefficiency in the SQL statements. To do this, you need to collect
information on how the Optimizer is executing the statement. That is, you must first walk through
the EXPLAIN PLAN for the statement. This step helps you find out if there are any obvious prob-
lems, such as full table scans due to missing indexes.

In addition to analyzing the EXPLAIN PLAN output or using the V$SQL_PLAN view, collect the
performance information, if you can, by using the SQL Trace and TKPROF utilities.

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION 999

4517CH21.qxd 8/19/05 11:14 AM Page 999

Review each EXPLAIN PLAN carefully to see that the access and join methods and the join
order are optimal. Specifically, check the plans with the following questions in mind:

• Are there any inefficient full table scans?

• Are there any unselective range scans?

• Are the indexes appropriate for your queries?

• Are the indexes selective enough?

• If there are indexes, are all of them being used?

• Are there any later filter operations?

• Does the driving table in the join have the best filter?

• Are you using the right join method and the right join order?

• Do your SQL statements follow basic guidelines for writing good SQL statements (see the
section “Writing Efficient SQL” in this chapter)?

In most cases, a structured analysis of the query will reveal the source of the inefficiency.

Tune the Statement
Use the Database Control’s SQL Access Advisor to get index and materialized view recommenda-
tions. Review the access path for the tables in the statement and the join order. Consider the use of
hints to force the Optimizer to use a better execution plan. You can also use the SQL Tuning Advisor
to get recommendations for more efficient SQL statements.

Compare Performance
Once you generate alternative SQL, it’s time to go through the first three steps again. Use the
EXPLAIN PLAN facility and performance statistics to compare the new statement with the older
one. After you ensure that your new statements perform better, it’s time to replace the inefficient
SQL. Oracle Database 10g has a much wider array of automatic SQL tuning capabilities than ever
before. Once you get familiar with the various automatic tuning tools, such as the SQL Tuning
Advisor and the ADDM, you should be able to harness the database’s capabilities to tune your
recalcitrant SQL statements.

CHAPTER 21 ■ IMPROVING DATABASE PERFORMANCE: SQL QUERY OPTIMIZATION1000

4517CH21.qxd 8/19/05 11:14 AM Page 1000

Performance Tuning:
Tuning the Instance

In the previous chapter, you learned how to write efficient SQL to maximize an application’s per-
formance. The use of optimal SQL and efficient design of the layout of the database objects are
parts of a planned or proactive tuning effort. This chapter focuses on the efficient use of the
resources Oracle works with: memory, CPU, and storage disks.

The chapter discusses how to monitor and optimize memory allocation for the Oracle instance.
In this context, you’ll learn about the traditional database hit ratios, such as the buffer cache hit
ratios. However, focusing on the hit ratios isn’t necessarily the smartest way to maintain efficient
Oracle databases because you need to focus on the user’s response time. Investigating factors that
are causing processes to spend excessive time waiting for resources is a better approach to perform-
ance tuning. This chapter provides you with a solid introduction to Oracle wait events and tells you
how to interpret them and reduce the incidence of these wait events in your system.

A fairly common problem in many production systems is that of a database hang, when things
seem to come to a standstill for some reason. This chapter shows you what to do during such
events.

The chapter explains the key dynamic performance tables that you need to be familiar with
to understand instance performance issues. Although you’ve encountered the ADDM and AWR in
earlier chapters, this chapter reviews their role in instance tuning. You can also use the new Active
Session History (ASH) feature to understand recent session history. Analyzing ASH information
helps solve numerous performance issues in a running instance.

Although it’s nice to be able to design a system proactively for high performance, more often
than not, the DBA has to deal with reactive tuning when performance is unsatisfactory and a fix
needs to be found right away. The final part of this chapter deals with a simple methodology to fol-
low when your system performance deteriorates and you need to fine-tune the Oracle instance.

I begin this chapter with a short introduction to instance tuning and then turn to cover in
detail the tuning of crucial resources such as memory, disk, and CPU usage. Later on in the chapter,
I review the important Oracle wait events, which will help you get a handle on several kinds of data-
base performance issues.

An Introduction to Instance Tuning
Oracle doesn’t give anything but minimal and casual advice regarding the appropriate settings of
key resources, such as total memory allocation or the sizes of the components of memory. Oracle
has some general guidelines about the correct settings for several key initialization parameters that
have a bearing on performance. However, beyond specifying wide ranges for the parameters, the
company’s guidelines aren’t helpful to DBAs deciding on the optimal levels for these parameters.

1001

C H A P T E R 2 2

■ ■ ■

4517CH22.qxd 8/19/05 11:15 AM Page 1001

Oracle says this is because all these parameters are heavily application dependent. All of this
means that you as a DBA have to find out the optimal sizes of resource allocations and the ideal set-
tings of key initialization parameters through trial and error. As a DBA, you’re often called in to tune
the instance when users perceive slow response caused by a bottleneck somewhere in the system.
This bottleneck can be the result of either an excessive use of or insufficient provision of some
resource. In addition, database locks and latches may cause a slowdown. You have to remember,
though, that in most cases, the solution isn’t simply to increase the resource that seems to be getting
hit hard—that may be the symptom, not the cause of a problem. If you address the performance
slowdown by fixing the symptoms, the root causes will remain potential troublemakers.

Performance tuning an Oracle database instance involves tuning memory and I/O as well as
operating system resources such as CPU, the operating system kernel, and the operating system
memory allocation. When you receive calls from the help desk or other users of the system com-
plaining that the system is running slowly, you can only change what’s under your direct control—
mainly, the allocation of memory and its components and some dynamic initialization parameters
that have a bearing on instance performance. Depending on what the various indicators tell you,
you may adjust the shared pool and other components of memory to improve performance. You
can also change the operating system priority of some processes, or quickly add some disk drives
to your system.

One of the main reasons for a slow response time in a production system is due to user
processes waiting for a resource. Oracle provides several ways of monitoring waits, but you need
to understand their significance in your system. Long wait times aren’t the problem themselves;
they’re symptoms of deep-seated problems. The DBA should be able to connect different types of
waits with possible causes in the application or in the instance.

Although some manuals tell you that you should do performance tuning before application
tuning—before you proceed to tuning areas such as memory, I/O, and contention—real life isn’t so
orderly. Most of the time, you don’t have the opportunity to have the code revised, even if there are
indications that it isn’t optimal. Instead of being an orderly process, tuning databases is an iterative
process, where you may have to go back and forth between stages.

More often than not, DBAs are forced to do what they can to fix the performance problem
that’s besetting them at that moment. In this sense, most performance tuning is a reactive kind of
tuning. Nevertheless, DBAs should endeavor to understand the innards of wait issues and seek to
be proactive in their outlooks.

There are two big advantages to being in a proactive mode of tuning. First, you have fewer sud-
den performance problems that force hurried reactions. Second, as your understanding of your
system increases, so does your familiarity with the various indicators of poor performance and the
likely causes for them, so you can resolve problems that do occur much more quickly.

If you’re fortunate enough to be associated with an application during its design stages, you
can improve performance by performing several steps, including choosing automatic space man-
agement and setting correct storage options for your tables and indexes. Sizing the table and
indexes correctly doesn’t hurt, either. However, if you’re stuck with a database that has a poor
design, all is not lost. You can still tune the instance using techniques that I show later in this
chapter to improve performance.

When response time is slower than usual, or when throughput falls, you’ll notice that the
Oracle instance isn’t performing at its usual level. If response times are higher, obviously there’s a
problem somewhere in one of the critical resources Oracle uses. If you can rule out any network
slowdowns, that leaves you with memory (Oracle’s memory and the system’s memory), the I/O sys-
tem, and CPUs. One of these resources is usually the bottleneck that’s slowing down your system.

In the next few sections, you’ll learn how to tune key system resources such as memory, I/O,
and CPU to improve performance. You’ll also see how to measure performance, detect inefficient
waits in the system, and resolve various types of contention in an Oracle database. The next section
presents a discussion of how tuning Oracle’s memory can help improve database performance.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1002

4517CH22.qxd 8/19/05 11:15 AM Page 1002

PATCHES AND NEW VERSIONS OF SOFTWARE

Oracle Corp., like the other software vendors, releases periodic patches or patch sets, which are a set of fixes for
bugs discovered by either Oracle or its customers. When you get in touch with Oracle technical support, one of the
things the technical support representative will commonly ask you to do is make sure you have applied the latest
patch set to your Oracle software. Similarly, UNIX operating systems may have their own patch sets that you may
have to apply to fix certain bugs.

Each of Oracle’s patch sets could cover fixes for literally hundreds of bugs. My recommendation is to apply a
patch set as soon as it’s available. One of the primary reasons for this is to see if your bug is unique to your data-
base or if a general solution has already been found for the problem. When you ask Oracle technical support to
resolve a major problem caused by a bug, Oracle usually provides you with a workaround. Oracle recommends that
you upgrade your database to the latest versions and patch sets because some Oracle bugs may not have any
workarounds or fixes. Oracle will continue to support older versions of its server software throughout their support
life cycle, which is usually about two to three years after the next major release. Many organizations see no urgency
to move to newer versions, as Oracle continues to support the older versions after the release of the new versions.

The question regarding how quickly you should convert to a new version is somewhat tricky to answer. Tradi-
tionally, people have shied away from being early adopters of new Oracle software versions. Oracle, like most other
software companies, has a reputation for buggy initial releases of its major software versions. DBAs and managers
in general prefer to wait a while until a “stable version” comes out. Although the logic behind this approach is
understandable, you must also figure in the cost of not being able to use the many powerful features Oracle intro-
duces in each of its major releases.

Because nobody likes to jeopardize the performance of a production system, the ideal solution is to maintain
a test server where the new software is tested thoroughly before being moved into production as early as possible.
However, don’t wait forever to move to a new version—by the time some companies move to the new version, an
even newer Oracle version is already out!

Some of your good SQL statements may not be so good after you migrate to a new version, due to the way a
hint might behave in the new version, for example. That’s why it’s extremely important to test the whole system on
the new version before cutting over production systems. A smart strategy is to collect a set of performance statis-
tics that can serve as a baseline before you make any major changes in the system. These system changes may
include the following:

• Migrating or upgrading a database

• Applying a new database or operating system patch set

• Adding a new application to your database

• Substantially increasing the user population

Automatic Performance Tuning vs. Dynamic
Performance Views
Traditionally, Oracle DBAs relied heavily on the use of dynamic performance views (V$ views) to
gather performance statistics and diagnose instance performance problems. You have access to
all the traditional views in Oracle Database 10g. However, you now also have powerful automatic
performance tuning features that provide a faster and more painless way to approach instance per-
formance tuning. Most of these tools use the same V$ dynamic performance views that you use in
manual performance tuning. Although I provide several examples of manual performance tuning in
this chapter, I must emphasize the importance of understanding and using the powerful set of

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1003

4517CH22.qxd 8/19/05 11:15 AM Page 1003

automatic performance features that are already a part of your database. Here’s a brief summary of
the automatic performance tuning features:

• The AWR collects all the performance data necessary for tuning as well as diagnosing
instance problems.

• The ADDM automatically diagnoses database performance by analyzing the AWR data.

• The SQL Tuning Advisor provides SQL tuning recommendations.

• The database automatically runs the statistics collection job, thus keeping all statistics up
to date.

• The Segment Advisor runs automatically during the maintenance interval and makes recom-
mendations about which segments to shrink and which to reorganize (for example, due to
excessive row chaining).

• The SQL Access Advisor provides recommendations about the ideal indexes and material-
ized views to create.

• The Memory Advisor, MTTR Advisor, and the Undo Advisor help you tune memory, redo
logs, and undo segments, respectively.

In this chapter, I present the major dynamic performance views that you can use to diagnose
instance performance. Traditionally, Oracle DBAs relied heavily on scripts using these views to
monitor and tune instance performance. However, the best way to diagnose and tune Oracle per-
formance issues is through the OEM Database Control (or Grid Control). I thus show you a simple
approach to tuning using the OEM Database Control.

■Note The AWR and ADDM are Oracle products that need special licensing through the purchase of the
Diagnostic Pack. If you haven’t purchased this licensing, you aren’t supposed to use these features.

Tuning Oracle Memory
A well-known fact of system performance is that fetching data that’s stored in memory is a lot
faster than retrieving data from disk storage. Given this, Oracle tries to keep as much of the recently
accessed data as possible in its SGA. In addition to data, shared parsed SQL code and necessary
data dictionary information are cached in memory for quick access. You can easily adjust the mem-
ory allocation of Oracle, by simply changing a single initialization parameter—SGA_TARGET.

There’s a two-way relationship between memory configuration and the application’s use of that
memory. The correct memory allocation size depends on the nature of your application, the num-
ber of users, and the size of transactions. If there isn’t enough memory, the application will have to
perform time-consuming disk I/Os. However, the application itself might be using memory unnec-
essarily, and throwing more memory at it may not be the right strategy. As a DBA, you must not view
memory and its sizing in isolation. This can lead to some poor choices, as you address the symp-
toms instead of the causes for what seems like insufficient memory. The tendency on a DBA’s part
is to allocate as much memory as possible to the shared pool, hoping that doing so will resolve the
problem. However, sometimes this only exacerbates the problem. It’s wise to manage the database
with as little memory as necessary, and no more. The system can always use the free memory to
ensure there’s no swapping or paging. Performance slowdowns caused by paging outweigh the
benefits of a larger SGA under most operating systems.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1004

4517CH22.qxd 8/19/05 11:15 AM Page 1004

Tuning the Shared Pool
In a production database, the shared pool is going to command most of your attention because
of its direct bearing on application performance. The shared pool is a part of the SGA that holds
almost all the necessary elements for execution of the SQL statements and PL/SQL programs. In
addition to caching program code, the shared pool caches the data dictionary information that
Oracle needs to refer to often during the course of program execution.

Proper shared pool configuration leads to dramatic improvements in performance. An improp-
erly tuned shared pool leads to problems such as the following:

• Fragmentation of the pool

• Increased latch contention with the resulting demand for more CPU resources

• Greater I/O because executable forms of SQL aren’t present in the shared pool

• Higher CPU usage because of unnecessary parsing of SQL code

The general increase in shared pool waits and other waits observed during a severe slowdown
of the production database is the result of SQL code that fails to use bind variables (I explain the
important concept of bind variables in the following section).

As the number of users increases, so does the demand on shared pool memory and latches,
which are internal locks for memory areas. If there are excessive latches the result might be a higher
wait time and a slower response time. Sometimes the entire database seems to hang.

The shared pool consists of two major areas: the library cache and the data dictionary cache.
You can’t allocate or decrease memory specifically for one of these components. If you increase the
total shared pool memory size, both components will increase in some ratio that Oracle determines.
Similarly, when you decrease the total shared pool memory, both components will decrease in size.
Let’s look at these two important components of the shared pool in detail.

The Library Cache
The library cache holds the parsed and executable versions of SQL and PL/SQL code. As you may
recall from Chapter 21, all SQL statements undergo the following steps during their processing:

• Parsing, which includes syntactic and semantic verification of SQL statements and checking
of object privileges to perform the actions.

• Optimization, where the Oracle optimizer evaluates how to process the statement with the
least cost, after it evaluates several alternatives.

• Execution, where Oracle uses the optimized physical execution plan to perform the action
stated in the SQL statement.

• Fetching, which only applies to SELECT statements where Oracle has to return rows to you.
This step isn’t necessary in any nonquery-type statements.

Parsing is a resource-intensive operation, and if your application needs to execute the same
SQL statement repeatedly, having a parsed version in memory will reduce contention for latches,
CPU, I/O, and memory usage. The first time Oracle parses a statement, it creates a parse tree. The
optimization step is necessary only for the first execution of a SQL statement. Once the statement
is optimized, the best access path is encapsulated in the access plan. Both the parse tree and the
access plan are stored in the library cache before the statement is executed for the first time. Future
invocation of the same statement will need to go through only the last stage, execution, which
avoids the overhead of parsing and optimizing as long as Oracle can find the parse tree and access
plan in the library cache. Of course, if the statement is a SQL query, the last step will be the fetch
operation.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1005

4517CH22.qxd 8/19/05 11:15 AM Page 1005

The library cache, being limited in size, discards old SQL statements when there’s no more
room for new SQL statements. The only way you can use a parsed statement repeatedly for multiple
executions is if a SQL statement is identical to the parsed statement. Two SQL statements are iden-
tical if they use exactly the same code, including case and spaces. The reason for this is that when
Oracle compares a new statement to existing statements in the library cache, it uses simple string
comparisons. In addition, any bind variables used must be similar in data type and size. Here are a
couple of examples that show you how picky Oracle is when it comes to considering whether two
SQL statements are identical.

In the following example, the statements aren’t considered identical because of an extra space
in the second statement:

SELECT * FROM employees;
SELECT * FROM employees;

In the next example, the statements aren’t considered identical because of the different case
used for the table Employees in the second statement. The two versions of employees are termed
literals because they’re literally different from each other.

SELECT * FROM employees;
SELECT * FROM Employees;

Let’s say users in the database issue the following three SQL statements:

SELECT * FROM persons WHERE person_id = 10
SELECT * FROM persons WHERE person_id = 999
SELECT * FROM persons WHERE person_id = 6666

Oracle uses a different execution plan for the preceding three statements, even though they
seem to be identical in every respect, except for the value of person_id. Each of these statements
has to be parsed and executed separately, as if they were entirely different. Because all three are
essentially the same, this is inherently inefficient. As you can imagine, if hundreds of thousands
of such statements are issued during the day, you’re wasting database resources and the query
performance will be slow. Bind variables allow you to reuse SQL statements by making them
“identical,” and thus eligible to share the same execution plan.

In our example, you can use a bind variable, which I’ll call :var, to help Oracle view the three
statements as identical, thus requiring a single execution instead of multiple ones. The person_id
values 10, 99, and 6666 are “bound” to the bind variable, :var. Your replacement SQL statement
using a bind variable, then, would be this:

SELECT * FROM persons WHERE person_id = :var

Using bind variables can dramatically increase query performance, and I explain in the section
“Using the CURSOR_SHARING (Literal Replacement) Parameter” how you can “force” Oracle to use
bind variables, even if an application doesn’t use them.

The Dictionary Cache
The dictionary cache, as mentioned earlier, caches data dictionary information. This cache is much
smaller than the library cache, and to increase or decrease it you modify the shared pool accordingly.
If your library cache is satisfactorily configured, chances are that the dictionary cache is going to be
fine too. You can get an idea about the efficiency of the dictionary cache by using the following query:

SQL> SELECT (sum(gets - getmisses - fixed)) / SUM(gets)
2 "data dictionary hit ratio" from v$rowcache;

data dictionary hit ratio

.936781093
SQL>

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1006

4517CH22.qxd 8/19/05 11:15 AM Page 1006

Usually, it’s a good idea to shoot for a dictionary hit ratio as high as 95 to 99 percent, although
Oracle itself sometimes seems to refer to a figure of 85 percent as being adequate. To increase the
library cache ratio, you simply increase the shared pool size for the instance.

Hard Parsing and Soft Parsing
You may recall from the last chapter that all SQL code goes through the parse, optimize, and exe-
cute phases. When an application issues a statement, Oracle first sees if a parsed version of the
statement already exists. If it does, the result is a so-called soft parse and is considered a library
cache hit. If, during a parse phase or the execution phase, Oracle isn’t able to find the parsed version
or the executable version of the code in the shared pool, it will perform a hard parse, which means
that the SQL statement has to be reloaded into the shared pool and parsed completely.

During a hard parse, Oracle performs syntactic and semantic checking, checks the object and
system privileges, builds the optimal execution plan, and finally loads it into the library cache. A
hard parse involves a lot more CPU usage and is inefficient compared to a soft parse, which depends
on reusing previously parsed statements. Hard parsing involves building all parse information from
scratch, and therefore it’s more resource intensive. Besides involving a higher CPU usage, hard pars-
ing involves a large number of latch gets, which may increase the response time of the query. The
ideal situation is where you parse once and execute many times. Otherwise, Oracle has to perform
a hard parse.

■Caution High hard parse rates lead to severe performance problems, so it’s critical that you reduce hard parse
counts in your database.

A soft parse simply involves checking the library cache for an identical statement and reusing
it. The major step of optimizing the SQL statement is completely omitted during a soft parse.
There’s no parsing (as done during a hard parse) during a soft parse, because the new statement is
hashed and its hash value is compared with the hash values of similar statements in the library
cache. During a soft parse, Oracle only checks for the necessary privileges. For example, even if
there’s an identical statement in the library cache, your statement may not be executed if Oracle
determines during the (soft) parsing stage that you don’t have the necessary privileges. Oracle rec-
ommends that you treat a hard parse rate of more than 100 per second as excessive.

Using SQL Trace and TKPROF to Examine Parse Information
In Chapter 21, you learned how to use the SQL Trace and TKPROF utilities to trace SQL statement
execution. One of the most useful pieces of information the SQL Trace utility provides concerns the
hard and soft parsing information for a query. The following simple example demonstrates how you
can derive the parse information for any query:

1. Enable tracing in the session by using the following command:

SQL> ALTER SESSION SET SQL_TRACE=TRUE;
Session altered.
SQL>

To make sure none of your queries were parsed before, flush the shared pool, which
removes all SQL statements from the library cache:

SQL> ALTER SYSTEM FLUSH SHARED_POOL;
System altered.
SQL>

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1007

4517CH22.qxd 8/19/05 11:15 AM Page 1007

2. Use the following query to create a trace in the user dump directory:

SQL> SELECT * FROM comp_orgs WHERE created_date > SYSDATE-5;

The SQL Trace output shows the following in the output file:

PARSING IN CURSOR #1 len=63 dep=0 uid=21 oct=3
lid=21 tim=1326831345 hv=71548308
SELECT * FROM comp_orgs WHERE created_date > SYSDATE-:"SYS_B_0"
END OF STMT
PARSE #1:c=4,e=4,p=0,cr=57,cu=3,mis=1,r=0,dep=0,og=0,tim=1326831345

Note that mis=1 indicates a hard parse because this SQL isn’t present in the library cache.

3. Use a slightly different version of the previous query next. The output is the same, but
Oracle won’t use the previously parsed version, because the statements in steps 2 and 3
aren’t identical.

SQL> SELECT * FROM comp_orgs WHERE created_date > (SYSDATE -5);

Here’s the associated SQL Trace output:

PARSING IN CURSOR #1 len=77 dep=0 uid=21 oct=3 lid=21 tim=1326833972
SELECT /* A Hint */ * FROM comp_orgs WHERE
created_date > SYSDATE-:"SYS_B_0"
END OF STMT
PARSE #1:c=1,e=1,p=0,cr=0,cu=0,mis=1,r=0,dep=0,og=0,tim=1326833972

Again, a hard parse, indicated by mis=1, shows a library cache miss. This isn’t a surprise, as
this statement isn’t identical to the one before, so it has to be parsed from scratch.

4. Use the original query again. Now Oracle performs only a soft parse, because the statements
here and in the first step are the same. Here’s the SQL Trace output:

PARSING IN CURSOR #1 len=63 dep=0 uid=21 oct=3 lid=21 tim=1326834357
SELECT * FROM comp_orgs WHERE created_date > SYSDATE-:"SYS_B_0"
END OF STMT
PARSE #1:c=0,e=0,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=4,tim=1326834357

The statement in step 4 is identical in all respects to the statement in step 1, so Oracle reuses
the parsed version. Hence mis=0 indicates there wasn’t a hard parse but merely a soft parse, which is
a lot cheaper in terms of resource usage.

If you now look at the TKPROF output, you’ll see the following section for the SQL statements
in step 2 and step 4 (identical statements):

**
SELECT * FROM comp_orgs WHERE created_date > SYSDATE - 5
call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ----------
Parse 2 0.03 0.01 0 1 3 0
Execute 2 0.00 0.00 0 0 0 0
Fetch 4 0.07 0.10 156 166 24 10
total 8 0.10 0.11 156 167 27 10
Misses in library cache during parse: 1
**

As you can see, there was one miss in the library cache when you first executed the statement.
The second time around, there was no hard parse and hence no library cache miss.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1008

4517CH22.qxd 8/19/05 11:15 AM Page 1008

Measuring Library Cache Efficiency
You can use simple ratios to see if your library cache is sized correctly. The V$LIBRARYCACHE data
dictionary view provides you with all the information you need to see if the library cache is effi-
ciently sized. Listing 22-1 shows the structure of the V$LIBRARYCACHE view.

Listing 22-1. The V$LIBRARYCACHE View

SQL> DESC V$LIBRARYCACHE
Name Null? Type
--- -------- -------------
NAMESPACE VARCHAR2(15)
GETS NUMBER
GETHITS NUMBER
GETHITRATIO NUMBER
PINS NUMBER
PINHITS NUMBER
PINHITRATIO NUMBER
RELOADS NUMBER
INVALIDATIONS NUMBER
DLM_LOCK_REQUESTS NUMBER
DLM_PIN_REQUESTS NUMBER
DLM_PIN_RELEASES NUMBER
DLM_INVALIDATION_REQUESTS NUMBER
DLM_INVALIDATIONS NUMBER
SQL>

The following formula provides you with the library cache hit ratio:

SQL> SELECT SUM(pinhits)/sum(pins) Library_cache_hit_ratio
2 FROM V$LIBRARYCACHE;

LIBRARY_CACHE_HIT_RATIO

.993928013
SQL>

The formula indicates that the library cache currently has a higher than 99 percent hit ratio,
which is considered good. However, be cautious about relying exclusively on high hit ratios for the
library cache and the buffer caches, such as the one shown here. You may have a hit ratio such as
99.99 percent, but if significant waits are caused by events such as excessive parsing, you’re going to
have a slow database. Always keep an eye on the wait events in your system, and don’t rely blindly
on high hit ratios such as these.

Listing 22-2 shows how to determine the number of reloads and pinhits of various statements
in your library cache.

Listing 22-2. Determining the Efficiency of the Library Cache

SQL> SELECT namespace, pins, pinhits, reloads
2 FROM V$LIBRARYCACHE
3 ORDER BY namespace;

NAMESPACE PINS PINHITS RELOADS
--
BODY 25 12 0
CLUSTER 248 239 0
INDEX 31 0 0
JAVA DATA 6 4 0

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1009

4517CH22.qxd 8/19/05 11:15 AM Page 1009

JAVA RESOURCE 2 1 0
JAVA SOURCE 0 0 0
OBJECT 0 0 0
PIPE 0 0 0
SQL AREA 390039 389465 14
TABLE/PROCEDURE 3532 1992 0
TRIGGER 5 3 0
11 rows selected.
SQL>

If the RELOADS column of the V$LIBRARYCACHE view shows large values, it means that many
SQL statements are being reloaded into the library pool after they’ve been aged out. You might want
to increase your shared pool, but this still may not do the trick if the application is large, the num-
ber of executions is large, or the application doesn’t use bind variables. If the SQL statements aren’t
exactly identical and/or if they use constants instead of bind variables, more hard parses will be
performed, and hard parses are inherently expensive in terms of resource usage. You can force the
executable SQL statements to remain in the library cache component of the shared pool by using
the Oracle-provided DBMS_SHARED_POOL package. The package has the KEEP and UNKEEP proce-
dures; using these you can retain and release objects in the shared pool.

■Note The section “Pinning Objects in the Shared Pool” later in this chapter shows you how to pin objects in the
shared pool. Chapter 24 explains the DBMS_SHARED_POOL package in more detail.

You can use the V$LIBRARY_CACHE_MEMORY view to determine the number of library cache
memory objects currently in use in the shared pool and to determine the number of freeable library
cache memory objects in the shared pool. The V$SHARED_POOL_ADVICE view provides you with
information about the parse time savings you can expect for various sizes of the shared pool.

Optimizing the Library Cache
You can configure some important initialization parameters so the library cache areas are used effi-
ciently. You’ll look at some of these initialization parameters in the following sections.

Using the CURSOR_SHARING (Literal Replacement) Parameter

The key idea behind optimizing the use of the library cache is to reuse previously parsed or exe-
cuted code. One of the easiest ways to do this is to use bind variables rather than literal statements
in the SQL code. Bind variables are like placeholders: they allow binding of application data to the
SQL statement. Using bind variables enables Oracle to reuse statements when the only things
changing in the statements are the values of the input variables. Bind variables enable you to reuse
the cached, parsed versions of queries and thus speed up your application. Here’s an example of the
use of bind variables. The following code sets up a bind variable as a number type:

SQL> VARIABLE bindvar NUMBER;
SQL> BEGIN
2 :bindvar :=7900;
3 END;
4 /

PL/SQL procedure successfully completed.
SQL>

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1010

4517CH22.qxd 8/19/05 11:15 AM Page 1010

You can now issue the following SQL statement that makes use of the bind variable you just
created:

SQL> SELECT ename FROM scott.emp WHERE empid = :bindvar;
ENAME
JAMES

You can execute this statement multiple times with different values for the bind variable. The
statement is parsed only once and executes many times. Unlike when you use a literal value for the
emp_id column (7499, for example), Oracle reuses the execution plan it created the first time, instead
of creating a separate execution plan for each such statement. This cuts hard parsing (and high
latch activity) and the attendant CPU usage drastically, and dramatically reduces the time taken to
retrieve data. For example, all the following statements can use the parsed version of the query that
uses the bind variable:

SELECT ename FROM scott.emp WHERE empid = 7499;
SELECT ename FROM scott.emp WHERE empid = 7788;
SELECT ename FROM scott.emp WHERE empid = 7902;

Unfortunately, in too many applications, literal values rather than bind values are used. You
can alleviate this problem to some extent by setting up the following initialization parameter:

CURSOR_SHARING=FORCE

Or you could use the following parameter:

CURSOR_SHARING=SIMILAR

By default, the CURSOR_SHARING initialization parameter is set to EXACT, meaning that only state-
ments that are identical in all respects will be shared among different executions of the statement.
Either of the alternative values for the CURSOR_SHARING parameter, FORCE or SIMILAR, ensures Oracle
will reuse statements even if they aren’t identical in all respects.

For example, if two statements are identical in all respects and differ only in literal values for
some variables, using CURSOR SHARING=FORCE will enable Oracle to reuse the parsed SQL statements
in its library cache. Oracle replaces the literal values with bind values to make the statements iden-
tical. The CURSOR_SHARING=FORCE option forces the use of bind variables under all circumstances,
whereas the CURSOR SHARING=SIMILAR option does so only when Oracle thinks doing so won’t
adversely affect optimization. Oracle recommends the use of CURSOR_SHARING=SIMILAR rather than
CURSOR_SHARING=FORCE because of possible deterioration in the execution plans. However, in reality,
the benefits provided by the CURSOR_SHARING=FORCE parameter far outweigh any possible damage to
the execution plans. You can improve the performance of your database dramatically when you
notice a high degree of hard parsing due to failing to use bind variables by moving from the default
CURSOR_SHARING=EXACT option to the CURSOR_SHARING=FORCE option. You can change the value of this
parameter in the init.ora file or SPFILE, or you can do so dynamically by using the ALTER SYSTEM
(instance-wide) statement or the ALTER SESSION (session-level) statement.

By allowing users to share statements that differ only in the value of the constants, the
CURSOR_SHARING parameter enables the Oracle database to scale easily to a large number of users
who are using similar, but not identical, SQL statements. This major innovation started in the Ora-
cle 8i version.

Sessions with a High Number of Hard Parses

The query in Listing 22-3 enables you to find out how the hard parses compare with the number of
executions since the instance was started. It also tells you the session ID for the user using the SQL
statements.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1011

4517CH22.qxd 8/19/05 11:15 AM Page 1011

Listing 22-3. Determining Sessions with a High Number of Parses

SQL> SELECT s.sid, s.value "Hard Parses",
2 t.value "Executions Count"
3 FROM v$sesstat s, v$sesstat t
4 WHERE s.sid=t.sid
5 AND s.statistic#=(select statistic#
6 FROM v$statname where name='parse count (hard)')
7 AND t.statistic#=(select statistic#
8 FROM v$statname where name='execute count')
9 AND s.value>0
10* ORDER BY 2 desc;

SID Hard Parses Executions Count
---------- ----------- ----------------------

1696 70750 3638104
1750 12188 262881
1759 3555 5895488
1757 3265 2758185
1694 1579 2389953

...
SQL>

Using the CURSOR_SPACE_FOR_TIME Parameter

By default, cursors can be deallocated even when the application cursors aren’t closed. This forces
an increase in Oracle’s overhead because of the need to check if the cursor is flushed from the
library cache. The parameter that controls whether this deallocation of cursors takes place is the
CURSOR_SPACE_FOR_TIME initialization parameter, whose default value is FALSE. If you set this para-
meter to TRUE, you ensure that the cursors for the application cannot be deallocated while the
application cursors are still open. The initialization parameter in the init.ora file should be as
follows:

CURSOR_SPACE_FOR_TIME=TRUE

■Tip If you want to set this parameter, make sure that you have plenty of free shared pool memory available,
because this parameter will use more shared pool memory for saving the cursors in the library cache.

Using the SESSION_CACHED_CURSORS Parameter

Ideally, an application should have all the parsed statements available in separate cursors, so that if
it has to execute a new statement, all it has to do is pick the parsed statement and change the value
of the variables. If the application reuses a single cursor with different SQL statements, it still has to
pay the cost of a soft parse. After opening a cursor for the first time, Oracle will parse the statement,
and then it can reuse this parsed version in the future. This is a much better strategy than re-creating
the cursor each time the database executes the same SQL statement. If you can cache all the cur-
sors, you’ll retain the server-side context, even when clients close the cursors or reuse them for new
SQL statements.

You’ll appreciate the usefulness of the SESSION_CACHED_CURSORS parameter in a situation where
users repeatedly parse the same statements, as happens in an Oracle Forms-based application
when users switch among various forms. Using the SESSION_CACHED_CURSORS parameter ensures that
for any cursor for which more than three parse requests are made, the parse requests are automati-
cally cached in the session cursor cache. Thus new calls to parse the same statement avoid the

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1012

4517CH22.qxd 8/19/05 11:15 AM Page 1012

parsing overhead. Using the initialization parameter SESSION_CACHED_CURSORS and setting it to a
high number makes the query processing more efficient. Although soft parses are cheaper than
hard parses, you can reduce even soft parsing by using the SESSION_CACHED_CURSORS parameter and
setting it to a high number.

You can enforce session caching of cursors by setting the SESSION_CACHED_CURSORS in your
initialization parameter file, or dynamically by using the following ALTER SESSION command:

SQL> ALTER SESSION SET SESSION_CACHED_CURSORS = value;

You can check how good your SESSION_CACHED_CURSORS parameter value is by using the
V$SYSSTAT view. If the value of session cursor cache hits is low compared to the total parse
count for a session, then the SESSION_CACHED_CURSORS parameter value should be bumped up.

The perfect situation is where a SQL statement is soft parsed once in a session and executed
multiple times. For a good explanation of bind variables, cursor sharing, and related issues, please
read the Oracle white paper “Efficient use of bind variables, cursor_sharing and related cursor
parameters” (http://otn.oracle.com/deploy/performance/pdf/cursor.pdf).

Parsing and Scaling Applications

When the number of users keeps increasing, some systems have trouble coping. Performance slows
down dramatically in many systems as a result of trying to scale to increased user populations.
When your user counts are increasing, focus on unnecessary parsing in your system. A high level of
parsing leads to latch contention, which slows down the system. Here are some guidelines that help
summarize the previous discussion about the library cache, parsing, and the use of special initial-
ization parameters:

• A standard rule is to put as much of the code as possible in the form of stored code—pack-
ages, procedures, and functions—so you don’t have the problems caused by ad hoc SQL. Use
of ad hoc SQL could wreak havoc with your library cache, and it’s an inefficient way to run a
large application with many users. Using stored code guarantees that code is identical and
thus reused, thereby enhancing scalability.

• Lower the number of hard parses, as they could be expensive. One way to convert a hard
parse to a soft parse is to use bind variables, as you saw earlier in this chapter. Reducing
hard parsing reduces shared-pool latch contention.

• If bind variables aren’t being used in your system, you can use the CURSOR_SHARING=FORCE
parameter to force the sharing of SQL statements that differ only in the value of literals.

• Pay attention to the amount of soft parsing, not the per unit cost, which is much lower than
that of a hard parse. A high amount of soft parsing increases contention for the library cache
latch and could lead to a slow-performing database. The point to note here is to avoid any
unnecessary soft parsing, which’ll end up costing you.

• Use the SESSION_CACHED_CURSORS initialization parameter to reuse the open cursors in a ses-
sion. If repeated parse calls are used for a SQL statement, Oracle moves the session cursor
for that statement into the session cursor cache. This, as you’ve seen, reduces the amount
of soft parsing. Set the value of this parameter to somewhere between the value of the
OPEN_CURSORS initialization parameter and the number of cursors that are being used in the
session.

• Use the CURSOR_SPACE_FOR_TIME initialization parameter (set it to TRUE) to prevent the early
deallocation of cursors. If you don’t mind the extra cost of using more memory, this feature
will enhance your application’s scalability level.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1013

4517CH22.qxd 8/19/05 11:15 AM Page 1013

• Reduce the amount of session logging on/off activity by users. This may reduce scalability
due to the increased amount of overhead involved in authenticating the user, verifying privi-
leges, and so on, leading to a waste of time and resources. Furthermore, the users may be
spending more time trying to log into the system than executing their SQL statements. Fre-
quent logging off and logging back on might also cause contention for the web server and
other resources, and increase the time it takes to log into your system.

• To increase scalability, you must also ensure that applications share sessions. If you only
have shared SQL, your hard parses will go down, but your soft parses might still be high. If
an application program can maintain a persistent connection to the Oracle server, it doesn’t
have to perform repeated soft parsing to reuse code.

Sizing the Shared Pool
The best way to set the size of the shared pool in Oracle Database 10g is to let Oracle do all the work
for you by using the SGA_TARGET initialization parameter, thus automating the management of SGA.
You can initially set the SGA_TARGET parameter at something close to the total SGA you would have
allocated under a manual management mode. Review the material in Chapter 17 for guidance on
setting your initial SGA_TARGET value. If you’re managing memory manually, you can use the
V$SHARED_POOL_ADVICE view to find out what the ideal amount of shared pool memory ought
to be.

Pinning Objects in the Shared Pool
As I have discussed, if code objects have to be repeatedly hard-parsed and executed, database per-
formance will deteriorate eventually. Your goal should be to see that as much of the executed code
remains in memory as possible so compiled code can be re-executed. You can avoid repeated
reloading of objects in your library cache by pinning objects using the DBMS_SHARED_POOL pack-
age. (The library cache is a component of the shared pool, as you’ve seen earlier.) Listing 22-4 shows
how you can determine the objects that should be pinned in your library cache (shared pool).

Listing 22-4. Determining the Objects to Be Pinned in the Shared Pool

SQL> SELECT type, COUNT(*) OBJECTS,
2 SUM(DECODE(KEPT,'YES',1,0)) KEPT,
3 SUM(loads) - count(*) reloads
4 FROM V$DB_OBJECT_CACHE
5 GROUP BY type
6* ORDER BY objects DESC;

TYPE OBJECTS KEPT RELOADS
---------------------------- ---------- ---------- ----------
CURSOR 41143 0 136621
NOT LOADED 37522 0 54213
TABLE 758 24 133742
PUB_SUB 404 0 135
SYNONYM 381 0 7704
JAVA CLASS 297 296 317
VIEW 181 0 11586
INVALID TYPE 139 48 11
PACKAGE 137 0 8352
TRIGGER 136 0 8515
PACKAGE BODY 121 0 218
SEQUENCE 81 0 3015

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1014

4517CH22.qxd 8/19/05 11:15 AM Page 1014

INDEX 61 7 0
PROCEDURE 41 0 219
FUNCTION 35 0 825
NON-EXISTENT 31 0 1915
TYPE 13 0 1416
CLUSTER 10 6 6
TYPE BODY 3 0 5
LIBRARY 2 0 99
RSRC CONSUMER GROUP 2 0 0
QUEUE 2 0 96
JAVA SHARED DATA 1 1 0
JAVA SOURCE 1 0 0
24 rows selected.
SQL>

If the number of reloads in the output shown in Listing 22-4 is high, you need to make sure that
the objects are pinned using the following command:

SQL> EXECUTE SYS.DBMS_SHARED_POOL.KEEP(object_name,object_type);

You can use the following statements to pin a package first in the shared pool and then remove
it, if necessary:

SQL> EXECUTE SYS.DBMS_SHARED_POOL.KEEP(NEW_EMP.PKG, PACKAGE);
SQL> EXECUTE SYS.DBMS_SHARED_POOL.UNKEEP(NEW_EMP.PKG,PACKAGE);

Of course, if you shut down and restart your database, the shared pool won’t retain the pinned
objects. That’s why most DBAs use scripts with all the objects they want to pin in the shared pool
and schedule them to run right after every database start. Most of the objects usually are small, so
there’s no reason to be too conservative about how many you pin. For example, I pin all my pack-
ages, including Oracle-supplied PL/SQL packages.

Look at the following example, which gives you an idea about the total memory taken up by a
large number of packages. This query shows the total number of packages in my database:

SQL> SELECTCOUNT(*)
2 FROM V$DB_OBJECT_CACHE
3* WHERE type='PACKAGE';

COUNT(*)

167
SQL>

The following query shows the total amount of memory needed to pin all my packages in the
shared pool:

SQL> SELECT SUM(sharable_mem)
2 FROM V$DB_OBJECT_CACHE
3* WHERE type='PACKAGE';

SUM(SHARABLE_MEM)

4771127
SQL>

As you can see, pinning every single package in my database takes up less than 5MB of a total
of several hundred megabytes of memory allocated to the shared pool.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1015

4517CH22.qxd 8/19/05 11:15 AM Page 1015

Tuning the Buffer Cache
When users request data, Oracle reads the data from the disks (in terms of Oracle blocks) and stores
it in the buffer cache so it may access the data easily if necessary. As the need for the data dimin-
ishes, eventually Oracle removes the data from the buffer cache to make room for newer data. Note
that some operations don’t use the buffer cache (SGA); rather, they read directly into the PGA area.
Direct sort operations and parallel reads are examples of such operations.

How to Size the Buffer Cache
As with the shared pool component, the best way to manage the buffer cache is to choose auto-
matic SGA management. However, if you choose to manage the SGA manually, you can use a
process of trial and error to set the buffer cache size. You assign an initial amount of memory to the
pool and watch the buffer cache hit ratios to see how often the application can retrieve the data
from memory, as opposed to going to disk. The terminology used for calculating the buffer hit ratio
can be somewhat confusing on occasion. Here are the key terms you need to understand:

• Physical reads: These are the data blocks that Oracle reads from disk. Reading data from disk
is much more expensive than reading data that’s already in Oracle’s memory. When you issue
a query, Oracle always first tries to retrieve the data from memory—the database buffer
cache—and not disk.

• DB block gets: This is a read of the buffer cache, to retrieve a block in current mode. This most
often happens during data modification when Oracle has to be sure that it’s updating the
most recent version of the block. So, when Oracle finds the required data in the database
buffer cache, it checks whether the data in the blocks is up to date. If a user changes the data
in the buffer cache but hasn’t committed those changes yet, new requests for the same data
can’t show these interim changes. If the data in the buffer blocks is up to date, each such data
block retrieved is counted as a DB block get.

• Consistent gets: This is a read of the buffer cache, to retrieve a block in consistent mode. This
may include a read of undo segments to maintain the read consistency principle (see Chap-
ter 6 for more information about read consistency). If Oracle finds that another session has
updated the data in that block since the read began, then it will apply the new information
from the undo segments.

• Logical reads: Every time Oracle is able to satisfy a request for data by reading it from the
database buffer cache, you get a logical read. Thus logical reads include both DB block gets
and consistent gets.

• Buffer gets: This term refers to the number of database cache buffers retrieved. This value is
the same as the logical reads described earlier.

The following formula gives you the buffer cache hit ratio:

1 - ('physical reads cache') /
('consistent gets from cache' + 'db block gets from cache')

You can use the following query to get the current values for all three necessary buffer cache
statistics:

SQL> SELECT name, value FROM v$sysstat
WHERE where name IN ('physical reads cache',

'consistent gets from cache',
'db block gets from cache');

--------------------------------- ------------
db block gets from cache 103264732

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1016

4517CH22.qxd 8/19/05 11:15 AM Page 1016

consistent gets from cache 5924585423
physical reads cache 50572618
3 rows selected.
SQL>

The following calculation, based on the statistics I derived in the preceding code from the
V$SYSSTAT view, show that the buffer cache hit ratio for my database is a little over 91 percent:

1 - (505726180)/(103264732 + 5924585494) = .916101734

As you can see from the formula for the buffer cache hit ratio, the lower the ratio of physical
reads to the total logical reads, the higher the buffer cache hit ratio.

You can use the V$BUFFER_POOL_STATISTICS view, which lists all buffer pools for the
instance, to derive the hit ratio for the buffer cache:

SQL> SELECT NAME, PHYSICAL_READS, DB_BLOCK_GETS, CONSISTENT_GETS,
1 - (PHYSICAL_READS/(DB_BLOCK_GETS + CONSISTENT_GETS)) "HitRatio"
FROM V$BUFFER_POOL_STATISTICS;

NAME PHYSICAL_READS DB_BLOCK_GETS CONSISTENT_GETS HitRatio
------- --------------- -------------- ----------------- ---------
DEFAULT 50587859 103275634 5924671178 .991607779

SQL>

In addition, you can use the Database Control’s Memory Advisor to get advice regarding the
optimal buffer cache size. The advice is presented in a graphical format, showing the trade-off
between increasing the SGA and the reduction in DB time. You can use the V$DB_CACHE_ADVICE
view (use V$SGA_TARGET_ADVICE to size the SGA_TARGET size) to see how much you need to
increase the buffer cache to lower the physical I/O by a certain amount. Essentially, the output of
the V$DB_CACHE_ADVICE view shows you how much you can increase your buffer cache memory
before the gains in terms of a reduction in the amount of physical reads (estimated) are insignifi-
cant. The Memory Advisor simulates the miss rates in the buffer cache for caches of different sizes.
In this sense, the Memory Advisor can keep you from throwing excess memory in a vain attempt at
lowering the amount of physical reads in your system.

Oracle blocks used during a full table scan involving a large table are aged out of the buffer
cache faster than Oracle blocks from small-table full scans or indexed access. Oracle may decide
to keep only part of the large table in the buffer cache to avoid having to flush out its entire buffer
cache. Thus, your buffer cache hit ratio would be artificially low if you were using several large-table
full scans. If your application involves many full table scans for some reason, increasing the buffer
cache size isn’t going to improve performance. Some DBAs are obsessed about achieving a high
cache hit ratio, such as 99 percent or so. A high buffer cache hit ratio is no guarantee that your
application response time and throughput will also be high. If you have a large number of full table
scans or if your database is more of a data warehouse than an OLTP system, your buffer cache may
be well below 100 percent, and that’s not a bad thing. If your database consists of inefficient SQL,
there will be an inordinately high number of logical reads, making the buffer cache hit ratio look
good (say 99.99 percent), but this may not mean your database is performing efficiently. Please read
the interesting article by Cary Millsap titled “Why a 99%+ Database Buffer Cache Hit Ratio Is Not
Ok” (http://www.hotsos.com/e-library/abstract.php?id=6).

Using Multiple Pools for the Buffer Cache
You don’t have to allocate all the buffer cache memory to a single pool. As Chapter 9 showed you,
you can use three separate pools: the keep buffer pool, the recycle buffer pool, and the default buffer
pool. Although you don’t have to use the keep and default buffer pools, it’s a good idea to configure

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1017

4517CH22.qxd 8/19/05 11:15 AM Page 1017

all three pools so you can assign objects to them based on their access patterns. In general, you
follow these rules of thumb when you use the multiple buffer pools:

• Use the recycle cache for large objects that are infrequently accessed. You don’t want these
objects to occupy a large amount of space unnecessarily in the default pool.

• Use the keep cache for small objects that you want in memory at all times.

• Oracle automatically uses the default pool for all objects not assigned to either the recycle or
keep cache.

Since version 8.1, Oracle has used a concept called touch count to measure how many times an
object is accessed in the buffer cache. This algorithm of using touch counts for managing the buffer
cache is somewhat different from the traditional modified LRU algorithm that Oracle used to
employ for managing the cache. Each time a buffer is accessed, the touch count is incremented.
A low touch count means that the block isn’t being reused frequently, and therefore is wasting
database buffer cache space. If you have large objects that have a low touch count but occupy a
significant proportion of the buffer cache, you can consider them ideal candidates for the recycle
pool. Listing 22-5 contains a query that shows you how to find out which objects have a low touch
count. The TCH column in the x$bh table owned by the user SYS indicates the touch count.

Listing 22-5. Determining Candidates for the Recycle Buffer Pool

SQL> SELECT
2 obj object,
3 count(1) buffers,
4 (count(1)/totsize) * 100 percent_cache
5 FROMx$bh,
6 (select value totsize
7 FROM v$parameter
8 WHERE name ='db_block_buffers')
9 WHERE tch=1
10 OR (tch = 0 and lru_flag <10)
11 GROUP BY obj, totsize
12* HAVING (count(1)/totsize) * 100 > 5

OBJECT BUFFERS PERCENT_CACHE
---------- ---------- ---------------

1386 14288 5.95333333
1412 12616 5.25666667

613114 22459 9.35791667
SQL>

The preceding query shows you that three objects, each with a low touch count, are taking up
about 20 percent of the total buffer cache. Obviously, they’re good candidates for the recycle buffer
pool. In effect, you’re limiting the number of buffers the infrequently used blocks from these three
tables can use up in the buffer cache.

The following query on the DBA_OBJECTS view gives you the names of the objects:

SQL> SELECT object_name FROM DBA_OBJECTS
2 WHERE object_id IN (1386,1412,613114);

OBJECT_NAME

EMPLOYEES
EMPLOYEE_HISTORY
FINANCE_RECS
SQL>

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1018

4517CH22.qxd 8/19/05 11:15 AM Page 1018

You can then assign these three objects to the reserved buffer cache pool. You can use a similar
criterion to decide which objects should be part of your keep buffer pool. Say you want to pin all
objects in the keep pool that occupy at least 25 buffers and have an average touch count of more
than 5. Listing 22-6 shows the query that you should run as the user SYS.

Listing 22-6. Determining Candidates for the Keep Buffer Cache

SQL> SELECT obj object,
2 count(1) buffers,
3 AVG(tch) average_touch_count
4 FROM x$bh
5 WHERE lru_flag = 8
6 GROUP BY obj
7 HAVING avg(tch) > 5
8* AND count(1) > 25;

OBJECT BUFFERS AVERAGE_TOUCH_COUNT
---------- ---------- -------------------------

1349785 36 67
4294967295 87 57.137931
SQL>

Again, querying the DBA_OBJECTS view provides you with the names of the objects that are
candidates for the keep buffer cache pool.

Here’s a simple example to show how you can assign objects to specific buffer caches (keep and
recycle). First, make sure you configure the keep and recycle pools in your database by using the fol-
lowing set of initialization parameters:

DB_CACHE_SIZE=256MB
DB_KEEP_CACHE_SIZE=16MB
DB_RECYCLE_CACHE_SIZE=16MB

In this example, the keep and recycle caches are 16MB each. Once you create the keep and
recycle pools, it’s easy to assign objects to these pools. All tables are originally in the default buffer
cache, where all tables are cached automatically unless specified otherwise in the object creation
statement.

You can use the ALTER TABLE statement to assign any table or index to a particular type of buffer
cache. For example, you can assign the following two tables to the keep and recycle buffer caches:

SQL> ALTER TABLE test1 STORAGE (buffer_pool keep);
Table altered.
SQL> ALTER TABLE test2 STORAGE (buffer_pool recycle);
Table altered.
SQL>

■Note For details about Oracle’s touch-count buffer management, please download Craig A. Shallahamer’s inter-
esting paper “All About Oracle’s Touch-Count Data Block Buffer Algorithm” using this URL: http://resources.
orapub.com/product_p/tc.htm.

Tuning the Large Pool, Streams Pool, and Java Pool
You mainly use the large pool, an optional component of the SGA, in shared server systems for ses-
sion memory, for facilitating parallel execution for message buffers, and for backup processes for
disk I/O buffers. Oracle recommends the use of the large pool if you’re using shared server

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1019

4517CH22.qxd 8/19/05 11:15 AM Page 1019

processes so you can keep the shared pool fragmentation low. If you’re using shared server configu-
rations, you should configure the large pool. The streams pool is relevant only if you’re using the
Oracle Streams feature. You don’t have to bother with tuning the Java pool allocation unless you’re
using heavy Java applications.

■Note You size the large pool based on the number of active simultaneous sessions in a shared server environ-
ment. Remember that if you’re using the shared server configuration and you don’t specify a large pool, Oracle will
allocate memory to the shared sessions out of your shared pool.

Tuning PGA Memory
Each server process serving a client is allocated a private memory area, the PGA, most of which is
dedicated to memory-intensive tasks such as group by, order by, rollup, and hash joins. The PGA
area is a nonshared area of memory created by Oracle when a server process is started, and it’s auto-
matically deallocated upon the end of that session. Operations such as in-memory sorting and
building hash tables need specialized work areas. The memory you allocate to the PGA determines
the size of these work areas for specialized tasks, such as sorting, and determines how fast the sys-
tem can finish them. In the following sections you’ll examine how you can decide on the optimal
amount of PGA for your system.

Automatic PGA Memory Management
The management of the PGA memory allocation is easy from a DBA’s point of view. You can set a
couple of basic parameters and let Oracle automatically manage the allocation of memory to the
individual work areas. You need to do a couple things before Oracle can automatically manage the
PGA. You need to use the PGA_AGGREGATE_TARGET parameter to set the memory limit, and you need to
use the V$PGA_TARGET_ADVICE view to tune the target’s value. In the next sections I discuss those
tasks.

Using the PGA_AGGREGATE_TARGET Parameter

The PGA_AGGREGATE_TARGET parameter in the init.ora file sets the maximum limit on the total mem-
ory allocated to the PGA. Oracle offers the following guidelines on sizing the PGA_AGGREGATE_TARGET
parameter:

• For an OLTP database, the target should be 16 to 20 percent of the total memory allocated to
Oracle.

• For a DSS database, the target should be 40 to 70 percent of the total memory allocated to
Oracle.

The preceding guidelines are just that—guidelines. The best way to determine the ideal size of
the PGA_AGGREGATE_TARGET parameter is to use the V$PGA_TARGET_ADVICE or V$PGASTAT view,
which I explain in the following sections.

Using the V$PGA_TARGET_ADVICE View

Once you’ve set the initial allocation for the PGA memory area, you can use the V$PGA_TARGET_
ADVICE view to tune the target’s value. Oracle populates this view with the results of its simulations
of different workloads for various PGA target levels. You can then query the view as follows:

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1020

4517CH22.qxd 8/19/05 11:15 AM Page 1020

SQL> SELECT ROUND(pga_target_for_estimate/1024/1024) target_mb,
2 estd_pga_cache_hit_percentage cache_hit_perc,
3 estd overalloc_count
4* FROM V$PGA_TARGET_ADVICE;

Using the estimates from the V$PGA_TARGET_ADVICE view, you can then set the optimal level
for PGA memory.

Setting the Value of the PGA_AGGREGATE_TARGET Parameter
Remember that the memory you provide through setting the PGA_AGGREGATE_TARGET parameter is
what determines the efficiency of sorting and hashing operations in your database. If you have a
large number of users who perform heavy-duty sort or hash operations, your PGA_AGGREGATE_TARGET
must be set at a high level. When you set the SGA_TARGET at, say 2GB, the instance takes the 2GB
from the total OS memory as soon as you start it. However, the PGA_AGGREGATE_TARGET is merely
a target. Oracle doesn’t take all the memory you assign to the PGA_AGGREGATE_TARGET when the
instance starts. The PGA_AGGREGATE_TARGET only serves as the upper bound on the total private or
work-area memory the instance can allocate to all the sessions combined.

The ideal way to perform sorts is by doing the entire job in memory. A sort job that Oracle per-
forms entirely in memory is said to be an optimal sort. If you set the PGA_AGGREGATE_TARGET too low,
some of the sort data is written out directly to disk (temporary tablespace) because the sorts are
too large to fit in memory. If only part of a sort job spills over to disk, it’s called a 1-pass sort. If the
instance performs most of the sort on disk instead of in memory, the response time will be high.
Luckily, as long as you have enough memory available, you can monitor and avoid problems due
to the undersizing of the PGA memory (PGA_TARGET).

You can examine the PGA usage within your database by using the following query. The value
column shows, in bytes, the amount of memory currently allocated to the various users:

SQL> SELECT
2 s.value,s.sid,a.username
3 FROM
4 V$SESSTAT S, V$STATNAME N, V$SESSION A
5 WHERE
6 n.STATISTIC# = s.STATISTIC# and
7 name = 'session pga memory'
8 AND s.sid=a.sid
9* ORDER BY s.value;

VALUE SID USERNAME
---------- ---------- ---------

5561632 1129 BSCOTT
5578688 1748 VALAPATI
5627168 878 DHULSE
5775296 815 MFRIBERG
5954848 1145 KWHITAKE
5971904 1182 TMEDCOFF . . .

SQL>

An important indicator of the efficiency of the PGA_TARGET parameter is the PGA “hit ratio,”
shown in the last row of the following query, which uses the V$PGASTAT view:

SQL> SELECT * FROM V$PGASTAT;

aggregate PGA target parameter 49999872 bytes
aggregate PGA auto target 4194304 bytes
global memory bound 2499584 bytes

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1021

4517CH22.qxd 8/19/05 11:15 AM Page 1021

total PGA inuse 67717120 bytes
total PGA allocated 161992704 bytes
maximum PGA allocated 244343808 bytes
total freeable PGA memory 16121856 bytes
PGA memory freed back to OS 6269370368 bytes
total PGA used for auto workareas 0 bytes
maximum PGA used for auto workareas 6843392 bytes
total PGA used for manual workareas 0 bytes
maximum PGA used for manual workareas 530432 bytes
over allocation count 1146281
bytes processed 4.4043E+10 bytes
extra bytes read/written 7744561152 bytes
cache hit percentage 85.04 percent

16 rows selected.
SQL>

In this example, the cache hit percentage (PGA) is more than 85 percent, which is good enough
for an OLTP or data warehouse application. In fact, if you have a large data-warehousing type of
database, you may even have to be content with a much smaller PGA cache hit ratio.

Another way to look at PGA efficiency is by using the following query, which involves the
V$SQL_WORKAREA_HISTOGRAM view. The view contains information about the number of work
areas executed with optimal, 1-pass, and multipass memory size. The work areas are divided into
groups, whose optimal requirement varies from 0KB to 1KB, 1KB to 2KB, 2KB to 4KB—and so on.
Listing 22-7 shows the results of a query using the V$SQL_WORKAREA_HISTOGRAM view.

Listing 22-7. Using the V$SQL_WORKAREA_HISTOGRAM View

SQL> SELECT
2 low_optimal_size/1024 "Low (K)",
3 (high_optimal_size + 1)/1024 "High (K)",
4 optimal_executions "Optimal",
5 onepass_executions "1-Pass",
6 multipasses_executions ">1 Pass"
7 FROM v$sql_workarea_histogram
8* WHERE total_executions <> 0;

Low (K) High (K) Optimal 1-Pass >1 Pass
---------- ---------- ---------- ---------- -----------

2 4 7820241 0 0
32 64 0 2 0
64 128 9011 1 0
128 256 4064 14 0
256 512 3782 13 0
512 1024 18479 58 4
1024 2048 3818 53 0
2048 4096 79 241 67
4096 8192 1 457 26
8192 16384 0 11 44
16384 32768 3 1 2
32768 65536 0 2 0
65536 131072 0 0 1
131072 262144 0 0 1

14 rows selected.
SQL>

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1022

4517CH22.qxd 8/19/05 11:15 AM Page 1022

An overwhelming number of the sorts in this instance were done optimally, with only a few
sorts using the 1-pass approach. This why you have the 85 percent PGA hit ratio in the previous
example. Here’s an instance that’s in trouble, as shown by the significant number of sorts in the
1-pass and the multipass (> 1 Pass) group. Right now, most of your customers will be complaining
that the database is slow.

Note that the query is the same as in the previous example. Here’s the output:

Low (K) High (K) Optimal 1-Pass >1 Pass
---------- ---------- ---------- ---------- ----------

2 4 2 3 0
4 8 2 7 5
8 16 129866 3 19
16 32 1288 21 3
64 128 2 180 61
128 256 6 2 44
256 512 44 0 16
512 1024 1063 0 35
1024 2048 31069 11 12
2048 4096 0 0 18
8192 16384 986 22 0
16384 32768 0 0 2

As you can see, there are significant multiple pass sorts in this example, and you can bet that
the cache hit ratio is going to be low, somewhere in the 70 percent range. Fortunately, all you have
to do to speed up the instance is to increase the value of the PGA_AGGREGATE_TARGET parameter in the
following manner:

SQL> ALTER SYSTEM SET pga_aggregate_target=500000000;
System altered.
SQL>

The new V$PROCESS_MEMORY view lets you view dynamic PGA memory usage for each
Oracle process, and shows the PGA usage by each process for categories such as Java, PL/SQL,
OLAP, and SQL. Here’s a simple query on that view:

SQL> SELECT pid, category, allocated, used from v$process_memory;

PID CATEGORY ALLOCATED USED
---- --------- ---------- ------
22 PL/SQL 2068 136
22 Other 360367
27 SQL 23908 15120
. . .
SQL>

You can also use the V$PROCESS view to monitor PGA usage by individual processes. If you’re
running out of memory on your server, it’s a good idea to see if you can release some PGA memory
for other uses. Here’s a query that shows you the allocated, used, and freeable PGA memory for each
process currently connected to the instance:

SQL> SELECT PROGRAM, pga_used_mem, pga_alloc_mem,
pga_freeable_mem,pga_max_mem V$PROCESS;

You can use the following SQL statement to estimate quickly the proportion of work areas since
you started the Oracle instance, using optimal, 1-pass, and multipass PGA memory sizes:

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1023

4517CH22.qxd 8/19/05 11:15 AM Page 1023

SQL> SELECT name PROFILE, cnt COUNT,
DECODE(total, 0, 0, ROUND(cnt*100/total)) PERCENTAGE
FROM (SELECT name, value cnt, (sum(value) over ()) total
FROM V$SYSSTAT
WHERE name like 'workarea exec%');

PROFILE COUNT PERCENTAGE
------------------------------- --------- ----------
workarea executions - optimal 7859595 100
workarea executions - onepass 853 0
workarea executions - multipass 145 0

SQL>

In the preceding example, the PGA cache hit percentage for optimal executions is 100 percent,
which, of course, is excellent. Oracle DBAs have traditionally paid a whole lot more attention to tun-
ing the SGA memory because the PGA memory tuning in its present format is relatively new. DBAs
in charge of applications requiring heavy-duty hashing and sorting requirements are well advised to
pay close attention to the performance of the PGA. It’s easy to tune the PGA, and the results of a
well-tuned PGA show up in dramatic improvements in performance.

Evaluating System Performance
The instance-tuning efforts that you undertake from within Oracle will have only a limited impact
(they may even have a negative impact) if you don’t pay attention to the system performance as a
whole. System performance includes the CPU performance, memory usage, and disk I/O. In the fol-
lowing sections you’ll look at each of these important resources in more detail.

CPU Performance
You can use operating system utilities such as System Activity Reporter (sar) or vmstat to find out
how the CPU is performing. Don’t panic if your processors seem busy during peak periods—that’s
what they’re there for, so you can use them when necessary. If the processors are showing a heavy
load during low usage times, you do need to investigate further. Listing 22-8 shows a sar command
output indicating how hard your system is using the CPU resources right now.

Listing 22-8. Sar Command Output Showing CPU Usage

$ sar -u 10 5
HP-UX finance1 B.11.00 A 9000/800 07/03/05
13:39:17 %usr %sys %wio %idle
13:39:27 34 23 7 36
13:39:37 37 17 8 38
13:39:47 34 18 6 41
13:39:57 31 16 9 44
13:40:07 38 19 11 32
Average 35 19 8 38

In the preceding listing, the four columns report on the following CPU usage patterns:

• %usr shows the proportion of total CPU time taken up by the various users of the system.

• %sys shows the proportion of time the system itself was using the CPU.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1024

4517CH22.qxd 8/19/05 11:15 AM Page 1024

• %wio indicates the percentage of time the system was waiting for I/O.

• %idle is the proportion of time the CPU was idle.

If the %wio or %idle percentages are near zero during nonpeak times, it indicates a CPU-bound
system.

Remember that an intensive CPU usage level may mean that an operating-system process is
hogging CPU, or an Oracle process may be doing the damage. If it is Oracle, a background process
such as PMON may be the culprit, or an Oracle user process may be running some extraordinarily
bad ad hoc SQL query on the production box. You may sometimes track down such a user and
inform the person that you’re killing the process in the interest of the welfare of the entire system.
Imagine your surprise when you find that the user’s Oracle process is hale and hearty, while merrily
continuing to devastate your system in the middle of a busy day. This could happen because a child
process or a bequeath process continued to run even after you killed this user. It pays to double-
check that the user is gone—lock, stock, and barrel—instead of assuming that the job has been done.

That said, let’s look at some of the common events that could cause CPU-related slowdowns on
your system.

The Run Queue Length
One of the main indicators of a heavily loaded CPU system is the length of the run queue. A longer
run queue means that more processes are lined up, waiting for CPU processing time. Occasional
blips in the run-queue length aren’t bad, but prolonged high run-queue lengths indicate that the
system is CPU bound.

CPU Units Used by Processes
You can determine the number of CPU units a UNIX process is using by using the simple process
(ps) command, as shown here:

$ ps -ef | grep f60
UID PID PPID C STIME TTY TIME CMD

oracle 20108 4768 0 09:11:49 ? 0:28 f60webm
oracle 883 4768 5 17:12:21 ? 0:06 f60webm
oracle 7090 4768 16 09:18:46 ? 1:08 f60webm
oracle 15292 4768 101 15:49:21 ? 1:53 f60webm
oracle 18654 4768 0 14:44:23 ? 1:18 f60webm
oracle 24316 4768 0 15:53:33 ? 0:52 f60webm

$

The key column to watch is the fourth one from the left, which indicates the CPU units of pro-
cessing that each process is using. If each CPU on a server has 100 units, the Oracle process with
PID 15292 (the fourth in the preceding list) is occupying more than an entire CPU’s processing
power. If you have only two processors altogether, you should worry about this process and why
it’s so CPU intensive.

Finding High CPU Users
If the CPU usage levels are high, you need to find out which of your users are among the top CPU
consumers. Listing 22-9 shows how you can easily identify those users.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1025

4517CH22.qxd 8/19/05 11:15 AM Page 1025

Listing 22-9. Identifying High CPU Users

SQL> SELECT n.username,
2 s.sid,
3 s.value
4 FROM v$sesstat s,v$statname t, v$session n
5 WHERE s.statistic# = t.statistic#
6 AND n.sid = s.sid
7 AND t.name='CPU used by this session'
8 ORDER BY s.value desc;

USERNAME SID VALUE
---------------------------- -----
JOHLMAN 152 20745
NROBERTS 103 4944
JOHLMAN 167 4330
LROLLINS 87 3699
JENGMAN 130 3694
JPATEL 66 3344
NALAPATI 73 3286
SQL>

Listing 22-9 shows that CPU usage isn’t uniformly spread across the users. You need to investi-
gate why one user is using such a significant quantity of resources. If you need to, you can control
CPU usage by a single user or a group of users by using the Database Resource Manager, as
explained in Chapter 11. You can also find out session-level CPU usage information by using the
V$SESSTAT view, as shown in Listing 22-10.

Listing 22-10. Determining Session-Level CPU Usage

SQL> SELECT sid, s.value "Total CPU Used by this Session"
2 FROM V$SESSTAT S
3 WHERE S..statistic# = 12
4* ORDER BY S,value DESC;

SID Total CPU Used by this Session
----- ------------------------------
496 27623
542 21325
111 20814
731 17089
424 15228

SQL>

What Is the CPU Time Used For?
It would be a mistake to treat all CPU time as equal. CPU time is generally understood as the
processor time taken to perform various tasks, such as the following:

• Loading SQL statements into the library cache

• Searching the shared pool for parsed versions of SQL statements

• Parsing the SQL statements

• Querying the data dictionary

• Reading data from the buffer cache

• Traversing index trees to fetch index keys

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1026

4517CH22.qxd 8/19/05 11:15 AM Page 1026

The total CPU time used by an instance (or a session) can be viewed as the sum of the following
components:

total CPU time = parsing CPU usage + recursive CPU usage + other CPU usage

Ideally, your total CPU usage numbers should show a small proportion of the first two cate-
gories of CPU usage—parsing and recursive CPU usage. For example, for a session-wide estimate
of CPU usage, you can run the query shown in Listing 22-11.

Listing 22-11. Decomposition of Total CPU Usage

SQL> SELECT name,value FROM V$SYSSTAT
2 WHERE NAME IN ('CPU used by this session',
3 'recursive cpu usage',
4 *'parse time cpu');

NAME VALUE

recursive cpu usage 4713085
CPU used by this session 98196187
parse time cpu 132947
3 rows selected.
SQL>

In this example, the sum of recursive CPU usage and parse time CPU usage is a small propor-
tion of total CPU usage. You need to be concerned if the parsing or recursive CPU usage is a
significant part of total CPU usage. Let’s see how you can go about reducing the CPU usage attri-
butable to these various components.

■Note In the following examples, you can examine CPU usage at the instance level by using the V$SYSSTAT
view or at an individual session level by using the V$SESSTAT view. Just remember that the column “total CPU
used by this session” in the V$SYSSTAT view refers to the sum of the CPU used by all the sessions combined.

Parse Time CPU Usage

As you learned at the beginning of this chapter, parsing is an expensive operation that you should
reduce to a minimum. In the following example, the parse time CPU usage is quite low as a percent-
age of total CPU usage. The first query tells you that the total CPU usage in your instance is
49159124:

SQL> SELECT name, value FROM V$SYSSTAT
2* WHERE name LIKE '%CPU%';
NAME VALUE
--
CPU used when call started 13220745
CPU used by this session 49159124
2 rows selected.
SQL>

The next query shows that the parse time CPU usage is 96431, which is an insignificant propor-
tion of total CPU usage in your database:

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1027

4517CH22.qxd 8/19/05 11:15 AM Page 1027

SQL> SELECT name, value FROM V$SYSSTAT
2 WHERE name LIKE '%parse%';

NAME VALUE

parse time cpu 96431
parse time elapsed 295451
parse count (total) 3147900
parse count (hard) 29139
4 rows selected.
SQL>

Listing 22-12 shows an example of a session whose CPU usage is predominantly due to high
parse time.

Listing 22-12. Determining Parse Time CPU Usage

SQL> SELECT a.value " Tot_CPU_Used_This_Session",
2 b.value "Total_Parse_Count",
3 c.value "Hard_Parse_Count",
4 d.value "Parse_Time_CPU"
5 FROM v$sysstat a,
6 v$sysstat b,
7 v$sysstat c,
8 v$sysstat d
9 WHERE a.name = 'CPU used by this session'
10 AND b.name = 'parse count (total)'
11 AND c.name = 'parse count (hard)'
12* AND d.name = 'parse time cpu';

Tot_CPU_Used Total_Parse_Count Hard_Parse_Count Parse_Time_CPU
This_Session
------------------------------ -----------------------------------

2240 53286 281 1486
SQL>

Parse time CPU in the preceding example is fully two-thirds of the total CPU usage. Obviously,
you need to be concerned about the high rates of parsing, even though most of the parses are
soft parses. The next section shows you what you can do to reduce the amount of parsing in your
database.

Reducing Parse Time CPU Usage

If parse time CPU is the major part of total CPU usage, you need to reduce this by performing the
following steps:

1. Use bind variables and remove hard-coded literal values from code, as explained in the
“Optimizing the Library Cache” section earlier in this chapter.

2. Make sure you aren’t allocating too much memory for the shared pool. Remember that even
if you have an exact copy of a new SQL statement in your library cache, Oracle has to find
it by scanning all the statements in the cache. If you have a zillion relatively useless state-
ments sitting in the cache, all they’re doing is slowing down the instance by increasing the
parse time.

3. Make sure you don’t have latch contention on the library cache, which could result in
increased parse time CPU usage.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1028

4517CH22.qxd 8/19/05 11:15 AM Page 1028

4. If your TKPROF output or one of the queries shown previously indicates that total parse
time CPU is as high as 90 percent or more, check to make sure all the tables in the queries
have been analyzed recently. If you don’t have statistics on some of the tables, the parsing
process generates the statistics, but the parse CPU usage time goes up dramatically.

Recursive CPU Usage

Recursive CPU usage is mostly for data dictionary lookups and for executing PL/SQL programs.
Thus, if your application uses a high number of packages and procedures, you’ll see a significant
amount of recursive CPU usage.

In the following example, there’s no need for alarm, because the percentage of recursive CPU
usage is only about 5 percent of total CPU usage:

SQL> SELECT name, value FROM V$SYSSTAT
2 WHERE name IN ('CPU used by this session',
3* 'recursive cpu usage');

NAME VALUE
-- -------
recursive cpu usage 4286925
CPU used by this session 84219625
2 rows selected.
SQL>

If the recursive CPU usage percentage is a large proportion of total CPU usage, you may want
to make sure the shared pool memory allocation is adequate. However, a PL/SQL-based application
will always have a significant amount of recursive CPU usage.

■Note A high number of recursive SQL statements may also indicate that Oracle is busy with space manage-
ment activities, such as allocating extents. This has a detrimental effect on performance. You can avoid this
problem by increasing the extent sizes for your database objects. This is another good reason to choose locally
managed tablespaces, which cut down on the number of recursive SQL statements.

Memory
Operating system physical memory holds all the data and programs by loading them from disk.
System CPU executes programs only if they’re loaded into the physical memory. If excessive memory
usage occurs, the operating system will use virtual memory, which is storage space on secondary
storage media such as disks, to hold temporarily some of the data and/or programs being used. The
space for the virtual memory is called swap space. When the system needs room in the physical or
main memory, it “swaps out” some programs to the swap area, thus freeing up additional physical
memory for an executing program.

The operating system swaps out data in units called pages, which are the smallest units of
memory that can be used in transferring memory back and forth between physical memory and the
swap area. When the operating system needs a page that has been swapped out to the swap area, a
page fault is said to occur. Page faults are commonly referred to as simply “paging,” and involve the
transfer of data from virtual memory back to the physical memory. An excessive amount of paging
results in degradation of operating system performance, and thus affects Oracle instance perform-
ance as well.

One of the best ways to check operating system memory performance is by using the vmstat
utility, which was explained in Chapter 3.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1029

4517CH22.qxd 8/19/05 11:15 AM Page 1029

Disk I/O
The way you configure your disk system has a profound impact on your I/O rates. You have to
address several issues when you’re planning your disk system. Important factors that have a
bearing on your I/O are as follows:

• Choice of RAID configuration: Chapter 3 covered RAID system configuration in detail. Just
remember that a RAID 5 configuration doesn’t give you ideal I/O performance if your appli-
cation involves a large number of writes. For faster performance, make sure you use a
configuration that involves striping your disks, preferably according to the Oracle guidelines.

• Raw devices or operating system file systems: Under some circumstances, you can benefit by
using raw devices, which bypass the operating system buffer cache. Raw devices have their
own drawbacks, though, including limited backup features, and you want to be sure the ben-
efits outweigh the drawbacks. Raw devices in general provide faster I/O capabilities and give
better performance for a write-intensive application. You might also want to consider alter-
native file systems such as Veritas VXFSS, which helps large I/O operations through its direct
I/O option.

• I/O size: I/O size is in terms of the Oracle block size. The minimum size of I/O depends on
your block size, and the maximum size depends on the DB_FILE_MULTIBLOCK_READ_COUNT ini-
tialization parameter. If your application is OLTP based, the I/O size needs to be small, and if
your application is oriented toward a DSS, the I/O size needs to be much larger. In Oracle
Database 10.2, the database automatically tunes this parameter, if you don’t set it.

• Logical volume stripe sizes: Stripe size (or stripe width) is a function of the stripe depth and
the number of drives in the striped set. If you stripe across multiple disks, your database’s
I/O performance will be higher and its load balancing will be enhanced. Make sure that the
stripe size is larger than the average I/O request; otherwise, you’ll be making multiple I/Os
for a single I/O request by Oracle. If you have multiple concurrent I/O requests, your stripe
size should be much larger than the I/O size. Most modern LVMs can dynamically reconfig-
ure the stripe size.

• Number of controllers and disks: The number of spindles and the number of controllers are
both important variables in determining disk performance. Even if you have a large number
of spindles, you could conceivably run into contention at the controller level.

• Distribution of I/O: Your goal should be to avoid a lopsided distribution of I/O in your disk
system. If you’re using an LVM or using striping at the hardware level, you don’t have a whole
lot to worry about in this area. However, if you aren’t using an LVM or using striping at the
hardware level, you should manually arrange your data files on the disks such that the I/O
rate is fairly even across the system. Note that your tables and indexes are usually required to
be in different tablespaces, but there is no rule that they have to be placed on different disks.
Because the index is read before the table, they can coexist on the same disk.

Measuring I/O Performance
You have a choice of several excellent tools to measure I/O performance. Several operating system
utilities are easy to use and give you information about how busy your disks are. Iostat and sar are
two of the popular operating system utilities that measure disk performance. I explained how to use
both these tools in Chapter 3.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1030

4517CH22.qxd 8/19/05 11:15 AM Page 1030

Is the I/O Optimally Distributed?
From the sar output, you can figure out if you’re using the storage subsystem heavily. If the number
of waits is higher than the number of CPUs, or if the service times are high (say, greater than 20 mil-
liseconds), then your system is facing contention at the I/O level. One of the most useful pieces of
information you can get is by using the sar –d command to find out if you’re using any of your disks
excessively compared to other disks in the system. Once you identify such hot spots, you can move
the data files to less busy drives, thereby spreading the load more evenly.

The following is the output of a sar –d command that shows extremely high queue values.
Even at peak levels, the avque column value should be less than 2. Here, it is 61.4. Obviously, some-
thing is happening on the file system named c2t6d0 that’s showing up as a high queue value:

$ sar -d 10 5
HP-UX finance1 B.11.00 A 9000/800 07/03/05
17:27:13 device %busy avque r+w/s blks/s avwait avserv
17:27:23 c2t6d0 100 61.40 37 245 4.71 10.43

c5t6d0 20.38 0.50 28 208 4.92 9.54
c2t6d0 100 61.40 38 273 4.55 9.49
c5t6d0 18.28 0.50 27 233 4.46 7.93
c0t1d0 0.10 0.50 4 33 4.99 0.81

. . .
$

You can obtain an idea about the I/O distribution in your system by using the query in
Listing 22-13.

Listing 22-13. Determining I/O Distribution in the Database

SQL> SELECT d.name,
2 f.phyrds reads,
3 f.phywrts wrts,
4 (f.readtim / decode(f.phyrds,0,-1,f.phyrds)) readtime,
5 (f.writetim / decode(f.phywrts,0,-1,phywrts)) writetime
6 FROM
7 v$datafile d,
8 v$filestat f
9 WHERE
10 d.file# = f.file#
11 ORDER BY
12* d.name;

NAME READS WRTS READTIME WRITETIME
----------------------------- ----- ---- ---------- ----------
/pa01/oradata/pa/lol_i_17.dbf 23 9 .608695652 .222222222
/pa01/oradata/pa/lol_i_18.dbf 18 7 .277777778 0
...
SQL>

■Caution Excessive reads and writes on some disks indicate that there might be disk contention in your I/O
system.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1031

4517CH22.qxd 8/19/05 11:15 AM Page 1031

Reducing Disk Contention
If there’s severe I/O contention in your system, you can undertake some of the following steps,
depending on your present database configuration:

• Increase the number of disks in the storage system.

• Separate the database and the redo log files.

• For a large table, use partitions to reduce I/O.

• Stripe the data either manually or by using a RAID disk-striping system.

• Invest in cutting-edge technology, such as file caching, to avoid I/O bottlenecks.

• Consider using the new Automatic Storage Management system, which is discussed in
Chapter 17.

The Oracle SAME Guidelines for Optimal Disk Usage
Oracle provides you with the Stripe and Mirror Everything (SAME) guidelines for optimal disk
usage. This methodology advocates striping all files across all disks and mirroring all data to achieve
a simple, efficient, and highly available disk configuration. Striping across all the available disks
aims to spread the load evenly and avoid hot spots. The SAME methodology also recommends
placing frequently accessed data on the outer half of the disks. The goal of the SAME disk storage
strategy is to eliminate I/O hot spots and maximize I/O bandwidth.

Network Performance
You may want to rule out the network as the culprit during a poor performance period by checking
if it’s overloaded and exhibiting excessive latency. You can use the operating system tool netstat
to check your network performance, as I explained in Chapter 3. Excessive network round trips
necessitated by client messages could clog your network and increase the latency, thus indirectly
affecting the CPU load on your system. In cases such as this, you must try and reduce the network
round trips by using array inserts and array fetches.

Measuring Instance Performance
One of the trickiest parts of the DBA’s job is to judge the performance of the Oracle instance accu-
rately. Trainers and the manuals advise you to perform diligent proactive tuning, but in reality most
tuning efforts are reactive—they’re intensive attempts to fix problems that perceptibly slow down a
database and cause user complaints to increase. You look at the same things whether you’re doing
proactive or reactive tuning, but proactive tuning gives you the luxury of making decisions in an
unhurried and low-stress environment. Ideally, you should spend more than two-thirds of your
total tuning time on proactive planning. As you do so, you’ll find that you’re reacting less and less
over time to sudden emergencies.

Oracle Database 10g uses the concept of DB time (discussed in detail in Chapter 17) to deter-
mine how well the instance is performing. You can look at some statistics to see how well the
database is performing. These statistics fall into two groups: database hit ratios and database wait
statistics. If you’re consistently seeing numbers in the high 90s for the various hit ratios you saw ear-
lier in this chapter, you’re usually doing well, according to this approach.

However, the big question is this: Do high hit ratios automatically imply a perfectly tuned and
efficient database? The surprising answer is no. To understand this confusing fact, you need to look
at what hit ratios indicate. The following sections examine the two main groups of performance

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1032

4517CH22.qxd 8/19/05 11:15 AM Page 1032

Database Hit Ratios
Database hit ratios are the most commonly used measures of performance. These include the
buffer cache hit ratio, the library cache and dictionary cache hit ratios, the latch hit ratio, and the
disk sort ratios. These hit ratios don’t indicate how well your system is performing. They’re broad
indicators of proper SGA allocation, and they may be high even when the system as a whole is per-
forming poorly. The thing to remember is that the hit ratios only measure such things as how
physical reads compare with logical reads, and how much of the time a parsed version of a state-
ment is found in memory. As to whether the statements themselves are efficient or not, the hit
ratios can’t tell you anything. When your system is slow due to bottlenecks, the hit ratios are of little
help, and you should turn to a careful study of wait statistics instead.

■Caution Even if you have a 99.99 percent buffer cache hit ratio, you may still have major inefficiencies in your
application. What if you have an extremely high number of “unnecessary” logical reads? This makes your buffer
cache hit ratio look good, as that hit ratio is defined as physical reads over the sum of logical reads. Although you
may think your application should run faster because you’re doing most of your reads from memory instead of
disk, this may well not happen. The reason is that even if you’re doing logical reads, you’re still burning up the CPU
units to do the unnecessary logical reads. In essence, by focusing zealously on the buffer cache hit ratio to relieve
the I/O subsystem, you could be an unwitting party to a CPU usage problem. Please read Cary Millsap’s interesting
article, “Why You Should Focus on LIOs instead of PIOs” (http://www.hotsos.com/e-library/abstract.
php?id=7), which explains why a high logical I/O level could be a major problem.

When faced with a slow-performing database or a demand for shorter response times, Oracle
DBAs have traditionally looked to increase their database hit ratios and tune the database by adjust-
ing a host of initialization parameters (such as SGA allocations). More recently, there’s been
awareness that the key area to focus on is clearing up database bottlenecks that contribute to a
higher response time.

The total response time for a query is the time Oracle takes to execute it, plus the time the
process spends waiting for resources such as latches, data buffers, and so on. For a database
instance to perform well, ideally your application should spend little time waiting for access to
critical resources.

Let’s now turn to examining the critical wait events in your database, which can be real show-
stoppers on a busy day in a production instance.

Database Wait Statistics
When your users complain that the database is crawling and they can’t get their queries returned
fast enough, there’s no use in your protesting that your database is showing high hit ratios for the
shared pool and the buffer cache (and the large pool and redo log buffer as well). If the users are
waiting for long periods of time to complete their tasks, then the response time will be slow, and
you can’t say that the database is performing well, the high hit ratios notwithstanding.

■Note For an interesting review of the Oracle wait analysis (the wait interface), please read one of the early
papers in this area, titled “Yet Another Performance Profiling Method (or YAPP-Method),” by Anjo Kolk, Shari
Yamaguchi, and Jim Viscusi. It’s available at the OraPerf web site at http://www.oraperf.com (a free registra-
tion is required).

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1033

4517CH22.qxd 8/19/05 11:15 AM Page 1033

Once it starts executing a SQL statement, an Oracle process doesn’t always get to work on the
execution of the statement without any interruptions. Often, the process has to pause or wait for
some resource to be released before it can continue its execution. Thus, an active Oracle process is
doing one of the following at any given time:

• The process is executing the SQL statement.

• The process is waiting for something (for example, a resource such as a database buffer or a
latch). It could be waiting for an action such as a write to the buffer cache to complete.

That’s why the response time—the total time taken by Oracle to finish work—is correctly
defined as follows:

response time = service time + wait time

When you track the total time taken by a transaction to complete, you may find that only part
of that time was taken up by the Oracle server to actually “do” something. The rest of the time, the
server may have been waiting for some resource to be freed up or waiting for a request to do some-
thing. This busy resource may be a slow log writer or a database writer process. The wait event
may also be due to unavailable buffers or latches. The wait events in the V$SYSTEM_EVENT view
(instance-level waits) and the V$SESSION_EVENT view (session-level waits) tell you what the wait
time is due to (full table scans, high number of library cache latches, and so on). Not only do the
wait events tell you what the wait time in the database instance is due to, but they also tell you a lot
about bottlenecks in the network and the application.

■Note It’s important to understand that the wait events are only the symptoms of problems, most likely within
the application code. The wait events show you what’s slowing down performance, but not why a certain wait
event is showing up in large numbers. It’s up to you to investigate the SQL code to find out the real cause of the
performance problems.

Four dynamic performance views contain wait information: V$SESSION, V$SYSTEM_EVENT,
V$SESSION_EVENT, and V$SESSION_WAIT. These four views list just about all the events the
instance was waiting for and the duration of these waits. Understanding these wait events is
essential for resolving performance issues.

Let’s look at the common wait events in detail in the following sections. Remember that the
four views show similar information but focus on different aspects of the database, as you can see
from the following summary. The wait events are most useful when you have timed statistics turned
on. Otherwise, the wait events only have the number of times they occurred, not the length of time
they consumed. Without timing the events, you can’t tell if a wait event was indeed a contributing
factor in a system slowdown.

■Tip Use the wait event views (wait interface) for examining current and recent performance issues in your
instance. For comprehensive analysis of most performance problems, you need to use the ADDM, which analyzes
the AWR hourly snapshots.

Oracle wait interface analysis has garnered quite a bit of attention in the last few years. There
are entire books dedicated to Oracle waits. I discuss the important performance topic of Oracle wait
analysis later in this chapter, in the section “Analyzing Instance Performance.” Ideally, all sessions
should be on the CPU, with zero time spent waiting for resources such as I/O. However, remember
that every working instance will have some kind of wait. It’s unrealistic to expect to work towards a

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1034

4517CH22.qxd 8/19/05 11:15 AM Page 1034

zero wait system. The key question should not be whether you have any Oracle wait events occur-
ring, but rather if there are excessive waits.

Wait Events and Wait Classes
Any time a server process waits for an event to complete, it’s classified as a wait event. There are
more than 860 Oracle wait events in Oracle Database 10g. The most common wait events are those
caused by resource contention such as latch contention, buffer contention, and I/O contention.

A wait class is a grouping of related wait events, and every wait event belongs to a wait class.
Important wait classes include Administrative, Application, Concurrency, Configuration, Idle,
Network, System I/O, and User I/O. For example, the Administrative wait class includes lock waits
caused by row-level locking. The User I/O class of waits refers to waits for blocks to be read off a disk.
Using wait classes helps you move quickly to the root cause of a problem in your database by limiting
the focus of further analysis. Here’s a summary of the main wait classes in Oracle Database 10g:

• Administrative: Waits caused by administrative commands, such as rebuilding an index, for
example.

• Application: Waits due to the application code.

• Cluster: Waits related to Real Application Cluster management.

• Commit: Consists of the single wait event log file sync, which is a wait caused by commits
in the database.

• Concurrency: Waits for database resources that are used for locking; for example, latches.

• Configuration: Waits caused by database or instance configuration problems, including a low
shared-pool memory size, for example.

• Idle: Idle wait events indicate waits that occur when a session isn’t active; for example, the
'SQL*Net message from client' wait event.

• Network: Waits incurred during network messaging.

• Other: Miscellaneous waits.

• Scheduler: Resource Manager-related waits.

• System I/O: Waits for background-process I/O, including the database writer background
process (DBWR) wait for the db file parallel write event. Also included are archive-
log–related waits and redo log read-and-write waits.

• User I/O: Waits for user I/O. Includes the db file sequential read and db file scattered
read events.

Analyzing Instance Performance
One of the first things you can do to measure instance performance efficiency is to determine the
proportion of total time the database is spending working compared to the proportion of time it’s
merely waiting for resources. The V$SYSMETRIC view displays the system metric values for the
most current time interval. The following query using the V$SYSMETRIC view reveals a database
instance where waits are taking more time than the instance CPU usage time:

SQL> SELECT METRIC_NAME, VALUE
FROM V$SYSMETRIC
WHERE METRIC_NAME IN ('Database CPU Time Ratio',
'Database Wait Time Ratio') AND
INTSIZE_CSEC =
(select max(INTSIZE_CSEC) from V$SYSMETRIC);

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1035

4517CH22.qxd 8/19/05 11:15 AM Page 1035

METRIC_NAME VALUE
--
Database Wait Time Ratio 72
Database CPU Time Ratio 28
SQL>

Once you realize that the total instance wait time ratio is much higher than the CPU time ratio,
you can explore things further. Wait classes provide a quick way to figure out why the database
instance is performing poorly. In the example shown in Listing 22-14, you can easily see that user
I/O waits are responsible for most of the wait time. You can establish this fact by looking at the
PCT_TIME column, which gives you the percentage of time attributable to each wait class. Total waits
are often misleading, as you can see by looking at the NETWORK wait class. In percentage terms, net-
work waits are only 1 percent, although total network waits constitute more than 51 percent of total
waits in this instance.

Listing 22-14. Determining Total Waits and Percentage Waits by Wait Class

SQL> SELECT WAIT_CLASS,
2 TOTAL_WAITS,
3 round(100 * (TOT_WAITS / SUM_WAITS),2) PCT_TOTWAITS,
4 ROUND((TIME_WAITED / 100),2) TOT_TIME_WAITED,
5 round(100 * (TOT_TIME_WAITED / SUM_TIME),2) PCT_TIME
6 FROM
7 (select WAIT_CLASS,
8 TOT_WAITS,
9 TOT_TIME_WAITED
10 FROM V$SYSTEM_WAIT_CLASS
11 WHERE WAIT_CLASS != 'Idle'),
12 (select sum(TOT_WAITS) SUM_WAITS,
13 sum(TOT_TIME_WAITED) SUM_TIME
14 from V$SYSTEM_WAIT_CLASS
15 where WAIT_CLASS != 'Idle')
16* ORDER BY PCT_TIME DESC;

WAIT_CLASS TOTAL_WAITS PCT_TOT_WAITS TOT_TIME_WAITED PCT_TIME
------------- ----------- ------------- --------------- --------
User I/O 6649535191 45.07 46305770.5 84.42
Other 394490128 2.67 5375324.17 9.8
Concurrency 78768788 .53 1626254.9 2.96
Network 7546925506 51.15 547128.66 1
Application 2012092 .01 449945.5 .82
Commit 15526036 .11 351043.3 .64
Configuration 12898465 .09 116029.85 .21
System I/O 53005529 .36 78783.64 .14
Administrative 25 0 7.6 0
Scheduler 1925 0 .15 0
10 rows selected.
SQL>

Using V$ Tables for Wait Information
The key dynamic performance tables for finding wait information are the V$SYSTEM_EVENT,
V$SESSION_EVENT, V$SESSION_WAIT, and the V$SESSION views. The first two views show the
waiting time for different events.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1036

4517CH22.qxd 8/19/05 11:15 AM Page 1036

The V$SYSTEM_EVENT view shows the total time waited for all the events for the entire system
since the instance started up. The view doesn’t focus on the individual sessions experiencing waits,
and therefore it gives you a high-level view of waits in the system. You can use this view to find out
what the top instance-wide wait events are. You can calculate the top n waits in the system by divid-
ing the event’s wait time by the total wait time for all events.

The three key columns of the V$SYSTEM_EVENT view are total_waits, which gives the total
number of waits; time_waited, which is the total wait time per session since the instance started;
and average_wait, which is the average wait time by all sessions per event.

The V$SESSION_EVENT view is similar to the V$SYSTEM_EVENT view, and it shows the total
time waited per session. All the wait events for an individual session are recorded in this view for the
duration of that session. By querying this view, you can find out the specific bottlenecks encoun-
tered by each session.

The third dynamic view is the V$SESSION_WAIT view, which shows the current waits or just-
completed waits for sessions. The information on waits in this view changes continuously based
on the types of waits that are occurring in the system. The real-time information in this view pro-
vides you with tremendous insight into what’s holding up things in the database right now. The
V$SESSION_WAIT view provides detailed information on the wait event, including details such as
file number, latch numbers, and block number. This detailed level of information provided by the
V$SESSION_WAIT view enables you to probe into the exact bottleneck that’s slowing down the
database. The low-level information helps you zoom in on the root cause of performance problems.

The following columns from the V$SESSION_WAIT view are important for troubleshooting
performance issues:

• EVENT: These are the different wait events described in the next section (for example, latch
free and buffer busy waits).

• P1, P2, P3: These are the additional parameters that represent different items, depending on
the particular wait event. For example, if the wait event is db file sequential read, P1
stands for the file number, P2 stands for the block number, and P3 stands for the number of
blocks. If the wait is due to a latch free event, P1 stands for the latch address, P2 stands for
the latch number, and P3 stands for the number of attempts for the event.

• WAIT_CLASS_ID: Identifies the wait class.

• WAIT_CLASS#: Number of the wait class.

• WAIT_CLASS: Name of the wait class.

• WAIT_TIME: This is the wait time in seconds if the state is waited known time.

• SECONDS_IN_WAIT: This is the wait time in seconds if the state is waiting.

• STATE: The state could be waited short time, waited known time, or waiting, if the session is
waiting for an event.

The fourth wait-related view is the V$SESSION view. Not only does this view provide many
details about the session, it also provides significant wait information as well. The V$SESSION
view contains all the columns of the V$SESSION_WAIT view, plus a number of other important
session-related columns. Because of this overlap of wait information in the V$SESSION and the
V$SESSION_WAIT views, you can use the V$SESSION view directly to look for most of the wait-
related information, without recourse to the V$SESSION_WAIT view. You can start analyzing the
wait events in your system by first querying the V$SYSTEM_EVENT view to see if any significant
wait events are occurring in the database. You can do this by running the query shown in
Listing 22-15.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1037

4517CH22.qxd 8/19/05 11:15 AM Page 1037

Listing 22-15. Using the V$SYSTEM_EVENT View to View Wait Events

SQL> SELECT event, time_waited, average_wait
2 FROM V$SYSTEM_EVENT
3 GROUP BY event, time_waited, average_wait
4* ORDER BY time_waited DESC;

EVENT TIME_WAITED AVERAGE_WAIT
--
rdbms ipc message 24483121 216.71465
SQL*Net message from client 18622096 106.19049
PX Idle Wait 12485418 205.01844
pmon timer 3120909 306.93440
smon timer 3093214 29459.18100
PL/SQL lock timer 3024203 1536.68852
db file sequential read 831831 .25480
db file scattered read 107253 .90554
free buffer waits 52955 43.08787
log file parallel write 19958 2.02639
latch free 5884 1.47505
...
58 rows selected.
SQL>

This example shows a simple system with hardly any waits other than the idle type of events
and the SQL*Net wait events. There aren’t any significant I/O-related or latch-contention–related
wait events in this database. The db file sequential read (caused by index reads) and the db file
scattered read (caused by full table scans) wait events do seem somewhat substantial, but if you
compare the total wait time contributed by these two events to the total wait time since the instance
started, they don’t stand out. Furthermore, the AVERAGE_WAIT column shows that both these waits
have a low average wait time (caused by index reads). I discuss both these events, along with several
other Oracle wait events, later in this chapter, in the section “Important Oracle Wait Events.” How-
ever, if your query on a real-life production system shows significant numbers for any nonidle wait
event, it’s probably a good idea to find out the SQL statements that are causing the waits. That’s
where you have to focus your efforts to reduce the waits. You have different ways to obtain the asso-
ciated SQL for the waits, as explained in the following section.

Obtaining Wait Information
Obtaining wait information is as easy as querying the related dynamic performance tables. For
example, if you wish to find out quickly the types of waits different user sessions (session-level wait
information) are facing and the SQL text of the statements they’re executing, you can use the follow-
ing query:

SQL> SELECT s.username,
2 t.sql_text, s.event
3 FROM V$SESSION s, V$SQLTEXT t
4 WHERE s.sql_hash_value = t.hash_value
5 AND s.sql_address = t.address
6 AND s.type <> 'BACKGROUND'
7* ORDER BY s.sid,t.hash_value,t.piece;

■Note You need to turn on statistics collection by either setting the initialization parameter TIMED_STATISTICS
to TRUE or setting the initialization parameter STATISTICS_LEVEL to TYPICAL or ALL.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1038

4517CH22.qxd 8/19/05 11:15 AM Page 1038

If you want a quick instance-wide wait event status, showing which events were the biggest
contributors to total wait time, you can use the query shown in Listing 22-16 (several idle events are
listed in the output, but I don’t show them here).

Listing 22-16. Instance-Wide Waits Sorted by Total Wait Time

SQL> SELECT event, total_waits,time_waited
2 FROM V$SYSTEM_EVENT
3 WHERE event NOT IN
4 ('pmon timer','smon timer','rdbms ipc reply','parallel deque
5 wait’,'virtual circuit','%SQL*Net%','client message','NULL event')
6* ORDER BY time_waited DESC;

EVENT TOTAL_WAITS TIME_WAITED
--
db file sequential read 35051309 15965640
latch free 1373973 1913357
db file scattered read 2958367 1840810
enqueue 2837 370871
buffer busy waits 444743 252664
log file parallel write 146221 123435
SQL>

The preceding query shows that waits due to the db file scattered read wait event account
for most of the waits in this instance. The db file sequential read wait event, as you’ll learn
shortly, is caused by full table scans. It’s somewhat confusing in the beginning when you’re trying
to use all the wait-related V$ views, which all look similar. Here’s a quick summary of how you go
about using the key wait-related Oracle Database 10g dynamic performance views.

First, look at the V$SYSTEM_EVENT view and rank the top wait events by the total amount of
time waited, as well as the average wait time for that event. Start investigating the top waits in terms
of the percentage of total wait time. You can also look at any AWR reports you may have, because
the AWR also lists the top five wait events in the instance.

Next, find out more details about the specific wait event that’s at the top of the list. For exam-
ple, if the top event is buffer busy waits, look in the V$WAITSTAT view to see which type of buffer
block (data block, undo block, and so on) is causing the buffer busy waits (a simple SELECT * from
V$WAITSTAT gets you all the necessary information). For example, if the undo-block buffer waits
make up most of your buffer busy waits, then the undo segments are at fault, not the data blocks.

Finally, use the V$SESSION view to find out the exact objects that may be the source of a prob-
lem. For example, if you have a high amount of db file scattered read-type waits, the V$SESSION
view will give you the file number and block number involved in the wait events. In the following
example, the V$SESSION view is used to find out who is doing the full table scans showing up as the
most important wait events right now. As explained earlier, the db file scattered read wait event
is caused by full table scans.

SQL> SELECT sid, sql_address, sql_hash_value
FROM V$SESSION WHERE event = ‘db file scattered read’;

Here’s an example that shows how to find out the current wait event for a given session:

SQL> SELECT sid, state, event, wait_time, seconds_in_wait
2 FROM v$session
3* WHERE sid=1418;

SID STATE EVENT WAIT_TIME SECONDS_IN_WAIT
--- ------ ----------------------- --------- ---------------
1418 WAITING db file sequential read 0 0

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1039

4517CH22.qxd 8/19/05 11:15 AM Page 1039

The value of 0 under the WAIT_TIME column indicates that the wait event db file sequential
read is occurring for this session. When the wait event is over, you’ll see values for the WAIT_TIME and
the SECONDS_IN_WAIT columns.

You can also use the V$SQLAREA view to find out which SQL statements are responsible for
high disk reads. If latch waits predominate, you should be looking at the V$LATCH view to gain
more information about the type of latch that’s responsible for the high latch wait time:

SQL> SELECT sid, blocking_session, username,
2 event, seconds_in_wait siw
3 FROM V$SESSION
4* WHERE blocking_session_status = 'VALID';

SID BLOCKING_SESS USERNAME EVENT SIW
---- ------------- -------- ----------------------------- -----
1218 1527 UCR_USER enq: TX - row lock contention 23
1400 1400 APPOWNER latch free 0
SQL>

The V$SESSION_WAIT_HISTORY View
The V$SESSION_WAIT_HISTORY view holds information about the last ten wait events for each
active session. The other wait-related views, such as the V$SESSION and the V$SESSION_WAIT,
show you only the wait information for the most recent wait. This may be a short wait, thus escap-
ing your scrutiny. Here’s a sample query using the V$SESSION_WAIT_HISTORY view:

SQL> SELECT seq#, event, wait_time, p1, p2, p3
2 FROM V$SESSION_WAIT_HISTORY
3 WHERE sid = 988
4* ORDER BY seq#;

SEQ# EVENT WAIT_TIME P1 P2 P3
---- ----------------------- --------- ----- ----- ------___
1 db file sequential read 0 52 21944
2 db file sequential read 0 50 19262
3 latch: shared pool 0 1.3835E+19 198 0
4 db file sequential read 0 205 21605
5 db file sequential read 4 52 13924
6 db file sequential read 1 49 29222
7 db file sequential read 2 52 14591
8 db file sequential read 2 52 12723
9 db file sequential read 0 205 11883
10 db file sequential read 0 205 21604
10 rows selected.
SQL>

Note that a zero value under the WAIT_TIME column means that the session is waiting for a
specific wait event. A nonzero value represents the time waited for the last event.

Analyzing Waits with Active Session History
The V$SESSION_WAIT view tells you what resource a session is waiting for. The V$SESSION view
also provides significant wait information for active sessions. However, neither of these views pro-
vides you with historical information about the waits in your instance. Once the wait is over, you
can no longer view the wait information using the V$SESSION_WAIT view. The waits are so fleeting

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1040

4517CH22.qxd 8/19/05 11:15 AM Page 1040

that by the time you query the views, the wait in most times is over. The new Active Session History
(ASH) feature, by recording session information, enables you to go back in time and review the
history of a performance bottleneck in your database. Although the AWR provides hourly snapshots
of the instance by default, you won’t be able to analyze events that occurred five or ten minutes ago,
based on AWR data. This is where the ASH information comes in handy. ASH samples the V$SESSION
view every second and collects the wait information for all active sessions. An active session is
defined as a session that’s on the CPU or waiting for a resource. You can view the ASH session statis-
tics through the view V$ACTIVE_SESSION_HISTORY, which contains a single row for each active
session in your instance. ASH is a rolling buffer in memory, with older information being overwrit-
ten by new session data.

Every 60 minutes, the MMON background process flushes filtered ASH data to disk, as part of
the hourly AWR snapshots. If the ASH buffer is full, the MMNL background process performs the
flushing of data. Once the ASH data is flushed to disk, you won’t be able to see it in the V$ACTIVE_
SESSION_HISTORY view. You’ll now have to use the DBA_HIST_ACTIVE_SESS_HISTORY view to
look at the historical data.

In the following sections, I show how you can query the V$ACTIVE_SESSION_HISTORY view to
analyze current (recent) active session history.

Using the V$ACTIVE_SESSION_HISTORY View
The V$ACTIVE_SESSION_HISTORY view provides a window on the ASH data held in memory by
the Oracle instance before it’s flushed as part of the hourly AWR snapshots. You can use it to get
information on things such as the SQL that’s consuming the most resources in the database, the
particular objects causing the most waits, and the identities of the users who are waiting the most.

In the following sections I show how to use the ASH information to gain valuable insights into
the nature of the waits in your instance, including answering such questions as the objects with the
highest waits, the important wait events in your instance, and the users waiting the most.

Objects with the Highest Waits
The following query identifies the objects causing the most waits and the type of events the objects
waited for during the last 15 minutes:

SQL> SELECT o.object_name, o.object_type, a.event,
2 SUM(a.wait_time +
3 a.time_waited) total_wait_time
4 FROM v$active_session_history a,
5 dba_objects o
6 WHERE a.sample_time between sysdate - 30/2880 and sysdate
7 AND a.current_obj# = o.object_id
8 GROUP BY o.object_name, o.object_type, a.event
9* ORDER BY total_wait_time;

OBJECT_NAME OBJECT_TYPE EVENT TOTAL_WAIT_TIME
------------------- --
UC_ADDRESS TABLE SQL*Net message to client 2
PERS_PHONES TABLE db file sequential read 8836
PAY_FK_I INDEX db file sequential read 9587
UC_STAGING TABLE log file sync 23633
PERSONNEL TABLE db file sequential read 43612
SQL>

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1041

4517CH22.qxd 8/19/05 11:15 AM Page 1041

Most Important Wait Events

The following query lists the most important wait events in your database in the last 15 minutes:

SQL> SELECT a.event,
2 SUM(a.wait_time +
3 a.time_waited) total_wait_time
4 FROM v$active_session_history a
5 WHERE a.sample_time between
6 sysdate - 30/2880 and sysdate
7 GROUP BY a.event
8* ORDER BY total_wait_time DESC;

EVENT TOTAL_WAIT_TIME

wait for SGA component shrink 878774247
smon timer 300006992
PL/SQL lock timer 210117722
SQL*Net message from client 21588571
db file scattered read 1062608
db file sequential read 105271
log file sync 13019
latch free 274
SQL*Net more data to client 35
null event 6
17 rows selected.
SQL>

Users with the Most Waits

The following query lists the users with the highest wait times within the last 15 minutes:

SQL> SELECT s.sid, s.username,
2 SUM(a.wait_time +
3 a.time_waited) total_wait_time
4 FROM v$active_session_history a,
5 v$session s
6 WHERE a.sample_time between sysdate - 30/2880 and sysdate
7 AND a.session_id=s.sid
8 GROUP BY s.sid, s.username
9* ORDER BY total_wait_time DESC;

SID USERNAME TOTAL_WAIT_TIME
---------- ------------------------------ -----------------

1696 SYSOWNER 165104515
885 SYSOWNER 21575902
1087 BLONDI 5019123
1318 UCRSL 569723
1334 REBLOOM 376354
1489 FRAME 395

15 rows selected.
SQL>

Identifying SQL with the Highest Waits

Using the following query, you can identify the SQL that’s waiting the most in your instance.
The sample time covers the last 15 minutes.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1042

4517CH22.qxd 8/19/05 11:15 AM Page 1042

SQL> SELECT a.user_id,d.username,s.sql_text,
2 SUM(a.wait_time + a.time_waited) total_wait_time
3 FROM v$active_session_history a,
4 v$sqlarea s,
5 dba_users d
6 WHERE a.sample_time between sysdate - 30/2880 and sysdate
7 AND a.sql_id = s.sql_id
8 AND a.user_id = d.user_id
9* GROUP BY a.user_id,s.sql_text, d.username;

USER_ID USERNAME SQL_TEXT TOTAL_WAIT_TIME
---------- -------- ------------------------------ ----------------

0 SYS BEGIN dbms_stats...; END; 9024233
...
SQL>

Wait Classes and the Wait-Related Views
The V$SESSION_WAIT view shows the events and resources that active sessions are waiting for.
Using the V$SESSION_WAIT view, you can also see what types of wait classes your session waits
belong to. Here’s an example:

SQL> SELECT wait_class, event, sid, state, wait_time, seconds_in_wait
FROM v$session_wait
ORDER BY wait_class, event, sid;

WAIT_CLASS EVENT SID STATE WAIT_TIM SEC_IN_WAIT
---------- -------------------- ---------- ----------------------- --
Application enq: TX - 269 WAITING 0 73

row lock contention
Idle Queue Monitor Wait 270 WAITING 0 40
Idle SQL*Net message from client 265 WAITING 0 73
Idle jobq slave wait 259 WAITING 0 8485
Idle pmon timer 280 WAITING 0 73
Idle rdbms ipc message 267 WAITING 0 184770
Idle wakeup time manager 268 WAITING 0 40
Network SQL*Net message to client 272 WAITED SHORT TIME 1
SQL>

The previous query indicates that the most important wait lies within the Application
wait class.

The V$SYSTEM_WAIT_CLASS view gives you a breakdown of waits by wait classes, as
shown here:

SQL> SELECT wait_class, time_waited
FROM v$system_wait_class
ORDER BY time_waited DESC;

WAIT_CLASS TIME_WAITED

Idle 1.0770E+11
User I/O 4728148400
Other 548221433
Concurrency 167154949
Network 56271499
Application 46336445
Commit 35742104

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1043

4517CH22.qxd 8/19/05 11:15 AM Page 1043

Configuration 11667683
System I/O 8045920
Administrative 760
Scheduler 16
11 rows selected.
SQL>

The V$SESSION_WAIT_CLASS view shows the total time spent in each type of wait class by an
individual session. Here’s an example:

SQL> SELECT wait_class, time_waited
2 FROM v$session_wait_class
3 WHERE sid = 1053
4* ORDER BY time_waited DESC;

WAIT_CLASS TIME_WAITED
--
Idle 21190
User I/O 8487
Other 70
Concurrency 13
Application 0
Network 0
6 rows selected.
SQL>

The V$WAITCLASSMETRIC view shows metric values of wait classes for the most recent
60-second interval. The view keeps information for up to one hour. Here’s an example of using
the query:

SQL> SELECT WAIT_CLASS#, WAIT_CLASS_ID
2 dbtime_in_wait,time_waited,wait_count
3 FROM v$waitclassmetric
4* ORDER BY time_waited DESC;

WAIT_CLASS# DBTIME_IN_WAIT TIME_WAITED WAIT_COUNT
----------- -------------- ----------- ----------

6 2723168908 170497 51249
0 1893977003 5832 58
8 1740759767 717 1351
5 3386400367 11 68
7 2000153315 8 52906
9 4108307767 6 99
1 4217450380 0 4
2 3290255840 0 0
3 4166625743 0 0
11 3871361733 0 0
10 2396326234 0 0
4 3875070507 0 0

12 rows selected.

SQL>

As you can see, WAIT_CLASS 6 tops the list, meaning that idle class waits currently account for
most of the wait time in this instance.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1044

4517CH22.qxd 8/19/05 11:15 AM Page 1044

Looking at Segment-Level Statistics
Whether you use the AWR or the wait-related V$ views, you’re going to find no information about
where a certain wait event is occurring. For example, you can see from the V$SYSTEM_EVENT view
that buffer busy waits are your problem, and you know that you reduce these waits by switching
from manual segment space management to Automatic Segment Space Management (ASSM).
However, neither AWR nor the V$ view indicates which tables or indexes you should be looking at to
fix the high wait events. Oracle provides three V$ views to help you drill down to the segment level.

The segment-level dynamic performance views are V$SEGSTAT_NAME, V$SEGSTAT, and
V$SEGMENT_STATISTICS. Using these, you can find out which of your tables and indexes are being
subjected to high resource usage or high waits. Once you’re aware of a performance problem due to
high waits, you can use these segment-level views to find out exactly which table or index is the cul-
prit and fix that object to reduce the waits and increase database performance. The V$SEGMENT_
NAME view provides you with a list of all the segment levels that are being collected, and tells you
whether the statistics are sampled or not.

Let’s see how you can use these segment-level views to your advantage when you’re confronted
with a high number of wait events in your system. Say you look at the V$SYSTEM_EVENT view
and realize that there are a large number of buffer busy waits. You should now examine the
V$SEGMENT_STATISTICS view with a query such as the following to find out which object is the
source of the high buffer busy waits. You can then decide on the appropriate corrective measures
for this wait event, as discussed in the section “Important Oracle Wait Events” later in this chapter.

SQL> SELECT owner, object_name, object_type, tablespace_name
2 FROM V$SEGMENT_STATISTICS
3 WHERE statistic_name='buffer busy waits'
4* ORDER BY value DESC;

OWNER OBJECT_NAME OBJECT_TYPE TABLESPACE_NAME
--------- -------------- ----------- -----------------
SYSOWNER LAB_DATA TABLE LAB_DATA_D
SYSOWNER LAB_ADDR_I INDEX LAB_DATAS_I
SYSOWNER PERS_SUMMARIES TABLE PERS_SUMMARIES_D
...
SQL>

Collecting Detailed Wait Event Information
Selecting data from V$ dynamic performance views and interpreting them meaningfully isn’t
always so easy to do. Because the views are dynamic, the information that they contain is con-
stantly changing as Oracle updates the underlying tables for each wait event. Also, the wait-related
dynamic performance views you just examined don’t provide crucial data such as bind variable
information. For a more detailed level of wait information, you can use one of the methods
described in the following sections.

Method 1: Using the Oracle Event 10046 to Trace SQL Code

You can get all kinds of bind variable information by using a special trace called the 10046 Trace,
which is much more advanced than the SQL Trace you saw in Chapter 21. The use of this trace
causes an output file to be written to the trace directory. You can set the 10046 Trace in many ways
by specifying various levels, and each higher level provides you with more detailed information.
(Level 12 is used in the following case as an example only—it may give you much more information
than necessary. Level 4 gives you detailed bind value information, and Level 8 gives you wait
information.)

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1045

4517CH22.qxd 8/19/05 11:15 AM Page 1045

You can use the ALTER SESSION statement as follows:

SQL> ALTER SESSION SET EVENTS '10046 trace name context forever level 12';
Session altered.
SQL>

You can also incorporate the following line in your init.ora file:

event = 10046 trace name context forever, level 12

Method 2: Using the Oradebug Utility to Perform the Trace

You can use the oradebug utility as shown in the following example:

SQL> ORADEBUG SETMYPID
Statement processed.
SQL> ORADEBUG EVENT 10046 TRACE NAME CONTEXT FOREVER LEVEL 8;
Statement processed.
SQL>

In this example, SETMYPID indicates that you want to trace the current session. If you want a
different session to be traced, you replace this with SETOSPID <Process Id>.

Method 3: Using the DBMS_SYSTEM Package to Set the Trace

Use the SET_EV procedure of the DBMS_SYSTEM package so you can set tracing on in any session,
as shown in the following example:

SQL> EXECUTE SYS.DBMS_SYSTEM.SET_EV (9,271,10046,12,'');
PL/SQL procedure successfully completed.
SQL>

Method 4: Using the DBMS_MONITOR Package

The DBMS_MONITOR package provides you with an easy way to collect extended session trace
information. You enable tracing of a user’s session using the DBMS_MONITOR.SESSION_
TRACE_ENABLE package. Here’s the structure of the procedure:

DBMS_MONITOR.SESSION_TRACE_ENABLE(
session_id IN BINARY_INTEGER DEFAULT NULL,
serial_num IN BINARY_INTEGER DEFAULT NULL,
waits IN BOOLEAN DEFAULT TRUE,
binds IN BOOLEAN DEFAULT FALSE)

If you set the waits parameter to TRUE, the trace will contain wait information. Similarly, setting
the binds parameter to TRUE will provide bind information for the session being traced.

If you don’t set the SESSION_ID parameter or set it to NULL, your own session will be traced.
Here’s how you trace your session using the DBMS_MONITOR package:

SQL> EXECUTE dbms_monitor.session_trace_enable (waits=>TRUE, binds=>TRUE);

In addition to all the preceding methods of gathering wait information, you have the handy
OEM Database Control tool, which lets you drill down to various items from the Database Control
home page.

■Note Both the AWR report that you can obtain by using the awrrpt.sql script and the ADDM report that you can
obtain with the addmrpt.sql script contain copious amounts of wait information.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1046

4517CH22.qxd 8/19/05 11:15 AM Page 1046

Important Oracle Wait Events
The wait events listed in the sections that follow have a significant impact on system performance
by increasing response times. Each of these events (and several other events) indicates an unpro-
ductive use of time because of an excessive demand for a resource, or contention for Oracle
structures such as tables or the online redo log files.

■Note The query SELECT name FROM V$EVENT_NAME gives you the complete list of all Oracle wait events.

Buffer Busy Waits

The buffer busy waits event occurs in the buffer cache area when several processes are trying to
access the same buffer. One session is waiting for another session’s read of a buffer into the buffer
cache. This wait could also occur when the buffer is in the buffer cache, but another session is
changing it.

You should observe the V$SESSION_WAIT view while this wait is occurring to find out exactly
what type of block is causing the wait.

Two of the common causes of high buffer busy waits are contention on data blocks belonging
to tables and indexes, and contention on segment header blocks. If you’re using dictionary man-
aged tablespaces or locally managed tablespaces with manual segment space management (see
Chapter 5), you should proceed as follows:

• If the waits are primarily on data blocks, try increasing the PCTFREE parameter to lower the
number of rows in each data block. You may also want to increase the INITRANS parameter to
reduce contention from competing transactions.

• If the waits are mainly in segment headers, increase the number of freelists or freelist groups
for the segment in question, or consider increasing the extent size for the table or index.

The best way to reduce buffer busy waits due to segment header contention is to use locally
managed tablespaces with ASSM. ASSM also addresses contention for data blocks in tables and
indexes.

Besides the segment header and data block contention, you could also have contention for
rollback segment headers and rollback segment blocks. However, if you’re using Automatic Undo
Management (AUM), you don’t have to do anything other than make sure you have enough space in
your undo management tablespace to address the rollback (undo) headers and blocks, leaving table
and index data blocks and segment headers as the main problem areas. The following query clearly
shows that in this database, the buffer busy waits are in the data blocks:

SQL> SELECT class, count FROM V$WAITSTAT
2 WHERE COUNT > 0
3* ORDER BY COUNT DESC;

CLASS COUNT
------------------ ----------
data block 519731
undo block 5829
undo header 2026
segment header 25
SQL>

If data-block buffer waits are a significant problem even with ASSM, this could be caused by
poorly chosen indexes that lead to large index range scans. You may try using global hash-partitioned
indexes, and you can also tune SQL statements as necessary to fix these waits. Oracle seems to

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1047

4517CH22.qxd 8/19/05 11:15 AM Page 1047

indicate that if you use AUM instead of traditional rollback segments, then two types of buffer busy
waits, undo block and undo header, will go away. However, that’s not the case in practice, as the fol-
lowing example from a database with AUM shows:

CLASS COUNT
------------------ ----------
undo header 29891
data block 52
segment header 1

Occasionally, you may have a situation where the buffer busy waits spike suddenly, seemingly
for no reason. The sar utility (use the sar –d option) might indicate high request queues and service
times. This often happens when the disk controllers get saturated by a high amount of I/O. Usually,
you see excessive core dumps during this time, and if core dumps are choking your I/O subsystem,
do the following:

• Move your core dump directory to a less busy file system, where it resides by itself.

• Use the following init.ora or SPFILE parameters to control core dumps in your system.
Setting these parameters’ values could reduce the size of a core dump to a few megabytes
from a gigabyte or more:

SHADOW_CORE_DUMP = PARTIAL /* or NONE */
BACKGROUND_CORE_DUMP = PARTIAL /* or NONE */

• Investigate the core dumps and see if you can fix them by applying necessary Oracle and
operating-system patch sets.

Checkpoint Completed

The CHECKPOINT COMPLETED wait event means that a session is waiting for a checkpoint to complete.
This could happen when you’re shutting the database down or during normal checkpoints.

Db File Scattered Read

The db file scattered read wait event indicates that full table scans (or index fast full scans) are
occurring in the database. The initialization parameter DB_FILE_MULTIBLOCK_READ_COUNT sets the
number of blocks read at one time by Oracle. The database will automatically tune this parameter
if you don’t set any value for it in your parameter file. Although Oracle reads data in multiblock
chunks, it scatters the data into noncontiguous cache buffers. If you don’t have many full table
scans and if they mainly consist of smaller tables, don’t worry about it.

However, if this event is showing up as an important wait event, you need to look at it as an
I/O-related problem—the database isn’t able to cope with an excessive request for physical I/Os.
There are two possible solutions. You can either reduce the demand for physical I/Os or increase the
capacity of the system to handle more I/Os. You can reduce the demand for physical I/O by drilling
down further to see if one of the following solutions will work. Raising the buffer cache component
of the SGA would normally contribute to lowering physical I/Os. However, I’m assuming that you’re
using automatic shared memory management by setting the SGA_TARGET initialization parameter, in
which case your buffer cache is already optimally set by the database:

• Add missing indexes on key tables (unlikely in a production system).

• Optimize SQL statements if they aren’t following an efficient execution plan.

If you don’t see any potential for reducing the demand for physical I/O, you’re left with no
choice but to increase the number of disks on your system. You also need to make sure you’re
reducing the hot spots in your system by carefully distributing the heavily hit tables and indexes

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1048

4517CH22.qxd 8/19/05 11:15 AM Page 1048

across the available disks. You can identify the data files where the full table or index fast full scans
are occurring with the help of a query using the V$FILESTAT view. In this view, two columns are of
great use:

• Phyrds: The number of physical reads done

• Phyblkrd: The number of physical blocks read

Obviously, the number of phyrds is equal to or close to the number of phyblkrds because
almost all reads are single block reads. If the column phyrds shows a much smaller value than the
phyblkrds column, Oracle is reading multiple blocks in one read—a full table scan or an index fast
full scan, for example. Here’s a sample query on the V$FILESTAT view:

SQL> SELECT file#, phyrds,phyblkrd
2 FROMV$FILESTAT
3* WHERE phyrds != phyblkrd;

FILE# PHYRDS PHYBLKRD
---------- ---------- ----------

1 4458 36533
7 67923 494433
15 28794 378676
16 53849 408981

SQL>

Db File Sequential Read

The db file sequential read wait event signifies that a single block is being read into the buffer
cache. This event occurs when you’re doing an indexed read and you’re waiting for a physical I/O
call to return. This is nothing to be alarmed about, because the database has to wait for file I/O.
However, you should investigate disk I/O if this statistic seems extraordinarily high. If disk sorts are
high, you can make them lower by increasing the value of the PGA_AGGREGATE_TARGET initialization
parameter. Because the very occurrence of this event proves that your application is making heavy
use of an index, you can’t do much to reduce the demand for physical I/Os in this case, unlike in
the case of the db file scattered read event. Increasing the number of disks and striping indexes
across them may be your best bet to reduce db file sequential read waits. If the objects aren’t
too large, you can use the DEFAULT and KEEP buffer pools to retain them in memory. However, if the
objects are large, you may not have this option. Indexed reads are going to show up in most systems
as a wait, and it’s not necessarily a bad thing, because indexes are required in most cases for faster
data retrieval.

Direct Path Read and Direct Path Write

The direct path read and direct path write events are waits that occur while performing a direct
read or write into the PGA, bypassing the SGA buffer cache. Direct path reads indicate that sorts are
being done on disk instead of in memory. They could also result from a busy I/O system. If you use
automatic PGA tuning, you shouldn’t encounter this problem too often.

Automatic tuning of the PGA by Oracle should reduce your disk sorts due to a low PGA memory
allocation. Another solution may be to increase the number of disks, as this problem also results in
an I/O system that can’t keep up with the increased requests for reading blocks into the PGA. Of
course, tuning the SQL statements themselves to reduce sorting wouldn’t hurt in this case.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1049

4517CH22.qxd 8/19/05 11:15 AM Page 1049

Free Buffer Waits

Free buffer waits usually show up when the database writer process is slow. The database writer
process is simply unable to keep up with the requests to service the buffer cache. The number of
dirty buffers in cache waiting to be written to disk is larger than the number of buffers the database
writer process can write per batch. Meanwhile, sessions have to wait because they can’t get free
buffers to write to. First, you need to rule out whether the buffer cache is too small, and check the
I/O numbers on the server, especially the write time, using an operating system tool. A check of the
database buffer cache and a quick peek at the Database Control’s Memory Advisor will show you
the pattern of usage of the various memory components and if you’re below the optimal buffer
cache level, in which case you can increase the size of the buffer cache. Of course, if you’re using
Automatic Shared Memory management, the database will size the SGA allocations for you.

The other reason for a high number of free buffer waits in your system is that the number of
database writer processes is inadequate to perform the amount of work your instance needs to get
done. As you know, you can add additional database writer processes to the default number of
processes, which is one database writer process for every eight processors on your host machine.
You can reduce these waits in most cases by increasing the number of database writer processes,
using a value between 2 and 10 for the db_writer_processes initialization parameter. Oracle recom-
mends that you use one database writer process for every four CPUs on your system. You can’t
change this variable on the fly, so you’ll need to perform a system restart to change the number of
database writer processes.

Enqueue Waits

Enqueues are similar to locks in that they are internal mechanisms that control access to resources.
High enqueue waits indicate that a large number of sessions are waiting for locks held by other ses-
sions. You can query the dynamic performance view V$ENQUEUE_STAT to find out which of the
enqueues have the most wait times reported. You can do this by using the cum_wait_time column
of the view.

Note that the use of locally managed tablespaces eliminates several types of enqueues such as
space transactions (ST) enqueues. In a system with a massive concurrent user base, most common
enqueues are due to infrequent commits (or rollbacks) by transactions that force other transactions
to wait for the locks held by the early transactions. In addition, there may be a problem with too few
interested transactions list (ITL) slots, which also show up as transaction (TX) enqueues. Locally
managed tablespaces let you avoid the most common types of space-related enqueues.

Latch Free

Latches are internal serialization mechanisms used to protect shared data structures in Oracle’s
SGA. You can consider a latch as a type of lock that’s held for an extremely short time period. Oracle
has several types of latches, with each type guarding access to a specific set of data. The latch free
wait event is incremented when a process can’t get a latch on the first attempt. If a required Oracle
latch isn’t available, the process requesting it keeps spinning and retrying to gain the access. This
spinning increases both the wait time and the CPU usage in the system. Oracle uses about 200
latches, but two of the important latches that show up in wait statistics are the shared pool latch
(and the library cache latches) and the cache buffers LRU chain. It’s normal to see a high number
of latch free events in an instance. You should worry about this wait event only if the total time con-
sumed by this event is high.

High latch waits will show up in your AWR reports, or you can use the query shown in
Listing 22-17 to find out your latch hit ratio.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1050

4517CH22.qxd 8/19/05 11:15 AM Page 1050

Listing 22-17. Determining the Latch Hit Ratio

SQL> SELECT a.name "Latch Name",
a.gets "Gets (Wait)",
a.misses "Misses (Wait)",
(1 - (misses / gets)) * 100 "Latch Hit Ratio %"
FROM V$LATCH a
WHERE a.gets != 0
UNION
SELECT a.name "Latch Name",
a.gets "Gets (Wait)",
a.misses "Misses (Wait)",
100 "Latch Hit Ratio"
FROM V$LATCH a
WHERE a.gets = 0
ORDER BY 1;

SQL>

If the ratio isn’t close to 1, it’s time to think about tuning the latch contention in your instance.
There’s only one shared pool latch for the database, and it protects the allocation of memory in the
library cache. The library cache latch regulates access to the objects present in the library cache.
Any SQL statement, PL/SQL code, procedure, function, or package needs to acquire this latch
before execution. If the shared pool and library cache latches are high, more often than not that’s
because the parse rates in the database are high. The high parse rates are due to the following factors:

• An undersized shared pool (or an oversized shared pool)

• Failure to use bind variables

• Using dissimilar SQL statements and failing to reuse statements

• Users frequently logging off and logging back into the application

• Failure to keep cursors open after each execution

• Using a shared pool size that’s too large

The cache buffers LRU chain latch free wait is caused by high buffer cache throughput, either
due to full table scans or the use of unselective indexes, which lead to large index range scans.
Unselective indexes can also lead to yet another type of latch free wait: the cache buffer chain
latch free wait. These wait events are often due to the presence of hot blocks, so you need to inves-
tigate why that might be happening. If you see a high value for row cache object latch waits, it
indicates contention for the dictionary cache, and you need to increase the shared pool memory
allocation.

In most instances, latch waits tend to show up as a wait event, and DBAs sometimes are
alarmed by their very presence in the wait event list. As with the other Oracle wait events, ask your-
self this question: “Are these latch waits a significant proportion of my total wait time?” If the
answer is no, don’t worry about it—your goal isn’t to try and eliminate all waits in the instance,
because you can’t do it.

Log Buffer Space

The log buffer space wait event indicates that a process waited for space in the log buffer. Either
the log buffer is too small or the redo is being written faster than the log writer process can write it
to the redo log buffer. If the redo log buffer is already large, then investigate the I/O to the disk that
houses the redo log files. There’s probably some contention for the disk, and you need to work on
reducing the I/O contention. This type of wait usually shows up when the log buffer is too small, in
which case you increase the log buffer size. A large log buffer tends to reduce the redo log I/O in

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1051

4517CH22.qxd 8/19/05 11:15 AM Page 1051

general. Note that Oracle’s default value for this parameter could be as high as 4MB (for a 32-CPU
system). If you have a large number of huge transactions, you might want to bump up the value of
the LOG_BUFFER initialization parameter from its default value of 512KB, although too high a value
means that too much data may have to be written to the redo log files at one time.

Log File Switch

The log file switch wait event can occur when a session is forced to wait for a log file switch
because the log file hasn’t yet been archived. It can also occur because the log file switch is awaiting
the completion of a checkpoint.

If the problem isn’t due to the archive destination getting full, it means that the archive process
isn’t able to keep up with the rate at which the redo logs are being archived. In this case, you need to
increase the number of archiver (ARCn) processes to keep up with the archiving work. The default
for the ARCn process is 2. This is a static parameter, so you can’t use this fix to resolve a slowdown
right away.

You also need to investigate whether too-small redo log files are contributing to the wait for the
log file switch. If the log file switch is held up pending the completion of a checkpoint, obviously the
log files are too small and hence are filling up too fast. You need to increase the size of the redo log
files in this case. Redo log files are added and dropped online, so you can consider this a dynamic
change.

If you see high values for redo log space requests in V$SYSSTAT, that means that user
processes are waiting for space in the redo log buffer. This is because the log writer process can’t
find a free redo log file to empty the contents of the log buffer. Resize your redo logs, with the goal
of having a log switch every 15 to 30 minutes.

Log File Sync

You’ll see a high number of waits under the log file sync category if the server processes are fre-
quently waiting for the log writer process to finish writing committed transactions (redo) to the
redo log files from the log buffer. This is usually the result of too-frequent commits, and you can
reduce it by adopting batch commits instead of a commit after every single transaction. This wait
event may also be the result of an I/O bottleneck.

Idle Events

You can group some wait events under the category idle events. Some of these may be harmless in
the sense that they simply indicate that an Oracle process was waiting for something to do. These
events don’t indicate database bottlenecks or contention for Oracle’s resources. For example, the
system may be waiting for a client process to provide SQL statements for execution. The following
list presents some common idle events:

• Rdbms ipc message: Used by the background process, such as the log writer process and
PMON, to indicate they are idle.

• SMON timer: The SMON process waits on this event.

• PMON timer: The PMON process idle event.

• SQL*Net message from client: The user process idle event.

You should ignore many idle events during your instance performance tuning. However, some
events, such as the SQL*Net message from client event, may indicate that your application isn’t
using an efficient database connection strategy. In this case, you need to see how you can reduce
these waits, maybe by avoiding frequent logging on and off by applications.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1052

4517CH22.qxd 8/19/05 11:15 AM Page 1052

Examining System Performance
You can use the various operating system tools, such as vmstat, to examine system performance.
You can also use the new V$OSSTAT dynamic view to figure out the performance characteristics of
your system. The V$OSSTAT view provides operating system statistics in the form of busy ticks.

Here are some of the key system usage statistics:

• NUM_CPUS: Number of processors.

• IDLE_TICKS: Number of hundredths of a second that all processors have been idle.

• BUSY_TICKS: Number of hundredths of a second that all processors have been busy executing
code.

• USER_TICKS: Number of hundredths of a second that all processors have been busy executing
user code.

• SYS_TICKS: Number of hundredths of a second that all processors have been busy executing
kernel code.

• IOWAIT_TICKS: Number of hundredths of a second that all processors have been waiting for
I/O to complete.

The AVG_IDLE_WAITS, AVG_BUSY_TICKS, AVG_USER_TICKS, AVG_SYS_TICKS, and AVG_IOWAIT_TICKS
columns provide the corresponding information average over all the processors. Here's a simple
example that shows how to view the system usage statistics captured in the V$OSSTAT view:

SQL> SELECT * FROM V$OSSTAT;

STAT_NAME VALUE OSSTAT_ID
--
NUM_CPUS 16 0
IDLE_TICKS 17812 1
BUSY_TICKS 2686882247 2
USER_TICKS 1936724603 3
SYS_TICKS 750157644 4
IOWAIT_TICKS 1933617293 5
AVG_IDLE_TICKS 545952047 7
AVG_BUSY_TICKS 167700614 8
AVG_USER_TICKS 120815895 9
AVG_SYS_TICKS 46655696 10
AVG_IOWAIT_TICKS 120621649 11
OS_CPU_WAIT_TIME 5.3432E+13 13
RSRC_MGR_CPU_WAIT_TIME 0 14
IN_BYTES 6.2794E+10 1000
OUT_BYTES 0 1001
AVG_IN_BYTES 1.7294E+19 1004
AVG_OUT_BYTES 0 1005

17 rows selected.

SQL>

Knowing Your Application
Experts rely on hit ratios or wait statistics, or sometimes both, but there are situations in which both
the hit ratios and the wait statistics can completely fail you. Imagine a situation where all the hit
ratios are in the 99 percent range. Also, imagine that the wait statistics don’t show any significant

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1053

4517CH22.qxd 8/19/05 11:15 AM Page 1053

waiting for resources or any contention for latches. Does this mean that your system is running
optimally? Well, your system is doing what you asked it to do extremely well, but there’s no guar-
antee that your SQL code is processing things efficiently. If a query is performing an inordinate
number of logical reads, the hit ratios are going to look wonderful. The wait events also won’t show
you a whole lot, because they don’t capture the time spent while you were actually using the CPU.
However, you’ll be burning a lot of CPU time, because the query is making too many logical reads.

This example shows why it’s important not to rely only on the hit ratios or the wait statistics,
but also to look at the major consumers of resources on your instance with an intense focus. Check
the Top Sessions list (sorted according to different criteria) on your instance and see if there’s justifi-
cation for the major consumers to be in that list.

Above all, try not to confuse the symptoms of poor performance with the causes of poor per-
formance. If your latch rate is high, you might want to adjust some initialization parameters right
away—after all, isn’t Oracle a highly configurable database? You may succeed sometimes by relying
solely on adjusting the initialization parameters, but it may be time to pause and question why
exactly the latch rate is so high. More than likely, the high latch rate is due to application coding
issues rather than a specific parameter setting. Similarly, you may notice that your system is CPU
bound, but the reason may not be slow or inadequate CPU resources. Your application may again
be the real culprit because it’s doing too many unnecessary I/Os, even if they’re mostly from the
database buffer cache and not disk.

When you’re examining wait ratios, understand that your goal isn’t to make all the wait events
go away, because that will never happen. Learn to ignore the unimportant, routine, and unavoid-
able wait events. As you saw in the previous section, wait events such as the SQL*Net message from
client event reflect waits outside the database, so don’t attribute these waits to a poorly performing
database. Focus on the total wait time rather than the number of wait events that show up in your
performance tables and AWR reports. Also, if the wait events make up only a small portion of
response time, there’s no point in fretting about them. As Einstein might say, the significance of wait
events is relative—relative to the total response time and relative to the total CPU execution time.

Recently, there has been a surge in publications expounding the virtues of the wait event
analysis-based performance approach (also called the wait interface approach). You can always use
the buffer hit ratios and the other ratios for a general idea about how the system is using Oracle’s
memory and other resources, but an analysis of wait events is still a better bet in terms of improving
performance. If you take care of the wait issues, you’ll have taken care of the traditional hit ratios as
well. For example, if you want to fix a problem that’s the result of a high number of free buffer waits,
you may need to increase the buffer cache. Similarly, if latch free wait events are troublesome, one
of the solutions is to check if you need to add more memory to the shared pool. You may fix a prob-
lem due to a high level of waits caused by the direct path reads by increasing the value of the
PGA_AGGREGATE_TARGET parameter.

EXAMINING SQL RESPONSE TIME WITH THE DATABASE CONTROL

In Oracle Database 10g Release 2, you can use the OEM Database Control to examine quickly the current
SQL response time compared to a normal “baseline” SQL response time. The Database Control computes the SQL
response time percentage by dividing the baseline SQL response time by the current SQL response time, both
expressed in microseconds. If the SQL response time percentage exceeds 100 percent, then the instance is pro-
cessing SQL statements slower than the baseline times. If the percentage is approximately equal to 100 percent,
then the current response time and the baseline response time are equal, and your instance is performing normally.
The SQL Response Time section is right on the Database Control home page.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1054

4517CH22.qxd 8/19/05 11:15 AM Page 1054

Using the ADDM to Analyze Performance Problems
There’s no question that the new ADDM tool should be the cornerstone of your performance-tuning
efforts. In Chapter 17, I showed how you can manually get an ADDM report or use the OEM Data-
base Control to view the ADDM analysis. Use the findings and recommendations of the ADDM
advisor to fine-tune database performance. Here’s the partial output from an ADDM analysis
(invoked by running the addmrpt.sql script located in the $ORACLE_HOME/rdbms/admin direc-
tory). Listing 22-18 shows part of an ADDM report.

Listing 22-18. An Abbreviated ADDM Report

DETAILED ADDM REPORT FOR TASK 'TASK_1493' WITH ID 1493

Analysis Period: 22-JUL-2005 from 07:01:02 to 17:00:36
Database ID/Instance: 877170026/1

Database/Instance Names: NINA/nina
Host Name: finance1

Database Version: 10.2.0.0
Snapshot Range: from 930 to 940
Database Time: 801313 seconds

Average Database Load: 22.3 active sessions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
FINDING 1: 24% impact (193288 seconds)
--------------------------------------
The buffer cache was undersized causing significant additional read I/O.

RECOMMENDATION 1: DB Configuration, 24% benefit (193288 seconds)
ACTION: Increase SGA target size by increasing the value of parameter

"sga_target" by 1232 M.
SYMPTOMS THAT LED TO THE FINDING:

Wait class "User I/O" was consuming significant database time. (54%
impact [436541 seconds])

FINDING 2: 19% impact (150807 seconds)
--------------------------------------
SQL statements consuming significant database time were found.

RECOMMENDATION 1: SQL Tuning, 4.4% benefit (34936 seconds)
ACTION: Run SQL Tuning Advisor on the SQL statement with SQL_ID

"b3bkjk3ybcp5p".
RELEVANT OBJECT: SQL statement with SQL_ID b3bkjk3ybcp5p and
PLAN_HASH 954860671

. . .

ADDM may sometimes recommend that you run the Segment Advisor for a certain segments,
or the Automatic SQL Advisor for a specific SQL statement. See Chapter 17 for a detailed analysis of
an ADDM performance report.

Using AWR Reports for Individual SQL Statements
In Chapter 17, you learned how to use AWR reports to analyze the performance of the database dur-
ing a time period encompassed by a pair of snapshots. As explained in that chapter, AWR reports are
an excellent source of information for wait-related as well as other instance performance indicators.
You can also use the AWR to produce reports displaying performance statistics for a single SQL
statement, over a range of snapshot IDs. Listing 22-19 shows how you can get an AWR report for a
particular SQL statement.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1055

4517CH22.qxd  8/19/05  11:15 AM  Page 1055



■Note The awrsqrpt.sql script seems to run slower than the instance-wide report-generating AWR script,
awrrpt.sql, that you encountered in Chapter 17 during the introduction to AWR.

Listing 22-19. Producing an AWR Report for a Single SQL Statement

SQL> @$ORACLE_HOME/rdbms/admin/awrsqrpt.sql
Current Instance
~~~~~~~~~~~~~~~~

DB Id DB Name Inst Num Instance
----------- ------------ -------- ------------
877170026 PASPROD 1 pasprod

Specify the Report Type
~~~~~~~~~~~~~~~~~~~~~~~
Would you like an HTML report, or a plain text report?
Enter 'html' for an HTML report, or 'text' for plain text
Defaults to 'html'
Enter value for report_type:  text

Type Specified:                  text
Instances in this Workload Repository schema
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

DB Id Inst Num DB Name Instance Host
------------ -------- ------------ ------------ ------------
* 877170026 1 PASPROD pasprod prod1
Using 877170026 for database Id
Using 1 for instance number
Specify the number of days of snapshots to choose from
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Entering the number of days (n) will result in the most recent
(n) days of snapshots being listed.  Pressing <return> without
specifying a number lists all completed snapshots.

Enter value for num_days: 3
Listing the last 3 days of Completed Snapshots
Instance  DB Name  Snap Id    Snap Started          Level
------------ ------------ --------- ------------------ -----
pasprod   PASPROD   1     3829 23 Apr 2005 00:01      1

3830 23 Apr 2005 01:00      1
3831 23 Apr 2005 02:00      1
3832 23 Apr 2005 03:00      1
3833 23 Apr 2005 04:00      1
3834 23 Apr 2005 05:00      1
3835 23 Apr 2005 06:00      1

Specify the Begin and End Snapshot Ids
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Enter value for begin_snap: 3830
Begin Snapshot Id specified: 3830
Enter value for end_snap: 3835
End Snapshot Id specified: 3835
Specify the Report Name
~~~~~~~~~~~~~~~~~~~~~~~
The default report file name is 1_3830_3835.  To use this name,
press <return> to continue, otherwise enter an alternative.
Enter value for report_name

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1056

4517CH22.qxd  8/19/05  11:15 AM  Page 1056



Using the report name 1_3830_3835
Specify the SQL Id
~~~~~~~~~~~~~~~~~~
Enter value for sql_id: 9a64dvpzyrzza:

Operating System Memory Management
You can use the vmstat utility, as explained in Chapter 3, to find out if enough free memory is on the
system. If the system is paging and swapping, database performance will deteriorate and you need
to investigate the causes. If the heavy consumption of memory is due to a non-Oracle process, you
may want to move that process off the peak time for your system. You may also want to consider
increasing the size of the total memory available to the operating system. You can use the vmstat
command to monitor virtual memory on a UNIX system. The UNIX tool top shows you CPU and
memory use on your system.

Analyzing Recent Session Activity with an ASH Report
The V$ACTIVE_SESSION_HISTORY view records active session activity by sampling all active ses-
sions on a per-second basis. The V$ACTIVE_SESSION_HISTORY view’s column data is similar to
that of the V$SESSION history view, but contains only sample data from active sessions. An active
session could be on the CPU, or could be waiting for a wait event that’s not part of the idle wait
class. When the AWR performs its snapshot, the data in the V$ACTIVE_SESSION_HISTORY view is
flushed to disk as part of the AWR snapshot data. However, the data in the V$ACTIVE_SESSION_
HISTORY VIEW isn’t permanently lost when the AWR flushes the view’s contents during its snap-
shots. Another view, the DBA_HIST_ACTIVE_SESS_HISTORY, stores snapshots of the V$ACTIVE_
SESSION_HISTORY view.

You don’t have to use either of the two ACTIVE_SESSION_HISTORY–related views to analyze
session history. You can simply produce an ASH report, which contains both the current active ses-
sion data from the V$ACTIVE_SESSION_HISTORY view as well as the historical active session data
stored in the DBA_HIST_ACTIVE_SESS_HISTORY view. The ASH report shows you the SQL identi-
fier of SQL statements, object information, session information, and relevant wait event
information.

You can produce an ASH report by simply going to the OEM Database Control, or by running
an Oracle-provided script. In fact, Oracle provides you with two ASH-related scripts, as follows:

• The ashrpt.sql script produces an ASH report for a specified duration for the default
database.

• The ashrpti.sql script produces the same report as the ashrpt.sql script, but lets you specify
a database instance.

Actually, the ashrpt.sql script defaults the dbid and instance number to those of the current
instance, and simply runs the ashrpti.sql script. Both of the preceding described scripts are avail-
able in the $ORACLE_HOME/rdbms/admin directory. Here’s how you get an ASH report for your
instance:

SQL> @ORACLE_HOME/rdbms/admin/ashrpt.sql

You can then look at the ASH report, which is placed in the directory from which you ran the
ashrpt.sql script. Chapter 18 explains a typical ASH report, in the section titled “Producing the
ashrpt.sql Script.”

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1057

4517CH22.qxd 8/19/05 11:15 AM Page 1057

When a Database Hangs
So far in this chapter, you’ve looked at ways to improve performance—how to make the database go
faster. Sometimes, however, your problem is something much more serious: the database seems to
have stopped all of a sudden! The following sections describe the most important reasons for a
hanging or an extremely slow-performing database, and how you can fix the problem ASAP.

One of the first things I do when the database seems to freeze is check and make sure that the
archiver process is doing its job. The following sections describe the archiver process.

Handling a Stuck Archiver Process
If your archive log destination is full and there isn’t room for more redo logs to be archived, the
archiver process is said to be stuck. The database doesn’t merely slow down—it freezes in its tracks.
As you are aware, in an archive log mode the database simply won’t overwrite redo log files until
they’re archived successfully. Thus, the database starts hanging when the archive log directory is
full. It stays in that mode until you move some of the archive logs off that directory manually.

The Archiver Process
The archiver process is in charge of archiving the filled redo logs. It reads the control files to find
out if there are any un archived redo logs that are full, and then it checks the redo log headers and
blocks to make sure they’re valid before archiving them. You may have archiving-related problems if
you’re in the archive log mode but the archiver process isn’t running for some reason. In this case,
you need to start the archiver process by using the following command:

SQL> ALTER SYSTEM ARCHIVE LOG START;

If the archiver process is running but the redo logs aren’t being archived, then you may have a
problem with the archive log destination, which may be full. This causes the archiver process to
become stuck, as you’ll learn in the next section.

Archiver Process Stuck?
When the archiver process is stuck, all database transactions that involve any changes to the tables
can’t proceed any further. You can still perform SELECT operations, because they don’t involve the
redo logs.

If you look in the alert log, you can see the Oracle error messages indicating that the archiver
process is stuck due to lack of disk space. You can also query the V$ARCHIVE view, which holds
information about all the redo logs that need archiving. If the number of these logs is high and
increasing quickly, you know your archiver process is stuck and that you need to clear it manually.
Listing 22-20 shows the error messages you’ll see when the archiver process is stuck.

Listing 22-20. Database Hang Due to Archive Errors

$ sqlplus system/system_passwd
ERROR:
ORA-00257: archiver error. Connect internal only, until freed.
$
$ oerr ora 257
00257, 00000, "archiver error. Connect internal only, until freed."
//*Cause: The archiver process received an error while trying to
// archive a redo log. If the problem is not resolved soon, the
// database will stop executing transactions. The most likely cause
// of this message is the destination device is out of space to

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1058

4517CH22.qxd 8/19/05 11:15 AM Page 1058

// store the redo log file.
// *Action: Check archiver trace file for a detailed description
// of the problem. Also verify that the device specified in the
// initialization parameter ARCHIVE_LOG_DEST is set up properly for
// archiving.
$

You can do either of the following in such a circumstance:

• Redirect archiving to a different directory.

• Clear the archive log destination by removing some archive logs. Just make sure you back up
the archive logs to tape before removing them.

Once you create more space in the archive log directory, the database resumes normal opera-
tions and you don’t have to do anything further. If the archiver process isn’t the cause of the hanging
or frozen database problem, then you need to look in other places to resolve the problem.

If you see too many “checkpoint not complete” messages in your alert log, then the archiver
process isn’t causing the problem. The redo logs are causing the database slowdown, because
they’re unable to keep up with the high level of updates. You can increase the size of the redo logs
online to alleviate the problem.

■Note In Oracle Database 10g, all connections as SYS are logged in the default audit trail, which is usually the
$ORACLE_HOME/rdbms/audit directory. If you don’t have adequate space in that directory, it may fill up eventually,
and you’ll get an error when you try logging in as the SYS user. Delete the old audit trail files or choose an alterna-
tive location for them.

System Usage Problems
You need to check several things to make sure there are no major problems with the I/O subsystem
or with the CPU usage. Here are some of the important things you need to examine:

• Make sure your system isn’t suffering from a severe paging and swapping problem, which
could result in a slower-performing database.

• Use top, sar, vmstat, or similar operating-system–level tools to check resource usage. Large
queries, sorting, and space management operations could all lead to an increase in CPU
usage.

• Runaway processes and excessive snapshot (SNP) processes could gobble excessive CPU
resources. Monitor any replication (snapshot) processes or DBMS_JOB processes, because
they both use resource-hungry SNP processes. If CPU usage spikes, make sure no unex-
pected jobs are running in the database. Even if no jobs are executing currently, the SNP
processes consume a great deal of CPU because they have to query the job queue constantly.

• High run queues indicate that the system is CPU bound, with processes waiting for an
available processor.

• If your disk I/O is close to or at 100 percent and you’ve already killed several top user ses-
sions, you may have a disk controller problem. For example, the 100 percent busy disk pack
might be using a controller configured to 16-bit, instead of 32-bit like the rest of the con-
trollers, causing a severe slowdown in I/O performance.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1059

4517CH22.qxd 8/19/05 11:15 AM Page 1059

Excessive Contention for Resources
Usually when people talk about a database hang, they’re mistaking a severe performance problem
for a database hang. This is normally the case when there’s severe contention for internal kernel-
level resources such as latches and pins. You can use the following query to find out what the
contention might be:

SQL> SELECT event, count(*)
2 from v$session_wait
3 group by event;

EVENT COUNT(*)

PL/SQL lock timer 2
Queue Monitor Wait 1
SQL*Net message from client 61
SQL*Net message to client 1
jobq slave wait 1
pmon timer 1
rdbms ipc message 11
smon timer 1
wakeup time manager 1

9 rows selected.

SQL>

The previous query doesn't reveal any significant contention for resources—all the waits are
for idle events.

If your database is performing an extremely high number of updates, contention for resources
such as undo segments and latches could potentially be a major source of database-wide slow-
downs, making it seem sometimes like the database is hanging. In the early part of this chapter, you
learned how to analyze database contention and wait issues using the V$SESSION_WAIT view and
the AWR output. On Windows servers, you can use the Performance Monitor and Event Monitor to
locate possible high resource usage.

Check for excessive library cache contention if you’re confronted by a database-wide slowdown.

Locking Issues
If a major table or tables are locked unbeknownst to you, the database could slow down dramati-
cally in short order. Try running a command such as SELECT * FROM persons, for example, where
persons is your largest table and is part of just about every SQL statement. If you aren’t sure which
tables (if any) might be locked, you can run the following statement to identify the table or index
that’s being locked, leading to a slow database:

SQL> SELECT l.object_id, l.session_id,
2 l.oracle_username, l.locked_mode,
3 o.object_name
4 FROM V$LOCKED_OBJECT l,
5 DBA_OBJECTS o
6* WHERE o.object_id=l.object_id;

OBJECT_ID SESSION_ID ORACLE_USERNAME LOCKED_MODE OBJECT_NAME

6699 22 NICHOLAS 6 EMPLOYEES
SQL>

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1060

4517CH22.qxd 8/19/05 11:15 AM Page 1060

As the preceding query and its output show, user Nicholas has locked up the Employees table.
If this is preventing other users from accessing the table, you have to remove the lock quickly by
killing the locking user’s session. You can get the locking user’s SID from the session_id column in
the preceding output, and the V$SESSION view gives you the SERIAL# that goes with it. Using the
ALTER SYSTEM KILL . . . command, you can then kill the offending session. The same analysis
applies to a locked index, which prevents users from using the base table. For example, an attempt
to create an index or rebuild it when users are accessing the table can end up inadvertently locking
up the table.

If there’s a table or index corruption, that could cause a problem with accessing that object(s).
You can quickly check for corruption by running the following statement:

SQL> ANALYZE TABLE employees VALIDATE STRUCTURE CASCADE;
Table analyzed.
SQL>

Abnormal Increase in Process Size
On occasion, there might be a problem because of an alarming increase in the size of one or more
Oracle processes. You have to be cautious in measuring Oracle process size, because traditional
UNIX-based tools can give you a misleading idea about process size. The following sections explain
how to measure Oracle process memory usage accurately.

What Is Inside an Oracle Process?
An Oracle process in memory has several components:

• Shared memory: This is the SGA that you’re so familiar with.

• The executable: Also known as TEXT, this component consists of the machine instructions.
The TEXT pages in memory are marked read-only.

• Private data: Also called DATA or heap, this component includes the PGA and the User
Global Area (UGA). The DATA pages are writable and aren’t shared among processes.

• Shared libraries: These can be private or public.

When a new process starts, it requires only the DATA (heap) memory allocation. Oracle uses
the UNIX implementation of shared memory. The SGA and TEXT components are visible to and
shared by all Oracle processes, and they aren’t part of the cost of creating new Oracle processes. If
1,000 users are using Oracle Forms, only one set of TEXT pages is needed for the Forms executable.

Unfortunately, most operating system tools such as ps and top give you a misleading idea as
to the process size, because they include the common shared TEXT sizes in individual processes.
Sometimes they may even include the SGA size. Solaris’s pmap and HP’s glance are better tools from
this standpoint, as they provide you with a more accurate picture of memory usage at the process
level.

■Note Even after processes free up memory, the operating system may not take the memory back, indicating
larger process sizes as a result.

Measuring Process Memory Usage
As a result of the problems you saw in the previous section, it’s better to rely on Oracle itself for a
true indication of its process memory usage. If you want to find out the total DATA or heap memory

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1061

4517CH22.qxd 8/19/05 11:15 AM Page 1061

size (the biggest nonsharable process memory component), you can do so by using the following
query:

SQL> SELECT value, n.name|| '('||s.statistic#||')', sid
FROM v$sesstat s, v$statname n
WHERE s.statistic# = n.statistic#
AND n.name like '%ga memory%'
ORDER BY value;

If you want to find out the total memory allocated to the PGA and UGA memory together, you
can issue the command in the next example. The query reveals that a total of more than 367MB of
memory is allocated to the processes. Note that this memory is in addition to the SGA memory allo-
cation, so you need to make allowances for both types of memory to avoid paging and swapping
issues.

SQL> SELECT SUM(value)
FROM V$SESSSTAT s, V$STATNAME n
WHERE s.statistic# = n.statistic#
AND n.name like '%ga memory%';

SUM(VALUE)

3674019536
1 row selected.
SQL>

If the query shows that the total session memory usage is growing abnormally over time, you
might have a problem such as a memory leak. A telltale sign of a memory leak is when Oracle’s
memory usage is way outside the bounds of the memory you’ve allocated to it through the initial-
ization parameters. The Oracle processes are failing to return the memory to the operating system
in this case. If the processes continue to grow in size, eventually they may hit some system memory
barriers and fail with the ora 4030 error:

$ oerr ora 4030
04030, 00000, "out of process memory when trying to allocate %s bytes (%s,%s)"
// *Cause: Operating system process private memory has been exhausted
$

Note that Oracle tech support may request that you collect a heap dump of the affected Oracle
processes (using the oradebug tool) to fix the memory leak problem.

If your system runs out of swap space, the operating system can’t continue to allocate any more
virtual memory. Processes fail when this happens, and the best way to get out of this mess is to see if
you can quickly kill some of the processes that are using a heavy amount of virtual memory.

Delays Due to Shared Pool Problems
Sometimes, database performance deteriorates dramatically because of inadequate shared pool
memory. Low shared pool memory relative to the number of stored procedures and packages in
your database could lead to objects constantly aging out of the shared pool and having to be exe-
cuted repeatedly.

Problems Due to Bad Statistics
As you know by now, the Oracle cost-based optimizer (CBO) needs up-to-date statistics so it can
pick the most efficient method of processing queries. If you’re using the Automatic Optimizer Statis-
tics Collection feature, Oracle will naturally keep optimizer statistics up to date for you without any

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1062

4517CH22.qxd 8/19/05 11:15 AM Page 1062

effort on your part. However, if you have deactivated the automatic statistics collection process, you
could run the risk of not providing representative statistics to the CBO.

If you don’t collect statistics regularly while lots of new data is being inserted into tables, your
old statistics will soon be out of date, and the performance of critical SQL queries could head south.
DBAs are under time constraints to collect statistics overnight or over a weekend. Sometimes, they
may be tempted to use a small sample size while using the DBMS_STATS package to collect statis-
tics. This could lead to unreliable statistics, resulting in the slowing down of query processing.

Collecting Information During a Database Hang
It can sometimes be downright chaotic when things come to a standstill in the database. You might
be swamped with phone calls and anxious visitors to your office who are wondering why things are
slow. Oftentimes, especially when serious unknown locking issues are holding up database activity,
it’s tempting just to bounce the database because usually that clears up the problem. Unfortunately,
you don’t know what caused the problem, so when it happens again, you’re still just as ignorant as
you were the first time. Bouncing the database also means that you’re disconnecting all active users,
which may not always be a smart strategy.

It’s important that you collect some information quickly for two reasons. First, you might be
able to prevent the problem next time or have someone in Oracle tech support (or a private firm)
diagnose the problem using their specialized tools and expertise in these matters. Second, most
likely a quick shutdown and restart of the database will fix the problem for sure (as in the case of
some locking situations, for example). But a database bounce is too mighty a weapon to bring to
bear on every similar situation. If you diagnose the problem correctly, simple measures may prevent
the problem or help you fix it when it does occur. The following sections describe what you need to
do to collect information on a slow or hanging database.

Using the Database Control’s Hang Analysis Page
You can use OEM’s Database Control during an instance slowdown to see a color-coded view of all
sessions in the database. The Hang Analysis page provides the following information:

• Instantaneously blocked sessions

• Sessions in a prolonged wait state

• Sessions that are hung

Figure 22-1 shows the Database Control Hang Analysis page, which you can access from the
Performance page. Click the Hang Analysis link under the Additional Monitoring Links section.

Gathering Error Messages
The first thing you do when you find out the database suddenly slowed down or is hanging is to look
in some of the log files where Oracle might have sent a message. Quickly look in the alert log file to
see if there are any Oracle error messages or any other information that could pinpoint any prob-
lems. You can check the background dump directory (bdump) for any other trace files with error
messages in them. I summarize these areas in the following discussion.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1063

4517CH22.qxd 8/19/05 11:15 AM Page 1063

Figure 22-1. The Database Control Hang Analysis page

Getting a Systemstate Dump
A systemstate dump is simply a trace file that is output to the user dump directory. Oracle (or a
qualified expert) can analyze these dumps and tell you what was going on in the database when the
hanging situation occurred. For example, if logons are slow, you can do a systemstate dump during
this time, and it may reveal that most of the waits are for a particular type of library cache latch. To
get a systemstate dump (for level 10), run the following command:

SQL> ALTER SESSION SET EVENTS 'immediate trace name systemstate level 10';
Session altered.
SQL>

■Caution Oracle Corp. strongly warns against customers setting events on their own. You may sometimes end
up causing more severe problems when you set events. Please contact Oracle technical support before you set any
event. For example, the event 10235 has been known to cause heavy latch contention.

You can send the resulting output to Oracle so it can analyze the output for you. Note that at
this stage, you need to open a technical assistance request (TAR) with Oracle technical support
through MetaLink (http://metalink.oracle.com). (The hanging database problem gets you a prior-
ity level 1 response, so you should hear from an analyst within minutes.) Oracle technical support
may ask you for more information, such as a core dump, and ask you to run a debugger or another
diagnostic tool and FTP the output to them.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1064

4517CH22.qxd 8/19/05 11:15 AM Page 1064

Using the Hanganalyze Utility
The systemstate dumps, although useful, have several drawbacks, including the fact that they dump
out too much irrelevant information and take too much time to complete, leading to inconsistencies
in the dump information. The newer hanganalyze utility is more sophisticated than a systemstate
dump. Hanganalyze provides you with information on resources each session is waiting for, and
what is blocking access to those resources. The utility also provides you with a dependency graph
among the active sessions in the database. This utility isn’t meant to supplant the systemstate
dumps; rather, you should use it to help make systemstate dumps more meaningful. Again, use this
utility in consultation with Oracle technical support experts. Here’s a typical HANGANALYZE command:

SQL> ALTER SESSION SET EVENTS 'immediate trace name HANGANALYZE level 3';

THE PROMISE AND THE PERFORMANCE

The Immigration and Naturalization Service (INS) of the United States government created a new $36 million
Student and Exchange Visitor Information System (SEVIS) to replace the old paper-based methods the INS had used
for years to track foreign students in U.S. educational institutions. More than 5,400 high schools, colleges, and uni-
versities have to use SEVIS to enter the necessary information about enrolled students from other countries.

The INS had imposed a deadline of January 31, 2003, by which all educational institutions had to switch over
fully to the SEVIS system. However, it extended the deadline by at least two weeks amid several complaints about
the system working slowly, if at all. Here are a few of those complaints from users across the country:

• Some employees in Virginia could enter data only in the mornings, before the West Coast institutions logged
onto the system. In the afternoons, the system slowed to a crawl.

• From the University of Minnesota came complaints that that the officials were “completely unable” to use the
system at all. The users mentioned that the system “was really jammed with users trying to get on.” They
also complained that the system was “unbelievably slow.” An INS spokesperson admitted that the system
had been “somewhat sluggish” and that schools were having trouble using the SEVIS system.

• The University of North Carolina complained that the situation, if it continued any further, was going to be
“a real nightmare” and that it was already “starting to cause some problems.”

• One worker at a college in Michigan was quoted as saying this in frustration: “Please tell me what I’m doing
wrong, or I am going to quit.”

The INS realized the colleges and universities weren’t going to meet the deadline, and they announced a
grace period after saying that “upgrades to the system” had greatly improved performance.

Behind the SEVIS system is an Oracle database that was performing awfully slowly. The system apparently
couldn’t scale well enough. When a large number of users got on, it ground to a halt. Obviously, the system wasn’t
configured to handle a high number of simultaneous operations. Was the shared server approach considered, for
example? How were the wait statistics? I don’t know the details. I do know that the Oracle database is fully capable
of meeting the requirements of an application such as this. I picked this example to show that even in high-profile
cases, DBAs sometimes have to eat humble pie when the database isn’t tuned properly and consequently perform-
ance doesn’t meet expectations.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1065

4517CH22.qxd 8/19/05 11:15 AM Page 1065

A Simple Approach to Instance Tuning
Most of the instance tuning that DBAs perform is in response to a poorly performing database. The
following sections present a brief summary of how you can start analyzing the instance to find out
where the problem lies.

First, examine all the major resources such as the memory, CPUs, and storage subsystem to
make sure your database isn’t being slowed down by bottlenecks in these critical areas.

■Note Collecting baseline data about your database statistics, including wait events, is critically important for
troubleshooting performance issues. If you have baseline data, you can immediately check if the current resource-
usage patterns are consistent with the load on the system.

What’s Happening in the Database?
It isn’t rare for a single user’s SQL query to cause an instance-wide deterioration in performance if
the query is bad enough. SQL statements are at the root of all database activity, so you should look
at what’s going on in the database right now. The following are some of the key questions to which
you need to find answers:

• Who are the top users in your Top Sessions display?

• What are the exact SQL statements being executed by these users?

• Is the number of users unusually high compared to your baseline numbers for the same time
period?

• Is the load on the database higher than what your baseline figures show for the time of the
day or the time of the week or month?

• What top waits can you see in the V$SESSION or the V$SESSION_WAIT view? These real-time
views show the wait events that are happening right now or that have just happened in the
instance. You have already seen how you can find out the actual users responsible for the
waits by using other V$ views.

My colleague Don Rios correctly points out that a critical question here is whether the per-
formance problem du jour is something that’s sudden without any forewarnings or if it’s caused by
factors that have been gradually creeping up on you. Under the latter category are things such as a
growing database, a larger number of users, and a larger number of DML operation updates than
what you had originally designed the system for. These types of problems may mean that you need
to redesign at least some of your tables and indexes with different storage parameters, and other
parameters such as freelists. If, on the other hand, the database has slowed down suddenly, you
need to focus your attention on a separate set of items.

Your best bet for analyzing what’s happening in the database currently is to probe the ASH. You
can easily find out the users, the objects, and the SQL causing the waits in your instance by using
the queries based on V$ACTIVE_SESSION_HISTORY, which I explained in the section “Using the
V$ACTIVE_SESSION_HISTORY View” earlier in this chapter. You can also run a quick ASH report
encompassing the past few minutes to see where the bottlenecks may lie, and who is causing them.

■Tip In Oracle Database 10g Release 2, the OEM Database Control provides the Gather Statistics wizard, which
you can use if there are performance issues due to out-of-date statistics for fixed and dictionary objects.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1066

4517CH22.qxd 8/19/05 11:15 AM Page 1066

Using the OEM Database Control to Examine
Database Performance
I reviewed the OEM Database Control and Grid Control in Chapter 19. It’s nice to learn about all the
different V$ views regarding waits and performance, but nothing beats the Database Control when
it comes to finding out quickly what’s happening in your database at any given time. I present a
simple approach to using the Database Control’s various performance-related pages in the follow-
ing sections.

The Database Control Home Page
Start your performance analysis by looking at the following three instance performance charts on
the Database Control’s home page. Figure 22-2 shows the Database Control home page.

Figure 22-2. The OEM Database Control home page

Host CPU

The CPU consumption on the host server is shown in the form of a bar chart. The chart shows two
categories: the instance and another category called other, which represents all the processes that
don’t belong to the database instance.

Active Sessions

The Active Sessions chart is a key chart, because it shows the extent of performance bottlenecks in
your database instance. The chart consists of three components:

• CPU

• User I/O

• Wait

The Active Sessions chart shows the time consumed by the three items: CPU, User I/O, and
Wait. You can drill down to each of these categories by clicking on the respective links. Note that
the Wait category includes all waits in the instance except User I/O, which is shown in a separate
category by itself.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1067

4517CH22.qxd 8/19/05 11:15 AM Page 1067

SQL Response Time

The SQL Response Time chart provides a quick idea about how efficiently the instance is executing
SQL statements. If the current SQL response ratio exceeds the baseline response ratio of 100 per-
cent, then the SQL statements are executing slower than “normal.” If the SQL Response Time shows
a small response percentage, then you have inefficient SQL statement processing in the instance.

■Note If you have a pre-Oracle Database 10g database, you may have to configure certain things for the SQL
activity metrics to show up in the SQL Response Time chart. You do this by using the Database Configuration wiz-
ard, which you activate by clicking the Configure button in the SQL Activity Monitoring file under the Diagnostic
Summary.

Using the ADDM Analysis in the Performance Analysis Section
The Performance Analysis section of the Database Control home page summarizes the most recent
ADDM analysis. Figure 22-3 shows the Performance Analysis section. From here, you can click any
of the findings to analyze any performance issues further. ADDM reports, which use the AWR statis-
tics, provide you with a quick top-down analysis of instance activity.

Figure 22-3. Summary of ADDM findings

Using the Database Performance Page
The Database Performance page is your jump-off point for evaluating instance performance. This
page helps you do the following:

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1068

4517CH22.qxd 8/19/05 11:15 AM Page 1068

• Check for problems both within the database and the system

• Run the ASH report to get a quick session-sampling data-based performance diagnostic
report

• Quickly see what bottlenecks exist within the system

• Run ADDM reports

• For slow or hung systems, access the Memory Access Mode

Using the Memory Access Mode

You can view the Performance page in the default mode, which is called the SQL Access Mode, or
the new Memory Access Mode. The SQL Access Mode works through SQL statements that mostly
query the V$ dynamic performance view to obtain instance performance data. However, when the
database is running painfully slowly, or is completely hung, running in the SQL Access Mode puts
further stress due to the additional parsing and execution load of the SQL statements run by the
OEM interface to diagnose instance performance. If your instance is already facing heavy library
cache contention, your attempt to diagnose the problem will exacerbate the situation.

Oracle recommends that you switch to the Memory Access Mode while diagnosing slow or
hung systems. Under this mode, the database gets its diagnostic information straight from the SGA,
using more lightweight system calls than the resource-intensive SQL statements that are employed
during the default SQL Access Mode. Because the data is sampled more frequently under the
Memory Access Mode, you’re less likely to miss events that span short intervals of time as well.
Figure 22-4 shows how to use the drop-down window to switch between the Memory Access Mode
and the SQL Access Mode.

Figure 22-4. Using the Performance page in the Memory Access Mode

The following sections describe the main charts you’ll see on the Database Performance page.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1069

4517CH22.qxd 8/19/05 11:15 AM Page 1069

Host

The Host chart indicates if there is a CPU bottleneck. If the number of users is low while the Host
section shows a high run-queue length, it means that the database users may not be the main con-
tributing factor for high CPU consumption. Look at what else may be running on your system and
consuming the CPU resources.

Average Active Sessions

The Average Active Sessions chart shows performance problems within your instance, by focusing
on the wait events in your instance. This is the key chart in the Performance page and should be the
starting point of a performance analysis using the OEM. Figure 22-5 shows the Average Active Ses-
sions chart. The chart shows you which of the active sessions are waiting on CPU and which are
waiting on an event.

The Average Active Sessions chart is color coded for your benefit. Green represents users on the
CPU and the other colors show users waiting on various events such as disk I/O, locks, or network
communications. Here’s how you can tell if you have too many waits in your instance: if the level of
waits is twice the Max CPU line, you have too many waits, and should look at tuning the instance.

To the right of the Average Active Sessions screen, you can see the breakdown of the compo-
nents that contribute to session time. For example, if you see user I/O as the main culprit for high
waits, you can click this component to find out details about the wait. Figure 22-5 also shows the
buttons you can click to run the ADDM or get an ASH report.

Figure 22-5. The Average Active Sessions page of the Database Control

You can also click the link for Top Activity to find out details about the sessions that are most
responsible for waits in your instance right now. Figure 22-6 shows the Top Activity page of the
Database Control. Database activity is ranked into Top SQL and Top Sessions. You can run the SQL
Tuning Advisor from here to get tuning recommendations about the top SQL statements.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1070

4517CH22.qxd 8/19/05 11:15 AM Page 1070

Figure 22-6. The Top Activity page of the Database Control

If you suspect that an individual session is wait bound or you get complaints from particular
users that their sessions are running slowly, you can examine the Top Sessions page. You can go the
Top Sessions page by clicking the Top Sessions link under the Additional Monitoring Links group on
the Performance page. Once you get to the Top Sessions page, click the username and SID you’re
interested in. That takes you to the Session Details page for that session. By clicking the Wait Event
History tab in the Session Details page, you can see the nature of the recent waits for that session.
Figure 22-7 shows the Wait Event History for a session.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1071

4517CH22.qxd 8/19/05 11:15 AM Page 1071

The Performance Data Report Page
You can get to the Performance Data Report page by clicking the Create ASH Report button in the
Average Active Sessions screen on the Database Control’s Performance home page. The AWR reports
are good for analyzing instance performance, but they’re usually collected at 30 minute or 1 hour
intervals. What if you have a three-to-four–minute performance spike that’s not shown in the aggre-
gated AWR report? ASH reports focus on session-sampling data over a recent period of time.

When you click the Create ASH Report button, you’re given a choice as to the time period over
which you want to create your ASH report. You can choose a time period that lies within the last
seven days, because that’s how long the AWR saves its statistics. Remember that ASH statistics are
saved in the AWR repository. Figure 22-8 shows the ASH report, which relies on the V$ACTIVE_
SESSION_HISTORY view. This is the same ASH report that you can produce by running the
ashrpt.sql script. It contains information about the following items:

• Top Events

• Load Profile

• Top SQL

• Top Sessions, including Top Blocking Sessions

• Other entities causing contention in the instance, including Top Database Objects, Top
Database Files, and Top Latches

• Activity Over Time

Figure 22-8. The ASH report

Are There Any Long-Running Transactions?
You can use the V$SQL view, as shown in the following example, to find out which of the SQL state-
ments in the instance are taking the most time to finish and are the most resource intensive. The

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1072

4517CH22.qxd 8/19/05 11:16 AM Page 1072

query ranks the transactions by the total number of elapsed seconds. You can also rank the state-
ments according to CPU seconds used.

SQL> SELECT hash_value, executions,
2 ROUND (elapsed_time/1000000, 2) total_time,
3 ROUND (cpu_time/1000000, 2) cpu_seconds
4 FROM (SELECT * FROM V$SQL
5 ORDER BY elapsed_time desc);

HASH_VALUE EXECUTIONS TOTAL_TIME CPU_SECONDS
---------- ---------- ---------- ------------
238087931 168 9.51 9.27
1178035321 108 4.98 5.01
...
SQL>

Once you have the value for the HASH_VALUE column from the query you just ran, it’s a simple
matter to find out the execution plan for this statement, which is in your library cache. The follow-
ing query uses the V$SQL_PLAN view to get you the execution plan for your longest-running SQL
statements:

SQL> SELECT * FROM V$SQL_PLAN WHERE hash_value = 238087931;

Is Oracle the Problem?
Just because your database users are complaining, you shouldn’t be in a hurry to conclude that the
problem lies within the database. After all, the database doesn’t work in a vacuum—it runs on the
server and is subject to the resource constraints and bottlenecks of that server. If the non-Oracle
users on the server are using up critical resources such as CPU processing and disk I/O, your data-
base may be the victim of circumstances, and you need to look for answers outside the database.
That’s why it’s critical that DBAs understand how to measure general system performance, includ-
ing memory, the disk storage subsystem, the network, and the processors. In the following sections
you’ll take a look at the system resources you should focus on.

Is the Network Okay?
One of the first things you need to do when you’re investigating slowdowns is to rule out network-
related problems. Quite often, users complain of being unable to connect to the system, or being
abruptly disconnected from the system. Check your round-trip ping times and the number of colli-
sions. Your network administrator should check the Internet connections and routers.

On the Oracle end, you can check the following dynamic views to find out if there’s a slowdown
due to a network problem. The V$SESSION_EVENT view shows the average amount of time Oracle
waits between messages in the average wait column. The V$SESSION_WAIT view, as you’ve seen,
shows what a session is waiting for, and you can see if waits for network message transport are
higher than normal.

If the time for SQL round-trips is extremely long, it could reflect itself as a high amount of
network-related wait time in the V$ views. Check to see if your ping time for network round-trips
has gone up appreciably. You should discuss with your network administrator what you can do to
decrease the waits for network traffic.

You may explore the possibility of setting the parameter TCP,NODELAY=TRUE in your sqlnet.ora
file. This results in TCP sending packets without waiting, thus increasing response time for real-time
applications.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1073

4517CH22.qxd 8/19/05 11:16 AM Page 1073

If the network seems like one of your constant bottlenecks, you may want to investigate the
possibility of using the shared server approach instead of the dedicated server approach for con-
necting users to your database. By using a shared server and its connection pooling feature, you can
reduce the number of physical network connections and thus help your application scale more effi-
ciently to large user bases.

Is the System CPU Bound?
Check the CPU performance to make sure a runaway process or a valid Oracle process isn’t hogging
one or more processes and contributing to the system slowdown. Often, killing the runaway pro-
cesses or the resource-hogging sessions will bring matters to a more even keel. Using the OEM
Database Control, you can get a quick idea about the breakdown of CPU usage among parse, recur-
sive, and other usage components.

Normally, you should expect to see no more than 20 to 25 percent of total CPU usage by the
system itself, and about 60 to 65 percent usage by the Oracle application. If the system usage is
close to 50 percent, it’s an indication that there are too many system calls, for example, which leads
to excessive use of the processors.

As you learned earlier in this chapter, the V$SESSTAT view shows CPU usage by session. Using
the following query, you can find out the top CPU-using Oracle sessions. You may want to look into
the actual SQL that these sessions are executing.

SQL> SELECT a.sid,a.username, s.sql_text
FROM V$SESSION a, V$SQLTEXT s
WHERE a.sql_address = s.address
AND a.sql_hash_value = s.hash_value
AND a.username = '&USERNAME'
AND A.STATUS='ACTIVE'
ORDER BY a.username,a.sid,s.piece;

Is the System I/O Bound?
Before you go any further analyzing other wait events, it’s a good idea to rule out whether you’re
limited by your storage subsystem by checking your I/O situation. Are the read and write times on
the host system within the normal range? Is the I/O evenly distributed, or are there hot spots with
one or two disks being hit hard? If your normal, healthy I/O rates are 40–50/ms and you’re seeing an
I/O rate of 80/ms, obviously something is amiss. The AWR and ASH reports include I/O times (disk
read and disk write) by data file. This will usually tip you off about what might be causing the spike.
For example, if the temporary tablespace data files are showing up in the high I/O list often, that’s
usually an indication that disk sorting is going on, and you need to investigate that further.

You can use the V$SYSTEM_EVENT view to verify whether the top wait events include events
such as db file scattered read, db file sequential read, db file single write, and Logfile
parallel write, which are database file, log file, and redo log file-related wait events. You can run
an AWR report and identify the tablespaces and data files causing the I/O contention. Use the
V$SQLAREA view, as shown in this chapter, to identify SQL statements that lead to high disk reads
and have them tuned.

Too often, a batch program that runs into the daytime could cause spikes in the I/O rates. Your
goal is to see if you can rule out the I/O system as the bottleneck. Several of the wait events that
occur in the Oracle database, such as the db file sequential read and db file scattered read
waits, can be the result of extremely heavy I/O in the system. If the average wait time for any of
these I/O-related events is significant, you should focus on improving the I/O situation. You can do
two things to increase the I/O bandwidth: reduce the I/O workload or increase the I/O bandwidth.
In Chapter 21, you learned how you can reduce physical I/Os by proper indexing strategies and the
use of efficient SQL statements.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1074

4517CH22.qxd 8/19/05 11:16 AM Page 1074

Improving SQL statements is something that can’t happen right away, so you need to do other
things to help matters in this case. This means you need to increase the I/O bandwidth by doing
either or both of the following:

• Make sure that the key database objects that are used heavily are spread evenly on the disks.

• Increase the number of disks.

Storage disks are getting larger and larger, but the I/O rates aren’t quite keeping up with the
increased disk sizes. Thus, servers are frequently I/O bound in environments with large databases.
Innovative techniques such as file caching might be one solution to a serious I/O bottleneck. On
average, about 50 percent of I/O activity involves less than 5 percent of the total data files in your
database, so caching this limited number of hot files should be a win. Caching gives you the benefit
of read/write operations at memory speeds, which could be 200 times faster than disk speed. You
can include your temp, redo log, and undo tablespace files, as well as the most frequently used table
and index data files on file cache accelerators.

It’s possible for large segments to waste a lot of disk space due to fragmentation caused by
update and delete operations over time. This space fragmentation could cause severe performance
degradation. You can use the Segment Advisor to find out which objects are candidates for a space
reclamation exercise due to excessive fragmentation within the segment.

Is the Database Load Too High?
If you have baseline numbers for the database load, you can see if the current load on the database
is relatively too high. Pay attention to the following data, which you can obtain from the V$SYSSTAT
view: physical reads and writes, redo size, hard and soft parse counts, and user calls. You can also
check the Load Profile section of the AWR report for load data that’s normalized over transactions
and over time.

Checking Memory-Related Issues
As you saw earlier in this chapter, high buffer cache and shared pool hit ratios aren’t guarantees of
efficient instance performance. Sometimes, an excessive preoccupation with hit ratios can lead you
to allocate too much memory to Oracle, which opens the door to serious problems such as paging
and swapping at the operating-system level. Make sure that the paging and swapping indicators
don’t show anything abnormal. High amounts of paging and swapping slow down everything,
including the databases on the server.

Due to the virtual memory system used by most operating systems, a certain amount of paging
is normal and to be expected. If physical memory isn’t enough to process the demand for memory,
the operating system will go to the disk to use its virtual memory, and this results in a page fault.
Processes that result in high page faults are going to run slowly.

When it comes to Oracle memory allocation, don’t forget to pay proper attention to PGA mem-
ory allocation, especially if you’re dealing with a DSS-type environment. Databases that perform a
large number of heavy sorting and hashing activities need a high amount of PGA memory alloca-
tion. The database self-tunes the PGA, but you still have to ensure that the pga_aggregate_target
value is high enough for Oracle to perform its magic.

■Tip Unlike the SGA, the PGA memory allocation isn’t immediately and permanently allocated to the Oracle data-
base. Oracle is allowed to use PGA memory up to the limit specified by the PGA_TARGET parameter. Once a user’s
job finishes executing, the PGA memory used by the job is released back to the operating system. Therefore, you
shouldn’t hesitate to use a high value for the PGA_TARGET initialization parameter. There’s absolutely no downside
to using a high number, and it guarantees that your instance won’t suffer unnecessary disk sorting and hashing.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1075

4517CH22.qxd 8/19/05 11:16 AM Page 1075

See if you can terminate a few of the top sessions that seem to be consuming inordinate
amounts of memory. It’s quite possible that some of these processes are orphan or runaway
processes.

Are the Redo Logs Sized Correctly?
If the redo logs are too few or if they are too small relative to the DML activity in the database, the
archiver process will have to work extra hard to archive the filled redo log files. This may cause a
slowdown in the instance. It’s easy to resize the redo logs or add more redo log groups. When you
use the FAST_START_MTTR_TARGET parameter to impose a ceiling on instance recovery time, Oracle
will checkpoint as frequently as necessary to ensure the instance can recover from a crash within
the MTTR setting. You must ensure that the redo logs are sized large enough to avoid additional
checkpointing. You can get the optimal redo log size from the OPTIMAL_LOGFILE_SIZE column from
the V$INSTANCE_RECOVERY view. You can also use the Database Control’s Redo Log Groups page
to get advice on sized redo logs. As a rule of thumb, Oracle recommends that you size the log files
so they switch every 20 minutes.

Is the System Wait Bound?
If none of the previous steps indicated any problems, chances are that your system is suffering
from a serious contention for some resource such as library cache latches. Check to see if there’s
contention for critical database resources such as locks and latches. For example, parsing similar
SQL statements leads to an excessive use of CPU resources and affects instance performance by
increasing the contention for the library cache or the shared pool. Contention for resources mani-
fests itself in the form of wait events. The wait event analysis earlier in this chapter gave you a
detailed explanation of various critical wait events. You can use AWR and ASH reports to examine
the top wait events in your database.

The V$SESS_TIME_MODEL (and the V$SYS_TIME_MODEL) view is useful in finding out accu-
mulated time for various database operations at the individual session level. This view helps you
understand precisely where most of the CPU time is being spent. As explained in Chapter 17, the
V$SESS_TIME_MODEL view shows the following things, among others:

• DB time, which is the elapsed time spent in performing database user level calls.

• DB CPU is the amount of CPU time spent on database user-level calls.

• Background CPU time is the amount of CPU time used by the background processes.

• Hard parse elapsed time is the time spent hard parsing SQL statements.

• PL/SQL execution elapsed time is the amount of time spent running the PL/SQL interpreter.

• Connection management call elapsed time is the amount of time spent making session
connect and disconnect calls.

You can use segment data in the V$SEGMENT_STATISTICS view to find out the hot table and
index segments causing a particular type of wait, and focus on eliminating (or reducing, anyway)
that wait event.

The Compare Periods Report
Let’s say you encounter a situation where one of your key nightly batch jobs is running past its time
window and continuing on into the daytime, where it’s going to hurt the online OLTP performance.
You know the batch job used to finish within the stipulated time, but now it’s tending to take a
much longer time. In Oracle Database 10g Release 2, you can use the Database Control’s Compare

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1076

4517CH22.qxd 8/19/05 11:16 AM Page 1076

Periods feature to compare the changes in key database metrics between two time intervals. As you
know, an AWR snapshot captures information between two points in time. However, you can use
the Time Periods Comparison feature to examine the difference in database metrics between two
different time intervals or periods, by analyzing performance statistics captured by two sets of AWR
snapshots. If your nightly batch job ran just fine on Tuesday but was slow on Wednesday, you can
find out why, using the Compare Periods Report.

To use the Compare Periods Report, use the following steps:

1. In the Database Control home page, click the Performance tab.

2. Under the Additional Monitoring Links group, click the Snapshots link.

3. In the drop-down list for Actions, select Compare Periods and click Go.

4. The Compare Periods: First Period End page appears. You must select the start time for the
comparison analysis by selecting an ending snapshot ID for the first period. You may also
choose a time period, if you wish, instead of the ending snapshot ID. Click Next.

5. The Compare Periods: Second Period Start page is next. You must select a snapshot ID to
mark the beginning of the second period. Click Next.

6. The Compare Periods: Second Period End page is next. You select the ending snapshot for
the second period on this page and click Next.

7. The Compare Periods: Review page is next, as shown in Figure 22-9. It shows the first period
and second period beginning and ending snapshot IDs. After confirming that the first and
second period ranges are correct, click Finish.

8. You’ll now get the Compare Period: Results page, which summarizes the differences in key
database metrics between the two periods.

Figure 22-9. The Compare Periods: Review page

Going through the differences in key database metrics between the two periods helps you
identify the root causes of the performance slowdown in the latter period when compared to the
earlier “good” period. You can also view the database configuration differences between the two
periods as well.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1077

4517CH22.qxd 8/19/05 11:16 AM Page 1077

To compare the two periods in detail and to drill down into various items such as SQL state-
ments executed, SGA usage, and so on, click the Report link in the Compare Periods: Results page.
You can see a nicely formatted report comparing the two periods on the basis of configuration, top
five timed events, and Load Profile. By viewing the various statistics for the two periods, you can
determine if there was excessive load or some such thing during the second period.

At the bottom of the report, you’ll find the Report Details section, with links for various items
like wait events, I/O statistics, segment statistics, and SGA statistics. You can click any of these links
to drill down into what exactly went on inside the database during the two periods. For example, by
clicking the SQL Statistics link, you can get to the top ten SQL statements compared by execution
time, CPU time, buffer gets, physical reads, and so on. For example, Figure 22-10 shows the top ten
SQL statements compared on the basis of physical reads during each period.

Figure 22-10. The Top 10 SQL Comparison report

Instead of running myriad SQL scripts and manually examining various statistics, as is the tra-
dition, you can use the Compare Periods feature to zoom in quickly on the reasons for deterioration
in recent database performance compared to a past period of time.

Eliminating the Contention
Once you identify wait events due to contention in the system, you need to remove the bottleneck.
Of course, this is easier said than done in the short run. You may be able to fix some contention
problems right away, whereas you may need more time with others. Problems such as high db file
scattered read events, which are due to full table scans, may indicate that the I/O workload of the
system needs to be reduced. However, if the reduction in I/O requires creating new indexes and
rewriting SQL statements, obviously you can’t fix the problem right away. You can’t add disks and
rearrange objects to reduce hot spots right away either. Similarly, most latch contention requires
changes at the application level. Just make sure you don’t perform a whole bunch of changes at
once—you’ll never be able to find out what fixed the problem (or in some cases, what made it
worse).

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE1078

4517CH22.qxd 8/19/05 11:16 AM Page 1078

The trick, as usual, is to go after the problems you can fix in the short run. Problems that you
can fix by changing the memory allocation to the shared pool or the buffer cache you can easily
handle almost immediately by dynamically adjusting the cache values. You can also take care of any
changes that concern the redo logs right away. If you notice one or two users causing a CPU bottle-
neck, it may be a smart idea to kill those sessions so the database as a whole will perform better. As
you know, prevention is much better than a cure, so consider using the Oracle Database Resource
Manager tool (Chapter 11 shows you in detail how to use the Database Resource Manager) to create
resource groups and prevent a single user or group from monopolizing the CPU usage.

If intense latch contention is slowing your database down, you probably should be setting the
CURSOR_SHARING initialization parameter’s value to FORCE or SIMILAR to ameliorate the situation.

Most other changes, though, may require more time-consuming solutions. Some changes may
even require major changes in the code or the addition or modification of important indexes. How-
ever, even if the problem isn’t fixed immediately, you have learned your craft, and you’re on the right
path to improving instance performance.

Although I’ve discussed various methods and techniques that use SQL scripts to analyze
instance performance, try to make the OEM Database Control (or Grid Control) the center of your
database performance monitoring, and use Oracle’s powerful tools, such as the ADDM, to save
time. The AWR and ASH reports are also highly useful when searching for root causes of perform-
ance problems.

CHAPTER 22 ■ PERFORMANCE TUNING: TUNING THE INSTANCE 1079

4517CH22.qxd 8/19/05 11:16 AM Page 1079

4517CH22.qxd 8/19/05 11:16 AM Page 1080

The Data Dictionary,
Dynamic Views, and the
Oracle-Supplied Packages

P A R T 8

■ ■ ■

4517CH23.qxd 8/19/05 11:17 AM Page 1081

4517CH23.qxd 8/19/05 11:17 AM Page 1082

The Oracle Data Dictionary and the
Dynamic Performance Views

The Oracle data dictionary is the heart of the Oracle database management system. The data dic-
tionary holds all the necessary information for Oracle to verify users, objects, privileges, and roles
in the database. Understanding the data dictionary well is of paramount importance for an Oracle
DBA. The first part of this chapter discusses the important static data dictionary views with which
every DBA should be familiar. The second part deals with the equally important dynamic perform-
ance tables, which underlie instance management and performance tuning of the database.

All database monitoring, whether manual or GUI-based, relies on the data dictionary and the
dynamic performance views to provide an accurate picture of how the database is performing.
The dynamic performance views capture all the important indicators of instance performance,
including I/O rates, memory, hit ratios, and wait statistics.

The Oracle Data Dictionary
Every Oracle database contains a set of read-only tables, which contain metadata (information
about the various component of the database). The Oracle data dictionary is the heart of the data-
base management system, and mastery of it will take you far in your quest to become an expert
DBA. If you understand the data dictionary well, you can easily perform database management
tasks.

The data dictionary tables are located in the System tablespace and are read-only for all the
database users except the user SYS. The data dictionary tables are updated when any database
objects or user information changes (any DDL changes in the database modify the data dictionary).
Following are some of the key database items for which you can use the data dictionary:

• User information

• Object information (tables, indexes, packages, and so on)

• Roles and privileges

• Constraint information

• Storage information (data files and tablespaces)

• Auditing information

• Operational information (backups, log files, archive log files, and so on)

1083

C H A P T E R 2 3

■ ■ ■

4517CH23.qxd 8/19/05 11:17 AM Page 1083

The Three Sets of Data Dictionary Views
Oracle doesn’t allow you to access the internal data dictionary tables directly. It creates views on the
base dictionary tables and creates public synonyms for these views so users can access them. There
are three sets of data dictionary views—USER, ALL, and DBA—with each set of views pertaining to a
similar item containing similar columns. The views in each category are prefixed by the keywords
USER, ALL, or DBA. Each of these sets of views shows only the information the user is granted privi-
leges to access, as follows:

• USER: The USER views show a user only those objects that the user owns. These views are
useful to users, especially developers, for viewing the owner’s objects, grants, and so on.

• ALL: The ALL views show you information about objects for which you have been granted
privileges. The views with the prefix ALL include information on the user’s objects, and all
other objects on which privileges have been granted, directly or through a role.

• DBA: The DBA views are the most powerful in their range. Users who have been assigned
the DBA role can access information about any object or any user in the database. The DBA-
prefixed dictionary views are the ones you use to monitor and administer the database.

How Is the Data Dictionary Created?
The data dictionary is created automatically when you create the database. Well, almost automati-
cally, because you do have to run the catalog.sql script manually (located in the $ORACLE_HOME/
rdbms/admin directory) if you aren’t using the Database Configuration Assistant. The catalog.sql
script creates the data dictionary tables, views, and synonyms, and they’re the first set of objects to
populate the database. The data dictionary, once created, has to remain in the System tablespace.

In the rest of the chapter, you’ll see detailed references to the DBA data dictionary tables only,
because your focus is database management. There are many data dictionary tables and views.
You’ll examine the most useful of the data dictionary views in the next few sections.

Using the Static Data Dictionary Views
The data dictionary contains metadata about your database. The data dictionary tables and the
views based on them are called static, because the running database instance doesn’t modify data
in these tables and views. The tables and views are modified only if you make a change to the data
dictionary itself; for example, by creating a table or a new user. No matter whether you manage the
database manually or use sophisticated GUI-based management tools, the data dictionary (along
with the dynamic performance tables) is the source for all information about the database. Because
there are hundreds of data dictionary views, I can’t cover every one of them in this chapter, but
you’ll look into how you can use the important views to manage your database.

For convenience, I divide the key data dictionary views into the following categories:

• General views

• User management–related views

• Audit-related views

• Storage-related views

• Views for monitoring transactions

• Constraint- and index-related views

• Views for managing database objects (such as sequences and synonyms)

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS1084

4517CH23.qxd 8/19/05 11:17 AM Page 1084

• Views for managing tables and views

• AWR-related, ADDM-related, and alerts-related views

• Views relating to the advisory framework

The following sections cover the most important data dictionary views of Oracle Database 10g.
You’ll first examine the structure of each of these views, and then you’ll see how you can query them
to find out useful things about the various aspects of the database.

General Views
A collection of general dictionary views provides information about the global name and instance
parameters. For example, the GLOBAL_NAME view shows the global name of the database. The
DBA_CATALOG view contains the names of all tables, views, synonyms, and sequences in the data-
base. The following sections cover some of the more useful general data dictionary views.

Dict
Dict is short for dictionary, and it’s a view that has all the dictionary table names and their descrip-
tions. Because Dict includes the USER-, ALL-, and DBA-prefixed tables, it includes more than 1,800
tables. However, if you ever forget the name of a data dictionary view, you can use Dict to find out
the view’s name. The following code shows the results of a query using the Dict view:

SQL> SELECT * FROM dict
WHERE table_name LIKE '%LINKS%'

TABLE_NAME COMMENTS
---ALL_DB_LINKS
Database links accessible to the user
DBA_DB_LINKS All database links in the database
USER_DB_LINKS Database links owned by the user
SQL>

If you ever aren’t sure of the name of a certain data dictionary view, just use the DICT view to
query for the name, as shown in the preceding example.

PRODUCT_COMPONENT_VERSION
The PRODUCT_COMPONENT_VERSION view shows you at a glance the version numbers of all the
major components of your Oracle database. Following is a typical query on this view:

SQL> SELECT * FROM PRODUCT_COMPONENT_VERSION;

PRODUCT VERSION STATUS
--
NLSRTL 10.2.0.0.0 Beta
Oracle Database 10g Enterprise Edition 10.2.0.0.0 Beta
PL/SQL 10.2.0.0.0 Beta
TNS for Linux: 10.2.0.0.0 Beta
SQL>

DBA_REGISTRY
The DBA_REGISTRY view provides information about the different Oracle components that are
installed, along with their version number, schemas, and other details. Listing 23-1 shows the con-
tents of the DBA_REGISTRY view.

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS 1085

4517CH23.qxd 8/19/05 11:17 AM Page 1085

Listing 23-1. Querying the DBA_REGISTRY View

SQL> SELECT comp_id,
2 comp_name,
3 version,
4 status
5 FROM DBA_REGISTRY ;

COMP_ID COMP_NAME VERSION STATUS
---------- ---------------------------------- ---------- -------
CATALOG Oracle Database Catalog Views 10.2.0.0.0 VALID
CATPROC Oracle Database Packages and Types 10.2.0.0.0 VALID
OWM Oracle Workspace Manager 10.2.0.0.0 VALID
JAVAVM JServer JAVA Virtual 10.2.0.0.0 VALID
XML Oracle XDK 10.2.0.0.0 VALID
CATJAVA Oracle Database Java Packages 10.2.0.0.0 VALID
EXF Oracle Expression Filter 10.2.0.0.0 VALID
ORDIM Oracle interMedia 10.2.0.0.0 VALID
ODM Oracle Data Mining 10.2.0.0.0 VALID
CONTEXT Oracle Text 10.2.0.0.0 VALID
XDB Oracle XML Database 10.2.0.0.0 VALID
RUL Oracle Rules Manager 10.2.0.0.0 VALID
OLAP Analytic Workspace 10.2.0.0.0 VALID
XOQ Oracle OLAP API 10.2.0.0.0 VALID
AMD OLAP Catalog 10.2.0.0.0 VALID
SDO Spatial 10.2.0.0.0 VALID
WK Oracle Ultra Search 10.2.0.0.0 VALID
EM Oracle Enterprise Manager 10.1.0.2.0 VALID
18 rows selected.
SQL>

NLS_DATABASE_PARAMETERS
The NLS_DATABASE_PARAMETERS dictionary view shows you the database settings of the various
NLS parameters, such as NLS_DATE_FORMAT. The related NLS_INSTANCE_PARAMETERS and
NLS_SESSION_PARAMETERS views are identical to the NLS_DATABASE_PARAMETERS view, but
they show the instance-level and session-level NLS values. Listing 23-2 shows an abbreviated out-
put of a query on the NLS_DATABASE_PARAMETERS view.

Listing 23-2. Querying the NLS_DATABASE_PARAMETERS View

SQL> SELECT * FROM NLS_DATABASE_PARAMETERS;

PARAMETER VALUE
------------------------------ -----------------------------
NLS_LANGUAGE AMERICAN
NLS_TERRITORY AMERICA
NLS_CURRENCY $
NLS_ISO_CURRENCY AMERICA
NLS_NUMERIC_CHARACTERS .,
NLS_CHARACTERSET WE8MSWIN1252
NLS_CALENDAR GREGORIAN
NLS_DATE_FORMAT DD-MON-RR
NLS_DATE_LANGUAGE AMERICAN
NLS_SORT BINARY
NLS_TIME_FORMAT HH.MI.SSXFF AM

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS1086

4517CH23.qxd 8/19/05 11:17 AM Page 1086

NLS_TIMESTAMP_FORMAT DD-MON-RR HH.MI.SSXFF AM
NLS_TIME_TZ_FORMAT HH.MI.SSXFF AM TZR
NLS_TIMESTAMP_TZ_FORMAT DD-MON-RR HH.MI.SSXFF AM TZR
NLS_DUAL_CURRENCY $
NLS_COMP BINARY
NLS_LENGTH_SEMANTICS BYTE
NLS_NCHAR_CONV_EXCP FALSE
NLS_NCHAR_CHARACTERSET AL16UTF16
NLS_RDBMS_VERSION 10.2.0.0.0
20 rows selected.
SQL>

Plan Table
Plan table is the well-known name for the table that holds the execution plans of SQL statements,
when you use the EXPLAIN PLAN utility to view SQL execution plans. If you can’t describe this
table, it means you have to run the utlxplan.sql script from the $ORACLE_HOME/rdbms/admin
directory. You can use a different name if you wish for the plan table. Chapter 21 reviews the use of
the EXPLAIN PLAN utility. You can also use the DBMS_XPLAN package to view the EXPLAIN PLAN
output, as shown in Chapter 21.

DBA_SOURCE
The DBA_SOURCE dictionary view is great for situations where you need to know what the source
code of a database object looks like. The DBA_SOURCE view stores the complete text of all functions,
procedures, packages, types, and Java source. The following code describes the DBA_SOURCE view:

SQL> DESC DBA_SOURCE
Name

OWNER
NAME
TYPE
LINE
TEXT
SQL>

The following query using the DBA_SOURCE view gets you the text of a trigger in the
APPOWNER schema:

SQL> SELECT text FROM dba_source
2 WHERE name= 'US_BIUR';

TEXT
--
TRIGGER "APPOWNER".us_biur
BEFORE INSERT OR UPDATE
ON ig_persons
FOR EACH ROW
DECLARE
BEGIN

IF (INSERTING) THEN
:NEW.created_by := USER;
:NEW.created_date := SYSDATE;

ELSE
:NEW.updated_by := USER;

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS 1087

4517CH23.qxd 8/19/05 11:17 AM Page 1087

TEXT
--

:NEW.updated_date := SYSDATE;
END IF;

END;

14 rows selected.

SQL>

DBA_FEATURE_USAGE_STATISTICS
In Oracle Database 10g, the AWR tracks database feature-usage statistics. Feature-usage statistics
let you know how your database is using features such as the audit option, virtual private database,
Oracle Streams, and so on. The MMON process samples the data dictionary on a weekly basis to
record the database feature-usage information in the AWR. This usage information is made avail-
able to you through regular AWR snapshots. Here’s a typical query using this view:

SQL> SELECT name, detected_usages, currently_used
2 FROM dba_feature_usage_statistics;

NAME DETECTED_USAGES CURRENTLY_USED

Advanced Replication 0 FALSE
Advanced Security 0 FALSE
Audit Options 0 FALSE
Automatic Database Diagnostic Monitor 4 TRUE
Virtual Private Database (VPD) 0 FALSE
. . .
59 rows selected.
SQL>

DBA_HIGH_WATER_MARK_STATISTICS
The new DBA_HIGH_WATER_MARK_STATISTICS view shows database high-water–mark statistics
such as the maximum number of sessions, maximum size of the database, and the size of the largest
segment. Here’s a sample query on this view:

SQL> SELECT name, highwater, description
2* FROM DBA_HIGH_WATER_MARK_STATISTICS;

NAME HIGHWATER DESCRIPTION

USER_TABLES 5529 Number of User Tables
SEGMENT_SIZE 1.7852E+10 Size of Largest Segment (Bytes)
PART_TABLES 4 Maxi Partitions User Table
USER_INDEXES 3674 Number of User Indexes
SESSIONS 224 Maximum Number of Concurrent

Sessions seen in the database
DB_SIZE 2.9827E+11 Maximum Size of Database (Bytes)
DATAFILES 631 Maximum Number of Datafiles
TABLESPACES 109 Maximum Number of Tablespaces
CPU_COUNT 16 Maximum Number of CPUs
QUERY_LENGTH 345992 Maximum Query Length
SERVICES 3 Maximum Number of Services
12 rows selected.

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS1088

4517CH23.qxd 8/19/05 11:17 AM Page 1088

DBA_DIRECTORIES
The DBA_DIRECTORIES view shows information about all the directory objects in your database, as
shown here:

SQL> SELECT * FROM DBA_DIRECTORIES;

OWNER DIRECTORY_NAME DIRECTORY_PATH

SYS DATA_DIR1 /u01/app/oracle/admin/export
SYS SOURCE_DIR /u01/app/oracle/admin/load
SYS DEST_DIR /u01/app/oracle/admin/dest
SQL>

DBA_EXP_FILES
The DBA_EXP_FILES view shows details about all the all export files in the database, including the
export-file names, name of the user who executed the export, and the time stamp of the export
session.

DBA_RECYCLEBIN
As you know by now, when you drop a table, Oracle doesn’t immediately reclaim the space occupied
by the table and its indexes. Instead, Oracle places these objects in the Recycle Bin. Unless there’s
space pressure or you use the DROP TABLE table_name PURGE command, the table remains in place,
although its name is internally changed to a system-generated name. You can use the FLASHBACK
TABLE . . . TO BEFORE DROP command to recover all objects from the Recycle Bin.

The DBA_RECYCLEBIN view shows all objects dropped by you that the database still retains:

SQL> SELECT object_name,original_name,can_undrop,can_purge
2 FROM DBA_RECYCLEBIN;

OBJECT_NAME ORIGINAL_NAME CAN_UNDROP CAN_PURGE
------------------------------ ------------------------------------
BIN$5CiRvIxdSMngNABgsLLCaA==$0 UTL_RECOMP_ERR YES YES
BIN$5CiRvIxaSMngNABgsLLCaA==$0 UTL_RECOMP_IDX1 NO YES
SQL>

■Tip You can use the SHOW RECYCLEBIN command in SQL*Plus to see the objects that are in the Recycle Bin.
However, unlike a query on the DBA_RECYCLEBIN view, this command only shows you objects that you can
undrop.

FLASHBACK_TRANSACTION_QUERY
The FLASHBACK_TRANSACTION_QUERY view contains information about all flashback transac-
tion queries in the database. This view gives you the necessary SQL statements to undo changes
made by a transaction or during a certain time period. Using the Flashback Transaction Query
feature, you can generate the SQL statements to undo changes faster than by using LogMiner.
Chapter 6 shows how to use this feature.

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS 1089

4517CH23.qxd 8/19/05 11:17 AM Page 1089

DBA_JOBS
If you have created any jobs within your database using the DBMS_JOB package (Chapter 24 shows
you how to do this), you can query the DBA_JOBS view to monitor the job status. Listing 23-3 shows
a typical query against the DBA_JOBS view.

Listing 23-3. Querying the DBA_JOBS View

SQL> SELECT
2 job, /* Job Identifier */
3 last_date, /* last time the job was successfully run */
4 this_date, /* data when the job started executing */
5 next_date, /* next time the job is scheduled to run *?
6 broken, /Y=an attempt will not be made to run it.

No=attempt will be made*/
7 interval, /* the next NEXT_DATE */
8 failures, /* Number of failures since last success */
9 what /*Text of the PL/SQL code the job will execute*/
10 FROM DBA_JOBS;

DBA_SCHEDULER_JOBS
The DBA_SCHEDULER_JOBS view displays general information about all Scheduler jobs in the
database. The view provides information on jobs, and the PROGRAM_NAME and SCHEDULE_NAME the job
belongs to. Here’s a typical query using the view:

SQL> SELECT job_name, schedule_name, program_name
2* FROM DBA_SCHEDULER_JOBS;

JOB_NAME SCHEDULE_NAME PROGRAM_NAME
--
PURGE_LOG DAILY_PURGE_SCHEDULE PURGE_LOG_PROG
GATHER_STATS_JOB MAINTENANCE_WINDOW_GROUP GATHER_STATS_PROG
SQL>

The DBA_SCHEDULER_PROGRAMS view shows information on all the Scheduler programs.
Similarly, the DBA_SCHEDULER_SCHEDULES and the DBA_SCHEDULER_WINDOWS views dis-
play information about all the Scheduler schedules and windows, respectively.

DBA_SCHEDULER_RUNNING_JOBS
The DBA_SCHEDULER_RUNNING_JOBS view gives you details about all running Scheduler jobs in
the database. You can use this view to manage currently running jobs.

DBA_SCHEDULER_JOB_RUN_DETAILS
The DBA_SCHEDULER_JOB_RUN_DETAILS view shows log run details for all Scheduler jobs in the
database. You can find the status of your jobs and the duration of their execution using this view.
The view has a row for each job instance showing the status and run duration for that job. This view
contains a listing of all completed (failed and successful) job runs.

If you opt for full logging or the “logging runs” level of logging, you can use the DBA_
SCHEDULER_JOB_LOG view to examine details of each job operation.

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS1090

4517CH23.qxd 8/19/05 11:17 AM Page 1090

DBA_DATAPUMP_JOBS
The DBA_DATAPUMP_JOBS view displays all Data Pump jobs. Here’s a typical query using this
view:

SQL> SELECT operation,job_mode,state,degree
2 FROM DBA_DATAPUMP_JOBS;

Another important Data Pump view, the DBA_DATAPUMP_SESSIONS view, shows all user
sessions that are attached to a Data Pump job.

DBA_OBJECTS
The DBA_OBJECTS view contains information about all the objects in the database, including
tables, indexes, packages, procedures, functions, dimensions, materialized views, resource plans,
types, sequences, synonyms, triggers, views, and table partitions. As you can surmise, this view is
useful when you need to know general information regarding any database object. Listing 23-4
shows a query designed to find out the created time and the LAST_DDL_TIME (the last time the object
was modified). This type of query helps you identify when a certain object was modified, and is
often used for auditing purposes.

Listing 23-4. Querying the DBA_OBJECTS View

SQL> SELECT object_name,
2 object_type,
3 created,
4 last_ddl_time,
5 FROM DBA_OBJECTS
6 WHERE owner ='APPOWNER'
7* AND object_name LIKE 'YTD%';

OBJECT_NAME OBJECT_TYPE CREATED LAST_DDL_TIME
--
YTD_ADJ2005050603 TABLE 07/04/2005 07/04/2005
SQL>

User Management–Related Views
A large set of data dictionary views deals with the management of users, profiles, roles, and system
and object privileges. In the following sections you’ll look at some of the important user manage-
ment views.

DBA_USERS
DBA_USERS is your main user-related view. It contains information about the database user’s
name, profile, expiration date, default and temporary tablespaces, and the date of creation.
Listing 23-5 shows the structure of the DBA_USERS view.

Listing 23-5. The DBA_USERS View

SQL> DESC DBA_USERS

Name Null? Type
--- -------- --------------
USERNAME NOT NULL VARCHAR2(30)

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS 1091

4517CH23.qxd 8/19/05 11:17 AM Page 1091

USER_ID NOT NULL NUMBER
PASSWORD VARCHAR2(30)
ACCOUNT_STATUS NOT NULL VARCHAR2(32)
LOCK_DATE DATE
EXPIRY_DATE DATE
DEFAULT_TABLESPACE NOT NULL VARCHAR2(30)
TEMPORARY_TABLESPACE NOT NULL VARCHAR2(30)
CREATED NOT NULL DATE
PROFILE NOT NULL VARCHAR2(30)
INITIAL_RSRC_CONSUMER_GROUP VARCHAR2(30)
EXTERNAL_NAME VARCHAR2(4000)
SQL>

You can use the DBA_USERS view to find out the profile, temporary tablespace, or default
tablespace assigned to users. Although there’s a PASSWORD column, you can’t find out the password,
because the password is encrypted. There are two ways you can log in as a user if you don’t know
the user’s password. First, you can simply change the user’s password by using the ALTER USER com-
mand. However, this permanently changes the user’s password, which may not be what you want to
do. The following example shows the other way to log in as a different user without knowing that
user’s password. (In this case, the user is called “hr.”)

First, find out the encrypted version of hr’s password:

SQL> SELECT password FROM DBA_USERS
2 WHERE username='HR';

PASSWORD

4C6D73C3E8B0F0DA
SQL>

Second, alter hr’s password:

SQL> ALTER USER hr IDENTIFIED BY new_pass;
User altered.
SQL>

Third, when you’re done using hr’s username and you want to change the password to its origi-
nal (unknown) version, use the following statement:

SQL> ALTER USER hr IDENTIFIED BY VALUES '4C6D73C3E8B0F0DA';
User altered.

DBA_PROFILES
The DBA_PROFILES view provides information about user profiles. You’ll find out that this view is
one of your most important aids in managing user resource allocation. Two important values under
the RESOURCE_TYPE column are KERNEL and PASSWORD. Here’s the structure of this view:

SQL> DESC DBA_PROFILES

Name Null? Type
--- -------- -------------
PROFILE NOT NULL VARCHAR2(30)
RESOURCE_NAME NOT NULL VARCHAR2(32)
RESOURCE_TYPE VARCHAR2(8)
LIMIT VARCHAR2(40)
SQL>

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS1092

4517CH23.qxd 8/19/05 11:17 AM Page 1092

The following simple example shows how you can query the DBA_PROFILES view to find out
what a user’s password profile looks like. Listing 23-6 shows the results of the query.

Listing 23-6. Querying the DBA_PROFILES View

SQL> SELECT resource_name,limit
2 FROM DBA_PROFILES p,
3 dba_users u
4 WHERE p.profile=u.profile
5 AND u.username='HR'
6* AND p.resource_type='PASSWORD';

RESOURCE_NAME LIMIT
----------------------------------- -------
FAILED_LOGIN_ATTEMPTS UNLIMITED
PASSWORD_LIFE_TIME UNLIMITED
PASSWORD_REUSE_TIME UNLIMITED
PASSWORD_REUSE_MAX UNLIMITED
PASSWORD_VERIFY_FUNCTION NULL
PASSWORD_LOCK_TIME UNLIMITED
PASSWORD_GRACE_TIME UNLIMITED
7 rows selected.
SQL>

ROLE_ROLE_PRIVS
The ROLE_ROLE_PRIVS dictionary view shows the roles that have been granted to roles. For exam-
ple, the DBA role is granted to all database administrator accounts. If you query the ROLE_ROLE_
PRIVS view, you’ll see the roles that are granted to you through the DBA role that you already have.
Listing 23-7 shows the query’s output.

Listing 23-7. Querying the ROLE_ROLE_PRIVS View

SQL> SELECT granted_role FROM ROLE_ROLE_PRIVS
2 WHERE role='DBA';

GRANTED_ROLE

OLAP_DBA
XDBADMIN
JAVA_ADMIN
JAVA_DEPLOY
WM_ADMIN_ROLE
EXP_FULL_DATABASE
IMP_FULL_DATABASE
DELETE_CATALOG_ROLE
SELECT_CATALOG_ROLE
EXECUTE_CATALOG_ROLE
GATHER_SYSTEM_STATISTICS
11 rows selected.
SQL>

The DBA_ROLES view only lists all the roles in the database, along with a column stating
whether the grantee can grant this role to others or not.

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS 1093

4517CH23.qxd 8/19/05 11:17 AM Page 1093

ROLE_TAB_PRIVS
The ROLE_TAB_PRIVS view lists roles and their corresponding table privileges. Here’s the structure
of the ROLE_TAB_PRIVS view:

SQL> DESC ROLE_TAB_PRIVS

Name Null? Type

ROLE NOT NULL VARCHAR2(30)
OWNER NOT NULL VARCHAR2(30)
TABLE_NAME NOT NULL VARCHAR2(30)
COLUMN_NAME VARCHAR2(30)
PRIVILEGE NOT NULL VARCHAR2(40)
GRANTABLE VARCHAR2(3)
SQL>

You can find out the specific table privileges of a user by issuing the query shown in Listing 23-8.

Listing 23-8. Querying the ROLE_TAB_PRIVS View

SQL> SELECT table_name, privilege
2 FROM ROLE_TAB_PRIVS
3* WHERE role='HR_SELECT';

TABLE_NAME PRIVILEGE
------------------------------ ---------
JOBS SELECT
REGIONS SELECT
COUNTRIES SELECT
EMPLOYEES SELECT
LOCATIONS SELECT
DEPARTMENTS SELECT
JOB_HISTORY SELECT
7 rows selected.
SQL>

ROLE_SYS_PRIVS
You can grant a role two kinds of privileges: object and system. The ROLE_SYS_PRIVS view lets you
find out what system privileges have been given to a role. Here’s the structure of the ROLE_SYS_
PRIVS view:

SQL> DESC ROLE_SYS_PRIVS

Name Null? Type
------------------ --------- ------------
ROLE NOT NULL VARCHAR2(30)
PRIVILEGE NOT NULL VARCHAR2(40)
ADMIN_OPTION VARCHAR2(3)
SQL>

Listing 23-9 shows the output of a query using the ROLE_SYS_PRIVS view.

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS1094

4517CH23.qxd 8/19/05 11:17 AM Page 1094

Listing 23-9. Querying the ROLE_SYS_PRIVS View

SQL> SELECT role, privilege FROM ROLE_SYS_PRIVS
2* WHERE role='DBA';

ROLE PRIVILEGE
------------------------------ ---------------------
DBA AUDIT ANY
DBA DROP USER
DBA RESUMABLE
DBA ALTER USER
DBA BECOME USER
DBA CREATE ROLE
DBA CREATE TYPE
DBA CREATE USER
DBA CREATE VIEW
DBA EXECUTE ANY PROCEDURE
DBA ADVISOR
DBA GRANT ANY PRIVILEGE
. . .
160 rows selected.
SQL>

DBA_SYS_PRIVS
The DBA_SYS_PRIVS view contains the privileges granted to both users and roles. The following
code describes this view:

SQL> DESC DBA_SYS_PRIVS
Name Null? Type
--- -------- -------------

GRANTEE NOT NULL VARCHAR2(30)
PRIVILEGE NOT NULL VARCHAR2(40)
ADMIN_OPTION VARCHAR2(3)

SQL>

The following query shows how to use the view to get information about privileges granted to a
user:

SQL> SELECT * FROM DBA_SYS_PRIVS
2 WHERE grantee='OE';

GRANTEE PRIVILEGE ADM
------------------------------ -----------
OE QUERY REWRITE NO
OE CREATE SNAPSHOT NO
OE UNLIMITED TABLESPACE NO
SQL>

DBA_TAB_PRIVS
The DBA_TAB_PRIVS view shows the various table-level privileges that have been granted to users.
The query in Listing 23-10 shows the grantees and the exact privileges they have on each table.

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS 1095

4517CH23.qxd 8/19/05 11:17 AM Page 1095

Listing 23-10. Querying the DBA_TAB_PRIVS View

SQL> SELECT
2 grantee,
3 owner,
4 table_name,
5 privilege
6 FROM DBA_TAB_PRIVS
7* WHERE grantee='OE';

GRANTEE OWNER TABLE_NAME PRIVILEGE
---------- ---------- --------------- -----------------
OE SYS DBMS_STATS EXECUTE
OE SYS DBMS_REDEFINITION EXECUTE
OE HR COUNTRIES SELECT
OE HR COUNTRIES REFERENCES
OE HR LOCATIONS SELECT
OE HR LOCATIONS REFERENCES
OE HR DEPARTMENTS SELECT
OE HR JOBS SELECT
OE HR EMPLOYEES_INTER SELECT
SQL>

DBA_COL_PRIVS
Sometimes you may want to give a user privileges on just one or two columns in the table, and
Oracle lets you do so when you use the GRANT command. The DBA_COL_PRIVS view provides you
with the details of all users in the database who are grantees of these column-level object privileges.
The following example shows how to grant column-level objects to the oe user on a table that
belongs to the user hr:

SQL> GRANT select, update (salary)
2 ON hr.employees
3 TO oe;

Grant succeeded.
SQL>

The next query shows how to query the DBA_COL_PRIVS view to see which users have column
privileges and on what objects:

SQL> SELECT grantee,
2 table_name,
3 column_name,
4 privilege
5 FROM dba_col_privs;

GRANTEE TABLE_NAME COLUMN_NAME PRIVILEGE
---------- --------------- ------------ ----------
OE EMPLOYEES SALARY UPDATE

SQL>

DBA_POLICIES
The DBA_POLICIES view shows all the security policies in the database. You can find out what oper-
ations (SELECT, INSERT, UPDATE, and DELETE) are in the policy and whether the package is enabled.

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS1096

4517CH23.qxd 8/19/05 11:17 AM Page 1096

Listing 23-11 shows a typical query on the DBA_POLICIES view. Note that in this example, there are
no user-created polices. The sys_default group is the default policy group for all policies.

Listing 23-11. Querying the DBA_POLICIES View

SQL> SELECT policy_name,
2 policy_group,
3 object_name,
4 sel,ins,upd,del,
5 enable
6* FROM dba_policies;

POLICY_NAME POLICY_GROUP OBJECT_NAM SEL INS UPD DEL ENAB
------------------------------ ------------------------------ ------
SERVLET_xdbrls_del SYS_DEF SERVLET NO NO NO YES YES
SERVLET_xdbrls_sel SYS_DEF SERVLET YES NO NO NO YES
ftp-log14__xdbrls_del SYS_DEF ftp-log14_ TAB NO NO NO YES YES
ftp-log14__xdbrls_sel SYS_DEF ftp-log14_ TAB YES NO NO NO YES
http-log20_xdbrls_del SYS_DEF http-log20_TAB NO NO NO YES YES
http-log20_xdbrls_sel SYS_DEF http-log20_TAB YES NO NO NO YES
SQL>

The DBA_SEC_RELEVANT_COLUMNS view shows all the security-related columns of all secu-
rity policies in the database.

DBA_ENCRYPTED_COLUMNS
The DBA_ENCRYPTED_COLUMNS view shows the encryption algorithm information for all
encrypted columns in a database. Here’s a query that shows all encrypted column names, the
encryption algorithm used to protect the data in the columns, and whether the column is encrypted
with salt. For more information on the new transparent data-encryption feature, which enables
you to perform column encryption in Oracle Database 10g Release 2, see Chapter 11.

SQL> SELECT * FROM DBA_ENCRYPTED_COLUMNS;
OWNER TABLE_NAME COLUMN_NAME ENCRYPTION_ALG SALT
----- ---------- ----------- ---------------- ----
HR EMPLOYEE EMP_ID AES 192 bits key YES
HR EMPLOYEE SSN_ID AES 192 bits key YES
HR EMPLOYEE PHONE_NO AES 192 bits key YES
SQL>

DBA_BLOCKERS and DBA_WAITERS
The DBA_BLOCKERS view shows all sessions that are blocking other sessions by locking objects
that the other sessions are waiting for. The view is extremely useful when you’re examining locking
situations. The DBA_WAITERS view, on the other hand, shows all the sessions that are waiting for a
lock. Here's a simple query using the DBA_BLOCKERS view:

SQL> SELECT waiting_session, blocking_session, lock_type
FROM DBA_BLOCKERS;

WAITING_SESSION HOLDING_SESSION LOCK_TYPE
--------------- ---------------- ------------

159 139 Transaction
SQL>

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS 1097

4517CH23.qxd 8/19/05 11:17 AM Page 1097

DBA_OUTLINES
The DBA_OUTLINES view provides information on all outlines in the database. You can use this
view or the DBA_OUTLINE_HINTS view to view the hints in the outlines. Here’s the structure of the
DBA_OUTLINES view:

SQL> DESC DBA_OUTLINES

Name Null? Type
------------- -------------------------
NAME VARCHAR2(30)
OWNER VARCHAR2(30)
CATEGORY VARCHAR2(30)
USED VARCHAR2(9)
TIMESTAMP DATE
VERSION VARCHAR2(64)
SQL_TEXT LONG
SQL>

DBA_RSRC_PLANS
The DBA_RSRC_PLANS view contains information on all the resource plans. Chapter 11 covers in
detail how to use the Database Resource Manager to implement resource plans in your database.
The query in Listing 23-12 shows how to use the DBA_RSRC_PLANS view.

Listing 23-12. Querying the DBA_RSRC_PLANS View

SQL> SELECT
2 plan,
3 cpu_method,
4 comments,
5 status,
6 mandatory
7* FROM dba_rsrc_plans;

PLAN CPU_METHOD COMMENTS STATUS MANDATORY
------------- --------- -------- --------- ---------
SYSTEM_PLAN EMPHASIS Plan to give

system priority ACTIVE NO
INTERNAL EMPHASIS
QUIESCE Plan to internally

quiesce system ACTIVE YES
INTERNAL_PLAN EMPHASIS Default Plan ACTIVE YES
SQL>

Audit-Related Views
A small set of data dictionary views helps you maintain the auditing features of Oracle Database
10g. When you start auditing activity in an Oracle database, a table called sys.aud$, also known as
audit_trail, is used to hold the audit information. This is the default location for audit information,
although you can choose an operating system file to store the audit details. Let’s quickly look at the
important audit-related data dictionary tables.

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS1098

4517CH23.qxd 8/19/05 11:17 AM Page 1098

DBA_AUDIT_OBJECT
The DBA_AUDIT_OBJECT view holds all the audit records for the objects in the database. The fol-
lowing query traps the audited information on user hr’s tables:

SQL> SELECT username,
2 timestamp,
3 obj_name,
4 action_name
5 FROM DBA_AUDIT_OBJECT
6* WHERE owner='HR';

USERNAME TIMESTAMP OBJ_NAME ACTION_NAME
-------- ------------ ------------ ------------
HR 26-Jun-2005 EMPLOYEES SELECT

08:39:56 am
OE 26-Jun-2005 EMPLOYEES SELECT

08:40:18 am
SQL>

DBA_AUDIT_SESSION
The DBA_AUDIT_SESSION view contains information only on the CONNECT and DISCONNECT state-
ments issued in the database.

DBA_AUDIT_STATEMENT
The DBA_AUDIT_STATEMENT dictionary view captures all audit trail records that involve an ALTER
SYSTEM, GRANT, REVOKE, AUDIT, or NOAUDIT statement issued in the database.

DBA_AUDIT_TRAIL
You use the DBA_AUDIT_TRAIL view to examine all audit trail entries. The view displays the user’s
name, the audit auction (SELECT, INSERT, and so on), the time stamp, the privilege used to execute
the audited statement, and the SQL statement itself. The DBA_AUDIT_EXISTS view shows the audit
trail for AUDIT EXISTS and AUDIT NOT EXISTS.

DBA_COMMON_AUDIT_TRAIL
The new DBA_COMMON_AUDIT_TRAIL view shows all audit trail entries, including standard as
well as fine-grained auditing polices. The view also shows all mandatory and SYS audit records.
The V$XML_AUDIT_TRAIL dynamic view shows standard, fine-grained, SYS, and mandatory audit
records in XML-format files.

Fine-Graining Auditing-Related Views
The DBA_AUDIT_POLICIES view shows all fine-grained auditing policies in your database.
The DBA_AUDIT_POLICY_COLUMNS view shows all fine-grained audit policy columns. The
DBA_FGA_AUDIT_TRAIL view displays all audit records for fine-grained auditing. You can see
the name of the fine-grained auditing policy as well using this view.

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS 1099

4517CH23.qxd 8/19/05 11:17 AM Page 1099

Storage-Related Views
Several important data dictionary views relate to space and storage issues. When you want to
monitor or change storage at the data file or the tablespace level, you’ll most likely use one or a
combination of these views. In the following sections you’ll look at how you can use these views
to manage space in the database.

DBA_EXTENTS
Extents are a collection of contiguous Oracle data blocks, and they’re the smallest units with which
you can allocate space to various database objects. The DBA_EXTENTS view is extremely useful for
finding out the number of extents your database objects have, and also for getting alerts before you
hit a maximum extents barrier. Listing 23-13 shows the structure of the DBA_EXTENTS view.

Listing 23-13. The DBA_EXTENTS View

SQL> DESC DBA_EXTENTS
Name Null? Type

OWNER VARCHAR2(30)
SEGMENT_NAME VARCHAR2(81)
PARTITION_NAME VARCHAR2(30)
SEGMENT_TYPE VARCHAR2(18)
TABLESPACE_NAME VARCHAR2(30)
EXTENT_ID NUMBER
FILE_ID NUMBER
BLOCK_ID NUMBER
BYTES NUMBER
BLOCKS NUMBER
RELATIVE_FNO NUMBER
SQL>

You can use the DBA_EXTENTS view in combination with several other data dictionary views
to help manage extent issues, as shown in the query in Listing 23-14. The results of the query indi-
cate that there’s no segment with more than 20 extents in it. The number 20 is arbitrary—you can
replace it with any reasonable number of extents.

Listing 23-14. Using the DBA_EXTENTS View

SQL> SELECT x.segment_name,
2 x.segment_type,
3 sum(x.bytes/1024/1024) megabytes,
4 count(x.bytes) count,
5 x.tablespace_name
6 FROM DBA_EXTENTS x,
7 dba_tables t,
8 dba_indexes i
9 WHERE x.segment_name in ('TABLE','INDEX')
10 AND x.owner = t.owner(+)
11 AND x.owner=i.owner(+)
12 GROUP BY
13. x.OWNER,x.SEGMENT_NAME,x.SEGMENT_TYPE,x.TABLESPACE_NAME
14 HAVING COUNT(x.bytes) >= 20
15* ORDER BY 1,2;
no rows selected
SQL>

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS1100

4517CH23.qxd 8/19/05 11:17 AM Page 1100

DBA_FREE_SPACE
The DBA_FREE_SPACE view tells you how much free space you have in the database at any given
moment. You can use the query in Listing 23-15 to find out how much free space you have in your
tablespaces. Note that space belonging to a table that you dropped, and is in the Recycle Bin, shows
up as free space in this view. However, you can’t use it for any other object. You get the space back
only after you permanently remove the item with the ALTER TABLE . . . PURGE statement.

Listing 23-15. Querying the DBA_FREE_SPACE View

SQL> SELECT tablespace_name, SUM(bytes)
2 FROM DBA_FREE_SPACE
3* GROUP BY tablespace_name;

TABLESPACE_NAME SUM(BYTES)
------------------------------ ----------
CWMLITE 11141120
DRSYS 10813440
EXAMPLE 262144
INDX 26148864
ODM 11206656
SYSTEM 4325376
TOOLS 4128768
UNDOTBS1 202047488
USERS 26148864
XDB 196608
10 rows selected.
SQL>

DBA_SEGMENTS
As you’re aware, the Oracle database contains several kinds of segments: table, index, undo, and so
on. The DBA_SEGMENTS view provides you with detailed information on the various segments in
the database, as seen in the example in Listing 23-16.

Listing 23-16. Querying the DBA_SEGMENTS View

SQL> SELECT
2 tablespace_name,
3 segment_name,
4 segment_type,
5 extents, /*Number of extents in the segment*/
6 blocks, /*Number of db blocks in the segment*/
7 bytes /*Number of bytes in the segment*/
8 FROM dba_segments
9* WHERE owner = 'HR';

TABLESPACE_NAME SEGMENT_NAME SEGMENT_TYPE EXTENTS BLOCKS BYTES
--------------- ------------ ------------- ------- ------ ------
EXAMPLE REGIONS TABLE 1 8 65,536
EXAMPLE LOCATIONS TABLE 1 8 65,536
EXAMPLE DEPARTMENTS TABLE 1 8 65,536
EXAMPLE JOBS TABLE 1 8 65,536
EXAMPLE EMPLOYEES TABLE 1 8 65,536
EXAMPLE JOB_HISTORY TABLE 1 8 65,536
EXAMPLE REG_ID_PK INDEX 1 8 65,536

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS 1101

4517CH23.qxd 8/19/05 11:17 AM Page 1101

EXAMPLE COUNTRY_PK INDEX 1 8 65,536
EXAMPLE LOC_ID_PK INDEX 1 8 65,536
EXAMPLE DEPT_ID_PK INDEX 1 8 65,536
EXAMPLE DEPT_LOC_IX INDEX 1 8 65,536
. . .
25 rows selected.
SQL>

DBA_DATA_FILES
The DBA_DATA_FILES data dictionary view is yet another extremely useful view that you’ll refer to
often while managing the space in your database. You can query the view to find out the names of
all the data files, the tablespaces they belong to, and data file information such as the number of
bytes and blocks and the relative file number. A simple query on the DBA_DATA_FILES view shows
all your data files, as shown in Listing 23-17.

Listing 23-17. Querying the DBA_DATA_FILES View

SQL> SELECT file_name, tablespace_name FROM DBA_DATA_FILES;

FILE_NAME TABLESPACE_NAME
-- -------------
C:\ORACLENT\ORADATA\MANAGER\SYSTEM01.DBF SYSTEM
C:\ORACLENT\ORADATA\MANAGER\UNDOTBS01.DBF UNDOTBS
C:\ORACLENT\ORADATA\MANAGER\CWMLITE01.DBF CWMLITE
C:\ORACLENT\ORADATA\MANAGER\DRSYS01.DBF DRSYS
C:\ORACLENT\ORADATA\MANAGER\EXAMPLE01.DBF EXAMPLE
C:\ORACLENT\ORADATA\MANAGER\INDX01.DBF INDX
C:\ORACLENT\ORADATA\MANAGER\TOOLS01.DBF TOOLS
C:\ORACLENT\ORADATA\MANAGER\USERS01.DBF USERS
8 rows selected.
SQL>

The DBA_DATA_FILES view is especially useful when you join it with another data dictionary
view, as the example in Listing 23-18 illustrates. The query produces a report showing you the table-
space sizes, free and used space, and the percentage of used space in each tablespace. At the end,
you also get the sum of total space allocated to all the tablespaces, and the breakdown of free and
used space in the database.

Listing 23-18. Querying the DBA_TABLESPACES View

BREAK ON REPORT
COMPUTE SUM OF tbsp_size ON REPORT
compute SUM OF used ON REPORT
compute SUM OF free ON REPORT

COL tbspname FORMAT a20 HEADING 'Tablespace Name'
COL tbsp_size FORMAT 999,999 HEADING 'Size|(MB)'
COL used FORMAT 999,999 HEADING 'Used|(MB)'
COL free FORMAT 999,999 HEADING 'Free|(MB)'
COL pct_used FORMAT 999 HEADING'% Used'

SQL> SELECT df.tablespace_name tbspname
2 sum(df.bytes)/1024/1024 tbsp_size,
3 nvl(sum(e.used_bytes)/1024/1024,0) used,

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS1102

4517CH23.qxd 8/19/05 11:17 AM Page 1102

4 nvl(sum(f.free_bytes)/1024/1024,0) free,
5 nvl((sum(e.used_bytes)*100)/sum(df.bytes),0) pct_used,
6 FROM DBA_DATA_FILES df
7 (SELECT file_id
8 SUM(nvl(bytes,0)) used_bytes
9 FROM dba_extents
10 GROUP BY file_id) e,
11 (SELECT MAX(bytes) free_bytes, file_id
12 FROM dba_free_space
14 GROUP BY file_id) f
15 WHERE e.file_id(+) = df.file_id
16 AND df.file_id = f.file_id(+)
17 GROUP BY df.tablespace_name
18* ORDER BY 5 DESC

Size Used Free
Tablespace Name (MB) (MB) (MB) % Used

PERSON_INFO_I 2,299 2,245 54 98
PERSONS_I 26348 6,185 162 97
LABELS_I 2,038 1,980 58 97
. . .
CBC_I 501 7 490 1
QUEST 10 0 10 1
TEST2 10 0 1 0

--------- -------- -------
Grand Total 291,528 224,473 43,602
SQL>

The DBA_TEMP_FILES view is analogous to the DBA_DATA_FILES view, and shows the tempo-
rary tablespace temp file information.

DBA_TABLESPACES
You can use the DBA_TABLESPACES dictionary view to find out important information about a
tablespace, including the following:

• Initial extent size

• Next extent size

• Default maximum number of extents

• Status (online, offline, or read-only)

• Contents (permanent, temporary, or undo)

• Type of extent management (DICTIONARY or LOCAL)

• Segment space management (AUTO or MANUAL)

To find out information, such as which of your tablespaces are being locally managed and
which of them have Automatic Segment Space Management (ASSM) enabled, you can use the query
in Listing 23-19. Note that the last column, RETENTION, only applies to undo tablespaces, and reveals
if the undo tablespace has the “guaranteed undo retention” feature enabled. See Chapter 6 for more
details about the guaranteed undo retention feature.

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS 1103

4517CH23.qxd 8/19/05 11:17 AM Page 1103

Listing 23-19. Querying the DBA_TABLESPACES View

SQL> SELECT tablespace_name, extent_management, allocation_type,
2* segment_space_management, retention from DBA_TABLESPACES;

TABLESPACE_NAME EXTENT_MAN ALLOCATIO SEGMEN RETENTION
------------------------------ ---------- --------- ------ -----------
SYSTEM LOCAL SYSTEM AUTO NOT APPLY
TEMP DICTIONARY USER MANUAL NOT APPLY
TOOLS DICTIONARY USER MANUAL NOT APPLY
USERS DICTIONARY USER MANUAL NOT APPLY
UNDOTBS_01 LOCAL SYSTEM MANUAL NOGUARANTEE
SYSAUX LOCAL SYSTEM AUTO NOT APPLY
. . .
SQL>

DBA_TABLESPACE_GROUPS
In Oracle Database 10g, you can group a set of temporary tablespaces together into a temporary
tablespace group. The DBA_TABLESPACE_GROUPS view shows you all the tablespace groups in
your database. You can also find out the individual tablespace name in each group by using
this view.

Views for Monitoring Transactions
You can use many data dictionary and dynamic performance views to monitor transactions. The
main dictionary views in this regard are the DBA_LOCKS, DBA_WAITERS, and DBA_UNDO_
EXTENTS views. In the following sections you’ll take a closer look at each of these views.

DBA_LOCKS
The DBA_LOCKS view tells you what locks and latches are being held in the database. It also
informs you about outstanding locks and latch requests. Here are the columns in the DBA_LOCKS
view:

SQL> DESC DBA_LOCKS
Name Null? Type
--------------------------- ------------
SESSION_ID NUMBER
LOCK_TYPE VARCHAR2(26)
MODE_HELD VARCHAR2(40)
MODE_REQUESTED VARCHAR2(40)
LOCK_ID1 VARCHAR2(40)
LOCK_ID2 VARCHAR2(40)
LAST_CONVERT NUMBER
BLOCKING_OTHERS VARCHAR2(40)
SQL>

Another lock-related view, DBA_WAITERS, shows you the sessions that are waiting for locks.

DBA_UNDO_EXTENTS
If you’re using Automatic Undo Management (AUM), the DBA_UNDO_EXTENTS view contains
detailed information about the various undo extents, including their status. The STATUS column
shows the transaction status of the undo data in the extents, and can take the following three
values:

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS1104

4517CH23.qxd 8/19/05 11:17 AM Page 1104

• Active

• Unexpired

• Expired

DBA_RESUMABLE
The DBMS_RESUMABLE Oracle-supplied package populates the DBA_RESUMABLE view with
details about the start time, end time, and error messages related to the resumable statements in
the database. The following simple query finds out which statements are resumable in the database:

SQL> SELECT
2 start_time,
3 suspend_time,
4 resume_time,
5 name,sql_text
6* FROM DBA_RESUMABLE;

DBA_CPU_USAGE_STATISICS
The new DBA_CPU_USAGE_STATISICS view shows the CPU usage statistics, including the time at
which the CPU usage changed.

Constraint- and Index-Related Views
How do you find out what constraints exist on a table’s columns? When a process fails with the mes-
sage “Referential integrity constraint violated,” what’s the best way to find out what the constraint
and the affected tables are? The constraint- and index-related data dictionary views are critical for
resolving problems similar to these. In the following sections, you’ll examine the key constraint-
and index-related views.

DBA_CONSTRAINTS
The DBA_CONSTRAINTS view provides information on all types of table constraints in the data-
base. You can query this view when you need to figure out what type of constraints a table has.
The view lists several types of constraints, as shown by the following query:

SQL> SELECT DISTINCT constraint_type FROM DBA_CONSTRAINTS;
Constraint_type

C /* check constraints */
P /* primary key constraint */
R /* referential integrity (foreign key) constraint */
U /* unique key constraint */

SQL>

The following query lets you know what, if any, constraints are in the TESTD table. The
response indicates that the table has a single check constraint defined on it. The SYS prefix in the
NAME column shows that CONSTRAINT_NAME is a default name, not one that was explicitly named by
the owner of the table.

SQL> SELECT constraint_name, constraint_type
2 FROM DBA_CONSTRAINTS
3* WHERE table_name='TESTD';

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS 1105

4517CH23.qxd 8/19/05 11:17 AM Page 1105

CONSTRAINT_NAME CONSTRAINT_TYPE
------------------- ---------------

SYS_C005263 C
SQL>

Note that if you want to see the particular referential constraints and the delete rule, you have
to use a slight variation on the preceding query:

SQL> SELECT constraint_name, constraint_type,
R_constraint_name, delete_rule
FROM dba_constraints
WHERE table_name='ORDERS';

CONSTRAINT_NAME TYPE R_CONSTRAINT_NAME DELETE_RULE
-------------------- ---- ------------------ ------------
ORDER_DATE_NN C
ORDER_CUSTOMER_ID_NN C
ORDER_MODE_LOV C
ORDER_TOTAL_MIN C
ORDER_PK P
ORDERS_SALES_REP_FK R EMP_EMP_ID_PK SET NULL
ORDERS_CUSTOMER_ID_FK R CUSTOMERS_PK SET NULL
7 rows selected.
SQL>

DBA_CONS_COLUMNS
The DBA_CONS_COLUMNS view provides the column name and position in the table on which a
constraint is defined. Here’s the view:

SQL> DESC DBA_CONS_COLUMNS
Name

OWNER
CONSTRAINT_NAME
TABLE_NAME
COLUMN_NAME
POSITION
SQL>

DBA_INDEXES
You can use the DBA_INDEXES dictionary view to find out just about everything you need to know
about the indexes in your database, including the index name, index type, and the table and table-
space an index belongs to. Certain columns, such as BLEVEL (tells you the level of the B-tree index)
and DISTINCT_KEYS (number of distinct index key values), are populated only if you’ve collected
statistics for the index using the DBMS_STATS package.

DBA_IND_COLUMNS
The DBA_IND_COLUMNS view is similar to the DBA_CONS_COLUMNS view in structure, and it
provides information on all the indexed columns in every table. This is important during SQL per-
formance tuning when you notice that the query is using an index, but you aren’t sure exactly on
which columns the index is defined. The query in Listing 23-20 may reveal that the table has
indexes on the wrong columns after all.

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS1106

4517CH23.qxd 8/19/05 11:17 AM Page 1106

Listing 23-20. Querying the DBA_IND_COLUMNS View

SQL> SELECT index_name,
2 table_name,
3 column_name,
4 column_position
5 FROM DBA_IND_COLUMNS
6* WHERE table_owner='OE';

INDEX_NAME TABLE_NAME COLUMN_NAME COLUMN_POSITION
----------------------- ----------- ----------- ---------------
CUST_ACCOUNT_MANAGER_IX CUSTOMERS ACCOUNT_MGR_ID 1
CUST_LNAME_IX CUSTOMERS CUST_LAST_NAME 1
CUST_EMAIL_IX CUSTOMERS CUST_EMAIL 1
INVENTORY_PK INVENTORIES PRODUCT_ID 1
INVENTORY_PK INVENTORIES WAREHOUSE_ID 2
INV_PRODUCT_IX INVENTORIES PRODUCT_ID 1
ORDER_PK ORDERS ORDER_ID 1
ORD_SALES_REP_IX ORDERS SALES_REP_ID 1
ORD_CUSTOMER_IX ORDERS CUSTOMER_ID 1
SQL>

■Tip You can identify composite keys easily by looking in the INDEX_NAME column. If the same INDEX_NAME
entry appears more than once, it’s a composite key, and you can see the columns that are part of the key in the
COLUMN_NAME column. For example, INVENTORY_PK is the primary key of the INVENTORIES table and is defined on
two columns: PRODUCT_ID and WAREHOUSE_ID. You can glean the order of the two columns in a composite key by
looking at the COLUMN_POSITION column.

INDEX_STATS
The INDEX_STATS view is useful for seeing how efficiently an index is using its space. Large indexes
have a tendency to become unbalanced over time if many deletions are in the table (and therefore
index) data. Your goal is to keep an eye on those large indexes with a view to keeping them balanced.

Note that the INDEX_STATS view is populated only if the table has been analyzed by using the
ANALYZE command, as follows:

SQL> ANALYZE index hr.emp_name_ix VALIDATE STRUCTURE;
Index analyzed.

The query in Listing 23-21 using the INDEX_STATS view helps determine if you need to rebuild
the index. In the query, you should focus on the following columns in the INDEX_STATS view to
determine if your index is a candidate for a rebuild:

• HEIGHT: This column refers to the height of the B-tree index, and it’s usually at the 1, 2, or 3
level. If large inserts push the index height beyond a level of 4, it’s time to rebuild, which
flattens the B-tree.

• DEL_LF_ROWS: This is the number of leaf nodes deleted due to the deletion of rows. Oracle
doesn’t rebuild indexes automatically and, consequently, too many deleted leaf rows can
lead to an unbalanced B-tree.

• BLK_GETS_PER_ACCESS: You can look at the BLK_GETS_PER_ACCESS column to see how much log-
ical I/O it takes to retrieve data from the index. If this row shows a double-digit number, you
should probably start rebuilding the index.

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS 1107

4517CH23.qxd 8/19/05 11:17 AM Page 1107

Listing 23-21. Using the INDEX_STATS View to Determine Whether to Rebuild an Index

SQL> SELECT height, /*Height of the B-Tree*/
2 blocks, /* Blocks in the index segment */
3 name, /*index name */
4 lf_rows, /* number of leaf rows in the index */
5 lf_blks, /* number of leaf blocks in the index */
6 del_lf_rows, /* number of deleted leaf rows

in the index */
7 rows_per_key /* average number of rows

per distinct key */
8 blk_gets_per_access /* consistent mode block reads (gets) */
8 FROM INDEX_STATS
9* WHERE name='EMP_NAME_IX';

HEIGHT BLOCK LF_ROWS LF_BLKS DEL_LF_ROWS ROWS_PER_KEY BLK_GETS
---------- ---------- -------------------- ---------- ----------
16 EMP_NAME_IX 107 1 0 1 1
SQL>

Views for Managing Database Objects
In this section, you’ll look at the important data dictionary views that help you manage nondata
objects (that is, objects other than tables and indexes). The following is a list of the important data
dictionary views for looking up various database objects:

• DBA_SYNONYMS: Information about database synonyms

• DBA_TRIGGERS: Information about triggers

• DBA_SEQUENCES: Information about user-created sequences

• DBA_DB_LINKS: Information about database links

As mentioned earlier, the DBA_OBJECTS view provides important information on the preced-
ing objects, as well as several other types of database objects. However, the preceding views provide
detailed information about the object, such as the source text of a trigger, which you won’t get from
the DBA_OBJECTS view.

You manage objects such as tables and views by referring to the data dictionary views, such as
DBA_TABLES and DBA_VIEWS. There are also separate views for partitioned tables. Let’s look at the
key table- and index-related dictionary views.

DBA_TABLES
The DBA_TABLES view contains information about all relational tables in your database. The
DBA_TABLES view is your main reference for finding out storage information, the number of rows
in the table, logging status, buffer pool information, and a host of other things. Here’s a simple
query on the DBA_TABLES view:

SQL> SELECT tablespace_name,table_name
FROM DBA_TABLES;

TABLESPACE_NAME TABLE_NAME
------------------------------ ----------------
EXAMPLE DEPARTMENTS
EXAMPLE EMPLOYEES_INTERI
EXAMPLE EMPLOYEES_NEW
EXAMPLE JOBS

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS1108

4517CH23.qxd 8/19/05 11:17 AM Page 1108

EXAMPLE JOB_HISTORY
EXAMPLE TEST
6 rows selected.
SQL>

■Note The DBA_ALL_TABLES view contains information about all object tables and relational tables in a data-
base, while the DBA_TABLES view is limited to only relational tables.

You can use the DBA_TABLES view to find out things such as whether table compression and
row-level dependency tracking are enabled, and whether the table has been dropped and is in the
Recycle Bin.

DBA_EXTERNAL_TABLES
The DBA_EXTERNAL_TABLES view shows details about any external tables in a database, including
their access type, access parameters, and directory information.

DBA_TAB_PARTITIONS
The DBA_TAB_PARTITIONS view is similar to the DBA_TABLES view, but it provides detailed infor-
mation about table partitions. You can get information about the partition name, partition high
values, partition storage information, and partition statistics, plus all the other information that’s
available from the DBA_TABLES view. Listing 23-22 shows a simple query using the DBA_TAB_
PARTITIONS view.

Listing 23-22. Querying the DBA_TAB_PARTITIONS View

SQL> SELECT table_name, partition_name,
2 high_value,
3* FROM DBA_TAB_PARTITIONS;

TABLE_NAME PARTITION_NAME HIGH_VALUE
------------------------------ ------------------------------
SALES SALES_Q2_2004 TO_DATE(' 2004-07-01 00:00:00')
SALES SALES_Q3_2004 TO_DATE(' 2004-10-01 00:00:00')
SALES SALES_Q4_2004 TO_DATE(' 2005-01-01 00:00:00')
SALES SALES_Q1_2005 TO_DATE(' 2005-04-01 00:00:00')
SALES SALES_Q2_2005 TO_DATE(' 2005-07-01 00:00:00')
SALES SALES_Q3_2005 TO_DATE(' 2005-10-01 00:00:00')
SALES SALES_Q4_2005 TO_DATE(' 2006-01-01 00:00:00')
EMPLOYEES EMPLOYEES1 100
EMPLOYEES EMPLOYEES2 300
SQL>

DBA_PART_TABLES
The DBA_PART_TABLES view provides information about the type of partition scheme and other
storage parameters for partitions and subpartitions. You can find out the partition type of each par-
titioned table using the following query:

SQL> SELECT table_name, partitioning_type,
2 def_tablespace_name
3 FROM DBA_PART_TABLES;

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS 1109

4517CH23.qxd 8/19/05 11:17 AM Page 1109

TABLE_NAME PARTITION_TYPE DEF_TABLESPACE_NAME
------------------ --------------- --------------------
EMPLOYEES RANGE EXAMPLE
EMPLOYEES_INTERIM RANGE EXAMPLE
COSTS RANGE EXAMPLE
SALES RANGE EXAMPLE
SQL>

DBA_TAB_MODIFICATIONS
The DBA_TAB_MODIFICATIONS view shows all DML changes in a table since statistics were last
collected for that table. Here’s a query on this view:

SQL> SELECT table_name, inserts, updates, deletes
FROM DBA_TAB_MODIFICATIONS;

TABLE_NAME INSERTS UPDATES DELETES
-------------------------- ------- ------- -------
WRH$ACTIVE_SESSION_HISTORY 1233 0 0
WRH$SERVICE_STAT 5376 0 0
WRH$SERVICE_WAIT_CLASS 1050 0 0
. . .
SQL>

DBA_TAB_COLUMNS
Suppose you want to find out the average length of each row in a table or the default value of each
column (if there is one). The DBA_TAB_COLUMNS view is an excellent way to quickly get detailed
column-level information on schema tables, as shown in Listing 23-23.

Listing 23-23. Using the DBA_TAB_COLUMNS View

SQL> SELECT column_name,
2 avg_col_len,
3 data_type,
4 data_length,
5 nullable,
6 FROM dba_tab_columns
7* WHERE owner='OE';

COLUMN_NAME AVG_COL_LEN DATA_TYPE DATA_LENGTH NULL
--
CUSTOMER_ID 4 NUMBER 22 N
CUST_FIRST_NAME 7 VARCHAR2 20 N
CUST_LAST_NAME 8 VARCHAR2 20 N
TRANSLATED_DESCRIPTION 245 NVARCHAR2 4000 N
PRODUCT_DESCRIPTION 123 VARCHAR2 2000 Y
WARRANTY_PERIOD 5 INTERVAL YEA 5 Y
SQL>

DBA_VIEWS
As you know, views are the product of a query on some database table(s). The DBA_VIEWS diction-
ary view provides you with the SQL query that underlies the views. Listing 23-24 shows how to get
the text of a view, OC_CUSTOMERS, owned by user oe.

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS1110

4517CH23.qxd 8/19/05 11:17 AM Page 1110

■Tip To ensure you see the whole text of the view when you use the DBA_VIEWS view, set the long variable to a
large number (for example, SET LONG 2000). Otherwise, you’ll see only the first line of the view definition.

Listing 23-24. Getting the Source for a View Using the DBA_VIEWS View

SQL> SET LONG 2000
SQL> SELECT text
2 FROM DBA_VIEWS
3 WHERE view_name ='OC_CUSTOMERS'
4* AND owner = 'OE';

TEXT
--
SELECT c.customer_id, c.cust_first_name,
c.cust_last_name, c.cust_address,

c.phone_numbers,c.nls_languag
e,c.nls_territory,c.credit_limit, c.cust_email,
CAST(MULTISET(SELECT o.order_id, o.order_mode,
MAKE_REF(

oc_customers,o.customer_id),
o.order_status,o.order_t

otal,o.sales_rep_id,
CAST(MULTISET(SELECT l.order_id,l.line_item_id,

l.unit_price,l.quantity,
MAKE_REF(oc_product_information,
l.product_id)

FROM order_items l
WHERE o.order_id = l.order_id)
AS order_item_list_typ)
FROM orders o
WHERE c.customer_id = o.customer_id)
AS order_list_typ)
FROM customers c
SQL>

DBA_MVIEWS
The DBA_MVIEWS dictionary view tells you all about the materialized views in your database, includ-
ing whether the query rewrite feature is enabled or not on the views. Listing 23-25 shows you how to
use this view.

Listing 23-25. Using the DBA_MVIEWS View

SQL> SELECT
2 mview_name,
3 query,
4 updatable,
5 rewrite_enabled, /* whether query rewrite is enabled */
6 refresh_mode, /* demand,commit, or never */
7 refresh_method /* complete,force, fast, or never */
8* FROM dba_mviews;

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS 1111

4517CH23.qxd 8/19/05 11:17 AM Page 1111

MVIEW_NAME QUERY UPD REW REFR REFRESH_ME
--------------- ------------------------------ --- ---------------
MONTH_SALES_MV SELECT t.calendar_month_desc N Y DEMAND FORCE
PCAT_SALES_MV SELECT t.week_ending_day N Y DEMAND COMPLETE
SQL>

AWR, ADDM, Metric, and Alert-Related Views
In Oracle Database 10g, several new views relate to the AWR, ADDM, and the new server-generated
alert mechanism. I’ll briefly describe some of these in the following sections.

DBA_OUTSTANDING_ALERTS
As you can recall, a threshold alert (also known as a stateful alert) alerts you when warning and
critical thresholds on certain database metrics are met. For example, physical reads per second is
a candidate for a threshold alert. The DBA_OUTSTANDING_ALERTS view shows all outstanding
alerts in your database. Here’s a typical query using this view:

SQL> SELECT object_name, reason, advisor_name, suggested_action
FROM DBA_OUTSTANDING_ALERTS;

DBA_ALERT_HISTORY
The DBA_ALERT_HISTORY view shows the history of all alerts that the database has already
resolved. Remember that all stateful or threshold alerts appear in the DBA_OUTSTANDING_
ALERTS view first. It’s only after they’re resolved by clearing the problem condition that the alerts
are recorded in the DBA_ALERT_HISTORY view.

DBA_SQLSET
When you use any of the management advisors, such as the SQL Tuning Advisor, Oracle gives you
the option of providing the queries in the form of a SQL Tuning Set. The DBA_SQLSET view provides
information about all such SQL Tuning Sets that exist in the database.

DBA_SQLSET_PLANS
The DBA_SQLSET_PLANS view describes all SQL plans captured in the SQL Tuning Sets in a data-
base. The DBA_SQLTUNE_STATISTICS view shows statistics about all SQL statements in a database.
The DBA_SQLSET_STATEMENTS view shows the SQL statements that are part of a SQL Tuning Set.

DBA_SQLTUNE_PLANS
The DBA_SQLTUNE_PLANS view shows details about the execution plans generated for all SQL
statements in the database during a SQL tuning session.

The DBA_SQLTUNE_STATISTICS view provides the execution statistics for all SQL statements
in the database. For example, you can view the elapsed time, buffer gets, disk reads, and the CPU
time for various SQL statements.

DBA_THRESHOLDS
The DBA_THRESHOLDS view shows you threshold details, such as the warning and critical values
for all metrics for which the database has set thresholds. Here’s a sample query that shows the

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS1112

4517CH23.qxd 8/19/05 11:17 AM Page 1112

warning and critical values for the only alert in my database, which happens to be the default table-
space space-usage metric:

SQL> SELECT metrics_name, warning_value, critical_value
2 FROM dba_thresholds;

METRICS_NAME WARNING_VALUE CRITICAL_VALUE
--
Tablespace Space Usage 85 97
SQL>

DBA_HIST_ACTIVE_SESS_HISTORY
As you’ll see later in this chapter, the V$ACTIVE_SESSION_HISTORY view shows you the snapshots
of all the active sessions in your database. The snapshots are taken every second, so the data in
this view keeps changing. The DBA_HIST_ACTIVE_SESS_HISTORY view holds the contents of
the V$ACTIVE_SESSION_HISTORY view in permanent storage. The view contains snapshots of the
V$ACTIVE_SESSION_HISTORY view.

Advisor-Related Views
You can manage the new advisory framework in Oracle Database 10g using new data dictionary
views, such as the ones in the following sections.

DBA_ADVISOR_DEFINITIONS
You can use the DBA_ADVISOR_DEFINITIONS view to find out the properties of all advisors in your
database, as shown here:

SQL> SELECT advisor_id, advisor_name
FROM DBA_ADVISOR_DEFINITIONS;

ADVISOR_ID ADVISOR_NAME
---------- ---------------------------

1 ADDM
2 SQL Access Advisor
3 Undo Advisor
4 SQL Tuning Advisor
5 Segment Advisor
6 SQL Workload Manager
7 Tune MView

7 rows selected.
SQL>

DBA_ADVISOR_USAGE
The DBA_ADVISOR_USAGE view provides usage information for all the advisors. Here’s an example
that shows that the ADDM was the advisor that was used the most:

SQL> SELECT * FROM DBA_ADVISOR_USAGE;
ADVISOR_ID LAST_EXEC_ NUM_EXECS
---------- ---------- ----------

1 04/25/2005 43
2 02/03/2005 1
3 11/25/2004 2
4 03/26/2005 17

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS 1113

4517CH23.qxd 8/19/05 11:17 AM Page 1113

5 11/20/2004 2
6 11/13/2004 0
7 11/13/2004 0

7 rows selected.
SQL>

DBA_ADVISOR_TASKS
You can use the DBA_ADVISOR_TASKS view to check the findings of any of the management
advisors. Here’s a typical query:

SQL> SELECT task_name,advisor_name,execution_start,how_created
2* FROM DBA_ADVISOR_TASKS;

TASK_NAME ADVISOR_NAME EXECUTION_START HOW_CREATED
--
ADDM:877170026_1_2262 ADDM 07/28/2005 AUTO
ADDM:877170026_1_2263 ADDM 07/28/2005 AUTO
ADDM:877170026_1_2264 ADDM 07/28/2005 AUTO
SQL>

DBA_AUTO_SEGADV_SUMMARY and DBA_AUTO_SEGADV_CTL
The DBA_AUTO_SEGADV_SUMMARY view provides a summary of all the automatic Segment
Advisor runs. In Oracle 10.2, the Segment Advisor is automatically scheduled to run during the
maintenance period. This view shows you the segments processed and the job begin and end times,
among other things. The related DBA_AUTO_SEGADV_CTL view shows you control information
used by the Segment Advisor. You can find out the status of a Segment Advisor job, as well as the
reason why a certain segment was chosen. Here’s a simple query using this view:

SQL> SELECT segment_name, status, reason
FROM DBA_AUTO_SEGADV_CTL;

SEGMENT_NAME STATUS REASON
----------------------- -------- -----------
MGMT_CURRENT_METRICS_PK COMPLETE IO
MGMT_CURRENT_1HOUR_PK COMPLETE SCAN
MGMT_CURRENT_METRICS_PK COMPLETE SPACE_USAGE
. . .
SQL>

DBA_ADVISOR_FINDINGS
The DBA_ADVISOR_FINDINGS view summarizes the findings discovered by each of the advisors.
Here’s an example using the view:

SQL> SELECT task_name,type, impact_type, message
2 FROM DBA_ADVISOR_FINDINGS;

TASK_NAME TYPE IMPACT_TYPE MESSAGE

ADDM:877170026_1_2266 SYMPTOM Database time Wait class "User . . .

ADDM:877170026_1_2266 PROBLEM Database time SQL statements
Consuming significant
database time . . .
. . .
SQL>

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS1114

4517CH23.qxd 8/19/05 11:17 AM Page 1114

DBA_ADVISOR_RECOMMENDATIONS
The DBA_ADVISOR_RECOMMENDATIONS view summarizes all the recommendations made by
the various advisors in the database. You’ll find a detailed rationale for each of these recommenda-
tions in the DBA_ADVISOR_RATIONALE view. The individual actions you must take to fix each of
the problems are summarized in the DBA_ADVISOR_ACTIONS view, as shown here:

SQL> SELECT task_name, command, message
2 FROM DBA_ADVISOR_ACTIONS;

TASK_NAME COMMAND MESSAGE

ADDM:877170026_1_2521 RUN SEGMENT ADVISOR Run "Segment Advisor" on

TABLE
"APPOWNER.MS_DASH_TRANS"
with object id 331719.

ADDM:877170026_1_2521 UNDEFINED Investigate application
logic involving I/O on TABLE

"APPOWNER.MS_DASH_TRANS".
with object id 331719

ADDM:877170026_1_2521 ALTER PARAMETER Increase SGA target size
by Increasing the value
of parameter "sga_target"
by 120M.

. . .
SQL>

There are other advisor-related views besides the ones I discussed in the preceding sections.
The DBA_ADVISOR_LOG view shows the current status of all advisor tasks in your database. The
DBA_ADVISOR_RATIONALE view provides the rationale for all advisor recommendations.

Using the Dynamic Performance Views
The data dictionary views are static in the sense that they hold information about various compo-
nents of the database but don’t change continuously while the database operates. Oracle updates
the dictionary tables only when a DDL transaction takes place. The other set of tables (or views,
rather) that the DBA uses are dynamic, because they’re updated continuously while the database is
running. Thus, they provide a valuable window into the performance characteristics and are vital to
database management. As in the case of the data dictionary, even the DBA has only read access to
the views defined on the dynamic performance tables. The views themselves have the prefix V_$,
but Oracle creates synonyms for those whose prefix is simply V$—thus the alternative name V$
views for the dynamic performance views.

■Tip Be aware that the dynamic performance or V$ tables and views get their information solely from the opera-
tional instance. If you shut down the instance and restart it, the tables will lose all the data and Oracle will repop-
ulate the tables. When you interpret statistics, especially performance data, let the database reach a steady state
before interpreting the results.

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS 1115

4517CH23.qxd 8/19/05 11:17 AM Page 1115

As I did with the data dictionary views, I group the dynamic performance views into related
areas:

• Memory-related views

• Backup- and Flashback-related views

• Session- and user-related views

• Redo log–based and archive log–based views

• Recovery-related views

• Performance-monitoring views

• SQL-related views

• Operational performance–related views

• Metric- and alert-related views

• General views

• Storage- and file-related views

Let’s review the most important dynamic performance views in each of the preceding categories.

Memory-Related Views
Not surprisingly, a large group of views helps you monitor or modify memory allocation to the
instance. You can even use some of these views to get recommendations on the ideal size of the
various SGA components. In the next sections you’ll take a look at some of the important memory-
related dynamic performance views.

V$SGA
The V$SGA view is useful in determining how much total memory is allocated to the various com-
ponents of the SGA. The following simple query gives you a summary of the SGA memory usage by
the current instance:

SQL> SELECT * FROM V$SGA;

NAME VALUE
-------------------- ----------
Fixed Size 453492
Variable Size 109051904
Database Buffers 25165824
Redo Buffers 667648
SQL>

In the preceding code, Variable Size includes the shared pool memory and Database Buffers
refers to the buffer cache component. Redo Buffers is the redo log buffer cache.

V$SGASTAT
The V$SGASTAT view gives you a detailed breakdown of the SGA memory. It shows you current
memory allocations broken down into the following main areas:

• Fixed_sga

• Buffer_cache

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS1116

4517CH23.qxd 8/19/05 11:17 AM Page 1116

• Log_buffer

• Shared_pool

• Java_pool

• Large_pool

• Streams_pool

The V$SGASTAT view breaks down the memory allocation into various subcomponents for the
last four items in the preceding list. Thus, you can look up the V$SGASTAT view and see how much
free memory there is, for example, in the shared pool, by using the following query. The query
results reveal that about 45MB of free memory is in the shared pool:

SQL> SELECT bytes from v$sgastat
2 WHERE pool='shared pool' and
3 V$SGA name='free memory';

BYTES

45340344

SQL>

V$SGA_DYNAMIC_COMPONENTS
The V$SGA_DYNAMIC_COMPONENTS view lets you find out details about the memory granule
sizes and the minimum and maximum size of the SGA. Here’s the output of a query using this
dynamic view:

SQL> SELECT component,min_size, max_size,
2 granule_size,current_size
3* FROM V$SGA_DYNAMIC_COMPONENTS;

COMPONENT MIN_SIZE MAX_SIZE GRANULE_SIZE CURRENT_SIZE

shared shared pool 1442840576 0 16777216 1442840576
large pool 16777216 0 16777216 16777216
java pool 67108864 0 16777216 67108864
streams pool 0 0 16777216 0
DEFAULT buffer cache 2466250752 0 16777216 2466250752
KEEP buffer cache 0 0 16777216 0
RECYCLE buffer cache 0 0 16777216 0
DEFAULT 2K buffer cache 0 0 16777216 0
DEFAULT 4K buffer cache 0 0 16777216 0
DEFAULT 8k buffer cache 0 0 16777216 0
DEFAULT 16K buffer cache 0 0 16777216 0
DEFAULT 32K buffer cache 0 0 16777216 0
OSM Buffer Cache 0 0 16777216 0
13 rows selected.
SQL>

V$BUFFER_POOL
The V$BUFFER_POOL view shows you multiple buffer pool information. By default there’s just one
pool, named the default pool, but you can configure other pools, called the recycle and keep buffer
pools. The following query uses the V$BUFFER_POOL view:

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS 1117

4517CH23.qxd 8/19/05 11:17 AM Page 1117

SQL> SELECT
2 name, /* name of pool - recycle, keep, or default */
3 current_size, /* size in megabytes */
4 buffers /* number of buffers */
5* FROM V$BUFFER_POOL;

NAME CURRENT_SIZE BUFFERS
-------------------- ------------ ----------
DEFAULT 24 3000
SQL>

The V$BUFFER_POOL_STATISTICS view shows details about all the buffer pools in a database
instance.

V$DB_CACHE_ADVICE
If you have set the initialization parameter DB_CACHE_ADVICE, the Memory Advisor is turned on.
The Memory Advisor is also automatically turned on if you set the initialization parameter
STATISTICS_LEVEL to TYPICAL or ALL. In either case, the V$DB_CACHE_ADVICE view enables the
prediction of behavior with different database cache sizes. Listing 23-26 shows how to use the
V$DB_CACHE_ADVICE view to get estimates of the buffer size.

Listing 23-26. Using the V$DB_CACHE_ADVICE View

SQL> COL name FORMAT a10
SQL> col size_for_estimate format 99999
SQL> col size_factor format 99.9999
SQL> col buffers_for_estimate format 99999
SQL> col estd_physical_read_factor format 99.9999
SQL> col estd_physical_reads format 999999
SQL> SELECT name, /*buffer pool name*/
2 size_for_estimate, /*cache size for prediction*/
3 size_factor,
4 buffers_for_estimate, /*cache_size for prediction*/
5 estd_physical_read_factor,/*ratio of estimated physical reads

to number of reads*/
6 estd_physical_reads /*estimated number of physical reads

for this cache size*/
7* FROM V$DB_CACHE_ADVICE;

NAME SIZE_FOR_EST SIZE BUFF_FOR_EST PHYS_READ_FACT PHYS_READS
--
DEFAULT 4 .1667 500 2.4000 4486
DEFAULT 8 .3333 1000 1.0696 1999
DEFAULT 12 .5000 1500 1.0435 1950
DEFAULT 16 .6667 2000 1.0000 1869
DEFAULT 20 .8333 2500 1.0000 1869
DEFAULT 24 1.000 3000 1.0000 1869
SQL>

The V$SHARED_POOL_ADVICE view is similar to the V$DB_CACHE_ADVICE view, and it pres-
ents the estimated savings in parse time (in seconds) for a specified increase in the shared pool size.
Thus, you can see the estimated impact of calibrating the size of the shared pool without having to
change it. You can also use the V$SGA_TARGET_ADVICE view to estimate the SGA_TARGET size.

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS1118

4517CH23.qxd 8/19/05 11:17 AM Page 1118

V$LIBRARYCACHE
You’ll probably find the V$LIBRARYCACHE view most useful when you have to deal with contention
in the shared pool. The dictionary or the row cache usually doesn’t give you any problems—it’s the
library cache where most of the critical shared-memory problems occur. Chapter 22 shows you how
to compute library-cache hit ratios using data from the V$LIBRARYCACHE view.

V$ROWCACHE
You saw the V$ROWCACHE view in Chapter 22 as part of the discussion of the data dictionary
cache. The row cache, also known as the dictionary cache, captures all data dictionary activity.
Chapter 22 also includes a formula for computing the data-dictionary hit ratio, which indicates
if the sizing of the row cache is appropriate for your instance.

V$DB_OBJECT_CACHE
The V$DB_OBJECT_CACHE view lets you see all objects (such as tables, procedures, triggers, pack-
ages, and so on), that are cached in the library cache. This is a highly useful view that indicates, for
example, if an object is being reloaded multiple times because it can’t be cached in the shared pool.
The script shown in Listing 23-27 illustrates how you can get information on the number of execu-
tions, and whether an object is kept in the shared pool.

Listing 23-27. Using the V$DB_OBJECT_CACHE View

SQL> SELECT name,
executions,
sharable_mem,
kept
FROM V$DB_OBJECT_CACHE
WHERE type='PACKAGE'
AND owner='&OWNER'
ORDER BY EXECUTIONS DESC;

NAME EXECUTIONS SHARABLE_MEM KEPT
----------- ---------- ------------ ----
SALARY_PKG 10149 23169 NO
NEW_PKG 9111 19858 NO
STD_PKG 7550 32964 NO
SEL_PKG 4537 21549 NO
SQL>

V$PGASTAT
The V$PGASTAT view is analogous the V$SGASTAT view. It shows the usage of the PGA memory. If
you have the PGA_AGGREGATE_TARGET initialization parameter set, the view will also show information
about the automatic PGA memory management. The following SQL statement will reveal the con-
tents of the V$PGASTAT view:

SQL> SELECT * FROM V$PGASTAT;

V$PGA_TARGET_ADVICE
If you have set the PGA_AGGREGATE_TARGET initialization parameter, you can use the V$PGA_TARGET_
ADVICE view to figure out the optimal size of the PGA memory. The view contains a prediction of
the cache-hit performance for various hypothetical values of the PGA_AGGREGATE_TARGET parameter.

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS 1119

4517CH23.qxd 8/19/05 11:17 AM Page 1119

Backup- and Flashback-Related Views
You should be familiar with several backup-related dynamic performance tables. Some of them
only list the available backup devices, backup-control–file names, and data-file names. Others pro-
vide more critical information (for example, whether a data file is currently in backup mode). The
following sections introduce you to the most essential backup-related dynamic performance views.

V$BACKUP_DEVICE
The V$BACKUP_DEVICE view provides information on available devices for performing backups,
but it includes only tape devices. The disk system is always available as a potential backup device,
so no mention is made of it in this view. Here’s the output of a simple query using the V$BACKUP_
DEVICE view:

SQL> SELECT * FROM V$BACKUP_DEVICE;

DEVICE_TYPE DEVICE_NAME
----------------- -----------
SBT_TAPE Tape1
SQL>

V$BACKUP
The V$BACKUP view indicates which of your database files are in backup mode. In the following
query, if the status column shows ACTIVE, the data file is undergoing a backup:

SQL> SELECT file#, status
2 FROM V$BACKUP;

FILE# STATUS
----- --------
1 NOT ACTIVE
2 NOT ACTIVE
3 NOT ACTIVE
4 NOT ACTIVE
5 NOT ACTIVE
6 NOT ACTIVE
7 NOT ACTIVE
8 NOT ACTIVE
9 NOT ACTIVE
10 NOT ACTIVE

10 rows selected.
SQL>

V$BACKUP_PIECE
The V$BACKUP_PIECE view shows the control file information about the various backup pieces.
The DELETED column in this view can have two values: YES or NO. If the value is YES, the file has been
deleted already.

V$RMAN_CONFIGURATION
Contrary to what this view’s name indicates, it contains only the persistent RMAN configuration
settings. RMAN comes with a set of default configuration settings, which aren’t shown in this com-
mand. Only the user-specified configuration settings are stored in this view:

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS1120

4517CH23.qxd 8/19/05 11:17 AM Page 1120

SQL> SELECT name, value FROM V$RMAN_CONFIGURATION;
NAME VALUE
------------------------------------ ----------------
RETENTION_POLICY TO REDUNDANCY 3
DEFAULT DEVICE TYPE TO DISK

SQL>

Session- and User-Related Views
Data dictionary views such as DBA_USERS, ROLE_ROLE_PRIVS, and ROLE_TAB_PRIVS help you
find out who the users are and what their privileges are. However, those views don’t help you find
out what the users are doing in the database right now—you need the session-related dynamic
views for that. These views are some of the most useful ones you’ll be using on a day-to-day basis
for monitoring user sessions.

V$PWFILE_USERS
If you want to find out which of your users has been granted the SYSOPER or the SYSDBA role, you
can do so by using the V$PWFILE_USERS view, as follows:

SQL> SELECT * FROM V$PWFILE_USERS;

USERNAME SYSDBA SYSOPER

SYS TRUE TRUE
SQL>

V$SESSION_CONNECT_INFO
The V$SESSION_CONNECT_INFO view shows you the session authentication details for users. The
following code details the V$SESSION_CONNECT_INFO view:

SQL> DESC V$SESSION_CONNECT_INFO
Name Null? Type
--- -------- ---------------
SID NUMBER
AUTHENTICATION_TYPE VARCHAR2(26)
OSUSER VARCHAR2(30)
NETWORK_SERVICE_BANNER VARCHAR2(4000)

SQL>

The important column is AUTHENTICATION_TYPE, which could hold the following values:

• Database, if the authentication is through the database

• OS, if you’re using the operating system’s external authentication

• Network, if you’re using the network protocol

Listing 23-28 shows the contents of the V$SESSION_CONNECT_INFO view.

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS 1121

4517CH23.qxd 8/19/05 11:17 AM Page 1121

Listing 23-28. Using the V$SESSION_CONNECT_INFO View

SQL> SELECT * FROM V$SESSION_CONNECT_INFO;

SID AUTHENTICATION OSUSER NETWORK_SERVICE_BANNER
--
7 DATABASE SYSTEM
8 DATABASE SYSTEM
9 DATABASE salapati Windows NT TCP/IP NT Protocol

Adapter for 32-bit Windows:
Version 9.2.0.1.0 Production

9 DATABASE salapati Oracle Advanced Security:
Encryption service for 32-bit
Windows: Version 9.2.0.1.0 Production

9 DATABASE salapati Oracle Advanced Security:
crypto-checksumming service for 32-
bit Windows: Version 9.2.0.1.0 Produ

SQL>

V$SESSION
The V$SESSION view gives you a wealth of information about the users, including their operating
system username, terminal name, whether they’re actively executing a transaction or just con-
nected to the database, and how long their connection has been in place. In Oracle Database 10g,
the V$SESSION view also contains several wait-related columns such as WAIT_CLASS_ID, WAIT_
CLASS#, WAIT_CLASS, WAIT_TIME, and SECONDS_IN_WAIT.

V$SESS_IO
The V$SESS_IO view provides session I/O statistics. Here are the columns in this view:

SQL> DESC V$SESS_IO

Name

SID
BLOCK_GETS
CONSISTENT_GETS
PHYSICAL_READS
BLOCK_CHANGES
CONSISTENT_CHANGES
SQL>

V$SESSION_LONGOPS
The V$SESSION_LONGOPS view shows the status of all operations that run for a long time (more
than six seconds in absolute time). The columns SOFAR and TIME_REMAINING indicate how much of
the work is done and how long the operation has to go before completing. The following is a sample
query using the view:

SQL> SELECT sid, opname, sofar,totalwork,
2 start_time, time_remaining
3* FROM V$SESSION_LONGOPS;

You can use either the V$SESSION_LONGOPS or V$RECOVERY_PROGRESS view, which is a
subview of the former, to monitor the progress of a backup. The following code shows the structure
of the V$RECOVERY_PROGRESS view:

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS1122

4517CH23.qxd 8/19/05 11:17 AM Page 1122

SQL> DESC V$RECOVERY_PROGRESS

Name
--
TYPE /* type of recovery operation */
ITEM /* the item name */
SOFAR /* Work completed so far */
TOTAL /* Total expected amount of work */
SQL>

V$ADVISOR_PROGRESS
The V$ADVISOR_PROGRESS view shows details about the progress of various advisor job execu-
tions (for example, the SQL Tuning Advisor). Here’s a simple query you can use to check the
progress of an ongoing SQL Tuning Advisor job:

SQL> SELECT sofar, totalwork
FROM V$ADVISOR_PROGRESS
WHERE user_name = 'SALAPATI'
AND task_name = 'TEST_TUNING_TASK';

V$ACCESS
You normally use the V$ACCESS view in conjunction with the V$SESSION view to gather informa-
tion about which users are accessing a given database object. Here’s the view:

SQL> DESC V$ACCESS

Name Null? Type
--- ----- --------------
SID NUMBER
OWNER VARCHAR2(64)
OBJECT VARCHAR2(1000)
TYPE VARCHAR2(24)
SQL>

Redo Log–Based and Archive Log–Based Views
The dynamic performance views are excellent for monitoring the redo log and the archive log
usage. The following sections present some of the key performance views relating to logs, both
online and archived.

V$LOG
The V$LOG view provides detailed information about the online redo logs. It’s useful for finding out
two important things: the log status and whether it has been archived. Log status could take one of
the following values:

• Unused: The log is either new or it’s being used right after a reset logs operation.

• Current: The current, active redo log.

• Active: An active log, but not one currently in use.

• Inactive: Instance recovery doesn’t need this log.

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS 1123

4517CH23.qxd 8/19/05 11:17 AM Page 1123

Here’s the output of a query using the V$LOG view:

SQL> SELECT group#, thread#, sequence#, archived,
2* status FROM V$LOG;

GROUP# THREAD# SEQUENCE# ARC STATUS
---------- ---------- ---------- --- --------

1 1 11 NO CURRENT
2 1 9 NO INACTIVE
3 1 10 NO INACTIVE

SQL>

V$LOGFILE
The V$LOGFILE view provides information about each redo log file, including its name and
whether the file is valid or not. The STATUS column has the following values:

• INVALID if the file isn’t accessible

• STALE if the contents are incomplete

• NULL if the file is currently in use

• DELETED if the file isn’t used any longer

The following is a query on the V$LOGFILE view showing the status and name of the redo log
files. Because its STATUS column is blank, group 1 (with one member) is the currently used redo
log group.

SQL> SELECT * FROM V$LOGFILE;

GROUP# STATUS TYPE MEMBER
---------- ------- ------- -------------------------------

3 STALE ONLINE C:\ORACLE\ORADATA\MARK1\REDO03.LOG
2 STALE ONLINE C:\ORACLE\ORADATA\MARK1\REDO02.LOG
1 ONLINE C:\ORACLE\ORADATA\MARK1\REDO01.LOG

SQL>

The V$LOG_HISTORY view shows you all the logs from the beginning log to the latest one,
along with the high and low SCNs in each redo log.

V$ARCHIVED_LOG
The V$ARCHIVED_LOG view is essential when you’re looking at information regarding which
archive logs you have access to. The view contains one entry for every log that your database
archives. When you restore an archive log, the operation inserts one row into the view for each
archive log. Listing 23-29 show the output of a query using the view.

Listing 23-29. Querying the V$ARCHIVED_LOG View

SQL> SELECT name, thread#, sequence#,
2 archived, applied, deleted, completion_time
3* FROM V$ARCHIVED_LOG;

NAME THREAD# SEQ# ARC DEL COMPLETION_TIME
--
C:\ORACLENT\RDBMS\ARC00001.001 1 1 YES NO 07/07/2005
C:\ORACLENT\RDBMS\ARC00002.001 1 2 YES NO 07/07/2005
C:\ORACLENT\RDBMS\ARC00003.001 1 3 YES NO 07/07/2005

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS1124

4517CH23.qxd 8/19/05 11:17 AM Page 1124

C:\ORACLENT\RDBMS\ARC00004.001 1 4 YES NO 07/07/2005
C:\ORACLENT\RDBMS\ARC00005.001 1 5 YES NO 07/07/2005
C:\ORACLENT\RDBMS\ARC00006.001 1 6 YES NO 07/07/2005
C:\ORACLENT\RDBMS\ARC00007.001 1 7 YES NO 07/07/2005
SQL>

V$ARCHIVE_DEST
As its name indicates, the V$ARCHIVE_DEST view shows you each archive log destination and its
status. This view has a large number of columns, and you need to pay special attention to the fol-
lowing columns:

• STATUS: This column could take several values, but the important values are VALID, INACTIVE,
DEFERRED, DISABLED, FULL, and ALTERNATE.

• BINDING: A value of MANDATORY means that the archive must be successful. A value of OPTIONAL
indicates that depending on the value of the LOG_ARCHIVE_MIN_SUCCEED_DEST initialization
parameter, you don’t have to archive logs successfully to this destination every time.

• TARGET: If the TARGET column shows PRIMARY, it’s referring to the local destination. If it shows
STANDBY, it’s pointing to a remote destination.

Listing 23-30 shows a typical query using the V$ARCHIVE_DEST dictionary view.

Listing 23-30. Using the V$ARCHIVE_DEST View

SQL> SELECT dest_name
2 FROM V$ARCHIVE_DEST;

DEST_NAME

LOG_ARCHIVE_DEST_1
LOG_ARCHIVE_DEST_2
LOG_ARCHIVE_DEST_3
LOG_ARCHIVE_DEST_4
LOG_ARCHIVE_DEST_5
LOG_ARCHIVE_DEST_6
LOG_ARCHIVE_DEST_7
LOG_ARCHIVE_DEST_8
LOG_ARCHIVE_DEST_9
LOG_ARCHIVE_DEST_10
10 rows selected.
SQL>

The V$ARCHIVE_DEST_STATUS view provides runtime information about the archive log des-
tinations, as shown here:

SQL> SELECT dest_id, database_mode,
2 destination,
3* FROM V$ARCHIVE_DEST_STATUS;

DEST_ID DATABASE_MODE RECOVER DESTINATION
---------- --------------- ------- -----------------------

1 OPEN IDLE /u10/oradata/orcl/arch
2 OPEN IDLE
3 OPEN IDLE
4 OPEN IDLE
5 OPEN IDLE

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS 1125

4517CH23.qxd 8/19/05 11:17 AM Page 1125

Recovery-Related Views
When you’re performing any kind of recovery activity, the dynamic views pertaining to recovery are
indispensable. In the following sections I discuss the most important of these recovery views.

V$MTTR_TARGET_ADVICE
You can choose instance recovery time following a crash by specifying the mean time to recover
(MTTR) from the failure, in seconds. You use the FAST_START_MTTR_TARGET initialization parameter
for this purpose, as explained in Chapter 16. If you choose a short MTTR, Oracle will accommodate
you, but it’ll most likely have to perform a lot more incremental checkpoints than if you chose a
longer MTTR. Increasing checkpointing would affect instance performance, because of the exces-
sive writing to data files. The V$MTTR_TARGET_ADVICE view shows the tradeoff between a lower
instance recovery time and additional physical writes. The view provides information about physi-
cal writes, which helps you determine the ideal MTTR for your instance. This view is the basis for
Oracle’s MTTR Advisor, which helps you evaluate various MTTR sizes by showing the estimated
impact of each setting on extra physical writes:

SQL> SELECT mttr_target_for_estimate, estd_cache_writes,
estd_total_writes,estd_total_ios
FROM V$MTTR_TARGET_ADVICE;

MTTR_TARGET_FOR_EST ESTD_CACH_WRIT ESTD_TOT_WRITES ESTD_TOTAL_IOS

53 9103239 9717060 677755152
83 6558125 7171946 675210038
114 6369149 6982970 675021062
145 6259821 6873642 674911734
176 6194878 6808699 674846791

SQL>

V$INSTANCE_RECOVERY
The V$INSTANCE_RECOVERY view monitors the number of blocks set as the target and records
ongoing estimates of the MTTR. The view can tell you what the current MTTR is and what the
estimated MTTR is, based on instance activity. Here’s a typical query using the V$INSTANCE_
RECOVERY view:

SQL> SELECT recovery_estimated_ios,
/*no. of dirty buffers in the buffer cache*/

2 actual_redo_blks,
/* no. of redo blocks needed for recovery */

3 target_redo_blks,
/*target no. of redo blocks to be processed*/

4 target_mttr,
/* mean time to recover target value */

5 estimated_mttr
/* current estimated mean time to recover */

6* FROM V$INSTANCE_RECOVERY;

REC_EST_IOS ACTUAL_REDO TARGET_REDO TARGET_MTTR ESTIMATED_MTTR
---------------- ---------------- ---------------- -----------

983 2422 18432 60 38
SQL>

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS1126

4517CH23.qxd 8/19/05 11:17 AM Page 1126

The preceding query shows that the target MTTR is 60 seconds, but based on current instance
activity, you can expect your actual MTTR to be less than that (38 seconds).

The OPTIMAL_LOGFILE_SIZE column of the V$INSTANCE_RECOVERY view helps you size your
redo logs properly, by showing the optimal redo log size for the MTTR size that you choose. Oracle
recommends that all your online redo logs be at least as large as indicated by the OPTIMAL_LOGFILE_
SIZE column value.

V$RECOVER_FILE
The V$RECOVER_FILE view provides information on all files that need recovery. Following is the
structure of the V$RECOVER_FILE view:

SQL> DESC V$RECOVER_FILE

Name Null? Type
------------------ ------- ------------
FILE# NUMBER
ONLINE VARCHAR2(7)
ONLINE_STATUS VARCHAR2(7)
ERROR VARCHAR2(18)
CHANGE# NUMBER
TIME DATE
SQL>

V$RECOVERY_FILE_DEST
The V$RECOVERY_FILE_DEST view contains information about the amount of used and free space
in the flash recovery area, among other things. You’ve seen how you must set values for both the
DB_RECOVERY_FILE_DEST and the DB_RECOVERY_FILE_DEST_SIZE parameters to use the flash
recovery area inside your database.

V$RESTORE_POINT
The FLASHBACK DATABASE command allows you to flash back or take back the database to a previous
point in time. You can specify the past point in time using either the SCN or a clock time. However,
it may become cumbersome to remember the exact SCNs and clock times over time. Oracle lets you
create a restore point, which is a way to associate an easy-to-remember name with an SCN or a time
stamp. When you use the FLASHBACK DATABASE command, you can simply use the restore point
instead of having to use an SCN or a time stamp. Oracle sometimes calls the restore point an alias
for a SCN.

The V$RESTORE_POINT view shows all restore points in your database. Here’s a simple query
using the view:

SQL> SELECT * FROM V$RESTORE_POINT;

SCN DB_INCA GUA STORAGE TIME NAME
------- ------- ---- ------- -------------------- ---------
1685977 2 YES 819200 29-JUL-05 02.10.55PM RESTORE1 SQL>

The third column, GUA, is an abbreviation for GUARANTEE_FLASHBACK_DATABASE, and can take a
value of YES or NO.

Chapter 16 shows you how to create a restore point.

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS 1127

4517CH23.qxd 8/19/05 11:17 AM Page 1127

V$FLASHBACK_DATABASE_LOG
You can use the V$FLASHBACK_DATABASE_LOG view to determine the ideal size of your flash
recovery area, as shown in Chapter 15. Here’s a typical query using this view:

SQL> SELECT estimated_flashback_size,
flashback_size
FROM V$FLASHBACK_DATABASE_LOG;

The ESTIMATED_FLASHBACK_SIZE column value tells you how much space you must allocate to
your flash recovery area for the flashback logs to meet your flashback retention target.

V$FLASHBACK_DATABASE_STAT
The V$FLASHBACK_DATABASE_STAT view helps you monitor the overhead of logging flashback
data in the Flashback Database logs. The view provides information about the bytes of flash-
back data, redo data, and bytes of data blocks read and written during an interval of time.

V$FLASH_RECOVERY_AREA_USAGE
The V$FLASH_RECOVERY_AREA_USAGE view shows how your flash recovery area space is being
used. It shows both the percentage of space that’s in use and the percentage of space that’s
reclaimable. Here’s a simple query:

SQL> SELECT * FROM V$FLASH_RECOVERY_AREA_USAGE;

FILE_TYPE PERCENT_SPACE_USED_SPACE_RECLAIMABLE NUMBER_OF_FILES
----------- ---------------- ----------------- ---------------
CONTROLFILE 0 0 0
ONLINELOG 0 0 0
ARCHIVELOG 0 0 0
BACKUPPIECE 0 0 0
IMAGECOPY 0 0 0
FLASHBACKLOG .38 0 1
SQL>

Performance-Monitoring Views
You can use all V$ views to monitor various aspects of the database instance, including its perform-
ance. However, some specific views are instrumental in judging the performance of the instance.
You learned about some of these views in detail in Chapters 21 and 22; therefore, I don’t discuss
those comprehensively here. The performance-monitoring views you’ve already seen are V$SYSTEM_
EVENT, V$SESSION_EVENT, V$SESSION_WAIT, V$SQLAREA, V$SQL_PLAN, and V$SQLTEXT. The
V$EVENT_NAME view provides the names of all wait events in the instance. The V$WAIT_STAT
view provides information about the various types of block contention, including undo block
contention.

V$SQL
The V$SQL view shows usage statistics regarding SQL statements in the shared pool, and the statis-
tics are updated after the query completes execution. For long-running queries, the statistics are
usually updated every five seconds, so you can monitor their progress. The V$SQL view is an impor-
tant performance-related view, and shows details about the following items, among others:

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS1128

4517CH23.qxd 8/19/05 11:17 AM Page 1128

• Text of the SQL statements that are executing in the database

• Number of users executing a particular SQL statement

• Total number of rows processed by a SQL statement

• Number of parses and number of executions that took place on an object since it was
brought into the library cache

• Application, concurrency, PL/SQL execution, and user I/O wait time (in microseconds)

• Elapsed and CPU time (in microseconds) used by a cursor for parsing, executing, and
fetching

■Tip Oracle recommends that you use the new V$SQLSTATS view, instead of V$SQL, when fetching statistics for
SQL cursors. Although the V$SQLSTATS view contains a subset of columns from the V$SQL and V$SQLAREA views,
it’s faster and retains SQL information even after the cursor is removed from the shared pool.

V$SYSSTAT
The V$SYSSTAT view provides you with all the major system statistics: parse statistics, execution
rates, full table scans, and other performance indices. The V$SYSSTAT view provides you with the
buffer-cache hit ratios and a number of other hit ratios. Listing 23-31 shows a summary of the main
classes of statistics contained in the V$SYSSTAT view.

Listing 23-31. The V$SYSSTAT View

SQL> SELECT * FROM V$SYSSTAT;

STATISTIC# NAME CLASS VALUE
---------- ---
1 logons current 1 9
4 user commits 1 3
5 user rollbacks 1 0
9 session logical reads 1 2487612
12 CPU used by this session 1 541
13 session connect time 1 3075787237
20 session pga memory 1 12353212
40 db block gets 8 97322
41 consistent gets 8 1514391
42 physical reads 8 2313
43 db block changes 8 1392911
44 consistent changes 8 246421
45 recovery blocks read 8 96
46 physical writes 8 6110
49 DBWR checkpoint buffers written 8 6027
79 free buffer inspected 8 0
97 physical reads direct 8 54
98 physical writes direct 8 30
114 redo entries 2 702571
115 redo size 2 150629028
116 redo buffer allocation retries 2 2
117 redo wastage 2 8335572
183 table scans (short tables) 64 142400
184 table scans (long tables) 64 193935

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS 1129

4517CH23.qxd 8/19/05 11:17 AM Page 1129

190 table fetch by rowid 64 383338
200 index fast full scans (full) 64 0
203 index fetch by key 128 363856
230 parse time cpu 64 1309
231 parse time elapsed 64 4306
232 parse count (total) 64 109354
233 parse count (hard) 64 353
235 execute count 64 238933
242 sorts (memory) 64 47225
243 sorts (disk) 64 0
244 sorts (rows) 64 50862

V$SYS_TIME_MODEL
The V$SYS_TIME_MODEL view shows the system-wide accumulated times for various database
operations. The DB time column in this view shows the amount of elapsed time (in microseconds)
spent performing database user-level calls. A query such as the following on this view helps deter-
mine which type of operations are taking up most of the time:

SQL> SELECT * FROM V$SYS_TIME_MODEL;

STAT_ID STAT_NAME VALUE

3649082374 DB time 1.6792E+13
2748282437 DB CPU 7.2597E+12
4157170894 background elapsed time 4.6456E+11
. . .
SQL>

V$SESS_TIME_MODEL
The V$SESS_TIME_MODEL view is similar to the V$SYS_TIME_MODEL view, but applies to
session-level displays of the session-accumulated time for various operations.

V$SESSION_WAIT_CLASS
The V$SESSION_WAIT_CLASS view shows the time spent in various wait event operations on a per-
session basis, as shown here:

SQL> SELECT wait_class,total_waits,time_waited
2* FROM V$SESSION_WAIT_CLASS;

WAIT_CLASS TOTAL_WAITS TIME_WAITED

Other 3 501
Idle 130 48162
Configuration 30 4
Concurrency 18 15
SQL>

Wait Class Views
The V$SERVICE_WAIT_CLASS view shows you the total number of waits and the total time waited
for each wait statistic. The V$SYSTEM_WAIT_CLASS view shows instance time totals for each regis-
tered wait class. The session-based V$SESSION_WAIT_CLASS view is described in the previous
section.

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS1130

4517CH23.qxd 8/19/05 11:17 AM Page 1130

V$SESSION_WAIT_HISTORY
The V$SESSION_WAIT_HISTORY view gives you the last ten wait events for each active session.

V$ACTIVE_SESSION_HISTORY
The V$ACTIVE_SESSION_HISTORY view shows recent session activity, as captured by the Active
Session History feature. The view contains one row for each active session per sample. You see the
latest sample data first.

SQL-Related Views
The three main SQL-related dynamic views are VSQL, VSQLAREA, and V$SQLTEXT. You can join
these and other views such as the V$SESSION view to find out information relating to current SQL
usage in the database (for example, the SQL being executed currently in the database). Here’s one
such query that lets you see a user’s SQL statement:

SQL> SELECT a.sid, a.username,
s.sql_text
FROM V$SESSION a, V$SQLTEXT s
WHERE a.sql_address = s.address
AND a.sql_hash_value = s.hash_value
AND a.username like '&user'
ORDER BY a.username,a.sid,s.piece;

Operational Performance–Related Views
You can use several views to monitor the status of the database. Using some of these views, you can
check on any resource contention (for example, the existence of locks and latches).

V$INSTANCE
The V$INSTANCE view gives you the status of your instance. It provides you with the hostname,
the database name and version, and the status of the database. Listing 23-32 shows the output of
a simple query using the V$INSTANCE view. Note that the status could be one of the following:
started, mounted, open, or open migrated. The possible values for the ACTIVE_STATE column are
NORMAL, QUIESCED, and QUIESCING.

Listing 23-32. Using the V$INSTANCE View

SQL> SELECT instance_name, host_name, version, startup_time,
2 status, database_status
3* from V$INSTANCE;

INSTANCE_NAME HOST_NAME VERSION STARTUP_TI STATUS DB_STATUS

nina prod5 10.2.0.0 07/18/2005 OPEN ACTIVE
SQL>

V$SESSION
The V$SESSION dynamic performance view is one of the most important monitoring- and per-
formance-related views. The view shows an enormous amount of detail about the user session,
including the following items:

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS 1131

4517CH23.qxd 8/19/05 11:17 AM Page 1131

• Session ID and serial number

• Username

• Command in progress

• The status of the session, whether active, killed, and so on

• Operating system user ID and machine name

• SQL ID and SQL hash value for the SQL statement that’s being executed

• Blocking session information

• Wait information

The following script gives you the SID and serial number of a user, in case you want to kill the
session for some reason:

SQL> SELECT sid, serial#,
2 username FROM v$session
3 WHERE username ='&username';

Enter value for username: HR
old 3: where username ='&username'
new 3: where username ='HR'

SID SERIAL# USERNAME
---------- ---------- ----------

22 19167 HR
SQL>

V$LOCK
The V$LOCK view indicates the session holding the lock and the type of lock that’s being held or
requested. The two key columns in this view are the LMODE column, which tells you the mode in
which a session holds the lock, and the REQUEST column, which specifies the mode in which a differ-
ent session requests the lock. For both the LMODE and the REQUEST columns, you should translate
the numerical lock mode according the following list, which orders the locks from least to most
restrictive:

• Lock mode 0: None

• Lock mode 1: Null (NULL)

• Lock mode 2: Row lock shared (SS)

• Lock mode 3: Row lock exclusive (SX)

• Lock mode 4: Shared lock (S)

• Lock mode 5: Shared lock row exclusive (SSX)

• Lock mode 6: Exclusive (X)

Here’s the output of a query using the V$LOCK view:

SQL> SELECT sid, type,lmode, request FROM V$LOCK;

SID TY LMODE REQUEST
------ -- ---------- --------
2 MR 4 0
2 MR 4 0
2 MR 4 0
2 MR 4 0

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS1132

4517CH23.qxd 8/19/05 11:17 AM Page 1132

2 MR 4 0
3 RT 6 0
5 TS 3 0

7 rows selected.
SQL>

V$LOCKED_OBJECT
Suppose you want to create an index on a database table that’s already in use. You issue the CREATE
INDEX command and get the following message:

SQL> CREATE INDEX neims_history_idx ON
neims_history(nsaorg_id);

NEIMS_HISTORY (NSAORG_ID)
*

ERROR at line 2:
ORA-00054: resource busy and acquire with NOWAIT specified
SQL>

You can’t begin to create the index until you find out which session is locking the neims_history
table, and either ask the user to log off or kill the session as a last resort. You can use the V$LOCKED_
OBJECT view to help you get rid of the session locking up the table. First, go to the DBA_OBJECTS
data dictionary view and get the object_id of the neims_history table. Once you have the object_id
column value for the locked table, you can query the V$LOCKED_OBJECT view, as shown in the fol-
lowing code. Once you have the username and session id (SID), you can use the V$SESSION view to
get the corresponding serial number (SERIAL#) and kill the session, thus releasing the lock that’s
preventing you from creating the index.

SQL> SELECT object_id, session_id, oracle_username
FROM V$LOCKED_OBJECT;

V$LATCH
The V$LATCH view shows latch statistics since the beginning of the instance. The statistics are
grouped by latch name. This view is usually joined with the V$LATCHNAME view to give you the
statistics associated with each latch request that occurs in the current instance.

V$LATCHNAME
The V$LATCHNAME and V$LATCH views have an intimate relationship. The V$LATCHNAME view
gives you the name of each type of latch requested since the instance began, and the V$LATCH view
provides the statistics for each of those latches. Every row in the V$LATCHNAME view corresponds
to a row in the V$LATCH view, and usually you join these two views to get information on the
latches being held in the instance.

V$PROCESS
The V$PROCESS view shows all the active processes in the instance. The LATCHWAIT column indi-
cates the latches the process is waiting for. If there are latch waits, the LATCHWAIT column will be
NULL. The following is a simple example using the view:

SQL> SELECT username, serial#, latchwait,
2* program FROM V$PROCESS;

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS 1133

4517CH23.qxd 8/19/05 11:17 AM Page 1133

USERNAME SERIAL# LATCHWAIT PROGRAM
--------------- ---------- -------- -----------

0 PSEUDO
SYSTEM 1 ORACLE.EXE
SYSTEM 1 ORACLE.EXE
SYSTEM 1 ORACLE.EXE
SYSTEM 1 ORACLE.EXE
SYSTEM 1 ORACLE.EXE
SYSTEM 1 ORACLE.EXE
SYSTEM 1 ORACLE.EXE
SYSTEM 5 ORACLE.EXE
SQL>

V$PROCESS_MEMORY
V$PROCESS_MEMORY is a new view that shows how PGA memory is being used by each process,
by showing the distribution of PGA memory in categories such as SQL, PL/SQL, OLAP, and JAVA.
Chapter 22 shows an example of using this view.

V$UNDOSTAT
You can use the V$UNDOSTAT view to monitor the AUM feature. The view shows undo space con-
sumption, transaction concurrency, and length of queries executed in your instance.

V$TRANSACTION
The V$TRANSACTION view lists information about the active transactions in the database. The
following query shows you the physical and logical I/Os incurred by the transaction:

SQL> SELECT start_time, status, log_io, phy_io
2 FROM V$TRANSACTION;

V$RSRC_PLAN and V$RSRC_CONSUMER_GROUP
The V$RSRC_PLAN view shows you all the active resource plans in the database. You can join this to
the V$RSRC_CONSUMER_GROUP view, which provides the resource-usage statistics for all the
resource plans in the database. Listing 23-33 shows the V$RSRC_CONSUMER_GROUP view.

Listing 23-33. The V$RSRC_CONSUMER_GROUP View

SQL> DESC V$RSRC_CONSUMER_GROUP

Name Null? Type
--- -------- ------------
NAME VARCHAR2(32)
ACTIVE_SESSIONS NUMBER
EXECUTION_WAITERS NUMBER
REQUESTS NUMBER
CPU_WAIT_TIME NUMBER
CPU_WAITS NUMBER
CONSUMED_CPU_TIME NUMBER
YIELDS NUMBER
QUEUE_LENGTH NUMBER
CURRENT_UNDO_CONSUMPTION NUMBER
SQL>

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS1134

4517CH23.qxd 8/19/05 11:17 AM Page 1134

Metric- and Alert-Related Views
Metrics provide the rates of change for base database statistics. I briefly explain some of the key
metric-related views in the following sections.

V$METRICNAME
The V$METRICNAME view is ideal for finding out the metric name for all database metrics, based
on their metric ID.

V$SYSMETRIC
The V$SYSMETRIC view shows system metric values captured for the most current time interval
(interval sizes are in hundredths of a second). Here’s an example:

SQL> SELECT metric_name,value FROM V$SYSMETRIC;

METRIC_NAME VALUE
------------------------- ------
Buffer Cache Hit Ratio 14
Memory Sorts Ratio 100
Redo Allocation Hit Ratio 100
User Transaction Per Sec 0
Physical Reads Per Sec 622
Physical Reads Per Txn 12406
. . .
SQL>

The V$SYSMETRIC_HISTORY view shows all system metric values available in the database.
The V$SERVICEMETRIC and the V$SERVICEMETRIC_HISTORY views show corresponding infor-
mation for service-level metrics. The V$WAITCLASSMETRIC view displays metric values of wait
classes for the most recent 60-second interval. V$WAITCLASSMETRIC_HISTORY displays metric
values of wait classes for all intervals during the last hour. You can view the on-disk values of all
metrics through the DBA_HIST_* views.

V$ALERT_TYPES
The V$ALERT_TYPES view shows details about all database alert types, as shown here:

SQL> SELECT type, scope, internal_metric_name FROM V$ALERT_TYPES;

TYPE SCOPE INTERNAL_METRIC_NAME
--------- -------- --------------------
Stateful Database Free_Space
Stateless Database threshold
Stateful Instance session_usage
Stateful Instance process_usage
Stateful Instance pgacachehit_pct
Stateful Instance shared_free_pct
Stateful Instance libcache_miss_pct
Stateful Instance libcache_hit_pct
Stateful Instance dictionarymiss_pct
Stateful Instance dictionaryhit_pct
Stateful Instance response_time_pt
Stateful Instance cpu_time_pct
Stateful Instance user_wait_time_pct

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS 1135

4517CH23.qxd 8/19/05 11:17 AM Page 1135

Stateful Instance time_cs
Stateful Instance user_limit
Stateful Instance opencursors
Stateful Instance logons
. . .
133 rows selected.

SQL>

Note that the TYPE column tells you whether an alert is stateful or stateless. Refer to Chapter 18
for an explanation of stateful and stateless alerts. The SCOPE column determines whether the alert is
database wide or instance wide.

V$FILEMETRIC
The V$FILEMETRIC view shows file metrics for the most recent ten-minute time interval. The
V$FILEMETRIC_HISTORY view shows you file metrics for the past one hour in ten-minute intervals.

General Views
Several dynamic performance views provide general information about the database, such as the
version of the database, the database name, the initialization parameters specified in the initializa-
tion file, and the default parameters. These views are useful for quickly finding out the value of an
initialization parameter, for example, instead of having to look into the init.ora file or the SPFILE.

V$FIXED_TABLE
The V$FIXED_TABLE view comes in handy when you want to see what dynamic performance views
are available in your database. This view is to dynamic performance views what the DICT view is for
the static data dictionary views.

V$FIXED_VIEW_DEFINITION
The V$FIXED_VIEW_DEFINITION view shows the view definitions for all dynamic performance
views. Remember that dynamic performance views are derived from base tables. The V$FIXED_
VIEW_DEFINITION view lists all dynamic performance views along with their definitions, showing
you exactly how Oracle is getting the data into that view. For example, you can see how the fre-
quently used V$SGASTAT view is constructed, using the V$FIXED_VIEW_DEFINITION view:

SQL> SELECT * FROM V$FIXED_VIEW_DEFINITION
2 WHERE VIEW_NAME='V$SGASTAT';

VIEW_NAME VIEW_DEFINITION

V$SGASTAT select POOL, NAME , BYTES from GV$SGASTAT

where inst_id = USERENV('Instance')
SQL>

V$LICENSE
The V$LICENSE view contains your Oracle licensing information and informs you about the maxi-
mum number of concurrent users or sessions that your license allows. The following code describes
the V$LICENSE view:

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS1136

4517CH23.qxd 8/19/05 11:17 AM Page 1136

SQL> DESC V$LICENSE
Name
--
SESSIONS_MAX /* max permissible concurrent sessions */
SESSIONS_WARNING /* warn limit for concurrent sessions limit */
SESSIONS_CURRENT /* current concurrent sessions */
SESSIONS_HIGHWATER /* max no. of concurrent sessions */
USERS_MAX /* max number of named users */
CPU_COUNT_CURRENT /* current number of CPUs in use */
CPU_COUNT_HIGWATER /* max no. of CPUs in use */
SQL>

V$VERSION
If you want to find out quickly the version of your database software and its various components,
use the query shown here:

SQL> SELECT * from V$VERSION;
BANNER
--
Oracle Database 10g Enterprise Edition Release 10.2.0.0 - Beta
PL/SQL Release 10.2.0.0 - Beta
CORE 10.2.0.0 Beta
TNS for Linux: Version 10.2.0.0 - Beta
NLSRTL Version 10.2.0.0 - Beta
SQL>

V$DATABASE is another important view that provides information about the status of the run-
ning instance. The following is the output of a typical query using the V$DATABASE dynamic view:

SQL> SELECT name,created,
2 log_mode,open_mode,protection_mode,
3* database_role FROM V$DATABASE;

NAME CREATED LOG_MODE OPEN_MODE PRO_MODE DATABASE_ROLE
--------- --------- ------------ ---------- -------- -------------
ORCL 25-JUL-05 NOARCHIVELOG READ WRITE MAX PERF PRIMARY
SQL>

The V$DATABASE view is useful when you’re dealing with standby databases. The view con-
tains information on the protection mode, switchover status, protection level, guard status, and
other critical information that you need to manage standby databases.

The V$DISPATCHER view provides information on the dispatcher processes in the instance.

V$OPTION
If you want to find out which Oracle database options are enabled in your database, you can query
the V$OPTION dynamic view. Listing 23-34 shows a (partial) query using the V$OPTION view.

Listing 23-34. The V$OPTION View

SQL> SELECT * FROM V$OPTION;

PARAMETER VALUE
--
Partitioning TRUE
Objects TRUE

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS 1137

4517CH23.qxd 8/19/05 11:17 AM Page 1137

Real Application Clusters FALSE
Flashback Database TRUE
Data Mining Scoring Engine FALSE
. . .
52 rows selected.
SQL>

V$SYSTEM_PARAMETER
The V$SYSTEM_PARAMETER dynamic view lists all the initialization parameters that are currently
in effect for the session. The V$SYSTEM_PARAMETER2 view is similar, except that it lists multiple
values of parameters in case they exist.

V$PARAMETER
The V$PARAMETER view shows you the initialization parameters that are in effect for a given ses-
sion. The view inherits all the parameter values from the V$SYSTEM_PARAMETER instance view.
There’s also a V$PARAMETER2 view, and it’s the counterpart of the V$SYSTEM_PARAMETER2 view.
Listing 23-35 describes the V$PARAMETER view.

Listing 23-35. Querying the V$PARAMETER View

SQL> DESC V$PARAMETER
Name Null? Type
--- -------- --------------
NUM NUMBER
NAME VARCHAR2(80) /* name of the parameter
TYPE NUMBER
VALUE VARCHAR2(512) /* value of the parameter
DISPLAY_VALUE VARCHAR2(512)
ISDEFAULT VARCHAR2(9) /* if TRUE, parameter is

set to default */
ISSES_MODIFIABLE VARCHAR2(5) /*can be modified using

ALTER SESSION?
ISSYS_MODIFIABLE VARCHAR2(9) /*can be modified using

ALTER SYSTEM?
ISINSTANCE_MODIFIABLE VARCHAR2(5)
ISMODIFIED VARCHAR2(10) /* been modified since

instance startup? */

ISADJUSTED VARCHAR2(5) /* has Oracle adjusted
user-set value? */

ISDEPRECATED VARCHAR2(5)
DESCRIPTION VARCHAR2(255) /* description of

the parameter */
UPDATE_COMMENT VARCHAR2(255)
HASH NUMBER
SQL>

V$SPPARAMETER
The V$SPPARAMETER view is useful only if you’re using the SPFILE instead of the init.ora file. The
view indicates the names of all parameters whether you’re using an SPFILE or not, but the VALUE
column is populated only if you’re using an SPFILE.

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS1138

4517CH23.qxd 8/19/05 11:17 AM Page 1138

V$NLS_PARAMETERS
The V$NLS_PARAMETERS view contains the name and current value of all NLS parameters.
Listing 23-36 shows you some of the common NLS parameters and their values.

Listing 23-36. Using the V$NLS_PARAMETERS View

SQL> SELECT * FROM V$NLS_PARAMETERS;

PARAMETER VALUE
--
NLS_LANGUAGE AMERICAN
NLS_TERRITORY AMERICA
NLS_CURRENCY $
NLS_ISO_CURRENCY AMERICA
NLS_NUMERIC_CHARACTERS .,
NLS_CALENDAR GREGORIAN
NLS_DATE_FORMAT DD-MON-RR
NLS_DATE_LANGUAGE AMERICAN
NLS_CHARACTERSET WE8MSWIN1252
NLS_SORT BINARY
NLS_TIME_FORMAT HH.MI.SSXFF AM
SQL>

V$STATISTICS_LEVEL
You can set the initialization parameter STATISTICS_LEVEL at different levels to control the statistics
your instance collects. The V$STATISTICS_LEVEL view provides you with the present level of all
statistics and advisories based on the STATISTICS_LEVEL configuration value. In addition, the
STATISTICS_VIEW_NAME column shows the dynamic performance view that holds the current statis-
tics for each of the statistics being collected. Listing 23-37 shows the list of all statistics being
collected or not collected in the system.

Listing 23-37. Querying the V$STATISTICS_LEVEL View

SQL> SELECT statistics_name, session_status,
system_status, statistics_view_name
FROM V$STATISTICS_LEVEL;

STAT_NAME SESS_STATUS SYS_STATUS STATISTICS_VIEW_NAME
-------------------------------- ----------------------------------
Buffer Cache Advice ENABLED ENABLED $DB_CACHE_ADVICE
MTTR Advice ENABLED ENABLED V$MTTR_TARGET_ADVICE
Timed Statistics ENABLED ENABLED
Timed OS Statistics DISABLED DISABLED
Segment Level Statistics ENABLED ENABLED V$SEGSTAT
PGA Advice ENABLED ENABLED V$PGA_TARGET_ADVICE
Plan Execution Statistics DISABLED DISABLED V$SQL_PLAN_STATISTICS
Shared Pool Advice ENABLED ENABLED V$SHARED_POOL_ADVICE
Modification Monitoring ENABLED ENABLED
Longops Statistics ENABLED ENABLED V$SESSION_LONGOPS
Bind Data Capture ENABLED ENABLED V$SQL_BIND_CAPTURE
Ultrafast Latch Statistics ENABLED ENABLED
Threshold-based Alerts ENABLED ENABLED
Global Cache Statistics ENABLED ENABLED
Cache Stats Monitor ENABLED ENABLED

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS 1139

4517CH23.qxd 8/19/05 11:17 AM Page 1139

Active Session History ENABLED ENABLED V$ACTIVE_SESSION_HISTORY
Undo Advisor, Alerts
and Fast Ramp up ENABLED ENABLED V$UNDOSTAT
17 rows selected.
SQL>

V$BGPROCESS
The V$BGPROCESS view shows you all the background processes available, even if some of them
aren’t currently running in your instance.

V$OSSTAT
The new V$OSSTAT view comes in handy when you wish to check system usage statistics.
Chapter 22 shows how to use this view to gather system usage statistics.

V$OBJECT_USAGE
You can ask Oracle to monitor the usage of an index to determine if you need the index after all.
The V$OBJECT_USAGE dynamic view holds the results of the index usage monitoring.

The following code shows the structure of the V$OBJECT_USAGE view. You need to watch the
key column USED to see if a certain index is being used or not during the monitoring period.

SQL> DESC V$OBJECT_USAGE
Name

INDEX_NAME
TABLE_NAME
MONITORING
USED
START_MONITORING
END_MONITORING
SQL>

Storage- and File-Related Views
When you’re dealing with issues such as I/O distribution among your data files, for example, the
dynamic views pertaining to storage objects are quite useful. In the following sections you’ll look at
the main storage-related dynamic views.

V$DATAFILE
The V$DATAFILE view contains information about the data-file name, the tablespace number, the
status, the time stamp of the last change, and so on. The V$TEMPFILE view shows you particulars
about the temporary tablespace files. The V$DATAFILE view provides important information when
you join it to the V$FILESTAT view.

V$FILESTAT
The V$FILESTAT view provides you with detailed data on file read/write statistics, including the
number of physical reads and writes, the time taken for that I/O, and the average read and write
times in milliseconds. The V$TABLESPACE view provides information about the tablespaces.
Listing 23-38 shows how you can join the V$DATAFILE, V$TABLESPACE, and V$FILESTAT views
to obtain useful disk I/O information.

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS1140

4517CH23.qxd 8/19/05 11:17 AM Page 1140

Listing 23-38. Getting Disk I/O Information

SQL> SELECT d.name, t.name, f.phyrds, f.phywrts,
2 f.readtim, f.writetim
3 FROM V$DATAFILE d,
4 V$FILESTAT f,
5 V$TABLESPACE t
6 WHERE f.file# = d.file#
7* AND d.ts# = t.ts#;

NAME T.NAME PHYRDS PHYWRTS READTIM WRITETIM
---------- ---------- ---------- ---------- ---------- ---------
C:\ORACLEN SYSTEM 46180 98697 29637 473716
T\ORADATA\
MANAGER\SY
STEM01.DBF
C:\ORACLEN UNDOTBS 330 140887 801 165629
T\ORADATA\
MANAGER\UN
DOTBS01.DBF
C:\ORACLEN DRSYS 649 23 515 0
T\ORADATA\
MANAGER\DR
SYS01.DBF
C:\ORACLEN INDX 34 23 4 0
T\ORADATA\
MANAGER\IN
DX01.DBF
SQL>

V$CONTROLFILE
The V$CONTROLFILE dynamic view gives you the names of all the control files. The STATUS column
will be NULL if the name can be determined. If the name can’t be determined (which shouldn’t hap-
pen), you’ll see the value INVALID in the STATUS column. The IS_RECOVER_DEST_FILE column shows
YES if the control file was created in the flash recovery area, and a value of NO otherwise. Here’s the
output of a query on the V$CONTROLFILE view:

SQL> SELECT status, name, is_recovery_dest_file FROM V$CONTROLFILE;

STATUS NAME IS_RECOVERY_DEST
----------- ------------------------------------- --------------

C:\ORACLE\ORADATA\MARK1\CONTROL01.CTL NO
C:\ORACLE\ORADATA\MARK1\CONTROL02.CTL NO
C:\ORACLE\ORADATA\MARK1\CONTROL03.CTL NO

SQL>

V$CONTROLFILE_RECORD_SECTION
The control file carries information in record sections. Information pertaining to data files, for
example, comes under the data file record section. The V$CONTROLFILE_RECORD_SECTION
view contains information about all control file record sections.

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS 1141

4517CH23.qxd 8/19/05 11:17 AM Page 1141

V$ASM_ALIAS
The V$ASM_ALIAS view applies only to an ASM instance and not to a normal database instance.
It displays a row for every alias present in every disk group mounted by the ASM instance.

V$ASM_CLIENT
The V$ASM_CLIENT view displays a row for the ASM instance if the database has open ASM files.
The view displays a row for every database instance using a disk group managed by the ASM
instance.

V$ASM_DISK
You can use the V$ASM_DISK view to check the performance of disks in an ASM system. The
V$ASM_DISK view only displays rows for disks in disk groups that the instance is using. In an ASM
instance, the view displays a row for every disk discovered by the ASM instance, including disks that
aren’t part of any disk group. The V$ASM_DISK_STAT view provides the same information, but with-
out performing a discovery of new disks.

V$ASM_DISKGROUP
The V$ASM_DISKGROUP view shows information regarding ASM disk groups. The view displays a
row for every ASM disk group mounted by the local ASM instance. In an ASM instance, the view dis-
plays a row for every disk group discovered by the ASM instance. The V$ASM_DISKGROUP_STAT
view shows the same information as the V$ASM_DISKGROUP view, but doesn’t perform a discovery
of new disk groups.

V$ASM_FILE and V$TEMPLATE
The V$ASM_FILE view applies only to an ASM instance, and not a normal database instance. In an
ASM instance, the view displays a row for every ASM file in every disk group mounted by the ASM
instance. The V$TEMPLATE view shows template information for every template in every disk
group in an ASM-based instance.

V$ASM_OPERATION
The V$ASM_OPERATION view applies only to an ASM instance, and shows the progress of a long-
running ASM operation running in an ASM instance.

V$TRANSPORTABLE_PLATFORM
The V$TRANSPORTABLE_PLATFORM view is useful when you’re transporting tablespaces across
OS platforms. The view tells you whether the endian formats of two OS platforms are compatible
or not. Chapter 14, which discusses the Data Pump utilities, shows how to use this view for this
purpose.

V$SYSAUX_OCCUPANTS
The V$SYSAUX_OCCUPANTS view shows you details about the space usage by each occupant of the
SYSAUX tablespace. It also provides you with the move procedure to use for a given occupant, if you
want to move the occupant to a different tablespace. Here’s a sample query using this view:

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS1142

4517CH23.qxd 8/19/05 11:17 AM Page 1142

SQL> SELECT occupant_name, schema_name, space_usage_kbytes,
2* move_procedure FROM V$SYSAUX_OCCUPANTS;

OCCUPANT_NAME SCHEMA_NAME SPACE_USG_KB MOVE_PROCEDURE

LOGMNR SYSTEM 7488 SYS.DBMS_LOGMNR_D.SET_TABLESPACE
. . .
ULTRASEARCH WKSYS 7296 MOVE_WK
20 rows selected.
SQL>

If you wish to move the SYSAUX occupant ULTRASEARCH to a new tablespace called ULTRA1,
you can do so using the MOVE_WK procedure owned by the WKSYS schema, as shown here:

SQL> EXECUTE WKSYS.MOVE_WK('ULTRA1');

This chapter introduced you to several useful data dictionary views that help you manage the
database. Although using the OEM Database Control reduces the need to use most of these views
on a frequent basis, it’s important to master the contents of these views, so you know where the
database stores important information.

CHAPTER 23 ■ THE ORACLE DATA DICTIONARY AND THE DYNAMIC PERFORMANCE VIEWS 1143

4517CH23.qxd 8/19/05 11:17 AM Page 1143

4517CH23.qxd 8/19/05 11:17 AM Page 1144

Using Oracle PL/SQL Packages

Oracle supplies a large number of PL/SQL packages that help both developers and DBAs extend
database functionality. This chapter focuses on the packages that DBAs can use to manage the data-
base. Oracle implements most of its special features with these PL/SQL packages, and the number
of Oracle-supplied PL/SQL packages is growing with each version of the software. Several packages
are available for you to use to manage routine database tasks, and you need other packages only
occasionally to perform special tasks. Some specialized packages, such as UTL_FILE and UTL_SMTP,
enable you to perform some tasks easily, such as reading operating system files or sending pages
without having to write lengthy pieces of code.

You’ll begin with an overview of the Oracle-supplied packages. You’ll then review the key
PL/SQL packages in detail, including examples of their use. Don’t be intimidated by the many pro-
cedures and functions that are part of most of these packages. In most cases, you’ll probably need
to use just a couple of the key procedures to perform a task.

Overview of the Oracle-Supplied PL/SQL Packages
Oracle-supplied packages have the same kind of functionality as the packages that you can create
in the database. They have the same specification and body structure, and can include several func-
tions and procedures. The biggest advantages to using packages are the reusability of code, the
ability to overload procedures and functions, and an efficient organization of stored program code.
Oracle PL/SQL packages exploit all the standard benefits of the regular user-created packages.

Who Creates the Oracle Packages?
The Oracle PL/SQL packages are automatically created in a new database when you run the script
catproc.sql (from the $ORACLE_HOME/rdbms/admin directory) right after the creation of the
database. You do need to create some special packages manually, but most of the packages are
automatically created when you run the catproc.sql script (see Chapter 9).

The user SYS owns all these packages, and a user with the DBA role has the privileges to exe-
cute any of them. If you sometimes can’t execute a PL/SQL package, just add the SYS schema name
before the package name (for example, SYS.DBMS_SYSTEM). If other database users need to use
these packages, the DBA must grant the necessary SELECT or EXECUTE privileges on the individual
packages.

How Do You Use the Oracle Packages?
Almost all the Oracle-supplied PL/SQL packages consist of a set of procedures (and sometimes
functions) that together provide the functionality for which the package is designed. At any given
time, you’re usually executing a procedure or a function that belongs to the PL/SQL package.

1145

C H A P T E R 2 4

■ ■ ■

4517CH24.qxd 8/19/05 11:18 AM Page 1145

For example, the well-known PL/SQL package DBMS_OUTPUT has the procedure PUT_LINE, which
you use to see the output of PL/SQL code on your screen.

In the following discussion of important Oracle packages, first you’ll learn the key procedures
that make up each package. Later on, you’ll see how to use the package to perform relevant tasks.

An easy way to list all the procedures and functions within an Oracle package is to simply use
the familiar DESCRIBE command in SQL*Plus. For each package, the DESCRIBE command shows the
following columns:

• PROCEDURE/FUNCTION_NAME: This column indicates whether the component is a procedure or a
function, and provides you with the component’s name.

• ARGUMENT_NAME: This column provides you with the name of each argument in a procedure or
function.

• TYPE: This column contains the argument type (Boolean, date, and so forth).

• IN/OUT: This column indicates whether the argument is an IN or OUT parameter.

• DEFAULT?: This column indicates whether there’s a default value for the column. If the
DEFAULT column is empty, that means that there’s no default value for the column. If there
is a default value, you’ll see the word DEFAULT instead.

In the following sections, you’ll see all the important Oracle-supplied PL/SQL packages that
are part of Oracle Database 10g. You can roughly divide the packages into two types: a set of general
database management utilities and a set of specialized packages for implementing certain features
of the Oracle database. The first part of the discussion deals with the general PL/SQL packages, and
the second section reviews the features of the specialized packages. These specialized packages are
used extensively in various chapters in this book, as noted in the relevant sections. Some important
Database Management System (DBMS) packages such as DBMS_SQL aren’t covered here, because
this chapter’s focus is on the most useful packages for DBAs, not for developers. To save space, I
may not list all the procedures and functions in every package when I describe it. You can either
describe the package in SQL*Plus to view all its components, or you can look it up in the Oracle
manual titled PL/SQL Packages and Types Reference.

DBMS_FILE_TRANSFER
In Oracle Database 10g, you can copy files directly between databases over Oracle Net, without
using either OS commands or utilities such as the FTP protocol. You can use the DBMS_FILE_
TRANSFER package to copy binary files within the same server or to transfer a binary file between
servers. You use the COPY_FILE procedure to copy files on the local system and the PUT_FILE proce-
dure to read and copy a local file to a remote file system. Here’s a brief explanation of the key
procedures of this new package.

COPY_FILE
The COPY_FILE procedure enables you to copy binary files from one location to another on the same
or different servers. Before you can copy the files, you must first create the source and destination
directory objects, as follows:

SQL> CREATE OR REPLACE DIRECTORY source_dir as '/u01/app/oracle/source';
SQL> CREATE OR REPLACE DIRECTORY dest_dir as '/u01/app/oracle/dest';

Once you create your source and destination directories, you can use the COPY_FILE procedure
to copy files, as shown here:

CHAPTER 24 ■ USING ORACLE PL/SQL PACKAGES1146

4517CH24.qxd 8/19/05 11:18 AM Page 1146

SQL> BEGIN
DBMS_FILE_TRANSFER.COPY_FILE(
source_directory_object => 'SOURCE_DIR',
source_file_name => 'test01.dbf',
destination_directory_object => 'DEST_DIR',
destination_file_name => 'test01_copy.dbf');
END;
/

SQL>

Ensure that the copy was correctly copied by checking the destination directory.

GET_FILE
You use the GET_FILE procedure to copy binary files from a remote server to the local server. First,
log into the remote server and create the source directory object, as shown here:

SQL> CONNECT system/system_passwd@remote_db
Connected.
SQL> CREATE OR REPLACE DIRECTORY source_dir as '/u01/app/oracle/source';

Next, you log into the local server and create a destination directory object, as shown here:

SQL> CONNECT system/system_passwd@local_db
Connected.
SQL> CREATE OR REPLACE DIRECTORY dest_dir as /'u01/app/oracle/dest';

Once you create the source and destination directories, ensure that you have a database link
between the two databases, or create one if one doesn’t exist:

SQL> CREATE DATABASE LINK remote_db
CONNECT TO system IDENTIFIED BY system_passwd
USING 'remote_db';

SQL>

Now you execute the GET_FILE procedure to transfer the file from the remote server to the local
server, as shown here:

SQL> BEGIN
DBMS_FILE_TRANSFER.GET_FILE(
source_directory_object => 'SOURCE_DIR',
source_file_name => 'test01.dbf',
source_database => 'remote_db',
destination_directory_object => 'DEST_DIR',
destination_file_name => 'test01.dbf');
END;
/

SQL>

Note that for the SOURCE_DATABASE attribute, you provide the name of the database link to the
remote database.

PUT_FILE
You use the PUT_FILE procedure to transfer a binary file from the local server to a remote server. As
in the case of the previous two procedures, you must first create the source and destination direc-
tory objects, as shown here (in addition, you must ensure the existence of a database link from the
local to the remote database):

CHAPTER 24 ■ USING ORACLE PL/SQL PACKAGES 1147

4517CH24.qxd 8/19/05 11:18 AM Page 1147

SQL> CONNECT system/system_passwd@remote_db
Connected.
SQL> CREATE OR REPLACE DIRECTORY source_dir as '/u01/app/oracle/source';
SQL> connect system/system_passwd@local_db
Connected.
SQL> CREATE OR REPLACE DIRECTORY dest_dir as /'u01/app/oracle/dest';

You can now use the PUT_FILE procedure to put a local file on the remote server, as shown here:

SQL> BEGIN
DBMS_FILE_TRANSFER.PUT_FILE(
source_directory_object => 'SOURCE_DIR',
source_file_name => 'test01.dbf',
destination_directory_object => 'DEST_DIR',
destination_file_name => 'test01.dbf',
destination_database => 'remote_db');
END;
/

SQL>

DBMS_MONITOR
The DBMS_MONITOR package helps you trace and gather statistics about client sessions. This
package is at the heart of the new end-to-end tracing feature of Oracle Database 10g. The package
has routines for enabling and disabling statistics aggregation and for tracing by session ID, or a
combination of service name, module name, and action name. Chapter 23 contains a detailed dis-
cussion of this package. Here are the important procedures of the package:

• CLIENT_ID_STAT_ENABLE enables statistics accumulation for a client identifier.

• CLIENT_ID_STAT_DISABLE disables statistics accumulation for a client identifier.

• SERV_MOD_ACT_STAT_ENABLE enables the aggregation of statistics for a hierarchy of service
name, module name, and action name.

• SERV_MOD_ACT_STAT_DISABLE disables the aggregation of statistics for a hierarchy of service
name, module name, and action name.

UTL_COMPRESS
The UTL_COMPRESS package lets you compress and decompress binary data (RAW, BLOB, and
BFILE). It provides the same functionality as the gzip utility. Here’s a simple example:

SQL> SET SERVEROUTPUT ON
SQL> DECLARE

l_original_blob BLOB;
l_compressed_blob BLOB;
l_uncompressed_blob BLOB;
BEGIN
l_original_blob :=
TO_BLOB(UTL_RAW.CAST_TO_RAW('1234567890123456789012
345678901234567890'));
l_compressed_blob := TO_BLOB('1');

CHAPTER 24 ■ USING ORACLE PL/SQL PACKAGES1148

4517CH24.qxd 8/19/05 11:18 AM Page 1148

l_uncompressed_blob := TO_BLOB('1');
UTL_COMPRESS.lz_compress (src => l_original_blob,

dst => l_compressed_blob);
UTL_COMPRESS.lz_uncompress (src => l_compressed_blob,

dst => l_uncompressed_blob);
DBMS_OUTPUT.put_line('Original Length : ' ||
LENGTH(l_original_blob));
DBMS_OUTPUT.put_line('Compressed Length : ' ||
LENGTH(l_compressed_blob));
DBMS_OUTPUT.put_line('Uncompressed Length: ' ||
LENGTH(l_uncompressed_blob));
DBMS_LOB.FREETEMPORARY(l_original_blob);
DBMS_LOB.FREETEMPORARY(l_compressed_blob);
DBMS_LOB.FREETEMPORARY(l_uncompressed_blob);
END;

SQL>

UTL_MAIL
The UTL_MAIL package enables you to send and receive e-mail, along with attachments, CC, BCC,
and return receipt features. Unlike most of the other packages in this chapter, you’ll have to config-
ure a couple things before you can use it. First, you must install the UTL_MAIL package in your
database, as shown here:

SQL> CONNECT sys/sys_passwd
SQL> @$ORACLE_HOME/rdbms/admin/utlmail.sql
SQL> @$ORACLE_HOME/rdbms/admin/prvtmail.sql

After you install the package, you must define the SMTP_OUT_SERVER parameter in your init.ora
initialization file or the SPFILE (if you’re using it), as shown here:

SQL> ALTER SYSTEM SET smtp_out_server='my.domain.com' SCOPE=SPFILE;

■Note If you don’t specify a value for the SMTP_OUT_SERVER parameter, then the SMTP server name defaults to
the value of DB_DOMAIN and the port number defaults to 25.

Because the SMTP_OUT_SERVER parameter isn’t a dynamically modifiable parameter, you must
restart the database at this point to use the SMTP server. Here’s an example that shows how to send
an e-mail using the UTL_MAIL package:

SQL> BEGIN
UTL_MAIL.send(sender => 'salapati@netbsa.org',

recipients => 'samalapati@yahoo.com',
cc => 'shannonalapati@yahoo.com',
bcc => 'salapati@hotmail.com',
subject => 'Testing the UTL_MAIL Package',
message => 'If you get this, UTL_MAIL package

really works!');
END;
/

SQL>

CHAPTER 24 ■ USING ORACLE PL/SQL PACKAGES 1149

4517CH24.qxd 8/19/05 11:18 AM Page 1149

DBMS_TDB
In Chapter 14, you learned how to transport tablespaces across different platforms. The new
DBMS_TDB package tells you whether you can use the CONVERT TABLESPACE command in RMAN to
transport tablespaces across platforms, when the endian formats of the two operating system plat-
forms aren’t the same. In addition to checking the endian formats, the packages also verify that
other preconditions to transporting tablespaces, such as keeping the tablespaces open and in the
read-only mode, are satisfied.

You must execute the DBMS_TDB package prior to transporting a tablespace, to ensure you
meet all the necessary conditions for transporting the tablespace to a different platform. The
DBMS_TDB package consists of two functions, CHECK_DB and CHECK_EXTERNAL. I explain both of
these briefly next.

CHECK_DB
The CHECK_DB function checks whether you can transport the tablespace from its current location to
a different platform, and whether the tablespace is in the correct state for performing the transport.
In the following example, I use this function to see if I can transport tablespaces from a database
running on Linux to a database running on the Solaris operating system. You can find out the target
platform name by querying the V$TRANSPORTABLE_PLATFORM view, as shown in Chapter 14. The
related V$DB_TRANSPORTABLE_PLATFORM view shows all platforms that have the same endian
format as the source platform. If the endian formats are the same, you won’t need to perform any
conversion of the tablespaces. If they aren’t, you use the RMAN command CONVERT TABLESPACE to
perform a conversion either before or after moving the source platform’s database files over to the
target platform.

SQL> SET SERVEROUTPUT ON
SQL> DECLARE

db_ready BOOLEAN;
BEGIN
db_ready := DBMS_TDB.CHECK_DB('Solaris Operating System (x86)');
END;
/

Database is not open READ-ONLY mode. Open the database in READ-ONLY mode and retry.

PL/SQL procedure successfully completed.
SQL>

The CHECK_DB function tells me to open my database first in the READ ONLY mode. I shut down
the database and start it up in the READ ONLY mode:

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP MOUNT
SQL> ALTER DATABASE OPEN READ ONLY;
Database altered.
SQL>

Once the database is in the READ ONLY mode, I execute the CHECK_DB function again. This time,
the function executes without any messages, indicating that I can transport the tablespaces from
my database to the Solaris operating system, because their endian formats are compatible:

SQL> SET SERVEROUTPUT ON
SQL> DECLARE

db_ready BOOLEAN;
BEGIN

CHAPTER 24 ■ USING ORACLE PL/SQL PACKAGES1150

4517CH24.qxd 8/19/05 11:18 AM Page 1150

db_ready := DBMS_TDB.CHECK_DB('Solaris Operating System
(x86)');

END;
/

PL/SQL procedure successfully completed.
SQL>

If the operating system name you supplied for the CHECK_DB function isn’t compatible with your
current operating system, you’d have seen the following message instead:

The specified target platform name 'platform_name' is invalid or the target platform
is not transportable

CHECK_EXTERNAL
The CHECK_EXTERNAL function checks for any external tables, directories, or BFILEs in the database.
Here’s an example:

SQL> SET SERVEROUTPUT ON
SQL> DECLARE

external BOOLEAN;
BEGIN
external := DBMS_TDB.CHECK_EXTERNAL;
END;
/

The following directories exist in the database:
SYS.DATA_PUMP_DIR, SYS.ADMIN_DIR, SYS.WORK_DIR
PL/SQL procedure successfully completed.
SQL>

DBMS_JOB
DBMS_JOB is one of the most widely used Oracle-supplied packages. You can use the package to
schedule and maintain automated user jobs from within the Oracle database. Many times, you’ll
need to schedule a program to run on a regular basis, and the DBMS_JOB package lets you do this
without recourse to the operating system utilities. With the introduction of the Oracle Scheduler
feature, the DBMS_JOB package becomes a secondary way to schedule jobs in your database. The
Oracle Scheduler feature is much more powerful than the job system you can create with the
DBMS_JOB package, and offers you many more capabilities. I discuss the DBMS_SCHEDULER
package, which supports the Oracle Scheduler, later in this chapter, in the section titled
“DBMS_SCHEDULER.”

Using the DBMS_JOB Package
You use various procedures in the DBMS_JOB package to create and schedule jobs. The SUBMIT pro-
cedure, which lets you submit a new job, has several parameters, which I explain in more detail in
the following section. These parameters are as follows:

• JOB: This parameter stands for the job ID.

• WHAT: This is the code to be executed, and it can be plain SQL or a PL/SQL module.

CHAPTER 24 ■ USING ORACLE PL/SQL PACKAGES 1151

4517CH24.qxd 8/19/05 11:18 AM Page 1151

• NEXT_DATE: This parameter indicates the next time the job is to be run.

• INTERVAL: This parameter indicates the next time to execute the job after NEXT_DATE.

• NO_PARSE: This parameter’s default is FALSE. If it’s set to TRUE, Oracle will parse the statement
when it’s run for the first time.

• INSTANCE: This parameter specifies the instance that runs the jobs.

• FORCE: This parameter’s default is FALSE, which means that the instance must be running for
the job to be scheduled.

Listing 24-1 shows the use of the SUBMIT procedure to create and schedule a new job.

Listing 24-1. Using the SUBMIT Procedure

SQL> DECLARE
2 v_job NUMBER;
3 v_what VARCHAR2(1000) := 'insert into test_table values (9999);';
4 BEGIN
5 dbms_job.submit(job => v_job,
6 what => v_what,
7 next_date => sysdate,
8 interval => 'sysdate + 1/24');
9 COMMIT;
10 END;
11* /
PL/SQL procedure successfully completed.
SQL>

As you can see from Listing 24-1, you need to pass values for at least two parameters, JOB and
WHAT, to schedule a job. However, it’s important to pass the NEXT_DATE and INTERVAL parameters
instead of taking the default values.

■Tip If you don’t specify the NEXT_DATE parameter explicitly, the job will run only once. Note that you also need
to use an explicit COMMIT after your DBMS_JOB.SUBMT procedure.

To make sure your job is scheduled correctly, you can query the DBA_JOBS dictionary view, as
shown here:

SQL> SELECT job,
2 next_date,
3 what
4 FROM
5* dba_jobs;
JOB NEXT_DATE WHAT
----- -------------------------- ------------------------------
2 11-JUL-2005 05:00:00 am insert into test values (9999);

SQL>

Other DBMS_JOB Procedures
The REMOVE procedure lets you remove a job, and the CHANGE procedure enables you to change the
parameters of an existing job. The INTERVAL parameter in the SUBMIT procedure specifies how often
your job will run. Refer to the following list to set your interval. Remember that dividing 1 by a num-
ber and adding the result to SYSDATE sets the interval.

CHAPTER 24 ■ USING ORACLE PL/SQL PACKAGES1152

4517CH24.qxd 8/19/05 11:18 AM Page 1152

• If you want the job to run every six hours, use the interval SYSDATE + 1/4.

• If you want the job to run every hour, use the interval SYSDATE + 1/24.

• If you want the job to run every half hour, use the interval SYSDATE + 1/48.

• If you want the job to run every 15 minutes, use the interval SYSDATE + 1/96.

• If you want the job to run every minute, use the interval SYSDATE + 1/1440.

DBMS_APPLICATION_INFO
The DBMS_APPLICATION_INFO package enables you to track the names of transactions or mod-
ules that the database is executing. When you’re performing application tuning, it’s often important
to know exactly how each module is performing. The DBMS_APPLICATION_INFO package lets you
register an application in the database and track its actions. The V$SESSION and the V$SQLAREA
dictionary views have the registered application’s name and actions. Listing 24-2 shows the con-
tents of the package.

Listing 24-2. The DBMS_APPLICATION_INFO Package

SQL> DESC DBMS_APPLICATION_INFO
Argument Name Type In/Out Default?
------------------------------ --------- -------- --------
PROCEDURE READ_CLIENT_INFO
CLIENT_INFO VARCHAR2 OUT
PROCEDURE READ_MODULE
MODULE_NAME VARCHAR2 OUT
ACTION_NAME VARCHAR2 OUT
PROCEDURE SET_ACTION
ACTION_NAME VARCHAR2 IN

PROCEDURE SET_CLIENT_INFO
CLIENT_INFO VARCHAR2 IN

PROCEDURE SET_MODULE
MODULE_NAME VARCHAR2 IN
ACTION_NAME VARCHAR2 IN
PROCEDURE SET_SESSION_LONGOPS
RINDEX BINARY_INTEGER IN/OUT
SLNO BINARY_INTEGER IN/OUT
OP_NAME VARCHAR2 IN DEFAULT
TARGET BINARY_INTEGER IN DEFAULT
CONTEXT BINARY_INTEGER IN DEFAULT
SOFAR NUMBER IN DEFAULT
TOTALWORK NUMBER IN DEFAULT
TARGET_DESC VARCHAR2 IN DEFAULT
UNITS VARCHAR2 IN DEFAULT
SQL>

The SET_MODULE procedure is your key DBMS_APPLICATION_INFO procedure. You set a mod-
ule’s name and actions with this procedure. You can incorporate this package in your code so that
you can track the performance of the code easily using the V$SESSION and V$SQLAREA dictionary
views. Without the DBMS_APPLICATION_INFO package, you’ll have a harder time tracking down
the exact piece of code in the application that’s causing a particular performance problem.

CHAPTER 24 ■ USING ORACLE PL/SQL PACKAGES 1153

4517CH24.qxd 8/19/05 11:18 AM Page 1153

■Note Before you can use the DBMS_APPLICATION_INFO package, the owner SYS should grant execution
privileges on the package:

SQL> GRANT EXECUTE ON dbms_application_info TO hr;
Grant succeeded.
SQL>

Listing 24-3 shows how to use the SET_MODULE procedure.

Listing 24-3. Using the SET_MODULE Procedure

SQL> CREATE OR REPLACE PROCEDURE delete_employee(
2 name VARCHAR2)
3 AS
4 BEGIN
5 DBMS_APPLICATION_INFO.SET_MODULE(
6 module_name => 'delete_employee',
7 action_name => 'delete from emp');
8 delete from employees
9 where last_name=name;
10 END;
11* /

Procedure created.
SQL>

User hr can execute this procedure as follows:

SQL> EXECUTE delete_employee('Zlotsky');
PL/SQL procedure successfully completed.
SQL>

You can query the V$SESSION view to see that the DBMS_APPLICATION_INFO.SET_MODULE proce-
dure did indeed do its job:

SQL> SELECT username, module, action
2 FROM v$session
3 WHERE username =HR;

USERNAME MODULE ACTION
------------------------------ ---------------------
HR delete_employee delete from emp
SQL>

You can also query the V$SQLAREA view to see the SQL_TEXT associated with the module
delete_employee, as follows:

SQL> SELECT sql_text
2 FROM v$sqlarea
3 WHERE module=delete_employee;

SQL_TEXT
--
DELETE from employees where last_name=:b1
SELECT /*+ all_rows */ COUNT(1) FROM HR.DEPARTMENTS WHERE MANAGER_ID = :1
UPDATE OE.CUSTOMERS SET ACCOUNT_MGR_ID = NULL WHERE ACCOUNT_MGR_ID = :1

SQL>

CHAPTER 24 ■ USING ORACLE PL/SQL PACKAGES1154

4517CH24.qxd 8/19/05 11:18 AM Page 1154

DBMS_CRYPTO
Using the DBMS_CRYPTO package, you can encrypt and decrypt data for several Oracle data types,
across different database character sets. This package is superior to the traditional Oracle encryp-
tion package, DBMS_OBFUSCATION_TOOLKIT, by providing ease of use and support for a more
sophisticated set of cryptographic algorithms. You must be familiar with these security algorithms
if you want to use this package for data encryption.

DBMS_SESSION
You’re well aware of the ALTER SESSION command and how you can use it to set or change several
important parameters at the session level. You’re also familiar with the allocation of privileges to
users through the use of roles. Suppose, however, that you need to grant a role or issue an ALTER
SESSION command from within a PL/SQL program unit. The DBMS_SESSION package is ideal for
situations where normal DDL commands won’t work. The package helps control the session-
specific parameters, hence the name DBMS_SESSION. Listing 24-4 shows the components of the
DBMS_SESSION package.

Listing 24-4. The DBMS_SESSION Package

SQL> DESC DBMS_SESSION
Argument Name Type In/Out Default?
--------------------------------- ------- ------ --------
PROCEDURE FREE_UNUSED_USER_MEMORY
PROCEDURE SET_CLOSE_
CACHED_OPEN_CURSORS
CLOSE_CURSORS BOOLEAN IN
PROCEDURE SET_CONTEXT
NAMESPACE VARCHAR2 IN
ATTRIBUTE VARCHAR2 IN
VALUE VARCHAR2 IN
USERNAME VARCHAR2 IN DEFAULT
CLIENT_ID VARCHAR2 IN DEFAULT
PROCEDURE SET_ROLE
ROLE_CMD VARCHAR2 IN
PROCEDURE SET_SQL_TRACE
SQL_TRACE BOOLEAN IN
PROCEDURE SWITCH_CURRENT
_CONSUMER_GROUP
NEW_CONSUMER_GROUP VARCHAR2 IN
OLD_CONSUMER_GROUP VARCHAR2 OUT
INITIAL_GROUP_ON_ERROR BOOLEAN IN
SQL>

In the following sections you’ll look closely at some of the important procedures of the
DBMS_SESSION package.

SET_ROLE
The SET_ROLE procedure enables you to set a role for a user from within a PL/SQL module. You can
either grant or revoke a role using this procedure. Here’s an example of the use of this procedure:

SQL> EXECUTE DBMS_SESSION.SET_ROLE('dba');
PL/SQL procedure successfully completed.

CHAPTER 24 ■ USING ORACLE PL/SQL PACKAGES 1155

4517CH24.qxd 8/19/05 11:18 AM Page 1155

SET_SQL_TRACE
You can use the SET_SQL_TRACE procedure to trace a user’s current session. The procedure accepts
the Boolean values of TRUE and FALSE. Developers must first be granted the execute privilege on the
DBMS_SESSION package. The developers can incorporate the SET_SQL_TRACE procedure anytime
they want to debug their code or assess its performance. The output of the trace file is sent to the
directory (usually the udump directory) specified in the init.ora parameter file. Listing 24-5 illus-
trates the use of this procedure.

Listing 24-5. Using the SET_SQL_TRACE Procedure

SQL> CREATE OR REPLACE PROCEDURE delete_employee(name VARCHAR2)
2 AS
3 BEGIN
4 dbms_SESSION.SET_SQL_TRACE(TRUE);
5 delete from employees
6 where last_name=name;
7 DBMS_SESSION.SET_SQL_TRACE(FALSE);
8 END;
9 /

Procedure created.
SQL> execute delete_employee('Zlotsky');
PL/SQL procedure successfully completed.
SQL>

SWITCH_CURRENT_CONSUMER_GROUP
The SWITCH_CURRENT_CONSUMER_GROUP procedure takes three parameters—the new group, the old
group, and a parameter in case of an error—and enables the user to switch the resource group. You
can use this procedure while running large jobs, for example, so the new group can give you access
to more resources. The syntax of the procedure is as follows:

SQL> EXEC DBMS_SESSION.SWITCH_CURRENT_CONSUMER_GROUP(
new_consumer_group IN VARCHAR2,
old_consumer_group OUT VARCHAR2,
initial_group_on_error IN BOOLEAN);

SQL>

For example, you can switch yourself to a new group, sales, from your current group, admin, by
using the following statement:

SQL> DECLARE admin VARCHAR2(30));
BEGIN
EXEC DBMS_SESSION.SWITCH_CURRENT_CONSUMER_GROUP('sales',
'admin' false);
END;

SQL>

DBMS_SYSTEM
Oracle provides the DBMS_SYSTEM package, which you can use to manipulate other user sessions,
gather event information, and so on. It’s similar in some respects to the DBMS_SESSION package,
but you can use the DBMS_SYSTEM package to modify any session’s behavior. For example, you
can use this package if you want to set tracing on for a user from a different session. Thus, you can
trace a developer’s session from your session.

CHAPTER 24 ■ USING ORACLE PL/SQL PACKAGES1156

4517CH24.qxd 8/19/05 11:18 AM Page 1156

■Tip The DBMS_SYSTEM package is fairly well known, but it’s an undocumented package. You won’t find refer-
ences to it in the manuals. Oracle doesn’t support the use of this package, and you use it at your own risk. Not to
worry—the most useful procedures of this package work just fine all the time.

Listing 24-6 shows the components of the DBMS_SYSTEM package (log in as the user SYS).

Listing 24-6. The DBMS_SYSTEM Package

SQL> DESC DBMS_SYSTEM
Argument Name Type In/Out Default?
----------------------------- --------------- --------- --------
PROCEDURE READ_EV_/* Get the
level of events
in the current session*/
IEV BINARY_INTEGER IN
OEV BINARY_INTEGER OUT
PROCEDURE SET_BOOL_PARAM
_IN_SESSION
SID NUMBER IN
SERIAL# NUMBER IN
PARNAM VARCHAR2 IN
BVAL BOOLEAN IN
PROCEDURE SET_EV /*Set an
event in a session*/
SI BINARY_INTEGER IN
SE BINARY_INTEGER IN
EV BINARY_INTEGER IN
LE BINARY_INTEGER IN
NM VARCHAR2 IN
PROCEDURE SET_INT_PARAM
_IN_SESSION /*Set integer_type
init parameters in a session*/
SID NUMBER IN
SERIAL# NUMBER IN
PARNAM VARCHAR2 IN
INTVAL BINARY_INTEGER IN
PROCEDURE SET_SQL_TRACE_IN
_SESSION /* Trace any
user session */
SID NUMBER IN
SERIAL# NUMBER IN
SQL_TRACE BOOLEAN IN

PROCEDURE WAIT_FOR_EVENT
/* Puts the current session
in a wait mode for a
wait event */
EVENT VARCHAR2 IN
EXTENDED_ID BINARY_INTEGER IN
TIMEOUT BINARY_INTEGER IN
SQL>

The following sections explain the most useful procedures in the DBMS_SYSTEM package.

CHAPTER 24 ■ USING ORACLE PL/SQL PACKAGES 1157

4517CH24.qxd 8/19/05 11:18 AM Page 1157

SET_SQL_TRACE_IN_SESSION
The SET_SQL_TRACE_IN_SESSION procedure is ideal for turning tracing on and off in sessions other
than your own. The following example shows how to use the SET_SQL_TRACE_IN_SESSION procedure.
The first statement uses the TRUE flag to turn tracing on. The second statement shows how to turn
tracing off once you no longer need it. Oracle traces any SQL statements that are run by the user
while the tracing is on, and you can get the trace file from the user_dump_dest directory, as is the
case when you use the SQL Trace utility.

SQL> EXECUTE SYS.DBMS_SYSTEM.SET_SQL_TRACE_IN_SESSION(9,271,true);
PL/SQL procedure successfully completed.
SQL> EXECUTE SYS.DBMS_SYSTEM.SET_SQL_TRACE_IN_SESSION(9,271,false);
PL/SQL procedure successfully completed.
SQL>

SET_INT_PARAM_IN_SESSION
The SET_INT_PARAM_IN_SESSION procedure is another useful procedure for managing active user ses-
sions from your session. It lets you alter the initialization parameters (integer-valued parameters
only) for a certain session. Its effects are similar to the use of the following statement:

SQL> ALTER SESSION SET parameter_name = xxx;

For example, you can set the sort area size in a user’s session using the SET_INT_PARAM_IN_
SESSION procedure, as shown here:

SQL> EXECUTE SYS.DBMS_SYSTEM.SET_INT_PARAM_IN_SESSION
(999, 8888, 'sort_area_size', 5000000);

SET_BOOL_PARAM_IN_SESSION
When you want to set parameters such as tracing on and off in another user’s session, you can
use the SET_BOOL_PARAM_IN_SESSION procedure, as shown in the following example. Unlike the
SET_SQL_TRACE_IN_SESSION procedure, this procedure enables you to set other Boolean (TRUE/FALSE)
parameters as well.

SQL> EXE DBMS_SYSTEM.SET_BOOL_PARAM_IN_SESSION(9,271,'sql_trace',true);
PL/SQL procedure successfully completed.
SQL> EXEC DBMS_SYSTEM.SET_BOOL_PARAM_IN_SESSION(9,271,'sql_trace',false);
PL/SQL procedure successfully completed.
SQL>

SET_EV
It’s common for Oracle technical support or other Oracle experts to ask you to set an event in a ses-
sion so you can gather information to debug or tune code. You use the ALTER SESSION SET EVENTS
statement to set an event. Note that the event 10046 denotes sql_trace. The level could be anything
from 1 to 12, with each level producing more detailed output than the one below it. Level 12 is the
most detailed level at which you can collect trace statistics, and it includes all wait events and the
bind variables. As usual, the trace information is output to the udump directory. Here’s an example:

SQL> ALTER SESSION SET EVENTS '10046 trace name context forever, level 8';
Session altered.
SQL>

CHAPTER 24 ■ USING ORACLE PL/SQL PACKAGES1158

4517CH24.qxd 8/19/05 11:18 AM Page 1158

You can achieve the same result using the SET_EV procedure, except that you can set events
for any session without logging into the session. The following example illustrates the use of the
SET_EV procedure. Note that you can leave the fourth parameter (NM) blank.

SQL> EXECUTE SYS.DBMS_SYSTEM.SET_EV(9,271,10046,8,'');
PL/SQL procedure successfully completed.
SQL>

DBMS_OUTPUT
When you’re testing PL/SQL code embedded in procedures and packages, it’s nice to have some
way of knowing how long it will be until the program finishes executing. If the code fails, you would
like to know what parts it completed successfully before failing. The DBMS_OUTPUT package helps
you by enabling output to be sent from within procedures and packages. You can use the package
to send messages to other packages or triggers, or you can have it output debugging information
straight to your screen. I’ll present some simple examples to show how to use the important proce-
dures in this package.

You can use the PUT_LINE and PUT procedures to send output to the screen or to the buffer. The
PUT_LINE procedure puts an entire line into the buffer at one time, and the PUT procedure builds the
line piece by piece. The maximum size of the buffer is 1,000,000 bytes. Listing 24-7 shows how to
use the PUT_LINE procedure to print output to the screen so you can see the results of executing
your PL/SQL code.

Listing 24-7. Using the DBMS_OUTPUT Package

SQL> SET SERVEROUTPUT ON
SQL> DECLARE
2 v_lastname hr.employees.last_name%TYPE;
3 v_firstname hr.employees.first_name%TYPE;
4 v_salary hr.employees.salary%TYPE;
5 v_maxsalary hr.employees.salary%TYPE;
6 BEGIN
7 SELECT MAX(salary) INTO v_maxsalary FROM hr.employees;
8 SELECT first_name INTO v_firstname FROM hr.employees
9 WHERE salary=v_maxsalary;
10 SELECT last_name INTO v_lastname FROM hr.employees
11 WHERE salary=v_maxsalary;
12 dbms_output.put_line(' The person with the highest salary is
13 '||v_firstname||v_lastname||'and the salary is :'||v_maxsalary);
14* END;
SQL> /
The person with the highest salary is
Valerie Alapati and the salary is: 75000
PL/SQL procedure successfully completed.
SQL>

■Note You won’t see the output on your screen unless you use the command SET SERVEROUTPUT ON first in
SQL*Plus. The default value for this is OFF, so you won’t see any output if you forget to set the value to ON.

CHAPTER 24 ■ USING ORACLE PL/SQL PACKAGES 1159

4517CH24.qxd 8/19/05 11:18 AM Page 1159

DBMS_REPAIR
The DBMS_REPAIR package enables you to detect and repair block corruption in database tables
and indexes. When you suspect block corruption, you can drop and re-create the object, but it may
not always be feasible to do so. You can perform media recovery if the corruption is extensive. You
may also create a new table by selecting out all the good rows from the table. The DBMS_REPAIR
package offers you a better way to tackle block corruption without the need to take the objects
offline. The procedures in this package will help you detect corruption and fix it with ease, while
users continue to use the database as usual. The DBMS_REPAIR package can make objects with
corrupt blocks usable, but you do lose the data in the blocks. You can make the objects usable by
using the procedure FIX_CORRUPT_BLOCKS to mark them as corrupted, and then use the SKIP_
CORRUPT_BLOCKS procedure to ensure that Oracle never attempts to read them again.

Using the DBMS_REPAIR Package
This section presents a simple example to show the functionality of the DBMS_REPAIR package.
The first step is to create a pair of tables called repair_table and orphan_key_table to hold the cor-
rupt blocks, if any are found during the investigation. You use the procedure ADMIN_TABLES to create
the repair table, whose default name is repair_table. Listing 24-8 shows the execution of the
ADMIN_TABLES procedure.

Listing 24-8. Using the DBMS_REPAIR Package to Detect Block Corruption

SQL> BEGIN
2 DBMS_REPAIR.ADMIN_TABLES (
3 TABLE_NAME => 'REPAIR_TABLE',
4 TABLE_TYPE => dbms_repair.repair_table,
5 ACTION => dbms_repair.create_action,
6 TABLESPACE => 'USERS');
7 END;
8* /

PL/SQL procedure successfully completed.
SQL> BEGIN
2 DBMS_REPAIR.ADMIN_TABLES (
3 TABLE_NAME => 'ORPHAN_KEY_TABLE',
4 TABLE_TYPE => dbms_repair.orphan_table,
5 ACTION => dbms_repair.create_action,
6 TABLESPACE => 'USERS');
7 END;
8*/
PL/SQL procedure successfully completed.

SQL>

Listing 24-9 shows the columns of the repair_table you just created. The table gives you the
object_id and the block_id for the corrupt block. It also gives you a description of the corruption
and the repair that fixed the corrupt block.

Listing 24-9. Describing the repair_table

SQL> DESC REPAIR_TABLE
Name

OBJECT_ID
TABLESPACE_ID
RELATIVE_FILE_ID

CHAPTER 24 ■ USING ORACLE PL/SQL PACKAGES1160

4517CH24.qxd 8/19/05 11:18 AM Page 1160

BLOCK_ID
CORRUPT_TYPE
SCHEMA_NAME
OBJECT_NAME
BASEOBJECT_NAME
PARTITION_NAME
CORRUPT_DESCRIPTION
REPAIR_DESCRIPTION
MARKED_CORRUPT
CHECK_TIMESTAMP
FIX_TIMESTAMP
REFORMAT_TIMESTAMP
SQL>

After you create the two tables, repair_table and orphan_keys_table, it’s time to check for block
corruption using the CHECK_OBJECT procedure, as shown in Listing 24-10.

Listing 24-10. Using the DBMS_REPAIR.CHECK_OBJECT Procedure

SQL> DECLARE num_corrupt INTEGER;
2 BEGIN
3 num_corrupt := 0;
4 DBMS_REPAIR.CHECK_OBJECT(
5 schema_name => 'HR',
6 object_name => 'EMPLOYEES',
7 repair_table_name => 'REPAIR_TABLE',
8 corrupt_count => num_corrupt);
9 END
10 /
PL/SQL procedure successfully completed.
SQL>

Fixing Block Corruption
If the CHECK_OBJECT procedure populates any rows into your repair table (repair_table), then it’s
time to fix it using the procedure FIX_CORRUPT_BLOCKS. Listing 24-11 shows how to use the
FIX_CORRUPT_BLOCKS procedure. Once you run it, you use the SKIP_CORRUPT_BLOCKS procedure so
Oracle can skip the corrupted blocks.

Listing 24-11. Using the DBMS_REPAIR.FIX_CORRUPT_BLOCKS Procedure

SQL> DECLARE num_fix INTEGER;
2 BEGIN
3 num_fix := 0;
4 DBMS_REPAIR.FIX_CORRUPT_BLOCKS(
5 schema_name => 'HR',
6 object_name => 'EMPLOYEES',
7 object_type => dbms_repair.table_object,
8 repair_table_name => 'REPAIR_TABLE',
9 fix_count => num_fix);
10 END;
PL/SQL procedure successfully completed.
SQL>

CHAPTER 24 ■ USING ORACLE PL/SQL PACKAGES 1161

4517CH24.qxd 8/19/05 11:18 AM Page 1161

DBMS_OUTLN and DBMS_OUTLN_EDIT
The DBMS_OUTLN and DBMS_OUTLN_EDIT packages are used to manage stored plan outlines,
thereby helping to stabilize the cost-based optimizer (CBO). The packages contain several proce-
dures, as shown in Listing 24-12.

Listing 24-12. The DBMS_OUTLN Package

SQL> DESC DBMS_OUTLN
Argument Name Type In/Out Default?
------------------------------ --------- ------ --------
PROCEDURE CLEAR_USED
PROCEDURE DROP_BY_CAT
PROCEDURE DROP_COLLISION
PROCEDURE DROP_UNUSED
PROCEDURE EXACT_TEXT_SIGNATURES
PROCEDURE CREATE_EDIT_TABLES
PROCEDURE DROP_EDIT_TABLES
SQL>

Using the DBMS_OUTLN Package to Manage Stored Outlines
You need to take a couple of preliminary steps before you can use the DBMS_OUTLN package to
manage outlines. First, you need to grant certain privileges to the user who wants to use the out-
lines. Next, you should enable the creation of outlines by using either an initialization parameter
or the ALTER SESSION command.

In the following example, you’ll make all the changes in the parameters at the session level by
using the ALTER SESSION command. Listing 24-13 demonstrates all the necessary commands to
enable the creation of plan outlines.

Listing 24-13. Setting the Parameters for Using Stored Outlines

SQL> GRANT CREATE ANY OUTLINE TO hr;
Grant succeeded.
SQL> ALTER SESSION SET create_stored_outlines =true;
Session altered.
/* Run the application, so you can capture the stored outlines */
SQL> ALTER SESSION SET create_stored_outlines = false;
/* The above statement will suspend the generation of outlines */
Session altered.
SQL> ALTER SESSION SET use_stored_outlines = true;
Session altered.
SQL>

Oracle saves the outlines of all SQL statements that the user hr executes after the CREATE_
STORED_OUTLINES parameter is set to TRUE. The outlines are stored in the OUTLN user’s schema. The
following example shows the main tables in the OUTLN user’s schema. The default location for the
OUTLN user’s tables is the System tablespace. Using the outlines in the OUTLN tables OL$ and
OL$HINTS, Oracle populates the dictionary views USER_OUTLINES and USER_OUTLINES_HINTS.

CHAPTER 24 ■ USING ORACLE PL/SQL PACKAGES1162

4517CH24.qxd 8/19/05 11:18 AM Page 1162

SQL> SELECT table_name FROM dba_tables
2 WHERE owner ='OUTLN';

TABLE_NAME

OL$
OL$HINTS
OL$NODES
SQL>

Tracking the Outlines in the Database
You can use the USER_OUTLINES (or DBA_OUTLINES) and USER_OUTLINE_HINTS views to get
information about the stored outlines in your database. The following code shows the output of
such a query:

SQL> SELECT name,used,
2* timestamp, sql_text FROM user_outlines;

NAME USED TIMESTAMP SQL_TEXT
--------------- --------- ---------------- ------------------------------

SYS_02283 USED 25-JUL-05 SELECT * FROM EMP
SQL>

For Oracle to use stored outlines consistently, you need to turn the USE_STORED_OUTLINES
parameter on by setting its value to TRUE. By doing this, you’re ensuring that the CBO is stable and
won’t change its plans over time. If the system tablespace is being filled up with too many stored
outlines, you can drop some of the outlines by using the DBMS_OUTLN.DROP_UNUSED procedure. This
procedure, which doesn’t need any parameters, removes all literal SQL outlines from the OUTLN
tables. The DBMS_OUTLN_EDIT.CREATE_EDIT_TABLES procedure. creates tables in a user’s schema if you
need to edit any private outlines. The DBMS_OUTLN_EDIT.DROP_TABLES procedure enables you to drop
the outlined editing tables.

DBMS_SPACE
The DBMS_SPACE package is useful for finding out how much space is used and how much
free space is left in various segments such as table, index, and cluster segments. Recall that the
DBA_FREESPACE dictionary view lets you find out free space information in tablespaces and data
files, but not in the database objects. Unless you use the DBMS_SPACE package, it’s hard to find
out how much free space is in the segments allocated to various objects in the database. The
DBMS_SPACE package enables you to answer questions such as the following:

• How much free space can I use before a new extent is thrown?

• How many data blocks are above the high-water mark (HWM)?

The DBA_EXTENTS and the DBA_SEGMENTS dictionary views do give you a lot of information
about the size allocated to objects such as tables and indexes, but you can’t tell what the used and
free space usage is from looking at those views. If you’ve been analyzing the tables, the BLOCKS col-
umn will give you the HWM—the highest point in terms of size that the table has ever reached.
However, if your tables are undergoing a large number of inserts and deletes, the HWM isn’t an
accurate indictor of the real space used by the tables. The DBMS_SPACE package is ideal for finding
out the used and free space left in objects.

CHAPTER 24 ■ USING ORACLE PL/SQL PACKAGES 1163

4517CH24.qxd 8/19/05 11:18 AM Page 1163

The DBMS_SPACE package has three main procedures. The UNUSED_SPACE procedure gives
you information about the unused space in an object segment, the FREE_BLOCKS procedure
gives you information about the number of free blocks in a segment, and the SPACE_USAGE proce-
dure gives you details about space usage in the blocks.

Let’s look at the UNUSED_SPACE procedure closely and see how you can use it to get detailed
unused space information. The procedure has three IN parameters (a fourth one is a default para-
meter) and seven OUT parameters. Listing 24-14 shows the output from the execution of the
UNUSED_SPACE procedure.

Listing 24-14. Using the DBMS_SPACE.FREE_SPACE Procedure

SQL> DECLARE
2 v_total_blocks NUMBER;
3 v_total_bytes NUMBER;
4 v_unused_blocks NUMBER;
5 v_unused_bytes NUMBER;
6 v_last_used_extent_file_id NUMBER;
7 v_last_used_extent_block_id NUMBER;
8 v_last_used_block NUMBER;
9 BEGIN
10 dbms_space.unused_space (segment_owner => 'OE',
11 segment_name => 'PRODUCT_DESCRIPTIONS',
12 segment_type => 'TABLE',
13 total_blocks => v_total_blocks,
14 total_bytes => v_total_bytes,
15 unused_blocks => v_unused_blocks,
16 unused_bytes => v_unused_bytes,
17 last_used_extent_file_id => v_last_used_extent_file_id,
18 last_used_extent_block_id => v_last_used_extent_block_id,
19 last_used_block => v_last_used_block,
20 partition_name => NULL);
21 dbms_output.put_line ('Number of Total Blocks :

'||v_total_blocks);
22 dbms_output.put_line ('Number of Bytes :

'||v_total_bytes);
23 dbms_output.put_line ('Number of Unused Blocks :

'||v_unused_blocks);
24 dbms_output.put_line ('Number of unused Bytes :

'||v_unused_bytes);
25 END;
Number of Total Blocks : 384
Number of Bytes : 3145728
Number of Unused Blocks : 0
Number of unused Bytes : 0
PL/SQL procedure successfully completed.
SQL>

DBMS_SPACE_ADMIN
Contrary to what its name suggests, this package won’t help you administer space within the Oracle
database. You use the DBMS_SPACE_ADMIN package mostly to manage the locally managed table-
spaces. The package has several procedures, as shown in Listing 24-15.

CHAPTER 24 ■ USING ORACLE PL/SQL PACKAGES1164

4517CH24.qxd 8/19/05 11:18 AM Page 1164

Listing 24-15. Describing the DBMS_SPACE_ADMIN Package

SQL> DESC DBMS_SPACE_ADMIN
Argument Name Type In/Out Default?
------------------------------ -------------- -------- --------
PROCEDURE SEGMENT_CORRUPT
TABLESPACE_NAME VARCHAR2 IN
HEADER_RELATIVE_FILE BINARY_INTEGER IN
HEADER_BLOCK BINARY_INTEGER IN
CORRUPT_OPTION BINARY_INTEGER IN DEFAULT
PROCEDURE SEGMENT_DROP_CORRUPT
TABLESPACE_NAME VARCHAR2 IN
HEADER_RELATIVE_FILE BINARY_INTEGER IN
HEADER_BLOCK BINARY_INTEGER IN
PROCEDURE TABLESPACE_MIGRATE_FROM_LOCAL
TABLESPACE_NAME VARCHAR2 IN
PROCEDURE TABLESPACE_MIGRATE_TO_LOCAL
TABLESPACE_NAME VARCHAR2 IN
UNIT_SIZE BINARY_INTEGER IN DEFAULT
RFNO BINARY_INTEGER IN DEFAULT
PROCEDURE TABLESPACE_RELOCATE_BITMAPS
TABLESPACE_NAME VARCHAR2 IN
FILNO BINARY_INTEGER IN
BLKNO BINARY_INTEGER IN
PROCEDURE TABLESPACE_VERIFY
TABLESPACE_NAME VARCHAR2 IN
VERIFY_OPTION BINARY_INTEGER IN DEFAULT
SQL>

You can use the DBMS_SPACE_ADMIN package to migrate dictionary-managed tablespaces
to locally managed tablespaces. Make sure you first follow all the requirements before you
perform the actual migration of the tablespaces. The following example shows how to use the
TABLESPACE_MIGRATE_TO_LOCAL procedure to perform the tablespace migration. There’s also a
TABLESPACE_MIGRATE_FROM_LOCAL procedure that converts a locally managed tablespace into a
dictionary-managed tablespace.

SQL> EXECUTE DBMS_SPACE_ADMIN.TABLESPACE_MIGRATE_TO_LOCAL('TEST1');
PL/SQL procedure successfully completed.
SQL>

■Note The DBMS_SPACE_ADMIN.TABLESPACE_MIGRATE_TO_LOCAL procedure has three parameters, but you
can leave out the UNIT_SIZE and the REFNO (relative file number) parameters in most cases.

DBMS_PROFILER
The DBMS_PROFILER package lets you gather performance data on your applications. Each time
your PL/SQL code executes in the database, performance data is stored in database tables. You start
the profiler, run your PL/SQL code, and stop the profiler. Repeated executions of several variations
of the code will give you a good idea about where your performance problems lie.

CHAPTER 24 ■ USING ORACLE PL/SQL PACKAGES 1165

4517CH24.qxd 8/19/05 11:18 AM Page 1165

A Useful Package for Developers
As programs get larger and more complex, and developers are seriously in pursuit of fulfilling the
functional specifications, code performance becomes harder to improve. The DBMS_PROFILER
package helps you catch inefficient PL/SQL code and eliminate bottlenecks in your code. All you
need to do to take advantage of the DBMS_PROFILER package is the following:

• Enable the profiler data collection.

• Execute the test code.

• Analyze the profiler data and trap inefficient code.

• Execute new code until performance meets acceptable standards.

Installing the DBMS_PROFILER Package
DBMS_PROFILER is a useful package for DBAs, but it isn’t automatically created when you run the
catalog.sql and catproc.sql scripts after installing the database. You need to run a special installa-
tion script manually, as shown in Listing 24-16. The example here shows the execution of the script
on a Windows server. On a UNIX system, the script is located in the /$ORACLE_HOME/rdbms/
admin directory. You need to be logged in as the user SYS to execute this script.

Listing 24-16. Installing the Profiler

SQL> SHO USER
USER is "SYS"
SQL> @c:\oracle\rdbms\admin\profload.sql
Package created.
Grant succeeded.
Synonym created.
Library created.
Package body created.
Testing for correct installation
SYS.DBMS_PROFILER successfully loaded.
PL/SQL procedure successfully completed.
SQL>

Using the DBMS_PROFILER Package
Once you have created the DBMS_PROFILER package, grant the execute privilege on it to the
user who needs to use the package, as shown here (you can also grant the privilege to PUBLIC if
you wish):

SQL> GRANT EXECUTE ON dbms_profiler TO oe;
Grant succeeded.
SQL>

Next, log in as user oe and execute the proftab.sql script, which is located in the $ORACLE_
HOME/rdbms/admin directory. This creates the necessary tables in user oe’s schema, where the
performance details of the PL/SQL code runs can be stored. The following code shows the results
of the script execution by user oe:

SQL> CONNECT oe/oe@manager
Connected.
SQL> @c:\oraclent\rdbms\admin\proftab.sql
drop table plsql_profiler_data cascade constraints

CHAPTER 24 ■ USING ORACLE PL/SQL PACKAGES1166

4517CH24.qxd 8/19/05 11:18 AM Page 1166

. . .
Table created.
Comment created.
. . .
Sequence created.
SQL>

You execute the DBMS_PROFILER.START_PROFILER procedure to start the profiling session and the
DBMS_PROFILER.STOP_PROFILER procedure to stop the collection of performance data. The profiler
shows the number of times each line of your code was executed and the total amount of time taken
to execute each line. You can also find out the minimum and maximum times taken to execute each
line. Armed with such information, you can quickly get an idea about where the performance bot-
tlenecks are in your code. For example, you may find that using bulk binds might improve the code
performance figures tremendously. Listing 24-17 shows the main procedures and functions that are
part of the DBMS_PROFILER package.

Listing 24-17. The DBMS_PROFILER Package

SQL> DESC dbms_profiler
Argument Name Type In/Out Default?
------------------------------ -------------- ------ --------
PROCEDURE FLUSH_DATA
/* Flushes the performance data to
the storage tables*/
PROCEDURE START_PROFILER
/* Starts the profiler */
RUN_COMMENT VARCHAR2 IN DEFAULT
RUN_COMMENT1 VARCHAR2 IN DEFAULT
RUN_NUMBER BINARY_INTEGER OUT
PROCEDURE STOP_PROFILER
/* Stops the profiler */
SQL>

Note that you can also use the DBMS_PROFILER in a much more intuitive fashion by using the
GUI-based TOAD software distributed by Quest Software (http://www.quest.com).

DBMS_ERRLOG
You use the DBMS_ERRLOG package to create an error-logging table that captures all errors during
a DML operation, and enables the operation to continue rather than terminate when it encounters
errors. In the following example, I create an error-logging table named ERRLOG_TAB, which holds
all the errors that may arise during any DML operations on the table named TEST:

SQL> EXECUTE DBMS_ERRLOG.CREATE_ERROR_LOG (-
dml_table_name => 'TEST',-
err_log_table_name => 'ERRLOG_TAB',-
err_log_table_owner => 'HR',-
err_log_table_space => 'USERS');

PL/SQL procedure successfully completed.
SQL>

The error-logging table you created using the preceding procedure contains two types of
columns: columns showing you the Oracle error number and the error messages, and the original
columns of the TEST table, as shown here:

CHAPTER 24 ■ USING ORACLE PL/SQL PACKAGES 1167

4517CH24.qxd 8/19/05 11:18 AM Page 1167

SQL> DESCRIBE ERRLOG_TAB
Name Null? Type
----------------- ---- --------------
ORA_ERR_NUMBER$ NUMBER
ORA_ERR_MESG$ VARCHAR2(2000)
ORA_ERR_ROWID$ ROWID
ORA_ERR_OPTYP$ VARCHAR2(2)
ORA_ERR_TAG$ VARCHAR2(2000)
PERSON_NAME VARCHAR2(4000)
PERSON_ID VARCHAR2(4000)
PERSON_DEPT VARCHAR2(4000)
SQL>

The first five columns are mandatory control columns that show the Oracle error information,
and the last three columns are the columns of the table being monitored by the error-logging table.

UTL_FILE
The wonderful UTL_FILE package enables you to write to and read from operating system files
easily. The UTL_FILE package provides you with a restricted version of standard operating-system
stream file I/O.

Listing 24-18 shows you the main procedures and functions in the UTL_FILE package. The pro-
cedures let you open, read from, write to, and close the operating system files. Oracle also uses a
client-side text I/O package, the TEXT_IO package, as part of the Oracle Procedure Builder.

Listing 24-18. Describing the UTL_FILE Package

SQL> DESC utl_file
Argument Name Type In/Out Default?
-------------------------------- ----------------------- ------
FUNCTION FOPEN RETURNS RECORD
/* Opens a file for input/output */
ID BINARY_INTEGER OUT
DATATYPE BINARY_INTEGER OUT
LOCATION VARCHAR2 IN
FILENAME VARCHAR2 IN
OPEN_MODE VARCHAR2 IN
PROCEDURE FCLOSE
/* Closes a file */
FILE RECORD IN/OUT
ID BINARY_INTEGER IN/OUT
DATATYPE BINARY_INTEGER IN/OUT
PROCEDURE FFLUSH
/* Writes all pending output to a file */
FILE RECORD IN
ID BINARY_INTEGER IN
DATATYPE BINARY_INTEGER IN
BUFFER VARCHAR2 OUT
PROCEDURE NEW_LINE
/* Writes an end of line terminator */
FILE RECORD IN
ID BINARY_INTEGER IN
DATATYPE BINARY_INTEGER IN
LINES BINARY_INTEGER IN DEFAULT
PROCEDURE PUT

CHAPTER 24 ■ USING ORACLE PL/SQL PACKAGES1168

4517CH24.qxd 8/19/05 11:18 AM Page 1168

/* Writes a line to a file */
FILE RECORD IN
ID BINARY_INTEGER IN
DATATYPE BINARY_INTEGER IN
BUFFER VARCHAR2 IN
PROCEDURE PUT_LINE
/* Writes a single line to the file, and includes a line terminator */
FILE RECORD IN
ID BINARY_INTEGER IN
DATATYPE BINARY_INTEGER IN
BUFFER VARCHAR2 IN
SQL>

Using the UTL_FILE Package
It’s easy to use the UTL_FILE package to read from and write to the operating system files. In many
cases, when you need to create reports, the UTL_FILE package is ideal for creating the file, which
you can then send to external sources using the FTP utility. The following sections take you through
a simple example that illustrates the use of this package.

Creating the File Directory
The first step in using the UTL_FILE package is to create the directory where you want to place the
operating system files. You need to create a special directory for this purpose, using the following
command:

SQL> CREATE DIRECTORY utl_dir AS '/u50/oradata/archive_data';
/*the directory could be named anything you want - utl_dir
is just an example*/

Directory created.
SQL>

■Tip The UTL_FILE_DIR initialization parameter is still valid, but Oracle doesn’t recommend using it anymore.
Oracle recommends that you use the new CREATE DIRECTORY command instead. Using the CREATE DIRECTORY
approach is better because you don’t have to restart the database (when you want to add the UTL_FILE_DIR
parameter).

Granting Privileges to Users
You must grant your users privileges to read and write files in the utl_dir directory that you just
created. You can do this by executing the following command:

SQL> GRANT READ, WRITE ON DIRECTORY utl_dir to public;
Grant succeeded.
SQL>

Key UTL_FILE Procedures and Functions
The UTL_FILE package uses its many procedures and functions to perform file manipulation and
text writing and reading activities. The next sections briefly cover the key procedures and functions
in the UTL_FILE package.

CHAPTER 24 ■ USING ORACLE PL/SQL PACKAGES 1169

4517CH24.qxd 8/19/05 11:18 AM Page 1169

■Note UTL_FILE.FILE_TYPE is a file-handling data type, and you use it for all the procedures and functions of
the UTL_FILE package. Any time you use the UTL_FILE package within a PL/SQL anonymous code block or a pro-
cedure, you must first declare a file handle of UTL_FILE.FILE_TYPE, as you’ll see later.

Opening an Operating System File

You use the FOPEN function to open an operating system file for input and output. You can open a
file in three modes: read (r), write (w), or append (a).

Reading from a File

To read from a file, you first specify the read (r) mode when you open a file using the FOPEN function.
The GET_LINE procedure enables you to read one line of text at a time from the specified operating
system file.

Writing to a File

To write to a file, you must open the file in the write (w) or append (a) mode. The append (a) mode
just adds to the file, and the write (w) mode overwrites the file if it already exists. If the file doesn’t
already exist in the UTL_FILE directory, the UTL_FILE utility will first create the file and then write
to it. Note that you don’t have to create the file manually—the FOPEN function takes care of that
for you.

When you want to write a line to the file, you can use the PUT procedure. After the package
writes a line, you can ask it to go to a new line by using the NEW_LINE procedure. Better yet, you can
just use the PUT_LINE procedure, which is like a combination of the PUT and NEW_LINE procedures,
to write to the text file.

Closing a File

When you finish reading from or writing to the file, you need to use the FCLOSE procedure to close
the operating system file. If you have more than one file open, you may use the FCLOSE_ALL proce-
dure to close all the open files at once.

Exceptions

Whenever you use the UTL_FILE package in a PL/SQL procedure or block, make sure you have an
exception block at the end to account for all the possible errors that may occur while you’re using
the package. For example, your directory location may be wrong, or a “no data found” error may be
raised within the procedure. You may have a read or write error due to a number of reasons. The
UTL_FILE package comes with a large number of predefined exceptions, and I recommend using
all the exceptions at the end of your procedure or code block to facilitate debugging. If you use
RAISE_APPLICATION_ERROR to assign an error number and a message with the exceptions, you’ll have
an easier time debugging the code.

A Simple Example Using the UTL_FILE Package
The following anonymous PL/SQL code uses the UTL_FILE package to write password-related
information using the DBA_USERS and the DBA_PROFILES dictionary views. Your goal is to pro-
duce an operating system file listing user names, their maximum login attempts, their password
lifetime, and their password lock time. Listing 24-19 shows the code block.

CHAPTER 24 ■ USING ORACLE PL/SQL PACKAGES1170

4517CH24.qxd 8/19/05 11:18 AM Page 1170

Listing 24-19. Using the UTL_FILE Package to Perform Text Input and Output

SQL> DECLARE
v_failed dba_profiles.limit%TYPE;
v_lock dba_profiles.limit%TYPE;
v_reuse dba_profiles.limit%TYPE;
/* the fHandle declared here is used every time
the OS file is opened /*
fHandle UTL_FILE.FILE_TYPE;
vText VARCHAR2(10);
v_username dba_users.username%TYPE;
CURSOR users IS
SELECT username FROM dba_users;
BEGIN
/* Open utlfile.txt file for writing, and get its file handle */
fHandle := UTL_FILE.FOPEN('/a01/pas/pasp/import','utlfile.txt','w');

/* Write a line of text to the file utlfile.txt */
UTL_FILE.PUT_LINE(fHandle,'USERNAME'||'ATTEMPTS'||'LIFE'||'LOCK'||);
/* Close the utlfile.txt file */
UTL_FILE.FCLOSE(fHandle);
/* Open the utlfile.txt file for writing, and get its file handle */

fHandle := UTL_FILE.FOPEN('/a01/pas/pasp/import','utlfile.txt','a');
OPEN users;
LOOP
FETCH users INTO v_username;
EXIT when users%NOTFOUND;

SELECT p.limit
INTO v_failed
FROM dba_profiles p, dba_users u
WHERE p.resource_name='FAILED_LOGIN_ATTEMPTS'
AND p.profile=u.profile
AND u.username=v_username;

SELECT p.limit
INTO v_life
FROM dba_profiles p, dba_users u
WHERE p.resource_name='PASSWORD_LIFE_TIME'
AND p.profile=u.profile
AND u.username=v_username;

SELECT p.limit
INTO v_lock
FROM dba_profiles p, dba_users u
WHERE p.resource_name='PASSWORD_LOCK_TIME'
AND p.profile=u.profile
AND u.username=v_username;
vtext :='TEST';
/* Write a line of text to the file utlfile.txt */
UTL_FILE.PUT_LINE(fHandle,v_username||v_failed||_life||v_lock);
/* Read a line from the file utltext.txt */
UTL_FILE.GET_LINE(fHandle,v_username||v_failed||v_life||v_lock);
/* Write a line of text to the screen */
UTL_FILE.PUT_LINE(v_username||_failed||v_life||v_lock);

END LOOP;
CLOSE users;
/* Close the utlfile.txt file */
UTL_FILE.FCLOSE(fHandle);

/* this is the exception block for the UTL_File errors */
EXCEPTION

CHAPTER 24 ■ USING ORACLE PL/SQL PACKAGES 1171

4517CH24.qxd 8/19/05 11:18 AM Page 1171

WHEN UTL_FILE.INVALID_PATH THEN
RAISE_APPLICATION_ERROR(-20100,'Invalid Path');
WHEN UTL_FILE.INVALID_MODE THEN

RAISE_APPLICATION_ERROR(-20101,'Invalid Mode');
WHEN UTL_FILE.INVALID_OPERATION then

RAISE_APPLICATION_ERROR(-20102,'Invalid Operation');
WHEN UTL_FILE.INVALID_FILEHANDLE then
RAISE_APPLICATION_ERROR(-20103,'Invalid Filehandle');

WHEN UTL_FILE.WRITE_ERROR then
RAISE_APPLICATION_ERROR(-20104,'Write Error');

WHEN UTL_FILE.READ_ERROR then
RAISE_APPLICATION_ERROR(-20105,'Read Error');

WHEN UTL_FILE.INTERNAL_ERROR then
RAISE_APPLICATION_ERROR(-20106,'Internal Error');

WHEN OTHERS THEN
UTL_FILE.FCLOSE(fHandle);

END;

UTL_SMTP
The UTL_SMTP package is useful for sending e-mail messages from a PL/SQL program. This pack-
age has too many low-level primitives, and it’s therefore too cumbersome to be thought of as an
interactive e-mail client.

You may want to alert people when specific events take place in the database. You can send
e-mail, pages, and even text messages over a cell phone using the UTL_SMTP package. Your e-mail
can also have attachments.

Procedures in the UTL_SMTP Package
The UTL_SMTP package is named after the Simple Mail Transfer Protocol (SMTP), which can send
or receive e-mail using TCP/IP. The UTL_TCP package can send data through the TCP/IP protocol,
and the UTL_SMTP package uses this functionality of the UTL_TCP package to send e-mails from
the database.

Using the UTL_SMTP Package
The UTL_SMTP package performs the following steps to send messages from the database:

1. Establish the connection to the SMTP server using the OPEN_CONNECTION function and the
HELO procedure.

2. Initiate a mail transaction using the MAIL function.

3. Specify the recipients of the e-mail message using the RCPT function.

4. Provide the e-mail message using the DATA function.

5. Terminate the SMTP connection and disconnect using the QUIT function.

Here’s a simple example showing how to send mail from PL/SQL:

DECLARE
v_connection UTL_SMTP.CONNECTION;
BEGIN

v_connection := UTL_SMTP.OPEN_CONNECTION(smtp.server.xyz.com);
UTL_SMTP.HELO(v_connection,xyz.com);

CHAPTER 24 ■ USING ORACLE PL/SQL PACKAGES1172

4517CH24.qxd 8/19/05 11:18 AM Page 1172

UTL_SMTP.MAIL(v_connection,program@xyz.com);
UTL_SMTP.RCPT(v_connection,oracle_dba@xyz.com);
UTL_SMTP.DATA(v_connection,Just a SMTP Test Message);
UTL_SMTP.QUIT(v_connection);

END;

DBMS_SHARED_POOL
The DBMS_SHARED_POOL package enables you to find out the size of the stored PL/SQL objects
and either pin them in or unpin them from the shared pool. The package is especially useful when
you’re trying to invoke large PL/SQL objects and you can’t increase your shared pool size by much
right away.

The introduction of a large package may push a large number of necessary packages out of the
shared pool. Or you may even have a problem loading the large package into the shared pool
because there’s no large contiguous area of shared pool available, due to excessive fragmentation
of the pool. In both cases, you can use this package to use your shared pool memory area more
efficiently.

The DBMS_SHARED_POOL package isn’t automatically created along with the other Oracle-
supplied packages when you run the catproc.sql script after creating a new database. To create the
DBMS_SHARED_POOL package, you must run the dbmspool.sql script (as SYS), as shown here:

SQL> @$ORACLE_HOME/rdbms/admin/dbmspool.sql

Package created.

Grant succeeded.

View created.

Package body created.

SQL>

Listing 24-20 describes the procedures in the DBMS_SHARED_POOL package.

Listing 24-20. The DBMS_SHARED_POOL Package

SQL> DESC DBMS_SHARED_POOL
Argument Name Type In/Out Default?
------------------------------ ----------------------- ------ --------
PROCEDURE ABORTED
_REQUEST_THRESHOLD
THRESHOLD_SIZE NUMBER IN

PROCEDURE KEEP
NAME VARCHAR2 IN
FLAG CHAR IN DEFAULT
PROCEDURE SIZES
MINSIZE NUMBER IN
PROCEDURE UNKEEP
NAME VARCHAR2 IN
FLAG CHAR IN DEFAULT
SQL>

If you’re having a problem with shared pool fragmentation, you should consider pinning
almost all the commonly used stored procedures and packages in the shared pool upon starting

CHAPTER 24 ■ USING ORACLE PL/SQL PACKAGES 1173

4517CH24.qxd 8/19/05 11:18 AM Page 1173

the instance. Pinning packages in the shared pool reduces fragmentation in the shared pool, and
consequently keeps the pool from running out of space when a new object is trying to enter it.

■Note In Oracle Database 10g, you can use the new V$SGA_TARGET_ADVICE view to get recommendations
about the right size for the SGA_TARGET initialization parameter. A simple SQL query such as SELECT * FROM
V$SGA_TARGET_ADVICE immediately reveals the estimated DB time and the amount of physical reads for a range
of SGA_TARGET values, both above and below the current size. You can thus examine the potential tradeoff
between the DB time metric and the SGA_TARGET setting.

The following code shows how to use the DBMS_SHARED_POOL package to pin and unpin
packages in the shared pool component of the SGA:

SQL> EXECUTE DBMS_SHARED_POOL.KEEP('QS_ADM.QS_APPLICATIONS','P');
PL/SQL procedure successfully completed.
SQL> EXECUTE DBMS_SHARED_POOL.UNKEEP('QS_ADM.QS_APPLICATIONS','P');
PL/SQL procedure successfully completed.
SQL>

You can query the V$DB_OBJECT_CACHE view to see if the object is indeed pinned, as shown
in the following query:

SQL> SELECT name, type, kept
2 FROM
3 v$db_object_cache
4 WHERE owner='QS_ADM';

Name Type Kept
---------------------- -------------- ------
QS_APPLICATIONS PACKAGE YES
QS_APPLICATIONS PACKAGE BODY YES
ORDER_TYP NOT LOADED NO
ORDERITEMLIST_VARTYP NOT LOADED NO
SQL>

The SIZES procedure gives you the size (in bytes) of all the packages that are larger than a
threshold you specify. You can use this procedure to decide which procedures you may want to
pin to the shared pool. Here’s an example of the use of the SIZES procedure:

SQL> SET SERVEROUTPUT ON
SQL> EXECUTE DBMS_SHARED_POOL.SIZES(8000);
PL/SQL procedure successfully completed.
SQL>

DBMS_WM
You can use the Oracle Workspace Manager facility to manage long transactions. The Workspace
Manager lets you version the database (that is, hold multiple versions of the database in various
workspaces). The DBMS_WM package lets you create and manage the workspaces needed for
database versioning.

CHAPTER 24 ■ USING ORACLE PL/SQL PACKAGES1174

4517CH24.qxd 8/19/05 11:18 AM Page 1174

DBMS_RLMGR
DBMS_RLMGR is a new package that supports the Rules Manager feature. This feature lets develop-
ers use business rules to trigger specific actions, based on the occurrence of a certain event. Rules
follow the Event-Condition-Action (ECA) rule semantics, whereby if a rule evaluates to TRUE, a cer-
tain event will happen automatically. For example, you may specify a rule stating that if a business
customer buys more than a stated amount of services from you, that customer will be offered cer-
tain special promotions.

Oracle Packages in Earlier Chapters
You’ve seen how to use the following Oracle-supplied packages in earlier chapters. Consequently, I
don’t provide any examples of the use of these packages in this chapter. In the following sections,
I briefly discuss the packages that you’ve reviewed elsewhere in this book.

The DBMS_STATS Package
The DBMS_STATS package is a highly useful Oracle package that you use to enable statistics collec-
tion for the Oracle Optimizer. Listing 24-21 shows the important procedures of the DBMS_STATS
package.

Listing 24-21. The DBMS_STATS Package

SQL> DESC DBMS_STATS
Argument Name Type In/Out Default?
------------------------------ ---------- --------- ---------
PROCEDURE CREATE_STAT_TABLE
OWNNAME VARCHAR2 IN
STATTAB VARCHAR2 IN
TBLSPACE VARCHAR2 IN DEFAULT
PROCEDURE EXPORT_SCHEMA_STATS
OWNNAME VARCHAR2 IN
STATTAB VARCHAR2 IN
STATID VARCHAR2 IN DEFAULT
STATOWN VARCHAR2 IN DEFAULT
PROCEDURE GATHER_DATABASE_STATS
ESTIMATE_PERCENT NUMBER IN DEFAULT
BLOCK_SAMPLE BOOLEAN IN DEFAULT
METHOD_OPT VARCHAR2 IN DEFAULT
DEGREE NUMBER IN DEFAULT
GRANULARITY VARCHAR2 IN DEFAULT
CASCADE BOOLEAN IN DEFAULT
STATTAB VARCHAR2 IN DEFAULT
STATID VARCHAR2 IN DEFAULT
OPTIONS VARCHAR2 IN DEFAULT
STATOWN VARCHAR2 IN DEFAULT
GATHER_SYS BOOLEAN IN DEFAULT
NO_INVALIDATE BOOLEAN IN DEFAULT
GATHER_TEMP BOOLEAN IN DEFAULT
GATHER_FIXED BOOLEAN IN DEFAULT
PROCEDURE GATHER_SYSTEM_STATS
GATHERING_MODE VARCHAR2 IN DEFAULT
INTERVAL NUMBER(38) IN DEFAULT
STATTAB VARCHAR2 IN DEFAULT

CHAPTER 24 ■ USING ORACLE PL/SQL PACKAGES 1175

4517CH24.qxd 8/19/05 11:18 AM Page 1175

STATID VARCHAR2 IN DEFAULT
STATOWN VARCHAR2 IN DEFAULT
PROCEDURE GET_TABLE_STATS
OWNNAME VARCHAR2 IN
TABNAME VARCHAR2 IN
PARTNAME VARCHAR2 IN DEFAULT
STATTAB VARCHAR2 IN DEFAULT
STATID VARCHAR2 IN DEFAULT
NUMROWS NUMBER OUT
NUMBLKS NUMBER OUT
AVGRLEN NUMBER OUT
STATOWN VARCHAR2 IN DEFAULT
SQL>

Chapter 21 shows how to use the GATHER_SCHEMA_STATS, GATHER_TABLE_STATS, and GATHER_
SYSTEM_STATS procedures to collect schema, table, and system statistics for the Oracle Optimizer.

DBMS_RLS
In Chapter 11, you saw how you could use the DBMS_RLS package to create security policies when
you’re implementing fine-grained access control (FGAC). You can use the DBMS_RLS package to
administer FGAC.

DBMS_FGA
The DBMS_FGA package provides fine-grained auditing functionality to the DBA. Chapter 11 con-
tains a full description of fine-grained auditing using the DBMS_FGA package.

DBMS_RESOURCE_MANAGER
The DBMS_RESOURCE_MANAGER package helps you administer the Database Resource Manager,
which is useful in allocating resources to the consumers. With the DBMS_RESOURCE_MANAGER
package, you can create, drop, and switch consumer groups and manage the resource plans.

Chapter 11 contains an extensive review of the use of the DBMS_RESOURCE_MANAGER
package.

DBMS_RESUMABLE
You can use the DBMS_RESUMABLE package to manage Oracle’s Resumable Space Allocation feature,
whereby the database suspends operations that encounter out-of-space errors, instead of aborting
them. Chapter 6 discusses the use of the DBMS_RESUMABLE package in detail. Listing 24-22 shows
the important procedures in the DBMS_RESUMABLE package.

Listing 24-22. The DBMS_RESUMABLE Package

SQL> DESC DBMS_RESUMABLE
Argument Name Type In/Out Default?
--------------------------------- ------- ------ -------
PROCEDURE ABORT
/* Aborts a suspended resumable
space allocation */
SESSIONID NUMBER IN
FUNCTION GET_SESSION_TIMEOUT RETURNS NUMBER

CHAPTER 24 ■ USING ORACLE PL/SQL PACKAGES1176

4517CH24.qxd 8/19/05 11:18 AM Page 1176

/* Returns current timeout value of
resumable space allocations */
SESSIONID NUMBER IN
FUNCTION GET_TIMEOUT RETURNS NUMBER
/* Returns current timeout value */
PROCEDURE SET_SESSION_TIMEOUT
/* Used to set the timeout for
resumable space allocation */
SESSIONID NUMBER IN
TIMEOUT NUMBER IN
PROCEDURE SET_TIMEOUT
/* Used to set timeout for current session */
TIMEOUT NUMBER IN
FUNCTION SPACE_ERROR_INFO RETURNS BOOLEAN
/* function returns TRUE if it finds
space-related errors, FALSE otherwise */
ERROR_TYPE VARCHAR2 OUT
OBJECT_TYPE VARCHAR2 OUT
OBJECT_OWNER VARCHAR2 OUT
TABLE_SPACE_NAME VARCHAR2 OUT
OBJECT_NAME VARCHAR2 OUT
SUB_OBJECT_NAME VARCHAR2 OUT
SQL>

DBMS_OLAP
The DBMS_OLAP package is indispensable when you create materialized views in your database.
The package recommends and evaluates candidates for materialized views. The package is also use-
ful for maintaining a repository and for reporting on the materialized views. Among other things,
the DBMS_OLAP package provides information about the following:

• Size of the summary tables

• Workload filtering information

• Materialized view recommendations

• Scripts to implement the recommendations

• Materialized view usage statistics

• Verification of relationships in dimensions

Once you enable query rewriting in your database, Oracle will use the materialized views
transparently, which improves the query response times. Chapter 7 shows you how to use the
DBMS_OLAP package to create materialized views. For the DBMS_OLAP package to recommend
and evaluate materialized views, you need to provide it with the workload information. The package
can also use workload information provided through the SQL cache or the SQL Trace utility.

DBMS_MVIEW
You can use the DBMS_MVIEW package to refresh materialized views that aren’t part of the same
group and to understand the rewrite capability of materialized views. Chapter 7 explains the use of
the DBMS_MVIEW package for managing materialized views.

CHAPTER 24 ■ USING ORACLE PL/SQL PACKAGES 1177

4517CH24.qxd 8/19/05 11:18 AM Page 1177

DBMS_METADATA
The DBMS_METADATA package can be useful in situations where you need to retrieve the database
definitions (metadata) of an object or the entire schema. The package also helps you get the XML
representation of Oracle tables. Chapter 7 shows you how to use the DBMS_METADATA package to
retrieve the DDL for a database table.

DBMS_REDEFINITION
You can use the DBMS_REDEFINITION package to perform an online reorganization of a table.
Chapter 17 provides a complete example of the online redefinition of a table using the DBMS_
REDEFINITION package.

DBMS_SCHEDULER
The DBMS_SCHEDULER package is the interface to the new Scheduler feature. You must have the
CREATE JOB privilege to create a job, schedule, or program in your schema. You must have the
MANAGE SCHEDULER privilege to be able to create classes, windows, or window groups. Chapter 18
shows you how to use the DBMS_SCHEDULER package to schedule jobs from within the Oracle
database. Table 24-1 summarizes the main procedures of the DBMS_ SCHEDULER package:

Table 24-1. Main Procedures of the DBMS_SCHEDULER Package

Procedure Purpose

CREATE_JOB Creates a new job

CREATE_PROGRAM Creates a new program

CREATE_SCHEDULE Creates a new schedule

CREATE_WINDOW Creates a new window

SET_ATTRIBUTE Alters attributes of a Scheduler component

SET_SCHEDULER_ATTRIBUTE Sets the three global attribute values for all Scheduler components

DBMS_FLASHBACK
The DBMS_FLASHBACK package enables you to flash back the database to an older version at a
previous point in time or at some previous SCN. You use the undo segments to go back (or flash
back) to a previous version of the database. The value of the UNDO_RETENTION parameter sets the
limit on how far you can go back in time. Chapter 6 provides you with examples using the DBMS_
FLASHBACK package. Listing 24-23 shows the contents of the package.

Listing 24-23. The DBMS_FLASHBACK Package

SQL> DESC DBMS_FLASHBACK
Argument Name Type In/Out Default?
------------------------------ ------ ------- --------
PROCEDURE DISABLE
/* Disables flashback for
the entire session */
PROCEDURE ENABLE_AT
_SYSTEM_CHANGE_NUMBER
/*Enables flashback

CHAPTER 24 ■ USING ORACLE PL/SQL PACKAGES1178

4517CH24.qxd 8/19/05 11:18 AM Page 1178

starting at the specified SCN*/
QUERY_SCN NUMBER IN
PROCEDURE ENABLE_AT_TIME
/* Enables flashback for the
entire session,
using query_time to
find the closest SCN*/
QUERY_TIME TIMESTAMP IN
FUNCTION GET_SYSTEM_CHANGE_NUMBER

RETURNS
NUMBER

/* Returns the current SCN */
SQL>

DBMS_LOGMNR
The LogMiner tool lets you mine or analyze online and archived redo logs. You can use the tool
either to undo changes made to the database without having to perform a formal recovery, or to
audit user sessions. The DBMS_LOGMNR package provides the functionality for the LogMiner tool.
The package lets you specify the redo logs and the SCN or calendar time from which to start the
analysis. You can view the results of the execution of the DBMS_LOGMNR package by selecting
from the dictionary view V$LOGMNR_CONTENTS. Chapter 16 reviews in detail the use of the
LogMiner utility and the DBMS_LOGMNR package. Listing 24-24 shows the procedures that are
part of the DBMS_LOGMNR package.

Listing 24-24. The DBMS_LOGMNR Package

SQL> DESC DBMS_LOGMNR
Argument Name Type In/Out Default?
------------------------------ ----------- ------ -------
PROCEDURE ADD_LOG_FILE
/*Adds a redo log file to
the list of files to process*/
LOGFILENAME VARCHAR2 IN
OPTIONS BINARY_INTEGER IN DEFAULT
FUNCTION COLUMN_PRESENT
RETURNS BINARY_INTEGER
/*Determines if undo or
redo column values exist
in the log files*/
SQL_REDO_UNDO RAW IN
COLUMN_NAME VARCHAR2 IN DEFAULT
PROCEDURE END_LOGMNR
/* Ends the LogMiner session */
FUNCTION MINE_VALUE
RETURNS VARCHAR2
/*Returns undo or redo column
values if they exist*/
SQL_REDO_UNDO RAW IN
COLUMN_NAME VARCHAR2 IN DEFAULT
PROCEDURE START_LOGMNR
/*Starts the LogMiner session*/
STARTSCN NUMBER IN DEFAULT
ENDSCN NUMBER IN DEFAULT
STARTTIME DATE IN DEFAULT

CHAPTER 24 ■ USING ORACLE PL/SQL PACKAGES 1179

4517CH24.qxd 8/19/05 11:18 AM Page 1179

ENDTIME DATE IN DEFAULT
DICTFILENAME VARCHAR2 IN DEFAULT
OPTIONS BINARY_INTEGER IN DEFAULT
SQL>

DBMS_ADVISOR
You use the DBMS_ADVISOR package to manage all the management advisors, such as the SQL
Access Advisor and the SQL Tuning Advisor. You must have the ADVISOR privilege to have full
access to the packages’ procedures. Chapter 17 contains examples of the usage of this package.
Table 24-2 shows the important procedures of the DBMS_ADVISOR package.

Table 24-2. Main Procedures of the DBMS_ADVISOR Package

Procedure Purpose

CREATE_TASK Creates a new task

DELETE_TASK Deletes a specified task

EXECUTE_TASK Starts execution of a task

GET_TASK_REPORT Gets the text report of the task’s recommendations

SET_TASK_PARAMETER Modifies a task parameter

GET_TASK_SCRIPT Creates a script of all the accepted recommendations

QUICK_TUNE Performs analysis on a single SQL statement

DBMS_DATAPUMP
The DBMS_DATAPUMP package is your interface to the Data Pump import and export utilities.
Chapter 14 provides a detailed introduction to using this package.

DBMS_SERVER_ALERT
The DBMS_SERVER_ALERT package helps set thresholds on various metrics. When any of the met-
rics exceeds these thresholds, the database alerts you. The two key procedures in this package are
the SET_THRESHOLD and the GET_THRESHOLD procedure. Here’s what the two procedures do:

• SET_THRESHOLD defines threshold settings for a metric.

• GET_THRESHOLD shows the threshold settings for a metric.

Here’s an example showing how to set thresholds for the CPU_TIME_PER_CALL metric:

SQL> BEGIN
DBMS_SERVER_ALERT.SET_THRESHOLD (
DBMS_SERVER_ALERT.CPU_TIME_PER_CALL,
DBMS_SERVER_ALERT.OPERATOR_GE, '8000',
DBMS_SERVER_ALERT.OPERATOR_GE, '10000', 1, 2, 'orcl',
DBMS_SERVER_ALERT.OBJECT_TYPE_SERVICE, 'finance');
END;
/

SQL>

Chapter 18 shows you how to use the DBMS_SERVER_ALERT package to manage alerts.

CHAPTER 24 ■ USING ORACLE PL/SQL PACKAGES1180

4517CH24.qxd 8/19/05 11:18 AM Page 1180

DBMS_SQLTUNE
Although you can use OEM Database Control to invoke the SQL Tuning Advisor quickly, there
may be times when you need a command-line interface to the SQL Tuning Advisor. The DBMS_
SQLTUNE package enables you to invoke the SQL Tuning Advisor from within a PL/SQL program.
You use the following three procedures to invoke the SQL Tuning Advisor:

• CREATE_TUNING_TASK

• EXECUTE_TUNING_TASK

• REPORT_TUNING_TASK

Once you finish executing these three procedures, you can view the results of the tuning
exercise by using the DBA_ADVISOR_TASKS, DBA_ADVISOR_FINDINGS, DBA_ADVISOR_
RECOMMENDATIONS, and the DBA_ADVISOR_RATIONALE views. Chapter 21 shows how to use
the DBMS_SQLTUNE package and the various DBA_ADVISOR views to interpret the tuning results.

DBMS_WORKLOAD_REPOSITORY
The DBMS_WORKLOAD_REPOSITORY package lets you administer the Automatic Workload Repos-
itory (AWR), which is explained in detail in Chapter 18. Using this package, you can modify the
snapshot collection interval and retention interval, create snapshots, and remove snapshots from
the AWR. Here are some of the key procedures of this package:

• CREATE_SNAPSHOT

• MODIFY_SNAPSHOT_SETTINGS

• CREATE_BASELINE

• DROP_BASELINJE

Chapter 18 shows you how to use the DBMS_WORKLOAD_REPOSITORY package to manage
the AWR.

DBMS_REFRESH
If you’re using materialized views, you’ll need to refresh those views on a regular basis, and the
DBMS_REFRESH package contains procedures to refresh groups of materialized views.

DBMS_TTS
To use the transportable tablespaces feature, first you need to use the DBMS_TTS package to verify
if the tablespaces are eligible for the transport operation. The procedures in the packages check to
make sure that your candidate tablespaces are self-contained. Chapter 14 shows you how to use the
transportable tablespaces feature. To transport tablespaces, you need to invoke the DBMS_TTS
package.

DBMS_UTILITY
The DBMS_UTILITY package provides procedures that perform various database tasks. Important
tasks that you can perform using this package include analyzing a schema or a database, compiling
a schema, and converting a comma-delimited list of names into a PL/SQL table of names and
vice versa.

CHAPTER 24 ■ USING ORACLE PL/SQL PACKAGES 1181

4517CH24.qxd 8/19/05 11:18 AM Page 1181

DBMS_STORAGE_MAP
Oracle provides a file-mapping interface that enables the mapping of Oracle files to the underlying
logical volume partitions and the physical volumes. The background process FMON builds the
mapping information, provided that you first set the initialization parameter FILE_MAPPING to TRUE.
The DBMS_STORAGE_MAP package contains the procedures that start the mapping operations
and cause the mapping data to be placed in the dictionary views, such as V$MAP_FILE and the
V$MAP_ELEMENT. Chapter 18 provides more information on the file-mapping topic.

DBMS_XPLAN
The DBMS_XPLAN package enables you to display the output of the EXPLAIN PLAN command.
You can also use the package to show the execution plan and execution runtime statistics for
cached SQL cursors. You use one of the following three table functions of the DBMS_XPLAN
package to determine how the execution plan should be displayed:

• DISPLAY shows the contents of a plan table.

• DISPLAY_CURSOR shows the execution plan of a loaded cursor.

• DISPLAY_AWR shows the execution plan of a SQL statement from the AWR.

You can always get the execution plan output by querying the traditional plan table, but the
DBMS_XPLAN package gives you easily understandable output without having to use code to
format it.

I’ve briefly reviewed the most important database administration–related Oracle-supplied
PL/SQL packages in this chapter. To implement most of these packages, you must understand the
individual package procedures and functions well, by looking up the Oracle manual titled PL/SQL
Packages and Types Reference.

CHAPTER 24 ■ USING ORACLE PL/SQL PACKAGES1182

4517CH24.qxd 8/19/05 11:18 AM Page 1182

Oracle Database 10g SQL and
PL/SQL: A Brief Primer

I’m sure most of you are already familiar with SQL to some extent. However, I present in this
appendix a quick introduction to Oracle Database 10g SQL and its programmatic cousin, PL/SQL,
as a starting point for those new to programming Oracle databases. My goal here is simply to pres-
ent a short summary of the classic DML and DDL commands and to discuss the newer SQL and
PL/SQL concepts in greater detail.

Your need to know SQL or PL/SQL depends somewhat on the type of DBA you are—a produc-
tion support DBA won’t need to know as much about Oracle programming as a DBA assisting in
developmental efforts. It’s becoming increasingly important, however, for DBAs to learn a number
of advanced SQL and PL/SQL concepts, including the new Java and XML-based technologies. The
reason is simple: even when you aren’t developing applications yourself, you’re going to be assisting
people who are doing so, and it helps to know what they’re doing.

This appendix aims to summarize some of the most important Oracle Database 10g SQL and
PL/SQL features so you and the developers you work with can take advantage of them. Oracle SQL
and PL/SQL represent an enormously broad topic, so this appendix lightly covers several important
topics without attempting any detailed explanation due to space considerations. Please refer to the
Oracle manuals, “Application Developer's Guide—Fundamentals” and “PL/SQL User’s Guide and
Reference,” for a comprehensive introduction to SQL and PL/SQL.

The Oracle Database 10g Sample Schemas
The examples in this appendix use the demo schemas provided by Oracle as part of the Oracle
Database 10g server software. The demo data is for a fictitious company and contains the following
five schemas:

• HR is the human resources division, which contains information on employees. It is the
most commonly used schema, with its familiar employees and dept tables. The schema
uses scalar data types and simple tables with basic constraints.

• OE is the order entry department, which contains inventory and sales data. This schema
covers a simple order-entry system and includes regular relational objects as well as object-
relational objects. Because the OE schema contains synonyms for HR tables, you can query
HR’s objects from the OE schema.

• PM is the product media department, which covers content management. You can use this
schema if you’re exploring Oracle’s interMedia option. The tables in the PM schema contain
audio and video tracks, images, and documents.

1183

A P P E N D I X A

■ ■ ■

4517AppA.qxd 8/19/05 11:19 AM Page 1183

• IE is the information exchange department in charge of shipping using various B2B
applications.

• SH is the sales history department in charge of sales data. It is the largest sample schema,
and you can use it for testing examples with large amounts of data. The schema contains
partitioned tables, an external table, and Online Analytical Processing (OLAP) features. The
SALES and COSTS tables contain 750,000 rows and 250,000 rows, respectively, as compared
to 107 rows in the employees table from the HR schema.

In order to install the SH schema, you must have the partitioning option installed in your
Oracle database; this option lets you use table and index partitioning in your database. Ideally, you
should install the Oracle demo schemas in a test database where you can safely practice the parts
of SQL you aren’t familiar with. The Oracle “Sample Schemas” documentation manual provides
detailed information about the sample schemas.

If you’ve created a starter database using the Database Configuration Assistant (DBCA) as part
of your Oracle software installation (the Basic Installation option), it will have automatically created
the sample schemas in the new starter database.

If you’ve chosen to not create the starter database (by selecting a Software Only installation
option), you can run the DBCA to install the sample schemas. Choose the Sample Schemas option
when you use the DBCA to create the sample schemas in an existing database. By default, all the
sample schema accounts are locked, and you must use the ALTER USER . . . ACCOUNT UNLOCK state-
ment to unlock them.

If you want to create the sample schemas in a database without using the DBCA, you can run a
set of Oracle-provided scripts to install the sample schemas. Each of the scripts creates the neces-
sary schema users, tables, indexes, and constraints, and then loads data into the tables. The scripts
do all this by calling other scripts in the same directory. You must create the schemas in the order
described in the following steps because of dependencies that exist among the schema objects—
you may get errors if you create them in another order.

1. Go to the $ORACLE_HOME/demo/schema/human_resources directory and run the
hr_main.sql script to create the human resources (HR) schema.

2. Go to the $ORACLE_HOME/demo/schema/order_entry directory and run the oe_main.sql
script to create the order entry (OE) schema.

3. Go to the $ORACLE_HOME/demo/schema/product_media directory, and run the
pm_main.sql script to create the product media (PM) schema.

4. Go to the $ORACLE_HOME/demo/schema/info_exchange directory and run the
ix_main.sql script to create the information exchange (IE) schema.

5. Go to the $ORACLE_HOME/demo/schema/sales_history directory and run the sh_main.sql
script to create the sales history (SH) schema.

The sample schemas are now ready, and you can use them to practice your SQL and PL/SQL
commands.

If you need to reset the schemas to their initial state and undo any changes you made to the
various schema tables, all you have to do is run the following command in SQL*Plus:

$ $ORACLE_HOME/demo/schema/mksample systempwd syspwd hrpwd oepwd pmpwd ixpwd shpwd
default_tablespace temporary_tablespace log_file_directory

In the preceding command, the seven variables following the mksample script should be
replaced with the actual passwords for the SYSTEM and SYS users and the passwords for the HR,
OE, PM, IX, and SH schemas. You should supply the actual tablespace names and directory name
for the last three variables.

APPENDIX A ■ ORACLE DATABASE 10g SQL AND PL/SQL: A BRIEF PRIMER1184

4517AppA.qxd 8/19/05 11:19 AM Page 1184

Oracle Data Types
Data in an Oracle database is organized in rows and columns inside tables. The individual columns
are defined with properties that limit the values and format of the column contents. Let’s review the
most important Oracle built-in data types before we look at Oracle SQL statements.

Character Data Types
The CHAR data type is used for fixed-length character literals:

SEX CHAR(1)

The VARCHAR2 data type is used to represent variable-length character literals:

CITY VARCHAR2 (20)

The CLOB data type is used to hold large character strings as long as 4GB. BLOB and BFILE
data types are used to store large amounts of binary data.

Numeric Data Types
There are two important SQL data types used to store numeric data:

• The NUMBER data type is used to store real numbers, either in a fixed-point or floating-
point format.

• The BINARY FLOAT and BINARY DOUBLE data types store data in a floating-point format.

Date and Time Data Types
There are a couple of special data types that let you handle date and time values:

• The DATE data type stores the date and time (such as year, month, day, hours, minutes, and
seconds).

• The TIMESTAMP data type stores time values that are precise to fractional seconds.

Conversion Functions
Oracle offers several conversion functions that let you convert data from one format to another. The
most common of these functions are the TO_CHAR, TO_NUMBER, TO_DATE, and TO_TIMESTAMP functions.
The TO_CHAR function converts a floating number to a string, and the TO_NUMBER function converts a
floating number or a string to a number. The TO_DATE function converts character data to a DATE
data type. Here are some examples:

SQL> SELECT TO_CHAR(TO_DATE('20-JUL-05', 'DD-MON-RR') ,'YYYY') "Year" FROM DUAL;
Year

2005
SQL>

SQL> SELECT TO_CHAR(SYSDATE, 'DD-MON-YYYY')
FROM DUAL;

APPENDIX A ■ ORACLE DATABASE 10g SQL AND PL/SQL: A BRIEF PRIMER 1185

4517AppA.qxd 8/19/05 11:19 AM Page 1185

TO_CHAR(SYSDATE

20-JUL-2005
SQL>

SQL
In Chapter 5 you saw how Oracle SQL statements include DDL, DML, and other types of state-
ments. Let’s begin with a review of the basic SQL statements.

The SELECT Statement
The SELECT statement is the most common SQL statement (it is also called a projection). A SELECT
statement retrieves all or some of the data in a table, based on the criteria that you specify.

The most basic SELECT statement is one that retrieves all the data in the table:

SQL> SELECT * FROM employees;

To retrieve only certain columns from a table, you specify the column names after the SELECT
keyword, as shown in the following example:

SQL> SELECT first_name, last_name, hiredate FROM employees;

If you want only the first ten rows of a table, you can use the following statement:

SQL> SELECT * FROM employees WHERE rownum <11;

If you want just a count of all the rows in the table, you can use the following statement:

SQL> SELECT COUNT(*) FROM employees;

If a table has duplicate data, you can use the DISTINCT clause to eliminate the duplicate values,
as shown here:

SQL> SELECT DISTINCT username FROM V$SESSION;

The optional WHERE clause in a SELECT statement uses conditions to help you specify that only
certain rows be returned. Table A-1 lists some of the common conditions you can use in a WHERE
clause.

Table A-1. Common Conditions Used in WHERE Clauses

Symbol Condition

= Equal

> Greater than

< Less than

<+ Less than or equal to

>= Greater than or equal to

<> or ! Not equal to

APPENDIX A ■ ORACLE DATABASE 10g SQL AND PL/SQL: A BRIEF PRIMER1186

4517AppA.qxd 8/19/05 11:20 AM Page 1186

Here are some examples of using the WHERE clause:

SQL> SELECT employee_id WHERE salary = 50000;
SQL> SELECT employee_id WHERE salary < 50000;
SQL> SELECT employee_id WHERE salary > 50000;
SQL> SELECT employee_id WHERE salary <= 50000;
SQL> SELECT employee_id WHERE salary >= 50000;
SQL> SELECT employee_id WHERE salary ! 50000;

The LIKE Condition
The LIKE condition uses pattern matching to restrict rows in a SELECT statement. Here’s an example:

SQL> SELECT employee_id, last_name FROM employees
2* WHERE last_name LIKE 'Fa%';

EMPLOYEE_ID LAST_NAME
----------- ----------

109 Faviet
202 Fay

SQL>

The pattern that you want the WHERE clause to match should be enclosed in single quotes (' ').
In the preceding example, the percent sign (%) indicates that the letters Fa can be followed by any
character string. Thus, the percent sign acts as a wildcard for one or more characters, performing
the same job as the asterisk (*) in many operating systems. Note that a single underscore character
(_) acts as a wildcard for one and only one character.

The INSERT Statement
The INSERT statement enables you to add new data to a table, including duplicate data if there are
no unique requirements enforced by a primary key or an index. The general form of the INSERT
statement is as follows:

INSERT INTO <table> [(<column i, . . . , column j>)]
VALUES (<value i, . . . ,value j>);

Here is an example of the insert command:

SQL> INSERT INTO employees(
2 employee_id,last_name,email,hire_date,job_id)
3 VALUES
4* (56789,'alapati','salapati@netbsa.org', sysdate,98765);

1 row created.
SQL>

In the preceding list, the column names were specified because only some columns were being
populated in the row being inserted. The rest of them are left blank, which is okay, provided the col-
umn isn’t defined as a “not null” column.

If you’re inserting values for all the columns of a table, you can use the simpler INSERT state-
ment shown here:

SQL> INSERT INTO department
VALUES
(34567, 'payroll', 'headquarters', 'dallas');

1 row created.
SQL>

APPENDIX A ■ ORACLE DATABASE 10g SQL AND PL/SQL: A BRIEF PRIMER 1187

4517AppA.qxd 8/19/05 11:20 AM Page 1187

If you want to insert all the columns of a table into another table, you can use the following
INSERT statement:

SQL> INSERT INTO b SELECT * FROM a
WHERE city='DALLAS';

If table b doesn’t exist, you can use the CREATE TABLE table_name AS SELECT * FROM (CTAS)
statement, as shown here:

SQL> CREATE table b as SELECT * FROM a;

The DELETE Statement
You use the DELETE statement to remove rows from a table. The DELETE statement has the following
structure:

DELETE FROM <table> [WHERE ,condition>];

For example, if you want to delete employee Fay’s row from the employees table, you would use
the following DELETE statement:

SQL> DELETE FROM employees
2* WHERE last_name='Fay';

1 row deleted.

If you don’t have a limiting WHERE condition, the DELETE statement will result in the removal of
all the rows in the table, as shown here:

SQL> DELETE FROM X;

You can also remove all rows in a table using the TRUNCATE command, but you can’t undo or roll
back the TRUNCATE command’s effects. You can undo a delete by using the ROLLBACK statement:

SQL> ROLLBACK;

The UPDATE Statement
The UPDATE statement changes the value (or values) of one or more columns of a row (or rows) in a
table. The expression to which a column is being set or modified can be a constant, arithmetic, or
string operation, or the product of a SELECT statement.

The general structure of the UPDATE statement is as follows (note that the elements in square
brackets are optional):

UPDATE <table>
SET <column i> = <expression i>, . . . , <column j> = <expression j>
[WHERE <condition>];

If you want to change or modify a column’s values for all the rows in the table, you use an
UPDATE statement without a WHERE condition:

SQL> UPDATE persons SET salary=salary*0.10;

If you want to modify only some rows, you need to use the WHERE clause in your UPDATE
statement:

SQL> UPDATE persons SET salary = salary * 0.10
WHERE review_grade > 5;

APPENDIX A ■ ORACLE DATABASE 10g SQL AND PL/SQL: A BRIEF PRIMER1188

4517AppA.qxd 8/19/05 11:20 AM Page 1188

Filtering Data
The WHERE clause in a SELECT, INSERT, DELETE, or UPDATE statement lets you filter data. That is, you
can restrict the number of rows on which you want to perform a SQL operation. Here’s a simple
example:

SQL> INSERT INTO a
SELECT * FROM b
WHERE city='DALLAS';

Sorting the Results of a Query
Frequently, you’ll have to sort the results of a query in some order. The ORDER BY clause enables
you to sort the data based on the value of one or more columns. You can choose the sorting order
(ascending or descending) and you can choose to sort by column aliases. You can also sort by
multiple columns. Here’s an example:

SQL> SELECT employee_id, salary FROM employees
ORDER BY salary;

Changing the Sorting Order
Be default, an ORDER BY clause sorts in ascending order. If you want to sort in descending order, you
need to specify the DESC keyword:

SQL> SELECT employee_id, salary FROM employees
ORDER BY salary desc;

Sorting by Multiple Columns
You can sort results based on the values of more than one column. The following query sorts on the
basis of two columns, salary and dept:

SQL> SELECT employee_id, salary FROM employees
ORDER BY salary, dept;

Operators
SQL provides you with a number of operators to perform various tasks, such as comparing column
values and performing logical operations. The following sections outline the important SQL opera-
tors: comparison operators, logical operators, and set operators.

Comparison Operators
Comparison operators compare a certain column value with several other column values. These are
the main comparison operators:

• BETWEEN: Tests whether a value is between a pair of values

• IN: Tests whether a value is in a list of values

• LIKE: Tests whether a value follows a certain pattern, as shown here:

SQL> SELECT employee_id from employees
WHERE dept LIKE 'FIN%';

APPENDIX A ■ ORACLE DATABASE 10g SQL AND PL/SQL: A BRIEF PRIMER 1189

4517AppA.qxd 8/19/05 11:20 AM Page 1189

Logical Operators
The logical operators, also called Boolean operators, logically compare two or more values. The main
logical operators are AND, OR, NOT, GE (greater than or equal to), and LE (less than or equal to). Here’s
an example that illustrates the use of some of the logical operators:

SQL> SELECT last_name, city
WHERE salary GT 100000 and LE 200000;

When there are multiple operators within a single statement, you need rules of precedence.
Oracle always evaluates arithmetical operations such as multiplication, division, addition, and sub-
traction before it evaluates conditions. The following is the order of precedence of operators in
Oracle, with the most important first:

=, !=, <, >, <=, >=
IS NULL, LIKE, BETWEEN, IN, EXISTS
NOT
AND
OR

The Set Operators
Sometimes your query may need to combine results from more than one SQL statement. In other
words, you need to write a compound query. Set operators facilitate compound SQL queries. Here
are the important Oracle set operators:

• UNION: The UNION operator combines the results of more than one SELECT statement after
removing any duplicate rows. Oracle will sort the resulting set of data. Here’s an example:

SQL> SELECT emp_id FROM old_employees
UNION
SELECT emp_id FROM new_employees;

• UNION ALL: The UNION ALL operator is similar to UNION, but it doesn’t remove the duplicate
rows. Oracle doesn’t sort the result set in this case, unlike the UNION operation.

• INTERSECTION: The INTERSECTION operator gets you the common values in two or more result
sets derived from separate SELECT statements. The result set is distinct and sorted.

• MINUS: The MINUS operator returns the rows returned by the first query that aren’t in the sec-
ond query’s results. The result set is distinct and sorted.

SQL Functions
Oracle functions manipulate data items and return a result, and built-in Oracle functions help you
perform many transformations quickly, without your having to do any coding. In addition, you
can build your own functions. Functions can be divided into several groups: single-row functions,
aggregate functions, number and date functions, general and conditional functions, and analytical
functions.

Single-Row Functions
Single-row functions are typically used to perform tasks such as converting a lowercase word to
uppercase or vice versa, or replacing a portion of text in a row. Here are the main single-row func-
tions used in Oracle:

APPENDIX A ■ ORACLE DATABASE 10g SQL AND PL/SQL: A BRIEF PRIMER1190

4517AppA.qxd 8/19/05 11:20 AM Page 1190

• CONCAT: The CONCAT function concatenates or puts together two or more character strings into
one string.

• LENGTH: The LENGTH function gives you the length of a character string.

• LOWER: The LOWER function transforms uppercase letters into lowercase, as shown in the
following example:

SQL> SELECT LOWER('SHANNON ALAPATI') from dual;
LOWER('SHANNONALAPATI')

shannon alapati
SQL>

• SUBSTR: The SUBSTR function returns part of a string.

• INSTR: The INSTR function returns a number indicating where in a string a certain string
value starts.

• LPAD: The LPAD function returns a string after padding it for a specified length on the left.

• RPAD: The RPAD function pads a string on the right side.

• TRIM: The TRIM function trims a character string.

• REPLACE: The REPLACE function replaces every occurrence of a specified string with a specified
replacement string.

Aggregate Functions
You can use aggregate functions to compute things such as averages and totals of a selected column
in a query. Here are the important aggregate functions:

• MIN: The MIN function returns the smallest value. Here’s an example:

SELECT MIN(join_date) FROM employees;

• MAX: The MAX function returns the largest value.

• AVG: The AVG function computes the average value of a column.

• SUM: The SUM function computes the sum of a column:

SQL> SELECT SUM(bytes) FROM dba_free_space;

• COUNT: The COUNT function returns the total number of columns.

• COUNT(*): The COUNT(*) function returns the number of rows in a table.

Number and Date Functions
Oracle includes several number functions, which accept numeric input and return numeric values.
The date functions help you format dates and times in different ways. Here are some of the impor-
tant number and date functions:

• ROUND: This function returns a number rounded to the specified number of places to the right
of the decimal point.

• TRUNC: This function returns the result of a date truncated in the specified format.

APPENDIX A ■ ORACLE DATABASE 10g SQL AND PL/SQL: A BRIEF PRIMER 1191

4517AppA.qxd 8/19/05 11:20 AM Page 1191

• SYSDATE: This commonly used function returns the current date and time:

SQL> SELECT sysdate FROM dual;
SYSDATE

07/AUG/2005 10:00:00
SQL>

• TO_TIMESTAMP: This function converts a CHAR or VARCHAR(2) data type to a timestamp
data type.

• TO_DATE: You can use this function to change the current date format. The standard date for-
mat in Oracle is DD-MON-YYYY, as shown in the following example:

07-AUG-2005

The TO_DATE function accepts a character string that contains valid data and converts it into
the default Oracle date format. It can also change the date format, as shown here:

SQL> SELECT TO_DATE('August 20,2005', 'MonthDD,YYYY') FROM dual;
TO_DATE('AUGUST20,2005'

20/AUG/2005 12:00:00 AM
SQL>

• TO_CHAR: This function converts a date into a character string, as shown in the following
example:

SQL> SELECT SYSDATE FROM dual;
SYSDATE

04-AUG-2005
SQL>

SQL> SELECT TO_CHAR(SYSDATE, 'DAY, DDTH MONTH YYYY') FROM DUAL;

TO_CHAR(SYSDATE,'DAY,DDTHMON

THURSDAY , 04TH AUGUST 2005

SQL>

• TO_NUMBER: This function converts a character string to a number format:

SQL> UPDATE employees SET salary = salary +
TO_NUMBER('100.00', '9G999D99')
WHERE last_name = 'Alapati';

General and Conditional Functions
Oracle provides some very powerful general and conditional functions that enable you to extend
the power of simple SQL statements into something similar to a traditional programming language
construct. The conditional functions help you decide among several choices. Here are the impor-
tant general and conditional Oracle functions:

APPENDIX A ■ ORACLE DATABASE 10g SQL AND PL/SQL: A BRIEF PRIMER1192

4517AppA.qxd 8/19/05 11:20 AM Page 1192

• NVL: The NVL function replaces the value in a table column with the value after the comma if
the column is null. Thus, the NVL function takes care of column values if the column values
are null and converts them to non-null values:

SQL> SELECT last_name, title,
salary * NVL (commission_pct,0)/100 COMM
FROM employees;

• COALESCE: This function is similar to NVL, but it returns the first non-null value in the list:

SQL> COALESCE(region1, region2, region3, region4)

• DECODE: This function is used to incorporate basic if-then functionality into SQL code. The
following example assigns a party name to all the voters in the table based on the value in
the affiliation column. If there is no value under the affiliation column, the voter is listed as
an independent:

SQL> SELECT DECODE(affiliation, 'D', 'Democrat',
'R', 'Republican', 'Independent') FROM voters;

• CASE: This function provides the same functionality as the DECODE function, but in a much
more intuitive and elegant way. Here’s a simple example of using the CASE statement, which
helps you incorporate if-then logic into your code:

SQL> SELECT ename,
(CASE deptno
WHEN 10 THEN 'Accounting'
WHEN 20 THEN 'Research'
WHEN 30 THEN 'Sales'
WHEN 40 THEN 'Operations'
ELSE 'Unknown'
END)
department
FROM employees;

Analytical Functions
Oracle’s SQL analytical functions are powerful tools for business intelligence applications. Oracle
claims a potential improvement of 200 to 500 percent in query performance with the use of the SQL
analytical functions. The purpose behind using analytical functions is to perform complex sum-
mary computations without using a lot of code. Here are the main SQL analytical functions of the
Oracle database:

• Ranking functions: These enable you to rank items in a data set according to some criteria.
Oracle has several types of ranking functions, including RANK, DENSE_RANK, CUME_DIST,
PERCENT_RANK, and NTILE. Listing A-1 shows a simple example of how a ranking function
can help you rank some sales data.

Listing A-1. An Example of a Ranking Function

SQL> SELECT sales_type,
TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES,
RANK() OVER (ORDER BY SUM(amount_sold)) AS original_rank,
RANK() OVER (ORDER BY SUM(amount_sold)
DESC NULLS LAST) AS derived_rank
FROM sales, products, customers, time_frame, sales_types
WHERE sales.prod_id=products.prod_id AND
sales.cust_id=customers.cust_id AND

APPENDIX A ■ ORACLE DATABASE 10g SQL AND PL/SQL: A BRIEF PRIMER 1193

4517AppA.qxd 8/19/05 11:20 AM Page 1193

sales.time_id=time_frame.time_id AND
sales.sales_type_id=sales_types.sales_type_id AND
timeframe.calendar_month_desc IN ('2005-07', '2005-08')
AND country_id='INDIA'
GROUP BY sales_type;

SALES_TYPE SALES ORIGINAL_RANK DERIVED_RANK
-------------------- -------------- ------------ ---------------
Direct Sales 5,744,263 5 1
Internet 3,625,993 4 2
Catalog 1,858,386 3 3
Partners 1,500,213 2 4
Tele Sales 604,656 1 5
SQL>

• Moving-window aggregates: These functions provide cumulative sums and moving averages.

• Period-over-period comparisons: These functions let you compare two periods (for example,
“How does the first quarter of 2005 compare with the first quarter of 2006 in terms of per-
centage growth?”).

• Ratio-to-report comparisons: These make it possible to compare ratios (for example, “What is
August’s enrollment as a percentage of the entire year’s enrollment?”).

• Statistical functions: These functions calculate correlations and regression functions so you
can see cause and effect relationships among data.

• Inverse percentiles: These help you find the data corresponding to a percentile value (for
example, “Get me the names of the salespeople who correspond to the median sales value.”).

• Hypothetical ranks and distributions: These help you figure out how a new value for a col-
umn fits into existing data in terms of its rank and distribution.

• Histograms: These functions return the number of the histogram data appropriate for each
row in a table.

• First/last aggregates: These functions are appropriate when you are using the GROUP BY clause
to sort data into groups. Aggregate functions let you specify the sort order for the groups.

Hierarchical Retrieval of Data
If a table contains hierarchical data (data that can be grouped into levels, with the parent data at
higher levels and child data at lower levels), you can use Oracle’s hierarchical queries. Hierarchical
queries typically use the following structure:

• The START WITH clause denotes the root row or rows for the hierarchical relationship.

• The CONNECT BY clause specifies the relationship between parent and child rows, with the
prior operator always pointing out the parent row.

Listing A-2 shows a hierarchical relationship between the employees and manager columns.
The CONNECT BY clause describes the relationship. The START WITH clause specifies where the state-
ment should start tracing the hierarchy.

Listing A-2. A Hierarchical Relationship Between Data

SQL> SELECT employee_id, last_name, manager_id
FROM employees
START WITH manager_id = 100
CONNECT BY PRIOR employee_id = manager_id;

APPENDIX A ■ ORACLE DATABASE 10g SQL AND PL/SQL: A BRIEF PRIMER1194

4517AppA.qxd 8/19/05 11:20 AM Page 1194

EMPLOYEE_ID LAST_NAME MANAGER_ID
----------- -------------- ----------

101 Reddy 100
108 Greenberg 101
109 Faviet 108
110 Colon 108
111 Chowdhary 108
112 Urman 108
113 Singh 108
200 Whalen 101

SQL>

Selecting Data from Multiple Tables
So far, we’ve mostly looked at how to perform various DML operations on single tables, including
using SQL functions and expressions. However, in real life, you’ll mostly deal with query output
retrieved from several tables or views. When you need to retrieve data from several tables, you need
to join the tables. A join is a query that lets you combine data from tables, views, and materialized
views. Note that a table can be joined to other tables or to itself.

The Cartesian product or Cartesian join is simply a join of two tables without a selective WHERE
clause. Therefore, the query output will consist of all rows from both tables. Here’s an example of a
Cartesian join:

SQL> SELECT * FROM employees, dept;

Cartesian products of two large tables are almost always the result of a mistaken SQL query
that omits the join condition. By using a join condition when you’re combining data from two or
more tables, you can limit the number of rows returned. A join condition can be used in the WHERE
clause or the FROM clause, and it limits the data returned by selecting only data that satisfies the
condition stipulated by the join condition.

Here’s an example of a join statement that uses a join condition:

SQL> SELECT * FROM employees, dept
WHERE dept='HR';

Types of Oracle Joins
Oracle offers various types of joins based on the way you combine rows from two or more tables or
views. The next sections discuss the most commonly used types of Oracle joins.

Equi-Join

With an equi-join, two or more tables are joined based on an equality condition between two
columns. In other words, the same column has the same value in all the tables that are being joined.
Here’s an example:

SQL> SELECT e.last_name, d.dept
FROM emp e, dept d WHERE e.emp_id = d.emp_id;

You can also use the following new syntax for the preceding join statement:

SQL> SELECT e.last_name, d.dept
FROM emp e JOIN dept d
USING (emp_id);

If you want to join multiple columns, you can do so by using a comma-delimited list of column
names, as in USING (dept_id, emp_name).

APPENDIX A ■ ORACLE DATABASE 10g SQL AND PL/SQL: A BRIEF PRIMER 1195

4517AppA.qxd 8/19/05 11:20 AM Page 1195

Natural Join

A natural join is an equi-join where you don’t specify any columns to be matched for the join.
Oracle will automatically determine the columns to be joined, based on the matching columns
in the two tables. Here’s an example:

SQL> SELECT e.last_name, d.dept
FROM emp e NATURAL JOIN dept d;

In the preceding example, the join is based on identical values for the last_name column in
both the emp and dept tables.

Self Join

A self join is a join of a table to itself through the use of table aliases. In the following example, the
employees table is joined to itself using an alias. The query deletes duplicate rows in the employees
table.

SQL> DELETE FROM employees X WHERE ROWID >
2 (select MIN(rowid) FROM employees Y
3 where X.key_values = Y.key_values);

Inner Join

An inner join, also known as a simple join, returns all rows that satisfy the join condition. The tradi-
tional Oracle inner join syntax used the WHERE clause to specify how the tables were to be joined.
Here’s an example:

SQL> SELECT e.flast_name, d.dept
FROM emp e, dept d WHERE e.emp_id = d.emp_id;

The newer Oracle inner joins (or simply joins) specify join criteria with the new ON or USING
clause. Here’s a simple example:

SQL> SELECT DISTINCT NVL(dname, 'No Dept'),
COUNT(empno) nbr_emps
FROM emp JOIN DEPT
ON emp.deptno = dept.deptno
WHERE emp.job IN ('MANAGER', 'SALESMAN', 'ANALYST')
GROUP BY dname;

Outer Join

An outer join returns all rows that satisfy the join condition, plus some or all of the rows from the
table that doesn’t have matching rows that meet the join condition. There are three types of outer
joins: left outer join, right outer join, and full outer join. Usually, the word “outer” is omitted from
the full outer join statement.

Oracle provides the outer join operator, wherein you use a plus sign (+) to indicate missing
values in one table, but it recommends the use of the newer ISO/ANSI join syntax. Here’s a typical
query using the full outer join:

SQL> SELECT DISTINCT NVL(dept_name, 'No Dept') deptname,
COUNT(empno) nbr_emps
FROM emp FULL JOIN dept
ON dept.deptno = emp.deptno
GROUP BY dname;

APPENDIX A ■ ORACLE DATABASE 10g SQL AND PL/SQL: A BRIEF PRIMER1196

4517AppA.qxd 8/19/05 11:20 AM Page 1196

Grouping Operations
Oracle provides the GROUP BY clause so you can group the results of a query according to various
criteria. The GROUP BY clause enables you to consider a column value for all the rows in the table
fulfilling the SELECT condition.

A GROUP BY clause commonly uses aggregate functions to summarize each group defined by
the GROUP BY clause. The data is sorted on the GROUP BY columns, and the aggregates are calculated.
Here’s an example:

SQL> SELECT department_id, MAX(salary)
2 FROM employees
3* GROUP BY department_id;
DEPARTMENT_ID MAX(SALARY)
------------- -----------

10 4400
20 13000
30 11000
40 6500
50 8200

5 rows selected.
SQL>

Oracle also allows you to nest group functions. The following query gets you the minimum
average budget for all departments (the AVG function is nested inside the MIN function here):

SQL> SELECT MIN(AVG(budget))
FROM dept_budgets
GROUP BY dept_no;

The GROUP BY Clause with a ROLLUP Operator
You’ve seen how you can derive subtotals with the help of the GROUP BY clause. The GROUP BY clause
with a ROLLUP operator gives you subtotals and total values. You can thus build subtotal aggregates
at any level. In other words, the ROLLUP operator gets you the aggregates at each group by level. The
subtotal rows and the grand total row are called the superaggregate rows.

Listing A-3 shows an example of using the ROLLUP operator.

Listing A-3. A GROUP BY Clause with a ROLLUP Operator

SQL> SELECT Year,Country,SUM(Sales) AS Sales
FROM Company_Sales
GROUP BY ROLLUP (Year,Country);

YEAR COUNTRY SALES
-------- -------- ---------
1997 France 3990
1997 USA 13090
1997 17080
1998 France 4310
1998 USA 13900
1998 18210
1999 France 4570
1999 USA 14670
1999 19240

54530 /*This is the grand total */
SQL>

APPENDIX A ■ ORACLE DATABASE 10g SQL AND PL/SQL: A BRIEF PRIMER 1197

4517AppA.qxd 8/19/05 11:20 AM Page 1197

The GROUP BY Clause with a CUBE Operator
You can consider the CUBE operator to be an extension of the ROLLUP operator, as it helps extend the
standard Oracle GROUP BY clause. The CUBE operator computes all possible combinations of subto-
tals in a GROUP BY operation. In the previous example, the ROLLUP operator gave you yearly subtotals.
Using the CUBE operator, you can get countrywide totals in addition to the yearly totals. Here’s a
simple example:

SQL> SELECT department_id, job_id, SUM(salary)
4 FROM employees
5 GROUP BY CUBE (department_id, job_id);

DEPARTMENT_ID JOB_ID SUM(SALARY)
------------- ---------- -----------------

10 AD_ASST 44000
20 MK_MAN 130000
20 MK_REP 60000
30 PU_MAN 110000
30 PU_CLERK 139000

. . .
SQL>

The GROUP BY Clause with a GROUPING Operator
As you’ve seen, the ROLLUP operator gets you the superaggregate subtotals and grand totals. The
GROUPING operator in a GROUP BY clause helps you distinguish between superaggregated subtotals
and the grand total column from the other row data.

The GROUP BY Clause with a GROUPING SETS Operator
The GROUPING SETS operator lets you group multiple sets of columns when you’re calculating aggre-
gates such as sums. Here’s an example that shows how you can use this operator to calculate
aggregates over three groupings: (year, region, item), (year, item), and (region, item). The
GROUPING SETS operator eliminates the need for inefficient UNION ALL operators.

SQL> SELECT year, region, item, sum(sales)
FROM regional_salesitem GROUP BY
GROUPING SETS ((year, region, item),
(year, item), (region, item));

The GROUP BY Clause with a HAVING Operator
The HAVING operator lets you restrict or exclude the results of a GROUP BY operation, in essence put-
ting a WHERE condition on the GROUP BY clause’s result set. In the following example, the HAVING
operator restricts the query results to only those departments that have a maximum salary greater
than 20,000:

SQL> SELECT department_id, max(salary)
2 FROM employees
3 GROUP BY department_id
4* HAVING MAX(salary)>20000;

DEPARTMENT_ID MAX(SALARY)
------------- -----------

90 24000
SQL>

APPENDIX A ■ ORACLE DATABASE 10g SQL AND PL/SQL: A BRIEF PRIMER1198

4517AppA.qxd 8/19/05 11:20 AM Page 1198

Writing Subqueries
Subqueries resolve queries that have to be processed in multiple steps—where the final result
depends on the results of a child query or subquery to the main query. If the subquery occurs in
the WHERE clause of the statement, it’s called a nested subquery.

Top-N Analysis
The following query gives you the top ten employees in a firm ranked by salary. You can just as
easily retrieve the bottom ten employees by using the ORDER BY clause instead of the ORDER BY DESC
clause.

SQL> SELECT emp_id, emp_name, job, manager, salary
FROM
(SELECT emp_id, emp_name, job, manager, salary,
RANK() OVER
(ORDER BY SALARY DESC NULLS LAST) AS Employee_Rank
FROM employees
ORDER BY SALARY DESC NULLS LAST)
WHERE employee_Rank < 5;

Subqueries can be single-row or multiple-row SQL statements. Let’s take a quick look at both
types of subqueries.

Single-Row Subqueries
Subqueries are useful when you need to answer queries on the basis of as-yet unknown values, such
as which employees have a salary higher than the employee with the employee ID 9999? To answer
such a question, a subquery or inner query is executed first (and only once). The result of this sub-
query is then used by the main or outer query. Here’s the query:

SQL> SELECT first_name||last_name, dept
2 FROM employee
3 WHERE sal >
4 (SELECT sal
5 FROM emp
6 WHERE empno= 9999);

Multiple-Row Subqueries
A multiple-row subquery returns multiple rows in the output, so you need to use multiple-row
comparison operators, such as IN, ANY, and ALL. Using a single-row operator with a multiple-row
subquery returns this common Oracle error:

ERROR:
ORA-01427: single-row subquery returns more than one row

Multiple-Column Subqueries
Multiple-column subqueries are queries where the inner query retrieves the values of more than one
column. The rows in the subquery are then evaluated in the main query in pair-wise comparison,
column by column and row by row.

APPENDIX A ■ ORACLE DATABASE 10g SQL AND PL/SQL: A BRIEF PRIMER 1199

4517AppA.qxd 8/19/05 11:20 AM Page 1199

Advanced Subqueries
Correlated subqueries are more complex than regular subqueries and answer questions such as
“What are the names of all employees whose salary is below the average salary of their department?”
The inner query computes the average salary, and the outer or main query gets the employee infor-
mation. However, for each employee in the main (outer) query, the inner query has to be computed,
because department averages depend on the department number of the employee in the outer
query.

The Exists and Not Exists Operators
The EXISTS operator tests for the existence of rows in the inner query or subquery when you’re using
subqueries. The NOT EXISTS operator tests for the nonexistence of rows in the inner query. In the fol-
lowing statement, the EXISTS operator will be TRUE if the subquery returns at least one row:

SQL> SELECT department_id
FROM departments d
WHERE EXISTS
(SELECT * FROM employees e
WHERE d.department_id
= e.department_id);

Using Regular Expressions
Oracle Database 10g adds support for regular expressions to SQL. Regular expressions let you use
special operators to manipulate strings or carry out a search. Traditionally, developers used opera-
tors such as LIKE, REPLACE and SUBSTRING in their search expressions. However, these expressions
forced you to write lengthy SQL and PL/SQL code when performing complex searches. Oracle
Database 10g lets you perform complex searches and string manipulations easily with regular
expressions.

■Note Oracle’s regular expression features follow the popular POSIX standards.

A regular expression searches for patterns in character strings. The character string has to be
one of CHAR, VARCHAR2, NCHAR, or NVARCHAR2, and the regular expression function can be one
of the following:

• REGEXP_LIKE

• REGEXP_REPLACE

• REGEXP_INSTRING

• REGEXP_SUBSTRING

The REGEXP_LIKE function evaluates strings using a specified set of characters. The regular
expression function searches for a pattern in a string, which is specified with the SOURCE_STRING
parameter in the function. The PATTERN variable represents the actual regular expression, which is
the pattern to search for. A regular expression is usually a text literal, it can be one of CHAR, VAR-
CHAR2, NCHAR, or NVARCHAR2, and it can be a maximum of 512 bytes long. You can also specify
an optional match parameter to modify the matching behavior. For example, a value of i specifies
case-insensitive matching, while c specifies case-sensitive matching.

APPENDIX A ■ ORACLE DATABASE 10g SQL AND PL/SQL: A BRIEF PRIMER1200

4517AppA.qxd 8/19/05 11:20 AM Page 1200

Here is the syntax of the REGEXP_LIKE function:

REGEXP_LIKE(source_string, pattern [,match_parameter])

If you want to carry out string-manipulation tasks, you can use the REGEXP_INSTR, REGEXP_
REPLACE, or REGEXP_SUBSTR built-in functions. These are really extensions of the normal SQL INSTR,
REPLACE, and SUBSTR functions.

Regular expression features use characters like the period (.), asterisk (*), caret (^), and dollar
sign ($), which are common in UNIX and Perl programming. The caret character (^), for example,
tells Oracle that the characters following it should be at the beginning of the line. Similarly, the S
character indicates that a character or a set of characters must be at the very end of the line. Here’s
an example using the REGEXP_LIKE function that picks up all names with consecutive vowels:

SQL> SELECT last_name
FROM employees
WHERE REGEXP_LIKE (last_name, '([aeiou])\1', 'i');

LAST_NAME

Freedman
Greenberg
Khoo
Gee
Lee
. . .
SQL>

Here’s another example that quickly searches for employees who were hired between the years
2000 and 2005.

SQL> SELECT emp_name, salary,
2 TO_CHAR(hire_date,'yyyy') year_of_hire
3 FROM .emp
4* WHERE REGEXP_LIKE (TO_CHAR (hire_date, 'yyyy'), '^200[0-5]$');

LAST_NAME FIRST_NAME SALARY YEAR
------------------------- -------------------- ---------- ----
Austin David 4800 1997
Chen John 8200 1997
Alapati Shannon 7700 1997
Baida Shelli 2900 1997
Tobias Sigal 2800 1997
Weiss Matthew 8000 1996

Abstract Data Types
In this section you’ll briefly review the important Oracle features that facilitate object-oriented
programming. Abstract types, also called object types, are at the heart of Oracle’s object-oriented
programming. Unlike a normal data type, an abstract data type contains a data structure along with
the functions and procedures needed to manipulate the data; thus, data and behavior are coupled.

Object types are like other schema objects, and they consist of a name, attributes, and methods.
Object types are similar to the concept of classes in C++ and Java. Oracle support for object-oriented
features, such as types, makes it feasible to implement object-oriented features, such as encapsula-
tion and abstraction, while modeling complex real-life objects and processes. Oracle also supports
single inheritance of user-defined SQL types.

APPENDIX A ■ ORACLE DATABASE 10g SQL AND PL/SQL: A BRIEF PRIMER 1201

4517AppA.qxd 8/19/05 11:20 AM Page 1201

The CREATE TYPE Command
Object types are created by users and stored in the database like Oracle data types such as
VARCHAR2, for example. The CREATE TYPE command lets you create an abstract template that
corresponds to a real-world object. Here’s an example:

SQL> CREATE TYPE person AS object
2 (name varchar2(30),
3 phone varchar2(20))
4 /

Type created.
SQL>

Object Tables
Object tables contain objects such as the person type that was created in the previous section.
Here’s an example:

SQL> CREATE TABLE person_table OF person;
Table created.
SQL>

Here’s the interesting part. The person_table table doesn’t contain single value columns like a
regular Oracle table—its columns are types, which can hold multiple values. You can use object
tables to view the data as a single-column table or a multicolumn table that consists of the compo-
nents of the object type. Here’s how you would insert data into an object table:

SQL> INSERT INTO person_table
2 VALUES
3 ('john smith', '1-800-555-9999');

1 row created.
SQL>

Collections
Collections are ideal for representing one-to-many relationships among data. Oracle offers you two
main types of collections: varrays and nested tables. We’ll look at these two types of collections in
more detail in the following sections.

Varrays
Varrays are stored in the database as RAW or BLOB objects. A varray is simply an ordered collection
of data elements. Each element in the array is identified by an index, which is used to access that
particular element. Here’s how you declare a VARRAY type:

SQL> CREATE TYPE prices AS VARRAY (10) OF NUMBER (12,2);

Nested Tables
A nested table consists of an ordered set of data elements. The ordered set can be of an object type
or an Oracle built-in type. Here’s a simple example:

SQL> CREATE TYPE lineitem_table AS TABLE OF lineitem;

To access the elements of a collection with SQL, you can use the TABLE operator, as shown in
the following example. Here, history is a nested table and courses is the column you want to insert
data into:

APPENDIX A ■ ORACLE DATABASE 10g SQL AND PL/SQL: A BRIEF PRIMER1202

4517AppA.qxd 8/19/05 11:20 AM Page 1202

SQL> INSERT INTO
TABLE(SELECT courses FROM department WHERE name = 'History')
VALUES('Modern India');

Type Inheritance
You can create not just types, but also type hierarchies, which consist of parent supertypes and child
subtypes connected to the parent types by inheritance. Here’s an example of how you can create a
subtype from a supertype. First, create the supertype:

SQL> CREATE TYPE person_t AS OBJECT (
name varchar2(80),
social_sec_no number,
hire_date date,
member function age() RETURN number,
member function print() RETURN varchar2) NOT FINAL;

Next, create the subtype, which will inherit all the attributes and methods from its supertype:

SQL> CREATE TYPE employee_t UNDER person_t
(salary number,
commission number,
member function wages () RETURN number,
OVERRIDING member function print () RETURN varchar2);

The Cast Operator
The CAST operator enables you to do two things. It lets you convert built-in data types and also con-
vert a collection-type value into another collection-type value.

Here’s an example of using CAST with built-in data types:

SQL> SELECT product_id,
CAST(description AS VARCHAR2(30))
FROM product_desc;

PL/SQL
Although SQL is easy to learn and has a lot of powerful features, it doesn’t allow the procedural con-
structs of third-generation languages such as C. PL/SQL is Oracle’s proprietary extension to SQL,
and it provides you the functionality of a serious programming language. One of the big advantages
of using PL/SQL is that you can use program units called procedures or packages in the database,
thus increasing code reuse and performance.

The Basic PL/SQL Block
A PL/SQL block is an executable program. A PL/SQL code block, whether encapsulated in a pro-
gram unit such as a procedure or specified as a free-form anonymous block, consists of the
following structures, with a total of four key statements, only two of which are mandatory:

• DECLARE: In this optional section, you declare the program variables and cursors.

• BEGIN: This mandatory statement indicates that SQL and PL/SQL statements will follow it.

• EXCEPTION: This optional statement specifies error handling.

• END: This mandatory statement indicates the end of the PL/SQL code block.

APPENDIX A ■ ORACLE DATABASE 10g SQL AND PL/SQL: A BRIEF PRIMER 1203

4517AppA.qxd 8/19/05 11:20 AM Page 1203

Here’s an example of a simple PL/SQL code block:

SQL> DECLARE isbn NUMBER(9)
BEGIN
isbn := 123456789;
insert into book values (isbn, 'databases', 59.99);
COMMIT;
END;

SQL>

Declaring Variables
You can declare both variables and constants in the DECLARE section. Before you can use any vari-
able, you must first declare it. A PL/SQL variable can be a built-in type such as DATE, NUMBER,
VARCHAR2, or CHAR, or it can be a composite type such as VARRAY. In addition, PL/SQL uses the
BINARY_INTEGER and BOOLEAN data types.

Here are some common PL/SQL variable declarations:

hired_date DATE;
emp_name VARCHAR2(30);

In addition to declaring variables, you can also declare constants, as shown in the following
example:

tax_rate constant number := 0.08;

You can also use the %TYPE attribute to declare a variable that is of the same type as a specified
table’s column, as shown here:

emp_num employee.emp_id%TYPE;

The %ROWTYPE attribute specifies that the record (row) is of the same data type as a database
table. In the following example, the DeptRecord record has all the columns contained in the depart-
ment table, with identical data types and length:

declare
v_DeptRecord department%ROWTYPE;

Writing Executable Statements
After the BEGIN statement, you can enter all your SQL statements. These look just like your regular
SQL statements, but notice the difference in how you handle a SELECT statement and an INSERT
statement in the following sections.

A SELECT Statement in PL/SQL
When you use a SELECT statement in PL/SQL, you need to store the retrieved values in variables, as
shown here:

DECLARE
name VARCHAR2(30);
BEGIN
SELECT employee_name INTO name FROM employees WHERE emp_id=99999;
END;
/

APPENDIX A ■ ORACLE DATABASE 10g SQL AND PL/SQL: A BRIEF PRIMER1204

4517AppA.qxd 8/19/05 11:20 AM Page 1204

DML Statements in PL/SQL
Any INSERT, DELETE, or UPDATE statements in PL/SQL work just as they do in regular SQL. You can use
the COMMIT statement after any such operation, as shown here:

BEGIN
DELETE FROM employee WHERE emp_id = 99999;
COMMIT;
END;
/

Handling Errors
In PL/SQL, an error or a warning is called an exception. PL/SQL has some internally defined errors,
and you can also define your own error conditions. When any error occurs, an exception is raised
and program control is handed to the exception-handling section of the PL/SQL program. If you
define your own error conditions, you have to raise exceptions by using a special RAISE statement.

The following example shows an exception handler using the RAISE statement:

DECLARE
acct_type INTEGER := 7;

BEGIN
IF acct_type NOT IN (1, 2, 3) THEN

RAISE INVALID_NUMBER; -- raise predefined exception
END IF;

EXCEPTION
WHEN INVALID_NUMBER THEN
ROLLBACK;

END;
/

PL/SQL Control Structures
PL/SQL offers you several types of control structures, which enable you to perform iterations of
code or conditional execution of certain statements. The various types of control structures in
PL/SQL are covered in the following sections.

Conditional Control
The main type of conditional control structure in PL/SQL is the IF statement, which enables condi-
tional execution of statements. You can use the IF statement in three forms: IF-THEN, IF-THEN-ELSE,
and IF-THEN-ELSEIF. Here’s an example of a simple IF-THEN-ELSEIF statement:

BEGIN
. . .
IF total_sales > 100000 THEN

bonus := 5000;
ELSEIF total_sales > 35000 THEN

bonus := 500;
ELSE

bonus := 0;
END IF;
INSERT INTO new_payroll VALUES (emp_id, bonus . . .);

END;
/

APPENDIX A ■ ORACLE DATABASE 10g SQL AND PL/SQL: A BRIEF PRIMER 1205

4517AppA.qxd 8/19/05 11:20 AM Page 1205

PL/SQL Looping Constructs
PL/SQL loops provide a way to perform iterations of code for a specified number of times or until a
certain condition is true or false. The following sections cover the basic types of looping constructs.

The Simple Loop

The simple loop construct encloses a set of SQL statements between the keywords LOOP and END
LOOP. The EXIT statement ends the loop. You use the simple loop construct when you don’t know
how many times the loop should execute. The logic inside the LOOP and END LOOP statements
decides when the loop is terminated.

In the following example, the loop will be executed until a quality grade of 6 is reached:

LOOP
. . .
if quality_grade > 5 then
. . .
EXIT;
end if;

END LOOP;

Another simple loop type is the LOOP . . . EXIT . . . WHEN construct, which controls the
duration of the loop with a WHEN statement. A condition is specified for the WHEN statement, and
when this condition becomes true, the loop will terminate. Here’s a simple example:

DECLARE
count_num NUMBER(6);

BEGIN
count_num := 1;
LOOP
dbms_output.put_line(' This is the current count '|| count_num);
count_num := count_num + 1;
Exit when count_num > 100;
END LOOP;

END;

The WHILE Loop

The WHILE loop specifies that a certain statement be executed while a certain condition is true. Note
that the condition is evaluated outside the loop. Each time the statements within the LOOP and END
LOOP statements are executed, the condition is evaluated. When the condition no longer holds true,
the loop is exited. Here’s an example of the WHILE loop:

WHILE total <= 25000
LOOP
. . .
SELECT sal INTO salary FROM emp WHERE . . .
total := total + salary;
END LOOP;

The FOR Loop

The FOR loop is used when you want a statement to be executed a certain number of times. The FOR
loop emulates the classic do loop that exists in most programming languages. Here’s an example of
the FOR loop:

APPENDIX A ■ ORACLE DATABASE 10g SQL AND PL/SQL: A BRIEF PRIMER1206

4517AppA.qxd 8/19/05 11:20 AM Page 1206

BEGIN
FOR count_num IN 1..100
LOOP
dbms_output.put_line('The current count is : '|| count_num);

END LOOP;
END;

PL/SQL Records
Records in PL/SQL let you treat related data as a single unit. Records contain fields, with each field
standing for a different item. You can use the %ROWTYPE attribute to declare a table’s columns as a
record, which uses the table as a cursor template, or you can create your own records. Here’s a
simple example of a record:

DECLARE
TYPE MeetingTyp IS RECORD (
date_held DATE,
location VARCHAR2(20),
purpose VARCHAR2(50));

To reference an individual field in a record, you use the dot notation, as shown here:

MeetingTyp.location

Using Cursors
An Oracle cursor is a handle to an area in memory that holds the result set of a SQL query, enabling
you to individually process the rows in the result set. Oracle uses implicit cursors for all DML state-
ments. Explicit cursors are created and used by application coders.

Implicit Cursors
Implicit cursors are automatically used by Oracle every time you use a SELECT statement in PL/SQL.
You can use implicit cursors in statements that return just one row. If your SQL statement returns
more than one row, an error will result.

In the following PL/SQL code block, the SELECT statement makes use of an implicit cursor:

DECLARE
emp_name varchar2(40);
salary float;

BEGIN
SELECT emp_name, salary FROM employees
WHERE employee_id=9999;
dbms_output.put_line('employee_name : '||emp_name||'
salary :'||salary);

END;
/

Explicit Cursors
Explicit cursors are created by the application developer, and they facilitate operations with a set of
rows, which can be processed one by one. You always use explicit cursors when you know your SQL
statement will return more than one row. Notice that you have to declare an explicit cursor in the

APPENDIX A ■ ORACLE DATABASE 10g SQL AND PL/SQL: A BRIEF PRIMER 1207

4517AppA.qxd 8/19/05 11:20 AM Page 1207

DECLARE section at the beginning of the PL/SQL block, unlike an implicit cursor, which you never
refer to in the code.

Once you declare your cursor, the explicit cursor will go through these steps:

1. The OPEN clause will identify the rows that are in the cursor and make them available for the
PL/SQL program.

2. The FETCH command will retrieve data from the cursor into a specified variable.

3. The cursor should always be explicitly closed after your processing is completed.

Listing A-4 shows how a cursor is first created and then used within a loop.

Listing A-4. Using an Explicit Cursor

DECLARE
/* The cursor select_emp is explicitly declared */

CURSOR select_emp IS
select emp_id, city
from employees
where city = 'DALLAS';
v_empno employees.emp_id%TYPE;
v_empcity employees.city%TYPE;

BEGIN
/* The cursor select_emp is opened */
Open select _emp;
LOOP

/* The select_emp cursor data is fetched into v_empno variable */
FETCH select_emp into v_empno;
EXIT WHEN select_emp%NOTFOUND;
dbms_output.put_line(v_empno|| ','||v_empcity);
END LOOP;
/* The cursor select_emp is closed */

Close select_emp;
END;
/

Cursor Attributes
In the example shown in Listing A-4, a special cursor attribute, %NOTFOUND, is used to indicate when
the loop should terminate. Cursor attributes are very useful when you’re dealing with explicit cur-
sors. Here are the main cursor attributes:

• %ISOPEN is a Boolean attribute that evaluates to false after the SQL statement completes exe-
cution. It returns true as long as the cursor is open.

• %FOUND is a Boolean attribute that tests whether the SQL statement matches any row—that is,
whether the cursor has any more rows to fetch.

• %NOTFOUND is a Boolean attribute that tells you that the SQL statement doesn’t match any row,
meaning there are no more rows left to fetch.

• %ROWCOUNT gives you the number of rows the cursor has fetched so far.

APPENDIX A ■ ORACLE DATABASE 10g SQL AND PL/SQL: A BRIEF PRIMER1208

4517AppA.qxd 8/19/05 11:20 AM Page 1208

Cursor FOR Loops
Normally when you use explicit cursors, cursors have to be opened, the data has to be fetched, and
finally the cursor needs to be closed. A cursor FOR loop automatically performs the open, fetch, and
close procedures, which simplifies your job. Listing A-5 shows an example that uses a cursor FOR
loop construct.

Listing A-5. Using the Cursor FOR Loop

DECLARE
CURSOR emp_cursor IS
SELECT emp_id, emp_name, salary
FROM employees;
v_emp_info employees%RowType;

Begin
FOR emp_info IN emp_cursor
LOOP
dbms_output.put_line ('Employee id : '||emp_id||'Employee
name : '|| emp_name||'Employee salary :'||salary);
END LOOP;

END;
/

Cursor Variables
Cursor variables point to the current row in a multirow result set. Unlike a regular cursor, though, a
cursor variable is dynamic—that is, you can assign new values to a cursor variable and pass it to
other procedures and functions. Let’s look at how you can create cursor variables in PL/SQL.

First, define a REF CURSOR type, as shown here:

DECLARE
TYPE EmpCurTyp IS REF CURSOR RETURN dept%ROWTYPE;

Next, declare cursor variables of the type DeptCurTyp in an anonymous PL/SQL code block or in
a procedure (or function), as shown in the following code snippet:

DECLARE
TYPE EmpRecTyp IS RECORD (

Emp_id NUMBER(9),
emp_name VARCHAR2(3O),
sal NUMBER(7,2));

TYPE EmpCurTyp IS REF CURSOR RETURN EmpRecTyp;
emp_cv EmpCurTyp; -- declare cursor variable

Procedures, Functions, and Packages
A PL/SQL procedure can be used to perform various DML operations. The following is a simple
Oracle procedure:

create or replace procedure new_employee (emp_id number,
last_name varchar(2), first_name varchar(2))
is
begin

insert into employees values (emp_id, last_name, first_name);
end new_employee;
/

APPENDIX A ■ ORACLE DATABASE 10g SQL AND PL/SQL: A BRIEF PRIMER 1209

4517AppA.qxd 8/19/05 11:20 AM Page 1209

Unlike a PL/SQL procedure, a function returns a value, as shown in the following example:

CREATE OR REPLACE FUNCTION sal_ok (salary REAL, title VARCHAR2) RETURN BOOLEAN IS
min_sal REAL;
max_sal REAL;

BEGIN
SELECT losal, hisal INTO min_sal, max_sal FROM sals

WHERE job = title;
RETURN (salary >= min_sal) AND (salary <= max_sal);

END sal_ok;

Oracle packages are objects that usually consist of several related procedures and functions,
and the package is usually designed to perform an application function by invoking all the related
procedures and functions within the package. Packages are extremely powerful, because they can
contain large amounts of functional code and be repeatedly executed by several users.

A package usually has two parts: a package specification and a package body. The package spec-
ification declares the variables, cursors, and subprograms (procedures and functions) that are part
of the package. The package body contains the actual cursors and subprogram code.

Listing A-6 shows a simple Oracle package.

Listing A-6. A PL/SQL Package

/* First, the Package Specification /*
create or replace package emp_pkg as
type list is varray (100) of number (5);
procedure new_employee (emp_id number, last_name
varchar2, first_name varchar2);
procedure salary_raise (emp_id number, raise number);
end emp_pkg;
/
/* The Package Body follows */
create or replace package body emp_pkg as
procedure new_employee (emp_id number,
last_name varchar(2), first_name varchar(2) is
begin
insert into employees values (emp_id, last_name, first_name);

end new_employee;
procedure salary_raise (emp_num number, raise_pct real) is
begin
update employees set salary = salary * raise_pct
where emp_id = emp_num;

end salary_raise;
end emp_pkg;
/

If you want to use emp_pkg to award a raise to an employee, all you have to do is execute the
following:

SQL> EXECUTE emp_pkg.salary_raise(99999, 0.15);

Oracle XML DB
A typical organization has information stored in multiple formats, some of which may be organized
in relational databases, but most of which is stored outside the database. The nondatabase infor-
mation may be stored in application-specific formats, such as Excel spreadsheets. Storing the

APPENDIX A ■ ORACLE DATABASE 10g SQL AND PL/SQL: A BRIEF PRIMER1210

4517AppA.qxd 8/19/05 11:20 AM Page 1210

nondatabase information in XML format instead makes it easier to access and update nonstruc-
tured organizational information.

Oracle XML DB isn’t really a special type of database for XML. It simply refers to the set of
built-in XML storage and retrieval technologies for the manipulation of XML data. Oracle XML DB
provides the advantages of object-relational database technology and XML technology. For exam-
ple, one of the major problems involved in dealing with XML data from within a relational database
is that most XML data is hierarchical in nature, whereas the Oracle database is based on the rela-
tional model. Oracle manages to deal effectively with the hierarchical XML data by using special
SQL operators and methods that let you easily query and update XML data in an Oracle database.
Oracle XML DB builds the XML Document Object Model (DOM) into the Oracle kernel. Thus, most
XML operations are treated as part of normal database processing.

Oracle XML DB provides the ability to view both structured and nonstructured information as
relational data. You can view the data as either rows in a table or nodes in an XML document.

Here is a brief list of the benefits offered by Oracle XML DB:

• You can access XML data using regular SQL queries.

• You can use Oracle’s OLTP, data warehousing, test, spatial data, and multimedia features to
process XML data.

• You can generate XML from an Oracle SQL query.

• You can transform XML into HTML format easily.

Storing XML in Oracle XML DB
Oracle uses a special native data type called XMLType to store and manage XML data in a relational
table. XMLType and XDBURIType, which is another built-in type for XML data, enable you to leave
the XML parsing, storage, and retrieval to the Oracle database. You can use the XMLType data type
just as you would the usual data types in an Oracle database. You can now store a well-formed XML
document in the database as an XML test using the CLOB base data type.

Here’s an example of using the XMLType data type:

SQL> CREATE TABLE sales_catalog_table
2 (sales_num number(18),
3 sales_order xmltype);

Table created.
SQL> DESC sales_catalog_table
Name Null? Type
--------------------- ----- --------
SALES_NUM NUMBER(18)
SALES_ORDER XMLTYPE
SQL>

The XMLType data type comes with a set of XML-specific methods, which you use to work with
XMLType objects. You can use these methods to perform common database operations, such as
checking for the existence of a node and extracting a node. The methods also support several opera-
tors that enable you to access and manipulate XML data as part of a regular SQL statement. These
operators follow the emerging SQL/XML standard. Using the well-known XPath notation, the
SQL/XML operators traverse XML structures to find the node or nodes on which they should use
the SQL operations. Here are some of the important SQL/XML operators:

• Extract() extracts a subset of the nodes contained in the XMLType.

• ExistsNode() checks whether a certain node exists in the XMLType.

• Validating() validates the XMLType contents against an XML schema.

APPENDIX A ■ ORACLE DATABASE 10g SQL AND PL/SQL: A BRIEF PRIMER 1211

4517AppA.qxd 8/19/05 11:20 AM Page 1211

• Transform() performs an XSL transformation.

• ExtractValue() returns a node corresponding to an XPath expression.

XML is in abstract form compared to the normal relational table entries. To optimize and exe-
cute statements that involve XML data, Oracle uses a query-rewrite mechanism to transform an
XPath expression into an equivalent regular SQL statement. The optimizer then processes the trans-
formed SQL statement like any other SQL statement.

You can store XML in Oracle XML DB in the following ways:

• You can use SQL or PL/SQL to insert the data. Using XMLType constructors, you must first
convert the sourced data into an XMLType instance.

• You can use the Oracle XML DB repository to store the XML data.

Here’s a simple example using the sales_catalog_table table to demonstrate how to perform
SQL-based DML operations with an XML-enabled table. In Listing A-7, an XML document is
inserted into sales_catalog_table.

Listing A-7. Inserting an XML Document into an Oracle Table

SQL> INSERT INTO sales_catalog_table
2 VALUES (123456,
3 XMLTYPE(
4 '<SalesOrder>
5 <Reference>Alapati - 200302201428CDT</Reference>
6 <Actions/>
7 <Reject/>
8 <Requestor>Nina U. Alapati</Requestor>
9 <User>ALAPATI</User>
10 <SalesLocation>Dallas</SalesLocation>
11 <ShippingInstructions/>
12 <DeliveryInstructions>Bicycle Courier</DeliveryInstructions>
13 <ItemDescriptions>
14 <ItemDescription ItemNumber="1">
15 <Description>Expert Oracle DB Administration</Description>
16 <ISBN Number="1590590228"Price="59.95"Quantity="5"/>
17 </ItemDescription>
18 </ItemDescriptions>
19* </SalesOrder>'));
1 row created.
SQL>

You can query the sales_catalog_table table’s sales_order column, as shown in Listing A-8, to
view the XML document in its original format.

Listing A-8. Viewing XML Data Stored in an Oracle Table

SQL> SELECT sales_order FROM
2 sales_catalog_table;
<SalesOrder>

<Reference>Alapati - 200302201428CDT</Reference>
<Actions/>
<Reject/>
<Requestor>Sam R. Alapati</Requestor>
<User>ALAPATI</User>
<SalesLocation>Dallas</SalesLocation>
<ShippingInstructions/>

APPENDIX A ■ ORACLE DATABASE 10g SQL AND PL/SQL: A BRIEF PRIMER1212

4517AppA.qxd 8/19/05 11:20 AM Page 1212

<DeliveryInstructions>Bicycle Courier</DeliveryInstructions>
<ItemDescriptions>
<ItemDescription ItemNumber="1">
<Description>Expert Oracle DB Administration</Description>
<ISBN Number="9999990228" Price="59.95" Quantity="2"/>

</ItemDescription>
</ItemDescriptions>

</SalesOrder>
SQL>

Once you create the sales_catalog_table table, it’s very easy to retrieve data using one of the
methods I just described. The following example shows how to query the table using the extract()
method. Note that the query includes XPath expressions and the SQL/XML operators extractValue
and existsNode to find the requestor’s name where the value of the /SalesOrder/SalesLocation/
text() node contains the value Dallas.

SQL> SELECT extractValue(s.sales_order,'/SalesOrder/Requestor')
2 FROM sales_catalog_table s
3 WHERE existsNode(s.SALES_ORDER,
4* '/SalesOrder[SalesLocation="Dallas"]') = 1;

EXTRACTVALUE(S.SALES_ORDER,'/SALESORDER/REQUESTOR')

Nina U. Alapati
SQL>

The Oracle XML DB Repository
The best way to process XML documents in Oracle XML DB is to first load them into a special repos-
itory called the Oracle XML DB repository. The XML repository is hierarchical, like most XML data,
and it enables you to easily query XML data. The paths and URLs in the repository represent the
relationships among the XML data, and a special hierarchical index is used to traverse the folders
and paths within the repository. The XML repository can hold non-XML data such as JPEG images,
Word documents, and more.

You can use SQL and PL/SQL to access the XML repository. XML authoring tools can directly
access the documents in the XML repository using popular Internet protocols such as HTTP, FTP,
and WebDAV. For example, you can use Windows Explorer, Microsoft Office, and Adobe Acrobat to
work with the XML documents that are stored in the XML repository. XML is by nature document-
centric, and the XML repository provides applications with a file abstraction when dealing with
XML data.

Setting Up an XML Schema
Before you can start using Oracle XML DB to manage XML documents, you need to perform the fol-
lowing tasks:

1. Create an XML schema. For example, SalesOrder, shown in Listing A-7, is a simple XML
schema that reflects a simple XML document. Within the SalesOrder schema are elements
such as ItemDescription, which provides details about the attributes of the component
items.

2. Register the XML schema. After the XML schema is created, you must register it with the
Oracle database using a PL/SQL procedure. When you register the XML schema, Oracle will
create the SQL objects and the XMLType tables that are necessary to store and manage the
XML documents. For the example shown in Listing A-6, registering the XML schema will

APPENDIX A ■ ORACLE DATABASE 10g SQL AND PL/SQL: A BRIEF PRIMER 1213

4517AppA.qxd 8/19/05 11:20 AM Page 1213

create a table called SalesOrder automatically, with one row in the table for each SalesOrder
document loaded into the XML repository. The XML schema is registered under the URL
http://localhost:8080/home/SCOTT/xdb/salesorder.xsd, and it contains the definition of
the SalesOrder element.

Creating a Relational View from an XML Document
Even if a developer doesn’t know much XML, he or she can use the XML documents stored in the
Oracle database by creating relational views based on the XML documents. The following example
maps nodes in an XML document to columns in a relational view called salesorder_view:

SQL> CREATE OR REPLACE VIEW salesorder_view
2 (requestor,description,sales_location)
3 AS SELECT
4 extractValue(s.sales_order,'/SalesOrder/Requestor'),
5 extractValue(s.sales_order,'/SalesOrder/Sales_Location')
6* FROM sales_Catalog_Table s ;

View created.
SQL>

You can query salesorder_view like you would any other view in an Oracle database, as shown
here:

SQL> SELECT requestor,sales_location FROM salesorder_view;
REQUESTOR
SALES_LOCATION
Aparna Alapati
Dallas
SQL>

Oracle and Java
You can use both PL/SQL and Java to write applications that need Oracle database access. Although
PL/SQL has several object-oriented features, the Java language is well known as an object-oriented
programming language. If your application needs heavy database access and must process large
amounts of data, PL/SQL is probably a better bet. However, for open distributed applications, Java-
based applications are more suitable.

The Oracle database contains a Java Virtual Machine (JVM) to interpret Java code from within
the database. Just as PL/SQL enables you to store code on the server and use it multiple times, you
can also create Java stored procedures and store them in the database. These Java stored procedures
are in the form of Java classes. You make Java files available to the Oracle JVM by loading them into
the Oracle database as schema objects.

You can use the Java programming language in several ways in an Oracle database. You can
invoke Java methods in classes that are loaded in the database in the form of Java stored proce-
dures. You can also use two different application programming interfaces (APIs), Java Database
Connectivity (JDBC) or SQLJ, to access the Oracle database from a Java-based application program.
In the sections that follow, we’ll briefly look at the various ways you can work with Java and the
Oracle database.

Java Stored Procedures
Java stored procedures are, of course, written using Java, and they facilitate the implementation of
data-intensive business logic using Java. These procedures are stored within the database like

APPENDIX A ■ ORACLE DATABASE 10g SQL AND PL/SQL: A BRIEF PRIMER1214

4517AppA.qxd 8/19/05 11:20 AM Page 1214

PL/SQL stored procedures. Java stored procedures can be seen as a link between the Java and non-
Java environments.

You can execute Java stored procedures just as you would PL/SQL stored procedures. Here’s a
summary of the steps involved in creating a Java stored procedure:

1. Define the Java class.

2. Using the Java compiler, compile the new class.

3. Load the class into the Oracle database. You can do this by using the loadjava command-
line utility.

4. Publish the Java stored procedure.

Once you’ve completed these steps, you can invoke the Java stored procedure.

JDBC
JDBC is a popular method used to connect to an Oracle database from Java. Chapter 10 contains a
complete example of a Java program. JDBC provides a set of interfaces for querying databases and
processing SQL data in the Java programming language.

Listing A-9 shows a simple JDBC program that connects to an Oracle database and executes a
simple SQL query.

Listing A-9. A Simple JDBC Program

import java.sql.*;
public class JDBCExample {
public static void main(String args[]) throws SQLException

/* Declare the type of Oracle Driver you are using */
{DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

/* Create a database connection for the JDBC program */
Connection conn=
DriverManager.getConnection(

"jdbc:oracle:thin:@nicholas:1521:aparna","hr","hr");
Statement stmt = conn.createStatement();
/* Pass a query to SQL and store the results in the result set rs */
ResultSet rs =
stmt.executeQuery("select emp_id, emp_name,salary from employees");
/* Using the while loop, result set rs is accessed row by row */
while(rs.next()){
int number = rs.getInt(1);
String name= rs.getString(2);
System.out.println(number+" "+name+" "+salary);

}
/* Close the JDBC result set and close the database connection */
rs.close();
conn.close();

}
}

JDBC is ideal for dynamic SQL, where the SQL statements aren’t known until run time.

SQLJ
SQLJ is a complementary API to JDBC, and it’s ideal for applications in which you’re using static
SQL (SQL that’s known before the execution). Being static, SQLJ enables you to trap errors before

APPENDIX A ■ ORACLE DATABASE 10g SQL AND PL/SQL: A BRIEF PRIMER 1215

4517AppA.qxd 8/19/05 11:20 AM Page 1215

they occur during run time. Keep in mind that that even with SQLJ, you still use JDBC drivers to
access the database.

There are three steps involved in executing a SQLJ program:

1. Create the SQLJ source code.

2. Translate the SQLJ source code into Java source code using a Java compiler.

3. Execute the SQLJ runtime program after you connect to the database.

Listing A-10 contains a simple SQLJ example that shows how to execute a SQL statement from
within Java.

Listing A-10. A Simple SQLJ Program

import java.sql.*;
import sqlj.runtime.ref.DefaultContext;
import oracle.sqlj.runtime.Oracle;
/* Declare the variables here */
/* Define an Iterator type to store query results */
#sql iterator ExampleIter (int emp_id, String emp_name,float salary);
public class MyExample
/* The main method */

{ public static void main (String args[]) throws SQLException
{

/* Establish the database connection for SQLJ */
Oracle.connect
("jdbc:oracle:thin:@shannon:1234:nicholas1", "hr", "hr");

/* Insert a row into the employees table */
#sql { insert into employees (emp_id, emp_name, salary)

values (1001, 'Nina Alapati', 50000) };
/* Create an instance of the iterator ExampleIter */
ExampleIter iter;

/* Store the results of the select query in the iterator ExampleIter */
#sql iter={ select emp_id, emp_name, salary from employees };

/* Access the data stored in the iterator, using the next() method */
while (iter.next()) {

System.out.println
(iter.emp_id,()+" "+iter.emp_name()+" "+iter.salary());
}

}
}

As you can see from the SQLJ example in Listing A-10, SQLJ is nothing more than embedded
SQL in a Java program. Using SQLJ, you can easily make calls to the database from Java. For a wealth
of information on Oracle and Java, please visit Oracle’s Java Center web site (http://otn.oracle.com/
tech/java/content.html).

This appendix just provided a very brief introduction to the Oracle Database 10g SQL and
PL/SQL capabilities. Although Oracle DBAs aren’t always expected be very proficient in SQL and
PL/SQL, the more you know about them, the better off you’ll be as a professional Oracle DBA.

APPENDIX A ■ ORACLE DATABASE 10g SQL AND PL/SQL: A BRIEF PRIMER1216

4517AppA.qxd 8/19/05 11:20 AM Page 1216

Symbols and Numbers
/ command, SQL*Plus, 515
$ sign, UNIX, 53
64-Bit Itanium processors, 917
@@commandfile notation, 518

A
abnormal program failure, 226
ABORT command

SHUTDOWN ABORT command,
384

ABORT_REDEF_TABLE procedure,
818

absolute path, UNIX
file locations, 47
navigating directories, 62

abstract data types, 1201–1203
CAST operator, 1203
collections, 1202
CREATE TYPE command, 1202
nested tables, 1202
object tables, 1202
type inheritance, 1203
varrays, 1202

ACCEPT command, SQL*Plus, 511
ACCEPT_SQL_PROFILE procedure,

998
access

restricting database access,
382–383

Access Advisor
see SQL Access Advisor

access drivers
creating external table layer, 562
ORACLE_DATAPUMP access

driver, 563–564
ORACLE_LOADER access driver,

562
ACCESS PARAMETERS clause, 562
access path analysis

Automatic Tuning Optimizer, 996
CBO choosing, 948

access plan
SQL processing, 1005

accessing data
see data access

ACID properties, transactions, 228
actions

ADDM recommendations, 763
active and inactive pages

memory management, 80

Active Session History
see ASH

active session pool
Database Resource Manager

setting, 819
resource allocation method, 432

Active Sessions chart, 1067
Active Sessions section, 891
ACTIVE_SESSION_POOL parameter,

436
ACTIVE_SESS_POOL_MTH

parameter, 436
ADD PARTITION clause, 191
Additional Information section

reading ADDM reports, 768
ADDM (Automatic Database

Diagnostic Monitor), 140,
759–773

ADDM analysis, 1068
analyzing performance problems,

1055
automatic performance tuning,

1004
AWR relationship, 760
configuring, 763–764
data dictionary views, 773, 1112
determining optimal I/O

performance, 764–765
introduction, 759
managing, 763
problems diagnosed by ADDM,

760–762
pronunciation of ADDM, 760
purpose of ADDM, 760
recommendations, 762–763
running ADDM, 765

setting to run by default, 763
using OEM Database Control,

773
time model statistics, 761, 761–762
tuning related advisors, 850
types of findings, 762
using DBMS_ADVISOR package,

770
when ADDM runs, 764

ADDM reports
abbreviated reports, 766
caution: confusing with AWR

reports, 840
contents, 761
creating using addmrpt.sql script,

765, 768–769

detailed reports using OEM,
770–772

reading, 766, 768
viewing, 765–772

ADDUSER command, iSQL*Plus, 534
ADD_FILE command/parameter

Data Pump utilities, 611, 612, 613,
621

ADD_LOGFILE procedure
sample LogMiner session, 735

ADD_POLICY procedure
fine-grained auditing, 469, 470

ADD_POLICY procedure, 459
adding security policy to database,

459–460
column-level VPD, 460
Oracle Policy Manager, 461

ADD_POLICY_CONTEXT procedure,
459

ADD_TABLE_RULES procedure, 586
adhoc administrative directory, 285
admin class, Oracle Backup tool, 685
ADMIN OPTION clause

granting system privileges, 444
ADMIN privilege

granting privileges, 483
Administration Assistant for NT

see Oracle Administration Assistant
for NT

Administration page
OEM Database Control, 893

administrative context, 415
administrative directories, 285
administrative domain, 681
administrative files, 282, 285
administrative server

servers comprising administrative
domain, 681

Administrative wait class, 1035
Administrator option

installing Oracle Client, 398
Administrators option

Database Control Setup page, 895
ADMIN_TABLES procedure, 1160
adump administrative directory, 285
Advanced Queuing (AQ)

Oracle Streams, 584
Advanced Replication feature, 700
Advanced Security option, 413, 414,

487

Index

1217

4517INDEX.qxd 8/19/05 11:20 AM Page 1217

Advisor Central page
managing advisory framework,

853
SQL Access Advisor

recommendations, 218
viewing ADDM reports, 770

advisors
AWR snapshots, 836
DBMS_ADVISOR package, 1180
instance-related advisors, 849
invoking from alert messages, 850
management advisors, 849–850
memory-related advisors, 849
MTTR Advisor, 854–855
raw data source, 849
scheduling to run automatically,

849
Segment Advisor, 850, 853
SQL Access Advisor, 850
SQL Tuning Advisor, 850
tuning-related advisors, 850
Undo Advisor, 850, 854
V$ADVISOR_PROGRESS view,

1123
advisory framework, 143, 849–853

data dictionary views, 853,
1113–1115

DBMS_ADVISOR package,
850–852, 1180

description, 823
introduction, 849
management advisors, 849–850
managing the framework, 850–853
OEM Database Control, 852–853
PGA Memory Advisor, 143
primary function, 849
Segment Advisor, 143
SGA Memory Advisor, 143
SQL Access Advisor, 143
SQL Tuning Advisor, 143
Undo Advisor, 143

after image records, 109
AFTER SUSPEND system event, 273
alert log file, 111

creating database, 365
DBA daily routine, 15
location of file, 111
managing flash recovery area, 647
parameter logging checkpointing

activity to, 356
starting Oracle instance, 362

alerts
alert queue, using, 831
critical alerts, 828
critical threshold, 832
data dictionary views related to,

833–834
Database Control, 829–831
DBA_ALERT_HISTORY view, 833,

1112
DBA_OUTSTANDING_ALERTS

view, 833, 1112
DBMS_SERVER_ALERT package,

831, 1180
Grid Control, 906, 907

invoking advisors from alert
messages, 850

managing alerts, 829–832
managing/monitoring database,

144
operation suspended alert, 273
out-of-space warning and critical

alerts, 647
problem-related alerts, 828
server-generated alerts, 142,

828–834
setting alert thresholds, 830
setting notification rules, 831
situations causing alerts, 828
“snapshot too old” alert, 834
tablespace alerts, 161, 162,

832–833
tablespace space usage alert, 828
threshold-based alerts, 828
V$ALERT_TYPES view, 833
views-related, 1135–1136
warning alerts, 828
warning threshold, 832

Alerts table, Database Control, 829
ALERT_QUE queue, 829
algebra, relational, 21
algorithms, encryption, 482
aliases for objects, 220
All Metrics page, Database Control,

826
ALL PRIVILEGES statement, 443
ALL views, 1084
ALLOCATE CHANNEL command,

656, 660
allocation methods, resource, 432
alloc_bytes, 198
ALLOW n CORRUPTION recovery

option, 753
ALL_HOMES subkey, Windows

registry, 921
ALL_ROWS hint/value

influencing execution plan, 959
OPTIMIZER_MODE parameter,

946
ALTER DATABASE command, 160
ALTER PROFILE command, 473
ALTER SESSION command, 146

changing dynamic parameter
values, 335

enabling Resumable Space
Allocation, 271

NAME parameter, 272
TIMEOUT clause, 271

ALTER SYSTEM command, 146
activating Database Resource

Manager, 440
changing dynamic parameter

values, 335
SCOPE clause, 377

ALTER TABLE command, 153
ALTER TABLESPACE command, 160,

163, 164
ALTER USER command, 425, 473
ALTER_ATTRIBUTES procedure, 876
ALTER_SQL_PROFILE procedure, 998

ALWAYS log group, 733
analytical functions, 1193–1194
ANALYZE command

collection of Optimizer statistics,
950

detecting data block corruption,
693

ancestor incarnation, 720
ANSI (American National Standards

Institute), 145
APM (Application Performance

Monitoring) tools, 885
APPEND clause, SQL*Loader, 544
APPEND command, SQL*Plus, 521
application attributes, defining, 454
application contexts, 454–456
Application Performance Monitoring,

885
application security, 487
Application wait class, 1035
arch administrative directory, 285
architecture

see also Oracle Database 10g
Architecture

Optimal Flexible Architecture, 281
RMAN architecture, 649–652

ARCHIVE LOG command, SQL*Plus,
524

ARCHIVE LOG LIST command,
SQL*Plus, 524

confirming archivelog mode, 372
archive logs

archive log parameters, 347
archived redo logs, SQL*Plus, 109,

524
backing up with RMAN, 673
dynamic performance views,

1123–1125
recovering database with RMAN,

713
retention policy, 647
viewing details about, 524

archivelog mode, 117, 632
archivelog/noarchivelog modes,

110, 371–373
making database backups, 687
partial database backups, 690
recovery catalog, 669

archiver (ARCn) process
background processes, 114, 117
database hangs, 1058–1059
flash recovery area, 642

archiving data
backup guidelines, 636
partitioned tables, 186

archiving, UNIX, 76
ARCn

see archiver (ARCn) process
arguments, UNIX

executing shell scripts, 69
arrays

transforming array data, 581–582
user-defined object types, 149

ARRAY[SIZE] variable, SQL*Plus, 500

■INDEX1218

4517INDEX.qxd 8/19/05 11:20 AM Page 1218

AS OF clause
Flashback Query feature, 256
Flashback Versions Query feature,

258
ASH (Active Session History), 142,

845–849
analyzing instance before tuning,

1066
analyzing waits, 1040
ashrpt.sql script, 846
brief description, 823
current active session data,

845–846
MMNL process, 845
older active session history data,

846
sample data, 824

ASH reports, 1072
Activity Over Time section, 848
analyzing recent session activity

with, 1057
beginning of ASH report, 846
creating, 846
Top Xyz sections, 847–848

ashrpt.sql script, 846, 1057
ashrpti.sql script, 1057
ASM (Automatic Storage

Management), 141, 783–799
architecture, 784–785
ASM Cache, 788
ASM instance

administering, 792
ASM architecture, 784
checking processes, 789
creating, 787–791
DBCA creating automatically,

787
examining instance

architecture, 789
initialization parameters for,

787–789
naming, 789
NOMOUNT/MOUNT

commands, 790
privileges required, 787
purpose of, 787
shutting down, 790–791
starting up, 790

asmcmd command-line tool, 791
backing up ASM database, 789
benefits of, 784
Cluster Synchronization Service

and, 785–787
creating ASM-based Oracle

database, 797
Database Control and, 783
disk groups, 791

adding disks to, 793
adding performance and

redundancy with, 791–792
ASM architecture, 784
ASM_DISKGROUPS parameter,

787

creating, 792–793
creating directories for alias

filenames, 795
creating new tablespace, 794
dropping disks and, 794
dropping files from, 796
incomplete ASM filenames, 795
managing ASM files, 794–795
rebalancing, 794

dynamic performance views, 1142
failure groups, 792
files

adding and dropping aliases,
796

ASM file templates, 796
ASM filename usage, 796
managing ASM files, 794–795
naming conventions, 795
types of ASM filenames, 795

installing, 785
Logical Volume Manager, 783
migrating database to, 797–799

with Database Control,
798–799

with RMAN, 797–798
mirroring, 792, 792
parameter specifying instance

type, 338
storage system summarized, 785
storage technologies, 94
striping, 792
templates

ASM file templates, 796
using templates with aliases,

795
ASM background (ASMB) process,

118
ASM rebalance (ARBn) processes, 118
asmcmd command-line tool, 791
ASM_DISKGROUPS parameter, 787
ASM_DISKSTRING parameter, 787
ASM_POWER_LIMIT parameter, 787
ASSM (Automatic Segment Space

Management), 800, 1045
reducing buffer busy waits event,

1047
at (@) sign

executing SQL scripts in
iSQL*Plus, 536

executing SQL scripts in SQL*Plus,
514–515

at command, UNIX, 77
at command, Windows, 516, 918
ATO (Automatic Tuning Optimizer),

995–996
atomicity, transactions, 228
ATTACH command/parameter

Data Pump utilities, 599, 609–612
attributes

building entity-relationship
diagram, 27

entity-relationship modeling, 25
relational database model, 20

audit files
adump administrative directory,

285
default location for audit file, 462

AUDIT SESSION statement
determining parameter limits, 430
information recorded, 464

audit trails, 471
auditing

audit by access, 462
audit by session, 462
audit levels, 462
audit-related parameters, 336–337
auditing database usage, 461–471
data dictionary views, 1098–1099
database auditing, 483

customizing with triggers,
465–468

DBA_AUDIT_TRAIL view, 463
default auditing, 463
default location for audit file, 462
enabling, 462–463
fine-grained auditing, 468–471
limiting data written to audit trail,

462
object-level audit, 462
privilege-level audit, 462
standard auditing, 462–468
statement-level audit, 462
SYS.AUD$ table, 463, 471
turning auditing off, 464–465
turning auditing on, 463–464
using flashback features for, 468

audit_column parameter
ADD_POLICY procedure, 469

audit_column_opts parameter
ADD_POLICY procedure, 470

audit_condition parameter
ADD_POLICY procedure, 469

AUDIT_FILE_DEST parameter, 337,
462

AUDIT_SYS_OPERATIONS
parameter, 337

AUDIT_TRAIL parameter, 336,
462–463

audit_trail parameter
ADD_POLICY procedure, 470

AUM (Automatic Undo
Management), 133, 244–251

advantages of, 244
DBA_UNDO_EXTENTS view, 1104
reducing buffer busy waits event,

1047
setting up, 245–250
space management, 800
undo segments, 250
UNDO_MANAGEMENT

parameter, 245
UNDO_RETENTION parameter,

247
UNDO_TABLESPACE parameter,

245
using DBCA, 246
V$UNDOSTAT view, 1134

■INDEX 1219

4517INDEX.qxd 8/19/05 11:20 AM Page 1219

authentication
see also passwords; security
checking for password file for, 356
connecting to RMAN, 651
database authentication, 471–475
denying remote client

authentication, 486
external authentication, 475–476
parameter prefixing operating

system authenticated
usernames, 356

proxy authentication, 476
AUTHENTICATION_SERVICES

parameter, SQLNET, 406
authorization

centralized user authorization, 476
database authorization, 450
external authorization, 451
global authorization, 451
role authorization, 450–451

authorizations
database creation, 332

AUTOALLOCATE clause/option
locally managed tablespaces, 155
managing extent sizes, 151
tablespace storage parameters,

157–158
temporary tablespaces, 165

AUTOCOMMIT variable
COMMIT statement, 227
making DML changes permanent,

523
AUTOEXTEND feature

ALTER TABLESPACE command,
160

altering bigfile tablespaces, 171
altering tablespaces, 163
sizing undo tablespaces, 250

automated tasks feature, 142
automatic checkpoint tuning, 116,

141, 810
automatic consumer group

switching, 436
resource allocation method, 432

Automatic Database Diagnostic
Monitor

see ADDM
automatic database management,

140–141
automatic database startup, 380
Automatic Disk-Based Backup and

Recovery, 640
automatic memory management, 140
automatic optimizer statistics

collection, 141, 780–782,
949–952

automatic performance tuning,
1003–1004

automatic PGA management, 129
automatic Segment Advisor

operation, 141
Automatic Segment Space

Management, 800, 1045,
1047

automatic sequences
see sequences

automatic service registration,
401–402

automatic shared memory
management

see automatic shared memory
management under SGA

automatic space management,
799–810

see also space management
Automatic Storage Management

see ASM
Automatic Tuning Optimizer, 995–996
Automatic Undo Management

see AUM
automatic undo retention tuning, 141
Automatic Workload Repository

see AWR
AUTOMATIC_ORDER

transforming array data with rules,
582

autonomous transactions, 267–269
Autotrace utility, SQL, 979–983

interpreting execution plans and
statistics, 981–983

options, 980
PLUSTRACE role, 980
privileges, 979

AUTO[COMMIT] variable, SQL*Plus,
500

AUTO_SPACE_ADVISOR_JOB
automatic Segment Advisor job,

809
default Scheduler jobs, 882

AUTO_TASK_CONSUMER_GROUP,
435

auxiliary database
using RMAN for TSPITR, 730

availability
benefits of archivelog mode, 632

Average Active Sessions chart, 891,
1070

averages, SQL*Plus statistics, 513
AVG function, 1191
AVG_XYZ system usage statistics,

1053
AWR (Automatic Workload

Repository), 142, 834–845
ADDM relationship, 760
automatic performance tuning,

1004
configuring ADDM, 764
data dictionary views, 1112
data handling with AWR, 835
DBMS_WORKLOAD_REPOSITORY,

1181
description, 823
managing, 836–845
types of data collected by, 835

AWR reports, 1072
Cache Sizes section, 842
caution: confusing with ADDM

reports, 840
creating, 840, 844

information included in, 840
Instance Efficiency section,

842–843
Load Profile section, 842
naming, 842
Operating System Statistics

section, 844
Segments by Physical Reads

section, 844
specifying report time period, 841
specifying report type, 841
SQL Ordered by Elapsed Time

section, 843–844
text and HTML versions, 840
Time Model Statistics section, 843
Top 5 Timed Events section, 843
using for individual SQL

statements, 1055–1057
AWR snapshots, 834, 1077

CREATE_SNAPSHOT procedure,
836

creating and deleting baselines,
838–839

Database Control managing,
836–838

DBMS_WORKLOAD_REPOSITORY,
836

default period for, 836
DROP_SNAPSHOT procedure, 836
preserved snapshot set, 838
purging, 839
retention time period, 839
running ADDM, 765
snapshot interval, 839

setting to zero, 836
storage space requirement, 835,

839
AWR statistics

controlling volume collected, 764
managing with data dictionary

views, 844
retention period, 835
time model statistics, 762

awrrpt.sql script, 840
awrsqrpt.sql script, 1056

B
B-tree indexes

bitmap indexes compared, 199
index-organized tables, 184
Oracle index schemes, 197
using appropriate index types,

963–964
background and training, DBA, 9–11
background processes, 114–119

archiver (ARCn), 117
ASM background (ASMB), 118
ASM rebalance (ARBn) processes,

118
change tracking writer, 119
checkpoint (CKPT), 116
database writer (DBWn), 115
file mapping monitor (FMON), 117
getting complete list of, 118

■INDEX1220

4517INDEX.qxd 8/19/05 11:20 AM Page 1220

job queue coordination (CJQO),
118

lock (LCKn), 119
log writer (LGWR), 115
manageability monitor (MMON),

118
manageability monitor light

(MMNL), 118
memory manager (MMAN), 118
process monitor (PMON), 116
Queue Monitor Coordinator

(QMNC), 119
rebalance master (RBAL), 118
recoverer (RECO), 119
recovery writer, 119
system monitor (SMON), 117
V$BGPROCESS view, 1140

background processes, UNIX, 74
BACKGROUND_DUMP_DEST

parameter, 111, 340
backup

see also recovery; Flashback
architecture, 133–135
backing up Oracle databases,

631–640
backing up with RMAN, 672
backup levels, 634
backup piece, 655
backup set, 655
backup tags, 657
backup terminology, 632–634

archivelog/noarchivelog
modes, 632–633

consistent/inconsistent
backups, 633

logical/physical backups, 634
open/closed backups, 634
whole/partial database

backups, 633
benefits of using tablespaces, 105
change-tracking writer, 119
control file, backing up, 134,

679–680
Database Backup Procedure

window, 320
database backups, 134
database corruption detection,

692–694
dynamic performance views,

1120–1121
formats, 657
guidelines, 634–636
HARD initiative, 694
incremental backups, 676
loss of data since previous backup,

632
manual upgrade process, 323
monitoring online backups, 691
open backups, 632
optimization, 667
Oracle Backup tool, 134, 680–686
Oracle DBA’s role, 3
partial database backups, 690–691
redo log files, 109, 134

redundancy set, maintaining,
636–637

retention policy, 665
schedules, 639–640
SCN (system change number), 633
service level agreements, 637–638
SHOW RECYCLEBIN command,

506
strategies, 6, 631, 637–640
system change number (SCN), 132
tape backups, 134
testing, 636
undo records, 134
upgrading with DBUA, 321
user-managed backups, 686–691
V$ views, 691
validating RMAN backups, 708
whole closed backups, 687–688
whole database backups, 687–690
whole open backups, 688–690

backup and restore utilities, UNIX, 76
RAID systems, 92

BACKUP command, RMAN, 657,
659–660, 671

ARCHIVELOG ALL, 673
AS BACKUPSET DATABASE, 659
AS COMPRESSED BACKUPSET,

678
AS COPY, 659, 661
CONTROLFILE TO TRACE, 680
CURRENT CONTROLFILE, 674
DATABASE, 649, 672, 675
DATABASE PLUS ARCHIVELOG,

673
DATAFILE, 675
DURATION clause, 675
INCREMENTAL LEVEL, 676
LOGICAL keyword, 659
OPTIMIZATION option, 667
RECOVERY AREA, 646, 647
RECOVERY FILE DESTINATION,

646
RECOVERY FILES, 646
TABLESPACE USERS, 674
VALIDATE DATABASE

ARCHIVELOG ALL, 679
BAD FILE parameter, 562
BAD parameter, SQL*Loader, 549
bandwidth

performance monitoring, UNIX,
81

baseline data, 838–839
performance statistics, 824

bash (Bourne Again Shell), 45, 55
bashrc (.bashrc) file, 55
bash_profile (.bash_profile) file, 55
batch command, UNIX, 77
batch mode, UNIX, 54
BATCH option, 227
batch script, Windows, 516
bdump administrative directory, 285
before image records, 109
BEGIN BACKUP command, 688
BEGIN statement, PL/SQL,

1203–1204

BEGINDATA clause, SQL*Loader, 544
begin_discrete_transaction

procedure, 267
benefits

ADDM recommendations, 762
BETWEEN operator, 1189
BFILE data type, 1185
bigfile tablespaces, 169–171
bin directory, UNIX, 48
binary compression feature, RMAN,

649
BINARY data types, 1185
binary dumps, 102
binary large objects (BLOBs)

ORDBMS model, 40
binary operations, 942
bind variables

CURSOR_SHARING parameter,
1010–1011

identical SQL statements, 1006
performance tuning, 967
query performance, 1006
reducing parse time CPU usage,

1028
binding

converting hard parse to soft
parse, 1013

Oracle SQL transaction stages, 232
BINDSIZE parameter, SQL*Loader,

548
bitmap indexes, 199

using appropriate index types, 963
bitmaps, 106
BJIs (Bitmap join indexes), 960–961
Blackouts option, Database Control,

895
BLOB data type, 1185
block checking

see data blocks
block corruption

data blocks, 102
DBMS_REPAIR package,

1160–1161
block media recovery

see BMR
block special files, UNIX, 57
block-change tracking, 677
BLOCKED status, Oracle listener, 402
blocking locks, 239
blocking sessions

identifying source of lock, 242
BLOCKRECOVER command, RMAN,

753
blocks

see data blocks
BLOCKSIZE clause, 159
BLOCKTERMINATOR variable, SQL,

520
BMR (block media recovery)

benefits of RMAN, 648
recovering from data block

corruption, 753
RMAN and, 705
when to use, 705

Boolean operators, 1190

■INDEX 1221

4517INDEX.qxd 8/19/05 11:20 AM Page 1221

Boolean parameters
SET_BOOL_PARAM_IN_SESSION

procedure, 1158
bouncing the database, 334
Bourne Again Shell (bash), 45, 55
Bourne shell (sh), 45, 55
Boyce-Codd normal form (BCNF), 33
BREAK command, SQL*Plus, 512
breaks, clearing, 506
BSP (Backup Solutions Program), 652
BTITLE command, SQL*Plus, 513
buffer busy waits event, 1047–1048
buffer cache

ageing out blocks, 1017
assign table or index to, 1019
auto-tuned SGA parameters, 775
buffer busy waits event, 1047
buffer cache hit ratio, 124, 1016,

1017
caution: high buffer cache hit

ratio, 1033
buffer gets, 1016
buffer pools, 122
consistent gets, 1016
database buffer cache, 121–124
database writer (DBWn) process,

131
DB block gets, 1016
logical reads, 1016
memory allocation, 121
multiple data block sizes and, 123
physical reads, 1016
setting nonstandard-sized, 344
specifying values for subcaches,

123
sizing, 1016–1017
system global area, 121
tuning, 1016–1019
using multiple pools for,

1017–1019
buffer gets, 1016
buffer pools

database buffer cache, 122
listing, 1017
main types, 123
setting size of default pool, 344
using multiple block size feature,

159
V$BUFFER_POOL view, 1117

buffers
see also memory
clearing SQL buffer, 505
executing contents of SQL buffer,

515
least recently used buffers, 122
listing SQL commands, 518
memory buffers, 121
redo log buffer, 125
saving SQL buffer contents to file,

514
understanding memory, 120

BUILD IMMEDIATE clause, 214
Burleson Consulting, 14
Business Copy XP, 652

business rules, 36–37
database integrity constraints, 202

BUSY_TICKS system usage statistic,
1053

bytes remaining
tablespace alert thresholds, 162

BYXYZ (BYDAY etc.) specifiers
Oracle Scheduler jobs, 868

C
C shell (csh), 45, 55
cache buffer chain latch free wait,

1051
cache recovery, 701, 703
caching

buffer pools, 122
cache misses affecting

performance, 125
Cache Sizes section, AWR reports,

842
data block sizes and tablespaces,

105
data dictionary cache, 125
library cache, 125
performance tuning, 974
setting nonstandard-sized buffer

caches, 344
setting pool sizes, 344
V$DB_CACHE_ADVICE view, 1118

calendaring expression, Scheduler,
868

cancel-based recovery, 721
candidate keys, 26
CAN_REDIF_TABLE procedure, 814
capacity planning, 6
capture process, Oracle Streams, 584
Cartesian product

avoiding Cartesian joins, 960
cost-based query optimization,

941
join operations, 1195
relational algebra, 21

CASCADE clause/keyword
dropping tables, 182
dropping user profiles, 430

CASCADE option
GATHER_DATABASE_STATS

procedure, 951
case command, UNIX, 73
CASE function, 1193
CASE statement, SQL, 958
CAST operator, 1203
cat command, UNIX, 58, 52
CATALOG command, RMAN, 663
catalog.sql script, 368, 1084
catblock.sql script, 241
catproc.sql script, 368
catupgrd.sql script, 325
CBO (cost-based optimizer), 136,

943–956
Automatic Tuning Optimizer, 995
Autotrace utility statistics, 983
choosing access path, 948
choosing join method/order, 948

choosing optimization mode, 943
collecting data dictionary

statistics, 954–955
collecting operating system

statistics, 952–954
cost-based query optimization,

940–942
cost model of Oracle Optimizer,

952
DBMS_STATS package, 949–952,

1175
drawbacks, 949
frequency of statistics collection,

955
gathering statistics, 943–945,

949–952
heavy data skew in table, 957
IN list, 958
inefficiently written queries, 957
manual collection of statistics

required, 950
normal mode, 994
Optimizer operations, 947–949
Oracle plan stability feature, 969
query rewriting, materialized

views, 210
selectivity, 957
setting Optimizer level, 946–947
setting Optimizer mode, 945–946
SQL transformation, 947
statistics not collected, 955
storing Optimizer statistics, 950
tuning mode, 994–995
understanding logic of, 974
using EXPLAIN PLAN tool,

974–979
using hints to influence execution

plan, 959
using OEM to collect Optimizer

statistics, 956
using stored outlines to stabilize

CBO, 969–971
views in query, 957
WHERE clauses illustrating

function of, 957
cd command, UNIX, 48, 62
cdump administrative directory, 285
centralized configuration, 392
centralized user authorization, 476
certification, DBA, 11
ch command, UNIX, 46
chains, Oracle Scheduler, 865,

871–873
change-based recovery, 718, 721
CHANGE command, SQL*Plus, 519
change management, 6, 825, 896
CHANGE procedure, 1152
change tracking file/writer, 119, 677
channel configuration, RMAN, 666
channels

automatic channel allocation, 656
channel configuration, RMAN,

656, 666, 667
character data types, 1185
character large objects (CLOBs), 40

■INDEX1222

4517INDEX.qxd 8/19/05 11:20 AM Page 1222

character sets, 364
character special files, UNIX, 57
CHECK constraint, 204
check constraints, 37
checklist (preinstallation)

see preinstallation checks
checkpoint (CKPT) process

background processes, 114, 116
Oracle Service thread, 915

checkpoint completed wait event,
1048

checkpoint not complete messages,
1059

checkpointing
automatic checkpoint tuning, 141,

810
Fast Start Checkpointing, 701
logging checkpointing activity, 356
managing/monitoring database,

144
checksumming, 355, 692
CHECKSYNTAX parameter, 654
CHECK_DB function, 1150
CHECK_EXTERNAL function, 1151
CHECK_OBJECT procedure, 1161
Chen, Peter, 25
chgrp command, UNIX, 61
child processes, UNIX, 54
Childs, D.L., 20
chmod command, UNIX, 60–61, 70,

70
CJQO (job queue coordination)

process, 114, 118
classes

object database model, 39
CLEAR command, SQL*Plus, 505
client authentication, 486
client host server, 681
client process

Data Pump utilities, 598
client software

Instant Client software, 399–400
Oracle Client software, 397–399

client/server model
database connectivity, 391

CLIENT_IDENTIFIER attribute, 989
CLIENT_ID_STAT_DISABLE

procedure, 1148
CLIENT_ID_TRACE_ENABLE

procedure, 990
CLOB data type, 1185
Clone Database tool, 894
cloning, 726–730

Oracle software cloning, 894
manually, 729–730
using Database Control, 727–729
using RMAN, 727

closed backups, 634
making whole closed backups,

687–688
closed recovery, 704
CLOSE_WINDOW procedure, 879
Cluster Synchronization Service,

785–787
Cluster wait class, 1035

clusters, 195–196
COALESCE function, 1193
COALESCE PARTITION clause, 192
Codd, E.F., 20, 30
cold backups, 634, 687–688
collection types, ORDBMS model, 40
collections, 1202
COLSEP variable, SQL*Plus, 500
COLUMN command, SQL*Plus, 512
column-level object privileges, 447
column-level security, 208
column-level VPD, 460–461
COLUMNARRAYROWS parameter,

555
columns

adding to tables, 179
choosing data types, 36
clearing, 505
DBA_COLUMNS view, 224
DBA_TAB_COLUMNS view, 193,

224
dropping from tables, 179
indexing strategy, 963
listing columns and specifications,

509
ordering in tables, 20
renaming table columns, 180
showing properties of, 512

COM Automation, 910, 911
COM+, distributed transactions, 911
command files, SQL*Plus, 514–518
command interpreters, UNIX, 46
command line

arguments, UNIX, 69
Data Pump utilities using, 598
options, SQL*Plus, 504–505
parameters, SQL*Loader, 547, 550
utilities, Data Pump components,

592
commands

lsnrctl commands, 402–403
UNIX shell scripts, 68–74

COMMENT parameter, 433
comments

adding to scripts, SQL*Plus, 522
init.ora file, 377
server parameter file, 377
using in SQL*Plus, 517

COMMENTS attribute, 868
COMMIT keyword, 523
commit method, conn class, 419
COMMIT statement, 226–227

AUTOCOMMIT variable, 227
executing SQL statements, JDBC,

418
implicit commit, 226
transaction control statements,

148
transactions, 226

Commit wait class, 1035
COMMIT_SCN/TIMESTAMP

columns
FLASHBACK_TRANSACTION_

QUERY view, 262
COMMIT_WRITE parameter, 227

common manageability
infrastructure, 141–143

communication protocol, 394
compaction phase, 807
Companion CD

Oracle Enterprise Edition
software, 301

Compare Periods Report, 1076–1078
comparison operators, 1189

WHERE clause, 1186
COMPATIBLE parameter, 338

database compatibility level, 318
Pre-Upgrade Information Tool, 317
setting up Oracle Streams, 585

complete recovery, 705
COMPLETE refresh option, 211
components

PRODUCT_COMPONENT_
VERSION view, 1085

removing Oracle components, 930
composite indexes, 196

guidelines for use of indexes, 197
composite partitioning, 189–190
COMPOSITE_LIMIT resource

parameter, 427
comprehensive analysis mode, 808
COMPRESS keyword, 968
compressed backups, RMAN, 678
compression

UTL_COMPRESS package, 1148
COMPRESSION parameter

Data Pump utilities, 602
compression techniques, 968
COMPUTE command, SQL*Plus, 513
CONCAT function, 1191
CONCATENATE clause, SQL*Loader,

544
concatenated indexes, 196

using appropriate index types, 964
concurrency

see data concurrency
conditional branching, UNIX, 71
conditional control, PL/SQL, 1205
configuration

iSQL*Plus, 527–528
RMAN configuration parameters,

664–668
Select Configuration Options

window, 306
configuration management

OEM Grid Control, 905–906
Oracle Configuration

Management Pack, 825, 896
Windows registry, 920

Configuration wait class, 1035
CONFIGURE commands, RMAN,

665–668
CHANNEL, 667
DEFAULT DEVICE TYPE TO, 666
DEVICE, 667
RETENTION POLICY, 665–666

CONNECT BY clause, 1194
CONNECT CATALOG command,

RMAN, 669
CONNECT command, iSQL*Plus, 529

■INDEX 1223

4517INDEX.qxd 8/19/05 11:20 AM Page 1223

CONNECT command, SQL*Plus, 493
connect descriptors, 394
connect identifiers

net service names, 405
Oracle networking, 395

CONNECT privilege, 423, 442
connect strings

Oracle networking, 395
TWO_TASK environment variable,

399
connection architecture, 392
connection pooling, 114
connections

concurrent connection requests,
403

connecting to Oracle database,
492, 493

connecting to RMAN, 651–653
connectionless SQL*Plus session,

494
database links, 858–860
modifying tnsnames.ora manually,

406–407
naming repositories, 405
OID making, 414
securing network, 485
V$SESSION_CONNECT_INFO

view, 1121
connectivity

see also JDBC; Oracle networking
background, 391
client/server model, 391
connect descriptors, 394
connect identifiers, 395
connect strings, 395
establishing Oracle connectivity,

396–397
how web applications connect to

Oracle, 393
Instant Client software, 399–400
naming and connectivity, 405–416

directory naming method,
412–416

easy connect naming method,
410–411

external naming method, 412
local naming method, 405–410
tnsnames.ora file, 405

Oracle Client software, 397–399
Oracle database connectivity, 419
Oracle Internet Directory, 413
Oracle Net GUI and command-

line tools, 396
Oracle Net Services, 391

CONNECT_IDENTIFIER variable,
SQL*Plus

predefined variables, 517
showing instance name in prompt,

508
CONNECT_TIME parameter, 427
CONNECT_TIME_FAILOVER

parameter, 403
consistency

see data consistency
consistent database backups, 633

consistent gets, 1016
constraints

CHECK constraint, 204
database integrity constraints,

202–207
DBA_CONSTRAINTS view, 224,

1105
DBA_CONS_COLUMNS view, 1106
domain constraints, 37
dropping tables, 182
entity-relationship modeling, 36
integrity constraints, 205
NOT NULL constraint, 204
primary key constraint, 203
referential integrity constraints,

205
removing tablespaces, 160
SQL*Loader direct-path loading,

556
temporary tables, 183
UNIQUE constraint, 204

CONSTRAINTS parameter
Data Pump utilities, 603

consumer group switching, 436
consumer groups

see resource consumer groups
CONSUMER_GROUP parameter, 433
consumption, Oracle Streams, 585
CONTENT parameter, Data Pump

utilities, 603, 613, 616
context sensitive security policy, 459
contexts, 415
continuation characters, SQL*Plus,

495
CONTINUEIF clause, SQL*Loader,

545
CONTINUE_CLIENT command

Data Pump utilities, 611–612, 621
CONTINUOUS_MINE procedure, 736
control files, 108

backups, 134, 635, 641, 668,
679–680

backups, RMAN, 674, 668
configuration parameters

contained, 334
CONTROLFILE REUSE clause, 364
database files, 286
database integrity, 108
default file locations, 644
description, 107
flash recovery area, 644
identifying files for recovery, 709
making whole closed backups, 688
managing RMAN, 651
multiplexing, 339
naming conventions, 286
Oracle Managed Files, 802
recovering from loss of, 722–725
redo log files, 108
RMAN repository data (metadata),

668
system change number, 108
V$CONTROLFILE view, 1141

CONTROL parameter, SQL*Loader,
548

control structures, PL/SQL, 1205
CONTROLFILE AUTOBACKUP

option
CONFIGURE command, RMAN,

668
CONTROLFILE REUSE clause, 364
controllers, disk I/O, 1030
CONTROL_FILES parameter, 339
CONTROL_FILE_RECORD_KEEP_

TIME parameter, 340
conversion functions, 1185
CONVERT TABLESPACE command

converting data files to match
endian format, 629

COPY command, RMAN, 661, 671
COPY command, SQL*Plus, 522–523
copying files

copying files with database server,
860–862

image copies, RMAN, 655
making copies of RMAN backups,

657
managing Oracle on Windows and

UNIX, 918
copying files, UNIX, 59

copying files to/from another
system, 78

COPY[COMMIT] variable, SQL*Plus,
500

COPY_FILE procedure, 860, 1146
COPY_TABLE_DEPENDENTS

procedure, 816
coraenv script, 311
core dump directory, 112
CORE_DUMP_DEST parameter, 112,

340
correlated subqueries, 1200
corruption

benefits of RMAN, 648
checksumming, 355, 692
database checking for corrupted

data blocks, 355
database corruption detection,

692–694
monitoring and verifying RMAN

jobs, 678
online redo logs, 857
parameter enabling detection of,

355
repairing corrupted data blocks,

753
RMAN detecting, 679

cost-based optimizer
see CBO

cost-based query optimization,
940–942

COUNT function, 1191
cp command, UNIX, 59, 631
cpio command, UNIX, 76
CPU performance

analyzing instance before tuning,
1074

evaluating system performance,
1024–1029

managing Oracle on Windows and
UNIX, 917

■INDEX1224

4517INDEX.qxd 8/19/05 11:20 AM Page 1224

CPU resource allocation method
creating plan directives, 436, 437
Database Resource Manager, 432

CPU usage
cost model of Oracle Optimizer,

952
CPU units used by processes, 1025
Database Control home page, 891
DBA_CPU_USAGE_STATISICS

view, 1105
determining session-level CPU

usage, 1026
finding SQL that uses most

resources, 993
intensive CPU usage causes, 1025

reducing, 1028
parse time CPU usage, 1027
performance monitoring, UNIX,

79
vmstat utility, 81

recursive CPU usage, 1029
run queue length, 1025
sar command output showing,

1024
SQL Trace tool showing, 984
system usage problems, 1059
uses of CPU time, 1026–1027

CPUSPEED mode, 953
CPUSPEEDNW mode, 953
CPU_MTH parameter, 433, 436
CPU_PER_CALL parameter, 427
CPU_PER_SESSION parameter, 427
crash recovery, 701–702
create administrative directory, 285
CREATE CATALOG command, 670
CREATE DATABASE command, 364
CREATE GLOBAL SCRIPT command,

654
CREATE INDEX statement, 199
CREATE MATERIALIZED VIEW

statement, 214
CREATE ROLE privilege, 450
CREATE SCHEMA statement, 148
CREATE SCRIPT command, 653
CREATE SESSION privilege, 423
CREATE SYNONYM command, 220
CREATE TABLE statement, 562
CREATE TYPE command, 1202
CREATE USER RMAN command, 669
CREATE USER statement, 422–425
createStatement method, conn class,

417
CREATE_CHAIN procedure, 872
CREATE_EDIT_TABLES procedure,

1163
CREATE_JOB procedure, 867, 874
CREATE_JOB_CLASS procedure, 875
CREATE_POLICY_GROUP procedure,

459
CREATE_PROGRAM procedure, 869
CREATE_SCHEDULE procedure, 870
CREATE_STORED_OUTLINES

parameter, 970
CREATE_TASK procedure, 770

CREATE_TUNING_TASK procedure,
997, 1181

CREATE_WINDOW procedure, 877
credentials, setting for job system,

923
Critical Patch Updates, 486
critical threshold, 832
critical_value attribute, 163
crontab command, UNIX, 76
CROSSCHECK command, RMAN,

662, 664
monitoring and verifying RMAN

jobs, 679
out-of-space warning and critical

alerts, 647
cryptography

DBMS_CRYPTO package, 1155
csh (C shell), 45, 55
cshrc (.cshrc) file, 55
CSS (Cluster Synchronization

Service), 785–787
CTAS (CREATE TABLE AS SELECT)

command, 181
deriving data from existing tables,

570
LONG columns, 522
using with large tables, 522

CUBE operator, GROUP BY clause,
1198

cumulative backup, RMAN, 660
cumulative statistics, 824
current incarnation, database, 720
current_user attribute

USERENV namespace, 455
currval pseudo-column, 222
cursors, 1207–1209

cursor attributes, 1208
cursor variables, 1209
description, 1207
explicit cursors, 1207
FOR loop, 1209
implicit cursors, 1207
OPEN_CURSORS parameter, 128
Oracle SQL transaction stages, 231
parameter setting number of open

cursors, 342
reusing open cursors, 1013

CURSOR_SHARING parameter, 351
optimizing library cache,

1010–1011
sharing SQL statements, 1013

CURSOR_SPACE_FOR_TIME
parameter, 351

early deallocation of cursors, 1013
optimizing library cache, 1012

custom option
installing Oracle Client, 398

cut command, UNIX, 66

D
daemons, 915
data

modifying data on disk, 115
Oracle DBA’s role, 3
separating table and index data,

data access
application contexts, 456
column-level VPD, 460–461
fine-grained access control,

456–460
methods, 909–910

data access, controlling, 442–461
application contexts, 454

creating, 456
creating package to set context,

455–456
definer’s rights, 448
fine-grained data access, 453–461

application context, 454–456
column-level VPD, 460–461
fine-grained access control,

456–460
granting object privileges, 446
invoker’s rights, 448
object privileges, 445–448
privileges, 442–449
revoking object privileges, 448
roles, 449–452
system privileges, 442–445

data blocks, 100–103
bigfile tablespaces, 169
bitmaps, 106
changing block size, 352
checking for corrupted, 355
choosing size of, 100

Oracle guidelines, 101
creating tablespaces with

nonstandard, 159
DB_BLOCK_CHECKING

parameter, 356
detecting data block corruption,

692
dumping block contents, 102
identifying file and block IDs, 102
inner workings, 101
multiple data block sizes, 101

buffer cache and, 123
online database block size

changes, 820–821
operating system disk block size,

101
parameter setting block size, 351
parameter specifying maximum

number read, 352
querying data, 351
repairing corrupted data blocks,

753
space management, 152
tablespaces and block sizes, 105
using multiple block size feature,

159
verification parameters, 355–356

data concurrency, 131
concurrency control, 235–243
Concurrency wait class, 1035
data consistency and, 235
isolation levels, 231–232
locking, 131, 229, 235
managing long transactions, 273
optimistic/pessimistic locking, 235

■INDEX 1225

4517INDEX.qxd 8/19/05 11:20 AM Page 1225

Oracle lock types, 237
Oracle’s multiversion system, 236
problems relating to, 229–230

dirty reads, 229
lost-updates, 230
nonrepeatable-read problem,

230
phantom reads, 230

time-stamping methods, 235
transaction concurrency control,

229–230
data consistency, 131

data concurrency and, 235
read consistency, 131
statement-level read consistency,

234
undo data providing, 243–254

transaction concurrency control,
229

transaction-level read consistency,
234

transactions and, 228, 130
undo management, 133
undo segments, 131

data definition (DDL) statements, 148
data dictionary, 135–136

see also dictionary-managed
tablespaces

accessing, 135
accessing data dictionary tables,

1084
AWR collecting statistics, 834
changing data in, 136
collecting data dictionary

statistics, 954–955
collecting real dictionary table

statistics, 954
creating data dictionary objects,

368–369
creation of, 1084
data dictionary tables, 1083
data dictionary views for

managing tables, 192–195
viewing object information,

224
DBA views for managing

users/roles/privileges, 452
described, 124, 136
introduction, 1083
LogMiner utility extracting,

733–734
metadata, 1083–1084
monitoring database status,

387–388
owner of data dictionary tables,

136
protecting data dictionary, 484
recursive SQL, 106
remembering data dictionary

tables, 1085
views for managing tablespaces,

174–175
DBA_DATA_FILES, 174
DBA_FREE_SPACE, 175

DBA_SEGMENTS, 175
DBA_TABLESPACES, 174
managing undo space

information, 253
data dictionary cache

parameter setting shared pool size,
345

shared pool, 125
tuning shared pool, 1006–1007
V$ROWCACHE view, 1119

data dictionary views
ADDM, 773
alerts and metrics, 833–834
ALL, DBA, and USER prefixes, 1084
data dictionary (DBA_*) views

see DBA views
data dictionary (non DBA_*) views

Dict view, 1085
FLASHBACK_TRANSACTION_

QUERY, 1089
GLOBAL_NAME, 1085
INDEX_STATS, 1107
NLS_DATABASE_

PARAMETERS, 1086
NLS_INSTANCE_

PARAMETERS, 1086
NLS_SESSION_PARAMETERS,

1086
Plan table, 1087
PRODUCT_COMPONENT_

VERSION, 1085
ROLE_ROLE_PRIVS, 1093
ROLE_SYS_PRIVS, 1094
ROLE_TAB_PRIVS, 1094

managing advisory framework,
853

managing AWR statistics with, 844
managing Database Resource

Manager, 441
static views, 1084
using dictionary views for SQL

tuning, 994
viewing as DBA, 1084
viewing user-owned objects, 1084
viewing user privileged objects,

1084
data encryption, 477–482

ENCRYPT keyword, 478
transparent data encryption, 477

data extraction, transformation, and
loading

see ETL
data files

backing up with RMAN, 675
creating tablespaces, 154
data file backup, 634
DBA_DATA_FILES view, 1102
description, 107
determining the size of, 174
dropping data file, 703
expanding tablespaces, 160
flash recovery area, 641
making whole closed backups, 687
monitoring I/O, 117

naming conventions, 286
Oracle data files, 108, 282
Oracle Managed Files, 173, 803
parameter specifying location for,

341
partial database backups, 690
recovering data files, 715–717
recovering data files without

backup, 725–726
tablespaces and, 112
V$DATAFILE view, 1140

DATA function, UTL_SMTP, 1172
Data Guard

see Oracle Data Guard
data integrity, 36
data loading, 6
data manipulation statements, 147

using views, 208
data modeling

see entity-relationship modeling
DATA parameter, SQL*Loader, 548
data protection

enhanced for disaster recovery,
695–697

Oracle Data Guard, 697
Oracle Streams, 584

Data Pump Export and Import
utilities, 139, 589–630

accessing expdp and impdp, 590
benefits of, 590–591
components, 592
data access methods, 592–593
Data Pump API, 622–623, 1180
Data Pump files, 593–596
Data Pump privileges, 596
DBA_DATAPUMP_JOBS view, 621,

1091
DBA_DATAPUMP_SESSIONS view,

622, 1091
DBA_EXP_FILES view, 1089
description, 706
directory objects, using, 593–596
dpdump administrative directory,

285
export commands, 612

ADD_FILE, 611–613, 621
CONTINUE_CLIENT, 611–612
EXIT_CLIENT, 612
HELP, 612
KILL_JOB, 612–613
PARALLEL, 612
START_JOB, 611–612
STATUS, 612
STOP_JOB, 612

export examples, 613–614
export methods, 598–599
export modes, 600
export parameters, 601, 613

ATTACH, 609–611
COMPRESSION, 602
CONSTRAINTS, 603
CONTENT, 603
DIRECTORY, 601
DUMPFILE, 601

■INDEX1226

4517INDEX.qxd 8/19/05 11:20 AM Page 1226

ENCRYPTION_PASSWORD,
607

ESTIMATE, 605
ESTIMATE_ONLY, 606
estimation parameters,

605–606
EXCLUDE, 603–604
export filtering parameters,

603–605
export mode–related

parameters, 602
file- and directory-related

parameters, 601–602
FILE, 601
FILESIZE, 602
FLASHBACK_SCN, 608
FLASHBACK_TIME, 608
GRANTS, 603
INCLUDE, 603–604
INDEXES, 603
interactive mode export

parameters, 609–613
job-related parameters,

607–609
JOB_NAME, 607
LOGFILE, 602
network link parameter, 606
NETWORK_LINK, 606–607
NOLOGFILE, 602
PARALLEL, 609
PARFILE, 602
QUERY, 604
SAMPLE, 605
STATUS, 607
TRANSPORT_FULL_CHECK,

602
export prompt, 599
import commands

CONTINUE_CLIENT, 621
EXIT_CLIENT, 621
HELP, 621
KILL_JOB, 621
PARALLEL, 621
START_JOB, 621
STATUS, 621
STOP_JOB, 621

import parameters, 614–621
CONTENT, 616
DIRECTORY, 615
EXCLUDE, 616
file- and directory-related

parameters, 615–616
filtering parameters, 616–617
flashback parameters, 621
FLASHBACK_SCN, 621
FLASHBACK_TIME, 621
import mode–related

parameters, 617
INCLUDE, 616
interactive import parameters,

621
job-related parameters, 617
NETWORK_LINK, 619–620
QUERY, 617
remapping parameters, 618

REMAP_DATAFILE, 618
REMAP_SCHEMA, 618
REMAP_TABLESPACE, 618
REUSE_DATAFILES, 616
SQLFILE parameter, 615–616
TABLE_EXISTS_ACTION, 617
TRANSFORM, 618–619
TRANSPORT_DATAFILES, 617
TRANSPORT_FULL_CHECK,

617
TRANSPORT_TABLESPACES,

617
import prompt, 599
import types and modes, 614
interactive mode export

parameters, 609–613
introduction to technology,

589–598
logical backups, 634
managing/monitoring database,

144
manual upgrade process, 316
monitoring Data Pump jobs,

621–622
performing exports and imports,

598–621
processes of Data Pump job,

597–598
read-only database, 607
roles, 612
transportable tablespaces,

623–630
exporting metadata using Data

Pump, 628
importing metadata using Data

Pump, 630
uses for, 591–592
using Data Pump API, 622–623
V$SESSION_LONGOPS view, 622

data redefinition, 812–818
data reorganization, 811–812
data replication, Oracle Streams, 584
data transfer element (dte), 685
data types

abstract data types, 1201–1203
columns, 36
Oracle data types, 1185–1186
ORDBMS model, 40
SQL*Loader control file, 546
user-defined object types, 149
XMLType, 1211

data validity, 37
data warehouses

Automatic Workload Repository,
142

Bitmap join indexes, 960
extraction, transformation, and

loading of data, 540
indexing strategy, 962
loading, Oracle Streams, 584
program global area, 120

database access, 382
see also data access

database administration commands,
SQL*Plus, 524

database administrator
see DBA

database architecture, Oracle, 99–112
database auditing

see auditing
database authentication, 471–475

see also authentication
encrypted passwords, 474
locking accounts, 472
managing passwords, 471
password expiration, 473
password file, 473

database authorization
see authorization

database availability, 105
database backups

see backup
database buffer cache

see buffer cache
database compatibility level

COMPATIBLE parameter, 318
Database Configuration Assistant

see DBCA
database connections

see connections
database connectivity

see connectivity
Database Control, OEM

see OEM Database Control
database corruption detection

detecting data block corruption,
692–694

detecting media corruption, 692
setting initialization parameters,

692
using ANALYZE command, 693
using DBMS_REPAIR package, 694
using DBVERIFY utility, 693

database creation, 329–373
authorizations, 332
choosing location for files, 332
creating file system, 330–332
creating parameter file, 333–358
DBA database design role, 7
memory allocation, 332
preparation for, 329–332
setting OS environment variables,

332
sizing file system, 330–331
using SQL*Plus statements,

358–373
changing archive logging

mode, 371–373
changing passwords for all

default users, 371
creating additional

tablespaces, 369–370
creating data dictionary

objects, 368–369
creating init.ora file, 359–361
creating Oracle Database 10g

database, 364–367
privileges, 359
quick way to create database,

368–369

■INDEX 1227

4517INDEX.qxd 8/19/05 11:20 AM Page 1227

running pupbld.sql file, 373
setting OS variables, 358–359
starting Oracle instance,

361–363
using Oracle Managed Files,

803–806
Database Credentials window

upgrading with DBUA, 321
database design

business rules, 36
implementing, 37
logical database design, 24–34
Oracle DBA’s role, 3, 7–8
physical database design, 34–37

database failures, 699–701
database files, 286

creating directories for, 287
making transactions permanent,

115
naming conventions, 286

database hangs, 1058–1065
abnormal increase in process size,

1061
archiver process stuck, 1058–1059
bad statistics, 1062
collecting information during,

1063
locking issues, 1060
severe contention for resources,

1060
shared pool problems, 1062
system usage problems, 1059
using Hang Analysis page, 1063

gathering error messages, 1063
getting systemstate dump, 1064
using Hanganalyze utility, 1065

database hit ratios, 1033
database incarnations, 720
database instance names, 394
database instances

altering properties of, 146
creating database, 364
database consistency on restart,

117
memory allocation, 121
object database model, 39
parameter specifying type, 338
V$INSTANCE view, 1131

database integrity, 202–207
constraint commands, 206
control file, 108
deferrable constraints, 207
immediate constraints, 207
integrity constraints, 205, 206, 207
parameter enforcing integrity

rules, 350
referential integrity constraints,

205
RELY constraints, 206

database links, 858–860
Database Control, 860, 896
DBA_DB_LINKS view, 1108
Grid Control, 907
private database links, 858–859
public database links, 859–860

database load
analyzing instance before tuning,

1075
database management

see OEM
database metrics, 826–828

data dictionary views–related,
833–834

metric groups, 826
thresholds, 828
views-related, 1135–1136

database models, 38
database mounted statement, 367
database names, 394
database objects

aliases for, 220
creation, design role in, 7
DBA_OBJECTS view, 224, 1091
initial extent, 103
object database model, 39
segments and, 104
storage allocation to database

objects, 158
V$DB_OBJECT_CACHE view, 1119
viewing object information, 224

database operations
see processes

database parameter files
see parameter files

Database Performance page
OEM Database Control, 892, 893,

1068–1071
database quiescing, 821–822
database recovery

see recovery
database reorganization, 811–812
Database Resource Manager, 431–442

activating, 440
creating/editing/deleting resource

plans, 442
data dictionary views managing,

441
deactivating, 441
dynamic resource management,

818–820
enabling, 441
estimating operation execution

time, 820
managing resource consumer

groups, 442
managing resources for users, 430
managing undo space

information, 253
OEM administering, 441–442
Oracle database, 140
pending area

creating, 433
submitting, 438
validating, 437

plan directives, 819
privileges for, 432
resource allocation methods, 432
resource consumer groups, 431

assigning users to, 438–440
creating, 433–435

resource management, 430
resource plan directive, 432
resource plans, 431

creating, 436
creating plan directives,

436–437
setting active session pool, 819
setting limits on execution times,

819
using, 432–440
using Resource Monitors page, 441

database schema, 21
database security

see security
see also authentication; passwords

database server
copying files with, 860–862

database service names, 394
database sizing, 37
database storage

see storage
database triggers

see triggers
database types, 8–9
Database Upgrade Assistant

see DBUA
database usage metrics, 898
Database Usage Statistics property

sheet, 898
database wait statistics

see wait statistics
database writer (DBWn) process

background processes, 114–115
database buffer cache, 131
Oracle Service thread, 915
write ahead protocol, 132
writing dirty data in memory

buffers to disk, 116
databases

see also Oracle Database 10g;
relational databases

administering with ORADIM
utility, 926–928

auditing database usage, 461–471
backing up databases

see backup
cloning a database, 726–730

manually, 729–730
using Database Control,

727–729
using RMAN, 727

connecting to, 137
creating databases

see database creation
creating parameter file, 333–358
creating stored outlines for, 970
database-related parameters,

337–339
described, 99
dropping, 386–387
maintenance outside normal

window, 385–386
managing on Linux systems, 933
monitoring database status,

387–388

■INDEX1228

4517INDEX.qxd 8/19/05 11:20 AM Page 1228

Oracle XML DB, 1210–1214
quiescing, 385–386
recovering Oracle databases

see recovery
recovering, SQL*Plus, 524
restricting access, 382–383
reverse engineering, 38
shutting down from SQL*Plus,

383–385
shutting down with Windows,

925–926
starting up automatically, 380–381
starting up from SQL*Plus,

378–380
starting up in restricted mode, 382
starting up with Windows, 925–926
suspending, 386
variable naming database, 517

DATABASE_PROPERTIES view
bigfile tablespaces, 171
monitoring instance status, 388

datasets
performing backups with Oracle

Backup, 686
DATA_CACHE parameter,

SQL*Loader, 555
DATA_DUMP_DIR variable, 595–596
date and time data types, 1185
date command, UNIX, 48
DATE data type, 1185
DATE variable, SQL*Plus, 517
dates

specifying default date format, 339
DB block gets, 1016
db file scattered read wait event,

1038–1039, 1048, 1074
db file sequential read wait event,

1037–1040, 1049, 1074
DB time statistic, 760
DB value, AUDIT_TRAIL parameter,

462
DBA (database administrator)

background and training, 9–11
operating system knowledge,

12
UNIX knowledge, 12

certification, 11
Oracle Certified Associate, 11
Oracle Certified Master, 12
Oracle Certified Professional,

11
connecting to Oracle database,

493
daily routine, 15–16
database design role, 7–8
development DBA, 8
multiple DBAs, 484
Oracle classes, 10
Oracle DBA’s role, 3–8
performance tuning, DBA

strategies for
see under performance tuning

production DBA, 8
reducing vulnerability with

recoveries, 706

resources, 13–14
International Oracle Users

Group, 13
MetaLink, 14
Oracle by Example, 14
Oracle DirectConnect, 15
Oracle Technology Network, 13

security role, 4–5
managing users, 4
monitoring system, 4
protecting database, 4

some general advice, 16–17
system management role, 5–6

backup strategies, 6
change management, 6
estimating requirements, 6
loading data, 6
minimizing downtime, 5
performance tuning, 5
recovery strategies, 6
troubleshooting, 5

varying organizational roles, 8
DBA views

DBA_ADVISOR_ACTIONS, 773,
853, 1115

DBA_ADVISOR_DEFINITIONS,
1113

DBA_ADVISOR_DEF_PARAMETER
S, 764

DBA_ADVISOR_FINDINGS, 773,
853, 1114

DBA_ADVISOR_LOG, 1115
DBA_ADVISOR_PARAMETERS,

853
DBA_ADVISOR_RATIONALE, 773,

1115
DBA_ADVISOR_RECOMMENDA-

TIONS, 773, 853, 1115
DBA_ADVISOR_TASKS, 853, 1114
DBA_ADVISOR_USAGE, 1113
DBA_ADVISOR_XYZ views, 998
DBA_ALERT_HISTORY, 833, 1112
DBA_ALL_TABLES, 1109
DBA_AUDIT_EXISTS, 1099
DBA_AUDIT_OBJECT, 1099
DBA_AUDIT_POLICIES, 1099
DBA_AUDIT_POLICY_COLUMNS,

1099
DBA_AUDIT_SESSION, 1099
DBA_AUDIT_STATEMENT, 1099
DBA_AUDIT_TRAIL, 463, 471,

1099
DBA_AUTO_SEGADV_CTL, 1114
DBA_AUTO_SEGADV_SUMMARY,

1114
DBA_BLOCKERS, 239, 242, 1097
DBA_CATALOG, 224, 1085
DBA_COLUMNS, 224
DBA_COL_PRIVS, 1096
DBA_COMMON_AUDIT_TRAIL,

1099
DBA_CONSTRAINTS, 224, 1105
DBA_CONS_COLUMNS, 1106
DBA_CPU_USAGE_STATISICS,

1105

DBA_DATAPUMP_JOBS, 621, 1091
DBA_DATAPUMP_SESSIONS, 622,

1091
DBA_DATA_FILES, 174, 1102
DBA_DB_LINKS, 1108
DBA_DIRECTORIES, 1089
DBA_ENABLED_TRACES, 991
DBA_ENCRYPTED_COLUMNS,

1097
DBA_EXP_FILES, 1089
DBA_EXTENTS, 1100
DBA_EXTERNAL_TABLES, 1109
DBA_FEATURE_USAGE_

STATISTICS, 1088
DBA_FGA_AUDIT_TRAIL, 1099
DBA_FREE_SPACE, 175, 739, 1101
DBA_HIGH_WATER_MARK_

STATISTICS, 1088
DBA_HIST_ACTIVE_SESS_

HISTORY, 846, 1041, 1113
DBA_HIST_BASELINE, 845
DBA_HIST_SNAPSHOT, 845
DBA_HIST_SYSMETRIC_

HISTORY, 833
DBA_HIST_WR_CONTROL, 845
DBA_HIST_XYZ, 827
DBA_INDEXES, 224, 1106
DBA_IND_COLUMNS, 1106
DBA_JOBS, 1090
DBA_LOCKS, 1104
DBA_MVIEWS, 1111
DBA_OBJECTS, 224, 1091, 1108
DBA_OUTLINES, 1098
DBA_OUTLINE_HINTS, 1098
DBA_OUTSTANDING_ALERTS,

647, 833, 1112
DBA_PART_TABLES, 224, 1109
DBA_POLICIES, 1096
DBA_PROFILES, 1092
DBA_RECYCLEBIN, 1089
DBA_REDEFINITION_ERRORS,

817
DBA_REGISTRY, 315, 1085
DBA_RESUMABLE, 273
DBA_ROLES, 1093
DBA_ROLLBACK_SEGS, 250, 253
DBA_RSRC_CONSUMER_

GROUPS, 434
DBA_RSRC_CONSUMER_

GROUP_PRIVS, 441
DBA_RSRC_PLANS, 441, 1098
DBA_SCHEDULER_JOBS, 881,

943, 1090
DBA_SCHEDULER_JOB_LOG, 881,

1090
DBA_SCHEDULER_JOB_RUN_

DETAILS, 881, 1090
DBA_SCHEDULER_PROGRAMS,

1090
DBA_SCHEDULER_RUNNING_

JOBS, 881, 1090
DBA_SCHEDULER_SCHEDULES,

881, 1090
DBA_SCHEDULER_WINDOWS,

1090

■INDEX 1229

4517INDEX.qxd 8/19/05 11:20 AM Page 1229

DBA_SEC_RELEVANT_COLUMNS,
1097

DBA_SEGMENTS, 175, 1101
DBA_SEQUENCES, 224, 1108
DBA_SERVER_REGISTRY, 315, 327
DBA_SOURCE, 1087
DBA_SQLSET, 1112
DBA_SQLSET_PLANS, 1112
DBA_SQLSET_STATEMENTS, 1112
DBA_SQLTUNE_PLANS, 1112
DBA_SQLTUNE_STATISTICS, 1112
DBA_SQLTUNE_XYZ views, 998
DBA_SYNONYMS, 224, 1108
DBA_SYS_PRIVS, 1095
DBA_TABLES, 192, 224, 1108
DBA_TABLESPACES, 174, 224, 253,

1103
DBA_TABLESPACE_GROUPS, 168,

1104
DBA_TAB_COLUMNS, 193, 224,

1110
DBA_TAB_COL_STATISTICS, 945
DBA_TAB_MODIFICATIONS, 943,

1110
DBA_TAB_PARTITIONS, 192, 1109
DBA_TAB_PRIVS, 1095
DBA_TEMP_FILES, 1103
DBA_THRESHOLDS, 833, 834,

1112
DBA_TRIGGERS, 224, 1108
DBA_UNDO_EXTENTS, 254, 1104
DBA_USERS, 168, 1091
DBA_VIEWS, 1110
DBA_WAITERS, 1097, 1104

DBAsupport.com, 14
DBCA (Database Configuration

Assistant)
accessing from UNIX/Linux, 329
Automatic Undo Management

using, 246
benefits of using, 329
creating Sysaux tablespace, 172
managing/monitoring database,

144
dbconsole process, 889, 925
DBIO_EXPECTED parameter, 764
DBMS packages

DBMS_ADVISOR, 1180
invoking SQL Access Advisor,

219
managing advisory framework,

850–852
procedures and functions, 770
QUICK_TUNE procedure, 219
using with ADDM, 765, 770

DBMS_APPLICATION_INFO,
1153–1154

DBMS_AQ, 832
DBMS_AQADM, 832
DBMS_CRYPTO, 477, 1155
DBMS_DATAPUMP, 592, 622, 1180
DBMS_ERRLOG, 1167–1168
DBMS_FGA, 469, 470, 1176
DBMS_FILE_TRANSFER, 823,

860–862, 1146–1148

DBMS_FLASHBACK, 256–257,
1178–1179

DBMS_JOB, 863, 864, 1151–1153
DBMS_JOBS, 139
DBMS_LOGMNR, 1179–1180

ADD_LOGFILE procedure, 735
CONTINUOUS_MINE

procedure, 736
PRINT_PRETTY_SQL

procedure, 736
sample LogMiner session, 734

DBMS_METADATA, 194, 592, 1178
DBMS_MONITOR, 989–990, 1046,

1148
DBMS_MVIEW, 212, 1177
DBMS_OBFUSCATION_TOOLKIT,

477
DBMS_OLAP, 969, 1177
DBMS_OUTLN, 1162–1163
DBMS_OUTLN_EDIT, 1162–1163
DBMS_OUTPUT, 1159
DBMS_PROFILER, 1165–1167
DBMS_REDEFINITION, 814, 1178
DBMS_REFRESH, 1181
DBMS_REPAIR, 694, 752,

1160–1161
DBMS_RESOURCE_MANAGER,

432, 436, 438, 1176
DBMS_RESUMABLE, 272, 1105,

1176–1177
DBMS_RLMGR, 1175
DBMS_RLS, 459, 1176
DBMS_RULE_ADM, 872
DBMS_SCHEDULER, 139, 1178

administering programs, 870
administering Scheduler jobs,

868
administering schedules, 871
altering common component

attributes, 880
creating event-based

schedules, 873
creating job classes, 875
creating Scheduler chains, 872
creating Scheduler jobs, 867
creating Scheduler programs,

869
creating Scheduler schedules,

870
creating Scheduler windows,

877
managing job classes, 875
managing Scheduler windows,

878
Oracle Scheduler, 863
retrieving attributes, 880
unsetting component

attributes, 880
DBMS_SERVER_ALERT, 162, 831,

832, 1180
DBMS_SERVER_REGISTRY, 326
DBMS_SESSION, 990, 1155–1156
DBMS_SHARED_POOL, 1014,

1173–1174

DBMS_SPACE, 177, 198,
1163–1164

DBMS_SPACE_ADMIN, 799,
1164–1165

DBMS_SQLTUNE, 997–998, 1181
DBMS_STATS, 1175–1176

automatic optimizer statistics
collection, 781

gathering statistics, 944, 949
GATHER_XYZ_STATS

procedures, 950
manually collecting Optimizer

statistics, 783, 949–952
DBMS_STORAGE_MAP, 117, 1182
DBMS_SYSTEM, 1046, 1156–1159
DBMS_TDB, 1150–1151
DBMS_TTS, 1181
DBMS_UTILITY, 1181
DBMS_WM, 1174
DBMS_WORKLOAD_REPOSITORY,

764, 836, 1181
DBMS_XPLAN, 976–977, 1182

dbshut script
automatic database startup, 380
managing Oracle on UNIX, 917

DBSNMP account
changing passwords for default

users, 371
passwords, database

authentication, 471
dbstart script

automatic database startup, 380
managing Oracle on UNIX, 917

DBUA (Database Upgrade Assistant),
315–316, 318–321

managing/monitoring database,
144

Pre-Upgrade Information Tool, 316
preinstallation checks, 316
restoring pre-upgrade database,

321
starting, 319

DBVERIFY utility, 693
DB_BLOCK_CHECKING parameter,

355, 693
DB_BLOCK_CHECKSUM parameter,

355, 692, 743
DB_BLOCK_SIZE parameter, 351

choosing size of data blocks, 100
multiple data block sizes, 101

buffer cache and, 123
tablespaces with nonstandard

block size, 159
using multiple block size feature,

159
DB_CACHE_SIZE parameter, 123, 344

auto-tuned SGA parameters, 775
multiple data block sizes, 123
online database block size

changes, 820
Oracle’s guidelines, 343
tablespaces with nonstandard

block size, 159

■INDEX1230

4517INDEX.qxd 8/19/05 11:20 AM Page 1230

DB_CREATE_FILE_DEST parameter,
341

control file default locations, 644
OMF file locations, 644
OMF initialization parameters,

801–802, 804
redo log file default locations, 645
setting up flash recovery

parameters, 645
DB_CREATE_ONLINE_LOG_DEST_n

parameter, 341
control file default locations, 644
flash recovery area file locations,

644
OMF initialization parameters,

801, 803
redo log file default locations, 645
setting up flash recovery

parameters, 645
DB_DOMAIN parameter, 337
DB_FILES parameter, 340
DB_FILE_MULTIBLOCK_READ_

COUNT parameter, 352,
1030, 1048

DB_FILE_NAME_CONVERT
parameter, 629, 630, 727

DB_FLASHBACK_RETENTION_
TARGET parameter, 355,
744, 747

DB_KEEP_CACHE_SIZE parameter,
123, 344, 775

db_name attribute, USERENV
namespace, 455

DB_NAME parameter, 286, 337
DB_nK_CACHE_SIZE parameter, 344

manually managed SGA
parameters, 775

multiple data block sizes, 123
online database block size

changes, 820
DB_RECOVERY_FILE_DEST

parameter, 288, 354
configuring flash recovery area,

643
control file default locations, 644
disabling flash recovery area, 644
dynamically defining flash

recovery area, 643
flash recovery area file locations,

644
OMF initialization parameters, 801
redo log file default locations, 645
setting up flash recovery

parameters, 645
synonym for flash recovery area,

644
DB_RECOVERY_FILE_DEST_SIZE

parameter, 288, 354
configuring flash recovery area,

643
dynamically defining flash

recovery area, 643
OMF initialization parameters, 801
out-of-space warning and critical

alerts, 647

DB_RECYCLE_CACHE_SIZE
parameter, 123, 344, 775

DB_UNIQUE_NAME parameter, 337
DB_WRITER_PROCESSES parameter,

115, 342
dd command, UNIX, 76, 631
DDL (data definition language)

statements, 22
changing data dictionary tables,

1083
extracting object DDL using

DBMS_METADATA
package, 194

making DML changes permanent
with SQL*Plus, 523

resumable operations, 270
transactions, 226

DDL locks, 238
DDL triggers, 467
deadlocks, 228, 235, 240
decision support systems (DSSs), 9
DECLARE statement, PL/SQL,

1203–1204, 1208
DECODE function, 1193
dedicated server architecture, 392
default auditing, 463
default buffer pool, 123, 1017–1018
default device type, RMAN, 666
DEFAULT DIRECTORY clause, 563
default file location, 644
default profile, 428–429
default shell, UNIX, 46
default tablespaces, 422, 423

caution: assigning specific
tablespaces as, 422

default permanent tablespaces,
168, 331, 365

default temporary tablespaces,
165, 365

query showing tablespaces for
new user, 423

using bigfile tablespaces as, 170
default users

changing passwords for, 371
DEFAULTIF parameter, SQL*Loader,

556
DEFAULT_CONSUMER_GROUP, 435
deferrable constraints, 207
DEFINE command, SQL*Plus, 516,

517
definer’s rights, 448
DEFINE_CHAIN procedure, 872
DEFINE_CHAIN_RULE procedure,

872
DEF[INE] variable, SQL*Plus, 500
degree of parallelism, 436, 667
DEL command, SQL*Plus, 520
DELETE clause

MERGE statement, 573
DELETE command, 1188

data manipulation statements, 147
removing all data from tables, 180
RMAN commands, 661

DELETE EXPIRED command, RMAN,
647, 662

DELETE OBSOLETE command,
RMAN, 662

DELETE_CATALOG_ROLE, 444
DELETE_TASK procedure, 770
deleting files, UNIX, 59
deletion anomaly, 29
DELIMITED BY clause, 562
delimiters, SQL*Loader, 547
delta values, 824
denormalization, 34
deployments, Grid Control, 906
DESC keyword

ORDER BY clause, 1189
DESCRIBE command, SQL*Plus, 193,

509
listing procedures and functions

in packages, 1146
design

see database design
dev (/dev) directory, UNIX, 62
development databases, 9
development DBA, 8
dev/null

input/output redirection, UNIX,
56

device files, 62
mapping files to physical devices

see file mapping feature
df command, UNIX, 80, 86
diagnostics

see also ADDM
diagnostic tools, 918
Oracle Diagnostics Pack, 824, 896
performance/diagnostics-related

parameters, 349–353
Diagnostics Summary section

Database Control home page, 891
Dict view, 1085
dictionary

see data dictionary
dictionary cache

see data dictionary cache
dictionary-managed tablespaces, 106,

150, 153
see also data dictionary

diff command, UNIX, 53
difference, relational algebra, 21
differential backup, RMAN, 660
DIRECT parameter, SQL*Loader, 549,

555
Direct Path API, 592
direct path read wait event, 1049
direct path write wait event, 1049
direct-path loading, SQL*Loader,

554–556
DirectConnect, Oracle (ODC), 15
directories

administrative directories, 285
creating directories for database

files, 287
DBA_DIRECTORIES view, 1089
flash recovery area, 288
integrating with Windows security

policies, 911
mount points, 282

■INDEX 1231

4517INDEX.qxd 8/19/05 11:20 AM Page 1231

naming conventions, 283
OFA-compliant Oracle database,

287
Oracle base, 283
Oracle home, 283
Oracle Inventory Directory, 284

directories, UNIX, 62
cd command, 48
creating, 62
creating, preinstallation, 296
file types, 57
home directory, 46
locating directory, 52
navigating, 62
permissions, 60
pwd command, 49
removing, 62
system configuration files, 62

directory administration tools, 414
Directory Information Tree (DIT), 414
directory naming, 412–416

naming methods, 405
OID making database

connections, 414
directory naming context, 415
directory naming method

Oracle Internet Directory, 413–414
directory objects

creating external table layer, 563
Data Pump files using, 593–596

DIRECTORY parameter
Data Pump utilities, 595, 596, 601,

615
directory privileges, 446
directory services

directory naming method, 412
DIRECTORY_PATH parameter, 411
dirty buffers, 121
dirty reads, 233, 229
DISABLE NOVALIDATE command,

206
DISABLE procedure, 870, 879
DISABLE VALIDATE command, 206
disaster recovery

enhanced data protection for,
695–697

DISCARD FILE parameter, 562
DISCARD parameter, SQL*Loader,

549
DISCARDMAX parameter,

SQL*Loader, 550
DISCONNECT command, iSQL*Plus,

529
discrete transactions, 267
disk allocation/layout, OFA, 281
Disk Based Backup and Recovery, 640
disk cache for tape

flash recovery area, 641
disk fragmentation, ASM, 784
disk groups, ASM

see under ASM
disk I/O

see I/O
disk partitioning, UNIX, 87

disk storage
new storage technologies, 92–95
Oracle Database 10g installation,

280
preinstallation checks, 291

disk storage, UNIX
availability and performance, 86
configuration choices, 85
disk partitioning, 87
disk striping, 87
Logical Volume Manager, 87
logical volumes, 87
monitoring disk usage, 85
performance monitoring, 80
RAID systems, 88–92
using file systems, 87

disk striping, UNIX, 87
disks

cost of disk I/O, 120
damaged disk drive, 738
disk I/O, 1030
modifying data on, 115
transferring contents of redo log

buffer to, 115
writing dirty data in memory

buffers to, 116
dispatcher

shared server processes, 114
V$DISPATCHER view, 1137

DISPATCHERS parameter, 339
DISPLAY function

DBMS_XPLAN package, 1182
DISPLAY variable

accessing DBCA from
UNIX/Linux, 329

preinstallation checklist, 301
setting, preinstallation, 298,

299–300
using response files, 309

DISPLAY_AWR function, 976, 1182
DISPLAY_CURSOR function, 1182
DISTINCT operations, 963
distinguished names, 415, 416
distributed locks, 239
distributed transactions, 911
DIT (Directory Information Tree), 414
DML (data manipulation language)

statements, 22
Flashback Versions Query feature,

259
indexing strategy, 962
making DML changes permanent,

523
PL/SQL, 1205
resumable operations, 270

DML locks, 237
DML triggers, 465
DNs (distinguished names), 415, 416
documentation review

Oracle Database 10g installation,
280

domain component
distinguished names, 416

domain constraints, 37
domains, 20

double failure protection mode, Data
Guard, 697

downloading Oracle software, 302,
397

downtime, minimizing, 5
dpdump administrative directory, 285
DriverManager class, 417
drivers, JDBC, 416, 417
DROP CATALOG command, RMAN,

670
DROP DATABASE command, 386
DROP PARTITION clause, 191
DROP ROLE command, 452
DROP SYNONYM command, 221
DROP TABLE command, 182

consequences, 738–739
SHOW RECYCLEBIN command,

506
DROP TABLESPACE command, 159
DROP USER statement, 425–426
DROP_JOB procedure, 869
DROP_JOB_CLASS procedure, 875
DROP_PROGRAM procedure, 870
DROP_SCHEDULE procedure, 871
DROP_TABLES procedure, 1163
DROP_UNUSED procedure, 1163
DROP_WINDOW procedure, 879
du command, UNIX, 80, 86
dump files

cdump administrative directory,
285

Data Pump files, 593
DUMPFILE parameter, 601, 609, 614,

615
dumping

data blocks, 101–102
duplexing, 856
DUPLICATE command, RMAN, 707,

727
durability, transactions, 229
DURATION attribute

CREATE_WINDOW procedure, 877
OPEN_WINDOW procedure, 878

DURATION clause, RMAN, 675
dynamic data sampling, ATO, 995
dynamic initialization parameters,

110
dynamic parameters, 334, 374, 377
dynamic performance tables, 136,

954
dynamic performance views, 136,

1115–1143
see also V$ views
automatic performance tuning

compared, 1003–1004
backup- and flashback-related

views, 1120–1121
database metrics, 826
effect of shutting down instance,

1115
memory-related views, 1116–1119
metric- and alert-related views,

1135–1136
naming, 1115

■INDEX1232

4517INDEX.qxd 8/19/05 11:20 AM Page 1232

operational performance–related
views, 1131–1134

performance monitoring views,
1128–1130

recovery-related views, 1126–1128
redo log– and archive–log related

views, 1123–1125
session- and user-related views,

1121–1123
SQL-related views, 1131
storage- and file-related views,

1140–1143
wait class views, 1130–1131

dynamic resource management,
818–820

long transactions, 819
MAX_ESTIMATED_EXEC_TIME

resource plan directive, 820
UNDO_POOL resource plan

directive, 820
dynamic sampling, 955
dynamic security policy, 459
dynamic service registration, 117

Oracle PMON process, 401

E
e-mail notifications, Database

Control, 895
easy connect method, 493
easy connect naming, 410–411

naming methods, 405
echo command, UNIX, 48

displaying environment variables,
55

showing variable value, 53
ECHO variable, SQL*Plus, 500
ed command, SQL*Plus, 519
EDIT command, SQL*Plus, 499
EDITF[ILE] variable, SQL*Plus, 500
editing

creating command files, SQL*Plus,
514

editing files, UNIX, 63
editing within SQL*Plus, 519–524

EDITOR variable, SQL*Plus, 517
egrep command, UNIX, 66
Embarcadero Technologies, 884
embedded SQL statements, 147
emca utility, 887
emctl utility, 889, 902–903
EMPHASIS method, 436
emulators, UNIX, 46
ENABLE NOVALIDATE command,

206
enable parameter, 469
ENABLE procedure, 870
ENABLE QUERY REWRITE clause,

214
ENABLE VALIDATE command, 206
ENABLED attribute, CREATE_JOB,

868
encapsulation, 39
ENCLOSED BY clause, SQL*Loader,

547

ENCRYPT clause/keyword, 179, 478,
481

encrypted passwords, 474
encryption

data encryption, 477–482
DBA_ENCRYPTED_COLUMNS

view, 1097
DBMS_CRYPTO package, 1155
encryption algorithms, 482
generating master encryption key,

480
transparent data encryption, 477

ENCRYPTION_PASSWORD
parameter, 607

END statement, PL/SQL, 1203
end-to-end tracing, 989–991
endian format, 627, 628, 629
END_DATE attribute

CREATE_JOB procedure, 867
CREATE_WINDOW procedure, 878

enqueue waits event, 1050
enterprise user security, 476–482
entity-relationship modeling (ER

modeling), 24–26
attributes, 25
building ER diagram, 27–28
constraints, 36
converting logical into physical

design, 35
description, 24
entities, 25
ER modeling tools, 34
relationships, 25

entryID attribute, USERENV, 455
env command, UNIX, 54
environment, SQL*Plus, 499, 506
environment variables, Linux

see environment variables, UNIX
environment variables, SQL*Plus,

500–504
see also under SQL*Plus

environment variables, UNIX
changing permanently, 55
displaying, 54
executing, 55
setting OS environment variables,

332
setting, post-installation, 311
setting, preinstallation, 297
startup file, oracle user’s home

directory, 300
environment variables, Windows, 920
environments

OEM versions managing, 886
equi joins, 1195

using correct joins in WHERE
clauses, 958

error correction
flashback using undo data,

254–267
error handling

Java programs, 419
PL/SQL, 1205

error messages
autonomous transactions, 268
database hangs, 1063
error accessing

PRODUCT_USER_PROFILE,
373

errors
benefits of RMAN, 649
common resumable errors, 270
data block corruption, 102
DBMS_ERRLOG package,

1167–1168
maximum extents errors, 270
ORA-00257, 647
ORA-00376, 756
ORA-01152, 755
ORA-01194, 754
ORA-01555: snapshot too old

error, 141, 244, 252
ORA-01588: must use RESETLOGS

option, 754
ORA-01589: must use RESETLOGS

or, 754
ORA-01756: quoted string not

properly terminated, 521
ORA-12500: TNS: listener failed,

922
ORA-12541: TNS: no listener, 924
ORA-12571: TNS: packet writer

failure, 922
ORA-15110: no diskgroups

mounted, 788
ORA-19804, 647
ORA-19809, 647
ORA-19815: WARNING:

db_recovery_file_dest_size,
647

ORA-29701: unable to connect to
Cluster Manager, 788

ORA-30032: the statement has
timed out, 271

ORA-30393: a query block in the
statement did not write, 210

out of space errors, 270
recovery errors, 754–756
SHOW ERRORS command, 507
user’s space quota errors, 270

ERRORS parameter, SQL*Loader, 549
ESTIMATE parameter, Data Pump,

605
ESTIMATE_ONLY parameter, Data

Pump, 606
ESTIMATE_PERCENT attribute

GATHER_DATABASE_STATS, 951
etc (/etc) directory, UNIX, 62
ETL (extraction, transformation, and

loading), 540–541
external tables, loading data using,

559–569
Oracle Streams, 583–587
SQL*Loader utility, 541–559
transforming data, 570–583

events
caution: setting events, 1064
event 10046: Trace SQL code, 1045

■INDEX 1233

4517INDEX.qxd 8/19/05 11:20 AM Page 1233

event metrics, 827
Oracle Streams, 583

event management and
notification, 584

problem-related alerts, 828
SET_EV procedure, 1158
Top Background Events section,

ASH, 847
Top User Events section, ASH, 847

events, Oracle Scheduler, 864,
873–874

EVENT_CONDITION attribute
CREATE_JOB procedure, 874

EXCEPTION statement, PL/SQL, 1203
EXCHANGE PARTITION clause, 191
exclamation mark (!)

SQL*Plus using operating system
commands, 509

EXCLUDE parameter, Data Pump,
603–604, 613, 616

excluded addresses, 485
exclusive lock mode, 131
exclusive locks, 237
executable files

components of Oracle process,
1061

Oracle home directory, 283
EXECUTE command, SQL*Plus, 511
execute permission, UNIX files, 59
EXECUTE SCRIPT command, RMAN,

653
executeQuery method, JDBC, 418
executeUpdate method, JDBC, 418
EXECUTE_CATALOG_ROLE, 444
EXECUTE_TASK procedure, 770
EXECUTE_TUNING_TASK

procedure, 997, 1181
executing queries

optimizing query processing, 942
execution phase

Oracle SQL transaction stages, 232
SQL processing steps, 1005
TKPROF utility output, 988

execution plan generation phase, 940
execution plans

see also EXPLAIN PLAN tool, SQL
Oracle plan stability feature, 969
query processing, 939
using hints to influence, 959–960

execution time, limiting, 432, 819
EXISTS operator, 1200
existsNode method, SQL/XML, 1211,

1213
exit command, iSQL*Plus, 529
EXIT command, SQL*Plus, 495, 523
EXIT_CLIENT command, Data Pump,

612, 621
exp utility

Data Pump equivalent of, 592
expdp utility

accessing expdp and impdp, 590
PARFILE parameter invoking, 599

expired accounts, 472
EXPLAIN parameter, TKPROF utility,

986

EXPLAIN PLAN tool, SQL, 974–979
creating EXPLAIN PLAN, 975

using Autotrace utility, 979–983
DBMS_XPLAN package, 976–977,

1182
DISPLAY_AWR function, 976
displaying EXPLAIN PLAN,

975–977
identifying SQL inefficiency, 999
indexing strategy, 962
interpreting EXPLAIN PLAN,

977–979
from Autotrace utility, 981–983

monitoring index usage, 201
SQL Trace tool using, 984
understanding output of, 974
utlxplan.sql script, 976

EXPLAIN_MVIEW procedure, 212
explicit capture, Oracle Streams, 584
explicit cursors, 1207
explicit locking, 239
export command, UNIX, 53–54

changing shell prompt, 51
export modes, Data Pump, 600
export parameters, Data Pump,

601–613
exporting data

see Data Pump Export and Import
utilities

extents, 103
amalgamating free extents, 117
Automatic Storage Management,

141
ASM mirroring, 792

bigfile tablespaces, using, 170
DBA_EXTENTS view, 1100
description, 100
dictionary-managed tablespaces,

150
extent allocation/deallocation, 156
locally managed tablespaces, 150
managing extent sizes, 151
maximum extents errors, 270
tablespace storage parameters,

156–157
temporary tablespaces, sizing for,

164
external authentication, 475–476
external authorization, 451
external naming, 412

naming methods, 405
external tables, 139, 185

access drivers, 562
ACCESS PARAMETERS clause, 562
creating external table layer,

561–564
Data Pump data access, 592
directory objects, 563
ETL components, 540
existence of, 560
Flashback Versions Query feature,

260
loading data using, 559–569
populating external tables,

564–566

SQL*Loader, 560, 567
using external tables, 566–567

external_name attribute, USERENV,
455

EXTERNAL_TABLE parameter, 567
EXTPROC functionality, PL/SQL, 485
extract method, SQL/XML, 1211, 1213
extracting data

see ETL
extractValue method, SQL/XML,

1212–1213
EX_FAIL/FTL/SUCC/WARN

SQL*Loader return codes, 554
EZCONNECT keyword, 411

F
FAILED_LOGIN_ATTEMPTS

parameter, 427
locking accounts, 473
setting user profiles, 482

FAILGROUP keyword
creating ASM disk groups, 793

failure groups, ASM mirroring, 792
failures, database, 699–701
FAST refresh option, 211
Fast Start Checkpointing, 701
Fast Start Fault Recovery, 701–702
FAST_START_MTTR_TARGET

parameter
automatic checkpoint tuning, 141,

810
crash recovery, 702
MTTR Advisor, 854

FAT file system, 918
FCLOSE procedure, 1170
FCLOSE_ALL procedure, 1170
FEED[BACK] variable, SQL*Plus, 500
FETCH command, explicit cursors,

1208
Fetch operation, TKPROF utility,

987–988
fetching, 1005
FGAC (fine-grained access control)

creating package that will access
context, 457

data access, 453–461
DBMS_RLS package, 1176
described, 457
policy functions, 457
security policy, 458–459
steps required, 457
uses of, 453

fgrep command, UNIX, 65
Fifth Normal Form (5NF), 34
file deletion policy

flash recovery area, 646
file locations

flash recovery area, 644
file management

ASM, 783–799
OMF, 800–806

file mapping feature, 862–863
file mapping monitor (FMON)

process, 117, 862

■INDEX1234

4517INDEX.qxd 8/19/05 11:20 AM Page 1234

file metrics, 827
FILE parameter, Data Pump, 601
file permissions

setting, preinstallation, 295
file systems

choosing location for files, 332
creating prior to database

creation, 330–332
disk storage, UNIX, 87
managing Oracle on Windows and

UNIX, 918
Oracle Managed Files managing,

173
removing, 931
sizing file system, 330–331

FILENAME parameter, TKPROF, 986
files

administrative files, 285
alert log file, 111
control file, 108
control files, 107
copying files with database server,

860–862
creating directories for database

files, 287
data files, 107
database files, 286
DBMS_FILE_TRANSFER package,

1146–1148
dynamic performance views,

1140–1143
FCLOSE procedure, 1170
FCLOSE_ALL procedure, 1170
FFLUSH procedure, 1168
file-related parameters, 339–341
FOPEN function, 1170
initialization files, 107
mapping to physical devices,

862–863
network administration files, 107
Oracle data files, 108
password file, 111
physical files, 107
product files, 286
recovering, SQL*Plus, 524
redo log files, 107, 109
server parameter file, 110
trace files, 111
V$FILESTAT view, 1140

files, UNIX, 57
avoiding overwriting, 57
changing file name, 59
changing group, 61
comparing UNIX files, 53
copying, 59
crontab file, 76
cutting, pasting, and joining text,

66
device files, 62
editing files, 63
file editors, 65
file types, 57
getting to top or bottom of, 64
joining files, 66–67
linking files, 58

listing, 58
locating file, 52
location of executable file

command, 49
locations and paths, 47
moving file location, 59
outputting columns, 66
pattern matching, 65
permissions, 59–60
reading contents of a file, 52
redirection operators, 56
removing duplicate lines of text, 67
removing files, 59
searching for patterns, 65
shell scripts, 68–74
sorting lines of text, 67
special files, 57
system configuration files, 62
temporary files, 62
text extraction utilities, 65
transmitting files, 79
vi editor, 63
viewing contents, 58, 59
writing files, 63

FILESIZE parameter, Data Pump, 602,
614

FILE_MAPPING parameter, 863
filtering operations

WHERE clause, 1189
using correct joins in, 958

find command, UNIX, 52
Finding column, ADDM, 772
findings, ADDM, 762, 768
fine-grained access control

see FGAC
fine-grained auditing, 468–471

DBMS_FGA package, 470, 1176
FINISH_REDEF_TABLE procedure,

817
First Normal Form (1NF), 30
FIRST_ROWS value

OPTIMIZER_MODE parameter,
946

FIRST_ROWS(n) hint, 959
FIXED clause

creating external table layer, 562
fixed objects, 954
fixed record format, SQL*Loader, 545
FIX_CORRUPT_BLOCKS procedure,

1161
flash recovery area, 134, 288, 640–648

alert log during database creation,
367

backing up, 646
benefits, 641
configuring, 643
contents of, 641–642
control files, 644
creating, 643, 646

preinstallation, 297
default file location, 644–645
described, 354
disabling, 644
dynamically defining, 643–644
managing, 646–648

managing/monitoring database,
144

monitoring, 747
Oracle Managed Files, 644
out-of-space warning and critical

alerts, 647
parameter specifying default

location for, 354
parameter specifying size of, 354
parameters, setting up, 645–646
redo log files, 645
sizing, 642–643
sizing file system for database, 331
upgrading with DBUA, 321
V$FLASH_RECOVERY_AREA_

USAGE view, 1128
Flashback, 736–750

DBMS_FLASHBACK package,
256–257, 1178–1179

description, 705
dropping tables, 182
dynamic performance views, 1128
error correction using undo data,

254–267
flash recovery area, 641
flashback features, 133

using flashback features for
auditing, 468

flashback logs, 119
indicating if logging enabled,

891
flashback mode clause, 154
FLASHBACK_RETENTION_

TARGET parameter, 747
FLASHBACK_SCN parameter, 608,

621
FLASHBACK_TIME parameter,

608, 621
FLASHBACK_TRANSACTION_

QUERY view, 261, 1089
levels, 737
parameter specifying flashback

time, 355
techniques, 135
traditional recovery techniques

compared, 738
Flashback Database feature, 154, 641,

742–750
concepts, 746
configuring, 744–745
description, 738
disabling, 745–746
example, 748–750
FLASHBACK DATABASE

command, 743
Flashback Database logs, 746
limitations, 750
monitoring flash recovery area,

747
storage limits, 747
when to use, 743

Flashback Drop feature, 264, 738–742
description, 737
how Flashback Drop works, 739

■INDEX 1235

4517INDEX.qxd 8/19/05 11:20 AM Page 1235

permanently removing tables,
741–742

privileges, 742
Recycle Bin, 740
restoring dropped tables, 741
turning off, 739

Flashback Query feature, 254
AS OF clause, 256
advantages of AUM, 244
description, 737
querying old data with, 255–256
using flashback features for

auditing, 468
Flashback Table feature, 254, 264–267

description, 737
restrictions, 267
undoing Flashback Table

operation, 266
Flashback Transaction Query feature,

254, 261–264
description, 737
points to remember, 263
using, 261
using flashback features for

auditing, 468
using with Flashback Versions

Query, 263
Flashback Versions Query feature,

254, 258–261
AS OF clause, 258
description, 737
example using, 260
key points, 258
pseudo-columns, 259
restrictions on, 260
syntax, 258
using flashback features for

auditing, 468
using with Flashback Transaction

Query, 263
VERSIONS clause, 258, 260

flow control structures, UNIX, 71
case command, 73
conditional branching, 71
for-do-done loop, 72
if-then-else-fi structure, 71
looping, 72
until-do-done loop, 73
while-do-done loop, 72

FLUSH variable, SQL*Plus, 500
flushing, shared pool, 1007
FMON process, 862
footers, SQL*Plus, 513
FOPEN function, UTL_FILE, 1170
FOR loop

cursors, 1209
for-do-done loop, UNIX, 72
PL/SQL, 1206

FORCE refresh option, 212
foreign keys, 35

converting logical into physical
design, 35

enforcing constraints, 36

indexing strategy, 963
referential integrity constraints,

205
FORMAT clause

SET SERVEROUTPUT command,
502

FORMAT option, backups, 657
FORMAT parameter

converting data files to match
endian format, 629

RMAN backup locations, 658
formatting, SQL*Plus

specifying where formatting
change occurs, 512

forName method, java.lang
JDBC drivers, 417

forward slash (/) command
executing contents of SQL*Plus

buffer, 515
FOUND (%FOUND) attribute, 1208
Fourth Normal Form (4NF), 34
fragmentation, 806
free buffer waits event, 1050
free buffers, 121
free space

data blocks, 101
DBA_FREE_SPACE dictionary

view, 175
freelists, 152
FREE_BLOCKS procedure, 1164

FROM clause, subqueries, 147
FTP (File Transfer Protocol), 79
ftp command, UNIX, 79
FULL hint, 959
FULL parameter/full export mode,

600, 617
full table scans

avoiding unnecessary, 967
CBO choosing access path, 948
INDEX_FFS hint, 959

function-based indexes, 200
using appropriate index types, 964
using SQL functions in WHERE

clauses, 958
function privileges, 446
functional dependencies

normal forms, 33
functions

PL/SQL, 1210
SQL functions, 1190–1194

fuzzy-read problem, 230

G
Gather Statistics wizard, 1066
GATHER_DATABASE_STATS

procedure
collecting fixed object statistics,

954
collecting real dictionary table

statistics, 954
gathering Optimizer statistics,

950–952

GATHER_DICTIONARY_STATS
procedure

collecting data dictionary
statistics, 955

collecting real dictionary table
statistics, 954

GATHER_FIXED_OBJECTS_STATS
procedure

collecting fixed object statistics,
954

GATHER_STATS_JOB
automatic optimizer statistics

collection, 781–782
default Scheduler jobs, 882
gathering statistics, 943–945
objects for which statistics are

collected, 782
GATHER_SYSTEM_STATS procedure

collecting operating system
statistics, 952–954

GATHER_XYZ_STATS procedures
gathering Optimizer statistics, 950

General section
Database Control home page, 891

GET command, SQL*Plus, 499, 518
get command, UNIX, 79
getConnection method,

DriverManager
JDBC drivers, 417

GET_FILE procedure, 862, 1147
GET_LINE procedure, 1170
GET_SCHEDULER_ATTRIBUTE

procedure, 880
GET_TASK_REPORT procedure, 770
GET_TASK_SCRIPT procedure, 1180
GET_THRESHOLD procedure, 831,

1180
glance command, UNIX, 84
GlancePlus, UNIX, 84
global authorization, 451
global database names, 394
global indexes, 200
global partitioned indexes, 965
global preferences file

SQL*Plus environment variables,
502–503

global RMAN scripts
creating, 654–655

GLOBAL_NAME view, 1085
GLOBAL_NAMES parameter, Oracle

Streams, 585
glogin.sql file

applicability, 504
default file, 503
execution order with login.sql file,

504
iSQL*Plus, 536
specifying environment variables,

502–503
gpm command, UNIX, 85
GRANT ANY OBJECT privilege, 444

granting/revoking object
privileges, 448

■INDEX1236

4517INDEX.qxd 8/19/05 11:20 AM Page 1236

GRANT ANY PRIVILEGE privilege,
444

GRANT CONNECT statement, 423
GRANT statement

granting object privileges, 447
granting privileges, 442
granting system privileges, 443

GRANTROLE command, iSQL*Plus,
534

grants
database security dos and don’ts,

483, 487
DBA views for managing, 452
granting privileges through roles,

487
granting roles to maintain/query

RMAN, 669
GRANTS parameter, Data Pump, 603
GRANT_ADMIN_PRIVILEGE

procedure, 586
granular recovery, 730–736

LogMiner utility, 731–736
Tablespace Point-in-Time

Recovery, 730–731
granularity

benefits of Data Pump, 591
locking, 237
row-level granularity, 237

GRANULARITY attribute
GATHER_DATABASE_STATS

procedure, 951
grep command, UNIX, 49, 65, 74
Grid Control, OEM

see OEM Grid Control
GROUP BY clauses, 1197–1198

CUBE operator, 1198
GROUPING operator, 1198
GROUPING SETS operator, 1198
guidelines for use of indexes, 197
HAVING operator, 1198
indexing strategy, 963
nesting group functions, 1197
ROLLUP operator, 1197

groups
managing Oracle on Windows and

UNIX, 917
OEM Grid Control, 906, 908

groups, UNIX
creating, preinstallation, 294
files changing, 61

guaranteed restore points, 751
guaranteed undo retention, 251
GUI sessions

managing Oracle on Windows and
UNIX, 918

H
h (esc-h), UNIX

editing the previous command, 50
handler_module/schema parameters

ADD_POLICY procedure,
DBMS_FGA, 469, 470

Hang Analysis page, Database
Control, 1063

blocking and waiting sessions, 242
hanganalyze utility, 1065
hanging

see database hangs
HARD (Hardware Assisted Resilient

Data) initiative, 694
storage technologies, 94

hard links, UNIX, 58
hard parsing

caution: high hard parse rates,
1007

converting to soft parsing, 1013
description, 1007
examples, 1008
resources used, 1010
sessions with high number of hard

parses, 1011–1012
hardware

ADDM recommendations, 763
Hardware Assisted Resilient Data

see HARD
hash clusters, 195–196
hash join

CBO choosing join method, 948
selecting best join method, 960

hash partitioning, 187–188
HASHKEYS value, 195
HAVING clause, GROUP BY, 959, 1198
head command, UNIX, 64
headers, SQL*Plus, 513
heap

components of Oracle process,
1061

HEA[DING] variable, SQL*Plus, 500
HELO procedure, UTL_SMTP, 1172
help

SQL*Plus, 499
UNIX commands, 50

HELP command, Data Pump, 612,
613, 621

help command, lsnrctl utility, 402
HELP INDEX command, SQL*Plus,

499
heuristic strategies

optimizing query processing, 942
hidden Oracle parameters, 110
hierarchical queries, 1194
High Availability section, Database

Control, 891
high availability systems

enhanced data protection for
disaster recovery, 695

high water mark
see HWM

hints
DBA_OUTLINES view, 1098
optimizing queries, 137
REWRITE_OR_ERROR hint, 210
using hints to influence execution

plan, 959–960
histograms, 972–973
history, ASH, 142, 845–849

history command, UNIX, 49
hit ratios

database buffer cache, 124
database hit ratios, 1033

home directory, UNIX, 46, 62
HOME shell variables, UNIX, 54
HOMEID key, Windows registry, 921
host attribute, USERENV, 455
Host chart, Database Performance,

1070
HOST command, SQL*Plus, 509

restricting use of, 498
restriction levels, 499

Host CPU bar chart, Database
Control, 1067

Host CPU section, Database Control,
891

Host graph, Database Control, 891
host name

connect descriptors, 395
host parameter

easy connect naming, 410
hosts

administrative domain, 681
hot backups

see open backups
hot restore, RMAN, 713
hot spares, RAID systems, 88
hot swapping, RAID systems, 88
Hotsos, DBA resources, 14
HR (human resources) schema, 1183,

1184
http-web-site.xml, iSQL*Plus, 527
HWM (high water mark)

Database Usage Statistics property
sheet, 899

manual segment shrinking, 807
OEM Database Control, 898
online segment shrinking, 806

hyphen (-)
continuation characters,

SQL*Plus, 495
using comments in SQL*Plus, 518

I
I/O

ADDM determining optimal
performance, 764

analyzing instance before tuning,
1074

Automatic Storage Management,
141

block size and I/O performance,
1030

caution: excessive reads/writes on
some disks, 1031

cost model of Oracle Optimizer,
952

cost of disk I/O, 120
data block sizes and tablespaces,

105
deploying additional database

writer processes, 115
distribution of I/O, 1030

■INDEX 1237

4517INDEX.qxd 8/19/05 11:20 AM Page 1237

evaluating system performance,
1030

finding SQL that uses most
resources, 993

managing Oracle on Windows and
UNIX, 917

measuring I/O performance,
1030–1032

monitoring, 117
multiple buffer pools, 122
optimally distributed I/O, 1031
rebalancing ASM disk groups, 794
reducing I/O contention, 1032
SAME guidelines for optimal disk

usage, 1032
SQL Trace tool showing, 984
system usage problems, 1059

identifiers
see keys

idle events category, 1052
idle time resource allocation method

Database Resource Manager, 432
Idle wait class, 1035
idle-time-limit resource directive, 437
IDLE_TICKS system usage statistic,

1053
IDLE_TIME resource parameter, 427,

430
IE (information exchange) schema,

1184
IF statement, PL/SQL, 1205
if-then-else-fi control structure,

UNIX, 71
IFILE parameter, 339
image copies, RMAN, 649, 655–656,

659, 678
immediate constraints, 207
IMMEDIATE option, 227
imp utility

Data Pump equivalent of, 592
Impact column, ADDM reports, 772
impact estimate, ADDM, 762
impdp utility, accessing, 590
implementation

database design, 37
Oracle DBA role, 3
RAID systems, 92

implicit capture, Oracle Streams, 584
implicit commit, 226
implicit cursors, 1207
implicit locking, 239
import parameters, Data Pump, 614,

621
import scripts

see Data Pump Export and Import
utilities

Import utility
disabling integrity constraints, 205

import-export element (iee)
tape libraries, Oracle Backup, 685

importing data
see Data Pump Export and Import

utilities
IMPORT_FULL_DATABASE role

Data Pump utilities, 614

in-memory metrics, 827
IN operator, 1189
incarnations, databases, 720
INCLUDE parameter, Data Pump,

603–604, 616
INCLUDING CONTENTS clause, 160
incomplete recovery, 704, 717–721

change-based SCN, 718
description, 705
log sequence–based recovery, 718
through parent incarnation, 720
time-based recovery, 718
using RMAN, 717–721

inconsistent database backups, 633
incremental backups

backup strategies, 638
benefits of RMAN, 648
enabling block-change tracking,

677
fast incremental backups, 677
flash recovery area, 641
monitoring block-change tracking,

677
RMAN, 659–660, 676

INDEX hint, 959
index key compression, 968
index-organized tables

see IOT
index scans

CBO choosing access path, 948
indexes, 196–202

bitmap indexes, 199, 963
Bitmap join indexes (BJIs),

960–961
B-tree indexes, 197, 199
coalescing an index online, 812
concatenated indexes, 964
creating an index, 199
creating an index online, 812
DBA_INDEXES view, 224, 1106
DBA_IND_COLUMNS view, 1106
dropping tables, 182
estimating size of index, 198
function-based indexes, 200, 958,

964
guidelines for use of, 197
index-organized tables (IOTs), 963
indexing strategy, 962–965

index-only plans, 963
using appropriate index types,

963–965
what to index, 963
when to use indexes, 962

low cardinality, 963
maintaining, 202
materialized views, 209
monitoring index usage, 201, 965
Oracle index schemes, 197
partitioned indexes, 200, 201, 964
performance tradeoff using, 196
performance tuning, 973
primary index, 962
rebuilding an index online, 812
removing unnecessary indexes,

965

reverse key indexes, 199, 964
secondary indexes, 962
separating table and index data,

104
sizing file system for database, 330
SQL Access Advisor

recommendations, 201
SQL*Loader utility, 558
types, 196

INDEXES parameter, Data Pump, 603
INDEXFILE parameter, Data Pump,

615
INDEX_FFS hint, 959
INDEX_STATS view, 1107
INFILE parameter, SQL*Loader, 544
InfiniBand

storage technologies, 94
inheritance

object database model, 39
init.ora file

see also initialization parameter
file

automatic service registration, 401
backup guidelines, 635
comments, 377
creating, 359–361
creating new database, 110
creating SPFILE from, 375
database instance names, 394
DB_BLOCK_SIZE parameter, 100
dynamic parameter changes, 374
manual upgrade process, 324
modifying, 376
reading file, 357
SPFILE as alternative, 779

INITCAP function
deriving data from existing tables,

570
initdb_name.ora, 333, 334
initial extent, 103
Initial Options page, 217
initialization files, 107

Oracle looking for correct file, 378
setting up flash recovery

parameters, 645
uses of, 333

initialization parameter file (pfile),
334

see also init.ora file
actions of parameters

associating multiple instances,
338

auditing actions of SYS user,
337

checking for corrupted data
blocks, 355

checking for password file for
authentication, 356

collecting timed statistics
during tracing, 353

configuring dispatcher process,
339

defining archive log
destinations, 347

■INDEX1238

4517INDEX.qxd 8/19/05 11:20 AM Page 1238

defining format for archived
redo log files, 347

determining default
tablespace, 348

determining number of parallel
execution processes, 352

determining query rewriting,
350

dynamically sampling data, 350
enabling behavior of previous

versions, 350
enabling detection of

corruption, 355
enabling/disabling Resumable

Space Allocation, 355
enforcing integrity rules, 350
enforcing resource limits in

user’s profile, 353
ensuring compatibility of

releases, 338
locking SGA into host’s physical

memory, 346
logging checkpointing activity

to alert log, 356
multiplexing control file, 339
nesting common parameters,

339
optimizing PL/SQL library

units, 353
prefixing operating system

authenticated usernames.,
356

providing name for database
service, 338

retaining shared SQL areas, 351
setting Java pool size, 346
setting large pool size, 345
setting limit for processes, 342
setting memory for user jobs,

346
setting name of database, 337
setting nonstandard-sized

buffer caches, 344
setting number of open

cursors, 342
setting number of sessions, 342
setting redo log buffer size, 345
setting SGA maximum size, 346
setting shared pool size, 345
setting size of default buffer

pool, 344
setting size of keep pool, 344
setting size of recycle pool, 344
setting standard database

block size, 351
setting Streams pool size, 346
sharing cursors, 351
sizing SQL work areas for users,

353
specifying default date format,

339
specifying default location for

flash recovery area, 354
specifying directory for audit

records, 337

specifying flashback time, 355
specifying fully qualified name,

337
specifying instance type, 338
specifying level of statistics

collected, 349
specifying location for alert log,

340
specifying location for core

messages, 340
specifying location for data

files, 341
specifying location for error

messages, 340
specifying location for OMF,

341
specifying location for

processing I/O, 341
specifying maximum number

of blocks read, 352
specifying maximum number

of users, 348
specifying number of files to

open, 340
specifying number of writer

processes, 342
specifying optimization type,

349
specifying record retention

time, 340
specifying saved redo

information, 348
specifying size of flash recovery

area, 354
storing undo records, 348
turning auditing on/off, 336
turning SQL trace utility on/off,

352
using automatic shared

memory management, 343
changing initialization parameter

values, 333, 334–335
ALTER SESSION command,

335
ALTER SYSTEM command, 335
dynamic parameters, 334
for all sessions, 335
for duration of session, 335
for new sessions, 335
making permanent, 335
static parameters, 334

configuration parameters
contained, 334

creating init.ora file, 360
described, 333
dynamic changes, 333
editing, 333
initdb_name.ora, 333
location of, 333
optional parameters, 334
Oracle Database 10g initialization

parameters, 335–357
AUDIT_FILE_DEST, 337
AUDIT_SYS_OPERATIONS, 337
AUDIT_TRAIL, 336

BACKGROUND_DUMP_DEST,
340

COMPATIBLE, 338
CONTROL_FILES, 339
CONTROL_FILE_RECORD_

KEEP_TIME, 340
CORE_DUMP_DEST, 340
CURSOR_SHARING, 351
CURSOR_SPACE_FOR_TIME,

351
DB_BLOCK_CHECKING, 355
DB_BLOCK_CHECKSUM, 355
DB_BLOCK_SIZE, 351
DB_CACHE_SIZE, 344
DB_CREATE_FILE_DEST, 341
DB_CREATE_ONLINE_LOG_

DEST_n, 341
DB_DOMAIN, 337
DB_FILES, 340
DB_FILE_MULTIBLOCK_

READ_COUNT, 352
DB_FLASHBACK_RETENTION_

TARGET, 355
DB_KEEP_CACHE_SIZE, 344
DB_NAME, 337
DB_nK_CACHE_SIZE, 344
DB_RECOVERY_FILE_DEST,

354
DB_RECOVERY_FILE_DEST_

SIZE, 354
DB_RECYCLE_CACHE_SIZE,

344
DB_UNIQUE_NAME, 337
DB_WRITER_PROCESSES, 342
DISPATCHERS, 339
IFILE, 339
INSTANCE_NAME, 338
INSTANCE_TYPE, 338
JAVA_POOL_SIZE, 346
LARGE_POOL_SIZE, 345
LICENSE_MAX_USERS, 348
LOCK_SGA, 346
LOG_ARCHIVE_DEST_n, 347
LOG_ARCHIVE_FORMAT, 347
LOG_BUFFER, 345
LOG_CHECKPOINTS_TO_

ALERT, 356
NLS_DATE_FORMAT, 339
OPEN_CURSORS, 342
OPTIMIZER_DYNAMIC_

SAMPLING, 350
OPTIMIZER_FEATURES_

ENABLE, 350
OPTIMIZER_MODE, 349
OS_AUTHENT_PREFIX, 356
PARALLEL_MAX_SERVERS, 352
PGA_AGGREGATE_TARGET,

346
PLSQL_OPTIMIZE_LEVEL, 353
PROCESSES, 342
QUERY_REWRITE_ENABLED,

350
QUERY_REWRITE_INTEGRITY,

350

■INDEX 1239

4517INDEX.qxd 8/19/05 11:20 AM Page 1239

REMOTE_LOGIN_PASSWORD
FILE, 356

RESOURCE_LIMIT, 353
RESUMABLE_TIMEOUT, 355
SERVICE_NAME, 338
SESSIONS, 342
SGA_MAX_SIZE, 346
SGA_TARGET, 343
SHARED_POOL_SIZE, 345
SQL_TRACE, 352
STATISTICS_LEVEL, 349
STREAMS_POOL_SIZE, 346
TIMED_STATISTICS, 353
UNDO_MANAGEMENT, 348
UNDO_RETENTION, 348
UNDO_TABLESPACE, 348
USER_DUMP_DEST, 340
UTL_FILE_DIRECTORY, 341
WORKAREA_SIZE_POLICY, 353

Oracle template for creation of,
334

pfile administrative directory, 285
SHOW PARAMETER command,

358
undocumented initialization

parameters, 357
viewing current initialization

parameter values, 357–358
V$PARAMETER view, 357

initialization parameters
ADDM recommendations, 763
BACKGROUND_DUMP_DEST, 111
changing for session only, 146
database creation using OMF, 803
detecting data block corruption,

692
dynamic initialization parameters,

110
modifying, 146
Oracle Managed Files, 801–802
Pre-Upgrade Information Tool, 317
setting, post-installation, 311
SET_INT_PARAM_IN_SESSION

procedure, 1158
V$PARAMETER view, 1138
V$SPPARAMETER view, 110
V$SYSTEM_PARAMETER view,

1138
INITIAL_EXTENT storage parameter,

157
INITTRANS parameter

serializable isolation level, 235
inline stored functions

writing efficient SQL, 966
inline view, 147
inner join, 1196
input, SQL*Plus

saving user input in variable, 511
INPUT command, SQL*Plus, 520
input/output statistics, UNIX

iostat utility, 82
input/output redirection, UNIX, 56
INSERT ALL statement, 574
INSERT clause, SQL*Loader, 544
INSERT FIRST statement, 574

INSERT parameter, TKPROF, 986
INSERT statement, 1187–1188

data manipulation statements, 147
table functions, 576, 578

insertion anomaly, 29
Installation Guide, Oracle, 280
installations

see also Oracle Database 10g
installation

Instant Client software, 400
iSQL*Plus, 526
Oracle Internet Directory, 416
Oracle Client software, 398–399

instance
see Oracle instance

instance attribute, USERENV, 455
Instance Disk I/O graph, Database

Control, 892
instance failure

benefits of archivelog mode, 632
instance performance

analyzing instance performance,
1035–1052

application knowledge for
diagnosis, 1053

measuring instance performance,
1032–1065

database hit ratios, 1033
database wait statistics,

1033–1035
wait classes and wait events,

1035
symptoms and causes, 1054

instance recovery, 701–702
Instance Throughput graph,

Database Control, 892
instance tuning

see performance tuning
instances

see database instances
INSTANCE_NAME parameter, 338

automatic service registration, 401
database instance names, 394

INSTANCE_TYPE parameter, ASM,
338, 787

Instant Client software, 398, 399–400
instant protection mode, Data Guard,

697
INSTR function, 1191
integrated systems management,

OEM, 886
integrity

see database integrity
interactive mode

Data Pump utilities, 599, 614
export parameters, 609–613

UNIX commands, 54
internal locks, Oracle, 239
internal plan, Oracle, 435
internal quiesce, Oracle, 435
International Oracle Users Group

(IOUG), 13
intersection, relational algebra, 21
INTERSECTION operator, 1190

INTERVAL keyword/parameter
AWR snapshots, 839

setting to zero, 840
collecting operating system

statistics, 953
INTO TABLE statement, SQL*Loader,

544
invalid objects

manual upgrade process, 325
upgrading with DBUA, 320

invited addresses, 485
invoker’s rights, 448
IOSEEKTIM mode, 953
iostat utility, UNIX, 82, 1030
IOT (index-organized tables),

184–185
Flashback Versions Query feature,

259
using appropriate index types, 963

IOTFRSPEED mode, 953
IOUG (International Oracle Users

Group), 13
IOWAIT_TICKS statistic, 1053
IP (Internet Protocol) address, 47, 77
ip_address attribute, USERENV, 455
ISO transaction standard, 231
isolation, transactions, 228
isolation levels, 232–235

changing default, 234
ISO transaction standard, 231
read-committed, 233
read-uncommitted, 233
repeatable-read, 232
serializable, 232
statement-level read consistency,

234
transaction-level read consistency,

234
ISOPEN (%ISOPEN) attribute, 1208
iSQL*Plus, 138, 526–536

architecture, 526–527
authentication

authentication levels, 533–535
creating authorized users, 534
granting webDba role to new

users, 534
JAAS, 533
starting JAZN shell, 533

browser requirements, 527
changing iSQL*Plus default port,

530
changing password, 533
commands

ADDUSER command, 534
CONNECT command, 529
DISCONNECT command, 529
exit command, 529
GRANTROLE command, 534
inapplicable SQL*Plus

commands, 536
LISTUSERS command, 534
netstat command, 530
REMUSER command, 534
REVOKEROLE command, 535
SETPASSWD command, 534

■INDEX1240

4517INDEX.qxd 8/19/05 11:20 AM Page 1240

configuration, 527–528
connecting to, 527

different database, 529
remote databases, 531
unable to connect, 527

database administration, 532
disconnecting from, 529
displaying results in, 533
glogin.sql file, 503, 536
History screen, 531
HTTP network timeouts, 536
inapplicable SQL*Plus commands,

536
installing, 526
interface configuration settings,

532
iSQL*Plus Application Server, 527,

528
iSQL*Plus DBA URL, 533, 535
iSQL*Plus Workspace, 531
limitations, 526
logging into, 528
login.sql file, 504, 536
navigating in, 531
Preferences screen, 531
restricting access to limited set of

databases, 536
script execution, 532
script formatting, 532
security, 536
starting, 370
starting iSQL*Plus from URL, 530
system configuration, 532
troubleshooting startup on

UNIX/Linux, 529
Workspace screen, 531

isqlplusctl utility
location, 528
starting JAZN shell, 533
stop command, 528

Itanium processors
managing Oracle on Windows and

UNIX, 917
Ixora, DBA resources, 14

J
JAAS (Java Authentication and

Authorization Service)
iSQL*Plus authentication, 533

Java
error handling, 419
Oracle and Java, 1214–1216
stored procedures, 1214

Java Database Connectivity
see JDBC

Java pool
auto-tuned SGA parameters, 775
JAVA_POOL_SIZE parameter, 346,

775
parameter setting size, 346
system global area, 121, 126
tuning, 1019

java.lang class
forName method, 417

JAZN (Java authorization), 533–534
JDBC (Java Database Connectivity),

416–420, 1215
createStatement method, conn

class, 417
Java program using, 419–420
making database connection, 417
PreparedStatement object, 417
Statement object, creating, 417

JDBC drivers, 416
forName method, java.lang, 417
getConnection method,

DriverManager, 417
JDBC OCI driver, 416
JDBC server-side internal driver,

417
JDBC server-side thin driver, 417
JDBC thin driver, 416
registerDriver method,

DriverManager, 417
Job Activity page, Grid Control, 907
job classes, Oracle Scheduler, 865,

874–876
job commands, RMAN, 660–662
job coordinator, Scheduler, 866
job queue coordination (CJQO)

process, 114, 118
job scheduling, UNIX, 76
job table, Scheduler, 866
job worker processes, Scheduler, 866
jobs

automating jobs, 918
DBA_JOB package, 1151–1153
DBA_JOBS view, 1090
setting credentials for the job

system, 923
jobs, Oracle Scheduler

administering jobs, 868–869
creating event-based jobs, 873
creating jobs, 867–868
default Scheduler jobs, 882
description, 864
embedding jobs in chains, 873
frequency (FREQ keyword), 868
managing, 867–869
prioritizing jobs, 879
purging job logs, 882
repeat interval (INTERVAL

keyword), 868
specifiers, 868

JOB_ACTION attribute, 867
JOB_CLASS_NAME attribute, 875
JOB_NAME attribute, 867
JOB_NAME parameter, Data Pump,

607, 614, 617
JOB_QUEUE_PROCESSES parameter

gathering Optimizer statistics, 952
setting up Oracle Streams, 585

JOB_TYPE attribute, 867
join command, UNIX, 67
join operations

Bitmap join indexes (BJIs),
960–961

Cartesian joins/product, 960, 1195
CBO choosing access path, 948

CBO choosing join order, 948
equi joins, 958, 1195
examples of cost-based query

optimization, 941
HASH join, 960
heuristic strategies for query

processing, 942
indexing strategy, 963
inner join, 1196
MERGE join, 960
natural join, 22, 1196
nested loops (NL join), 960
outer join, 1196
relational algebra, 22
selecting best join method, 960
selecting best join order, 961
self join, 1196
theta-join, 22
types of Oracle joins, 1195–1196
using correct joins in WHERE

clauses, 958
JVM (Java Virtual Machine), 1214

K
k (esc-k), UNIX

retrieving previous command, 50
keep buffer cache, 775
keep buffer pool, 123

determining candidates for, 1019
multiple pools for buffer cache,

1017–1018
setting size of keep pool, 344

KEEP procedure, 1010, 1174
kernel

Linux requirements for Oracle, 292
UNIX, 45

kernel parameters
preinstallation checks, 289, 300
reconfiguring, preinstallation, 292

kernel version
preinstallation checks, 290

keys
ALL_HOMES subkey, 921
candidate keys, 26
HOMEID key, 921
primary keys, 26
removing registry keys, 930
tables, 20

keyword variables, UNIX, 54
kill command, UNIX, 75

database security, 489
managing Oracle on UNIX, 913
problems starting iSQL*Plus, 530

killing Oracle processes, 489, 913
KILL_JOB command, Data Pump,

597, 612–613, 621
ksh (Korn shell), 45, 55

L
L (-L) no-prompt logon, SQL*Plus,

505
l (esc-l), UNIX

editing the previous command, 50
label-based security policy, 461

■INDEX 1241

4517INDEX.qxd 8/19/05 11:20 AM Page 1241

large objects
see LOBs

large pool
auto-tuned SGA parameters, 775
parameter setting size, 345
RMAN, 126
system global area, 121, 126
tuning, 1019

LARGE_POOL_SIZE parameter, 126,
345, 775

latch contention
analyzing instance before tuning,

1076
eliminating contention, 1078–1079
parsing, 1013
reducing parse time CPU usage,

1028
soft parsing, 1013

latch free wait events, 1050
latch rate, 1054
latches, 1050

Oracle lock types, 239
shared pool, 1005
V$LATCH view, 1133
V$LATCHNAME view, 1133

LDAP (Lightweight Directory Access
Protocol), 413, 476, 477

LD_LIBRARY_PATH variable, 332, 359
least recently used (LRU) algorithm,

115
least recently used (LRU) buffers, 122
leaves, B-tree index structure, 197
Legato Single Server Version software,

680
LENGTH function, 1191
library cache

ad hoc SQL, 1013
CURSOR_SHARING parameter,

1010–1011
CURSOR_SPACE_FOR_TIME

parameter, 1012
hit ratio formula, 1009
measuring efficiency, 1009–1010
optimizing, 1010–1014
parameter retaining shared SQL

areas, 351
sessions with high number of hard

parses, 1011–1012
SESSION_CACHED_CURSORS

parameter, 1012–1013
shared pool, 125

parameter setting size of, 345
pinning objects in, 1014–1015
tuning, 1005–1006

V$DB_OBJECT_CACHE view, 1119
V$LIBRARYCACHE view, 1119

LICENSE_MAX_USERS parameter,
348

licensing
licensed number of users

parameter, 348–349
Management Packs, 824, 895–896
performance tools, 824
V$LICENSE view, 1136

Lightweight Directory Access
Protocol (LDAP), 413, 476,
477

LIKE operator, WHERE clause, 1187,
1189

CBO (Cost Based Optimizer), 958
limited analysis mode, Segment

Advisor, 808
lines of text

GET_LINE procedure, 1170
inserting and deleting, SQL*Plus,

520
NEW_LINE procedure, 1170
PUT procedure, 1170
PUT_LINE procedure, 1159, 1170

link command, UNIX, 58
linking files, UNIX, 58
links

see database links
Linux, 931–933

see also UNIX
choosing Linux or UNIX, 932
introduction, 44
managing Oracle databases on,

933
Oracle’s commitment to, 932
stable versions of, 933
troubleshooting iSQL*Plus startup

on, 529
whatis command, UNIX, 51

LIN[ESIZE] variable, SQL*Plus, 500
LIST command, RMAN, 708
LIST command, SQL*Plus, 518
LIST commands, RMAN

ARCHIVELOG ALL, 664
BACKUP, 663
COPY, 664
GLOBAL SCRIPT NAMES, 664
INCARNATION, 720
SCRIPT NAMES, 664

list partitioning, 188
listener.ora file, 117, 137

advice on modifying, 403
concurrent connection requests,

403
default location, 400
making changes to, 403
PMON process, 401
typical file, 401

listeners, 400–405
automatic service registration,

401–402
BLOCKED status, 402
checking listener status, 402, 924
connecting to Oracle, 137
default password, 404
described, 393
dynamic service registration, 117
failed attempt to stop, 404
lsnrctl commands, 402–403

help command, 402
reload command, 403
services command, 402
start command, 403

status command, 402
stop command, 403

LSNRCTL STATUS command, 789
multiple listeners, 403
Oracle listener, 400–401
Oracle networking and, 400
Oracle Service thread, 914
Oracle services, Windows, 924–925
QUEUESIZE parameter, 403
READY status, 402
setting password for, 404
securing listener, 485
UNKNOWN status, 402

listing commands, RMAN, 663–664
listing files, UNIX, 58
LISTUSERS command, iSQL*Plus,

534
ln command, UNIX, 58
load balancing, ASM benefits, 784
LOAD DATA statement, SQL*Loader,

544
LOAD parameter, SQL*Loader, 549
Load Profile section, AWR report,

1075
LOAD WHEN clause, 562
load-then-transform method, ETL,

540
loading data

see also ETL
external tables, 559–569
SQL*Loader utility, 541–559

LOBs (large objects)
choosing size of data blocks, 101
ORDBMS model, 40
transportable tablespaces, 623

local commands, SQL*Plus, 496
local naming, 405–410

modifying tnsnames.ora manually,
406–408

modifying tnsnames.ora with
NCA, 408–410

local partitioned indexes, 965
locally managed tablespaces, 106, 150

AUTOALLOCATE option, 155
automatic segment space

management, 155, 800
bitmaps, 106
managing/monitoring database,

144
migrating from dictionary

managed, 153
space management, 799–800
specifying default storage

parameters, 156
storage allocation to database

objects, 158
locally partitioned indexes, 201
LOCATION parameter, 563
location transparency

Oracle Net Services features, 391
using synonyms, 220

lock (LCKn) process, 119
lock conversion, Oracle, 236
lock escalation, Oracle, 236
LOCK TABLE statement, 147

■INDEX1242

4517INDEX.qxd 8/19/05 11:20 AM Page 1242

locked accounts, 472
locking

blocking locks, 239
caution: locking during segment

shrinking, 807
data concurrency, 131, 229
DBA_BLOCKERS view, 1097
DBA_LOCKS view, 1104
DBA_WAITERS view, 1097
DDL locks, 238
deadlocks, 240
distributed locks, 239
DML locks, 237
exclusive locks, 131, 237
explicit locking, 239
granularity, 237
identifying source of lock, 241–242
implicit locking, 239
internal locks, 239
latches, 239
lock escalation, 236
LOCK_SGA parameter, 346
locking issues, 1060
locks on suspended operations,

272
managing long transactions, 273
Oracle lock types, 237, 238, 239
Oracle locks, 236, 240–243
page-level locking, 237
pessimistic concurrency control,

235
releasing locks, 237
row exclusive locks, 237
row-level locking, 236
sequences avoiding, 222
serializable isolation level, 235
session locks, 242
sessions holding locks, 241
share lock mode, 131
table locks, 238
temporary tables, 183
V$LOCK view, 241, 1132
V$LOCKED_OBJECT view, 1133
V$LOCK_HOLDERS view, 241
V$SESSION view, 241

log buffer
manually managed SGA

parameters, 775
space wait event, 1051

LOG FILE parameter, 562
log file switch wait event, 1052
log file sync wait events category,

1052
log files

alert log file, 111
create materialized view log, 213
creating database, 364
Data Pump files, 593
online redo logs, 855–858
Pre-Upgrade Information Tool, 317
SQL*Loader utility, 552–553

LOG parameter, SQL*Loader, 549
log sequence–based recovery, 718

Flashback Database example, 749

log writer (LGWR) process
background processes, 114–115
Oracle Service thread, 915
redo log buffer, 125–126

LOGFILE parameter, Data Pump, 602,
615

logging on
FAILED_LOGIN_ATTEMPTS

parameter, 427
locking accounts, 472
logging in as different user, 489
no-prompt logon option, 505
performance issues, 1014
Single Sign-On feature, 477

logging on, UNIX
accessing UNIX system, 46
login to another system, 78

LOGGING_LEVEL attribute
CREATE_JOB procedure, 875
SET_ATTRIBUTE procedure, 882

logical change record (LCR)
Oracle Streams, 585

logical database backups, 634
logical database design, 24–34

converting into physical design, 34
entity-relationship diagram, 27–28
entity-relationship modeling,

24–26
ER modeling tools, 34
normal forms, 29–34
normalization, 28–29

logical database structures, 100–107
data blocks, 100–103
extents, 100, 103
schema, 100
segments, 100, 104
tablespaces, 100, 104–107

logical DBA, 8
LOGICAL keyword, RMAN, 659
logical operators, 1190
logical reads, 1016
logical standby databases, 696
logical unit number (LUN), 784
Logical Volume Manager (LVM), 87,

783
logical volume stripe sizes, 1030
logical volumes, UNIX, 87
LOGICAL_READS_PER_CALL

parameter, 427
LOGICAL_READS_PER_SESSION

parameter, 427, 430
login (.login) file, UNIX, 54, 55
login scripts

changing, preinstallation, 293
login.sql file

applicability, 504
execution order with glogin.sql

file, 504
iSQL*Plus, 504, 536
Oracle Database 10g execution,

505
sample file, 504
specifying environment variables,

503–504

LogMiner utility, 139
analyzing redo logs, 735–736
DBMS_LOGMNR package, 1179
description, 705
extracting data dictionary, 733–734
granular recovery using, 731–736
how LogMiner works, 732
sample LogMiner session, 734–735
supplemental logging, 732–733

LOGON_USER column, 262
LOG_ARCHIVE_DEST_n parameters,

347
flash recovery area, 642, 644
OMF parameters, 803
setting up flash recovery

parameters, 645
setting up Oracle Streams, 585

LOG_ARCHIVE_DUPLEX_DEST
parameter, 644

LOG_ARCHIVE_FORMAT parameter,
347, 720

LOG_ARCHIVE_MAX_PROCESSES
parameter, 117

LOG_BUFFER parameter, 126, 345,
775

LOG_CHECKPOINTS_TO_ALERT
parameter, 356

LOG_FILE_NAME_CONVERT
parameter, 727

LOG_HISTORY attribute
CREATE_JOB procedure, 875
PURGE_LOG procedure, 875

LONG data, Data Pump, 593
LONG variable, SQL*Plus, 501
lookup tables, 35
LOOP keyword, PL/SQL, 1206
looping

flow control structures, UNIX, 72
nested loops (NL join), 960
PL/SQL, 1206

lossless-join dependency, 34
lost update problem, 230
low cardinality, 963
LOWER function, 1191
LOW_GROUP resource consumer

group, 435
LPAD function, 1191
ls command, UNIX, 58, 60
LSNRCTL STATUS command, ASM,

789
lsnrctl utility

listener commands, 402–403
Oracle listener, 400–401

checking listener status, 402,
924

set password clause, 404
lsof utility

problems starting iSQL*Plus, 530
LUN (logical unit number), 784
LVM (Logical Volume Manager), 87,

783

■INDEX 1243

4517INDEX.qxd 8/19/05 11:20 AM Page 1243

M
M (-M) markup option, SQL*Plus, 505
machine name

accessing UNIX system, 47
mail program, UNIX, 70
mail, UTL_MAIL package, 1149
MAIL function, UTL_SMTP package,

1172
Maintenance page, Database Control,

893–894
maintenance window, Scheduler, 877,

943
man command, UNIX, 50
manageability monitor (MMON)

process, 114, 118, 845
manageability monitor light (MMNL)

process, 114, 118, 845
management advisory framework

see advisory framework
Management Agent, OEM, 899,

902–903
Management Options window, 321
Management Packs, 824, 895–896
Management Repository, Grid

Control, 900, 907
Management Server, 925
Management Service, OMS, 900, 903
managing database

using Oracle tools, 143
manual management mode

PGA memory, 129
manual segment shrinking, 807–808
many-to-many (M:M) relationship,

26
mapping files, 117, 862
mapping structures, 862
MARKUP command, SQL*Plus, 524
markup option (-M), SQL*Plus, 505
Master Control Process (MCP), Data

Pump, 597
materialized views, 209–214

creating, 212–213
DBA_MVIEWS view, 1111
DBMS_MVIEW package, 212, 1177
DBMS_OLAP package, 1177
DBMS_REFRESH package, 1181
dropping, 214
indexes, 209
optimizing, 210
performance tuning, 968
privileges, 446
query rewriting, 210
refreshing, 211, 212
rewrite integrity, 211
REWRITE_OR_ERROR hint, 210
SQL Access Advisor, 214

Database Control invoking, 215
DBMS_ADVISOR package

invoking, 219
getting recommendations, 216
QUICK_TUNE procedure

invoking, 219
MAX function, 1191

MAXEXTENTS parameter,
tablespaces, 157

maximum availability mode, Data
Guard, 697

maximum extents errors, 270
maximum performance mode, Data

Guard, 697
maximum protection mode, Data

Guard, 697
MAXSIZE parameter, tablespaces, 161
MAXTHR mode, 953
MAX_DUMP_FILE_SIZE parameter,

985
MAX_ESTIMATED_EXEC_TIME

resource plan directive, 820
MAX_IDLE_BLOCKER_TIME

parameter, 437
MAX_IDLE_TIME parameter, 437
MBR mode, 953
media corruption, detecting, 692
media failures, 701
Media Management Layer (MML),

648, 651–652
media managers

benefits of RMAN, 649
BSP media management software

vendors, 652
Oracle Backup tool, 680

media recovery, 703–705
non-file-based recovery

compared, 705–706
media recovery scenarios

see recovery
media server, 681
medium transport element (mte)

tape libraries, Oracle Backup, 685
memory

see also buffers
automatic shared memory

management, 127
buffers, 120
database buffer cache, 121
Java pool, 126
large pool, 126
least recently used buffers, 122
measuring process memory usage,

1061–1062
memory allocation, 121

automatic PGA management,
129

memory configuration
parameters, 342–347

operating system physical
memory, 1029

program global area, 120, 128–130
redo log buffer, 125
shared pool, 124
Streams pool, 126
system global area, 120–127
tuning buffer cache, 1016–1019
tuning Java pool, 1019
tuning large pool, 1019
tuning memory resources, 916

tuning Oracle memory, 1004
hard parsing and soft parsing,

1007–1015
tuning PGA memory, 1020–1024
tuning shared pool, 1005–1007
tuning streams pool, 1019
understanding, 120

Memory Access mode, 892, 1069
Memory Advisor

automatic performance tuning,
1004

memory-related advisors, 849
optimal buffer cache size, 1017

memory management
see also shared memory

management; automatic
shared memory
management under SGA

allocating memory between SGA
components, 776

automatic memory management,
140

operating system memory
management, 1057

performance monitoring, UNIX,
80

vmstat utility, 81
switching to manual memory

management mode, 777
memory manager (MMAN) process,

114, 118, 775
memory requirements

database creation, 332
estimating, preinstallation, 288
Oracle Database 10g installation,

281
preinstallation checks, 291

memory structures, 119–130
program global area, 128–130
system global area, 120–127
understanding memory, 120

MERGE join, 960
MERGE PARTITION clause, 191
MERGE statement, 147, 571–573

conditional statements, 572
DELETE clause, 573
transforming data, 570
upserts, 540, 572
using UPDATE and INSERT

clauses, 572
messages

object database model, 39
Oracle Streams Advanced

Queuing, 584
sending message to screen,

SQL*Plus, 511
metadata

data dictionary, 135, 1083–1084
Data Pump utilities, 602

CONTENT parameter, 603
DBMS_METADATA package, 1178
exporting using Data Pump, 628
exporting using external tables,

567
filtering using Data Pump, 603

■INDEX1244

4517INDEX.qxd 8/19/05 11:20 AM Page 1244

importing using Data Pump, 630
RMAN, 650, 668
transportable tablespaces, 625,

627
MetaLink

database security dos and don’ts,
486

DBA resources, 14
linking OEM Database Control to,

897
methods

object database model, 39
ORDBMS model, 40

METHOD_OPT attribute, 951
metrics

see database metrics
Microsoft Certificate Store, 911
Microsoft Transaction Server (MTS),

911
midrange systems, 45
Millsap, Cary, 14, 1017
MIN function, 1191
MINEXTENTS parameter,

tablespaces, 157
MINIMIZE LOAD option, RMAN, 675
MINIMIZE TIME option, RMAN, 675
MINUS operator, 1190
mirroring, 784, 792, 855
mkdir command, UNIX, 62
MMAN (memory manager) process,

114, 118, 775
MML (Media Management Layer),

RMAN, 648, 651–652
MMNL (manageability monitor light)

process, 114, 118, 845
MMON (Manageability Monitor)

process
AWR collecting statistics, 834
database metrics, 826
in-memory metrics, 827
running ADDM, 763, 765
saved metrics, 827
tablespace space alerts, 161

MODEL clause/statement
example using, 582–583
multidimensional arrays, 580–581
producing final output, 582
transforming array data with rules,

581–582
transforming data, 570, 580–583

modes
archivelog mode, 117
OPTIMIZER_MODE parameter,

349
read-only mode, 382
restricted mode, 382

MODIFY_SNAPSHOT_SETTINGS
procedure, 764

monitoring
Application Performance

Monitoring, 885
Data Pump job, 621–622
database, using Oracle tools, 143
DBA monitoring system, 4, 15
DBMS_MONITOR package, 1148

environment monitoring, 885
monitoring index usage, 202
real-time monitoring, 884

MONITORING USAGE clause, 202
more command, UNIX, 52, 59
mount points, 282

creating, preinstallation, 291
naming conventions, 282
OFA guidelines, 283

mounting database
STARTUP MOUNT command, 379
STARTUP NOMOUNT command,

378
STARTUP OPEN command, 379

MREADTIM mode, 953
MTS (Microsoft Transaction Server),

911
MTTR (mean time to recover), 702
MTTR Advisor, 854–855

automatic performance tuning,
1004

instance-related advisors, 849
V$MTTR_TARGET_ADVICE view,

1126
multidimensional arrays, 580–581
multiple DBAs

database security dos and don’ts,
484

multiplexing
backup guidelines, 635
control file, 339
flash recovery area, 641
multiplexing and mirroring, 855
online redo logs, 855
redo log files, 110, 635
sizing file system for database, 331

multitable inserts, 573–575
ETL components, 540
loading rows from source table,

574–575
MULTITHREADING parameter,

SQL*Loader, 556
multivalued dependency, 34
multiversion concurrency control

system, 236
MULTI_BLOCK_READ_COUNT

parameter, 948
mv command, UNIX, 59

N
NAME parameter, 272
naming

directory naming, 405, 412–416
easy connect naming, 405,

410–411
external naming, 405, 412
local naming, 405–410
naming context, 415
naming repositories, 405

naming conventions
administrative files, 285
ASM filenames, 795
control files, 286
data files, 286

database files, 286
directories, 283
mount points, 282
OFA, 281, 286
OMF, 174, 802
product files, 286
redo log files, 286
SPFILE, 374
tables, 36
tablespaces, 286
transactions, 229

natural join, 1196
join operations, 22

navigating text commands
vi editor, UNIX, 63

NCA (Oracle Net Configuration
Assistant), 396

modifying tnsnames.ora with,
408–410

selecting configuration in, 409
testing new configuration in, 409

NDMP (Network Data Management
Protocol), 685

nested loop join, 948
nested subquery, 147
nested tables, 1202
NET (.NET)

distributed transactions, 911
support for Oracle Database 10g,

910
Net Configuration Assistant

see NCA
net service names

connect identifiers, 405
connecting to Oracle database,

493
net stop/start commands, 923
netstat command, iSQL*Plus, 530
netstat utility, 85
network administration files, 107
Network Configuration window, 321
Network Data Management Protocol

(NDMP), 685
network export, Data Pump, 606
Network Information Service (NIS),

412
network mode, Data Pump, 591
network monitoring, UNIX, 85
network performance, 1032
Network wait class, 1035, 1036
Networked Attached Storage (NAS),

93
NetWorker, 652
networking

see also connectivity
analyzing instance before tuning,

1073
configuring naming methods and

listeners, 396
configuring network components

during installation, 396
connect descriptors, 394
connect identifiers, 395
connect strings, 395

■INDEX 1245

4517INDEX.qxd 8/19/05 11:20 AM Page 1245

creating domains and contexts for
OID, 396

database instance names, 394
database service names, 394
global database names, 394
how it works, 393–396
listener and, 400
securing network, 485
web application connecting to

Oracle, 393
NETWORK_LINK parameter, Data

Pump, 606–607, 619–620
NEVER refresh option, 212
NEWP[AGE] variable, SQL*Plus, 501
NEW_LINE procedure, UTL_FILE,

1170
nextval pseudo-column, 222
NEXT_EXTENT storage parameter,

157–158
NFS file systems, 282
NIS (Network Information Service),

412
NL (nested loop) join, 960
NLS parameters

V$NLS_PARAMETERS view, 1139
NLS_DATABASE_PARAMETERS view,

1086
NLS_DATE_FORMAT parameter, 339
NLS_INSTANCE_PARAMETERS view,

1086
NLS_SESSION_PARAMETERS view,

1086
NO LOGGING option, 635
no workload mode, 953
no-prompt logon option (-L),

SQL*Plus, 505
noarchivelog mode, 632

making database backups, 687
partial database backups, 690

NOAUDIT keyword, 464
noclobber shell variable, 57
nodes, B-tree index structure, 197
nohup option, 74
NOLOG option, SQL*Plus, 494
NOLOGFILE parameter, Data Pump,

602, 615
NOLOGGING/nologging option

creating tables, 181
deriving data from existing tables,

571
dropping indexes before bulk data

loads, 558
redo log buffer, 126

NOMOUNT mode, 361
NONE value, AUDIT_TRAIL

parameter, 462
nonprefixed indexes, 965
nonrepeatable-reads, 230, 233
nonunique indexes, 196
normal forms, 29–34

1NF (First Normal Form), 30
2NF (Second Normal Form), 31
3NF (Third Normal Form), 33
4NF (Fourth Normal Form), 34
5NF (Fifth Normal Form), 34

Boyce-Codd normal form (BCNF),
33

functional dependencies, 33
lossless-join dependency, 34
multivalued dependency, 34
non-normalized data, 30
partial dependencies, 31
primary key dependency, 33
repeating groups, 31

normal mode
SHUTDOWN NORMAL command,

383
normal program conclusion, 226
normalization, 28–29

denormalization, 34
effect on performance, 36

NOT EXISTS operator, 1200
NOT NULL constraint, 204
NOTFOUND (%NOTFOUND)

attribute, 1208
Notification Methods option,

Database Control, 895
notification rules, setting, 831
NOWAIT option, 227
NOWORKLOAD keyword, 953
NT Backup utility, 918
NTFS file system, 918
null values, 203
NULLIF parameter, SQL*Loader, 556
NUMBER data type, 1185
numeric data types, 1185
NUM[WIDTH] variable, SQL*Plus,

501
NUM_CPUS system usage statistic,

1053
NVL function, 1193

O
ob host, Oracle Backup tool, 685
object database management system

(ODBMS), 38
object database model, 38–39
object-level audit, 462
object-oriented programming,

1201–1203
object privileges, 445–448

column-level object privileges, 447
directory privileges, 446
GRANT ANY OBJECT privilege,

448
granting, 446
materialized view privileges, 446
procedure/function/package

privileges, 446
revoking, 448
sequence privileges, 446
types of Oracle privilege, 442
view privileges, 446

object tables, 1202
object transparency, 220
object types, 577

see also abstract data types
user-defined object types, 149

object-relational database model, 38,
39

objects
see database objects

object_name parameter
ADD_POLICY procedure, 469

object_schema parameter
ADD_POLICY procedure, 469

observiced process
Oracle Backup Web Interface tool,

683
obsolete files, 665
obtar command-line tool, 686
obtool command-line interface, 685
OCOPY command, Windows, 918
ODBC (Open Database Connectivity)

data access methods, 910
integration with Windows services,

911
ODBMS (object database

management system), 38
ODS user, 447
OE (order entry) schema, 1183, 1184
OEM (Oracle Enterprise Manager),

138, 883–908
accessing UNIX system, 46
administering Database Resource

Manager, 441–442
benefits of RMAN, 649
benefits of using OEM, 884–886

Application Performance
Monitoring (APM) tools, 885

complete environment
monitoring, 885

consolidated database
management, 885

integrated systems
management, 886

out of the box management,
884

real-time monitoring, 884
scalability, 885
web-based management, 884

brief description, 396
CD, 301
Data Pump utilities using, 599
database management, 883
introduction, 883
performance, 138
security, 884
using OEM to collect Optimizer

statistics, 956
using OEM to manage undo data,

254
versions, 883, 886
viewing ADDM reports, 765,

770–772
OEM Clone Database Wizard, 894
OEM Database Control, 886–899

accessing Database Control,
889–890

ADDM, running ADDM reports,
773

ADDM, viewing ADDM reports,
770, 772

■INDEX1246

4517INDEX.qxd 8/19/05 11:20 AM Page 1246

Administration page, 893
Alerts table, 829
All Metrics page, 826
automatic optimizer statistics

collection, 782
automatic SGA management with,

779–780
cloning database using, 727–729
Compare Periods Report,

1076–1078
configuration policies, 897
configuring automatically, 886
configuring Flashback logging, 745
configuring manually, 887–889
creating Database Control roles,

896
creating database links, 860
Data Reorganization page, 811
Database Performance page, 893,

1068, 1071
database usage metrics, 898
DBMS_ADVISOR package and, 215
default port, 886
default URL, 886
end-to-end tracing, 991
estimating table size before

creating, 176
examining database performance,

1067–1072
examining SQL response time

with, 1054
Hang Analysis page, 1063
home page, 890, 1067–1068
interface, 631–632
invoking SQL Access Advisor, 215
linking to MetaLink, 897
Maintenance page, 893–894
managing advisory framework,

852–853
managing alerts, 829–831
managing ASM operations783
managing AWR snapshots,

836–838
managing session locks, 242
managing/monitoring database,

144
migrating database to ASM,

798–799
OEM versions, 883
online database reorganization,

811–812
Performance Data Report page,

1072
Performance page, 891
privileges required, 890
Related Links section, 896
setting alert thresholds, 830
setting notification rules, 831
Setup page, 894–896
starting, 370
statistics, 898
sysman (super administrator

account), 895
upgrading with DBUA, 321

using to run SQL Tuning Advisor,
999

version, 138
OEM Grid Control, 899–908

components, 899
configuration management,

905–906
connecting to, 903–905
features, 905–906
groups, 906
home page, 906
installing, 900–901
links, 907
logging in, 904
managing enterprise using,

906–908
managing groups, 908
managing/monitoring database,

144
monitoring host performance, 907
monitoring servers, 908
monitoring Web Applications, 907
Oracle software cloning, 894
privileges required, 890
upgrading with DBUA, 321
versions, 138, 883
viewing ADDM reports, 770

OEM Management Agent, 899,
902–903

OEM Management Repository, 900,
904

OEM Management Service, 900, 903,
907

OFA (Optimal Flexible Architecture),
281–288

administrative files, 285
creating directories for database

files, 287
database files, 286
directory and file naming

conventions, 283
flash recovery area, 288
mount points, 282
naming convention goals, 286
OFA-compliant Oracle database,

287
Oracle base, 283
Oracle home, 283
Oracle Inventory Directory, 284
product files, 286

offline tablespaces, 164
OID (Oracle Internet Directory)

basic idea behind, 414
database security, 482
directory naming method,

413–414
elements of, 413
installing, 416
LDAP, 413
making database connections, 414
Oracle components using, 413
organization of, 414–416

OLE DB, 910, 911
OLTP

see online transaction processing

OMF (Oracle Managed Files),
173–174, 800–806

benefits of using, 801
control files, 802, 804
creating OMF files, 801–802
data files, 803
database creation using OMF,

803–806
adding tablespaces, 805
creating database, 804
initialization parameters, 803
locating OMF files, 804
starting database instance, 803
Sysaux tablespace, 805
System tablespace, 805
temporary tablespace, 805
undo tablespace, 805

DB_ parameters, 801–802
file naming conventions, 802
flash recovery area, 640, 644
init.ora file, 802
initialization parameters, 801–802

database creation, 803
introduction, 800
limitations, 174
naming conventions, 801
OMF-related parameters, 341
redo log files, 802, 804
types of OMF, 802–803

OMS (Oracle Management Service),
900, 903

ON COMMIT DELETE/PRESERVE
ROWS options, 183

ON COMMIT mode, 211
ON DEMAND mode, 211
one-to-many (1:M) relationship, 26
one-to-one (1:1) relationship, 26
online backups, RMAN, 649, 673
online capabilities, Oracle Database

10g, 811–822
data redefinition, 812–818
data reorganization, 811–812
database block size changes,

820–821
database quiescing, 821–822
database reorganization, 811–812
dynamic resource management,

818–820
suspending database, 822

online data redefinition, 812–818
methods used, 813
online table redefinition example,

814–818
privileges, 815
redefinition process activity, 816
steps involved, 813
tasks performed by, 813

online data reorganization, 811–812
coalescing an index online, 812
creating an index online, 812
moving a table online, 812
rebuilding an index online, 812
using SQL commands, 812
validating an object online, 812

■INDEX 1247

4517INDEX.qxd 8/19/05 11:20 AM Page 1247

online database block size changes,
820–821

online database reorganization, 812
online redo log files, 109, 855–858

corruption, 857
creating database, 365
dropping, 857
flash recovery area, 641
making whole closed backups, 687
mirroring, 855
monitoring, 857
multiplexing, 855
redo log groups, 855, 856
renaming, 857

online segment shrinking, 806–807
online table redefinition, 812
online table redefinition example,

814–818
checking for errors, 817
completing redefinition process,

817
copying dependent objects, 816
creating temporary table, 815
errors occur during, 818
redefining temporary table, 815
redefinition process activity, 816
synchronizing interim and source

tables, 817
verifying eligibility of table, 814

online transaction processing (OLTP)
automatic shared memory

management, 774
database types, 9
indexing strategy, 962

OO4O (Oracle Objects for OLE), 910
open accounts, 472
open backups

automating jobs, 918
benefits of archivelog mode, 632
making whole open backups,

688–690
open database backups, 634
user-managed online backup

script, 690
OPEN clause, explicit cursors, 1208
open recovery, 704
OPEN_CONNECTION function,

UTL_SMTP, 1172
OPEN_CURSORS parameter, 128, 342
OPEN_WINDOW procedure, 878
operating system

collecting operating system
statistics, 952–954

memory management, 1057
saving output to, SQL*Plus, 510
setting permissions, 484

operating system accounts
creating additional, post-

installation, 310
operating system authentication

connecting to RMAN, 652
database security dos and don’ts,

483
enabling, 475

external authentication, 475
Oracle Net, 476

operating system commands
restricting use from SQL*Plus, 498,

505
using from within SQL*Plus, 509

restricting use of HOST
command, 498

operating system directories
creating, preinstallation, 296

operating system file systems
disk I/O performance, 1030

operating system files
UTL_FILE package, 1168–1172

operating system groups
creating, preinstallation, 294

operating system knowledge
DBA background and training, 12

operating system patches
preinstallation checks, 289

operating system physical memory
evaluating performance, 1029

operating system requirements
installing the software, 305

operating system software
verifying, preinstallation, 289–291

OPERATION column
FLASHBACK_TRANSACTION_

QUERY view, 262
operation queuing

limiting long transactions with,
819

operations
resumable operations, 270

operator class, Oracle Backup tool,
685

operators, 1189–1190
BETWEEN operator, 1189
Boolean operators, 1190
comparison operators, 1189
IN operator, 1189
INTERSECTION operator, 1190
LIKE operator, 1189
logical operators, 1190
MINUS operator, 1190
set operators, 1190
UNION ALL operator, 1190
UNION operator, 1190

OPS$ prefix, 356
OPS$ORACLE database account, 475
Optimal Flexible Architecture, 281
optimistic concurrency control, 235
optimization phase

optimizing query processing,
939–942

SQL processing steps, 1005
Optimizer

see CBO
Optimizer hints

setting Optimizer level, 947
optimizer statistics

automated tasks feature, 142
automatic optimizer statistics

collection, 141, 780–782, 949

manual collection, 783
Oracle recommendation, 781

optimizers, 136
see also performance

OPTIMIZER_DYNAMIC_SAMPLING
parameter, 350, 955

OPTIMIZER_FEATURES_ENABLE
parameter, 350, 970

OPTIMIZER_MODE parameter, 349
setting Optimizer level, 946–947
setting Optimizer mode, 945–946
using Optimizer hints to override,

959
options

OPTIONS attribute, 951
V$OPTION view, 1137

OPTIONS clause, SQL*Loader, 547
ORA–99999 errors

see under errors
Oracle Administration Assistant for

NT, 928–929
Oracle Advanced Security option, 487

Oracle components using OID, 413
using OID, 414

Oracle and Java, 1214–1216
Oracle Application Server Single Sign-

On
Oracle components using OID, 413

Oracle Backup Solutions Program
(BSP), 652

Oracle Backup tool, 134, 680–686
admin class, 685
administrative domain, 681
benefits of, 681
command-line interface, 680
configuring, 685–686
initiating backup, 680
installing, 681–683
managing/monitoring database,

144
NDMP host, 685
ob host, 685
operator class, 685
oracle class, 685
performing backups with, 686
reader class, 685
user class, 685

Oracle Backup Web Interface tool,
680, 683–685

Oracle Base directory, 14, 283
Oracle by Example (OBE), 14
Oracle Certified Associate (OCA), 11
Oracle Certified Master (OCM), 12
Oracle Certified Professional (OCP),

11
Oracle Change Management Pack,

825, 896
oracle class, Oracle Backup, 685
Oracle Client software, 397–399

TWO_TASK environment variable,
399

Oracle Collaboration Suite, 413
Oracle components, 930

PRODUCT_COMPONENT_
VERSION view, 1085

■INDEX1248

4517INDEX.qxd 8/19/05 11:20 AM Page 1248

Oracle Configuration Management
Pack, 825, 896

Oracle connectivity
see connectivity

Oracle context, 415
Oracle cost-based optimizer

see CBO
Oracle data dictionary

see data dictionary
Oracle data files

see data files
Oracle Data Guard, 695–696

data protection modes, 697
Oracle Data Migration Assistant, 315
Oracle Data Provider for .NET

(ODP.NET), 910
Oracle data types, 1185–1186
Oracle Database 10g

.NET support, 910
CD/client CD, 301
creating database, 364–367
gathering statistics, 943–945
installing on Windows, 919–920
integration with Windows services,

910–912
online capabilities, 811–822
sample schemas, 1183–1184
Windows and, 909–912

Oracle Database 10g Architecture,
99–144

automatic database management,
140–141

checkpoint tuning, 141
Database Diagnostic Monitor,

140
memory management, 140
optimizer statistics collection,

141
Segment Advisor, 141
Storage Management, 141
undo retention tuning, 141

background processes, 114–119
archiver, 117
checkpoint, 116
database writer, 115
file mapping monitor, 117
job queue coordination, 118
log writer, 115
manageability monitor, 118
manageability monitor light,

118
memory manager, 118
process monitor, 116
system monitor, 117

backup and recovery architecture,
133–135

common manageability
infrastructure, 141–143

Active Session History, 142
advisory framework, 143
automated tasks feature, 142
Automatic Workload

Repository, 142
Segment Advisor, 143
server-generated alerts, 142

SGA Memory Advisor, 143
SQL Access Advisor, 143
SQL Tuning Advisor, 143
Undo Advisor, 143

communication with database,
137–138

connecting to Oracle, 137
iSQL*Plus, 138
Oracle Enterprise Manager, 138
SQL*Plus, 138

data consistency/concurrency,
131–133

database writer, 131
system change number, 132
undo management, 133
write ahead protocol, 131

data dictionary, 135–137
data files and tablespaces, 112
database architecture/structures,

99–112
Database Resource Manager, 140
database transaction, 130–131
default tablespace type, 107
dynamic performance views, 136
logical database structures,

100–107
data blocks, 100–103
extents, 100, 103
segments, 100, 104
tablespaces, 100, 104–107

managing and monitoring, 143
memory structures, 119–130

program global area (PGA), 128
system global area (SGA), 120

optimizer, 136
physical database structures,

107–112
alert log file, 111
control file, 108
data files, 108
password file, 111
redo log files, 109
SPFILE, 110
trace files, 111

processes, 113–119
Scheduler, 139
server process, 113
utilities, 139

Oracle Database 10g installation,
279–313

see also installations
accessing installation software,

301–303
disk storage requirements, 280
documentation review, 280
downloading Oracle software, 301,

302–303
final checklist, 300–301
initialization parameter file

see initialization parameter file
installation types, 304
installing, 303–309

using response files, 307–309
installing on Windows, 919–920

uninstalling, 930–931

Linux kernel requirements, 292
memory requirements, 281
mount points, 282
Optimal Flexible Architecture,

281–288
Oracle software packages, 301–302
overview, 279–281
post-installation tasks, 309–312
preinstallation tasks, 288–300
source of Oracle database

software, 280
uninstalling Oracle, 312–313

Oracle Database 10g upgrade,
315–328

Advanced Installation option, 919
Database Upgrade Assistant, 315,

318–321
manual upgrade process, 315, 316,

322–328
backing up database, 323
checking for invalid objects,

325
copying init.ora file, 324
creating spool file, 323
creating Sysaux tablespace, 324
DBA_REGISTRY view, 315
DBA_SERVER_REGISTRY view,

315
ending spool file, 328
recompiling and validating

invalidated objects, 325
restarting new database, 328
running upgrade script, 325
starting up new database, 324
summary of steps, 322

post-upgrade actions, 328
Post-Upgrade Status Tool,

317–318, 326
Pre-Upgrade Information Tool,

316–317, 323
upgrade methods and tools,

315–318
upgrade paths, 315
Upgrade Summary window, 321

Oracle database connectivity
see connectivity

Oracle Database Resource Manager
see Database Resource Manager

Oracle databases
see databases; relational databases

Oracle Diagnostic Pack, 824, 896
Oracle DirectConnect (ODC), 15
Oracle Directory Manager, 396, 414
Oracle directory replication server,

413
Oracle directory server, 413
Oracle Enterprise Edition software,

301
Oracle Enterprise Manager

see OEM
Oracle FAQ

DBA resources, 14
Oracle file mapping feature, 862–863
Oracle Flashback

see Flashback

■INDEX 1249

4517INDEX.qxd 8/19/05 11:20 AM Page 1249

Oracle Flashback Database feature
see Flashback Database feature

Oracle Flashback Drop feature
see Flashback Drop feature

Oracle Flashback Query feature
see Flashback Query feature

Oracle Flashback Table feature
see Flashback Table feature

Oracle Flashback Transaction Query
feature

see Flashback Transaction Query
feature

Oracle Flashback Versions Query
feature

see Flashback Versions Query
feature

Oracle home directory, 283
creating, preinstallation, 296
installing software, 304
multiple Oracle homes, 284
path, 284
syntax, 284

Oracle indexes
see indexes

Oracle Installation Guide, 280
web source for, 280

Oracle instance, 99
starting, 361–363

creating init.ora file prior to,
359

restarting, 702
Oracle Internet Directory

see OID
Oracle Inventory directory, 284

creating, preinstallation, 296
Oracle Label Security feature

column-level VPD, 461
Oracle listener

see listeners
Oracle Management Service (OMS),

900, 903
Oracle memory structures

see memory structures
Oracle Names

OID and, 413
Oracle Net

components, 393
configuration files, setting location

of, 298
connecting to Oracle, 137
described, 393
GUI and command-line tools, 396
operating system authentication,

476
Oracle Network Foundation Layer,

393
Oracle Protocol Support, 393

Oracle Net Configuration Assistant
see NCA

Oracle Net Listener
see listeners

Oracle Net Manager, 396
Oracle Net Services

centralized configuration, 392
configuring, post-installation, 312

database connectivity, 391
described, 393
features, 391
location transparency, 391
Oracle home directory, 283
Oracle components using OID, 413
scalability, 392
SQL Net Services, 391

Oracle Network Foundation Layer,
393

Oracle networking
see networking

Oracle Objects for OLE (OO4O), 910
Oracle ODBC, 910, 911
Oracle OLE DB, 910, 911
Oracle Optimizer

see CBO
Oracle owner

post-installation tasks, 297–300,
311–312

Oracle performance statistics
see performance statistics

Oracle PL/SQL
see PL/SQL

Oracle PL/SQL packages, 1145, 1146,
1182, 1210

DBMS packages
see DBMS packages

UTL packages
see UTL packages

Oracle PMON process
see PMON process

Oracle Policy Manager, 461
Oracle processes

see processes
Oracle Protocol Support

Oracle Net, 393
Oracle RAC (Real Application

Clusters), 695, 700
Oracle Resource Manager, 865, 1176
Oracle Scheduler

see Scheduler
Oracle schemas

see schemas
Oracle sequences

see sequences
Oracle Service, 922–924

caution: stopping database
directly, 923

confusing with Oracle instance,
926

stopping all Oracle services, 930
threads, 914

Oracle services, Windows, 922–925
listener, 924–925
Management Server, 925
OracleServiceSID, 922–924

Oracle Software Owner user
creating, preinstallation, 295

Oracle Storage Compatibility
Program (OSCP), 94

Oracle Storage Management buffer
cache, 775

Oracle Streams
see Streams, Oracle

Oracle synonyms
see synonyms

Oracle tables
see tables

Oracle tablespaces
see tablespaces

Oracle Technology Network (OTN), 13
Oracle triggers

see triggers
Oracle Tuning Pack, 825, 896
Oracle Universal Installer

see OUI
Oracle views

see views
Oracle Wallets

creating, transparent data
encryption, 478

opening and closing, 480
security features, 911

Oracle Warehouse Builder (OWB), 541
Oracle XML DB, 1210–1214
OracleDBConsole service, 916
OracleJobScheduler service, 916

format of names, 925
OracleService Windows service, 916
OracleServiceSID service, 922–924
OracleTNSListener service, 916
ORACLE_BASE variable

setting OS environment variables,
332

setting, preinstallation, 297
Windows registry, 921

ORACLE_DATAPUMP access driver,
563, 564, 565, 566

ORACLE_HOME directory
preinstallation checks, 289

ORACLE_HOME variable
creating database using SQL*Plus,

359
deleting preinstallation, 300
setting OS environment variables,

332
setting preinstallation, 297
setting SQL*Plus environment, 492
Windows registry, 921

Oracle_Home_Name variable
Windows registry, 921

ORACLE_LOADER access driver, 562
ORACLE_PATH variable, 514
ORACLE_SID variable

accessing database from
command prompt, 923

creating database using SQL*Plus,
359

DB_NAME initialization
parameter, 286

registering database in recovery
catalog, 671

setting OS environment variables,
332

setting, preinstallation, 298
Windows registry, 921

oradebug utility, 1046
ORADIM utility, 926–928
oraenv script, 311

■INDEX1250

4517INDEX.qxd 8/19/05 11:20 AM Page 1250

ORAENV_ASK variable, 299
oraInst.loc file, 308
OraInventory, 284, 296
ORAINVENTORY group, 294
orakill utility, 490

caution: exercising care when
using, 914

managing Oracle on Windows, 913
OraPub, 14
orapwd utility, 474
orastack utility, 916
oratab file, 310, 311
ORA_DBA group, 917
Ora_Sid_Autostart variable, 921
Ora_Sid_Shutdown variable, 921
ORDBMS model, 39
ORDER BY clause

DESC keyword, 1189
guidelines for use of indexes, 197
indexing strategy, 963
sorting SELECT statement, 1189

ORDER BY command, 147
ORDERED hint, 959
ORGANIZATION EXTERNAL clause,

562
ORGANIZATION INDEX phrase, 185
OS value, AUDIT_TRAIL parameter,

462
OS variables, 358–359
OSDBA group, 294
OSOPER group, 294
OS_AUTHENT_PREFIX parameter,

356
default value, 475
operating system authentication,

475, 483
OS_USER attribute, USERENV,

454–455
Other wait class, 1035
OTHER_GROUPS resource consumer

group, 435, 437
OUI (Oracle Universal Installer)

invoking, 302–303
prerequisite checks, 305
removing components with, 930
welcome window, 304

out of space error, 270
outer join, 1196
outlines

see also stored outlines
OUTLN user account

changing passwords for default
users, 371

passwords, database
authentication, 471

stored outlines, 970
output, SQL*Plus

silent option, 505
saving to operating system, 510
viewing screen by screen, 511

overwriting
avoiding overwriting files, 57

OWB (Oracle Warehouse Builder), 541
ownership, UNIX

root directory, 47

O_RELEASE variable, SQL*Plus, 517
O_VERSION variable, SQL*Plus, 517

P
package privileges, 446
packages

DBMS packages
see DBMS packages

executing, SQL*Plus, 511
Oracle PL/SQL packages, 1145,

1146, 1182, 1210
preinstallation checks, 290
UTL packages

see UTL packages
page command, UNIX, 53
page faults

vmstat utility, 81
page ins/outs

memory management, 80
page-level locking, 237
pages

monitoring performance with
Grid Control, 907

swapping data, 1029
PAGES[IZE] variable, SQL*Plus, 501
paging

analyzing instance before tuning,
1075

system usage problems, 1059
PARALLEL command, Data Pump,

621, 612
parallel degree limit resource

allocation method
Database Resource Manager, 432

parallel execution
performance tuning, 972
table functions, 575

PARALLEL parameter
benefits of Data Pump, 590
creating tables, 181
Data Pump utilities, 609, 614, 617
deriving data from existing tables,

571
populating external tables, 566
SQL*Loader control file, 550

parallel recovery feature, 704
parallelism

creating plan directives, 436
degree of parallelism, 667

PARALLEL_DEGREE_LIMIT_MTH
parameter, 436

PARALLEL_MAX_SERVERS
parameter, 352

parameter files
creating parameter file, 333–358
Data Pump utilities, 599

PARFILE parameter, 602
initialization parameter file

see initialization parameter file
pfile administrative directory, 285
types of, 333–334

parameters
Data Pump Export utility, 601–613
Data Pump Import utility, 614–621

hidden Oracle parameters, 110
initialization parameter file

see initialization parameter file
SHOW PARAMETERS command,

507
PARFILE parameter

Data Pump utilities, 602, 615
invoking expdp, 599
SQL*Loader utility, 552

Parse operation
TKPROF utility output, 987–988

parse tree, 1005
parsing

deriving parse information, 1007
hard parsing and soft parsing,

1007–1015
converting hard parse to soft

parse, 1013
sessions with high number of

hard parses, 1011–1012
latch contention, 1013
optimizing query processing, 939

bind variables, 967
Oracle SQL transaction stages, 231
parse time CPU usage, 1027, 1028
scalability, 1013
SQL processing steps, 1005
using SQL Trace and TKPROF to

examine parse information,
1007–1008

partial database backups, 633,
690–691

partial dependencies
normal forms, 31

partial execution, ATO, 995
PARTIAL option, DURATION clause

BACKUP command, RMAN, 675
partitioned indexes, 200

using appropriate index types, 964
partitioned tables, 185–192

archiving data, 186
composite partitioning, 189–190
creating, 186
DBA_PART_TABLES view, 224
DBA_TAB_PARTITIONS view, 192
hash partitioning, 187–188

creating hash-partitioned
table, 187

list partitioning, 188
creating list-partitioned table,

188
partition independence, 186
partition maintenance, 190–192
partition pruning, 185
performance tuning, 968
range partitioning, 186–187
range-hash partitioning, 189
range-list partitioning, 189–190

partitioning, 185
passwd command, UNIX, 49
password file, 111

backup guidelines, 635
checking for, 356
creating, 474
hardcoding user passwords, 482

■INDEX 1251

4517INDEX.qxd 8/19/05 11:20 AM Page 1251

REMOTE_LOGIN_PASSWORD-
FILE parameter, 356, 473

passwords
see also authentication; security
changing for default users, 371
changing passwords, 482
changing user’s password, 425
database security dos and don’ts,

482
default values, 371
encrypted passwords, 474
hardcoding user passwords, 482
managing passwords, 471
parameters enforcing password-

related security, 427–428
password expiration, 473
password file, 473
SYS super user, 359
SYSTEM account, 359

PASSWORD_GRACE_TIME
parameter, 428

PASSWORD_LIFE_TIME parameter,
427

PASSWORD_LOCK_TIME parameter,
428

PASSWORD_REUSE_MAX parameter,
428

PASSWORD_REUSE_TIME
parameter, 428

PASSWORD_VERIFY_FUNCTION
parameter, 428

paste command, UNIX, 66
patches, 1003

applying post-installation, 311,
897

applying preinstallation, 291
Critical Patch Updates, 486
OEM Grid Control, 906
operating system patches, 289

Patching Setup option, Database
Control, 895

PATH variables
setting OS environment variables,

332
setting preinstallation, 298
UNIX, 54

paths, UNIX
executing SQL scripts in SQL*Plus,

514
file locations, 47

pattern matching, SQL*Plus, 519
pattern matching, UNIX, 65
pattern recognition

grep command, UNIX, 49
PAUSE command, SQL*Plus, 511
PAU[SE] variable, SQL*Plus, 501
PCTFREE parameter, 152, 158
PCTTHRESHOLD parameter, 185
PCTUSED parameter, 152, 158
pending area

creating, Database Resource
Manager, 433

submitting, Database Resource
Manager, 438

validating, Database Resource

percent full
setting tablespace alert thresholds,

162
performance

see also indexes
abnormal increase in process size,

1061–1062
ad hoc SQL, 1013
analyzing instance performance,

1035–1052
analyzing problems using ADDM,

1055
analyzing recent session activity

with ASH, 1057
Automatic Database Diagnostic

Monitor, 140
benefits of Data Pump, 590
benefits of using tablespaces, 105
bind variables, 1006
cache misses affecting

performance, 125
collecting trace statistics, 984
database hangs, 1058–1065
delays due to shared pool

problems, 1062
designing tables, 36
dynamic performance tables, 136
dynamic performance views, 136,

1131–1134
evaluating system performance,

1024–1030
CPU performance, 1024, 1029
disk I/O, 1030
operating system physical

memory, 1029
examining system performance,

1053
gathering statistics, 845
instance performance

see instance performance
licensing performance tools, 824
locking issues, 1060
logging on and off, 1014
measuring I/O performance,

1030–1032
I/O optimal distribution, 1031

measuring process memory usage,
1061–1062

minimizing downtime, 5
monitoring host with Grid

Control, 907
monitoring system with Grid

Control, 907
network performance, 1032
operating system memory

management, 1057
optimizers, 136
Oracle DBA’s role, 3
Oracle Enterprise Manager, 138
partitioning, 185
performance/diagnostics-related

parameters, 349–353
problems due to bad statistics,

1062

reducing I/O contention, 1032
SAME guidelines for optimal disk

usage, 1032
scalability, 1013
severe contention for resources,

1060
system global area, 120
system usage problems, 1059
tablespace type, 107
temporary tables, 183
tracing the entire instance, 990
using AWR reports for individual

SQL statements, 1055–1057
performance advisors

ADDM recommendations, 763
Performance Analysis section,

Database Control, 1068
Performance Data Report page,

Database Control, 1072
performance monitoring

dynamic performance views,
1128–1130

performance monitoring, UNIX,
79–85

bandwidth, 81
CPU usage, 79, 81
disk storage, 80
input/output statistics, 82
memory management, 80, 81
page faults, 81
processes, 81
read/write operations, 82
tools, 81–85

GlancePlus, 84
iostat utility, 82
netstat utility, 85
sar command, 82
top command, 83
vmstat utility, 81

Performance page, Database Control,
891

performance statistics, 823–828
AWR providing, 142, 834
baseline data, 824
cumulative statistics, 824
database metrics, 826–828
database statistics, 823
operating system statistics, 823
sample data, 824

performance tuning, 937–1000
ADDM and, 759
analyzing instance before tuning,

1066–1079
approach to tuning SQL

statements, 999–1000
automatic checkpoint tuning, 141,

810
automatic undo retention tuning,

141
AWR and, 759–760
buffer cache, 1016–1019
cost-based optimizer

see CBO

■INDEX1252

4517INDEX.qxd 8/19/05 11:20 AM Page 1252

DBA strategies for, 967–974
caching small tables in

memory, 974
collecting system statistics, 972
rebuilding tables and indexes

regularly, 973
reclaiming unused space, 974
refreshing statistics frequently,

972
using compression

(table/index key), 968
using histograms, 972–973
using materialized views, 968
using parallel execution, 972
using partitioned tables, 968
using stored outlines to

stabilize CBO, 969–971
DBA system management role, 5
DBA_SQLTUNE_PLANS view, 1112
end-to-end tracing, 989–991
hard/soft parsing, 1007–1015
identifying inefficiency in SQL

statements, 999
instance tuning, 1001–1003

analyzing instance before
tuning, 1066–1079

Instance Efficiency section,
AWR, 842

Java pool, 1019
large pool, 1019
memory resources, 916
optimizing query processing,

939–943
optimization phase, 939–942
parsing phase, 939
query execution phase, 942

Oracle memory, 1004
Oracle Tuning Pack, 825, 896
PGA memory, 1020–1024
reactive performance tuning,

938–939
self-tuning mechanism, 834
shared pool, 1005–1007
soft/hard parsing, 1007–1015
SQL Tuning Advisor, 143, 999
streams pool, 1019
systematic approach to, 938
tuning related advisors, 850
using dictionary views for SQL

tuning, 994
writing efficient SQL, 957–967

avoiding improper use of
views, 967

avoiding unnecessary full table
scans, 967

bind variables, 967
indexing strategy, 962–965
inline stored functions,

966–967
monitoring index usage, 965
removing unnecessary indexes,

965
selecting best join method, 960
selecting best join order, 961

using Bitmap join indexes,
960–961

using hints to influence
execution plan, 959–960

using similar SQL statements,
965

WHERE clauses, 957–959
performance tuning tools, SQL,

974–999
Autotrace utility, 979–983
EXPLAIN PLAN tool, 974–979
SQL Trace tool, 983–985
SQL Tuning Advisor, 999
TKPROF utility, 985–989
TOAD software, 999
V$SQL view, 992–994

permanent files
flash recovery area, 641

permanent tablespaces, 107, 168
permissions, UNIX files, 59, 60

setting, 60, 295, 484
pessimistic concurrency control, 235
pfile (initialization parameter file)

see initialization parameter file
pfile administrative directory, 285
PGA (program global area), 120,

128–130
automatic PGA management, 129
caution: DBA overemphasis on

SGA, 780
managing/monitoring database,

144
memory-configuration

parameters, 342–347
V$PGASTAT view, 1119
VVPGA_TARGET_ADVICE view,

1119
PGA memory

analyzing instance before tuning,
1075

automatic memory management,
1020–1021

automatically enabling/disabling,
774

manual management mode, 129
memory requirements, 129
memory types, 128
setting memory limit, 1020
tuning, 1020–1024
tuning target value, 1020
V$PGA_TARGET_ADVICE view,

1020
PGA Memory Advisor, 143
PGA_AGGREGATE_TARGET

parameter, 129–130, 346
automatic memory management,

140
automatic PGA management, 129,

1020
setting value of, 1021–1024

phantom reads
data concurrency problems, 230
isolation levels and, 233

phyblkrd, 1049
phyrds, 1049

physical database backups, 631, 634
physical database design, 34–37

converting logical design, 34
implementing, 37

physical database structures, 107–112
alert log file, 111
control files, 107, 108
data files, 107, 108
password file, 111
redo log files, 107, 109
server parameter file, 110
trace file, 111

physical devices
mapping Oracle files to, 862–863

physical files, 107
physical reads, 1016
physical standby databases, 696
PID (process ID), UNIX, 74
ping command, 396
pinhits, library cache, 1009
pinned buffers, 121
pinning objects in shared pool,

1014–1015
pipe (|) command, UNIX, 52, 57
PIPELINED keyword, 578
Pipelines, The, 14
pipelining table functions, 575
plan directives

see resource plan directives
plan stability feature, Oracle

see stored outlines
Plan table, 1087
platform version

preinstallation checks, 288
PL/SQL, 1203–1210

conditional control, 1205
declaring variables, 1204
displaying output on screen, 501
explicit cursors, 1208
functions, 1210
handling errors, 1205
implicit cursors, 1207
looping constructs, 1206
packages, 1210
procedures, 1209
records, 1207
writing executable statements,

1204
PL/SQL block, 1203–1204

BEGIN statement, 1203
DECLARE statement, 1203
DML statements, 1205
END statement, 1203
EXCEPTION statement, 1203
SELECT statement, 1204

PL/SQL packages, 1145, 1146, 1182,
1210

DBMS packages
see DBMS packages

UTL packages
see UTL packages

PLSQL_OPTIMIZE_LEVEL parameter,
353

PLUSTRACE role, 980

■INDEX 1253

4517INDEX.qxd 8/19/05 11:20 AM Page 1253

PM (product media) schema, 1183,
1184

PMON (process monitor) process,
114, 116

dynamic service registration, 401
Oracle Service thread, 914
timer idle events, 1052

point-in-time recovery (PITR)
database recovery, 700
error correction using undo data,

254
policy-based configuration

framework
OEM Database Control, 897

policy functions
creating package to access

context, 457
creating security policy, 458
fine-grained access control, 457
making public, 460
performance, 458

policy group
column-level VPD, 461

Policy Manager, 461
policy_name parameter, 469
polymorphism, 39
port number

connect descriptors, 394
port parameter

easy connect naming, 410
ports

viewing ports in use, 886
POSITION clause, SQL*Loader, 546
post-installation tasks, 309–312

applying patches, 311
configuring Oracle Net Services,

312
creating additional operating

system accounts, 310
Oracle owner, 311–312
setting environment variables, 311
setting initialization parameters,

311
system administrator, 309–310
updating shutdown/start-up

scripts, 310
Post-Upgrade Status Tool, 317–318

manual upgrade process, 326–327
POWER clause, REBALANCE

command, 794
PRAGMA AUTONOMOUS

TRANSACTION statement,
268

preinstallation checks, 288–301
applying patches, 291
changing login scripts, 293
changing shell limits, 293
checking preinstallation

requirements, 288
creating Oracle Software Owner

user, 295
Database Upgrade Assistant, 316
DISPLAY variable, 301
file permissions, 295
kernel parameters, 292

kernel version, 290
mount points, 291
operating system directories, 296

data storage directories, 297
flash recovery area, 297
Oracle home directory, 296
Oracle Inventory directory, 296

operating system groups, 294
ORAINVENTORY group, 294
OSDBA group, 294
OSOPER group, 294

operating system packages, 290
operating system version, 290
Oracle kernel, 300
Oracle owner, 297–300
physical space and memory

requirements, 291
setting environment variables, 297

DISPLAY variable, 298
DISPLAY variable, 299–300
ORACLE_BASE variable, 297
ORACLE_HOME variable, 297,

300
ORACLE_SID variable, 298
ORAENV_ASK variable, 299
PATH variable, 298
TNS_ADMIN variable, 298

swap space, 300
system administrator, 289–297
temporary space, 300
verifying operating system

software, 289–291
X Window System emulation, 301

Pre-Upgrade Information Tool,
316–317

manual upgrade process, 323
predefined variables, SQL*Plus, 517
predicate columns, indexing, 963
predicates

dynamic access predicates, 457
hr_security package, 458

prefixed indexes, 965
PreparedStatement object, 417
prerequisite checks

installing software, 305
primary indexes, 196, 962
primary key dependency

normal forms, 33
primary keys, 26, 35

converting logical into physical
design, 35

guidelines for use of indexes, 197
online data redefinition, 813
online table redefinition, 814
primary key constraint, 203

enforcing constraints, 36
sequences generating, 222

PRINT parameter, TKPROF, 986
PRINT SCRIPT command, 655
PRINT_PRETTY_SQL procedure, 736
private data

components of Oracle process,
1061

private database links
creating, 858–859

private synonyms, 220, 221
PRIVATE_SGA resource parameter,

427
privilege-level audit, 462
PRIVILEGE variable, SQL*Plus, 517
privileged connections, SQL*Plus,

492
privileged users, 473
privileges

CONNECT privilege, 423
controlling data access, 442–449
CREATE SESSION privilege, 423
creating database using SQL*Plus,

359
creating materialized views, 212
creating users, 423
data dictionary views, 1093–1096
Data Pump, 594, 596
database security, 442–449
DBA views for managing, 452
described, 442
Flashback technology, 742
GRANT statement, 442
granting privileges, 483

object privileges, 256, 446
system privileges, 443–444
through roles, 487
to roles, 450
to several users, 525

installing software, 306
object privileges, 445–448
revoking object privileges, 448
revoking system privileges, 444
SQL*Plus security, 496
SYSDBA privilege, 359, 445
SYSOPER privilege, 445
system privileges, 442–445
types of Oracle privilege, 442

proactive tuning, 5
problem-related alerts, 828
procedure privileges, 446
procedures

see also stored procedures
executing, SQL*Plus, 511
PL/SQL, 1209

process monitor (PMON) process
see PMON

process number
deriving from V$SESSION view,

490
processes

abnormal increase in process size,
1061–1062

background processes, 114–119
components of Oracle process,

1061
continuous processes, 113
CPU units used by processes, 1025
description, 113
freeing up resources from dead

processes, 116
managing Oracle on Windows and

UNIX, 912
measuring process memory usage,

1061–1062

■INDEX1254

4517INDEX.qxd 8/19/05 11:20 AM Page 1254

Oracle Administration Assistant
for NT, 928

Oracle processes, 113–119
parameter determining number of

parallel execution
processes, 352

process-related parameters, 342
server processes, 113–114
system usage problems, 1059
thread analogy, 113
user processes, 113
V$PROCESS view, 1133
V$PROCESS_MEMORY view, 1134
viewing process information, 928

PROCESSES parameter, 342
processes, UNIX, 74

gathering process information, 74
running processes after logging

out, 74
running processes in the

background, 74
terminating processes, 75
vmstat utility, 81

product files, 282, 286
naming conventions, 286

production databases, 9
caution: moving from

development/testing, 962
production DBA, 8
PRODUCT_COMPONENT_VERSION

view, 1085
product_user_profile table, SQL*Plus,

496, 497, 498
profile (.profile) file, UNIX, 54, 55
profiler

DBMS_PROFILER package,
1165–1167

profiles
see also user profiles
altering profiles, 488
DBA_PROFILES view, 1092
Load Profile section, AWR, 842
parameters enforcing password-

related security, 427–428
parameters limiting resource

usage, 427
program global area

see PGA
programs, Oracle Scheduler, 864,

869–870
projection operations

brief description of projection, 942
heuristic strategies for query

processing, 942
SELECT statement, 1186
unary operations, 21

PROMPT command, SQL*Plus, 511
prompts, SQL*Plus, 492

no-prompt logon option, 505
showing information in, 508

properties
object database model, 39
showing properties of columns,

SQL*Plus, 512
transactions, 228

protocol address
connect descriptors, 395

protocols
communication protocol, 394
LDAP, 413
write ahead protocol, 116

proxy authentication, 476
proxy copies, RMAN, 656
proxy_user attribute, USERENV, 455
ps command, UNIX, 74, 81
PS1 shell variable, 51
pseudo-columns

Flashback Versions Query feature,
259

public database links, 859–860
public synonyms, 220, 221
PUBLIC user group, 444, 451
pupbld.sql script, SQL*Plus, 496
PURGE clause/commands, 741–742
PURGE option

dropping tables, 182
permanently removing objects,

739
PURGE_LOG procedure, 875
put command, UNIX, 79
PUT procedure

DBMS_OUTPUT package, 1159
UTL_FILE package, 1170

PUT_FILE procedure, 861, 1147
PUT_LINE procedure

DBMS_OUTPUT package, 1159
UTL_FILE package, 1170

pwd command, UNIX, 49

Q
queries

hierarchical queries, 1194
optimizing, 136
resumable operations, 270

query optimization, 939
see also CBO
rule-based approach, 943

QUERY parameter, Data Pump, 604,
613, 617

query processing
execution plans, 939
heuristic strategies for, 942
optimization phase, 939–942
parsing phase, 939
performance tuning, 939–943
query execution phase, 942
query rewrite phase, 940

QUERY REWRITE privilege, 212
query rewriting, 210
QUERY_REWRITE_ENABLED

parameter, 210, 350
QUERY_REWRITE_INTEGRITY

parameter, 211, 350
Quest Software, 884
Queue Monitor Coordinator (QMNC),

119
QUEUEING_MTH parameter, 436

queues
ALERT_QUE queue, 829
limiting long transactions, 819
system usage problems, 1059

QUEUESIZE parameter, listener, 403
QUEUE_SPEC attribute,

CREATE_JOB, 874
QUICK_TUNE procedure

DBMS_ADVISOR package, 1180
invoking SQL Access Advisor, 219

quiescing, 821–822
QUIT command, SQL*Plus, 495, 523
QUIT function, UTL_SMTP, 1172
quotas, tablespaces, 161

R
R (-R) restrict option, SQL*Plus, 505
RAID (redundant array of

independent disk) systems,
88–92

backup guidelines, 635
backups, 92
disk I/O performance, 1030
file mapping feature, 862
HARD initiative, 694
implementing, 92
Oracle and RAID, 92
RAID levels, 88

choosing the best RAID level,
90–91

RAID 0+1: striping and
mirroring, 90

RAID 0: striping, 88
RAID 1: mirroring, 89
RAID 2: striping with error

detection and correction, 89
RAID 3: striping with dedicated

parity, 89
RAID 4: modified striping with

dedicated parity, 89
RAID 5: modified striping with

interleaved parity, 89
reducing DBA vulnerability with

recoveries, 706
redundant disk controllers, 91

RAISE_APPLICATION_ERROR
exception, 1170

RAM (random access memory), 120
range partitioning, 186–187
range-hash partitioning, 189
range-list partitioning, 189–190
RANK function, 1193
RATIO method, 436
rationales, ADDM, 763
raw devices

disk I/O performance, 1030
rc scripts

updating shutdown/start-up
scripts, 310

rcp command, UNIX, 78
RCPT function, UTL_SMTP, 1172
rdbms ipc message idle events, 1052
reactive tuning, 5

■INDEX 1255

4517INDEX.qxd 8/19/05 11:20 AM Page 1255

read committed isolation level, 233,
234–235, 236

read consistency, 131
read-only mode, 382
read-only tablespaces, 107, 163
read permission, UNIX files, 59
read uncommitted isolation level, 233
reader class, Oracle Backup, 685
read/write operations, UNIX

sar command, 82
README files, 280
READY status, listener, 402
Real Application Clusters (RAC), 695,

700
REBALANCE command, ASM, 794
rebalance master (RBAL) process, 118
REBUILD command

maintaining indexes, 202
Recommendation Options page

SQL Access Advisor, 217
recommendations

reading ADDM reports, 768
Recommendations column, ADDM,

772
Recompile Invalid Objects window

upgrading with DBUA, 320
RECORD parameter, TKPROF, 986
records, PL/SQL, 1207
RECORD_FORMAT_INFO clause, 562
RECOVER command, RMAN, 709
RECOVER command, SQL*Plus, 524
RECOVER COPY command, RMAN,

676
RECOVER DATABASE command,

RMAN, 712, 714
RECOVER TABLESPACE command,

RMAN, 715
recoverer (RECO) process

background processes, 119
Oracle Service thread, 915

recovery
see also backup; Flashback
architecture, 133–135
automatic checkpoint tuning, 810
block media recovery, 753
cache recovery, 701
closed recovery, 704
complete recovery, 705
crash and instance recovery,

701–702
damaged disk drive, 738
data file recovery, 715–717

without backup, 725–726
database incarnations, 720
database recovery, 699–756
disaster recovery, 695–697
dynamic performance views,

1126–1128
Fast Start Fault Recovery, 701
flash recovery area, 354, 640–648
Flashback/traditional techniques

compared, 738
flashback techniques, 135
granular recovery, 730–736

incomplete recovery, 704–705,
717–721

media recovery, 703–705
dropping data file, 703
non-file-based recovery

compared, 705–706
restoring vs. recovering, 703
scenarios, 711–726
time required for recovery, 704

open recovery, 704
parallel recovery feature, 704
performing recovery with RMAN,

707–711
benefits of using RMAN, 707
identifying backups available,

708–709
identifying necessary files for

recovery, 709
monitoring RMAN jobs, 710
recovering with incrementally

updated backups, 710
RMAN recovery procedures,

709–710
validating if backup possible,

708
validating RMAN backups, 708

recoverer (RECO) process, 119
recovering an instance, 354
recovering from loss of control

files, 722–725
recovering with incrementally

updated backups, 710
recovery errors, 754–756
recovery-related parameters,

354–355
reducing DBA vulnerability, 706
restarting the instance, 702
restore points, 750–752
RMAN (Recovery Manager), 134,

648–679
Simplified Recovery Through

Resetlogs, 720
Tablespace Point-in-Time

Recovery, 730–731
tablespace recovery, 714–715
transaction recovery, 701
trial recovery, 753–754
types of database failures, 699–701
user-managed recovery

procedures, 710–711
using LogMiner utility, 731, 736
V$RECOVERY_PROGRESS view,

1122
whole database recovery, 711–714

performing hot restore with
RMAN, 713

recovery catalog, RMAN, 650–651
backing up recovery catalog, 672
benefits of RMAN, 649
connecting to RMAN, 653, 669
creating recovery catalog, 670
creating recovery catalog schema,

669
granting roles to maintain/query,

669

objections to, 651
performing PITR, 669
recovery catalog schema, 650
registering database, 671
resynchronizing recovery catalog,

671
working with, 668–672

Recovery Configuration window
upgrading with DBUA, 321

Recovery Manager
see RMAN

recovery strategies, 6
RECOVERY WINDOW option, RMAN,

666
recovery writer, 119
recursive CPU usage, 1029
recursive relationship, 28
recursive SQL

dictionary-managed tablespaces,
106

locally managed tablespaces, 107
Recycle Bin, 740

DBA_RECYCLEBIN view, 1089
dropped objects, 739
permanently removing objects

from, 739, 742
restoring dropped tables, 741

recycle buffer cache, 775
recycle buffer pool, 123

determining candidates for, 1018
setting size of recycle pool, 344
using multiple pools for buffer

cache, 1017–1018
recyclebin

SHOW RECYCLEBIN command,
506

RECYCLEBIN parameter
turning Flashback Drop capability

off, 739
Red Hat Linux server

Oracle Database 10g installation
on, 279

redirection, UNIX
input/output redirection, 56
pipe (|) command, 57

redo entries, SQL*Loader, 554
redo log buffer, 109

log writer process, 125–126
nologging option, 126
parameter setting size, 345
system global area, 121, 125
transferring contents to disk, 115

redo log files, 109
after image records, 109
alert log during database creation,

367
analyzing instance before tuning,

1074
arch administrative directory, 285
archivelog mode, 632

backing up in, 673
archivelog/noarchivelog modes,

110
archiver process, 1058
archiving, SQL*Plus, 524

■INDEX1256

4517INDEX.qxd 8/19/05 11:20 AM Page 1256

backup and recovery architecture,
134

backup guidelines, 635
benefits of temporary tables, 183
control file, 108
database files, 286
default file locations, 645
defining format for archived, 347
description, 107
dynamic performance views,

1123–1125
flash recovery area, 645
how they work, 109
information contained, 109
making whole closed backups, 687
multiplexing, 110, 635

sizing file system for database,
331

naming conventions, 286
noarchivelog mode, 632
online redo logs, 855–858

see also online redo logs
open backups, 689
optimal size, 331
Oracle Managed Files, 802
Oracle recommendations, 331
Pre-Upgrade Information Tool, 317
RESETLOGS option, 719
sizing file system for database, 331
space request, high values for,

1052
transactions, 109
using LogMiner to analyze,

735–736
redundancy, 792

backup guidelines, 635
REDUNDANCY keyword

creating ASM disk groups, 793
REDUNDANCY option, RMAN, 665
redundancy set, 636–637, 706
REENABLE clause, SQL*Loader, 556
REF CURSOR type

cursor variables, 1209
mining web services data, 579
table functions using, 577–578

referential integrity constraints, 205
foreign keys enforcing, 36

REFRESH COMPLETE clause, 213
REFRESH FAST ON COMMIT clause,

214
refresh modes, materialized views,

211
refresh types, materialized views, 211,

212
REGEDIT command, Windows

registry, 921
REGEXP_LIKE function, 1200
REGEXP_XYZ functions, 1200
REGISTER DATABASE command,

RMAN, 671
registerDriver method,

DriverManager, 417
registration

dynamic service registration, 117

registry
DBA_REGISTRY view, 1085

registry keys
HOMEID key, 921
removing Oracle components, 930

regular expressions, 1200–1201
pattern matching, UNIX, 65

Related Links section, Database
Control, 896

relational algebra, 21
Cartesian product, 21
difference, 21
intersection, 21
join operations, 22
unary operations, 21
union, 21

relational calculus, 22
relational database model, 38

ORDBMS model, 39
relational databases, 19–37

see also databases; Oracle
Database 10g

database schema, 21
introduction, 19–20
life cycle, 23–37

implementing physical design,
37

logical database design, 24–34
physical database design,

34–37
requirements, 23–24

limitations, 38
relational database model, 20–23

relationships (ER modeling), 25
building entity-relationship

diagram, 28
cardinality of, 25
converting logical into physical

design, 35
many-to-many (M:M)

relationship, 26
one-to-many (1:M) relationship,

26
one-to-one (1:1) relationship, 26
recursive relationship, 28
types, 25

relative distinguished names, 415
relative path, UNIX

file locations, 47
navigating directories, 62

Release Notes and Addendums, 280
releases

upgrade paths, 315
Reliaty, Oracle Backup, 680
reload command, lsnrctl utility, 403
reloads, library cache, 1009
RELY constraints, 206
remapping, Data Pump, 591
REMAP_DATAFILE parameter, 618
REMAP_SCHEMA parameter, 591,

618
REMAP_TABLESPACE parameter, 618
REMARK command, SQL*Plus, 518,

522

remote access to UNIX server, 77
remote client authentication, 486
REMOTE_LOGIN_PASSWORDFILE

parameter, 356, 473, 474
REMOTE_OS_AUTHENT parameter,

483
REMOVE procedure, DBMS_JOB,

1152
removing files, UNIX, 59
REMUSER command, iSQL*Plus, 534
RENAME PARTITION clause, 191
repeatable-read isolation level, 232
repeating groups, normal forms, 31
REPEAT_INTERVAL attribute

CREATE_JOB procedure, 868
CREATE_WINDOW procedure, 878

REPFOOTER command, SQL*Plus,
513

REPHEADER command, SQL*Plus,
513

REPLACE clause, SQL*Loader, 544
REPLACE function, 1191
REPORT commands, RMAN, 662–663

REPORT NEED BACKUP, 662
REPORT OBSOLETE, 662
REPORT SCHEMA, 662, 671
REPORT UNRECOVERABLE, 662

reports, AWR, 840, 844
REPORT_TUNING_TASK procedure,

998, 1181
requirements

estimating, 6
relational database life cycle,

23–24
RESETLOGS option, 719, 720–721
RESIZE clause/command

altering bigfile tablespaces, 171
data files and tablespaces, 154
expanding tablespaces, 160

resource allocation methods, 432
resource consumer groups

assigning users to, 438–440
automatic assignment of, 439
CONSUMER_GROUP parameter,

433
creating, 433–435
Database Resource Manager, 431
default resource plans, Oracle, 435
determining which groups exist,

434
groups granted to users or roles,

441
groups in Oracle databases, 435
listing, 435
OEM managing, 442
sessions currently assigned to, 441
SWITCH_CURRENT_CONSUMER

_GROUP procedure, 1156
V$RSRC_CONSUMER_GROUP

view, 441
resource management

dynamic resource management,
818–820

■INDEX 1257

4517INDEX.qxd 8/19/05 11:20 AM Page 1257

Resource Manager
DBMS_RESOURCE_MANAGER

package, 1176
linking Oracle Scheduler to, 865

Resource Monitors page, 441
resource plan directives

creating plan directives, 436–437
Database Resource Manager, 432,

819
including resource directive for

other_groups, 437
Resource Plan Wizard, 433
resource plans

changing using Scheduler
windows, 876–880

creating, 436
Database Resource Manager, 431
DBA_RSRC_PLANS view, 1098
determining status of, 438
OEM creating/editing/deleting,

442
showing all plans in database, 441
showing currently active plans,

441
V$RSRC_CONSUMER_GROUP

view, 1134
V$RSRC_PLAN view, 1134

resources
controlling allocation, 140
controlling user’s use of, 426–430
Database Resource Manager, 140,

431–442
DBA, 13–14
finding SQL that uses most,

992–994
freeing resources from dead

processes, 116
OEM Grid Control, 906
parameters enforcing limits in

user profiles, 353
caution: ensuring limits are

activated, 429
default profile, 428
determining limits, 430
result of reaching limit, 430

parameters limiting resource
usage, 427

query optimization, 939
resource management for users,

430
severe contention for, 1060
SQL Trace tool showing usage of,

984
system usage problems, 1059
tuning memory resources, 916

RESOURCE_CONSUMER_GROUP
attribute, 875

RESOURCE_LIMIT parameter, 353,
429

RESOURCE_MANAGER_PLAN
parameter, 440

RESOURCE_PLAN attribute, 877
response files, 307–309
RESTORE...PREVIEW command,

708–709

RESTORE...VALIDATE command, 708
RESTORE command, RMAN, 709
RESTORE DATABASE command,

RMAN, 712
restore optimization, RMAN, 707
restore points, 750–752
RESTORE TABLESPACE command,

715
restoring

performing hot restore with
RMAN, 713

restoring vs. recovering, 703
V$RESTORE_POINT view, 1127

RESTRICT command, SQL*Plus, 498
restrict option (-R), SQL*Plus, 505
restricted mode

database access, 382
quiescing database, 385

Results for Task page
SQL Access Advisor, 218

ResultSet object, JDBC, 418
RESUMABLE parameter, SQL*Loader,

550
Resumable Space Allocation feature,

269–273
ALTER SESSION command, 271
common resumable errors, 270
DBMS_RESUMABLE package,

1176
enable session for, 271
naming resumable operation, 272
notification of suspended

operations, 273
operation suspended alert, 273
parameter enabling/disabling, 355
resumable operation example, 272
resumable operations, 270, 273
RESUMABLE_TIMEOUT

parameter, 271
TIMEOUT clause, 271

RESUMABLE_NAME parameter,
SQL*Loader, 550

RESUMABLE_TIMEOUT parameter,
SQL*Loader, 271, 355, 550

RESYNC CATALOG command,
RMAN, 672

RETENTION GUARANTEE clause,
252

RETENTION NOGUARANTEE clause,
252

RETENTION parameter, AWR, 839,
840

retention period, Oracle Backup, 686
return codes, SQL*Loader, 553
REUSE_DATAFILES parameter, Data

Pump, 616
reverse-engineering databases, 38
reverse key indexes, 199, 964
Review page

SQL Access Advisor, 217
REVOKE statement

revoking object privileges, 448
revoking system privileges, 444

REVOKEROLE command, iSQL*Plus,
535

rewrite integrity, 211
REWRITE_OR_ERROR hint, 210
Rios, Don, 1066
Risk Matrix, 487
rlogin command, UNIX, 78
rm command, UNIX, 59, 62
RMAN (Recovery Manager), 648–679

architecture, 649–652
backup and recovery architecture,

134
backup duration, specifying limits

for, 675
backup formats, 657
backup guidelines, 636
backup optimization, 667
backup piece, 655
backup retention policy, 665
backup set, 655
backup tags, 657
backup types, 672–675

backing up archived logs, 673
backing up control file, 674
backing up data files, 675
backing up entire database, 672
backing up tablespaces, 674
online backups, 673–674

backup, restarting, 675
backups, compressed, 678
backups, fast incremental, 677
backups, incrementally updated,

676
benefits of, 648–649
block change tracking, 677
block media recovery (BMR), 705
BLOCKRECOVER command, 753
change tracking writer, 119
channel configuration, 666
channels, 656
cloning a database using, 727
commands

see RMAN commands
configuration parameters, 664–668

see also RMAN configuration
parameters

connecting to, 651–653, 669
control file parameters, 668
converting data files to match

endian format, 629
cross-checking backups, 679
default device type, 666
degree of parallelism, 667
detecting physical/logical

corruption, 679
image copy, 655–656
image copy backups, 659
incremental backups, 659–660
large pool, 126
logical check of backup files, 659
managing/monitoring database,

144
media recovery process, 704
migrating database to ASM,

797–798
MML (Media Management Layer),

651–652

■INDEX1258

4517INDEX.qxd 8/19/05 11:20 AM Page 1258

monitoring and verifying RMAN
jobs, 678

open backups, 689
performing backup and recovery

tasks, 710
performing recovery with, 707–711

benefits of using RMAN, 707
data file recovery, 716
identifying backups available,

708–709
identifying necessary files for

recovery, 709
incomplete recovery, 717–721
monitoring RMAN jobs, 710
recovering a tablespace,

714–715
recovering data file without

backup, 725–726
recovering from loss of control

files, 722–723
recovering with incrementally

updated backups, 710
RMAN recovery procedures,

709
validating if backup possible,

708
validating RMAN backups, 708

physical database backups, 631
proxy copy, 656
recovering from data block

corruption, 753
recovery catalog

see recovery catalog, RMAN
RMAN backups, 657–658
RMAN client, 650
RMAN executable, 650
RMAN repository, 650–651
scripting with, 653–655

checking syntax of RMAN
scripts, 654

converting RMAN scripts, 654
creating and running scripts,

653–654
creating global RMAN scripts,

654–655
printing RMAN scripts, 655

starting database using, 712
terminology, 655–656
user-managed backups

alternative, 687
V$RMAN_CONFIGURATION view,

1120
whole database recovery using,

711–713
performing hot restore with

RMAN, 713
RMAN commands, 658–664

ALLOCATE CHANNEL, 660
BACKUP, 659–660, 671
BACKUP ARCHIVELOG ALL, 673
BACKUP AS COMPRESSED

BACKUPSET, 678

BACKUP AS COPY, 659, 661
LOGICAL keyword, 659

BACKUP CONTROLFILE TO
TRACE, 680

BACKUP CURRENT
CONTROLFILE, 674

BACKUP DATABASE, 672
BACKUP DATABASE PLUS

ARCHIVELOG, 673
BACKUP DATAFILE, 675
BACKUP INCREMENTAL LEVEL,

659–660, 676
BACKUP TABLESPACE USERS, 674
BACKUP VALIDATE DATABASE

ARCHIVELOG ALL, 679
CATALOG, 663
CATALOG START WITH, 663
CONFIGURE, 665
CONFIGURE CHANNEL, 667
CONFIGURE DEFAULT DEVICE

TYPE TO, 666
CONFIGURE DEVICE, 667
CONFIGURE RETENTION

POLICY, 665
RECOVERY WINDOW option,

666
REDUNDANCY option, 665

CONNECT CATALOG, 669
COPY, 661, 671
CREATE CATALOG, 670
CROSSCHECK, 662, 664, 679
DELETE, 661
DELETE EXPIRED, 662
DELETE OBSOLETE, 662
DROP CATALOG, 670
DUPLICATE, 727
job commands, 660–662
LIST ARCHIVELOG ALL, 664
LIST BACKUP, 663
LIST COPY, 664
LIST GLOBAL SCRIPT NAMES, 664
LIST INCARNATION, 720
LIST SCRIPT NAMES, 664
RECOVER COPY, 676
RECOVER DATABASE, 712
RECOVER TABLESPACE, 715
REGISTER DATABASE, 671
REPORT NEED BACKUP, 662
REPORT OBSOLETE, 662
REPORT SCHEMA, 662, 671
REPORT UNRECOVERABLE, 662
RESTORE DATABASE, 712
RESYNC CATALOG, 672
RUN, 660
SHOW ALL, 664
SWITCH, 660–661, 713
VALIDATE BACKUPSET, 664

RMAN configuration parameters,
664–668

backup optimization, 667
backup retention policy, 665
channel configuration, 666
control file backups, 668
default device type, 666

default values, 664
viewing parameters changed

from, 665
degree of parallelism, 667

rmdir command, UNIX, 62
roles

controlling data access, 449–452
creating, 450
creating Database Control roles,

896
data dictionary views, 1093–1095
Data Pump utilities, 612, 614
database security, 449–452
DBA views for managing, 452
DELETE_CATALOG_ROLE, 444
disabling, 451, 487
dropping, 452
enabling, 452
EXECUTE_CATALOG_ROLE, 444
granting privileges alternative, 483
granting privileges through, 487
granting privileges to, 450
granting role to another user, 451
granting role WITH ADMIN

OPTION, 451
granting roles to maintain/query

RMAN, 669
PUBLIC user group and roles, 451,

483
role authorization, 450–451
SELECT_CATALOG_ROLE, 444
SET_ROLE procedure, 1155

ROLE_ROLE_PRIVS view, 1093
ROLE_SYS_PRIVS view, 1094
ROLE_TAB_PRIVS view, 1094
ROLLBACK command, 133
rollback method, conn class

error handling in Java, 419
executing SQL statements, JDBC,

418
rollback segments

alert log during database creation,
367

undo management, 133, 800
using CTAS with large tables, 522

ROLLBACK statement, 227–228
SAVEPOINT command, 228
statement-level rollback, 228
transaction control statements,

148
transactions, 226

rolling back
automatic checkpoint tuning, 810
transaction recovery, 701, 704

rolling forward
cache recovery, 701, 703

ROLLUP operator
GROUP BY clause, 1197

root directory, UNIX, 62
ownership, 47

ROUND function, 1191
ROUND_ROBIN method

resource consumer groups, 434

■INDEX 1259

4517INDEX.qxd 8/19/05 11:20 AM Page 1259

row cache
see data dictionary cache

row data section, data blocks, 101
row exclusive locks, 237
row-level access

VPD (virtual private database), 453
row-level granularity, 237
row-level locking, 236
row-level security

column-level VPD, 460
DBMS_RLS package, 459
dynamic-access predicates, 457

ROWCOUNT (%ROWCOUNT)
attribute, 1208

ROWID access
CBO choosing access path, 948
online data redefinition, 813

rows
Flashback Versions Query feature,

259
INSERT/DELETE/UPDATE

statements, 147
ROWS parameter, SQL*Loader, 548,

555
ROWTYPE (%ROWTYPE) attribute,

PL/SQL, 1204, 1207
RPAD function, 1191
rule-based optimization, 943
RULES keyword, 581–582
Rules Manager, 1175
RUN command, RMAN, 660
RUN command, SQL*Plus, 515–516
run queue length

evaluating CPU performance, 1025
runInstaller file, OUI, 302–303
runtime option

installing Oracle Client, 398
RUN_CHAIN procedure, 873
RUN_JOB procedure, 869
RUN_TO_COMPLETION method,

434
RVWR (Recovery Writer), 746
rwx group, UNIX file permissions, 60

S
s (-s) silent option, SQL*Plus, 505
salt, encryption algorithms, 482
SAME (Stripe and Mirror Everything),

287
guidelines for optimal disk usage,

1032
sample data, 824, 949
SAMPLE parameter, Data Pump, 605
sar command, UNIX, 82

CPU performance, 1024
measuring I/O performance,

1030–1031
SAVE command, SQL*Plus, 499, 514
saved metrics, 827
SAVEPOINT command, 148, 228
scalability

applications sharing sessions,
1014

OEM, 885

Oracle Net Services features, 392
parsing, 1013
performance, 1013

Schedule page, 217
Scheduler, 863–882

administering schedules, 871
architecture, 865
assigning priority levels for jobs,

865
attributes

altering common component
attributes, 880

CREATE_JOB procedure, 867,
874

CREATE_JOB_CLASS
procedure, 875

CREATE_WINDOW procedure,
877

managing Scheduler attributes,
880

unsetting component
attributes, 880

automatic optimizer statistics
collection, 781–782

automatic Segment Advisor
operation, 141

brief description, 823
chains, 865, 871–873
components, 864–865
creating schedules, 870–871
database, managing/monitoring,

139, 144
DBA_SCHEDULER_ views, 1090
DBMS_JOB package limitations,

863
DBMS_SCHEDULER package, 863,

1178
default operation windows, 782
description, 864
event-based schedules, creating,

874
events, 864, 873–874
gathering statistics, 943
introduction, 863
job classes, 865, 874–876
jobs, 864, 867–869

default Scheduler jobs, 882
linking to Oracle Resource

Manager, 865
managing, 870–871
monitoring Scheduler jobs,

881–882
object naming, 866
privileges, 866
programs, 864, 869–870
purging job logs, 882
schedules, 864, 870–871
window groups, 865, 880
windows, 865, 876–880

Scheduler wait class, 1035
scheduling

limits for backup duration, 675
transaction concurrency control,

230
UNIX jobs, 76

schema owner
granting object privileges, 447

schemas, 148–149
CREATE SCHEMA statement, 148
Database 10g sample schemas,

1183–1184
database schema, 21
logical database structures, 100
shared schemas, LDAP, 477
switching schema, 222

SCHEMAS parameter, Data Pump,
600, 613, 617

SCN (system change number), 132
consistent database backups, 633
control file, 108
converting between timestamps

and, 737
Flashback Database example, 749
Flashback Versions Query feature,

259, 261
restore points, 750–752
START_SCN column, 262

SCN_TO_TIMESTAMP function, 737
scope, SPFILE, 377
scott user, 471
screens

clearing, SQL*Plus, 505
scripts

executing in SQL*Plus, 514–516
scripting with RMAN, 653–655
updating shutdown/start-up

scripts, 310
Second Normal Form (2NF), 31
secondary indexes, 196, 962
security

see also authentication; passwords
application security, 487
auditing database usage, 461–471
authenticating database users,

471–476
backing up recovery catalog, 672
centralized user authorization, 476
column-level security, 208
controlling data access, 442–461

privileges, 442–449
roles, 449–452

data encryption, 477–482
database authentication, 471–475
database security, 421–490
directory naming method, 412
dos and don’ts, 482–490

Advanced Security option, 487
altering profiles, 488
application security, 487
Critical Patch Updates, 486
database auditing, 483
denying remote client

authentication, 486
determining SQL user currently

executing, 488
disabling roles, 487
granting privileges, 483
granting privileges through

roles, 487
killing user’s session, 489

■INDEX1260

4517INDEX.qxd 8/19/05 11:20 AM Page 1260

listing user information, 488
logging in as different user, 489
managing users, 488
MetaLink, 486
multiple DBAs, 484
operating system

authentication, 483
passwords, 482
protecting data dictionary, 484
restricting SQL*Plus usage, 487
securing listener, 485
securing network, 485
setting permissions, 484
user accounts, 482

enterprise user security, 476–482
external authentication, 475–476
fine-grained data access, 453–461
implementing physical database

design, 37
logical database structures, 100
OEM, 884
Oracle and Windows features,

911–912
Oracle DBA’s role, 3, 4–5

managing users, 4
monitoring the system, 4
protecting the database, 4

Oracle Internet Directory, 482
permanently removing tables, 741
Peter Finnegan’s Oracle security

web site, 485
proxy authentication, 476
PURGE clause, 741
security-related parameters,

356–357
stored procedures, 452
underlying objective, 421
value-based security, 208
views, 208, 452

security policies
column-level VPD, 460
context sensitive security policy,

459
creating, fine-grained access

control, 458
DBA_POLICIES view, 1096
DBMS_RLS package, 1176
dynamic security policy, 459
integrating directories and

Windows security policies,
911

making security policy functions
public, 460

shared context sensitive security
policy, 459

shared static security policy, 459
static security policy, 459

security, SQL*Plus, 496–499
additional Oracle security

mechanism, 496
controlling through SET ROLE

command, 498
limiting use of commands, 498
product_user_profile table, 496

pupbld.sql script, 496
restricting use of operating system

commands, 498
Segment Advisor, 143

advice levels, 808
automatic performance tuning,

1004
automatic Segment Advisor job,

809
choosing candidate objects for

shrinking, 808–809
comprehensive analysis mode, 808
Database Control Segment

Advisor page, 809
limited analysis mode, 808
managing/monitoring database,

144
modes, 808
online data redefinition as

alternative, 813
performance tuning, 974
Segment Advisor

Recommendations page,
810

segment space management,
808–810

space-related advisors, 850
using, 853

segment level wait statistics, 1045
segment space management

adjusting HWM phase, 807
compaction phase, 807
manual segment shrinking,

807–808
online segment shrinking, 806–807
Segment Advisor, 808–810
tablespace storage parameters,

157
segments, 104

analyzing segment growth, 177
automatic Segment Advisor

operation, 141
automatic segment space

management, 152, 155
DBA_SEGMENTS view, 175, 1101
description, 100
extent allocation/deallocation, 156
extents and, 104

SELECT ANY DICTIONARY privilege,
444

Select Configuration Options
window, 306

Select Installation Type window, 304
SELECT statement, 1186–1187

data manipulation statements, 147
ORDER BY clause, 1189
PL/SQL, 1204
WHERE clause, 1186

Selecting a Database Instance
window, 320

selection operations, 21, 942
selectivity, 957
SELECT_CATALOG_ROLE, 444
self join, 1196

semantic Web, 25
semi structured database model, 41
semicolon (:)

terminating SQL statements, 495
turning off use of semicolon, 521

SEMMNS parameter
preinstallation checklist, 300
tuning memory resources, 916

SEQUEL (structured English query
language), 22

sequence-based recovery, 718
sequence privileges, 446
sequences, 222–223

currval pseudo column, 222
DBA_SEQUENCES view, 224, 1108
gaps in sequence numbers, 223
nextval pseudo column, 222
SQL*Loader utility, 558

SEQUENTIAL_ORDER
transforming array data with rules,

582
serializable isolation level, 232, 234
serializable schedules

transaction concurrency control,
230

server-executed commands,
SQL*Plus, 496

server file, 374
server-generated alerts, 142, 828–834

DBMS_SERVER_ALERT package,
1180

default server-generated alerts,
828–829

managing alerts, 829–832
tablespace alerts, 832–833

Server Manager utility, 524
server parameter file

see SPFILE
server processes, 113–114

dedicated server processes, 114
RMAN, 650
shared server processes, 114
user processes and, 113

server-side access controls
securing network, 485

server software, installing, 303
servers

copying files with database server,
860–862

service level agreements (SLAs), 354,
637–638

service metrics, 827
service names, 394
service registration, 117
services

Oracle Service, 922–924
Oracle Service threads, 914
Oracle services, Windows, 922–925
Oracle Services for MTS, 911

services command, lsnrctl utility, 402
Services Summary

checking listener status, 402
SERVICE_NAME parameter, 338
service_name parameter, 410

■INDEX 1261

4517INDEX.qxd 8/19/05 11:20 AM Page 1261

SERVICE_NAMES parameter, 394,
401

SERV_MOD_ACT_STAT_DISABLE
procedure, 1148

SERV_MOD_ACT_STAT_ENABLE
procedure, 1148

SERV_MOD_ACT_TRACE_ENABLE
package, 990

session control statements, 146
session metrics, 827
session multiplexing, 114
session sample data, ASH, 824
session variables, SQL*Plus, 516
sessions

Active Session History, 142,
845–849

ACTIVE_SESSION_POOL
parameter, 436

ACTIVE_SESS_POOL_MTH
parameter, 436

altering properties of user’s
session, 146

automatic assignment of resource
consumer group to, 439

creating session temporary table,
183

DBA_HIST_ACTIVE_SESS_
HISTORY view, 1113

DBMS_SESSION package,
1155–1156

determining session-level CPU
usage, 1026

discovering session information,
454

dynamic performance views,
1121–1123

GUI sessions, 918
managing session locks, 242
QUEUEING_MTH parameter, 436
quiescing database, 386
session-related parameters, 342
Top Blocking Sessions section,

ASH reports, 848
Top Sessions page, 1071
Top Sessions section, ASH reports,

848
UNIX session, 47
V$SESSION view, 1131

SESSIONS parameter, 342
SESSIONS_PER_USER parameter, 427
SESSION_CACHED_CURSORS

parameter, 1012–1013
SESSION_USER attribute, USERENV,

454–455
SET command, SQL*Plus, 499
SET commands/statements, 147

SET ROLE, 498
SET SERVEROUTPUT, 501–502
SET TRANSACTION, 148
SET TRANSACTION USER

ROLLBACK SEGMENT, 253
SET UNTIL, 717, 719

set operators, 1190
set password clause, lsnrctl utility,

404

set theory operations, 21
setAutoCommit method, JDBC, 418
setenv command, UNIX, 54
SETPASSWD command, iSQL*Plus,

534
settings, SQL*Plus, 505, 506
SETUID files, 484
Setup page, Database Control, 894,

896
SET_ATTRIBUTE procedure, 871, 881
SET_ATTRIBUTES procedure, 879
SET_ATTRIBUTE_NULL procedure,

880
SET_BOOL_PARAM_IN_SESSION

procedure, 1158
SET_CONSUMER_GROUP_

MAPPING package, 440
SET_CONSUMER_MAPPING_

PRI package, 440
SET_DEFAULT_TASK procedure, 770
SET_DEFAULT_TASK_PARAMETER

procedure, 764, 770
SET_EV procedure, 1158
SET_IDENTIFIER procedure, 990
SET_INT_PARAM_IN_SESSION

procedure, 1158
SET_MODULE procedure, 1153–1154
SET_ROLE procedure, 1155
SET_SCHEDULER_ATTRIBUTE

procedure, 880
SET_SESSION_LONGOPS procedure,

820
SET_SQL_TRACE procedure, 1156
SET_SQL_TRACE_IN_SESSION

procedure, 1158
SET_TASK_PARAMETER procedure,

1180
SET_THRESHOLD procedure, 831,

1180
SGA (system global area), 120–127

ASM Cache, 788
automatic shared memory

management, 127, 774–780
allocating memory between

SGA components, 776
benefits of, 774
Database Control, 779–780
enabling, 775
init.ora file or SPFILE, 779
Oracle recommendation, 779
switching to manual mode, 777
using, 343

caution: DBA under emphasis on
PGA, 780

components, 121
database buffer cache, 121
Java pool, 126
large pool, 126
managing/monitoring database,

144
memory requirements, 129
redo log buffer, 125
shared pool, 124
SHOW SGA command, 507
sizing buffer cache, 1016

Streams pool, 126
V$SGA view, 1116
V$SGASTAT view, 1116
VVSGA_DYNAMIC_

COMPONENTS view, 1117
SGA Memory Advisor, 143
SGA parameters

automatically tuned, 775
checking size of, 777–778

locking SGA into host memory,
346

manually managed, 775
memory configuration

parameters, 342–347
PRIVATE_SGA parameter, 427
setting SGA maximum size, 346
setting SGA parameters, 775–779
setting SGA parameters manually,

774
SGA_MAX_SIZE parameter, 346

automatic shared memory
management, 774

caution: not using on some UNIX
platforms, 777

SGA_TARGET parameter, 121, 127,
343, 776–777

affecting SGA components,
777–779

allocating memory between SGA
components, 776

automatic memory management,
140

caution: not using
SGA_MAX_SIZE, 777

default set to zero, 127
enabling automatic shared

memory management, 775
initial value for, 776
sizing shared pool, 1014
switching to manual mode, 777

sh (Bourne shell), 45, 55
SH (sales history) schema, 1184
shadow process, Data Pump, 598
shadow processes, 914
share lock mode, 131
shared context-sensitive security

policy, 459
shared libraries, 1061
shared memory

caution: not using
SGA_MAX_SIZE, 777

checking shared memory
allocations, 778

components of Oracle process,
1061

shared memory management, 127,
774–780

shared pool
auto tuned SGA parameters, 775
data dictionary cache, 125
DBMS_SHARED_POOL package,

1173–1174
delays due to shared pool

problems, 1062
dictionary cache, 1006–1007

■INDEX1262

4517INDEX.qxd 8/19/05 11:20 AM Page 1262

flushing, 1007
library cache, 125, 1005–1006
parameter setting size of, 345
pinning objects in shared pool,

1014–1015
reducing parse time CPU usage,

1028
sizing, 1014
system global area, 121, 124
tuning, 1005, 1007
V$SHARED_POOL_ADVICE view,

1118
shared schemas, LDAP, 477
shared server architecture, 392
shared static security policy, 459
SHARED_POOL_SIZE parameter, 345,

775
shell limits, changing preinstallation,

293
shell scripts, UNIX, 68–74

analyzing example script, 70
command-line arguments, 69
evaluating expressions, 68
flow control structures, 71
making variables available to, 54

shell variables, UNIX, 54, 68
shells, UNIX, 45

Bourne Again Shell (bash), 45
Bourne shell (sh), 45
C shell (csh), 45
changing shell prompt, 51
default shell, 46
Korn shell (ksh), 45
shell prompts, 47
shell used in this book, 45

ship.db.cpio.gz file, 302
SHMMAX parameter

preinstallation checklist, 300
tuning memory resources, 916

SHOW ALL command, RMAN, 664
SHOW commands, SQL*Plus, 506

SHOW ALL, 506
SHOW ERRORS, 507
SHOW PARAMETER, 358
SHOW PARAMETER UNDO, 253
SHOW PARAMETERS, 507
SHOW RECYCLEBIN, 506
SHOW SGA, 507
SHOW USER, 507

shrinking segments
see segment space management

shutdown
managing Oracle on Windows and

UNIX, 917
Oracle Administration Assistant

for NT, 929
shutting down database with

Windows, 925–926
updating scripts post-installation,

310
SHUTDOWN commands, SQL*Plus

ORADIM utility, 927
SHUTDOWN ABORT, 132, 384, 701
SHUTDOWN IMMEDIATE, 384

SHUTDOWN NORMAL, 383
SHUTDOWN TRANSACTIONAL,

383
SID

see ORACLE_SID variable
SIGTERM signal, 75
silent mode

installing software using response
files, 307–308

upgrading with DBUA, 319
silent option (-s), SQL*Plus, 505
SILENT parameter, SQL*Loader, 549
Simplified Recovery Through

Resetlogs, 720–721
simulated backups and restores,

RMAN, 649
Single Sign On feature, LDAP, 477
site profile file, 502–503
SIZES procedure, 1174
sizing, database, 37
SKIP parameter, SQL*Loader, 550
SKIP_INDEX_MAINTENANCE

parameter, SQL*Loader,
555, 556

SKIP_UNUSABLE_INDEXES
parameter, SQL*Loader,
555, 556

SLA (service level agreement),
637–638

recovery time target, 354
typical SLA for database

operations, 637
slash symbol (/)

forward slash (/) command, 515
terminating SQL statements, 495
using comments in SQL*Plus, 518

SLAVETHR mode, 953
smallfile tablespaces, 170, 171
SMON (system monitor) process, 114,

117
Oracle Service thread, 915
timer idle events, 1052

SMTP (Simple Mail Transfer
Protocol), 1172–1173

SMTP_OUT_SERVER parameter, 1149
snapshot interval variable, AWR, 764
snapshot retention period variable,

AWR, 764
“snapshot too old” errors, 244

automatic undo retention tuning,
141

guaranteed undo retention, 252
snapshot too old alert, 834
undo tablespaces causing, 248

snapshots
see AWR snapshots

soft parsing
description, 1007
example, 1008
latch contention, 1013

software installation and upgrade, 7
sort command, UNIX, 67
sort merge join, 948
SORT parameter, TKPROF, 986

SORTED_INDEXES parameter,
SQL*Loader, 555, 556

sorting data
on multiple columns, 1189
ORDER BY clause, 1189
ORDER BY command, 147

source command, UNIX, 56
space

benefits of Data Pump, 591
data dictionary views, 1100
Data Pump estimating, 605–606
DBA_FREE_SPACE view, 175, 1101
DBMS_SPACE package, 177, 1163
DBMS_SPACE_ADMIN package,

1164
estimating space requirements,

177
out of space errors, 270
preinstallation checks, 289

temporary space, 300
user space quota errors, 270

space management
ADDM recommendations, 763
automatic checkpoint tuning, 810
automatic segment space

management, 152
automatic space management,

799–810
Automatic Undo Management,

800
data block space management,

152
locally managed tablespaces,

799–800
managing flash recovery area, 647
manual segment shrinking,

807–808
monitoring resumable operations,

273
online segment shrinking, 806–807
Oracle Managed Files, 800–806
performance tuning, 974
permanently removing objects,

739
recursive CPU usage, 1029
Resumable Space Allocation

feature, 269
Segment Advisor, 808–810
segment space management, 157
temporary tablespace groups, 165

Space Summary section, Database
Control, 891

SPACE_USAGE procedure, 1164
Specify Home Details window, 304
SPFILE (server parameter file)

backup guidelines, 635
changing SPFILE values, 333
comments, 377
creating, 375–377
creating new database, 110
DB_WRITER_PROCESSES

parameter, 115
default location, 374
described, 333

■INDEX 1263

4517INDEX.qxd 8/19/05 11:20 AM Page 1263

dynamic changes, 334
dynamic initialization parameters,

110
dynamic parameter changes, 374
init.ora file as alternative, 779
modifying, 376
naming conventions, 374
sample SPFILE, 376
setting initialization parameters,

311
setting scope of dynamic

parameter changes, 377
specifying in STARTUP command,

376
using, 374–377
V$SPPARAMETER dynamic view,

375
V$SPPARAMETER view, 1138
viewing current parameter values,

357
spindles, disk I/O, 1030
split block problem, open backups,

689
SPLIT PARTITION clause, 191
SPOOL command, SQL*Plus, 499, 510
spool files, SQL*Plus

creating/appending to/replacing,
510

manual upgrade process, 323, 328
SQL (structured query language)

ANSI standard, 145
description of, 22
determining SQL user currently

executing, 488
dynamic performance views, 1131
execution results of SQL query, 983
finding inefficient SQL, 992–994
library cache, 125
processing through JDBC, 417–419
recursive SQL, 106
using SQL to generate SQL,

525–526
XML and SQL, 146

SQL Access Advisor, 143, 214–219
automatic performance tuning,

1004
clearing cache, 216
creating SQL cache, 216
creating materialized views, 212
getting recommendations from,

216
granting privileges, 216
implementing recommendations,

218
index recommendations, 201
invoking through

DBMS_ADVISOR, 219
invoking through Database

Control, 215
invoking through QUICK_TUNE,

219
managing/monitoring database,

144
reviewing recommendations, 218

tuning-related advisors, 850
tuning SQL statements, 1000

SQL Access Mode, 1069
SQL buffer

see buffers
SQL functions, 1190–1194

AVG, 1191
CASE, 1193
COALESCE, 1193
CONCAT, 1191
COUNT, 1191
DECODE, 1193
INSTR, 1191
LENGTH, 1191
LOWER, 1191
LPAD, 1191
MAX, 1191
MIN, 1191
NVL, 1193
RANK, 1193
REPLACE, 1191
ROUND, 1191
RPAD, 1191
SUBSTR, 1191
SUM, 1191
SYSDATE, 1192
TO_CHAR, 1192
TO_DATE, 1192
TO_NUMBER, 1192
TO_TIMESTAMP, 1192
TRIM, 1191
TRUNC, 1191

SQL mode, 892
SQL Net Services, 391
SQL performance tuning tools

see performance tuning tools, SQL
SQL profiles

Automatic Tuning Optimizer,
995–996

avoiding use of Optimizer hints,
960

managing SQL tuning categories,
998

stored execution plan compared,
995

SQL Response Time chart, Database
Control, 891, 1068

SQL scripts
@@commandfile notation, 518
executing in SQL*Plus, 514–516
executing SQL command scripts

consecutively, 518
viewing script before executing,

518
SQL statements, 145–148, 1186–1188

analyzing instance before tuning,
1066

Automatic Tuning Optimizer, 996
COMMIT, 226
creating stored outlines for, 971
data definition statements, 148
data manipulation statements, 147
DBA_SQLSET_STATEMENTS view,

1112
DELETE, 1188

embedded SQL statements, 147
executing, JDBC, 418–419
identical statements, 1006
identifying inefficiency in, 999
identifying SQL with highest waits,

1042
INSERT, 1187–1188
object privileges granting use of,

445
Oracle SQL transaction stages, 231
performance tuning, approach to,

999–1000
processing steps, 1005
query processing optimization,

939
ROLLBACK, 227
SELECT, 1186–1187
session control statements, 146
SQL Tuning Sets (STS), 999
system control statements, 146
terminating in SQL*Plus, 495
terminating SQL statement, 520
TKPROF utility information on,

987
Top SQL Command Types section,

ASH, 847
Top SQL statements, 999
Top SQL Statements section, ASH,

847
transaction control statements,

148
undo data changes, 262
UPDATE, 1188
using AWR reports for, 1055
using similar SQL statements, 965
wait events, 1034

SQL Trace files, udump, 285
SQL Trace tool, 983–985

enabling, 985
examining parse information,

1007–1008
interpreting trace files with

TKPROF, 985–989
monitoring index usage, 201
note: tracing SQL statements, 990
parameter turning on/off, 352
setting trace initialization

parameters, 984–985
MAX_DUMP_FILE_SIZE, 985
STATISTICS_LEVEL, 984
TIMED_STATISTICS, 984
USER_DUMP_DEST, 985

SET_SQL_TRACE procedure, 1156
SET_SQL_TRACE_IN_SESSION

procedure, 1158
trackable variables using, 983

SQL transformation, 947
SQL Tuning Advisor, 143, 999

automatic performance tuning,
1004

Automatic Tuning Optimizer, 995
DBMS_SQLTUNE package, 1181
how Tuning Advisor works,

994–996
managing SQL profiles, 998

■INDEX1264

4517INDEX.qxd 8/19/05 11:20 AM Page 1264

managing SQL tuning categories,
998

managing/monitoring database,
144

OEM Database Control, 1070
performing automatic SQL tuning,

997
providing SQL statements to, 994
tuning-related advisors, 850
using DBMS_SQLTUNE package,

997–998
using OEM Database Control to

run, 999
views managing automatic tuning,

998
SQL Tuning Sets (STS), 999

DBA_SQLSET view, 1112
DBA_SQLSET_PLANS view, 1112

SQL*Loader, 139, 541–559
capabilities summarized, 541
data loading techniques, 557–559

dropping indexes before bulk
data loads, 558

loading data from table into
ASCII file, 558

loading into multiple tables,
559

loading large data fields into a
table, 557

loading sequence number into
a table, 558

loading username into a table,
557

loading XML data into Oracle
XML database, 559

trapping error codes from
SQL*Loader, 559

using WHEN clauses, 557
direct path loading, 554–556
disabling integrity constraints, 205
external tables compared, 560
generating data during data load,

551
generating external table creation

statements, 567
invoking, 551–552
log files, 552–553
optimizing use of, 556
redo entries, 554
resumable operations, 270
return codes, 553
types of data loading possible

using, 541
SQL*Loader clauses

APPEND, 544
BEGINDATA, 544
CONCATENATE, 544
CONTINUEIF, 545
ENCLOSED BY, 547
INSERT, 544
INTO TABLE, 544
LOAD DATA, 544
OPTIONS, 547
POSITION, 546
REENABLE, 556

REPLACE, 544
TERMINATED BY, 547

SQL*Loader control file, 542–550
command-line parameters,

547–550
data file specification, 544
data transformation parameters,

547
data types, 546
delimiters, 547
fixed record format, 545
logical records, 544
physical records, 544
record formats, 545
stream record format, 545
table column name, 546
variable record format, 545

SQL*Loader parameters
BAD, 549
BINDSIZE, 548
COLUMNARRAYROWS, 555
CONTROL, 548
DATA, 548
DATA_CACHE, 555
DIRECT, 549, 555
DISCARD, 549
DISCARDMAX, 550
ERRORS, 549
EXTERNAL_TABLE, 567
INFILE, 544
LOAD, 549
LOG, 549
MULTITHREADING, 556
PARALLEL, 550
PARFILE, 552
RESUMABLE, 550
RESUMABLE_NAME, 550
RESUMABLE_TIMEOUT, 550
ROWS, 548, 555
SILENT, 549
SKIP, 550
SKIP_INDEX_MAINTENANCE,

555
SKIP_UNUSABLE_INDEXES, 555
SORTED_INDEXES, 555
STREAMSIZE, 556
UNRECOVERABLE, 554, 555
USERID, 548

SQL*Net message from client idle
events, 1052

SQL*Plus, 138
actions of commands

archive logs, viewing details
about, 524

columns, listing, 509
columns, showing properties

of, 512
commands, listing, 518
commands, viewing previous,

518
comments, adding to scripts,

522
connecting to Oracle database,

493

editing, making minor
changes, 519

editors, invoking, 519
environment, setting, 499
footer text, printing, 513
formatting, specifying where

change occurs, 512
header text, printing, 513
help topics, showing, 499
memory buffer, saving

contents of, 514
message, sending to screen,

511
operating system commands,

using from within, 509
output, saving to operating

system, 510
output, viewing screen by

screen, 511
packages/procedures,

executing, 511
prompt, showing instance

name in, 508
recovering

database/files/tablespaces,
524

redo log files, archiving, 524
session variables, creating, 516
session variables, deleting, 516
session, exiting, 495
settings, preserving, 506
settings, removing current, 505
specifications, listing, 509
SQL script, viewing before

executing, 518
statistics, calculating, 513
tables, copying, 522–523
text, adding to existing, 521
text, deleting, 520
text, inserting, 520
title, placing on page, 513
user input, saving in variable,

511
variable values, displaying, 506
web pages, creating, 524

command files, creating, 514–518
command-line options, 504–505
commands

ACCEPT, 511
APPEND, 521
ARCHIVE LOG, 524
ARCHIVE LOG LIST, 524
available commands, list of,

499
BREAK, 512
BTITLE, 513
CHANGE, 519
CLEAR, 505
COLUMN, 512
COMPUTE, 513
CONNECT, 493
COPY, 522–523
DEFINE, 516
DEL, 520
DESCRIBE, 509

■INDEX 1265

4517INDEX.qxd 8/19/05 11:20 AM Page 1265

ed command, 519
EXECUTE, 511
EXIT, 495
GET, 518
HELP INDEX, 499
HOST, 509
INPUT, 520
LIST, 518
MARKUP, 524
PAUSE, 511
PROMPT, 511
QUIT, 495
RECOVER, 524
REMARK, 518, 522
REPFOOTER, 513
REPHEADER, 513
RESTRICT, 498
RUN, 515–516
SAVE, 514
SET, 499
SHOW, 506
SHUTDOWN, 132, 383, 384,

701
SPOOL, 510
SQLPROMPT, 508
START, 499
STARTUP, 324, 361, 378, 379
STORE, 506
TTITLE, 513
UNDEFINE, 516

connecting to Oracle database
from command line, 492
from Windows GUI, 494

connectionless SQL*Plus session,
494

continuation characters, 495
creating database using, 358–373

see also database creation
creating reports, 512–513
creating web pages using, 524
creating Windows batch script, 516
database administration

commands, 524
dropping database from, 386–387
easy connect naming, 410
editing within SQL*Plus, 519–524
environment variables, 500–504

ARRAY[SIZE], 500
AUTO[COMMIT], 500
changing, 501
COLSEP, 500
COPY[COMMIT], 500
DEF[INE], 500
displaying all values, 506
ECHO, 500
EDITF[ILE], 500
execution order of

glogin/login.sql files, 504
FEED[BACK], 500
FLUSH, 500
global preferences (glogin.sql),

502–503
HEA[DING], 500
individual preferences

(login.sql), 503–504

LIN[ESIZE], 500
LONG, 501
NEWP[AGE], 501
NUM[WIDTH], 501
PAGES[IZE], 501
PAU[SE], 501
SERVEROUT[PUT], 501
setting, 500–504
setting Oracle environment,

492
SQLP[ROMPT], 501
table of variables, 500
TERM[OUT], 501
TIMI[NG], 501
TI[ME], 501
VER[IFY], 501

establishing Oracle connectivity,
397

executing contents of SQL*Plus
buffer, 515

executing SQL command scripts
consecutively, 518

executing SQL scripts, 514–516
formatting output, 512
iSQL*Plus

see iSQL*Plus
local commands, 496
making DML changes permanent,

523
monitoring database status,

387–388
predefined variables, 517
privileged connections, 492
prompts, 492
quiescing database from, 385–386
restricting SQL*Plus usage, 487
security, 496–499
server-executed commands, 496
setting Oracle environment, 492
shutting down database from,

383–385
shutting down database with

Windows, 926
starting session from command

line, 492–493
starting SQL*Plus session, 491–495
starting up database from,

378–383
starting up database with

Windows, 926
substitution variables, 516
suspending database from, 386
terminating SQL statement, 495,

521
using comments in SQL*Plus, 517
using SQL to generate SQL,

525–526
web-based interface to SQL*Plus

see iSQL*Plus
SQLException method, conn class

error handling in Java, 419
SQLFILE parameter, Data Pump, 593,

615–616
SQLJ, 1215
SQLLDR command, 551

sqlnet.ora file
backup guidelines, 635
local naming method, 406

Sqlpath variable, Windows registry,
921

sqlplus command
NOLOG option, 494

SQLPLUS_RELEASE variable, 517
SQLPROMPT command, 501, 508
SQLTERMINATOR variable, 521
SQLTUNE_CATEGORY parameter,

998
SQL_TRACE parameter, 352, 985
SREADTIM mode, 953
SSH (secure shell), 78
ssh command, UNIX, 78
stacks

orastack utility, 916
staging directory

installing software, 303
staging element, Oracle Streams, 585
standard auditing, 462–468
standard deviations, SQL*Plus, 513
standard error, UNIX, 56
standard input, UNIX, 56
standard output, UNIX, 56
standby databases, 695–696
start command, lsnrctl utility, 403
start command, isqlplusctl, 528
START command, SQL*Plus, 499
start menu

removing Oracle entries, 931
START WITH clause, 1194
startup

managing Oracle on Windows and
UNIX, 917

Oracle Administration Assistant
for NT, 929

starting up database with
Windows, 925–926

updating scripts post-installation,
310

STARTUP command, SQL*Plus, 361
STARTUP MOUNT, 379
STARTUP NOMOUNT, 378
STARTUP OPEN, 379
STARTUP UPGRADE, 324

START_DATE attribute
CREATE_JOB procedure, 867
CREATE_WINDOW procedure, 877

START_JOB command, Data Pump,
611–612, 621

START_PROFILER procedure, 1167
START_REDIF_TABLE procedure,

815, 816
stateful alerts, 828
stateless alerts, 828
statement-level audit, 462
statement-level read consistency, 234

undo data providing, 243–254
statement-level rollback, 228
Statement object, JDBC, 417
statement timed out error, 271
statements

see SQL statements

■INDEX1266

4517INDEX.qxd 8/19/05 11:20 AM Page 1266

statement_types parameter, 469
static parameters

changing parameter values, 334
scope of changes, SPFILE, 377

static security policy, 459
static views

see data dictionary views
statistics

analytical functions, 1194
automatic optimizer statistics

collection, 141, 780–782,
949–952

automatic performance tuning,
1004

Automatic Tuning Optimizer, 995
Automatic Workload Repository,

142, 834, 835
calculating, SQL*Plus, 513
collecting data dictionary

statistics, 954–955
collecting fixed object statistics,

954
collecting operating system

statistics, 952–954
collecting real dictionary table

statistics, 954
Database Control, 898
database usage metrics, 898
Database Usage Statistics property

sheet, 898
database wait statistics, 1033–1035
DBA_CPU_USAGE_STATISICS

view, 1105
DBA_FEATURE_USAGE_STATISTI

CS view, 1088
DBA_HIGH_WATER_MARK_STATI

STICS view, 1088
DBA_SQLTUNE_STATISTICS view,

1112
DBMS_STATS package, 949–952,

1175
frequency of statistics collection,

955
gathering statistics, 943–945, 950

Oracle recommendation, 956
managing/monitoring database,

144
manual collection of statistics

required, 950
Oracle performance statistics,

823–828
performance tuning, 972
performance/diagnostics-related

parameters, 349–353
problems due to bad statistics,

1062
sampling data, 949
statistics not collected, 955
storing Optimizer statistics, 950
system usage statistic, 1053
time model statistics, 761
TIMED_STATISTICS parameter,

353
turning on statistics collection,

1038

using histograms, 972
using OEM to collect Optimizer

statistics, 956
V$BUFFER_POOL_STATISTICS

view, 1118
V$SYSSTAT view, 1129

STATISTICS_LEVEL parameter, 349
automatic optimizer statistics

collection, 781
configuring ADDM, 763
setting trace initialization

parameters, 984
using automatic shared memory

management, 775
V$STATISTICS_LEVEL view, 1139

Statspack utility, 834
STATUS command, Data Pump, 612,

621
status command, lsnrctl utility, 402
status information, Grid Control, 906
STATUS parameter, Data Pump, 607,

613, 617
stop command, lsnrctl utility, 403
stop command, isqlplusctl, 528
STOP_JOB command, Data Pump,

597, 612, 621
STOP_JOB procedure, 869
STOP_PROFILER procedure, 1167
storage, 92–95

see also ASM
creating database directories, 297
disk storage requirements, 280
flash recovery area, 640
Hardware Assisted Resilient Data,

94
implementing physical database

design, 37
InfiniBand, 94
Networked Attached Storage, 93
Oracle Storage Compatibility

Program, 94
physical database design, 37
storage allocation to database

objects, 158
Storage Area Networks, 93
tablespace storage parameters,

156
backup guidelines, 635
data dictionary views, 1100
DBMS_STORAGE_MAP package,

1182
dynamic performance views,

1140–1143
storage element, Oracle Backup, 685
STORE command, SQL*Plus, 506

restriction levels, 499
stored execution plan

SQL profile compared, 995
stored outlines

caution: limiting dynamic
changes, 969

creating outlines, 970–971
at database level, 970
for specific statements, 971

DBMS_OUTLN package, 1162

DBMS_OUTLN_EDIT package,
1162

editing outlines, 971
implementing plan stability, 970
OUTLN user, 970
stabilizing CBO, 969–971
USER_OUTLINES view, 1163
USER_OUTLINE_HINTS view,

1163
when to use outlines, 969

stored procedures
see also procedures
database security, 452
definer’s rights, 448
displaying output on screen, 501
inline stored functions, 966–967
invoker’s rights, 448
Java stored procedures, 1214

stored scripts
converting RMAN scripts, 654

stream record format, SQL*Loader,
545

streaming
table functions, 575

Streams pool
auto-tuned SGA parameters, 775
parameter setting size, 346
system global area, 121, 126
tuning, 1019

Streams, Oracle, 583–587
Advanced Queuing, 584
architecture, 584–585
capture process, 584
consumption, 585
data protection, 584
data replication, 584
data warehouse loading, 584
enhanced data protection for

disaster recovery, 695
events, 583, 584
setting up, 585–587
staging element, 585

STREAMSIZE parameter,
SQL*Loader, 556

STREAMS_POOL_SIZE parameter,
126, 346

auto-tuned SGA parameters, 775
setting up Oracle Streams, 585

striping
Automatic Storage Management,

784, 792
logical volume stripe sizes, 1030

structures
logical database structures,

100–107
Oracle database structures, 99–112
physical database structures,

107–112
Student and Exchange Visitor

Information System, 1065
subclasses

object database model, 39
SUBMIT procedure, 1151–1152

■INDEX 1267

4517INDEX.qxd 8/19/05 11:20 AM Page 1267

subqueries, 147
correlated subqueries, 1200
EXISTS operator, 1200
multiple column subqueries, 1199
multiple row subqueries, 1199
NOT EXISTS operator, 1200
single row subqueries, 1199
Top-N analysis, 1199
writing efficient SQL, 958
writing subqueries, 1199–1200

substitution variables, SQL*Plus, 516
SUBSTR function, 576, 1191
SUM function, 1191
super administrator account

(sysman), 895
supplemental logging, 732–733
suppressed mode

installing software using response
files, 307

suspended operations, 273
suspending database, 822
swap space

preinstallation checks, 291, 300
virtual memory, 1029

swapping
analyzing instance before tuning,

1075
swap ins/outs, 80
system usage problems, 1059

SWITCH command, RMAN, 660–661
performing hot restore, 713

SWITCH_CURRENT_CONSUMER_
GROUP procedure, 1156

SWITCH_XYZ parameters
plan directives, 819

symbolic links, UNIX, 58
symbolic name, UNIX

accessing UNIX system, 47
command to retrieve, 49

SYNC_INTERIM_TABLE procedure,
817

synonyms, 220–222
creating, 220
DBA_SYNONYMS view, 224, 1108
dropping, 221
private synonyms, 220, 221
public synonyms, 220, 221
switching schema, 222

SYS parameter, TKPROF, 986
SYS schema

accessing objects in, 444
SYS super user

creating database, 364
data dictionary tables, 136
default password, 359
Flashback to SYS user objects, 265

SYS.AUD$ table, 463, 471
Sysaux tablespace, 106, 150, 172–173

alert log during database creation,
367

benefits of, 172
creating, 172–173

failure to create, 172
manual upgrade process, 324
using DBUA upgrade, 320

creating database, 365
Pre-Upgrade Information Tool, 317
removing tablespaces, 160, 173
renaming tablespaces, 163, 173
setting data file location, 173
sizing file system for database, 331
transporting tablespaces, 173
upgrading with DBUA, 320
usage restrictions for, 173
V$SYSAUX_OCCUPANTS view,

1142
Sysaux Tablespace window

upgrading with DBUA, 320
sysctl.conf file, 292–293
SYSDATE function, 1192
SYSDBA privilege, 359, 445, 473
sysman (super administrator

account), 895
SYSOPER privilege, 445, 473
SYSTEM account

creating database, 364
default password, 359

System Activity Reporter
see sar command, UNIX

system administrator
post-installation tasks, 309–310
preinstallation checks, 289–297

system change number
see SCN

system configuration files, UNIX, 62
system control statements, 146
system failures, 700
system global area

see SGA
System I/O wait class, 1035
system-level triggers

using for auditing, 466
system management role, 5–6
system metrics, 827
system monitor process

see SMON
system path

removing Oracle entries, 931
system performance

see performance
system plan

Oracle default resource plans, 435
system privileges, 442–445

CONNECT privilege, 442
granting, 443–444
list of common, 443
revoking, 444
SELECT ANY DICTIONARY, 444
SYSDBA and SYSOPER, 445
types of Oracle privilege, 442
user’s right to perform operations,

442
System tablespace, 106, 150, 168

alert log during database creation,
367

creating database, 365
extent allocation/deallocation, 156
failure to create, 172
removing tablespaces, 160
renaming tablespaces, 163

sizing file system for database, 331
Sysaux tablespace and, 172
using multiple block size feature,

159
systems management, OEM, 886
systemstate dump

database hangs, 1064
sys_context

discovering session information,
454

SYS_GROUP resource consumer
group, 435

SYS_TICKS system usage statistic,
1053

T
table compression, 968
table functions

ETL components, 540
parallel execution, 575
pipelining, 575
streaming, 575
summary of tasks performed by,

575
transform-while-loading method,

575
using SQL to transform data,

575–579
web services data, mining, 579

table locks, 238
table lookups, 959
TABLE parameter, TKPROF, 986
table types

table functions, 577
user-defined object types, 149

table versioning, Workspace Manager,
274

tables, 175–196
see also database objects
adding column to, 179
clusters, 195

hash clusters, 195–196
copying tables, SQL*Plus, 522–523
creating, 178, 181
data dictionary views, 192–195,

1108–1110
database integrity constraints,

202–207
DBA_TABLES view, 192, 224
DBA_TAB_COLUMNS view, 224
DBMS_REDEFINITION package,

1178
designing different types, 35
dropping columns from, 179
dropping tables, 181

PURGE option, 182
estimating size before creating,

176
using Database Control to, 176
using DBMS_SPACE package,

177
external tables, 185
extracting object DDL, 194
Flashback Drop feature, 264

■INDEX1268

4517INDEX.qxd 8/19/05 11:20 AM Page 1268

Flashback Table feature, 264–267
full table scans, 948

avoiding unnecessary, 967
index organized tables, 184–185

differences to regular tables,
184

indexes, 196–202
guidelines for use of indexes,

197
maintaining indexes, 202
separating table and index

data, 104
keys, 20
locking issues, 1060
moving a table online, 812
naming conventions, 36
online table redefinition, 812,

814–818
ordering of columns, 20
partitioned tables, 185–192
performance tuning, 973–974
permanently removing tables,

741–742
removing all data from, 180
renaming columns, 180
renaming tables, 180
setting columns as unused, 179
sizing file system for database, 330
table structures, 36
temporary tables, 182–184
views, 207–214

TABLES parameter, Data Pump, 600,
617

tablespace backups, 690
tablespace metrics, 827
tablespace point-in-time recovery

(TSPITR), 705, 730–731
tablespace space usage alert, 828
tablespaces, 104–107, 149–175

alerts, 832–833
assigning tablespace quotas to

new users, 424
automatic segment space

management, 152
backing up with RMAN, 674
backup guidelines, 636
benefits of using, 105
bigfile tablespaces, 107, 169–171
changing default tablespace type,

171
choosing size of, 104
creating, 154–159

additional tablespaces,
369–370

data files and tablespaces, 154
extent allocation/deallocation,

156
users creating tablespaces, 424
with nonstandard block sizes,

159
data block sizes and, 105
data block space management,

152
data dictionary views for

managing, 174–175

data files and, 112
database creation using OMF, 805
DBA_TABLESPACES view, 224,

1103
DBMS_TTS package, 1181
default extent storage, 151
default permanent tablespace, 168
default tablespaces, 104
default type, 107
description, 100, 282
dictionary-managed tablespaces,

106, 150
dictionary view for managing, 174
expanding, 160–163
extent management default, 151
extent sizes, managing, 151
locally managed tablespaces, 106,

150, 799–800
migrating to, 153

moving tables between, 181
multiple data block sizes, 123
naming conventions, 286
offline tablespaces, 164
Oracle Managed Files, 173–174
permanent tablespaces, 107
Pre-Upgrade Information Tool, 317
read-only tablespaces, 107, 163
recovering tablespaces, 714–715

RMAN, 714–715
SQL*Plus, 524
user-managed recovery, 715

removing, 159–160
renaming, 163
revoking tablespace quotas to

users, 424
separating table and index data,

105
smallfile tablespaces, 107
specifying flashback mode clause,

154
storage allocation to database

objects, 158
storage parameters, 156
Sysaux tablespace, 106, 150,

172–173
System tablespace, 106, 150, 168
tablespace backup, 634
Tablespace Point-in-Time

Recovery, 730–731
tablespace quotas, 161
tablespace space alerts, 161

setting alert thresholds, 162
temporary tablespace groups,

165–168
temporary tablespaces, 106, 107,

150, 164
transportable tablespaces, 105,

623–630
undo tablespaces, 106, 107, 150
UNDO_TABLESPACE parameter,

245
UNLIMITED TABLESPACE

privilege, 178
unlimited tablespace usage rights,

424

user tablespaces, 161
using multiple block size feature,

159
V$TABLESPACE view, 1140

TABLESPACES parameter, Data
Pump, 600, 617

TABLESPACE_MIGRATE_FROM_
LOCAL procedure, 1165

TABLESPACE_MIGRATE_TO_LOCAL
procedure, 1165

TABLE_EXISTS_ACTION parameter,
Data Pump, 617

TABLE_NAME column, 262
TABLE_OWNER column, 262
tags

backup tags, 657
tail command, UNIX, 64
tape backups

backup and recovery architecture,
134

backup guidelines, 635
physical database backups, 632
RMAN, 648

tar command, UNIX, 76
target database, RMAN, 650

using RMAN for TSPITR, 730
targets tab, Grid Control, 906
TCP/IP protocol

easy connect naming, 410
establishing Oracle connectivity,

397
TCP_INVITED_NODES parameter

securing network, 486
telnet

accessing UNIX system, 46, 77
TEMPFILE clause

temporary tablespaces, 164
temporary files

directory storing, 62
temporary space

preinstallation checklist, 300
temporary tables, 182–184

benefits of, 183
Flashback Versions Query feature,

260
session temporary table, 183
transaction temporary table, 183

temporary tablespaces, 106, 107, 150,
164

alert log during database creation,
367

allocating space to, 164
AUTOALLOCATE clause, 165
default temporary tablespaces,

165
setting group as, 167

dropping, 165
failure to assign, 165
managing users, 422
Oracle size recommendation, 165
sizing file system for database, 331
temporary tablespace groups,

165–168
adding tablespace to, 167
creating/altering users, 167

■INDEX 1269

4517INDEX.qxd 8/19/05 11:20 AM Page 1269

TERMINAL attribute, USERENV,
454–455

terminal emulators, UNIX, 46
TERMINATED BY clause,

SQL*Loader, 547
TERM[OUT] variable, SQL*Plus, 501
test command, UNIX, 68, 70
test databases, 9
testing backups, 636
text extraction, UNIX, 65
text handling, SQL*Plus, 520, 521
text manipulation, UNIX, 64
TEXT pages, Oracle process, 1061
text scripts

converting RMAN scripts, 654
theta join, 22
Third Normal Form (3NF), 33
threads

Data Pump utilities, 609
managing Oracle on Windows and

UNIX, 912
Oracle Service threads, 914
query showing shadow processes,

914
threshold-based alerts, 828
thresholds

critical threshold, 830, 832
DBA_THRESHOLDS view, 834,

1112
setting alert thresholds, 830
setting for metrics, 828
warning threshold, 830, 832

time-based recovery
Flashback Database example, 749
RMAN incomplete recovery, 718
user-managed incomplete

recovery, 721
time model statistics

ADDM, 761–762
data collected by AWR, 835
DB time statistic, 760
V$SESS_TIME_MODEL view, 1130
V$SYS_TIME_MODEL view, 1130

TIMED_STATISTICS parameter, 353,
984

TIMEOUT clause
ALTER SESSION command, 271

TIMESTAMP data type, 1185
timestamps

converting between timestamps
and SCNs, 737

Flashback Database example, 749
Flashback Versions Query feature,

259
START_TIMESTAMP column, 262

TIMESTAMP_TO_SCN function, 737
timing

clearing, SQL*Plus, 506
CONNECT_TIME resource

parameter, 427
IDLE_TIME resource parameter,

427
PASSWORD_XYZ_TIME

parameters, 427

Time Model Statistics section,
AWR reports, 843

TI[ME] variable, SQL*Plus, 501
TIMI[NG] variable, SQL*Plus, 501

titles
placing title on page, SQL*Plus,

513
TKPROF utility, SQL

brief description, 983
enabling, 985
examining formatted output files,

986–989
examining parse information,

1007–1008
interpreting trace files with,

985–989
parameters, 986
parse/execute/fetch counts, 987
reducing parse time CPU usage,

1029
SQL statement information, 987

tmp (/tmp) directory, UNIX, 62
tnsnames map file, 412
tnsnames.ora file

backup guidelines, 635
external naming method, 412
installing Oracle Client, 399
local naming method,

connectivity, 405
modifying manually, 406–408
modifying with NCA, 408–410
typical file, 406

TNS_ADMIN variable
locating tnsnames.ora and

sqlnet.ora, 406
setting, preinstallation, 298

TOAD software, 999
Top Activity page, Database Control,

1070
top command, UNIX, 83, 1057
Top Sessions page, Database Control,

1071
Top SQL statements, 999
Top-N analysis, subqueries, 1199
touch command, UNIX, 63
touch count, 1018
TO_XYZ functions, 1185, 1192
trace files, 111

bdump administrative directory,
285

collecting detailed wait event
information, 1045–1046

interpreting, TKPROF, 985–989
parameter collecting timed

statistics during tracing, 353
trace initialization parameters

setting, 984–985
tracing

Autotrace utility, 979–983
creating trace in user dump

directory, 1008
enabling, 1007
end-to-end tracing, 989–991
SQL Trace tool, 983–985

training, DBA, 10–11

transaction control statements, 148
transaction-level read consistency,

234
transaction recovery, 701

Oracle media recovery process,
704

transactions, 225–275
ACID properties, 228
analyzing instance before tuning,

1072
atomicity, 228
automatic checkpoint tuning, 810
autonomous transactions,

267–269
COMMIT statement, 226
concurrency control, 229–230

implementing, 235–243
schedules and serializability,

230
consistency, 228
creating transaction temporary

table, 183
data concurrency problems, 229
data consistency and, 130
data dictionary views, 1104
DBMS_FLASHBACK package,

256–257
described, 225–228
discrete transactions, 267
durability, 229
dynamic resource management,

819
executing SQL statements, JDBC,

418
flashback error correction using

undo data, 254–267
Flashback Transaction Query,

261–264
Flashback Versions Query, 258
FLASHBACK_TRANSACTION_QU

ERY view, 267, 1089
isolation, 228
isolation levels, 232–235

ISO transaction standard, 231
limiting long transactions, 819
limiting maximum execution

times for, 819
LOCK TABLE statement, 147
locking and, summary of, 238
making permanent in database

files, 115
managing long transactions,

273–275
monitoring performance with

Grid Control, 907
naming, 229
Oracle database transactions,

130–131
Oracle SQL transaction stages, 231
properties of, 228–229
redo log files, 109
Resumable Space Allocation

feature, 269–273
ROLLBACK statement, 227
SAVEPOINT command, 228

■INDEX1270

4517INDEX.qxd 8/19/05 11:20 AM Page 1270

SHUTDOWN commands, 383, 384
switching long-running

transactions, 819
transferring contents of redo log

buffer to disks, 115
undo data providing read

consistency, 243–254
undo management, 133, 800
unique transaction identifier, 259
V$TRANSACTION view, 1134
write ahead protocol, 132

TRANSFORM parameter, Data Pump,
618–619

transform method, SQL/XML, 1212
transform-then-load method, ETL,

540
transform-while-loading method

ETL, 540
table functions, 575

transforming data, 570–583
see also ETL
deriving data from existing tables,

570–571
external tables, 560
MERGE statement, 571–573
MODEL clause, 580–583
multitable inserts, 573–575
Oracle Streams, 583–587
SQL*Loader/external tables

compared, 560
table functions, 575–579
using SQL to transform data,

571–579
transforming queries, 947
transient files

flash recovery area, 641
Transparent Application Failover

feature, 700
transparent data encryption, 477–482

creating Oracle wallet, 478
encrypting table columns, 481
encryption algorithms, 482
generating master encryption key,

480
opening and closing Oracle wallet,

480
transport tablespaces feature, 105

DBMS_TTS package, 1181
transportable tablespaces, 623–630

Data Pump utilities, 623, 625–627
ETL components, 541
LOBs (large objects), 623
metadata, 625, 627
referential integrity constraints,

624
self-contained criteria, 624
transporting tablespaces across

platforms, 627–630
converting data files to match

endian format, 629
copying files to target system,

630
determining endian format of

platform, 628

ensuring tablespaces are self-
contained, 628

exporting metadata using Data
Pump, 628

making read-only, 628
using Data Pump to import

metadata, 630
transporting tablespace between

databases, 624–627
copying export/tablespace files

to target, 626
exporting dictionary

information (metadata), 625
generating transportable

tablespace set, 625–626
performing tablespace import,

626
selecting tablespace to

transport, 624
TRANSPORT_SET_CHECK

procedure, 624
uses for, 624

TRANSPORTABLE_TABLESPACES
parameter, Data Pump, 614

TRANSPORT_DATAFILES parameter,
Data Pump, 617

TRANSPORT_FULL_CHECK
parameter, Data Pump, 602,
617, 625, 628

TRANSPORT_SET_CHECK
procedure, 624, 628

TRANSPORT_TABLESPACES
parameter, Data Pump, 600,
617, 626

trees
B-tree index structure, 197

trial recovery, 753–754
triggers, 223–224

creating, 223
customizing database auditing

with, 465–468
database triggers, 37
DBA_TRIGGERS view, 224, 1108
deriving data from existing tables,

571
described, 465
SQL*Loader direct-path loading,

556
TRIM function, 1191
TRUNC function, 1191
TRUNCATE command, 180

rolling back, 1188
TRUNCATED option

SET SERVEROUTPUT command,
502

try...catch blocks, Java, 419
TSPITR (Tablespace Point-in-Time

Recovery), 730–731
complete and incomplete

database recovery, 705
TTITLE command, SQL*Plus, 513
TUNE_MVIEW procedure, 212
tuning

see performance tuning

tuples
relational database model, 20

TWO_TASK environment variable,
399

type inheritance, 1203

U
udump administrative directory, 285
umask command, UNIX, 295
UMASK variable, UNIX, 61

setting permissions, 484
uname command, UNIX, 49
unary operations, 21

heuristic strategies for query
processing, 942

UNDEFINE command, SQL*Plus, 516
Undo Advisor, 143, 854

automatic performance tuning,
1004

space-related advisors, 850
using OEM to manage undo data,

254
undo data

active/committed, 248
Automatic Undo Management,

244
backup and recovery architecture,

134
flashback error correction using,

254–267
identifying SQL statements to

undo data changes, 262
parameter storing, 348
providing read consistency,

243–254
time retained in undo tablespace,

247
uses of, 244
using OEM to manage undo data,

254
undo management, 133

Automatic Undo Management,
133, 800

creating plan directives, 436
DBA_UNDO_EXTENTS view, 1104
managing/monitoring database,

144
manual mode, 133
undo-related parameters, 347–348
UNDO_MANAGEMENT

parameter, 245
undo pool resource allocation

method, 432
undo records

see undo data
undo retention

default, 250
guaranteed undo retention, 251
snapshot-too-old error, 248
summary of automatic undo

retention, 249
UNDO_RETENTION parameter,

247
V$UNDOSTAT view, 248

■INDEX 1271

4517INDEX.qxd 8/19/05 11:20 AM Page 1271

undo segments
Automatic Undo Management,

800
data consistency, 131
DBA_ROLLBACK_SEGS view, 250

undo space information, 244–245,
253

undo tablespace, 106
before image records, 109

undo tablespaces, 107, 150
adding space to, 246
alert log during database creation,

367
automatic undo retention

summary, 249
creating database, 365
default choice of, 247
managing, 252
multiple undo tablespaces, 246
parameter determining for undo

records, 348
parameter specifying saved redo

information, 348
sizing, 247, 250
sizing file system for database, 330
UNDO_TABLESPACE parameter,

245
using Flashback features, 255, 263

UNDO_CHANGE column, 262
UNDO_MANAGEMENT parameter,

133, 245, 250, 348
UNDO_POOL parameter, 253
UNDO_POOL resource plan directive,

820
UNDO_RETENTION parameter, 133,

247, 348
automatic undo retention tuning,

141
Flashback features, 255

Flashback Query, 256
Flashback Transaction Query,

261
Flashback Versions Query, 258

guaranteed undo retention, 251
setting up Oracle Streams, 585
snapshot too old error, 253

UNDO_SQL column, 262
UNDO_TABLESPACE parameter, 245,

348
UNIFORM option

managing extent sizes, 151
tablespace storage parameters,

157
uninstalling Oracle, 312–313

on Windows, 930–931
removing Oracle databases, 312
removing Oracle software, 313

union, relational algebra, 21
UNION ALL operator, 1190
UNION operations

indexing strategy, 963
UNION operator, 1190
uniq command, UNIX, 67
UNIQUE constraint, 204

unique identifiers
see also keys
distinguished names, 415

unique indexes, 196
unique transaction identifier

Flashback Versions Query feature,
259

uniqueness of data
primary keys enforcing, 36

UNIX
see also directories, UNIX; files,

UNIX; Linux; shell scripts,
UNIX

accessing UNIX system, 46
archiving, 76
backup and restore utilities, 76
changing shell prompt, 51
choosing between Linux and

UNIX, 932
command overview, 48
copying files to/from another

system, 78
DBA background and training, 12
disk storage

availability and performance,
86

configuration choices, 85
disk partitioning, 87
disk striping, 87
logical volumes, 87
monitoring disk usage, 85
RAID systems, 88–92
using file systems, 87

displaying environment variables,
54

executing environment variables,
55

file editors, 63, 65
flow control structures, 71
input/output redirection, 56
introduction, 43
kernel, 45
login to another system, 78
making variables available to child

processes, 54
managing Oracle databases on

Linux systems, 933
managing Oracle databases on

UNIX systems, 909
Windows and UNIX

differences, 912–918
Oracle Database 10g installation

on, 279
performance monitoring, 79–85
processes, 74
remote access to UNIX server, 77
scheduling jobs, 76
session, 47
shells, 45
starting connectionless SQL*Plus

session, 494
starting SQL*Plus session from,

492
system administration and Oracle

DBA, 75

telnet, accessing server using, 77
troubleshooting iSQL*Plus startup

on, 529
using SSH (secure shell), 78
variable types, 53

shell variables, 54
user created variables, 53

vi editor, 63
UNIX commands

basic commands, 48, 50
at, 77
batch, 77
cat, 52, 58
cd, 48, 62
chgrp, 61
chmod, 60–61, 70
cp, 59
cpio, 76
crontab, 76
cut, 66
date, 48
dd, 76
df, 80, 86
diff, 53
du, 80, 86
echo, 48
egrep, 66
env, 54
export, 51, 53–54
fgrep, 65
find, 52
ftp, 79
get, 79
glance, 84
gpm, 85
grep, 49, 65
head, 64
history, 49
iostat, 82
join, 67
kill, 75
link, 58
ln, 58
ls, 58, 60
man, 50
mkdir, 62
more, 52, 59
mv, 59
nohup, 74
page, 53
passwd, 49
paste, 66
pipe (|), 52
ps, 74, 81
put, 79
pwd, 49
rcp, 78
rlogin, 78
rm, 59, 62
rmdir, 62
sar, 82
setenv, 54
sort, 67
source, 56
ssh, 78

■INDEX1272

4517INDEX.qxd 8/19/05 11:20 AM Page 1272

tail, 64
tar, 76
telnet, 77
test, 68
top, 83
touch, 63
uname, 49
uniq, 67
vmstat, 81
whereis, 49
which, 49
who, 50
whoami, 50

batch mode, 54
controlling output of, 52
editing the previous command, 50
help, 50
interactive mode, 54
overview, 48
passing output in as input, 52
retrieving the previous command,

50
UNIX platforms

caution: not using
SGA_MAX_SIZE, 777

UNKEEP procedure, 1010, 1174
UNKNOWN status, listener, 402
UNLIMITED TABLESPACE privilege,

178
unloading data

populating external tables, 564
unrecoverable data files, 662
UNRECOVERABLE parameter

backup guidelines, 635
direct-path loading, 554
SQL*Loader, 554, 555, 556

until-do-done loop, UNIX, 73
unused block compression feature,

RMAN, 649
UNUSED_SPACE procedure, 1164
update anomaly, 29
UPDATE statement, 147, 1188
updates

Critical Patch Updates, 486
updating columns

guidelines for use of indexes, 197
updating data

dirty read problem, 229
lost update problem, 230
nonrepeatable read problem, 230

Upgrade Summary window, 321
upgrades

see Oracle Database 10g upgrade
upserts

ETL components, 540
MERGE statement, 572
transforming array data, 581

used_bytes, 198
user accounts, 482
user class, Oracle Backup, 685
user-created variables, UNIX, 53
user-defined object types, 149
user-defined variables, UNIX, 54
User I/O wait class, 1035
user processes, 113

user profile file, SQL*Plus, 503–504
user profiles, 426–430

altering, 429
assigning, 429
caution: not assigning profile to

user, 429
default profile, 428–429
described, 426
dropping, 430
FAILED_LOGIN_ATTEMPTS

parameter, 482
parameters and limits, 426–429
password-related security,

427–428
resource management, 430
resource usage limits, 427

caution: ensuring limits are
activated, 429

determining limits, 430
result of reaching a limit, 430

USER variable, SQL*Plus, 517
USER views, 1084
user-managed backups

see under backup
useradd command, 295
user’s space quota errors, 270
USERENV application context

namespace
predefined attributes, 455
predefined session attributes, 454

USERID parameter, SQL*Loader, 548
users

altering properties of user’s
session, 146

altering users, 425
assigning users to consumer

groups, 438
centralized user authorization, 476
changing passwords for default

users, 371
changing user password, 425
controlling use of resources,

426–430
creating tablespaces, 424
creating users, 422

assigning tablespace quotas,
424

privileges, 423
creating/altering temporary

tablespace groups, 167
DBA security role, 4
DBA views for managing, 452
DBA_USERS view, 1091
determining SQL user currently

executing, 488
dropping users, 425–426
dynamic performance views,

1121–1123
enterprise user security, 476–482
granting role to another user, 451
identifying high CPU users, 1025
killing user session, 489
listing user information, 488
logging in as different user, 489

managing Oracle on Windows and
UNIX, 917

managing users, 422–430, 488
default tablespaces, 422
resource management, 430
temporary tablespaces, 422

maximum number of, 348
privileged users, 473
profiles

see user profiles
program global area, 128
resource consumer groups, 433
resource limits in user profile, 353
retrieving current users, UNIX, 50
retrieving own username, UNIX,

50
revoking tablespace quotas, 424
saving user input in variable,

SQL*Plus, 511
SHOW USER command, 507
sizing SQL work areas for, 353
temporary tables, 183
unlimited tablespace usage rights,

424
users with most waits, 1042

USERS tablespaces, 367
USER_ADVISOR_ACTIONS view, 219
USER_DUMP_DEST parameter, 112,

340
setting trace initialization

parameters, 985
USER_OUTLINES view, 1163
USER_OUTLINE_HINTS view, 1163
USER_TICKS system usage statistic,

1053
USE_STORED_OUTLINES parameter,

971
utilities

DBMS_UTILITY package, 1181
Oracle utilities, 139

utllockt.sql script, 241
utlrp.sql script, 325
utlu102i.sql script, 317
utlu102s.sql script, 318
utlxplan.sql script, 975, 976
UTL_FILE_DIR parameter, 341, 484,

1169
UTL packages

UTL_COMPRESS, 1148
UTL_FILE, 1168–1172

setting permissions, 484
UTL_MAIL, 1149
UTL_RECOMP, 325
UTL_SMTP, 1172–1173

V
V$ views, 136, 835

V$ACCESS, 1123
V$ACTIVE_SESSION_HISTORY,

845, 1131
analyzing recent session

activity, 1057
analyzing waits, 1041
description, 1113

■INDEX 1273

4517INDEX.qxd 8/19/05 11:20 AM Page 1273

identifying SQL with highest
waits, 1042

most important recent wait
events, 1042

objects with highest waits, 1041
users with most waits, 1042
using, 1041

V$ADVISOR_PROGRESS, 1123
V$ALERT_TYPES, 833, 1135
V$ARCHIVED_LOG, 691, 734, 1124
V$ARCHIVE_DEST, 1125
V$ARCHIVE_DEST_STATUS, 1125
V$ASM_ALIAS, 1142
V$ASM_CLIENT, 1142
V$ASM_DISK, 1142
V$ASM_DISKGROUP, 1142
V$ASM_DISKGROUP_STAT, 1142
V$ASM_DISK_STAT, 1142
V$ASM_FILE, 1142
V$ASM_OPERATION, 1142
V$BACKUP, 691, 1120
V$BACKUP_CORRUPTION, 678
V$BACKUP_DEVICE, 1120
V$BACKUP_FILES, 678
V$BACKUP_PIECE, 1120
V$BGPROCESS, 913, 915, 1140
V$BUFFER_POOL, 1117
V$BUFFER_POOL_STATISTICS,

1017, 1118
V$CONTROLFILE, 1141
V$CONTROLFILE_RECORD_

SECTION, 1141
V$COPY_CORRUPTION, 678
V$DATABASE, 388, 1137
V$DATAFILE, 691, 1140
V$DB_CACHE_ADVICE, 1017,

1118
V$DB_OBJECT_CACHE, 1119
V$DISPATCHER, 1137
V$EVENT_NAME, 1128
V$FILEMETRIC, 1136
V$FILEMETRIC_HISTORY, 1136
V$FILESTAT, 1140
V$FIXED_TABLE, 1136
V$FIXED_VIEW_DEFINITION,

1136
V$FLASHBACK_DATABASE_LOG,

747, 1128
V$FLASHBACK_DATABASE_STAT,

747, 1128
V$FLASH_RECOVERY_AREA_

USAGE, 646, 1128
V$INSTANCE, 387, 1131
V$INSTANCE_RECOVERY, 331,

1126
V$LATCH, 1133
V$LATCHNAME, 1133
V$LIBRARYCACHE, 1009, 1119
V$LIBRARY_CACHE_MEMORY,

1010
V$LICENSE, 1136
V$LOCK, 241, 1132
V$LOCKED_OBJECT, 1133
V$LOCK_HOLDERS, 241
V$LOG, 691, 858, 1123

V$LOGFILE, 857, 1124
V$LOGMNR_CONTENTS, 732, 735
V$LOG_HISTORY, 691, 720
V$MAP_XYZ views, 863
V$METRICNAME, 833, 1135
V$MTTR_TARGET_ADVICE, 1126
V$NLS_PARAMETERS, 1139
V$OBJECT_USAGE, 202
V$OBJECT_USAGE, 1140
V$OPTION, 1137
V$OSSTAT, 1053, 1140
V$PARAMETER, 357, 777, 1138
V$PGASTAT, 1021, 1119
V$PGA_TARGET_ADVICE, 1020
V$PROCESS, 1023, 1133
V$PROCESS_MEMORY, 1023, 1134
V$PWFILE_USERS, 1121
V$RECOVERY_FILE_DEST, 646,

1127
V$RECOVERY_PROGRESS, 1122
V$RECOVER_FILE, 1127
V$RESOURCE_PLAN, 876
V$RESTORE_POINT, 751, 1127
V$RMAN_CONFIGURATION, 1120
V$RMAN_OUTPUT, 678
V$RMAN_STATUS, 678, 710
V$ROLLSTAT, 254
V$ROWCACHE, 1119
V$RSRC_CONSUMER_GROUP,

441, 1134
V$RSRC_PLAN, 441, 1134
V$SEGMENT_NAME, 1045
V$SEGMENT_STATISTICS, 1045
V$SEGSTAT, 1045
V$SERVICEMETRIC, 827, 1135
V$SERVICEMETRIC_HISTORY,

1135
V$SERVICE_WAIT_CLASS, 1130
V$SESSION, 241, 1122, 1131

analyzing waits, 1040
current active session data, 845
managing Database Resource

Manager, 441
obtaining wait information,

1039
showing wait information, 1037

V$SESSION_CONNECT_INFO,
1121

V$SESSION_EVENT, 1037
V$SESSION_LONGOPS, 622, 678,

1122
V$SESSION_WAIT

analyzing waits, 1040, 1043
columns in view, 1037
monitoring resumable

operations, 273
showing wait information, 1037
wait classes of session waits,

1043
V$SESSION_WAIT_CLASS, 1044,

1130
V$SESSION_WAIT_HISTORY,

1131, 1040
V$SESSTAT, 1027
V$SESS_IO, 1122

V$SESS_TIME_MODEL, 762, 1076,
1130

V$SGA, 776, 778, 1116
V$SGASTAT, 778, 1116
V$SGA_DYNAMIC_

COMPONENTS, 778, 1117
V$SHARED_POOL_ADVICE, 1010,

1014, 1118
V$SPPARAMETER, 110, 375, 1138
V$SQL, 992–994, 1128
V$SQLSTATS, 1129
V$SQLTEXT, 1131
V$SQL_PLAN, 994
V$SQL_WORKAREA_HISTOGRAM,

1022
V$STATISTICS_LEVEL, 1139
V$SYSAUX_OCCUPANTS, 1142
V$SYSMETRIC, 827, 1035, 1135
V$SYSMETRIC_HISTORY, 1135
V$SYSSTAT, 1027, 1129
V$SYSTEM_EVENT, 1034,

1037–1038, 1039
V$SYSTEM_PARAMETER, 1138
V$SYSTEM_WAIT_CLASS, 1043,

1130
V$SYS_TIME_MODEL, 761, 1076,

1130
V$TABLESPACE, 1140
V$TEMPFILE, 1140
V$TEMPLATE, 1142
V$TRANSACTION, 254, 1134
V$TRANSPORTABLE_PLATFORM,

1142
V$UNDOSTAT, 248, 253, 1134
VVPGA_TARGET_ADVICE, 1119
V$VERSION, 1137
V$WAITCLASSMETRIC, 1044, 1135
V$WAITSTAT, 1039
V$WAIT_STAT, 1128
V$XML_AUDIT_TRAIL, 1099

VALIDATE...RESTORE command, 708
VALIDATE BACKUP command,

RMAN, 708
VALIDATE BACKUPSET command,

RMAN, 664, 679
VALIDATE command, RMAN, 679
validating method, SQL/XML, 1211
validation commands

RMAN commands, 664
validating an object online, 812

value-based security, 208
VARIABLE clause, 562
variable record format, SQL*Loader,

545
variables

creating session variables,
SQL*Plus, 516

deleting session variables,
SQL*Plus, 516

displaying values, SQL*Plus, 506
predefined SQL*Plus variables, 517
SQL*Plus environment variables

see environment variables,
SQL*Plus

■INDEX1274

4517INDEX.qxd 8/19/05 11:20 AM Page 1274

variables, UNIX
shell variables, 54
showing variable value, 53
user-created variables, 53
variable types, 53

varrays, 1202
versions, 282

checking kernel version, 290
checking operating system, 290
fixing bugs, 1003
Flashback Versions Query feature,

258
locating product files, 286
multiple names for same version,

284
parameter enabling behavior of

previous, 350
platform version, 288
Pre-Upgrade Information Tool, 317
retrieving version of command,

UNIX, 49
upgrade paths, 315
V$VERSION, 1137

VERSIONS clause
Flashback Versions Query feature,

258, 260
VERSIONS_XYZ pseudo columns

Flashback Versions Query feature,
259

VER[IFY] variable, SQL*Plus, 501
vi editor, UNIX, 63, 64
view privileges, 446
viewing files, UNIX, 58, 59
views, 207–214

see also DBA views; V$ views
avoiding improper use of views,

967
creating, 208
data manipulation using, 208
database security, 452
DBA_VIEWS view, 1110
definition storage, 207
dropping, 208
Flashback Versions Query feature,

260
FLASHBACK_TRANSACTION_

QUERY view, 261
materialized views, 209–214
querying, 207
reasons for using, 207
security, 208
tables and, 207

virtual memory, 1029
virtual private database

see VPD
vmstat utility, UNIX, 81

CPU performance, 1024
examining system performance,

1053
operating system memory

management, 1057
volume identification sequence

Oracle Backup media, 686

VPD (virtual private database)
application context and, 453
column-level VPD, 460–461
query rewriting method, 453
row-level access, 453

W
wait classes, 1035

analyzing instance performance,
1036

breakdown of waits by, 1043
determining total/percentage

waits, 1036
dynamic performance views,

1130–1131
metric values of, 1044
time spent in each type, 1044
V$SESSION_WAIT view, 1043

Wait Event History, Database Control,
1071

wait event information, 1045–1046
key dynamic performance tables

showing, 1036
obtaining wait information,

1038–1040
wait event views, 1034
wait events, 1035

analyzing instance before tuning,
1076

ASH reports, 848
complete listing of, 1047
database wait statistics, 1034
eliminating the contention, 1078
important Oracle wait events,

1047–1052
buffer busy, 1047–1048
checkpoint completed, 1048
db file scattered read, 1048
db file sequential read, 1049
direct path read, 1049
direct path write, 1049
enqueue, 1050
free buffer, 1050
idle, 1052
latch free, 1050
log buffer space, 1051
log file switch, 1052
log file sync, 1052

instance performance, 1054
instance wide wait event status,

1039
most important recent wait

events, 1042
WAIT option

committing transaction, 227
wait statistics

data collected by AWR, 835
dynamic performance views

containing, 1034
identifying SQL with highest waits,

1042
measuring instance performance,

1033–1035

objects with highest waits, 1041
segment-level statistics, 1045
users with most waits, 1042

WAITS parameter, TKPROF, 986
wallets

see Oracle Wallets
warning threshold, 832
warning_value attribute, 163
Web Applications

connecting to Oracle, 393
monitoring system with Grid

Control, 907
web-based management, OEM, 884
web pages

generating from SQL*Plus, 505,
524

web services data
table functions mining, 579

webDba role, iSQL*Plus, 534
whatis command, UNIX, 51
WHEN clause, SQL*Loader, 557
WHERE clauses

avoiding Cartesian joins, 960
comparison operators, 1186
filtering data, 1189
guidelines for use of indexes, 197
LIKE condition, 1187
subqueries, 147
writing efficient SQL, 957–959

whereis command, UNIX, 49
which command, UNIX, 49
WHICH_LOG attribute

PURGE_LOG procedure, 875
WHILE loop, PL/SQL, 1206
while-do-done loop, UNIX, 72
who command, UNIX, 50
whoami command, UNIX, 50
whole database backups, 633, 634
window groups, Oracle Scheduler,

865, 880
Windows

at scheduling utility, 516
creating Windows batch script, 516
installing Oracle database 10g on,

919–920
managing Oracle databases on,

921–929
installing Oracle database 10g,

919–920
Windows and UNIX

differences, 912, 918
Windows registry, 920–921

Oracle Administration Assistant
for NT, 928–929

Oracle database 10g and, 909–912
Oracle services, 922–925
starting up and shutting down

database, 925–926
uninstalling Oracle on, 930–931

Windows Active Directory, 912
Windows GUI

connecting to SQL*Plus, 494

■INDEX 1275

4517INDEX.qxd 8/19/05 11:20 AM Page 1275

Windows registry, 920–921
ALL_HOMES subkey, 921
HOMEID key, 921
REGEDIT command, 921
removing registry keys, 930

Windows services, 915
windows, Oracle Scheduler

changing resource plans using,
876–880

creating, 877–878
description, 865
maintenance window, 877
managing, 878–879
overlapping windows, 878, 880
prioritizing jobs, 879
purpose, 876
window priorities, 880

WINDOW_PRIORITY attribute, 877
WITH ADMIN OPTION

granting roles, 451
WORD_WRAPPED option

SET SERVEROUTPUT command,
502

WORKAREA_SIZE_POLICY
parameter, 353

automatic PGA management, 129
worker process, Data Pump, 598

workload
Automatic Workload Repository

(AWR), 142
workload mode

collecting operating system
statistics, 953

Workload Source page
getting SQL Access Advisor

recommendations, 217
workloads

see AWR
Workspace Manager

benefits of using, 274
DBMS_WM package, 1174
managing long transactions,

273–275
table versioning, 274
workspaces, 274

WRAPPED option
SET SERVEROUTPUT command,

502
write ahead protocol, 116

database writer (DBWn) process,
132

durability of transactions, 229
write permission, UNIX files, 59
write-allowed period

Oracle Backup media, 686
writing files, UNIX, 63

X
X session, UNIX, 47
X Window emulators, UNIX, 46
X Window System emulation, 301
X$ tables, 136
XID column, 262
XML (Extensible Markup Language)

creating relational view from XML
document, 1214

inserting XML document into
Oracle table, 1212

Oracle XML DB, 1210–1214
semistructured database model,

41
setting up XML schema, 1213
SQL*Loader utility, 559
viewing XML data stored in Oracle

table, 1212
XML and SQL, 146

XML schema, 149
XML value

AUDIT_TRAIL parameter, 462
XMLType data type, 1211

■INDEX1276

4517INDEX.qxd 8/19/05 11:20 AM Page 1276

	Expert Oracle Database 10g Administration
	Table of Content
	PART 1 Background, Data Modeling, and UNIX/Linux
	Chapter 1 The Oracle DBA’s World
	Chapter 2 Relational Database Modeling and Database Design
	Chapter 3 Essential UNIX (and Linux) for the Oracle DBA

	PART 2 Oracle Database 10g Architecture, Schema, and Transaction Management
	Chapter 4 Introduction to the Oracle Database 10g Architecture
	Chapter 5 Schema Management
	Chapter 6 Oracle Transaction Management

	PART 3 Installing Oracle Database 10g, and Creating and Upgrading Databases
	Chapter 7 Installing the Oracle Database 10g RDBMS
	Chapter 8 Upgrading to Oracle Database 10g
	Chapter 9 Creating an Oracle Database

	PART 4 Connectivity and User Management
	Chapter 10 Connectivity and Networking
	Chapter 11 User Management and Database Security
	Chapter 12 Using SQL*Plus and iSQL*Plus

	PART 5 Data Loading, Backup, and Recovery
	Chapter 13 Loading and Transforming Data
	Chapter 14 Using Data Pump Export and Import
	Chapter 15 Backing Up Databases
	Chapter 16 Database Recovery

	PART 6 Managing the Operational Oracle Database
	Chapter 17 Automatic Management and Online Capabilities
	Chapter 18 Managing and Monitoring the Operational Database
	Chapter 19 Using Oracle Enterprise Manager
	Chapter 20 Managing Oracle Databases on Windows and Linux Systems

	PART 7 Performance Tuning
	Chapter 21 Improving Database Performance: SQL Query Optimization
	Chapter 22 Performance Tuning: Tuning the Instance

	PART 8 The Data Dictionary, Dynamic Views, and the Oracle-Supplied Packages
	Chapter 23 The Oracle Data Dictionary and the Dynamic Performance Views
	Chapter 24 Using Oracle PL/SQL Packages

	Appendix A
	Index

